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ABSTRACT 

The water treatment industry is currently facing growing pressure to provide efficient 

treatment at economical cost. The clarifier is one of the most important units in a water 

treatment plant. The impurity removal efficiency of the clarifier relies heavily on the 

skills of the operators and the fluctuation of raw water quality. The behaviour of the 

clarifier is complex and not able to be explained by simple mathematic equations. 

The goal of this thesis was to develop and evaluate intelligent control methods for 

clarifier control. The intelligent control system proposed conceptually controls the 

clarifier by mimicking human operator control. The control objectives here were not only 

to minimise the clarified water impurity but also minimise the operational cost. The 

intelligent control system developed in this thesis was an integrated system employing an 

Artificial Neural Network (ANN) and Genetic Algorithms (GAs), which were linked by 

Model Predictive Control (MPC) architecture. The intelligent control system was 

composed of three components: (i) an ANN clarifier process model, (ii) an 

Multiobjective genetic algorithm (MOGA) optimiser and (iii) a decision maker. The 

system was designed to alleviate the operational problems of clarifier control and help 

the operators to choose suitable control actions. The clarified water qualities and 

operational cost were mathematically taken into consideration for control action 

optimisation via the MOGA optimiser. Two case studies of solid contact clarifier 

operation were investigated in this thesis, at Bryn Estyn water treatment plant (BEWTP), 

Hobart, Australia and Bang Khen water treatment plant (BKWTP), Bangkok, Thailand. 

The ANN clarifier process models were developed using past operational data from both 

case studies. Past operational data were divided into training, validation and testing sets. 

To ensure the statistical equivalence among these three sets, clustering methods based on 

Self-Organising Map (SOM) networks were employed. The optimal temporal spans and . 
architectures of the models were found by trial and error using the associated testing set. 

For the BEWTP case study, excellent predictive performance of clarified water colour 

(one time step ahead) is demonstrated with a coefficient of correlation (r2
) of 0.88 and 

Mean Absolute Error (MAE) of 0.50 HU. There is also excellent prediction of clarified 

water turbidity, evidenced by coefficient of correlation (r2) of 0.89 and Mean Absolute 

Error (MAE) of 0.11 NTU. For the BKWTP case study, the ANN model showed good 

11 



111 

performance prediction (one time step ahead) with a coefficient of correlation (r2
) of 0. 71 

and Mean Absolute Error (MAE) of 0.65 NTU. These ANN models were reliable since 

their prediction errors were of the same magnitude as measurement errors. However, 

prediction further than one step ahead was not recommended since this resulted in 

prediction errors that were larger than input measurement errors. 

The intelligent control system was simulated using the testing set in order to assess its 

performance. Control actions were optimised to minimise clarified water impurities and 

operational cost by the MOGA optimiser and help the decision maker to choose the best 

set of control actions using the shortest normalised distance from the utopia point. 

However, defining of MOGA optimiser parameters was a prerequisite. Some parameters 

were chosen using guidelines from historical research, while the population size and 

number of generations were defined using a trial and error process. It was found that the 

optimal number of generations and population size was 200 and 80 respectively for the 

BEWTP case study and 400 generations and 100 populations for the BKWTP case study. 

According to the simulation results, all clarified water qualities complied with their 

operational targets and the operational cost was reduced by 8.3 percent and 3.4 percent 

for BEWTP and BKWTP respectively. 

A full-scale pilot plant test was conducted at BKWTP in Bangkok. Unfortunately, it was 

not possible to conduct a pilot test at BEWTP due to health and safety regulations. The 

full-scale pilot plant test was for verifying the performance of the proposed control 

system in real life situations and in comparison with the performance of human operators. 

One BKWTP clarifier was chosen to be controlled by the intelligent system and the other 

was selected for normal control by the human operators. For a period of about one month 

from August to September 2007, the full-scale pilot plant was run continuously with both 

intelligent and human clarifiers running simultaneously. In terms of operational cost, the 

intelligent control system ran the clarifier with a 2.4 percent saving over that of the 

human controlled clarifier. If the intelligent control system was installed for all clarifiers 

at BKWTP and they ran with full production capacity of 3.5 million cubic metres per 

day, the operational cost saving would have been about $AUS 153,000 per annum. The 

reduction in operator salary costs was another saving which was not included. In terms of 

water impurity removal, clarified water with mean turbidity of 6.4±1.5 NTU discharged 

from the intelligent clarifier which was found to comply with the operational target of 
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seven NTU. However the human operator performed slightly better with mean clarified 

water turbidity of 6.3±1.5 NTU. 

The novel aspects of this work are in the establishment and implementation of intelligent 

control systems which are a combination of ANN modelling and a MOGA optimiser. Its 

performance is also assessed in real practice. This is the first time that an intelligent 

approach fully mimics how human operators control the solid contact clarifier. All of the 

control actions (i.e. both chemical and physical control actions) are used by the intelligent 

control system to minimise the clarified water turbidity and operational cost. The 

contributions based on the result of this research work include the following items. 

• ANN process model method and the unique use of the SOM are successfully 

developed based on the particular operational data of each of these two case 

studies. 

• To achieve the best prediction of the clarifier process model, there is a need for 

using both present and past (temporal) data. Although this was expected, the 

study shows exactly how long a period of data is needed to optimise the control 

actions. The optimal model architecture of each process model is obtained based 

on the operational data, and their time lags are 8 hours for BEWTP and 12 hours 

forBKWTP. 

• The prediction of the clarifier process model deteriorates when the prediction is 

taken outside the training domain. One time step ahead (4 hour) prediction is 

reliable when compared with the measurement error. However, multiple steps 

(long range) prediction is not in favour of the ANN process model because errors 

accumulate over each time step. 

• When the intelligent control system works outside its training domain, it has been 

shown that its performance is less satisfactory than when working inside its 

training domain since the performance of the intelligent control system depended 

upon the predictive performance of the clarifier process model. 
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• In this thesis, the "ill posed problem" is avoided by the division of operational 

range according to raw water turbidity. Therefore, the set of control actions were 

optimised in the specifically defined ranges of raw water turbidity. This method 

has been shown to be effective in real life application. 

In conclusion, with the successful results of the pilot plant test, both the operational 

targets of high water quality and cheaper operational cost are achieved using intelligent 

control. The intelligent control methods are proved able to work in real practice. This will 

overcome the limit of the manual skill of human operators and frees the clarifier 

operation from human error. 
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Chapterl Introduction 

1.0 INTRODUCTION 

1.1 Background 

1 

The water treatment industry is currently facing growing pressure to provide efficient 

treatment in an increasingly stringent regulatory environment. The operation of a Water 

Treatment Plant (WTP) differs significant from other industrial plant operations in the 

aspect of raw material. The resource of the plant is raw water which is occasionally 

subject to unpredictable changes of quality. Adherence to a standard quality of effluent 

water must be strictly maintained otherwise community health will suffer. 

Water clarifiers lie at the heart of modem water treatment. The clarifier is governed by 

complex non-linear relationships between numerous physical, chemical, and operational 

parameters. It is well known that about two thirds of the operational costs are spent on 

the clarifier and about eighty percent of impurities are expected to be trapped in this unit. 

An early incident which pointed to the importance of successful clarifier operation is the 

Giardia and Cryptosporidium pathogen crisis in the 1990s. These pathogens are 

widespread in treated water in a number of WTPs. Consequently the multiple barrier 

strategy was first launched by the United States Environmental Protection Agency 

(USEP A) which emphasised the importance of successful clarifier operation rather than, 

as previously, relying on filtration performance. This strategy gained momentum by 

improving clarifier operation, and a number of plant managers responded by raising the 

standard of clarified water quality (USEP A, 1999). 

In order to improve clarification processes, plant operators need tools that will allow 

them to select which control actions are appropriate to achieve a desired quality of 

effluent. Historically, attempts have been made to obtain optimal control by fitting 

bench-scale data to mathematical formulae (e.g. a lookup table for coagulation dosage) or 

using the Jar test results (Kawamura, 1991; Kerri, 1996). Such attempts have generally 

been unable to account for simultaneous change in more than one or two of the key 

process parameters and often fail when applied to full-scale systems. As a result, 

although a number of online sensors are typically installed in clarifiers, current clarifier 

control is not automatic, but rather relies upon expert knowledge of plant operators 

(Mirsepassi et al., 1995). 

1 



Chapter! Introduction 2 

This research has been motivated by the belief that there can be better control of clarifiers 

by doing more than simply relying on operator skill. The author's appreciation of the 

need for this research derives from work experience in water supply engineering and 

lecturing in this area. In the author's own experience, a number of clarifiers are at present 

operating far beyond their designed conditions because of a high demand for treated 

water. For example, in one of the case studies presented in this thesis, Bang Khen water 

treatment plant in Bangkok, the clarifiers are always operated at 50 percent above the 

design capacity. 

Naturally the standard of the performance of manually controlled clarifiers relies entirely 

on the judgement of the human operators. Associated operational problems have 

historically hindered the development of clarifier control including 

• Control actions based on operators' experience frequently worsens the clarified 

water quality and thus results in uneconomical operation. 

• Traditional laboratory test results (i.e. Jar test) have been used to determine 

appropriate control actions such as coagulation dosages, however, this takes time 

and, results in improper control actions during the period of delay. 

Several attempts have been made to improve clarifier control with new techniques, such 

as fitting sensor to set the chemical dosage. For example, the Streaming Current Detector 

(SCD) is used to measure streaming current potential which directly related to optimal 

chemical dosages (Liu & Wu, 1997). However, expert knowledge is required to set the 

rest of the control actions such as turbine speed. Improvement of clarifier control cannot 

be accomplished as long as the operator skill plays a significant role. This is especially so 

if the intention is to change manual clarifier control to intelligent control. With recent 

developments in desktop technology Artificial Intelligence (AI) techniques have been 

used and have shown promise in a large number of industrial control applications. There 

is considerable potential for AI techniques to overcome some of the drawbacks of 

traditional methods when applied to clarifier control. 

1.2 Research Goal and Approach 

The principle research goal of this study is to develop and evaluate the effectiveness of 

methods for an artificial intelligence based control and optimisation of clarifier 
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Chapter 1 Introduction 3 

operations. To address clarifier operation problems, the author proposes that intelligent 

process modelling with Artificial Neural Networks (ANNs) may alleviate the problem of 

delay within the traditional laboratory tests. Also, an intelligent control system 

incorporating an ANN and genetic algorithm optimiser so called intelligent control 

system will be used to address suboptimal control actions due to human limitation. 

Rather than using only the "single" objective of improving clarified water quality, it is 

necessary to consider operational cost in the optimisation of the control actions. 

Therefore, the intelligent control system will be designed to incorporate multiple 

objective optimisations. 

Two aspects to improving clarifier performance can be addressed based on the need to 

understand the clarification process and to provide better control actions. The first is 

modelling the clarifier based on pattern recognition using an Artificial Neural Network 

(ANN). ANN techniques should be able to describe the complex behaviour of a clarifier 

by utilising the ANN's learning and recognition process. The details of the ANN 

modelling method are given in Chapter 4. The ANN process models are particularly 

established for both case studies and their predictive performances are evaluated in 

Chapter 5. 

The second is "an intelligent operator" to search for an optimised solution. It is well 

known that the Genetic Algorithm (GA) is one of the best tools for optimisation. The GA 

is a searching technique adapted from the Dravidian theory of survival. It can be utilised 

as an optimisation tool for a set of control actions for the problem at hand. Linking an 

ANN model and a GA based intelligent operator is proposed as an intelligent control 

system for a clarifier. Relevant details of GA with multiple objective optimisations and 

control simulation results are described in Chapter 6. 

To prove the reliability and to assess the performance of the designed control system in a 

real life situation, a full scale pilot plant test will be conducted at Bang Khen water 

treatment plant (one of case studies) and compared with that of the human operator. The 

relevant details are presented in Chapter?. The approaches taken with this research are 

listed as follows. 

• Review of background clarifier control systems, their operation problems and 
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Chapter 1 Introduction 4 

performance evaluation. 

• Collect data from two case studies in order to carry out statistical analysis and 

determine the need for improvement. 

• Develop and validate clarifier process models in order to predict water quality 

using an ANN approach. 

• Develop intelligent control systems utilising an integrated system of ANN based 

modelling and Genetic Algorithm (GA) optimisation in order to minimise the 

water impurity and operational cost using historical data to explore the 

performance of the intelligent control system compared to control by human 

operators. 

• Use a full scale pilot plant test to assess one of the developed intelligent control 

systems and compare with manual operator control of a parallel system. 

1.3 Research Partners 

Research partner with the University of Tasmania in this research were Hobart Water in 

Tasmania, and Bangkok Water Metropolitan in Thailand. Two case studies were used to 

demonstrate the performance of the intelligent control system. One is in Tasmania, 

Australia, at the Bryn Estyn Water Treatment Plant (BEWTP) and the other one is in 

Bangkok, Thailand, at Bang Khen Water Treatment Plant (BKWTP). Both plants are 

extremely different in terms of sizing, raw water quality and operational problems. For 

this reason, they provide excellent cases for evaluating the performance of control 

systems under different conditions. 

1.4 Thesis Organization 

The structure of this thesis is as follows 

Chapterl: Introduction 

Chapter2: Water Treatment Plant: Background and Performance Evaluation: 

This chapter provides background understanding of the clarifier 

process and control, including clarifier performance evaluation and 

identification of operation problems. 

Chapter3: Water Treatment Plant Data Collection, Manipulation and 

Analysis: 

This chapter provides understanding of the characteristics of the 

operational data of BEWTP and BKWTP, including statistical 
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analysis. 

Chapter4: Artificial Neural Network Modelling: Review of Methodology and 

Application to Current Research: 

This chapter presents a background to artificial neural networks and 

clarifier modelling development using artificial neural networks. 

Chapter5: Clarifier Artificial Neural Network Model Development and 

Optimisation: 

This chapter presents model development and model performance 

validation using numerical simulation and validates this with real 

data for both case studies. 

Chapter6: Clarifier Intelligent Control: Genetic Algorithm Approach: 

This chapter presents the development of an integrated control 

system combining ANN and GAs for optimising control actions, and 

system simulation using real data for both case studies. 

Chapter7: Clarifier Intelligent Control Performance: Full-scale Pilot Plant 

Test: 

This chapter examines the use of intelligent control systems by 

performing a pilot plant test at BKWTP with the aim of optimising 

clarified water quality and operational cost. 

Chapter 8: Conclusion and Recommendations 
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2.0 WATER TREATMENT PLANTS: BACKGROUND 

AND PERFORMANCE EVALUATION 

2.1 Introduction 

The overall performance of any Water treatment plant (WTP) is mainly dependent on the 

efficiency of each major unit such as its clarifier (USEP A, 1998). The efficiency of the 

clarifier dominantly affects the overall WTP as well as the sequential unit process 

performance since a number of critical chemical and physical actions take place there to 

achieve coagulation, flocculation, and sedimentation (Kawamura, 1991). These complex 

interactions between physical and chemical reactions in a clarifier are difficult to 

understand and control. Although there are several on-line sensors currently available in 

the water supply industry, an automated control system for a clarifier is not yet fully 

employed and manual operations based on operator experience are still utilised in most 

WTPs. 

This chapter starts with a brief background of water treatment processes. Clarifier control 

and operational problem are then discussed to guide the design needed for a new control 

system. Both case studies (BEWTP and BKWTP) are later introduced, followed by 

evaluations of their clarifier performances in order to examine a need for control action 

improvement. 

2.2 General Background of Water Treatment Process 

Water treatment processes for domestic consumption involves raw water treatment at 

several stages to remove impurities such as bacteria and suspended solids before feeding 

into the distribution network. Figure 2.1 illustrates a typical WTP unit process which 

includes a pre-treatment and pH adjustment unit, clarification unit, filtration unit and 

disinfection unit (AWWA, 1991). 
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Figure 2.1 Water Treatment Process 
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From the raw water source, the raw water is passed through a pre-treatment unit, where 

the acidity or alkalinity for pH adjustment is introduced. In a clarifier, coagulant and 

coagulant aid are typically introduced in a rapid mixing stage. The coagulant serves to 

promote the coagulation and destabilization of the colloidal particles in the raw water, 

and the coagulant aid encourages the flocculation and growth of these destabilized 

particles. Alum is one of the most used coagulants. The dosages required depend on the 

source water characteristics, such as turbidity, pH, temperature, and conductivity. The 

large particles or floes formed after flocculation are separated in the clarifier via 

sedimentation. Subsequently, most of the remaining solids that escape the clarifier are 

entrapped in the filtration process. Finally, to meet with hygienic standards, disinfection 

substances are applied (e.g. chlorine). The general detail of the clarification process is 

outlined below. More details of the other unit processes can be found in a number of 

textbooks (ASCE. & A WW A., 1990). 

2.2.1 Clarification Process 

A clarifier contains a three-stage process consisting of coagulation, flocculation and 

sedimentation. In the coagulation process, coagulation agent such as Alum is initially fed 

and rapidly distributed by fast agitation in order to destabilise suspended solid. This 

coagulation is normally completed in a line mixer ahead of the actual clarifier. The 

degree of destabilisation is further increased by aggregation of newly coagulated solids as 

well as reused particles in the flocculation process. Flocculation is promoted by gentle 

agitation resulting in larger size particles named floes. Specifically, due to reuse of 

particle, this process can be called a solid contact process (Degremont S. A., 1991). In 
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some ituations, do ing of coagulant aid (e.g. polyelectrolyte) enhances the flocc ulation 

process. This is followed by the edimentation process, which is a solid-liquid 

grav itational separation. Most of the larger floes are trapped in a sedimentation process. 

A typical cross section of an Accelator sludge recirculation clarifier as equipped at 

BEWTP is shown in Figure 2.2 

R;iw w ;iter .... 

Source: www.degremont-technologies.com 

C hemie ;i i f eeding piping 

Figure 2.2 Typical cross section of an Accelator sludge recirculation clarifier 

After raw water is mixed with a coagulant (e.g. Alum), raw water flows through the 

gentle mixing in the reaction zone to promote floe amalgamation and then flows to the 

sedimentat ion zone. The clear clarified water flows upward to filter while floes settle to 

bottom of the clarifier. Within a certain period of time, larger and heavier fl oes settle to 

the return flow zone. The clarified water flows to the filter unit. Some of the floes are 

reused and returns to reaction zone. In order to keep mass balance in a clari fter, excess 

sl udge is routinely drained out by a drain system at the bottom of the clarifier. 

Generally, water is retained in the clarifier for l .5-4.0 hours. The so lid-contact clarifier is 

categorised into two types, the low production rate of sludge blanket units and the high 

production rate of sludge recirculation units. For the first one, sludge blanket i formed in 

the sedimentation zone and help turbidity entrapping. For the second one, the sludge is 

separated form the clarified water in sedimentation zone, and it then returns to a reaction 

zone equipped with mechanical agitation to promote flocculation. Degremont (1991) 

provides a good review of solid-contact clarifier. For both of the case studies in this 

thesis, the clarifiers are the sludge recirculation type. 
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2.2.2 Clarifier Operation Concept 

The prime objective of the clarifier unit is to promote settlability of floes and entrap the 

turbidity. To achieve this, larger floe size is preferable (Tambo & Watanabe, 1979). 

Successful floe amalgamation involves two issues: the chemical, and the physical. For 

the chemical issues, correct chemical agents and amounts need to be used for linkage of 

small floes to enhance their size to become larger ones. The alum is used as the main 

coagulation agent and polyelectrolyte is applied merely to enhance it effect. Using 

polyelectrolyte effectively reduces the alum dosage (Shanks, 1978). For the physical 

issues, smooth agitation from the turbine increases floe amalgamation and proper sludge 

drainage rate aims for mass balance control. In addition, a decrease in sludge draining 

and reduction of the plant flow rate result in more sludge remaining in the clarifier. This 

too benefits floe amalgamation. In particular, with a sludge recirculation clarifier, mixing 

energy by turbine speed helps to recycle sludge in the reaction zone. In practice, the 

operators use the Jar test results to guide both alum and polyelectrolyte dosages. On the 

other hand, turbine speed and sludge drainage can only be judged by the operator's 

experience. 

Conceptually, if raw water qualities are within treatable ranges and all the control actions 

can be suitably provided, some degree of interaction between these control actions can be 

expected. If increases in the chemical dosages are within the optimal range, this increase 

will promote floe amalgamation and lead to improvement in turbidity removal. In 

practice alum is generally used as the main chemical agent to achieve turbidity 

precipitation. Polyelectrolyte only enhances floe amalgamation. With no polyelectrolyte 

and using alum only, it is possible to precipitate the turbidity. However this is always 

uneconomic especially in high turbidity (Kawamura, 1991). 

Increasing turbine speed also generally promotes floe amalgamation but only when used 

within in a suitable range. Aggressive agitation will cause floe to break up and result in 

turbidity leakage. The sludge drainage rate aims to control the mass balance in the 

clarifier and also controls the reuse rate of any sludge. Since the clarifiers at BEWTP and 

BKWTP are of sludge recirculation type, a longer retention of sludge will benefit floe 

amalgamation. However, if the sludge is retained beyond an optimal time, for instance if 

a sludge drainage rate was assigned, then too much floe will be kept in the clarifier and 

again lead to the turbidity leakage. An increase of plant flow rate does not promote the 
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performance of turbidity removal since it lessens the time for floe amalgamation. Figure 

2.3 graphically illustrates the interactions among these control actions ( ~ and \1 signs 

mean "increasing' and "decreasing"). Again, these relations are based on the assumptions 

that raw water qualities fall in the treatable range and that all the control actions vary in 

appropriate ranges. 

INCREASE 

DECREASE 

Figure 2.3 The interaction of clarifier control actions: ( ~ and \1 signs mean 

"increasing' and "decreasing") 

2.3 Clarifier Control and Operational Problems 

One of the main concerns of this section is to review conventional clarifier control. It is 

important to understand typical clarifier controls and identify their disadvantages, to 

recognise the operational problems and to see how the operators deal with the problems 

conventionally. In both case studies, they adopted almost the same procedure in common 

which was originally based on the guideline from (ASCE. & A WW A., 1990). 

2.3.1 Current Clarifier Control 
Generally, clarifier control involves five control actions. These are feeding coagulant and 

coagulant aid dosages, changing turbine speed, plant flow rate control, and sludge drain 

control. Feeding chemicals is used for floes forming, and optimal turbine speed helps to 

enlarge the floe size and provides flow circulation in the clarifier tank. Sludge drain 

control is set to avoid sludge carry over. Besides meeting the clarified water standard, the 

difficulty encountered here is economically to provide suitable control actions in a timely 

manner, in correspondence with each to change of raw water quality (Kerri, 1996). 

Detailed description of each control action is well documented in a number of water 

treatment plant design textbooks and quoted in Table 2.1 (ASCE. & A WW A. , 1990; 

Degremont S. A., 1991). 

10 
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Control Actions Description 

Feeding coagulant • Regularly used for floe agglomeration 

(e.g. Alum) • Costly operating costs 

Feeding coagulant aid • Floes enlargement and settleability 

(e.g. polyelectrolyte) enhancement 

• More costly operating costs 

Plant Flow Control • Relating to hydraulic retention time 

• Under constrain of water demand 

• Cheapest control action 

Mixing Intensity Control • Used for floe agglomeration and circulation 

(Turbine speed) • Moderate Operating Costs 

Sludge drainage • Keep mass balance in clarifier 

• Cheapest control action 

Table 2.1 Clarifier control actions 

All of these control actions were optimised by the plant operator's experience using the 

data from online sensors and laboratory results (e.g. Jar test, described below). Typically, 

these online data are associated with raw water quality such as turbidity, alkalinity, pH, 

temperature and conductivity. They are known to be significant to clarifier performance 

(ASCE. & AWWA., 1990; Degremont S. A., 1991). Their short descriptions are listed in 

Table 2.2. Normally, sampling frequency of online data is set to 15 to 30 minutes. On the 

other hand, laboratory test results (e.g. Jar test, colour test) were conducted every four 

hours. Therefore, every four hours, both online and laboratory data were ready for the 

operators to execute the optimal set of control actions. 

In most water treatment plants, the Jar test is set as a standard laboratory test in order to 

giye a guideline for coagulant and coagulant aid dosages, which are the first line control 

actions (Kawamura, 1991). The Jar test is done by taking samples of raw water and 

adding a different proportion of coagulant to each sample. After rapid and slow mixing 

then a certain period of settling time, each sample is assessed for water quality. The 

dosage that produces the optimal result is found and used as the recommended coagulant 

and coagulant aid dosage. The details of the Jar test process are well documented which 

can be found in (Clesceri et al., 1989). However, the Jar test is a time-consuming test, and 
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it cannot reveal the results without time delay. In Figure 2.4, the operator was using a Jar 

test. 

Parameter Importance of Parameter Application in WTP Control 

(Degremont S. A. , 1991) (Pollack et al. , 1999) 

Turbidity Measuring total suspended solids • Overall performance of 
which is an indicator of degree unit process monitoring in 
of impurity of water and also the terms of solid removal 
potential of microbial • Utilised for coagulant 
contamination approximation and early 

warning of abnormal 
operational condition 

Conductivity Measuring of water' s abili ty to • Utilised for coagulant 
conduct electrical current which dosage approximation and 
is an indicator o f dissolved solids early warning of abnormal 

operational condition 
pH Measuring of hydrogen ions, • Utilised for coagulant 

which is important for process dosage approximation and 
optimization, corrosion control earl y warning of abnormal 
and aesthetic objective operation condition 

Water Directly relates to chemical • Utilised for coagulant 

temperature 
reaction, flocculation time dosage approximation 
viscosity of water and • Measuring of degree of 
settleability of particles. density current and early 

warning of abnormal 
operational condition 

Table 2.2 Parameters rela ting to clarifier control 

Figure 2.4 Jar test demonstration (BKWTP) 
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In general, during the normal operational period, primary tests of raw water quality and 

clarified water quality changed in a narrow range and the operator had time to slowly 

optimise control actions. The operators were able to justify a set of control actions for the 

next four hours on the test results presently at hand and online data. The coagulant 

dosage would be fed based on the guideline of the Jar Test. A plant constant flow rate 

was preferable since it was easier to maintain suitable hydraulic retention time (i.e the 

period of detention of water in clarifier) whist the demand for the produced water was 

under control. Mixing intensity and sludge drain rate could be maintained within the 

optimum range by setting a proper turbine speed and correct sludge drain time. The 

sludge drain time and turbine speed was set based on the operator's experience. However, 

in some plants, there are lookup tables available that can be used as general guidelines. 

Occasionally, during times of irregular conditions, primary tests may fluctuate highly 

resulting in poor quality of clarified water. Operational stability may be disturbed due to 

a number of factors such as abrupt changes in raw water quality, plant flow rate and 

environment. To recover the stability, a request for a new Jar test is recommended (City 

Water Technology, 2001; MWA, 2000). Increasing coagulant dosage is normally used as 

a first line control action. However, if the clarified water remains poor, increasing 

coagulant aid dosage is considered. Implementing other control actions such as reducing 

plant flow rate, reducing turbine speed are recommended. Nevertheless, these are based 

on operators' experience. A schematic diagram of clarifier control with flow of 

information is shown in Figure 2.5. 
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Raw water quality 

11r 

Raw water quality change OR ~ ----clarified water becomes substandard ~ 

Normal operation 

Perform a Jar test 
every four hours 

. 

Rough operation 

1• 

Request a Jar test 
immediately 

Operator optimises 
control actions 

Clarified water 
quality 

• Alum dosage 

• Polyelectrolyte dosage ' l 

• Adjust turbine speed 

• Adjust sludge drainage rate 

• Adjust plant flow rate 

+ 
Clarified water to filter unit 1------

Figure 2.5 Schematic diagram of clarifier conventional control 

In general, upset conditions often occur because of abrupt changes in raw water colour 

and turbidity. Such conditions are predictable and most seasonally occur. On top of that, 

due to the large size of clarifier, thermal gradient induced density currents in the clarifier 

tank are a frequent cause of poor clarified water. 
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2.3.2 Operational Problems 
The most serious limitation of clarifier operation is found in instability during an abrupt 

change of flow rate, influent turbidity and temperature(Degremont S. A., 1991; Kerri, 

1996). To deal with such limitations, a number of approaches are recommended such as 

adding coagulant aid and adjusting turbine speed. These operational problems are mainly 

due to an inability to provide proper control actions (i.e. coagulation dosage, plat flow, 

etc) in a timely manner since control actions are guided by delay in receiving Jar test 

results. Additionally, all control actions depend upon using the operator's experience. 

However, reliance on standard operating procedures may occasionally provide 

consequential problems due to human error, especially during an upset condition. 

Specifically, clarifier control problems can be outlined as follows. 

• The Jar test results are not immediately available while the data from online 

sensors are readily at hand. Therefore, operators have to wait for the results of 

a Jar test to know what coagulant dosages are justified. This limits the overall 

performance of the control system in spite of the results of other faster on

line sensors (e.g. turbidimeter, pH meter, conductivity meter) being known 

(James M. Montgomery Consulting Engineers Inc., 1985). In order to cope 

with a change of raw water quality, one attempt has been made which is to use 

a lookup table. It can roughly estimate the coagulant dosages needed in some 

WTPs. Nevertheless, only one variable typically is used (e.g. raw water 

turbidity), resulting in inaccurate dosages. This results in less than ideal 

control, especially during upset conditions. 

• Apart from coagulant dosage controls, which are guided by Jar test results, the 

other control actions are determined purely by the operator's experience. 

Occasionally, human error may result in suboptimal control during upset 

conditions. 

• The operators can use only the data presently at hand (e.g. Jar test results and 

online data) to select a set of control actions. These may be insufficient. More 

data covering earlier condition (i.e. time lag data) should give better results. 

This is because data with a larger time lag covering sludge age in the clarifier 

would provide information of sludge conditions. Sludge concentration 1s 

known to be a very important parameter for clarifier performance. 
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• Generally, to obtain good clarified water quality is set as a high priority 

objective. It would be better if costs consideration were also considered as a 

constraint in optimising control actions. For example, feeding proper 

coagulant dosage results in good clarified water, it is costly. Alternative such 

as suitable combination of turbine speed and sludge drainage rate can 

effectively reduce the chemical dosage during a period of control low water 

turbidity. 

How these operational problems affect clarified water quality cannot be given m 

quantified terms. However, according to interviews with plant operators, they agreed that 

any seasonal changes of raw water quality were likely to be predictable. Early warning 

was possible and most diurnal variations were not of severe degree. They might often 

harm the operation during the first one or two days after a shock load approaches, and 

operational stability could afterwards be recovered. Although this occurred only for a 

short period, each error resulted in poor clarified water quality. On the other hand another 

major cause of operational instability was environmental changes, such as density current 

and wind induced surface waves. Although each incidence caused clarified water quality 

to be slightly below standard, they happened a few times a day. This was particularly 

found in the case of the large clarifier. 

2.4 Artificial Intelligence in Water Supply Engineering 

The acceptance of artificial intelligence (AI) application in the water supply industry is a 

relatively new construct compared with other industries, such as chemical processing. 

Although several applications have been developed in the field in last several years, it is 

not yet a mature research area especially in the area of clarifier control (Maier et al., 

2004; Riyaz et al., 2004). 

2.4.1 Past Research work 
There have been a number of AI approaches developed and applied in process control of 

water treatment. Most of them include the expert systems and ANNs. 

Works related to Expert system and Fuzzy logic 

Expert system and Fuzzy log was the first AI approach introduced to the water supply 

engineering research area. Most of the work was related to chemical dosage suggestion. 
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With the same approach, expert rule (or fuzzy rule) was established by using operational 

data. Nonetheless, it became less popular after the ANN's appearance in this area. 

Zhu and Simpson (1991) applied an expert system to the conventional Anstey Hill water 

treatment plant, in Adelaide to advise plant operators on alum and activated silica dosing. 

Additionally, the expert system was used for fault diagnosis and it was used to train new 

operators. It showed potential to improve operation. However, Anstey Hill water 

treatment plant is a conventional plant operated without the complication of a clarifier 

unit. The rapid mixing unit (coagulation process), slow mixing (flocculation process) and 

sedimentation are separately located. 

Liu and Wu (1997) applied a fuzzy logic controller incorporating a Streaming Current 

Detector (SCD) for automatic control of coagulation. This system was tested with a 

bench-scale water treatment plant with synthetic raw water and the results showed that 

this combination functioned satisfactorily for coagulation. However, the main problems 

with using the expert system and fuzzy logic are that general rules may be too simplistic 

to describe the complex processes of the clarifier which require understanding of process. 

The difficulty is most obvious when fuzzy logic deals with a large dimension model (e.g. 

large number of inputs and outputs)(Zhang, G. et al., 2001). 

Work related to Artificial Neural Network 

Many researchers focus on ANN s, since they have the potential to cope with nonlinear 

problems. Most of the associated studies focus on process modelling or chemical dosage 

modelling by using an ANN. The ANN applications in water supply industries fall into 

three categories: (i) prediction, (ii) process control and (iii) others related to water supply. 

The following paragraphs discuss these studies based on these categories of the ANN 

application. 

• Predictive model 

Most studies used ANN models mainly for prediction applications, which can be 

categorised into two types depending on the model architect used. The first one is called 

a forward model or process model. It replicates how the process works. The input and the 

output of the model is equivalent to the real process. For example, in a clarifier process 

model, model inputs are raw water qualities and outputs are predictive clarified water 

turbidity. The second category is known as a process inverse model involving mapping 

the inverse of the process, and the outputs are predicted control actions (e.g. alum 

dosages) that will be required to meet the target value of the process. 
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Mirsepassi et. al. (1995) used five years of daily average operational data of Wyong WTP 

in New South Wales, Australia to develop an ANN inverse process model to predict the 

alum and polymer dosages. The inputs were a time series of daily average raw water 

quality variables and did not include the clarified water quality. Guiding by sensitivity 

analysis, the number of model input variables was reduced. They obtained a very good 

result, with coefficient of determination (r2
) of 0.94. 

Without using real operational data, Maier et al (2004) developed model processes and 

inverse processes by using a set of 202 data from Jar test results. This water samples were 

collected from several water sources in southern Australia. Process models were used to 

predict effluent water qualities (e.g. turbidity, colour, pH). The inverse model was used to 

predict Alum dose. The performance of both process and inverse process showed 

excellent promise with coefficients of determination (r2)of 0.90 and 0.98, respectively. 

• Process control 

In process control applications, a few AI control systems have been developed and 

applied to clarification processes. Most of the current studies are related only to chemical 

dosage control. 

Zhang and Stanley (1999) established ANN process and inverse process models using the 

daily average operational data from a conventional cross flow clarifier at Rossdale water 

treatment plant. They applied internal model control (IMC) architecture for which the 

clarified turbidity process model served as reference model and linked with an inverse 

process model to predict the alum dose. The process model was not only trained with 

good cases but it was also trained with the poor cases (if the clarified water turbidity 

complied with operational target, it was considered "good case" otherwise it was poor 

case). This was to ensure the process model was trained by variety pattern of operations 

and it could predict the clarified water turbidity for overall operating ranges. The inverse 

model was trained by the good cases only since it was expected to predict the best 

possible alum dose. The concept of an IMC system for alum dosage suggestion as 

proposed by Zhang and Stanley is shown in Figure 2.6. 
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Figure 2.6. An IMC system for alum dosage suggestion, presenting the process 

model and inverse process model linked in IMC architecture and flow of 

information 

At the beginning, raw water quality variables were iteratively input to the process model 

together with the generated values of alum dose (AD1) until the predicted value of 

clarified water turbidity (CT1) complied with the operational target. Next, the filter would 

allow CT1 to be input as the inputs of inverse process model. Actually, the input and 

output variables for the inverse model were of the same group as that of the process 

model, except that the predicted value of clarified water turbidity became an input 

variable and alum dosage ,(AD2) became the sole output of the inverse model. 

Theoretically, if the inverse model was a perfect invert of the process model, AD1 and 

AD2 would be identical and the usage of AD1 would be justified. However, if it was not 

the case (since process model and inverse process model were deliberately built from 

different data), then AD1 and AD2 would not be identical, and then the alum dosage 

would be adjusted in the vicinity of AD1 using an iterative process to minimise these 

differences. In this work, the results from the simulation showed r2 values of 0.86 and 

0.96 for the process reference model and process inverse model respectively. 

Baxter et al. (2001) developed a softening process control system, using the same 

approach as Zhang and Stanley (1999) with their internal model control strategy. Daily 

average operational data of the conventional cross flow clarifier at Rossdale WTP was 

used to develop the models. The raw water qualities were input to the process model to 

predict the total hardness of clarified water, which became the input of the inverse 

process model, and lime dose became the sole output. The specific goal of control system 

was to estimate the total hardness in the softening clarified water and the softening lime 

dose required. The target was to maintain the clarified water hardness of 13 5 mg/L (as 

19 



Chapter 2 Water Treatment Plant: Background and Performance Evaluation 20 

CaC03). The results showed that the r2 values of 0.84 and 0.95 for the process reference 

model and plant inverse model, respectively. 

• Others related to water supply 

With regard to raw water quality forecasting, ANN models have been developed to 

predict Cryptosporidium concentration (Brion et al., 2001 ), source water salinity (Dandy 

G. C. et al, 1991; DeSilets et al., 1992) and raw water colour (Zhang, Q & Stanley, 1997). 

The goal of these forecasts was to provide the operators with an early warning system for 

raw water quality changes during water quality fluctuations. An ANN model has also 

been developed for the prediction of residual chlorine in the distribution system in 

Quebec City (Rodriguez MJ et al., 1997). 

2.4.2 Strength and Weakness of Previous Approaches 

Among past research works, the study of Zhang and Stanley (1999) used the best 

approach (section 2.4.1). They developed a very interesting approach to control the cross 

flow clarifier. They used two ANN models joined together under IMC architecture. The 

first part was a clarifier process model (for prediction of water quality), and the second 

part was an inverse process model (for suggesting a dosage). The inverse model was set 

up by selectively using only good operational data. It used the predicted clarified water 

quality (as given by the process model) to suggest a dosage. Despite its ingenious 

approach, the inverse model only mimics how a good operator works with regard to 

selecting chemical dosage. The Zhang method might not provide an optimised solution 

although it might equal the only solution from a good operator. That is, it might only be 

close to the optimal point. In addition, only chemical dosages are output, as those are the 

main control actions for a conventional cross flow clarifier. This would not be suitable 

for a solid contact clarifier such as is the case for the studies in this thesis. The values of 

optimal turbine speed and sludge drainage rate must also be included. 

Most of these models were developed using daily average data to predict the clarified 

water quality. This is reasonable for use with an early warning system. However for 

predictive models or process control it is questionable if these process models need to 

predict (with different frequencies) either a faster or slower sampling frequency than that 

for which they were developed. In real practice human operators usually select the set of 

control actions at least every four hours. This period is approximately equal to the time 
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that the water spends in the WTP (hydraulic retention time) and ensures that any faults 

can be detected and timely corrective actions taken (Kerri, 1996). If these models are to 

work in real practice, they need to be accurate enough to predict at this sampling 

frequency (Riyaz et al., 2004) 

In addition in all these past research works, most focused on the clarified water qualities. 

The operational cost was not included in optimising the control actions. This is major 

drawback of their approach used, since operational cost is a key factor in WTP. The 

disadvantages of the previous approaches can be outlined as follows 

• Most of these ANN process models utilised low-resolution daily average 

operational data which might not be accurate enough to use in different time 

intervals. 

• Only the works of Zhang and Stanley (1999) and Baxter et al. (2001) were 

concerned with clarifier control. In addition to their process model they also used 

an inverse model to predict a single set of control actions with no means of 

verifying whether these control actions are optimal. It was just one of good set of 

control actions chosen from the "good case". 

• None of these previous approaches found the optimal control action for achieving, 

the operational targets by including operational cost. Actually, in the previous 

work, the control actions were optimised the control actions by considering only 

clarified water qualities not including the operational cost. 

All these limitations are used as a platform to develop the proposed clarifier 

intelligent control system. A clarifier intelligent control system is proposed that 

overcomes these limitations and its detail is shown in the next section. 

2.5 Clarifier Intelligent Control System 

Although in both case studies, the mean clarified water quality generally conformed to 

their targets, operational stability could not always be maintained due to operational 

problems as discussed in the previous section. In order to achieve operational stability, 

control actions need to be provided to cope with any changes in a prompt and timely 

manner. With regard to the clarifier operational problems, an intelligent control system is 

proposed to enable the control with automatic mode. This control system is a control 

system using computers to control the process, replacing human operators. It provides the 
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means by which to avoid errors resulting from human sensory perception and mental 

ability. It also brings the control actions to cope with environmental changes. 

In general, a control system with automatic mode consists of three major integrated 

components: a process controller for supplying control logic, on-line sensors for 

collecting information, and a Supervisor Control and Data Acquisition (SCADA) system 

for communicating, executing control actions and evaluating process performance 

(Degremont S. A., 1991; Pollack et al., 1999). The schematic diagram of a basic process 

control system is shown is Figure 2. 7. 

lnout Ou to tit 
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. .. Process r 

SCAD A 
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~ ~ 

................................................ 
System controller 

Figure 2. 7 Basic structure of automated control system 

Automated control begins with data collection from the installed sensors on a continuous 

basis or from manual input. Sensed signals are relayed to the SCADA system, which is 

responsible for all communication between sensors, actuators and the process model, 

process performance evaluation, and execution of control logic. After process 

performance evaluation, the data is sent to a system controller which consists of process 

model and optimiser. After an optimising algorithm, the controller provides control logic 

as controller outputs. A SCADA system transfers the control logic to control actions sent 

to actuators. SCADA also hosts the interfacing between the control system and plant 

operators, and has the ability to store operational data of the actions it has initiated. 

Conceptually, the clarifier automation controller consists of two key components, which 

are designed to cope with the operational problems recognised above. First, the clarifier 

process model can be used automatically to predict clarifier water quality. This provides 

an analogy of how a Jar test works, but it can be used regardless or minimise of time 

delay. The second component is that rather than using the operators' experience, an 
' 

intelligent optimiser is utilised automatically to optimise the set of control actions. It 
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should be able to optimise more than one constraint such as clarified water quality and 

operational cost. The concept of clarified automated control system is presented in Table 

2.3. 

Clarifier operational problems Potential solutions to problems 

Time delay of laboratory • Clarifier process model 

(e.g. Jar test, colour test) 

Suboptimal control actions • Automatic control optimiser 

Table 2.3 Clarifier operation problems and solutions 

2.6 Artificial Intelligence Approach for Clarifier Automated 

Control 

In recent years, there have been improvements in computer hardware and excellent 

artificial intelligence software packages are now available. This has resulted in these 

methods being widely applied in process modelling. Due to the complex behaviour of the 

clarifier, clarifier modelling and control optimisation are the challenging tasks. It is 

proposed that artificial intelligence methods such as ANNs and GAs have potential 

to move clarifier operation towards automated control by using them as process 

modelling tool and intelligent optimisers, respectively. The focus of this thesis is to 

implement this application and evaluate these methods. 

Artificial Neural Network 

An ANN is a type of artificial intelligence technique that attempts to imitate the way a 

human brain works. An ANN is a data information processing paradigm that is inspired 

by biological nervous systems such as brain processes (Negnevitsky, 2005). An ANN, 

with its remarkable ability to derive meaning from complicated or imprecise data, can be 

used to extract patterns and recognise trends that are too complex to be noticed either by 

humans or by other computer techniques. One key significant advantage of using ANN 

modelling is that ANN can map the set of inputs and outputs without any previous 

knowledge of process relationships concerned (Masters, 1993). 

By utilising its advantages, ANN provides a potential process-modelling tool for the 

complex relations of clarifiers. By analogy to the jar test, the virtual ANN version of the 
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clarifier should be able to work automatically in a real-time mode in line with online 

sensors. This should well match the need of the clarifier ANN modelling and 

performance evaluation. 

Genetic Algorithm 

Genetic Algorithm (GA) is another artificial intelligence approach, which is adapted from 

evolutionary processes in nature. GA is an exploratory search and optimisation 

procedure. It is based on a Darwinian-type survival of the fittest strategy with sexual 

reproduction, where stronger individuals in the population have a higher chance of 

creating offspring. GA generally includes the three fundamental genetic operations of 

selection, crossover and mutation. These operations are used to modify the chosen 

solution and select the most appropriate offspring to pass on to succeeding generations 

(Negnevitsky, 2005). GA provides a rapid convergence to a near optimum solution in 

many types of problems. Unlike other optimisation techniques, GA does not required 

mathematical descriptions of the optimisation problem but instead it relies on a objective 

function in order to assess the fitness of a particular solution to the problem in question 

(Jain & Martin., 1999). 

The proposed approach to improve clarifier control in this thesis is to use a GA-based 

intelligent optimiser to optimise the set of control actions. The set of control actions 

should be able to optimise with respect to multiple objectives such as water quality and 

operating cost. In particular, the intelligent optimiser requires the GA, which is able to 

handle multi-objective optimisation. Temporal history is taken into account for instead of 

using only current information as is more conventional. The details of using GA for the 

intelligent optimiser with an intelligent control are in Chapter 6. 

2. 7 Case Studies 

Two selected case studies are utilised in this study. They are extremely different in terms 

of production capacity, environmental conditions, and raw water quality. The first case 

study is Bryn Estyn Water Treatment Plant (BEWTP) located near New Norfolk, 

Tasmania. The second case study is Bang Khen Water Treatment Plant (BKWTP) in 

Bangkok, Thailand. The details of both case studies are as follows. 
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2.7.1 Bryn Estyn Water Treatment Plant Case Study 

BEWTP was first operated in 1960. It is presently under Hobart Water and located 45 km 

from Hobart city. The full capacity during the summer is about 160,000 cubic metres per 

day (CMD), and can drop to 20,000 CMD in winter according to community needs. The 

water produced serves the Hobart metropolitan area and several districts near New 

Norfolk. 

Raw water is drawn from the Derwent River and it is directly fed to the treatment process 

without any buffering reservoir. This way results in quality fluctuation. However, the raw 

water is of good quality and is typically low in turbidity. Nonetheless, its colour is 

characterised as moderate true colour, which does not contribute to water turbidity. The 

water is also quite cold for much of the year, as compared to other Australian plants. The 

raw water pH is usually within a reasonable range for treatment. Typical alkalinity and 

calcium hardness levels in the raw water are relatively low. Low alkalinity, high colour 

waters can sometimes be difficult to treat (City Water Technology, 2001). The associated 

statistical analyses are presented in Chapter 3. 

BEWTP utilises two kinds of treatment systems. The first one is a direct filtration process 

with a capacity of 60,000 CMD and the second is a clarification-filtration process with a 

capacity of 100,000 CMD. During a period of good raw water quality, BEWTP operates 

in the direct filtration mode by which coagulant and polymer are mixed with raw water 

and directly fed to the filter units. However, most of the time BEWTP employs only a 

clarification-filtration process. 

In the clarification process, there are two five-metre depth INFILCO ACCELATOR 

clarifiers with diameters of 26 and 33 metres, with capacities of 40,000 CMD and 60,000 

CMD respectively. Both of them are linked to the filter units. The larger clarifier is used 

for this case study since it has been continuously operated through the years to cater for 

basic community demand. If the water demand increases, then the smaller clarifier and 

direct filtration unit are added to the system. Both clarifiers are fully operated under a 

Supervisor Control and Data Acquisition, SCADA system which is used only for data 

display and logging. The figure of the larger clarifier is shown in Figure 2.8. 
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Source:(City Water Technology, 2001) 
Figure 2.8 INFILCO ACCELATOR, Bryn Estyn water treatment plant 

2.7.2 Bang Khen Water Treatment Plant Case Study 

BKWTP is located l 0 km north of Bangkok Metropolis, Laksi district. It started 

operating in 1979. The maximum capacity is 3.2 million cubic metres per day (MCMD), 

and it normally se rves the community demand during summer periods and drops to a 

minimum of about 30 percent of capacity during the rainy season. lt is responsible for 75 

percent of Bangkok's water demand. Raw water is taken from the Chao Phraya River in 

Pathum Thani 18 km north of BEWTP. Before feed ing to the plant, there is a buffering 

reservoir located at the beginning of the treatment process which regulates raw water 

quality. This raw water is very high in suspended so lids resulting in high turbidity and 

colour. However, the co lour, which is called apparent colour, as it is mainly caused by 

suspended solids, can normally be treated at the same time as turbidity. Typica lly, 

turbidity and colour peaks are found during high flows in the rainy season. Alkalinity and 

pH are in the normal range. Occasionally, peak turbidity occurs fro m ri ver sand mining 

about 30 km from the intake (MW A, 2000). ln addition, due to the hot climate, 

temperature changes during the day are high thus the vertical thermal gradient along the 

depth of the tank conducts a current as called a density current. This results in turbidity 

overflow. 

BKWTP has been continually operating in clarification-filtration mode. BKWTP 

contains eighteen flat conical tanks of clarifiers, and solid contact units of slurry 
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recirculat ion type, which are 58 metres in diameter and 6 metres deep as shown in Figure 

2.9. Each tank's clarification rate is about 200,000 CMD. All of these units are linked to 

44 units of filters. These clarifiers are operated manually even though a number of 

sensors are installed. Acco rding to the BKWTP development plan, the SCADA system 

will be fully employed by the year 2008 . However, in the fi rst state, SCADA wi ll be used 

for data display and loggi ng only. 

Figure 2.9 Solid contact clarifier, Bang Khen water treatment plant 

2.8 Clarifier Performance Evaluation 

In order to examine the need for operational improvement, clarifier performance of both 

case studies are outlined. Generally, the treatment performance of each clarifier can be 

evaluated by turbidity removal efficiency although other measurement methods can 

potentially be utilised as benchmark parameters (e.g. water colour and particle counting). 

This is because the degree of impurity directly relates to the level of turbidity and 

turbidimeters are extensively employed in a large number of WTPs to monitor turbidity 

at various locations throughout the process (Pizzi. 2005; USEPA, 1998). 

However, every WTP specifically sets its own operational target according to their raw 

water quality and environment. For Bryn Estyn Water Treatment plant (BEWTP), the 
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performance criteria are set so that the clarified turbidity and colour should be less than 1 

NTU and 10 HU, respectively. The clarified water colour is used due to moderate true 

colour raw water thus it is difficult to treat concurrently with turbidity (City Water 

Technology, 2001). 

For BKWTP, a target of clarified water turbidity of 7 NTU is set, which is higher than 

that of BEWTP's since its intake of raw water is of extremely poor quality. A clarified 

water colour target is not used because apparent colour of raw water can be precipitated 

with the turbidity coincidently (MW A, 2000). The site-specific operational criteria of 

both case studies are tabulated in Table 2.4. 

Item Performance Criteria 
BrynEsytm • The Clarified water turbidity is less than 1 NTU . 

Water treatment plant • The Clarified water colour is less than 10 HU 
(City Water Technology, 2001). 

BangKhen • The Clarified water turbidity is less than 7 NTU 
Water treatment plant (MW A, 2000). 

Table 2.4 Operational target of clarifiers used in case studies in this thesis 

In order to examine the clarifiers' performance, trend and statistical analyses were used. 

The trend analysis was primarily concerned with considering the characteristics of the 

raw and clarified water. It was not an exact statistical method, but provided an indication 

of the stability of the clarifier operation. The maximum daily turbidity values were used 

for trend analysis as guided by USEP A. The maximum values were used since the goal 

was to assess the integrity of the clarifier operation when it was most vulnerable 

(USEPA, 1998, 1999). To achieve operational stability, a clarifier must demonstrate that 

it could take a raw water source of various quality and consistently produced high quality 

clarified water. On the other hand, the statistical analysis could be employed to determine 

the mean values of clarified water quality and the percentage of upset conditions when 

clarified waters less than a certain turbidity and colour. 

A minimum of 12 months of maximum daily values of water turbidity and colour is 

recommended to assess clarifier performance since it provides a good indicator for long

term performance and covers seasonal effects (USEPA 1998). However, for BEWTP, 

clarifier performance was evaluated from 10 months of data from August 2002 to May 
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2003, as a longer period of data collection was unavailable. For the case of BKWTP, 18 

months of data from February 2003 to October 2004 were used. The discussions of both 

case studies are given separately as follows. 

2.8.1 Bryn Estyn Water Treatment Plant Performance Evaluation 

For Bryn Estyn Water Treatment Plant (BEWTP), the treatment performance of the 

clarifier unit was evaluated by utilising a set of data that describes raw water, and 

clarified water quality was evaluated in terms of colour and turbidity removal using trend 

and statistical analysis. The associated statistic values are shown in Table 2.5 and 

described as follows: 

Performance parameters Value 

Raw water turbidity (Mean±lSD) 2.92±3.6 NTU 

Clarified water turbidity (Mean±lSD) 0.69±0.50 NTU 

Raw water & clarified water turbidity correlation (r) 0.48 

44.41±28.53 
Raw water colour (Mean±lSD) 

HU 

Clarified water colour (Mean±lSD) 6.69±2.54 HU 

Raw water & clarified water colour correlation (r) 0.51 

Table 2.5 BEWTP performance analysis 

Turbidity Removal Analysis 

According to the BEWTP operation guideline, 1 NTU of clarified water turbidity and 10 

HU of clarified water colour are set as an acceptable threshold (MWA, 2000).The 

turbidity trend analysis was conducted by considering any changes in maximum daily 

value of raw and clarified water turbidity as shown in Figure 2.1 Oa and Figure 2.1 Ob. 

During the period of August 02 to November 02, a few spikes in the clarified water plot 

were found when raw water turbidity varied to a mild degree. The operators did fairly 

well in maintaining operational stability. However, in the next period of December 2002 

to March 2003, the operational stability was interfered with when the raw water turbidity 

showed several peaks and variability to a severe degree. The variability was also evident 
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in the clarified water turbidity. These pass-through variations and spikes indicate that the 

performance of the clarifier was below optimum. After March 2003, the operational 

stability recovered when the clarified water turbidity became consistent, complying with 

an operational target of 1 NTU in spite of significant variations in raw water turbidity. 
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Figure 2.10 Clarifier Performance evaluations (Turbidity approach, BEWTP) 
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In order to consider seasonal changes, a plot of monthly mean of clarified water turbidity 

is shown in Figure 2.1 Oc. Since all monthly means of clarified water turbidity were less 

than 1 NTU except those which marginally failed during the two periods of August 2002 

and December to January 2002, the clarifier performance met target turbidity adequately. 

Poor performance in August during a period of the first flood in early spring was 

expected when peaks of raw water turbidity occurred. A density current due to high 

temperature in the summer period was likely to be the main cause of poor performance in 

December and January. The overall mean of clarified turbidity was 0.69 NTU with 

standard deviation of 0.50, which well met the operational target of 1 NTU. However, 

according to the data at hand, it was found that 339 out of 1700 runs (about 20 percent of 

data) were above the threshold limit of 1 NTU. Most of the turbidity upsets that occurred 

resulted in the raw water turbidity appearing in outlier range (i.e. outside of the mean ± 

one standard deviation). The plant operators could recognise raw water turbidity changes 

as evidenced by r of 0.48 to clarified water turbidity. 

Colour Removal Analysis 

The plots of daily maximum raw water and clarified water colour are shown in Figure 

2.lla and 2.llb, respectively. In the same manner as previously discussed, it was found 

that during the period of August 2002 to November 2002, the operators performed very 

well to keep the clarified water colour satisfying the operational target of 10 NTU. There 

were some evidence of fluctuations, but to a mild degree. It is a good example of a stable 

operation. During the period of December 2002 to April 2003, the operational stability 

was severely interfered by several peaks of raw water colour as evidenced by a number of 

spikes in the clarified water colour plot. After April 2003, there were a few peaks of raw 

water passing to the plant but the operational stability could be maintained until May 

2003. 

In Figure 2.11 c, the monthly means of clarified water colour completely complied with 

BEWTP operational criteria regardless of seasonal changes. All monthly means of 

clarified water colour were less than target of 10 HU. By using data of every month, the 

overall mean of clarified water was 6.69 HU with standard deviation of 2.54. Therefore, 

it met the operational target of 10 HU. The number of upset runs was 63 runs from 1700 

runs, which was 3. 7 percent. This was less than that of turbidity since the operators 

intentionally focussed on colour removal due to raw water having very low turbidity. The 

operators were able to handle a change of water colour better than that of turbidity as 
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evidenced in a higher correlation (r) of 0.51 to clarified water colour. The associated 

statistical values are shown in Table 2.5. 
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Figure 2.11 Clarifier Performance Evaluations (Colour approach, BEWTP) 
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In conclusion, according to the BEWTP operational criteria of 1 NTU clarified water 

turbidity and 10 HU clarified water colour, the overall clarifier performance was very 

good. It almost perfectly complied with colour operational criteria although there was 

evidence of some unacceptable levels. The mean clarified water turbidity of 0.69 NTU 

was well within to the requirement of 1 NTU, and most of the turbidity peaks occurred 

when the raw water was most turbid. Fortunately, the raw water quality was generally 

excellent and the succeeding unit of slow sand filters were designed to take care of 

clarified water with turbidity up to 5 to 7 NTU. Thus the clarifier operation became less 

critical. 

2.8.2 Bang Khen Water Treatment Plant Performance Evaluation 

For BKWTP, the treatment performance of the clarifier unit is evaluated by utilising a set 

of data spanning from February 2003 to October 2004 that contains turbidity of raw 

water and clarified water at four-hour sampling intervals. In the same manner as the 

BEWTP case study, the maximum turbidity values each day are used in the trend analysis 

of performance. The associated statistical parameters are shown in Table 2.6. Only a 

clarified water turbidity of seven NTU is set as acceptable criteria for clarified water 

quality since raw water colour is apparent colour (MW A, 2000). 

Statistic parameters values 

Raw water turbidity (Mean±l SD) 93.27±34.37 NTU 

Clarified water turbidity (Mean±lSD) 6.34±1.75 NTU 

Raw water & clarified water turbidity correlation (r) 0.29 

Table 2.6 BKWTP performance analysis 

The clarifier performance trends are shown in Figure 2.12a and 2.12b, which are the plots 

of the maximum daily raw and clarified water turbidity respectively. By comparing these 

two trend plots, it can be noted that the raw water turbidity showed a large number of 

spikes and considerable variability. Variability is obviously evident in the clarified water 

turbidity plot. There are also a larger number of spikes, which indicates operational 

instability, and most of them rose above the operational criteria of 7 NTU. 
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The variation and peaks in raw water turbidity were expected and apparently showed 

some links with the seasonal change. Instead of occurring in line with the peaks of raw 

water turbidity, the spikes in clarified water turbidity plots occurred in complete disorder 

as evidenced by a small r of 0.29. The reason is that variation in raw water turbidity may 

not be the only source contributing to operational instability, and the other sources can be 

environmental changes (e.g. density current). This can be confirmed by the chief 

operators' interviews that raw water quality did not change much but there were large 

fluctuations of clarified water quality during the day. This was because large changes in 

water temperature led to density current, especially in the afternoons of summer months. 

This situation may repeat several times each day. 

The effects of seasonal change can be determined in the plot of monthly mean of clarified 

water turbidity as shown in Figure 2.12c. The monthly means of clarified water usually 

conformed to the operational target of 7 NTU. An exception was found in those of the 

rainy season of 2003 (i.e. May 2003 to August 2003) since a number of raw water 

turbidity peaks reached the plant during a flooding period of rain. This is also evidenced 

in the slight pass of June in the early rain of 2004.The overall mean of clarified water 

turbidity was about 6.34 NTU with standard deviation of 1.75, which marginally 

complied with the operational target of 7 NTU. However, for about 30 percent of the time 

the clarified water turbidity exceeded 7 NTU. Additionally, the raw and clarified water 

turbidity correlation (r) of 0.29 to clarified water turbidity is small, meaning that the 

operators were not able to effectively recognise changes of quality in raw water. 

According to BKWTP performance analysis, it can be concluded that there is a prime 

need for BKWTP to improve operational performance. This is due to the fact that the 

mean clarified water turbidity only marginally met the operational target. Also there were 

always operational instabilities as evidenced by the fact that for about 30 percent of the 

time, clarified water turbidity exceeded 7 NTU. This placed a heavy burden on the 

succeeding filter units since they were designed for maximum load of 5 to 7 NTU. This 

overload resulted in expensive filter backwash. However, this is an unavoidable situation 

in BKWTP due to the extensive water demand. On top of that, to keep operational 

stability during environmental changes, such as variations in density current, which occur 

repeatedly during the day, control actions need to be provided promptly, in order to keep 

the clarified water turbidity within the operational criteria. 
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Figure 2.12 Clarifier performance evaluations (Turbidity approach, BKWTP} 
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2.9 Chapter Conclusion 

In this chapter, the background of water treatment plants and their clarifiers were given in 

order to identify problems usually found in clarifier control. The application of artificial 

intelligence in clarifier control is not fully mature yet. Most past work using ANN was 

related to prediction and clarifier control. Attempts to mimic how the human operators 

control the clarifier were not entirely complete since most focus only on the chemical 

dosages. The physical control actions (i.e. turbine speed and sludge drainage rate) were 

not included in past studies. All early works also focused only on improving the qualities 

of clarified water but not upon the operational cost. Mathematically, all past research 

work was accounted as single objective optimisation problem rather than a multiple 

objectives optimisation problem. 

Past operational data from two case studies were used to conduct performance 

evaluations in order to characterise the past operations and to give evidence of the need 

for improvement. The operators in BEWTP performed very well since the mean quality 

values of clarified water routinely satisfied their operational criteria. In addition, this 

performance was superior to that of BKWTP where its operation was often under stress 

conditions. Although the mean BKWTP clarified turbidity generally meets its target 

(marginally) by about 30 percent of the time, BKWTP operators fail to meet their own 

criteria. Improving the BKWTP operation is set therefore as a priority task. 

In common to both case studies, their control procedures and operational problems were 

reviewed to set out a conceptual model for improving performance. Delay in receiving 

laboratory test results and human error in selecting control actions were recognised as the 

main sources of operational problems. The approach proposed is to employ artificial 

intelligence techniques to address these perceived problems. The first approach is to use 

ANN modelling to model the clarifier process. This is analogous to the Jar test and will 

minimise the time delay. The second is to employ a GA to optimise the set of control 

actions to minimise the operational cost and improve water quality, which would avoid 

human errors. 
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3.0 WATER TREATMENT PLANT DATA: 

COLLECTION, MANIPULATION AND ANALYSIS 

3.1 Introduction 

37 

This chapter presents a detailed description of data collection, manipulation and 

statistical data analysis for two cases studies, Bryn Estyn Water Treatment Plant 

(BEWTP) and Bang Khen Water Treatment Plant (BKWTP). The primary objectives of 

these data analyses are to gain familiarity with the study domain and to prepare available 

data for the clarifier process model development in Chapter 5. In terms of data 

preparation, the irrational data will be eliminated to ensure data quality before modelling. 

Additionally, the data which are collected with the different measurement frequency will 

be discretised to the same time interval. 

It is essential to ensure that the data are fully representative of normal and upset operation 

conditions and cover all the effects of seasonal changes. The sampling period should and 

cover at least a full operational year since the data are site specific and are influenced by 

seasonal fluctuations in raw water quality and the frequency of process upset conditions 

(USEPA, 1998). 

3.2 Data Manipulation and Analysis 

The data routinely collected at BEWTP and BKWTP were grouped into four categories: 

raw water quality, control variables, process variables and clarified water quality. The 

raw water quality data consisted of the various water quality variables (e.g. water 

turbidity and colour), which were available from online sensors and laboratory results. 

These parameters were known to affect treatment processes (ASCE. & A WW A., 1990). 

The control data was a set of data concerning those variables that can be changed at will 

by operators, such as chemical dosages. The process variables were observed in order to 

track any change inside the clarifiers. The performance of a clarifier was measured via 

clarified water qualities, which were water turbidity and/or colour. 

Data manipulation was concerned with two issues, the first one was data filtration to 

eliminate irrational data and the second one was a manipulation of measurement 

frequency. To ensure quality of data, it was necessary to filtrate irrational data. Irrational 

data normally occur from a typing error in entering data by hand. Sometimes, irrational 
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data are included during the sensor calibrations. This is always the case in online sensors. 

The filter criteria were set for each case study according to whatever ranges were 

possible in each variable. After all of the irrational data were eliminated, the new data 

would be inserted. The new data values could be obtained by the interpolation of the 

nearby data. This method was recommended in a number of works (Baxter et al., 2001; 

Maier & Dandy, 1998; Zhang & Stanley, 1997). 

For both case studies, the data were taken at several measurement frequencies as shown 

in Table 3.1 and 3.5. However, in this thesis, the data would be discretised by 

interpolation to be at the same measurement frequency of every four hours which is how 

the operators control the clarifier. In common with the BEWTP and BKWTP operational 

manuals, the control actions need to be selected twice a shift or every four hours at least. 

This is because the water is retained in water treatment plant for about four hours, and for 

most of that time it is actually retained in the clarifier where it varies from 1.5 to 3.5 

hours depending on type of clarifier (Kerri, 1996). Therefore, if anything goes wrong, the 

operator should be able to detect it and take action. Additionally, in most past research, 

the clarifiers were modelled on the basis of daily average data. This is questionable 

procedure for predicting in the lower or higher frequencies (Riyaz et al., 2004).Therefore, 

if the model is based on the data discretised to four hours time steps, then the model 

should predict and work in line with the operators. In this thesis, all data from both case 

studies will be discretised to four hours time steps. 

3.3 Bryn Estyn Water Treatment Plant Data 

Operational data were collected from August 2002 to May 2003. These included the data 

from online sensors and the laboratory test results. These variables are known to affect 

the clarifier performance significantly (ASCE. & AWW A., 1990). Both data from online 

sensors and laboratory test results were logged to a Supervisory Control and Data 

Acquisition (SCADA) system. From the online sensors, the data were inputted into 

SCADA every 30 minutes. The set of online sensors are shown in Figure 3.1. The 

laboratories' results were manually entered into the SCADA system every four hours. 

The measurement schedules are shown in Table 3 .1. 
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Figure 3.1 Set of online sensors at BEWTP 

Time 
Variables Online /Lab 

0:00 4:00 8:00 12:00 16:00 20:00 

Sludge concentration Test kit x x x x x x 

Turbi ne speed Visual x x x x x x 

Raw water Co lour Lab x x x x x x 

Clarified water co lour Lab x x x x x x 

Raw water turbidi ty Online 
Every 30 minutes 

Clarified water turbidi ty Online 
Every 30 minutes 

Raw water Ph Online 
Every 30 minutes 

Raw water temperature Online 
Every 30 minutes 

Alum dosage Online 
Every 30 minutes 

Polye lectro lyte dosage Online 
Every 30 minutes 

Plant flow rate Online 
Every 30 minutes 

Table3.1 BEWTP measurement Schedule 

Calibration tests of associated sensors, dosage pumps and chemical weighing machines 

were rou ti nel y conducted every few months. However, no records of calibration data had 

been kep t. A lthough online sensors (e.g. turbidimeter) benefit to the clarifier operation, it 

should be noted that w ithout the support of quality assurance and control, the accuracy of 

an online turbidity meter is questionable in the low turbidity range (Burlingame et al. , 

1998; USEPA, 1999) . In the operator's experience, the measurement errors of online 
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turbidity were sometimes up to 30 percent. All the associated measurement errors were 

approximated by the chief operator as tabulated in Table 3 .2. 

Variables Measurement Error 

Raw water turbidity (NTU) 10% 

Raw water pH (pH units) 5% 

Raw water temperature (C) 5% 

Raw water colour (HU) 1 HU 

Plant flow rate (MLD). 15% 

Alum dosage (mg/L) 10% 

Polyelectrolyte dosage (mg/L) 10% 

Sludge concentration (% by volume) 5% 

Turbine speed (RPM) 10% 

Clarified water colour (HU) 1 HU 

Clarified water turbidity (NTU) 10-15% 

* Million litres per day. 

Table 3.2 Estimated measurement errors (BEWTP) 

3.3.1 Bryn Estyn Water Treatment Plant Data Preparation 

In order to ensure that correct data are used, the data were filtered to remove occasional 

outlier values that the plant chief operator advised are likely to be associated with sensor 

calibration and maintenance. The other source of irrational data is human error. These are 

especially found in hand entered data. Those irrational data were filtrated out. Filter 

criteria are site-specific. The Filter thresholds were set according to normal range of each 

variable shown in the plant operation manual (City Water Technology, 2001) and 

combined with the chief operators' suggestions as shown in Table 3.3. These values have 

all been replaced by interpolated data. 

Variable Filter 

Raw water turbidity (NTU) > 0.2 

Raw water pH (pH units) 6.0-8.8 

Raw water temperature ( °C) 2-25 

Sludge concentration (% by volume) 15-30 

Plant flow rate (MLD) 15-110 

Turbine speed (rpm) 5-15 

Alum dosage (mg/L) 15-60 

Polyelectrolyte dosage (mg/L) 0.10-0.30 

Target clarified water quality (NTU) <3.0 

Table3.3 BEWTP data filter 
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3.3.2 Bryn Estyn Water Treatment Plant Data Analysis 

After the irrational data were filtered out, the statistical data analysis was conducted. As 

will be discussed, statistical analysis of raw water qualities, control variables, clarified 

water qualities and process variables are shown. Their associated correlations (r) with 

operational targets (i.e clarified turbidity and colour) are used to illustrate their relations. 

Their coefficient of correlations (r) will be applied for primary model input selection 

guideline in Chapter 5. The associated statistical parameters are summarised in Table 3.4. 

In this section, graphical presentations are provided for raw clarified water turbidity and 

the all of variables are shown in Appendix A. 

Correlation (r) to 
Range 

Variable Nature Mean SD Clarified Clarified 
(Min-Max) 

turbidity colour 

Raw 
Raw water turbidity (NTU) 

water 
0.20 -99.9 2.92 3.60 0.48 0.26 

Raw -0.37 -0.25 
Raw water pH 6.63-8.16 7.26 0.27 

water 

Raw water temp. (C) 
Raw 

5.30-21.33 13.62 4.65 0.43 0.37 
water 

Raw 
Raw water colour (HU) 10-300 44.41 28.53 0.50 0.51 

water 

Sludge concentration. (% ) Process 16-46 25.07 5.47 0.07 0.02 

Plant flow rate (ML/day) Control 18.83-102.19 58.20 21.75 -0.07 -0.09 

Alum dosage (mg/L) Control 15.15-52.06 26.07 6.87 0.42 0.45 

Polyelectrolyte dosage 
Control 0.10-0.30 0.15 0.039 0.06 0.11 

(mg/L) 

Turbine speed (RPM) Control 7-15 10.4 1.3 0.09 -0.23 

Clarified water turbidity 
Clarified 0.09-6.72 0.69 0.50 1.00 0.47 

(NTU) water 

Clarified water colour (HU) Clarified 2.5-36.68 6.69 2.54 0.47 1.00 
water 

Table 3.4 BEWTP operation data analysis 
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Raw Water Quality Data 

For BEWTP, raw water quality data contained raw water turbidity, pH, temperature and 

colour data. Only raw water colour was obtained from laboratory test results. The other 

variables were available via online sensors. The sampling rates of associated online 

sensors were every 30 minutes, and the colour test was routinely taken every four hours 

in the laboratory. The sampling points were located at the raw water pumping station. All 

the raw water qualities were of the raw water from the river without pre-coagulation pH 

adjustment. This unit was not available during period of data collection (City Water 

Technology, 2001). 

Most of the raw water parameters varied due to seasonality in the Derwent River's flow 

characteristics. The Derwent River carried a small amount of sediment because of low 

erosive energy, resulting in low raw water turbidity. However, there was a large amount 

of humus and peat in the river, which gave it a characteristic brown true colour (City 

Water Technology, 2001). The plots of raw water turbidity and colour are shown in 

Figure 3.2 and 3.4, respectively. The raw water turbidity varied in the range from 0.2 

NTU to 100 NTU. The raw water colour ranged from 10 to 300 HU. The water turbidity 

and colour values were reported with mean and standard deviation of 2.92 ± 3 .60 NTU 

and 44.41 ± 28.53 HU, respectively (Table 3.4). There was a slight link between raw 

water colour and turbidity as evidenced by a small correlation (r) of 0.54. Since raw 

water was true colour type, it was a slight contribution for turbidity. Raw water turbidity 

varied extensively, because raw water was directly pumped from the Derwent River. 

Thus there was no reservoir to buffer turbidity variation. The peaks of raw water turbidity 

(99.91 NTU) and colour (300 HU) were found concurrently during the autumn period, 

associated with snowmelt following the first thawing. 

Raw water pH varied between 6.63 and 8.16, its mean and standard deviation was 7.26 ± 

0.27 (Table 3.4), which was in a normal range and suitable for treatment. The correlation 

(r) to clarified water turbidity and colour were -0.37 and -0.25, respectively. In addition, 

City Water Technology (2001) provided information that hardness and alkalinity levels 

were in the range of 10-30 and 7-23 mg/Las CaCo3 was relatively low. Occasionally raw 

water with high colour and low alkalinity was difficult to treat. 
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Control Variable Data 

The plant operators could manipulate control variables in order to attain the criteria for 

clarified water quality. In practice, there are five control actions related to clarifier 

control. These include adjusting alum and polyelectrolyte dosages, changing the mixing 

intensity (i.e. the turbine speed), changing the plant flow rate and the sludge drainage 

rate. The sludge drain rate is defined as the time (in seconds) that the valve at the bottom 

of the clarifier is opened to drain the excess sludge in one hour. Therefore, the sludge 

drain rate is assigned in terms of seconds per hour. In BEWTP, the sludge drain rate was 

set to 10 to 20 seconds for every one hour. However, no records were available. 

Operators could change the alum, polyelectrolyte dosages, turbine speed and, to a lesser 

extent, the plant flow rate. Plant flow rate could not be changed without considering the 

water demand. The plant flow rate data were logged into the SCADA system every 30 

minutes by an online flow meter. By knowledge of the plant flow rate, alum and 

polyelectrolyte dosages could be calculated and logged into SCADA at the same 

frequency. The turbine speed data was manually recorded every four hours. 

Plant flow rate ranges from 18.83 to 102.19 million litres per day (MLD). The reported 

mean and standard deviation was 58.20 ± 21.75 MLD (Table 3.4). The correlation (r) to 

clarified water turbidity was -0.07 and to colour was -0.09. This inverse correlation was 

negligible. The presence of treated water storage at the end of the process resulted in a 

regulated plant flow rate. Thus the operator could keep the plant flow nearly constant 

during a shift as long as it met community water demand. 

Alum and polyelectrolyte were used as chemical bases for coagulation to control 

turbidity and colour. Alum dosage ranged from a low of 15 mg/L to a high of 53 mg/L. 

Polyelectrolyte was an anionic polyacrylamide type with a commercial name of 

Magnafloc LT22. Polyelectrolyte dosage was in the range of 0.10 to 0.30 mg/L. The 

means and standard deviations of alum was 26.07 ± 6.87 mg/L and that of polyelectrolyte 

dosages was 0.15 ± 0.039 mg/L (Table 3 .4). The correlation (r) of alum to clarified water 

turbidity was 0.42 and to clarified water colour was 0.45. On the other hand, the 

correlation (r) of polyelectrolyte to clarified water turbidity was 0.06 and to clarified 

water colour was 0.11. Consequently, adding alum showed a larger effect on turbidity 

and colour removal than adding polyelectrolyte. This was evidenced by a larger 

correlation (r) as above. These amounts of chemical dosages in the treatment process 
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complied with drinking water standard guided by United States Environmental 

Protection, (USEP A) and Department of Environment, UK (e.g. for the polyelectrolyte, it 

was allowed to be used up to 0.5 mg/L and exceptional dosage of 1.0 mg/L) 

(Masschelein, 1992). 

Turbine speed varied from 7 to 15 RPM. Its mean and standard deviation were reported 

as 10.4 and 1.3 RPM respectively (Table 3.4). The turbine speed weakly correlated to 

clarified water turbidity with a correlation of 0.09 but it inversely correlated to clarified 

water colour with correlation of -0.23. 

Clarified water quality 

The clarified water turbidity and colour were used as a measure of the clarifier 

performance. The clarified turbidity and colour were measured by online sensors and 

were subsequently tested in the laboratory. In addition to analysis concerning clarified 

water quality using trend and statistic analysis in Chapter 2, more details are presented 

here. 
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Figure 3.3 Clarified water turbidity (BEWTP) 
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The plot of clarified water turbidity (Figure 3.3) varied in line with raw water turbidity. 

The clarified water turbidity ranged from 0.09 to 6.72 NTU. The mean and standard 

deviation was 0.69 ± 0.50 NTU. The best clarified water turbidity was found in spring, 

and the worst were in early autumn in periods of snow melt. The clarified water turbidity 

slightly correlated with raw water turbidity as evidenced by a correlation of 0.48, 

implying that the operators managed to catch up with raw water turbidity to a moderate 

degree. 

• Clarified Water Colour 

The plot of clarified water colour is presented in Figure 3.5. The clarified water colour 

ranged from 2.5 to 36.7 HU. In common with clarified water turbidity, the best clarified 

water turbidity and colour were concurrently found in spring, and the worse were in early 

autumn in periods of snow melt. Referring to the discussion in Chapter 2, the mean and 

standard deviation was 6.69 ± 2.54 HU, complying with target water colour of 10 HU. 

The upset percentage to 10 HU was about 3.68 percent reflecting that operators 

performed very well. The clarified water colour showed comparative relation with raw 

water colour as evidenced by correlation of 0.51, which was almost equal to that of 

clarified water turbidity (r =0.48). This raised the question why operators performed 

much better in colour removal compared with turbidity removal. This was because the 

raw water was true colour which could not precipitate concurrently with turbidity. In 

addition, the operators focused on colour removal rather than turbidity removal since the 

raw water turbidity was always low. 

In general all variables were in normal ranges and suitable for treatment, and there were 

some physical links between each other as previously explained. One of the key 

difficulties for the operation was the raw water being true colour. Thus it was difficult to 

precipitate at the same time with turbidity. The other difficulty was that raw water 

turbidity fluctuated since the water was directly pumped from the river without a 

buffering reservoir. However, the BEWTP clarifier generally operated at or near 

optimum. 
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3.4 Bang Khen Water Treatment Plant Data 

The operational data used for the clarifier process model of BKWTP was from February 

2003 to December 2004. The list of variables and associated measurement schedule is 

shown in Table 3.5. However, the sludge concentration has had to be ignored since its 

data was not available. At BKWTP, plant operators collected data from online sensors 

and laboratory results. Although a number of online sensors were present in most clarifier 

units, the full linkage with the SCADA system was not yet available. It was planned to be 

fully implemented by the end of 2008. Therefore, online data was read from the meters 

and manually recorded in hard copy format every four hours. Simultaneously, lab test 

results were reported and recorded in the same format. 

The chemical dosages were set according to a combination of the Jar test results and the 

operators' experience. Jar tests were conducted twice a day at 8:00 and 16:00. The 

chemical dosages were actually calculated after the plant flow rate was reported. The 
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chemical weighting machine and chemical flow meter errors might contribute to 

chemical dosage errors. The operators also adjusted the turbine speed and sludge drain 

rate. According to the operational manual, all these actions should be set at the beginning 

of the first hour and fifth of each 8 hour shift. It could be more often during period of bad 

water quality. 

Time 
Variables Online /Lab 

0:00 4:00 8:00 12:00 16:00 20:00 

Raw water turbidity Online x x x x x x 
Raw water pH Lab x x x x x x 

Alkalinity Lab x x x x x x 
Slurry Concentration Test kit x x 

Alum dosage Calculated x x x x x x 
Polyelectrolyte dosage Calculated x x x x x x 

Plant flow rate Online x x x x x x 
Turbine speed Visual x x x x x x 
Auto Drainage Visual x x x x x x 

Clarified water turbidity Lab x x x x x x 
Table 3.5 BKWTP measurement schedule 

Although sensor calibrations and adjustment were occasionally conducted, these were not 

recorded. Therefore the associated measurement errors were all approximated according 

to consultations with the chief operator (Table 3.6). 

Variables Measurement Error 

Raw water turbidity (NTU) 10% 

Raw water pH (pH unit) 5% 

Raw water Alkalinity (mg/L ofCaCo3) 10% 

Raw water conductivity (µSiem) 10% 

Alum dosage (mg/L) 10% 

Polyelectrolyte dosage (mg/L) 10% 

Plant flow rate (MCMD) 15% 

Turbine speed (RPM) 10% 

Auto Drainage (Sec/hour) 5% 

Clarified water turbidity (NTU) 10-15% 

Table 3.6 Estimated BKWTP measurement errors 
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For the BKWTP case, the raw water colour was largely attributed by suspended solids 

(i.e. turbidity). This was considered apparent colour type, which could be removed with 

turbidity. For this reason, target clarified water quality criteria was set only to a clarified 

turbidity of 7 NTU and did not include colour (MWA, 2000). 

3.4.1 Bang Khen Water Treatment Plant Data Preparation 

There were a number of incomplete and missing data since the BKWTP operational data 

were not stored in an electronic version. All of them were recorded manually in hard 

copy format. In the same manner as the BEWTP case, to avoid irrational data, the data 

filter criteria were set at the suggestion of the chief operator. Missing data were filled by 

using an interpolation method. The associated filter thresholds are shown in Table 3. 7. 

The range of each variable was widely extended compared to BEWTP since here the raw 

water varied greatly in quality. 

Variable Filer 

Raw water turbidity (NTU) >15 

Raw water (pH unit) 6.8-8.5 

Raw water Alkalinity (mg/L as CaC03) 35-125 

Raw water conductivity (µSiem) >90 

Plant flow rate (MCMD ·) 15-30 

Alum dosage (mg/L) 10-75 

Polyelectrolyte dosage (mg/L) 0.0-.08 

Turbine speed (rpm) 0.8-3 

Auto Drainage (min/hour) >1 

Clarified water turbidity (NTU) <20 

MCMD is million cubic meter per day 

Table3. 7 Bang Khen water treatment plant data filter 

3.4.2 Bang Khen Water Treatment Plant Data Analysis 

After any irrational data had been removed, statistical analyses were conducted. In case 

of BKWTP, the operational data were categorised into three types: raw water quality, 

control variables and clarified water quality. No process variable was used in this case. In 

the same manner, the significant variables, raw and clarified water turbidity plots were 

presented in this section. All of variables were graphically shown in Appendix B. The 

associated statistical analyses are outlined as follows and summarised in Table 3.8. 
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Correlation 
Range 

Variable Nature Mean SD (r) to clarified 
(Min-Max) 

turbidity 

Raw water turbidity 
Raw water 23-324 93.27 34.37 0.29 

(NTU) 

Raw water pH Raw water 7.05-8.13 7.57 0.15 -0.07 

Raw water alkalinity 
Raw water 48-114 86.35 12.96 -0.015 

(CaC03) 

Raw water conductivity 
Raw water 103-473 249.01 46.21 -0.05 

(µSiem) 

Plant flow rate 
Control 16-26 23.21 1.26 0.004 

(MCMD)• 

Alum dosage 
Control 15-70 31.38 10.23 0.11 

(mg/L) 

Polyelectrolyte dosage 
Control 0.01-0.07 0.023 0.019 0.19 

(mg/L) 

Turbine speed 
Control 0.97-2.14 1.45 0.25 -0.07 

(rpm) 

Sludge drain rate 
Control 20-120 40.38 18.52 0.10 

(sec/hour) 

Clarified water turbidity Clarified 
2.2-15 6.34 1.75 1.00 

(NTU) water 

.. .. 
MCMD = million cubic metres per day 

Table 3.8 BKWTP operation data analysis 

Raw Water Quality 
Raw water quality included raw water turbidity, pH, alkalinity and conductivity. Each of 

these had a significant effect on clarifier water quality. Raw water turbidity, pH and 

conductivity data were manually recorded from online sensors every four hours. On the 

other hand, water alkalinity data were received from laboratory tests every four hours. All 

the raw water qualities were sampled after pre-coagulation pH adjustment before the 

clarifier. 
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The source of raw water and its quality varied considerably due to substantial seasonal 

variation in the Chao Phraya River flow rate as well as ambient air temperature. The raw 

water turbidity was extremely high since the Chao Phraya River was located upon the 

Chao Phraya alluvium bed with high erosion during especially the rainy season. This 

introduced a great deal of clay and suspended solids to the water source. Raw water 

turbidity ranged from 23 NTU during the winter to 324 NTU during the first flood period 

of an early rainy season. The raw turbidity was reported to have mean and standard 

deviation of 93.27 ± 34.37 NTU (Table 3.8). Apart from first flood effects, there was 

another source of raw water turbidity peaks. The turbidity peaks occasionally occurred at 

times out of the rainy season because of sand mining and washing operations on the Chao 

Phraya River located 30 kilometres upstream from the plant site. However, since the year 

2006, sand mining was illegal and banned. The plot of raw water turbidity variation was 

shown in Figure 3.6. Raw water turbidity correlated only insignificantly to clarified water 

turbidity as evidenced in a small correlation of 0.29 (Table 3.8). This confirmed that the 

operators were unable to control for a change of raw water turbidity and /or there were 

other sources of clarified water turbidity upset, possibly the density current. 

Raw water conductivity, pH and alkalinity were sampled after lime dosing. In BKWTP 

pre-coagulation pH adjustment was conducted by using lime (MW A, 2000). Raw water 

conductivity was reported with a mean and standard deviation of 249.02 ± 46.21 µSiem 

(Table 3.8). The pH and alkalinity ofraw water varied with a similar small variation with 

mean and standard deviation of 7.56 ± 0.15 and 86.35 ± 12.96 mg/L (CaC03) respectively 

(Table 3.8). In summary, raw water quality for BKWTP had very high turbidity. The pH 

and alkalinity fell into a normal range, which was suitable for turbidity precipitation with 

alum (MW A, 2000). 

Control Variables 

Similarly to BEWTP, control actions included adjusting plant flow rate, changing alum 

dosages and polyelectrolyte dosages, changing turbine speed and sludge drainage. The 

statistical analyses of the control action data are shown as follows. 

The plant flow rate depended on water supply demand. It ranged from a minimum of 16 

million cubic metres per day (MCMD) to a maximum of 26 MCMD. The plant flow rate 

was reported with mean and standard deviation of 23.21±1.26. MCMD (Table 3.8). The 
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small value of standard deviation indicated that there was not much variation in the plant 

flow rate since there was a large treated water reservoir located at the end of the 

treatment process to regulate the plant flow rate. The plant flow rate changes also weakly 

affected the clarified water turbidity (r of 0.004). 

Alum dosage was used as a main chemical to remove turbidity. Besides the use during 

high turbidity, polyelectrolyte was frequently applied to assist turbidity removal. The 

operators only used alum to precipitate turbidity when raw water turbidity was about 20 

NTU or less. Alum dosages varied concurrently with raw water turbidity and ranged from 

15 mg/L to 70 mg/L. It had a mean and standard deviation of 31.38 ± 10.23 mg/L (Table 

3.8). During period of April, June and October, the raw water turbidity was low with a 

level less than 50 NTU, and sometimes they went down to about 20 NTU. Therefore a 

small amount of alum was used. However, the alum dosage was never below 15 mg/L. 

Polyelectrolyte was an anionic polyacrylamide type with a commercial name of Super 

Floe AlOO.The polyelectrolyte dosages also varied substantially with mean and standard 

deviation of 0.023 ± 0.019 mg/L (Table 3.8). Alum and polyelectrolyte dosages 

correlated to clarified water turbidity with low correlation of 0.11 and 0.19 respectively. 

All chemical dosages used in BKWTP were harmless to health. Especially for the 

polyelectrolyte, it was allowed to be used up to 0.5 mg/L and exceptional dosage of 1.0 

mg/L as guided by United States Environmental Protection, (USEP A) and Department of 

Environment, UK (Masschelein, 1992). 

The turbine speed varied in the range of 0.97 to 2.14 RPM through the whole year. It had 

a mean and standard deviation of 1.45 ± 0.25 RPM. Its correlation to clarified water 

turbidity was vary small (r = -0.07) (Table 3.8). 

Normally, it was necessary to drain sludge in order to maintain the sludge concentration 

in a clarifier otherwise the turbidity would be carried over. The automatic drainage 

system was set by setting the drainage time in seconds per one hour. The sludge drainage 

rate varied with mean and standard deviation of 40.38 ± 18.52 second per hour, and 

ranges from 20 to 120 second per hour (Table 3.8). The sludge drain rate related slightly 

to clarified turbidity with a small inverse correlation (r of 0.1 ). 
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Clarified Water Quality 

In the case of BKWTP, only the clarified water turbidity was used to measure the 

clarifier performance. Clarified water samples were sampled from the outlet of the 

clarifier, and then a turbidity test was conducted using an online turbidimeter every four 

hours and recorded by hand. Clarified water turbidity was plotted in Figure 3. 7. It ranged 

from 2.2 to 15 NTU with mean and standard deviation of 6.34 ± 1.75 NTU (Table 3.8). 

According to an interview with the chief operator, poor raw water quality during the 

rainy season always induced an operation difficult to correct but it was foreseen and able 

to be handled. However, the unpredicted raw water turbidity outside the rainy season 

from sand mining gave far more severe results. In addition, there were some turbidity 

leaks caused by a density current. This always occurred on a day of high temperatures. 
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Figure 3. 7 Clarified water turbidity (BKWTP) 

Most of the water qualities were shown to be in the normal range and suitable for 

treatment. Their relations to the operational target (i.e. clarified water turbidity) were 

small implying complicated relations in the clarifier. These variations at BKWTP were 

not large in comparison with those at BEWTP. This implied that the presence of a 

reservoir at the beginning of the process helped to buffer any changes. However, one of 

the key difficulties for the operation was a density current in the clarifier. Existence of 

this density current may be confirmed by a small correlation of clarified to raw water 

turbidity. This implied that there were other interferences in addition to the ever changing 

raw water turbidity. The density current phenomenon was documented as being strongly 
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linked with water temperature, and it normally occurred in large uncover clarifiers 

(Hudson, 1981), such as the ones being used at BKWTP. Unfortunately, no thermal 

sensors had ever been sited in the clarifier to provide further information and proof of this 

inference. 

3.5 Chapter Conclusion 

This chapter has presented the statistics of the operational data of both case studies in 

order to identify the manner of variation of each variable. Measurement errors were also 

included. The linkages of raw water qualities to operational targets were examined by 

using the coefficient of correlation (r) to guide the selection of process model inputs in 

Chapter 5. All the data which had different measurement frequencies were discretised to 

a four hour time step to use the same time interval which would benefit prediction and 

concur with how the operator controls the clarifier in real practice 

In the BEWTP case study, the operational data analyses revealed that the raw water 

qualities were excellent and well within the treatable range, with an exception that the 

raw water colour was moderate and true colour. There was some inconsistency between 

the clarified water colour and turbidity due to its being true colour. Most changes in raw 

water quality could be foreseen as varying seasonally. A significant finding was the large 

fluctuations in raw water turbidity which was a typical characteristic of water treatment 

plants without a buffering reservoir. 

From the analysis of BKWTP operational data, the variables proved to be widely 

different to BEWTP's case study because of seasonal changes. Raw water was of poor 

quality with routinely high turbidity. Nonetheless, the raw water qualities were within 

treatable ranges and they fluctuated more moderately due to the existence of a buffering 

reservoir. The coefficient of correlation of clarified to raw water turbidity, being only 

small, implied that other and extraneous sources might occur in the clarifier, possibly 

arising from a density current. 

In both case studies, all the associated raw water quality, process variables and control 

variables were shown to correlate weakly to the operational targets (i.e. water turbidity 

and colour). This reflected the complexity of the clarifier processes, and it confirmed that 

the artificial neural network should be a suitable modelling tool for the clarifier process. 
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4.0 ARTIFICIAL NEURAL NETWORK 

MODELLING: REVIEW OF METHODOLOGY AND 

APPLICATION TO THE CURRENT RESEARCH 

4.1 Introduction 

Artificial Neural Networks (ANNs) are information-processing systems that attempt to 

mimic the operation of human brain and nervous system. They can be employed in a 

wide variety of applications such as pattern recognition, prediction and process control 

and clustering (Demuth & Beale, 2000). ANNs possess a remarkable capacity to learn 

and update themselves from examples of input-output patterns, which are used to 

determine the rules that direct the relationship between the variables. ANNs are non

linear interpolator of multi-dimensional data are able to generalise complex relations 

among inputs and outputs. Accordingly, ANNs are well suited for modelling complex 

problems where there is unknown relationships between the variables and when 

nonlinearity is suspected (Haykin, 1999; Norgaard et al., 2000). 

ANNs were first introduced in 1943 (Mccunoch & Pitts, 1943) and were put into wide usage in 

1986 after the introduction of the backpropagation training algorithm for feed forward 

ANNs (Rumelhart et al., 1986). The history of neural networks is well documented in 

detail in several textbooks such as (Negnevitsky, 2005). 

Among the data-driven modelling methods, ANNs have shown promise and superiority 

to other classical modelling methods such as multiple regressions. Its superiority has been 

proved in a number of comparative studies related to environmental system modelling 

and water supply and wastewater engineering (Chen et al., 2008; Chowdhury et al., 2009; 

Dellana & West, 2009; May & Sivakumar, 2009; Perendeci et al., 2008; Sun et al., 2009). 

The objective of this chapter is to provide background of the Artificial Neural Network 

(ANN) modelling methodology and to select suitable modelling methods to use in this 

thesis. Two types of neural network are used here: (i) Feed forward backpropagation 

network (backpropagation network in short) and (ii) Self-Organising Map (SOM) 

network. These will be used for process modelling and data clustering, respectively. 

Initially, the backgrounds of two networks are introduced. Then, ANN modelling will be 
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described by focusing on determination of inputs, data division, and data pre-processing 

and model performance evaluation. At the end of this chapter, all the selected modelling 

methods will be summarised and used in the next chapter with real operational data from 

both case studies for clarifier process modelling. 

4.2 Classification of Artificial Neural Network 

The classification of artificial neural networks can be addressed on the basis of two main 

criteria: (i) the learning rule used and (ii) the connection between neurons. Based on 

learning rules, ANNs can be categorised into supervised and unsupervised learning. In a 

supervised network, the weights are adjusted in the direction that minimises the error 

between its output and the targets to be learned. Several algorithms concerning 

supervised learning (e.g. backpropagation) are frequently reported in the modelling of 

nonlinear systems. Unsupervised training differs from supervised training in that it 

requires only inputs to train the network. During unsupervised training, the weights are 

adjusted in such a way that similar inputs produce similar outputs. For instance, 

unsupervised learning is used in Self-Organising map (SOM) networks to discover 

clusters of structure in data (Baughman & Liu, 1995; Pham & Liu, 1995; Tsoukalas & 

Uhrig, 1997) 

Based on the connection between neurons, ANNs can be divided into feedforward or 

feedback network. A feedforward network has only a forward direction in the 

connections between the neurons. This type of network contains no closed loops and is 

suitable for pattern recognition or modelling application. In a feed back network, the 

outputs are connected to its input, allowing the network to recognise temporal behaviour 

(Demuth & Beale, 2000; Kosko, 1992; Pham & Liu, 1995). 

The feedforward backpropagation and SOM networks are used in the clarifier process 

model and will be introduced later in this chapter. 

4.3 Structure and Operation of Feedforward backpropagation 

Artificial Neural Networks 

In this section, feedforward backpropagation ANNs (Backpropagation ANNs in short) 

are introduced with a discussion of neural network structure and links to how a neural 
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network learns and generalises the information from sets of data. It is necessary to 

understand the classic weight updating method and the learning rule called gradient 

descent algorithm widely used in backpropagation networks. 

4.3.1 Feed Forward Artificial Neural Network Structure 

ANNs are parallel systems consisting of several neurons. Each neuron in a specific layer 

is fully or partially connected to other neurons via connection weights. The weight in 

each connection link corresponds to the strength of the connections between 

interconnected neurons. A zero weight refers to no connection between two neurons. An 

ANN' s architecture is defined by the number of layers, the number of neurons in each 

layer, and the type of activation function used by neuron in each layer. All the neurons in 

a given layer are assumed to use the same transfer function. 

Input Layer 

D 

x-. 
I 

Hidden Layer 
J1 

Output Layer 

D 

Figure 4.1 A feedforward artificial neural network structure 

A feedforward artificial neural network structure is illustrated in Figure 4.1. The n input 

values {x1 ... x,} are entered into the neurons in the first layer of the network (the input 

layer). Thus the number of input neurons, i, is equal to the number of input values. 

Between the input layer and output layer are layers of neurons called hidden layers, and 

there is no restriction on the number of layers and neurons in these layers. There 

are j neurons, {h1 .. • h 
1 

} , in the single hidden layer, and these neurons take as their input the 

output from the i neurons of the input layer, plus bias b,. The network's output layer has 

k neurons, {y1 ... yk}, where k is the number of required output values. These neurons 

receive as their input the output from the kneurons of the hidden layer, plus biasb
1

. The 

word "feedforward" shows information flow direction from the input to the output. When 
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the network has more than one hidden layers, it can be entitled as Multiple-layer 

feedforward network. 

Depending on the objective of the study, the output layer can have one or more neurons 

that produce the output. Multiple outputs are feasible but they lead to increased network 

complexity. Thus it is recommended that one separate ANN should be developed for 

each output to achieve better results (Haykin, 1999). 

4.3.2 Artificial Neuron 

Fundamental to ANNs are artificial neurons ("neurons" in short) as they make up the 

processing units for such systems. Based on the basic concepts of biological neurons, 

artificial neurons accept inputs from other similar neurons process the inputs and send a 

single output to other neurons. The basic structure of an artificial neuron is shown in 

Figure 4.2. 

Output 
(a) 

, -----------------------

f(Lx/~,+b) 

,Ne~rorr{. · 

(b) 

y 

Input to 
other 

x
1 

neurons • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~· 

gure 4.2 an artificial neuron 

(a) A single neuron with I input ( x1 to x, ), produces a scalar output y 

(b) The neuron Transfer function : the summation of input is passed to an activation 

function includingb, the value assigned to any possible bias, which produces the 

output) 

The neuron's processing capability is attributed to three main functions: (i) the input 

function, (ii) the activation function, and (iii) the output function. These three functions 

are combined and called the transfer function. To provide a better understanding of the 

transfer function, these three functions should be considered separately. In Figure 4.2, the 

input function performs an algebraic summation of multiplication of inputs {x1 ,. ....... , x,} 
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with the corresponding connection weights, {w ;1''" ..... , w 
1
J. The net input function to 

the j'h neuron unit, net
1

, can be written as: 

(4.1) 

where, i index denotes the number of input neurons and b
1 
is a bias (Freeman & Skapura, 

1991) . 

The output of the input function, net 
1 

then is the necessary input for the activation 

function. The activation function is a differentiable function that determines the output of 

those neurons based on the net input function (Masters, 1993). Although the activation 

function can be any function, it is most often monotonic and a bounded function (Haykin, 

1999; Norgaard et al., 2000). The output values for the activation function are generally 

bounded by a range 0 to 1 or -1 to 1 (depending on the activation function used). 

In early neural models, a simple threshold function, or step function was used as the 

activation function (Figure 4.3(a)). This particular type of activation function allowed a 

value of 1 to generate from the neuron if the weighted sum of the inputs exceeds some 

selected threshold, otherwise the output is 0. 

More recently, the threshold function has been substituted by a more general nonlinear 

sigmoid function producing an S-shape curve (Figure 4.3(b)). Generally a Sigmoid 

function is of real value and differentiable. It actually refers to the special case of the 

logistic function and has often been reported as a popular alternative (Rumelhart et al., 

1986). Besides the logistic function, the hyperbolic tangent function is another popular 

activated function (Norgaard et al., 2000) (Figure 4.3(c)). Both the activation function 

and their derivatives can be outlined as follows: 

Logistic function and its derivative, 

f(net) = 
1
( ) and, /'(net)= J(net )(I - J(net )) 

l+exp -net 
(4.2) 

Hyperbolic tangent and its derivative, 

!(net) 
__ exp(net )- exp(- net) and 

exp( net)+ exp(- net) 
f' (net)= 1- f(net) (4.3) 
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These particular functions have an advantage in that their derivatives, which will later be 

shown, provide significant aspects for neural computation (Section 4.2.5). Since their 

derivatives are low order polynomials and are easily computed. Choice of activation 

function is discussed in section 4.3.4. 

f(net) f(net) 

----------- ~j __ + ----------------
~----+-----~net 

0 0 

-1 -1 
(a) Step function (b) Logistic function 

f(net) 
----------- ~j ____ _ 

-1 -1 

(c) Hyperbolic tangent function (d) Linear function 

Figure 4.3 Typical Activation functions 

The third component of the transfer function is the output function. It is usually chosen to 

be equivalent to the output of the activation function (i.e. the output of neuron will be the 

same as that of the activation function). Hence, in this Figure 4.3 the abscissa 

corresponds to the net while the ordinate represents the neuron output. The output 

function distributes the neural outputs to the other neurons in the next layer (Caudill & 

Butler, 1990) . 

4.3.3 Perceptron and Linear Network 

The perceptron is among the simple forms of a neural network. It was developed Frank 

Rosenblatt in the early 1960s. It is a feedforward network that utilises a step function as 

an activation function. Each neuron computes the weighted sum of inputs and compares 

the resulting net weighted input to a threshold value, T . If the net input is larger than or 

equal to the threshold, the neuron yields an output value of 1.0, otherwise it gives an 

output value of -1.0. 
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The transfer function of the perceptron is written as: 

y = {+ l,if _net~ T} 
-l,if _net::; T 

where y = output of the neurons, 

(4.4) 

net= net weighted input to the neuron and is calculated as follows: 

where w 11 = component of weight vector associated with the input i to neuron j and 

x
1 
=component of input vector 

The perceptron training rule adjusts neuron weights using the formula: 

(4.5) 

where &
1 

= t
1 

- y
1 

is the error of actual output t
1 

and desired output y
1 

.A perceptron is 

useful as a classifier. A perceptron network is only capable of training a single layer of 

neurons, it can only solve linearly separable problem but not for nonlinear separable 

problem (Demuth & Beale, 2000; Negnevitsky, 2005). One solution to this difficulty is to 

use a pre-processing method that results in nonlinear separable vectors or multiple 

perceptron in multiple layers. However this adds more complexity to the networks. 

A linear network is another form of neural network that is similar to the perceptron. 

However its activation function is a linear function (Figure 4.3(d)) rather than a step 

function (Figure 4.3(a)), allowing its result to take on any value, while the perceptron 

output is limited to either 0 or 1. It has a similar limitation to the perceptron in that it can 

only solve linearly separable problem (Demuth & Beale, 2000). Consider a training data 

set containing n records, with each record consisting of an input vector x, (the predictor 

variables), and the correct target response, t,. The network's response is y, and the Sum-

Square Error (SEE) is: 

n 2 

SSE= L(y1 -dj) (4.6) 
J=I 
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The derivative of the mean SSE with respect to weight w
1

, is (Zurada, 1992): 

oSSE =-28 x 
0w J I 

JI 

(4.7) 

In training of the network, all such derivatives are calculated, and the neuron weights are 

adjusted to decrease (and eventually minimise) the mean SSE, the basic adjustment 

being: 

(4.8) 

Although this gradient descent approach can be based on different error functions, the 

most common function is SEE (Bishop, 1995). The rule is often referred to as the 

Generalised delta rule, or the Widrow-Hoff rule (Widrow & Hoff, 1960). Its training rule 

is similar to the perceptron, except for the use of a learning rate, T/ which is a 

computation acceleration parameter. The technique is used in the numerical method in 

this thesis. 

4.3.4 Feedforward Backpropagation Network 

A Feedforward backpropagation network (backpropagation network in short) is a 

feedforward network that adjusts the connection weights by using a backpropagation 

algorithm. The word backpropagation is an abbreviation for "backwards propagation of 

error"(Baughman & Liu, 1995). It is a network that employs the generalised delta rule to 

govern the learning process. The backpropagation algorithm involves two steps. First is a 

forward pass, where the effect of the input is passed forward through the different layers 

of neurons in the network reaching the output layer. Once the error is calculated by 

comparing network output and desired output, a second step starts backward through the 

network. The errors at the output layer are propagated back towards the input layer in 

order to adjust the weight. Standard backpropagation uses a gradient descent algorithm, 

as does the Generalised delta rule, or the Widrow-Hoff rule (Demuth & Beale, 2000; 

Hagan et al., 1996). The hidden layer neurons commonly use logistic or hyperbolic 

tangent activation functions while the output layer neurons usually adopt a linear transfer 

function (Carter, 1999) 
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Essentially backpropagation is a gradient descent technique that minimises the network 

error. Each input pattern passes through the network from the input layer to output layer. 

After passing the final layer, the actual output of the network is compared with the 

desired output. The error of each is computed based on (Dayhoff, 1990): 

(4.9) 

where 

E = the global error function; 

y 
1 

= the prediction output by the network; and 

d 
1 
= the desired output. 

The global error function is minimised by adjusting the weight using the gradient descent 

rules: 

(4.10) 

where: 

~w11 =weight increment from neuron j to neuron i; and 

1J = The learning rate, by which size of the step taken along the error surface 1s 

determined. 

Equation ( 4.10) can be further defined by the generalised delta rule as follows: 

(4.11) 

where: 

x, = input from neuron i, i = 0,1,2 ... , n ; 

0
1 

= error value between the predicted and desired output for node j . 

If the neuron j is in the output layer, it can be computed by applying the generalised 

delta rule as follows: 

(4.12) 
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where f'(net
1

) is the derivative of the activation function with respect to the weighted 

sum of inputs of neuron j . 

If node j is in the hidden layer, the generalised delta rule can be used as illustrated in the 

equation (4.13) and Figure 4.4 (Dayhoff, 1990). 

1 w11 <51 

2 <52 

• • w12 
<5) 

• • • 
• • • 

w w3, <5k JI 

Input to Hidden layer Output of 
neuron neuron neuron 

Figure 4.4 Hidden layer neuron used in backpropagation neural network 

(4.13) 

The weights are then updated by adding the delta weight, to the corresponding previous 

weight as follows: 

(4.14) 

where: 

w
1
,(n) =the value of a weight from node i to node j at step n (before adjustment); and 

w
1

, (n + 1) =the value of the weight at step (n + 1) (after adjustment). 

The backpropagation algorithm is sensitive to the initial condition, i.e. the initial value of 

the weights due to its gradient descent nature. For instance, training may begin with a set 

of initial weights that are positioned in the flat region of the error surface when 

convergence becomes especially slow (Hassoun, 1995). Moreover, training may start 

from an unfavourable position in weight space where the network may be trapped in a 

local minimum and cannot escape (Maier, H. R. & Dandy, 1998). 
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The choice of the learning rate is crucial and an optimum learning rate is commonly 

found by trial-and error. If the learning rate is chosen to be small, convergence will 

eventually be achieved. However it will be extremely slow. In addition convergence will 

be subject to the local minimum in the error surface that is closest to the random starting 

position. On the other hand, convergence may sometimes not be attained using a large 

learning rate (Haykin, 1999). 

To solve this problem without leading to oscillation, Rumelhart et al.(1986) described a 

process that adds a momentum term,µ to weight adjustment that is proportional to the 

amount of the previous weight change. After an adjustment is performed, it is saved and 

used to change all subsequent weight adjustments. This implies that the weight change of 

the current step should carry some momentum of weight change from the previous step. 

The modified adjustment equation is as follows: 

( 4.15) 

and 

(4.16) 

Several other algorithms are available for training the networks as described by Hertz et. 

al.(1991). A majority of these algorithms are founded upon the assumption that the 

learning rate is constant from one epoch to the next and from one weight to another. 

Their learning rates and momentums are found by a trial-error approach. This is time 

consuming and has no guarantee for trapping in local minimum. Both the magnitude of 

the learning rate and momentum are in the range of 0 to 1. If the learning rate is small, 

the weight will be modified by smaller increments with less oscillation. When the 

learning rate is large the weight will be drastically changed and often causes oscillation. 

In general, a small learning rate is well adapted for use with noisy data. (Garret et al., 

1992). Besides use in alleviating of local minimum trapping, momentum is a smooth 

factor that permits faster learning without oscillation by making the weight change by a 

function of the final step weight change (Garret et al., 1992; Hagan et al., 1996) .. 

64 



Chapter 4 Artificial Neural Network Review of Methodology and Application to 
Current Research 65 

However some researchers (Bishop, 1995; Demuth & Beale, 2000; Kosko, 1992; Ripley, 

1996) have challenged the above assumptions by proposing a learning rule that uses a 

varying learning rate and momentum. Demuth and Beale (2000) recommended an 

adaptive learning rate back propagation with momentum that can converge from ten to a 

hundred times faster than a standard gradient descent with momentum back propagation. 

In addition, no time consuming trial-error processes are necessary for finding the optimal 

learning rate and momentum, if this training algorithm is used. Therefore variable 

learning rate backpropagation will be used throughout this research. 

4.4 Self-Organising map Network 

Self-Organising Maps (SOM) belong to the group of unsupervised neural networks and 

were proposed and developed by Kohonen (1982). Unsupervised neural networks are 

normally used for data clustering to optimise and identify similarities associated with raw 

data. SOMs will be used in the process model development to cluster the data variables in 

order to divide data into training, testing and validation sets. The typical structure of 

SOMs consists of two layers: an input layer and a Kohonen layer. In the Kohonen layer, a 

number of competitive neurons are arranged in a one or two dimensional array as shown 

in Figure 4.5 (a). 

Kohonen layer Input layer Kohonen layer 
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Figure 4.5 Self-Organising Map network 
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(a) The topology of Self-Organising map network 

• 
• 
• 

(b) Unsupervised learning Self-Organising map network 

In Figure 4.5(b ), the input from each neuron in the input layer ( x, for i = 1,2, .... n) is fully 

connected to the Kohonen layer through connection weights ( w u for j = 1,2, .. .. m ). These 

weights are randomly initialised at the start of the self-organising process, t. At each 
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neuron in the Kohonen layer, the input ( x,) is present without proving the desired output, 

and a matching value is computed. This value is typically the Euclidean distance. For 

node j in the Kohonen layer, the Euclidean distance (D) between the weights and the 

corresponding input values, is expressed by: 

n 

D1 = ~)w1, -x,) 2 ,j=l,2, ...... ,m (4.17) 
/;J 

The neuron that has the minimum Euclidean value is declared the "winner". In other 

words, the winner is the neuron whose weight is most similar to the input value. 

Subsequently the weight of the winner neuron and its neighbouring neurons, in terms of 

topology, are updated to get a closer match with the input values. The incremental weight 

update for neuron} is as follows: 

(4.18) 

where: 

T/ = learning rate. 

At step n of training, node j can be updated as in equation (4.19): 

(4.19) 

The process is repeated by successively inputting new data records to the model and 

modifying the connection weights until they stay unchanged. This results in a topological 

map where similar data records are clustering together. For a detailed description of the 

operation of SOMs see (Kohonen, 1997). 

4.5 Artificial Neural Network modelling 

To improve performance, ANN models need to be developed in a systematic manner. In 

such an approach it is important to address major factors such as the determination of 

adequate model inputs, data division and pre-processing. The choice of a suitable 

network to control the optimisation method, the stopping criteria and model performance 

evaluation are also essential. 
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In the process of ANN modelling, a general practice is to classify the available data into 

three sets: training, validation and testing. The training set is used for the purpose of 

adjusting the connection weights. The validation set is used to check the performance of 

the model at various training stages, and to decide when to stop training to avoid 

overfitting. Finally the test set is used to estimate the performance of the trained network 

in the environment in which it is to be deployed (Demuth & Beale, 2000). 

4.5.1 Determination of Model Inputs 

In developing ANN models an important step is to select the input variables with the 

most significant impact on model performance. Especially in the case of modelling of 

temporal system, the number of the selective inputs is perhaps the most important 

parameter since it corresponds to the number of lagged observations used to discover the 

underlying pattern in temporal data (Zhang, G. et al., 2001). 

A good subset of input variables will substantially improve model performance. If ANN 

models are presented with a number of input variables, the network size is enlarged and 

results in increased model complexity, computational time and reduced efficiency 

(Lachtermacher & Fuller, 1994). Even though ANNs do not themselves consider the 

physical properties of their inputs, a clear understanding of the system to be modelled is 

an important prerequisite for successful application. In addition, to minimise the training 

samples and training time, only the factors that have strong influence on the specific 

problem should be considered for the input neurons(Masters, 1993; Zhang, G. et al., 

1998). 

A common approach to input determination is to employ an expert knowledge of the 

system to select a set of candidate inputs for the model. Although an expert identification 

is widely adopted in several ANN applications, dependence upon an expert's knowledge 

is both subjective and problematic. It becomes very important to have a good level of 

understanding of the system being modelled in order to select appropriate model inputs. 

If important inputs were to be neglected, some system information might be lost. On the 

other hand, if spurious inputs are included, the training process may be confused and 

delayed. 

Generally the potential number of input variables to an ANN model tends to be large, and 

complete expert knowledge is not available to suggest which variables should be 
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included. Intuitively the preferred approach to this problem involves a combination of 

available expert knowledge and a statistical analytical approach such as correlation and 

autocorrelation function (ACF) (Maier, H.R. & Dandy, 2000; Qi & Zhang, 2001). 

For example, in system modelling using multivariate time series it is often possible to 

define the appropriate kind of variables for model inputs by using expert knowledge. 

However, one must question how far the selected data should span into the past (i.e. what 

time lag of time series data is appropriate). Therefore an analytical method such as 

autocorrelation analysis may become a more suitable approach for this task. 

The autocorrelation function (ACF) is the popular statistic tool for measuring correlation 

over a time series data. An ACF physically measures if present values in the time series 

have some relation to earlier values. Initially autocorrelation is used to define a 

significant time lag for system with the assumption of the system being linear (Box & 

Jenkins, 1976). For nonlinear system modelling, although there are a number of 

arguments, a number of researchers (Filho et al., 2006; Haykin, 1999; Ikonen & Najim, 

2002; Saad et al., 1999; Venema et al., 1996) use ACF as a guideline for the time lag. 

Let a time series data x1 , ..... xn. The autocorrelation coefficient at lag k is given as: 

1 N-k 

ck =--Lex, -x)(x,+k-x) 
N-k 1=1 

(4.20) 

where k is lag, k = 0,1..., N. If is set as zero that means the present value and x is the 

overall mean of the series, defined as: 

- 1 N 
x=-Ix,. 

N 1=1 

The autocorrelation function at lag k, ACF(k )is given by: 

ACF(k)= ~k, 
0 

(4.21) 

(4.22) 
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where C0 is the autocorrelation coefficient when the time lag is set as zero, (present 

value). The suitable time lag is defined as the smallest k that makes ACF(k) < K where 

is usually taken as 0.5 or.!.., e=2.71828 (Filho et al., 2006; Venema et al., 1996). 
e 

Defining the suitable time lag for a nonlinear system modelling is problematic. A trial

error approach by varying the time lag and considering model performance is 

recommended. The time lag suggested by autocorrelation is set as the upper boundary for 

the trial-error procedure, since time steps beyond this threshold are less significant to the 

present information. 

In this thesis, in addition to expert knowledge, statistical approaches (i.e. correlation and 

autocorrelation function) are used with the multivariable time series data in two case 

studies to guide the input selection both of selection of the significant inputs for the 

model and of suitable time lag. 

4.5.2 Data Division 

Like conventional statistical models, ANNs' model parameters (e.g. connection weights) 

are modified in the training model so as to minimise the error between model output and 

target in the training set. ANNs exhibit best performance when they do not extrapolate 

beyond the range of data used for training (Flood & Kartam, 1994; Tokar & Johnson, 

1999). In order to develop the best ANN model for the available data, all the patterns 

contained in the data set need to be included in the training set (Masters, 1993). 

For instance, if available data contain extreme data points that were excluded from the 

training set, the model is unlikely to perform well as the test data will test the model's 

extrapolation ability, and not its interpolation ability. If all of the patterns that appeared in 

the available data are included in the training set, the most rigorous evaluation of the 

generalisation ability of the model occurs if all the patterns (and not just a subset) are 

contained in the test set. 

In order to avoid model overfitting, Stone (1974) suggested a approach which he called 

cross-validation. Here the data are divided into three sets: training, validation, and 

testing. The training and testing set are used for model training and evaluation, 
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respectively. The validation set guards the model from overfitting by stop training. 

However, no guidelines exist in the literature for optimising which portion of the data 

should be used for training, validation and testing sets in the attempt to determine optimal 

proportions of division of the data 

Cross-validation may be employed as the stopping criterion. The results obtained from 

the validation set have to be representative of those obtained from the training set as the 

validation set is used to decide when to stop training. Consequently, it is important that 

the statistical properties (i.e. mean and standard deviation) of the various data subsets (i.e. 

training, validation and testing) are similar to ensure that each subset represents the same 

statistical population. If this is not the case, it may be difficult to judge the validity of the 

ANN model (Maier, H. R. & Dandy, 1998; Masters, 1993). 

However, it was not until recently that systematic approaches for data division have been 

proposed in the literature. Before dividing the data, two main questions need to be 

answered; first, "what portion" of the data should be used for each of the training, 

validation and testing set. Second, "which data" should be included in each of the sets. 

Again the statistical equivalence among these three subsets must not be compromised 

(Bowden et al., 2002). 

Bowden et al.(2002) adopted a genetic algorithm to minimise the objective function 

which was set as the difference between the mean and standard deviations of the data in 

the training, validation and testing sets. While this approach ensures that the statistical 

properties of the various data subsets are similar, there is still a need to choose what 

proportion of data are suitable for training, validation and testing. In this approach, the 

question of "which data" was answered but no answer for "what portion" 

Kocjancic and Zupan (2000) and Bowden et al (2002) used a Self-Organising map 

network (SOM) to cluster high-dimension input and output data in two dimensional space 

and divided the available data so that values from each cluster are represented in the 

various data subsets. This ensures that data in different subsets are representative of each 

other. It also has the additional advantage that there is no need to decide what percentage 

of the data should be used for training, validation and testing. 

• Data division using Self-Organising map network 
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SOM is used to cluster the input and output data into training, validation and testing sets 

that have similar statistical properties. It can be implemented using software package 

MATLAB (version 6) with the Neural Network Toolbox (version 4), both from 

Mathworks INC, Natick, MA, U.S.A. To cluster the data, the inputs and their 

corresponding output are presented to the network as SOM's inputs. The output of the 

SOM is obtained using a selective grid topology (e.g. rectangular grid), which displays a 

representation of the neurons that are winning each pattern. For simplicity, default 

parameters are used such as Kohonen rule for the learning rule, Euclidean distance for 

neighbourhood distance and the Rectangular grid for grid topology. The associated 

details are well documented (Demuth & Beale, 2000). 

Each individual cell in the grid represents a neuron in the Kohonen layer (Figure 4.6). At 

present there is no theoretical principle for determining the optimum size of the Kohonen 

layer. The Kohonen layer was kept large enough to ensure that the maximum numbers of 

clusters were formed from the training data. It has been suggested that the optimal 

number of epochs and optimal size of the Kohonen layer (number of neurons) for 

obtaining the maximum number of clusters are data specific and found by trial and error 

process. In particular, the size of the Kohonen layer is initially set, and then the number 

of epochs is increased until the number of clusters becomes unchanged. (Of course, the 

selected size of the Kohonen layer is larger than the mature number of clusters). 

According to the original work of Bowden et al (2002), when the maximum number of 

clusters is formed, and if any cluster contains three data or more, the data should be 

randomly chosen, and assigned one for each of the training, validation and testing sets. If 

two data are in a cluster, then one datum is randomly selected for the training set and the 

other is placed in the validation set. In the instance that a cluster only contains one data, 

then this data is placed in the training set. 

However, Bowden' approach is modified to assure that the training set covers as many 

varied patterns as possible from the data in this research. When the cluster contains more 

than three data, two of them are randomly selected and assigned for each of the validation 

and the test sets, the rest are included in the training set. This modified Bowden method 

will be used throughout this research. 

71 



Chapter 4 Artificial Neural Network Review of Methodology and Application to 
Current Research 72 

In Figure 4.6, each square grid denotes a neuron in the Kohonen layer and the black dots 

represent the data contained in each cluster. In this example, for the cluster A containing 

only two data, all of them are assigned to the training set. For the cluster B, two records 

are randomly sampled from the cluster, one datum for the validation set and the one for 

the testing set. The rest of the data in this cluster are added to the training set. This 

process is repeated for each cluster in the Kohonen layer. 

I Cluster A I ~ 
For training set___-

I Cluster BI 
~ 

For validation set - ~ : : : I 
For training set ------- Ld:!J~. -~ 

........-1'"-=~~-1-~~-1-~~~~~~-1---~~-1 

For testing set 

Figure 4.6 illustrates the sampling process used in the SOM data division method. 

4.5.3 Data Pre-processing 

After the available data have been divided into their subsets (i.e. training set, validation 

set and testing set), it is important to pre-process the data in order to have the same 

magnitude before they are fed to the ANN. One of most popular pre-processing 

techniques is normalisation. ANN s require that all inputs and outputs are normalised to 

have the same order of magnitude in order to ensure that all variables receive equal 

attention during the training process. If the input and output variables are not of the same 

order of magnitude, some variables may appear to have more significance than they 

actually do. The training algorithm has to compensate for order of magnitude differences 

by adjusting the connection weights. This is a very ineffective way of training algorithms 

(Baughman & Liu, 1995). 

Additionally, inputs need to be commensurate and fall within the limits of the activation 

function. This is between -1.0 to 1.0, if using a hyperbolic tangent function and 0.0 to 1.0 

for the sigmoid function (Masters, 1993). 
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Baughman and Liu (1995) recommended normalizing all input and output variables and 

introduced a comparative review of three normalisation methods as follows. 

Method 1: normalise each variable, x
1 

, in the data set to between 0 and 1 by dividing its 

value by a selected upper limit of that variable, x 1,upper • The normalised variable, x 1,norm 1s 

calculated from: 

x1 
x1,norm =--

x1,upper 

(4.23) 

For example, variable x
1 

has a range of 500 and 900 and the normalisation factor is 

chosen as x
1 

max = 1 OOO. Using the equation ( 4.23), the normalised variable values will be 

0.5 and 0.9. One limitation of this method is that it does not utilise the entire range of the 

transfer function. Figure 4.7 (a) shows that only a small portion of the transfer function 

corresponds to x
1 
values of 0.5 to 0.9. The connection weights can be broadened and their 

range can be shifted to include a larger region of the transfer function. However, as the 

number of variables and connection weights increase, these adjustments become more 

difficult for training algorithms. 

Method 2: Expand the normalisation range so that the minimum value of the normalised 

variable, xi,norm is set to 0 and the maximum value, xi,norm is set at one. We define the 

normalised variable x 1,norm by using the minimum and maximum values of the original 

variable, xl mm and xl max respectively. 
' . 

(4.24) 

This method offers a significant improvement on the Method 1 by using the entire range 

of the transfer function, as Figure 4.7 (b) illustrates. Moreover, with this method every 

input variable in the data set has a similar distribution range, a feature which improves 

the efficiency of training. 
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Method 3: Normalises data set between limits of -1 and + 1 with the mean value set to 

zero. This technique is named zero-mean normalisation. The normalisation variable, 

x, norm is obtained by: 

X, -X, mean 
x,,norm = R ' ' 

1,max 

(4.25) 

and 

R,,max = Maximum [(x1 - X1,mean ) (x1,mean - x, )] 
(4.26) 

where x, is an input or output variable, x,,mean is the mean value of the variable over the 

data set. R1 maxis the maximum range between the average value and either the minimum 

or the maximum value whereby x,,max and x,,mm are the maximum and minimum value 

respectively. 

As in the Method 2, the zero-mean normalisation method utilises the entire range of 

transfer function, and every input variable in the data set has a similar distribution range 

(Figure 4.7(c)). This allows the weight connections to follow a more standard 

distribution, without requiring a shift and broadening of the input variables to match their 

respective output variables. This method gives meaning to the value of the normalisation 

variable; 0 represents the normal state (or average) of the variable;-1 represents the 

lowest possible level of the variable, and + 1 represents the highest possible level of 

variable. The normalised range of -1 to + 1 is well matched with a hyperbolic tangent 

function which is itself superior to a sigmoid function (section 4.3 .2). 

In addition, by setting all the normal states of variables to zero, the network will have a 

standard structure that makes the training both efficient and consistent from one problem 

to the next. That is, all networks should normally predict output responses of 

approximately 0 (normal value) whilst the input variables are set at their normal values. 

Therefore, the network is essentially only training deviations in the output variables 

which are due to various deviations in the input variables. The zero-mean normalisation 

method is therefore used throughout this research. 
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Figure 4.7 Input normalisation methods 

4.5.4 Selection of Proper Activation Function 

There are some heuristic rules for the selection of the activation function. For example, 

Kilmasauskas (1988) suggested use of a logistic activation function for classification 

problems which involve learning about average behaviour, and use of hyperbolic tangent 

function if the problem involves learning about deviations from the average such as in a 

forecasting problem. 

Based on the function of the network being used, a transfer function also needs to be 

chosen. The hyperbolic tangent and sigmoid function are appropriate for most types of 

networks, especially for predictive problems. A Gaussian function is only recommended 

for classification networks. Baughman and Liu (1995) demonstrated that the hyperbolic 

tangent function performs better than the sigmoid function for the following reasons: 

1. With the output varying from -1 to + 1 for the hyperbolic tangent and only 

0 to 1 for the sigmoid function means that the hyperbolic tangent function 

has both a negative input value and a positive response for a positive input 

value, while the sigmoid function is limited by always having a positive 

response. 
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2. The slope of the hyperbolic tangent is much greater than the slope of the 

sigmoid function. This has the effect that the hyperbolic tangent function 

is more sensitive to small changes of input. 

Consequently, the hyperbolic tangent will be used as an activation function for every 

neuron in the hidden layers and the linear activation function will be employed for every 

neuron in the output layer in this research. 

4.5.5 Determination of Model Architecture 

One of the most important and difficult tasks in ANN model development is determining 

the network architecture. The use of a large number of hidden layers and neurons may be 

counterproductive because an excessive number of parameters will encourage overfitting 

of the network solution to the training data, and so reduce the generalisation capabilities 

of the final product. The selection of a suitable architecture is problematic. Therefore, 

both empirical methods or trial and error process must be used to determine the optimal 

network architecture (Maier, H.R. & Dandy, 2000; Masters, 1993). 

The number of neurons in the input can be chosen using expert knowledge and statistic 

approaches (section 4.3.1) and the number of neurons in the output layer is obviously 

fixed according by the number of outputs. Selection of the optimal number of hidden 

layers and neurons is, however, a different matter. In practice, the optimum number of 

hidden layers and neurons in each layer can be empirically achieved by fixing the number 

of layers and optimising the number of neurons in each layer by trial and error. 

One hidden layer only is recommended by several researchers (Hecht-Nielsen, 1989; 

Masters, 1993) because the use of more than one will increase the number of parameters 

to be estimated, which may slow down the training process without substantially 

improving the efficiency of the network. Theoretical results have shown that a one 

hidden layer feedforward network with an appropriate activation function is capable of 

approximating any measurable function to a reasonable degree of accuracy even if some 

errors occur. Errors will be due to either inadequate learning or too few hidden neurons. 

Also the data may not reveal sufficiently deterministic or causal relationships. 

However,(Hagan et al., 1996; Maren et al., 1990; Tarassenko, 1998; Weigend et al., 

1990) all suggest that using a two hidden layers network is sufficient to model continuous 
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functions. Therefore, in this research, a two hidden layer network is considered the 

largest network practicable for model optimisation. 

The number of neurons in the input and output layers are fixed by the number of inputs 

and outputs respectively. It is a common practice to firstly fix the number of hidden 

layers in the network and then secondly to choose the number of neurons in each of these 

layers. The usual method of selecting the number of hidden neurons is a rule of thumb 

approach. There are few relevant studies but, unfortunately these guidelines are for one 

hidden layer network. Hecht-Nielsen (1989) proposed the upper limit for the number of 

hidden layer neurons: 

(4.27) 

where N H is the number of hidden layer neurons and N 1 is the number of inputs. 

Fletcher and Goss (1993) proposed a number of hidden layer nodes as follows: 

(4.28) 

where N° is the number of outputs. However, Rogers and Dowla (1994) proposed the 

following relationship to avoid overfitting the training data by adding the term number of 

training samples defined as NTR : 

NTR 

NH <--
- N 1 +l. (4.29) 

For a network with two hidden layers, a 3:1 ratio of neurons between the two layers is 

suggested (Maier and Dandy 1996). In this thesis, the maximum number of hidden layers 

is set to two in order to avoid model complexity. The numbers of neurons in each hidden 

layer are empirically determined (i.e. trial and error process) by choosing those with the 

best predictive performance for network. However, it is necessary to realise that the 

number of neurons in the hidden layers (during trial and error process) increases the 

amounts of connections and weights to be fitted. This number cannot be increased 

without limit because one may reach a situation where the number of weights to be fitted 

is larger than the number of data sets available for training. Though the neural network 
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can still be trained, the case is mathematically undetermined. Mathematically it is not 

possible to determine more fitting weights than the available training data sets (Sha, 

2007). For example, two data sets are required as a minimum for linear regression, three 

data sets for second order polynomial (parabolic) regression and so on. In practice, for 

reliable regression, much more data than the minimum amounts are used to increase 

statistical significance. For example, if only two data sets are used to determine a slope 

through linear regression, the standard error of the slope calculated will be infinite 

(infinitely large). A slope determined through two data sets has no statistical significance 

(Harnett & Murphy, 1975; Mendenhall & Beaver, 1994). 

4.5.6 Choice of Stopping Criteria 

To decide when to stop the training process, stopping criteria are used. If a lengthy 

training period is chosen, there is the possibility that the network will try to fit noise in 

the data. However assuming that the noise is small relative to the main features, it is only 

in the later stage that the network will attempt to fit noise. Stopping the training before 

the noise is learned will improve the generalisation (Weigend et al., 1990) 

Stopping criteria determine whether the model has been optimally or poorly trained. 

Several approaches can be used to determine when to stop training. Training can be 

stopped after the presentation of a finite number of epochs; a maximum number of 2000 

epochs has been suggested (DeSilets et al., 1992) despite the fact that this number should 

be experimentally determined. Training could be stopped when the training error reaches 

a sufficiently small value; or when no or slight changes in the training error occur. 

However, in these examples, the stopping criteria may lead to overfitting. 

The cross-validation technique (Stone, 1974) is an approach that can be used to 

overcome such a problem. It is considered to be the most valuable tool to ensure that 

overfitting does not occur (Smith, 1993). The Cross-validation technique is concerned 

with avoiding overfitting by the use of the validation set. The validation set measures the 

ability of the model to generalise, and the performance of the model using the particular 

set is checked at many stages of the training process. Training is stopped when the error 

of the validation set starts to increase. The Cross-validation technique was adapted and 

used in Neural Network Toolbox (version 4) which referred to it as the Early Stopping 

technique. This validation set has to be monitored during the training process. The 
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validation error will normally decrease at the beginning phase of the training. The 

validation error will then increase as the network begins to overfit the data. When the 

validation error increases over a pre-set number of epochs, the training process will be 

stopped. The weight and the bias of the minimum validation error are returned (Demuth 

& Beale, 2000). The Early Stopping technique is employed for model development 

throughout this research. 

4.5.7 Neural Network Model Performance Evaluation 

In order to evaluate the predictive performance of a neural network model, a variety of 

qualitative and quantitative means can be employed. Selective testing sets are utilised as 

benchmarks for performance comparison. A visual inspection of a plot of actual outputs 

versus predicted outputs can serve as a qualitative measure of the predictive performance 

of a model (Flood & Kartam, 1994). Quantitatively, the predictive performance of a 

model can be assessed using statistical indicators such as r 2
, the coefficient of 

determination, as well as the mean absolute error (MAE) (Demuth & Beale, 2000). These 

two statistical indicators will be used for model performance evaluation throughout this 

research. 

The r 2 calculation compares the accuracy of the ANN model to the accuracy of a trivial 

benchmark model in which the prediction is just the mean of all the samples. A perfect fit 

would result in a r 2 value of 1. A very good fit would be near 1, and a very poor fit near 

0. The equation of r2 is given as follows: 

,2=1- SS, 
SS ' T 

(4.30) 

where, SS, is residual sum square and SSris the total sum square, which are denoted as: 

n 2 

SS,= L(Y1 - y1 ) ( 4.31) 
1=! 

n 2 

and, SST= 2:(Y1 -yl) (4.32) 
1=1 
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where, y
1 
is the observed value, .Y, is the predicted vale for y

1 
and y is the mean of the 

observation. Ther 2 calculation is applied to the entire test set data and serves as a bulk 

indicator to measure candidate model performance. 

The second statistical indicator, the Mean Absolute Error (MAE), is used to highlight 

inconsistencies in ANN model prediction and can also be used to determine whether the 

model prediction are adequate for process control. The MAE has dimension and units. 

Thus it is easy to compare with any particular thresholds such as the operational targets 

of the clarified turbidity and colour in a water treatment plant model. The calculation of 

MAE is as follows: 

1 n ~ 
MAE =-I(y, -y,), 

n ,;1 

(4.33) 

where , Y; is the observed value, .Y, is the predicted vale for Y;. 

4.6 Chapter Conclusion 

This chapter has reviewed the artificial neural network as an advanced modelled 

technique. It has demonstrated that ANNs are a form of artificial intelligence, which, by 

means of their architecture, attempt to mimic the biological structure of the human brain 

and nervous system. It is evident from this chapter that in using ANN modelling for 

prediction, the purpose of the model is to capture the patterns between a set of model 

inputs and the corresponding outputs. This involves pattern recognition. 

To achieve this, ANNs rely on the existing data alone to determine model structure and 

parameters. Any development of ANN models must address several factors which 

include the determination of adequate model inputs, data division and pre-processing, the 

choice of suitable network architecture, careful selection of model performance 

evaluation, the stopping criteria and model validation. The ANN modelling methods 

selected for this thesis are listed in Table 4.1 and they will be used to model the clarifier 

process model in Chapter 5. 
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Model element Selected ANN methods 

Type of network Feedforward network with Backpropagation learning 

Learning rule Adaptive learning rate with momentum 

Inputs selection method: 

(i) Type of variables (i) Expert knowledge & Coefficient of correlation ( r ) 

(ii) Suitable temporal span (ii) Autocorrelation function (ACF) 

Data division method Data clustering based SOM 

Data pre-processing zero-mean normalisation 

Training stopping criteria & Model Early stopping 

validation 

Determination of model architecture Trial-error process 

Model performance evaluation Coefficient of determination (r.l) 

and Mean absolute error (MAE) 

Table 4.1 the selected ANN methods for the clarifier model development. 
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5.0 CLARIFIER ARTIFICIAL NEURAL NETWORK 

MODEL :DEVELOPMENT AND EVALUATION 

5.1 Introduction 

Artificial Neural Network (ANN) model falls into two different types: process models 

and inverse process models. In the former the model predicts the value of one or more 

process outputs given the values of the process input variables. For the clarifier 

modelling, this type of the model predicts clarified water qualities using the influent 

water quality and control action variables as inputs for the ANN model. In the latter, the 

ANN model is often used to predict the value of the control actions required to give a 

desired output. 

This chapter describes the development and application of the ANN process models to 

prediction problems. Neural networks were developed for process models to predict 

clarified water qualities. Two case studies were considered, BEWTP and BKWTP. Past 

operational data taken from both case studies were used as a source of data for the 

predictive water quality models. For the BEWTP case study, the operational targets were 

the clarified water colour and turbidity. Model were developed to predict each target. 

Targets were set individually as outputs of the associated process models. These models 

were separately developed and evaluated. On the other hand, for BKWTP, only clarified 

water turbidity process models were developed since the sole operational target was 

clarified turbidity. In common for both case studies, the clarifier process models were 

temporal systems which were designed to cope with the changes of the raw water 

qualities varying with time. The past operational data were discretised and input to the 

models. 

This chapter begins with description of the process model development processes used in 

common for both case studies. This includes systematic modelling methods concerning 

data manipulation, selection of the inputs, data clustering and ANN model architecture 

optimisation to ensure the prediction performance of the model. The process model 

performances and reliability will be separately evaluated at the end of the chapter. 
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5.2 Clarifier Process Model Development 

This section describes the general stage in the development of the ANN clarifier process 

models that predict the clarified water qualities. All the ANN process models described 

herein were developed using the commercial software package MATLAB (version 6) 

with the Neural Network Toolbox (version 4), both from Mathworks INC, Natick, MA, 

U.S.A. Backpropagation networks using adaptive learning rate were employed to predict 

the clarified water qualities and self-organised map (SOM) neural networks were used to 

cluster the data during at the pre-process stage. The development of the models consisted 

of three stages: the pre-processing stage of data collection and manipulation, the ANN 

process modelling stage and the post-process stage relating to model performance 

evaluation. The systematic modelling procedure is graphically shown in Figure 5.1 

Stage 1 
Data collection & 

manipulation 

Stage2 
Clarifier process 

model development 
procedure 

--~~~ ~~~---' 

Stage3 
Model performance 

evaluation 

Input & output 
------ selection 

Data 
clustering 

Model 
architecture 
optimisation 

Figure 5.1 The modelling development process, illustrating that modelling 

development consists of three stages: (i) data collection and manipulation, (ii) 

clarifier process model development procedure and (iii) model performance 

evolution. 

Stage 1 Data collection and manipulation 

The first stage was concerned with data collection and manipulation. Past operational 

data were collected from BEWTP and BKWTP. To ensure quality of data, the irrational 

data were filtered out and substituted by interpolated data. The past operational data with 

different measurement frequency were discretised to four hours time step. 
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In real practice human operators have been recommended to select the control action set 

at least every four hours (City Water Technology, 2001; MWA, 2000). This period is 

approximately equal to the time that the water spend in the WTP (hydraulic retention 

time). This frequency of control actions ensures that faults can be detected and corrective 

actions taken place in time (Kerri, 1996). The process models were to work in line with 

the operator therefore time step data was set equal to how the operators control their 

clarifier. It is not recommend to use a model which is developed from data with one 

measurement frequency but predicts at a different frequency (Riyaz et al., 2004). For 

example, if the ANN process model was developed from daily average data, it should not 

be used in prediction for a frequency of every four hours. After this state, all the 

erroneous data were replaced by interpolated ones and formatted as temporal data as if 

with four hours' time step. All of these works were completely done in Chapter 3 

Stage 2 Clarifier model development procedures. 

The second stage was the most important as it concerned how to systematically develop 

the clarifier process model using the existing temporal operation data. The main objective 

of this stage was to optimise the architecture of the process model to achieve the best 

predictive ability of clarified water quality in one time step (four hours) into the future. 

This stage was composed of three steps as follows. 

• Input and output selection 

The initial step in model development was to select input and output variables. The 

operational targets (i.e. clarified water qualities) were individually set as the output of the 

clarifier process model. Even though ANNs are capable of multiple output modelling, 

better performance is obtained by using a single output as this results in reduced model 

complexity (Haykin, 1999). Therefore a single model for each output was used in this 

thesis. 

The inputs selected were those variables which had or were thought to have an effect on 

clarified water qualities. Two main subjects were of concern: (i) what type of data was 

selected and (ii) temporal span. The selection type of the input variables (e.g. raw water 

pH, alum dosage) can be obtained by using expert knowledge and making use of the 

correlation coefficient (r). By temporal span we meant how long to backdate data from 

the present (i.e. the suitable temporal span of each selected input variable). The 
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autocorrelation function (ACF) was utilised to suggest the optimal temporal data (section 

4.3.1). 

• Data clustering 

After the inputs were selected (types and temporal span were defined), the self-organised 

map (SOM) approach was used to cluster the data (section 4.3.2) to ensure that the 

training set, validation and testing set were statistically equivalent. To verify this, the T

test examined the null hypothesis of no difference in the means of two data sets and the 

F-test examined the null hypothesis of no difference in the standard deviations of two 

sets. Kreyszig et al.(2006) gave a good description of these tests and recommended the 

selective level of significance of 0.05. This meant that the training, validation and testing 

sets achieved statistical consistency at the confidence level of 95 %. 

The ANN models worked well for interpolation (Masters, 1993). The process model 

should be tested and validated in the interpolation mode which meant that the range of 

the training set should cover the range of testing and validation set for each variable. It 

was necessary to check whether any variables of the test and validation sets were out of 

range of that of the training set. If the maximum value of any test or validation set 

variable was greater than the maximum training set value or the minimum test or 

validation set value was less than the equivalent training set value, then the null 

hypothesis was rejected. 

• Model architecture optimisation 

To optimise model architecture, the optimum number of hidden layers and hidden 

neurons was investigated. The best architecture networks were selected as those with the 

best ability to predict the clarified water qualities one time step of four hours ahead of 

present time. These networks gave the lowest mean absolute error (MAE) and the highest 

value of coefficient of determination (r2
) in predicted versus actual output. Optimising the 

model architecture was conducted by systematic trial and error by varying the number of 

hidden layers and hidden neurons. However, it was unnecessary to have a network with 

more than 2 hidden layers (section 4.3.5). All of these trial and error processes were 

conducted on the test set because it was used as the benchmark and was statistically 

representative of the training set. 

Other model architectural elements have already been discussed (Table 4.1 ). The 

conclusions were that: the tangential hyperbolic and linear activated functions were 
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selected for hidden and output neurons respectively. The zero mean method was used to 

normalise these data. Early stopping was set as the stopping criterion for training in order 

to avoid overfitting. Training was stopped after any continuous five epochs for which the 

MAEs of the validation set were more than those of training set. This process obtained 

the clarifier process model with optimised architecture to best predict one step ahead 

performance. 

Stage 3 Model performance evaluations 

The performance evaluation of the optimised architecture process model was conducted 

in two schemes: one step prediction performance (four hours ahead) and multiple step 

prediction performance evaluation (up to 24 hours ahead). 

• One step prediction 

One step prediction performance was evaluated by using the MAE and r2
• In addition, the 

reliability of model was evaluated by comparing it with measurement error of the output 

of the model. If the prediction error was less than the measurement error, the models 

were considered reliable. Both prediction performance and reliability of the process 

models were assessed via the associated test set. 

• Multiple step prediction 

Once the best models for one step prediction were established, their capacity was 

challenged by long range prediction. The main objective of long range prediction was to 

investigate how far the clarifier process model could predict the clarified water qualities 

with the present information. To predict the clarified water qualities at t+N steps in the 

future, the predicted values of clarified water qualities from t+N-1 to the present time 

were input into the model. For example, to predict the clarified turbidity water at 3 steps 

ahead from now (i.e. 12 hours ahead), the predicted values of clarified water turbidity 

(and colour) at the 4th hour were input into the process model to predict clarified water 

qualities at the gth hour. Consecutively, both predicted values were again input into the 

clarifier process model to predict clarified water qualities at thelih hour. The multiple 

step prediction concept was employed in case studies. There was a link between the 

clarified water turbidity and colour models for the BEWTP case. Both models used the 

clarified water turbidity and colour as inputs to the model. On the other hand, the 

clarified water turbidity model worked individually in the case of the BKWTP. 
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The model development process was applied for both case studies and the details of each 

case study will be separately discussed in the following sections. 

5.3 Bryn Estyn Clarifier Process Modelling 

This section focuses on the specific modelling process for the BEWTP clarifier process 

model for each of the three development stages (Figure 5 .1 ). Two ANN clarifier process 

models were developed using site specific operational data to predict the clarified water 

turbidity and colour for the BEWTP case study. In short, one ANN process model was 

used to predict clarified water turbidity and another one for clarified colour prediction. 

Operational data from August 2002 to May 2003 and their associated statistical analyses 

were described in Chapter 3. After erroneous operational data had been filtrated out, the 

sampling rates were formatted to four hours. 

5.3.l Determination of the Significant Inputs 

The type of inputs and their temporal spans were important to model performance. 

Suitable inputs for the clarified water colour and turbidity model were determined as 

described in this section. The list of available variables is shown in Table 5.1. The type of 

input variables and suitable temporal spans for the clarifier models are discussed 

separately as follows. 

Type of input variables 

The coefficients of correlation (r) of each input variable to the model outputs (i.e. the 

clarified water turbidity and colour) were low (in the absolute value range of 0.02 to 0.51, 

Table 3.4) due to the complex behaviour of the clarifier. Unfortunately, this meant that no 

firm thresholds of r could be set to ignore some variables. Some variables such as the 

turbine speed, plant flow rate and polyelectrolyte dosage showed insignificant effect on 

clarifier performance since their coefficients of correlation (r) were very low. To add 

these inputs to the model might only add noise to the model. However it was a very 

indecisive choice to ignore them since all these input variables were recommended as 

being important to clarifier operation (ASCE. & AWWA., 1990; Kawamura, 1991). In 

addition, according to the interview with the head of operators and the BEWTP 

operational manual (City Water Technology, 2001), the operators at BEWTP have in 

practice been using values of these variables as the primary information to operate their 
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clarifiers. Therefore all WTP inputs were used as the inputs for the two process models. 

These are tabulated in Table 5.1. 

Suitable temporal span 

The clarifier process model is a temporal system and it is necessary to determine the 

optimal temporal span for each of the input data. It was assumed that the optimal 

temporal span for an input variable could be found by maximising r2 and minimising the 

MAE in a rigorous series of trials where different temporal spans of inputs were 

evaluated. The suitable temporal span can be guided by considering the Autocorrelation 

function (ACF) (section 4.5.1) with a threshold of 0.5. Any time steps beyond this 

threshold are less significant to the present step and they can be negligible (Filho et al., 

2006; Venema et al., 1996). The ACF of the clarified water turbidity was critical and as 

shown in Figure 5.2, was a relatively low value, particularly at temporal spans longer 

than 16 hours (four time step lags). Considering this, a five time step lag (20 hours time 

lag) was assigned as the maximum temporal span considered for the investigations of 

suitable temporal span. 

One should know that the clarifier at BEWTP is an Accelator, which is solid contact type 

with sludge recirculation. Some sludge was kept and reused for flocculation enhancing. It 

was necessary to make sure that the maximum temporal span covered the residential time 

of the sludge in the clarifier since it was the evidence of how well the operator did and 

how serious the clarifier was annoyed by ambient changes. The sludge concentration at 

BEWTP was normally in the range of 20 to 30 percent (by volume) (City Water 

Technology, 2001). If, for example, the sludge concentration was below 10 percent at 12 

hours previously, then it would indicate that there was abnormal situation happened that 

time and if this sludge still remained in the clarifier, its effects should be taken in to 

consideration. Actually there was no report on the exact residential time of sludge in the 

clarifier. The best guess was 20 hours temporal span since it was much longer than the 

time that water was retained in the clarifier (hydraulic retention time) of about 2 to 3 .5 

hours. Although it might or might not cover the residential time of sludge, it should be 

long enough to get more information for the process model. 

The trial and error was performed by varying the temporal span by step of four hours up 

to the upper limit of 20 hours. Therefore the choices of temporal spans were present time, 
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4 hours, 8 hours, 12 hours, 16 hours and 20 hours. The list of inputs for the clarified 

water turbidity process models and colour are tabulated in Table 5.1 

09 

0.3 

Present 
··' 24 hours 36,n'ours. 48 hours 

{ emporal span 
60 hours 

-+-Flowrate 
'-t-RWpH 
__,.___ RW turbidity" 
-'7-RW temperature 
-e-- RW colour 
-+-Alum qosage 
-ft-- Poly dosage 
- - -Turbine speed 

. --$---Sludge con 
-+-CW turbidity 
-e-- CW colour 

Figure 5.2 Autocorrelation function (ACF) of input variables (BEWTP), showing 

the ACF values of the inputs of the clarifier process model in the increase of 

temporal span 

Variable Temporal span Remark 

Raw water turbidity (NTU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water colour (HU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water pH (pH units) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water temperature ( ° C ) t, t-1, t-2, t-3, t-4, t-5 Model input 

Sludge concentration (% by volume) t, t-1, t-2, t-3, t-4, t-5 Model input 

Plant flow rate (MLD) t, t-1, t-2, t-3, t-4, t-5 Model input 

Turbine speed (rpm) t, t-1, t-2, t-3, t-4, t-5 Model input 

Alum dosage (mg/L) t, t-1, t-2, t-3, t-4, t-5 Model input 

Polyelectrolyte dosage (mg/L) t, t-1, t-2, t-3, t-4, t-5 Model input 

Clarified water turbidity (NTU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Clarified water colour (HU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Clarified water turbidity (NTU) t+l Model output 

Clarified water colour (HU) t+l Model output 

Table 5.1 The selected inputs with temporal spans and outputs for clarified water 

turbidity and colour models for BEWTP 

89 



Chapter 5 Clarifier Artificial Neural Network Model: Development and Evaluation 90 

5.3.2 Data Clustering 

After selecting suitable variable types and temporal spans, the input and associated output 

data was divided into three subsets: training, validation and testing sets comprising a total 

of 1700 data sets each with 20 hours temporal span inputs and 2 outputs (1 data set 

contains 68 variables). These subsets were divided in such a way that they were 

statistically consistent and thus represented an identical statistical population. 

The SOM data clustering technique was used for this task. SOM was used with a 25 x 25 

Kohonen layer with a rectangular grid topology and the Kohonen learning rule. Choosing 

the maximum number of clusters was obtained by an empirical approach where the 

number of epochs was increased until the number of clusters remained unchanged. Figure 

5.3 shown that any iteration further than 5000 epochs did not increase the number of 

clusters. Therefore it was assumed that 355 clusters was the maximum number of cluster 

of the data at hand. Additionally, rather than being a monotonic trend, fluctuations in the 

number of clusters with number of the epochs were assumed to be the effect of random 

searches in the SOM algorithm. 

360 

355 

350 

~ 345 
Q) 

1ii 
~ 340 
.... 
0 

~- 3~5 
.0 

E 
i'330 

325 

320 

315 
'3000 100 506 1000 2000 5000 '6000 4000 7000 10000 

Number of epoachs 

Figure 5.3 The number of clusters in BEWTP operational data, illustrating the 

number of clusters at each number of epochs obtained by using clustering method 

based SOM 
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The 1700 data sets were clustered into 355 clusters. There were 148 clusters containing 

less than three data sets these were all assigned to join the training set. There were 207 

clusters containing at least three data sets. From these clusters, two were randomly 

selected for the validating and testing sets and the rest were assigned to the training set. 

Therefore the training set contained 1286 data sets and the validation and testing set each 

contained 207 data sets. 

The result of comparing the statistical equality between both the testing and the 

validation sets to the training set, for each of 68 variables, was that some of the T-test and 

F-test null hypotheses were rejected. At most, only 3 variables of the testing and 

validation sets (from 68 variables) were not statistically equal to those of the training set. 

Therefore the testing and the validation sets could be assumed to be statistically similar to 

the training set. The numbers of rejected null hypotheses as well as the associated 

variables were shown in Table 5.2 and Figure 5.4. 

The range of the training set should cover the range of testing and validation sets for each 

variable. It was necessary to check whether any variables belonging to the test and 

validation set were beyond the range. By using the range null hypothesis test, it was 

found that eight and seven variables from the testing and validation sets, respectively 

were out of range of the training set respectively. The number of rejections was about 

double that of the T-test and F-test because of the random selection. The results of 

hypothesis testing were given in Table 5.2 and shown graphically in Figure 5.4 

Number of rejections 

Testing & training set Validation & training set 

T-test null hypothesis 3 1 

F-test null hypothesis 3 3 

Range test null hypothesis 8 7 

Table 5.2 The numbers of rejected null hypotheses (BEWTP), showing number of 

rejected null hypotheses between testing, validation and training sets 
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Max&Min test test set vs training set BEWTP 
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Figure 5.4 The results of the T-test, F-test and range null hypotheses for BEWTP 

case study; the variables with time lag is listed on the X-axis, and results of 

hypothesise test are shown on the Y-axis: 

(a) T-test null hypothesis of testing and training set 

(b) T-test null hypothesis of validation and training set 

( c) F-test null hypothesis of testing and training set 

( d) F-test null hypothesis of validation and training set 

( d) Range-test null hypothesis of testing and training set 

(e) Range-test null hypothesis of validation and training set 
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5.3.3 Determination of Optimal Model Architectures 

Optimisation of the model architecture was done to find the number of hidden layers and 

their associated neurons which gave the best predictive performance in the four hour 

period ahead of attaining clarified water turbidity and colour. The predictive 

performances of various models were evaluated using the test sets. Other model elements 

and associated frameworks were predetermined and shown in Table 5.3. 

The optimal number of hidden layers and hidden neurons were obtained by systematic 

trial and error. The best model was the one that gave the largest r2 and smallest MAE 

between predicted versus actual results in test set when the models were used to predict 

the clarified water turbidity and colour four hours ahead. According to the discussion in 

section 4.3.5 the maximum number oflayers was limited to two. In each hidden layer, the 

number of hidden neurons was varied. Nonetheless, the guidelines available by which to 

find the suitable number of hidden neurons only quote for a network with one hidden 

layer. As it was reviewed in Chapter 4, among these authorities, only the work of Roger 

and Dowla (1994) accounted for overfitting by considering the number of samples,NTR, 

and the number of inputs, N 1
, in the training set. Roger and Dowla's formula was 

NTR 
NH ~ 

1 
(Equation 4.29), where NH was the recommended number of hidden 

N +l 

neurons. Specific to BEWTP case study NTR was 1700 samples and N 1 for both 

turbidity and colour models was 66. This means that the recommended number of hidden 

neurons was 26. 

However, to ensure that the optimal architecture networks were obtained, the number of 

neurons in the first and the second hidden layers were varied in increments of 5 over the 

range of 5 to 100 neurons. The maximum number of hidden neurons became 200 neurons 

(100 neurons for each of the first and second hidden layers) which was much less than 

the number of training set (1286 data sets) resulting in mathematically determined system 

which was in favor of ANN computation (Sha, 2007). Finally, systematic trial and error 

processes were conducted using the framework tabulated in Table 5.3. The resulting 

structure of the ANN process models for clarified water turbidity and colour are shown in 

Figure 5.5 
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Plant flow rate t 

RW pH 
1
_
5 

RW Turbidity t 

RW Turbidity 1_5 
RWTemp. t 
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Turbine speed1_5 • 

Sludge con.1 

CW colour 1_5 
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Clarified water turbidity1+1 
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Figure 5.5 Structure of clarifier ANN models for prediction of clarified water 

turbidity and colour for BEWTP: showing the inputs with temporal span and the 

outputs of the process models 
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Model elements Network architecture (varied) 

Temporal span t, t-1, t-2, t-3, t-4, t-5 

Maximum number of hidden layer 1or2 

Number of neuron in 1 st hidden layer 5 to 100 with 5 increments 

Number of neuron in 2rct hidden layer 5 to 100 with 5 increments 

Model elements Network architecture (fixed) 

Neural network type Back propagation 

Activation functions • Hyperbolic tangent function 

for (1 st & 2rd hidden layers) 

• Linear function for output layer 

Data normalisation Zero mean method 

Learning algorithm Adaptive learning rate with momentum 

Model validation criteria Early stopping 

Model performance evaluation • Coefficient of determination (r2
) 

• Mean absolute error (MAE) 

• Mean percentage error (MPE) 

Model output Predictive clarified water turbidity & colour 

at one time step ahead,( CW turbidity t+1) & 

( CW colour t+1) 

Prediction horizon t+ 1, (one time step or four hours ahead) 

Table 5.3 Model elements and architecture for BEWTP clarifier model 

development, showing which elements were varied and which were fixed in the trial 

and error development process 

Optimal model architecture for the clarified water turbidity process model 

A bar chart of the best performance ANN clarifier process models for clarified water 

turbidity prediction of one and two layer architectures at each time lag is shown in Figure 

5.6 and tabulated in Table 5.4. The model with the best performing architecture (the 

"optimal model") had two hidden layers, a temporal span of 2 time lags (8 hours time lag 

data), 35 neurons in the first hidden layer and 5 neurons in the second layer. This model 

gave the result of 0.89 for r2 and smallest MAE of 0.11 NTU. The associated mean 

percentage error was 16. 73 percent. 
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Temporal span 
No of neuron r2 Mean absolute error Mean percentage error 

(Hours) (NTU) (%) 
Present 80 0.87 0.13 21.60 
4 Hours 85 0.87 0.13 21.46 
8 Hours 10 0.88 0.12 20.27 
12 Hours 70 0.87 0.13 21.77 
16 Hours 35 0.87 0.12 21.12 
20 Hours 25 0.87 0.13 22.37 

a)One hidden layer network 

Temporal 
No. of neuron No. ofNeuron Mean absolute Mean percentage 

span 1 st hidden layer 2"d hidden layer 
r2 

error (NTU) error(%) 
(Hours) 
Present 25 55 0.87 0.13 20.68 
4 Hours 45 10 0.87 0.12 19.08 
8 Hours 35 5 0.89 0.11 16.74 
12 Hours 55 5 0.87 0.12 19.74 
16 Hours 15 5 0.87 0.12 20.08 
20 Hours 55 55 0.87 0.12 20.95 

b) Two hidden layer network 

Table 5.4. The performance in prediction of clarified water turbidity for model with 

one and two hidden layers (BEWTP), showing the optimal model architectures and 

their predictive performances at each temporal span. 

(a) One hidden layer network, (b) Two hidden layer network set 

In Figure 5.6a and b, the r2 and MAE vary only over a small range which means that their 

performance did not show much difference when the temporal spans were varied when 

the single hidden layer model was used. However, it was noted that the performance of 

the two hidden layer networks were superior to the one hidden layer network for every 

temporal span. Therefore, the affects of the time lag used could not be recognised by 

simple single hidden layer architecture. When the two hidden layer architecture models 

were employed, these models were more sensitive to a change of time lags and were able 

to recognise the patterns of time lag changes. Inputting of temporal spans of more than 8 

hours (i.e.12, 16 and 20 hours) definitely contains the information of 8 hours temporal 

span. However, according to empirical results at hand, the best performance was obtained 

from the ANN model which temporal span of 8 hours. Temporal span of more than 8 

hours might introduce noise to the process model resulting in deterioration of predictive 

performance. 
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Figure 5.6 Performance in prediction of clarified water turbidity for one and two 

hidden layer models with temporal span from present to 20 hours for BEWTP case 

study, 

(a) Coefficient of determination (r2
) between predicted versus actual clarified 

turbidity used test set data 

(b) Mean absolute error between predicted versus actual clarified turbidity used 

test set data 

(c) Mean percentage error between predicted versus actual clarified turbidity 

used test set data 
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From Figure 5.6c, the reliability of the "optimal model" can be evaluated by comparing 

the mean percentage error with the turbidimeter measurement error which was in the 

range of 10 to 15 percent (Table 3 .2). The other models were less reliable since their 

mean percentage errors were about 20 percent, a value well above the measurement error 

of turbidimeter. The "optimal model" gave the lowest mean percentage error of 16. 73 

percent, which was just above the measurement error of turbidimeter. This model's 

reliability could be marginally accepted. 

Optimal model architecture for the clarified water colour model 

For clarified water colour prediction, a model with two hidden layers and a temporal span 

of two time lags (8 hours) showed the best performance according to empirical results at 

hand. Longer temporal spans (12, 16 and 20 hours) was unfavourable to predictive 

performance even though they contained the information of 8 hours temporal span. 

Temporal span of more than 8 hours might introduce noise to the process model resulting 

in deterioration of predictive performance. 

This model had the largest r2 of 0.88 and the smallest MAE of 0.50 HU. Its mean 

percentage error was 6.83 percent. The optimal numbers of hidden neurons were 95 for 

both the first and second hidden layers. The r2 and MAE of the best candidate model in 

each time lag are graphically shown in Figure 5.7 and shown in Table 5.5. The r2 changed 

only over the range of 0.78 to 0.88 and MAE from 0.50 to 0.66 HU, with temporal spans 

from the present up to 20 hours. The two hidden layer networks always showed superior 

performance to the one hidden layer network at the same temporal span. Every model 

regardless of temporal span showed a reasonable performance and all were reliable since 

their MAEs were well below the water colour measurement error of 1 HU (Table 3.2). 
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Figure 5.7 Performance in prediction of clarified water colour for one and two 

hidden layer models with temporal span from present to 20 hours for BEWTP case 

study, 

(a) Coefficient of determination (r2
) between predicted versus actual clarified 

colour used test set data 

(b) Mean absolute error between predicted versus actual clarified colour used 

test set data 

(c) Mean percentage error between predicted versus actual clarified colour used 

test set data 
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Temporal span 
No of neuron r2 Mean absolute error Mean percentage error 

(Hours) (HU) (%) 
Present 60 0.78 0.60 8.34 
4 Hours 25 0.82 0.57 8.07 
8 Hours 15 0.81 0.58 8.14 
12 Hours 20 0.80 0.59 8.28 
16 Hours 15 0.81 0.56 7.72 
20 Hours 95 0.83 0.66 9.62 

a) One hidden layer network 

Temporal 
No. of neuron No. ofNeuron Mean absolute 

Mean percentage 
span 1 st hidden layer 2°d hidden layer 

r2 
error (HU) Error(%) 

(Hours) 
Present 60 30 0.81 0.55 7.39 
4 Hours 100 55 0.86 0.51 7.40 
8 Hours 95 95 0.88 0.50 6.83 
12 Hours 75 75 0.86 0.50 6.99 
16 Hours 70 60 0.87 0.53 7.56 
20 Hours 80 25 0.86 0.52 7.49 

b) Two hidden layer network 

Table 5.5. The performance in prediction of clarified water colour for model with 

one and two hidden layers (BEWTP), showing the optimal mod_el architectures and 

their predictive performances at each temporal span. 

(a) One hidden layer network 

(b) Two hidden layer network set 

5.3.4 Performance of Clarifier Process Models 

The performance of clarified water colour and turbidity process models was measured by 

the use of testing sets. The performance could be measured under two schemes: one step 

prediction and multiple step prediction. 

One time step ahead prediction is demonstrated in Figure 5.8 showing the flow of the 

data for the real clarifier and the associated predictive models. Since the clarified water 

turbidity and colour were set as operation targets, two process models were separately 

used to predict the clarified water qualities. When the switch was turned to the "A" 

position, the clarified water turbidity and colour worked individually. Without linkage 

between the two process models, they used the previous operational data to predict water 

qualities only one step ahead (four hours). 
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Figure 5.8 One and multiple steps predictions by two clarifier process models 

(BEWTP), when the switch was turned to "A" position, it was for one step 

prediction, and "B" position, it was for multiple steps prediction 

Multiple step predictions were performed by inputting the predicted water qualities to the 

individual process models as shown in Figure 5.8. When the switch was turned to the "B'' 

position, the clarified water turbidity and colour models were linked together in order to 

share information. Both predicted clarified water turbidity and colour (from the previous 

time step) were simultaneously inputted to both turbidity and colour process models to 

predict the following time steps. This iteration kept going on until six time steps ahead 

(24 hours). The predictive ability of clarified water turbidity and colour process models 

were separately evaluated as follows: 
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Clarified water turbidity model performance evaluation 

• One step predictive performance 

With the inputs from the optimal temporal span of two steps (eight hours), the best 

performing ANN clarified turbidity process model had two hidden layers and 3 5 neurons 

in the first and 5 neurons in the second hidden layer. The predicted and actual clarified 

water turbidity is shown in Figure 5.9. The clarified turbidity process model could track 

the trend very well with the r2 of0.89, and good predictive accuracy with a small MAE of 

0.11 NTU. In terms of model reliability, the overall mean percentage error of 16.08 

percent was slightly greater than the measurement error of the online turbidimeter (10 

to15 percent). This was marginally acceptable. The associated statistic parameters are 

shown in Table 5.6 
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Figure 5.9 Predicted clarified turbidity, showing the predicted and actual clarified 

water turbidity of the test set data 

Statistical parameters Values 

Coefficient of determination (r.l) 0.89 

Mean absolute error 0.11 

Mean percentage error 16.08 

Table 5.6 Performance of clarified water turbidity prediction (BEWTP), showing 

performance parameters when the process model predicted the clarified water 

turbidity in four hours ahead using test set data 
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The raw water turbidity was very similar in quality to the clarified water turbidity as 

denoted by the large correlation (r) of 0.51 comparing to the other variables (Table 3.4) 

and therefore it was useful to evaluate the model's performance through the domain of 

raw water turbidity input. The plot of the predictive percentage error against the increase 

of raw water turbidity is shown in Figure 5.10. The predictive percentage error slowly 

dropped from 17.1to16.2 while the raw water turbidity was extended to 27.5 NTU. The 

model reliability is marginally acceptable since it levelled to the maximum measurement 

error of turbidimeter (10-15 NTU). 
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Figure 5.10 Reliability of clarified water turbidity model (BEWTP): showing 

predictive percentage error value when the raw water turbidity increased 

• Multiple step prediction performance 

The multiple step prediction of clarified turbidity predicted up to 6 time steps (24 hours) 

ahead. The bar plots of r2 and MAE of each time step are shown in Figure 5. I I a and 

5.11 b. The reduction of r2 and the increase of MAE implied the existence of a 

deterioration of predictive performance with the prediction range. After the first lag of 

four hours, the predictive performance dropped dramatically, due to the accumulation of 

prediction errors when the ANN process model was operated recursively. In terms of 

reliability, the mean percentage error rose above the measurement error of the 

turbidimeter after the first lag. Therefore, prediction beyond that first lag of four hours is 

not recommended. 
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Figure 5.11. Multiple steps prediction performance of clarified water turbidity 

(BEWTP) from four hours to 24 hours ahead using test set data 

(a) Comparison of coefficient of determination (r2
) 

(b) Comparison of mean absolute error 

(c) Comparison of mean percentage error 
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Clarified colour process model performance 

• One step predictive performance 

Using the inputs of the optimal time lag of two steps (eight hours), the clarified water 

colour model with two hidden layers of 95 neurons in both the first and second hidden 

layers showed the best performance. This model could recognise the inputs and predicted 

the clarified water colour vary well with a high r2 of 0.88 and small MAE of 0.50. The 

plot of predicted and actual clarified water colour is shown in Figure 5.12 and the 

associated mean percentage error was 6.83 percent. This process model was reliable since 

the mean absolute error (MAE) was 0.50 HU which was far less than the water colour 

measurement error of lHU (Table3.2). All statistic parameters are shown in Table 5.7 
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Figure 5.12 Predicted clarified colour, showing the predicted and actual clarified 

water turbidity of the test set data 

Statistic parameters Values 

Coefficient of determination (r.l) 0.88 

Mean absolute error (HU) 0.50 

Mean percentage error (%) 6.83 

Table 5. 7 Performance of clarified water colour prediction (BEWTP), showing 

performance parameters when the process model predicted the clarified water 

colour in four hours ahead using test set data 
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Since raw water colour was closely related to the clarified water colour, the predictive 

performance of the model should be evaluated through raw water colour. The plot of the 

increasing of raw water colour against the predictive MAE of clarified water colour is 

shown in Figure 5.13. The predictive error, MAE increased from 0.18 to 0.50 HU while 

the raw water colour extended to 65 HU. Beyond this point, the MAE became nearly 

constant through the further range ofraw water colour. If water colour measurement error 

of 1 HU was set as the acceptable threshold, this process model was reliable. 
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Figure 5.13 Reliability of clarified water colour model (BEWTP): showing 

predictive percentage error value when the raw water colour increased 

Multiple steps prediction performance 

In the same manner as the clarified water turbidity process model, the multiple step 

prediction performance was evaluated as far as 6 time steps (24 hours ahead). Plots of r2 

and MAE for each time step were shown in Figure 5.14a and 5.14b respectively. The 

associated mean percentage error of each time step is graphically shown in Figure 5.14c. 

The longer the prediction range was made, the more the predictive performance 

deteriorated due to the accumulation of errors. The predictive performance deteriorations 

clearly found after the first time step (four hours) were also evidenced in a dramatic 

reduction of r2
, increasing both MAE and mean percentage error. The model reliability 

suffered severely since the MAE drastically rose higher than the water colour 

measurement error after the first time step prediction (evidenced in the plot of mean 

percentage error and prediction horizon as shown in Figure 5.14b). Thus, using the 

clarified water colour process model to predict further than one time step was not 

recommended. 
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Figure 5.14. Multiple steps prediction performance of clarified water colour 

(BEWTP) from four hours to 24 hours ahead using test set data 

(d) Comparison of coefficient of determination (r2
) 

(e) Comparison of mean absolute error 

(f) Comparison of mean percentage error 
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5.4 Bang Khen Clarifier Process Modelling 

This section focuses on the specific modelling process for the BKWTP clarifier process 

model for each of the three development stages (Figure 5.1).Since only the clarified water 

turbidity is an operational target at BKWTP, development only of the ANN clarifier 

process model was needed to predict clarified water turbidity. Development of the model 

was based on a total of 3788 data sets taken from past operational data from February 

2003 to December 2004. Statistical analyses of the data were shown in Chapter 3. The 

blank and erroneous operational data were removed and replaced by interpolated data in 

the same manner as in the BEWTP case study. Data whose measurement frequency 

differed from four hours were discretised to a time interval of four hours. 

5.4.1 Determination of the Significant Inputs 

The number and type of the inputs and associated time lags is directly related to the size 

of the model input. The quantity and quality of inputs will have significant effect on the 

model's ability to predict. The type of inputs and a suitable temporal span for the 

clarified water turbidity model were separately determined. The list of associated 

variables is shown in Table 5.8 

Type of input variables 

The clarifiers at BKWTP behaved in a complex manner. All the coefficients of 

correlation (r) of input data to the modelling output of the clarified water turbidity were 

very small, varying in the range of 0.015 to 0.29 (Table 3.8) reflecting how complicate 

the relations were. Even though some inputs with low coefficients of correlation (r) to the 

model's output (i.e. clarified water turbidity) should not be omitted by setting up 

thresholds, every input variable was known to be significant to the clarifier's operation 

(ASCE. & A WW A., 1990). Following the BKWTP operational manual (MW A, 2000), 

the clarifiers had routinely been operated by using all these variables as operation 

guidelines. For example, before feeding raw water to the clarifier, the recommended 

water pH was in the range of 6.8 to 7.8. Therefore, this "expert knowledge" of the 

significant inputs implied that all types of inputs should be used as the inputs for this 

ANN process model. 
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Suitable temporal span 

The plot of the Autocorrelation function (ACF) with time lag was shown in Figure 5.15 

in the same manner as in the BEWTP case study. Any results in lag data that produced an 

ACF value less than 0.5 had insufficient affect and can therefore be ignored (Filho et al., 

2006; Venema et al., 1996). From Figure 5.15, the ACF of the clarified water turbidity 

was at its lowest value and its ACF value beyond the first lag (four hours from present 

time) was less than 0.5. 
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Figure 5.15 Autocorrelation function (ACF) of input variables (BKWTP), showing 

the ACF values of input of the clarifier process model values when the increasing of 

temporal span 

In a manner similar to the BEWTP case, the temporal span of five lags (up to 20 hours) 

was assigned as the maximum temporal span to ensure that there was enough information 

for processing the model. Consequently, the set of maximum input data contained ten 

types of inputs with temporal span of five lags (60 inputs in total). The size of the input 

was refined by systematic trial and error, by varying the temporal span by any number of 

steps of four hours up from the present time to the upper limit of 20 hours. Therefore, the 

choices of the temporal spans were present time, 4 hours, 8 hours, 12 hours, 16 hours and 

20. The list of the inputs for the clarified water turbidity process models are given in 

Table 5.8 
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Variable Temporal span Remark 

Raw water turbidity (NTU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water pH (pH unit) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water Alkalinity (mg/L as CaCo3) t, t-1, t-2, t-3, t-4, t-5 Model input 

Raw water conductivity (µSiem) t, t-1, t-2, t-3, t-4, t-5 Model input 

Plant flow rate (MCMD ") t, t-1, t-2, t-3, t-4, t-5 Model input 

Alum dosage (mg/L) t, t-1, t-2, t-3, t-4, t-5 Model input 

Polyelectrolyte dosage (mg/L) t, t-1, t-2, t-3, t-4, t-5 Model input 

Turbine speed (rpm) t, t-1, t-2, t-3, t-4, t-5 Model input 

Sludge drainage rate (min/hour) t, t-1, t-2, t-3, t-4, t-5 Model input 

Clarified water turbidity (NTU) t, t-1, t-2, t-3, t-4, t-5 Model input 

Clarified water turbidity {NTU) t+l Model output 

Table 5.8 The selected inputs· with temporal spans and output for clarified water 

turbidity models for BKWTP 

5.4.2 Data Clustering 

After input selection, the 3688 operational data set, each containing the 20 hours time 

lagged input variables including 60 variables and one output of clarified water turbidity 

in the next four hours (Table 5.8), were divided into three subsets: training, validation 

and testing sets using the SOM clustering technique to ensure they were statically 

equivalent. 

The maximum number of clusters was empirically obtained using SOM with a 25 x 25 

Kohonen layer with the rectangular grid topology and the Kohonen rule for weight 

updating. In Figure 5.16, the number of clusters became unchanged after the number of 

epochs reaches 7500. It varied from 421 to 439 clusters. The maximum number of 

clusters was assumed to be 439 which occurred when the number of epochs was 8500. 

Some fluctuation of the number of clusters while the number of epochs increases was due 

to the random nature during of searching by SOM. 
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Figure 5.16 Autocorrelation function (ACF) of input variables (BKWTP), showing 

the ACF values of the inputs of the clarifier process model when the increasing of 

temporal span 

The 3788 data sets were clustered into 439 clusters. Of these, 167 clusters contained less 

than three data in a cluster, and these were all assigned to join the training set. The 

remaining 272 clusters contained at least three data. From these, one data in each cluster 

were randomly selected for each of the validating and testing sets. The rest became 

members of the training set. Therefore the training set contained 3516 data and the 

validation and testing set each contained 272 data. 

The testing and validation sets were tested to see if they had the same mean and standard 

deviation as that of the training set using the T-test and F-test of the null hypothesis with 

significant level of 0.05. In order to ensure that the networks were tested and validated in 

the interpolation rather than extrapolation domain, a range test was conducted to check 

whether any of the variables used in the testing and validation sets were beyond the range 

of the training set. These statistical tests were conducted upon all 61 variables (i.e. 60 

input variables and one output variable). The numbers of rejections are shown in Table 

5.9. For more detail, the associated statistic test results are graphically shown in Figure 

5.17. 
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For the statistical test of the testing set and the training set, all variables were accepted for 

the T-test null hypothesis. Four variables failed the F-test null hypothesis and eight 

variables were rejected by the range test. These results were graphically presented in 

Figure 5.l 7a, Figure 5.l 7c and Figure 5.17e respectively. For the statistical test of the 

validation set and the training set, only three variables failed the T-test hypothesis, one 

variable failed to satisfy the F-test null hypothesis and one variable was rejected for the 

range test hypothesis. These results were graphically presented in Figure 5. l 7b, Figure 

5. l 7d and Figure 5. l 7f respectively. 

The test and validation sets were assumed to be statistically equivalent to the training set 

since only a very few variables failed the T-test and F-tests. This meant that means and 

standard deviations of most variables in the test and validation set were similar to that of 

the training set. However, eight variables of testing set failed the range-test due to the fact 

that the nature of the random selection within the SOM clustering approach could not 

perfectly meet all constraints. 

Number ofrejections (percentage) 

Testing & training set Validation & training set 

T-test null hypothesis 0 3 

F-test null hypothesis 4 1 

Range test null hypothesis 8 1 

Table 5.9 The numbers of rejected null hypotheses (BKWTP), showing number of 

rejected null hypotheses between testing, validation and training sets 
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c) F-test null hypothesis of test and training set 

d) F-test null hypothesis of validation and training set 
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f) Range test null hypothesis of validation and training set 

Figure 5.17 The results of the T-test, F-test and range null hypotheses for BKWTP 

case study; the variables with time lag is listed on the X-axis, and results of the 

hypothesise test are shown on the Y-axis: 

(a) T-test null hypothesis of testing and training set 

(b) T-test null hypothesis of validation and training set 

( c) F-test null hypothesis of testing and training set 

( d) F-test null hypothesis of validation and training set 

( d) Range-test null hypothesis of testing and training set 

(e) Range-test null hypothesis of validation and training set 
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5.4.3 Determination of Optimal Model Architectures 

In the same manner as in the BEWTP case study, the optimising of model architecture 

aimed to find the number of hidden layers and their associated hidden neurons which 

gave the best predictive performance in the four hours of attaining clarified water 

turbidity. The predictive performance of the candidate models was measured using the 

test set. The associated modelling elements were shown in Table 5.10. 

The predictive performance of each model was measured by its r2 and MAE. On the other 

hand, model reliability was checked by comparison of percentage prediction accuracy 

with the measurement error ofturbidimeter (10-15 NTU, Table 3.6). 

In the same manner as in the BEWTP case study, the maximum number of layers was 

limited to 2 layers as discussed in section 4.3.5. Although it was recommended for use 

with a single hidden layer network only, the number of hidden neurons was guided by 

NTR 
Equation 4.29 proposed by Roger and Dowla (1994): NH ::;; / . Specific to the 

N +1 

BKWTP case study, the number of samples, NTRwas 3788 and number of inputs,N1 

was 60. Therefore the recommended number of hidden neurons was 62 neurons. 

Systematic trial and error was performed over this recommended number of neurons by 

varying of number of hidden neurons over the range 5 to 100 neurons with increments of 

5 neurons. It was important to ensure that the maximum number of hidden neurons was 

less than the number of training data set to avoid mathematically undetermined system 

(Sha, 2007). In this case, the maximum number of 200 neurons (100 neurons from each 

of the first and second hidden layers) was much less than the number of training set 

(3516 data sets) and it would keep ANN model away from being mathematically 

undetermined system. Finally, the systematic trial and error processes were conducted 

using the framework tabulated in Table 5.10. The resulting structure of the ANN process 

model for clarified water turbidity is shown in Figure 5.18 
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Figure 5.18 Structure of clarifier ANN models for prediction of clarified water 

turbidity for BKWTP: showing the inputs with temporal span and the output of the 

process model 
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Model elements Network architecture (varied) 

Temporal span t, t-1, t-2, t-3, t-4, t-5 

Maximum number of hidden layer 1 and2 

Number of neuron in 1 st hidden layer 5 to 100 with 5 increment 

Number of neuron in 2ra hidden layer 5 to 100 with 5 increment 

Model elements Network architecture (fixed) 

Neural network type Back propagation 

Activation functions • Hyperbolic tangent function 

for (1 st & 2rd hidden layers) 

• Linear function for output layer 

Leaming algorithm Adaptive learning rate with momentum 

Stopping criteria and model validation Early stopping 

Model performance evaluation Coefficient of determination ,(r.l) 

Mean absolute error (MAE) 

Mean percentage error (MPE) 

Model output Predictive clarified water turbidity at one 

time step ahead,( CW turbidity t+r) 

Prediction horizon t+ 1, (one time step or four hour ahead) 

Table 5.10 Model elements and architecture for BKWTP clarifier model 

development, showing which elements were varied and which were fixed in the trial 

and error development process 

Optimal model architecture for the clarified water turbidity process model 

The best performances of process model of each time lag from present time to 20 hours 

time lag for one and two hidden layers architecture are tabulated in Table 5.11, and 

graphically presented in Figure 5.19. 

From Figure 5. l 9a and 5 .19b, although the predictive performances of one and two layers 

architecture did not greatly differ, the optimal architecture was 20 neurons in the first 

hidden layer and 5 neurons in the second layer. The best performance model was the two 

hidden layers ANN model with temporal span of 12 hours according to empirical results 

at hand. Longer temporal spans (16 and 20 hours) were unfavourable to predictive 

performance even though they contained the information of 12 hours temporal span. 
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Temporal span of more than 12 hours might introduce noise to the process model 

resulting in deterioration of predictive performance. This model gave the best result of 

0.71 for r2 and smallest MAE of 0.65 NTU. In addition, it was noted that the performance 

of two hidden layer networks was superior to the one hidden layer network for every 

temporal span. This implied that single hidden layer network was not be able to recognise 

complicated patterns of the BKWTP operational data, it required more computational 

neuron to recognise the operational patterns. 

In terms of model reliability, each of the models' reliability was acceptable since they all 

gave the mean percentage error similar to the lower bound of turbidimeter measurement 

error of 10 percent (Table 3.6) which could be seen in Figure 5.19c and the best model 

suggested gave a low percentage error of 10.73 percent. The predicting ability of this 

ANN process model will be discussed in the next section. 

Temporal span No of neuron Rz Mean absolute error Mean percentage error 
(Hours) (NTU) (%) 
Present 30 0.67 0.68 10.98 
4 Hours 25 0.68 0.68 11.09 
8 Hours 10 0.68 0.68 11.15 
12 Hours 5 0.69 0.68 10.80 
16 Hours 5 0.69 0.68 10.87 
20 Hours 10 0.68 0.68 11.08 

a) One hidden layer network 

Temporal span No. of neuron No. of Neuron Rz Mean absolute Mean percentage 
(Hours) 2nd Layer 3rd Layer error (NTU) error(%) 
Present 10 25 0.70 0.67 10.67 
4 Hours 70 10 0.70 0.66 10.90 
8 Hours 5 25 0.70 0.67 10.84 

12 Hours 20 5 0.71 0.65 10.73 
16 Hours 30 5 0.70 0.66 10.63 
20 Hours 20 5 0.68 0.65 10.61 

b) Two hidden layer network 

Table 5.11. The performance in prediction of clarified water turbidity for model 

with one and two hidden layers (BKWTP), showing the optimal model architectures 

and their predictive performances at each temporal span. 

(a) One hidden layer network 

(b) Two hidden layer network set 
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Figure 5.19 Performance in prediction of clarified water turbidity for one and two 

hidden layer models with temporal span from present to 20 hours for BKWTP case 

study, 

(a) Coefficient of determination (r2
) between predicted versus actual clarified 

turbidity used test set data 

(b) Mean absolute error between predicted versus actual clarified turbidity used 

test set data 

(c) Mean percentage error between predicted versus actual clarified turbidity 

used test set data 
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5.4.4 Performance of the Clarifier Process Model 

The performance of the clarifier process model was measured via the test set. Similar to 

the BEWTP model, the predictive performance could be measured for four hours ahead 

of prediction (one time step ahead) and multiple step prediction. The flow of data for one 

time step and multiple time step prediction are shown in Figure 5.20. When the switch 

was turned to the "A" position, the process model worked in one time step prediction. 

None of predicted value of clarified water turbidity was inputted to the model. Therefore 

the model used only previous data to predict the clarified water turbidity. 

On the other hand, if the switch was turned to the "B" position, the predicted values of 

clarified water turbidity were repeatedly inputted to the model. Now the model would use 

the predicted value and previous data to predict the clarified water turbidity in the 

following time step. The multiple time step predictions were limited to six time steps 

ahead (24 hours) 

Input data Output 
---raw water qualities--...i Clarifier t---T--Clarifieid water----111111-~ 

control action A turbidity 

Figure 5.20 One and multiple steps predictions of clarified water turbidity 

(BKWTP), when the switch was turned to "A" position, it was for one step 

prediction, and "B" position, it was for multiple steps prediction 

Clarified turbidity process model performance evaluation 

• One step predictive performance 

With input at the optimal temporal span of 12 hours, the process model with 20 neurons 

in the first and 5 neurons in the second hidden layers showed the best performance. The 

predicted and actual clarified water turbidity is shown in Figure 5.21. The overall ability 
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to predict was good with the r2 of 0.71 and a small MAE of 0.65 NTU. The overall mean 

percentage error of 10.73 percent was similar to the level of the measurement error of the 

online turbidimeter (10 to15 percent, Table 3.6). Thus the process model was reliable. 
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Figure 5.21 Predicted clarified turbidity, showing the predicted and actual clarified 

water turbidity of the test set data 

Statistic parameters Values 

Coefficient of determination (r2
) 0.71 

Mean absolute error 0.11 

Mean percentage error 10.73 

Table 5.12 Performance of clarified water turbidity prediction (BKWTP), showing 

performance parameters when the process model predicted the clarified water 

turbidity in four hours ahead using test set data 

To assess model reliability from the input domain due to the raw water turbidity that was 

closely related to the clarified water turbidity, the bar plot of raw water turbidity and the 

predictive percentage error is shown in Figure 5.22. This figure was drawn in order to 

investigate any effects on percentage error when the raw water turbidity domain was 

enlarged and to investigate the consistency of the percentage error. The predictive 

percentage error was slightly reduced from 12.47 to about 11 percent when the raw water 
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turbidity increases to about 100 NTU. The percentage error became constant at about 

10.75 percent for any further increasing of raw water turbidity upwards from 100 NTU. 

Thus this clarified water turbidity process model was reliable since its percentage error 

was closely similar to turbidimeter measurement error (i.e. 10 to 15 NTU, Table 3.6). 
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Figure 5.22 Reliability of clarified water turbidity model (BKWTP): showing 

predictive percentage error value when the raw water turbidity increased 

• Multiple steps prediction performance 

The multiple steps clarified turbidity was predicted by up to 6 time steps (24 hours). The 

bar plots of r2 and MAE of each time step were shown in Figure 5.23a and Figure 5.23b 

respectively. The reduction of r2 and the increase of MAE by about 50 percent after first 

step prediction implied the existence of the deterioration of predictive ability. Reliability 

also suffered from the range of prediction being extended. The evidence for this lay in the 

increase of percentage error of 10.73 to about 20 percent. After the first time step (four 

hours), the predictive performance fell dramatically since the accumulation of predictive 

errors occurred when operating the ANN process model recursively. 
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Figure 5.23. Multiple steps prediction performance of clarified water turbidity 

(BKWTP) from four hours to 24 hours ahead using test set data 

(a) Comparison of coefficient of determination (r2
) 

(b) Comparison of mean absolute error 

(c) Comparison of mean percentage error 
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5.5 Chapter Conclusion 

In the case of the BEWTP, the optimal architectural network for clarified water turbidity 

prediction was the network with 3 5 for the first layer and 5 neurons for the second hidden 

layer. On the other hand, the best performance network for water colour prediction was a 

network with 95 neurons in both the first and second hidden layers. The optimal temporal 

span in both cases was 2 time lags or 8 hours from the present. Both the clarified water 

turbidity and colour models could track the trend in the data very well resulting in large r2 

of 0.89 and 0.88 respectively. The associated small MAEs of (0.11 NTU and 0.50 HU) 

indicated good accuracy in both process models. 

The clarified water colour model reliably predicted clarified water colour since the mean 

predictive error (MAE) of 0.50 HU was less than the associated water colour 

measurement error of 1 HU. On the other hand, the clarified water turbidity model 

reliability was marginally acceptable since its percentage error lied at in the same level as 

the associated measurement error of 10-15 percent. 

Prediction by longer than one time step (four hours) for both clarified water turbidity and 

colour were not recommended since the errors increased by more than any of the related 

measurement errors. 

In the case of the BKWTP, the optimal architectural network was the network with 20 

and 5 neurons for first and second hidden layer respectively. The optimal temporal span 

was 3 time steps (12 hours). The model performance was inferior to the BEWTP. The 

data trend was recognised in a moderate degree with r2 of 0.71 and accuracy with MAE 

of 0.65 NTU. This process model showed a promising degree of reliability since its mean 

predictive percentage error of 10.73 percent equalled to measurement error of the 

turbidimeter (10 to 15 percent). 

No additional step beyond one single step of four hours was recommended since, after 

one step, the percentage error would increase above the turbidimeter measurement error 

and therefore the process model would become unreliable. 

The performance of the BKWTP clarifier compared unfavourably with that of BEWTP 

clarifier model since the quality of the data obtained from the BEWTP was more reliable. 
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This was because the data received from sensors (from a SCADA system) at BEWTP 

were electronically sensed and the data were recorded every 30 minutes, rather than 

manually recorded only every four hours as in case of the BKWTP. Therefore, the data 

inputted to the BEWTP clarifier model were likely to contain less error and omissions 

and be more representative of how the clarifier behaved. In addition, the operational data 

of BKWTP varied in greater range than that of BEWTP as it already discussed in 

Chapter3. Therefore with low data quality and greater variation range, this was the cause 

of poor prediction performance of clarifier process model ofBKWTP. 

The BKWTP clarifier required a longer suitable temporal span (12 hours) than the 

BEWTP clarifier (8 hours) to reach its best performance. Any difficulties or how well the 

operators operate were also recorded in the period of temporal span. Although a longer 

temporal span may be able to provide more information, the BKWTP clarifier model will 

never perform better than the BEWTP one. This was because sludge concentrations and 

water temperature data were not available for use as inputs for the BKWTP clarifier 

model. These variables have been known to be important indicators to density current 

phenomena, which were known to effect clarifier performance especially in the case of 

high ambient temperature of BKWTP. 

For both of these case studies, the optimal temporal spans and architectures of process 

models and their performance evaluation were the main concerns of this chapter. The 

results of this chapter show that these models may be useful in modelling clarifiers. The 

real test for performance of these models will be when used in a case study involving 

intelligent control of the full scale pilot plant test, and the results are compared to control 

by human operators. This is the subject of the next two chapters. 
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6.0 CLARIFIER INTELLIGENT CONTROL: 

GENETIC ALGORITHM APPROACH 

6.1 Introduction 

ANN clarifier process models were developed in the previous chapter. This chapter 

describes the development of the method for use of these models in control of a simulated 

clarifier. Several model based control strategies are reviewed and compared. ANN Model 

Predictive Control (MPC) architecture is selected due to its superiority to all others. This 

combines with an evolutionary optimiser that enables the control system both to handle 

multi-objective optimisation and gives the flexibility to add operational constraints. The 

optimiser's evolutionary search facility adds an intelligent feature to this control scheme. 

For clarity, the background of evolutionary search is described before the control 

simulations are performed on selected test sets derived from BEWTP and BKWTP case 

studies (i.e. the same test sets as used in Chapter 5). The performance of the intelligent 

control system is evaluated and then compared with that of the human operator's. The 

outcome of these simulations will be used for the full scale pilot plant test in Chapter 7 

The idea of using an intelligent MPC for the ANN process model with an evolutionary 

optimiser to control the clarifier (as presented in this chapter) is novel. It is an original 

idea to use these methods and combine the methods in this way. Novelty is also involved 

in the development of an evolutionary optimiser to handle multi-objective optimisation of 

the clarifier control. It is also the first time that control actions are numerically optimised 

with respect to water quality and operational cost. 

6.2 Review of ANN Control Strategies 

There are a number of ANN control strategies which are based on various types of 

process models. Most of these control designs employ a forward and/or an inverse model. 

These nonlinear model control strategies are well established and often benefit from the 

ability to incorporate improved robustness more directly in the controller design. 

Narendra and Parthasarathy (1990) suggested that many of these model based control 

strategies employ neural network models and thus benefit from the nonlinear 

approximation properties of ANNs. The following section reviews the main types of 
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ANN model based control structures and begins with the problem of identifying inverse 

process models that utilise ANN model based control strategies. 

6.2.1 Inverse Modelling 

Inverse modelling plays a crucial role in a range of control structures. The ANN models 

considered so far are called forward models since the direction of information flow 

through the model is from input to process output. Conversely, the direction of 

information flow through an inverse process is opposite to that of the forward model. 

Consequently, an inverse model predicts the control action. The objective is to use the 

inverse model to formulate a controller (Hunt & Sbarbaro, 1995). 

Conceptually, the simplest approach is direct inverse process modelling as shown in 

Figure 6.1. The process input, including a manipulated variable, is applied to the process. 

The process output is then used as input to the ANN controller (inverse model). The 

ANN controller output (the predicted input) is compared with the process input and used 

as the error, B to train the ANN model. This will clearly force the ANN model to 

represent the inverse of the process. 

Input Output - Process -

+ , r & Learning )--. --, 
_H 

algorithm \ 
\ 

\ 

\ 
ANN controller -

( lnvers~,model) -
Predicted input 

\ . 
Weight updating 

Figure 6.1 Direct inverse modelling 

However, this approach is disadvantaged by the need to specify the manipulated variable 

input signal since it may be difficult to define the operational process input as a priori. 

Thus, the direct inverse modelling structure is not "goal directed" since the process 

output cannot be explicitly forced to cover the desired operating range (Irwin et al., 1995; 

Moascianski & Ogonowski, 1995). 
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The root of the problem with direct inverse modelling is that the training of the inverse 

model attempts to minimise error in the predicted manipulated input variables and this 

does not correspond to the control objective which is to minimise the process output 

error. An alternative method, specialised inverse modelling, (Figure 6.2), overcomes this 

by using the process output error, or alternatively a forward process model output error 

(when the system is noisy), to generate the error signal. The error, & between the setpoint 

and the process model output is passed back through the forward model to give the 

manipulated variable error which is used to train the inverse model. Hence specialised 

inverse modelling is goal directed since it is based on the error between desired system 

output and actual output (Psaltis et al., 1988). 

Uncontrolled inputs 
······i·---------------------··········· 

Set 
point 

I I 
I I 

ANN controller 
( Inverse model) 

Control 
actions 

Weight updating 

Learning algorithm 

I 
I ,.. ... 

'· .. -

Process 

ANN process 
model 

Weight updating , 

Learning algorithm 

Figure 6.2 Specialised inverse modelling 

Output 

Predicted output 

There is a potential problem associated with developing an inverse model of a nonlinear 

process. For instance, some classes of nonlinear system cannot be inverted (Economou et 

al., 1986) or the nonlinear model performs a many to one type mapping from input to 

output (so there is no unique inverse solution). In some textbooks, it is referred as an ill 

posed problem (Swingler, 1996). The nonlinear system must have a unique (i.e. one to 

one) forward mapping if the inverse is to be unique. If this is not the case then the 

incorrect inverse model may result and the associated model based control system will be 

unstable. Therefore his situation should be avoided (Nahas et al., 1992). 
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The simplest use of an inverse process model for control is to use it as a controller by 

placing it at the front of the process so that the composite system results in an identity 

mapping from set point to process output (Figure 6.3). This approach is called Direct 

inverse control. Although it is applied in a number of applications, the absence of 

feedback results in a lack of robustness for the practical case of an imperfect inverse 

model (Irwin et al., 1995). 

Uncontrolled inputs 
·······~································-----·-····, 

I I 
I 
I 

·- ..... -. --.. 

Set point 

'· .... -

Inverse model 
Control actions 

Process 

Figure 6.3 Direct inverse control 

Output 

There are several well established ANN model based control structures incorporating 

inverse models which have robustness superior to that of direct inverse control. Some of 

these are discussed in the following section. 

6.2.1 Internal Model Control 

The use of neural networks in the internal model control structure has been proposed by 

several researchers (Bhat & McAvoy, 1990; Hunt & Sbarbaro, 1991; Hunt et al., 1992). 

This has been implemented for the control of simulated processes under assumptions of 

an open loop stable system as well as for the perfect forward and inverse models (Hunt et 

al., 1992; Nahas et al., 1992). 

Feedback loop 

ANN process 
Predicted 8 

- output ..:. 

un 
- Model -

controlled inputs 
---~ +H --------· --~----------------------------I 

I 
I 

Set point , r ~- • 
Output :...0---. ANN controller - Process -

Control- -+ 
actions 

Figure 6.4 Internal model control 
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In Figure 6.4, the control structure uses both a forward and an inverse ANN process 

model. The forward model is placed in parallel with the process. The difference between 

process output and model output (predicted output) is used as the feedback signal, and 

this is passed to the ANN controller (i.e. ANN inverse model). The internal model 

controller is generally designed to be an inverse process model (when it exists). Many 

theoretical stability results relating to internal model control loops are available (Hunt & 

Sbarbaro, 1991) although they generally make assumptions on the open-loop stability of 

the system, exact modelling and /or inverse modelling. In spite of these assumptions, it is 

claimed that this approach readily extends to nonlinear systems and yields to robustness 

and stability analysis (Harris, 1994; Hunt et al., 1992) 

6.2.2 Model Reference Control 

Model reference control has been widely used in linear adaptive control application. This 

control system is composed of two models, one is for process model and the other one is 

the controller. The process is initially modelled by the process model and the controller is 

trained so that the process output follows the reference model output. Narendra and 

Parthasarthy (1990) have suggested that it could be used for nonlinear control by 

employing artificial neural networks. The model reference control structure for this use is 

shown in Figure 6.5. It incorporates a plant reference model (i.e. forward model) and an 

ANN controller. The control objective is to force the process output to asymptotically 

track the output of the reference model. The error between the reference model and the 

process output is used to train the inverse process model acting as the controller. 
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The performance of model reference control is highly dependent on the choice of a 

suitable reference model and the derivation of an appropriate learning rule. Harris (1994) 

reported that simple gradient-based learning rules were sometimes insufficient and there 

is no reason why this should not also be the case for more general nonlinear process 

models and controllers. For the case of a reference model which based on the identity 

mapping, the controller learns the inverse process model. However, in practice, the 

reference model is chosen to have be dynamically stable and these result in the ANN 

controller being a "detuned" inverse model (Hunt et al., 1992). Applications of ANN 

model reference control are not common although some simulation studies have been 

demonstrated (Hassibi & Loparo, 1991; Narendra & Parthasarathy, 1990). 

6.2.3 Model Predictive Control 

Model Predictive Control (MPC) is one of the most important control technologies for 

the process industries in general. Traditionally, MPC is used in linear control. A MPC 

control system is composed of the process model and optimiser. The process model 

replicates the process used to predict the outputs of the process. Initially, this control 

system uses the process model to predict future plant performance. The optimiser (i.e. the 

controller) then calculates the control actions that will optimise the process performance 

over specified future time horizon. It has been postulated that MPC can be implemented 

on nonlinear control schemes as surveyed by (Henson, 1998; Rawlings et al., 1994). 
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Figure 6.6 Model predictive control 
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Figure 6.6 shows an artificial neural network MPC scheme which, in contrast to the other 

control strategies reviewed so far, does not incorporate an inverse process model. A 

prime characteristic that distinguishes MPC from other control systems is the idea of a 

receding horizon. At each time step, control actions are determined to achieve the desired 

behaviour in the following time steps. This idea also has appeal because it relates to 

many of the control tasks that simulate a human being at work on a daily basis (Norgaard 

et al., 2000). In this approach an artificial neural network model provides a prediction of 

the process's future over a specified horizon of time. The prediction supplied by the ANN 

model is passed to a nonlinear optimisation routine which attempts to minimise a 

specified performance criterion. Generally, the control action is chosen to minimise the 

quadratic performance criterion which compromises between the tracking error (i.e. the 

error between the set point and the predictive output) and the control objective subject to 

the constraints. For a general objective function this can be shown as follows (Baughman 

& Liu, 1995; Mills et al., 1996; Moascianski & Ogonowski, 1995): 

N2 N3 

J = L (y(t + 1)- r(t + i)) 2 +AL (u(t + i -1)- u(t + i - 2)) 2 (6.1) 
1=N1 1=! 

subject to umm :::; u(t) :::; umax ' 

Where J is objective function, rand y are the set point and the predictive output 

respectively; u is the set of manipulated variables (i.e. control actions) bounded between 

their maximum value, umax and minimum value, umm ; The predictive horizon, 

N 1 and N 2 are defined as minimum and maximum the number of future time steps for 

which the process model will give the prediction results; the term N 3 , control horizon is 

defined as the number of future time steps for which the MPC system will provide the set 

of control action. A denotes a weight factor which will penalise any changes in the 

control. 

One useful feature of MPC is that the control actions are optimised. The optimiser can 

also take account of process constraints which is an important practical feature of MPC 

since all real processes are subject to some constraints. Typically, the optimisation is 

solved subject to hard constraints (boundaries) on the manipulated variables and some 

soft constraints on process outputs which may have to be violated in order to form a 

feasible optimisation problem. 
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If the process model can predict the process outputs properly and the performance 

function and the optimiser are appropriately chosen, this control scheme can provide 

excellent closed loop control. In practise, the multi-step ahead optimisation may result in 

some error amplification since in every single step of the multiple step prediction, since 

the error is enlarged by accumulation of predictive error. (Harris, 1994). 

In the light of these points, the Model Predictive Control (MPC) architecture has been 

chosen for the clarifier control since MPC architecture is superior to all other 

architectures, and a MPC system is goal directed and is flexible to the addition of 

operational constraints. 

6.3 Overview of Genetic Algorithms 

Genetic algorithms (GAs) are stochastic search methods use for optimisation. They are 

based on analogies to the mechanics of natural selection and genetics (Darwin's theory of 

survival), and combine "survival of the fittest" among "generation" of chromosome 

structures with structured yet randomised information exchange incorporated into a 

search algorithm (Goldberg, 1989). In each generation, a new set of chromosomes is 

created by selection, crossover and mutation processes involving their fitness. GAs are 

not simple random walks but they efficiently exploit historical information in finding 

new search points, to find solution that give progressively for each generation during 

optimisation (Goldberg, 1989; Zalzala & Fleming, 1997). 

In this section, classical GAs and their mam operations are introduced for single 

objective optimisation. The main consideration of this section is how to apply classical 

GAs to multi-objective optimisation problems. The basic operations of classical GAs will 

then be merged to the multi-objective optimisation problem via one of the most 

commonly used algorithms, Multiobjective Genetic Algorithm (MOGA). 

6.3.1 Operating Principle of Genetic Algorithms 

Genetic Algorithms are one of the best tools for quickly searching for an approximate 

global maximum or minimum (Haupt et al., 2004). GAs require the parameter set of the 

optimisation problems, which are encoded as chromosomes, over some finite alphabets. 

Parameters can be encoded by binary, ternary, integer, real-valued and other (Zalzala & 

Fleming, 1997). After coding of parameters, the parent pools are generated and assessed 
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for their fitness values through the associated objective function. The chromosomes that 

have their values in the top ranks of objective value are chosen to perform GA operations 

for the next generation. Successively generated populations (offspring pool), which have 

been expected to improve over time, can be yielded by a set of simple operations 

illustrated by three operators involving nothing more complex than copying and 

switching chromosome: (i) selection, (ii) Crossover and (iii) Mutation (Goldberg, 1989). 

These iteration processes are consecutively executed until a predefined stopping criterion 

is satisfied or the convergence condition is reached (Zalzala & Fleming, 1997). The 

stopping criteria can be activated as soon as one of the following conditions are satisfied: 

(i) the maximum number of generation is reached; (ii) the best acceptable solution is 

obtained; or (iii) the best solution cannot be improved by increasing the number of 

generations (Haupt et al., 2004). The simple genetic algorithm procedure is illustrated in 

Figure 6.7. 

No 

Define objective function, 
variables, select GA 

para.meters 

Initial population 

Decode chromosomes 

Find cost: for each 
eh romosome 

Selection 

Crossover 

Mut:at:lon 

Stopping criterion 

yes 

Figure 6.7 Genetic algorithm process, illustrating a schematic diagram of a classical 

genetic algorithm and its operations 

Selection 

In some textbooks, selection is referred to as reproduction (Haupt et al., 2004). The 

selection process begins with identifying "good" (usually above-average) solutions in a 

population, and then making copies of chromosomes based on their fitness (i.e. objective 

function values). This process means that the chromosomes with better fitness values 

have a high probability of creating offspring in the next generation (Goldberg, 1989). 
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There are three commonly used operators for this process which are the roulette wheel, 

stochastic universal sampling and tournament selection (Goldberg, 1989; Haupt et al., 

2004). 

• Roulette wheel selection is one of the most used chromosome selection 

techniques. This selection implements the concept of the roulette wheel. The 

individual will have a roulette wheel slot size proportional to their fitness. The 

chromosomes are selected as the results of spinning the wheel N times (N is 

number of selections required), meaning that the higher probability of 

chromosomes to go to the next generation depends on the better fitness values. 

• Stochastic universal sampling is a single-phase sampling algorithm which has a 

zero bias and short time performance. Instead of spinning the roulette wheel N 

times, this method spins only once. Stochastic universal sampling uses N equally 

spaced pointers to select the individual whose fitness spans the position of 

pointers. 

• Tournament selection, the tournaments are played among a few individuals which 

are randomly selected from the population and the best individual form this group 

is selected as parent for the crossover process. In practice, the number of 

tournaments is predefined, the best solutions are those that win the entire 

tournament and the worse solution will loss all the tournaments and will be 

eliminated from the population. 

The first two selection methods can be categorised as proportionate selection methods. 

The assigned fitness is proportional to the objective value (Goldberg & Deb, 1991). 

However, it has a scaling problem. The outcome of these selection methods depends on 

the true value of the fitness, instead of the relative fitness values of the population 

members. For instance, if all populations have more or less the same fitness values so that 

every solution has a similar probability of selection, it leads to a single assignment of 

each solution. This phenomenon is equivalent to not performing the selection operation at 

all. If the selective pressure is defined as the ratio of the probability that the most fit 

chromosome is selected as a parent to the probability that average chromosome is 

selected, then proportionate selection method cannot ensure selective pressure. On the 

other hand, if in the population, one solution with large fitness has raw fitness compared 

with the other, it will be selected for crossover since its possibility of being selected 

would be close to one (based on proportionate selection method). It would lead to 
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dominating solution and to loss of diversity. However this scale problem does not exist 

when the tournament selection method is applied (Deb, 2001 ). 

In order to circumvent both of these difficulties, Goldberg (1989) suggested that raw 

fitness should be ranked by comparing with each other solutions and sorted according to 

their relative fitness, from the worst (rank 1) to the best (rank N), (N is number of 

population). Thereafter, the proportionate selection operators will be applied with the 

ranked fitness value but not raw fitness. This method is called rank selection method and 

it will pay significant rule in the multi-objective optimisation. 

Crossover 

Crossover (occasionally called recombination) when it is used with other encoding 

methods from binary encoding (Haupt et al., 2004) is the operator that produces new 

chromosomes, which is performed after selection process. It pairs up two parents and 

creates two new offspring that inherit both parents. The genes for the offspring will be 

inherited just like those of the parents, except that some genes that came from the father 

in the first offspring will come from the mother and some of those inherited from the 

mother will come from the father. However, to reserve some good chromosomes from the 

selection process, some of chromosomes in the population are not used in a crossover. If 

a crossover probability of Pc is used, then 100 Pc percent of chromosomes in the 

population are used in the crossover process and 100 (1- Pc) percent of the population 

are simply copied to the new population. The process of crossover can be described as 

follows (Goldberg, 1989): 

• An integer positionk, is randomly selected in the two-parent (father and mother) 

chromosome length, l the value is between 1 and l - 1 . 

• Two offspring are generated from parent chromosome by switching all characters 

from position k + 1 to l of both parents. 
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Before crossover I I After crossover 

Sl=OlllOl Sl'=Olllll 

ti 
82=111111 S2'=111101 

Figure 6.8 Simple crossover operation (single-point crossover) 

Various forms of crossover can be presented as follows: 

• Simple crossover operation (single-point crossover) is illustrated in Figure 6.8 

which supposed that the random position along chromosome length, k is 2 

(represented by a vertical line). Two offspring, Si' and Si, are created from two 

parents (father, Sl ,and mother, S2 ). 

• Double-point crossover operates upon the same idea as single-point crossover, but 

two random positions are generated and chromosome will be switched between 

the points. 

• Multi-point crossover: the randomly selected point can be varied from 1 to l -1, 

where l is the length of the chromosome. They are chosen at random with no 

duplication and sorted into ascending order. The genes are then exchanged 

between the selected positions while the rest will not be exchanged. 

• Shuffle crossover is modified from single-point crossover. Both parents are 

randomly shuffled before the chromosomes are exchanged. The offsprings are 

unshuffled after recombination. 

Mutation 

Mutation is an operator representing the natural evolution. It is a random process with a 

low probability that one gene of chromosome is replaced by another to generate a new 

genetic structure (Zalzala & Fleming, 1997). Its role is to provide a guarantee that the 

search algorithm is not trapped on a local minimum (Haupt et al., 2004). The sequence of 

selection and crossover operations may stagnate at any homogeneous set of solutions. 

The solution might appear to become optimal, or rather locally optimal, only because the 

search algorithm is not able to proceed any further. Mutation aids the searching to avoid 
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loss of diversity (Negnevitsky, 2005). Figure 6.9 illustrates the mutation operation when 

the position of the fourth gene of the parent ( S3) is randomly selected. 

Before mutation I I After mutation 

S3= 0 1 1~1 

Figure 6.9 Mutation operation 

6.3.2 Multiple Objective and Genetic Algorithms 

Most optimisation models involve single objective problems where the best solution can 

easily be obtained by comparing the objective function values. A major difference 

between single and multiple objectives is the definition of the optimum concept. Multi

objective optimisation considers several objective functions simultaneously and does not 

have merely a single justification of the optimal solution. Generally, one objective cannot 

be sustained without being at expenses of the other objectives (Haupt et al., 2004). 

In the past, most multi-objective optimisation problems traditionally dealt with scalar 

objective functions, which apply the weights into the variable of the function and sum 

them up into one variable to be optimised. Physically, this approach transforms the 

multiple objectives to a single objective. However finally, the decision makers have to 

decide in order to obtain a single unique solution. Coello Coello et. al (2002) classified 

the multi-optimisation problem by the way of solution searching and decision making: 

A priori Preference Articulation (decide~ search): The decision maker selects the 

weighting before conducting the optimisation algorithm. In practice, it is the method that 

combines the objective functions into a scalar cost function (linear or nonlinear 

combination). This effectively converts a multi-objective problem into a single objective 

one. 

A Posteriori Preference Articulation (search~decide): there are no specified weightings 

before or during the optimisation process. The optimisation gives a set of efficient 

candidate solutions from which the decision maker may select. 
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Progressive Preference Articulation (decide<::::> search): The decision maker interacts 

with the optimisation program during the optimisation process by using his/her 

judgement upon whether or not to change the weight of objective function, while the 

system provides an update of the solution. 

The first and second approaches are very popular. There are two major techniques for the 

definition of multi-objective optimisation problem which can be described as follows 

(Coello Coello et al., 2002): 

• Weight sum of objective function: The multi-objective problem is converted into a 

single objective one (scalar application) by a using weighted sum of the objective 

functions as a single representative objective function. Then the problem will be 

solved as a single objective one. It implies for a priori preference articulation. 

• Pareto optimisation: The multi-objective problem is solved by applying the 

Pareto optimisation approach. The optimal solution is selected from the resulting 

Pareto-optimal set (non-dominated solutions) which can be considered as vector 

applications. It is representative for a posteriori preference articulation. 

The best weight to apply is very difficult to determine and multi-objective problems have 

no unique answer. The most efficient way to solve the multi-objective optimisation 

problem is by using Pareto optimisation. Therefore, a set of non-dominated solutions is 

needed to be determined from all feasible solutions (Deb, 2001; Goldberg, 1989). 

A non-dominated solution is the point at which the value of one of the objective functions 

cannot be improved without degrading others (Haupt et al., 2004). The non-dominated 

solutions, called the Pareto-optimal set, define the Pareto-optimal front (Deb, 2001; Fwa 

et al., 2000). The Pareto-optimal front can be easily described as the set X which is 

Pareto optimal, if there is no other set Y dominating the set X with respect to a set of 

fitness values. In addition, set X dominates set Y if X is better than Y at least once and is 

not worse with respect to all other objective functions. An example of a Pareto-optimal 

front of a minimisation problem is shown in Figure 6.10. 
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Figure 6.10 The Pareto-optimal front, showing dominated solutions and non

dominated solutions which were on the Pareto front of a minimisation problem 
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The Pareto-optimal set can rarely be obtained with conventional optimisation because (i) 

it is incapable of finding out whether the obtained solution can really be optimal, and (ii) 

the solution tends to be trapped by the first local minimum or maximum. Genetic 

Algorithms (GAs) are good at overcoming the problems resulting from conventional 

optimisations. GAs locate the global optimal solutions because they have the ability to 

preserve the populations and look for Pareto-optimal solutions. GAs utilise constraints 

for fitness consideration and selection of nondominated solution of the multi-objective 

optimisation problem (Cheng & Li, 1997; Haupt et al., 2004). 

In a multi-objective optimisation problem, after Pareto-optimal solutions are provided, 

the decision maker will select the best solution. Different decision makers with different 

preferences may select different solutions. Therefore, it is important to find as many 

Pareto-optimal solutions as possible so that the decision maker can choose the preferred 

one. Therefore, there are two goals in Pareto-optimal solutions (Coello Coello & Lamont, 

2004; Deb, 2001): 

• To find a set of solutions as close as possible to the true Pareto-optimal front. 

• To find a set of solutions as diverse as possible. 

6.3.3 Multiobjective Genetic Algorithm (MOGA) 

The consideration of multiple objectives in evolutionary based search algorithms has 

received much interest. A number of algorithms have been proposed including the 

Multiobjective Genetic Algorithm (MOGA) (Fonseca & Fleming, 1993), Niched Pareto 

Genetic Algorithm (NPGA) (Hom et al., 1994), Nondominated Sorting Genetic 
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Algorithm (NSGA) (Srinivas & Deb, 1994) and Strength Pareto Evolutionary Algorithm 

(SPEA) (Zitzler & Thiele, 1999). These algorithms and variations thereof comprise the 

basis of most popular multi-objective evolutionary algorithms currently in use. To 

compare performance between algorithms, Coello Coello and Lamont (2004) reviewed a 

number of different applications. Most of these algorithms were tested against selected 

functions and it was found that their performances were problematic. 

One of the most commonly used multi-objective methods based on Pareto optimisation is 

the Multiobjective Genetic Algorithm (MOGA). It was introduced by Fonseca and 

Fleming (1993). They were the first to suggest a multi objective GA which explicitly 

emphasises the non-dominated solution and simultaneously maintains its diversity. 

Rather than using raw fitness values, the MOGA differs from a standard GA in the way 

fitness is assigned relatively to each solution in the population. This is called Pareto

optimal rank strategy and uses techniques such as fitness sharing which aid in spreading 

the solution along the Pareto-optimal front. The rest of the algorithm (selection, crossover 

and mutation) is employed in the same way as that in classical GAs (Deb, 2001 ). The 

schematic diagram of The MOGA is shown in Figure 6.11 
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Figure 6.11 Multiobjective Genetic Algorithm (MOGA), showing that the three 

steps of the MOGA algorithm: Step (i) Initial population and initial Pareto-optimal 

set, Step (ii) Pareto optimality ranking and Fitness Sharing and Step (iii) Selection, 

Crossover and mutation 
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The three main modules in the process are numbered in Figure 6.11. These are: (i) 

production of the initial generation and establishment of an initial Pareto-optimal set, (ii) 

application of the MOGA technique of finding the Pareto-optimal set, and (iii) evolution 

by selection, crossover and mutation operators and revision of the Pareto-optimal set. For 

each generation, MOGA firstly determines the fitness function of individuals of the 

previous generation and then generate chromosome by selecting two parents on the basis 

of their fitness and reproducing them by crossover and mutation until the whole 

population is recreated. Finally, MOGA decodes and evaluates the chromosomes of this 

new generation and revises the Pareto-optimal set of the previous generation. This 

procedure is repeated many times until either: (i) the maximum generation number is 

reached or (ii) the convergence and diversity index are satisfied or not further improved. 

The first termination criterion is necessary to prevent a run of excessively long time. The 

second termination criterion is important to check the convergence and diversity of the 

optimisation procedure. 

Module 1 Initial population and initial Pareto-optimal set 

In the same manner as in classic GAs, the initial population can be established by 

randomly choosing a population in a predefined range. After the associated objective 

functions are determined, a search space can be formed. 

Module2 Pareto optimality ranking and Fitness Sharing 

The nearly identical convergence and bunching of solutions at optimum regions is called 

genetic drift phenomenon. It misses the inheritance of parent's best solution, and can be 

misleading to the global optimum goals (Cheng & Li, 1997). In order to retain the 

diversity of the solution and ensure the global optimum, Pareto optimality ranking and 

fitness sharing should be employed to solve these weaknesses (Cheng & Li, 1997; 

Goldberg, 1989). Rank-based fitness assignment is a prerequisite for applying fitness 

sharing. Fonseca and Fleming (1993) explained an excellent theoretical approach and a 

numerical example was clearly illustrated by Deb (2001). Two main steps concerned with 

Pareto-optimal ranking and fitness sharing are described as follows: 

• Pareto optimality rank based fittest assignment 

Rather than using a raw fitness value, the fitness is assigned to the solution in proportion 

to their raw fitness value. By MOGA, each population in the search space is ranked 

according to the following expression (Fonseca & Fleming, 1993): 
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r, = l+n,, (6.2) 

where r, presents the rank of the i'h solution. n, is the number of the solutions, which 

dominate the solution i. Obviously, the minimum rank is 1 (for non-dominated solutions 

with respect to population) and the maximum rank is no more than the size of the 

population, N . It is also clear that the ranking procedure may not assign all possible 

ranks (between 1 to N ). Additionally, the smaller r, is the better the solution will be 

(Deb, 2001 ). 

After ranking, the population is sorted according to its ranks and the associated raw 

fitnesses (i.e. objective function values) are assigned to a solution by using a linear 

mapping function (which is normally linear but not necessarily so) from the best solution 

to the worst solution. Usually the mapping function is chosen so as to assign fitness 

between N (for the best rank solution) and 1 (for the worst-rank solution). Thereafter, the 

raw fitnesses of the solutions within the same rank are averaged. This average fitness is 

now called the assigned fitness to each solution of the rank (Fonseca & Fleming, 1993). 

Rank based fitness assignment overcomes the scale problem of the proportionate fitness 

assignment. When the selective pressure is too small (i.e. all the raw fitnesses are more or 

less the same value) where selection has caused the search to narrow down too quickly 

this will result in no solution being generated and an excessive number of offspring. The 

average fitness by ranging base fitness assignment introduces a uniform scaling across 

the population and provides a simple and effective way of controlling the selective 

pressure. For the special case of linear mapping, the assigned fitness of the i'h solution, 

f,. is given as follows (Deb, 2001): 

r,-1 

f, = N - L µ(k)- 0.5(µ(k) -1). (6.3) 
k=I 

where µ(k) is the number of solutions in rank r, and the assigned fitness is now a 

function of number of the dominated solution, not the objective functions. 

• Fitness Sharing 

In order to maintain population diversity and avoid genetic drift, a fitness sharing 

technique (Goldberg & Richardson, 1987) is usually applied in multi-objective evolution 

144 



Chapter 6 Clarifier Intelligent Control: Genetic Algorithm Approach 145 

algorithms. The basic idea is to reduce the reproduction ability of a solution crowded by 

many solutions through degrading its assigned fitness value f, using the sharing function 

concept. Typically the following function is defined as the sharing function Sh( du) of 

two solutions i and j : 

(6.4) 

Otherwise, Sh(dy) = 0 

where, a is a constant and if a =l is used, the effect linearly reduces from one to zero. 

It has been found that a does not have too significant an effect on the performance of 

sharing function and is commonly set to one (Fleming & Pashkevich, 2007). a share is the 

niche radius, which represents the minimal distance between two solutions desired by the 

user. The parameter du is the distance between any two solutions i and j which is 

defined as: 

(6.5) 

where /tax and tk= are defined as maximum and minimum objective function values of 

k 1
h objective. 

Therefore, from equation (6.4), if du= 0, then sharing function, Sh(dy) = 1. This means 

that a solution has full sharing on itself. IfdY ~ ashare, thenSh(dy) = 0. This means two 

solutions which are at least a share distance away from each other do not have any sharing 

effect on each other. For any other distance, du two solutions have a partial effect. A 

niche count, nc, which gives an estimation of the extent of the crowding near the i 1
h 

solution, is then calculated as follows: 

N 

nc, = "LSh(dy). (6.6) 
j=l 
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The sum includes the i1
h solution itself, thus nc, is always greater than or equal to one 

since at least Sh( du) = 1. Finally, the shared fitness value !,' for i 1
h solution is calculated 

as follows: 

(6.7) 

Thus, if the i 1
h solution does not have any sharing effect on any other solution in the 

population, namely nc, = 1, its fitness value will not be degraded. Otherwise, the sharing 

function will degrade fitness according to the extent of crowding near the i1
h solution. 

The choice of a share has a significant impact on the performance of MOGA (Fonseca & 

Fleming, 1993). It is very difficult to determine a suitable fixing value of ashare since it 

is problematic. It is recommended to obtain it empirically by a trial and error process 

(Obayashi et al., 1998). However, Fonseca et al (1993) suggested a dynamic updating 

strategy forashare. The value of ashare gives a simple estimation of ashare in the objective 

function space with an adaptability feature as: 

q q 

IJ(M, -m, +ashare)-IJ(M, -m,) 
N q-1 _ t=I t=I = 0 

a share • (6.8) 
a share 

Where N is a population size, q is number of objectives, M, and m, are maximum and 

minimum values of each objective, respectively. 

The suitable a share is updated in every generation and it will be adaptive to the population 

during the evolutionary process. Clear numerical presentation of this strategy is 

demonstrated by Deb (2001). 

Module3 Selection, Crossover and mutation 

After the shared fitness !,' is calculated for each population, the typical GA operations 

are applied. Regardless of the selection method, any population with higher shared fitness 

has a higher chance to select for crossover and mutation operations. In this work, the 

stochastic universal selection (with shared fitness), the single-point crossover and the bit-
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wise mutation operators are applied to create the new offspring. After, these three 

operations and if the stopping criteria are satisfied, then the MOGA will stop evolution of 

solutions and the last set of solutions (at the Pareto-optimal front) are assumed to be 

optimal. 

6.3.4 The Assignment of MOGA Parameters 

The success of GAs depends on the specification of several parameters such as the 

population size, the number of generations, together with the probabilities of crossover 

and mutation. Goldberg (1989) has suggested that good GA performance requires a 

choice of high crossover and low mutation probabilities and a moderate population size. 

However, it is difficult to predict how the various parameters interact with each other. 

Indeed there is no general theory for selecting optimal GA parameters and this is always 

a problem. Therefore trial and error processes with the problem at hand should be used as 

guidelines to find the suitable parameters (Grefenstette, 1986). 

Population size and number of generations 

The population size and number of generations affect both ultimate performance and the 

efficiency of GAs. It is a very sensitive parameter for the GA process (Halhal et al., 

1997). De Jong (1975) suggested that with small population size, the initial performance 

can be improved. However a large population size improves long-term performance and 

the optimal number of populations should be in the range of 50 to 100 individuals. GAs 

generally perform poorly with a very small population because the population provides 

an insufficient sample size and will converge rapidly to a local optimum. A large 

population, on the other hand, requires more evaluations per generation and results in 

unnecessary computational cost and unacceptably slow convergence. McKinney and 

Min-Der (1994) reported that a population of 50 to 100 individuals taken through 10 to 

20 generations have a high probability of finding an optimal or near optimal solution. 

However the best value is problem dependent and requires trial and error to verify it. 

Crossover rate 

The crossover rate controls the frequency with which the crossover operator is applied. 

The higher the crossover rate, the more quickly new chromosomes are introduced into the 

population. If the crossover rate is too high, high performance structures are discarded 

faster than selection can produce improvement. If the crossover rate is too low, the search 
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may stagnate due to the lower exploration rate (Eshelman & Schaffer, 1991). 

Negnevitsky (2005) suggested that a value of 0.7 for crossover probability generally 

gives good results. 

Mutation rate 

The need for mutation is to keep diversity in the population. When using selection and 

crossover, some potentially useful genetic material might be lost. Its role is to guarantee 

that the search algorithm is not trapped at a local optimum (Holland, 1992). The mutation 

operator protect against such irrecoverable premature loss. A mutation probability is a 

very small number typically in the range of 0.001 to 0.01 (Negnevitsky, 2005). De Jong 

(1975) originally suggested using a mutation probability inversely proportional to the 

population size. 

6.3.5 Pareto Front Quality 

It is well recognised that there are two goals when solving a multi-objective optimisation 

problem: (i) the convergence to the Pareto-optimal set, and (ii) the diversity of solutions 

in the Pareto-optimal set, since these two goals are distinct. The first goal requires search 

towards the Pareto-optimal solution, while the second goal requires a search along the 

Pareto-optimal front (Deb, 2001). 

Deb and Goldberg (1989) use a chi-square-like deviation measure to assess diversity of 

solutions. Zitzler and Thiele (1999) used the maximum spread for diversity assessment. 

The maximum spread is defined as the Euclidean distance between the extreme solutions 

of each objective. The larger the maximum spread, the more diversity there is. However 

convergence measuring is not possible since the true Pareto-optimal front is unknown in 

this method. Therefore, only a relative assessment of convergence can be made as 

opposed to an absolute comparison. For example, Reed and Goldberg (2003) used the 

percentage of change in the number of non-dominated solutions as the termination 

criterion. 

The Pareto Front Quality Index (PFQI) was introduced in (2003) by Kazancioglu et al.. It 

is a relative global assessment approach. It can assess the convergence and diversity of 

the solution simultaneously, regardless of the value of real Pareto-optimal front being 

unknown. Before assessments are taken, all the objective values are normalised by their 
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associated maximum and minimum values. Thus PFQI assesses the quality of the Pareto

optimal front in a normalised scale of range zero to one. 

PFQI qualifies solutions in the Pareto-optimal front in terms of (i) their closeness to the 

utopia point, de which is defined by the average distance from every solution on the 

Pareto front (in a normalised scale) , (ii) the range of the Pareto front, d R defined as the 

summation of the distance between the extreme point and the closest solution on the 

Pareto front and (iii) the evenness of the spread, d E which can be measured as the 

maximum distance to between two neighbouring solutions in the Pareto front. From this 

formulation, the lesser the value of PFQI, the better quality of Pareto fronts is. 

Consequently, The Pareto Front Quality Index (PFQI) is defined as: 

(6.9) 

The fi r-:s1: Nor-ma Ii s e d o bj El c:t ive 

Figure 6.12 Pareto front quality index, demonstrating Pareto front within 

normalised space of two objective functions, A , B and C are the solutions on the 

Pareto front. 

For clarity, as an example of minimisation problem of a two objective function, consider 

that the solutions A, B and Care in a two-dimensional normalisation objective function 

space. The coordinates of point A, Band Care (0.25, 0.75), (0.25, 0.50) and (0.75, 0.25) 

respectively. The origin 0 is the utopia point and two unit vectors (1, 0) and (0, 1) 

correspond to the extreme points in the first (denoted as El) and second objective 

(denoted as E2), respectively. The PFQI can be obtained as follows (Kazancioglu et al., 

2003): 
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de: to measure how close the Pareto-optimal front lies to the utopia point (i.e. the 

convergence of the solutions), the average distance of points A, B and C (on the Pareto

optimal front) from the utopia point is: 

de= OA+OB+OC ~o.71 
3 

(6.10) 

d R : to measure the diversity of the solution and the range of the solution, Point A and C 

are the closest to the extreme points E1 and E2. The average closest distance to both 

extreme points, d R is given by: 

(6.11) 

d E , the uniformity of the solutions in the Pareto-optimal front is how well the Pareto

optimal front spreads, and can be measured by using d E , the closest distance of each 

single point on the Pareto-optimal front. In Figure 6.12, for point A, point B is the 

closest. For point B, certainly point A is closest. For point C, point Bis the closest one. 

d E = max(AB, BA, BC) = BC ~ 0.56 (6.12) 

Therefore, the PFQI value for the Pareto-optimal front in Figure 6.12 is given as: 

PFQI =de+ dR + dE = 0.71+0.35+0.56=1.62 (6.13) 

The general form of PFDI with a mathematical description was also provided in the work 

of Kazancioglu et al.(2003), it could be used when more than two objectives are 

considered. 

6.3.6 Goal Programming and Constraint Handling 

Goal programming methods have been used in innumerable applications in engineering 

(Romero, 1991; Steuer, 1986). Since goal programming attempts to find one or more 

solutions which satisfy a number of goals to the extent possible, therefore it is different in 

concept from nonlinear programming or optimisation techniques. Instead of finding a 

solution which absolutely minimises or maximises objective functions, goal 
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programming finds a solution that, if possible, satisfies a set of goals, or otherwise 

violates the goals minimally. This makes the approach more appealing to practitioner 

compared to conventional optimisation techniques. In goal programming, each goal is 

converted into an objective function of the minimising the different between the goal and 

its target. Generally, the conversion process depends on the type of goals used. They are 

presented in the Table 6.1 (Deb, 2001 ). 

Type Goal Objective function 

~ /
1 

(x) ~ t
1 Minimize (f

1 
(x)- t

1
) 

~ f/x) ~ t
1 Minimize (t

1 
- f/x)) 

= f
1
(x) = t

1 Minimize /f
1 
(x)- t

1 
j 

Range f 1 (x) E ~~,(~] Minimizemax((t~ - f1 (x)),(f/x)-t~)) 
Table 6.1 Goal Programming using multiple objective optimisation 

For the bracket operator, if the operand is positive, it returns the value of the operand. 

Otherwise it will return zero. For an absolute operator, it returns an absolute value of the 

operand. In this way, goal programming is converted to a multiobjective optimisation 

problem. The advantages are: (i) no additional constraint for each goal is needed, and (ii) 

objective functions can be simply used since GAs do not require objective functions to be 

differentiable. 

6.4 The Decision Maker: Shortest Normalised Distance 

Selection 

It is possible to have more than one "best" solution from a Pareto-optimal set. In order to 

select only one optimal solution, the shortest normalised distance method is employed. It 

is the smallest Euclidean distance from the theoretical best optimal solution found in the 

normalised objective space (Fwa et al., 2000). In order to clarify this selection procedure, 

an example of two-objective minimisations is illustrated in Figure 6.13(a). The optimal 

solutions A and Bare determined where A is the minimum solution of the first objective, 

and Bis the lowest solution of the second objective respectively. 

In Figure 6. l 3(b ), The origin point in the normalised space, M is a utopian point defined 

as the theoretical best optimal solution (Fwa et al., 2000). The selected best solution is 
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the solution that has the nearest point with respect to point M in terms of normalisation 

distance. The normalised objective function value is determined over a scale of 0 t9 1 for 

each objective based on the following expression (Fwa et al., 2000): 

o(i x) = ( o(i,x)- o(i,min) J 
' o(i,max)- o(i,min) 

o(i,x) =normalised parameter value of solutionx of objective i 

o(i, min) =minimum parameter value of objective i 

o(i, max) =maximum parameter value of objective i 

F1 

~ 

j 
~ 
·~ 

! 
5 \. ~ 

M 1 st ObJective minimum line 

2nd Objective 

(a) Establishment of reference points 

F1 

1 

j 
\. 
] 

i 
0 

M I 
I 

0 Normalised 2nd Objective 

(6.14) 

(b) The shortest distance from utopia point M , 

A 

F2 

A 

1 F2 

Figure 6.13 Illustration of the shortest normalisation distance in the case of 

minimisation: (a) Establishment of reference points; (b) The shortest distance from 

utopia point M , MC in normalised scale 
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Two objective function values are transformed to the normalisation scale shown in Figure 

6.13 (b ). The best solution is performed by detecting the shortest normalised distance 

from point M and dm is defined as the normalised distance to the population in the 

Pareto-optimal front presented as follows: 

n 

dm = 2:(o(i,x)-o(i,min))2
, (6.15) 

1=! 

Where; n =number of objectives under consideration. 

Specifically, the short distance in Figure 6.13(b) is shown as MC which is selected on the 

basis of the minimisation of two objectives simultaneously. 

6.5 Clarifier Intelligent Control Simulations 

The clarifier control simulations were conducted using the proposed "intelligent control 

system". The intelligent control system consisted of three components: (i) ANN clarifier 

process model, (ii) intelligent optimiser based MOGA and (iii) decision maker as shown 

in Figure 6.14. 

Optimisation loop 

A 

MOGA Decision ----- PROCESS MODEL 1------
Temporal data 

water qualities 8i Predicted 
water quality 

optimiser •B-t.i maker 1+-S-e-le-c-te_d_s-et 

Pareto-opt1mal of control 
control actions : 

I 
I 
I 

set of control actions actions 

: Operational target 
I 
I 

L---------------------------------------------------------------------
Intelligent control system 

Figure 6.14, intelligent control system, was composed of three components: (i) 

process model, (ii) intelligent optimiser and (iii) decision maker. 

At the beginning, the switch was turned to position "A". A clarifier process model was 

linked with the MOGA optimiser under MPC architecture. After the temporal operation 

data was input to the process model, it would predict clarified water quality and then give 

to the MOGA optimiser. The intelligent optimiser would optimise the set of control 

actions in order to satisfy the operational target (e.g. clarified water turbidity is less than 

7 NTU for case of BKWTP) and minimise the operational cost. These two components 

would work repeatedly until predefined number of iterations was reach then the switch 
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would be turned to position "B". The last set of solutions, which was assumed to be the 

optimal one (i.e. Pareto front), was sent to the decision maker. Here, the best solution was 

chosen from the set of solutions on the Pareto front using shortest normalised distance 

selection. 

The objectives of the clarifier control simulation were concerned with two issues: (i) the 

primary object was to find the optimal number of generations and the population size for 

the MOGA optimiser. Although the other MOGA parameters (e.g. GA operators and 

associated coefficients) could be predefined (section 6.3.4), the population size and 

number of generations were problematic and should be obtained empirically by trial and 

error. (ii) The other objective was to assess the performance of intelligent control system. 

Next the optimal number of generations and the population size were to be defined in line 

with the other predefined parameters. With past operation data, the clarifier controls were 

simulated by using an intelligent control system and their performances could be 

evaluated and compared with the human operators' performance. These performance 

assessments were conducted using the test sets of BEWTP and BKWTP case studies. To 

obtain these objectives, there were a few prerequisite tasks such that the objective 

functions and the agreement of simulations need to be defined. 

6.5.1 Objective Function Formulation 

Successful clarifier operation not only kept the clarified water quality satisfactory in 

terms of the operational targets, but to achieve economical operation presented a further 

challenge. Operation of clarifiers under both operational targets could be mathematically 

transformed to a multi-objective optimisation problem. MOGA was employed as an 

intelligent operator to search for the optimal set of control actions. 

In the model predictive control scheme, the optimiser worked in line with the ANN 

process model. The ANN process model would predict the clarified water qualities in 

predefined future time steps (the so called predictive horizon) and the optimiser evaluated 

the set of control actions (e.g. chemical dosages, sludge drainage) and determined the 

optimal control actions by satisfying the clarified water quality (i.e. clarified water 

turbidity and colour) together with minimising the operational cost and the control effort. 

The objective function was minimised for every time step in the future, (so called control 

horizon). The control effort was also minimised to avoid aggressive control. To apply 
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MPC with the clarifier control, the control system objective was to improve the clarifier 

operation so that: 

• The clarified water quality should not be higher than the operational targets. 

• Operational cost was minimised. 

• The clarifier was operated without aggressive control. 

Referring to Equation (6.1), particularly to clarifier control, the objective function was 

given by: 

Nz Nz N3 

Minimise J = L ( CWQ- Operational_ Target)+ L OC +AL ( CA)2 
, 

Subject to CWQ::; operational targets, 

Control actions bounds umm ~ u(t) ~ umax , 

1=1 

(6.16) 

where A was the penalising weight factor for control effort and N1,N2 were defined for 

Predictive horizon and N 3 was control horizon. 

Predictive and control horizon 

N 1 , N 2 and N 3 terms, were used to defined the predictive and control horizon. The 

performance of the MPC system was heavily reliant on the accuracy of the predictive 

model. Using MPC with long range prediction (multiple steps prediction) was not 

recommended (Norgaard et al., 2000). If this were done, predictive error would be added 

in every single future time step. In the specific case study of BEWTP and BKWTP, the 

results of prediction simulations (in chapter 5) confirmed that predictive errors would be 

greatly increased after one step prediction (section 5.3.4 and section 5.4.4). Therefore, the 

control and predictive horizons were set to a single step or the control system simulation 

was conducted for only one time step ahead which meant that N 1 , N 2 and N 3 were equal 

to one. 

Clarified water quality 

( CWQ - Operational_ Target) stood for the difference between the predicted clarified 

water qualities (CWQ) and the operation targets. The bracket operator, ( ) , from goal 

programming was applied here (Table 6.1, section 6.3.6) to ensure that the clarified water 

qualities were less than the operational target. If the "CWQ-Operational_Target" term 
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was positive (i.e. the clarified water quality upset the operational target), it returned to the 

value of the operand. Otherwise it would return to zero. For BEWTP, the set point was 

for clarified water colour to be less than ten HU and clarified water turbidity less than 

one NTU. On the other hand, for the BKWTP, the only set point was that the clarified 

water turbidity be less than seven NTU. 

Control effort 

(CA)2 stood for the mean of the sum square of the normalised control action changes. In 

practice, any abrupt changes of control actions or aggressive control actions were not 

desirable and would result in operational instability (Mills et al., 1996). If changes of 

control actions between the present and the previous step were minimised while the other 

objectives (i.e. the clarified water qualities and operational cost) were satisfied, then the 

controls could be sustained smoothly. Since the magnitude of each control action was 

different (e.g. polyelectrolyte was in the range of 0.01 to 0.07 mg/L but that of alum 

dosage is 20 to 70 mg/L), it was necessary to alleviate the bias due to these different 

magnitudes. In the light of this, the control changes were normalised to the range of 0 to 

1 by using associated boundary conditions. After normalisation, each square of the 

changes in control action was summed and averaged by being divided by the number of 

control actions which were used. 

Operational cost, OC 

OC took into account only for the chemical cost, and was calculated based on the price of 

per one cubic metre of clarified water. The electricity costs for turbine speed and sludge 

drain system were excluded since data were not available. Labour costs were also 

excluded. In a similar manner, the operational cost was also scaled into the range of 0 to 

1 by associated maximum and minimum values which were functions of the control 

actions. On the other hand, the bias among different magnitudes of clarified water 

qualities could not be avoided since normalising of the clarified water qualities was not 

possible since their ranges were unknown. 

Weight coefficient penalising control effort, A. 

Weight coefficient penalising control effort, A. was used to tune the effect of the control 

effort. Norgarrd (2000) suggested that parameter A. could be obtained by trial and error in 

a control simulation. Typically, a suitable value of A. minimises the mean square error of 

setpoint tracking and the control effort simultaneously. This approach was well suited for 
156 



Chapter 6 Clarifier Intelligent Control: Genetic Algorithm Approach 157 

single objective optimisation but was not suitable for multi-objective optimisation of 

clarifier control. This was because the set point tracking error was defined as minimising 

the clarified water qualities rather than minimising the difference between the set points 

and clarified water qualities. Additionally, if clarified water qualities were considered 

only suitable for A , this would lead to a bias in the operational cost minimisation. 

Therefore, A was set to a value of one and used for the whole simulation. 

Control action boundary unun, umax 

One seriously weak point of the ANN model based control system was that it could not 

map the input to the output on a one to one mapping. Occasionally the process model 

performed a many to one mapping in which a number of inputs were mapped to one 

output. This was an ill posed problem (Swingler, 1996). For example, with the same raw 

water quality, more than one set of control actions gave the same clarified water quality. 

If this was the case, the non-sensible control actions were suggested from the process 

model that were not logical. For example, with very low quality of raw water, the process 

model suggested using very low dosage of chemical, which was clearly not sensible and 

was therefore excluded. 

On occasions it might be advantageous to partition the input domains into multiple 

subsets or operational domains. This strategy was originally inherent in local modelling 

techniques (Murray-Smith & Johansen, 1997). It would here be adapted for the global 

process model of clarifier, using a single model to predict the output for the whole 

operational range. Thus, the input domain partition would be limited by having a 

bounded control action domain. Non-sensible control actions would not be available in 

this bounded search space. Selection of a proper boundary limited for the control actions 

required expert knowledge. The recommended control action ranges appropriate to raw 

water quality value were documented in the operating guidelines of both case studies 

(City Water Technology, 2001; MWA, 2000). Thus they could be utilised for partition of 

the operational domain. Not only alleviating the ill posed problem and providing the 

input domain partitioning, it also helped the MOGA to optimise the solutions under 

selection boundaries. This avoided looking for the solution from the whole search space 

and certainly reduced computational time. 
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6.5.2 Agreement of Clarifier Control Simulation 

In this simulation, the test sets of each case study were to be recalled and used as 

benchmarks for performance evaluation since they were statistically equivalent to the 

operational data involved (section 5.3.2 and 5.4.2). The control system performance was 

evaluated in terms of clarified water quality and the operational cost in comparison with 

that of human operators. 

Predefined MOGA parameters, population size and number of generations 

Most of the MOGA parameters including those with associated GA operators (e.g. 

selection operator) were set according to the guidelines in section 6.3.4 and shown in 

Table 6.2. Only two values, the population size and the number of generations, were 

obtained empirically by trial and error processes since they were reported to be important 

to the convergence of the Pareto-optimal front (Deb, 2001). The MOGA was 

implemented using the genetic algorithm toolbox of GEATbx (Pohlheim, 2005). 

MOGA parameters Parameter (varied) 

Number of generations 
Trial and error process. (20 and 200 populations with the 

increments of 20 populations) 

Population size Trial and error process, ( 50, 100, 200, .... 600 generations) 

MOGA parameters Parameter (fixed) 

Population encoding Real-valued 

Selective function Stochastic universal sampling 

Selective pressure 2.0 

Crossover function Intermediate recombination 

Crossover probability 0.01 

Mutation function Bit-wise mutation operators 

Mutation probability 0.01 

Table 6.2 Multiobjective Genetic Algorithm (MOGA) parameters showing which 

parameters were varied and which were fixed for the MOGA optimiser 

development process 

The population size and generation were important to the convergence and diversity of 

the Pareto-optimal front (Deb, 2001). The Pareto Front Quality Index (PFQI) was used to 
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qualify the Pareto-optimal front (section 6.3.5), since the convergence and diversity of 

the Pareto-optimal front were assessed at the same time. The optimal numbers of 

generation and population size were systematically varied with a constant increment. For 

both case studies, the population sizes were in the range between 20 and 200 population 

with the increment of 20 population, and the number of generations is in the range of 50 

to 600 generations ( 50, 100, 200, .... 600 generations). For each case study, this trial and 

error process would be conducted with only one run which was randomly selected from 

the associated test set. The number of generations and associated population size which 

identified the smallest PFQI value were then assumed to be optimal. Additionally, the 

optimal population size and number of generations would be used for the whole control 

simulation. The associated number of generations would be used as the stopping criterion 

for the MOGA optimiser. 

Decision maker 

When the number of generations reached the optimal number, the MOGA would stop 

evaluating the populations. The populations (i.e. sets of control action) on the last Pareto

optimal front were assumed to be optimal. Consequently, the decision maker would 

choose the best set of control actions from the population in the last Pareto-optimal front 

using the shortest normalised distance (section 6.4). 

6.6 Clarifier Intelligent Control System Simulation Results 

This section concerns the result of the simulations. Initially it is necessary to lay out the 

specific background of each case study since each operates in a different environment 

and the operational targets of each case study are different. Each case study is now to be 

separately discussed. 

6.6.1 Bryn Estyn Clarifier Control System 

For the BEWTP case study, a clarified turbidity of 1 NTU and colour of 10 HU were set 

as the operational targets (City Water Technology, 2001). With predictive and control 

horizon of only one step ahead and the objective functions were shown as follows: 
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I I I I 

Minimise J= L(cwc-10)+ L(cwr-1)+ Loe+ L(CA)2 (6.17) 
1=1 1=1 1=! 1 

Subject to CWT:::; 10 and CWC:::; 1, 

Control actions bounds umm ~ u(t) ~ umax , 

where CWC and CWT were predicted clarified water turbidity and colour values at (t+ 1) 

or four hours ahead. u(t) were the set of three control actions at the present time (t) (i.e. 

turbine speed, alum and polyelectrolyte dosages). OC was the operational cost ($AUS per 

cubic metre), which was a function of the alum and polyelectrolyte dosage at the present 

time (t). 

Before the control simulation, it was necessary that the optimal population size and 

number of generations were identified. Systematic trial and error processes were 

conducted with a single run which was randomly selected from the test set. The 

population size and number of generations that gave the smallest PFQI were assumed to 

be optimal. 

The control simulation was carried out on the test set which contains 204 runs. For the 

MOGA optimiser, the evolution would be terminated after the optimal number of 

generations was reached, and the decision maker would select the best solution based on 

the shortest normalised distance. The schematic diagram of BEWTP clarifier intelligent 

control is shown in Figure 6.15. Specific to this case, the two process models for 

predictive clarified water turbidity and colour are linked together. They gave the 

predictive water turbidity and colour at one future time step, (t+ 1) in conjunction with the 

MOGA optimiser that would evaluate the optimal solution set. After the predefined 

maximum number of generations was reached, the last Pareto-optimal front was assumed 

to be the optimal one, the switch would be turned to "B" position, then the set of control 

actions had been finally selected by the decision maker from the last Pareto-optimal 

front. 
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Figure 6.15 Schematic diagram of the intelligent control system (BEWTP), showing 

the intelligent control system for the clarifier at BEWTP; the process models and 

MOGA optimiser were linked under MPC architecture. After the optimisation 

process finished (switch would be turned to "B" position), the decision maker 

selected the set of control action from the last set of Pareto-optimal solutions. 

Temporal span of inputs and predictive horizon 

The two process models were used to predict clarified water turbidity and colour in the 

next four hours (one time step) only. The operation data at t, t-4, t-8 and t-12 were input 

to the model since that was empirically proved to be the optimal set (section 5.3.4). 

Control action boundaries 

In the BEWTP case study, only three control actions were involved (i.e. turbine speed, 

alum and polyelectrolyte dosages). The ranges of the control actions were set according 

to the operational guidelines shown in Table 6.3 (City Water Technology, 2001). Colour 

removal was the main issue at BEWTP. Thus, during the optimisation process, the raw 

water colour value at the present time was used to interpolate with the raw water colour 

in Table 6.3 for recommended control actions. After the control actions (as 

recommended) had been tried out, the chief operator suggested that another ± 10 percent 

should be added in practice to the upper and lower boundaries due the uncertainty of the 

raw water quality and its ambient conditions. 
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Polymer 
Polymer 

Raw water Alum (mg/L) Turbine speed 

colour (HU) (mg/L) (Summer 
(mg/L) 

(RPM) 
(Winter time) 

time) 

20 17 0.12 0.13 12 

25 18 0.12 0.13 12 

30 20 0.12 0.13 12 

35 22 0.12 0.13 12 

40 24 0.13 0.14 12 

45 25 0.13 0.14 12 

50 26 0.13 0.14 12 

55 27 0.135 0.14 12 

60 28 0.135 0.15 12 

65 29 0.14 0.15 12 

70 30 0.14 0.15 12 

75 31 0.145 0.15 12 

80 32 0.145 0.16 12 

85 33 0.145 0.16 11 

90 34 0.145 0.16 11 

95 35 0.15 0.17 11 

100 36 0.15 0.17 11 

110 37 0.15 0.18 11 

120 38 0.15 0.18 11 

130 39 0.15 0.19 11 

140 40 0.15 0.19 11 

150 41 0.15 0.20 9 

160 42 0.15 0.20 9 

170 43 0.15 0.20 8 

250 45 0.18 0.22 8 

300 55 0.22 0.26 8 

350 65 0.26 0.30 8 

Table 6.3 Recommended Control actions (BEWTP), showing the suitable ranges of 

control actions according to raw water colour values (City Water Technology, 

2001). 
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Operational cost 

The operational cost was based on the chemical cost only of alum and polyelectrolyte. 

Their unit cost per cubic metre (at a concentration of 1 mg/L of alum and polyelectrolyte) 

were show in Table 6.4. The electricity cost for turbine agitation and labour cost could 

not be included since the electricity and labour cost was recorded for the whole plant use 

and not specific for the clarifier use. These data were recorded monthly. 

Chemical Unit cost ($AUS per cubic metre) 

Alum (1 mg/L) 0.000428 

Polyelectrolyte (1 mg/L) 0.00785 

Table 6.4 Unit cost of chemical (BEWTP) 

6.6.2 Bryn Estyn Clarifier Control System Simulation Results 

Firstly optimal population size and number of generations must be found next, the 

performance of the intelligent control system could be assessed and compared with the 

human operators' performance. 

The optimal number of generations and population size 

The optimal population size and number of generations were shown in Figure 6.16. By 

considering this contour plot, the PFQI value varied in the range of 1.45 to 2.65. The 

minimum value of PFQI was 1.45 and it is found where the population size and number 

of generations were 80 populations and 200 generations, respectively. Larger values of 

PFQI (low quality Pareto-optimal front) were located where the number of generations 

was small and population size was large (lower left hand side in Figure 6.16). This 

physically implied that, at such a large size of populations, the small number of 

generations was not enough to obtain a good quality Pareto-optimal front. However 

larger numbers of generations could improve the quality of the Pareto-optimal front. This 

was evidenced by a lower value of PFQI zone found at the top half side in Figure 6.16. 
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Figure 6.16 Pareto front quality index for the BEWTP case study, showing values of 

Pareto front quality index (PFQI) when the population size and number of 

generations were varied. The greyscale of the PFQI is shown on the right side of the 

figure, the lower the PFQI value the higher the quality of Pareto-optimal front. 

Intelligent control system performance 

Rather than measuring the performance of the intelligent control system by itself, it was 

preferable to compare the performance of the intelligent control system with that of 

human operators. All the associated statistical parameters and the upset number were 

shown in Table 6.5 . The upset number was defined as number of runs which would cause 

an upset in the operational targets (more than 1 NTU of clarified water turbidity or 10 

HU for clarified water colour). 

Turbidity removal performance 

Figure 6.17 shows the clarified water turbidity resulting from the human operator and 

from using the intelligent control system. Both were similar with coefficients of 

determination (r2
) of 0.88 and their means and standard deviations were also nearly 

identical, i.e. 0.72±0.49 NTU and 0.72±0.45 NTU respectively. They also both 

performed well since neither of their means was larger than the operational target of 1 

NTU. However, the intelligent control system performed marginally better than human 
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operators since its upset number (47 runs) was slightly smaller than that of human 

operators (49 runs). 
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Figure 6.17 Turbidity removal performances (BEWTP case study), showing the 

simulation results of actual values of clarified water turbidity versus that of 

intelligent control system using the test set 

Colour removal performance 

The colour removal performance of both the intelligent control system and the human 

operators were shown in Figure 6.18 with means and standard deviation of 5.94±1.86 HU 

and 6.76±2.23 HU respectively. Therefore, both of them worked well and satisfied the 

operational target of 10 HU. Both of them varied with a low correlation as evidenced by 

the smaller coefficient of determination (r2
) of 0.63 (compared with clarified water 

turbidity). However, the intelligent control system works better than human operators 

since the upset number (7 runs) and the means of clarified water colour (5.94±1.86 HU) 

of the intelligent control system were smaller than that of human operators (9 upset runs, 

6. 76±2.23HU). 
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Figure 6.18 Colour removal performances (BEWTP case study), showing the 
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simulation results of actual values of clarified water colour versus that of intelligent 

control system using the test set 

Parameters Human operator Intelligent control 

Clarified water turbidity (NTU) 
0.72±0.49 NTU 0.72±0.45 NTU 

(Mean±std) 
Clarified water turbidity 

49 runs 47 runs (upset number*, runs) 
Clarified water turbidity 

24% 23% 
(upset percentage**,%) 

Clarified water colour (HU) 
6.76±2.23 HU 5.94±1.86 HU 

(Mean±std) 
Clarified water colour 

9runs 7runs 
(upset number) 

Clarified water colour 
4.3% 3.4% 

(upset percentage,%) 

Alum dosage (mg/L) 26.07±6.64 mg/L 22.53±5.21 mg/L 

Polyelectrolyte dosage (mg/L) 
0.0141±0.0334 

0.0136±0.0154 mg/L 
mg/L 

Turbine speed (RPM) 10.46 ± 1.21 RPM 11.85 ± 0.92 RPM 

Operational cost 
$AUS 12.00 ±3.0 $AUS 11.00 ±2.3 

(AUS$ per thousand cubic metres) 
*Upset number is defined as number of runs which upsets the operational target 

**Upset percentage= upset number/204*100 

Table 6.5 Intelligent control system performance (BEWTP), showing the summary 

of the clarified water qualities and control actions of actual values of the human 

operator versus that of the intelligent control system. 
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Control actions and operational cost 

In table 6.5, the human operators used a larger amount of alum and polyelectrolyte than 

the intelligent control system. This was evidenced by the larger means (26.07±6.64 mg\L 

of alum and 0.0141±0.0334 mg\L of polyelectrolyte) compared with those of the human 

operators (22.53±5.21 mg\L of alum and 0.0136±0.0154 mg\L of polyelectrolyte). 

Therefore, the intelligent control system reduced the alum and polyelectrolyte dosages by 

about 13.6 and 3.5 percent, respectively. 

One should realise that the intelligent control system was only provided with a set of 

three control actions (i.e. turbine speed, alum and polyelectrolyte dosage). The sludge 

drainage was excluded since it was not initially included in the set of the process model 

input (due to data unavailability). However to keep the mass balance in the clarifier with 

no sludge drainage, it was logical that the intelligent control would reduce chemical 

dosages. 

With the small amounts of chemical used, the intelligent control system ran the clarifier 

with a mean operational cost of 11.0 ±2.3 dollars per thousand cubic metres. On the other 

hand, the human operators spent 12.0 ±3.0 dollars per thousand cubic metres. Therefore 

the intelligent control system had the potential to save up to 8.33 percent of the 

operational cost. However, the intelligent control system required the turbine to agitate 

more rapidly than its human operators since the means and standard deviations of turbine 

speed were 11.85 ± 0.92 and 10.46 ± 1.21 RPM respectively. 

From this simulation with the test set, it was obvious that the intelligent control system 

had a performance superior to human operators in terms of colour and turbidity removal 

efficacy as well as minimising the operational cost. Although it used smaller amounts of 

chemical dosage, the intelligent control system had proved its ability to select the proper 

turbine speed (for which the cost is negligible) and it could drive the control scheme in 

such a way as to achieve the operational targets. 

Any decision to reduce the chemical dosage and to increase the turbine speed certainly 

reduced the operational cost. In addition, it was theoretically logical that increasing the 

turbine speed successfully improved the floe agglomeration rate (section 2.2.2). Thus 

combination of control actions represented a good decision when chemical dosages were 

lowered. 
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Another interesting point was that the intelligent control chose to lessen the alum dose 

rather than polyelectrolyte dose. Certainly reducing the alum dosage drove the control 

scheme efficiently to minimise the operational cost. Although the unit cost of alum 

dosage was cheaper than that of polyelectrolyte dosage (Table 6.4), the alum was used in 

much larger amounts than the polyelectrolyte. 

However, for polyelectrolyte dosage, the intelligent control system could only save up to 

3 .5 percent compared with the human operators. This was much less than the case of the 

alum dosage where the intelligent control could save up to 13 .6 percent. This might 

imply that it was the uncompromised need of polyelectrolyte which was necessary to 

keep stability of the operation during a period of external interference, such as possibly a 

change of density current. Further reducing polyelectrolyte dosages might upset the 

operational targets. In the light of these simulation results, this intelligent control system 

was able to recognise operation patterns and optimised the operation. 

6.6.3 Bang Khen Clarifier Control System 

For the BKWTP case study, clarified turbidity was the only operational target. This sole 

operational target was to achieve not more than 7 NTU of clarified water 

turbidity(MW A, 2000). The objective functions were shown as follows: 

I I I 

MinimiseJ= L(CWT-7)+ :Loe+ L(CA)2, (6.17) 
1=1 1=1 

subject to CWT ~7 NTU, 

control action bounds umm ~ u(t) ~ umax ' 

where CWT was the predicted clarified water turbidity value at one time step ahead, (t+ 1) 

(four hours ahead). An operational constraint of CWT ~7 NTU was merged with the 

objective function by using goal programming. If "CWT-7" term was positive (i.e. the 

clarified water quality was more than seven NTU), it returns to the value of the operand. 

Otherwise it would return to zero. u(t) was the set of four control actions at the present 

time (t) (i.e. sludge drain rate, turbine speed, and alum and polyelectrolyte dosages). The 

ranges of control actions are shown in Table 6.6 which were set in accordance with the 

operational manual and the suggestions of the chief operators (MW A, 2000). OC was 
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defined as operational cost per cubic metre, but only alum and polyelectrolyte dosages 

were accounted as included in the operational cost. The labour and electricity costs were 

not included since these data were not available and they were nearly constant and did 

not contribute to any change in the operational cost. Aggressive control action was 

avoided by minimising the terms CA2 (which was the mean of sum square of all 

normalised control action changes). 

In the same manner as in the BEWTP case study, the optimal number of generations and 

population size were initially identified. Systematic trial and error processes were 

conducted with a single run which was randomly selected from the test set. The Pareto 

Front Quality Index (PFQI) was used to decide whether the number of generations and 

population size were optimal for convergence and diversity. The number of generations 

and population size giving the lowest PFQI were assumed to be optimal, and were used 

for the whole simulation. 

The control simulation was carried out on the test set which contained 271 runs. The 

process model gave only one future time step (t+ 1) of prediction values of the clarified 

water turbidity to the MOGA optimiser. Both of them worked in a manner similar to the 

case of BEWTP except that they were concerned only with predictive clarified water 

turbidity, set as the operational target (MW A, 2000). The schematic diagram of the 

BKWTP clarifier intelligent control is shown in Figure 6.19. The temporal data were 

input to the process model and the predicted values of clarified water turbidity were 

given to the MOGA optimiser. The sets of control actions were optimised until a 

predefined optimal number of generations was reached. The last Pareto-optimal front was 

assumed to be the optimal one. The switch was turned to "B" position. Thereafter, only 

one solution on the last Pareto-optimal front with the shortest normalised distance to the 

utopian point was selected by the decision maker. 
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Figure 6.19 schematic diagram of the intelligent control system (BKWTP), showing 

the intelligent control system for the clarifier at BKWTP; the process models and 

MOGA optimiser were linked under MPC architecture. After the optimisation 

process finished (switch was turned to "B"), the decision maker selected the set of 

control action from the last set of Pareto-optimal solutions. 

Temporal span of inputs and the predictive horizon 

The ANN clarifier process model was used to predict clarified water turbidity in the next 

four hours (one time step) only. Operation data at t, t-4, t-8, t-12, and t-16 were input to 

the model since it was proved to the optimal set (section 5.4.3). 

Control action boundaries 

In the BKWTP case study, four control actions were utilised (i.e. sludge drain range, 

turbine speed, and alum and polyelectrolyte dosages). The ranges of the control actions 

were set according to the operational guidelines and the chief operator's suggested values 

are shown in Table 6.6 (MWA, 2000). All these ranges of control actions were set in line 

with the raw water turbidity since that was the main concern of BKWTP. 

In practice, the chief operator decided daily the optimal dosages of chemical usage(based 

on the Jar test results) but not from the look-up table (Table 6.6). The existence of 

guidelines for control actions was just for emergency use and they were just 

approximated value (MW A, 2000). However, when using them to define the boundaries 

of control actions, the chief operator suggested that a further ± 10 percent should be 

added to the upper and lower limits of the alum dosage. Actually, in the BKWTP, alum 

rather than the polyelectrolyte was the main dosage vehicle for turbidity removal. It is 

therefore logical to use raw water turbidity as the value to guide the alum dosage. On the 
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other hand, the polyelectrolyte dosage was used to enhance operational stabilisation 

especially during external interference, for instance for the density current. Therefore to 

use only the value of the raw water turbidity as a guideline for the polyelectrolyte dosage 

might not be the best choice to maintain enough search space for the MOGA optimiser. 

The upper and lower limits of polyelectrolyte dosage are set equal to the upper and lower 

limits tabulated in Table 6.6. For example, if the raw turbidity at the present lag was 57 

NTU (which fell into the range of 50 to 75 NTU) then without interpolation, the upper 

limit and lower limit of polyelectrolyte dosages were set to 0.015 and 0.020 mg/L 

respectively. This approach was also applied to identify turbine speed and sludge drain 

rate boundaries 

Raw water turbidity Alum Polymer Turbine speed Sludge drain 

(NTU) (mg/L) (mg/L) (RPM) rate (sec/hours) 

20 20 0.01 2 20 

30 22 

40 23 

50 24 0.015 

60 26 

70 28 1.54 30 

75 0.020 

80 30 

90 31 

100 33 0.030 

110 36 1.30 

120 39 

125 0.040 

130 41 

140 43 

150 47 0.050 1.11 60 

160 51 

170 55 

175 0.060 

180 59 

190 64 

200 69 0.070 0.83 120 

Table 6.6 Recommended Control actions (BKWTP), showing the suitable ranges of 

control actions according to raw water colour values (MW A, 2000). 
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Operational cost 

The operational cost was based on the chemical cost of alum and polyelectrolyte only. 

For their unit cost per cubic metre (at a concentration of 1 mg/L of both alum and 

polyelectrolyte) see Table 6.7. The electricity and labour costs were excluded since the 

data were not available. The electricity cost was only recorded for the whole plant use 

and it was monthly cost. 

Unit cost 
Chemical 

($AUS per cubic metre) 

Alum (1 mg/L) 0.000132* 

Polyelectrolyte (1 mg/L) 0.00385 

* based on 1 $ AUS = 28.00 Baht 

Table 6.7 Unit cost of chemical (BKWTP) 

6.6.4 Bang Khen Clarifier Control System Simulation Results 

In a similar manner to the BEWTP case study, the optimal population size and number of 

generations were initially defined. Then the performance of the intelligent control system 

was assessed and compared with the human operators. 

The optimal number of generations and population size 

The optimal population size and number of generations were found in Figure 6.20. 

Considering this contour plot, the PFQI value varied in the range of 1.24 to 1.65. The 

minimum value of PFQI (1.24) was found where the population size and generation were 

100 populations and 400 generations respectively. The larger value of the PFQI zone 

(with a low quality Pareto-optimal front) was located where the numbers of generations 

were less than 200 generations, regardless of the number of initial population. This 

physically implied that for any population size, a small number of generations was not 

enough to achieve good quality of Pareto-optimal front. This might be due to the 

complexity of solution space. The better quality Pareto-optimal front (lower PFQI value) 

was found when the number of generations increases above 200 generations. 
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Figure 6.20 Pareto front quality index for BKWTP case study, showing value of 

Pareto front quality index (PFQI) when the population size and number of 

generations were varied. The greyscale of the PFQI was shown on the right side of 

the figure. The lower The PFQI value the higher the quality of Pareto-optimal front 

obtained 

Intelligent control system performance 

In a similar manner to the BEWTP, the performance of the intelligent control was 

compared with that of its human operators. All the associated statistical parameters and 

the upset number are shown in Table 6.8. 

Clarified water turbidity 

Figure 6.21 shows the clarified water turbidity from the human operator and intelligent 

control. Both of them varied with coefficients of determination (r2
) of 0.77 and their 

means and standard deviations were 6.35±1.52 NTU and 6.20±2.44 NTU respectively. 

Their performances were marginally acceptable with the target at 7 NTU. Although the 

intelligent control system with the smaller mean of clarified water turbidity worked better 

than human operators, it had a higher standard deviation. This implied the existence of 

operational instability which was also evidenced by the larger number of runs upsetting 
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the operation target (88 runs upset the target of 7 NTU) compared with that of the human 

operators (76 runs upset the target of 7 NTU). 
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Figure 6.21 Turbidity removal performances (BKWTP case study), showing the 

simulation results of actual values of clarified water turbidity versus that of the 

intelligent control system using test set 

Parameters Human operator Intelligent control 

Clarifier water turbidity 
6.35±1.52 NTU 6.20±2.44 NTU 

(Mean±std),(NTU) 
Clarifier water turbidity 

76 runs 88 runs 
(upset number*, runs) 

Clarifier water turbidity 
28.0% 32.5% 

(upset percentage**, % ) 

Alum dosage (mg/L) 30.79±9.96 mg/L 29.48±6.61 mg/L 

Polymer dosage (mg/L) 0.020±0.010 mg/L 0.025±0.010 mg/L 

Turbine speed (Sec/Rev.) 1.43 ± 0.22 RPM 1.49 ± 0.22 RPM 

Sludge drainage rate (Hours) 
39.98±17.79 

34.57±11.01 Sec/Hours 
Sec/Hours 

Operational cost 
$AUS 4.14 ±1.07 $AUS 4.00 ±0.89 

(AUS$ per thousand cubic metres) 
* Upset number is defined as number of runs which upsets the operational target 

**Upset percentage= upset number/272* 100 

272 

Table 6.8 Intelligent control system performance (BKWTP), showing the summary 

of the clarified water qualities and control actions of actual values of the human 

operator versus that of the intelligent control system. 
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Control actions and operational cost 

In Table 6.8, operating the clarifier by human operators has been shown to be slightly 

more costly by about 3.45 percent more than by using the intelligent control system. The 

associated operational costs were $AUS 4.14 ±1.07 and $AUS 4.00 ±0.89 per thousand 

cubic metres for human operators and for the intelligent control system, respectively. 

The human operators fed a slightly higher amount of alum (30.79±9.96 mg\L) than did 

the intelligent control system (29.48±6.61 mg\L). On the other hand, much less 

polyelectrolyte was fed by human operators. That was 0.020±0.0102 mg\L of 

polyelectrolyte fed by human operators and 0.025±0.010 mg\L of polyelectrolyte given 

by intelligent control. Consequently, the intelligent control system reduced the alum 

dosage by 4.25 percent but increased polyelectrolyte dosages by about 25 percent. 

For the turbine speed and sludge drainage rate, the human operators agitated the water to 

more gently (1.43 ± 0.22 RPM) in comparison with the intelligent control (1.49 ± 0.22 

RPM). On the other hand, human operators tended to drain more sludge (39.98±17.79 

Sec/Hours) than the intelligent control system did (34.57±11.01 Sec/Hours). 

From this simulation using the test set, the intelligent operator performed slightly better 

with a lower mean than the human operators in terms of turbidity removal. However, 

with a higher standard deviation of clarified water turbidity, this resulted in the intelligent 

control being unable to stabilise the operation. This was also evidenced by a larger upset 

number. External interference by a density current might also be the cause. If this was the 

case and raw water temperature were to be the input to the process model, then the 

clarifier model would recognise the density current phenomenon. This would 

considerably help to improve the operational stability. However, considering operational 

costs, the intelligent control system ran the clarifier slightly more cheaply. 

One interesting point found in this simulation was that intelligent control drives the 

control scheme towards a cheaper solution by selecting the cheaper control action of 

polyelectrolyte dosage the same as it did in the case of BEWTP. However, 25 percent 

more polyelectrolyte dosage seems a large figure but operational stability (possibly due 

to current density) could still not be achieved. This was evidenced by a larger upset 

percentage and standard deviation. The intelligent control system might possibly not 

receive enough information. One should realise that the intelligent control had no 
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information about water temperature and this was directly concerned with the current 

density phenomenon. 

In this simulation, the intelligent control agitated more gently (resulting in a lower 

amount of floe being produced) but at the same time had to retain larger amounts of floes 

in order to maintain mass balance in the clarifier by lessening sludge drainage (section 

2.2.2). This signified that the intelligent control system well recognised the control 

pattern from past operational data. 

6. 7 Chapter Conclusion 

The intelligent control system was composed of an ANN clarifier process model and 

MOGA optimiser under MPC architecture. By simulations using selected test sets (the 

same as used in Chapter 5), the performance of the intelligent control systems were 

compared with human operators in both case studies. Most of the MOGA parameters 

were selected according to guidelines from previous studies. Only population size and 

number of generations were optimised by trial and error processes. The intelligent control 

systems were designed specifically for each case study because each had different 

operational targets. 

In recognition of the result from Chapter 5, the optimal temporal span of 8 hours for 

BEWTP and of 12 hours for BKWTP were used for each of the intelligent control 

systems. Furthermore, one time step ahead of four hours was set as the control and 

predictive horizon for both systems. The shortest normalised distance approach was 

employed as the decision maker and control action boundaries were limited in order to 

alleviate ill posed problems in the process models. 

From the simulation result of these two case studies, the intelligent control system 

operated clarifiers at a lower operational cost compared with human operators. In terms 

of impurity removal performance, the intelligent control system showed a performance 

superior to human operators at the BEWTP but satisfied the operational target only 

marginally for the case of the BKWTP. 

The control actions given by the intelligent control systems were theoretically logical. 

For instance, in the case of the BEWTP, with a lower mean of chemical dosages, the 
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intelligent control system increased the turbine speed to generate more floes for mass 

balancing in the clarifier. In case of BKWTP, with a lower dosage of alum used 

(compared with that of human operators), the intelligent control decided to raise the 

polyelectrolyte dose which resulted in lessening the overall operational cost. 

From the simulation results of the BKWTP case study and comparing between the 

intelligent control system and human operators, their turbidity removal performance was 

closely similar. However, the intelligent control system gave a cheaper operational cost. 

Although the mean of clarified water turbidity marginally satisfied the operational target, 

but in 88 runs from 272 runs (about 32.5 percent) the clarified turbidity target was not 

met. This was rather high if it was compared with that of the BEWTP case study, in 

which 47 runs from 204 runs (about 23.0 percent) of target were not met for clarified 

turbidity target and 7 runs from 204 runs, (3.4 percent) were unmet for clarified water 

colour. 

In the BEWTP case study the intelligent control system performed better than human 

operators in terms of both impurity removal and operational cost control. All the 

operation targets were well satisfied. To confirm the result of the simulations, a full scale 

pilot plant test should ideally be implemented. Unfortunately a pilot plant test could not 

be conducted in BEWTP because there is only a single clarifier which is continuously 

operated at BEWTP. A second clarifier exists but it is used only for batch operation. It 

was, of course, not possible to implement the intelligent control system while the human 

operators were running the clarifier. Safety and community health issues were also of 

concern. If any errors occurred in trialling the pilot plant, major worries would arise in 

the local community. Additionally, one of the control actions, sludge drainage, was 

excluded from the input set since the data were not available. Therefore, it was not 

reasonable to try to conduct a pilot plant test. The human operators also have greater 

freedom of choices of the control actions to be taken whilst choices would be limited if 

the intelligent control were to be employed. 

However, it could be claimed that in terms of the simulation results, the performance of 

the clarifier with an intelligent control system at BEWTP was superior to that of 

BKWTP. Therefore, an implementation of a pilot plant test at BKWTP should be set as a 

priority. Other additional factors supporting this decision are that (i) all of the control 

actions that the operators used were all utilised for the intelligent control system. (This 
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was not in case ofBEWTP) and (ii) many (18) clarifiers operate at BKWTP, and it would 

be possible to compare the performance of the intelligent control system and human 

operators in identical conditions. (iii) A single clarifier could be used for a full scale pilot 

plant test while the other 17 clarifiers were operated as normal, and so there would be 

little potential impact on safety or on community health. 

The novel idea of using an intelligent MPC with the ANN process model with an 

evolutionary optimiser MOGA to control the clarifier was confirmed by the simulation 

results for both case studies. They showed potential for use in real life situations. The 

other configurations of the intelligent control system, such as the decision maker based 

shortest normalised distance and using the control action bounded for partition of the 

operational domain were contributed to the originality of this mode of the clarifier 

control. The next chapter describes the full-scale pilot plant test at the BKWTP. 
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7.0 CLARIFIER INTELLIGENT CONTROL 

PERFORMANCE: FULL-SCALE PILOT PLANT 

TEST 

7.1 Introduction 

This chapter describes the pilot plant test of the BKWTP intelligent control system that 

was developed in Chapter 6 and is based on ANN Model Predictive Control (MPC) 

(composed of the BKWTP ANN clarifier process model and the MOGA optimiser). The 

full-scale pilot plant test was conducted at Bang Khen Water Treatment Plant (BKWTP), 

Bangkok, Thailand, during the period of August and September 2008 which was the early 

rainy season. This was the first flood period of the year with high flow rate in Chao 

Phraya River causing high degree of erosion and raw water turbidity increase. Therefore, 

it was a suitable period for full-scale pilot plant test since the intelligent control system 

would be tested in the wider range of raw water turbidity. The performance of the 

intelligent control system was compared with that of human operators in real situations 

using the criteria of turbidity removal and operational cost. Some practical aspects 

concerning BKWTP will be introduced as background before the pilot plant test results 

are discussed. In sequence, this chapter presents: (i) the intelligent control system 

integration which describes how the intelligent control system is merged into the existing 

control system, (ii) the agreement of the full-scale pilot plant test and some practical 

issues of BKWTP, and (iii) the evolution of intelligent control system performance and 

comparison with that of human operators. 

7.2 Intelligent Control System Integration 

In general, operators control the clarifier by using four control actions: alum dosages, 

polyelectrolyte dosages, turbine speed and the sludge drainage rate. Selection of suitable 

control actions are taken using information concerning raw water qualities and guided by 

Jar test results. At BKWTP, the clarifiers are routinely operated manually. Although a 

number of online sensors are presented in the system, these are not fully electronically 

linked together (because a Supervisory Control And Data Acquisition, (SCADA) system 

being installed is not yet available). Manual meter readings are taken from each sensor 

and an internal telephone is used to communicate information. Data is manually entered 

to spreadsheet software together with hard copy used solely for data storage. Data is 
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routinely collected for every four hours in each working day. This includes raw water 

qualities from the laboratory and meter readings. However the Jar test is conducted twice 

a day. From these the suitable alum and polyelectrolyte dosages are recommended. The 

remaining control actions (i.e. the turbine speed and sludge drainage) are optimised by 

using the operator's experience. The flow of information is illustrated in Figure 7.1. 

Alum dosage 

Water quality 
( laboratory) 

Human 
operator 

Online sensors 

lntellegent contr I 
system 

Control 
interface 

Polyelectrolyte 
dosage 

Figure 7.1 The flow of information: A) the human operators receive data from 

laboratories and online sensors, then they select the control actions, B) the 

intelligent control system uses the same data during the pilot plant test. 

Two clarifiers were controlled, one by human operators and one by the intelligent control 

system. The intelligent control system was substituted for the human operator as shown 

in Figure 7.1. During the full-scale pilot plant test, both clarifiers were updated with new 

data every four hours (i.e. the same frequency as that of human operators). Both the 

intelligent control system and the human operators independently selected a set of 

appropriate control actions every four hours. 
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7 .3 Practical Aspect: BKWTP Clarifier Control 

In addition to details initially given in Chapter 2, this section presents more practical 

information concerning the clarifiers at BKWTP. The means by which the operators 

control the clarifiers are discussed. Then the layout of BKWTP and the design and 

capacity of the clarifiers are introduced, and finally the clarifier operation in practice is 

addressed. 

7.3.l Layout, Design and Capacity 

In BKWTP, there are 18 clarifiers of the solid contact sludge recirculation type allocated 

in two production lines. The first production line contains twelve clarifiers and six are in 

the second production line. Two raw water pumps separately drive raw water up to their 

head tanks then gravity feed the raw waters to the associated production lines. The solid 

contact sludge recirculation type is designed for high production rates ( surface overflow 

rate) in the range of 2.0 to 2.4 m/hour. The recycling of the sludge is introduced to 

enhancing floe amalgamation and to minimise chemical use. The clarifiers at BKWTP 

are designed to operate in a range of not more than 150 NTU of raw water turbidity 

(MW A, 2000). 

All clarifiers are of the same size, 58 metres in diameter, each with a capacity of about 

200,000 Cubic Metres per Day (CMD). With different sizes of the reaction well, they are 

categorised into three groups as shown in Table 7.1. These clarifiers are numbered and 

located in two production lines as shown in Figure 7.2. The alum and polyelectrolyte are 

dosed to the first production line containing 12 clarifiers. The other six clarifiers are 

located in the second production line and dosed by Poly Aluminium Chloride (PAC) and 

polyelectrolyte. 

Clarifier 
Reaction zone size Designer 

number 

Small reaction zone 1-6 Eimco 

Medium reaction zone 7-10 & 13-18 Fuler & Smith 

Large reaction zone 11&12 Ebara 

Table 7.1 Clarifier types in BKWTP 
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Source: www.earth.geogle.com 

Figure 7.2 Layout of BKWTP, showing the satellite image of BKWTP with 18 

clarifiers in two production lines. Water is sourced from the raw water canal and 

retained in the reservoir before pumped to the treatment process. After the 

treatment process, the treated water is stored in the treated water storage and fed to 

the distribution network. The drained sludge is discharged to the sludge lagoon. 
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Figure 7.3 Cross section view of the solid contact clarifier at BKWTP, showing the direction of flow of the raw 

water and the equipment in the clarifier. The red arrows represent raw water and blue arrows represent 

clarified water. 
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7 .3.2 Bang Khen Clarifier Operation 

Figure 7 .3 presents the cross section of the clarifier and illustrates the detail of each unit 

in the clarifier and shows the direction of the raw water flowing through the clarifier. The 

pH adjusted raw water is initially pumped to the clarifier through the inline mixer 

installed at the inlet of the clarifier. Alum is also dosed at the inline mixer and assumed to 

be completely mixed with raw water. In the clarifier, raw water flows to the reaction well 

via the raw water conduit. A recirculation drum and turbine spin in the direction that 

forces the raw water to flow up to the top of the reaction zone. Here, the polyelectrolyte 

is fed to help floe amalgamation. Suspended solid, alum and polyelectrolyte initially form 

larger particles (called floes) by gentle agitation of the turbine. Collision between floes 

(acting under soft agitation) further promotes floe amalgamation in the reaction zone. The 

large floes continuously settle to the bottom zone. While the scalper is sweeping around 

the floor to collect the settle floes, some small portion of settle floes are mixed with new 

coming water to promote floe amalgamation (this explains the term "slurry recirculation" 

in the name of the type of clarifier). The excess settled floes are drained through the 

sludge drainage system for mass balancing in the clarifier. The clarified water flow 

upward to effluent launder and discharge to filter unit. The relationships between these 

control actions (i.e. turbine speed, sludge drainage rate, alum and polyelectrolyte dosage) 

are already described in section 2.2. 

7.3.3 Monitoring and Control 

Figure 7.4 presents a diagram of clarifier sampling points and control actuators. In terms 

of process monitoring, the operators routinely measure the water qualities every four 

hours. The measurements are taken six times daily at 00:00, 04:00, 08:00, 12:00, 16:00 

and 20:00 hours. Raw water qualities are sampled after the water has been conditioned by 

lime (at the inlet of the clarifier) and clarified water turbidity is monitored at the outlet of 

the clarifier. The sludge concentration is also measured every four hours. As this is the 

only information available from inside the clarifier, sludge concentrations are sampled at 

the reaction zone (at R in Figure 7.4) and at three other points along the depths of the 

clarifier. One sample point is at the bottom (at B in Figure 7.4) and the other two are at 

the middle and top of the tank (at Mand Tin Figure 7.4). For clarity, the sludge sampling 

pipes and the sampling points (B, M, R and T) also shown in Figure 7 .3. 
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For process control, operators normally use four control actions (i.e. alum dosage, 

polyelectrolyte dosage, turbine speed, and sludge drainage), and they will take action at 

least every four hours. The chemical dosages are guided by Jar tests which are conducted 

twice a day (at 08:00 and 16:00 hours). Proactive control actions are also possible and 

this occasionally happens during abrupt changes in raw water qualities . In this cases the 

operators will request an extra jar test and make a decision for a new set of control 

actions. 

Raw water qaul ities 

Rawwa er 

Jar test 
resu lts 

Operato rs 

Turbine 
drive unit 

Filter 

Sludge lagoon 

Sludge drainage 

Figure 7.4 Clarifier sampling points and control actuators; presenting the flow of 

information from the sampling points to the control actuators for clarifier control at 

BKWTP 

Bes ides clarified water turbidity, sludge concentration is used to monitor the 

completeness of the operation. Normally, regardless of chemical dosage and raw water 

quality, from two to three percentage of sludge concentration should be maintained in the 

reaction zone (position ' R') and less than one percent in the middle zone (M). In practice, 

there should be strictly no sludge in the top zone (T), and not more than five percent in 

the bottom zone (B) (MW A, 2000). The sludge concentration sampled from inside the 

reaction well is an indicator of floe amalgamation. Samples from inside and outside of 

the reaction well provide an ale1i for an upset condition. In Figure 7.5 the operator is 

collecting sludge from the sludge sampling pipes (from B, M, T and R positions) located 

beside the clarifier tank. 
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Figure 7.5, Sludge samplings showing the operator sampling the sludge from the 

sampling points. The labels B, M, T and R indicated that the sludge was being 

sampled from the Bottom, Middle, Top and Reaction zone of the clarifier. 

7.3.4 Chemical Dosages 

Two chemical agents, alum and polyelectrolyte are directly concerned with BKWTP 

clarifier control. The Jar test results are used to guide these chemical dosages. In 

BKWTP, the chemical section staff feed alum and polyelectrolyte in amounts appropriate 

to the whole production line. It is the responsibility of the operators to adjust the 

chemical flow rates into each clarifier. Theoretically, the chemical agent should be fed 

equally to each clarifier but this may not be the case in practice due to the different sizes 

of the reaction wel l and the hydraulic condition within each clarifier. This adjustment 

relies purely on the operator's experience. [n Figure 7.6, the author is trained to adjust the 

valves for optimal alum dosage. 

Figure 7.6 Adjusting chemical dosages. (The author in training for chemical dosage 

control with the senior operator) 
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Turbidity precipitation is the main target at BKWTP, because the turbid raw water from 

its source is highly variable in turbidity on a seasonal basis. The density current is 

another of the main concerns because the clarifier is large in size, and there is severe 

difference between day and night temperatures of Bangkok. A recommendation has been 

made to use a density current baffle system to alleviate this problem. However, this 

solution is not possible in the short term because it would be costly and operations would 

have to stop during the installation. It may be less efficient to confront this problem by 

using slightly raised overdose of alum and polyelectrolyte to enhance floe amalgamation. 

In the opinion of the chief operator, operational stability can occasionally be achieved by 

slightly overdosing with the chemical agents especially ifthe day is hot. 

Until the year 2006, high corrosion in the river caused of peaks of raw water turbidity. 

This was especially common in the early periods of the rainy season (July to August). 

River sand mining is also often the cause of raw water peaks outside the rainy period. 

However, since 2006, river sand mining is legally prohibited and this has resulted in the 

water being clearer. Unfortunately, clear water promotes photosynthesis and results in 

algae blooms. When raw water containing algae is used (even though it brings a lower 

turbidity), it results in shorter filter run times. Usually, filters requires back washing 

twice a day (when clarified water turbidity is not more than 7 NTU). During algae crises 

even with the same turbidity value, the filters need to be backwashed much more often 

(MWA, 2006). Sometimes washing is needed more than four times a day. This problem 

was first discovered in the summer of year 2006, when water flooded over the filter units. 

To alleviate this crisis, some actions have been taken: (i) intermediate chlorination, where 

the chlorine can be fed at the intake of the clarifiers, or (ii) Jar tests are taken frequently 

for algae removal (rather than only for turbidity) (MW A, 2006). The chief operator 

believes that increasing the alum and (especially) polyelectrolyte dosages helps in algae 

removal. 

7.3.5 Operational Target Upset and Alleviation 

In some situations, the clarified water turbidity may be considerably above the 

operational target of 7 NTU. According to the operation manual (MWA, 2000), the 

following actions are suggested. If the turbidity leakage is not severe (say between 7 and 

15 NTU), the operators should reduce the turbine speed and increase the sludge drainage. 

However, if the clarified water turbidity reaches more than 15 NTU even after the rapid 
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slowing down the turbine speed, the emergency drain is suggested as a first line control. 

Then the operators should increase the chemical dosages and a request for an extra Jar 

test is permissible. However, after using emergency sludge drain, the operator should 

keep the sludge concentration in the reaction zone (R) and in the bottom zone (B) up to 

about 15 to 20 percent higher than the normal level (equivalent to the starting up state) 

and later slowly reduce them again. 

7.4 Agreement of Full-scale Pilot Plant Test 

The first production line is the main production line of the BKWTP and has a 

productivity of twice the second production line. Clarifier number nine, which is located 

in the middle of this production line, was chosen for installing the intelligent control 

system. This avoided any bias resulting from varying distance from the head tank leading 

to different hydraulic conditions (Figure 7.2). In addition, it alleviated the bias due to the 

reaction well sizes since Clarifier number nine's reaction well is of middle size (as shown 

in Table 7.1) 

It was necessary to select one clarifier from the other eleven clarifiers in this production 

line to represent the human operator. The clarified water turbidity needs to show 

similarity with that of Clarifier number nine. This task was actually done by comparing 

the coefficients of determination (r2
) between clarified water turbidity at Clarifier number 

nine to the others. These correlation tests were conducted on past operational data from 

January to April 2008 (a period of four months before the pilot plant test took place). 

After that one clarifier was chosen to represent a human operator, and its performance 

was compared with that of the intelligent control system. 

Not all the control actions could actually be executed and implemented punctually (for 

every four hours) due to delay in obtaining manual and laboratory results. However, it 

has been assumed that all the control actions were applied promptly. 

The control actions were optimised by the intelligent control system in order to (i) 

minimise the clarified water turbidity and (ii) minimise the operational cost. The 

intelligent control system optimises its control actions within predefined boundaries (as 

shown in Table 6.6) to alleviate any ill posed problems. Other components of the MOGA 

optimiser were also predefined and shown in Table 6.2. The control and predictive 
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horizons were four hours ahead. As it had been proved to be the optimal temporal span 

(section 5.3.3), the inputs at present time and three further lags were input to the process 

models. (i.e. t, t-4, t-8 and t-12 hours). The list of input variables is shown in Table 5.8. 

Operational cost was calculated per one cubic metre of raw water. Only the chemical 

costs of alum and polyelectrolyte were accounted for in the optimisation process. 

Electricity and labour costs were not included. 

7.5 Selection of a Representative for the Human Operated 

Clarifier 

A clarifier to represent the human operated clarifiers needed to be selected. The 

performance of this clarifier was to be compared to the performance of the intelligent 

control system operated clarifier. Selection was based on similarity in performance 

measured by a correlation test for performance using past operational data of 718 runs 

from January to April 2008 (which was the four months' period before the full-scale pilot 

plant test). This was at the end of the winter close to the summer period when the raw 

water turbidity is low (in the range of 23 to 78 NTU and with mean±standard deviation of 

37.00 ± 5.35 NTU). The performance of Clarifier number eight was not accounted for 

since its operational data was incomplete. The r2 between the clarified water turbidity of 

Clarifier number nine and the other clarifiers are shown in Table 7 .2 including the upset 

numbers (i.e. the upset number is the number of runs whose clarified water turbidity is 

more than the operational target of seven NTU). The associated means and standard 

deviation are also given. The associated r2 and the upset numbers of these clarifiers are 

graphically plotted in Figure 7.7 and Figure 7.8 respectively. 

All these clarifiers operated very well since the means of clarified water turbidity all 

satisfy the operational target of seven NTU. However it was found that clarified water 

turbidity of Clarifier number nine was the closest to that of Clarifier number ten. 

Although their r2 was small (0.47), it was the largest in comparison with all the others. 

Some similarities might be expected and detected since they were of the same design as a 

medium size reaction well by Fuler & Smith, and each one was located next to each 

other. Therefore, as they are at the same distance from their respective head tanks this 

results in having hydraulic similarity. 

189 



Chapter 7 Clarifier Intelligent Control Performance: Full-Scale Pilot Plant Test 190 

~ 04 

~ 
§ 0 3 

~ 
'a 0 2 
gj 

~ 01 
8 

0 
2 3 4 5 6 7 10 11 12 

Clarfier number 

Figure 7.7 Coefficients of determination, (r2
) between the clarified water turbidity of 

Clarifier number nine to the others 
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Figure 7.8 Upset numbers, presenting the number of runs of the clarifiers of the 

first production line which upsets the operational target of seven NTU. (Data from 

clarifier number eight was not available) 

Clarifier Coefficient of determination Upset Clarified water turbidity ,NTU 

Number to Clarifier nine,(r2
) number (Mean± Standard deviation) 

1 0.26 16 4.17±1.14 

2 0.43 20 4.47±1.18 

3 0.46 21 4.31±1.15 

4 0.45 19 4.33±1.30 

5 0.32 71 4.72±1.68 

6 0.24 44 4.40±1.73 

7 0.30 13 4.66±1.06 

8 Data unavailable - -
9 1.00 11 4.45±0.92 

10 0.47 12 4.54±0.97 

11 0.42 32 4.87±1.19 

12 0.17 29 4.33±1.61 

Table 7.2 Coefficients of determination, (r2
) and performance of each clarifier in the 

first production line, showing r2 between the clarified water turbidity of clarifier 

number nine and the others, together with their clarified water turbidity 
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Difficulties were recognised when the operators operated Clarifier number 5, 6, 11 and 

12 as evidenced by the large upset numbers (as presented in Figure 7.8). Since their 

locations are near the dead end of the conduit (Figure 7 .2), blocking the flow at the end of 

conduit always results in eddy flows which introduce the high turbidity to those clarifiers. 

In addition, the clarifiers with smaller reaction zone size (Clarifier numbers 5 and 6) are 

more sensitive to this effect than the larger ones (Clarifier numbers 11 and 12). This is 

because the larger size of their reaction zones produces more floes which are able to 

buffer these situations. 

7 .6 Bang Khen Clarifier Full-Scale Pilot Plant Test: Method 

and Results 

This section describes full-scale pilot plant method and compares the performance 

between human operators and the intelligent control system in terms of turbidity removal, 

operational cost and control actions in predefined ranges of raw water turbidity. The 

predictive performance of intelligent control system is also examined. 

7.6.1 Pilot Plant Test Method 

Clarifier number nine is operated by the intelligent control system. On the other hand, 

Clarifier number ten is selected as representing the human operator. Consequently, 

Clarifier number 9 is called an "Intelligent clarifier" and Clarifier number 10 is called a 

"Human clarifier". 

For every four hours, the plant status (e.g. raw water qualities) in the format of temporal 

data of present, t-4, t-8 and t-12 hours was input into the intelligent control system. The 

intelligent control system then solved values for the optimum set of control actions (alum 

dosage, polyelectrolyte dosage, turbine speed and sludge drainage rate). These control 

actions were then applied to the intelligent clarifier plant. All the temporal data were 

informed via the telephone line. The control actions had to be applied manually to the 

plant, since the SCADA system was not available in BKWTP. From receiving the data to 

implementing the control actions, it took about 20 to 30 minute. Most of this delay was 

contributed by laboratory process, communication and manual implementation of the 

control actions. The data input and computational time was less than 5 minutes. 
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Raw water turbidity is recognized as one of the most significant factors in the 

performance of any clarifier (ASCE. & A WW A., 1990). Figure 7 .9 presents raw water 

turbidity during the pilot plant test from September to August 2008. At the beginning of 

the period, raw water was at about 70 NTU and rose to its first peak of 145 NTU. After a 

while, the raw water again rose to the second peak of 192 NTU and it dropped to about 

70 NTU at the end of the pilot plant test. Statistically, the maximum and minimum were 

192 and 67 NTU respectively and their mean± standard deviation was 118.94 ± 30.14 

NTU. 
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Figure 7.9 Raw water turbidity during the period of the full-scale pilot plant test 

The performance in prediction and turbidity removal of the intelligent control system 

were compared with those of human operators in the two schemes according to raw water 

turbidity values: Firstly the comparisons were taken for the overall range of raw water 

turbidity and, secondly, in the separate ranges bounded by the mean± standard deviation 

of the raw water turbidity of the historical operational data (93.58±35.10 NTU, Table 3.8) 

used to develop the intelligent controller. These comparisons and assessments were taken 

in two ranges. The first range was when the raw water turbidity was in the range of mean 

± standard deviation (93.58±35.10 NTU) of the past operational data, (i.e. 58.90 NTU:S 

raw water turbidity :S 127.64 NTU). For the second range, the assessments were done 

when the raw turbidity was distant from the means or when the turbidity was beyond the 

range of mean ±standard deviation as recorded from past operational data. However, 
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during the period of the full-scale pilot plant test, the raw water turbidity was never lower 

than 58.90 NTU. Therefore, the upper raw water turbidity value of 127.64 NTU was used 

as the only threshold. 

7.6.2 Pilot Plant Predictive Performance 

For the overall range of raw water turbidity, the predicted and actual clarified water 

turbidity of Clarifier number nine (controlled by the intelligent control system) are 

graphically shown in Figure 7.10. Generally, the predicted values of clarified water 

turbidity were lower than the actual values. This was evidenced by the smaller means of 

5.94 NTU while the actual clarified water turbidity value was 6.36 NTU. Their associated 

standard deviations were similar, with the values of 1.59 and 1.54 NTU respectively. 
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Figure 7.10 Predicted clarified water turbidity, showing the predicted versus actual 

turbidity of clarified water turbidity during full-scale pilot plant test 

The r2 is 0.75, and its associated MAE was less than one NTU (0.72 NTU). Although the 

predictive error was slightly high despite a moderate r2
, the ANN process model was able 

to recognise the occurrence of changes in actual clarified water turbidity. Figure 7.11 

shows that the predictive reliability of the ANN model was marginally acceptable for the 

overall range of raw water turbidity since the percentage error of 11.31 percent was only 

just above the lower measurement error of the turbidity meter of ten percent (Table 3.6). 

Their associated statistical parameters are tabulated in Table 7.3. 
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Actual clarified Predicted clarified 
Raw water turbidity range 

water turbidity water turbidity 

Mean±Std (NTU) 6.36±1.54 5.94±1.54 
_2• r 0.77 

Overall range 
MAE,(NTU) 0.75 

Percentage error .. 11.31 

Mean±Std (NTU) 6.14±1.58 5.85±1.68 

Raw water turbidity r· 0.81 

less than 127.6 NTU MAE,(NTU) 0.65 

Percentage error .. 10.60 

Mean±Std (NTU) 6.73±1.46 6.09±1.27 

Raw water turbidity rL· 0.67 

more than 127.6 NTU MAE,(NTU) 0.84 

Percentage error .. 12.43 
• _L. • .. -r 1s coefficient of determmat1on, Percentage error - (MAE/mean)* I 00 

Table 7.3 Prediction performance of the intelligent control system, presenting the 

predictive performance of clarified water turbidity during the full-scale pilot plant 

test. The predictive performance was separately described in the "Overall range", 

"less than 127.6 NTU" and "more than 127.6 NTU" of raw water turbidity 

If the predictions were taken when the raw water turbidity value was less than I27.64 

NTU, then the predictive performance was slightly improved. This was evidenced by the 

smaller MAE of 0.65 NTU and larger r2 of 0.83. Given this better prediction, the 

predicted error was reduced to I I .07 percent. On the other hand, if the predictions were 

taken when raw water turbidity value was more than I27.64 NTU, then the predictive 

performance was less accurate. The associated MAE increased to 0.87 NTU and the 

ANN process model faced difficulty in recognising the trends of the clarified water 

turbidity (as evidenced by the decrease of r2 to 0.69). The percentage error rose to I2.43 

percent which was above the turbidimeter measurement error for an acceptable lower 

threshold (which was 10 percent). All of the associated statistical parameters are 

tabulated in Table 7.3. For comparison, the r2 and MAE of the prediction over the range 

of raw water turbidity is graphically shown in Figure 7. I I a b, and c respectively. In each 

case, the prediction was shown for the overall turbidity range, and for turbidity within 

and outside of the historical data range. 
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Figure 7.11 Predictive performance, presenting the comparison of the predictive 

performance parameter in the separate ranges of "Overall range", "less than 127.6 

NTU" and "more than 127.6 NTU" 

a) Coefficient of determination (r2), b) Mean absolute error, c) Percentage error 

7.6.3 Clarified Water Turbidity 

The clarified water turbidity of the intelligent clarifier (i.e. Clarifier number nine 

controlled by the intelligent control system) and the human clarifier (i.e. Clarifier number 
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ten controlled by human operators) are plotted in Figure 7.12. The associated statistic 

parameters are shown in Table 7.4. 
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Figure 7.12 Clarified water turbidity; showing the clarified water turbidity values of 

the human clarifier and the intelligent clarifier during period of full-scale pilot plant 

test 

For the overall range of raw water turbidity, both the intelligent control system and the 

human operators showed acceptable performance, since their overall means and standard 

deviations were 6.36±1.54 NTU and 6.28±1.47 NTU which were both less than the seven 

NTU target limit. The intelligent control system operated the clarifier with an upset 

number (the number of times the clarified water turbidity exceeded the operational target 

of seven NTU) of 95 runs from 296 runs (i.e. the upset percentage was 32.09 percent). 

On the other hand, the human operators performed better than intelligent control system 

by reducing the upset number to 82 from 296 runs (27.70 percent). 

When the raw turbidity was less than 127.64 NTU, both human operators and the 

intelligent control system operated the clarifiers fairly well. Their associated means and 

standard deviations of clarified water turbidity showed almost identical values of 

6.14±1.59 and 6.15±1.55 NTU, respectively. Both satisfy the operational target of seven 

NTU, with 187 runs in this range of raw water turbidity. Forty-seven runs (or 25.12 

percent) upset the operational target when human operators operated the clarifier. On the 

other hand, 49 runs (or 27.70 percent) were upsets when the clarifier was operated by the 

intelligent control system. The associated clarified water turbidity and upset percentage 

in each range of raw water turbidity are shown in Figure 7 .13 a and b. 
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Figure 7.13 Turbidity removal performance, showing performance of the intelligent 

controller versus human operator in raw water turbidity ranges 

a) Clarified water turbidity, b) Upset percentage 

There were 109 runs in this turbidity range, where the raw water turbidity was higher 

than 127.64 NTU (i.e. beyond the range of mean± standard deviation). Both the human 

operators and the intelligent control system operated the clarifiers satisfactorily. This was 

evidenced by clarified water turbidity with means and standard deviations of 6.52± l .23 

and 6.73± l .46 NTU respectively. Although their raw water turbidity means were below 

the operational target of seven NTU, their associated upset percentages increased to 

32.09 percent (i.e. 35 runs from 109 runs) for the human clarifier and 42.20 percent for 

the intelligent clarifier. Both results were higher than they were in the lower ranges of 

raw water turbidity. The performance of both the intelligent control system and the 

human operators are graphically shown in Figure 7 .13. 

An increased upset percentage indicated the existence of operational difficulties. The 

clarifiers in BKWTP were initially designed for maximum water turbidity of 100 to 150 

NTU at normal plant flow rates. With such a high raw water turbidity range, the operators 

could only lessen the upset percentage by reducing the flow rate through the plant. 

However, the community demand for water has increased, so reducing the plant flow rate 
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could not be the preferred choice. As this constraint must be honoured, the operators 

were forced to optimise other control actions, and this was the main contributor to a 

raised percentage of upset values. 

When the raw water turbidity increased beyond the training range of the intelligent 

control system (higher than 127.64 NTU), the upset percentage for intelligent control 

increased further than when using human operators. Unsuitable control actions occurred 

as the predictive performance of the process model decreased. When the predictions were 

employed beyond the range of the trained mean ±standard deviation of raw water 

turbidity, the predictive performance of the ANN model decreased because it had been 

trained inadequately in this range. It might be argued that a suitable prediction range 

should not be defined by using only raw water turbidity because the ANN clarifier 

process model was a multi dimension model in which the raw water turbidity was not the 

only input. However, the raw water turbidity was the input most closely related to the 

model's output (i.e. the clarified water turbidity). Its small coefficient of correlation, r of 

0.29 is larger than any other inputs (Table 3.8). Additionally, raw water turbidity is 

obviously essential to successful clarifier operation (ASCE. & AWW A., 1990). 

Human 
Intelligent 

Raw turbidity range Parameters control 
operators 

system 

Clarified water turbidity 
6.28±1.47 6.36±1.54 

Overall range 
Mean±Std (NTU) 

Upset number (run) 82 95 

Upset percentage(%) 27.70 32.09 

Clarified water turbidity 
6.14±1.59 6.15±1.55 

Raw water turbidity Mean±Std (NTU) 

less than 127.64 NTU Upset number (run) 47 49 

Upset percentage 25.13 26.20 

Clarified water turbidity 
6.52±1.23 6.73±1.46 

Raw water turbidity Mean±Std (NTU) 

more than 127.64 NTU Upset number (run) 35 46 

Upset percentage(%) 32.11 42.11 

Table 7.4 Turbidity removal performance analysis, presenting performance of the 

intelligent controller versus the human operator in each range of raw turbidity. 
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7.6.4 Operational Cost 

In the same manner, the operational costs will be discussed according to three ranges of 

raw water turbidity. The operational costs of varying raw water turbidity range are 

presented in Figure 7.14. 
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Figure 7.14 Operational cost, showing the comparison of operational cost between 

the intelligent controller and the human operator in different raw water turbidity 

ranges 

For the overall range of raw water turbidity, the intelligent control system operated the 

clarifier at a cheaper cost compared with the human operators. Their operational costs 

(mean ± standard deviation) were $AUS 4.85± 1.10 and $AUS 4. 97± 1.26 per thousand 

cubic metres respectively. Consequently, the intelligent control system could save the 

operational cost by as much as 2.44 percent. 

When the raw turbidity was in the range of less than 127.64 NTU, the intelligent control 

system and human operators operated the clarifiers at almost the same cost. The human 

operators cost (mean ± standard deviation) $AUS 4.27±0.52 per one thousand cubic 

metres and $AUS 4.21±0.50 for the intelligent control system with a saving of only 1.25 

percent. 

However, when the raw water was in a higher range, more than 127.64 NTU, the 

intelligent control system could save the operation up to 3.71 percent. For one thousand 

cubic metres of clarified water, the human operators operated the clarifier at a mean cost 

of $AUS 6.17 and $AUS 5.94 for the intelligent control system. Their standard 

deviations are $AUS 1.25 and $AUS 1.00 respectively. The associated statistic 

parameters are tabulated in Table 7.5. 
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Figure 7.14 Operational cost, showing the comparison of operational cost between 

the intelligent controller and the human operator in different raw water turbidity 

ranges 

For the overall range of raw water turbidity, the intelligent control system operated the 

clarifier at a cheaper cost compared with the human operators. Their operational costs 

(mean± standard deviation) were $AUS 4.85±1.10 and $AUS 4.97±1.26 per thousand 

cubic metres respectively. Consequently, the intelligent control system could save the 

operational cost by as much as 2.44 percent. 

When the raw turbidity was in the range of less than 127.64 NTU, the intelligent control 

system and human operators operated the clarifiers at almost the same cost. The human 

operators cost (mean ± standard deviation) $AUS 4.27±0.52 per one thousand cubic 

metres and $AUS 4.21±0.50 for the intelligent control system with a saving of only 1.25 

percent. 

However, when the raw water was in a higher range, more than 127.64 NTU, the 

intelligent control system could save the operation up to 3.71 percent. For one thousand 

cubic metres of clarified water, the human operators operated the clarifier at a mean cost 

of $AUS 6.17 and $AUS 5.94 for the intelligent control system. Their standard 

deviations are $AUS 1.25 and $AUS 1.00 respectively. The associated statistic 

parameters are tabulated in Table 7.5. 
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Human Intelligent control 
Raw turbidity range 

operators system 

* 
4.85±1.10. 

Overall range 4.97±1.26 
(Save up to 2.44%) 

Raw water turbidity less 
* 

4.21±0.50· 
4.27±0.52 

than 127.64 NTU (Save up to 1.25%) 

Raw water turbidity more 
* 

5.94±1.00· 
6.17±1.25 

than 127.64 NTU (Save up to 3.71 %) 

$AUS per one thousand cubic metres (based on 1 $AUS= 28.00 Baht) 

Table 7.5 Operational cost 

When the raw water turbidity increased, the operational costs increased noticeably in 

both clarifiers, whether controlled by a human operator or by the intelligent control 

system. This was as expected since more chemical agents are used to precipitate the 

turbidity. Although this occurred quite commonly, it confirms that sensible control 

actions were applied. 

It has so far been assumed that the chemical costs were the only contribution to the 

operational costs. The electricity and labour costs have been ignored. The alum unit cost 

was much cheaper than the polyelectrolyte unit cost. However alum was used in much 

larger amounts (10 to 75 mg/L) than that of polyelectrolyte (0.0 to 0.08 mg/L) (Table 

3.7). Intelligent control reduced the total operational cost by reducing the alum dosage 

and increasing the polyelectrolyte dosage. Therefore employing this strategy would save 

operational costs to a figure below that of human operators in all raw water turbidity 

ranges. 

7.6.5 Control Actions 

Four control actions (alum dosage, polyelectrolyte dosage, turbine speed and sludge 

drainage rate) were used by the human operators and the intelligent control system to 

control their relevant clarifier. The changes of control actions were discussed in two 

scenarios: (i) their magnitudes were compared between human operator's and the 

intelligent control system's, and (ii) the coefficient of correlations (r) of these control 

actions to the raw water turbidity were used to check whether the set of control actions 

assigned makes sense. 
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Magnitude of control actions 

In the first scenario, consideration was given to values over the overall range of raw 

water turbidity and then separately when the raw water was less than or more than 127.64 

NTU. All the associated mean ±standard deviations and coefficients of correlation (r) to 

raw water turbidity in each range are shown in Table 7.6. 

Alum Poly. 
Sludge 

RW turbidity 
Controller dosage dosage 

Turbine speed drainage rate 

range 
mg/L, (r) • mg/L, (r) • 

RPM, (r)' sec /Hour, (r) 
• 

Human 36.52±9.18 0.037±0.012 1.34±0.17 46.86±17.05 

Overall range 
Operators (0.92). (0.90). (-0.81). (0.80). 

Intelligent 35.56±8.01 0.039±0.013 1.37±0.17 45.50±18.96 

control system (0.94). (0.94). (-0.86)* (0.78). 

Human 31.42±3.84 0.031±0.006 1.42±0.12 37.43±8.28 

RW turbidity operators (0.81)* (0.71). (-0.69)' (0.17). 

:5127.64 NTU Intelligent 30.95±3.57 0.032±0.007 1.45±0.14 36.23±6.83 

control system (0.86). (0.81). (-0.71). (0.62). 

Human 45.27±9.10 0.049±0.013 1.19±0.13 63.03±16.05 

RW turbidity operators (0.88). (0.89). (-0.56). (0.80). 

>127.64 NTU Intelligent 43.46±7.33 0.052±0.01 1.22±0.10 61.39±22.32 

control system (0.89). (0.89). (-0.81). (0.65). 
~ .. 
Coefficient of correlat10n (r) to raw water turb1d1ty 

Table 7.6 Control actions, showing the magnitude of control actions and their 

coefficient of correlation (r) to raw water turbidity during full-scale pilot plant 

test 

• Alum dosage 

Figure 7.15 presents the alum dosages which were fed by human operators and the 

intelligent control system during the period of the full-scale pilot plant test. For the 

overall range of raw water turbidity, the associated means and standard deviation of alum 

dosage for the human and the intelligent clarifier were 36.52 ± 9.18 and35.56±8.0lmg/L, 

respectively. That was the human operator fed more alum than the intelligent controller 

by about 2. 71 percent. 
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Figure 7.15 Alum dosages, showing that alum dosages were fed by the intelligent 

controller and the human operator during period of full-scale pilot plant test 

The human and the intelligent controllers fed alum proportionally to the raw water 

turbidity with coefficients of correlation (r) of 0.92 and 0.94, respectively. Both 

correlations (r) being positive implied that the alum dosages changes in the same 

direction as raw water turbidity changes. 

The human operator dosed more alum than the intelligent controllers by about 1.45 

percent for the lower range of raw water turbidity (less than 127.64 NTU) as evidenced 

by their associated means ± standard deviations of 31.42 ± 3.84 and 30.95 ± 3.57 mg/L, 

for the human and intelligent clarifier respectively (Table 7 .6). 

When raw water turbidity was more than 127.64 NTU, the human operators used 4.24 

percent more than intelligent controller. Their associated means ± standard deviations 

were 45.27±9.10 and 43.46±7.33 mg/L, for the human and intelligent clarifier 

respectively (Table 7.6). 

Both methods of control fed alum in similar patterns regardless of the range of raw water 

turbidity received. Human operators fed alum pro rata to the changes of raw turbidity. 

This was evidenced by their positive signs of correlation coefficient (r) of 0.81 and 0.88 

for the lower and higher ranges respectively, and corresponding correlations (r) of 0.86 

and 0.89 for the intelligent control system. 
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• Polyelectrolyte dosage 

Figure 7 .16 presents the polyelectrolyte dosages used by human operators and the 

intelligent control system during the period of full-scale pilot plant test. Human operators 

dosed polyelectrolyte in the range of 0.02 to 0.070 mg/L and the intelligent control 

system dosed in the range of 0.024 to 0.068 mg/L. 

Thus the intelligent control system used more polyelectrolyte than that of the human 

operators by about 5.41 percent since their means± standard deviations, were 0.039 ± 

0.013 and 0.037 ± 0.012 mg/L, respectively. 
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Figure 7.16 Polyelectrolyte dosages, showing the polyelectrolyte dosages were fed by 

the intelligent controller and the human operator during the period of the full-scale 

pilot plant test 

For the lower raw water turbidity range, the human operators and the intelligent control 

system fed polyelectrolyte with the means ± standard deviations of 0.031 ± 0.006 and 

0.032 ± 0.007 mg/L, respectively and similarly 0.049 ± 0.013 and 0.052 ± 0.01 mg/L for 

the higher range of raw water turbidity. Therefore, the intelligent controller dosed more 

polyelectrolyte than the human operators by about 3.23 percent in the lower turbidity 

range and 6.12 percent for the higher turbidity range. 

Regardless of turbidity ranges, both controllers used polyelectrolyte in similar patterns. 

With changes of raw water turbidity, human operators dosed polyelectrolyte with 

correlation (r) of 0.71 and 0.89 for the lower and higher range of raw water turbidity 
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respectively, while corresponding figures for the intelligent controller were 0.81 and 

0.89. 

• Turbine speed 

Figure 7 .17 presents the values of turbine speed values which were assigned were in the 

range of 1.11 to 1.71 for human operators and 1.03 to 2.03 RPM as for the intelligent 

control system. 
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Figure 7.17 Turbine speed, showing the turbine assigned by intelligent controller 

and human operator during period of full-scale pilot plant test 

For the overall range of raw water turbidity, the intelligent control system agitated the 

water by 2.24 percent more than the human operators do, as evidenced by the associated 

means ± standard deviations of 1.37 ± O.l 7and 1.34 ± 0.17 RPM respectively. Their 

coefficients of correlation (r) to raw water turbidity were negative values of -0.81 (for 

human operator) and -0.86 (for intelligent controller). (Therefore changes in turbine 

speed are in the inverse direction to changes in raw water turbidity). 

In the lower range of raw water turbidity, the human operator agitated the water more 

gently than the intelligent control system did by about 2.11 percent and 2.52 percent for 

the higher range of turbidity. In the lower range of raw water turbidity, their associated 

means± standard deviations of turbine speeds were 1.42 ± 0.12 RPM and 1.45 ± 0.14 

RPM which were assigned by human operators and the intelligent controller respectively, 

and that of 1.19 ± 0.13 RPM and 1.22 ± 0.10 RPM for the higher range of raw water 

turbidity. 
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Both human and intelligent controllers agitated the water in similar patterns regardless of 

turbidity ranges. Human operators assigned turbine speeds to change inversely with the 

changes of raw turbidity. This was evidenced by the same negative signs of correlation 

(r) of -0.69 and -0.56 for the lower and higher ranges respectively, and coefficients of 

correlation (r) of -0.71 and -0.81 for the intelligent control system. 

• Sludge drainage rate 

Figure 7.18 presents the sludge drainage rates which were assigned from the range of 30 

to 80 sec/hour by human operators and 23 to 120 sec/hour by the intelligent control 

system. 
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Figure 7.18 Sludge drain age rate 

The human operates the clarifier by draining sludge at 2.90 percent more than the 

intelligent controller does. Their associated mean± standard deviations are 46.86 ± 17.05 

and 45.50 ± 18.96 sec/hour, respectively. Both the human operator and the intelligent 

control system changed the sludge drainage rate proportionally to raw water turbidity, 

with positive coefficient of correlations (r) of 0.80 and 0.78, respectively. 

The human operators drained more sludge than the intelligent system controls did for 

both ranges of raw water turbidity. It was about 3.21 percent more for the lower range 

and 2.6 percent more for higher range of turbidity. Their associated means ± standard 

deviations were 63.03 ± 16.05 and 61.39 ± 22.32 sec/hour, respectively. 

When the raw turbidity was in the lower range, human operators and the intelligent 

controller drained sludge in similar patterns proportional to raw water turbidity, with 

positive values of correlation (r) of 0.17 and 0.62, respectively. For the higher raw water 

turbidity range, human operators and the intelligent controller drained sludge directly in 
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relation to changes of raw turbidity. This was evidenced by the same positive signs of 

correlation (r) of 0.80 and 0.65 respectively. 

Regardless of the raw water turbidity range, the human operators assigned more alum 

dosage and less polyelectrolyte dosage, while the intelligent control system agitated with 

higher turbine speed but drained less sludge. It was known that higher chemical dosages 

and increasing turbine speed (within suitable ranges) enhanced floe amalgamation. The 

intelligent controller had to satisfy the operational cost constraint and thus it assigned a 

lower alum dosage which contributes more to operational cost than polyelectrolyte does. 

It compensated by dosing with more polyelectrolyte and using faster turbine speed. It 

also accepted more retained sludge by reducing the sludge drainage rate. 

Rationality of control actions 

It was not straightforward to quantify how much each control action contributed to 

turbidity removal performance. Changing one control action might be compensated by 

changing another or a combination of the rest of the control actions. The interactions 

between each control action could be explained but not quantified in exact figures. In 

order to investigate how sensible the control actions were, the coefficients of correlation 

(r) of each one to the raw water turbidity were considered under two scenarios: (i) the 

overall range of raw water turbidity and (ii) two ranges of raw water turbidity when it 

was less or more than 127.64 NTU. Figure 7.19 presents the coefficient of correlations (r) 

to raw water turbidity of all four control actions assigned by the intelligent control system 

and human operators. The positive and negative sign of correlations (r) indicate the 

direction of each control actions relative to changes of raw water turbidity. The positive 

sign establishes a change in similar direction while the negative sign indicates an inverse 

relationship. 

Regardless of raw water turbidity ranges (as illustrated in Figure 7.19 a, b and c), the 

pattern of control actions assigned by human operators and by the intelligent controller 

were very similar. The human operators and the intelligent control system both responded 

to the changes of raw water turbidity with a positive direction of change with chemical 

dosages and sludge drainage rate (noticed by the positive sign of correlation (r)) and with 

a negative direction with turbine speed (since their correlation signs are negative). For 

example, if raw water turbidity increased then both controllers added more chemical 

dosages and drained more sludge (positive sign of correlation) but slowed down the 
206 



Chapter 7 Clarifier Intelligent Control Performance: Ful l-Scale Pilot Plant Test 207 

turbine speed (negative sign of correlation). Therefore, m practice these changes of 

control actions assigned by both forms of controllers were theoretically explicable 

(section 2.2). 
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Figure 7.19 Coefficients of correlation (r) between control actions and raw water 

turbidity: a) Overall range of raw water turbidity, b) Raw water turbidity<127.64 

NTU and c) Raw water turbidity:=::127.64 NTU 
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Although the intelligent controller assigned rational patterns, the magnitude of each 

control action was another important factor. Any mismatch of control actions provided by 

the intelligent controller might be contributed to by inaccuracy of prediction by the ANN 

process model, especially when the raw water turbidity was in the higher range of more 

than 127.64 NTU. The ANN process model had little experience in this region of high 

raw water turbidity which was beyond the training range. This would result in less 

predictive reliability and might drive the searching to a suboptimal solution space. 

Additionally, both candidates operated near to, or over, the design limits since the 

clarifier was deigned for raw water turbidity up to 100 to 150 NTU. Also, only the human 

operators, but not the intelligent control system, had sludge concentrate information 

which could guide the selection of suitable control actions. 

7. 7 Chapter Conclusion 

The main objective of the full-scale pilot plant test was to compare the performance of 

the intelligent control system and human operators. Clarifier number nine and Clarifier 

number ten were selected from twelve clarifiers all located in the first production line. 

Clarifier number nine was controlled by the intelligent control system and The Clarifier 

number ten was controlled by the human operators. Clarifier number nine was selected in 

order to avoid hydraulic bias since it is located at the middle of the production line and is 

of median size in the reaction well. Clarifier number ten gave a performance similar to 

number nine, as evidenced by the largest coefficient of determination (r2
) of 0.47 to 

clarified water turbidity of Clarifier number nine. Thus Clarifier number ten was used to 

represent the human operators' work during the full-scale pilot plant test. 

For the overall range of raw water turbidity during the full-scale pilot plant test, the 

predictive performance of the clarifier process model was reliable. Since the percentage 

error (11.~ 1 percent) was only marginally more than the lower turbidimeter measurement 

error (10 percent). The predictive reliability deteriorated when predictions were taken at 

the high turbidity range (more than 127.64 NTU.) when the percentage error rose to 

12.48 percent. The ANN model might not have been sufficiently trained at this high 

range of turbidity which was above value of the mean plus the standard deviation of raw 

water turbidity available from past operational data. However, reliability remained 

acceptable due to the fact that its percentage error was only just above the lower limit of 
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turbidimeter measurement error of 10 percent. On the other hand, when prediction took 

place in the lower region of raw water turbidity (less than 127.64 NTU.), where the ANN 

model was well trained, the reliability was more acceptable, with a decrease in 

percentage error to 11.09 percent which was even closer to the turbidimeter measurement 

error. 

In terms of turbidity removal performance, both human operators and the intelligent 

controller operated their clarifier equally well in the overall range of raw water turbidity 

with the mean ± standard deviation of clarified water turbidity of 6.28 ± 1.4 7 and 6.36 ± 

1.54 NTU, respectively. Both achieved a standard of clarified water turbidity below the 

operational target of 7 NTU. However, the human operators operated the clarifier very 

slightly better than the intelligent controller with 1.60 percent lower mean clarifier water 

turbidity. 

When the upset percentage was considered, it was found that the intelligent control 

system and human operators again showed similar performance in the lower range of 

turbidity. However in the high raw water turbidity range, the human operators exhibited 

superior performance to the intelligent control by lessening the upset percentage by 10 

percent. That the upset percentage rose implies a performance deterioration by the 

intelligent controller. The performance of the intelligent control system was largely 

dependent on the predictive performance of the clarifier process model. In this high range 

of raw water turbidity, the process model might not be trained well enough. Predictive 

errors by the process model might result in misleading it to suboptimal solutions. Both 

human operators and intelligent controller used raw water qualities in common to achieve 

the optimal set of control actions. The human operators had guidance to the sludge 

concentration as one extra piece of information for control optimisation. 

Although its turbidity removal performance was somewhat inferior, the intelligent control 

system operated the clarifier at a more economical cost than the human operators. The 

human operators paid about $AUS 4.97 per thousand cubic metres when the intelligent 

control system used only $AUS 4.85 per thousand cubic metres. The intelligent control 

system managed to economise on the chemical cost, though the electricity and labour 

costs were not accounted for in the operational cost. Due to the existence of a cost 

constraint, the optimal strategy involved more use of polyelectrolyte and less alum 

dosage because the alum was used in much greater amounts than polyelectrolyte even 
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though its unit cost was cheaper. During the period of the full-scale pilot plant test, the 

intelligent controller saved the operation 2.41 percent of cost. At this rate, if the 

intelligent control system were to be installed at all the clarifiers in BKWTP, the 

operational costs would save about $AUS 153000 per annum at the full production 

capacity of 3.5 million cubic metres per day. The reduction of labour cost for human 

operators is another reduction which was not included but employment would be reduced 

if this policy were to be introduced. 

In respect to the of control action magnitudes, the intelligent control system reduced 

chemical use by selecting less alum dosage but more polyelectrolyte dosage to keep total 

cost low. To minimise the overall operational cost, the intelligent control system drove 

the control scheme to use less alum. For the physical control actions, the intelligent 

controller agitated more intensively to compensate for a lesser use of alum. With less 

alum used, there was not much sludge to drain, and the intelligent control system could 

assign a lower sludge drainage rate. The rationality of control actions was measured 

using coefficients of correlation (r) against raw water turbidity. In theory the intelligent 

control system responded to changes of raw water turbidity in a way similar to that of a 

human operator. Alum and polyelectrolyte dosages were assigned to alter in the same 

direction as changes of raw water turbidity but in an inverse direction for turbine speed 

and sludge drainage rate. 

The feature of using more polyelectrolyte and less alum dosage in order to minimise the 

operational cost also exists in the simulation. Referring to the simulation results, the 

intelligent control system reduces the alum by about 4.1 percent and by much more than 

of 25 percent for the polyelectrolyte dosage (Section 6.6.4). The simulation is based on 

the training data (which was collected during the period of 2003 to 2004) when no 

occurrence of severe algal bloom phenomenon. After 2006 when sand mining in Chao 

Phraya River was banned, the water in the river became clear and algal bloom happen 

quite frequently and the human operator dealt with this problem by increasing the 

chemical dosages (especially polyelectrolyte dosage, section 7.3.4) so that a large 

difference of polyelectrolyte (which was found in the simulation) did not exist during 

period of the full-scale pilot plant test. 

According to the pilot plant test results, it can be concluded that the intelligent control 

system is able to be used in practice since its clarified water turbidity satisfied the 
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operational target. It also proved that, even though the intelligent control system was 

designed to work with a SCADA system, it could also work with a manually controlled 

system in the case of BKWTP where delays due to manual entry of data exist. The 

predictive performance of the ANN process model was a significant factor in the 

performance of the intelligent controller. If the intelligent control system worked in the 

range that the ANN has previously experienced, the optimiser would be led to a suitable 

solution space. 

Although the turbidity removal performance of intelligent control system was marginally 

less than that of the human operator, its clarified water turbidity still satisfied the 

operational target. In practice, the cheaper cost of operation is a major advantage with 

only a small compromise in poorer turbidity removal performance. 
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8.0 CONCLUSION AND RECOMMENDATIONS 

8.1 Introduction 

The overall goal of the research was to apply intelligent approaches to clarifier process 

modelling and control. Artificial neural network and Genetic algorithm techniques were 

merged to perform model predictive control of clarifiers. ANNs were used for modelling 

the clarifier process and GAs were used to optimise control actions in order to minimise 

the operational cost and clarified water turbidity and colour . 

Clarifier process models were developed for different water treatment plants. The first 

case study is the Bryn Estyn Water Treatment Plant (BEWTP) in Hobart, Tasmania and 

the second is the Bang Khen Water Treatment Plant (BKWTP) in Bangkok, Thailand. 

They differ widely in environmental and operational conditions. BEWTP is fully 

operated under a SCADA system whereas BKWTP is manually operated. For both case 

studies, simulations of intelligent control were conducted. A pilot plant test was 

performed at BKWTP on one of the sixteen clarifiers. It was not possible to perform a 

pilot plant test at BWETP on their single clarifier due to their desire to keep control of 

clarifier operation. Also in BEWTP the full set of data concerning possible control 

actions was not available. 

The first part of this chapter will outline the discussion and applications which are 

presented in the preceding chapters. The second part provides a summary of the major 

findings from the various chapters. Finally, recommendations for further study with 

respect to potential future directions are presented. 

8.2 Discussion and Application Potential 

A common misconception about intelligent approaches is that they are only applicable to 

large units with fully electronic linkages or those controlled under a SCADA system. 

BKWTP is about to install SCADA. However during the period of pilot plant testing, the 

intelligent control system was merged with manual control. This offered a good 

opportunity to not only compare the performance between the human operator and 

intelligent control system but also to assess the performance when the intelligent control 

system worked without SCADA. 
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The ANN process model replicates how the clarifier process works. Therefore the inputs 

to the model are the raw water qualities, control actions, and process variables. The 

outputs of the model were clarified water turbidity for the case of BKWTP. For BEWTP, 

two process models were used since clarified water colour and turbidity were the 

operational targets and set as outputs of the process models. 

8.2.1 Data Manipulation and Analysis 

Quality of input data to the ANN modelling was achieved through utilising extensive 

plant data records. Nonsense data was removed and substituted by interpolated data. The 

data filtering criteria used was set according to the suggestion of the expert operating 

staff. Most of the data was normally sampled every four hours (i.e. twice during a 

working shift). Data from different sampling rates was interpolated to a standard 

sampling rate of every four hours. This work is presented in Chapter 3. 

8.2.2 Clarifier Process Modelling and Performance Evaluation 

The clarifier process modelling is composed of three steps. The first one is input and 

output selection, and the second step is concerned with data clustering to ensure that 

training, validation and testing data sets are statistically equivalent. Finally, the model 

architectures are optimised using a trial and error based approach. After various candidate 

models were obtained, the predictive reliability and performance were evaluated for 

single time step and for multiple steps (long range) prediction. This is presented in 

Chapter 5. 

The ANN process model replicates how the clarifier process works. Therefore the outputs 

of the model are clarified water turbidity in the case of BKWTP, and clarified water 

colour and turbidity for BEWTP. In common, the raw water qualities, control actions and 

process variables are used as the inputs for these models. However, the sludge drain rate 

data is not included as this data was unavailable. 

To select the inputs for the ANN clarifier model, it is necessary to consider whether the 

type of inputs and their time lags are appropriate. To select the type of inputs, both the 

coefficient of correlation (r) between clarified water qualities and the inputs and also 

expert knowledge based on operator experience guided the choice of which types of 

inputs were suitable. However, the results showed that the coefficients of correlation 
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were small for both case studies and this reflected how complicated the relationships 

were. It was inappropriate to disregard those variables which have small correlation 

values since they are known to be significant to the clarified water qualities. Indeed all 

the operators in both BKWTP and BEWTP use these to guide the choice of control 

actions. Consequently all available variables were used for the input of the process 

models. 

The choice of optimal time lag was guided by the Autocorrelation Function (ACF). Any 

lags which gave an ACF less than 0.50 were ignored. They were assumed to be 

insignificant and negligible. For both case studies, the maximum time lags were set to 20 

hours (i.e. present time plus five time lags). In this way, maximum time lags were already 

defined and set as the maxima for further trial and error processes. 

Before the ANN modelling process, training, validation and testing sets needed to be 

defined. To ensure that these three sets were statistically equivalent, a clustering 

technique based on Self-Organising Map (SOM) networks was successfully employed. 

The statistical hypothesis of T-test and F-test were applied to each variable with a 

maximum time lag to check the similarity of these three sets. The results revealed that 

they were statistically equivalent after a clustering method based SOM network had been 

applied. Their ranges were also checked to establish whether the validation and testing 

sets were subsets of the training set. 

The optimal time lag, number of hidden layers and the number of neurons in each layer 

are problematic and difficult to assess. However these can also be obtained by trial and 

error processes. One and two hidden layers were used together with the number of 

neurons, which were varied from five to one hundred neurons (in increments of five 

neurons). Systematic trial and error processes were conducted for each time lag. The best 

architecture was the one that minimises the Mean Absolute Error (MAE) and maximised 

the coefficient of determination (r2). All potential architectures were tested on the 

associated test sets. For the case of BEWTP, a temporal span of 8 hours and two layers 

with 95 neurons in the first and second hidden layers gave the best performance for 

predicting clarified water colour. For modelling the clarified water turbidity, two layers 

with 3 5 neurons in the first and 5 neurons in the second layer with a temporal span of 8 

hours proved to be the best architecture. On the other hand, two layers of 20 neurons in 
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the first and 5 neurons in the second layer with a temporal span of 12 hours is optimal for 

prediction of clarified water turbidity in the case ofBKWTP. 

Not only a smaller MAE and a higher coefficient of determination were used to quantify 

the performance of the process model. The percentage errors in the predicted outputs 

were compared with the associated measurement errors. It appeared that all three ANN 

process models are reliable since their percentage error is just marginally greater than the 

associated measurement errors. In one particular case, the clarified water colour model of 

BEWTP, its predictive error is less than the measurement error. 

The predictive performances were assessed not only for one step prediction, but 

assessment was also made of the multiple step (long range) prediction performance of all 

three process models. Their reliability and performance deteriorated severely after 

prediction of only one step since the prediction errors accumulated for every step. 

Establishing of two process models for clarified water colour and turbidity each with 

optimal architectures and time lag for BEWTP and one process model for clarified water 

turbidity of BKWTP were the main contributions of Chapter 5, together with their 

performance evaluations. Also the testing sets obtained by SOM based clustering (which 

are statistically equivalent to their associated operational data) were included in this 

chapter. These testing sets were also used in the control simulation. As it had been shown 

that going beyond one step prediction results in unreliability, the control horizon was 

limited to one step of only four hours ahead. 

8.2.3 Clarifier Intelligent Control Simulation and Performance 

Evaluation 

The intelligent control system is composed of the clarifier process model, the 

Multiobjective Genetic Algorithm (MOGA) optimiser and the decision maker. The 

MOGA is developed from GAs but is able to optimise multiple objectives. The clarifier 

process models predict the clarified water qualities and pass these to the MOGA 

optimiser. Both of them are linked by the model predictive control scheme. In order to 

avoid ill posed problems, the control actions are bounded in accordance with raw water 

qualities. The control and predictive horizons are also set to only one time step of four 

hours ahead. The MOGA optimiser uses the predicted clarified water qualities to 
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optimise the control actions in order to minimise the water impurity and operational cost. 

Pareto-optimal fronts are generated iteratively until the pre-defined number of 

generations is reached. The last Pareto-optimal front is then assumed to be the best one. 

The decision maker selects the solution from the last Pareto-optimal front using the 

smallest Euclidean distance from the utopia point. 

The optimal number of generations and population size are important to the success of 

the MOGA optimiser in order to generate good quality Pareto-optimal fronts. Other 

elements of MOGA such as the crossover probability value are guided by previous 

research. The Pareto-optimal front is qualified in terms of diversity and convergence by 

the Pareto Front Quality Index (PQFI). A smaller PQFI value implies a better 

convergence and diversity. The optimal number of generations and population size was 

obtained by trial and error processes by a systematic change of their values. For the 

BEWTP, the smallest PQFI was given by 200 generations and a population size of 80. 

For BKWTP case studies, 400 generations and 100 populations gave the smallest value 

of PQFI. 

For the control simulation using the associated test set, the intelligent control system for 

BEWTP's clarifier minimises the operational cost, the clarified water colour and 

turbidity. The control actions are bounded according to raw water colour values in order 

to avoid ill posed problems. The intelligent control system works with predictive and 

control horizons of one four hour time step ahead. It was evident that the intelligent 

controller successfully controls the clarifier. The simulation results reveal that its 

clarified water colour and turbidity were below the operational targets, and its operational 

cost was considerably cheaper than that of human operators (by about 8.33. percent). 

In comparison with the human operator, intelligent control gave better clarified water 

colour and turbidity as well as a lower percentage of upsets. It is hard to compare the 

magnitude of control actions since the human operator uses all the control actions but the 

intelligent control does not use the sludge drainage control (as historical data was not 

available). However, the intelligent controller uses a smaller quantity of chemicals but 

agitates the turbine faster. Using less chemicals satisfies the objective of minimising the 

operational cost, but impurity removal performance may be compromised by maintaining 

floe amalgamation through agitating the water more rapidly. 
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In the BKWTP simulation study, the control actions were optimised to minimise the 

clarified water turbidity and operational cost. Ill posed problems were also avoided by 

bounding of control actions in accordance with the raw water turbidity range. Simulation 

results showed that the turbidity removal performance satisfied the operational target. Its 

clarified water turbidity was less than seven NTU and slightly less than that of human 

operators. The intelligent controller also reduced the operational cost by 3 .45 percent 

compared to human operators. In comparison with a human operator, the intelligent 

controller doses more polyelectrolyte but less alum in order to satisfy the objective of 

minimising the operational cost. It compensates for the smaller amount of alum (which is 

the major chemical agent) by introducing a higher turbine speed and keeping more sludge 

in the clarifier by reducing the sludge drainage rate. 

8.2.4 Full-Scale Pilot Plant Test and Performance Evaluation 

Testing of a Full-scale pilot plant was conducted at BKWTP for a period at the end of the 

early rainy season (July to August 2007). All model elements, the MOGA parameters, the 

optimal number of generations and populations were identical to those used for the 

BKWTP simulation. The control actions were bounded according to raw water turbidity 

values. The performance of the intelligent control system was compared with that of the 

human operators. The intelligent controller was installed at Clarifier number nine located 

at the centre of the first production line. This position was chosen to avoid the hydraulic 

bias. Clarifier number ten was chosen to represent human operators because of its 

similarity in performance to Clarifier number nine. 

Fortunately, the raw water turbidity during testing the full-scale pilot plant is in the range 

of 70 to about 200 NTU. This range covered the training domain and at times also 

extended outside the training domain of the clarifier process model. This allowed 

measurement of the performance of the control system when the intelligent control lies in 

a well trained range and when it is less guided by previous experience. The training 

domain was defined according to the range of raw water turbidity from the operational 

data. If the raw water was in the range of mean ± one standard deviation of the raw water 

turbidity, then it was defined to be inside the training domain. 

Both human operators and the intelligent control system satisfied the operational target of 

seven NTU, with closely matching performance. This was evidenced by the means of 
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clarified water turbidity of 6.28 and 6.36 NTU respectively. Although it had slightly 

worse turbidity removal performance, the intelligent controller reduced operational cost 

by about 2.44 percent. For the full capacity of 3.5 million cubic metres per day, this 

translates to savings of up to $AUS 153,000 per annum. Labour cost savings are not 

included but would also add to this figure. 

It appeared that turbidity removal performance relies on the predictive performance of 

the process model. When the intelligent controller works beyond its training range (i.e. 

raw water turbidity> 127.64 NTU), its performance deteriorates and it becomes inferior 

to that of human operators. The upset percentage of human operators is 27.70 percent 

which is less than that of 32.09 percent of the intelligent controller in this high raw water 

turbidity range. On the other hand, if the intelligent controller works inside its training 

range (i.e. raw water turbidity< 127.64 NTU), its performance is more or less the same 

as that of the human operator. The associated upset percentages are 25.13 percent for 

human operators and 26.20 percent for the intelligent control system. 

The rationale of control actions is examined by considering the sign of the coefficient of 

correlation (r) to the raw water turbidity. The control actions assigned by the intelligent 

control system are sensible since the changes assigned are theoretic~lly explicable and 

linked to the changes of raw water. In considering the magnitude of its control actions, it 

is found that although the intelligent controller uses a lower dosage of alum in 

comparison with the human operator, it compensates for the smaller amount by using a 

higher polyelectrolyte dosage. A lower alum dosage lessens floe amalgamation. The 

intelligent controller then makes up for this by agitating faster and reusing more floes by 

draining less sludge. The strategy of using more polyelectrolyte but less alum has the 

effect of minimising the operational cost. Although the unit cost of polyelectrolyte is 

higher than that of alum dosage, more alum is used than polyelectrolyte. Therefore, a 

reduction of the alum dosage is more economical to the operational cost than reducing 

the polyelectrolyte dosage. 

8.3 Summary of Major Contributions 

Although a few "intelligent" approaches to clarifier operation exist, most of them are 

only concerned with the application of ANNs to predict water quality. The major 

contributions of this work are in the establishment and implementation of intelligent 
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control systems as well as with assessing their performance in real practice. The 

intelligent control system architecture developed is a combination of ANN modelling and 

a MOGA optimiser. This is the first time that the intelligent approach fully mimics how 

human operators control the solid contact clarifier. Both chemical and physical control 

actions are used by the intelligent control system to minimise the clarified water turbidity 

and operational cost. This work affirms that the ANN modelling approach is indeed 

feasible for these particular case studies and is therefore proved to be applicable in a real 

world situation, and then develops new methods to provide effective intelligent control of 

clarifier operation. The contributions based on the result of this research work include the 

following 

• ANN process models are successfully developed based on the particular 

operational data of each of these two case studies. Included in this is the unique 

use of the SOM that performs successfully with the operational data at hand. 

• The optimal model architecture of each process model is obtained based on the 

operational data, and their time lags are 8 hours for BEWTP and 12 hours for 

BKWTP. To achieve the best prediction of the clarifier the process model is 

found to need both present and past (temporal) data. Although this was expected, 

this study shows exactly how long a period of data is needed to optimise the 

control actions. 

• The prediction of the clarifier process model deteriorates when the prediction is 

taken outside the training domain. One step ahead ( 4 hour) prediction is reliable 

when compared with the measurement error. However, it is shown that it is not 

practical for the ANN modelling approach to be used for multiple steps (long 

range) prediction because errors accumulate over each time step. 

• An intelligent control system with a combination of an ANN clarifier process 

model and GAs has been applied here for the first time in the water treatment 

industry. It successfully mimics how human operators control a clarifier. Both the 

physical and the chemical control actions are optimised in order to minimise 

clarified water turbidity and operational cost. It has been shown that the 

intelligent control system shows promise for practical application. Its turbidity 
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removal performance satisfies its operational target at a cheaper operational cost 

than human operators. 

• In this thesis, the "ill posed problem" is avoided by the division of operational 

range according to raw water turbidity. This method has been shown to be 

effective in real life application. 

• The performance of the intelligent control system depended upon the predictive 

performance of the clarifier process model. When the intelligent control system is 

required to work outside its training domain, it has been shown that its 

performance is less satisfactory than when working inside its training domain. 

8.4 Recommendation and Further Study 

This thesis presents a number of findings and new developments for clarifier control. 

However, it is not possible to explore several areas due to the limitation of case studies. 

To encourage the development of intelligent control in the water supply industry, there 

are some recommendations and suggestions for further study, as follows. 

8.4.1 Alternative Input Variables 

For the intelligent controller based ANN model, the success of the controller is sensitive 

to the type of input. If some parameters which have a strong relationship to the output are 

set as the input of the process model, then they will enhance the performance of the 

controller. Some potential inputs are outlined as follows: 

Sludge concentration 

Sludge concentration in the reaction zone of the solid contact clarifier has been known to 

be important to clarifier control. For example, too much sludge concentration implies 

chemical over dosage. It is the only one parameter providing the information in the 

reaction zone. Physically, the sludge is retained in the clarifier much longer than 

hydraulic detention time. This provides the evidences of how well the clarifier was 

operated from the previous time steps to the present. It contains time dependent 

information. However, it was unfortunate that sludge concentration data was unavailable 

in BKWTP case study. If the sludge concentration were one of the inputs of the model, 
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this would potentially benefit the predictive performance of the model by reducing the 

temporal span. 

Filter run time 

The purpose of the clarifier unit is to entrap the impurities (e.g. turbidity, colour, and 

algae) prior to the filters in order to ensure a long filter run time. If filter run time is 

shortened, this will result in a need to back wash the filter more often: this is very 

expensive. If the filter run time were to become an input of the model, it might help the 

clarifier process model to recognise this situation so to drive the optimiser to a better 

solution. 

It would also be possible to set the filter run time as an output of the integrated process 

model which combines the clarifier and the filter. Rather than having separate process 

models for predicting clarified water turbidity and other impurities (which requires costly 

computational expenses). It may offer improvement if the filter run time is used as a 

single output of the integrated process model. This is because the one objective of the 

clarifier unit is to prolong the filter run time for as long as possible. 

Water temperature· in the clarifier 

Any large clarifier faces a density current which may often cause turbidity leaks. This is 

always the case in BKWTP. The temperature gradient through the depth of clarifier tank 

is the main problem here. If the water temperature in the clarifier is monitored especially 

in the sedimentation zone, the temperature gradient can be estimated. If this information 

were to be input to the process model, it should be able to recognise the density current 

phenomenon as it occurs. 

Streaming current detector 

One of the main aims of using alum is to neutralise the charge on the particles of 

impurities. The process of charge neutralisation is sometimes referred to as coagulation. 

Streaming current potential is the charge on the particles after coagulation. This is 

measured using a streaming current detector (SCD). The streaming current potential can 

be directly used to determine the degree of coagulation and this is related to chemical 

dosage. Of course, alum is also consumed in increasing the size of charge-neutral 

particles by absorption. If streaming current potential were to be input to the process 
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model, it would help the model to recognise the patterns of chemicals being used. Thus it 

should enable the model to guide the optimiser to a better solution. 

8.4.2 Intelligent Controller Performance Improvement 

To improve the performance of intelligent controller (i.e. reduce upset percentage), it is 

necessary to improve the predictive performance of the process model. Process models 

with larger prediction range of input and prediction accuracy are preferable. (i) Larger 

prediction range (i.e. the process models which show prediction reliability over a larger 

input range of raw water turbidity) is required to ensure that the ANN process model 

predicts in the interpolation mode rather than extrapolation mode which is unfavourable 

to the ANN model itself. (ii) One way to improve the prediction accuracy is to balance 

the complexity and flexibility of the process model. However, it is a very hard task for 

one process model to be responsible for the whole prediction range. There are some 

interesting techniques relevant to these two strategies which can be shown as follows. 

Adaptive Process Model 

An adaptive feature in the process model should be able to enhance the predictive 

performance of the model. If the model were to face a new pattern of data which was out 

of the original range then the prediction mode was now on the extrapolation mode. It was 

unfavourable to the ANN prediction performance. This problem might be alleviated by 

using the adaptive training. The new data would be marked and stored. Finally, they will 

be used to retrain the model ( offline ). This kind of attempt should benefit the predictive 

performance since it enlarges the range of the inputs and kept the prediction in the 

favourite mode of interpolation. 

Multiple Model Approach 

The prediction performance of the model has a significant role in the performance of the 

intelligent control system, the use of only one model for the whole operational range may 

not be optimal. The ANN process model is trained to fit the trend of the data, but with 

only one model, it is hard to recognise some details in the data. This relates to the 

"complexity" and "flexibility" of the model. A multiple model approach is therefore 

worthy of investigation. However, before using a multiple model approach, the 

operational ranges of each model need to be defined by the boundaries of the inputs. This 

may not suit this research since the clarifier process models of both case studies have a 
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lot of inputs (i.e. large dimension). A multiple model approach could be investigated to 

assess whether this procedure would improve the performance of the intelligent control 

system. 

8.4.3 Model Parsimony and Sensitivity Analysis 

In this work, the process models are considered large dimension since there are a number 

of inputs. Perhaps reducing a number of inputs helps decreasing noise and minimises 

computational expenses. However, it has to ensure that predictive performance is 

maintained. Sensitivity analysis can be used to check which inputs should be eliminated. 

However, the suitable threshold value of sensitivity percentage is problematic and can 

possibly be set via the trial-error process. This would provide an opportunity to compare 

the predictive performance of the smaller model with the larger ones. 

8.4.4 Plant-wide Intelligent Control 

Since the performance of each treatment unit in a production line affects each of the other 

units, the intelligent control system could be perhaps applied to every unit of the water 

treatment plant or even to the whole treatment process. This would provide an 

opportunity to compare the plant-wide performance and its operational cost to the 

existing water treatment plant. 

8.4.5 Practical recommendations 

In practice, there are some useful recommendations for clarifier control such as mixing 

intensity (in the reaction zone). Mixing intensity is described in a dimensionless term of 

G*T. G is gradient velocity (sec"1
) which is a function of power input and shape of 

turbine blade and T is the time that water is retained in the reaction zone (i.e. hydraulic 

retention time (sec)). However, gradient velocity could not be found in this research since 

the power input was never recorded and the drag coefficient of this custom turbine was 

not available. This drag coefficient can only be obtained via hydraulic model testing in 

conjunction with dimensional analysis. It should be very interesting in the future works to 

discover how the intelligent control provides the mixing intensity (i.e. G*T) and the 

suitable range of G*T. 

Sludge blanket height is the other interesting variable used to control the clarifiers. 

Typically, sludge blanket height has been used for turbidity leakage warning. If the 
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height of the sludge blanket reaches the setting limit (e.g. one meter from the surface of 

water), then it implies that the clarifier is losing its performance. This can be caused by 

improper dosage and mixing intensity. Unfortunately, there is no sludge blanket height 

sensor equipped at BKWTP. Further than turbidity leakage warning, if the sludge blanket 

height sensors were uniformly equipped through the clarifier, then the contour of sludge 

blanket would be available online and reflected the uniformity of the energy dispersion in 

the clarifier. This would provide an opportunity to investigate the response of intelligent 

control system via the contour of sludge blanket. 

8.5 Conclusion 

In the future, the water supply industry will be faced by increasingly more serious 

regulatory and environmental pressures to provide technically efficient and yet 

economical treatment. In response to these changes, new sensor technologies are 

continually being developed, evaluated and implemented in the industry. Manual control 

is expensive and out of date in practice. Manual control limits the performance of the 

online sensors and often results in human errors in the operation. Controllers need 

improvement in order to keep up with this modem sensor technology. 

Intelligent technology has been applied sporadically in water treatment application over 

the last decade. The basic idea of the intelligent approach is to mimic how human 

operators solve the problem. The intelligent control system used in this study is the first 

one that fully mimics how a human operator controls the clarifier. All chemical and 

physical control actions are optimised to minimise the operational cost and the clarified 

water turbidity (and colour). The artificial neural network process model mimics how the 

operators predict clarified water qualities. Operator experience was imitated by the multi

objective genetic algorithm optimiser to optimise the control actions with respect to 

multiple objectives, which is similar to the way that human operators did their task by 

considering both the operational cost and the clarified water quality. Not only was 

simulation done by desktop technology but a pilot plant test was conducted for one of the 

case studies, BKWTP. The pilot plant results presented herein show that the intelligent 

control system can successfully control the clarifier in a real life situation. The turbidity 

removal performance satisfied the operational target at a cheaper operational cost 

compared with human operators. 
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In conclusion, with the successful results of the pilot plant test, both the operational 

targets of high water quality and cheaper operational cost are achieved. Intelligent control 

system is proved able to work in real practice. The existence of the intelligent control 

system in the water supply industry opens the door for an intelligent control system 

which frees the clarifier operation from human error and enables full utilisation of 

technology. This may overcome the limit of the manual skill of human operators. An 

intelligent control system that usefully employs the benefit of sensors and uses them to 

maximum capacity seems able to be used in place of the human operators. The skills of 

human operators could be usefully employed to supervise the intelligent control system 

and in system quality assurance. Intelligent technologies in the water supply industry can 

also be used to provide a strong platform for more sophisticated applications of plant

wide control and even applied to alternative applications such as wastewater treatment. 
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