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Abstract 

Seagrass plant communities play an ecologically important role in Australian and Tasmanian 
coastal regions. They provide key ecological functions such as: organic matter provision; 
assimilation of energy into ecosystems; nutrient trapping and cycling; shore line protection 
and formation; substrate sediment stabilization; enhanced biodiversity; and trophic transfers 
to adjacent habitats in tropical and temperate regions. The temperate Tasmanian seagrass 
communities, however, have experienced a period of decline in their abundance due to 
various disturbances as have other coastal areas in the world. Seagrasses are subject to rapid 
environmental changes arising from not only natural causes but also human-induced 
pressures, such as sea level rise, coastal development, sewage discharges and sediment run
off. In spite of the value of these aquatic plant communities, virtually no monitoring of the 
abundance and distribution of seagrasses habitats, in particular at a large geographic scale has 
been conducted in Tasmania, such as Boullanger Bay. Information on the extent and status of 
submerged aquatic vegetation (SAV), here largely seagrass meadows, at multi-spatial and 
multi-temporal scales are needed to support effective conservation and management. Due to 
resourcing challenges for boat or diver based monitoring, production of such information on 
the natural dynamics of SAV can only feasibly be tackled by the application of remote 
sensing techniques. However, a lack of knowledge about the efficacy of remote sensing 
techniques for seagrass mapping and monitoring persists. 

In the response to this need, this thesis summarises the development of an appropriate image 
processing scheme that produced viable data for interdisciplinary purposes in this particular 
location. Methods for mapping and monitoring SA V habitats distribution in Boullanger Bay 
at multiple spatial and temporal scales are trialled. Three case studies were conducted, 
including: (1) comparison between two hybrid image classification approaches for the 
investigation of method effectiveness; (2) change detection analysis of land cover classes in 
Boullanger Bay at two different spatial scales to determine the contribution of the moderate 
spatial resolution of Landsat and Advanced Land Observing Satellite (ALOS); and (3) change 
detection analysis to determine the efficacy of the moderate spatial resolution and annual 
temporal resolution of Landsat in both intertidal or subtidal seagrass dominated 
environments. 

Multi-temporal thematic map series of change detection results were produced over 18 years, 
from 1990 to 2008. The spatial and temporal changes in the occurrence of SAV meadows in 
Boullanger Bay were identified and presented that show the extent and distribution of SAV 
habitats and their rate of change. 

Case Study 1 investigated the efficacy of the remote sensing technique performed in the case 
studies was investigated. Two hybrid approaches: Independent Component Analysis (ICA) 
based Maximum Likelihood Classifier (MLC) approach and Principal Component Analysis 
(PCA) based ISODATA approach were compared to assess their ability to classify land cover 
objects. 'Error Matrix', image classification accuracy assessment technique demonstrated the 
better image classification accuracy of ICA based MLC approach (Overall accuracy: 88.4%, 
Kappa coefficient: 0.86) than PCA based ISODATA approach (Overall accuracy: 82.7%, 
Kappa coefficient: 0.79). 

Case Study 2 provided 'from - to' change between the classified land covers produced from 
Case Study 1. Write Function Memory Insertion (WFMI) change detection approach is used 
to effectively visualise the 'from - to' change between the land cover types. The study 
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indicated that the saltmarsh/seagrass boundary was relatively stable over the study period. 
Conclusions about the relative change of habitats across the whole Boullanger Bay study site 
are limited due to image processing issues related to cloud and deeper water confounding the 
results. For SAV, it appears that there has been a decadal scale decline between 1990 and 
2000 and then the areas remain stable through to 2008. 

In Case Study 3, firstly, an ICA based Multiple-date Composite Image (MCI) change 
detection analysis was performed to identify the spatial and temporal changes in the intertidal 
habitats, especially the Zostera muelleri seagrass, in the Welcome Inlet area. A relatively 
stable overall coverage was identified with fluctuating losses and gains in SA V meadows in 
many areas throughout the monitoring period at rates ranging from annual to decadal. 
Secondly, a WFMI approach was used for change detection analysis in the open subtidal area 
of the Boullanger Bay to identify the stability of subtidal SAV meadows from 1990 to 2008. 
The method revealed the very high stability of sand patches (i.e. uncolonised areas) within 
the dense Posidonia australis seagrass meadows over the 18 year period. 

Issues of the accuracy of thematic maps derived from Landsat and ALOS imagery were 
identified, including misclassification of land cover types in deep water areas i.e. > circa 7 m. 
However, the overall efficacy of the satellite sensors for mapping and monitoring SA V 
meadows in Boullanger Bay was supported. 
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Chapter 1 Introduction 

1.1 Chapter overview 

Satellite remote sensing technologies have become increasingly useful for numerous 
environmental management applications. This research project utilises recent developments 
in satellite remote sensing technologies to map and monitor submerged aquatic vegetation 
(SA V), encompassing; seagrass and macro algae communities, in Boullanger Bay in the north 
west of Tasmania. Chapter 1 provides an introduction to the science of satellite remote 
sensing in the context of its application to the mapping and monitoring of SA V meadows. 
Tl].e aim of this project, which is to satisfy the need for information about the distribution of 
SA V meadows at multi-temporal and spatial scales, is also outlined and the key research 
questions are introduced. Additionally, the requirements for the investigation into the 
appropriate remote sensing techniques for mapping and monitoring SA V meadows are also 
described. An outline of the thesis structure and some of the limitations, associated mainly 
with the lack of ancillary data, that frame this project are also described. 

1.2 Satellite remote sensing 

Remote sensing refers to a suite of scientific techniques that facilitate the detection of objects, 
features, and phenomena without being directly in contact with the entities being surveyed or 
observed (Lillesand and Kiefer, 2008). Remote sensing includes such applications as 
magnetic resonance imaging (MRI) of the internal structure of living bodies and photographs 
taken in the visible and near-infrared wavelengths. However, the term is commonly used to 
refer to the analysis of images to map and monitor phenomena on the Earth, especially 
images taken from satellites. 

Geostationary and sun-synchronous satellites provide platforms that carry specialised sensors 
to detect information on objects, areas, or phenomena at a distance from the Earth. Satellite 
remote sensing employs sensors to detect electromagnetic radiation, reflected or emitted from 
the target objects, area, or phenomenon on the Earth (Lillesand and Kiefer, 2008). The 
recorded electromagnetic radiation data provides information about the proposed resources 
under investigation through the acquired data analysis (Lillesand and Kiefer, 2008). Digitally 
extracted information can be used for various study area or industries. 

1.3 What is SA V mapping and monitoring via satellite remote sensing? 

The general function of a map is to represent objects or phenomena on the surface of the 
Earth (McKenzie et al. 2001a). Mapping by remote sensing technologies is a method for 
locating objects and measuring their extent and orientation. Through the addition of ancillary 
information, maps can represent not just simple geographical data, but also a variety of other 
attributes. The use of maps to spatially represent a variety of different types of information 
facilitates their use across interdisciplinary studies (McKenzie et al. 2001a). There are a 
variety of methods for mapping seagrass meadows from in situ observation to remote sensing 
(Kirkman 1997; McKenzie et al. 2001a; McKenzie et al. 2001b). For example, Kelly et al. 
(2001) used a method of predictive mapping consisting of multiple logistic regression models 
and a Boolean logic model to produce maps of seagrass cover probability, the susceptibility 
of seagrasses to storms, and area suitable for seagrass restoration. Spruzen et al. (2008) used 
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mathematical calculations to estimate the extent of seagrass coverage over large geographical 
areas in north-west Tasmania. However, the distribution mapping of submerged plant beds 
over large areas is generally produced by mapping from aerial photography. While aerial 
photography has been available for some time, satellite imagery has become a popular remote 
sensing platform for surveying marine habitats, such as seagrass and kelp beds (Kirkman 
1996; Edyvane 2003). For instance, SEAMAP Tasmania, a coastal benthic habitat mapping 
project, uses both aerial photographs and satellite imagery to produce digital information of 
benthic habitats around Tasmania's coastline (Kirkman 1997). There are several points that 
should be taken into account when mapping SA V by satellite remote sensing. The capability 
of sensors to locate underwater objects, such as seagrass, relies heavily on the level of spatial 
resolution and contrast that can be achieved (Dekker et al. 2007). Atmospheric condition, 
such as weather conditions, principally the amount of cloud cover, and other variables, such 
as tidal level, are also critical factors to be taken into account when using satellite remote 
sensing to map seagrass meadows (Klemas 2001). Cloud coverage in satellite imagery often 
prevents researchers from successfully classifying the area under the cloud (Ozesmi and 
Bauer 2002). Ideally, satellite images should be cloud-free. For marine coastal environments, 
tidal levels are also another concern when using satellite remote sensing data. Most seagrass 
species exist in shallow off-shore and intertidal coastal zones (Short et al. 2001). Unless 
water column turbidity is acceptable for satellite sensors to detect underwater objects, periods 
of high tide should be avoided in order to acquire the sufficient reflectance of electromagnetic 
radiation. These factors are to ensure that atmospheric effects that might impact on the ability 
of the sensor to detect objects are minimised. This is especially important when mapping 
seagrass by satellite remote sensing because inaccuracies associated with atmospheric effects 
can have a large impact on the image processing of a digitally thematic map and accuracy of 
output results (Dobson et al. 1995; Klemas 2001). 

Monitoring by satellite remote sensing technology is referred to as a method of detecting 
changes in an object's location, extent and spectral features through time. Satellite remote 
sensing has several advantages for monitoring objects. These include; precision, periodic 
repetition of observation and the ability to offer a synoptic view covering large areas of 
ground (Kirkman 1996; Ozesmi and Bauer 2002). Additionally, satellite imagery is generally 
available during different seasons allowing for coverage throughout the year (Butler and 
Jemakoff 1999; Klemas 2001; Ozesmi and Bauer 2002; Navalgund et al. 2007). On the other 
hand, there are also limitations in the ability of satellite remote sensing technologies to detect, 
underwater objects in aquatic environments due to light attenuation. Yet, with ongoing 
technical developments in satellites and sensors, the potential areas within which remote 
sensing technologies can be utilised have been expanding (Ferwerda et al. 2007). Critically, 
objects, such as SA V which were previously not suitable for satellite remote sensing have 
now become accessible due to the availability of high resolution sensors (Ferwerda et al. 
2007; Silva 2008). Today, the scale of monitoring by satellite remote sensing can be varied 
from global to national to local, depending upon the types of sensors used and project 
priorities (Paine and Kiser 2003). High accuracy remote sensing techniques are now available 
that can monitor changes in the distribution of SA V from shallow water environments over 
large geographical areas (Ferwerda et al. 2007). Selection of the satellite sensor and platform 
still relies on the research objective, available financial resources and the geographic scale of 
the object in practice (Kirkman 1996; Butler and Jemakoff 1999; Klemas 2001). Recent 
developments in remote sensing techniques have focussed on the ability to detect smaller 
changes in target resources through time (Ferwerda et al. 2007). Previously, it was difficult to 
detect seagrass decline of less than 10% in its early stages by remote sensing (Duarte 2002). 
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This recent technical development in image analysis has high potential for detecting such 
small changes in coverage of objects over large extents, such as seagrass meadows. 

1.4 Is satellite remote sensing effective for this project? 

Satellite remote sensing is a important tool for projects dedicated to the mapping and 
monitoring of seagrass beds. It offers many advantages over traditional modes of imaging in 
projects that require the collection of data over a large geographical areas (Ozesmi and Bauer 
2002; Ferwerda et al. 2007). The primary advantages of satellite remote sensing for mapping 
and monitoring seagrass meadows over extensive areas are adapted from Ferwerda et al. 
(2007). These include: the ease of accessibility that remote sensing techniques provide; 
ability to undertake synoptic observation of large areas taken from one precise location; and 
the possibility of regular and precise monitoring over long time frames. Further advantages 
are the production of digital archived images for national and international standardisation, 
and cost effectiveness compared to traditional aerial photography. Also, due to the 
vulnerability and inaccessibility of some coastal regions, remote sensing survey is a valuable 
technique (Silva 2008). In particular, boat or diver based monitoring in Boullanger Bay (the 
study area of this research project) is a challenge. There are three types of survey methods for 
seagrass meadows observation, including: direct field mapping; mapping by aerial 
photography, and mapping by satellite remote sensing (Kirkman 1997). For remote sensing 
techniques, each sensor and sensor platform is designed for the specific purpose of image 
acquisition. Among those remote sensing techniques, aerial photography has been the 
preferred technique for seagrass mapping (Dobson et al. 1995; Kendrick et al. 2000; Ozesmi 
and Bauer 2002; Ferwerda et al. 2007). The value of using aerial photography depends on the 
size and extent of the objects to be surveyed and the flight height and speed from which 
observation is conducted. Valta-Hulkkonen et al. (2004) argue that aerial photography has the 
advantage of providing high accuracy when measuring submerged objects. They also argue 
that additional advantages of using aerial photography for aquatic vegetation mapping 
include: providing high spatial resolution with high spatial accuracy; the ability to record 
images from sufficient spectral length of the visible wavelength; and the possibility of 
achieving high temporal resolution. 

The high spatial resolution of aerial photography, [For instance, aerial photographs can have 
a spatial resolution of 0.1 mat a 1:20,000 scale (Dobson et al. 1995)] enables an observer to 
detect small objects, such as seagrass patches of around 10 metres in area. Another advantage 
of aerial photography is the ability to provide a high temporal resolution that generally 
facilitates the avoidance of high atmospheric effects, such as cloud coverage, in acquired 
images. 

Although satellite remote sensing has different capabilities compared to aerial photography, 
such as lower spatial resolutions and low temporal resolutions that might also be limited by 
atmospheric effects (Ferguson and Korfmacher 1997), it is regarded as an appropriate method 
for this project. For mapping and monitoring coastal regions, satellite remote sensing has 
many advantages (Butler and Jemakoff 1999; Ozesmi and Bauer 2002). Satellite imagery is 
effective at providing images of objects over large geographic areas (Dobson et al. 1995; 
Butler and Jemakoff 1999; Ozesmi and Bauer 2002). Additionally, the ability of satellite 
images to provide simultaneous information on areas adjacent to those being surveyed 
facilitates the extension of the research to questions such as the correlation between 
surrounding environments and seagrass meadows (Ozesmi and Bauer 2002). Basically, 
higher spatial resolutions are preferable in order to map detailed seagrass habitat for optical 
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identification. However, since seagrasses are located over extensive areas, low spatial 
resolution with high spectral resolution associated with satellite remote sensing are 
potentially more appropriate than high spatial resolution and low spectral resolution 
associated with aerial photography. Satellite sensors that have multiple spectral bands, 
including not only visible and near-infrared but also other wavelengths, usually provide a 
better spectral resolution than conventional color photographs (Ferguson and Korfmacher 
1997). Further spectral bands allow the extraction of additional information from images 
through subsequent spectral analysis. 

Archived satellite data is a base for the ongoing analysis of the characteristics, attributes and 
condition of phenomena or objects (Coppin et al. 2004). Additionally, the anticipated long 
sensor life associated with satellite platforms allows regular coastal resource monitoring at 
seasonal or annual periods over long time frames (Ozesmi and Bauer 2002). A significant 
consideration for monitoring vegetation is the frequency and timing of image acquisition. 
While repeat acquisition of aerial photographs in order to cover large areas is possible, such 
approaches are considered too expensive for the majority of monitoring projects (Ferguson 
and Korfmacher 1997) and often logistically impossible to arrange within the project 
timeframe. Consideration of phenological variation is essential, since each type of vegetation 
has different seasonal and annual phenological scales (Klemas 2001). Objects may also 
experience rapid transformation in response to rapid environmental change. An appropriate 
monitoring schedule is crucial to discriminate such natural changes from changes in objects 
caused by extrinsic effects resulting from human-induced disturbances. The cycling period of 
satellite remote sensing images is capable of meeting such a monitoring standard. Another 
advantage of satellite images derives from their digital format. This allows them to be 
organised into Geographical Information System (GIS) databases that, in tum, facilitates the 
synthesis and compilation of diverse data sources and types (Ferguson and Korfmacher 1997; 
Kirkman 1997; Ozesmi and Bauer 2002). Digitally archived data derived from satellite 
imagery can then be used as baseline data for future research at nationally and internationally 
standardised scales (Kirkman 1997). This project requires the mapping of seagrass meadows 
over a broad and extensive range and the monitoring of those seagrass meadows though time. 
Thus satellite images have been identified as the most useful remote sensing method for this 
project. 

1.5 Value of this project 

Submerged aquatic vegetation plays an important role in Australia's marine and freshwater 
ecosystems. Tasmanian seagrass communities also provide unique food chains and habitats 
for numerous marine species and shorebirds, and support shoreline formation processes 
(Bryant 2002; DPIPWE 2009). Recently, large seagrass beds were found in the north-west of 
Tasmania, including Boullanger Bay, the study area for this project (Rees 1993; Kirkman 
1997). Like other areas throughout Australia and the world, Tasmanian seagrass communities 
have period of decline and have suffered degradation. Seagrass meadows in the Tasmania 
have already been destroyed by eutrophication from sewage and fertiliser discharge (Rees 
1993; Sprod et al. 2003; CCNRM 2005). The loss of aquatic plant communities causes 
serious damage to marine biological diversity and their associated ecosystems (Sprod et al. 
2003). With ongoing seagrass decline, a number of studies have demonstrated that aquatic 
plants, such as seagrass and macroalgae species, play critical ecological roles in providing 
habitats for other aquatic organisms (Kelly 2005; Pasqualini et al. 2005; Oliveira et al. 2006; 
Thorhaug et al. 2006). Information on the extent and status of sea.grass meadows at multi
spatial and temporal scales is a crucial factor for seagrass conservation and management 
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(Kirkman 1990; Kirkman 1996; Kirkman 1997; Butler and Jemakoff 1999; Kemp 2000). 
However, digitally archived information on the abundance and distribution of SAV habitats 
in Boullanger Bay and how these distribution changes through time, especially at a large
scale are limited. As people are increasingly recognising the ecological importance of such 
aquatic plant communities, need for knowledge about their natural dynamics, condition and 
distribution is increasing throughout the world. In Tasmania, accurate spatial and temporal 
information on such aquatic plants community is also crucial not only for coastal ecosystem 
conservation or management but also for commercial (e.g. aquaculture) and recreational 
activities. Mapping SA V meadows in Boullanger Bay is also important for interdisciplinary 
research and various industrial purposes due to the limited areal information on SA V 
meadows. Additionally, limited temporal information on the distribution of SAV beds has 
prevented the incorporation of SA V distributions into environmental studies and conservation 
or management. There is thus a need for updating information on seagrass condition and 
distribution in Boullanger Bay observed in previous research (Rees 1993). 

In Australia, a few papers dealing with the characterisation of seagrass meadows based on 
landscape ecology concepts have been published (Butler and Jemakoff 1999). These previous 
researches at large geographic scale of several hectares defined predominant habitats of 
different seagrass species (Butler and Jemakoff 1999). Ample opportunity still remains for a 
mapping and monitoring project to investigate seagrass natural dynamics in terms of multiple 
spatial and temporal variations, such as habitat ratio, patch size and three-dimensional 
structure (Butler and Jemakoff 1999). No integrated standard approach for mapping and 
monitoring seagrass has been established due to the differences in monitoring objective and 
resource availability (Butler and Jemakoff 1999). This is also the case in the remote sensing 
technology field. A number of remote sensing techniques for image classification and change 
detection procedures have been developed for mapping and monitoring purposes. However, 
lack of knowledge about what kind of classification approach is effective for particular 
features of interests in a particular study area, still remains (Lu and Weng 2007). A standard 
method of image classification and change detection for mapping and monitoring the coastal 
environment, including SA V meadows, has not been established yet. Different methods have 
different merit dependent upon the given object, study area, and research purpose. No single 
optimal method can be applied for all cases due to diverse environmental, technical, 
economic, and historical conditions (Coppin et al. 2004; Lu et al. 2004; Meehan et al. 2005). 
Thus, the development of an appropriate method for mapping and monitoring SA V meadows 
in Boullanger Bay, while heing drawn from existing methods, will necessarily be established. 
An assessment of the advantages and disadvantages of multiple methods is required to find 
out what combination of which different methods will be the most appropriate approach for 
this research project. A key determinant here will be both the characteristics of the research 
site itself and the requirement that the method developed is able to produce data that can be 
used for a range of purposes. 
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1.6 Research purpose, aims and objectives 

This research is intended to suppo1t the development of an appropriate image processing 
scheme that will produce valuable data for interdisciplinary purposes in this particular 
location. Ideally, it will also provide insights through the comparison of methodologies useful 
for other SA V projects. 

The overall aim of this thesis is to determine the extent to which remote sensing techniques 
can detect changes through time in the coverage of intertidal and subtidal habitats in shallow, 
temperate, sheltered embayments such as Boullanger Bay, in north west Tasmania. These 
habitats include saltmarsh, sand and, especially, submerged aquatic vegetation (SAV), such 
as seagrass. 

The research objectives are: 

1) To identify and select satellite image data and methods related to the study needs 
including taking into account spatial, temporal and spectral resolutions (Methods); 

2) To test innovative candidate remote sensing methods suitable for the study area and study 
aims (Case Studyl); 

3) To perform change detection on habitats at two different spatial scales to determine 
whether the moderate spatial resolution of Landsat and ALOS is effective (Case Study 2); 
and 

4) To perform change detection on habitats to determine whether the moderate spatial 
resolution and annual temporal resolution of Landsat is effective (Case Study 3) in: 

a) Intertidal seagrass-dominated environments, and 

b) Subtidal seagrass-dominated environments 

1. 7 Outline of research report 

A brief outline of this report is as follows: 

Chapter 1 describes the need for this research in the context of satellite remote sensing and 
the application of satellite remote sensing techniques for mapping and monitoring the 
distribution of seagrass. 

Chapter 2 comprises a literature review. This literature review describes the background of 
this report, encompassing: a description of the study area; the ecology of seagrass; and the 
history of remote sensing techniques for mapping and monitoring seagrass. 

Chapter 3 describes the methodologies that were applied in this research. In summary, the 
methods used include procedures for image selection, image pre-processing, image 
transformation, image classification, change detection, and an assessment of the accuracy of 
geometry and image classification results. 

Chapter 4 describes Case Study 1: the comparison between two image classification 
approaches to investigate method effectiveness. 
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Chapter 5 describes Case Study 2: change detection using the classification result generated 
from the Case Study 1 for detecting changes in the distribution of the classified land covers. 

Chapter 6 describes Case Study 3: change detection for two areas, the intertidal flats across 
the Welcome Inlet and the subtidal open water area of the Boullanger Bay, in order to detect 
the change of habitats in the distribution of SAV meadows, especially intertidal seagrass for 
the Welcome Inlet and subtidal seagrass for the subtidal area of the bay. 

Chapter 7 presents the results of each case study 

Chapter 8 discusses the results of this research in order to identify the critical points in this 
research. 

Chapter 9 summarises the results of this research in terms of the significance for seagrass 
mapping and monitoring and discuss some final conclusions. 
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Chapter 2 Back ground of Boullanger Bay, Tasmania 

2.1 Chapter overview 

Rapid environmental change due to natural and human-induced disturbances can lead to the 
rapid decline and loss of natural resources. One response to this situation is the development 
of technologies for mitigating the occurrence of environmental change so as to minimise 
resulting decline or loss of environmental services, values and habitats. This research project 
seeks to identify environmental changes associated with submerged aquatic vegetation 
meadows and ability of remote sensing technologies designed to map and monitor those 
changes. The decline and loss of seagrass has been identified as a significant environmental 
problem throughout the world, potentially including Tasmania (CCNRM 2005). Recently 
developed remote sensing methods, together with key technical developments with satellites 
and sensors, have been applied in the distribution mapping and monitoring of seagrass 
habitats (Phinn et al. 2006b; Anstee et al. 2009). This chapter details the significance of 
SAV, especially seagrass habitat to the ecology of the Boullanger Bay environment and the 
importance of utilising and applying recent advances in remote sensing techniques and 
methods for mapping and monitoring such seagrass habitats. 

Information on the general characteristics, ecological function and status of seagrasses 
presented and reviewed in this chapter were collected from previous studies from both 
Australian and international environments. The methodological rationale for setting up Case 
study areas within Boullanger Bay is introduced. A description of the general biology and the 
extent of information as to the current distribution and status of seagrass are outlined to 
establish the ecological significance of this project. The relevance of a scheme for mapping 
and monitoring seagrass habitats is related to requirements associated with their conservation 
and management, in addition, those stemming from fisheries management. Finally, a review 
of previous research utilising satellite remote sensing techniques for seagrass and wetland 
mapping and monitoring are described. Key technical and methodological advances 
associated with these studies are assessed in terms of their applicability to the requirements of 
the research study undertaken here. 

2.2 Why multi-spatial scale study locations are required? 

There are two central reasons for selecting Case Study locations with different spatial scales 
in this project: (1) the need for further information on ecological dynamics analysis at 
different scales, and (2) the need for further information on the effectiveness of remote 
sensing techniques at different scales. 

Mapping at multiple spatial scales is crucial to acquire sufficient information to monitor the 
health status of seagrass (McKenzie et al. 2001a). Butler and Jemakoff (1999) have identified 
the need for multi-scale information on the natural dynamics of seagrass species and their 
environmental variability in time and space. Such information is vital for successful 
conservation and management of seagrass meadows as it facilitates decision-making on the 
location of reserves and the temporal scale of conservation projects (Butler and Jemakoff 
1999; McKenzie et al. 2001a). In order to provide information on the objects of interest from 
different points of view, mapping and monitoring projects can be conducted at multi
temporal and multi-spatial, in particular, two basic spatial scales: regional and local (Butler 
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and Jernakoff 1999). Regional scale research produces information that is useful in 
ascertaining synoptic-level patterns in the landscape; commonly changes are evident at 
hectare scales and the information tends to be used as a qualitative indication of broad scale 
changes. Local scale research produces more detailed information associated with 
quantitative measures of seagrass abundance or other attributes (Butler and Jernakoff 1999). 
As for a project that needs qualitative rather than quantitative information, larger scale 
research is typically conducted, and quantitative management does not use broad scale 
mapping and monitoring due to the low precision of maps and a lack of detailed information 
on object features (Butler and Jernakoff 1999). When using satellite sensors of low spatial 
resolution, for instance, large scale mapping and monitoring allows for the detection of broad 
changes in seagrass distribution and abundance. On the other hand, it is difficult to detect 
small changes due to the large extent of the pixels. Duarte (2002) has argued that it is critical 
to obtain information at small areal scales because the seagrass meadow monitoring with low 
spatial resolution tends to detect only decline that is already substantial. Early knowledge of 
any possible decline can allow for intervention so as to mitigate or stop the decline from 
reaching the stage at which it accelerates rapidly. Such information on the early stages of 
decline is now regarded as significant for the development of early warning systems (Duarte 
2002). In this regard, mapping and monitoring current extents of seagrass distribution at 
small geographic scales facilitates later comparisons with areas of potential recolonisation 
(Short et al. 2001). This is especially important for species which have high recolonisation 
capabilities, while also being vulnerable to numerous threats to their ability to recolonise an 
area. Potential areas of seagrass habitat are areas where seagrass species used to exist, at 
some time in the past, yet do not exist at present (Short et al. 2001). Potential area mapping 
and monitoring is particularly crucial for the seagrass species of fast recoloniser, such as, 
Zostera muelleri and macroalgae but may not be useful for the seagrass species of slow 
recoloniser, such as Posidonia australis (Clarke and Kirkman 1989). Two case study areas in 
this project focus on not only individual seagrass species in different tidal areas but also on 
potential areas of seagrass habitat where seagrass recolonisation could occur in the future. 
Investigation of the recolonisation speed or ratio of slow and fast recolonisers can be 
attempted through two different spatial scales and multi-temporal scales. Information on 
different temporal patterns in the abundance and distribution of seagrass meadows at diverse 
spatial scales is also crucial to identify changes in secondary productivity associated with 
seagrass habitats (Butler and Jemakoff 1999). 

For this project, the recently developed computational method, known as Independent 
Component Analysis (ICA) was used for Welcome Inlet area to analyse satellite images. 
Investigation of the effectiveness of this technique, in accordance with the purposes of the 
research project, is crucial for future mapping and monitoring research into seagrass 
meadows in the Boullanger Bay area. The spatial scale of the study area is a significant factor 
in the application of ICA for image analysis. Conducting this study at multiple spatial scales 
is thus considered as one useful way to identify and evaluate the effectiveness of ICA 
technique for seagrass mapping and monitoring procedure. 

2.3 Ecology of seagrass: general biology and present status in Boullanger 

Bay 

Seagrasses are regarded as an important marine habitat of nearshore coastal environments 
throughout the world (Kirkman 1996). Sixty seagrass species, which are categorised into 13 
genera and 5 families are identified globally (Short et al. 2001). Seagrasses are submerged 
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marine flowering plants generally adapted to soft sediment ocean floor with their rhizome in 
nearshore areas (Short and Wyllie-Echeverria 1996; Kirkman 1997; DEHAA 1998; Butler 
and Jemakoff 1999; Short et al. 2001). They have a greater requirement for light than most 
macroalgae (Kirkman 1997; Duarte 1991). Majority of seagrass species are living in subtidal 
marine environment, although some species, such as Zostera spp. and Halophila spp., need to 
emerge from the water surface at low tidal stage or to live in area containing fresh water 
inflow for their reproduction, (Short et al. 2001). Additionally, several species can live only 
in particular environments, such as fresh water, estuarine, marine, or hypersaline conditions 
(Short et al. 2001). 

Seagrass meadows are strongly controlled by ambient coastal environments in terms of 
geographical configuration, water flow, water nutrient component, and biological relationship 
with other species (Short and Wyllie-Echeverria 1996; Butler and Jemakoff 1999; Kemp 
2000; Orth et al. 2006). In such a complex relationship, seagrasses participate in numerous 
important ecological services, including: organic matter provision; assimilation energy into 
ecosystem; nutrient trap and cycling; shore line protection; substrate sediment stabilization; 
enhanced biodiversity; and trophic transfers to adjacent ecosystems (Kirkman 1997; Butler 
and Jemakoff 1999; Kemp 2000; Duarte 2002; Orth et al., 2006). Among these services, 
water current flow, water nutrient trap and cycle, and coastal marine food web structure are 
strongly associated with the geometry, condition and species of seagrasses (Short and Wyllie
Echeverria 1996; Hemminga and Duarte 2000; Kemp 2000). In this regard, seagrass is known 
as a marine ecosystem engineer (Kemp 2000; Bos et al. 2007). Rhizomes of seagrass provide 
substrate and shoreline stability and uptake of nutrients (Short and Wyllie-Echeverria 1996; 
Kirkman 1997; DEHAA 1998; Butler and Jemakoff 1999; Kemp 2000). Stabilised substrate 
sediments together with seagrass plants attenuate water current flows and protect the 
coastline from water energy (DEHAA 1998; Orth et al. 2006). Another role of seagrass is to 
provide organic carbon and oxygen through its photosynthesis (Orth et al. 2006). Seagrass 
provides not only nursery habitat for many marine species of fishes, invertebrates and 
crustacean but also seagrasses can be primary producer for some marine herbivores as a food 
source (Short and Wyllie-Echeverria 1996; Kirkman 1997; DEHAA 1998; Butler and 
Jemakoff 1999; Beck et al. 2001). Seagrass contributes to nutrient trap and cycling in 
surrounding ecosystem through its detritus food chain1 (DEHAA 1998) and grazing food 
chain2

. Consequently, they are a biological indicator of natural or human induced 
disturbances in coastal marine ecosystem through their loss and degradation (Ciraolo et al. 
2006; Orth et al., 2006). 

2.3.1 Australian and Tasmanian seagrasses 

Australian seagrass communities are a prominent part of coastal ecosystem function in both 
temperate (44° S) and tropical (10° S) areas of the coastline (Kirkman 1997; Butler and 
Jemakoff 1999; Sprod et al. 2003). Seagrass meadows are regarded as one of the most 
vulnerable environments in nearshore or estuarine areas of Australia (Kirkman 1996). 
Australian coasts sustain the broadest assemblage of seagrass habitats with about 51,000 
square km and the highest taxonomical diversity of seagrass throughout the world (Kirkman 
1997; Butler and Jemakoff 1999). South-western Australia possesses the highest biomass and 

1 Food chain associated with the consumption of non-living particulate organic biomass 
2 Food chain associated with the consumption of living plant biomass 
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diversity of seagrass in temperate region in Australia (Rees 1993; Short et al. 2001). Along 
the protected area of the Great Australian Bight and across South Australia and Tasmania, 
large areas of seagrass meadows occur (Butler and Jemakoff 1999; Kendrick et al. 2000). 
There are six marine and two estuarine species of seagrass identified in Tasmania: Posidonia 
australis, Amphibolis antarctica, Halophila australis, Heterowstera tasmanica and Zostera 
muelleri (Rees 1993; Short et al. 2001; CCNRM 2005) (Figure 2.1, 2.2, 2.3 and 2.4). 
Tasmanian seagrass communities also provide unique food chains and habitats for numerous 
marine species and shorebirds, and support shoreline formation processes (Bryant 2002; 
DPIPWE 2009). In the far north-west Tasmania, extensive seagrass beds of over 8,000 ha are 
supported by flat landscape ranging over tidal flats (Sprod et al. 2003; CCNRM 2005). Large 
seagrass beds of which are mainly composed of P. australis were identified in the coast of 
north-west Tasmania (Kirkman 1997). P. australis, a dominant specie in Boullanger Bay, is a 
subtidal seagrass widely occurs in 1- 15 m of water of sheltered estuarine, marine 
embayments and near shore areas with more or less continuous distribution along the 
temperate coast line of Australia from the southern half of mainland coast to the northern 
coast of Tasmania (Kirkman 1997; Waycott and Sampson 1997; Trautman, & Borowitzka 
1999). In addition to P. australis, Mount et al. (unpub) recently observed several intertidal 
and subtidal seagrass species, including; A. antarctica, H. australis, H. tasmanica and Z. 
muelleri in Boullanger Bay area. As with other seagrass community in other area in the 
world, these Tasmanian seagrass species provides valuable resources for natural environment 
and human society in this area. 
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Figure 2. 1 Posidonia australis (Subtidal specie) 

Figure 2.2 Heterozastera tasmanica (Subtidal specie) 

Page 26 



Figure 2.3 Amphibolis Antarctica (Subtidal specie) 

Figure 2.4 'Zostera muelleri (Intertidal specie) 
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2.3.2 Seagrass status 

Worldwide decline or demise of seagrass has occurred in last 40 to 50 years with increasing 
rates of its population decline (Short and Wyllie-Echeverria 1996; Butler and Jemakoff 1999; 
Kemp 2000; Short et al. 2001; Orth et al., 2006). Seagrass communities are affected by 
environmental change, especially water and sediment quality because of the special 
requirements for light and sediment conditions (Duarte 2002). Environmental changes arisen 
from not only natural causes, such as disease, hurricanes and grazing by herbivores but also 
coastal human-induced pressures, encompassing: coastal development, sewage discharges, 
heavy metal accumulation, sediment run-off, eutrophication and invasive species, are in the 
context of the seagrass decline (Short and Wyllie-Echeverria 1996; DEHAA 1998; Butler and 
Jemakoff 1999; Kemp 2000; Short et al. 2001; Duarte 2002; Orth et al. 2006). While the 
amount of actual seagrass loss might be larger, 90,000 ha of seagrass loss at over 40 locations 
throughout the world have been reported by previous researches (Short and Wyllie
Echeverria 1996; Hemminga and Duarte 2000). Seagrass decline is also ongoing in Australia 
like other areas in the world (Kirkman 1997). Numerous natural and anthropogenic 
disturbances are attributed to the seagrass decline in Australia (Kirkman 1997). Although the 
scale of seagrass loss due to natural disturbances, such as cyclones and floods, is larger with 
over 1,000 km2 than the scale of human-induced losses with 450 km2, mostly, the seagrasses 
destroyed through human-induced disturbances have been species like P. australis, which is 
unlikely to recover quickly (Kirkman 1997). The largest decline and loss of seagrass 
meadows have been attributed to the eutrophication of water columns caused by human 
activity in Australia (Kirkman 1996). Tasmanian seagrass communities have been faced with 
the situation of population decline (CCNRM 2005). They have been also destroyed and 
disjoined by coastal development and poor catchment management together with threats, 
encompassing; dredging, land clearing, sediment run off, and sewage and stormwater 
discharges (Sprod et al. 2003; CCNRM 2005). Additionally, multiple threats derived from 
natural or human-induced, or cumulative impacts associated with these threats cause serious 
seagrass loss and decline at geographic scales from square metres to hundreds square 
kilometres (Butler and Jemakoff 1999; Kemp 2000; Orth et al., 2006). According to the 
common remark as to the resilience of temperate Australian seagrasses, such as Posidonia 
spp. and Amphibolis spp. once they were destroyed, a recovery of these species in same area 
are unlikely happened (Clarke and Kirkman, 1989). Therefore the degradation and loss of 
these species is important not only to present but also future marine coastal environments. 

2.4 The value of mapping and monitoring seagrass meadows 

With ongoing seagrass loss worldwide including Australia, concern over seagrass 
conservation and management is of major interest due to the important role of seagrass in the 
coastal environment at local, regional and national scales (Butler and Jemakoff 1999; Orth et 
al., 2006). However, the quality and quantity of information on the distribution, environment 
and functional significance of seagrass are fragmented and varied between species (Butler 
and Jemakoff 1999). General models of seagrass ecophysiology, ecology and ecological 
correlation have yet to be formulated due to the limited information on Australian seagrasses 
(Butler and Jemakoff 1999). In Tasmania, limited research into seagrass habitat distribution 
and population change rate has been conducted (Rees 1993; Kirkman 1997). Lack of 
comparative studies at comparable temporal and spatial scale limits synthesised and 
integrated approaches for seagrass conservation and management program. Together with the 
growing awareness of seagrass values and vulnerability, proper conservation and 
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management activity is regarded as a vital task to support sustainable seagrass communities 
(Kirkman 1996). Information on natural change in seagrass habitat distribution at multiple 
spatial and temporal scales is regarded as key information for developing management plans 
(Butler and Jemakoff 1999; Orth et al., 2006). In order to support successful programmes, 
baseline information on the extent and status of seagrass meadows via mapping process are 
required as a first step (Kirkman 1990; Kirkman 1996; Kirkman 1997; Kemp 2000; Mount 
2007). Next, regular monitoring of the seagrass meadows at multi-temporal scales (e.g. 
annual or seasonal) on a longer term basis produces the information on seagrass meadows 
compared to the baseline (Kirkman 1990; Kirkman 1996; Ferguson and Korfmacher 1997). 
Seagrass mapping and monitoring processes are thus central to meeting high standards for 
conservation and management project (Dobson et al. 1995; Thomas 1995). In particular, 
information on the following is useful: rate of seagrass population change in response to 
natural and human-induced disturbances; how seagrass changes distribution and composition 
at seasonal and annual differences; and whether seagrass can recolonise or not (Kirkman 
1997). 

2.4.1 Administrative perspective 

There are also reasons for seagrass community mapping and monitoring from administrative 
and ecological perspectives. From the administrative perspective, sound scientific decisions 
that underpin time management, cost management, and project site selection are crucial to 
effective projects and programmes, not only conservation and management but also other 
coastal activities, such as, coastal development or aquaculture (Kirkman 1996; Butler and 
Jemakoff 1999; Kemp 2000; Orth et al., 2006). The quantitative and qualitative information 
on seagrass distribution through long term-periodic data will support decision makers to 
make those critical decisions (McKenzie et al. 2001a; Orth et al., 2006). Mapping and 
monitoring processes are then core components of the coastal zone programs as they produce 
information on the change in seagrass distribution, abundance and diversity (Kirkman 1997; 
Kemp 2000). For instance, geographic information on seagrass distribution over large areas 
assists the site selection of Marine and Estuarine Protected Areas (MEPAs) or vulnerable 
sites to natural and human-induced disturbances (Butler and Jemakoff 1999; McKenzie et al. 
200la). Information on ecologically important seagrass beds assists managers to select the 
location of marine parks and reserves (Kirkman 1997). Finer geographic scale information 
assists identifying an appropriate scheme of coastal development that mitigates the impact on 
seagrass meadows (McKenzie et al. 2001a). Additionally, the susceptible area of seagrass 
meadows to natural or human-induced disturbances, such as hurricane, oil spills or other 
pollution events can be analysed by finer scale geographic information (Kirkman 1997). 
However, the paucity of appropriate mapping and monitoring programmes makes it difficult 
to conduct comprehensive assessments of actual seagrass loss in the first place of the 
conservation and management projects (Short and Wyllie-Echeverria 1996). Paucity of 
seagrass loss and change rate derived from monitoring programmes is also obstructing the 
formulation of global conservation policy (Duarte 2002). 

2.4.2 Ecological perspective 

From an ecological perspective, mapping and monitoring seagrass meadows are crucial for 
identifying the natural population dynamics of seagrass community and correlation between 
seagrass habitats and natural or human-induced disturbances, such as sediment run-off 
derived from coastal development, decreased light intensity arising from sea level rise, and 
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eutrophication (Butler and Jemak:off 1999; Duarte 2002; Ferwerda et al. 2007). In particular, 
the effect of rapid environmental change on seagrass community habitats is not been well 
known (Orth et al., 2006). Uncertainties as to the present loss rate and expected loss of 
seagrass meadows are due to the lack of regular monitoring (Duarte 2002). The responses of 
seagrasses to such an unprecedented environmental change in quantity and quality of their 
habitats could be identified through monitoring programmes. (Orth et al., 2006). In 
accordance with the information on the seagrass response, the specific requirements for 
seagrass habitat sustainability, the seagrass's resilience tu damage, required duration for 
recovery, and required conditions for seagrass restoration could be estimated (Meehan and 
West 2000). For instance, transplantation of seagrass, one potential method of conservation 
and management for the mitigation or restoration of seagrass decline due to human-induced 
disturbances in the coastal environment needs such information on the response' of seagrass to 
improve the transplantation scheme (Cambridge and Kendrick 2009). Continuous monitoring 
of the seagrass meadows at multiple temporal scales is then essential to detect positive or 
negative response of seagrass distribution. Moreover, seagrasses can be used as a biological 
indicator to measure the health of adjacent coastal and estuarine ecosystems whether tropical 
and temperate regions, because of their sensitivity (Bortone 2000; Orth et al., 2006). 
Degradation and extent loss of seagrass meadows represents that the degradation and loss of 
adjacent ecosystem functions that seagrass supports (Abal and Dennison 1996; Orth et al., 
2006). Widespread seagrass distribution across tropic and temperate regions often enables 
better evaluation of coastal ecosystem trends at large geographic scale than the assessment 
based on other coastal habitats, such as coral reefs, mangroves, or salt marsh as their 
distributions are mainly restricted to only tropical or temperate region (Orth et al., 2006). 
Another feature of seagrass meadows is that they are effective indicator and their degradation 
and recovery rates can be measured with a defined temporal scale via a monitoring process 
and used to assess environmental impacts or coastal environment recovery program 
(Longstaff and Dennison 1999; Orth et al. 2002). 

2.4.3 Seagrass monitoring 

Nineteen seagrass conservation programs are currently carried out globally, with monitoring 
of 30 seagrass species over 44 countries (Orth et al., 2006). Information from these 
monitoring programs can be used not only for their individual conservation program at 
regional or local scale but also can be integrated to develop global seagrass conservation and 
management program and environmental impact assessment program (Orth et al., 2006). 
Seagrass population dynamics of species and regions are mostly unknown globally 
(Kenworthy 2000). In Australia, despite their seagrass communities are extremely important 
habitats supporting coastal ecosystems, very little of the Australian coastlines is 
systematically monitored, which in tum, means information on seagrass distribution and 
temporal dynamic also still remains poor (Kirkman 1997). Lack of synthesized data from 
mapping and monitoring processes prevents seagrass management programmes from further 
understanding global processes, threats, and changes and limits improvement in the 
programmes (Orth et al., 2006). While it may have the least representation of seagrass 
diversity and abundance in Australia, Tasmanian seagrass communities have not been well 
explored because of the limited survey of benthic biota (Kirkman 1997; Sprod et al. 2003). 
Although the distribution of Tasmanian seagrass species have been identified through prior 
researches (Rees 1993; Kirkman 1997) and the SEAMAP Tasmania programme has mapped 
the majority of the seagrass beds around the coast, a comprehensive survey of the whole 
Tasmanian coast has not yet taken place. While extensive seagrass beds have been identified 
in the far north-western Tasmania, the digitally archived map series of Boullanger Bay at 
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large geographic scale, recording change through time is still limited. If there have been 
changes in seagrass distribution in this area, it is hard to measure the extent of change due to 
a lack of time series data (Kirkman 1997). Thus, if seagrass distribution in the Boullanger 
Bay, study area for this project was systematically mapped and monitored at multiple spatial 
and temporal scales, it would to produce valuable information for conservation and 
management (Kirkman 1997). 

2.5 Satellite remote sensing techniques for image classification and change 

detection 

Recent satellite remote sensing image analysis techniques are numerous. Effectiveness of an 
individual technique varies with the target object, area, and environmental condition of the 
study area when the imagery was acquired. Investigation into the remote sensing technique of 
choice is important to identify the effectiveness of the techniques so that appropriate 
application of remote sensing techniques is performed for meaningful research activity 
afterwards. 

Extensive seagrass loss and degradation has led to an increase in the seagrass research effort 
together with the establishment of marine protected areas and conservation projects during 
the last decade throughout the world (Orth et al. 2006). The number of research projects into 
the mapping and monitoring of seagrass distribution has also been increasing. There are 
several primary research methods in remote sensing for seagrass mapping and monitoring, 
including: aerial photography, acoustic methods, videography, and satellite imagery 
(Kirkman 1990; Butler and Jemakoff 1999). Each method has advantages and disadvantages 
for seagrass mapping and monitoring application. With ongoing technical development, 
remote sensing methods have received attention for underwater object observation, and 
numerous techniques have been developed so far (Rogan and Chen 2004). In particular, 
satellite remote sensing is one of the major methods for seagrass mapping and monitoring. 
However, the literature evaluating research methods into coastal area, including seagrass 
observation, still remains insufficient (Butler and Jemakoff 1999), especially in the area of 
satellite remote sensing. In response to the need for satellite remote sensing method 
assessment of coastal area, Ozesmi and Bauer (2002) evaluated the satellite remote sensing 
techniques for wetland application. Ferwerda et al. (2007) also examined remote sensing 
techniques of seagrass monitoring application, yet it was not emphasised on spectral image 
analysis techniques like the research of Ozesmi and Bauer (2002). While these method 
evaluation research papers are valuable (Butler and Jemakoff 1999), difficulty in application 
of the methods examined in these papers still remain. That is there is no single technique of 
satellite remote sensing that can be applied for all conditions of areas and objects in marine 
coastal region (Lu et al. 2004). As other types of remote sensing methods, satellite remote 
sensing techniques selection highly relies on whether those techniques meet the regulations of 
particular object, the scale and status of study area and the purpose of observation (Butler and 
Jemakoff 1999). In addition, the same technique does not necessary ensure the equivalent 
effectiveness to similar objects because the status of the object is often influenced by 
numerous environmental variables. As a result, numerous satellite remote sensing techniques 
have been developed for different applications, and therefore, an appropriate technique 
should be identified for each observation project (Phinn et al. 1999). 

Image classification and change detection techniques are central procedures of image analysis 
for satellite remote sensing (Dobson et al. 1995; Ozesmi and Bauer 2002; Lu et al. 2004; 
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Coppin et al. 2004). Phinn et al. (1999), Ozesmi and Bauer (2002) and Lu and Weng (2007) 
addressed satellite image classification techniques. Dobson et al. (1995) summarised major 
change detection techniques of satellite remote sensing and aerial photography for coastal 
analysis. Although the coastal region was not main theme, Lu et al. (2004) and Coppin et al. 
(2004) also summarised change detection techniques for satellite based monitoring. 
According to these review articles, the remote sensing techniques identified as useful 
techniques for coastal environment are: unsupervised classifier; maximum likelihood 
classifier; principal component analysis (PCA) and independent component analysis (ICA) 
for image classification; and PCA, ICA, Image Algebra, Write Function Memory Insertion 
(WFMI), and Multi-date Composite Image (MCI) analysis for change detection. 

2.5.1 Image classification 

Image classification is divided into two main types: unsupervised classification and 
supervised classification. The main difference is to label classes prior to or after 
computational classification processing using ground truth data or ancillary information or 
expert knowledge of study area. Unsupervised classification is executed by computer 
processing without any prior information related to class categories in observed image, yet 
supervised classification uses ancillary information to label class categories before computer 
processing defines each category. Ozesmi and Bauer (2002) indicated unsupervised 
classification is very common method for the classification of wetland habitats, including 
submerged aquatic vegetation based on the review of previous research. In particular, when a 
large number of class categories are required, unsupervised classification is most effectively 
used (Ozesmi and Bauer 2002). 

For supervised classification, a number of techniques have also been used for coastal area 
mapping (Ozesmi and Bauer 2002). Among others, the Maximum Likelihood classifier is the 
most common supervised classification techniques for wetlands or coast area mapping 
(Macleod and Congalton 1998; Everitt et al. 2009). Everitt et al. (2009) also employed 
Maximum Likelihood classifier to map black mangrove on the Texas Gulf Coast in their 
research. They sampled 5 classes in QuickBird images for each site to classify images. 
Although few errors were identified due to mixed vegetation, highly accurate results of 
overall accuracy (90.0% for site 1 and 90.7% for site 2) and kappa coefficient (0.866 for site 
1 and 0.861 for site 2) were obtained (Everitt et al. 2009). Additionally, some researchers 
also employed minimum distance to mean classifier for seagrass mapping with QuickBird-2, 
Landsat 5, and CASI-2 (Phinn et al. 2006b). Minimum distance classifier produced high 
accuracy for QuickBird-2 and CASI-2, yet not for Landsat 5 (Phinn et al. 2006b). According 
to this result, type of satellite imagery highly influences the accuracy of resultant thematic 
map. Both unsupervised and supervised classification techniques are very common for coast 
area mapping. Yet, a simple determination of which classification technique, unsupervised or 
supervised classifier is more feasible and suitable to detect specific object for coastal area 
mapping is not possible. In the image classification results of Macleod and Congalton (1998), 
the ISODATA showed higher accuracy than maximum likelihood classifier. On the other 
hand, research by Everitt et al. (2009) showed that the maximum likelihood classifier 
produced higher accuracy than ISO DAT A. Therefore, the type of image classification 
technique is also highly associated with the study area condition and proposed object (Butler 
and Jemakoff 1999), and the choice of image classification technique influences the resultant 
map. Thus, both unsupervised and supervised classification methods are attempted to 
investigate utility into SAV mapping in Boullanger Bay area for this project. 
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2.5.2 Change detection 

Numerous change detection algorithms have been also developed so far. In particular, Write 
Function Memory Insertion (WFMI), Multi-date Composite Image (MCI), Image Algebra 
(e.g. image differencing, image regression, image ratio and change vector analysis), Image 
Transformation (e.g. PCA and ICA) and Post-Classification Comparison are major change 
detection techniques (Dobson et al. 1995; Lu et al. 2004; Coppin et al. 2004). For the 
detection of change in vegetation community, vegetation index image differencing, notably, 
using Normalised Difference Vegetation Index (NDVI) is a common technique at present. 
However, the constraint of this technique for this project is that since NDVI employs near
infrared radiation, which is strongly attenuated by the water column. Instead, MCI can be 
employed for under water object delineation. Coppin et al. (2004) indicates the highest utility 
for MCI in natural environment. While natural change in natural resources is often subtle, 
MCI is capable of detecting the subtle change. Additionally, MCI and Post-classification are 
the only techniques that can obtain ''from - to" change in objects from image time series 
(Macleod and Congalton 1998). However, they also indicate the difficulty of MCI in the 
process of image interpretation for change detection. According to the summary of recent 
change detection techniques by Lu et al. (2004), most common methods are image 
differencing, PCA, and Post classification comparison. Macleod and Congalton (1998) 
attempted these three techniques for monitoring eelgrass in Great Bay, New Hampshire based 
on Landsat TM image. They concluded that image differencing was better technique than 
PCA and Post-classification comparison. While many scientists have used Post-classification 
technique (Munyati 2000; Xia et al. 2007; Alphan et al. 2009), Post-classification is a 
technique highly influenced by the accuracy of classified images. This technique is 
straightforward to detect ''from - to" change, yet unless, high quality classified images are 
obtained, potential for the least accuracy of change detection remains (Macleod and 
Congalton 1998). In this regard, image differencing avoids misclassification inherent in the 
Post-classification because full image classification is not required for image differencing 
(Macleod and Congalton 1998). For PCA, inadequacy of change detection for eelgrass 
meadows was indicated due to low accuracy in error matrix and Khat accuracy by Macleod 
and Congalton (1998). Jensen et al. (1993) used image algebra for change detection of 
waterlilies and cattails at seasonal differences in a fresh water reservoir on the Savannah 
River Site in South Carolina. They also managed to obtain sufficient change detection result 
of waterlilies and cattails based on Image algebra technique. However, Mas (1999) found 
Post-classification technique is the most effective over the six methods he examined 
including: (1) image differencing; (2) vegetation index differencing; (3) direct multi-temporal 
unsupervised classification; (4) post-classification; (5) a combination between image 
enhancement and post-classification; and (6) PCA. WFMI is also a straightforward technique 
that can delineate change or unchanged area between different temporal images (Dobson et 
al. 1995; Jensen 2005). Individual band from multi-temporal satellite images are inserted into 
specific write function memory banks (red, green, and/or blue) in computer software for 
digital image processing to delineate change and unchanged area through specific color 
combinations derived from correlation of write function memory banks (Dobson et al. 1995; 
Jensen 2005). Since this technique cannot produce ''from - to" change, WFMI is often 
employed with other digital image processing techniques to attempt change detection 
analysis. Different change detection techniques have their own advantages and disadvantages, 
thus, no single approach can be applied for all cases of change detection (Lu et al. 2004 ). 
Several approaches of combination between several change detection techniques, 
encompassing; MCI and WFMI are thus attempted to detect change in SA V distribution in 
Boullanger Bay in this project. 
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2.5.3 PCA and ICA 

There is a need for monitoring programme via satellite remote sensing technique that ensures 
the detection of small decline in seagrass distribution at early stage of the decline over large 
geographic areas (Kirkman 1997; Duarte 2002). Unsupervised image feature extraction 
techniques such as PCA, and especially ICA, are regarded as effective change detection 
techniques to extract features of small changes. 

PCA is powerful statistical technique to decorrelate the original int;,erband correlation of 
observed satellite imagery (Fung and LeDrew 1987). PCA can be used for a range of image 
analysis purposes, encompassing; image transformation technique in pre-processing stage, 
image classification stage as an unsupervised classifier, and change detection technique 
(Fung and LeDrew 1987; Du et al. 2002; Ozesmi and Bauer 2002; Munyati 2004; Paolini et 
al. 2006; Deng et al. 2008). PCA is often used in combination with other techniques for 
change detection purposes whereas single usage of PCA can play a role as an image 
transformation technique or unsupervised classification (Lu et al. 2004). PCA based change 
detection is widely used at present (Li and Yeh 1998; Munyati 2004; Zhong and Wang 2006; 
Deng et al. 2008; Song et al. 2009). In particular, PCA is regarded as a good utility method 
for land use change detection (Li and Yeh 1998; Deng et al. 2008; Song et al. 2009). Li and 
Yeh (1998) concluded that PCA has the ability to reduce errors in change detection analysis 
using multi temporal satellite images. Song et al. (2009) indicated the utility and feasibility of 
PCA based change detection for rapid land use in the urban area. Deng et al. (2008) also used 
PCA based change detection, yet not only with unsupervised but also supervised 
classification. Moreover, their approach resulted in better accuracy than using post
classification method in terms of overall, producer's, user's and kappa coefficient index. 
Despite the good results, little research into PCA based change detection for coastal 
environment has been conducted (Munyati 2004). While PCA has been often used either 
individually or with other techniques, in most cases, PCA applications often include artificial 
object in the imagery, and do not consist of only natural objects. This is particularly because 
of large spectral feature differences between natural and artificial objects. Even though there 
is a difference of spectral feature between nature objects, artificial object typically have 
unique spectral feature. Therefore, change detection of a natural area would be difficult to 
interpret, especially if it was vegetation change detection, since all objects in the image have 
a similar spectral response. Munyati (2004) found better effectiveness for PCA than post
classification approach for coastal wetland change detection in Zambia, yet also found the 
difficulty of image interpretation when insufficient ancillary data or knowledge is prepared, 
as it is difficult to understand the meaning of the principal components. Although it depends 
on the components of image, PCA application for land use development is therefore regarded 
as quite effective, yet for change detection in natural environments, it might have difficulty in 
image interpretation. 

Independent Component Analysis (ICA) is a recently developed statistical and computational 
technique (Robila et al. 2000), which is an extension of PCA (Gilmore et al. 2004). It is also 
spectrally dependent like PCA (Shah et al. 2007) and it has high potentiality for seagrass 
mapping and monitoring in this project. Elements of ICA and PCA application overlap: either 
individually usable or hybrid usage for feature extraction; or image classification; or change 
detection because ICA was developed based on PCA. However, there is a clear difference 
between ICA and PCA. ICA uses higher-order statistics than 2nd order statistics of PCA 
(Zhong and Wang 2006). Higher-order statistics can be exploited to separate a mixture of 
signals into different components, called independent components, without prior knowledge 
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about the statistics of the source (Hyvarinen and Oja 2000; Du et al. 2004). ICA derived 
independent components are assumed to have a non-Gaussian distribution and mutually 
independent in the image (Gilmore et al. 2004). Although PCA enables the reduction of band 
dimension to produce inter-bands decorrelation (Robila et al. 2000), extracted features, called 
principal components are not mutually independent unlike the independent components 
derived from ICA. Additionally, principal components are assumed Gaussian in distribution, 
which is a bell shaped distribution in histogram. Most satellite remote sensing imagery do not 
have a Gaussian distribution (Zhong and Wang 2006; Shah et al. 2007). Generally, latent 
variables in observed images consist of features with non-Gaussian distribution, especially, in 
rich nature areas. ICA produces either uncorrelated bands or the reduction of higher-order 
dependencies at once (Zhong and Wang 2006). ICA technique is therefore considered to have 
more utility than PCA in the empirical application of satellite remote sensing for mapping 
and monitoring projects, especially if the spectral distribution of acquired image is non
Gaussian (Zhong and Wang 2006). Thus, ICA can be subject to applications for image 
feature extraction, classification and change detection based on spectral analysis. Yet, ICA 
application for change detection procedure has not been summarised in major review articles 
in practice (Dobson et al. 1995; Lu et al. 2004; Coppin et al. 2004). On the other hand, while 
ICA was developed recently, many experts have already found its utility for various kinds of 
objectives (Du et al. 2004; Gilmore et al. 2004; Zhong and Wang 2006; Shah et al. 2007). 
For instance, Du et al. (2004) used ICA as a classification technique via multi-spectral 
satellite imagery for urban and suburban areas. They concluded that ICA is a kind of spectral 
analysis based unsupervised classification and a more powerful technique than the single 
usage of unsupervised classification, such as ISODATA. In the research by Zhong and Wang 
(2006), ICA was performed for the detection of change in land cover due to land salinisation 
based on multi-spectral and temporal images. They firstly produced independent components 
that are different land cover features based on spectral characteristics in the image, through 
ICA. Supervised classifier, Maximum Likelihood was then applied for the analysis of the 
independent components shown images. They concluded the better effectiveness of ICA than 
PCA in this method, and also indicated that ICA based Maximum Likelihood classifier 
managed to identify not only the change area but also the 'from - to' change feature in the 
image through time series. In this regard, ICA can be performed either individually or 
combination with other classification technique or change detection technique like PCA can 
be applied. Particularly, when ICA is employed with other spectral analysis techniques, such 
as image classification approaches and anomaly detection, the accuracy of resultant classified 
images can be improved by independent components derived from ICA (Zhong and Wang 
2006; Shah et al. 2007). Scientists are increasingly recognised ICA as a better technique than 
PCA in many cases of satellite remote sensing application on account for these empirical 
advantages, although the effectiveness of PCA and ICA still highly depends on the proposed 
object and condition of study location. However, despite the growing recognition of ICA 
utility, most applications of ICA have been for land use classification or change detection 
like PCA application (Du et al. 2004; Zhong and Wang 2006; Shah et al. 2007; Benlin et al. 
2008). While previous research performed ICA technique focusing on the land use area 
mapping and monitoring, feasibility and utility of ICA revealed by many researchers would 
be reliable for coastal area mapping and monitoring. In accordance with the high utility, ICA 
is attempted for mapping and monitoring SA V in this project instead of other techniques like 
PCA. It is assumed that each coastal feature is extracted as statistically independent features. 
Additionally, small change in seagrass areal extent may potentially be extracted by ICA 
technique with an appropriate extent of study location. 
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The techniques mentioned in this section can be used individually or in combination with 
each other to improve either image classification or change detection accuracy. Further, there 
has been no attempt of satellite remote sensing based image classification and change 
detection of SAV meadows in Boullanger Bay, and, there is no previous application of 
change detection techniques. Therefore, several techniques of image classification and 
change detection via satellite remote sensing were attempted to investigate the utility and 
feasibility of those techniques for SA V mapping and monitoring in Boullanger Bay. 
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Chapter 3 Methodology 

3.1 Chapter overview 

Remote sensing image analysis procedures are sometimes complex due to numerous factors 
that should be taken into account for successful analysis. Several elements, such as user's 
requirement, study area scale, research budget, and competence and knowledge of analyst are 
highly attributed to the image analysis scheme and influences on the quality of the result (Lu 
and Weng 2007). This chapter aims to make sense of the nature of satellite remote sensing 
procedures performed in this project before describing the empirical procedures in three case 
studies of this project. A description of the study area of Boullanger Bay, including two Case 
study areas, is provided so as to detail the specific local attributes of the research location. 
The basic processes of remote sensing image analysis is followed by; selection of suitable 
satellite imagery, image pre-processing, image transformation, image classification, change 
detection, and the accuracy assessment of resultant data. 

3.2 Study area: Boullanger Bay in northwest Tasmania 

Boullanger Bay, including subtidal and intertidal open water areas, and several river 
catchment areas, is located in the Cradle Coast region, in the far northwest of Tasmania 
(40.6°S, 144.6°E) (Figure 3.1). Boullanger Bay is about 15km x lOkm and approximately 
15,000 hectares in area. It is situated between the north-western tip of the main island of 
Tasmania to the west and Robbins Island to the east, while to the north the bay eventually 
opens out to Hunter Island and Three Hummock Island in far western Bass Strait. Boullanger 
Bay is connected by Robbins Passage to Big Bay and the entire complex is composed of large 
and shallow intertidal embayments. The area is one of the most important in Australia for 
migratory birds, including the eastern curlew and ruddy turnstone, and for Tasmanian 
resident shore birds, such as the sooty and pied oystercatchers and the hooded plover (Bryant 
2002; Sprod et al. 2003; CCNRM 2005; Spruzen et al. 2008). As noted by Crawford and 
White (2007), areas of coastal open water and estuaries, such as Boullanger Bay, provide 
numerous environmental, social and economical benefits and values for the Cradle Coast 
region. In particular, wetlands in this area are one of the most outstanding sites of 
environmental significance in the Cradle Coast region, and although not formally recognised 
under the Ramsar Convention, it is argued that it would meet critical criteria for inclusion 
(Bryant 2002; Crawford and White 2007). Seagrass meadows and saltmarshes that compose 
the wetlands provide food webs and habitats for marine ecosystems and feeding habitats for 
shorebirds, which are common in this area (Crawford and White 2007). Diverse species of 
native birds, for instance, from the threatened wedge-tailed eagle to the superb fairly-wren, 
are also found living in this area (Sprod et al. 2003). Intertidal and subtidal open water areas 
in this region contain some of the most prominent and significant seagrass beds in Tasmania, 
being covered by approximately 8,000 ha of seagrass beds (Rees 1993; Sprod et al. 2003). 
Most seagrass beds in the bay are located in soft sediment basin, shallow (less than lOm), 
clear and low wave energy water areas (Figure 3.2, 3.3). This study area is contained in the 
marine bioregion 'Boags', in which the dominant seagrass is P. australis (Figure 3.4) (Rees 
1993; Sprod et al. 2003). Previous research conducted by Rees (1993) identified the presence 
of several seagrass species, encompassing; A. Antarctica and Z. muelleri. Recent fieldwork in 
January 2010 conducted by Mount et al. (unpub) identified that there were extensive subtidal 
and intertidal seagrass habitat beds, including not only the former three species but also H. 

Page 37 



australis and H. tasmanica. The climate at a regional scale is temperate, with high rainfall 
(Figure 3.5) (Sprod et al. 2003) and high cloud coverage. However, as the air in this area is 
known as being the 'cleanest' in the world - in that the air contains very little particulate 
matter - it provides one of the clearest places in the world to conduct remote sensing 
activities (Sprod et al. 2003). Consequently, Boullanger Bay is regarded as an appropriate 
study area for the evaluation of satellite imagery application and the observation of seagrass 
meadows distribution by satellite remote sensing technology. In order to detect small scale 
changes in the distribution of SA V, including seagrass community and to identify the 
effectiveness of remote sensing computational techniques, the study region was further 
subdivided into two smaller case study areas: (1) the Welcome River inlet; and (2) a subtidal 
open-water area of Boullanger Bay. 

Figure 3.1 Boullanger Bay, Source: (Dunn 2000). 
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Figure 3.2 Shallow soft sediment basin, Boullanger Bay 

Figure 3.3 Intertidal seagrass meadows 
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Figure 3.4 Bioregions in the north west Tasmania, Source: (Sprod et al. 2003). 
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Figure 3.5 Annual rainfall in Tasmania, Source: (Sprod et al. 2003). 

3.2.1 Case Study area 1: Intertidal SAV change detection analysis, Welcome Inlet 

The Welcome River inlet was selected to identify the change in the distribution of intertidal 
SA V community (Figure 3.6). Investigation of remote sensing image analysis techniques to 
map and changes in the distribution of intertidal seagrass meadows was the co-objective of 
this case study. The Welcome River inlet is characterised by having an open marine inlet with 
a strong fresh water influence (Crawford and White 2007).The total area of the Welcome 
River catchment is 67,400 ha (CCNRM 2005), while the Welcome Inlet has an area of 
approximately 500 ha. A large area of salt marsh is located in the Welcome River inlet. 
According to Crawford and White (2007), this plant community is the one of the most 
threatened in Tasmania. The most abundant seagrass species at this area is Z. muelleri (Rees 
1993). The Welcome River inlet is regarded as estuarine, and the Welcome River Reserve 
located in the lower Welcome Inlet supports nationally significant swamp forest communities 
in Tasmania (Crawford and White 2007). Additionally, the benthic macro invertebrate fauna 
species richness of Welcome Inlet is the highest compared to any other estuaries in the Cradle 
Coast Region (Edgar et al. 1999). The Welcome River catchment consists of many river 
tributaries that support ecosystems and biological diversity. Historically, tributaries of the 
Welcome River flowed through extensive and low-lying swamp forests . However, these 
forests have been cleaned and the river has been subjected to major alterations in water flow 
due to drainage channels constructed in order to expand adjacent upland farming (DPIWE 
2003). 
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Figure 3.6 Map of the Welcome area. The red square depicts the case study site. Source: (Dunn 2000). 

3.2.2 Case Study area 2: Subtidal patchy SA V habitats change detection analysis, 

Boullanger Bay 

Boullanger Bay, Case Study area 2, is an open water near-shore area located west of Robbins 
Island, east of the north-western tip of the main island of Tasmania, and south of Hunter 
Island (Figure 3.7). The area contains outstanding coastal and marine biological diversity 
(Sprod et al. 2003; CCNRM 2005). Extensive, but patchy seagrass meadows range over the 
sea floor in the subtidal open water area of Boullanger Bay. The landscape of far northwest 
Tasmania is mainly composed of depositional sediments, largely derived from Tertiary and 
Quaternary age materials (Sprod et al. 2003). The bottom of Boullanger Bay is made up from 
this sort of soft sediment, which produces extensive flat landscapes (Sprod et al. 2003). As 
the result of ecological succession, extensive and stable seagrass meadows of over 8,000 ha 
in area exist as a critical primary producer for the wider ecosystem of Boullanger Bay (Rees 
1993; Sprod et al. 2003). P. australis is the dominant species in the subtidal area of 
Boullanger Bay (Rees 1993; Kirkman 1997; Sprod et al. 2003; CCNRM 2005). P. australis 
prefers sheltered embayments, and forms large continuous meadows in waters from 1 to 15m 
deep (Trautman and Borowitzka 1999). Unlike some other species of intertidal seagrasses, P. 
australis is a particularly slow recoloniser of areas from which it has been displaced 
(Kirkman 1997; DEHAA 1998; Meehan and West 2000). Within Boullanger Bay, there are 
patchy uncolonised areas (Figure 3.8), of about 25m radius, in the beds of P. australis in 
Boullanger Bay (Mount pers. comm.). These uncolonised areas, and their surrounding 
seagrass meadows, are interesting ecological features and effective sites to investigate the 
stability of established seagrass meadows over time like the survey conducted by (Meehan 
and West 2000). 
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Figure 3.7 Map of the subtidal open water area. The red square depicts the case study site. Source: (Dunn 2000). 

Figure 3.8 Patchy uncolonised areas of seagrass meadows. Bright areas represent mostly sand, 

and dark areas represent submerged aquatic vegetations 
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3.3 Image data 

Appropriate image selection is a first important process of the remote sensing image analysis 
for a specific research purpose (Phinn 1998). Satellite and its loaded sensors are designed for 
specific purposes. Factors, including; research purpose and objects of interests, geographic 
scale of the study location, satellite image resolution size, availability of different temporal 
data, budget and time limitation for research, and the competence of analyst for the candidate 
image, are significantly involved in the image selection (Lu and Weng 2007). Each satellite 
data has each strength and weakness in terms of spatial, spectral, temporal and radiometric 
resolution according to the designed purposes. These components influence on the quality of 
the resultant data, such as thematic map and the result of change detection analysis. Identical 
resolutions of those four factors are preferable for better quality of change detection image 
analysis (Jensen 2005). Appropriate temporal correlation based on similar anniversary date 
and time in a day of image acquisition between multi-temporal images is crucial, especially 
when change detection analysis takes place (Jensen 2005; Deng et al. 2008). In practice, it is 
however; often difficult to obtain such an ideal status of multi-temporal or multi-sensor 
satellite imagery due to the limitation of research, especially budget limitation. Comparison 
of the strength and weakness of these four factors between different satellite sensors is 
prerequisite for appropriate satellite image selection so that the better effectiveness of the 
subsequent image analysis is derived (Dobson et al. 1995; Lu and Weng 2007). Another 
consideration over the image selection is atmospheric condition of the acquired imagery. 
Satellite imagery holding corresponding temporal information is better for change detection 
to constrain different atmospheric impacts, such as sun angle and phenology of plant 
community on the image (Jensen et al. 1993; Jensen 2005; Deng et al. 2008). In particular, 
cloud coverage and tide condition are critical factors for this project. Since less cloud 
coverage provides more original spectral response of the features in the image without regard 
to atmospheric distortion (described later section in this chapter), as less cloud coverage as 
possible is ideal for subsequent analysis. Additionally, tide condition is also very important 
for classification and change detection analysis of coastal area, especially of submerged 
aquatic vegetation (Macleod and Congalton 1998; Ozesmi and Bauer 2002). Tidal stage 
between multi-temporal images is ideally better as much identical as possible for change 
detection (Jensen 2005). Generally, the ability to 'see underwater' is a weakness of satellite 
remote sensing. Specifically, the greater the distance between the water surface and a 
submerged object the more restricted is the observation of that submerged object. This is due 
to the rapid absorption of electronic magnetic radiation by water and reflection by 
constituents within the water column such as plankton and suspended sediments (Phinn et al. 
2006a). Although high tide level might not be suitable for mapping submerged vegetation in 
this regard, an image acquired after low tide might not be suitable as well. In part because, 
after the low tide, there is likely to be turbulence that performs like a dust storm, preventing 
satellite sensor, especially Landsat TM, from detecting sufficient reflectance from the 
submerged vegetation (Macleod and Congalton 1998). Consideration about water clarity 
should be taken into account as well as identical tide level between multi-temporal images. 
Thus, variability of tide stage and water clarity over the multi-temporal data should be cared 
to make the spectral response of submerged object as mush equal as possible for subsequent 
change detection analysis. In this research project, three satellite sensor (ALOS, Landsat TM 
and ETM+) and aerial photography were available for image analysis. 
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3.3.1 Landsat 5 Thematic Mapper and7 Enhanced Thematic Mapper plus 

Imagery of Landsat 5 Thematic Mapper (TM) and 7 Enhanced Thematic Mapper plus 
(ETM+), distributed from the U. S. Geological Survey (USGS) were used for image analysis 
in this project. Only the image of Landsat acquired in February 2000 was brought from 
Australian Centre for Remote Sensing (ACRES). Critical requirement for remote sensing 
change detection analysis is the availability of at least two dates of satellite imagery (Deng et 
al. 2008). Data availability derived from satellite and its sensor life expectancy is the most 
important consideration over change detection research. Among the conventional satellite 
imagery, Landsat series are prominent for change detection analysis in terms of historically 
archived data that has the ability for data comparison associated with various dates 
combination, with same sensor (Paine and Kiser 2003; NASA 2009). Landsat series are 
natural resource survey satellites first launched in 1972 (Verbyla 1995). The series of Landsat 
is ranging from 1 to 7, and Lands at 5 Thematic mapper (TM) has been operating for 25 years 
since 1984 and 10 years for Landsat 7 ETM+ (Figure 3.9) (NASA 2009). Landsat TM and 
ETM+ are satellite consists of cross-track scanner with instantaneous field of view (IFOV) of 
30 by 30m in ground resolution cell (Sabins 1997). 185 km swath consists of 5667 scan lines 
in the scan direction and 30m width in the orbit direction compose each scene (Sabins 1997). 
Either Landsat TM or ETM+ has seven spectral bands, ranging from 0.45 µm to 12.5 µm 
except for panchromatic band of ETM+ (Table 3.1) (NASA 2009). In fact, these multispectral 
bands containing the visible wavelength of radiation are important for mapping underwater 
object by remote sensing as only shorter wave radiations can penetrate perceptibly into the 
water column (Brivio et al., 2001). In addition, these multispectral bands support large 
potential for proposed image analysis of 'independent component analysis' in this project 
(described in later section). Temporal and radiometric resolutions are 16-days orbit cycle and 
8-bits respectively (Markham et al. 2004). In practice, general spatial resolution of 25 m 
(except thermal wavelength) can define large object, and these are the most frequently 
employed satellites for regional scale mapping (Lu and Weng 2007). Yet, these sensors are 
generally not suitable for detecting small individual object (NASA 2009), such as small 
patches of seagrass (Mumby et al. 1999). While aerial photography is better for detecting 
such a small seagrass patch, moderate spatial resolution of Landsat is adequate for detecting 
seagrass meadows at local area and high potential for change detection. Further, because of 
time and cost limitation, aerial photography was not practical for this research. Application of 
Landsat TM and ETM+ for this project was then determined in accordance with the synoptic 
perspective over the ability of these satellite sensors. 
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Figure 3.9 The history of Landsat series, Source: (USGS 2005). 

Table 3.1 Sensor characteristics of Landsat 7 Enhanced Thematic Mapper 

Orbit 

Altitude 

Spectral resolution 

Panchromatic 

From visible to middle infrared 

Thermal IR 

Number of spectral bands 

Spatial coverage 

Cross track coverage 

Temporal resolution 

Spatial resolution cell 

Panchromatic 

From visible to reflected IR 

Thermal IR 

Radiometric resolution 

Near polar sun synchronous 

705km 

0.45 ~ 2.35 µm 

0.45 ~ 2.35 µm 

10.5 ~ 12.5 µm 

7 

183 km 

Every 16 days 

15 by 15 m 

30 by 30 m 

120 by 120 m 

8 bits 
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3.3.2 Advanced Land Observing Satellite (ALOS) 

An image acquired in 2006 by the Advanced Land Observing Satellite (ALOS) was one of 
multi-temporal satellite images used for change detection analysis. This image was brought 
from Australian Centre for Remote Sensing (ACRES), Geoscience Australia. The main 
purpose of ALOS is a land observation at local area, such as identifying land objects, features 
and phenomena on the surface of the Earth (JAXA 2007). ALOS is equipped with three 
sensors, including; Advanced Visible and Near lnfrared Radiometer type-2 (AVNIR-2), 
Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM), and Phased Array 
type L-band Synthetic Aperture Radar (Palsar) (JAXA 2007). AVNIR-2, consists of along 
track scanner in ALOS, is effective for land and coastal area observation (GA 2009). Aims of 
this sensor is to provide land coverage maps with high spatial accuracy and land-use 
classification maps for monitoring regional environments (GA 2009). Multispectral 
combination of wavelengths ranges between region of visible and near infrared (Blue: 0.42-
0.5 µm, Green: 0.52-0.6 µm, Red: 0.61-0.69 µm, Near Infra Red: 0.76-0.89 µm) (EORC 
1997; JAXA 2007) (Table 3.2). In this regard, AVNIR-2 has also the ability to detect SAV 
meadows in terms of its spectral resolution, which is corresponding to Landsat TM and 
ETM+. Although it was basically designed for land cover classification, high spatial 
resolution of 1 Orn and radiometric resolution of 8 bits are assumed to be applicable to 
delineate SAV meadows clearly. Therefore, change detection analysis in this project 
subjected the ALOS image, 2006 for identifying change in SA V meadows. 

Table 3.2 Sensor characteristics of AVNIR- 2 

Orbit 

Altitude 

Spectral resolution 

Visible: 

Near infrared: 

Number of spectral bands 

Spatial coverage 

Temporal resolution 

Spatial resolution cell 

From visible to near infrared 

Radiometric resolution 

Sun-Synchronous, Sub-Recurrent 

Altitude: 691.65 km (at Equator) 

Band 1 : 0.42 to 0.50 µm 

Band 2 : 0.52 to 0.60 µm 

Band 3 : 0.61 to 0.69 µm 

Band 4: 0.76 to 0.89 µm 

4 

70 km (at Nadir) 

Every 46 days, Sub Cycle: 2 days 

10 by 10 m (at Nadir) 

8 bits 
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3.3.3 Orthorectified Aerial Photography 

All data of orthorectified aerial photography was acquired from TASMAP library aerial 
photo, the Department of Primary Industries, Parks, Water and Environment (DPIPWE) for 
this research. Orthorectified aerial photography was used for accuracy assessment in this 
project, yet not using them for mapping and monitoring SA V meadows. The aerial 
photography used to compare with the Landsat TM and ETM+ as reference data were 
acquired in 1996. There are some reasons for this, encompassing; better accuracy of 
orthorectified aerial photography, data availability and areal scale of mapping. In practice, 
aerial photography has a proven ability to measure the extent of submerged objects with 
higher spatial accuracy than satellite remote sensing sensors while it is dependent upon the 
extent and size of object (Valta-Hulkkonen et al. 2004 ). Such a high accuracy together with 
high spatial resolution allows the application of aerial photography for accuracy assessment 
of image classification generated from the satellite imagery. Data availability of aerial 
photography was another reason. Aerial photography has also outstanding in terms of 
historical imagery. However, time and budget limitation to this research restricted to use 
aerial photography for change detection analysis. Aerial photography is obviously major 
method to detect seagrass meadows. Yet, simply, the cost of the aerial photography flights 
and post processing is significant, and time consuming of data processing did not match up 
this time limited research unlike using satellite imagery (Ozesmi and Bauer 2002). Further, 
satellite imagery is more effective for synoptic SA V meadows mapping at large geographic 
area than aerial photography (Ozesmi and Bauer 2002). 

3.4 ls multi-temporal satellite imagery suitable for SA V mapping and 

monitoring? 

"The distribution of Australian seagrass communities should be mapped at appropriate spatial 
scales and, in key areas, monitored at appropriate temporal scales" (Kirkman 1997, pp. 25). 
Multi-temporal satellite imagery has great potential for monitoring scheme of this project. 
Multi-temporal satellite imagery ensures not only for the production of initial baseline 
information but also the continual production of subsequent information on habitat change at 
large scale over long period (Kirkman 1996). SAV meadows monitoring between 1990 to 
2008 is one of research purposes in this project. In particular, short interval monitoring 
(basically annual basis) was attempted through multi-temporal satellite image acquired from 
2000 to 2008. Multi-temporal satellite imagery of Landsat 5 was then available to meet such 
a standard of this monitoring scheme. Additionally, systematically integrated format of 
satellite data facilitates the continual analysis of monitored information between different 
remote sensing platforms for time series comparison (Butler and Jemakoff 1999). In this 
regard, application of multi-sensor and temporal satellite imagery has potential for long term 
monitoring programme. 

3.4.1 Values for this temporal difference (monitoring interval) 

Limited information on suitable monitoring period to identify the natural population 
dynamics of individual seagrass specie is available (Campbell and McKenzie 2004; Boese et 
al. 2009). Change detection between 1990 and 2008, including annual interval monitoring 
between 2000 and 2008, was attempted to determine change in SA V distributions. Temporal 
information on the fluctuation in seagrass meadows distribution used to be neglected 
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(Kirkman 1997), yet it is now regarded as important information to obtain the variability of 
seagrass natural dynamics. Kirkman (1997) indicated that large geographic scale seagrass 
monitoring needs to be conducted for one to five year cycle basis since the fluctuation at 
large geographic scale is likely to occur. Kendrick et al. (2000) conducted 30 years change 
detection to indentify spatial and temporal seagrass change in distribution on Success and 
Parmelia Banks, Western Australia. Changes of dense canopy species: Amphibolis antarctica; 
Amphibolis griffithii; Posidonia australis; Posidonia sinuosa and Posidonia coriacea, were 
detected through aerial photography in their research, for four irregular years 1965, 1972, 
1982 and 1995. Although, these seagrass species are regarded as stable habitat species that is 
often subject to long term monitoring, this research does not have description about the 
reason for the irregular monitoring over long period and effectiveness of these irregular time 
series availability. Provided if there is no concern of limitation over the· research budget or 
another reason, the biology and ecology of species should be taken into account for the 
arrangement of seagrass monitoring temporal cycle. Natural dynamics of seagrass 
colonisation is varied dependent upon species and their habitat location and condition. 
Posidonia spp., for example, is subtidal seagrasses that have high stability in their habitat 
distribution and low recolonisation ability, especially after the destruction of their habitats. 
Yet the other seagrasses in intertidal areas, such as Zostera spp. have the instability of their 
habitat and high recolonisation ability that they can recolonise even after the destruction of 
their habitat. Additionally, most seagrass communities in the tropical region generally have 
high recolonisation ability compared to temperate region. Intertidal seagrasses in tropical 
region can recolonise over tens of kilometres within three years (Campbell and McKenzie 
2004). Additionally, the recolonisation of subtidal seagrass meadows (> Sm) in the tropics 
can occur within two years from initial loss (Preen et al., 1995). Boese et al. (2009) also 
reported Zostera marina has quick recovery that was completed within 24 months. Both 
researches monitored such intertidal species every three and two months respectively for 
three years. Although the study locations of both researches were in the tropics, it provides a 
good model of intertidal seagrass monitoring cycle for this project as the both of them 
showing the capability of three years monitoring for intertidal seagrasses. Study location for 
this project was temperate region that contains either subtidal or intertidal species. 18 years 
were set up as long term monitoring of either inter-tidal or subtidal seagrass meadows to 
obtain the sufficient response of the natural dynamics of those seagrass species. Such a long 
term monitoring is then expected to be a baseline model of monitoring time-frames for 
seagrass recolonisation in the same location (Butler and Jernakoff 1999). Short periodic 
monitoring cycle (from six month to 12 month) with annual year basis was also conducted 
between 2000 and 2008. Because of limitation of available free satellite data from data 
distributer (U.S. Geological Survey), annual cycle monitoring between 1990 and 2000, and 
annual cycle monitoring with common date between adjacent years could not be performed. 
However, the short periodic monitoring was assumed to not only detect the natural dynamics 
but also discriminate the natural change of seagrass distribution from changes due to other 
factors. 

3.5 Image pre-processing 

There are errors inherent in satellite imagery associated with the geometry of objects and the 
brightness values of the pixels (Navalgund et al. 2007; Hong and Zhang 2008). Image pre
processing usually implements the correction of numerous distortions in acquired image and 
calibration of data, encompassing; geometric rectification or image registration for geometric 
distortion, radiometric correction and calibration for systematic distortion and atmospheric 
distortion (Lu and Weng 2007). Certain types of satellite imagery brought by data distributer 
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are usually not ready for immediate use due to several issues, such as geometric, spectral and 
radiometric distortions (Lillesand and Kiefer 2008), especially when they were provided by 
data distributer as free sources. In short, further image pre-processing is required to correct 
distortions inherent in raw satellite imagery. The Landsat 5 TM and 7 ETM+ data provided 
from U.S. Geological Survey (USGS) for this project were composed of LlG and LlT class 
data. Ll T class data already addressed geometric, radiometric and precision correction by the 
National Land Archive Production System (NLAPS) (GLCF 2009). While LlG class data is 
also radiometrically and geometrically corrected, the pixels in the image are not 
georeferenced. The assumption of Ll G data is the accuracy of Landsat data is less than 3 - 4 
pixels (GLCF 2009). To tum things around, image pre-processing of distorted images is thus 
required to develop them more decent and ready for subsequent image analysis by applying 
appropriate mathematical models, which are both definite and statistical models (N avalgund 
et al. 2007). 

3.5.1 Geometric distortion and correction processes 

Geometric distortion is a source of imprecise image that contains different shape, size and 
place of a pixel from that is meant to be. Geometric distortion usually produces more severe 
errors in images than radiometric distortion. Moreover, geometric distortion can result from 
further factors than radiometric distortions (Richards and Jia 2006). For instance, potential 
sources are: the rotation and curvature of the Earth; the finite scan rate of some sensors; the 
wide field of view of some sensors; the variation in platform altitude, attitude, and velocity; 
the sensor limitations; and the panoramic effects related to the imaging geometry (Richards 
and Jia 2006; Lillesand and Kiefer, 2008). In particular, this project use Landsat TM, 
equipped with a cross-track scanner. In the context of this scanner, peculiar systematic 
distortions, encompassing; scan skew and cross-track distortion, are assumed to attribute 
geometric distortion inherent in the acquired images of Landsat series (Sabins 1997). Thus, 
care in addressing geometric distortion is crucial. 

Geometric correction or georeferencing method used for this project was implemented via 
ENVI 4.6 digital image processing software (RSI 2009). 'Georeferencing' is a spatial 
information data processing technique that establishes a conformation between geographical 
locations and images (e.g., satellite imagery and aerial photography) through geographical 
reference data (Hill 2006). 'Image to image' registration approach was performed in this 
project to ensure that each corresponding pixel represent the same location over the different 
scenes (Anstee et al. 2009). The method is based on mathematical relationships between the 
positions of each pixel in acquired data image and the points on the ground that has same 
coordinates that is called Ground Control Point (GCP) (Richards and Jia 2006). In accordance 
with practical utility that it does not rely on the prior knowledge of distortion sources to 
model and then correct the geometric distortion (Richards and Jia 2006), this approach was 
employed for this project. As for reference data, geometrically collected image that is 
corresponding in the area of ground to the acquired imagery is essential for geometric 
correction processing in this approach. Ll T data, which is geometrically well corrected, was 
then used as a reference data for the image to image registration for LlG data of Landsat and 
ALOS image. Through corresponding GCPs, based on common landmark objects in both the 
reference data and acquired satellite imagery, coefficient values required for mapping 
polynomials are estimated by calculation of ENVI (Richards and Jia 2006). For first-order 
polynomial transformation, the minimum number of four GCPs are required (GCPs >(degree 
+ 1)2

) (RSI 2009; Verbyla 1995). However, in order to avoid undue effects of any GCPs that 
have significant root mean square (RMS) errors on the polynomial coefficients, further GCPs 
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were selected for the first order mapping in this project. Additionally, the distribution of 
GCPs is another consideration for the effectiveness of mapping polynomials. For example, 
well distributed GCPs in images, located close to the each comer edge of the image and in 
dense around the objects or features of research purpose ensure the quality of the affine 
transformation over the image (Verbyla 1995). 'Nearest neighbour resampling' was required 
for the integration of pixel size over different satellite data. Original pixel brightness values 
are rearranged to the nearest corresponding grid position for the correct geometry of the 
image (Lillesand and Kiefer, 2008). Since the 'nearest neighbour resampling' ensures quick 
computer calculation and the maintenance of the original pixel brightness value (Lillesand 
and Kiefer, 2008; Verbyla 1995), this resampling approach was employed in this project for 
subsequent spectral image analysis. 

3.5.2 Radiometric distortion and correction 

Radiometric distortion causes the error of brightness values of pixels (Richards and Jia 2006). 
Radiometric correction is applied to eliminate or compensate radiometric distortion except 
for actual fluctuation in image (Paolini et al. 2006). The radiometric distortions are derived 
from the influence of atmosphere, from the differences between sensors and from the 
wavelength reliance of electromagnetic radiation from the sun (Richards and Jia 2006). 
Above all, the atmospheric distortion is the most significant and results in an obscured image 
due to the scattering of solar radiation. High cloud coverage, sun glitter on sea surface, and 
water column scattering and attenuation are major atmospheric distortion sources, especially 
when the remote sensing imagery of seagrass distribution is acquired. The radiometric 
correction is thus crucial to change the sensor output digital number (DN) to the output 
values independent of atmospheric conditions (Bajjouk et al. 1996). Additionally, difference 
of grey scale value between satellite remote sensing data for earth observation image analysis 
is a common difficulty inherent in multi-temporal and multisensory data application (Hong 
and Zhang 2008). Several factors for the different responses of sensor are encompassing: 
differences in relative radiometric response between sensors; changes in satellite sensor 
calibration over time (i.e. aging); differences in illumination and observation angles; variation 
in atmospheric effects; reflectance anisotropy (i.e. BRDF effects); topography (i.e. slope
aspect effects); and actual changes in target reflectance (Paolini et al. 2006 p.686). 

Comparison of multi-temporal images using same color metric system is prevented due to 
such differences (Hong and Zhang 2008). Additionally, change detection between the data of 
Landsat TM and ETM+ involves the context of the radiometric discrepancy (Paolini et al. 
2006). When the multi-temporal and multi-sensor satellite images are processed for change 
detection, radiometric normalisation between adjacent year images is crucial for improving 
the spectral validation of resultant images. Radiometric correction were therefore, applied for 
acquired satellite imagery for this project. However, water depth collection for water column 
scattering and attenuation was not managed to implement in this project due to the time 
limitation of research. 

3.5.2.1 Cloud and other land cover class removal 

Existence of cloud in satellite imagery has an effect on the spectral reflectance from other 
objects or phenomena (Roan and Tateishi 2008). Provided if cloud was removed from the 
image, it would be possible to enhance spectral reflectance from other objects or phenomena. 
It is therefore crucial to filter out cloud pixels for subsequent image analysis that is highly 
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affected by cloud coverage (Ackerman et al. 1997; Chang et al. 2001). This theory is also 
applied other objects or phenomena that is not relevant to feature class of interest in the 
research. Simple and effective way of cloud removal is to mask out cloud in acquired image. 
Using ENVI software (RSI 2009), the cloud or land cover mask of the satellite imagery can 
be attempted by the function of 'mask'. Identification of appropriate digital number values 
between visible bands is important to define threshold of cloud pixel value for cloud 
detection (Ackerman et al. 1997). Different, though similar, band minimum and maximum 
values for each visible band are used between acquired images for this approach due to the 
different cloud coverage and the particle size of cloud. In practice, however, large spectral 
variability of cloud and the presence of objects, such as beach, contain similar brightness 
values, often prevents this approach from designating the appropriate digital number values. 
For the mask of coastal upland area, the application of either decision tree classification 
method or Normalised Difference Vegetation Index (NDVI) for image acquired at high tide 
condition can be attempted. 

3.5.2.2 Radiometric normalisation 

Image matching or radiometric calibration method is essential for change detection research 
to discriminate between actual changes and extrinsic changes (Coppin et al. 2004). When 
change detection analysis is performed with multi-temporal or multi-sensor data, radiometric 
calibration is essential to remove or compensate atmospheric distortion effects over the 
images (Eckhardt et al. 1990; Lu and Weng 2007). Radiometric normalisation is one of the 
relative radiometric correction (Image matching) techniques often used for change detection 
analysis to get rid of radiometric inconsistency derived from different radiometric response 
between sensors, changes in sensor calibration, sun elevation difference, and difference of 
atmospheric effects, between images (Munyati 2000; Ju et al. 2006; Paolini et al. 2006). As 
the result, radiometric normalisation ensures that differences of brightness values between 
multi-temporal images eventually express actual changes on the object or phenomena in the 
image (Paolini et al. 2006; Hong and Zhang 2008). For change detection in this project, this 
approach is thus very important not only to remove atmospheric effect over multi-temporal 
satellite images but also to normalise radiometric discrepancy between Landsat TM and ETM 
sensors (Janzen et al. 2006; Paolini et al. 2006). Particularly, for subtle spectral analysis for 
change detection in satellite remote sensing, radiometric normalisation between adjacent year 
images plays an important role (Janzen et al. 2006). In order to implement radiometric 
mrrecliun, ancillary data, such as climate data and illumination geometry, or Pseudo 
Invariant Feature (PIF) are required (Janzen et al. 2006). PIF is a statistically invariant target 
that has consistent reflectance values over time through images (Janzen et al. 2006; Hong and 
Zhang 2008). PIF is often involved with radiometric normalisation approach, especially as a 
linear regression technique (Hong and Zhang 2008). Radiometric normalisation approach 
highly relies on the local knowledge and ability of analyst for manual selection of PIFs 
(Janzen et al. 2006). Eckhardt et al. (1990) defined five criteria for PIFs, encompassing: (1) 
the targets should be approximately the same elevation so that the thickness of the 
atmosphere over each target is approximately the same; (2) the targets should contain only 
minimal amounts of vegetation because vegetation spectral reflectance is subject to change 
over time; (3) the targets must be in relatively flat areas so that changes in sun angle between 
images will produce the same proportional increases or decreases in insolation to all 
normalization targets; ( 4) the spatial pattern of the normalization target should not change 
over time; (5) and a set of targets must have a wide range of brightness values for the 
regression model to be reliable. 

Page 52 



Generally, artificial objects are ideal for PIF targets. Yet, when the study location is remotely 
natural environment area like this project, it is often hard to find the suitable ground targets of 
constant spectral reflectance that can be used as PIF for radiometric correction since selection 
of PIF is conducted subjectively by analyst knowledge with image interpretation (Janzen et 
al. 2006). Non-subjective method for PIF selection based on principal component analysis 
was also developed by Du et al. (2002). PCA was employed to extract PIF between multi
temporal satellite images (Du et al. 2002; Janzen et al. 2006; Ju et al. 2006). However, 
Paolini et al. (2006) indicated this approach cannot be applied for extracting PIFs common to 
all images, especially when the case of the combination of Landsat TM and ETM+ images. 
Hence, subjectively manual selection of PIF together with the visual assist of aerial 
photography was performed for each pair of adjacent year images to extract PIFs. 

3.5.3 Band dimensional expansion 

One critical regulation of Independent Component Analysis (ICA) application for feature 
detection is that the number of desired independent components cannot over the data 
dimensionality, i.e. the number of original spectral bands (Du et al. 2004; Shah et al. 2007). 
Although this may not be a large concern over the case of hyperspectral satellite imagery, it 
is, for the case of multi-spectral satellite imagery since the number of features in acquired 
image generally exceeds the number of the multi-spectral bands (Shah et al. 2007). All the 
individual features in the images are impossible to be extracted by ICA approach when using 
multi-spectral imagery (Du et al. 2004; Zhong and Wang 2006). Since this project also uses 
multi-spectral satellite imagery, i.e. Landsat and ALOS, this limitation has to be overcome. 
Data dimensional expansion of multi-spectral imagery is then required to meet the regulation 
of ICA for extraction of the desired number of independent components. In other words, the 
production of artificial spectral bands is required for ICA (Du et al. 2004; Shah et al. 2007). 
The concerns over this band expansion are the number of additional bands and the spectral 
discrepancy of additional bands. As mentioned above, the less number of total independent 
components than proposed features in the image does not extract all proposed features 
properly. Further, the larger number of additional independent components does not 
necessary mean that all proposed features of interest can be extracted as well (Du et al. 2004). 
Provided if spectral discrepancy between two feature classes are subtle or nothing, the two 
classes are not separated no matter how many nonlinear independent components are 
generated (Du et al. 2004). Since ICA is about to be computed based on spectral features in 
the image, linear combination of original bands from multi-spectral imagery does not 
generate additional hidden information (Shah et al. 2007). Non-linear combination of original 
bands, however, can generate additional independent components with additional hidden 
information (Shah et al. 2007). Highlight the spectral discrepancy between features in 
acquired image is generated by this approach to provide more information underlying in the 
image for additional feature detection (Du et al. 2004 ). Multiplication is for example, a 
simple and effective way of the data expansion (Du et al. 2004 ). Artificial band, for instance, 
X;Xj, can be generated by the simple multiplication based on two original bands, X1 and X;, 
and when same band are multiplied, i.e. X/, the generated band highlights spectral difference 
from other spectral measurements within same pixel (Du et al. 2004). Therefore, non-linear 
operations, such as, X/, X; · Xj, X;I X;, (Where X1 is a band of multi-spectral imagery, and i -:j::. j) 
improve ICA ability to extract desired and sufficient features from image (Shah et al. 2007). 
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3.6 Image transformation 

Satellite imagery consists of numerous features, which in tum, all kind of images can be 
decomposed into several features that have corresponding spectral characteristics in an image 
(Richards and Jia 2006). Image transformation for feature extraction in the application of 
satellite remote sensing aims to improve image feature distinguishability based on spectral 
characteristics (Shah et al. 2007). Spectrally transformed image features or bands derived 
from multi or hyperspectral data allows obtaining some other hidden features or preserving 
principal features in the acquired image (Navalgund et al. 2007). In brief, feature extraction 
for satellite remote sensing is to identify these features in satellite imagery mainly through 
statistical and computational techniques (Shah et al. 2007). Performance of subsequent image 
analysis, such as image classification, anomaly detection and spectral mixing can then be 
improved by the extracted features (Shah et al. 2007). Selection of appropriate image 
transformation technique is crucial for successful image classification (Lu and Weng 2007). 
Yet, only the technique that are the most effective to extract features in the image of multi or 
hyperspectral data should be selected to avoid miss classification due to the application of 
several techniques at once in classific~tion procedure (Lu and Weng 2007). Among the 
feature extraction techniques, principal component analysis is one of the most popular 
techniques (Robila et al. 2000), with independent component analysis has been drawing 
attention for feature extraction application in recent years. Visually and spectrally well 
represented data set for each feature category plays important role for image classification 
procedure, notably for supervised classification (Lu and Weng 2007). 

3.6.1 Principal component analysis (PCA) 

Numerous techniques have been developed and employed to investigate spectral, spatial and 
temporal variability for multi-temporal satellite imagery (Lotsch et al. 2003). Principal 
Component Analysis (PCA) is a statistical, non-parametric technique that extracts relevant 
patterns or information from high dimensional data sets (Robila et al. 2000; Smith 2002; 
Shlens 2005). High interband correlation is contained in most remotely sensed multi or 
hyper-spectral data (Fung and LeDrew 1987). Satellite imagery also contains interband 
correlation, for example, Landsat TM has high interband correlation between the first three 
visible bands (Fung and LeDrew 1987). In other words, the redundancy of data involves in 
satellite image processing of all spectral bands (Fung and LeDrew 1987). With increasing 
redundancy of data, image processing cost is also increasing as the result, especially for 
change detection analysis that requires at least two or more satellite imagery (Fung and 
LeDrew 1987). Since redundancy of multi or hyper-spectral data, especially between adjacent 
bands (interband correlation), exists in acquired imagery, PCA was developed to attempt to 
get rid of such redundancy of data set (second-order dependencies) by transforming observed 
spectral axes to orthogonal on a new coordinate system (Behrens 1998; Robila et al. 2000; 
Shensi 2005). This enables PCA to extract hidden or underlying features in image scene 
based on analytical solutions using linear algebra (Shlens 2005). 

PCA is relies on the spectral and spatial features of observed images (Fung and LeDrew 
1987; Behrens 1998). PCA produces uncorrelated or orthogonal components, called 
'principal component' based on eigenvectors of correlation or covariance matrices, for 
satellite remote sensing image analysis (Fung and LeDrew 1987; Robila et al. 2000; Lotsch et 
al. 2003). According to given scenes, land features vary in their spectrum and space, which in 
tum, given several principal components also vary in the variance of data but several not 
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(Behrens 1998). Correlation or covariance matrices can be derived from subsets or total study 
area of observed images in accordance with the proposed research objects and purpose (Fung 
and LeDrew 1987). Uncorrelated components, produced from correlation matrices are called 
'standardised principal components' and from covariance matrices 'non-standardised 
principal components'. Principal components are varied dependent upon also whether subset 
or whole image and standardised or non-standardised data since eigenvectors differ 
considerably based on these factors (Fung and LeDrew 1987). Subset of principal component 
analysis should be taken into account. Principal components extracted from the subset of 
entire study area are subject to miss image analysis for change detection due to variability 
and uncertainty of unextracted area (Fung and LeDrew 1987). Only extracted features from 
subset area could be referred to as principal components, yet these components cannot be 
applied for entire study area (Fung and LeDrew 1987). While this project has several sub
case study areas, these are sets of individual study areas, contained in the main study area, 
Boullanger Bay; thus application of principal component analysis is possible to detect 
features in these subsets area. Standardised principal components have equal variance 
between each principal component band (Fung and LeDrew 1987; Behrens 1998). 
Correlation matrix for standardised principal component analysis is transformed through the 
normalisation process of the covariance matrix at first (Behrens 1998). On the other hands, 
non-standardised principal components contains unequal weight of variance that is 
information on scene, notably higher in the first couple of principal component bands (e.g. 
PCl and PC2) and lower minor components (e.g. PC3 and PC4) (Fung and LeDrew 1987; 
Robila et al. 2000). Yet, that high variance in the first several principal components does not 
necessary ensures containing the scene information on interest for the research purpose 
(Behrens 1998). If the covariance approach is used for imagery that shows unchanged area 
dominant in the study area, changed area could be extracted by minor principal components 
(PC3 or later) (Fung and LeDrew 1987). This is because unchanged area should be highly 
correlated area, yet changed area is attributed to small portion of entire image that is low 
correlated area. Thus, when addressing change detection using a covariance approach, 
changed area is likely to come up in minor principal components. According to the 
comparison between the standardised and non-standardised components by Fung and LeDrew 
(1987), standardise principal components are more suitable for change detection. While non
standardised principal components are generally a sort of summary of all spectral bands, 
standardised principal components can extract the underlying features within satellite data 
(Fung and LeDrew 1987). In another respect, standardised principal components can produce 
visually more accurate and enhanced information for change detection purpose as compared 
with non-standardised principal components (Fung and LeDrew 1987). 

3.6.2 Independent component analysis (ICA) 

Independent Component Analysis (ICA) is a recently developed statistical and computational 
technique for linear transformation (Hyvarinen 1999; Hyvarinen and Oja 2000). ICA is 
attempted to detect a linear representation of non-Gaussian data for producing original 
signals, which is statistically independent or as independent as possible from each other 
(Hyvarinen and Oja 2000; Robila et al. 2000). Such a linear representation delineates specific 
pattern underlying in the data, then ICA plays a role for feature extraction from the data 
(Hyvarinen and Oja 2000). In other words, ICA performs blind source separation technique 
that finds original signal or latent variables, called independent components (Hyvarinen and 
Oja 2000). ICA is extension or variant of PCA and factor analysis in which producing not 
only decorrelated data like PCA but also original signals, mutually and statistically 
independent components (Lathauwer et al. 2000; Robila et al. 2000; Gilmore 2004). ICA is 
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regarded as more powerful technique than classic techniques like PCA in extracting the 
hidden factors or sources (Gilmore 2004; Shah et al. 2007). Based on vector matrix notation, 
ICA mixing model is written as; 

x=As 

Where x is the observation, the random vector with elements of the mixtures x 1 to Xu, A is the 
matrix, and s is the independent components, the random vector with elements of the 
mixtures s1 to Sn (Hyvarinen and Oja 2000; Gilmore 2004). 

For satellite remote sensing, ICA is employed for image feature extraction based on spectral 
characteristics of multi or hyper-spectral images (Robila et al. 2000). For coastal wetland 
areas like this project, image classification is difficult due to spectral confusion with adjacent 
land cover classes (Ozesmi and Bauer 2002). Yet, ICA is assumed to distinguish such 
spectral similarity as statistically independent as possible. Those extracted independent 
components can be employed as training samples for supervised classification procedure. 
Additionally, ICA is also used as unsupervised classification on account for its ability that 
can classify underlying objects in image without knowledge of spectral characteristics in an 
unknown image (Du et al. 2004). Multi or hyper-spectral image analysis is in the context of 
interband correlation, then, optimal subset of bands through data dimensional reduction by 
feature extraction is essential (Shah et al. 2007). A thing should be taken into account for 
ICA application for satellite remote sensing is the number of bands and features proposed for 
extraction. Larger number of bands than the number of feature proposed for extraction is 
desirable in order to extract each specific feature as independent components (Shah et al. 
2007). Weight matrix of ICA is a square matrix (Du et al. 2004). As the result, the number of 
independent components is assumed to be equal to the data dimensionality which is the 
number of spectral bands (Du et al. 2004). Smaller number of spectral bands is unable to 
extract all specific features supposed to be detected as independent components (Du et al. 
2004). In addition to this, noise of the image is likely to be extracted as one of independent 
components instead of specific land features. The other consideration is what wavelength is 
contained in each band of satellite's sensor acquired the image used for ICA. As ICA is based 
on spectral characteristics, features delineated by independent components are varied along 
with its spectral response. Then, multi or hyper-spectral satellite imagery that has large 
number of bands with wide range of wavelength is ideal for ICA feature extraction to detect 
diverse features. In another respect, the control of feature's number in the image is also 
crucial to match up its number to the number of satellite bands. For this project, data 
dimensional expansion for producing additional bands to make the sufficient number of 
spectral bands and masking out suppress features in image to extract small features, and 
controlling the spatial subset of study area are important factors for enhancing ICA ability. 

3. 7 Image classification 

The purpose of satellite image classification is to automatically classify pixels in an acquired 
image into the category of earth land cover object or phenomena (Navalgund et al. 2007). 
Conventional image classification defines feature classes based on the spectral characteristics 
of individual pixels although there are other types of image classification technique. Spectral 
characteristic is defined by spectral reflectance over bandwidth in different wavelength 
(Navalgund et al. 2007). Multi-spectral image classification is a process of analysing those 
multi-spectral features and categorising pixels into classes based on approximate value of 

Page 56 



spectral reflectance to produce thematic land cover information (Navalgund et al. 2007). Two 
major multi-spectral image classifications are unsupervised and supervised classification 
(Navalgund et al. 2007). For the image classification of coastal area, especially wetlands, the 
most popular classification approach is unsupervised classification or clustering to produce a 
thematic map (Ozesmi and Bauer 2002). Additionally, supervised classification is also 
common classification technique for coastal regions (Ozesmi and Bauer 2002). Since the 
approach of image classification can influence on class differentiation the prudent selection 
of classification technique is prerequisite for coastal region image classification standard (Lu 
and Weng 2007). 

3.7.1 Training stage 

The quantity and quality of training pixels involves in the context of the image classification 
quality (Lillesand and Kiefer, 2008). Appropriate number and position of training pixels 
allows classification algorithm to calculate reasonable estimation of feature classes (Richards 
and Jia 2006). This project employed seed pixel approach for training stage instead of using 
ground truth data of each feature class from study location. This approach digitises polygons 
called Region of Interest (ROI) that is on behalf of each class in the acquired image. 
Generally, the minimum pixel number of 10 N is ideally for training pixels of each specified 
class when N dimensional multispectral data is addressed (Swain and Davis 1978; Jensen 
2005). In the case of multispectral satellite, for instance, Landsat TM and ETM, which 
contains 7 bands, needs approximately 70 pixels per class. In practice, more than such a 
minimum number of training pixels is ideal to assure the spatial independence of pixels 
(Richards and Jia 2006). Additionally, randomly dispersed ROI for each class is more useful 
for better accuracy of classification results than the single ROI of each class with the large 
number of training pixels to avoid biased result of classification (Lillesand and Kiefer, 2008). 

3. 7.2 Supervised classification 

Supervised classification is a pixel based classifier that generates a signature through merging 
the spectra derived from all training-set pixels from a given feature class (Lu and Weng 
2007). In short, each pixel is categorised into each land cover class that is mutually exclusive. 
Supervised classification uses training samples of known signature classes based on ancillary 
data, such as maps, aerial photography and local information, to classify pixels of unknown 
signature (Navalgund et al. 2007). Resultant signature class consists of contributions of all 
spectral information from the training data-set pixels (Lu and Weng 2007). Generated 
signatures are then employed to categorise the spectral data into a thematic map as the result 
of image classification (Lu and Weng 2007). Supervised classification is particularly useful 
when relatively few land cover classes are proposed, when there is a ground truth data with 
verified training sites, and when land cover of study area is homogeneous that each proposed 
class is perceivable (Deng et al. 2008). On the other hand, there is however, a mixed pixels 
limitation remaining in the thematic map generated by supervised classifier, especially when 
using low or moderate spatial resolution imagery (Lu and Weng 2007) like Landsat imagery. 
Numerous supervised classifications have been developed until now. Among the classifiers, 
'maximum likelihood' classifier is assumed to have a potential for coastal area classification. 
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3. 7.2.1 Maximum likelihood classifier 

Maximum likelihood classifier (MLC) is one of popular parametric classifiers that uses the 
means and variances of spectral information from training samples (Ozesmi and Bauer 2002; 
Richards and Jia 2006; Lu and Weng 2007). MLC assumes that the statistics for each class in 
each band from the training samples are multivariate-normal (Gaussian) in their distribution 
(Navalgund et al. 2007). Statistical probability of a given pixel assigned into a specific class 
is then calculated (RSI 2009). All pixels are classified when the threshold value of the 
probability is not designated. Each unknown pixel is then placed in the class in accordance 
with the given highest probability of membership, which is the maximum likelihood (Ozesmi 
and Bauer 2002; RSI 2009). Generally, MLC produces better accuracy than the other 
supervised classifier, including 'minimum distance to means' or 'parallel piped' classifiers 
since the covariance of the data is addressed (Ozesmi and Bauer 2002). Discriminant function 
is calculated by ENVI for MLC based on the assumption of normal statistics, written as: 

Where: i = class 

x = n-dimensional data (where n is the number of bands) 

p(roi) =probability that class ro1 occurs in the image and is assumed the same for all classes 

l1::il = determinant of the covariance matrix of the data in class roi 

Li-I = its inverse matrix 

mi = mean vector 

(Richards and Jia 2006, cited from p. 196; RSI 2009). 

MLC is the most common supervised classifier applied for mapping coastal and wetland 
areas (Ozesmi and Bauer 2002; Wabnitz et al. 2008; Everitt et al. 2009). There are however, 
several difficulties inherent in this classifier. One of them is potential large error arisen from 
mixed pixels. MLC is a hard classification that definitive decision is applied for each feature 
class with each pixel assigned to a single class (Lu and Weng 2007). In this regard, when 
using medium spatial resolution imagery, large errors might be occurred by the hard 
classification principle associated with the mixed pixel problem attributed to large pixel size 
and heterogeneity landscape (Lu and Weng 2007). Another difficulty is a noisy classification 
(Lu and Weng 2007). Noisy resultant data of classification is likely to be generated due to the 
high dispersion of the same class pixels (Lu and Weng 2007). Although this is technically not 
error, it might be a difficulty dependent upon the subsequent use of the resultant data. Noisy 
map, for instance might not allow easy image interpretation for several of change detection 
techniques, such as multiple-date composite image insertion. Further, MLC assumes that the 
Gaussian spectral distribution of both dataset and parameters generated from the training 
samples, yet this assumption is often prevented on account of complex landscape, which 
contains non-gaussian spectral distribution (Lu and Weng 2007). Thus, these are the 
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challenges inherent in MLC. Simple application of MLC might have these challenges 
associated with the landscape variability of study area and medium spatial resolution. 

3. 7.3 Unsupervised classification 

Unsupervised classification is also a per-pixel or pixel based classifier that brings pixels 
together based on spectral value's similarity (Ozesmi and Bauer 2002). It identifies natural 
groups or structures, within multi or hyperspectral satellite data through clustering-based 
algorithm to produce a thematic map (Lu and Weng 2007; Navalgund et al. 2007). 
Clustering-based algorithm plays a role of dividing the acquired image into a designated 
number of spectrally different clusters in accordance with the statistical information derived 
from the image (Lu and Weng 2007). Unsupervised classification is thus ideal approach if 
feature classes are determined only based on spectral distinctions (Deng et al. 2008), since 
unlike supervised classification, no prior knowledge for feature classes is required. Only the 
requirement for unsupervised classification approach is to label each cluster after satisfying 
number of cluster is generated through the integration of spectral classes into meaningful 
classes (Lu and Weng 2007). Analyst produces the label of feature class to each cluster based 
on ancillary information (Ozesmi and Bauer 2002). Advantages of unsupervised 
classification are the resultant class attributes distinct units and less processing time than 
supervised classifier (Ozesmi and Bauer 2002). Disadvantage is the resultant clusters does 
not necessary match up with desired features classes (Ozesmi and Bauer 2002). Unsupervised 
classification is most successful approach when there is a need of a large number of clusters 
(Deng et al. 2008). This characteristic of unsupervised classification approach often meets the 
standard of coastal area mapping because coastal area environment has numerous features. 
Application of unsupervised classification technique is therefore, popular for coastal region 
classification to distinguish a large number of classes (Macleod and Congalton 1998; Ozesmi 
and Bauer 2002; Gullstrom et al. 2006; Shanmugam et al. 2006; Deng et al. 2008). 

3.7.3.1 ISODATA 

Iterative self-organizing data analysis (ISODATA) unsupervised classification is popular 
classifier for coastal area classification (Ozesmi and Bauer 2002). It is implemented in 
accordance with specified iterations and recalculates statistics with respect to each iteration 
(Everitt et al. 2009). Class means distributed evenly in the image data is calculated at the 
beginning by this classifier, and then remaining pixels are clustered iteratively using minimal 
spectral distance to mean principle to allocate a cluster for each selected pixel (Everitt et al. 
2009; RSI 2009). With respect to each iteration of clustering, new means are calculated and 
shifted to new place of feature space, and pixels based on the newly calculated means are 
then reclassified (RSI 2009). Number of iteration is dependent upon user's requirement. 
When the designated number of iteration is reached or the number of pixels in each class 
changes by less than the designated pixel change threshold, recalculation process is about to 
finish (RSI 2009). This technique is useful, especially when there is a time limitation for 
image processing, distinct class units are required, no prior knowledge of study area is 
available, and the landscape of study area is complicated (Ozesmi and Bauer 2002). 

3.8 Change detection 

Change detection in satellite remote sensing is a process to identify non-change and actual 
change in the geometry or status of proposed object or phenomena in terms of the differences 
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between spatial and spectral information by observation through multi-temporal images. As 
increasing demand for change detection of natural features together with increasing natural 
environment hazard, numerous technique of change detection via satellite remote sensing has 
been developed (Lu et al. 2004). However, analysts have often reached different conclusions 
about the ability and effectiveness of change detection methods (Lu et al. 2004 ). This may be 
because of the influence of complicated factors derived from qualitative and quantitative 
differences of various research requirements and objectives. In practice, the change detection 
of a proposed object is sometimes difficult to meet the high standard of successful monitoring 
project with specific objective and study location, especially without using the appropriate 
selection of change detection method associated together with suitable algorithm (Lu et al. 
2004). Application of multi-temporal satellite imagery is common method for large areal 
change detection (Morisette 1997). For satellite imagery change detection, generally, 
individual pixels in acquired image are addressed. Changes in the geometry or status of 
proposed object are identified based on the different brightness value of each pixel 
corresponding position in between compared images (Morisette 1997). Methods include: 
Write Function Memory Insertion (WFMI); Multi-date Composite Image (MCI); Image 
Algebra; Post-classification Comparison; Principal Component Analysis (PCA); are major 
change detection approaches using satellite imagery (Dobson et al. 1995; Coppin et al. 2004; 
Lu et al. 2004). In recent practice, Image Algebra, Post-classification Comparison and 
Principal Component Analysis are the most commonly employed single use techniques (Lu et 
al. 2004). On the other hand, hybrid approach combined with several techniques is also 
applicable for change detection method. Yet, unless careful structure of change detection 
method is organised, considerable error might be remained in the result (Fung and LeDrew 
1987). For instance, MCI change detection approach using PCA technique has been popular 
for previous researches (Munyati 2004; Deng et al. 2008). For this project, MCI approach 
was implemented with application of ICA. WFMI approach employed either one of the two 
methods; PCA based ISODATA classifier or ICA based MLC classifier. 

3.8.1 Multiple-date Composite Image (MCI) approach 

Multiple-date Composite Image (MCI) approach is a process that allows extracting change 
and unchanged information through single integrated dataset generated from two different 
temporal images (Jensen 2005). The single composite data set can then be processed in 
numerous ways for change detection analysis (Jensen 2005). One of ways is to apply 
unsupervised classification for the composite data set. All N bands of the composite data set 
is analysed by unsupervised classification so that clusters of change and unchanged is 
produced (Jensen 2005). Another popular way of MCI approach is application of image 
transformation techniques, such as PCA for the composite data set. Either standardised (based 
on correlation matrices) or non-standardised (based on variance-covariance matrices) PCA 
can be used for the composite data set to extract change information (Jensen 2005). Yet, in 
practice, application of standardised PCA technique, which is based on correlation matrix, 
has been major approach in the MCI method rather than using non-standardised PCA (Fung 
and LeDrew 1987; Macleod and Congalton 1998). While PCA based MCI approach is 
popular, this project attempted to use ICA technique for MCI instead of unsupervised 
classifier and PCA. Reason for that is the better ability of ICA to extract subtle changes in 
objects of interests than the application of unsupervised classifier and PCA. Additionally, 
most satellite data is assumed non-Gaussian distribution of features in the image. ICA can 
attempt to detect such distribution of features but PCA has low potential due to its 
assumption of application for data with a multivariate Gaussian distribution (Shah et al. 
2007). Advantage of MCI approach is the requirement of only single classification technique 
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(i.e. unsupervised classification or ICA or PCA) (Jensen 2005). Yet the resultant data of MCI 
approach is often subject to the difficulty of image interpretation. In particular, the subtle 
changes of natural environment like the study area of this project are likely to be involved in 
such a difficulty. 

3.8.1.1 ICA based approach 

ICA can play a role of classification or feature extraction for MCI change detection approach 
in order to detect change and non-change area in a composite image. Numerous researches 
have commonly employed PCA for MCI approach so far (Fung and LeDrew 1987; Dobson et 
al. 1995; Munyati 2004; Deng et al. 2008; Deng et al. 2009). In practice, however, some 
researchers concluded another approach, such as image differencing was better accuracy than 
PCA for change detection (Macleod and Congalton 1998), while some researches indicated 
the effectiveness of PCA based MCI approach (Fung and LeDrew 1987; Munyati 2004; Deng 
et al. 2008). In this regard, image transformation technique basis MCI approach highly relies 
on research purpose and study area. In other words, the distribution pattern of proposed 
research objects in study area is involved in the effectiveness of the approach. Few previous 
researches into ICA basis MCI approach have been conducted until now (Zhong and Wang 
2006; Benlin et al. 2008). Yet, ICA capability for MCI change detection approach was 
indicated by those studies since ICA is based on the assumption of application for non
Gaussian data. Zhong and Wang (2006) found the capability of ICA basis MCI change 
detection approach for detecting land cover changes due to land salinisation in Daqing, 
Heilongjiang province, China using multi-temporal remote sensing analysis. Band 
dimensionality expansion was also carried out in this research to match the number of desired 
features up to the number of the features in the image. Land cover change was successfully 
delineated through independent components. Further, according to the comparison between 
PCA application and ICA application for MCI, ICA produced higher accuracy than PCA in 
MCI change detection approach (Zhong and Wang 2006). Benlin et al. (2008) used 
composite image, consists of the two of first principal component generated from two 
different time images, for ICA processing. ICA revealed feasibility and effectiveness for 
image classification and change detection (Benlin et al. 2008). According to them, this 
method was attributed to extract most mainly changed areas. However, it was assumed subtle 
changes between two images might have not been able to be extracted by this method. It is 
because this method employed the composite image composed of the two principal 
components, which contain only principal information of original images. While this method 
is effective, there is no need to use principal component when subtle change detection is 
required. Additionally, ICA has been often used in image classification procedure, especially 
for land cover classification in practice. Although, it was not change detection method, many 
researches indicated the effectiveness of ICA as a classification technique (Robila et al. 2000; 
Du et al. 2004; Gilmore et al. 2004; Shah et al. 2007). Some of them concluded that ICA has 
better classification ability than PCA or ISODATA, and also importance of band generation 
to improve the ability of ICA (Du et al. 2004; Shah et al. 2007). From these perspectives of 
previous researches, ICA basis MCI change detection approach is assumed to have sufficient 
ability for change detection in seagrass distribution in this project. 

3.8.2 Write Function Memory Insertion (WFMI) approach 

Write Function Memory Insertion (WFMI) approach basically provides visual assistance for 
change detection, using any sort of geometrically corrected multi-temporal data (Jensen 
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2005). WFMI is a simple yet powerful method. Qualitative ability of WFMI to delineate the 
change area is visually the most helpful among other methods (Jensen 2005). Individual 
spectral bands from different temporal data or derivative data, such as principal components 
or independent components can be assigned into each red, green and blue of write function 
memory banks to identify changes through the output imagery (Jensen 2005). The spectral 
and geometrical changes between different temporal images can be highlighted by specific 
colors on the generated image. For instance, when time 1 (Tl) image is assigned into the blue 
memory plane and time 2 (T2) image is assigned into the green and red memory planes, 
differences will be generated through cyan and red in ENVI application (RSI 2009). Cyan 
represents the change of brightness values that original value of Tl increased between Tl and 
T2, and red represents the decrease of original values between Tl and T2. Additionally, the 
capability of change detection analysis between the maximum of three imageries at single 
process is another advantage of WFMI (Jensen 2005). The single application of WFMI is not 
quantitative change detection approach that provides the amounts of change information 
between two date images. Yet, WFMI can be applied for post-classification approach 
together with another function of image analysis software. In other words, 'from - to' change 
can be extracted by WFMI approach through combination with 'Mask' function of ENVI 
software. Since specified data values are set out for each land cover class in a thematic map, 
class by class 'from - to' change can be extracted by the 'Mask' function. This project thus 
employed this modified WFMI approach to detect the class by class 'from - to' change. Two 
types of results generated from the different image classification methods (PCA based 
ISODATA and ICA based MLC) were prepared for the modified WFMI approach. One of 
the two results with better accuracy than the other result was then subject to the approach in 
case study 5 of this project. 

3.8.2.1 PCA based ISODATA 

As described previous section, PCA can play a role of feature extraction from image. This 
function of PCA can be applied for image classification procedure as one component of pre
processing steps. The application of principal components derived from PCA for image 
classification technique is one of important steps in WFMI approach to obtain 'from - to' 
change information (Deng et al. 2008). By using PCA for feature extraction, the accuracy of 
image classification is enhanced. For instance, Gluck et al. (1996) employed PCA in 
ISODATA unsupervised classification for wetland mapping. They subjected first three 
principal components to ISODATA classification with selected 250 clusters. In this research, 
eleven classes with overall accuracy of 72% were eventually obtained to separate the 
wetlands from uplands. Increase of classification accuracy ensures the precision of change 
detection as this is an extension process to classification. Since classification accuracy 
directly influences on the accuracy of WFMI change detection approach (Deng et al. 2008), 
PCA application for this method is attributed to the success of subsequent change detection 
analysis. The disadvantages of PCA, such as the difficulty of labelling 'from - to' change 
class information, are inherent in the MCI approach (Deng et al. 2008). Additionally, the 
knowledge of the spectral characteristics of features in the study area and corresponding 
principal components are thus required for MCI approach, yet not required for WFMI 
approach (Macleod and Congalton 1998). While a few principal components (PCA result) 
based unsupervised classifier has been conducted for change detection analysis (Gluck et al. 
1996), potentiality for classifying and detecting change is promising through cumulative 
capability of PCA and unsupervised classification techniques. 
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3.8.2.2 ICA based MLC 

As mentioned in previous section, several challenges are inherent in MLC. This project 
however, attempted to constrain the negative effect derived from these challenges through 
hybrid approach scheme that applies the ICA for MLC to enhance accuracy of MLC result. 
Application of ICA for MLC is assumed to derive the strength of feature extraction technique 
and compensate the negative effects of MLC. Basic process of ICA basis supervised classifier 
approach is similar to the PCA basis unsupervised classifier. ICA is also subject to feature 
extraction to this WFMI approach like PCA. Yet, large difference between these two 
approaches is that the extracted features by ICA can be training samples for supervised 
classification unlike PCA. Extracted features by ICA contain single data value, yet each 
feature in the principal component images contains numerous data value like ordinal image. 
Since each independent component is statistically independent, extracted features allows 
analysts to determine training sample area easily without ancillary data and local knowledge 
of study area. Thus, when using ICA before image classification step, not only unsupervised 
classification but also supervised classification can be used. Additionally, ICA ensures that 
the improvement of image classification accuracy associated with the well extracted features 
by ICA. Multi-temporal thematic maps generated from the ICA based supervised 
classification is finally taken place in WFMI to detect 'from - to' change in the object of 
interest. Shah et al. (2007) concluded the better accuracy of independent components based 
image classification than the use of conventional remote sensing feature extraction technique, 
such as PCA and Minimum Noise Function, as a base image for image classification. In their 
study, thematic map generated by K-means classifier based on 7 independent components 
represented significant improvement over the resultant thematic map generated based on 
original image in homogenous agricultural land cover area. They also indicated that 
application of ICA can enhance performance of several spectral analyses, including image 
classification. However, unless meaningful band combination for band dimensionality 
expansion takes place, sufficient capability of ICA for feature extraction is not performed 
(Shah et al. 2007). Statistically independent components generated from ICA are assumed to 
improve MLC performance for image classification in this project. 

3.9 Accuracy Assessment 

Generally, some kind of degree of error is subject to image analysis in remote sensing, 
especially in the procedure of geometric correction and image classification. Measurement of 
accuracy or remained error for these procedures is essential to ensure the data reliability or 
validation. This project also addressed with accuracy assessment for geometric correction and 
image classification. However, the accuracy assessment of the change detection was not 
undertaken due to the lack of ancillary data and time. 

3.9.1 Assessment of geometric accuracy 

Accuracy assessment for geometrically corrected images ensures not only the accuracy of the 
generated thematic maps but also the accuracy of change detection analysis. The approach 
used in this project calculated mean error values and standard deviation of residuals between 
objects in the rectified satellite image and objects in the reference data. Residual lines should 
be digitised throughout the image not only the area surrounding the immediate study site but 
also the areas close to the edge of the image to calculate unbiased value of residual means 
and standard deviation. The reason for this allocating pattern of the digitised residual lines 
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was to ensure better overall geometric accuracy in the image. As the major aims of geometric 
correction is the production of a base image for the image analysis of seagrass habitat 
mapping and monitoring, high accuracy for the study site was the priority. Yet, on account of 
the cloud coverage and noise in the image, several corresponding points between the rectified 
image and validation data image is often difficult to be digitised for calculation in practice. 
Additionally, when using orthorectified aerial photography for validation data, the central 
area of orthorectified image has potentially lower distortion than the outer area. Thus, the 
area as much closer as central area should be used for digitising residual line in order to 
achieve higher quality of accuracy assessment. 

3.9.2 Assessment of classification accuracy 

Accuracy assessment of the thematic map is necessary when classification exercise is 
completed (Richard and Jia 2006; Deng et al. 2008). Appropriate accuracy assessment 
provides validation of the classification result (Richard and Jia 2006). The result of the 
accuracy assessment also gives a measurement or indicator for analyst to determine whether 
the research objective was achieved or not (Richard and Jia 2006). Additionally, the result of 
image classification accuracy is subject to the method selection of the either one of two (PCA 
based ISODATA or ICA based MLC) for WFMI change detection approach in this project. 
Conventional accuracy assessment approach, 'error matrix' was employed to measure the 
accuracy of the image classification result in this project. Error matrix is a design based 
inference, which gives thorough probability assessment based on statistical principals (Jensen 
2005). In short, error matrix infers the statistical characteristics of a limited population based 
on sampling pixels selected from the thematic map for this accuracy assessment (Jensen 
2005; Richard and Jia 2006). After selecting the sampling pixel from the thematic map, the 
accuracy is determined based on testing pixels, selected from the reference data. Important 
factor for this process of the accuracy assessment is the total number of testing pixels from 
ground truth data (Deng et al. 2008). According to the rule of thumb by Congalton (1991), at 
least 50 samples should be taken for each land cover class in the error matrix. As the extent 
of study are or the number of feature class in the study area increases, the minimum number 
of samples should also be increased (Deng et al. 2008). By crosschecking their labels with 
feature classes determined from the testing pixels of the reference data (or ground truth data), 
the accuracy is eventually determined (Richard and Jia 2006). The percentage of the selected 
pixels from each feature class in the thematic map about whether it is labelled correctly is 
estimated through those checking procedures (Richard and Jia 2006). Conventional statistical 
measurements for remote sensing accuracy assessment are encompassing; overall accuracy, 
producer's accuracy, user's accuracy, and Kappa coefficient of agreement (Jensen 2005; 
Deng et al. 2008). Overall accuracy is the simplest descriptive statistics which is calculated 
by dividing the number of correct pixels by the total number of pixels checked in the error 
matrix (Congalton 1991; Banko 1998; Jensen 2005). Each error generated from the matrix is 
referred to as omission error (errors of exclusion), an omission from the correct category, and 
commission error (errors of inclusion), a commission to a wrong category (Jensen 2005). 
These errors are then represented by producer's accuracy and user's accuracy based on the 
matrix. Producer's accuracy is a measure of omission error, which indicates the probability of 
ground truth pixels being correctly classified (Congalton 1991; Jensen 2005). This accuracy 
is computed by dividing the number of correct pixels in a category by the total number of 
pixels in same category derived from ground truth data (Congalton 1991; Banko 1998). How 
much a certain area was well classified can be measured by the producer's accuracy (Banko 
1998). User's accuracy is computed to indicate the probability of a pixel classified on the 
thematic map representing actual category for a measurement of commission error 
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(Congalton 1991; Banko 1998). Suppose if only a specific class is subject to the object of 
interest in the research, then, producer's accuracy and user's accuracy are more appropriate to 
measure the accuracy of the specific object than overall accuracy (Congalton 1991; Jensen 
2005). Further, user's accuracy is usually more important since it indicates the actual 
percentage of the correctly labelled pixels on the thematic map (Jensen 2005; Richard and Jia 
2006). Another parameter is the Kappa coefficient, a measure of overall agreement or 
accuracy between the thematic map derived from remote sensing and the reference data 
(Banko 1998; Jensen 2005). Large value of KHAT statistic, an estimate of Kappa, represents 
strong agreement or accuracy between the thematic map and the information of the reference 
data (Jensen 2005). Since this project addressed with seagrass meadows as object of interest, 
error matrix was therefore attempted to measure the accuracy of such a specific object 
through mainly focusing on the user's accuracy. Another consideration for accuracy 
assessment is sampling scheme. Jensen (2005, pp. 502) indicated "The location of the sample 
locations must be selected randomly without bias". As prejudiced sample location in the error 
matrix procedure results in the over or under estimation of accuracy of a thematic map, it is 
thus crucial to do unbiased random sampling (Jensen 2005). 
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Chapter 4 Case Study 1 - Comparison between remote sensing 

methods 

4.1 Chapter overview 

Chapter 4 introduces the Case Study 1; Comparison between two image classification 
methods, encompassing; (1) PCA based unsupervised classifier approach, and (2) ICA based 
supervised classifier approach. The comparison was performed for the purpose of identifying 
the ability of the methods to classify land cover features, especially SAV meadows. 
Production of multi-temporal thematic map series of the whole Boulanger Bay area is a 
secondary purpose for change detection analysis in Case Study 2. In order to investigate into 
the effectiveness of mapping SA V meadows, comparison between those two approaches 
associated with accuracy assessment was crucial. Results of thematic maps were subject to 
the accuracy assessment of 'error matrix'. Description of the study area and data used for this 
case study was introduced. Image pre-processing and classification procedures and accuracy 
assessment were described. 

4.2 Comparison between remote sensing methods 

4.2.1 Introduction; Study area and Data 

Study area of Case Study 1 includes the whole area of Boullanger Bay. It is located in 40.6°S 
and 144.6°E (Figure 4.1). As mentioned in the chapter 2, this area contains the large seagrass 
beds of approximately 8,000 ha (Rees 1993; Sprod et al. 2003). Many benefits and values in 
terms of environmental, social and economical significance are supported by this area 
(Crawford and White 2007). In order to perform image classification analysis for SAV 
distribution, Landsat TM, ETM+ and ALOS imagery were employed for this case study. In 
practice, high tide stage is not preferable for the image analysis of submerged object due to 
the interference of water (Macleod and Congalton 1998). Yet, the limitation of desirable 
image did not allow this project to arrange images with ideal status, such as low tide, low 
water turbidity and low noise together with similar anniversary acquisition date. The 5 
images with acceptable quality for the whole Boullanger Bay, including: Landsat 5 1990; 
Landsat 7 2000; Landsat 5 2004; ALOS 2006 and Landsat 5 2008 for the above image 
classification analysis were prioritised for the tide stage, water clarity, noise coverage and 
acquisition date (Table 4.1). 
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Figure 4.1 The Boullanger Bay Study Area is shown in the red square. 

This is also the study area for Case Study 1. Source: (Dunn 2000). 

Table 4.1 Satellite data description for Case Study I, '--'mark represents no data 

Image date Sensor Processing level Tide Cloud cover(%) Water turbidity Other information 

29/1211990 Landsat 5 TM LIG High Low Image time at: --

Sun elevation at: 50 

Sun azimuth at: 79 

16/02/2000 Landsat 7 ETM+ LIG High Low Image time at: --

Sun elevation at: --

Sun azimuth at: --

18/01/2004 Landsat 5 TM LIT High 0 Low Image time at: 23: 43: 02 

Sun elevation at: 49 

Sun azimuth at: 73 

19/10/2006 ALOS A VNIR - 2 LevellB2G High 50 Low Image time at: 00:22:05 

Sun elevation at: --

Sun azimuth at: --

11/10/2008 Landsat 5 TM LIT High 4 Low Image time at: 23:48:27 

Sun elevation at: 45 

Sun azimuth at: 52 
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4.2.2 Image pre-processing 

Different status of systematic error was in the context of the acquired images, especially 
images distributed by U. S. Geological Survey (USGS) for this project. Generally, the most 
of Landsat 5 images distributed from USGS with Ll T data were processed with standard 
terrain correction based on GCPs derived from GLS 2005 data set. However, the most of 
LlG data were only processed with systematic correction based on data collected by the 
sensor and spacecraft (USGS 2009). Additional geometric correction for most of Ll G data, 
except for Landsat 1990 image (geometrically well corrected when it was distributed from 
USGS) were thus required to produce geometrically well corrected data for subsequent image 
analysis. Each Landsat scene of LlG data and ALOS imagery were then subject to 'image to 
image' registration to match up with the geometry of Landsat 5, 1990. Less than the half a 
pixel of the Root Mean Square (RMS) errors, which is generally acceptable errors in 
georectification procedure for medium resolution satellite imagery were obtained in this case 
study. In order to produce corresponding pixel size over the acquired scenes derived from 
different sensors (Landsat and ALOS), each scene was resampled by 'nearest neighbour' 
pixel resampling method to 25m. The radiometric consistency of corresponding objects over 
the different temporal scenes is crucial to ensure inter-image comparability for subsequent 
change detection analysis in Chapter 5. The Landsat 1990 scene was used as the reference 
image for radiometric normalisation. Equivalent blue, green and red bands from other scenes 
were radiometrically normalised with those corresponding bands of the reference image. 
'Empirical line calibration' technique, using Pseudo Invariant Feature (PIF) over the 
different time scenes was performed to not only remove atmospheric effects but also to 
reduce the radiometric discrepancy between two Landsat sensors, TM and ETM+. Adjacent 
upland area to coastal line was masked out using 'mask' function of ENVI 4.6 based on the 
application of NDVI data to enhance the spectral value of the land cover of interests for 
image classification procedure. However, extensive variability of cloud layer density did not 
allow proper cloud removal processing in pre-processing procedure of this project. Pre
processed data were then subject to either the application for PCA based ISODATA image 
classification approach or the application for ICA based MLC image classification approach. 
Additionally, data dimensional expansion technique was required only for ICA based MLC 
method prior to the image classification and change detection procedures. 

The dimensionality of original spectral bands was expanded to meet the number and spectral 
characteristics of proposed features of interests in the scene in accordance with the 
requirement for subsequent ICA image analysis. Non-linear operation for additional bands 
was required to detect additional information on underlying features in the image. Because 
of the concern over the water attenuation, bands between visible wavelengths were subject to 
the non-linear operation. The total of 18 additional bands, encompassing; (1) Bl *Bl, (2) 
Bl *B2, (3) Bl *B3, (4) Bl *B7, (5) B2*B2, (6) B3*B3, (7) B3*B2*Bl, (8) (B3*B2*Bl)/ 3, 
(9) Bl - B2, (10) Bl - B3, (11) B2 - B3, (12) Bl I B2, (13) Bl I B3, (14) B2 I B3, (15) 
Normalised Red and Green Index (NRGI\ (16) Normalised Red and Blue Index (NRBI4

), 

(17) Normalised Green and Blue Index (NGBI5
), and (18) NDVI were then generated by 

using the function of 'Band math' with ENVI 4.6 image software for each scene. These 

3 Modification ration of NDVI: (Red - Green)/ (Red + Green) 
4 Modification ration ofNDVI: (Red- Blue)/ (Red+ Blue) 
5 Modification ration of NDVI: (Green - Blue)/ (Green+ Blue) 
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artificially generated bands were stacked with original bands for each scene. Each composite 
data consists of the original and additional bands were subject to ICA to extract the features 
of interests, such as dense SA V, sparse SA V, sand, sand, saltmarsh, deep water and cloud. 
Extracted features by ICA were assumed statistically independent, thus those were employed 
as training samples for image classification procedure of MLC. 

4.2.3 Image classification 

5 thematic map series of the whole Boullanger Bay area were produced by two different 
approaches, ICA based Maximum likelihood Classification (MLC) and PCA based Iterative 
self-organizing data analysis (ISODATA). ICA extracted features (independent components) 
from the acquired images for training areas. Independent components derived respectively 
from time 1 (Tl) and time 2 (T2) images were employed to extract the endmember spectra of 
each class for each MLC analysis of Tl and T2 image. Each ROI for training pixels were 
digitised inside of the vector layer of the independent components from each feature class 
(Figure 4.2). Total of 6 classes (dense SAV, Sparse SAV, sand, deep water, saltmarsh, and 
cloud) were trained for classification stage of MLC (Figure 4.3). Only Landsat 5 1990, with 
no cloud coverage trained 5 classes. Based on the endmember spectra from each training 
sample, each feature class was classified by MLC procedure. PCA also extracted principal 
components from the acquired images. Unlike ICA approach, each principal component of 
Tl and T2 images were directly subject to ISODATA unsupervised classification procedure 
in this approach. For PCA based ISODATA approach, 25 classes were initially classified to 
obtain better classification result. These classes were then put together into 6 cla ses (Dense 
SAV, sparse SAV, sand, deep water, saltmarsh and cloud). 

Figure 4.2 ROis for training areas digitised inside of independent components 
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Figure 4.3 Training areas for MLC 

4.2.4 Geometric accuracy assessment 

Geometric accuracy assessment was conducted through ALOS 2006 images using ArcGIS 
9.3 software (ESRI 2009). Vector layer data sets from the LIST map (LIST 2003) and 
orthorectified aerial photography (2006) were used as validation data for assessing geometric 
accuracy. Mean error values and standard deviation of residuals between objects in the 
rectified satellite image and objects in the orthorectified aerial photography and the state road 
layer of the LIST map were calculated. 70 residual lines were digitised for the calculation. 
Although potential objects or the places of the state road that that can be used for accuracy 
assessment were limited in the image due to the lack of outstanding landmarks in the natural 
environment, the digitised lines were assigned randomly to avoid unbiased assessment as 
much as possible. 
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4.2.5 Accuracy assessment of image classification 

'Error matrix', known as conventional method for image classification accuracy assessment 
was performed for Case Study 1. Produced thematic maps generated from either PCA based 
ISODATA approach and ICA based MLC approaches were subject to error matrix. Vector 
layers, including; (1) sparse seagrass, (2) seagrass, (3) sand, and (4) saltmarsh, derived from 
SEAMAP Tasmania were employed for validation data. These layers were overlayed on the 
original image of ALOS 2006 to facilitate training sample data for the accuracy asse sment of 
two approaches. While area of independent component and the vector layers from SEAMAP 
Tasmania were overlapped in most areas, training samples for accuracy assessment were 
picked up from different area from the area trained for two image classification approaches to 
avoid miss assessment. Classes that were not covered by the vector layers, including; deep 
water and cloud, were digitised simply in different places from the places used for training 
area in thematic map production procedures. All RO Is of the training areas were then subject 
to the calculation of error matrix between thematic maps and validation data. Statistical 
measurements, including; overall accuracy, producer's accuracy, user's accuracy, and kappa 
coefficient, were calculated between the sampling pixels derived from the ROI, used for the 
thematic map production and testing pixels, derived from the ROI, generated from the ground 
truth data. 

4.3 Results 

4.3.1 Geometric accuracy assessment 

Geometric accuracy of less than a pixel size at mean residual (7.15m) was produced in the 
rectified image of ALOS 2006 through the geometric correction procedures via 70 digitised 
residual lines (Figure 4.5). Instantaneous field of view (IFOV) of ALOS imagery is lOm. 
Approximately the residual of 0.7 pixel size was thus considered as acceptable residual errors 
for ALOS imagery. 

Field ............................. .....,... ......................................... ............ . 
~.hope Let 1qth 

Statistics: 

Count: 70 
Minimum: 1.861 014 
Maximum: 11 .216712 
Sum: 500.475423 
Mean: 7.149649 
Standard Deviation: 1.52199 

Fre<1ue11cy DistrilKlti<>n 

1.9 3.7 5.6 7.4 9.3 11.1 

Figure 4.5 Mean residual errors 
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4.3.2 Case Study 1: comparison between remote sensing methods 

Two thematic maps were produced from the reference image (19 October 2006 ALOS) 
through two image classification approaches, encompassing; ICA based Maximum likelihood 
Classification (MLC) and PCA based ISODATA (Figure 4.6 and 4.7). These thematic maps 
were then subject to accuracy assessment to investigate the better ability of mapping land 
cover classes, including SA V meadows in the Boullanger Bay. 

The accuracy assessment was carried out through error matrix for the two methods of image 
classification. Overall accuracy of 82.7% and Kappa coefficient of 0.79 were obtained for 
PCA based ISODATA approach (Table 4.3). Producer's accuracy of saltmarsh was 100%, 
and user's accuracy of saltmarsh was 82.2%. For sparse SAV, producer's accuracy and user's 
accuracy were 75.9% and 100%. Additionally, the producer's accuracy and user's accuracy 
of dense SA V were 98.4% and 98.7%. As for the result of ICA based MLC approach, overall 
accuracy of 88.4% and Kappa coefficient of 0.86 were obtained (Table 4.2). The producer's 
accuracy and user's accuracy of 87.5% and 99.6% were obtained for saltmarsh. For sparse 
SAV, the producer's accuracy and user's accuracy of 54.1 % and 85.4% were obtained. 
Additionally, the producer's accuracy and user's accuracy of 92.3% and 97.9% were obtained 
for dense SA V. Given overall accuracy and Kappa coefficient from ICA based MLC 
approach was higher than the approach of the PCA based ISODATA as the result. Producer's 
accuracy of saltmarsh represented higher in PCA based approach than ICA based approach. 
Yet User's accuracy of saltmarsh from ICA based approach obtained higher accuracy than 
PCA based approach. For the SAV category, almost equal accuracy, except for the producer's 
accuracy of ICA based approach, were obtained between two approaches. In all other classes, 
ICA based MLC approach obtained the accuracy of higher than or equal to the accuracy of 
PCA based ISODATA approach as the result. The main cause of the classification inaccuracy 
attributed to the high coverage of cloud associated with cirrus over the reference image. 

While ICA based MLC approach obtained lower producer's accuracy and user's accuracy in 
sparse SAV than PCA based ISODATA approach, the accuracy of higher than or equal to 
PCA based ISODATA approach were obtained in other categories, which in turn, higher 
overall accuracy and Kappa coefficient. In accordance with the result, ICA based MLC 
approach was set out to image classification procedure for other images. The five reference 
images, 1990, 2000, 2004, 2006, and 2008, were classified into 6 classes: (1) Dense SAV; (2) 
Sparse SAV; (3) Saltmarsh; (4) Sand; (5) Deep water; (6) Cloud. Pive thematic maps over 18 
year time were produced by the ICA based MLC approach in Case Study 1 (Figure 4.8, 4.9, 
4.10, 4.11and4.12). 
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Figure 4.6 Result of PCA based ISODAT A I , 2006 

Figure 4.7 Result of ICA based MLC I , 2006 
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Table 4.2 Error matrix result of ICA based MLC, 2006 

Overall Accuracy = (1860/2102) 88.4872% 
Kappa Coefficient = 0.8606 
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Table 4.3 Error matrix result of PCA based ISODAT A, 2006 

Overall Accuracy = (1743/2107) 82.7243% 
Kappa Coefficient = 0.7926 

Ground Truth (Pixels) 

Unclassified 0 0 

Class 6 0 230 

0 0 0 

0 0 0 
' ' . ,,. - - ' - . .. ~. - ... - . . , - ,... . ' 

Class 1 0 0 0 310 4 . ' , ' . -- - ~ ~ ' . . . - - - -.-, 

- • • ~ - .. - 4' 

Class 15 0 0 0 0 0 
- " • - • • • - r - - • • • • • •• ,,. • - . 

Class Cloud Total 
• ' • ._- ' '. - . ' • .. - ~ •c' • ' " • ., ••..-1 . . "'-' :., '. 

Class 5 0 366 a-.- ... .._.-~ • '""I.•- '"""'• ~" • ,..a ''; •• • • ,..., ••> ' •<'••,. r- '!"-"'1" ~ .. ,., • •" '·"-~ ..... - • '• > _, !'·:·..-~--"'? 

• ' oO 1 0 '\. ' .. -LO"' •• .... • 

Class 4 185 487 

Class 3 0 411 
1;· . . . . , ~. . . - - . . -. ll' r , . • . - "" . . . . ., " - " , : - : , 

Total 484 2107 

Ground Truth (Percent) 
• - ' .... - • .. - • • - - ,r -. • 1 

Unclassified 0.00 o.oo 0.00 0.00 0.00 

Class 6 0.00 75.91 0.00 0.00 0.00 

Class 1 0.00 o.oo 0.00 98.41 1.20 

Class 15 0.00 o.oo o.oo 0.00 o.oo 

Class Cloud Total 

Class 5 0.00 17.37 

Class 4 38.22 23.11 

Class 3 0.00 19.51 

Total 100.00 100.00 

Class Commission Omission Commission Omission 

Class 5 17. 76 0.00 65/366 0/301 

Class 4 41.89 23.51 204/487 87/370 

Class 3 22.14 4.19 91/411 14/334 

(Percent) (Percent) (Pixels) (Pixels) 
. . . . -~· .'.. . ") l 

Class 6 75.91 100.00 230/303 230/230 

Class 1 98.41 98.73 310/315 310/314 
- '. ' • , ..... "'!'" ... - ' , • - "'_,., 

• 1 •• '!;_ ,:. ...:. -;: . - ~ --~:; ·~.:.1\l...,: 

Class 15 61.78 100.00 299/484 299/299 
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Figure 4.8 Thematic map of Landsat 5, 1990 
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Figure 4.9 Thematic map ofLandsat 7, 2000 
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Figure 4.10 Thematic map of Landsat 5, 2004 
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Figure 4.1 I Thematic map of ALOS, 2006 
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Figure 4.12 Thematic map of Landsat 5, 2008 
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Chapter 5 Case Study 2: Remote sensing change detection of 

submerged aquatic vegetation (SAV) at two spatial scales 

5.1 Chapter overview 

Chapter 5 introduces Case Study 2: change detection analysis based on the thematic maps 
generated from the Case Study 1. Aims of this case study is to detect 'from - to' change 
between land cover features classified by Case Study 1. Two sub case study areas, 
encompassing; (1) whole Boullanger Bay, and (2) saltmarsh and sparse SAV boundaries were 
subject to the change detection analysis. Two different geographic scales were applied 
between the whole Boullanger Bay area and the saltmarsh and sparse SA V boundaries to 
obtain different spatial scale information on the distribution change in land cover classes. 
Whole Boullanger Bay area is firstly described. Area of saltmarsh and sparse SAV 
boundaries are then described. 

5.2 Change in whole Boullanger Bay area 

5.2.1 Introduction: Study area and data 

Whole areal extent of Boullanger Bay area, which is same spatial subset as classification data 
was set out to identify 'from - to' change in the synoptic distribution of the SA V meadows 
(Figure 5.1). Data employed for this case study were all derived from the Case Study 1. 
Tendency of the fluctuation in each land cover class classified in the Case Study 1 was 
identified at the scale of the large geographical area. Understanding the tendency of synoptic 
fluctuation was crucial for identifying natural dynamics of environmental features. 
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Figure 5.1 Study area of whole Boullanger Bay, 

The red square depicts the case study site. Source: (Dunn 2000). 

5.2.2 Change detection 

In accordance with the results of accuracy assessment, ICA based MLC approach, which 
produced better accuracy through error matrix assessment was selected for change detection 
procedure of WFMI. Cloud class was removed from thematic map generated from the ICA 
based MLC approach after the classification to produce better visualisation of scene for the 
result of change detection. Additionally, equivalent subset size between the thematic maps of 
both Time 1 (Tl) and Time 2 (T2) was set up to compose the Tl and T2 images into one file 
prior to change detection analysis . WFMI change detection approach was then performed 
using the composite file of Tl and T2 thematic map image. To detect change between the 
class features of interest over the 18 years, Tl image was assigned into the blue memory 
plane and time 2 (T2) image was assigned into the green and red memory planes. The 
potential area of change and non-change by difference with the indicative colors (Cyan and 
Red) on the output image were displayed. However, the result of the single usage of WFMI 
approach was not qualitative. 'From - to' change in between the land cover classes were 
therefore identified by using 'Mask' function with ENVI 4.6 to detect quantitative 
information. Individual data value of the each class from the thematic map were dealt to 
extract 'from - to' change of each class. Additionally, change statistics, encompassing; pixel 
number of change, percentage of change and areal change, were calculated by ENVI 4.6 
based on the result of the changed area. 
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5.3 Change in Boundaries: Saltmarsh and Sparse SA V boundaries 

5.3.1 Introduction: Study area and data 

Square subset area was used for identifying the correlation between SA V meadows and 
saltmarsh land cover classes at small geographic scale. Subset area located in the west part of 
the Boullanger Bay includes; location where contains the boundaries between saltmarsh and 
sparse SA V habitats (Figure 5.2 and 5.3). Classification results from the Case Study 1 were 
used for the change detection in this area as well. In order to facilitate the change detection at 
small scale, the spatial subset area size of approximately 1.5 km square was set up. The 
subset area was attempted to detect 'from - to' change in the distribution between the two 
land cover classes in the boundary area for identifying the correlation. The boundary between 
saltmarsh and sparse SA V was clearly demonstrated based on the classification result over 
the years. This area was thus regarded as an appropriate area for identifying such a change at 
small geographic scale. Information on the biological relationship between the two-land 
cover classes associated with environmental change, such as sea level rise, were expected to 
be represented through the change in their habitats extent. 

Figure 5.2 Saltmarsh and sparse SAV boundaries, 

The Blue square depicts the case study site. Source: (Dunn 2000). 
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Figure 5.3 Boundary between Sarcocornia quinqueflora and Z.Ostera muelleri 

5.3.2 Change detection 

Subset area was subject to the change detection procedure of WFMI approach same as 
change detection approach performed for the whole Boullanger Bay area. Additionally, 
change detection statistics for this area were also calculated for each land cover class over 
time series based on the change detection result. 

5.4 Accuracy assessment 

Accuracy assessment of change detection analysis was not performed in this case study due 
to the lack of validation data. The georectified data used for this case study were same as the 
Case Study 1. 

5.5 Result 

5.5.1 Change detection result: whole Boullanger Bay 

In Case Study 1, image classification procedure was accomplished using ICA based MLC 
classification approach, which had higher accuracy. Total of 5 thematic maps produced by 
the approach were subject to a change detection procedure in Case Study 2. The "WFMF' 
change detection approach was performed using the 5 thematic map images. 'From - to' 
changes in each land cover class between time 1 and time 2 images were identified based on 
the classification results (Figure 5.4, 5.5, 5.6, and 5.7). Change statistics of the 'from - to' 
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change in the whole Boullanger Bay area in terms of pixel counts, percentages and area over 
18 years were presented in Appendix 1,2,3 and 4. 

Areal change in 4 land cover classes, encompassing; sparse and dense SA V, saltmarsh, and 
sand cover occurred across the whole Boullanger Bay area during 1990 to 2008 (Figure 5.8). 
Land cover classes except for saltmarsh has represented similar tendency of decline in their 
extent throughout the period. Less area and percentage change in saltmarsh cover was 
represented compared to the other land cover classes in the area during the same period. 
Continual decline in the sparse and dense SAV distribution occurred between 1990 and 2006; 
however, increase in both land cover classes occurred from 2006 to 2008. Compared to the 
dense SA V, sparse SA V cover has continued to decrease with slower rate. While saltmarsh 
represented less change compared to other classes, repeat increase and decline was happened 
to this class during the period 1990 to 2008. The greatest decline in saltmarsh distribution 
occurred between 2004 and 2006. Additionally, the greatest increase in their distribution 
occurred between 2006 and 2008. Apparent major losses in all classes for the whole of 
Boullanger Bay occurred in 2006. That was assumed due to high cloud coverage in the 
reference image. Areas of changes in the sparse SAV distribution have not been uniformly 
associated with expansion of sand habitats across the whole Boullanger Bay over the period. 
On the other hand, changes in dense SAV distribution have been mostly occurred at the 
deeper water area across the dense SA V and sand edge over the period. These changes appear 
to be due to image classification issues, particularly a lack of a depth correction. Distributions 
of saltmarshes have been constant over the time series between 1990 and 2008. 
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Figure 5.4 Whole Boullanger Bay "from - to" change between 1990 and 2000 
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Figure 5.5 Whole Boullanger Bay "from - to" change between 2000 and 2004 
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Figure 5.6 Whole Boullanger Bay "from - to" change between 2004 and 2006 
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Figure 5.7 Whole Boullanger Bay "from - to" change between 2006 and 2008 
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Figure 5.8 Areal changes in each class in the Whole Boullanger Bay between 1990 and 2008 

5.5.2 Change detection result: Saltmarsh/ Sparse SA V boundaries 

"WFMI" change detection approach was performed using the 5 thematic map images across 
the boundaries between saltmarsh and sparse SAV, mainly consists of intertidal seagrass 
community. 'From - to' change between saltmarsh and sparse SAV was identified based on 
the classification results. Change statistics of the 'from - to' change across this area in terms 
of pixel counts, percentages and area were presented in Appendix 5,6,7 and 8. 

Inconsistent increase and decrease in saltmarsh cover were observed in this area at each 
subset of time 1 and time 2 images between 1990 and 2008. In particular, the changes in their 
distribution occurred mainly across the boundary area between other land cover classes, 
encompassing; sparse SAV and sand (Figure 5.9 and 5.10). However, small areal changes 
that was two hectares differences between minimum (38 ha) and maximum (40 ha) in 
saltmarsh cover occurred on this area over the period of time (Figure 5 .11). The change rate 
and the areas were not uniform over the boundary. Classification results of saltmarsh area 
represented the increase in their extent between 1990 and 2000. Since 2000, the distribution 
of saltmarsh has decreased gradually. On the other hand, the extent of sparse SA V and sand 
has repeated the increase and decrease in their extent between 1990 and 2008 period. Unlike 
saltmarsh, large areal changes in sparse SA V cover was represented on this area. 
Additionally, inconsistent change rate of sparse SA V was also observed. Relatively 
consistent correlation between sparse SA V and other two land covers in terms of opposite 
change rate, however, was found across the area except for 2008, which represented 
significant increase in sand cover. In other words, the rate of change in sparse SA V extent has 
demonstrated consistently opposite to the rate of change in saltmarsh and sand extent 
throughout the monitoring period. In particular, this consistent correlation has been found 
between saltmarsh and sparse SA V extent. While repetition of increase and decrease in the 
extent of three land covers were defined at each subset of change detection transection, 
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saltmarsh has represented relative decline at long term point of view from 1990 to 2008. 
Additionally, as for the stability in saltmarsh and sparse SA V extent, the north and south part 
of the area has represented during the period. 
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Figure 5.9 Saltmarsh and SA V boundary change between 1990 and 2000 
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Figure 5.10 Saltmarsh and SA V boundary change between: 

(I) 2000 and 2004, (2) 2004 and 2006, and (3) 2006 and 2008 
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Figure 5. 11 Areal changes in each class in saltmarsh and SA V border area between 1990 and 2008 
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Chapter 6 Case Study 3: Time series change detection in subtidal 

and intertidal areas via MCI and WFMI 

6.1 Chapter overview 

Chapter 6 introduces the Case Study 3: Change detection analysis for two sub case study 
areas, encompassing; (1) Welcome Inlet, and (2) subtidal open water area. Case Study 3 sets 
out to detect the change in the distribution of SA V communities at a local geographic scale. 
Change detection in the distribution of intertidal SA V was performed in the area of the 
Welcome Inlet. MCI change detection approach was applied for this sub case study area. 
Subtidal open water area was subject to the change detection in the distribution of subtidal 
SAV, such as subtidal seagrass. WFMI change detection approach was performed for this sub 
case study area. Different biological characteristics are in the context of the different natural 
dynamics in the habitats distribution of intertidal and subtidal seagrasses. Set up of two sub 
case study areas were thus crucial to identify the change derived from such a different natural 
dynamics. The context of mapping and monitoring scheme in Welcome Inlet area was firstly 
introduced. Then, subtidal open water area was described. 

6.2 Welcome Inlet: Intertidal SAV habitat change 

6.2.1 Introduction: Study area and data 

Welcome river inlet is located in the south of the Boullanger Bay (Figure 6.1). Intertidal area 
of this estuarine contains large intertidal seagrass and macro algae meadows. Information on 
the SAV distribution, especially seagrass community at local area is now regarded as 
significant information for environment management system. Yet, mapping and monitoring 
scheme at single spatial or temporal scale results in the insufficient information on the natural 
dynamics of seagrass community. In this regard, it has been identified that to map and 
monitor the SA V distribution of not only present location but also potential recolonisation 
areas are crucial (Short et al. 2001). This is particularly the case for SAV species which have 
high recolonisation capability and numerous threats to them. Additionally, the ability of 
remote sensing techniques varies depending on the correlation between proposed object and 
the spatial scale of study area. In particular, ICA is assumed as the highly spatial scale 
dependent technique as the number of features in the image influences on the analysis. 
Investigation of the ICA technique effectiveness is then crucial for future research into SA V 
at same area. In order to detect such small areal information on SA V distribution change and 
to identify the effectiveness of remote sensing computational techniques, the study region 
needed to be focused. The aim of the Case Study 3 was to detect the small areal change in the 
distribution of intertidal SA V meadows and to identify the capability of ICA technique for 
this spatial scale of study area. Hypothesis of this case study is the detection of spatial and 
temporal change in intertidal SAV meadows. Landsat TM and ETM+ imagery from 1990 to 
2008 were employed for this case study. For image selection, the anniversary date of the 
acquired image was prioritised, rather than the tide stage. It was assumed that the tide stage 
variation did not have such large effect on this case study as different temporal image. This is 
because the proposed object, the intertidal seagrass meadows were located in the intertidal 
area where is very shallow water area where even longer wavelength of the sun radiation can 
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often reach the substratum. Total of 10 images with reliable quality were selected to meet the 
annual term difference as much as possible (Table 6.1). A simple method for comparing 
every date with every other date was also devised in the form of a image visualisation 
comparison matrix (IVCM) similar to a multivariate statistical tool, the scatter plot matrix 
(Mount, 2007). 

Figure 6.1 Welcome Inlet study area, 

The Blue rectangle depicts the case study site. Source: (Dunn 2000). 
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Table 6.1 Satellite data for Welcome Inlet case study, '--'mark represents no data 

Image date Sensor Processing level Tide Cloud cover(%) Water turbidity Other information 

29/12/1990 Landsat5TM LlG High Low Image time at: --

Sun elevatmo at: 50 

Sun azimuth at: 79 

16/02/2000 Landsat 7 ETM+ LlG High Low Image time at: --

Sun elevatmo at --

Sun azimuth at --

910512001 Landsat 7 ETM+ LlG Low 25 Low Image time at 23 54:14 

Sun elevatino at· 23 

Sun azimuth at 37 

26/04/2002 Landsat 7 ETM+ LlT Low 12 Low Image time at: 23:53 03 

Sun elevatino at· 26 

Sun azimuth at: 39 

15/05/2003 Landsat 7 ETM+ LlT Low 21 Low Image time at: 23:52 57 

Sun elevatmo at: 21 

Sun azimuth at 36 

10/06/2004 Landsat5 TM LlG Low 30 Htgh Image time at 23·45:34 

Sun elevatino at 17 

Sun azimuth at 36 

4/11/2005 Landsat5 TM LlT Low 0 High Image time at: 23:52 22 

Sun elevatmo at: 52 

Sun azimuth at: 58 

2211012006 Landsat5TM LlT Low 0 Low Image time at 23·58:27 

Sun elevatino at 49 

Sun azimuth at 52 

710912007 Landsat5 TM LlT High 0 Low Image time at: 23·57:24 

Sun elevatino at: 33 

Sun azimuth at 43 

11/10/2008 Landsat5 TM LlT Htgh 4 Low Image time at. 23:48:27 

Sun elevatino at 45 

Sun azimuth at· 52 

6.2.2 Image pre-processing 

As case study area 1, each image of LlG data was geometrically corrected (image to image 
registration) based on the image of Landsat 5, acquired in 1990. Less than half RMS errors, 
were obtained for each registered image. Each scene of pixel size was resampled from 30m to 
25m to make corresponding pixel size for all, using "nearest neighbour" resampling 
technique. 25m were set up for this case study area due to the concern over the miss 
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estimation of resampled pixel values from large scale resampling like from 30m to 1 Orn, 
although nearest neighbour resampling maintains the original value of the original pixels for 
resampled image. Only the images that have no cloud and cloud shadow in the area were 
selected; thus, cloud removal from the images were not performed. Radiometric 
normalisation using PIFs were performed to make radiometric consistency over the scene 
based on the reference image of Landsat 5, 1990. Since this case study also employed ICA 
based approach, data dimensional expansion was required prior to the image classification 
and change detection procedures. 

This case study was also subject to band dimensional expansion for ICA approach. 
Dimensionality of original spectral bands derived from the both Tl and T2 images was 
expanded to meet the number and spectral characteristics of proposed objects, including 
intertidal seagrass meadows. Total of 15 additional bands, encompassing; (1) Bl *Bl, (2) 
Bl *B2, (3) Bl *B3, (4) B2*B2, (5) B3*B3, (6) B3*B2*Bl, (7) (B3*B2*Bl)/ 3, (8) Bl - B2, 
(9) Bl - B3, (10) B2 - B3, (11) Bl I B2, (12) Bl I B3, (13) B2 I B3, (14) Normalised Green 
and Blue Index (NGBI), (15) NDVI, were generated by 'Band math' with ENVI 4.6 image 
software. Composite image of Tl and T2, consists of original and additional bands were 
combined into one file for ICA based MCI approach for change detection analysis. 

6.2.3 Change detection 

Each pre-processed composite image was subject to the change detection stages. ICA based 
MCI approach was performed for change detection analysis procedures for this case study 
area. MCI approaches needed a composite image of Tl and T2, yet consists of original bands 
with additional bands generated from the data dimensional expansion for ICA application. 
ICA was performed to extract change area from the multiple date composite images. Image 
interpretation was performed subjectively through the optical comparison between two 
original images and the generated independent components to identify the change in the 
distribution of intertidal SA V habitats. The change areas where had the increase and decrease 
of SA V meadows, were extracted. These extracted features of raster data was converted to 
vector data to overlay on the original image of T2 for better visualisation in the resultant 
images. 

6.2.4 GIS application 

ArcGIS software was employed to extract additional information from the resultant data of 
vector layers in this project. Vector layers produced from the change detection procedure was 
exported from ENVI 4.6 to ArcGIS 9.3. Areas of single time change over 18 years were 
calculated by SQL query function of ArcGIS based on the attribute of the resultant vector 
layers. Additionally, the areas representing the total counts of the times of change were also 
calculated. 'Kernel density' function of ArcGIS was performed to produce the area density 
representing the single times changed areas and stable land cover areas between 1990 and 
2008. In order to identify the natural dynamics of SAV population in the Welcome Inlet, 
annual growth of SA V was also calculated. 

6.2.5 Accuracy assessment 

Accuracy assessment of change detection was not attempted in this case study due to the lack 
of validation data. The rectified data used for this case study was same as the Case Study 1. 
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6.3 Subtidal open water area SA V habitat change 

6.3.1 Introduction: Study area and data 

Open water near shore area is located between the Robbins Island and Woolnorth point 
(Figure 6.2). Extensive subtidal seagrass meadows of dominant P. australis range over the 
open water area. Recolonisation ability of such a highly stabilised seagrass varies depending 
on the environmental condition of the surrounding area. Therefore, information on the 
recolonisation rate is crucial for seagrass conservation and management. There is the patchy 
configuration of uncolonised areas, which is about 25m radius in the beds of P. australis, in 
the area. These uncolonised areas in meadows were identified as an ideal target to investigate 
their recolonisation rate and stability of their meadows over different temporal scale. Meehan 
and West (2000) conducted the research into the recovery rates of P. australis through 
mapping circular uncolonised areas. Similarly, the aim of this case study was to detect any 
changes or non-change in the subtidal seagrass meadows for identification of their 
recolonisation ability. Hypothesis of this case study is non-change in the patchy uncolonised 
area based on the high stability of the subtidal seagrass specie in their habitats terms. A series 
of Landsat TM and ETM+ images over the 18 years was employed to produce the 
information. Since this case study attempted to identify the change in the subtidal seagrass 
meadows based on the geometry of the un-colonised area, important concern was clear 
appearance of the uncolonised area for image selection. It is noteworthy that the dominant 
subtidal seagrass, P. australis has few seasonal phenotypic changes. Image selection of this 
sub-study area simply needed to avoid high cloudy coverage. Therefore, water clarity, cloud 
coverage, and noise coverage over the study area in the acquired image associated with the 
similar anniversary date were mainly concerned for image selection. However, identical tide 
levels and regularly annual term basis were also concerned for image selection to arrange the 
appropriate combination of acquired images. Then, the total of 11 images with reliable 
quality was eventually selected for image analysis in this case study (Table 6.2). 

Figure 6.2 Subtidal open water study area, 

The Blue rectangle depicts the case study site. Source: (Dunn 2000). 
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Table 6.2 Satellite data for subtidal open water case study, '--'mark represents no data 

Image date Sensor Processing level Tide Cloud cover Water turbidity Other information 

29/12/1990 Landsat5TM LIG High Low Image time at --

Sun elevatmo at 50 

Sun azimuth at 79 

28/11/1999 Landsat 7 ETM+ LIT Low 0 Low Image time at: 23:57:02 

Sun elevatmo at: 56 

Sun azimuth at: 65 

16/02/2000 Landsat7 ETM+ LIG High Low Image time at: --

Sun elevatmo at: --

Sun azimuth at: --

28/07/2001 Landsat 7 ETM+ LIT Low 17 Low Image time at. 23:53.26 

Sun elevatmo at: 20 

Sun azimuth at: 38 

5/02/2002 Landsat 7 ETM+ LIT Low 40 Low Image time at 23 53:06 

Sun elevatino at: 47 

Sun azimuth at 66 

23/01/2003 Landsat7 ETM+ LIT Low 4 Low Image time at· 23:52 45 

Sun elevatino at: 50 

Sun azimuth at: 70 

2/01/2004 Landsat5 TM LIG Low 40 Low Image time at. 23 43:00 

Sun elevatino at: 51 

Sun azimuth at: 75 

510212005 Landsat5TM LIG High Low Image time at: 23:50:39 

Sun elevatino at: 46 

Sun azimuth at 67 

22/10/2006 Landsat5TM LIT Low 0 Low Image time at: 23:58:27 

Sun elevatmo at. 49 

Sun azimuth at 52 

7/09/2007 Landsat5TM LIT High 0 Low Image time at: 23:57:24 

Sun elevatino at: 33 

Sun azimuth at· 43 

11/10/2008 Landsat5TM LIT High 4 Low Image time at: 23:48:27 

Sun elevatino at: 45 

Sun azimuth at: 52 
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6.3.2 Image pre-processing 

Each original images of LlG data were geometrically corrected (image to image registration) 
based on the image of Landsat 5, 1990. Less than half RMS errors were obtained for each 
image registered. Original pixel size of 30m was resampled to 1 Orn pixel size for this case 
study so that discernible change was easily to be detected in optical identification. For the 
better visualisation of image, 'cubic convolution' resampling approach was performed. Finer 
pixel size was assumed more suitable for the size of the patchy un-colonized area that was 
around 25m radius. The assumption of the pixel size was involved in the two reasons; the 
characteristics of the subtidal seagrass colonisation and optical based change detection. 
Generally, recolonisation rate of the subtidal seagrass species were low, which in tum, the 
change in the distribution of such species were assumed very small areal scale. Additionally, 
this case study underwent change detection method based on visual interpretation; thus, lOm 
pixel size was assumed more suitable than coarser pixel size to detect small areal change by 
optical interpretation through the results produced from the change detection procedure. 
Same subset size was set up for all resampled image for subsequent WFMI procedure. 
Composite image consists of time 1 and time 2 images were produced for change detection 
analysis. 

6.3.3 Change detection 

Change detection procedure of WFMI approach was performed in this case study. Image 
classification for this case study area was not performed due to the concern over the miss
estimated brightness values generated from the "cubic convolution" approach that cannot 
maintain the original brightness values. Visual based change detection was thus performed to 
detect change in the subtidal seagrass meadows. Although numerous change detection 
techniques have been developed, the human interpretation based on visual evidence still plays 
an important role for change detection (Mount 2007). WFMI approach underwent with ENVI 
4.6 to provide the trend of seagrass distribution and information on whether there are 
anomalies in the time series. Visible green band of Landsat TM and ETM from each Tl and 
T2 image were allocated to the write function memory banks. This is part of the reason that 
the light attenuation of longer wave length than visible green and the higher spectral response 
of visible green from submerged plant community. As Case Study 1, visible green band from 
Tl image was inserted into the blue memory plane and the band from T2 image was inserted 
into the green and red memory planes. The potential area of change and non-change by 
difference with the indicative colours (Cyan and Red) on the output image were going to be 
displayed as the results. 

6.3.4 Accuracy assessment 

Accuracy assessment of change detection was also not attempted in this case study due to the 
lack of validation data. The rectified data used for this case study was also same as the Case 
Study 1. 
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6.4 Result 

6.4.1 Welcome Inlet intertidal SA V habitat change: MCI approach 

10 reference images over 18 years were subject to change detection procedure (Figure 6.3). 
ICA based MCI approach was performed to detect change in the distribution of SA V 
meadows, mainly consists of inte1tidal seagrasses over the Welcome Inlet. 9 subsets 
composed of the two different temporal reference images and resultant image were produced 
by the change detection method (Figure 6.4, 6.5, 6.6, 6.7 and 6.8). The presented results of 
mapping and monitoring SA V meadows in the Welcome Inlet has demonstrated that either 
increases or decreases in their population density occurred over the 18 year period from 1990 
to 2008 (Figure 6.9). 

Inconsistent change in the distribution of SA V was found across the Welcome Inlet area over 
the 18 year period through the each set of change detection results. However, a couple of 
area, the centre part and the north-west part of the Welcome Inlet represented the high 
stability of SA V colonisation. Inconsistent change rate of the gain and loss of SA V meadows 
was also observed. Gain and loss of SA V meadows varied dependent upon the places on the 
area and the observed year. Significant changes in SA V cover occurred during the subset 
period of '1990 - 2000', '2000 - 2001', '2001 - 2002', '2005 - 2006' and '2006 - 2007' 
(Figure 6.12). Maximum change of both increase and decrease in SAV cover was observed 
during the period 2001 to 2002 in this area. 

Area observed single change was demonstrated by GIS application based on the result of 
MCI approach. Additionally, derivative results, encompassing: (1) stable area of 2008; (2) 
area of total change count; (3) density of single change area; and (4) density of stable area 
2008 were produced through GIS application (Figure 6.10, 6.11). While the total of single 
change areas occurred broadly across the Welcome Inlet area, single change areas of 
individual year were relatively clustered. Additionally, many single changes were observed 
relatively around stable area. Stable area represented large coverage of SA V meadows. This 
was assumed as a part because of misclassification in 2008 image. As for the total count of 
change, change area with higher count mainly occurred in the north part of the image where 
is next to the deep water stream and closer to the open water area in the Welcome Inlet. 

The Image Visualisation Comparison Matrix (IVCM) is presented in Appendix 10. It enables 
the user to compare processed images from any date with a processed image from any other 
date. This is a powerful method for finding patterns through time and identifying anomalous 
years. 
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Figure 6.3 Original images, red rectangle represents the areas of SA V meadows with high stability 
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Figure 6.4 Welcome Inlet change detection result between 1990 and 2000 
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Figure 6.5 Welcome Inlet change detection results (I) between 2000 and 200 I, and (2) between 200 I and 2002 
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Figure 6.6 Welcome Inlet change detection results (I) between 2002 and 2003, and (2) 2003 and 2004 

Page 106 



Figure 6.7 Welcome Inlet change detection results (I) between 2004 and 2005, and (2) 2005 and 2006 
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Figure 6.8 Welcome Inlet change detection results (I) between 2006 and 2007, and (2) between 2007 and 2008 
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Figure 6.9 Single count change area and change detection result between 200 I and 2002 
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Legend Legend 

Figure 6.11 Area density images of single count change area and stable area 
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Figure 6.12 Welcome Inlet SA V annual growth 

6.4.2 Subtidal open water area SA V habitat: WFMI approach 

The 11 reference images over 18 years were subject to change detection procedure (Figure 
6.13). WFMI approach was performed to detect change in the distribution of SAV meadows, 
mainly consists of subtidal seagrasses over the subtidal open water area on the Boullanger 
Bay. 10 resultant images based on the subsets composed of time 1 and time 2 original images 
were produced by the change detection method (Figure 6.14, 6.15, 6.16, and 6.17). The 
presented SA V meadows monitoring has demonstrated change and un-change areas of their 
meadows over the 18 year period from 1990 to 2008. Increase and decrease of the brightness 
values based on the visible Green band varied dependent area on the image and the individual 
year. 

Particular finding of this sub-case study was the high stability of un-colonised area rather 
than change in their distribution. Changed area was displayed by red and cyan, and 
unchanged area was displayed by gray scale colors from white to black. Consistency of the 
patchy un-colonised meadows was represented by white in the subtidal open water area of the 
Boullanger Bay over the 18 year period. While the un-colonised areas displayed the 
consistent white color, which represents consistent stability, changed areas were represented 
by the inconsistent density of color through red and cyan with dotted appearance. In short, 
changed areas have demonstrated inconsistent change. Those changed areas were represented 
around the patchy un-colonised area. In practice, these changed areas displayed around the 
patchy un-colonised areas were unexpected result in this sub-case study since the assumption 
of the subtidal seagrass meadows IS high stability that IS changeless. 
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Figure 6.13 Subtidal open water area original images, red rectangle focuses on several patchy uncolonised areas 
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Figure 6.14 Subtidal open water area change detection result 
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Figure 6.15 Subtidal open water area change detection results 
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Figure 6.16 Subtidal open water area change detection results 
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Figure 6.17 Subtidal open water area change detection results 
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Chapter 7 Discussion 

7.1 Chapter overview 

Chapter 7 discusses the findings of the case studies. The learnings from the image pre
processing stage are described first and then the case studies are discussed in detail. Key 
findings are highlighted and potential techniques applicable to SA V mapping and monitoring 
are proposed for future research. 

7.2 Pre-processing 

Some issues became apparent during the image analysis that could not be addressed during 
the study, including problems with cloud removal and radiometric differences between 
images over time. These issues are discussed and some alternative approaches presented. 

Many types of clouds ranged over some of the acquired images, including semi-transparent 
cirrus cloud and dense cumulus cloud. That high variety of cloud type brought the challenges 
of cloud removal procedure in this project. There are three main concerns arising from cloud 
coverage, including: (1) the mixture of spectral value between cirrus cloud and other object in 
cirrus cloud; (2) similar brightness value between cloud and other objects; such as beaches; 
and (3) cloud shadow coverage. The procedure of cloud removal from the acquired images 
with using 'mask' function of ENVI 4.6 was confounded due to spectral and radiometric 
overlap, especially between the clouds and beaches. The lack of cloud removal procedures at 
the pre-processing stage led in the part to misclassification between the classes of 'Dense 
SA V' and 'Deep water' in the image classification analysis of Case Study 1. In order to 
improve the accuracy of classification and change detection analysis, several pre-processing 
techniques could have been attempted instead of the techniques used for this project. For 
instance, the method developed by Roan and Tateishi (2008) reportedly removes not only 
cloud coverage but also the shadow coverage from the image. This method is performed 
based on an interpolation from Synthetic Aperture Radar (SAR) data and uses several 
algorithm techniques, including; Total Reflectance Radiance Index and Cloud-Soil Index for 
defining cloud coverage. Although they used ALOS data, the advantage of this method is the 
ability to apply it to other satellite data, such as Landsat TM and ETM+. This method is 
potentially effective at producing a time series of free cloud and shadow data for change 
detection analysis (Roan and Tateishi 2008). Although it was not possible to employ this 
method in this study due to limitations of data, it is one potential technique to consider using 
in future research. 

Relative radiometric correction using pseudo-invariant features (PIFs) was accomplished in 
this project based on medium spatial resolution satellite imagery, i.e., Landsat TM and 
ETM+. The empirical line calibration approach based on the PIF of deep open water area and 
sand dune were effective for this project. The reason for using this radiometric correction 
technique is that the pixel size of the imagery highly influences on the measurements taken of 
the PIF. While small objects in any particular area, such as open water or a sand dune cannot 
be detected by moderate resolution images, these objects can be detected by high resolution 
imagery and will influence the empirical line technique (Hong and Zhang 2008). Therefore, 
the empirical line calibration using the PIF is more applicable to moderate resolution 
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imagery; and high resolution imagery requires another procedure to remove those small 
objects from PIF prior to application of empirical line calibration approach (Hong and Zhang 
2008). However, the manual selection of each PIF by visual inspection was dependent on the 
local knowledge of the study area and the skill of the researcher in this project. In short, the 
relative radiometric correction performed in this project was a subjective approach. However, 
the PCA method for selecting the PIF could be more accurate and applicable to regions that 
contains few PIFs. PCA based PIF selection could not be used for this project due to the 
limitations indicated by Paolini et al. (2006) when applying the method for Landsat data. 
Potentially, the multi-dimensional PIFs selection (MDPS) method developed by Paolini et al. 
(2006) could be an effective Landsat image pre-processing procedure. They found that this 
method provides a quality of radiometric image comparable to the absolute correction 
method. The method is based on a three-dimensional principal component analysis. A 
cylinder generated by the calculation of 3D PCA is defined by the major axis and its radius 
with an arbitrary threshold (Paolini et al. 2006). All pixels contained are defined as PIFs, and 
the radiometric discrepancy between Landsat TM and ETM+ sensors are reduced by this 
method. An objective approach is generally more preferable unless researcher has sufficient 
information on the study area. MDPS, a particular method for objective radiometric 
normalisation, especially for images acquired by different sensors would be a potential 
approach for change detection research into coastal area that have limited PIF sources. 

A variety of pre-processing techniques are potentially applicable to the image analysis for 
seagrass mapping and monitoring. Geometric correction for the acquired images is critical. In 
addition, radiometric correction is also critical in multi-temporal multi-sensor change 
detection analysis, especially for the coastal regions where is often in the context of the 
various environmental conditions. The several methods mentioned in the previous paragraphs 
could be the next steps to improve image correction accuracy for image analysis. 

7.3 Case Study 1: Remote Sensing method comparison 

An investigation of hybrid methods of image classification were performed in Case Study 1 a 
PCA based ISODATA approach and an ICA based MLC approach. Both were subject to an 
accuracy assessment by 'error matrix'. The hypothesis of this case study was that the ICA 
based MLC approach has a better accuracy than that of the PCA based ISODATA approach. 
This hypothesis is based on the reasoning that while ICA will detect a linear representation of 
non-Gaussian data, the PCA depends on an assumption of a Gaussian distribution which 
satellite data often doesn't exhibit. 

According to the result of the error matrix for the two image classification results, the ICA 
based MLC approach obtained an accuracy higher than or equal to the PCA based ISODAT A 
approach except for the producer's accuracy and user's accuracy of the sparse SAV class. 
The lower accuracy for this class was assumed due to the lack of water depth correction that 
eliminates the water column effect from reference images. ICA extracts mutually independent 
components underlying the acquired image based on the spectral characteristics. However, 
the lack of water depth correction procedure resulted in the miss-transformation of ICA for 
land cover classes, such as 'Dense SAV' and 'Sparse SAV'. For instance, misclassification of 
land cover class between 'Deep water' and 'Dense SA V' in deep water area, especially 
around the sand edge and subtidal SA V meadows was assumed due to this problem. 
Additionally, this problem contributed to the misclassification between 'Dense SAV' and 
'Sparse SAV' in shallow water area as well. While water depth correction could not be 
performed in this project due to time limitations of research, this procedure would be useful 
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to consider for SA V mapping in future research. The water attenuation effect resulting from 
absorption and scattering of light in the water column should be corrected in order to extract a 
more accurate classification result of submerged objects. The water depth correction method, 
developed by the Lyzenga (1978; 1981) has been a common approach for the application for 
SAV (Mumby et al. 1998; Ciraolo et al. 2006; Mount 2007). Previous research into SAV 
mapping by Mumby et al. (1998) and Ciraolo et al. (2006) found the method highly effective. 
Generally, removal of the water attenuation effect requires two factors; (1) a digital elevation 
model of depth in study area and (2) water attenuation characteristics of water column in 
study area (Mumby et al. 1998). However, the water depth correction method developed by 
the Lyzenga (1978; 1981) is a simple image based approach. In other words, no ancillary data 
or in situ data are required for this method (Mumby et al. 1998). It produces a depth invariant 
index of bottom type from two spectral band pairs instead of predicting the reflectance from 
the underwater objects (Mumby et al. 1998; Ciraolo et al. 2006). Therefore, Lyzenga's water 
depth correction method would be a potential approach to compensate the water attenuation 
effect on the SA V mapping in coastal area for future research on the condition that the water 
column has consistent light attenuating characteristics across the entire image scene. 

In practice, the lack of ground truth data and other ancillary data was also implicated in the 
inconsistent accuracy results between the two approaches. Only the year of 2006 had 
adequate data to enable an accuracy assessment. This meant that the accuracy assessment of 
change detection was not able to be performed in this project due to the lack of the validation 
data for other years. While the error matrix accuracy assessment accomplished the 
identification of the appropriate method, an accuracy assessment with further ancillary data is 
needed to investigate the effectiveness of the two methods for mapping SA V meadows. 

ICA was found to be an effective technique for extracting statistically independent 
components. The Regions of Interest (ROI), digitised based on the independent components, 
are required to be statistically independent to be useful as training samples for image 
classification. The accuracy of the MLC approach was thus improved by application of ICA 
for mapping SAV meadows in this project. While PCA based ISODATA demonstrated lower 
accuracy than ICA based MLC approach, PCA application for ISODATA was also 
considered an effective process of feature extraction and improved the accuracy of the 
unsupervised classification. For the hybrid classification approach, numerous researches have 
supported the value of a hybrid approach combining supervised or unsupervised classifier 
with other image processing technique land cover classification to improve the accuracy of 
classification result (Li and Yeh 1998; Lu and Weng 2007; Deng et al. 2008; Deng et al. 
2009). Deng et al. (2009) used a combination method between PCA and MLC, and Deng et 
al. (2008) used the integrated method of a PCA based hybrid image classification approach 
using the combination of supervised and unsupervised classifier. Both studies indicated the 
ability of the integrated method of PCA based hybrid image classification approach to extract 
the information on the direction, nature, rate, and location of land use and land-use changes. 
Li and Yeh (1998) found application of a hybrid method using MLC based on PCA for the 
Pearl River Delta in China enhanced the accuracy of an image classification of land use. In 
tum, it reduced potential errors inherent in change detection due to low image classification 
accuracy. Therefore, further research could be conducted to identify the most effective hybrid 
approach for SAV mapping in the Boullanger Bay. However, the difficulty inherent in the 
arrangement of additional bands was also identified during the application of ICA in this 
project. Identifying the appropriate number of additional bands and appropriate spectral 
characteristics of additional bands to extract features of interest was critical. Additionally, 
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identifying the appropriate thresholds of data value for extracting independent component 
was also challenging. 

For PCA based ISODATA approach, 25 land cover classes were designated for the 
classification procedure in advance. However, further attention could fruitfully be given to 
the selection process for an appropriate number for the unsupervised classification. For 
example, Macleod and Congalton (1998) tested two sets of clusters of 100 and 255 with 
ISODATA to identify the population of eelgrass, Zostera marina in Great Bay, New 
Hampshire based on a Landsat TM image. Everitt et al. (2009) also employed ISODATA 
with 75 clusters for black mangrove mapping, and Gluck et al. (1996) used 250 clusters for 
PCA based ISODATA to map wetlands. These researchers employed a much larger number 
of clusters for the classification procedure than that used in this case study. In particular, 
Macleod and Congalton (1998) identified that 255 clusters produced a better result for the 
change detection of the eelgrass meadows in their result. While the appropriate number is not 
necessarily large, further investigation into the appropriate number for unsupervised 
classification procedure will potentially improve the accuracy of the change detection 
approach. 

The mixed pixel problem is a major challenge for image classification or change detection 
procedures and is inherent in medium or coarse spatial resolution of satellite imagery. 
Heterogeneity of complicated landscapes in study location and large instantaneous field of 
view (IFOV) are often major sources of the mixed pixels in the acquired image (Lu and 
Weng 2007). Since this project employed medium spatial resolution imagery of Landsat, the 
problem of mixed pixels in the image was assumed. Mixed pixels between subtidal seagrass, 
intertidal seagrass and macroalgae contributed to misclassification between dense and sparse 
SA V. Although two classification approaches were performed based on image transformation 
techniques to improve accuracy of the resultant data, this problem eventually remained in the 
resultant thematic maps. Mixed pixels are another challenge for future seagrass mapping and 
monitoring research when using medium spatial resolution imagery. Subpixel and soft image 
classification is one of the potential approaches to deal with the mixed pixel problem. Major 
aims of subpixel and soft classification are to provide a more appropriate representation of 
feature class a more precise estimation of feature class area compared to the per-pixel 
classification approach (Lu and Weng 2007). This approach is potentially effective for the 
study area, especially using medium and coarse spatial resolution for a complex landscape 
region, such as Boullanger Bay area and could achieve better accuracy (Lu and Weng 2007). 
Among the subpixel classification techniques, the fuzzy classification approach is producing 
good results for vegetation classification and is reducing the mixed pixel problem using fuzzy 
logic (Lu and Weng 2007). However, the challenge of evaluating the accuracy of 
classification result remains in this approach due to the difficulty of obtaining adequate 
reference data. In spite of these difficulties, this approach is a noteworthy method for seagrass 
mapping. 

7.4 Case Study 2: Remote sensing change detection of submerged aquatic 

vegetation (SA V) at two spatial scales 

The 'from - to' change between the distribution of land cover classes, especially dense and 
sparse SA V meadows, saltmarsh, and sand were demonstrated by the WFMI approach over 
the 18 year period from 1990 to 2008 in Case Study 1. Over short time periods (i.e. year to 
year) many changes were found in the habitat distribution between land cover classes in the 
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whole Boullanger Bay area throughout the 18 years. The change detection results have shown 
that there is a consistent rate of change across the whole Boullanger Bay over the 18 years. 
This result also applies to the boundary between saltmarsh and sparse SA V. Overall, 
saltmarsh has been in gradual decline in extent in this area over the long term between 1990 
and 2008. 

The rapid switching from one form of land cover to another was not unexpected for the 
sparse SAV distribution (usually switching between seagrass and sand) since the recolonising 
ability of the intertidal seagrass (here, Z. muelleri) in the sparse SA V class, is high. Yet, the 
high rate of change in the dense SA V distribution was also identified across the boundary 
between dense SA V and deep water edge in deep open water area. This finding in the dense 
SA V distribution results was not expected since the dominant subtidal seagrass P. australis 
has the assumption of high stability in their meadows. However, this apparent change in the 
distribution of the dense SA V does not necessary demonstrate actual change in the 
distribution of dense SA V over the years. As mentioned in Chapter 2, P. australis occurs in 
about 1- 15 m of water depth. Light attenuation due to high tide level was attributed to the 
misclassification of the subtidal seagrass meadows in the subtidal water area. Further, the 
dense SAV class might have contained not only dense intertidal seagrass but also macroalgae, 
which has a high recolonising rate. Therefore, the rapid change in the distribution of dense 
SA V class was mainly attributed to the part of misclassification due to water column light 
attenuation. 

In another respect, the misclassification of objects in deep water areas is also related to the 
limitations of moderate spatial resolution sensors, such as Landsat and ALOS, to resolve 
underwater features. Seagrass meadows located in deep water areas (around 7m depth; 
Appendix 9) could not be detected well by the moderate resolution sensors in this case study. 
Change detection for Posidonia spp. beds by Anstee et al. (2009) found higher stability of 
Posidonia beds when analysing the QuickBird imagery than when analysing the ALOS 
imagery. Since, this case study used ALOS and Landsat TM imagery, the low stability of the 
subtidal seagrass meadows may partly be attributed to the spatial resolution. Additionally, 
Larkum and West (1990) selected shallow bay (Botany Bay, which is covered by 4,600ha 
seagrass beds) for change detection of P. australis using aerial photographs. They detected a 
loss of 58% of the seagrass meadows between 1942 and 1986. Gullstrom et al. (2006) 
successfully performed change detection of tropical intertidal SA V meadows (Halimeda spp. 
and macroalgae) in Chwaka Bay, Tanzania, which is relatively shallow (average depth 3.2 
m). 

For the image classification of underwater objects using moderate resolution sensor, the 
depth of the study location is a critical factor, and a compromise between depth range of 
objects and spatial resolution of sensor may be required to select an appropriate spatial subset 
area, within which subsurface features can be detected by moderate spatial resolution sensor. 

The lack of a water depth correction procedure appears to have impacted the change detection 
results. Less area and percentage change in saltmarsh cover compared to the other land cover 
classes were identified. However, correlation in area and percentage change between 
saltmarsh and other land cover classes, especially sparse SAV has not been identified in the 
results for the whole Boullanger Bay. The main reason for this is that the other cover types 
were changing so rapidly that no reasonable correlation could be found either with any one 
cover type or any grouping of cover types. 
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For saltmarsh and sparse SA V boundary area, increases and decreases in each land cover 
class distribution were observed at each pair of consecutive images between 1990 and 2008. 
Since this area contains sparse SAV class, mainly composed of the intertidal seagrass and 
macroalgae, the rapid change in their extent was expected. However, the saltmarsh loss and 
gain in other areas remote from the boundary was not expected. Although change detection in 
consecutive images between 1990 and 2000 and between 2000 and 2004 showed a pattern of 
loss and gain of saltmarsh cover across the boundary, other consecutive image pairs have 
shown losses in places other than the seagrass/saltmarsh boundary. Such saltmarsh cover loss 
and gain in areas remote from the boundary were assumed due to the misclassification of 
saltmarsh with sparse SA V caused by the different tidal level in channels within the 
saltmarsh. However, correlation between land cover classes has shown a constant relationship 
of change in their distribution in this area (see Figure 5.8). A consistent negative correlation 
between sparse SA V and the two other land cover types ("Sand" and "Dense SA V") was 
found except for 2008, which showed a significant increase in sand cover. These rapid 
changes and the consistent correlation between land cover classes were considered mainly to 
be driven by the quick response of intertidal seagrass community to environmental change. 
The influence of the intertidal seagrass community on the habitat extent of saltmarsh plant 
community during the recolonisation activity of the intertidal seagrasses resulted in the 
correlation between the land cover classes in their distribution change. The tendency of 
distribution change in these three classes has demonstrated their response to the natural 
disturbances or indirect human induced disturbances, such as sea level rise or current flow 
change. Relative decline of saltmarsh cover from 1990 to 2008 must be viewed in the context 
of these disturbances. A gradual increase in the frequency of such disturbances could have an 
effect on the distribution of intertidal seagrass meadows, which in tum, led to a gradual 
change in their distribution over the long term. For the satellite remote sensing efficacy in this 
case study, the different capability to map the land cover classes has been demonstrated 
between Landsat TM and ALOS. ALOS has detected more particular land objects than 
Landsat TM. This indicates that spatial resolution influences the image classification 
accuracy. Phinn et al. (2006b) and Anstee et al. (2009) have also identified such an impact on 
the classification accuracy. Higher spatial resolution is better for mapping and monitoring 
more particular seagrass beds (Phinn et al. 2006b; Anstee et al. 2009). However, they 
concluded that Landsat TM is potentially capable for mapping and monitoring seagrasses or 
saltmarshes at broad scale. This case study has also represented the general stability of 
saltmarsh by broad scale monitoring through the classification results. In this regard, the 
potential capability of Landsat TM for broad scale mapping and monitoring, especially for 
saltmarshes was also indicated in this case study. 

7.5 Case Study 3: Time series change detection in subtidal and intertidal 

areas via MCI and WFMI 

The results presented of SA V meadows mapping and monitoring in the Welcome Inlet has 
demonstrated that both increases and decreases in their abundance occurred over the 18 year 
period from 1990 to 2008. Frequent changes in the distribution of SAV were found at both 
short and long periods of change detection throughout the time series. However, two of areas 
of the Welcome Inlet study site, namely the centre and northwest parts, were found to have 
high stability SAV throughout the 18 year period (Figure 6.10 and 6.11). For subtidal open 
water area change detection, consistency of the patchy un-colonised meadows was found in 
the subtidal open water area of the Boullanger Bay over the 18 year period. 

Page 123 



7.5.1 Welcome Inlet: Intertidal SAV habitat change 

A high rate of change was expected for intertidal SAV, such as intertidal seagrass (Zostera 
muelleri) and macroalgae. Frequent change in the distribution of SAV meadows is as a result 
of their quick response to the rapid environmental change, such as eutrophication events or 
pulses of smothering sediments or shading turbidity. For example, eutrophication promotes 
algal epiphyte cover on intertidal seagrass communities and can, eventually shade the 
seagrass out (Figure 7.1). This is consistent with the findings of Abal and Dennison (1996) in 
southern Moreton Bay, Queensland, Australia. A relatively high correlation between light 
attenuation and the depth range of Zostera capricorni were observed in their research. They 
indicated that a significant decrease in seagrass depth range over the two-year duration was 
linked to the deterioration of water quality, especially higher light attenuation (Long Island 
and Victoria Point, 9 and 18 km from the Logan River mouth, respectively). A significant 
decrease in the intertidal SA V was also observed in Welcome Inlet, for example between 
2002 and 2004 (Appendix 10). In this regard, the frequent population changes in the intertidal 
SAV meadows in Welcome Inlet could be also attributed to the decrease of water quality, 
possibly caused by eutrophication that promotes epiphyte bloom. The population change of 
the intertidal SAV thus could be a sensitive bio-indicator of water quality in Welcome Inlet. 
The areas experiencing frequent change of sparse SA V and high stable areas of sparse SA V 
were compared in a GIS. According to the results, the areas with frequent change were 
located in the north part of the Welcome Inlet, and area with smaller count of change and 
stable areas were located relatively close to the Welcome Inlet. 

This moderate spatial resolution case study has shown that this is an environmentally 
sensitive area of SA V meadows subject to natural and or human-induced disturbances. 
Gullstrom et al (2006) also found that the overall seagrass cover to be stable between 1986 
and 2003 in change detection analysis for tropical intertidal SAV meadows using Landsat 
imagery. However, temporally dynamic losses and gains were also observed through their 
mapping results. According to them, this population dynamics of the SA V meadows was 
attributed to less intense environmental deterioration, such as coastal development and 
nutrient discharge, in Chwaka Bay. While upland farming may be a potential source of 
nutrient discharge through fertiliser that promotes epiphyte growth (Figure 7.2), relatively 
stable overall coverage with fluctuations in intertidal SAV distribution on Welcome Inlet may 
imply both the vulnerability of the area to environmental change and the less intense 
environmental deterioration in Welcome Inlet. Additionally, the presence of the apparently 
stable area of intertidal SA V in the results has several implications. First of all, the stability of 
the SA V might have been supported by consistent environmental conditions and the intertidal 
SA V community was not unduly influenced by any kind of disturbances or environmental 
change. If the area supports such high environmental stability, the area could be a potential 
location of a marine parks or reserves (Kirkman 1997) or could be a useful reference site for 
monitoring at particular time scales - e.g. decadal. 

Lack of the change detection accuracy assessment due to the lack of ground truth data and 
ancillary data for each consecutive pair of time 1 and time 2 images was hence involved in 
the problems associated with drawing conclusive results in this case study. However, the ICA 
for MCI approach represented sufficient ability to extract change area in intertidal SA V 
distribution from an overall point of view. In particular, the strength of the ICA technique, the 
change area extraction of individual features from the image was represented in this case 
study. As this technique produces statistically independent components based on the spectral 
characteristics of each pixel, small areal change in the intertidal SA V distribution that 
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occurred in the time 2 image was also extracted well. Therefore, the ICA based MCI 
approach was demonstrated as an effective method for SA V mapping and monitoring, 
especially intertidal seagrass compared to the PCA and unsupervised classification approach 
that cannot extract such a feature. 

However, the limitation of ICA technique relates to the difficulty of subjective optical "image 
interpretation" for identifying the change and non-change area. The WFMI technique using 
original bands was used to assist the image interpretation in this project. Subtle differences of 
change area due to the problem of different spectral characteristics between original bands 
used for the WFMI and independent components generated from ICA using non-linear 
spectral characteristics bands produced the difficulties in image interpretation via optical 
decision for identifying change area in some independent components. The ICA algorithm 
deals with each pixel in the image. Noise condition in the image thus highly influences the 
ICA procedure. Landsat 5, 2004 and 2005, involved in the ICA procedure represented the 
large amount of noise in the produced independent components, which in tum, the vector 
layers generated from the extracted features of changed area were also noisy (Figure 6.6 and 
6.7). Although along track scanners generally produce smaller amounts of noise than across 
track scanners like Landsat TM, application of noise removal techniques could improve the 
production of independent components. 

Additionally, the extracted features in several independent components were overlapped each 
other in their extent due to the subtle spectral difference of input bands for ICA. Vector layers 
generated from this overlapped features eventually produced visually complicated images. As 
the result, the application of GIS was required to consolidate the changed area into a single 
polygon. Adequately distinct spectral characteristics and appropriate number of bands thus 
should be taken into account for future seagrass mapping and monitoring research using ICA 
technique. In this regard, masking out the adjacent area should also be performed properly to 
control the number of features in the study area for improving the extraction of proposed 
features with desirable extent. Arrangement of the number of features in the image and the 
number of the additional bands with sufficient spectral difference is crucial. High spatial 
resolution multispectral sensor satellite, such as World View-2, would be a major source for 
land cover mapping analysis. Hence, appropriate non-linear operation technique to produce 
additional bands will be critical to enhance the ability of such high resolution satellite 
imagery for land cover analysis, including intertidal and subtidal seagrass mapping. 
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Figure 7.1 Epiphyte loading on Z,ostera muelleri 

Figure 7 .2 Intertidal seagrass beds and upland farm 
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7.5.2 Subtidal open water area SA V habitat 

High stability of the colonisation area was the assumption of the subtidal seagrass species, 
such as P. australis (Clarke and Kirkman 1989). Each subset of time 1 and time 2 images for 
change detection represented the non-change of un-colonised patch of the subtidal SA V over 
the 18 year period except for the 2006 image. Slow recolonisation of P. australis has also 
been identified by Meehan and West (2000) through mapping circular uncolonised areas over 
25 years. While Meehan and West (2000) employed a series of historical aerial photographs 
to map the uncolonised areas for estimating the recovery time for P. australis, the slow 
recolonisation characteristics of the subtidal seagrass meadows have also been identified by 
satellite remote sensing technique of the WFMI approach in this case study. The presence of 
the subtidal seagrass community in the subtidal area of Boullanger Bay over 18 year period 
was in included in the assumption from published slow elongation and spreading rates for 
Amphibolis and Posidonia species of 200-500 and <100-200 mm year_l, respectively 
(Clarke & Kirkman, 1989). However, the patchy appearances of change areas over the SAV 
meadows around the un-colonised area were also demonstrated in the results of this case 
study. While the high stability of the subtidal seagrass meadows is general idea, Kendrick et 
al. (2000) reported the dynamic increase of such subtidal seagrass meadows consists of 
Posidonia coriacea and Amphibolis griffithii, on Success and Parmelia Banks over the past 
30 years. Recruitment of P. australis has been identified by Campbell (2003) as a possible 
factor for the maintenance and the expansion of their meadows. Additionally, the presence of 
intertidal seagrass community was basically difficult due to the environmental condition of 
the area (subtidal and average water depth of 4m; Appendix 9). Nevertheless, this change was 
considered due to another factor, which is an atmospheric distortion. This change in their 
meadows was attributed to the problem derived from the method applied for this case study. 
Few waves and surface reflection on the sea surface enabled data to detect clearly the subtidal 
seagrass habitat. However, the slight remain of waves and surface reflection influenced 
WFMI approach, especially in this case study. WFMI change detection approach is 
straightforward in terms of the spectral discrepancy as it is based on the spectral value 
difference between bands from time 1 and time 2 images. Even slight difference of brightness 
values can be thus distinguished by WFMI approach as Red or Cyan for changed area. 
Correction procedure of water depth, surface reflection, sun glitter, and volumetric scattering 
or absorption effect in the water column (O'Neill et al. 1988) were not performed in this 
project. While the stability of the patchy un-colonised area of subtidal seagrass meadows over 
the time series were identified by WFMI approach, those atmospheric corrections would be 
other challenges to distinguish actual change from the change affected by those atmospheric 
effect in future research into mapping seagrass meadows. WFMI approach employed in this 
project was visual change detection approach. Cubic convolution resampling technique 
produced visually better image than nearest neighbour resampling technique although little 
change of original data value was occurred. Conventional pan sharpening techniques, 
including; Hue, Saturation, Value (HSV), Color Normalized (Brovey), Principal 
Components, and Gram-Schmidt, were considered to apply for this optical based method. Yet 
practical problem about the fluctuation of original data value did not allow using this method 
in practice. However, recently developed pan sharpening technique using ICA is in the 
context of the assumption to produce the pan shrpened image with very little difference of 
data value between pre-processed and post-processed data (Wang et al. 2008). Therefore, this 
pan sharpening method could be a possible pre-processing technique for WFMI approach 
instead of the cubic convolution resampling to obtain better visual and data value. 
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7.6 Overall project 

SA V meadows in Boullanger Bay have shown the changes over the 18 years of the study that 
are consistent with the biological assumptions. Sprod et al. (2003) and CCNRM (2005) 
reported that many seagrass meadows in Tasmania have already been destroyed by 
eutrophication from sewage and fertiliser discharge and imply that these processes may be 
active in the north west of Tasmania including the study area. As they indicate, the main 
cause of the decline in SA V meadows is considered to be as eutrophication that promotes 
epiphyte growth, and then reduces light penetration to the seagrass plants. However, 
according to the result of Case Study 3, the meadows do not only decline but increase over 
the change detection period as well. The rapid recovery of intertidal SA V was observed in 
this project a number of time following substantial losses. Additionally, the stability of 
subtidal seagrass was demonstrated in Case Study 3. While the subtle change in the meadows 
surrounding the sand patches (i.e. the uncolonised areas) was attributed to the technical 
problem of image analysis, the sand patches were highly stable throughout the monitoring 
period. Case Study 2 has produced what appear to be pseudo-changes in the 'Dense SA V' 
class (i.e. mainly subtidal seagrass), particularly in deep water areas. This inconsistency with 
the biological assumption was probably caused by technical problems of image analysis, 
especially the lack of water depth correction. While several technical problems attributed to 
some of the results, the change detection analysis performed in both Case Study 2 and Case 
Study 3 appears to be useful for monitoring SA V meadows in Boullanger Bay. 

Landsat TM, ETM+ and ALOS both have a proven ability to map SA V meadows, yet the 
accuracy of the mapping varies dependent upon the case study area and the analysis applied. 
Results not corresponding to the biological assumptions of the SA V meadows were generated 
from the different sensors. According to some researchers, higher spatial resolution is more 
likely to obtain results that are more consistent with the biological assumptions. For example, 
Matarrese et al. (2008) compared the ability of different spatial resolution sensors to map 
Posidonia oceanica meadows. They indicated Landsat ETM+ has the ability to produce more 
accurate maps than ASTER sensor. However, IKONOS demonstrated a better result than 
Landsat ETM+ in their study. Nevertheless, many scientists indicated the Landsat TM and 
ETM+ have the ability to map and monitor seagrasses (Ferguson and Korfmacher 1997; 
Shapiro and Rohmann 2006). This study showed that the moderate spatial resolution Landsat 
imagery has superior temporal resolution compared to any other satellite archive of similar or 
higher spatial resolution. For this reason alone, Larnlsat must be considered for time series 
analyses. Further, the higher resolution imagery can have its own challenges such as the 
problems associated with selecting PIFs as discussed earlier. 

Thus, moderate spatial resolution sensors are applicable to most part of Boullanger Bay, yet 
high spatial resolution sensors would be required to map and monitor the areas if the features 
of interest or the dimensions of change are smaller than the spatial resolution of the moderate 
spatial resolution sensors. 

7. 7 Limitations in this project 

The limitations of this research project are mainly related to the research methodology 
employed and stem from a lack of ancillary data. It was not possible to conduct a field survey 
to 'ground truth' remotely sensed data due to budget and time limitations. Along with aerial 
photography, vector layer of land cover classes produced from TAFI and the expert 
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knowledge of Dr. Mount, the lack of the ground truth data was offset. Some image analysis, 
including water depth collection and more precise image classification were also restricted 
due to time limitations. Second, this research could not address the accuracy assessment of 
the change detection carried out in two of case studies since only aerial photography acquired 
in 2006 was available. Thus, although the one year (2006) of the thematic mapping was 
assessed for accuracy using the aerial photography, change detection accuracy assessment 
that requires at least two images acquired at different time was not addressed in this research. 
Additionally, ideal combination of satellite imagery was not managed due to the limited 
budget for research. Satellite imagery is generally less expensive than aerial photography, yet 
when a number of data is required, for instance, for annual change detection, it can still be 
costly. This research only employed cost free imagery distributed by U. S. Geological 
Survey; thus there was a limitation of available data, ideal for image analysis. 
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Chapter 8 Conclusion 

Submerged aquatic vegetation (SAV) plays an important role in Australia's marine 
ecosystems. Seagrass meadows have an environmentally important relationship with ambient 
coastal environments in terms of geographical configuration, water flow, water nutrient 
component, and biological relationship with other species (Short and Wyllie-Echeverria 
1996; Butler and Jemakoff 1999; Kemp 2000; Orth et al. 2006). Information on the extent 
and status of SAV meadows at multi-spatial and temporal scale is crucial factors for 
conservation and management (Kirkman, H., 1990; Kirkman 1996; Kirkman 1997; Butler 
and Jemakoff 1999; Kemp 2000; McKenzie et al. 2001b). Information on the natural 
dynamics in seagrass species with environmental variability leads to successful conservation 
and management program. The overall aim of this study is to determine the contribution that 
remote sensing change detection methods can make to meet these information needs. 

A series of objectives were devised and are presented in Chapter 1. The first objective was to 
identify and select satellite image a data and methods related to the study needs. The findings 
of the study have supported the choice of Landsat imagery for temporal change detection of 
shallow coastal waters. Landsat is particularly suitable for large area mapping and is 
especially useful because it is readily available and is a large historical archive. A large 
number of the recent developments in satellite remote sensing methods were evaluated. These 
include: Write Function Memory Insertion (WFMI); Multiple-Date Composite Image (MCI), 
Independent Components Analysis (ICA) and Principal Components Analysis (PCA). 

The second objective of this study was to subject two key hybrid classification methods to 
investigation: the ICA based supervised classification approach and PCA based unsupervised 
classification approach. The investigation into the effectiveness of application for mapping 
SA V was reported in Case Study 1. Comparison between the two image classification 
approaches was performed using 'error matrix', known as a conventional accuracy 
assessment method in Case Study 1. Result showed that ICA based MLC approach 
represented equal or better accuracy than PCA based ISODAT A approach. 

The third objective of the study was to perform change detection on habitats at two different 
spatial scales to determine whether the moderate spatial resolution of Landsat is effective. 
This objective was addressed in Case Study 2. In Case Study 2, the WFMI change detection 
approach was performed to identify the 'from - to' change for two different sized study sites, 
one the whole of the Boullanger Bay area and one on a small inlet focussed on the changes 
between saltmarsh and intertidal seagrass. 'From - to' changes in the distribution and change 
rate were found between feature classes of interest at short periodic change detection over the 
18 years. Relatively stable fluctuation in overall coverage with discontinuous increase and 
decrease in both land cover distributions were observed in the saltmarsh/ seagrass boundary 
area at each subset of time 1 and time 2 images between 1990 and 2008. 

The forth objective of the study was to perform change detection on habitats to determine 
whether the moderate spatial resolution and annual temporal resolution of Landsat is effective 
(Case Study 3) in either intertidal or subtidal seagrass dominated environments. ICA based 
MCI change detection analysis was performed to identify the spatial and temporal changes in 
the occurrence of intertidal SAV coverage in the Welcome Inlet area in Case Study 3. The 
presented SA V distribution monitoring has demonstrated that either increases or decreases in 
their population density occurred over the 18 year period from 1990 to 2008. Discontinuous 
changes in the distribution of intertidal SA V habitats were found at both short and long 
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period through time series. Single approach of WFMI was used for change detection analysis 
in open subtidal area of the Boullanger Bay to identify the stability of subtidal SAV habitats 
over the period of time. Consistency of the patchy un-colonised SA V meadows was 
demonstrated in the subtidal open water area of the Boullanger Bay over the 18 year period. 
According to the results, the presence of subtidal seagrasses and their high stability in 
colonisation were proven in this area. 

The overall aim of the thesis was achieved in this research project. Landsat TM and ETM+ 
are able to be used to detect SA V in shallow (less than 5m depth), sheltered and low turbidity 
water environment with large geographic scale. The long temporal span of these image data 
makes this sensor highly suitable for multi-temporal change detection analysis. The SA V 
habitat mapping capability of ALOS was also demonstrated. The higher spatial resolution of 
this satellite's imagery enabled detailed information on the land cover class distribution to be 
detected than the moderate spatial resolution images of the Landsat sensor. While the hybrid 
ICA based MLC image classification approach obtained better results in overall accuracy 
compared to the PCA based ISODAT A, both approaches were effective for classifying land 
cover classes in Boullanger Bay. Additionally, it is considered that there is room for 
improvement in their accuracy with further improvements in the image analysis procedures. 
The ICA based MCI change detection approach is a useful technique to detect change in the 
abundance of intertidal SA V habitats at annual and decadal scales. Derivative data, such as 
change rate of their abundance can be derived from the independent components. The Image 
Visualisation Comparison Matrix (Appendix 10) was based on these results and enables 
comparisons of any date to any other date. WFMI change detection approach was 
straightforward to detect subtle change in subtidal SA V habitats. High stability of patchy 
sand areas in subtidal seagrass meadows was clearly identified by optical analysis over 18 
years. Additionally, WFMI approach can be performed as a post-classification change 
detection approach to detect 'from- to' change. This research project therefore has shown the 
ability of satellite imagery and remote sensing methods used in this project to detect changes 
through time in the distribution of intertidal and subtidal SAV habitats, especially seagrass in 
Boullanger Bay. Rapid changes in intertidal S~ V coverage and the high stability of subtidal 
SA V coverage derived from multiple spatial and temporal scales monitoring could be a 
baseline data for a successful conservation and management program or a future research into 
SA V mapping and monitoring in the Boullanger Bay area. 

Underwater objects detection has been a weakness of optical remote sensing technology. 
However, with ongoing technological development, satellite remote sensing techniques have 
been becoming important problem solving instrument for mapping and monitoring under 
water objects. As the improvement of technology proceeds, further objects located in deep 
underwater areas will be potentially applicable for the target of observation. Further 
information on the objects like seagrasses detected by remote sensing will facilitate their use 
within interdisciplinary studies or environmental conservation and management programme. 
Further studies about remote sensing technique for underwater object detection will be 
required with the improvement of satellite sensor and sensor technology so that sufficient 
information can be detected appropriately. 
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Appendix 1 Change statistics between 1990 and 2000, whole Boullanger Bay 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 
Pixel Counts [Green] Green] [Yellow] [Cyan] Total Total 

319 5504 3188 9164 84791 
Saltmarsh [Green] 3071 158 12 0 3241 3241 
Sparse ~(Sea 

Green 226 11172 5722 2022 D142 
Sand [Yellow] 415 7220 39673 4029 51337 52101 

OenseSA.V n 3 851 3905 36965 41724 45156 
Deep Water [Blue] 1 3 10277 11831 22112 67861 

Cloud 0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 

aassTotal 4035 27557 65093 58035 0 0 

Class Changes 964 8385 25420 21070 0 0 

lmge Difference -794 -409 -12992 -12879 0 0 

5altmarsh Sparse SAV [Sea Sand ~SAY Row Oass 
Green Green enow Total Total 

Unclassified 7.906 0.555 8.456 5.493 10.808 100 

Saltmarsh Green 76.109 0.573 0.018 0 100 100 
Sparse SAV [Sea 
Green] 5.601 69.572 8.79 3.484 99.978 100 

Sand ellowl 10.285 26.2 60.948 6.942 98.534 100 

Dense SAV [Cyan] 0.074 3.088 5.999 63.694 92.4 100 

er Blue 0.025 0.011 15.788 20.386 32.584 100 

Cloud [White] 0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 

Class Total 100 100 100 100 0 0 

Class 23.191 30.421 39.052 36.306 0 0 
Image Difference -19.678 -1.484 -19.959 -22.192 0 0 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 

Area (Square Meters) [Green] Green) [Yellow] [Cyan] Total Total 

Unclasslfled 199375 95625 3440000 1992500 5727500 52994375 
Saltmarsh [Green] 1919375 98750 7500 0 2025625 2025625 
Sparse SAV (Sea 1696375 
Green 141250 11982500 3576250 1263750 0 16967500 

3208562 
Sand [Yellow] 259375 4512500 24795625 2518125 5 32563125 

260"50 
1875 531115 2440625 23109125 0 28222500 

1382000 
Deep Water [Blue] 625 1875 6423125 7394375 0 42413125 

Ooud 0 0 0 0 0 0 
Masked Pixels 0 0 0 0 0 0 

08ssTotal 2521875 17223125 40683125 36271875 0 0 
Class Changes 602500 5240625 15887500 13168750 0 0 

Im Difference -496250 -255625 -8120000 -8049375 0 0 
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Appendix 2 Change statistics between 2000 and 2004, whole Boullanger Bay 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 
Pixel Counts [Green] Green] [Yellow] [Cyan] Total Total 

6 91 954 1927 2978 59370 
Saltmarsh [Green] 2947 99 193 1 3240 3390 

SAV(Sea 
110 11C'J85 m2 961 25548 25641 
117 7746 38563 1991 48417 51086 

1 1127 4245 29357 34730 43951 
0 0 1814 10919 12733 96860 

0 0 0 0 0 0 
Masked Pixels 0 0 0 0 0 0 

OllssTotal 3241 27148 52101 45156 0 0 
Class Changes 294 9063 13538 15799 0 0 

e Difference 149 -1507 -1015 -1205 0 0 

Saltmarsh Sparse SAV [Sea Sand DenseSAV Row Cass 
Green Green ellow [ n Total Total 

Unclassified 0.185 0.335 1.831 4.267 5.016 100 

Slltmanh Green 90.929 0.365 0.37 0.002 95.575 100 

5.245 66.616 12.153 2.128 99.637 100 

3.61 28.532 74.016 4.409 94.n 100 
Dense SAV [Cyan] 0.031 4.151 8.148 65.012 79.02 100 

Water Blue 0 0 3.482 24.181 13.146 100 
Cloud [White] 0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 
Class Total 100 100 100 100 0 0 

Class 9.071 33. .984 34.988 0 0 
Image Difference 4.597 -5.551 -1.948 -2 .669 0 0 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 
Area (Square Meters) [Green] Green] [Yellow] [Cyan] Total Total 

Undasslfled 3750 56875 596250 1204375 1861250 37106250 
Saltmarsh lGreenj 1841875 61875 120625 625 2025000 2118750 
Spaf$e SAV (Sea 1596750 
Gr"'1 106250 11J03US 1957500 600625 0 16025625 

3026062 
Sand [Yellow] 73125 4841250 24101875 1244375 5 31928750 

2170625 
625 704375 2653125 18348125 0 27469375 

Deep Water [Blue] 0 0 1133750 6824375 7958125 60537500 

Cloud lte 0 0 0 0 0 0 
Masked Pixels 0 0 0 0 0 0 

ClassTotal 2025625 16967500 32563125 28222500 0 0 
Class Changes 183750 5664375 8461250 9874375 0 0 

Difference 93125 -941875 -634375 -753125 0 0 
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Appendix 3 Change statistics between 2004 and 2006, whole Boullanger Bay 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 

Pixel Counts [Green] Green] [Yellow] [Cyan] Total Total 

656 16853 15519 38081 109172 

Saltmarsh [Green) 2008 469 43 1 2521 2523 

~&sea 
397 i. 5608 415 21056 21112 

327 4318 24631 4508 33784 42443 

2 1 2981 2 111 25256 36026 

0 3 970 2397 3370 69022 

0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 

Total 3390 25641 51086 43951 0 0 

Class Changes 1382 11005 26455 22840 0 0 

Difference -867 -4529 -8643 -7925 0 0 

5altmarsh Sparse SAY (Sea 5and DenseSAV Row Oass 
(Green Green (Yellow n] Total Total 

Unclassified 19.351 19.707 32.989 35.31 34.882 100 

sattmanh Green 59.233 1.829 0.084 0.002 99.921 100 
Sparse SAV [Sea 

Green] 11.711 57.08 10.978 0.944 99.735 100 

Sand eltow 9.646 16.84 48.215 10.257 79.599 100 

Dense SAV [Cyan] 0.059 4.532 5.835 48.033 70.105 100 

water Blue 0 o.ou 1.899 5.454 4.883 100 

Cloud [White] 0 0 0 0 0 0 

Masted Plxels 0 'O 0 0 0 0 

Class Total 100 100 100 100 0 0 

40.767 42 SL785 51.967 0 0 

Image Difference -25.575 -17.663 -16.919 -18.031 0 0 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 

Area (Square Meters) [Green] Green] [Yellow] [Cyan] Total Total 

2380062 
Undasslfled 410000 3158125 10533125 9699375 s 68232500 

1255000 293125 26875 625 1575625 1576875 
1316000 

248125 914 JSOSOOO 259375 0 U195000 
2111500 

Sand [Yellow) 204375 2698750 15394375 2817500 0 26526875 
1578500 

0...SAV~n) 1250 1863125 13194375 0 22$16250 

Deep Water [Blue) 0 1875 606250 1498125 2106250 43138750 

OOud 0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 

Class Total 2118750 16025625 31928750 27469375 0 0 

Class Changes 863750 6878125 16534375 14275000 0 0 

Im Difference -541875 -2830625 -5401875 -4953125 0 0 

Page 145 



Appendix 4 Change statistics between 2006 and 2008, whole Boullanger Bay 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 

Pixel Counts [Green] Green] [Yellow] [Cyan] Total Total 

1 J 1436 1128 2568 
2007 348 271 0 2626 3293 

4t5 14802 6770 780 227'7 HIM 
100 5196 24356 4578 34230 49744 

0 761 5348 20432 26541 47964 

Deep Water [Blue] 0 2 4262 9108 13372 84127 

0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 

Total 2523 21112 42443 36026 0 0 

Class Changes 516 6310 18087 15594 0 0 

Difference no 10722 7301 11938 0 0 

Saltmarsh Spine SAY (Sea 5and DenseSAV Row Class 
Green Green allow ~n Total Total 

Unclassified 0.04 0.014 3.383 3.131 4.055 100 

s.ltmlrsh 79.548 1.648 0.639 0 79.745 100 
Sparse SAV [Sea 

Green] 16.449 70.112 15.951 2.165 71.518 100 

Slnd t!llOw 3.964 24.612 57.385 12.707 68.812 100 
Dense SAV [Cyan] 0 3.605 12.6 56.715 55.335 100 

Water Blue) 0 0.009 10.042 25.282 15.895 1 
Cloud [White) 0 0 0 0 0 0 

Pilets 0 0 0 0 0 0 

Class Total 100 100 100 100 0 0 

20.452 4!.285 0 

Image Difference 30.519 50.786 17.202 33.137 0 0 

Saltmarsh Sparse SAV [Sea Sand Dense SAV Row Class 

Area (Square Meters) [Green] Green] [Yellow] [Cyan] Total Total 

Undassifled 625 18'75 897500 705000 1605000 39585000 

1254375 217500 169375 0 1641250 2058125 
14229S7 

259375 9251250 4231250 487500 5 19896250 
2139375 

Sand [Yellow] 62500 3247500 15222500 2861250 0 31090000 

0 2500 12710000 
16Sllia 

*77soo 
Deep Water [Blue] 0 1250 2663750 5692500 8357500 52579375 

CIOud 0 0 0 0 0 0 
Masked Pixels 0 0 0 0 0 0 

OassTotal 1576175 13195000 26526875 22516250 0 0 
Class Changes 322500 3943750 11304375 9746250 0 0 

Im e Difference 481250 6701250 4563125 7461250 0 0 
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Appendix S Change statistics between 1990 and 2000, saltmarsh/ seagrass boundary 

Pixel Counts 

Deep Water 
[Blue] 

Cloud 
Masked Pixels 

Class Changes 
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Sparse SAV [Sea 

Green] 

Cloud [White] 

Class Total 

Image Difference 

Area (Square 

Meters) 

Sand [Yellow] 

Deep Water 

[Blue] 

Cloud 

Masked Pixels 

ClassTotal 

Class Changes 

Masked 
Pixels 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Saltmarsh 
[Green] 

0 

631 

3 

0 

0 
0 

4 

6 

0 

99.37 

0.157 

0.472 

0 

0 

D 

100 

0 0.945 

Masked Saltmarsh 

Pixels [Green] 

0 0 

0 394375 

0 1875 

0 

0 0 

0 0 

0 0 

0 

0 2500 

0 3750 

Sparse SAV [Sea 
Green] 

0 

9 

65 

0 

0 

0 

17& 

$parse SAY (Sn 
Green 

74 

0 

5.114 

57.955 

36.932 

0 

0 

0 

100 

4 

-23.864 

Sparse SAV [Sea 

Green] 

0 

5625 

40625 

0 

0 

0 

0 

110000 

46250 

-26250 

Sand 
[Yellow] 

0 

1 

24 

0 

0 

0 

56 

32 

36 

0 

1.786 

55.357 

42.857 

0 

0 

0 

100 

57.143 

64.286 

Sand 

[Yellow] 

0 

625 

15000 

0 

0 

0 

0 

35000 

20000 

22500 

Dense SAV 
[Cyan] 

DenseSAV 

Dense SAV 

[Cyan] 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Deep Water 
[Blue] 

Deep Water 
Blue 

Deep Water 

[Blue] 

0 

0 

0 

0 

0 
0 

0 
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0 
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0 
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0 

0 
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0 

Row 
Total 

0 

641 

92 

0 

0 

0 

0 

0 

0 

0 

0 

100 

100 

100 

Row 

Total 

0 

0 

0 

0 

0 

0 

Class 
Total 

1633 

641 

92 

0 

0 

0 

0 

0 

0 

0 

100 

100 

100 

100 

Class 

Total 

0 

0 

0 

0 

0 

0 

102062 
s 

0 400625 400625 

0 83750 83750 

0 57500 57500 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
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Appendix 6 Change statistics between 2000 and 2004, saltmarsh/ seagrass boundary 

Pixel Counts 

Sand [Yellow] 

Deep Water 
[Blue] 

Masked Pixels 

ctessTotll 

Class Changes 

Im Difference 

Unclassified 

Sparse SAV [Sea 
Green] 

Class Total 

Image Difference 

Area (Square 
Meters) 

Saltmarsh [Green] 

Deep Water 
[Blue] 

Cloud~) 

Masked Pixels 

ClassTotal 

Class Changes 

Sand 
[Yellow] 

0 

3 

53 

0 

0 

0 

92 

39 

0 

0 

3.261 

39.13 

57.609 

0 

0 

0 

0 

100 

42.391 

Sand 
[Yellow] 

0 

1875 

0 

0 

0 

57500 

24375 

0 

Masked 
Pixels 

Masked 
Pixels 

Masked 
Pixels 

0 

0 

0 

0 

D 

0 

0 

0 

0 

0 

0 
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0 

0 
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0 
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0 
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0 

0 

0 

0 

0 

Saltmarsh 
[Green] 

0 

622 

5 

14 

0 

0 

0 

641 

19 

-14 

0 

97.036 

0.78 

2.184 

0 

0 

0 

100 

-2.184 

Saltmarsh 
[Green] 

388750 

3125 

8750 

0 

0 

0 

0 

400625 

11875 

-8750 

Sparse SAV [Sea 
Green] 

0 

2 

103 

25 

4 

0 

0 

134 

Sparse SAY (Sea 
Green 

31 

1 

0 

1.493 

76.866 

18.657 

2.985 

0 

0 

100 

23.134 

7.463 

Sparse SAV [Sea 
Green] 

1250 

64 

15625 

0 

0 

0 

13750 

19375 

6250 

Dense SAV 
[Cyan] 

DenseSAV 
n 

Dense SAV 

[Cyan] 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2500 

Deep Water 
[Blue] 

Deep Water 
Blue 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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0 
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0 

0 

0 

0 

0 

0 

Row 
Total 

0 

627 

144 

Row 
Total 

92 

4 

0 

0 

0 

0 

0 

0 

0 

100 

100 

100 

100 

0 

0 

0 

0 

0 0 

Deep Water Row 

[Blue] Total 

0 0 

Class 
Total 

1633 

627 

144 

92 

4 

0 

D 

0 

0 

0 

0 

Class 
Total 

100 

100 

100 

100 

Class 

Total 

100 

0 

0 

0 

0 

0 

102062 

0 391875 391875 
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0 0 0 
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Appendix 7 Change statistics between 2004 and 2006, saltmarsh/ seagrass boundary 

Pixel Counts 

Saltmarsh [Green] 

Sand [Yellow] 

DlrlSe SAY ( n] 
Deep Water 
[Blue] 

Cloud 

Masked Pixels 

Class Changes 

Difference 

Unclassified 

Sparse SAV [Sea 
Green] 

Sand ('lelow] 

Dense SAV [Cyan] 

Delp water 
Blue 

Cloud [White] 

Class Total 

Image Difference 

Area (Square 
Meters) 

Saltmarsh [Green] 

Sand [Yellow] 

Deep Water 
[Blue] 

Cloud 

Masked Pixels 

Clas Total 

Class Changes 

Difference 

Masked 
Pixels 

0 

0 

0 

0 

0 

0 

0 
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0 
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[Green) 
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Green) 
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0 
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0 
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' 38 
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0 
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0 
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0 0 
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0 0 
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Green] 
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0 1633 
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Row 
Total 

0 

0 

0 

0 

0 

0 

0 

0 

100 

100 

100 

Row 

Total 

0 

0 

0 

0 

0 

0 

Class 
Total 

0 

0 

0 

0 

0 

0 

0 

100 

100 

100 

1 

Class 

Total 

0 

0 

0 

0 

0 

0 

102062 
5 

0 382500 382500 

0 45000 45000 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Page 149 



Appendix 8 Change statistics between 2006 and 2008, saltmarsh/ seagrass boundary 

Masked Saltmarsh Sparse SAV [Sea Sand Dense SAV Deep Water Row Class 
Pixel Counts Pixels [Green] Green] [Yellow] [Cyan] [Blue] Total Total 

0 584 34 4 0 0 622 622 

0 14 II 1 0 0 103 103 

0 14 61 67 0 0 142 142 

0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Masked Pixels 0 0 0 0 0 0 0 0 

O..TCIW 0 612 113 n 0 0 

Class Changes 0 28 95 5 0 0 0 0 

10 0 0 0 0 

MasUd SllllMnh $plfle SAY (Sea s..:I DenleSAY DeepWater Row a.. .... er.en J (Blue total 1'Dlal 

Unclassified 0 0 0 0 0 0 0 100 

s.llmmh 0 .425 0 100 100 
Sparse SAV [Sea 
Green] 0 2.288 48.087 1.389 0 0 100 100 

U.056 0 0 100 100 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Cloud [Whi te] 0 0 0 0 0 0 0 0 .... 0 0 

Class Total 0 100 100 100 0 0 0 0 

suu 1.144 0 0 0 0 

Image Difference 0 1.634 -43.716 97 .222 0 0 0 0 

Area (Square Masked Saltmarsh Sparse SAV [Sea Sand Dense SAV Deep Water Row Class 
Meters) Pixels [Green] Green] [Yellow] [Cyan] [Blue] Total Total 

0 

0 365000 21250 2500 0 0 388750 388750 

0 0 64375 64375 

0 8750 38125 41875 0 0 88750 88750 

0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 

Masked Pixels 0 0 0 0 0 0 0 0 

0 0 0 0 

Class Changes 0 17500 59375 3125 0 0 0 0 ...... 0 6250 -50000 43750 0 0 0 0 
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Appendix 9 Map of water depth in Boullanger Bay. Source; (© Hydrogeographic service, RAN) 
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