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SUMMARY

In part A & non-singular connection metrix is used to combine
thé self and mutual impedance matrix of a group of mutually coupled
elements with & network bus impedance matrix; the resulting impedance
matrix is then reduced by eliminating rows and columnse if necessary,
to give the bus impedance matrix of the interconnected network. The
sel" 1mpédances of the mutuelly coupled group of elements are added
to the network bus impedance matrix in the same way &s uncoupled
elements, then the mutual impedances are added followed by matrix
reductionf By conslidering examples of the connection metrix applied
to adding a single element, then to adding groups of uncoupled and
coupled elements to a network, rules are devised for combining the
gelf impedances of branch and loop elements and group mutual imped-
ancés with the network bus impedance matrix,

From the bus impedance matrix of power system sequence networks
fault parameters are derived by simple arithmetic operations. It is
shown that rules for &dding & group of mutually coupled loop elements
can be applied to modify & bus impedance matrix when element sel¥ and
mutuel impedances are changed, The derivation of an equivalent network:
from the bus 1mped&nce matrix is noted; the addition of two network
bus impedance matrixee is coneidered and shown to be & special case
of the more general problem of adding a self and mutual impedance
matrix to & bus impedance matrix, A numerical example involving the
calculation and modification of the bus impedance metrix, deriving an
equivalent eircult and adding bus impedance matrixes 1s included.

An outline of & dlgital computer power system short eclrcult
programmme which calculates feult parameters from the bus lmpedance
matrix derived from randomly ordered lists of network element self

and mutual impedances is given,

The inverse of the connectlion matrix discussed in part A is
used in part B to combine & network bus admittance rmatrix with the
sel? abd mutual admittance matrix of & group of mutually coupled
elements, From this the well known method of forming the bus admit-

tance matrix from uncoupled element self admitténces follows &and 1is
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extended to cover self and mutual admiftancee of coupled elements.
For a group of mutually coupled elements, the diagonal terms of the
group admittance matrix are added to the bus admittance matrix in the
same way as self admittances of uncoupled elements while the off-
diagonal terms are added in & matrix operation either before or after
the diagonal terms, A relatlionship is indicated between the admit-
tance connection matrix and the group element bus incidence matrix,

Although the presence of mutual coupling results in some loss
of sparsity, 1t 1s shown that for power systems the bus admittance
matrix still hes & large proportion of zero terms. By eliminating
terms below the main diagonal in an optimal order, a "factored inverse'
of the admittence motrix 1s derived which has considerebly fewer non-
zero terms than the corresponding bus impedance matrix, Terms of the
impedance matrix can be obtained from the inverse as required., The
numericel calculation of the bus admittance matrix of & power system
zern sequence network 1s set out and derivation of feult impedance
and current distribﬁtion factors included.

A dlgitsl computer programme using the bus admittance matrix
and fectored inverse method for power syetem short clrcult studles is
described and a tabulstion indicatesvths affect on computer storage

requirements of the optimal factoring procedure.

In part C Newton's method of power syetem load flow calculstion
using Gaussian elimination to solve the voltage correctlon equations
18 dAiscussed. The network and problem parameters are specified 1in
rectanguler cartesian co-ordinates. As the voltage correction equatlion
metrix has the same form as the bus admittance matrix, & preferred
order fbr the Gaussian elimination which preserves sparsity 1s devised
by analbgy wlith network reduction.

A digital computer losd flow programme is outlined and & tab-
ulation 1n§1uded which showe that, for typical power system networks,

the preferred elimination drder retains sparsity in the matrix,

Algol listings of the digital computer short clrcuit and load
flow programmes are included in the supplement with data and corres-—

ponding calculated results for power system studies.
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GENERAL INTRODUCTION

The paper, concerning the digital computer solution of power
system short circult and load flow probiems using & nodal represen-
tation of the revelent network,is divided into three parta.‘In part A
a method, based on Kron's diakoptics (Fef.l and 2), of deriving the
nodel. or bus impedance matrix from randomly ordered lists of element
self and mutual impedances is discussed.-The method which hes par-
ticular relevance to the inclusion of mutual coupling between network
elements mey be described as & "geometric" aporoach in contrast to the
algorithms derived by El-Abiad (Ref.23)., Subsequent emendments to the
digital computer programme HEI 2, which has been ueei since 1964 for
power system short circuit studies, have been to make use of increased
computer storage, removal .of the option of excluding element resis-
tance and replacing the procedure for grouping mutual impedances by
e simplified version, Publicatlions relevent to part A are :-~

1, Prebble,W.A, - The Digital Calculation of Sequence Networks
Including Mutuel Impedances, Proc.I.E.E.,Vo1l,112,April 1965,
p.711. (Awarded the Institutlon of Electrical Engineers Overseas
Premium for 1965). _ :

2, Prebble,W.A, - The Calculation of the Transfer and Driving Point
Impedence Matrix by Digital Computer. Matrix and Tensor Quar-
terly, Vol.15, June 1965, p.126. | |

3. Prebble,W.A, - Digital Calculation of Short-Circuit Networks.
Elect.Engg.Trens.I1.E,Aust,, Vol.EE2, No.2, 1966, p.62.
(Presented at the Institutions Annual Conference, Newcastle,
March 1966).

In part B the formation of the network nodal or bus admittance
matrix (the reclprocal of the bus impedance matrix) inc;uding mutual
coupling between network elements is discussed, By apnlylng diskoptics
1t 18 shown that in the formation of the admittance matrix from ran-
domly ordered lista of element self and mutual admittances, processling
of the mutual can be seperated from that of the self admittances wlth
each group o? mutusl adhigtances being added at ady time during or
after the addition of element self admittences to the matrix, The

reciprocal relationship between the connectlionmatrixes used in the
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derivation of the bus impedance and admittance matrixes and thelir
relation to the bus incidence matrix is noted, This method of con-
structing the network bus admittance matrix is vsed in the digital
computer programme HEI 13 which has been in use since 1968 for power
system short circult calculations. Sparsityv technicuees are utilised
in this programme together with triangularisstion of the admittence
‘matrix, as outlined by Tinney and Walker (Ref.AE), to derive one row
at a time of the bus impedance matrix and thus solve problems invol-
ving networke tno large “or the programme HEIL 2.

Part C ie concerned with the eliminetlion (or Newton's) method
of solving power system load flow problems with particular reference
to exploiting sparsity of the bus sdmittence matrix, The order for
Gaussian elimination of the voltuage correctlon equations ie derived
“rom a consideration of network connections, i.e. the "geometry" of
the network, and is sulted to the rectangulaer co-ordinate form in
which the equatlions are written. This procedure/gig;egﬁat of Tinney
et a1 (Ref.45, 46 and 47) who use polar co-ordinetes &nd matrix tri-
angularisation, but the optimel processing order derived is similar
to Method.z of Tinnev and Hart (Ref.A7). The digitel computer pro-
gremme HEI 8 at present in use for solving power system load flow
problems by ordersd elimination 1s, with the exception of mihor emend-
ments, the ssme as thst first used in 1966. Publicatlons relevent to
vart C are :-

1. Prebble,W.A, - The Digital Solution of the lLoad Flow Problem
by Elimination, Elect.Engg.Trans.I.E.Aust., Vol.TE4, No.l, 1968,
p.23. (Presented at the Institution's Power Systeme Conference,
Melhourne, August 1967).

2. Prebble,W.A, - Discussion on paper by Tinney,W.F., and Hart,C.E, -
Power Flow Solutlon by Newton's Method. IEEE Trens. on Power
Appsratus &nd Systeme, Vol,PAS-86, Nov. 1967, ©».1449.

3, Prebble;W.A.f Discussion on paper by Freris,L.L. and Sesson,A M,
- Iavestigation of the Load Flow Problem. Proc.IEE, Vol,117,
Feb. 1970, p.397.

Included in the list of references are books and pspers relevant
to the subject matter of parts A, B or C which hsve been published
subsequent to the developement of the computer programmes HEI 2,

HEI 13 and HEI 8 and the following comments refer to tlrese publications.

v
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(a) The book by Stagg and El-Ablad (Ref.5, 1968) has become a sten-
reference for digitel computer application to short circuit, load
flow and transient stability problems. It contalns zn extenslve die-
cuesion of network mesh and nodal matrixes including the application
to three phase networks, also the derlvation of the bue impedance
matrix from randomly ordered lists of element self and mutual imped-
ances by the ealgorithms given in prevliously published work§ (Ref,23).
The Gauss-Seidel and elimination (Newton's) methods of eolving the
load flow problem are considered in detall but the important tech-
niqueé for pfeserving matrix sparsity are not discussed. Brameller,
John and Scott (Ref.6, 1969) in their book epply diskooties to mesh
and nodal analysls of power system networks inecluding &ssembly of the
bus impedance end admittance matrixes from network element lists but
mutual coupling between elements 1s not considered,

{v) Tarsi (Ref.28, 1970) and Dy Liacco end Remerso (Ref.29, 1970)
sxtend El-Ablad's &slgorithms for deriving the bus impedance metrix to
include the end-fault cese. Storry and Brown (FRef.27, 1970) and Danlels
and Chean (Ref,20, 1971) suggest first forming the bus impedance matrix
o® element self impedances, then in & separate operation sdding the
mutual impedances, In Storry and Brown's method mutual couplings &re
dealt with one at a time in a two step process associeted with network
reduction, while Daniels and Chen add &ll mutual impedances in one
operation followed by metrix reduction. The method develecped in Part A
for separete processing of self and mutual impedances has advantages
over both of these procedures as the mutual impedances are added dir-
ectly into the sppropriate matrix terms and no extra matrix reductlions
are necessary,

(c) Although the formation of the bus admittance metrix from lists
of network element self admittances is well known from the load flow
problem (e.g. ﬁef.36), the inclusion of mutual coupling between net-
work elements h&s not been covered in earlier literature. Nagappan
(Ref. 22, 1970) develops & step-by-step procedure in which a2s each
element is &ddsd allowance 18 made for mutual coupllag with previously
processéd elements. This ig analogous to El-Abisd's method for for-
ming the bus impedance mafrix, but is unnecessarlily complicated &and,
as shown in Part B, the concept of branch and loop elements hes no

relevance when applied to the bus admittsnce matrix. Anderson, Bowen
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" and Shah (Ret. 33, 1970) derive slmple rules for sdding mutual admit-
tances, calculated from the inverse of group mutual impedance matrixes,
directly to the bus admittance matrix thereby avolding any multipli-
cation with & bus incidence matrix. Tinney (Ref.34, 1972) extends the
use of the factorised inverse formed from the admittance matrix by
showing how.to incorporste network modifications, including that of
varying mutual coupling between network elements, without chenging

the factorisation,

{(d) Many different methods of solving power system lo&ad flow prob-
lems have been devised and a large number of papers on this subject
oublished; Gupta and Davies (Ref,39, 1961) giving a comprehensive 1list
of those appearing prior to 1961, Although new procedures are gtill
being suggested, 1t is now recognised thet the elimination (Newton's)
method method combined with an optimum order of procescsing the equa-
tions such &g that developed in Part C or that of Tinneyv and Hart
(Rer.A7, 1967) ir the best wasy of solving power system load flow pro-

lems,
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LIST OF SYMBOLS

denotes a matrix.
network nodal or bus impedance matrix.
network nodal or bus admittance matrix,

term 1-j of [Z],.

real, 1mag1hary components of [i]. »
term 1-J of [G], [B].
group impedance, admittance matrix.
el ."
self, mutual impedance component o !qul..

resistive, reactive components of .

equivalent self, mutual admittance components of yqp .

impedence, admittance matrix of nartial network combin=d

with group self 1mpedancee; admittances.

impedance, admittance maetrix of partial network combined
withygroup gelf and mutual impedances, admittences.
nodal voltege matrix,

nodal current matrix,

‘nodel voltage, current matrix for partial network.

nodel voltage, current &t node "k".

real, imeginary components of Vg,

real, imaginary components of Ik'

current in element e-d (e>d).

nodal power ﬁatrix.

nodal power at node "k".

real, reactive components of [:].

real, reactive components of Sy.

specified power and components at node "k".
gpecified voltage magnitude at node "k".
sub-matrixes of the impedance connection matrix.
sub-matrixes of the admittance coanection matrix.
matrix formed by dlscarding columns of [E:].

bus lncidence matrix,

bus impedance matrix of equivalent network.

bus admittance matrix of equivalent network,

= lower diagodal matrix of [::] corresponding to group

elements.
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zfactorl = factored inverse form of [Z[ derived from ,
m .

[H]

[]

Yy HBy T .
Wiy Tyy = termi- of the sub-matrixes or [M].

voltage correction equation maﬁrix.

s

H

sub-matrixes of [].

t = subscript denoting matrix transpose.

* = sguperscript dénoting complex conjugate,
o = denotes incremental value,
2; = denotes summation.

|

| = denotes modulus of & complex quantity.

qu = matrix of currents in group elements (q>p).
Vq-Vp = matrix of voltages applled to group eléments.
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A, THE BUS IMPEDANCE MATRIX FOR POWER SYSTEM FAULT CALCULATIONS

A,1, INTRODUCTION

Before the advént of the dlgital computer, short circult cal-
culatlons on small power system networks were done by hand ueing
familiar network reduction techniques and neglecting element resis-
tance. Disadvantages nf this method are :-

(a) separate network reductions &re required for each fault;

(v) inclusion of res;stance and mutual coupling between elements
makes the calculatin too laborlous for any but the simplest networks;

(c) derivation of element fault currents and node voltages involves
“back—trécklng“ through the network réduct;on. These digadvantages
were overcome by reéresenting the netﬁork on & plugging board which
allowed eimulation of faults &t all nodes.

_ Eariy-digitél cbmputer methods (Ref.3) used & loop or mesh rep-

resentation of the network (Ref,18-21) which requires metrix inversion

or

, alternatively iterative procedures were used (Ref,.14-17). However,

it was recbgnlsed.that the nodal or bus impedance matrix provided the
best approech (Ref.3) as all fault calcuvlations can be done by simple
arithmetic operatlons on the matrix terms thus avolding inversion or
iterative procedures and network coding is simpler than for the mesh
aporoach, Brown and Person (Ref.24) have shown that the bus impedance
matrix can be formed automatically from randomly ordered element im-
pedance ligts and this hgs been extended to include mutual coupling
betweén elements by El-Abiad (Ref.23). The method of including mutual
coupvling involves inverting metrixes and applying correcflons to the
impedance/?igr;ﬁd column corresponding to the coupled element to allow
for Lts direct and indirect coupling to network elements already in-
cluded in the matrix.

By processing &ll elements directly and indirectly coupled to-
gether, 1t is shown that mutual impedances can be added into the im-
pedance matrix, thus avoiding metrix lnverslon and calculating term
corrections. The self impedances of the coupled elements are added,
| applying ﬁhe rules for processing uncoupled elements, to the impedance
matrix followed by the addition of the group mutual impedances. The
rules are extended to the modification of a given bus impedance matrix

when network element self and mutual 1mpedances are changed. It 1s
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shown that an equivalent circult for & given network ca&n be derived
from the network bus impedance matrix and also, that adding the bus
impedance m&atirix of one network to that of & second network (forming
the bus impedancé matrix of the combined network) is a special case
of adding the self and mutual-impedance metrix of & group of mutually
coupled elements to the bus_ihpedance matrix of & partial network.

A digital computer progremme for calculating the bus'impedance

matrix of sequence networks by this method 1s outlined.
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A.2. COMBINATION OF GROUP IMPEDANCE AND BUS IMPEDANCE MATRIXES.

fef
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Fig. 1(a) repreeente a network with n+l nodes, one of which
is chneen as reference or base xxgm whigh the voltages V at the other
n nodes are referred The relatisdn between these n voltages and the
corresponding n currents I' flowing 1nto the network at the nodes
is glvee by the equation written in metrix hotation He
o Vol = lza |t . . . . . .« . @

where |VA!, IA are column matrixes of the n node voltages and

currents ‘and 18 the square nxn transfer and driving point

.1mpedence matrix of the'network;'ln the following it is shown how

Zp 1 , which for simplicity is referred to as‘the bus impedance

matrlx,'is built up 1n-a‘etep by step procedure from 1lste of self
and mutual impedances of the network elements.

» Fig. l(b) represents a group of m lines or elements, at
thie etage noe-phyeically connected, between any palr of which there

may be mutual coupling. For this group the metrix equation

Vq'—vP e qu I qp . . vo 0 . . . ( 2 )
holde where Vq Vp and qu are column matrixes of the m voltages
across and m currente flowing in each element, and Zgp the mxm

matrix with.the eelf.lmpedancee xxxxxxgxxxxxxxxxxxxxx of the elements
a8 diagonal terms and the mutual impedances between the elements as
the*orfediegOhel terms, Vq, Vp are the voltages, referred to a common
refegence, at the codee'of the element g-p and I, 18 the current

in this eiemeht assumihg the positive direction ofAflow from qQ to p,

where q is numerically greater than p.

' Combining eqns (1) and (2) into one matrix equation :-

N )
va = 12410 IA

Vq—Vp ' 0 qu qu ‘o * . . . (3)

The group of elements (b) are connected together and

and connected to the network (a) to form the interconnected network
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shown in Flg. 1(é). The bus impedance matrix of the interconnected

network (c) will be derived from eqn (3).

The group_of elements (b) are connected together and to the
network (a) in such & way that the power flowing into the nodes before
and after interconnection is unchanged, i,e. the references for (a)
and (b) are connected together, the node voltages are the same and
the current flowing in each element 18 the same before andvafter
interconnectlon.

The equations relating the currents before and after

interconnection can be written :-

1
I | = |1(Cu||Ia

qu 0 Gb IB . . - [ ] . . (4)
where {Ip | and [I,| are column matrixes with n+m rows and

1} C3| is the square connection matrix with n+tm rows and columns,

0] ¢,

In eqn.(4) the connection matrix 1is sub-divided lnto four sub -matrixes:

a unit matrix of order n, a zero matrix with m rows and n columns,

Calwith n rows and m columns and | Cb & square matrix with m rows

and columns. The terms of |Cy| and | Cy| are +1, -1 or O. It is shown in

eqne, (183 and 204) that [§§]E§]a&e related to the incldence matrix
for the group of lines (b).

The connecting of the elements of (b) to network (a)
forming the interconnected network (c) can be considered as a step-
by-step procedure - firstly element d-e 18 connecfed establishing
a new node e in the interconnected network, then elements e~f, k-h
and h-g in that order establishing new nodes f, h and g respectively

and finally element f-g which connects established nodes f and g. In

eqn, (4) the n terms I, are the node currents at nodes in (c)

corresponding to nodes in (a) while the m terms .IB| are node currents

at new nodes established by the elements (b) and element currents
for elements of (b) which connect established nodes,

In this discussion of eqn. (4) mutual coupling hetween
the elements (b) hes been ignored. It is shown below that the bus
impedance matrix of network (c) is formed from that for network (a)

by firstly processing the gelf impedences of the elements (b) ana
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then adding in the mutuel impedances.

The discussion also shows that in the step-by-step formation
of the bus impedance matrix of the 1ntercohnected network (c);'an element
of (b) cannot be added unless at least one of its nodes 18 established
in the network - this node may be the reference node. Thus in the
formetion of the interconnected network and its bus impedance matrix
from & partial network and & group of elements or, simply from a group
of elements; two types of element arise :- '

(1) a branch element i.e. one which connects & new node to an
established_dode thue'forming & new node in the lnterconnected
netﬁork; and " '

(2) a loop elemeht i.e. one which connects two established nodes

in the network,

A.2.1. CURRENT CONNECTION MATRIX.

From eqn, (4) the relation between the element currents of
the group of elements (b) and the node and element currents of the
interconnected network (c) is given by :-

qu = cb IB o . . . . 'Y 3 . (5)
If in Fig. 1 it is assumed that the group of elements (b) are added to

the netwofk () so that Lkhe branch elemente d-e, e-f, k-h,and h-g form
new nodes e,f,h and g respectively in the interconnected network (c)
while loop element g-f connects nodes g and f, also 1f e>i, f>e, k>h,

h>g and g>f then the terms of eqn, (5) for the branch elements are :-

Iegg = Ie*Ie*Ipe o0 o o o o . . (6)

Ire = I+ Ipe . Ce e e e (7)

Iy = -(Ip + I - Igf) = Iy = Ig* Ige . . (8)

Ing = ~(Ig = Igp) = ~Ig * Igr « e e (9)
and for the loop element g-f 1ls $-

Igf = Igf . . . . . . o e . (109

Combining eqns.(6) to (10} into one matrix equation corres-

ponding to eqn,(5) :-

Igl=(1l2] 0} o0j1] |1,
Ise of1| 0|01} |If
Ixn oo |- (-1|1} |, |. . . . . (1)
Ing olo}|o|-1]|1]| |Ig
Loe olo| 0|01 |[Igr

Because the element currents are listed in the order inwhich the
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corresponding elements of (b) are added to form the interconnected
network (c) and the node currents are listed in the order in which the
corresponding nodes are established in (c¢) with the loop currente last,
the terms below the main diagonal of the connection spb—matrix [?E] in
eqn. (11) are zero. Consider the addition of branch element e-f to the
interconnected network :- &8 node e is established, the element current
Ife does not depend on the node current Ie and hence the term to the
left of the main dlagonal in the second row of the connection sub-
matrix in eqn, (11) is zero. Similarly the termes to the left of the main
diagonal in all rows corresponding to branch elements are zero, while

" for loop elements all the terms in the corresponding rows except the

main diagonal terms are zero,This is a general property of [Cy| and is

used in deriving this sﬁb-matrix in the calculation of the bus
impedance matrifkby digital computer (page 9, section A.3,),

From eqn. {(4) the relation between the node currents of
network (a) and'the.node and element currents of the lnterconnected
network {(c) ie given by :-

Ia| = [T4] + [@g Eég T <))

For nodes 4 end k of the network Fig.l(a) to which elements of the

group (b) are connected in forming the interconnected network (c),
the terms of eqn,(12) are :—

I

]

Iy = I, - Igh = Ig + In * Ig = Ige . (14)

+ +
Ie

Combining eqns, (13) and (14) into one matrix equation :-—

19| = |14 + |2 ]2 0] 0] 2} |1,

| || [ofoj1|1]|-1]|1e
I, e e e (15)
Ig
Ige

Writing eqns.(11) and(15) as one equation which relates the node and
branch currents of networks (a) and (b) in Fig.1 to the currents in

the interconnected network (c) :-



Ig [=]2]ofr (2| of of1]lr
Iy ofrflojo| 1| 2| ||g
Tea| |O]Off2 2] 0] o]z
Ieel (OfOflOfL] O[O} 2 || |. . . . . . (16)
Ly| {ofolffo]o|-1{-1 |1 ||y
I [ofofofo]of-2]|2]|%
Tgr| [o|offofo] o] o1 |Le

Eqn. (16) 1s eqn.(4) written out in full omitting the rows and columns
corresponding to node currents such as 1y of Fig.l(a) which are the

same before and after interconnection of (a)and (b) to form the network

Fig.l(c), i.e. [Cp| 18 written out in full but the rows of Cal| in

which all terms are zero are omitted.

A,2.2. VOLTAGE CONNECTION MATRIX.

From eqn,(3) the voltages before interconnection are VA

v

a~p
and if the voltages after connecting networks Fig.l(a) and (b) to form

(c) are Vol , then the equation relating these voltages 18 derived on

Vg _
the basie of constant power before and aftegint erconnection as follows :-
] — [ I 1 e
Vae | Vet| [ Ta]| = [Vas (Vq"’p)tJIIA
Iﬁ Iap . . . 3 . (17)

where ¢ denotes the conjugate of the complex carrent terme and the

subscript t the transpose of the voltage matrix terms. From eqn.(4) :-

Lo B (] .
Ip o fcullzpl - - . . (8)

as there are no complex terme in the connectlion matrix, Hence, from

eqn. (18) and after transpoeing the relation tetween the voltages before

and after connecting the group of lines Fig,l(P ) to the network (a) to

form (c) 1is :- Val = |2 o} VA
vB Cat cbt Vq-'vp - . . . . . (19)

From eqn. (19) :-

VA = VA - . . - Y . . . . ( 20 )

i.e. the voltages at the nodes of the partisl network Fig.l(a) remain
unchanged when connected with the group of elements (b) to form the
network (¢) - this follows from the specified condition of constant

power before and after interconnection,



From eqns. (19) and (209

Cat |{Val * [Cos| [Vg=Yp] =[] - - . . . .2
From eqn, (11) :-
li.0f 0O} OO
l1]11 0|1 0]0
Cot| = [0] o|-1 [ o]0 N € 4
0l 0j~1 |=1 (O
iy 1| 1 l]1
and from eqn, (15) 3=
1 o
1 o
Cag =0} 2] . .« « .+ . o . . . J.(23)
0] 1l
1 |-

On substituting eqns, (22) and (23) into eqn.(19), writing in the terms

of [Vo-Vp| and using eqn, (20) but omitting the terms of |V, | not

common to the networks Fig.l(a) and (b) then multiplying out the left

hand side gives :-

1 |offofo] of ofo|[vy V4
ojrjojojojojolv, | v

1 |ol1(o| 0f 0f0||Vev, Ve

L o2 {1 | 0f0[0||VeVgl=iVe| . . . .(24)
o [1ffofof-a]ofof|vg=vy| [w|

0 | 1fofo|-1}-1]0Vp-v, Vg

1 -1 101} 1| 1] 1f|Ve-Vy 0

From the right hand side of eqn,(24), which givee the voltages in the

interconnected network Fig.l(c), it follows that the terms of | Vg

corresponding to branch elements from the group Fig.l(b) are node
voltages of the new nodes eg. Ve for branch element g~e, and zero

corresponding to loop elements eg. loop element g-f.

A,2.3, IMPEDANCE MATRIX OF INTERCONNECTED NETWORKﬂ

' The matrix equation relating the node voltages gnd currents
of the interconnected network Fig.l(c) is now formed uslng eqn. (3)
whiéh relates voltages and currents before the‘group of elements

Fig.1(b) are connected to the partial network Fig.l(a). Premultiplying
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both sides of eqn.(3) by |1 0 and using eqns.(19) and (4) gives

the matrix equation :-

,} VA = ﬂ IA . . . . - . . . . . (25)

where o [zf=1 0 |[2zp]o Ji1fog). . .+ . . (26)
Cat | Cot| | O |20 |[°1 %
'=. ZA g ZACa . . . . . (27)

CatZa | CatZaCa* OntzqpCy |
From eqn, (27) 1t follows that [iﬂ i1s symmetrical provided

that [Zp| and |qu§ are Bymmetrica}, because the product ‘GatZA. is the

transpose of the product lecal and the products catzAca’ and
lcbtqucb are symmetriocsl, In general Iz;;] is symmetrical as it is a

matrix of self and mutual couplings of & group of elements - when

there are no-mufual"coublings it 1s a dlagonal matrix - and it can be
shown that .- is sy’mmetrical by applying the above argument to
building up & network starting with an element connected to the

reference node for which'vik has one term, namely the lmpedance of the
elément. Hence |Z]| 18, in general, symmetrical which is important for
'computation as only»lté upber or lower triangular part is required for
celculation and storage. | ,

.FrOm eqhs.(25’ and (27) the equation relating the voltages

and currents of the interconnected network Fig.l(c) is :-
Vil = [z ZpGe - |[Tpl. - . . . (28)
B| | %t2a| CGatZaC* Cor®qp%o||TB
The impedance matrix in eqn, (28) has n+tm rows and columns, nemely &

row and column corrésponding to each node of the network Fig.l(a) and
to each element‘bf the group Fig.1l(b) ile, there 1s & row and column
correeponding to éach node of the interconnected network Fig.l(c) with
an additional row and columnlfdr the element of the group which forms
a loop. Ag fhe term of [fé] corresponding to the loop element is zero,
edan, (24), the row and column of the impedance matrix in eqn. (28) can
be eliminated by Kron's rule (ref. 1 ) leaving a matrix with & row
and column for each'node, excluding the reference node, of the network

Fig.1(c) ie;’thé bue impedance matrix of thisg network.

9p

For a group of elemente Fig.1(b) the matrix [z in
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can
eqn. (28) BR be written as the sum of two matrixes :-

Zqu = Ze + zm . . . ’ L3 . . . L] (29)
where is a diagonal matrix with diagonal terms equal to the self

impedances of the elements of Fig.l(b) and|zp| is the matrix of the

mutual impedances coupling these elemente ie. &8 matrix with zero

dlagonal, Thus the term thqucb may be written :-

Cot2qp%| = [Cot28%]| * |Cot2mCo| - - - - (30)

In the discussion leading to eqns.(16) and (24) which respectively

relate the currents and voltages in Figs.1(a) and (b) before inter+
connection 1:6 those in Fig.l(c) after interconnection, it is assumed
that there are no mutual couplings in the group of elements (b), 1i.e.
:zn'l‘ = 0, and oh thie assumption eqn, (27), the impedance matrix for

the interconnected network Fig.1(ec), ie derived, However, inspection

of eqrie.(6)—(10) and (13)=(14) relating node &nd element currents

shows that this restrictlon is unnecessary, i.e. and |Cy| are

the same with and without mutual couplings.Hence, when mutual couplings

are present edn. (30) shows that eqn,(27) may be written :-
]

z = ZA ZACa . . . . . . (31)
®at2a | %a52a%* Coe26% CotZnn | |
= 0 . O + [z. t . ° . - . . . . . (32)
O | Cy2mCy

_ | i '

where |Z | ie the matrix formed from ZA| , the bus impedance matrix
of the partial network Fig.l(a), and ]zel , the self impedances of the
group of elements Fig.l(b). Eqn,(32) shows that the impedance matrix

n
can be formed by first calculating z'| ana then adding the matrix

product letl ‘zm1 lcbl formed from the mutual couplings between the
elements of the group and the partial connection matrix . This

1s important in the digital calculation of a network bus impedance
matrix, as ie é'diagonal matrix and simple rules can be derived
for augmenting the bus impedance matrix of a partial matrix with
rows and columns corregponding to the branch and J‘.oop‘ elements of a

group being added to the network,

A,2.4. RULES FOR FORMING BUS IMPEDANCE MATRIX.

Summarising, the bus impedance matrix @ of an intercon-
nected network formed by combining a partial network having & bus

impedance matrix | Z,} and a group of elements of self impedance zsl
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and mutual impedance Izml 18 calculated in three steps :-

(a) the matrix Z,| 18 augmented,by rows and columns corresponding

firstly to the branch elements and secondly to the loop elements of the

group, 1l.e. the matrix products |Z2,C,| , |Ca¢Zp| &nd IfhtzAct*cbtzecb

of eqn. (31) are formed using the element self impedances only. With
the digital computer the group elements are processed one at a time
instead of calculating metrix products;

(b) the termé’of the matrix product cbtzmcb calculated from

the group mutual coupling impedances and the bartial connection

.matrix_ C,| are added into the augmented rows and columns formed in (a)

and a8 indicsted in eqn.(31); and

() the augmented rows and columns which correspond to loop

_ : - , : _ computer
‘elements are eliminated by Kron's rule - using the digital/it is

- convient to eliminate the rows and columns one at a time,

A, STEP-BY-STEP CALCULATION OF BUS IMPEDANCE MATRIX.

A, 2.1, SINGLE BRANCH ELEMENT.

Starting with the bus impedance metrix 25| of & given network

simple rulée are. now derifed for calculating the bus impedance matrix
of the network formed.by 1
vv(a) addirg a‘bfanchvelement to the original network; and
(b) adding a loop element to the original network.
‘.It 1s shown that these rules apply_when édding any number of branch
elementé,vor ény-numbef of loop elements, or a group of branch and
loop elements to the glven nefwork. Also, rules for forming the partial

" econnectlion matrix Gbl'bf eqn.(32) for a group of mutually coupled

"elements are derived, and thus the bus impedance matrix of an
interconnected network formed by adding & group of mutually coupled

"elements to the given network can be calculated.

a4 - -— e d e
e A
Idf Id lf Ief
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Fig.2(a) and (b) represent respectively conditlons before and after

the addition of & branch element e-~d to node "d" of the network shown
in Fig.l(a). If ")" 1g any node in thls network, then the equations
corresponding to eqna. (1) and (2) before the branch element is added

to the network are :-

J d
= L
Vi = -l s (Baal o] T
3 . . . . . . . . . . . (33)
and ve"‘Vd = zed Ied ° . ° . ° . . 3 . (34)

The equatlons éorrespondlng to eqns.(6) and (13) for adding the
branch element e~3 to the network.are ]
| T &)
and I} = Igtlgg = IgtIe S & 1Y
By comparing eqns. (35) and (36) with eqns.(5) and (12) respectively it
follows that the connection sub-matrixes for edding the branch element

e~d to the network are -

Cy. =,. N €14
[

[c__a]= . N 6 ).
d. 1l

i.e. {Cp| is & unit matrix of order 1 and |C,| is & column matrix in

which all rows are zero except for row "d" which has the value +1, The

impedance matrix for the interconnected network is now found by cal-

culating the matrix products shown in eqn, (27)., Using eqn.(38) and |2,

from eqn,(33) it follows that the producte [Z,Cq| and |Cg.Zp| are

respectively column and row matrixes having terms equal to corres-

ponding terms in column and row "d% of Z4|. Hence, the product

Cat2aCa| 18 the diagonal term of |2, in row "a", i.e.

. Cat ZAca = zdd . ' . * Y . 3 . 3 . ( 39 )
From edns.(34) and (37) :-

Cot2qpOp| = Zea N Y




19 .

a8 | 2qp| 18 & matrix with one term, Zoge
Hence |2'| 18 formed by augmenting Zp| with one row and column ;-
J da e
! =
2 e |233] + | Zaa |+ | 230
d . sz . zdd . zdd . . . (] . . (4-1)
e |+ |%ay |+ | 2aa |+ |%da*2ea

It follows from A, 2,3, that [::] ls the bus impedance matrix of the
interconnected network formed by adding the branch element e~d to the
network Fig,l(a),

If d@>e then eqne,(35) and (36) become respectively :-

Ide = “"Ie . . . . [ ] . . . [ . (42)
and Ia = Id"’Ide = Id+Ie ' e - . L] [ ] [ (43 )
i.e. the connectlion sub-matrix | C,| is the same as eqn.(38) and

cb = l "1' - . L) . . . . . . . . (44)

It follows that the matrix products are the same as

in the previous case and, as eqns.(39) and (40) also apply, the bus

impedance matrix ie given by eqn,{(41).

If node "d" 1s the reference node then, as there is no corres-

ZA ,

has all terms zero for a branch element e-d and sub-

ponding row and columﬁ in the bus impedance matrix the connection

Ca

matrix is *1, Hence eqn,(40) applies but, all terms of and
?

sub-matrix

CatZa| 8are zero and
catZAca = o . 'Y . . . o - . . [ . (45)
Therefore the bus lmpedance matrix after adding & brahch element
connected from node "e" to the reference node is :-
e
= J L] [ ] ® L]
z‘ = J . ' ZJJ . 0 . - . S . . * . . (46)
e |.] O] .| zeq

Note that this follows directly from the relation between current and

voltagé for an element connected only from node "e" to the reference

node, 1.e. ve = zedIed = z"edIe . L] L] >o 3 ] L] . L (47)
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Eqn.(41) shows that the bus impedance matrix of the interconnected

network formed by adding & branch element e~d to node "a* of a given
network is formed by adding & new row and column "e" to the bus imped-
ance matrix of the glven network; the off-diagonal terms of row-and
column Ye! being equal to the oorreéponding terms of row and column

"q" and the dlagonal/ggiﬁg equal to the dlagonal term of row "d" plus
the eelf_imped€nce of the branch element, If the branch element connects
node “é“ to the reference node, then the new row and colunn "e" of the
bus impedance mqtrix have all terms zero except the diagonal term which

18 equal to the self impedance of the element.

A,2,1.1. GROUP OF BRANCH ELEMENTS.

. e

The addition of two branch elements e-d and f-e 18 now considered
where e~d is connected to the existing node "d¥ of & network and f-e

1s connected to the newly established node "e",

I ' Ife
a .__EE € w—0ou T v a e f
- e AAN b A NN S a NNl Y et VAV A Ve —- AN - NN ————e
14 : Idf IJ Iff
a (a) , (v ‘
’ Fig,

In Fig.3(a) and (b) the two'brénch elements e-d ahd'f~e are connected
' to node‘"d" of the network shown in Fig.l(a); Fig.3(a) showing con-
ditions before and Fig.3(b) conditions after interconnection. Before
interconnection eqn.(33) holds for the network while the following

equation applies to the branch elements :-

ve"'Vd = zed o Ied . . - . . . . . (48 )

Ve-Vo 0O |2pe||Ire

For the connection of the two branch elemente to the network the
equations corresponding to egns. (6) and (13) are :-

Ieg = Io*Ie Iee =Te « « o oo . . (49)
Ig*Ted = Ig*Ig*Ie &« ¢+ 0« o« . . (50)

12

and Ia

These equations may be written -

Ied = 1 1 Ie . [ . 3 [ L ] . * - (51)
and @ = |I4|* E_ﬂ Igl « o o v e e .. (52)

. Ie
Comparing eqns.(51) with (5) and (52) with(12) the connection sub-

matrixes and ' are i~ , .
(O] =[2]2}. « .« « « « « + o . (53)
01
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end - [Gg| = JjoO|o| ¢« + . . . . . . . . (54)
L

dal1l]|1

From eqn. (54) and. ZA' of ean.(33) 1t follows that the products | Z,Cq
and ‘CatZA oconsist respectively of two identical columns and rows

with terms equal to the corresponding terms in column and row "d" of

Zp|. Hence the product

lcatZAca l = de de . . . . . . . . (55)

244 | 2aa
From eqn. (53) and Zgp| from eqn. (48) :~

letquCb1 =1 zed Zoq . e . . . . . (56)

Zed [Zed*Zre

Adding eqns, (55) and (56) gives the diagonal term for the rows and
columns "e" and "f" which are added to ZAi t—

: zdlag = 123q%2eq Z3a*zea . . . . . . {57)

Z3a%*%ea | Zaa*zea*zre
Therefore the matrix| Z'| 18 :=

2'0 = 3] 23| «| 23a |- | 25a | %ya e e e .. (88)

e . sz 3 zdd .
fl.] 29 «|2%aa]-

which is the bus impedance matrix of the interconnected network,

zdlag

" Eqn.(58) shows that the off-diagonal terms of row and column "f¥
are equal to the corresponding terms of row and column "e", while the
diagonai X¥¥¥ term 1s equal to the diagonal term in row "e" plus the
self-impedance of the element fwe. Hence, the rule for adding & single
branch element can be extended to & group of branch elements proQidéd
that the order in which the individual elemente are processed follows

the rule before adding an element one of ite nodes ie established.

A 3.2, SINGLE LOOP ELEMENT.
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(b)

Figs.4(a) and (b) represent respectively conditions before and

after the addition of a loop element k-4,
and "d" of the network shown in Fig,l(a).
network, then the equations corresponding

the loop element is added to the network,

k>d, connecting nodes "k"
If 3% 1g any node in this
to eqns. (1) and(2) before

i.e. Fig.4(a), are :-

Igle « o o « (59)

e e e+ e« e« . [(60)

e e e« e e . [(61)

P , a K
- )
'
Vd d . ZdJ . zdd ' zdk .
'
Ve-Va| = zkd] Tka| « -+ -
For adding the loop element k-d to the network the equations
corresponding to eqns.(10), (13) and (14) are :-
Ikd = Ikd_ . . . .
I& - Id'+ Ikd . . .

—
2
i

v Ik - Ikd 3 . .

B (1)
e (59

Writing eqns. (62) and (63) as a matrix equation :-

! .
Ia| = [Tal * | ]| -

e I -1

e e e e e . 61

Comparing eqns. (61) and (64) with eqnse.(5) and (12) respectively :-

Cb = "1—] . . . . .

and : N
CB. = J o . . . .

a! 1

- k|-l

. . . . . . (65)

(66)

. N . . 0 .

1.e. {Cy| 18 & column matrix with zero terms except rows "d" and “k"
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which are +1 and -1 regpeotively. It followe from eqn. (65) and_[gg]
from eqn, (59) that and are column and row matrixes
with terms equal to the dlfference between corresponding terms of
columns and rows "d" and "k" respectively. Hence [gz] for the inter—
connectéd network formed byvadding loop element k-4 to the network
Fig.l(a) is [E;] augmented by a row and column ;-

y a . K

@ = J| .1 zJJ. . ZJd o ka . ZJd-ZJk . (67)

X . sz-'sz . zdd“de . de"'2kk . Zdlag
. The product icatzACal is the difference between terms in rows "a*

and "k" of lZACal, i.e,

|GatZACa l= 234~23x~Zxa*Zxk . . . . . . . . (68)
while from eqns.(60) and (65) :-

Cbt ZQPCb = zxd . . . . . . . . . . . (69)

From eqn. (27) Zgqiag 1e the sum of eqns,(68) and (69), 1.e.

Zatag = 2da-Zak-Zka*Zkk*Zkd + o+ 2+ o o« . (70)

From A.2.3, the bus impedance matrix of the interconnected network 1is

found by eliminating the last row and column from 2! using Kron's

rule, 1.e. Zyq in eqn.(67) 1s replaced by Z}q etc. where

Zja = 2349-(234-Z3k)(Zaa-Zxa)/2a18g .+ . - o .- . (1)

If "d" 1s the reference node, then edn, (66) becomes :-

C.l= 3| o .

»; . . . . . . . . (72%

k |~1

i.e. all terms are zero except for the term in row “k¥ which is -1,

Therefore the off-diagonal terms of the augmenting column &nd row

formed by -the products ‘ZAGQ[ and |0a£§;| are the negative of the
corresponding terms in column and row "k" respectively of end
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from eqn. (70) the diagonal term is 3~

Zatag = k*ZkA - - o+ .+ e . . .. (73)
Therefore in this case the matrix z' | 18 S
. , .

, [::] - 4'-’ Zyg| o | 2| . |23k N Y 23

k . " Zk J . Zkk ° —Zkk

® L L] » L

« |=Zky |+ |~Zkk |- |%areg
Finally the bus lmpedance matrix lZAJ ls formed by eliminating the last

row and column of 2! .

Summarieing, when adding a loop'element to.a network its ﬁua
impedance matrix is augmented by & row &and column with terms edual to
the difference between corresponding terms of the rows and columns
éorrespdndlng to the nodes of the loop element and diagonal term équal
to the éelf'impedance of the element plus the difference between terms
of the augmenting row (or column) corresponding to the nodes of the
loop element., If one node of the loop element 1s the reference node,
then the terms of the augmenting row and column are the negative of
the corresponding terms in the row and columi corresponding to the
other node of the element and the diagonal term is equai to the
element self impedance plus the negative of the term of the augmenting
row (or column) corresponding to the other node of the loop élement.
Finally the asugmenting row and column &are eliminated by Kron'ﬁ rule

to give the bus impedance matrix of the new network.

A.3.2.1. GROUP OF LOOP ELEMENTS.

: extended
The rule for adding & single loop element to & network is/to a

number of loop elements added as & group.
I& Ie ' I

ld & | \ a

L UL PO \
j

Yo f“
Ip In Ik h

(a) _ " ()
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Figs.5(a) and (b) show the relevant parts of & network in which

d

, €, k and h are established nodes and shows loop elements k-d (k>d)

and h-e (h>e) before and after adding to the network, If ie the

bus impedance matrix of the network and the impedance matrix of

the loop elements, then :-

3 a e h K

ARIBENRERB AR ENE
d Z;J z;d z'(;e z;h z;k
el . Z;J z;d z;e Z;h Z;k
o[ 7y |- [ 7aa| - {70 |- (o] - |2 |
k ZJ;J z;d zl::e Z;ch zl.:k

[ [ . .

where "J" 18 any other node in the network; and

0 Zhe

For the loop elements k-d and h~e the equations

N Y42

.. (78)

corresponding to

eqns. (10), (13) and (14) relating currents before and after connecting

to the network are :-

Ihe
I+

Ih-Ine

Ihe ] . .

[
L
.

. . . .

kg = Tka The =
I§ = Ig*Ikg Ip =
' '
‘ Iy = Ik"Ikd Ih =
Writing egns, (77) in matrix form :-
Lal = |1 0|l - -
Ine 0 1 Ihe '
and combining eqns, (78) and (79) into one matrix equation
1§|= |Tal* | 1| o||Ixa
t
I I 0f 1{|The
Ip Iy 0|1
]

then comparing eqns.(5) and (80) gives :-

|i'°_l=1°- .

. . an

. . (78)
. . (79)
. . (89)
. . (81)
. . (82)
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and comparing eqns,(12) and (81) gives :=

—

e
L
A
W o
3

c e e e e e e (83)

From eans, (75) and (83) it follows that the products 1zAca| and |Cgy 2y

are matrixes of two columns and two rows respectively, with terms in

the first column and row equal to the difference between the corres-—

ponding terms of columns and rows "d" and “k" of and in the

second Column and row equel to the difference between the corres-

ponding terms of columns and rows "e" and "h", The terms of the

column matrix are indicéted below -

ZpCq

= J sz-ZJk ZJe-ZJh . . . . 3 . (84)
4} 239-23x | %ae~Zan
e Zed'zek zee-zeh
L] *
k| Zxa-Zkk | Zxe~Zkh

From eqne.(83), (84), (82) and (76) the sum of the matrix

producte CayZaCa| 8@nd | Cpg2qpCb| 18 & equare matrix of order 2 as
given below :-
Za1ag| = |CatZaCa*Cpt2qpCb
| 234-23k~2xa* Zx* 2xq Zde-zdh—zke+zkh . . (85)
Zea-Zex=2na*Znk Zee~Zeh~Zne*Znntzp,
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The matrix VZ'I for the interconnected network ie formed by aug-

menting |Z, |of eqn,(75) with two columns and rows given by Z,Caf,

[Cat?4] ana [Zaiag]

e . |2%2ed] | %e] » zeh . zek . Zed"zek Zge~Zen

[ . ° . . L] . . . . ]

h . zhd . Zhe . Zhh - th . Zhd-th Zhe-Zhh

kil.12¢a|+|2%e| «|{2ckh |« |Zkk| + | 2xa~Zxx |{Zke~Zkh

Cat2a Zy1ag

The bus impedance matrix of the interconnected network is then

calculated by eliminating the last two rows and columns of [:] .

From eqn, (85) 1t follows that the off-diagonal terms of Zasag

can be determined by applying the rule stated in section A k3.2,

for adding & loop element to the matrix ZA » 1l.e. by repeated

application of the rule the matrix |2 is augmented by a row and
'y g

column corresponding to loop element k-d, then the matrix so formed
is augmented by a further row and column corresponding to loop
element h-e,
Two specilal cases involving loop elements are now considered :-
(a) two pafallel loop elements, 1.e. elements having two common

nodes.

I Iq
\ \
d d

-~ A N—e --
Ikdl[ IIkdE Ikle Ixa2
— = AW --
k k
Il'c/ Ik/
(a) (b)
Fig.6

Figs.6(a) and (b) represent the addition of two parallel loop elements

to a network of bus impedance Z,| before and after interconnection
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respectively, In this case the two columns of ZAcal and the two rows

of |CgtZy| are identical having terms equal to the difference between

the corresponding terms in columns and rows "d" and "k" of |Zp{. The

terms of | Zyyo,| @re found by replacing the subscripts "e' and "n"

by "d"and "k" respectively in eqn. (85)

Zarag| = | 2aa-Zax-Zxa*Zkk*2xd1| Zad-Zakx-Zka*Zkk .. (87)

23a~2ak-2xa* Zkk 233~2dx-Zka*Zxk* 2k 42
The four terms of Izdiagl formed by the product |CatZpCq| are iden-

ticalwith the self-impedances of the two loop elements belng added
to the diagonal terms,

(b) two loop elements with one common node,

G,V L I"\d \,

(a) (v)

Figs.7(a) and (b) represent the addition of iwo loop elements k-e and

k-d to & network having bus 1mpedance| Z,| before and after inter-

connection respectively, If element kwd 1s added first the terms of
the first augmenting row and column are the same as in eqn.(86) and
the terms of the last row and column of |Z'| are found by replacing
subecript "h" by "k" in this row and column in ean, (86), The terms of
‘zdlag for this case are as indicated :=

@_a_g = [ 23a=Zax=Zra* 2iut2kd | Zae~Zke~2ak* Zkk .« . (88)
Zed-Zek~Zxd* kK Zee~Zek=Zke*Zkk* Zke |
It 1e seen that the off-diagonal terms 1n eqn,(88) are the difference

between the "k" and e" terms of the corresponding row and column,
Summarieing the rules for modifying the bus.impedance matrix
oi‘ a network when adding a number of loop elements are :-
(a‘) take the elements one at a time augmenting with a new
row and column for each element, the off-diagonal terms belng equal
to differences between existing row and column terms (as determined

by element node numbere) and with a dlagonal term equal to the
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difference between the two terms which correspond to the element node

numbers in the new column (or row) plus the element self-impedance; and

(b) eliminate the augmenting rows and columns by Kron's rule ean, (71).

A.3.3. GROUP OF BRANCH AND LOOP ELEMENTS.

" The rules for adding separate groups of branch or loop elements
‘can be applied to adding & mixed group of branch &nd loop elements to
& given network.

e\ Ike \ Lk

- - ——n - Ar—A K

Fig.8

Fige.8(a) and (b) show, before and after interconnection respectively,
a branch element k-d (k>d) and & loop element k-e (k>e) which are

Joined to nodes "d" and "e“_of a network having bus impedance matrix .

Zp| gilven by :=~

3y a e

@ = J . ZJJ . sz . zJe . . . . . .. . (89)

al . zd.J . de o zde .

L] . L ] . L] L] L d

el v | 2Zgy| « | Zea| | Zee| *

' The impedance matrix of the elements 18 :=

= |2xq o . . . . . . . . . . (90)

O 2ke
The equations corresponding to eqns.(6), (10), (13) anda (14) for

connecting k~d and k-e to the network are :-

Ixkg = Ip-Ige ke = Ige . . . (91)
Ié. = Id'i'Ikd = Id"’Ik—Ike I; = Ie*Ike . . (92)

Writing eqne.(91) in matrix form :-
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Ikd = 1 -] Ik . . . . . . . . . (93)
Ixe 0 1| [Ixe

and comparing this with eqn,(5) gives :-

m=1-1..........(94)
o1

Writing eqns,{(92) as a matrix equation :=-

3 R
Id b Id + 1 -1 Ik Y . - . . . ' (95)
I'

e I 01 1| |Ike

and comparing with eqn,(12) gives :=-

[Ga] = a0 ] . « . . . . . . e

From eqns, (89) and (96) it 1s seen that the products and ’CatZAl

are matrixes of two columns and two rows respectively having terms

in the first column and row equal to the corresponding terms of ZAI

in column and row "d" and in the second column and row equal to the

difference between corresponding terms of columns and rows "d" and

e These products are indicated in z'| velow :-

J a o

Y Y Y o B IR B P Prorey

2ja | -] Zye | . |Z3a|Z%3e~Zya| (97)

d L4 Z

dJ * 234 . Z3e « | 234 | Zae=2aa

. Zpq . Zee o | Zed | Zee=Zea

e | ZBJ

sz (3 de ° zde R
Z -

. eJ sz . Zed—de ° Zee—zde .

From eqnse. (90), (94), (96) and (97) the equare sub-matrix ig =

Zgiag| = [CatZaCa*CotZapCy]

Zga*zxa | 2de~%aa~Zkad

Zdiag

A C

Zeq-2ad-2kd | Zee~Zed~Zae"2ad*Zkd* Zke
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Inspection of eqns.(97) and (98) shows that for element k-d a new row

and column "k", with terme derived by applying the rule for adding a

branch element, ie'added to |Zp and for element k-e this matrix is-

then augmented by & row ‘and. column with terms calculated by the rule
for adding a.loop element " The augmentlng row and column are then
eliminated to give the bus impedance matrix of the 1nterconnected
network, ' | | |
‘In the exa@plee discussed above of adding branch, loop or groups
of branch and loop elements to a given network it 1s shown that the

.bue 1mpedance matrix ‘for the interconnected network is derived from

ZA‘ of the. original network by the appllcatlon of simple rulee. These

rules’ whlch lnvolve repeating, adding or subtracting matrix terms

~ apply generelly to any'combination of branch and loop elements, because

(a) the terms of the connection sub-matrixes |Ca| and are O,

*+1 or -1 dependlng on the type of element, its node numbe rs and mode
of connectlon to the existlpg network, i.e, dlrect or indirect through
- other group elemente‘ and
(b) the group 1mpedance matrix - ls & diagonal mat rix having terms
equal to the element eelr- 1mpedance valuee
It.ls~also neoeesary to proceee-the group elements in a speclified

order with branch elemente first and loop elements last.

A.3.4. GROUP OF MUTUALLY COUPLED ELEMENTS.

‘For'anvinterconneeted network formed by adding branch and loop
elementa to an exietlng network having bus impedance matrix |Z [,
" has been shown that the matrix ]z I may be derived from - by

elmple rules without rormally setting up the connection sub-matrixes

Cq, and‘ecb ﬁbwever for adding & group of mutually coupled

elemente the oonnection sub-matrix - Cb i8 required in the calculation

of the produot cbtzmcb, basically because |z,| consists of off-

diagonal terms whereas - has diagonal terms only and hence the ‘
simple rulee for adding the self-lmpedance values cannot be extended
to adding mutual impedances.

From coheideration_of a number of cases in which, for convience,
nodes are identlried by 1ntegere instead of alphabetical letters as
previously, rulesvdepeeding on the relationships between integer

magnitudes, types and 1ntereonnegtions'of elements &and having &
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general application for setting up are derived, As the purpose
is8 to derive rules for a computer programme appllicable to any network
having nodes numbered in any regular or irregular pattern and elements
liseted in any order, these cases of which some may seem artlficial
" can arige during processing of power system networks,

In the following dlagrams the relevant part of the established
network and the group of mutually coubled elements being added are
shown for various combinations of branch and loop elements, For each
case the associated equations- corresponding to eqn.(5) - relating
element currents before to network currents after interconnection,
are written in full showing for the correct processing order of

the elements. The reference node is denoted by "O" in the diagrams,

0] 0
I
1 $ 2 . 1 AR X
—r "
of o, fa g

Fig,

(a) Two mutually coupled branch elements 3-1 and 4-2 connected to

established network nodes 1 and 2 respectively.

3 4
I5) = 3-1[1]o0 0 E (99)
Iy2 4-2 {0 [1}iz,

(b) Two mutually coupled loop elements 2-1 and 4-~3 connected to the
network at nodes 1,2 and 3,4 respectively.

2-1 4-3

Ipp{= 2-1| 1} 0f|I, e+« « « « . (100)
Iy3 4-3 | 0] 1|14
0 0 0

I, Ig

34 - wane 40/- -wv-—o'/5 14 2 l. .2
§ o t :
2L - o boeboad BH/I; 3 B N0 s 4
() Iy ! I ! @ I [ T f14
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Fig.9(c). Two branch elements 2~1 and 4-3 connected to the network

at nodee 2 and 3 reapeétively with a third branch element 5-4 connected

indirectly to node 3 through element 4-3,

5=4

1 4 5

1| 0]O0f I . .+ . . . . . (101)
o[1]1] |14 |

olof1] |15

Fig.9(d). A branch element 3-1 connected to the network at node 1

and a loop element 3-2 connected directly to network node 2 and linked

through element 3~1 to node 1,

.

132

3-1
3-2

(102)

. . 3 . . . . .

1 3-2
1[-1] (13
o 1Tz

Fig.9(e). Two branch elements 3-l and 4-2 connected to network

nodes 1 and 2 respectively and loop element 4-3 linked to nodes 1 and

2 through group elements 3-=1 and 4-2.

3 4 4-3
Izp| = 3-1(1j0f1|iIz} . . . . . . .~(103)
Ipe 4=2 |0 1 [=1 [T,
143 4-3 10 |0 1 143
o} 0
lf S -p-03 1l #-o- 063
ii .
LL —mnv~’f2 :L - A~ p2
Io1p I I21p \12
() (g)
Fig.(9) ¢

Fig.9(f). Two branch elements 2-1 and 3-1 both connected to network

node 1 with loop element 2-1 connected to network node 1 and linked

through parallel group element 2-1 to network node 2,

Ina

I3,

Io1p

2-1

3-1-

2-1

I |. . . . . . (104)

2 3 221
1{0 |
of1] 0|13
olo| 1{|Imp
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v Fig.9(g). Branch elements 3-1 and 2-1 respectively connected directly
and 1nd1r§ctly through element 3-1 fo network node 3 and loop element
2-1 having node 1 ilnked v;a element 3-1 to network node 3 and node 2
linked via parallel element 2-1 and element 3~1 to node 3. This is the
'same group of elements &s in 9(f) but with network node 3 instead of
node i established so that element 3-~1 must be processed first to
establish node 1 whereas in 9(f) either element 3-1 or one of the
parallel elements 2-~1 can be processed first,

1 2 2-1

Iy F 3-1 |-1 (-2 |0 Iy |. . . . . . . (05

I 214l 2-1 0 1 {=1 I 2

From eqns.(99) to (105) it can be seen that each row in Cp
corrésponds to a group element while columns correspond to new . nodes
in the case of branch elements and to the element itself for loop

elements, i.e. as each group element 18 processed a new row andi column

18 added to |Cp|. The diagonal term in the new row and column 1is +1

for a loop eiement and’, depending on whether the new node 1s greater
or lesser in magnitude than the established node is +1 or -1 respect-
ively for a branch element (the follows from ithe assumption that the
element current flows from the higher to the lower numbered node),
Because the current in the element béing proceséed may affectAcurrents
in previously proaessédigroup elements but ie itself not affected by

those currents; the off-diagonal terms in the corresponding column of

C,| are +1, -1 or zero and those in the corresponding row are zero,

i.e. all terms below the main diagonal are zero.

The column terms of |Cp| are found by tracing element connectlons

back through the group to the network taking into account relations

between node numbers, If the element 1is connected directly to the
network then the corresponding column terms are zero, e.g. ln Fig.g(a)
as branch.element 4-2 18 connected to network node 2 the off-diagonal
term in column 4 of eqn.(99) ie zero; in Fig.9(b) loop element A-3

ie connected is connected to network nodes 4 and 3 there fore the off-
diagdnalvterm in column A~2 of eqn,(100) is zero; similarly for element
4-3 of Fig .9(c) the term in column 4 of egn.(101) is zero, for element

4-2 of Fig.9(e) the term in column 4 of egqn,(103) is zero and for
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element 3-1 of Fig.9(f) the ferm in column 3 of eqn,(104) is zero. For
2 branch element connected indirectly to the original network; the
column term corresponding to an element linking the branch to the
network 1s the same as the diagonal term for the link element, e.g. in
?1g.9(c) branch element 5-4 is linked to the network via element 4-3,
hence the term in column 5 row 4-3 of in eqn. (101) 1is +1, which
1s the same as the diagdnaivtefm in row 4-37; eimilarly for branch
element 2-1 and linking element 3-1 in Fig.9(g) the term in column 2
row 3-1 of eqn.(105) is the same &s the row 3-1 diagonal term;,Thus
" the sign o% the column term 1s dependant on the node numbering o the
:corresponding link element,’but is 1ndependant of the node numbering
of thé branch element concerned - this 1is illustrated for exemple in
Fig.9(c) if nodes 4 and 5 are interchanged the current in the link
element is unaltered at IA+15‘

- For a loop element it is necessary to examine the mode of con-
nection from ﬁoth nodes to the original network. If it is indirectly
connected from the higher and, or the lower numbered nodes then the
column terms dorrespdndiné to linking elements aré found in the sanme
v way &8 for a branch element, exXcept that the sign of the diagonal term
is reversed for elements linking the higher numbered node of the loop
element;-in Fig;9(d) node 3 of 1oop'e1emént 3-2 18 linked to network
node 1 via element 3-1 hence the term in column 3-2 row 3-1 pf ecn, (1.02)
is -1 which is the diagonal term in row 3-1 with sign reversed; sim-
ilarly f‘of in eqn, (103) the tefms of column 4~3 are -1 in row
4~2 and *+1 in row 3-1 being the reverse and the same sign respectively
as the corresponding diagonal terms. In Fig,9(g) element 3-1 links
both nodes of loop element 241 to network node 3, hence in eqn, (105)
the term in column 2-1 row 3-1 is -1+1=0.

Summerising, the connection sub- matrix ‘Cbl hes a row and column

corrésponding to each group element with diagohal term +1 for loop
elements agd +1 or -1 for branch elemente depending respectively on
whethér the new node being estadblished 1s the greater or the lesser

of thé Branch’nodee. The off-diagonal terme are zero except for elements
connected indirectly, i.e. linked through other group elements, to the
network in which case the'térm in the element column and linking

element roﬁ 1s :=

(&)'for a branch element plus the link element diagonsl term; and
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(b) for a loop element - minus or plus the link element diagonal

term or zero depending respectively on whether the link element connects
the higher or the lower numbered node or both nodes of the loop element
to the network. _

As shown in eqgns. (99) - (105) all terms below the main diagonal
of [E;l are zero when this matrix is set up in the order in which the

group elements are processed,

After has been found the triple matrix product, ]cbtzmcb|,

18 calculated to give the mutual coupling values which &are added 1nto

1]
E:l forming |2 | a&s in eqn, (32). Because matrix is & real matrix,

the triple matrix product can be separated into real and imaglnary
parts which may be calculated separately :-

|cbtzmc‘o = Cbt!‘m%]* Cbtxmcﬂj e« . . . (106)

Hence when adding a group of mutually coupled elements to &

network; the network bus impedance matrix |[Z,| ie modified in a step

by step procedure &s follows :-

(a) the group elements are sorted into a list'with branch elements,
in the order in which they are added to the network, first and loop
elements lést;

(b) [::] 1s formed using the element self-impedances in processing
the élements one at a time in the listed order, adding a corresponding
- row and column fo, ZA for each branch element and an augmenting row
and column for each loop element according to the branch and loop

element rules respectively;

(c) the connectlon sub-matrix |G| and the matrix of mutuel imped-

ances lzm{ are set up using the group element 1list from (a); the

productrv Cpt2mCb| calculated and the result added to to give
E’E; and

(a) the augmentihg rows and columns are eliminéted from Eii} one
at a time by Kron's rule giving the bus impedance matrix for the
interconnected network,
.In steps (b) and (c) only addition and subtraction of matrix end

impedance terms are involved so the real and 1maginéry parts of the

matrixea.:gﬂ and [::] can be calculated separately, but as step (a)
involves multiplication and division both parts of the matrix [::]

are used in these calculations,
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A,A. FAULT CALCULATIONS USING THE BUS IMPEDANCE MATRIX.

In power system analyeis, &n important application of the bus
impedance matrix 1is in fault celculations for which the positilve,
negative and ‘zero sequence networks are used with mutual coupling
between network elements taken into account in the zero sequence
network only, Because & power system has components such as'trans—.
mission lines operating at different voltages connecting generators
and transformers heving different power ratings, &1l element BQQuence.
impedances are convgrted to per unit values on & sultable power base
such as 100 MVA before calculating the bus impedance matrix. Let the
relation between node voltages and cufrente and bus impedance matrix -

of a power gystem sequence network be given by :-

1 ) X

Vol= 2. (244 285} |22|f{Is| - - (207)
Vol e B e 2oy [Pk o] |1

Vi Ble i 2| o | Zeg| e [P | | |1

where 1, J and k are network nodes,
If all currents except that at node "i" are zero, then :-
Vi = 25303+« .+ e e .. e (108)
and | Vy = 2314 Vg = 295y . . .o . . (109)
From eqn. (108) 1t follows that Z;3 is the sequence network driving

point impedance in per unit for node "i" and the per unit power is

given by :=~
v, vy 1
lei = —— = _.—"' 3 . . . . . . . (110)
2 C £ €Y

if Vy is 1 per unit voltage -~ in the case of the positive sequence
network this ie the fault power for a three phase fault on node "i",

i.e, fault power
base MVA

S = - P & & &
, ' Zy4
From eqn, (109), Z'j and Zy, are the sequence transfer imped-

i
ances in per unit between nodes "i" - "J" and "1" - "k" respectively.

If I,=1, i.e. unit current flowing into the network &t node %1% then
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the voltages appearing on nodes ;‘J" and "k" are :-
vy = 2y Ve = Zgr . . . . . . (112)
The current flowing in &an element k-), which 18 not mutually coupled
to any other network element, is :-

V- V Zg1~2yy
Igy = - = N T 62 X3
k) k)

where zx) 1s the element self impedance, Iy is the "ourrent distrib-

ution factor" for the element k-],
If e-d and g-f form a group of mutually coupled elements, then

the relation between element currents and node voltages 1s :-

ve"Vd - zed zml Ied .' . . . T e . - (114)

where zgq, Zgp 8re the element self 1mpedances and 2y the mutual

coupling impedance, Inverting the impedance matrix in eqn.(114) :-

Ieal = |Yea |¥m1|{Ve-Ya| . =+ =« + « + . (115)

Igr Yml |Ygr ||{Vg~Vr

The current distribution factor for element e-d when unit current is

flowing into node "i" 1g, from eqns.(115) and (112) :-
| Iea = Yed(Ve-Va) *yml (Vg=Vr)
Yed(Ze1-Zas )*ypy (Zga=Ze1) . . . . (116)
Stmilarly Ige = ¥m1(Zea-Zai)*vgr(Zgi-Ze1) - . . . (117)

A.5, MODIFICATION OF BUS IMPEDANCE MATRIX.

Consider & network having bus impedance matrix Zp| and in which

there is a group of mutually_coupled elements with self and mutual
impedances given by the matrix . If one or more of the lmped-
ances in the group are modified so that the matrix of self and mutual
impedancee becomes |2 0y, then the bus impedance matrix incorpor-

eting this modification can be found by adding & group of fictitious

elements with self and mutual impedances given by where
is such that the result of paralleling impedances and I@
is @, 1.e.

Voew| = [Jo1a) * [Fric) - - =« « « . . (118)

or ‘yflc] = IYneﬂ - ryold] . . . . . _’. . (119)
where ynewl and iy61d| are the inverse of and !zoldl res-—

pectively. From eqn, (119) 18 calculated as the Lnverse of
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= -1

1.e. IZflcl - l?flcl L) [ . . . . . L] (120)

The diagonal terms of are the self impedances of, and the

off-diagonal terms the mutual couplings between the fletitious elements

to be added to {Z,| forming the bus impedance matrix of the modified

nhetwork. All elements in the fictitlous group are loop elements as
they connect established nodes, hence from eqn,(100) the connection

sub--matrix '°b|-1° a unit matrix of order equal to the number of

elements in the group.

The equations derived above can be applied to the particular
cage of modifying an element which 1s not mutually coupled to any
other element; in this case the matrixes in eqns. (118)~(120) degen-
erateblnto the self admittance and self impedance of the single
element. When changing the impedance of a network element from 2514
to 2zpew , 1t follows from eqns.(119) and (120) that the fictitious
self impedance for adding in parallel to 2,13 18 :=

zﬁc_=z—zgl-%z-9£"— P S £-3 B
0ld~Znew
When an uncoupled element-ia switched out of the network, 1.e,

Ynew=9 , 1t follows from eqns. (119) and (120) that :-

zfic = —zold hd . . . . . . . . (122)

A6, DERIVATION OF EQUIVALENT NETWORKX.

Congider a network having bué impedance matrix given b& R
eqn, (107),. then the partial matrix formed by selecting the terms
indicated in this equation is the bus impedance matrix of a network
with nodes "1", "J% and "k" which is equivalent to the original
network, i.e.

1 J k

zeCﬁ.V h 1 211 Zij zik . . . . . 'y (123)

31232 23y | Pax
Inspection of eqn.(123) shows that the terms of the matrix are the

tranefervand driving point impedances of the original network for
nodes "i", ")% and "k", hence all properties of the original network
releVanﬁ to these nodes can be derived from fi;;;;].

Ag the partial bus impedance matrix represents the

effect of the original network at the selected nodes, it can be used



40
in the calculation of the bus impedance matrix for & secénd network
which is connected to one or more of the selected nodes. The calcul-
stion may start with then adding elements of the second
network --uncoupled elements one at & time and coupled elements by
groups - until all elementé are processed or, alternatively the
impedance can be added to the bus impedance of the second
network by considering it to represent elements 1-0, }-0 and k-0
havlng'self impedances 211, Zy3 and Zyy respectively and mutual
bimpedances Zij{ 2, &and de . Thg final tus impedance matrix 1is that
of.the second network including the effect of the original network.
| | If required the impedences of the equivalent network elements

'icanfbe found by inverting the corresponding admittance values

~ obtained from , the inverse of -
| [Teasv] = [Zearv] ™
o 4 )k |
= 1 Yll YiJ Yik e . e o . e . (12A)

3 |Xaa| Yyal Yax
k | Yxs ij Ykk

From | Yoq3v| the admittancea of the elements are easily derived; the

off-diagonal terms are the negative of the admittances between nodes
and the éum of the terms in each row (or column) is the admittance
between node and reference, l.e. ~Y3j 1s the admittance of element
1-J and Yy +Y, y*Y;x 18 the admitt#nce of element 1-0, ete.
An'example of an equivalent circuit and network modificeation

are included in the following numerical example.

A 7, EXAMPLE OF BUS IMPEDANCE MATRIX CALCULATION.

The rules which have been derivéd are now applied to the
calculstion of fhe bus impedance matrix for the sample network shown
in Fig.10 in which all the self and mutual impedance values are in
per unit and, for ease of célculatxoh, element resistances are neg-
lected - & common practice in power system fault studies before use
of digital cdmputers became general. By usiﬁg tables, all network
'1hformation is aet‘out in a simple systematic form which,for the
digital computer programme, are data for célculating the bus imped-

matrix :
snced element current distribution factors, etc.
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0.20

0.04 0.08 0.10

0.08 2

0.30
oL L3 10

'Fig.10

. The first step is coding the network, & procedure which simply

involves assigning zero to the reference node and a positive integer
to all other nodes, thus identifylng network nodes by integers and
network elements by two node mumbers, Three tables afe used to list
all the network information; the first giving baslc data, i.e.
numbers of nodes (excluding the reference node), network elements and
mutual couplings; the second element node connections and self im-
pedances and the third mutually coupled elemente together with thelr
mutual impedances. For the network in Fig.l0 the three tables are ;-

TABLE 1. BASIC DATA.

Number of nodes 4

Number of elements 7

[Number of mutual couplings 3

TABLE 2. ELEMENT DATA.

Element Number Node Connections Self Impedance
1 0 1 0.04
2 0 2 0.08
3 1 2 0,08
4 0 3 0.10
5 1 3 0. 30
6 3 4 0.20
7 2 3 0.40
TABLE 3, MUTUAL COUPLING DATA.
Coupling Number Elements Linked | Mutual Impedence
1 5 6 -0,01
2 5 7 0,10
3 6 | 7 ~ -0.05

In Table 2, each element is assigred a number which is used in
Tabl% 3 for ldentifying mutually coupléd elemente — & simpler pro-

cedure than using the two node numbers which also avolde the
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difficulty-ofvdietinguiahing between parallel elements as these have
the same node numbers, The mutual impedance value 1s listed with a
posltive or a negative sign determined by the directions of current
" flow in the coupled elements relative to one:another which follow
from network geometry &and node numbering, e.g. from Fig,l0 the
directiones from higher to lower numbered nodes in elements 3-1 and
3-~2 18 parallel, hence the corresponding mutual impedance value is
entered in Table 3 with & poeltive sign, but for the mutually coupled
elements 4-3, 3-2 and 4—3, 3-1 the directions from higher to lower
numbéred nodes is anti-parallel, hence the corresponding impedances
eppear in Table 3 with negative signs,
The calculation commences with'the formation of group mutual
impedance matrixes from Table 3 and in this example there 1s only

one group for which 'zm Ile set up in the order in which the coupled

elements are listed in_Table 3 -
| 31 43 3-2
[za] = 32 [ o [-0.01 o0 . . . . . (25)
4-3 [-0.00] o [-0.05 | |
3-2 | 0,10 -0,05 )

The calculation of the network bus impedance matrix begins with
a branch element connected to the reference node (a "“generator"
element) because initially no network nodes are eetabllshed._In
Table 2 the first element 1listed 18 in this category so the cal-
culation starts with element 1-0 establishing node 1. Applylng the
branch element rule for an element connected to the reference node,
eqn, (46) :-

1

zpl =|2'| = 1 jo.04 e e e oo . (126)

As node 1 is now establiehéd,'the next element processed could be a
branch element connected to elther the reference or node 1l, or a

loop element parallel to node 1, Inspection of Table 2 shows th&at the
next listed element, 2-0, 1s & branch connected to the reference

node and application of eqn.(46) glves :-

ZAl - zl =

1 2
0.04{ ©O S ¢ ¥4
) 0.08

N
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The third element in Table 2, 2<1, forms a loop connecting estab-

lished nodes 1 and 2, .Applying the rules for adding & loop element,

eqns. (6?) and (70) T

2-1

1 2
z'|= 1 |o.o4| O 0.04
2 0 0,08 -0, 08
2.1 | 0,04 [~0.08 | 0,04+0,08+0,08
1 2 2=1
= 1 (o004 ]| © 0.04 . . . . . . (128)
2 Q 0,08 | -0,08
- 2-1{0,04 |~0,08| 0.20|
Elimining the augmenting row and column, 2-1, by Kron's rule, eqn.(71)
| 1 2
[za] = 1 [o.032 [0.016 N § 1)
2 |0,016 | 0,048

This 1s the bus impedance matrix for the network formed by the three
elements 1-0, 2-0 and 2-1, Inspection of Table 2 shows that the next
listed element 3-0 is & branch element establishing node 3; by

application of edn, (46) :-

1 2 3
zp| = |2'| = 10,032{006 |0 |. . . . . (130)
2 [0.016] 0,048 | 0
30 o o |o0.10

The remeining three elements in Table 2 form a mutually coupled group

in which 4<3 18 & branch element from node 3, and 3-1 and 3-2 are

loop elements. To the impedance matrix in eqn, (130) element 4-3 1is

added by the branch element rule, eqn,(41), and then elements 3-1,

3-2 by the loop element rule, eqns, (67) and (70) :-

1 2 3 4 3.1 3.2
z'| = 1 |o,032|0.016)] o 0 0.032| 0.016| (131)
2 0,016 0,048 0 0 0.016 | 0.048
3 0 o 0.10} 0,10} -0,10 | -0,10
4 0 o 0,10/ 0,30|-0,10 | -0,10
31 10.032 9.016 -0,10| -0,10| 0,432 | 0.116
3.2 (0,016 | 0,048 | =0,10( ~0,10 | 0,116 | 0.548 |
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The connection sub-matrix for the group is - from eqns. (99)

and (100) :-

4 3-1 3-2

Cpo|l = 4-3 |1 [0 | O
3.1 (o |10

3.2 (0 [0 |1

. .(132)

The group mutual impedance matrix i1s obtained by rearranging the terms

in eqn. (125) to correepond with the order in which the elements are

processed -
4-3 31 3-2
= 4-3[ o [-o0.01 [-0.05] .
3-1 | -0,01 0 0.10
3-2 |-0.05 | 0,10 o]
The triple matrix product cbtzmcb

caélculation 1n this cese as is & unit matrix :-

4 3-1 3-2
CoeZnlb| = 4 o | -0,01|-0.05],
3-1 |-0,01] o© 0.10
3-2 |-0.05| 0,10 ©

. .(133)

18 now calculated, a trivial

. .(134)

and for the interconnected network is derived from eqns. (32),

(131) and (134) :-

2"] = [2']+ [CotzaCp
1 2 3 4 3-1 3-2
= 1 |0,032]0,016 0 0.032 | 0,016
2 {0,006 0,048 o0 0 0.016 | 0.048 |
3 0 0 0.10| 0,10 |-0,10 {-0,10
4 0 0 0,10 0,30 {-0,11 [-0.15
3-1 {0,032 | 0,016 |-0,10| -0,11 | 0,432 | 0,216
3-2 {0,016 | 0,048 |-0,10{ -0,15 | 0,216 | 0,548

. .(135)

The bus impedance matrix for the network in Fig.l0 is now found by

eliminating the last two rows of

Z“

one at a time by Kron's rule;

eliminating the row and column corresponding to loop element 3-2 :-



45

1 2 3 4 3-1
1 10,0315 | 0,0146| 0.0029 | 0.0044 | 0.0257
2 | 0,0146 | 0,0438 | 0,0087 | 0,0131 |-0,0029
3 | 0.0029 | 0,0087 |. 0,0818 | 0,0727 |0.0606
4 10,0044 | 0,0131 | 0.,0727| 0,2590 |-0.0510
3-1 | 0.0257 |~0,0029 | ~0,0606 | -0,0510 | 0. 3470

element 3-1 :-

and then the row and column corresponding to loop

ZA = -

1
2
3

1

2

3

4

0. 0296

0.0148

0.0074

0.0082} .,

0, 0148

0.0438

0.0082

0.0127

0.0074

0,0082

0,0712

0.0638

(136)

4 {0.0082 {0,0127 |0,0638 |0,2515

' This is the imaginary part of the complex bus impedance matrix, the

real part being zero as element resistance has been neglected,

Ifr Iz;=1 and I;=1I, = I, = 0 . . . . (137)
then, from eqns.(112) and (136) the voltages at the network nodes
are :- V; = 0,0074 V5 = 0,0082
V3 = 0,0712 Vy = 0,0638 « e e e s (138)

From eqn, (113) the current distribution factors for the uncoupled

elements connected to node 1 are :-

Iyo = V; = 0,0074 = 0,185 e e .. (39)
20 0.04
I,y = Vg=V; = 0,0082-0,0074 = 0,010 ., .' . (140)
z2) 0.08

As element 3-1 1is

mutually coupled to elements 4-3,

3-2 the inverse

and mutual impedence matrix, 1s required

of the group self Zgp|»

for calculating 1te current distribution factor,

4-3 3-1 3-2

2gp| = 4-3| 0.2 | -0,01 [-0,05} . . . . . (141)
3-1 [-0.01| 0,3 0,10
3.2 |-0.05| 0,10 | 0.4

Inverting :~ |
4-3 3-1 3=2

Yap| = 4=3 | 5.1619 | -0.0469 | 0.6570 . . . (142)
3-1 |~0,0469 | 3.6368 | -0.9151
3-2 | 0.6570| -0.9151 | 2,8109
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Therefore, as in eqn. (116) :-

I3 = =0.0469(V,-V3)+3.6368 (V3~V1)-0.9151(V5-Vp)
Substituting the voltage values from eqn, (138) :-
| I3y = =-0,0469(-0.0074)+3.6368(0,0638)-0.9151(0,0630)
= 01748 . . . . . .. o0 . (183
Checking, from eqns, (140) and (143) Ip1+I31 = 0.1848 which, within
' the degree of accuracy of the calculations, 1s equal to I,g from

eqn. (139),

A.7.1. EXAMPLES OF BUS IMPEDANCE MATRIX MODIFICATION.

The bus impedance matrix for two exampleg of modifications to the
network in Fig.,10 1is now calculated. |
(a} The self impedance of uncoupled element 2-1 is changed from
0.08 to 0,04 per unit,
From eqn, (121) :-

Zeppe = 008 .0 . . . . o . oo . (s
l1.e. add an element having impedance 0,08 in parallel with element
2-1, Ag this element forms a loop, &n augmenting row and column is
added to the bus impedance matrix of eqn.(136); applying eqns. (67)
and (70) :-

[z'] -

1 2 3 4 2-1
0.0296 | 0,0148 | 0,0074 | 0.0082 { 0,0148{ . . (145)
0.0148 | 0,0438 | 0,0082 | 0.0127 |-0.0290
0.0074 | 0.0082| 0,0712 | 0,0638 |-0,0008

W

0.,0082 { 0,0127 | 0,0638 | 0.2515 |=0.0045

2-1 {0,0148 |-0,0290 | -0,0008 {-0,0045 0.1238

The augmenting row and column 2-1 are eliminated leaving the bus

impedance matrix of the modified network :-

1 2 3 4
‘[:] =

0,0278 | 0,018% | 0,0075 [ 0,0087{ . . . . . (146)

1
2 |0,0183 | 0,0370 | 0,0080 | 0.0116
3 10,0075 | 0.0080 | 0,0712 | 0,0638

4 |0.0087 [ 0,0116 | 0,0638 | 0.2513

(b) The self and mutual impedances of the mutually coupled group
of elements 4-3, 3-1 and 3-2 are modified as follows :-

self impedance of element 4-3 changed from 0.2 to 0.4 per unit,
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self 1m§edande of element 3~1 changed from 0.3 to 0.5 per unit,
self impedance of element 3-2 changed from 0.4 to 0.2 per unit,
end mutual impedance between elements A-3, 3-1 reduced to zero
and similarly between elements 4-3, 3-2.
The new impedance matrix for the group of elements is :-
4=3 3-1 3-2
Zpew| = 4=310.4] O 0 . . e . .. . (a7)
3.1} 0 | 0,5 |0,1
3-2| 0] 0.1 0.2

Inverting -
4-3 3-1 3-2
Ynew| = 4-3 |2.5 0 0 R ¢ VL
| 3-1 | 0 | 2.2222 |{-1.1111 ’

3-2 | 0 | -1.1111 | 5,5556

Yo1a for the group of mutually coupled elemente 1s glven by eqn, (142)
and hence from eqn, (119) :=
[¥1c] = [¥new] - [vora]
' ’ 4-3 3-1 3-2
= A=3 | =2,6619| 0.0469| -0.6570} . . . . . (149)
3.1 | 0,0469 | -1.4146 | -0,1960

3-2 | -0,6570 | -0.1960 | 2,7447

Inverting :-

- 4=3 3-1 3-2
|2r1c| = 4-3 -0.3547 0 -0.0849| . . . . . (150)
3-1 o) -0,7000 | -0, 0500

3.2 |-0.0849 | -0.0500 | 0.3404

The diagonal terms of are self impedances and the off-dlagonal
terms mutual impedances of ioop elements 4-3, 3~1 and 3-2 which are
now added to the bus impedance matrix, eqn. (136). As all group
elemerits form loops the corresponding connection sub-matrix is,
from eqn. (100), a unit matrix and hence applying the loocp element

rule and eqn. (32) 3=
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1 2 3 4 4-3 3-1 3-2
1 0.0296 | 0.0148| o0.0074| 0.0082| -0,0008 | 0,0222 | 0,0074
2 0.0148 | 0,0438 | 0.0082| 0.0127| -0,0045 | ©0.0066 | 0.0356
3 r-0.0074 0.0082| 0.0712} 0,0638| 0,0074 | -0,0638 |-0.0630
4 0.0082 | o0.0127| 0.0638| 0.2515| -0,1877 | -0.0556 |~0,0511
4-3 | -0.0008 |-0,0045| 0.0074| -0.1877| =0.1596 | -0.0082 -0.0968m‘
3.1 | 0.0222 | 0.0066 | -0,0638 | -0.0556 | -0.0082 | -0,6140 | 0,0204
3-2 | 0,0074 | 0.0356| -0,0630| ~0.0511 | -0.0968 | 0,0204 | 0,.4390
. (151)
Eliminating the three augment.ing rows &nd columns lea,Qes the bus
impedance matrix of the modif-ive‘d‘ -ﬁétﬁork te
1 2 3 4 4~3 3-1
1 | 0.0295| 0,0142 | 0,0085 | 0,0091 | 0,0008 | 0.0219
2 | 0.0142| 0,0409 | 0,0133 0.0168 | 0,0033 | 0,0049
3 | 0.0085| 0,0133 | 0,0621 | 0,0564 |[-0.0065 [-0.0609
4 | 0.0091 | 0,0168 | 0,0564 | 0.2455 |=0.1990 |-0,0532
4-3%| 0,0008 | 0,0033 [-0,0065 }-0,1990 |-0,1810 |-0,0037
3.1 0.0219 | 0.0049 |-0.0609 |-0,0532 [-0.0037 |-0,6150
1 2 3 4 4-3
1 |0.0303| 0.0144 | 0.0063 | 0.8072 | 0.0007
2 |0.0144 | 0.0409 | 0.0128 | 0,0164 | C.0033
3 |0,0063| 0,0128 | 0,0681 | 0.0617 |-0,0061
4 |0,0072}|0,0164 | 0,0617 | 0.2501 |-0,1987
4-3 | 0,0007 | 0,0033 |-0,0061 | ~0.1987 |-0,1810
1 2 3 4
[:] = 1 /0,0303| 0,0144 |0,0063 | 0.0064 (152)
2 10,0144 | 0.0410 |0,0127 |0.0128
3 | 0,006%3 | 0,0127 {0,0683 | 0.0684
4 10,0064 | 0,0128 |0,0684 | 0.4686

A.7.2, EQUIVALENT NETWORK AND PARTIAL NETWORK MATRIX COMBINATION.

o
_Fig.1ll shows the network of Fig.10 divided at nodes 1 and 2

. 1nto two sub-networks "A' and "B". For sub-network "A" the bus imped-

ance matrix 1e given 1in eqn, (129) :=
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1 2
ZA = 1 o. 032 vo. 016 . - . . - . .
2 10,016 (0,048
0 A B
0.20 3
0.04 0.08 4 e £0.10
0.05 Oy
0,08 2 0.40
1 - JYVE - < 3
0,01 0.10
o’ 30
. . AT —o
Fig.1l

The bus impedance matrix of sub-network "B" is calculated

commencing with generator element 3-0 :-

12 3

zg|= 1lofolo |. . . . . . . .
2lolo| o
30| 0 |0.10

(153)

(154)

The group of three mutually coupled elements 3-1, 4-3 and 3-2 which

form branches establishing nodes

1, 4 and 2 respectively are now

added to eqn.(154) by the branch element iule, eqn.(41) :-

1 2 3 4
[2'] = 1{0.40]0.10]0.10 [0.10 S 6 1510
210,10 0,500.10 |0,10
310.,10|0.10 0,10 {0.10
410.10}0.,10|0,10 |0.30
The group mutual impedance matrix @ is given 1in eqn,(125) and from
eqns. (99) and (101) the connection sub-matrix is :-
1l 4 2
Gp| = 3=-1|=-1| 0} O T & U1
4-3| ol1] o
3.2 | 0] 0f-1
and the triple matrix product :- |
1 4 2
CogzmOb| = 1| 0 [o0.00|0.20] . . . .. sn
410,01 0o 0,05
2 lo.10]| 0,05 | 0
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Ag all group elements are branches, adding eqn. (157) to eqn. (155)

according to eqn,(32) gives the bus impedance matrix of sub-network
IIB“:_’.
zg| = [2"] = [2'] + |opznty
1 2 3 4
= 10,40 0,20 (0,100,122} . . . . . . (158)
2 {0.,20|0.50 |0.10] 0,15
3 (0.10] 0.10 |0.10 | 0.10
4 10,11 | 0,15 {0,120 | 0,30
Frbm this equation the bus impedance matrix for Bls equivalent network
retaining nodes 1 and 2 is derived :-
o1 2 |
Zeqiv| = 1(0.40)0.,200 . . . . . . . . (159
2 0,20 0,50 |
Inverting :=
1 2
|qu1v| = 113.125 -1.251} . . . . . . . . (160)
2 |=-1.25 | 2.50
Hence the per unit admittances of the élements,of the equivalent
circulit are - _ |
¥o1 = 1.25 Y10 = 3.125-1.25 = 1,875
Y20 = 2.5-1.25 = 1.25 . . . . (161)
Inverting these admittances g;ves the per unit impedances :-
25, = 0.8 z10 = 0.5333 z2p9 = 0.8 . . . (162)

and the equivalent circuit is shown below in Fig.12 :

o}
0.5333 £ 0.8
1 :#ﬁitu 2
Fig.12

The bus impedance matrix of sub-network "A" i1neluding the effect of
sub-network "B 1s now calculated by two methods :-

(a) elements 2-0, 1-0 and 2-1 with self impedances given by
eqn. (162) are added to the bus impedance matrix of sub-network "A",
ean. (153), Starting with element 2-0 and applying fhe rules for

adding & loop element connected to the reference node, eqns, (73)
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1 2 - 2-0
1 0.032 | 0.016 | -0,016
2 | 0.016 | 0.048 |-0.048
2.0 | =0.016 |-0.048 | 0.848

‘Eliminate row and column 2-0 and add loop element

~and (74) -

B! 2 1-0
1 | o.0317| o0.0151 [-0.0317
2 | 0.0151| 0.0453 |-0.0151

1-0 | ~0,0317 | =0, 0151 | 0,5650

(163)

1-0 by eqns. (73)

(164)

- Eliminate row and column 1-0 and add element 2-1 by the loop element

ruleé; eqns.(67) and (70) :-

1 2 2-1
10,0299 0.0143 | 0.0156
2 10,0143 0.0449' -0.0306

2-1°| 0,0156 | -0.0306 | 0.8462

(165)

Elimihatihg'the augmenting row and column 241 gives the required

‘bue impedance matrix :-

1

2

0.0296 | 0,0149 N 113

0.0438

3 0,0149

4(b)>It 1s-assumed that'lzeqivl given in eqn, (159) 1s the impedance
matrix for a group of two generator elements 1-0 and 2-C having per

unit- self impedances 0O, A0 and o. 50 respectively and mutual coupling

impedance 0,20, Applying eqne.(?}) and (74) to add the two loop

-elements 1-0 and 2-0 to.

2y | from eqn.(153) t-
1 2  1-0 2-0
"1 | 0,032 | 0,016 |-0.032 | -0.016
2‘ 0.016 | 0,048 | -0,016 | -0.048
1-0 -0.032 |-0.016 | 0,432 | 0.016
2-0 ~0.016 |=-0.048 | 0.016 | 0.548

As the two loop elements connect

sub-mat rix

established nodes,

(167)

the connection

Cp| 18 & unit matrix and hence the product :-
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1-0 2-0
CotZmCo| = =0 0 Jo.20f . . . . . . (168)
2-0 (0,20 | O
Combining eqns.(167) and (168) according to eqn.(32) :-
1 2 1-0 2-0
z'| = 1 | o.032| 0.016 [-0,032 |-0.016|. . . . (169)
2 0.016 | 0.048 | -0.016 |-0,048
1-0 | -0,032 | -0,016 | 0.432 | 0.216
2-0 | -0,016 | -0,048 | 0.216 | 0.548
Eliminate row and column 2-0 :-
1 2 1-0
1 0.0315 | 0,0146 |~-0,0257
2 0.0146 | 0.0438 | 0.0029
1-0 |-0.0257 | 0.0029 | 0,3470

Eliminating row and column 1-0 leaves the bus impedance matrix of

sub-network "A" including the effect of sub-network "B" :-
1 2

E] = 1 [0.0296

2 | 0.0148

o.oxg8f . . .+ .+ .+ . . (170)

0.0438

Eqne. (166) and (170) are both equal to the bus impedance matrix of
the equlvalent ecircult retaining nodes 1 and 2 for the network shown

in Fig.10 and which can be derived from eqn, (136) by inspection,

A,8. COMBIWATION OF NETWORK BUS IMPEDANCE MATRIXES.

in eqn, (159)
and in eqn, (153) to givelz] in eqn. (170) is an example of

adding the bus impedance matrixes of networks Jolned at two nodes; a

The addlition of the bus impedance matrixes zeqiv

procedure which can be extended to networks joined at one or more

nodes.

A : B
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Consider the two networks "A"and "B" shown in Fig.13 which are to be
connected together at nodes 1 and 2. The bus impedance matrix éf
network "B" ig given in eqn, (158) and that for network "A" is found
by adding branch element 5-1, self lmpedance 0.2 per unit, to the
bus impedance matrix given in eqn.(153), i.e. :-

1 2 5

Z,| = 1 (0.032] 0,016 f0,032( . . . . . (171)
2 |0,016| 0,048 | 0,016
5 |0.032| 0,016 | 0.232

When adding network "A" to network "B", Z,| can be considered

as the impedance matrix of an equivalent group of mutually coupled
generatof elements 1-0, 2-0 and 5-0, i.e. the dlagonel and off-
diagonal terms are respectively self and mutual impedences of these
equivalent elemente. As nodes 1 and 2 are common to both networks,
elements 1-0 and 2-0 form loops with element 5-0 forming a branch,
hence starting wlﬁh [?é] and adding the equivalent element self
impedences by the generator branch and loop rules followed by the

mutual impedances (noting that Cb' is & unit matrix) the matrix

for the combined network is :-

1 2 3 4
‘0.40| 0.20( 0,10 0,11

1-0 2-0

-0.40 |=-0,20

0.20| 0.50| 0.10| 0.15 -0.20 |-0.50

o] O o |\

0.,10| 0.10| 0.,10] 0,10 -0.10 |=0.10

0.11| 0.,15| 0,10f 0.30| O |-0.11 |-0.15

(O B A L\ Y o

0 o o] 0 0.232 0.032 | 0,016

1~0 |~0.40 | =0,20| -0,10| -0,11 | 0,032 | 0.432 | 0,216

240 |=0.20 | -0,50 | =0,10 [ -0.15 | 0,016 | 0,216 | 0.548
. . e (172)

Eliminating row and column 2-0 :-

1 2 3 4 5 - 1-0
0.3270 | 0,0175| 0.0635| 0.0553 | 0,0058 | ~0.3212
0.0175 | 0.0438 | 0,0088| 0,0131 | 0,0146 |~-0,0029
0.0635 | 0,0088 | 0,0818 | 0,0726 | 0,0029 | -0.0606

" 0.0553 | 0.0131| 0.0726| 0.2589 | 0.0044 |-0.0509

N A~ W

0,0058 0.0146 {* 0,0029 0.0044 | 0.2315 | 0,0257

1-0 -0;3212 -0, 0029 ;0.0606 -0,0509 | 0,0257 | 0©.3470
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then row and éolumﬂ 1-0 leaves the bus impedance matrix of the
connected networks - v |
1 2 3 4 5
[:] = 0.0296 | 0,0148 | 0.0074 |0.0082 | 0.0296 | . . (173)
0.0148 |0.0438 | 0.0083 [0.0127 | 0.0148
0.0074 |0.0083 | 0,0712 |0,0637 | 0.0074

S W

0.0082 {0,0127 | 0.0637 |0.2514 |0,0082
5 10,0296 |0,0148 | 0.0074 |0.0082 | 0.2296

Comparing this with eqn, (136) showe that the bus impedance matrix
of the conneocted ‘hetworke is the same as that derived from the bus
impedance matrix given in eqn. (136) by adding & branch element 5-1,
self impedance 0.2, to the network in Fig.10. Hence, if two networks
having bus impedance matrixes and ZB are Joined at one or more
nodes, then the impedance matrix @ of the combined network is
given by (Ref, 2):- ' ' |

branch loop

0
branch o
’ Zp+Zegy
loop |=Zyow sty

where andl Zrbwl are respectively the column and row terms of

tZBl» corresponding to nodes common to both networks and is
the sub-matrix of corresponding to the common nodes. The bus

impedance matrix E of the combined networke is derived from @
by eliminating the "loop" rows and columns. ,

The impedance matrix @ of eqn,(174) resulting from the
co_mbinatlon of tﬁo network bus impedance matrixes has the simple form
shown because the added bus impedance matrix is assumed to be the
self and mutual impedance matrix of & group of generator elements
which form loops in the case of nodes common to both networks,other-
wise branchee, and for which the connection sub-matrix is a unit

matrix,

A.9. DIGITAL COMPUTER SHORT CIRCUIT PROGRAMME.

In thé digital computer programme (HEI 2a) the network bus
" impedance 'calculatlon' gset out in the above example 1s generalised for
application to any power system network with any combination of node

numbering and listing orders for element self and mutual coupling
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'

read baslc data

{

read element dete
convert impedances to per unit

yes

\

mutual
coupling
?

read mutual coupling data
convert impedances to per unit

sort into groups

form mutual impedance matrixes

no

=1

sort into

no elements

branch and loop

no

element
?

branch

no ///////;ied
element
9

add self and mutual
impedences to matrix

eliminate loops no

record used elRments

print unused

I - counter

N - number of elements

€lements

all
elements
used

print node
impedances and
current distri-
bution factors

end
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impedances. The flow diagram for the computer programme ig given in
Fig.14. Because power system tranamiesion line impedances &are ﬁsualiy
given in ohms, provision 1s made for listing element self and mutual
impedances either 1n'ohme or per unit by including the bage MVA in
Table 1, Basic Date, and nominal voltages (in kV) for each impedence
in Tables 2 and 3. As each line of data is read, the impedance is
converted to per unit and stored together ﬁith node numbers for the
self impedances and element numbers for the mutual impedances.

The next step in the calculation 18 sorting the mutuval couplings
inté groups, l.e. each set of elements directly or indirectly coupled
together 1s listed with 1ts assoclated matrix of mutual impedances, As
this matrix 1s symmetrical only the 16wer triangular part is stored,

_After this preliminary re-organisation of the data, the csl-
culation of the network bus impedance matrix starts with the first
generator element from the list (mutual coupling to generator elements
is not permitted in the programme, & minor restriction with power
system networks). Thus & network node, other than the reference, is
now established and the next element processed may be connected to
the reference or to this node, .

The network'bue'impedance.matrix is formed in & step-by-step
procedure involving the repeated searching, until all elements are
used, of the list for an element or a group of mutually coup}ed
elements which can be processed, During the calculation only the
lower triangular part of the bus impedence matrix is stored and used
‘ae it 18 symmetrical, If the element being processed ie & branch then
a corréeponding row is formed in the matrix ueing the rule in eqn. (41)
or (46), Lf a loop then an augmenting row is formed uelng the rule
in eqne.(67) and (70) or eqns.{(73) and (74) which is then eliminated
by application of Kron's rule.

When a group of mutually coupled elements is found, it 1s
examined to determine ﬁhether there 18 an order in which these elements
can be processed at this stage of the calculation; if so they are
listed in the'proceeelng order with branch elements first and loop
elements last. The self impedances of the group elements are sdded
to the impedance matrix according to the branch and loop element rules

followed by derivation of the group connection sub-matrix which
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18 built up by examining the group elements one at a time in the
processing order and forming & corresponding row and column - }ow
terms zero, column terms found by tracing the connectlons from element
nodes to an established network node taking account of relative node
magnitudes as shown in eqns. (99) to (105), The matrix of group mutual
1mpedanceaiie set up by rearranging the the terms of the matrix

formed in the initlal sorting to correspond with the proceésing order,

the triple matrix product |Cpt2,Cp| calculated and added to the net-

work impedance matrix and then augmenting rows corresponding to loop
elements are eliminated.

Ag mentioned above mutuel coupling with generator elemnts is
not permitted in the computer programhe - 1in power system networks
this i1s not & significant restriction which can be overcome by using
a "dummy" node to divide the element into two parts and lumping the
mubtual impedance in thg part remote from the reference node - no
error is lntroduced by this procedure as all self and mutual imped-
ences are lumped in any case,

When all listed elements are used, the calculetion of the bue
impedance matrix is complete but before printing results the group
gself and mutual impedance matrixes are inverted as the admittances

Ygp| are required in the calculation of current distribution fectors.

For each network node or busbar the current distribution factors for
elements connectéd to that node are calculated and printed, the per
unit driving point impedance and the base MVA divided by this imped-
ance are élso'printed. In addition, current distribution factors for
other specified elements may be obtained and the impedance metrix
terme for &nequivalent network retsining speciflied nodes punched on
paper tape in a form thet can be used as data for & computer pro-

gramme for calculation of the elements of the equivalent network.
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B. THE BUS ADMITTANGCE MATRIX AND POWER SYSTEM FAULT CALCULATIONS.

B.1. INTRODUCTION.

In contrast with the bus impedance matrix which is full, i.e,
every term has & value other than zero, the bus admittance matrix
reflects network structure and, as in power systems usually there are
few connections between nodes or busbars, it is sparse, i.e, mosnt
off-diagonal terms &are zéro. Hence, 1f the admittance instead of the
impedance matrix could be used for power system fault studlies, a
copsiderable s&ving in computer storage requirements would be possible
with a large network by storing only nbn-zero terms. Aleo there would
be & reduction in the number of arithmetic operations during com-
putation thus reducing computer running time and posgsibly round-off
errors, although the latter 1s not likely to be significant,

However in power system fault studies, terms of the bus imped-
ance matrix are required for calculating fault powers and current
distribution factors - eqns.(111), (113) and (116) - and if complete
lnversion of the admittance/?itztiessary the adventages of sparslity
are lost. W.F,Tinney and J.W.Walker (ref.46 )} of the Bonneville
Power Admihistration have devised & method for calculating terms of
the bus impedance matrix from a factored inverse derived from the
bus admittance matrix by Gaussian elimination of terms below the main
diagonal and show also that by selectling & preferred elemination
order, the resulting factored inverse hae almost as neny zero terms
as the original admittance matrix. In a power system the preferred
order is determined by the number of network connections to the nodes,
excluding connectlons to the reference node,-i.e, the number of off-
diagonal terms 1in the corresponding row or column, The elimination
starts with nodes cohnected to one other node only, followed by those
with connectione to two other nodes, then those connected to three,etc.
While this is not necessarily the optimum order it has the advantage
of simplicity and, in general does produce for power systems & fac-
tored 1hverse which reflects the sparsity of the admittance matrix,
From the factored inverse it 18 easy to derive one row at a time, or

only part of a row if all the terme in the row are not required, of
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the bus 1mpedance matrix from which fault powers and current dis-

tribution factors can be caloulated.

B.2. CONNECTION MATRIX RELATIONS

For the network shown in Fig.1l(a) the relation between node
currents and voltages is given by the equation :-

[I,'\|= wlival « . . . . . . .am
where 18 the bus admittance which like the bus impedance matrix

~ has a row and column corresponding to each network node except the
AR i
reference node, | Ip{ are the currents flowing lnto the nodes and (VA

the node voltages referred to the reference. Comparing with eqn.(l) :-

=“1 R ¢ & 3

The equation connecting element currehte and node voltages for the

mutually coupled group of elements shown in Fig.1l(b) can be written :-

Igp| = [Yap|[Ve"Y] - - - . . . . am

where yqpl, the group self and mutual admittance matrix, is the
inverse of the self and mutual impedance matrix Zgp of eqn.{(2) :-

'M=M“l........ (178)

Corresponding to eqn.(29), lyqp| may be considered as the sum of a

dlagonal matrix [ysl,and e matrix ‘yml having zero dlagonal terms :-—-

Fap| = [¥e] * [ - - - . .« . . Q19

The terms of [yg| ere "equivalent" self admittancee of the group

elements and are not reciprocals of the corresponding element self

impedances in [EE] while [yp| are "equivalent" mutual admittances

between group elements. In general Yap| 1s & full matrix with "“equlv-

alent" mutual admittances between each palr of group elements even 1°f
2qp| 18 sparse and all pairs are not directly coupled,

Combining eqns, (175) and (177) into one equation :-

Ip| =] o] vy, e e e .. . 80)

I 0 =V

qp Yap| {Ya~Vp
If the network shown 1n Fig,l(a) and the group of elements

Fig.1l(b) are connected together so that the power before and after
interconnection is unchanged, i.e., the current flowing in each element
is unaltered by interconnection, then the relationship between the

r

currents before and after interconnection is given by the equation :-
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IA = 1 Aat IA - . . . . . Y . (181)

_ qp
where lIAl are currents at the nodes of network (a) after interconnec-

tion and 'IB are, after interconnectlon, node currents corresponding
to branch elements of group (b) and element currents corresponding to

loop elements. Each term of the connection sub-matrixes and | Ay

1s 0, +1 or -1 and they are the transpose of matrlxes‘ Aaland IAbI
"reapectively which are related to the bus incidence matrix as shown

in eqn. (204). Comparing eqn, (181) with eqn.(4) :-

1 Aa.t = 1 ca ‘1 = 1 _Cacsl R . . . . (182 )
’ -1

Therefore, equating sub-matrixes on both sides of the equation :=-

Apg| and [Cp| are square matrixes of size equal to the number of

elements in the group Fig.1l(b), As the sub-matrix |C,| can be expres-

sed in the form having zero for all terms below the main diagohal and
+i or -1 for its dlagonal terms, its determinant 1s equal to the
product of the dlagonal terms, 1.e..+1 or -1, and hence it has &an
inverege. The relation between the connection matrixes shown in

eqns. (182) and (183) holds in general for connecting &ny group of
mutually coupled elements to a network as no restrictions have been
placed on the network and group shown in Figs.l(a) and (b).

Assuming that power 19‘1nvariant when the group of elements
Fig.1(b) is connected to the network Fig.l(a) then the relation
between voltages and currents before and after interconnection is :-

Voo | Vee| [Ta | = [Vag | (Vg=Vple||Ta®| . . . . (84
14 Is

qp
where "t" denotes the transposed matrix and "s" the complex conjugate.

‘Substituting for [I}| from eqn,(181) :-

Ig
Vag | Vee| [t [Aas|[TX | = |Vas |(Vg-¥p)s||TA
0 [Aue] | Igp ap
Cancelling the current terms and transeposing :-
| 1 |0 |[(Val =1 Va « e+« .+« . (85)
Ay | Ap||Vg| | Vg-Yp

In this equation are voltages at the nodes of network (a) and
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are voltages &t the nodes established in the interconnected
network shown in Fig.l(c) by branch elements of group (b) and zero

corresponding to loop elements of the group.

Premultiplying both sides of eqn,(180) by {1 [Age | and

o 9 1Pt

substituting for currents and voltages from eqns, (181) and (185) :-
Inl = |1 |Agglf¥pa ] O)[2 JOffval . . . . . . (186)
Is O [Apg| |0 |¥gp||%a| ]| VB
From this equation it follows that the admittance matrix of the

netﬁork formed by connecting the group of elements shown in Fig,1(b)

- to the network Fig.,1(a) is :- | ‘
[ .

Y ! = {1 {Aggl (YA 0 1 0

= YA O+ |A

atyqua AatYqpAb

o [0 Athqua' Apty qub

(Y] * [Aat] [Yap)[®a]®] - - - . . . .a8D
o o Aot | |
From eqns.(186) and (187) it follows that':-'

(a) as the terms of ‘IB and iVB| corresponding to loop elements

. are respectively element currents and zero, the bus edmittance matrix
E relating node currents and voltages of the interconnected network
: . e =

is found by discarding the rows and columns of lY' f corresponding to

these loop elements, i.e. :=

LY_| = |1 Aat YA 0 1 0—‘
t : ' ]
= [Ypl Aat yqp Aa AQJ . . . . . . . (188)
o Al .
bt

. - .
where Ab is- Ab with columns corresponding to loop elements omitted,

For comparison this 18 a simpler procedure thanthat for obtaining the

bus impedance matrix @ which requires the elimination of rows and

s ,
columns from Z'I correaponding to loop elemente;

n

(b) in forming (Y | the terms of |Y¥,| are modified by the addition

of [A Aa calculated from the group admittance matrix as compared

at¥gp
. m ]
with the the formation of |Z |, eqn.(31), in which 1s unchanged;

u
(¢) in |Y | the terms in the rows and columns augmenting are
calculated from the group admittance matrix whereas the rows

and columns augmenting rzﬂ in eqn.{31) contain terms of ;
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(a) from eqns.(179) and (187) it follows that group equivalent
mutual admittances are in &ll four sub-matrixes of , whereas in
eqn, (31) the group‘mutual impedances appear only in the lower dlagonal
sub-matrix of @;

Yqp
full matrix, the bus admittance matrix for a network with mutual

(e) &8s, in general, for a group with mutual coupling - is a

coupling is not as sparse asg that for the corresponding network without
mutual coupling; and

() as 18 determined by adding to terms calculated from
products of and the conneotion sub-matrixes and and the
bus admittance matrix derived from by discarding rows and
columns corresponding to group loop elements, the order in which the
group elements are processed is imm&terial. This is in contrast to
forming the bus impedance matrix where group elemente are processed
in a definite order as new rows and columns are formed from existing
rows and columns, eqn, (31), and elimination of loop rows and columns
modifies the terms of @ glvlhg the bus impedance matrix @.

Note :- As is symmetrical, the diagonal sub-matrixes Aatyqu

and Abtb’qub are symmetrical and the off-diagonal sub-matrix
AatyqpAp| 18 the transpose of off-diagonul sub-matrix |Aneygphal,

hence is plus & symmetrical matrix; and as has been

built up from groups of elemente and 18 therefore symmetrical 1t

a

follows that and are symmetrical,

B.3. STEP-BY-STEP CALCULATION OF BUS ADMITTANCE MATRIX.

- ref.,
]
s E 1o 3 e Ta e
/ Ieq Ire /
d 4 f 4 e f
(.7.7.3 (2" e y = = Oy —yuy—® > (L3 ’ VT 07"

s

R vy~

(21 - - s oy vy
k k h g k h
(a) (b) (c)
Fig.15

Fig.15 ie Fig.l repeated and from eqn, (181) the relation between ‘
element currents and the eurrents after lnterconnection is :-

=Py [ - - - - - - - . (89
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From Fig.15 assuming that e>d, f>e, k>h, h>g and g>f and that when
the elements of (b) are added to network (a) e-d, f-e, k-h and h-g
form branches and g-f forms & loop then the terms of the matrix

eqn. (189) are :-

Ie = Teq-Ife . « « « . + « . (190)
e = Ife~lge .« o« o . . . . (19D)
I, = Ing-Tgn + -« =+ « . . . . (192)
Ig = Ige=Ipe =« « « .« .« . . . (193)
Ige = Igr o o« o« . . ... (9

or, writing as one matrix equation corresponding to eqn, (189) :-

e-d f-e k-h h-g g-f

Io|{= e|l1|-1|o0jof oIl . . . . . (195)
I £10] 10| 0-1]{Ig

I, h{0| 0 |=1| 1| Of|I

I g 0] 0|0 |-1| 1}Ipn

Ioe g-f| 0| 0} 0| 0] 1|iT,e |

The product of |Abt| from this equation and [Cy| from eqn.(11) is a
unit matrix as in eqn, (183). |
 From eqn.(181) :-

@:?ﬂﬂ%t Il + « . . . . (196

For nodes "d" and "k" of the network shown in Fig.15(e), and to which

elements of group (b) are connected to form the interconnected
network Fig.15(c), the terms of this equation are :-
¢
Id. = Id—Ied . . . . . . . . (197)

Ik = I;{‘"Ikh . . . . 3 . . . (198 )
and writing in matrix form :-

Id = Ié + —1 0 Ied . . . . . (199)

I, Ty 0|1||Txn

Combining eqns.(195) and (199) into one equation relating currents 1n
the interconnected network to node currents in network (a) and

element currents in group (b) :-
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d k e-d f-e k-h h-g g-f

101= afltfof-afofofofo]lzd]. . . . (00
I, kjofif olof1folfoflr

Ie efofoll 1|2 o] of of[req

I, riofof o]l 1] o] of-1]|[,,

I, h|o|off 0] O f-1|12}] Of{Iy

I, glofofl o] ofol-1]1fly,

I,r g-r [0 joflo]ofofo] 1}

The connection matrix in this equation gives the terms in and
Apt| of eaqn, (181) omitting the rows of in which 811 terms are
zero, l.e, omltting rows and columns corresponding to nodes not
common to network (a) and group (b). The equation connecting the node
voltages before and after connecting the network andi group of elements
shown in Figs.15(a) and (b) given in eqn. (185) is found by trensposing
the connection matrix in eqn, (200) :-

d k e f h g g-f

d|1fof ojofo| o] oflvgl=1] V4 . e . (201)
k |o|1] o] o} 0| O] OV, Vi

e-d [-1 {0 10| 0| 0] Of[Vg Ve-Vy

f~e | 0|Of-2 |1} 0| 0} Of|Vg Ve=Vg

k~h {01} 0| O |-2] O0f Of{Vy V=V

h-g |00} 0| 0 f1]|-1|Of|Vg ';L:;;-

g-r |ojoll o|-1 |oOo] 1] 1]]|0 Vg~V

In this equation the columns of in which &1l terms are zero have
been omitted.

Subetituting the connection matrix from eqn, (201.) into
eqn. (187) and using eqn,(179), the matrix of equivalent group self
admittancesfor the elements shown in Fig,15(b) which 1s added to the
edmittance metrix of network (a) in finding for the inter-
connected network Fig,15(c¢) is :-

Aag| [7g]|%a | Ao =

Apt
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a1 4] o 0 o] Yed 0] (0] 0o o
k 0 0] 1l 0 0 0 Yre 0 (0] 0
el 1 |- (O }IO}| Of|f O O |ynl!| o 0
f{ ol 1|0 |0 (=10 0 Yhg | ©
hf ol o0|-1 |1} offo |o o [vgr
gl 0] O| 0 j-11]1
g-fl ol o}lojo] 1
d x e f h g g-f
-1{of 1] o0 oo . (202)
0|01 1 0 0 o
0j1l o 0 -1 0 0
0ij0 0o 0o 1 911 o
oflo 0 -1 0 1 1
Multiplying the three matrixes on the right hand side glves the
matrix of equlvalent self admittances :-
Agy |Aa l Abl =
Aot
a k e r h g g-1
d | Yeq ~Yed 0 0 0 (203)
ki 0| ¥ 0 0 -Ykh 0 0
e Ted O || Yea*V¥re| -Vre 0 0 0
ry o O || =~¥re | Yre*Vgr 0 ~Ygr | ~Ygr
h ] -Y¥kh o 0 ykh"'yhg "yhg 0
g Y 0 0 —~Ygr “Yhg Yng*¥gr| Ygr
g- 0 0 0 ~Ygr Y Ygr Yer

To find the admittance matrix

work shown in Fig.15(c), the matrix in eqn.(203) is added to

w
Y ] of the interconnected net-

the bus admittance matrix of network (&) followed by the addition of

group mutual admittances from the product

Ae.t

Apg

. lAal Ab‘, The bus

admittance matrix of the interconnected network Fig.15(c) is then
. 1]
found by discarding the row and column of corresponding to the

loop element g-f.

' From eqn. (201) it follows that the connection matrix

1e the bus incidence matrix of the group of elements, Fig.15(b),

augmented by a column for loop element g-f, i.e. disregarding columq
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g-f, the row corresponding to each element hss two non-zero terjms -1
in the column for the lower and +1 in the column for the higher
numbered node. Hence, the connection matrixes in eqn.(181) are trans-
poees of matrixes and [EJ . As shown in eqns.(187) and (188) rows
and columns of [__Y_i\ corresponding to loop elements are discarded to
give the bus admittance matrix , therefore the column of the
connection matrix in eqn. (201) and the row of its transposeAin eqn. (200)
which correspond to loop element g-f cen be omitted leaving the bus
incidence matrix and its transpose, Writing :-

Al =jalag] . . . . . . . . . . (200

where 1s the bus incidence matrix of the group of elements,

eqn. (188) may be written :-—

X = [ * [A] [apl [2]
@*El@*. ... Leos)
splitting into components as in eqn.(179).

Note It follows from eqns. (187) and (188) that the discarded rows and

I
1}

columns of [Y__"_] involve terms of @ only, and from eqn,(201) thet
the the column omitted from has +1 for the diagonal and zero |
for all other terms.

Omitting row &nd column g-f from the matrix in eqn. (203) it
followe that thg rule for adding the equivalent self admittance AT
6f a mutually coupled element j-i to the bus admittance matrix is :-
~8d4 Y31 .into the diagonal terms JJ and i1 corresvonding to the élement
nodes and AT into the off-diasgonal terms ji and 1j. This is the
same a8 the well known rule for formlng a bus admittance matrix from
uncoupled network elements; algo inspection of eqn.(203) shows that
the rule applies to both branch and loop elements of the group &and,
as only additlon is involved, the order in which group elemente are
processed is immaterial, As the bué admittance matrix doee not have
a fow and column corresponding to the reference node, 1f the group
element 1s & generator 1ts equivalent self admittance is added to the
~diagonal term corresponding to its other node.

As there ig no row and column in for the reference node,
the column of [A], ean,(205), corresponding to the reference node cen

be omitted when the group contains a generator element, 1i,e. the row
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of corresponding to a generator element has the one entry 41 in
the column for the node other>th3n the reference. After the elememt
self, or equivalent self admittances have been added as above, the
equivalent group mutual admittences are added in accordance with
eqn. (205) from the product B

Thus in contrasgt to the bus impedance matrix calculation, the
bus admittance matrix 1s formed by taking the network elements in any
order and adding the appropriate self admittance values into row and
column terms, while group mutuel admittance values may be added after-
wards or at any stage of the calculation. Also, as it is immaterial
whether group elements form branches or loops, the triple matrix
product m can be set up taking the group elements in any order,

in contrast to the mutual impedance product which is formed

from the group elements in a definite order.

B,3.,1. GROUP3 OF MUTUALLY COUPLED ELEMENTS.

Typical examples of calculating the matrix product AbymA for

groups of mutually coupled elements are set out below.

o] o
1 % 2 1-F [12-3 0 ae 2
(a) ' (b)
Fig.16
Fig.1l6(a). Two mutually coupled elements 3-1 and 4-2.
1 2 3 4

[A]= 3-1[-a|ofrfo]| . . . . . . . . (206)
4-2 | 0|-1 |0 |1

For this group the mutual admittance matrix is :-
3-1 4-2
Vol = 310 [¥m] -« « « - « . . . . (207
4-2 |y | ©

and the right hand term of egn,(205) for the mutual coupling is :-
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1 2 3 4
Agyghl = 1|-1| o|| 0 |ym|{-1] 02
2| o|=1||ygp [ O] Of{=2]0]1
3] 1] 0
4] of 1

2 3 4

o yml o -.yml . . . . . . ( 208 )

1
2| ¥m O |-¥m 0
3 0 |-¥ym 0 Ym1

4 1 =¥m Y Yml Y

Fig.16(b). Two mutually coupled elements 3-1 and 4-3 with & common

node,
1 3 4
[A]= 31 [ ] 1]0 .o .. .. (209)
4-3 | 0|-1]1
The mutual coupling product for the two element group is :-
1 3 4
[Aeymh] = 1 [-1] 0|[0 [vm|[2] L [0

31 |-l lym| O 0|-1]1

- 1 0 yml —le . . . . - . . (210)

Yml| -2¥ml | Yml

0 0
b 3 L
5 P 4
1 2 10 J2
3 ' (e¢) (a)
Fig.16

Fig.16(c). Two mutually coupled parallel elements 3-1.
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| 13
A= 32 [af2] . . . . . . . .21
3-1 |-1 |1 '

The group mutual coupling product is :-

1 3 ‘ 1 3
AtymA = 1 {-1 =1 o Ym1 -l 1l = 1‘ 2yml | —2ym]_ . (212)
301 I |\¥m| O[22 3 1-2¥ml | 2¥p1

Fig.16(d). Two mutually coupled generator elements 1-0 and 2-0,

1 2 ‘
= -0 140 . . . . . . . (23
2-0 [0 |1

The mutual coupling product for the two generator elements 1s :-

\ 1 2 1 2
AcymA| = 1|1 (0| O |ymli2iol= 110 |ym|. . . (214)
210 1llym Q_J 01 2 |¥ym | O

From the above examples 1t 18 seen that besides belng symmet-
rical, the triple matrix product of mutual admittances has rows and
columne which sum to zero except when one or mnore of the group
elements is a generator, e;g. eqn. (214), but unless two or more
elements have nodes, other than th; reference node, in common,
eqns. (210) and (212), the diagonal terms are zero. As is well known,
the row and column sums of the bus admittance metrix formed from
element self, or equivalent, admittances using the product [E;g;g]
are zero except ;hen generator elements are included, but the
diagonel term ie not zero, e.g. eqn, (203) omitting row &nd column
g-f, - this rule has been used for deriving the self admittances,
eqn. (161), from eqn.(160), Thus the form of the bus admittance matrix
1s unchanged when there is mutual couplling between network elements,
but some sparsity ls lost beceuse mutual admittances appear in terms
which otherwise would be zero, e.g. 1in eqn. (210) a value appears in
terms 4-1, l-4 due to mutual coupling between elements 4-3 and 3-1,
similarly mutual coupling between elements 2-0 and 1-O causes terms

1-2 and 2-1 in eqn.(214) to have a value other than zero.
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B.A. EXAMPLE OF BUS ADMITTANCE MATRIX CALCULATION.

Conslder the network shown in Fig.17 which is the network given
in F1g.10 repeated and for which the bus impedance matrix is given by
eqn. (136).

0
3 : 1
25.0 : 12.5 E 4 5 10,0
2
1l T 4 TTTY -©- b}
m g A4
Fig.1

The per unit self and mutual impedances listed in Tables 2 and 3 are

are converted to admittances.,

TABLE 4. Element self and equivalent self sdmittances.

Element Number| Node Connections | Admittance
1 0 1 25.0
2 0] 2 12,5
3 1 2 12,5
4 0 3 10,0
5 1 3 3.6368
6 3 4 5.1619
7 2 .3 2.8109

The admittances for elements 1 to 4 are obtained by inversion
of the impedances listed in Table 2 while the equivalent admittances
for elements 5, 6 and 7 are obtained from the mutual admittance
metrix for the group glven in eqn.(142). Thie equatioh algso gives

the group mutuel admittance matrix :-

4-3 3-1 3-2
Yml = 4-3] o0 -0.0469 | 0.6570 | . . . (21%)
3-1 | ~0,0469 0 -0,9151
3;2 0.6570| -0.9151 0

_The formation of the network bus admittance matrix starts by
taking the element admittances one at & time from Table 4 in the

listed order. The first element is a generator connected to node 1,
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1
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.The next element 2-0 18 also a generator :-

1 2
[¥] = 1 [25.0 0 |.
2o |25

. (216)

. (217)

As the third listed element connects nodes 2 and 1, its admittance

18 added to the two diagonal terms and subtracted from the two off~

diagonal terms :-

1 2
= 1 { 37.5 [-12.5
2 |-12.5 | 25.0

Element 3-0 18 another generator

1 2 3
(Y] = 1] 37.5]-125] o
2 |-12.5| 25.0( ©

3 0 0 10.0

. (218)

. (219)

The bus edmittance metrixes for partial networks of Fig,l17 given in

eqns. (216) to (219) are respectively inveraes of the bus impedance

matrixes in eqns, (126),(127), (129) and (130).

The equivalent self admittances of the three mutually couplel

elements 3-1, 4-3 and 3-2 are added to in eqn, (219) :_,

1 2 3 4
1 | 41,1368} -12.5 ~3.6368 o
2 [-12,5 27.8109| -2,8109 o]
3 | -3,6368) -2.8109| 21.6096 | -5.1619
4 o} 0 -5,1619 | 5.1619

The bus lncidence

18 3=
1 2 3 4
[A] = 4-3 [o] o-1]1
31 [-1] of 1]o
2 |o|-1| 1]o0

From this and eqn, (215) the triple

. (220)

matrix for the group of mutually coupled elements

. (221)

matrix product is derived :-



1
2
3
4
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1 2 . 3 4

0 -0,9151 | 0.8682 | 0.0469
-0,9151 -0 1.5721 |-0,6570
0.8682 | 1,5721 | -3,0504 | 0.6101
0.0469 | ~0,6570 | 0,6101 0

(222)

which 1s added to , eqn,(220), giving the bus admittance matrix

of the network shown in Fig.,l7 :~-

=

w -

4

1 2 3 4
41,1368 |=~13.4151 |-2,7686 | 0.0469
-13,4151 | 27.8109 |-1,2388 |-0.6570
-2.7686 | -1.2388 |18,5592 |-4.5518
0.0469 | -0.6570 | -4.5518 | 5.1619

(223)

_ is the inverse of the bus impedance matrix in eqn.(136), Compar-

ison of eqn.(220), which includes all element self admittances, with

eqn. (223) shows that sparsity of the bus admittance matrix for tﬁe

network,
general,
sequence

posltive

Fig.17, 1s lost when the mutual couplings are included. In
for power systems the bus admittance metrix of the zero
network is less sparse than that for the corresponding

or negative sequence network because mutual coupling between

network elements 18 included in the zero seQuence but not in the

positive or negative sequence network,

B.5. DERIVATION OF FACTORED INVERSE.

The factored inverse of the bus admittance matrix in eqn, (223)

is now calculeted by taking each row and column in turn, dividing the

row terms by the diagonal, then eliminating the column terms below

~ the dilagonal by Gaussian elimination and finally replacing the

diagonal term by 1ts reciprocal (Ref. 46). Starting with row and

column 1 :-

1 2 3 4
1| 0.0243| -0.3261 | -0,0673| 0,0011
2 0 23,4361 | -2,1417 | -0.6417
3 0 -2.1417 { 18,3729 | -4.5486
4 0 -0,6417 | -4.5486 | 5.1618

followed by row and column 2 :-
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1 2 3 4
1 [0,0243| -0.3261 | -0,0673 | 0,0011
- 0 0.0427 | -0.0G914 |-0,0274
3 0 0 18,1772 {-4.6072
4| 0 0 -4.6072 | 5.1442

then row and column 3 and finally replacing the diagonal term in the

fourth row by its reciprocal gives the factored inverse :-

1 2 3 A
Zraetor 1 [0,0243 |-0,3261 |-0,0673 | 0,0011| . . . (224)
2, 0 0.0427 |{-0,0914 |-0.0274
3 0 0 | 0.0550 |-0.2515
41 o 0 0 0.2515

As the bus admittance matrix for power system networks is
symmetrical, the upper triangular part only is required for ceal-
culation of the factored inverse thus reduclng storage requirements
for the matrix and inverse. If the factored inverse for & power
system»Aetwork 18 calculated by operating on rows andi columns of the
bus admittance matrix in a preferred order - commencing with columns
having one term below the diagonal, then those with two, three, etc.
until all columns are processed - the resulting inverse is almost as
sparse as the originael matrix, thereby minimising the number of
arithmetic operations during computation and space required for
storing the inverse, |

The bus 1hpedance matrix can be calculated one row at & time

from the factors in eqn.(224), e.g. the terms of row 3 are :-

234 = 0.2535%0,2515 = 0,0638
233 = 0,0550+0,2535x0,0638 = 0,0712
Zzp = 0,0914x0,0712+0,0274%0.0638 = 0.0083
231 = 0,3261x0,0083+0,0673x0, 0712-0,0011=0,0638 = 0,0074
. . . (225)

Ag the terms for each row are calculated progressively commencing

with that in the last column, the calculation may therefore be
stopped when all the redquired terms‘are derived, Comparison with
eqn, (136) shows that the terms calculated in eqn, (225) are the same
~asg the row three terms of the bus impedance matrix, Hence the feult

powers, eqn;(lll), and current distributlon factors, eqne.(113), (116)

and (117), for the network can now be derived
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using element self admittences and group admittance matrixes which

have been used in calcuiating'the-bus admittance matrix,

B.6. DiGITAL COMPUTER SHORT CIRCUIT PROGRAMME.

read basic data

read element data
convert impedances to per unit

matual
coupling
?

A

read mutual coupling data
convert impedances to per unit

\

sort into groups
forn mutual admittance matries

convert impedance of uncoupled
elements to admittance

\

form bus admittance metrix

A

simulate elimination of metrix
terms below main dlagonal

form factored lnverse

calculate rows of bus
impedance matrix

/

print node impedances and ]
current distribution factors l

vy

i ena—_]

Fig.18
The flow chart of the digital computer programme HEI 13 for

calculating power syétem short clircuit probleme by the bus admittance
and factored inverse method is shown in Fig,18, The data for this

programme while basically the same as for the bus impedance matrix
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programme HEI 2 allows for more flexibility in node numbering and
network elements are glven specific numbers for use in all gtudles.
Ag the element self and mutual impedance data 1s read from

Tables 2 and 3, the impedances are converted to per unit if in ohms
before storing with the element and node numbers., Then the mutual
impedances are sorted into groups setting up as each group is formed
the corresponding self and mutual impedance matrix [ﬁgﬂ which 1is

Yap
part of this is retalned in storage. The matrix is inverted

inverted to give the admittance matrix l l and the upper triangulaer

by first calculating its factored inverse, then one row at a time of

yqp- ueing the same programme procedures as are used for deriving

the bua impedance matrix from the netﬁork aedmittance matrix, In this
programme there 18 no restriction on mutual couplings as any element,
including a generator, mey be mutually coupled to any other element.

The next step in the programme is to replace the per unit self
impedances of elements without mutual coupling by thelr corresponding
self admittance values and commence calculating the bus admittance
maetrix, As each element 1s processed, the appropriate admittance value
is added to the diagonsl and off-diagonal lists and, at the same time,
recording row and column numbers of off-dlagcnal terms, Then the
mutually coupled groups of elements are processed by :-

(a) adding "equivalent" self admittences to the diagonal and off-

diagonal lists &s for uncoupled elements; and

(b) forming the group bus incidence metrix , caleulating the

triple matrix product AtquA and adding the result to the dlagonal

and off-diagonal lists keening a record of the numter and locatlon
of the terms in the bus admittance matrix,

On completion of the bus admittance matrix calculation, a
simulated elimination 1s carried out to determine the order 1n which
matrix rows and columns are processed and the storage requlrements
for the real and imaginary parte of the factored inverse., The rows
are listed in order so that at each step of the elimination the row’
operated on 1e the one with the fewest number of non-zero terms
(Ref. 46)- as the original matrix is symmetrical, fhls corresponds
to the column with the fewest number of non-zero terms below the main

diagonal, The process starts by searching for & row with one off-
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diagonal term, simulating elimination of the correapondiﬁg column
term and continuing with the next row having one off-diagonal term,
‘“hen no row with one off-diagonal term remains, the first row with two
off-dilagonal terms 1s selected, elimination of the éolumn terms sim=
ulated and the process contlinued until all rows with two off-diagonal
terms are used. Next those with three, then those with four, etc. off-
dlagonal terms are processed until all rows are used. During the
simulated elimination new non-zero terms may be formed; the location
of theee 18 recorded and thelr effect, 1f any, on the elimination
order taken into &ccount. The last row processed has one term only,
namely the diagonal term and the second lsst hag one off-diagonal term,
Resulting from the simulation lists of the node processing order
(essentially a node renumbering) and of the non-zero terms in each
row of the factored inverse &are formed,

The factored inverse of the aidmittance matrix is then calculsted
followed by computation of the network bus impedance matrix terms row
by row, In the determination of the row terms, only non-zero térms of
the factored inverse are used thus reducing the number of arithmetle
operations in the calculation.

Finally, from the terms of each row of the impedance matrix, the
per unit system impedance to the node is derived and current distridb-
ution factors for network elements when unit current 1s flowing into
the node are calculated and printed. In the computer programme, element
admittances and mutual admittance matrixes used 1in deriving the bduse
admittance matrix are used in celculating current distribution factors

applying edns.(113) and (116),

B,7. LFFECTIVENESS OF SPARSITY TECHNIQUE - EXAMPLES.

The effect on computer storage requirements of using the bus
edmittance matrix - fsctored inverse instead of the bus impedence
matrix method for power system fault studies is 1llustrated by the
figures in Table 5 which lists factored inverse and metrix slzes for
typlcal power system networks with and without mutﬁal coupling. The
numbers of nodes, elements and mutual couplings are from the network
i1nput data, while the numbers of coupled elements, groups, terms in‘

the bus admittance matrix and factored inverse are found by the com-
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TABLE 5

Network 1 2 3 4 5 6 7

Number of V
nodes 15 40 40 23 67 89 99
elements 21 61 61 34 117 143 177
mutual

couplings o) 0 29 20 55 129 139
mutually -

coupled elements 0 0 27 15 35 75 89
mutually

coupled groups 0 0 6 2 7 16 22
terms in upper

triangle of bus

admittance matrix 30 86 149 105 221 362 427
terms in '

factored inverse 30 92 152 105 241 370 436
terms in upper

triangle of bus

impedance matrix 120 820 820 276 2278 4005, 4950

puter during the short circuit calculation, The numbers of terms in
the tue impedance matrix for eéch network are for a full metrix.The
figures listed for the factored inverse, bus admittance and imped-
ance matrixes apply to slngle meétrixes; for power systems having

complex element and mutual impedances the computer storage require-
mente for these items would be double the figures shown,

From Table 5 the following conclusions can be drawn for power

system networks :- '

(a) the sparsity of the admittance matrix is modified by mutuel
counling between network elements, e.g. the number of terms in the
upper triangle of the bus admittance matrix for network 2 incfeaees
from 86 to 149 when there are 29 mutual couplings (network 3). How-
ever the matrix remains eparse withover 80% of its terms zero;

(b) over 90% of the terms in the bus admittance matrixes for large
networks are zero, e.g. network 7 with 99 nodés end mutual coupling
between 89 of the 177 elements - the number of non-zero terms ls
approximaetely proportional to the number of nodes whereas the totel
number of terms 1s proportional to the number of nédes squared; and

(¢) generally the method of forming the fsctored laverse is effec-
tive An preserving sparsity, in most cazses the number of terms in the

in
fectored inverse 18 less th&n 3% more than/the admittance matrix,
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C. ORDERED GAUSSIAN ELIMINATION FOR POWER SYSTEM LOAD FLOY.

C.1, IRTRODUCTION.

For power system fault studies by digital computer the derivation
of the bus impedance and admittance matrixes for the positive, negative
and zero eequence networks has been discussed, and it has been shown
thaet the required fault powers and current distribution factors can
be calculated directly from the bue impedance matrix., In contrast,
for power system load flow studiés the netwdrk nodal equations cannot
be solved directly because at most nodes the known informetion is
power, & product of vdltage and current, and hence the equations &re
solved by an iterative process.

Although the bus impedance matrix form of the network equations :-

vM=2Zr . . . .+ . . . . . . (226)
has been used for load flow studlies (Ref. 43), the network nodal
equations :- _

Il=N . . . . o . . . . . (27
involving the bus admittance matrix are generally used (Ref. 36, 38)
and have the advantages that the admittance matrix is sparse aﬁd easler
to derilve than the impedance metrix, |

The three types of network busbars or nodes in load flow studies
are :- .

(a) the slack node where voltage is specified 1in ﬁagnitude and
phase angle. There is one node, usually & generator, of this type in
power system networks as transmission line losses are unknown init-
1ally and therefore the total generation cannot be speciflied;

(b) generator or voltege regulated nodes where resl power and
voltages magnitude are specified. Upper and lower limits of reactive
power generation are also speclfled; when elther 1limlt 18 exceeded
the node concerned reverts to type (c¢); and '

(e) load or unregulated nodes st which real and reactive powers are
specified. Generally most nodes are of thie type - for a generator it
1e often more convient to specify real and reactive power than use a
type (B) node.

The iterative proceédure chosen for solving the load flow problem
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was the Newton-Rsphson or Ward-Hale method, described irn Ref. 36
using rectanguler co-ordinetes for the components of [Yj &and [E].
Initially a voltage of 1+'0 per unit is assumed &t &ll nodes and
ecn. (227) solved at node "k" for the nodal current I, ; a correctlion
Tector 1s then calculated for the assumed voltege Vk such that the
calculatgd current and corrected voltage give the epecifled power SL
- at a generator node the specified voltege magnitude and real power
are.used to obtair & voltsge correction. When the voltages heve heen
modified st all nodee except the slack node, thus completing one
itepation, the =nrocess i1s repeated until the voltage correction &t

a1l nodeg 1g leess then & sneclified value or, until the maximum nurher

of itevstione is resched.

It hes been found in nractice that the convergence process i
3low but may, in reény céses, be lmproved by acceleratlion, l.e. over
correcting the nolel voltages during the first “ew 1lterations. However,
soma powsr system studies still required & large number of iterations
before o satisfsctory result was &chleved end 1n a few c&ses the
calculetion stooped &t the specified maximum number of iterations

of

(7

without cohnverging, Some “sctors chet adversely &ffect the rat:

Q

onvergence &re &n oren type network conflguration having loads
eupplisd from rsiiel feeders or & glack node situated remote from the
centre of the network,

From & study of the large smount of literatufe svaileble (1965)
on the loezi flow prodblem, it appearad thet adoption of the elimin-
ation mathod vronosed by Van Ness and Griffen (Ref, 44) would lead to
solutions in “ewer iterstions end might #1lso proviie soiutions to
gome of the wnroh’ers which were not converging by the Ward-Hele method,
On testing the eliminétion method by tre simple expedient of renlscing,
in the existing lond flow progremme, the Ward-Hele lteration odro-
cedures by corresponding eliminetion procedures, it was found theat an
accurate solution to most oroblems is obtained in 3 or A lteratlons,
including ones that required geveral hundred iteratlons by the Ward-
Hale method. However & major disadvantage of the elimination method
ie that for storing the'vo1tage correction equations &8 metrixX &DDroxX-

imetely twice the size of the bus admittance matrix, 1.e. four times
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as many terms, 1is fequired. Hence, for the success of the elimination,
or Newton's method &8s it ie now known it is essential to retain
sperslty of the metrix during solution of the correcﬁibn equations

thus minimising computer storage requirements and computation time.

The procedure devised is besed on the aralogy between network reduction
and elimination of columns in the matrix storing the terms of the

voltage correction equstions,

C.2., DERIVATION OF VOLTAGE CORRECTION ECUATTONS.

The network hus admittance matrix ,_ which 1s formed from the
transmission line per unit admittances and susceptances of the nominal
pl representation, mey be eplit into real and ilmaginary parts :-

=[@e}j+yB . . . . . . . . (z228)
where the term in row k, columa m 1s :- '
Yom = Oxp * Bk . . . . . . . (229)
From eqn.(227), if admittences &and voltages are in per unit, the per
unlt current is - |
Iy = %hYkam « o  +- e . . e (230)
where the summstion is from m=1 to m=n, n being the number of nodes
in the network. The components of the nodal current Iy and nodel
voltage V, at node "k" are :-
Iy = 8 +iby N € 5 38
and Ve = e *ify Ce (232)
The calculated nower &t node "k" 1s :-
S = Pp t 4y
VeIp = (etif)(e-in) o . . . (233)
If the correct nodal voltages fcr the problem differ from those
agsumed by and the correct nodel currents differ by |al| from
those celculsted using eqn.(227), then the equation for the solutlon
to the problem is :-
or M+l - T+ . . . . . .. (@30
Subtracting eqn.(2275 gives :-
I =9 . . . . . . . . . (23

for the equation relating the current end voltage corrections. From
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this equation the current correction at node "k" is :-

AL, = %%Ykmavm . . . . . . . ) . (236)
end the components of the voltage and current corrections at rnode

Ilkll are -

Avk Aek + Jé\fk 0 . . . . . . . (237)
oca + Jaby N =350

The specified power at node "k" ig :-

ALy

Sp = Pp o+t 3@ = (Vgravy)(Ip+alf) .. (239)

'I"
3, may be expressed in terms of the calculated power Sk and & cor-

rection Ask ¢ -

(&)

} - sk"'AS\ . . . . . . . . . ( 2/10)

oY

Hence, from eqns.(233), (239) and (240) the power correction &t node
k" 1s -
y
ASk = Dk"sk
a Vi I+ (Vie+aVi daTy e e e (2aD

Ask can algo ba written in terms of the reel and recctive components

of power (-~

- ' '
A2 = P iQ-(Py+ Q)
= APEtIAQ . . e e e e e . (Ra2)
where AP = PpPy . . . . e .. (243)

and & Qﬁ-Qk . . . . . . . . .. (2aa)
Substituting for 41; from eqn. (236) in egn.(241) :- '
a8y = oV IR+ (VeaVy )ZYy oy T ¢-2 L)
In thie equetion, Iim is known from the bus admittence matrix, the
value of Vy 18 assumed, I; is calculated from eqn. (227) and st loed
nodesg ASk 1e derived from the dlifference in specified power Sﬁ and
power 5y, calculsted from eqgn. (233), but at generator nodes only the
real component of 43, 1sg known. However &t a generstor node "k" an

ecuation connectling the megnitude of the assumed voltage with

that specified c&n be written down -~
2

'ie " - »
by te-tv ! (VietaVy ) (Vi+ oWy )=V, Vie
- » * 7z
VieaVetaV (VE¥aV) o . L. . . (248)
Hence by equating real snd imaginary parts on e&ch side of egn.(245)
for load nodes a&nd equating the real parts of ean. (245) end ueing

eqn. (24€) for generator nodes two equetions for the unknoun voltage

corrections aVy oppn be derived at each of the (n-1) load &nd generator
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nodes, i.e. a set of simultaneous second order equations in the com-
ponents of |aV]jcan be written down., As power gyster voltages normally
do not differ from nominal by more than a “ew per cent, then if all
voltages are assumed initlally to be 1 per unit the correctionsléi]
w1lll be smail and a reasonable approximation to thelr values obtained
by solving the simultaneous line&ar equations thet result when squares
and nroducts 1n eqns. (245) and (246) are neglected. The digital com-
outer can be programmed to solve these 1inear eGuations for the volteage
corrections which Aare then applied to the assumed nodal voitages and
the procees repeated until the voltage correctlons at &all nodes are
negligible.

Neglecting second ordsr terms in aV eqne.(245) end (246) ere:-

. * »
A% = AV IptVEL AL . o L L L L. (2a7)

12 VkAV_::"' AVle': . . . . . . . . (248)

and 'Vk

i

ic
Vi
gubsetituting for Yyn, Iy, Vi, aVy, aV and a8, from eans. (229), (231),

(232), (237) and (242) in ecn. (247) :-

)

AP+ jaQ, = (Aek+jAfk)(ak—jbk)+(ek+3fk)§(ka-jBkm§(Aem—JAFm) . (249)

which on ecuating real and imaginsry varts givee the two eguations :-

aPy = apaethLafE (e Opnt By ) st g (= By p* N Oxp Jafy o . (250)
LY = ‘bkAek+ak°fk+%(’ekskm+rkam)Aem"%(eKka*fkgkg)Afm . (251)

Substitutiag for V, and aVy from eqns.(232) ani (237) in eqn, (248} :-

lv;l2_!vk|2 (ek+3fk)(Aek‘JAfk)+(Aek*3°fk)(ek‘jfk)

= Zepseptlfpaf, . .. . .. . . (2z2)
Tor & load node egne, (250) &nd (251) hold and at a generator node
sans, (250)and (252) hold.

Eqns. (250) - (252) may be written &s one matrix equation :-

vlwl[ae]l =06} . . .+ . . . .« . . (253)

H|T|lsT oP
for the (n-1) voltege correntions, where , , [__f_i:] end ere
square metrixes of size (n-1) and [ae], , [6Q] and [2P] ere column

matrixes with (n-l) rows. For simplicity eqn.(253) will be written :-—

MEv =28 . . . . .. .. (254)

where |M| 1s & square matrix of size 2(n-1) ana ', ]AS] reoresent

the voltage and power comnonents as in ean, (253).
For load nodes, the terms [A4Q] and IAPI in egn, (253) are given

bty eqne.(243) and (244), while for generator nodes is given by
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eqn. (243) and from eqn.{248) the term is :=-
sq = el 2 (255)
From eqns,. (252) and (251) the diagonal terms of the sub-matrixes [—_F_]

and are for a generator node :-

Ukk = zek . . B . . . . . . . . (256 )

th = e . . . . . R . . . . . (257)
and for & load node :- ‘

Ukk = -bk—ekBkk+ ka'kk . . . L . . . * (258 )

Wkk = ak‘- EKGkk—kakk . . . . T . . v . (259 )

The diagonal terms of sub-matrixes E! and for load and generator
nodes sre from eqn, (250) :- |
Hae = 8kvepOpe* OB -« o o . . . . (260)
| Tk = by-exBa+flree . . . . . . . . (261)
The off-diagonal terms of the four sub-matrixes are from eqn. (252) for
a generetor node :- | ;
Ugm = Wep = O . v+ o o . ... . (262)

from eqn.(251) for & load node :-

Upm = =& BpntTiGxm « -« o« o+« ... (263)

Wem = —€xGypp~TyBim . . . .. e .. (26
end from eqn, (250) for & load and generator node ':-

Hem = kGt TyBym - - . . . o e e . (265)

Tem = ~kBr*TeGn o - .+ e . . .. (266)

From egns. (256) - (266) 1t follows, that in general sub-metrixes
[0}, [v], [H] ana [T] have the eeme degree of sparsity as the network
bus admittence metrixX when the row and column corresponiing to the
slack node are omitted, i.e. for a non-zero term in the admittance
metrix there is a corresponding non-zero term in each of the sub-
mAtrixes except for rows of @ and. @ when eqn, (262) aoplies and all
off-diagonal terms &re zero. However, 1t 13 convient to retain all
terma in the sub-m&trixes which correspond to non-zero terms in the
network bus admittence matrix thus keeping the symmetricel form of
the four sub-matrixes and,becsuse there are only & few generator nodes
the number of zero terms retained in @ and |W| 1s small. By Symmet,ry-.
from eqﬁs.(263) - (266) the m-k off-disgonal terms are :-

Umk -emBmk+'.fmek . . . . . . . . . (267) .

Wk

-enCGme~TBmk - . . . . . . . (268)
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Hmis = epOmk*fmBmk . . . . e . . . (269)
Tk = -~-epBuk*fmOmk - . . . c e . . (270)
Comparing with egqns.(263) ~ (266) i1t is seen that becsuse the

voltage components ey and ep, fx and f, are equal except for the first
iteration.when all voltages are 1+j0, corresponding off-diagonal terms
Ugp @nd Upe, ete., are not equal although their values will not be
very different (the admittance matrix terms Bym &nd Bpg, Gy, &nd Gy
are equal). Hence the sub-matrixes [U], [W], [H] ana are not
eymmetrical in value even when &1l nodes, other than the slack node,
are load nodes; therefore all terms of the matrixes must be stored in

the computer calculsation.

C.3. GAUSSIAN ELIMINATION PROCEDURE.

As outlined below, eqn.(253) is solved by Gaussian elimination

uslng the main dlagonal terme as pivots. Writing down the terms of

eqn. (254) :-
mll mlz m13 . Avl = Asl . . . . . . . (271)
m21 | map | mp3 i . |jaV2f a8 |

m31 m32 m33 . 'AV} 933

. . . o . L4

Starting with the first row and column divide the terms on both sides

of eqn.(271) in row 1 by the diagonal term myy :-

1 1
1 m12 m13 . AV1 = As]'. . . .. . . . . (272)
m21 | m22 | Mp3 | . INDY a8,
"5 "2 ™33 - |23 %%
]
where mie = m12/m11 mi3 = m13/m11 A8, = Aslfmll . (273)
The off-dizgonal terms in column 1 are now eliminated giving :-
1 ' _ ' ’
1 m12 m13 . AVI = 631 . . . . . . . (274)
0 még méB . AVZ ASé
0 ! t 1
m32 m}} . AV3 AB}
— R - ]
where mg, = Mop-Moy MY o méB = Mpg-myymy g
U T ! - - !
m32 = m32-m31mla m33 m33 m31m13
ASé = Asz—mglbsi AS% = 633—m3163]'_ . . . . (275)

This completes pivoting on the first dlagonal term my,; so the
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the second disgonal term from eqn.(274) ie now used &s a pivot and
the off-diagonal terms in column 2 eliminated, after which the re-
meining dlagonal terms are used in turn &s pivbts and all She off-

‘dlagonal terms eliminated leaving & unit matrix :-

1o fo|.|{ava| ={asy| . . . . . . . . (276
011 {0 |.||avy 285
01011 ). |aVs AS;

Therefore aVy = AS; av, = AS; AV3 = As; - . . (277)

and the solution of the eqn.(271) is compiéte.
As 1t 1s assumsd initislly that e = 1 and fk = 0 &t &l nodes
it followe from eqns, (256) and (257) that ;-
= 92 Y =
U =2 My =0
for a generator node "k", Hence the diagonal terms of the sub-matrix

e -24<D)

ﬂl cannot be used &g pivots &nd the eGuations for the voltage cor-
rections &re written in the form glven 1a eqn.(253) using the iag-
onal terms Ukk and Tkk as vivots, .
From eqns. (258), (260), (267) and (269) with ey = 1 and fc = 0 :-
Ukk = “‘bk"Bkk . . . . . . . . . (279 )

BgtO e e e e e .. (20

=5
oy
o3

|

U = “Bpk  «  +  + o« o+« . ... (281)

Hmk= G’mko . . . -' . . 0. . ..' Y (282)

and from eqn, (230) :-
I, = &by = Y= Z(Gp*iByn) . . . . (283)
In power systems the sum of the terms 1n & row or column of the bus
admittance matrix is equal to the admittance between the corresponding
node and reference which, in most cases 18 the nominal pl susceptance
of the transmission lines connected to the node. Hence in eqn. (283)
8y = %ka = 0 and by =2mBkm 1s small comparsd with By.. Because in
high voltage networks, the transmigslon line reactance 1is generelly

greater than the resletance, the terms Bkk' B . are greater than Gkk;

mk
Gn respectively and also By, , belng the sum of By, for node k", ie
greater than or equal to B_,. Hence it follows ~rom edns.(279) - (282)
that the dlagonal term Uy, is the greatest in absolute megnitude in

its row or column of [:]‘for'a load node. If "k" is a generator node

Ukk may not be the largest term in column "k", but in this case all
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other terms, &s shown in eqns. (262) and (278), are zero. After the
first 1teratlion, e - and fy are stlll 1 and O approximstely as ﬁhe
voltage correctlons are small, hence eqns, (278) - (283) remain true
to & “irst approximation end the above concluslons regarding the
relative sbsolute magnitudes of row and column terms hold “or subse-
Guent iterations. Similarly 1t cen be shown that in general, T, L5
the term of greatest ahsolute megnitude in its row and colunn of '
in eqn. (254). Thus the r_U_] end diegonal terms should be suitable

vivots “or solving eqn,{253) and, in practice this has been “onnd to

hold for power system networks,

C.4. OPTYMAL ORDERING SCHEME FOR ELIMINATION.

#ram egne, (256) - (266) 1t is seen that, os the terms of the

gub-matrixes in eqn. (253) depend on voltage components €, Tk

which
vary “rom iteration to iteration, the equations must be set up &new
for each iteration. It has also been shown that the sub-natrixes ,
[W], [H] and [T] heve the same degree of sparsity ac the bus admit-
tance matrix of the network omitting the slack nnde. The.fundamentsl
requirement for success ln using the eliminetion method for solving
1084 flow problems is & preferred order of eliminating the off-ilagonal
column terms of matrix [E] that preserves sparsity, thereby minimleling
computer storsge and number of arifhmetic operati&ns.

Ag the sub-matrixes reflect the network structure or.geometry,
1.e. Lf thare is no network connection between nodes "1" anil "J" then
corresponiing terms i~} and j-1 ere zero in each sub-matrix, elimin-
ation of eolumn terms 1in 1s analogous to network reduction: When,
in the nstwork, nodes at the end of branches are elliminated no new
connections &re formed; simllarly elimineting & column with one off-
disgonal term in the sub-metrixes of [ﬂ] does not form any new terms
in the matrix. Elimination of & node connected to two other network
nodes introduces one new connection which may be parallel to an exist-
ing connectlon; similarly eliminating & column with two off-dlagonal
terms in the sub-metrixes creates & new palr of off-dlagonal terms
which.méy modify existing terms, Elimination of a network node con-
nected to three other nodés forms three new connections (a star-delts
transformsétion) some or &11 of which may be parsllel to existling con-

nections; similarly eliminating & column with three off-diagonal
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terms in the sub-matrixes of creates of' modifles three psirs of
matrix terms. In practice the number of terms formed or modiflied is
less then that indiceted becsuse columns in which some of these terms
appear have already been eliminated,.

The application of thls to eqn. (253) tekes the form of elimin-
ating columns of the matrix in p&irs, pivoting first on the then
on the corresponding dlagonel terms. At each step the péir of
columns with the fewest number of off-diagonal terms is eelectéd for
elimination and 1f more than one pair satisfies this criterlon, then
the first listed pair is selected. |

Etarting with matrix columns corresponding to nodes st the end
of radial lines in the network, the one off-dlagon&l term in the lﬂ,
@, and @ sub-matrixes and the dlegonal terms in the |¥W ahd
Eﬂ metrixes a&re eliminated. As no new terms are‘formed in this proceés
the sparsity of is unaffected. When all such columns have been
procesced, the first column with two off-dlagonal terms in the snb-
matrixes 1s selected and elimination of its terms may form & new pair
of‘terms in each sub-matrix or , may add to existing terms, fhns after
211 columns with one and two off-dlagonsl terms in the sub-matrixes
are orocegsed the sparsity of [:] 18 not affected to sny great extent.

When a1l columns with two off-disgonsl terms in the sub-matrixes
have been processed those wlth three are processed in turn, then those
with four, five, etc. uatil all the off-di&gonal terms of [] are
eliminated. As processing columns with two, three, or more off-diag-
onal terms can form new terms in [:], the record of the number of
terms per column must be modified during the elimlnation,e.g. a column
with two may become & column with three off-dlagonal terms in the sub-
matrixes,

The elimination proccdure is detailed for the 9 node network
shown diagrammatically in Fig.19 for which connectlons to the slack

node are made in broken lines.,
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Fig.19
The sub-matrix [ﬁ] for this network 1s indicated below :-
2 3 456 7 89

O] = 2[x X ce ... (284)

3 X X[{X|X

4 X X

51 X X

6 X

7 X

8 X

9'- X X |X

- where “X" denotes & term having a vaiue and & blank indicsates zefo.
The columné with one off-diegonal term are 2 and 4. Dividing fow 2 by
ite dilagonal term &ndveliminating term 5;2 involves modl fication to
terms 2-5 and £-%, while elimination of the term 9-4 requires divislon
of term 4-9 by diagbnal term A-4 and modification of term 9-9, after

which [ﬁ] has the form :-.

.

2 3 4 5 67 8 9 v
1 k . . ° . e (285)
X X| x| X

W O N O U B W
¢
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The first column, 5, with two off-dliagonal terms 18 now selected.
Dividing row 5 by the diagonal term 5-5 modifies term £-3 and ©limin-
ating terms 2-5 and 3-5 modifies term 3~3 and adds one new term 2-3 as
the off-dlagonal term in column 2 has already been eliminated.The matrix

now has the form :-

2 3 4 5 6 7 8 9

[u] = 2 |1|x C e e ... (286)
3 I x|x
4 1 X
5 1
6 X|X
7 X X
8 X|x
9 X| X

Column 3 now has four off-diagonal terms and 6 18 the next column with
two terms plus the disgonal, Dividing row 6 by the dlagonal term 6-6
modifies terms 6-3 and 6-7 while eliminating terms 3-b and 7-6 results
in modification to terms 3-3, 3-7, 7-3 and 7-7 without forming new
terms. The next column with two off-diagonal terme 1s 8 and after
dividing row 8 terms 8-7 and 8-9 by the diagonal 8-8 eliminating term
7-8 modifies 7-7 and forms a new term 7-9, while elimination of term
9-8 results in modification of 9-9 and. formation of & new term 9-7, At

this stage the matrix has the form :-
2 3 456789

U] = 21X e e e ... (287)

3 X X

4 1 X

5 1

6 1| X

7 X X

8 X |1 X

9 X X

So far 8 terms have been eliminated, 3 new terms formed and
modifications made to 16 terms leaving no columns with two of f-diagonel
terms and only one column, 9, with 3, Dividing row 9 by its dlagonal
9-9 modifies term 9-7, eliminating term 4-9 forms & new tern a-7,

eliminating terms 7-9 and 8-9 modifies terms 7-7 and 8-7 leaving the
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metrix with the form -

2 3 4 5 6 7 8 9
=

1 x . ‘. . . . . (288 )
X

@ g O U W N
»
-

Pl pa| ] M

9 1

Only two columns remeéin, 3 with 4 off-dlagonal terms and 7 with 5 and

processing column 3 involves dividing term 3-7 by the diagonal term
3-3, forming new terms 2-7 and 5-7, modifying terms 6-7 and 7-7. This
leaves the matrix with one full column, 7 :-

2 34 56789

[] = 21 X e e e .. (289)

3 1 X

4 1 X

5 1 X

6 1] X

7 X

8 x|1

9 X 1

On eliminating the off-diagonal terms of column 7 a unlt matrix
1s left. Hence during the elimination process 6 new terms are formed
in the matrix and modifications to 22 terms are required, i.,e. the
number of terms used during the elimination is 30 compared with 24 1in
the original matrix and 64 terms in the full matrix.‘

Elimination in the preferred order - 2, 4, 5, 6, 8, 9, 3 and 7 -
is now compared with'processing the columns in numericsal order - 2, 3,
4, 5, 6, 7, 8 and 9; Commencing with column 2,Aaa above 2 terme are
modified and no new terms are formed, then elimination of the 3 off-
diagonsl terms in column 3 creates 4 new terms 5-6, 5-7, 6-5 and 6-7
and mndifies 8 terms 3-5, 3-6, 3-7, 5-5, 6-6, 6-7, 7-6 and 7-7 leaving

the sub-matrix in the form :-
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2 3 456 789
1
X| X
X X
X
X
X|x
X([X|x
X X|Xx

e e v . . (290)

.Column A ie procesesed in the same way as in the préferred syetém, i.e.)

no new terms are formed and two. terms 4-9 and 9-9'are modified, while

.elimination of the 4 off-diagonal terms ln column 5 creates 2 new

terms 2-6 and 2-7 and modifiee 8 terms 5-6, 5-7, 3-6, 3-7, 6-6,'6—?,

7-6 and 7-7 glving the sub-matrix the form

[u] =

O O N O U S~ WO

2 3 45 6 78 9
1 X
X1 X
1 X
11 X| X
X
X X
X X
X

e e e (291)

Elimineting the 4 off-diagonal terms in column 6 does not form &ny new

terms, but the 5 terms 6-7, 2-7, 3-7, 5-7 and 7-7 are modified and

elimination of the 5 off-diagonal terme in column 7 creates 4 new terms

2-8, 3-8, 5-8 and 6-8 and modifies the two terms 7-8 and 8-8 so thet

the sub-matrix now has the form

=

O 0 N O U BWO

2 3 4 5 6 7 8 9
1 X
X

1 X
1 X
1 X
1[x
X

X |x

. . e . (292)
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Processing column 8 to eliminate the 6 nff-dleagonal terms forms 5 new
terms 2-9, 3-9, 5-9, 6-9 and 7-9 and modifies 2 terms 83-9 and 9-9 and
leaves column @ full, Hence by processlng columns in numerical order
15 new terms eré formed and 29 terms are modified during the eiimin-
etion, 1.e. the number of terms used ls 39. Thus comparing the pre-
ferred order of processing columns with processing in numerical order,
there 18 a signiflcent saving in storege and in arithmetic'operations -
120 terms in the [M] metrix es against 156 terms and 22+6=28 &s against
29+15=46 arithmetic operations on matfix terms by the former com-
pared with the letter process. Thls s&ving is echieved in eéch iter-
aztion in the computer programme &nd could be considerable for & large
power system nstwork,

The preferred elimination order ls not necesssrily the optimum
for all pbwer system networks, but 1s eésy to apply as it 1s based on
a simple rule - a8t each steage the column pair of [j chosen for pro-
cessing 1s the one with the least number of terms and 1f more than one
nair gatisfles this criterion then select that first listed. The pro-
cedure discussed for the preferred elimination order of the [E] matrix
is applied, with slight alterations, to the matrix, egn.(254), by
processing columns in pairs and pivoting flrst on the [ﬁ] diagonal
term, then on the corresponding [:] dlagonal term,

Consider the matrix corresponding to Fig.19 - when pivoting

on UEE to eliminate U5 H22 and H52 the terms U25, W22 snd w25 are

2}
divided by U,; &nd the terms U55, W52, W55, H25, T22,T25, H55, T53 and
T55 are modified; then plvoting on Tys to eliminate TEE: W55 and W52
the terms H25 and T25 are divided by T5p and the terns Uzsy W25, U55,
W55, H55 and T55 are modified, 1.e. no new terms are formed but 20

terms are modified., Comparing this wlth pivoting on U Alscuesed

ee»
above, in the'[g] metrix alone when 2 terms a&are modified highlights
the increased number of operations due to being twice the size of
Eﬂ and emphaslses the 1mportance.of the preferred elimiﬁation order,
After pivotling on Uzp, Too the column palrs are proceesed in the order
4,5, 6,8, 9, 3end 7 - note thet where one new term 1s formed in theé
Eﬂ matfix 4 new terms are formed in [:], e.g. pivoting on U55, T55

- forms the new terms Uy, W23, Hyq and T23;

As in each iteration the error in the nodal voltage correctlions
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Ae and af 18 proportional to thelr squares, the procedure is guad-
ratically convergent end for most power system problems the values of
ae and pAf are 104 or less after 3 or A iterations. This corresponds
to differences of less than O-OQ5MW and 0,005MVAr between the calcul-
eted and specified real and reactive powers at &all nodes, i.e, for
practicel purproses the problem ie solved,

. Summerising, & procsdure for solving eqgn. (253) whlch>réta1ns
spargity in the maprix is =

(a) processing in numerical order the column nairs having one off-
diegonal term in (U; and i?j, these correspond to network nodes with
one connection in the network; no new terms are formed in by their
'e}iminatioh; .

(v) vrocessing in anumerical order the column pelrs having two off-
dlagonal terms ln Eﬂ and Eﬂ. These correspond to network nodeg con-
nected to two other nodes and the elimination of each pair forms none,
cne or two new terms in the sub-matrixes of [ﬁ] depending on network
connections and columns (or nodes) already eliminated;

(¢) processing in order the column palrs witk three off-diagona}
terms in |U| &and [f]. These correspond to ster-delts trensformétions
in the network with the possibllity o“ forming up to gix new terms in
esch of the sub-natrixes of . However, in nractice not more than
two or three new terms are likely and exlsting terms will be modified,
also columns 1n which new terms could appear have already been elimin-
ated, e,g. elirinating the three off-diagonal terms in column 9,
eqn(287), forms the one new term, 4-7, in the sub-metrixes; and

(d) processing in order the column pairs with four , then those with .

*ive, ete., off-diagonel terms in [ﬁ] and Ei]. Large numbers of new

matrix terms could be formed, but in pract;ce this is unlikely beceuse-
et thie stage many columns where new terme might appear have been
eliminated, e.g. eliminating the four off-diegonal terms‘in column 5
of eqn. (288) resulte in 6n1y two new terms 2-7 and 5-7‘1n the sub-

matrixes of EEL »
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C.5. EFFECT OF OPTIMAL ORDERING ON POWER SYSTEM MATEIXES.

TABLE 6
Network 1 2 3 4 | AEP14 | AEP30 | AEPS7
Number of
nodes 9 10 36 83 14 30 57
lines and :
regulators 14 15 43 94 20 a4l 78
network
connections 11 12 A2 a4 20 Al 78

terms 1n bus
admlttance matrix
excluding tlre

glack node 24 31 111 268 49 107 206
terme in Eﬂ

matrix used 1in :

elimination , 30 a2 175 518 71 193 531
terms 1in a

matrix of slze

(n=1) 64 81 | 1225 | 6724 169 841 3136

Table & lists computer storage required for the Eﬂ sub-matrix
for typleal power system networks lncluding the three IEEE Standsrd
iegt Systems with, for comparison the numbers of %erms in the bus
admittence matrix and the total including zero terms. The figures for
lines and reguistors differs from thet for networxk connections in some
cases because there are parallel 1ines. The initial number of terms in
the Izﬂ,_ Eﬂ, Eﬂ and Ei] sub-matrixes 18 given in the row for the bus
admittance matrix excluding the slack node, while the corresponding
figure allqwing for terms formed during the ellmination is given in
the row labelled "“number of terms 1n matrix uesed in elimination" -
this latter figure belng derived by the computef during solution of
the probﬁem.

Examination of Table 6 shows that the preferred elimination
order i1s effective in maintalning eparéity, e.g. for the 83 node sys-
tem more than 91% of terms in the E[] matrix remain zero throughont
the calculetion lesding to a considerable saving in storage require-
ments &and by.opereting only on non-zero Lerms, keeping computation

time down,

C.5.1. DATA PREPARATION FOR COMPUTER PROGRAMME.

In preparing for & dlgital computer load flow study, the



.V 110

7

l? 229
Q 104

Fig. 20
powér system network 18 coded by numbering the active nodes sequen-
tially commencing with 1, the same as for short clrcult studles except
that the reference node 18 not referred to directly, The data for a
ioad flow study. is in three lists :;
(&) the basic data giving the numbers of nodes, transmission lines,
generators, etc.;
(b) the network data detailing node connections and impedances of
transmission lines, voltage regulators and transformers; and
(c) the problem data listing the generation and loading ét the net-
work nodes,
For the sample system shown in Fig.20 Tebles 7, 8 and 9 1list the
besgic, network and problem data respectively.

TABLE 7. BASIC.DATA.

MVA bvase 100.0
Number of nodes 9
Number of transmission lines 12

Number of regulators

Number of generators

Number of loads

Number of shunt capacitors

OO |~NjMN}

Number of adjustable regulators

The slack node is included in the generator nodes and all those for '

which real and reactive powers are specified are included in the load
(
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nodes. Adjustable regulators are those for which upper and lower volt-
age limits are speciflied, the tap belng automatically adjusted during
compﬁtation to bring the voltage at the node concerned within these
limits.
TABLE 8. TRANSMISSION.LINE AND VOLTAGE REGULATOR DATA.

Line Connection Resistance Reactance | Total Shunt Nominal
: Susceptance | Voltage

1 5 2 1.2 3.4 42.0 110.0

2 2 1 1.34 3.85 48.0 110.C

3 1| 6 10.36 18.25 230.0 | 110.0

4 1 7 29.34 . 40.68 134.0 110.0

5 N 6 7.2 44.3 15.0 110.0

6 7 8 0.18 0.69 5.0 '110.0
7 713 11.25 | 19.72 252,0 110.0
8 6 3 18.21 45.09 102.0 110.0

9 8 9 0.0 0.04 0.0 1.0
10 9. | 4 4.83 19.37 233.0 - 220.0
11 1 7 29.34 40,68 134.0 110,0
12 7 6 7.2 44.3 15.0 110.0

Regulafor , Tap

501 3 5 0.0 . 2,45 1.08 110.0

The nominal voltage 1s used to convert the resistance, react-
ence (which are in ohms) and susceptance (which is in micromhos) to
per unit;'but these may be entered on the data list in per unit and
1.0 entered under nominal voltage. For voltage regulators the tap,
entered in per unit, 1s assumed to act at the higher numbered node,
the regulator being represented 1n'the computer programme by the

equivalent circuit given in Ward-and Hale (Ref.36).
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TABLE 9., GENERATOR AND LOAD DATA.

Generator |Voltage Real Reactive power 1limits| Nominel
node magnitude | power minimum maximum voltage
1 110.0 110,0
3 110.0 212.0 80.0 110.0 110.0
Load node |Real power | Reactive power | Nominal voltage
2 32.0 0.0 110.0
4 122.0 48.9 220.0
5 0.0 0.0 110,0
6 -31.0 -10,0 110.0
7 -229.0 -104.0 110.9
8 0.0 0.0 ' 110.0
9 0.0 0.0 . 220.0

The slack node, for which only voltege magnitude is specified, is
listed firs:c in Table 9 and for generator nodes besides voltage mag-
nitude and ;eal power 1limits for reactive nower generatlon are spec-
1fied; if it is impossible to achleve reactive power generation within
the 1imits then the node concerned 1s converted from a generator to &
load ellowing the voltage to vary., The sign conventlion adopted 1s that

power flowing into & node is positive,

C.6.2. DIGITAL COMPUTER PROGRAMME.

The outline of the flow diagram for the digital computer pro-
gramme HEI 8, calculstion of power system load flows by the elimin-
8tion method using a pfeferred column processing order, 18 given 1in
Fig.21., After reading the sets of data and converting impedances, etc.
‘to per unlt, voltages &t all nodes are get to 1+Jo'per unit except at
generator nodes where the real component ie set to the per unit value
of the specified voltage magnitude, The transmigsion line aﬁd regul-
etor llsts are examined, the diagonal terms of the bus admittance matf: 
rix formed and stored, line admittances stored and those of parellel
lines combined thus making all terms of the bus admittance matrix
available. Lists are set up giving row and column numbers of off-
diagonal terms and the locaﬁion of the corresponding values in the
line list.

After the."formation“ of the bus admittance matrix, & simulated

elimination of the voltage_correétion equations 1s performed taking
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L

read basic data]

read network data
convert to per unit admittances

read problem Jeata |-

set nodel voltages
calculate diagonal and locate nff-
dilsgonel terms of bus admittance matrix

gimulate solutlion of voltage
correction equations by elimination

set up and solve voltage correction
equations and adjust nodsl voltages

no

ed just -
voltage taps yes
<_ MVAr generation
outside limits

no

no ves

~
(o
1]
N

-~ i

output |

modifications
?

read more data change A
loads and modlify network I-counter

]

Fig.21
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into consideraticn omission of the slack node and its connectidns.
Firstly the nodes at the ends of radial lines, i.e. those corresponding
to one off-diagonal term in the sub-matrixes of [:],are listed in
numerical order and corresponding storage requirements for recorded,

Next the effect of eliminating the first llsted node wlth two
network connections 1s examined and if new terms are formed in [:]
their location is recorded beforevproceeding ﬁo the remaining nodes
having two network connections. When the elimination of all nodes
‘correspondling to columns in with two off-dlegonal terms has been
examlined, those with three, then those with four, ete., are processed
untll finally all nodes are eliminated. As a result of this simulation,
a processing order for the columns of [:] 18 established and lists
formed of the storage required, and terms uséd, in each column of its
sub-matrixes,

The voltage correction equations are set up and solved, the
nodal voltagés adjusted and the process repeated using the corrected
voltage values, Before calculating the next set of voltage correctlions,
the voltage at tap changing transformers is examined &and any required
tap changes made and the MVAr at generator nodes 1s calculated and if
outslde the specified limits the node concerned 1s converted to a load,
After a minimum of four ilterations, or two following an adJuetﬁent to
taps or conversion of a generator to & load, the output procedure is
entered. The résulta consist of listing for every node MW and MVAr
generation or losd, vbltage in kV and per unit and its angle relative
to that of the glack node and the MVAr line'charging while for trans-
mission lines, transformers andi regulators the power flowe at each
node, MW and MVAr losses &nd tap settings for regulators &are listed,
In sddition the total generation, line charging and losses are printed,
The calculation is then repeated for modifications such as changing -
lnads or altering transmission impedances (includlngbllne switching).

The accurszcy of the solutlon to the problem is determined by '
the difference between specified and calculated parameters 8t the
network nodes and in most casss calculated real and reactlve povers  'ﬁ
are within O, 005 MW and 0,005 MVAr respectively of the specified valuea

at all nodes, which for practical purposes ie an exact solutlon.
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C.7. EXAMPLE OF RATE OF CONVERGENCE.

_TABLE 10. VOLTAGE CORRECTIONS.
Node Iteration 1 Iteration 2 Iteration 3
2 0. 0395+ )0, 0396 ~0.0041-30, 0004 -0,00003-30, 00004
3 0.0000+ 30,0872 -0,0033~30. 0061 -0,00001-30, 00014
A 0, 0069+ j0,0723 -0.0297+ j0, 0060 -0,00097+J0, 00030
5 0,0715+30, 0652 -0.0072-30. 0006 -0, 00005-30, 00008
6 -0, 0392-30, 0091 -0,0104-J0,0007 -0,66029+Jo.00002
7 -0,0629-~30.0253 -0, 022630, 0009 -0, 00070+ JO, 00003
8 -0,0571-30,0194 -0,0230-30, 0004 ~0,00072+ 30, 00005
9 -0, 0290+ 30,0294 -0.0267+ 30,0024 ~-0,00085+ 30, 06016

TablelO 1liats the components of the per unit voltage corrections

calculated in three lteretions of the power system network shown in

Fig.20 using the data in Tables 7, 8 and 9. As on the fourth iteration

all voltage corrections are 0,000001 or less, it follows that every

nodal voltsge has been corrected'in three iterations, The nattern of

convergence shown in Table 10, 1.,e, an error of the seme magnitude in

both components of all nodsl voltages after three or four iteratlons,

holds generelly for power syvstem networks,
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CONCLUSION

By considering the combination.of a network with & group of
mﬁtually coupled elements using & connectlion metrix and i1ts inverse
rules, sultable for digital computer programming, have been deviszd
for forming ﬁetwork bus lmpedance and admittance matrixes from rsn-
domly ordered 1ists of element self and mutual impedamces.

In calculating the bus impedance matrix, an uncoupled element
self impedance i1s added to the diagonal term of a new row and column
which, for & branch element correspond to the branch node &nd for a
loop element augment the matrix. The new row and column are derived
from existing matrix terms by repetition or subtrection and augmenting
terms are eliminated by matrix reduction. For & mutually coupled group
element self impedances are added to the bus impedance matrix as
uncoupled branch or loop elements, thean the group mutvual impedances
are &dded to the appropriate matrix t2rms and finally any eugmenting
rows and columns are eliminated by matrix reductlion,

A given network bus impedance matrix can be modi€ied to allow
for varlistions in element self &nd mutual impedances by adding loop
élement impedances which when parallelled with the existing impedances
give the reGuired new values. Power system fault parameters are cal-
culated by arithmetic operations on sequence network bus impedance
matrix terms and a desired equivalent network can be derived from the
appropriate matrix terms, Because & network bus impedance metrix can
be considered as the self end mutual impedance matrix of & group of
coupled generator elements, the rules for adding the impedsnces of a
group of mutually coupled elements to & bus impedance matrix cén be
applied to combine two bue lmpedance matrixes,

The method of forming & network Bue admittance matrix from ran-
domiy ordered liste of element self admittances has been extended to
elements with mutual coupling, For & mutually coupled group of elements,’
the disgonal terms of its self end mutual admittance matrix are added
1n the same way @s uncoupled element self admittances and the result
of the triple matrix product of the off-diegonal terms with the group
element bus incildence matrix and its transpose is added, As well &as

belng simpler to construct than the bus impsdance matrix, the admit-
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tance matrix is sparse and from it, by'an optimal ordering procedure,
& gparse factored inverse 18 derived which 1s suitable for digital
computer fault studles. This method has the advantage of requiring
less storage than the bus impedance matrix method.

To solve power system load flow problems on the digital computer
using Newton's method, an optimal order for solving the voltage cor-
rection equations has been devised which is based on the anology bet-
ween network reduction and the Gaussian elimination procsdure. Init-
1211y the voltage correction matrix has the same form &s the bus
admittance matrix and, for typicel power system networks, by thils
ordering.scheme spersity 1s retained during the elimination, Most power
system loed flow problems are solved in four iterations by this pro-

cedure,
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Digital calculation of sequence networks

including mutual impedances

W. A. Prebble, B.Sc., B.E., A.M.l.E.E.

Synopsis

A method of including mutual impedances in the bus-impedance matrix by addition and matrix reduction

is derived. It is shown how this procedure can be extended, to take into account the modification of an
established matrix when the impedance of network elements is changed, and to the calculation of the
matrix of a subnetwork which is part of a larger network system. A sample calculation of a four-bus
network with three mutually coupled line elements, showing the derivation and modification of its
bus-impedance matrix and the derivation of the matrixes when it is divided into two networks, is included

in the Appendix.

List of symbols

¥V, = voltage of bus p above reference bus

I, = current injected into network at bus p

term of bus-impedance matrix in row p and

column ¢

I, V, Z = nodal-current, voltage and bus-impedance
matrixes (primed quantity refers to value
before interconnection of partial networks)

g = current in element p—g

N
Il

~
l

2,, = self impedance of element p-q
z,, = mutual impedance between elements
z = self-impedance and mutual-impedance matrix of
coupled elements
»y = inverse of matrix z

Vogr Ym = terms of y
connection matrix (all terms zero, plus or minus
one)
C, = transpose of matrix C
C,, = part of matrix C involving mutually coupled
elements
In all cases, reference bus is number 0

I

1 Introd uctidn

Until recent years, problems involving short circuits
on transmission systems have been solved mainly by the use
of symmetric components and the short-circuit board; so far,
this approach has proved satisfactory. As the 3-phasé method
requires a more complicated system arrangement if mutual
impedances, earthing conditions and phase relations are to
be represented, symmetric components have continued to be
used for the digital-computer solution of these problems. This

Paper 4700 P, first received 27th August and in revised form 8th
December 1964
Mr. Prebble is with the Hydro-Electric Commission, Hobart, Tasmania

PROC. IEE, Vol. 112, No. 4, APRIL 1965
34 P9

has the added advantage that network parameters, such as
impedances, are readily available.

The two most important conditions for the computer
programme are:

(a) the representation of mutual couplings between the trans-
mission lines; this can exist in any of the phase networks,
or between them, but is taken into account only in the
zero-phase-sequence system. This has proved one of the
most difficult aspects of solving short-circuit problems on
a digital computer

flexibility in representing the opening and closing of circuit
breakers, to simulate various fault conditions.

(4

-~

Other important conditions are ease of coding and pro-
gramming, the inclusion of resistances and negative impe-
dances and the accuracy of the calculation with low
impedances.

Bearing these conditions in mind, a digital-computer
programme should be automatic, accepting any network
configuration and doing the equivalent of plugging up the
network on a calculating board; i.e. it should construct a
mathematical model of the network which contains all the
information for the complete solution of the network equa-
tions, the model to be formed from a list of impedances and
bus connections.

The procedures developed for solving this problem on a
digital computer can be classified as:

(a) the mesh method!
(b) the nodal method.?

The mesh or loop-equation approach has the disadvantages
of being more difficult to code than the nodal method and
of involving a matrix inversion, which increases the storage
space required and introduces rounding errors. ‘The earlier
nodal methods required an iteration procedure, but these
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have now been superseded by the driving-point- and transfer-
impedance matrix or, more simply, the bus-impedance-matrix3
approach. In this method, the matrix is formed automatically,
without matrix inversion or iterative techniques, and all fault
calculations are done by simple arithmetic operations on
related portions of the matrix. Furthermore, the matrix can
be easily and simply modified to represent changes in the
transmission network, without having to construct a new
matrix, and it is therefore possible to programme for the
automatic solution of all fault conditions.

Present methods of handling mutual couplings involve
inverting a small matrix and applying corrections to each
term of the new row and column that are being added to the
matrix of the established partial network.4 These corrections
allow for the direct and indirect couplings of the new element
with elements of the established partial network. It is the
purpose of this paper to show how this somewhat involved
procedure can be replaced by simple addition; the key to
this being adding each group of mutually coupled lines to
the partial-network matrix, and closing loops after all the
elements of the group have been added.

2 Derivation of equations
21 Equations for construction of bus-impedance
matrix

) These are derived from the consideration of two simple
basic cases.

2.1 Adding to partial network mutually coupled
elements which establish new buses

Fig. la represents a partial network in which buses 1
and 2 are established; Fig. 15 represents a pair of elements

.

(o]
V21 Y% V2 Va |Va
1 1 13 3
L
zm
4 2 Ioz ‘ 4
P
1/
a b
o
V2|4 M %
1 o 3
It/ ' \[3
l"l :
2 A " 4
‘2/ c \14
Fig. 1

Addingvmutually coupled elements which establish new buses

a Initial network
11 pled linc el

¢ Final network
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of self impedances z3;, z4, and mutual impedance z,,, which
are to be added to the partial network, establishing the new
buses 3 and 4. Fig. lc represents the final interconnected
network.

The nodal equations for the partial network of Fig. 1a are

"y Zy Zyp) (L
[Vz]z[zzl er] [f;] R

where V,, V, are the voltages applied to the nodes and I}, I;
are the currents flowing into the nodes 1 and 2; the Zs are
the terms of the bus-impedance matrix.

The equations for the network of Fig. 1b are

Vs— ¥ Z31 Zm Iy
[V‘—V,J:[z,,, 242] [’47] e - @

where V; — V,, V4 — V, are the voltages applied and I,
I, are the resulting currents in elements 3-1, 4-2, respectively.
Combining eqns. | and 2 into one matrix equation:

Vi Z, Z, O 0 I

V, _ Zy Z,, O 0 L 3
Vs —V, 0 0 zy 2z, I,
Ve — Vs 0 0 z, z4 ' Iy,

The networks of Figs. 1a and b are now connected at the
common buses so that the power in each element is the
same before and after interconnection. For this to be so, the
currents before and after interconnection are related by the
equations ll’ = l] + ]3, 12, = Iz + 14, 131 = 13 and 142 = 14,
which may be written as a single matrix equation:

A 1 0 1 01 T[4
I o 1 o 1] |r
12 “lo o 1 o 12 - @
3 3

| 1, 0 0 0 1 I,

From this it follows that the voltages of the interconnected
network are given by’

't 0 0 O 2 v,
o 1 0 O V. V.
! =1 O]
1 01 0 vy -V, 2 i}
o 1 0 1 Ve— V, v,

and the bus-impedance matrix by

1000 Zy Z, 0 O
010 Zy Zyp O 0
101 0 0 zy z,
(01 0 0 0 z, z4
0
1
0
0

—_0 O

©)

(= -
-0 = QO

1
0
0
0
On multiplying out expression 6 by the rules of matrix

algebra, the equations for the interconnected network
become’

i Z,y Zp Zy, Zy 1,
ol _ | Za 22 Zy Zy 1
Vs Zy Zy Zytizy Ziptin I,
Vs Zn Zp Zytim Zntip I,

™
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21.2 Adding mutually coupled elements which
complete loops in the established partial network
This includes adding elements in parallel with elements
of the partial network. Fig. 2a represents a partial network
with established buses 1, 2, 3 and 4; Fig. 26 the mutually
coupled elements which are to be added to the partial network,

Zy, Zy Zys AN

Zy Zy Zy; Zy

Z; Z3; Zy Zy4

Zyy Zy Zy Zy -
Zy—2Zy Zyp—2Zyy, Zi3—2Z3 Zyy—2Zy

ZZl - Zdl ZZZ - Z42 ZZJ - 243

Zyy—Zy3 — 23 + Zs3 + 2y,
2y~ Zss 2y~ 2Zy3 —Zy+ Zyy + 2, Iy — 24

resulting in the final network of Fig. 2¢. The equations for the
networks of Figs. 2a and b can be written as a single equation

v=zZr . . . . . . . . . . . ®
.where V’, Z’ and I’ are the following matrixes:
Vi Zy Zy; 2,3 Z;y 0 0
V, Zn Zy Zy Zy 00
£ _|%n Zn2 23 Z3s 00
Va Zay Zy Zy Z4 00
V=V 0 0 0 0 2z 2,
Ve -V 0.0 0 0  z,2z4h
o
L
L
I )
Iy
Iy

When these two networks are connected together at the
common buses and the power is maintained constant, the
relation between currents and voltages before and after
interconnection is given by

l’=CI..........‘.(IO)

and CV' =V . . . . AR ()

Writing out in full the correspondmg matrixes for these
two equations:

B 1000 1 07T/

I 0100 0 1 A

Ll _loo1o -1 o I a2

1 0001 0 —1 Iy

L 0000 1 O Iy,

| 1, o000 o0 1§ L1,

and

‘1T 0 0 000 7 2

01 0 000 v, v,

00 1 000 1A 1w

00 0 100 V, N RZ

10 -1 o010 V,— ¥, 0

[0t 0 —1 01 Vy—V, | 0
(13)
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Multiplying eqn. 8 by C, and substituting in eqns. 10 and
11 gives
v=2zZr. . . . . . . . . . . .9
where Z = C,Z'C
After multiplying these three matrixes, Z is given by

le - Z|3 ZIZ - Zl‘
ZZl - 223 ZZZ - 224
Z3 — Zy, Zy; — 2y
Z4l - Z43 242 - Z44

2y —Zyy — Zyy + 2y + 2z,

'—242 + Z“ + 24y

(15)
[o]
s 2
3 3 5
V2 M| 3 3 MM VM V3[Va
1 3 1] 1 34
11/ \"3
< $
b3 3 Zm
3 3
2 4 i 142, 4 1
Iy a Iy b
[¢]
2 2
< <
< <
Ve vl 3 2 Malvg
1130 sno—d3
h I3
< <
3 miri
< <
1 2] 1g 4y
]2/ 14
[
Fig. 2

Adding mutually coupled elements which form loops

a lnmal network .
pled line ek

c Fmal network

As the last two terms of the voltage matrix set out in eqn. 13
are zero, the last two rows and columns of the matrix in
expr@ssmn 15 can be eliminated one at a time by Krons
method; i.e. if r is the last row and column, the term Z,
replaced by Z, ,Z,.1Z,). This procedure is the mat‘Le-
matical equlvalent of closmg the loops in the network, and,
in this case, the final bus-impedance matrix has four rows
and columns.

Eqns. 7 and 15 show that the bus-impedance matrix for
any network including mutual couplings can be built up by
simple addition, followed by closing of loops after all the
elements of the group have been added. The elements of the
group which establish new buses are added first into their
correct rows and columns; e.g. for an element connected
between buses p and g, where g is a new bus, make the
offdiagonal terms of row and column ¢ equal to the corre-
sponding terms of row and column p, and the diagonal term
qq equal to the diagonal term pp plus the self impedance of
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the element. For a generator element, i.e. p = 0, the terms
of this row and column are zero. If the element being added
is coupled to another element of the group which has already
been added to the bus-impedance matrix, the mutual coupling
between these elements is added to the appropriate terms;
e.g. if this element establishes a new bus r, this mutual
impedance is added into terms rq and gqr.

When all the elements of the group which establish new
buses have been added, those elements which complete loops
are added, forming rows and columns outside the established
matrix. For an element connected between the established
buses p and g, the offdiagonal terms of row r and column r
are the differences between the corresponding terms of the
rows and columns p and q; the diagonal term is the difference
between the terms pr and gr plus the self impedance of the
new element. For a generator element, the terms of one of the
rows and columns p and g are zero. If the element being
added forms a-new row and column s and has mutual coupling
to the element which formed row and column r, this mutual
impedance is added into terms rs and sr.

When all the elements of the group have been added to
the matrix, the loops are closed by eliminating one row and
column for each loop. If the element which has been added
has no mutual coupling to any other element and forms a

loop in the network, the corresponding row and column of

e Zy Zp Y Y Zy

Va Zy Zn 0 0 Zy

Vsl _| O 0 Z3 Zy, —Zy;

Vs 0 0 Zy Zy ~Zg3

0 Zy Zy —Zy —2Zy Zy + 2yt
0 Zy Zy —Zy —Zy Zy + 24

the matrix are eliminated immediately following the addition
of this element to the partial network.

2.2 Modification of established networks’

The bus-impedance matrix of an established network
can easily be modified when the impedance of its elements
is altered. If z,,,4 represents the impedance matrix of a group
of coupled elements, and z,,,, their impedance matrix after
changes in one or more of the group,

Y = Ynew — Yola (16)

where y,.,. = /20, and y,4 = 1[24,4 is first determined. A

© 23

group of coupled lines with self and mutuai impedances
given by the terms of the matrix

=1fy . a7

is then added to the existing bus-impedance matrix. Because
all the buses are established, each element of this group
therefore makes a loop in the network. When removing a
line with mutual coupling from the network, a very high
self impedance and zero mutual impedance are put in the
corresponding terms of the matrix z,,,. For studying the
effects of switching operations in a network, a partial matrix
for selected buses is formed from the complete matrix, and
modifications are carried out on this smaller matrix.

To change the impedance of an element which has no
mutual couplings, add a parallel element of admittance equal
to the difference between the new and the old admittances.

In calculating a bus-impedance matrix, this is the only
occasion that a matrix inversion is required, and the inversion
of the small matrixes involved can be done by division by the
major diagonal terms.8
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Interconnection of networks?

Fig. 3a represents two established subnetworks, and
Fig. 3b two line elements which connect these two networks,
as shown in Fig. 3c. As in Sections 2.1.1 and 2.1.2, the matrix
equation for the networks of Figs. 32 and b is

v
V2
Vs _
V, B
Vs — ¥,
Va— 12
Zy Z, 0 0 0 O 1
Zy Z, O O 0 O J4
0 0 Zy Zyg O O N
0 0 Zy Zyg 0 O I
0O 0 0 0 2z O I,
0 0 0 0 0 9z, Iy

If the networks of Figs. 3a and b are so connected that
the power in each element remains constant, the matrix
equation for the resulting network (Fig. 3¢) is

Zy, I
Z I
-7 1
34 3 19
—Z44 I
Zi; + 2y Iy
Zyy + Zys + 243 Iy
o
3 3
13 3
\Z1\TH 9 V4 V21 V3 |Va
L 3 I Buan—3

A
=
w

VWV

AV
W

1 I
2 a 4 b
0
T «
3 3
2 b3
Vo My L AN
1103 w43
Iy I3
2
b3
2
2ta2, 0 la

1 \ {4
c
Fig. 3 .

Interconnection of two network.

a Initial networks
b Two line clements
¢ Final network
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The matrix equation for the left subnetwork of Fig. 3a,
which includes the effect of the right subnetwork, is therefore
given by :

Vi Zy Z, Zy - Zy; I
Wl _|Za Zn Zy Zy KA
0 Zy 2y, Zn+2Zyy Zpt 2y || Iy
0 Zy Zpn Iyt Zy ZntZylll,

(20)

The final bus-impedance matrix for this subnetwork is
found by eliminating the last two rows and columns of the
matrix Z in eqn. 20. From this can be derived the rule for so
cutting a large network into smaller subnetworks that the
bus-impedance matrix of each subnetwork includes the effect
of the complete network. The network is cut at specified buses
into smaller networks A, B, C etc., and the bus-impedance
matrix for each of these is calculated. The bus-impedance
matrix of the subnetwork A, including the effect of the sub-
network B, is found by selecting the partial matrix of the

common buses from B’s bus-impedance matrix and adding
this as a group of mutually coupled elements, between the
reference and common buses, to A’s matrix. The bus-
impedance matrix for A, including the effect of B, is formed
by eliminating the rows and columns so added.

In this way short-circuit studies of, for example, proposed
generation and transmission arrangements can be performed
without calculating the complete bus-impedance matrix for
each arrangement. The matrix for the basic network is
established, followed by those for each additional subnetwork.
The required short circuits are calculated from appropriate
combinations of the subnetworks with the basic network.

-3 Computer calculation of network faults

Fig. 4 outlines the main steps for calculating the bus-
impedance matrix of a network, using a digital computer,
from a list of line-and-generator self-and-mutual impedances
and bus identifications. Before an element can be added to
the bus-impedance matrix, it must be connected at one or

read dota ond reorrange to form
mutual-impedance matrixes

[

read line and generator elements
starting from first listed element

]

calculote fauits

read next element

mutual coupling

I read all elements in group ]

no

established buses

add element to
matrix

add element
to matrix

add elements which
establish new
buses to matrix

!

Iclose loop I add to established-
bus list

|

add elements which form
loops to matrix

|

I;d mutual impedances to matrix]

close loops

add to established-bus
and used-element lists

fadd to usea-etement iist|

Fig. 4
Basic flow diagram for calculation of bus-impedance matrix
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715



both terminals to an aiready established bus (the reference
bus being considered established). The formation of the
matrix is commenced with the first element of the list con-
nected to the reference bus. In general, the matrix is symmetric
about the main diagonal, and so one half only is stored in
the computer.

At the beginning of the programme, the mutual impedances
are sorted into groups; a list of the elements in each group
is stored and a matrix z, of their mutual impedances is set
up. When an element with mutual coupling is read from
the line-and-generator list, all the elements of its group are
tested to determine whether they can be added to the bus-
impedance matrix being formed, and the order in which they
will be added is established (those which form new buses
first). During this test, the mutual-impedance connection
matrix C,, is formed as shown in Section 7.2. If the test is
successful, the elements of the group are added one at a time
to the bus-impedance matrix, then mutual impedances found
from the product C,,,,z,C,, arc added and the loops closed by
reduction. If all the elements of the group cannot be added
at this stage of the calculation, the next listed element is read.

4 Network-fault power and line currents

The calculation of the fault power at a bus and the
resulting sequence currents in the elements of a network is
illustrated with reference to Fig. 2c. Assuming that all
impedances are expressed per unit, and that the calculated
bus-impedance matrix for the network is

Zy Zy, Zy3 2
@n

where Z,,, Z,, etc. do not have the same values as Z,, Z,,
etc. in eqn. 15 but are the values after the last two rows and
columns of that equation have been eliminated; then, for a
fault on bus 2,

bus fault power = 1| Zy, per unit
voltage on bus 1 =1 — Z,,/]Z,, per unit
fault current in line 4-3 = (Z,3 — Z34)/Z;,243 per unit.

fault current in line 3~1 = y3(Z;, — Z33)/Zy, +
Vil Zay = Z34)]Z; per unit

where y3, and y,, are terms of the admittance matrix y, the
inverse of the mutual-impedance matrix z involving the
coupled lines 3-1 and 4-2. The phase powers and currents
for different types of fault are then found by combinations of
the sequence networks.

5 Conclusion

The problem of calculating system short circuits has
been analysed by Kron's tensor methods and translated into
matrix operations which can easily be programmed for a
digital computer. From the final bus-impedance matrix, the
faults at any point in the network (with any modifications
such as opening or closing of lines) can be determined by
simple arithmetic. The method also has the advantage of
simplicity of coding, and hence the data preparation is no
more complex than for a short-circuit-board study; further, it
can be programmed to provide a complete record of the short-
circuit power at all locations, and the resuiting current in
every element of the network.
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1 Appendix

711 Calculation of bus-impedance matrix for small
network
No account is taken of prefault conditions in the
network (Fig. 5), and the numerical work is simplified by
neglecting the resistance of the line and generator elements.
Start with generator elements 1-0:

[0-04]

Add generator element 2-0, establishing a new bus 2:

0-04 0
0 0-08
)
\ 0-20
<
Sooa o-oe% Faufidd e otog
E |
-005

008 040 1

0000 ~JO00™ 3
-001 010
030
—
Fig. 5

Sample network with mutually coupled line elements

Add line element 2-1, which closes a loop:

0-04 0 0-04
0 0-08 —0-08
0-04 -—0-08 0-20

Eliminate the last row and column and add generator
element 3-0, establishing a new bus 3:

0-032 0-016 0
0-016 0-048 0
0 0 0-100
PROC. IEE, Vol. 112, No. 4, APRIL 1965



Add the mutually coupled group of lines, 4-3 being added

4-3 3-1 32
first, establishing a new bus 4, then 3-1 and 3-2, which close 43 5-162 —0-047 0-657
loops: Inverting z,,,
43 3-1 3-2 gives y,;0 = 3-1 | —0-047 3-637 —0-915
0-0320-016 O 0 0-032 * 0-016 32| 0-657 —o0-91s 2-811
0-016 0-048 0 0’00 2(1)(1)2 20;(8) 43 31 32
4- g . 0132 3300_0110—'1 3 040 0 0
3 0 °"0 o —0-150 ey =3-1| © 050  0-10
3-1]0-032 0-016 —0-100 —0-110 0-43 0-216 32] o 0-10 0-20
3-2 | 0-016 0-048 —0-100 —0-150 0-216 0-548
4-3 3-1 3-2
The term in row 4 and column 4 is 0-100 + 0-200 = 0-300 4-3 [ 2-500 0 0 1
the term in row 4 and column 5 is 0 — 0-100 — 0:010 = Inverting z,,,,, (
—0-110 gives y,,, = 3-1 0 2:222 —1-111
the term in row 6 and column 6 is 0-048 — (— 0-100) +
+ 0-400 = 0-548 etc. 324 O —1-111 5-556 ]
Eliminate row 6 and column 6: 4-3 3-1 3-2
0032 0015 0003 0004 0026 [ 4-3[-2-662 0-047 -0-657]
0-015 0-044 0-009 0-013 —0-003 — Yora = 3-1 0-047 --1-415 —0-196
0-003 0-009 0-082 0-073 —0-061 32| -0-657 —0-196 2-745 |
0-004 0-013 0-073 0-259 ~—0-051
| 0:026 —0-003 —0-061 —0-051  0-347 4-3 3-1 3-2
L . 4-3[ —0-355 0 —0-085
Eliminating row 5 and column 5 gives the bus-impedance Invert y )
matrix of the sample network: ’ to give z = 3-| 0 -0-700 --0-050}
70-030 0-015 0:007 0-008 3-2| —0-085 ~0-050 0-340
0-015 0-044 0-008 0-013 @) 3
0-0070-008 .0'071 0-064 Adding a group of coupled lines 4-3, 3-1 and 3-2, with
0-008 0-013 0-064 0-251 self and mutual impedances given by eqn. 23, to the bus-
impedance matrix 22 calculated in Section 7.1.1: .
4-3 3-1 3-2
[ 0-030 0-015 0-007 0-008 --0-001 0-023 0-008 7]
0-015 0-044 0-008 0-013 —0-005 0-007 0-036
0-007 0-008 0-071 0-064 0:007 —0-064 —0-063
0-008 0-013 0-064 0-251 --0-187 —0-056 —0-051 }
4-3| —0-001 —0-005 0-007 --0-187 —0-161 —0-008 -—0-097
3-1 0-023 0-007 —0-064 —0-056 --0-008 —0-613 0-021 | .
3-2| 0-008 0-036 —0-063 —0-051 --0-097 0-021 0-439 |
The term in row 2 column 5 is 0-008 — 0:013 = —'0-005,
the term in row 6 column 7 is 0-007 - (—-0-064) — 0-050 = 0-021
the term in row 6 column 6 is 0:023 - (--0-064) — 0-700 = — 0-613 etc.
71.1.2 Modification of bus-impedance matrix Eliminating row 7 and column 7:
The self and mutual impedances of the group of r0-030 0-014 0-008 0-009 0-001 0-022
coupled lines in the network of Fig. 5 are changed as follows: 0-014 0-041 0013 0017 0-003 ©0-005
self impedance of line 4-3 from 0-20 to 0-40 0-008 0-013 0062 0-056 —0-006 —0-061
self impedance of line 31 from 0-30 to 0-50 0-009 0-017 0-056 0-246 —0-199 —0-053
:llft'ml"f’da“"e of l';: 3-2 f'l‘_’m 0‘;_43 to 0-20 ] 0-001 0-003 —-0-006 —0-199 —0-181 —0-004
toug impedance between lines and 3-1 from —0-01 | 0-022 0-005 —0-061 —0-053 —0-004 —0-615
mutual impedance between lines 4-3 and 3-2 from —0-05 Eliminating row 6 and column 6:
to 0 [[0-030 0-014  0-006 0-007 0-001
43 3-1 32 0-014 0:041 0-013 0-016 0-003
4-3 020 -0-01 --0-05 0-006 0-013 0-068 0-062 —0-006
Zog = 3-1{ —0-01 0-30 0-10 0-007 0-016 0-062 0-250 —0-199
3-2|—0-05 0-10 0-40 | 0-001 0-003 —0-006 —0-199 —0-181
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Eliminating row 5 and column 5 gives the bus-impedance
matrix for the modified network:

0-030 0-014 0-006 0-006

0-014 0-04f 0-013 0-013

0-006 0-013 0-068 0-068

0-006 0-013 0-068 0-468

29

74.3 Network subdivision
The network of Fig. § is cut at buses 1 and 2 into two
subnetworks a and b (Fig. 6). The bus-impedance matrix for
the subnetwork of Fig. 6ais:
[0-032 0-016
[0-016 0-048
and that for subnetwork b is
[[0-400 0-200 0-100 0-110
0-200 0-500 0-100 0-150
0-100 0-100 0-100 0-100
[ 0-110 0-150 0-100 0-300

The bus-impedance matrix for the subnetwork of Fig. 6a,
which includes the effect of subnetwork b, is formed by

25

(26)

030

Fig. 6
Sample network divided into subnetworks a and b

adding elements 1-0 and 2-0 of self and mutual impedances
0-400, 0-500 and 0-200, respectively, to the matrix 25 for a:
70-032 0-016 0-032 0-016

0-016 0-048 0-016 0-048

0-032 0-016 0-432 0-216
| 0-016 0-048 0-216 0-548
Eliminating row 4 and column 4:

[0-032 0-015 0-026
0-015 0-044 —0-003
[0-026 —0-003 0-347

Eliminating row 3 and column 3 gives the bus-impedance
matrix for subnetwork a, including the effect of b:

0-030 o‘ons]
0-015 0044 © - -+ - - - - @

The bué-impedance matrix for subnetwork b, which includes
the effect of subnetwork a, is formed by adding elements 1-0
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and 2-0, of self and mutual impedances 0-032, 0-048 and
0-016, respectively, to the matrix 26 for b:

[0-400 0:200 0-100 0-110 0-400 0-200

0-200 0-500 0-100 0-150 0-200 0-500
0-100 0-100 0-100 0-100 0-100 0-100
0-110 0-150 0-100 0-300 0-110 0-150
0-400 0-200 0-100 0-110 0-432 0-216

| 0-:200 0-500 0-100 0-150 0-216 0-548
Eliminating row 6 and column 6:

[0-327 0-018 0-064 0-055 0-32%
0-018 0-044 0-009 0-013 0-003
0-064 0-009 0-082 0-073 0-061
0-055 0-013 0-073 0-259 0-051
| 0:321 0:003 0-06]1 0-051 0-346
Eliminating row 5 and column 5 gives the bus-impedance

matrix for subnetwork b including the effect of a (this is the
same matrix as that calculated in Section 7.1.1):

0-030 0-015 0-007 0-008
0-015 0:-044 0-008 0-013
0-007 0-008 0-071 0-064
0-008 0-013 0-064 0-251

(28)

1.2 Derivation of the mutual-impedance connection
matrix Cp, .

In Fig. 7a, buses 2 and 3 have been established, and the
group of mutually coupled lines are added to the bus-
impedance matrix in the order:

2-1 establishing a new bus |
4-3 establishing a new bus 4
5-4 establishing a new bus 5.

o] ]
3 4 5 1 2
I Zm
Zm1 Zm2
2 -—L'\/\/\/\——l-—-‘l 3
a b

Fig. 7
Adding mutually coupled elements to networks

a Elements which establish new buses
b Elements which establish new bus and form loop

The matrix C,, for this group of coupled lines is:

21 4-354
2-1[-1 0 0
c,=43}] 0 1t 1] ... ... @

541 0 0 |
PROC. IEE, Vol. 112, No. 4, APRIL 1965



In Fig. 7b, buses 1 and 2 have been @stablished,. and the
mutually coupled lines are added to the bus-impedance
matrix in the order:

3-1 establishing a new bus 3
3-2 closing a loop.

The matrix C,, for these coupled lines is:

3-1 322 -

171 —1
C, = Y
o 3-2[0 1] G0

The matrix C,,, is derived by examining the bus connection

PROC. IEE, Vol. 112, No. 4, APRIL 1965

numbers of each element of the group in the order in which
itis added to the bus-impedance matrix. C,,, has the properties:

Its order is equal to the number of elements in the group.
In general, it is asymmetric.

The major diagonal terms are +1 for loop elements and
+1 or —1 for new bus elements, depending on the
relation between the element bus connection numbers.

All terms below the major diagonal are zero, but terms
above the major diagonal are +1or —1 if an element of
the group is connected to a new bus already established
by the group, the sign depending on the relation between
the bus connection numbers.
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Thus, the Cauer realization may be developed from purely algebraic considerations.
Frank M. Brown, Captain U.S.A.F.,

Department of Elcctrical Engincering,
Air I'orce Institute of Tccehnology,
Wirght-Patterson A.F.B., Ohkio, U.S.A.
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The Calculation of the Transfer and Driving Point Impedance Matrix by Digital Computer

The transfer and driving point impedance matrix is important for digital computer
studics of power system networks. By examining the connection matrix simple rules
are derived for the construction of this matrix; in particular, each line in a mutually
coupled group of lines is initially considered as uncoupled the necessary mutual imped-
ance values being derived separately for the whole group. These rules involve imped-
ance values and node numbers only and are therefore suitable for digital computer prog-

ramming. '
ref ) ref
Va ' Vg Ve .
4 e e Uae
IJ‘/ ' p d e

A B
Fig. 1: Network A and group of coupled lines B.

In the following discussion all impedances are lumped, as i{s usual in power sys-

tem studies.
In Fig. 1, A represents a network of n + 1 nodes, one of which is chosen as the

reference. The relation between the node voltages, referred to the reference, and the
node currents is given by the matrix equation

(v,] = [2,][1]) (1
where [ZA] is the nxn transfer and driving point impedance matrix of the network A.

In Fig. 1, B represents a group of m mutually coupled lines and a reference node
for which the m equations ~

lv,-v,] = [25]11,,] ¢

hold, Vg, V, are the node voltages, referred to the reference, of line d—e, I, the line

S2.
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current and [Z ] the m xm matrix of line self and mutual impedances (the convention
assumed for the direction of current flow is from the higher to the lower numbered node).
Combining equations (N and (2):

Va _ Z4 0 I:l 3
Vg -V, 0 Zg L.

It is required to find the transfer and driving point impedance matrix of the inter-
connected network formed when the lines B are added to the network A. Connect the
group of lines B to the network A so that the voltage of each node is the same before.
and after interconnection, i.e., the current is unchanged in each branch and the power
in the connected network is the same as in the two parts A and B. The equation relat-
ing the currents before and after interconnection: )
A 1 c Iy

= 4
Iie 0 C, Ig

where. [I ] are the currents at the nodes in the interconnected network represented by
A and [IB] are node currents when a line of B establishes a node in the interconnected
network and line currents otherwise,

The terms of the nxm matrix [C) and the m xm matrix [Ca] are +1, -1 and 0.
Consider the line k of B with nodes d and e. In the interconnected network two cases
arise: . .

1. A node is established by this line; let this node be e. If p is the node of 4 to
which d is connected either directly (in which case p = d) or indirectly through other
lines of B, then the term pk of [C] is +1 and the other terms in column k zero. The
diagonal term kk of [C,] is +1ife > d, ~1if e < d. The remaining column k terms of
[c,] are zero unless there are lines k. k,, ... netween nodes d and p in which case
the terms k,k, k,k, ... arc +1, if in the path from d to p the higher numbered node
occurs first, -1 if the lower numbered node occurs first,

2. 'I'he line connects two nodes which have alrendy been established., Liet p, g be
the nodes of A to which d, ¢ are either directly or indirectly connected, then if ¢> d
the terms pk and gk of [C) wre +1 und -1 respectively, the other terms in column & are
zero. The diagonal term kk of (C_) is +1. For direct connection of the line k to 4
the remaining column k terms of [VC‘,] are zero; otherwise there are terms +1 or -1 det-
ermined as in 1 for lines between nodes d and p, but with the opposite sign for lines
between nodes e and q.

The voltages before and a!ter interconnection are related by the equation:

1 0 Va Va
= (5)
Cc Cgc Vd - V, VB

‘where (V] are node voltages when the line of B establishes a node in the intercon-
nected network, atherwise zero.
'I‘he impedance matrix after 1nterconnectlon is given by:
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1 0z, o]t ¢ Z, Z,C
‘ = (6)
C, Cﬂl 0 ZB 0 Ca C‘ZA C‘ZAC +CﬂZBCa

The matrix [Z,] can be expressed as the sum of two matrices:

[Zgl = [Zs] + [ZM] (n

where [Z ] is the matrix of the self-impedances of the lines B, l.e., all off-diagonal
terms zero, and [Z,,] Is the matrix of the mutual impedances between the lines,

It follows from equations (6) and (7) that the impedance matrix for the intercon-
nected network can be derived in three steps.

1. Add the lines d —e one at a time, If the node d is already established then repeat
row and column d in row and column e, the principal diagonal term ee is the self-imped-
ance of the line plus the term de. If both nodes d and e are established then form a new
row and column f with terms (e > d) row d minus row e, column d minus column ¢ and
principal diagonal term ff the self-impedance of the line plus term df minus term ef. In
the case in which d is the reference node its row and column terms are taken as zero,

‘2. The mutual impedance values are then added into the matrix. These are determined
by the matrix product [C_,Z,C ], where [C,.], [C,] are derived from the order in
which the lines B are added and the relation between their node numbers.

3. The rows and columns f are eliminated by matrix reduction, as the voltage terms
in equation (5) which correspond to lines of B added between establlsh,d nodes, are

zero.
W. A. Prebble,

Hydro-Electric Commission,
Hobart, Tasmania.
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Matrices or Tensors?*

Since there are thousands of Journals that publish papers on the application of
matrices, but only one Quarterly that publishes on the application of tensors, it strikes
me that the Tensor Quarterly should give preference to tensorial papers. As a matter
of fact serlous thought should be given to a change in the title to ‘Tensor Quarterly’
instead of the present ‘Matrix and Tensor Quarterly’.

* Editor's Note: Mauloea can exist without t whilst t ot exist without matrices. This
summarizes the title and polioy of the Quarterly.
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Digital Calculation of Short-Circuit Networks

By W. A. PressLE, B.Sc., B.E.
(Associate Member)*

Summary.—1It is shown how a power system network is coded by means of node numbefs and lists of self and mutual impedances assembled for input
to the computer, After reading, sorting and reorganising these data, the computer calculates the bus impedance matrix for any sequence network by start-

ing with the reference bus and establishing, one by one, the network busses.

The calculation processes, according to simple rules, one element or one

group of mutually coupled elements at a time, until all the listed elements are used. )
The output consists of the sequence impedance for every bus in the sequence network solved plus current distribution factors in selected line and
generator elements. When a network is too large for solution with the available computer storage, it is divided into sub-networks and information is printed

put to derive their equivalent circuits.

These are then combined in the appropriate way to obtain the required information about the original network.

The mathematical rules for calculating line flows and equivalent circuits are summarised in the Appendix together with information on computer

running times.

A bibliography relating to digital computer programmes for fault studies is included.

List of Principal Symbols.

C, = Connection matrix for group of coupled lines.

C,s = Transpose of C,.

Z, = Mutual impedance matrix for group of coupled lines.

Zen = ?elf and mutual impedance matrix for group of coupled
ines.

Y.» = Inverse of Z,,.

Z = Self impedance of network element /.

Zne = Mutual impedance between two lines.

Zy = Bus impedance matrix term in row #, column j.

Vi = Voltage of node i above reference.

Iy = Current in line connecting nodes ¢ and j.

In the flow diagrams :

N = Number of line and generator elements.
M = Number of mutual impedances.
R, G = Number of lines in a group, group number.

% K,L,P Line elements.
D, E = Busses of line .
I = A counting integer.

1.—Introduction.

During the past few years a number of papers have been
published on the application of digital computers to power system
short-circuit problems. The methods derived for solving these
problems can be divided into two principal groups :

(i) those which use an iterative procedure (Refs. 9 to 13), and

(ii) those in which an impedance matrix is calculated directly.

Method (i) has the disadvantage that an iterative solution of
the complete network for each fault condition is required. Method
(ii) can be sub-divided into :

(a) the mesh or loop equation approach (Refs. 15 to 18), and

(b) the nodal approach (Refs. 19 to 26).

The mesh method requires a matrix inversion and is more
difficult to code than the nodal method. The computer programme
described in this paper is based on the nodal method which has
been developed in recent years and described in other publications
(Refs. 8, 20 and 26). In this programme the computer calculates
the transfer and driving point impedance matrix, referred to more
simply as the bus impedance matrix directly from lists of sequence
impedances identified by node numbers by making simple logical
decisions followed by arithmetic operations.

ing Confe

e, 1966, in N

*Paper No. 2039, presented before the E:
from 21st to 25th March, 1965.

‘The author is a Section Leader in the Electrical Investigations Division, The Hydro~
Electric Commission, Tasmania.

The programme is written in the Algol language and all input
and output to the computer are in the form of paper tapes. All
data must be in the form of numbers except for strings which are
input and output without being operated on by the computer and
are used for headings. The nodal method is particularly suited
to this type of data input because the network can be simply and
easily coded with numbers. It has the added advantage that the
data are kept to a minimum and are easily arranged in tables.

All calculations during the running of the programme are with
per unit values of impedance, etc., provision being made for the
selection of any convenient mVA base; the voltage base is the
nominal kV of the various sections of the system. As the bus im-~
pedance matrix is symmetrical, only the lower triangular part is -
stored during the calculation.

The computer programme is considered under the three parts,
into which it naturally divides :

(1) the reading and sorting of data,

(2) the calculation of the bus impedance matrix, and

(3) the output.

2.—Reading and Sorting Data.

An essential preliminary to the calculation of the bus im-
pedance matrix is the sorting and re-organising of the input data.
By making the computer do this, the rules for coding the network
and listing the data are reduced to a minimum. The generator
or source bus is numbered zero and the remaining busses or nodes
distinguished by positive integers which need not be consecutive
although the omission of any number leads to the non-utilisation
of allocated storage. In addition to the actual system busses,
dummy busses may be placed at any desired location, e.g., along
a line element.

Fig. 1 is a diagram showing the coding of a small zero sequence
network with mutual impedances; Tables I, II and III list the
data as presented to the computer for solving this network. Note
that only the figures are read by the computer during the data input,
the remaining letters, etc., punched on the tape are ignored.

2.1 Basic Data :

This consists of an ordered set of positive integers as shown
in Table I for the network of Fig. 1. The first number is used in
converting any resistance and reactance values listed in ohms in
Tables II and III to the per unit values required for the computer
calculations. The second and. third numbers tell the computer
how many items of data are in Tables II and III and, hence, the
amount of storage to allocate ; if the third number is zero, then there
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Zi Zs Z8

Fig. 1.—Partial System Zero Sequence Nerwork.

are no mutual couplings and Table III is omitted. - The highest
bus number is required to allocate storage for the bus impedance
matrix. The last number in Table I controls the arithmetic
operations in the programme ; if zero, the resistance columns in
Tables IT and III are omitted and the working is with real numbers ;
if greater than zero the working is with complex numbers. This
arises because in the past sequence calculations have been done
using reactances only ; thus the required resistance values are not
always available.

TABLE 1.
Basic Data.
mVA base 100
B Number of line and generator elements 16 _
- MNumber of mutual impedances 7
B Highest bus number . 10
* Number of resistances 8

2.2 Line and Generator Data:

The line and generator clements are listed in any order, each
being distinguished by the numbers of the busses which it connects.
Table II gives this data list for the network of Fig. 1. The number-
ing of each element of the list is used to check the total number of
elements and to distinguish those which are mutually coupled to
other elements. The column for voltage allows the resistance and
reactance to be listed in ohms or in per unit by entering the nominal
voltage in kV or the integer one respectively. As the data for each
element are read, the following operations are performed.—

(1) the bus connection numbers are stored in order, the lower number

first, and

(2) if necessary, the resistance and reactance are converted to per

unit using the kV voltage and mVA base, then the per unit values
are stored.

This does not slow down the reading process as the computer
makes the decisions and performs the calculations much faster
than the numbers are read.

In general, line elements are entered in the table with resist-
ance and reactance in ohms while generator and transformer elements
are entered with per unit reactances which may be negative for a
transformer represented by an equivalent circuit. '

2.3 Mutual Coupling Data:

At present the programme allows for mutual coupling between
any network elements except generator elements, i.e., those con-
nected to the reference bus. These may be listed in any order as
shown in Table III, each mutual impedance being distinguished
by the two line numbers from the line list. Each impedance is
numbered as a check on the total number of entries. As in the
line and generator list, there are columns for line voltage thus

Electrical Engincering Tt 5 1966
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permitting the impedance to be entered in ohms when the line
voltage is entered in KV or in per unit when the integer one is
entered under voltage.

TABLE 1.
Line and Generator List.

Element Bus connections Resistance | Reactance | Voltage
1 1 0 0.0 0.198 1
2 1 3 15.42 94.63 220
3 2 1 24.53 82.59 110
4 2 1 24.53 82.59 110
5 3 4 15.42 94.63 220
6 4 0 0.0 0.052 1
7 4 5 0.0 0.085 1
8 5 0 0.0 0.085 1
9 6 0 0.0 0.108 1
10 7 0 0.0 5.353 1
11 6 7 0.0 —0.603 1
12 5 6 10.47 57.28 110
13 7 8 9.67 89.98 88
14 6 9 12.27 55.10 110
15 4 10 16.67 93.96 220
16 10 0 0.0 0.15 1

TABLE III.
Mutual Impedance List.

Mutual | Element| Voltage | Element | Voltage | Resistance | Reactance
1 2 220 3 110 4.40 16.39
2 12 110 15 220 6.69 28.80
3 12 110 13 88 —3.24 —16.21
4 13 88 15 220 —3.24 —12.13
5 15 220 14 110 6.81 27.59
6 2 220 4 110 4.40 16.63
7 3 110 4 110 8.21 51.89

The sign of the mutual ‘impedance depends on the network
geometry and is found by examining the direction along the lines
from the higher to the lower numbered busses in the network
diagram. If these directions in two mutually coupled lines are
the same, then the mutual impedance is listed as positive ; if these
directions are opposite then the mutual impedance is negative ;
e.g., if in Fig. 1 busses 7 and 8 are interchanged then the mutual
couplings 3 and 4 in Table III would be positive.

During the reading of the data, two operations are performed
for each mutual impedance.—

(1) the two line numbers are sorted into order and stored temporarily
with the lower number first, and

(2) after conversion to per unit, if necessary, the impedance value is

placed in temporary storage.

After this preliminary working the data are not in a form which
is suitable for use in the programme and hence the data must be
re-arranged. The basic flow diagram by which the computer
carries out this re-arrangement is given in Fig. 2, Starting with
the first element from the line and generator list, the mutual line
list is searched for coupling with this element ; if no coupling is
found then the process is repeated with the second element, and
so on until a pair of mutually coupled lines are located. These
two lines commence a group and the mutual line list is searched
until all the other lines directly, or indirectly, coupled to these two
lines are found and listed in the group. If all the mutually coupled
lines are grouped the calculation proceeds to the next part of the
programme, otherwise the search continues for another group
of coupled lines. :

During the sorting, the lower triangular matrix of mutual
impedance values for each group is derived and these are stired
one after the other in linear arrays. For reference during subsc-
quent calculations it is necessary to store the number of lines in
each group and the total number of groups, in addition to the
locations of each group of lines and impedance values.
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Fig. 2.—Basic Flow Diagram for éS‘om’ng the Mutually Coupled Lines into
roups.

3.—Calculation of the Bus Impedance Matrix.

The first step in the calculation of the bus impedance matrix
is the setting of the controls which direct the working of the pro-
gramme. These consist of:

(1) a used element indicator in which each element is marked when

the calculation adding it to the matrix is finished ;

(2) an established bus indicator in which each bus is marked as the
calculation establishes it in the matrix ;

(3) the mutual element indicator has been set up during the procedure
of grouping the mutual impedances. This indicates which
elements have mutual coupling and into which group the element
has been sorted; and

(4) an integer variable which has, as the calculation proceeds, the
value of the highest established bus thus controlling the use,
when working with elements referred to below as type (b), of the
space allotted for the storage of the bus impedance matrix.

The bus impedance matrix is calculated by establishing the
network busses, one at a time, and closing loops as they are formed.
The mathematical rules for these operations have been covered
in the literature, e.g., Refs. 8, 20, 22, 23, 24, 25 and 26 ; the explana-
tions below refer to the following matrix :

i . Zy Zy o o Zg
J Zy . Zy e Zane | e [¢))
k . Zg,‘ . . . Z‘.-j . . . Zk& .

For clarity the complete matrix is shown, but, in practice, for
sequence networks it is symmetrical and only the lower triangular
part is stored by the computer.

In the calculation of the bus impedance matrix, outlined in

the basic flow diagram, Fig. 3, two types of element are recognised :

(a) a brucch element, i.e., one from an established bus and therefore
establisliing a new bus, and

(b) aloop element, i.e., one connecting two established busses.

As the network clements are listed in any order and, therefore,
are not necessarily processed in this order, the basis for the pro-
gramme is repeated searches of the list for. elements of type (a)
or (b) until all the elements are used and the calculation of the
impedance matrix is complete. The computer selects the first-
unused element / from the list and places it in one of the following
three categories.— T

(i) A generator element, i.e., one connected to the reference
bus. If this is a type (a) element establishing a new bus % then
a new row and column k are formed in the impedance matrix
having off-diagonal terms zero and diagonal term equal to the
self impedance of the element.

Zy =2y =0

Zu=12;

Initially the only bus established is the reference bus, hence the
first network element processed will be in this category.

For a type (b) element connected from the reference to the
established bus i then a dummy row and column % are formed with
the off-diagonal terms equal to the corresponding terms of the row
and column s and the diagonal term equal to the element self-
impedance plus the diagonal term of row i.

Zy = Zy; Zy =2y

. Zy =24+ 2,

The dummy row and column % are eliminated by replacing
each term Z;; of the matrix by : oo

ZuZyy
Zu
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Fig. 4—Basic Flow Diagram Determining if a Mutually Coupled Group of
Lines can be Processed.
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(ii) A line element without mutual coupling. If neither bus of
this element is established the programme proceceds to the next
unused element in the line list. For a line from an established
bus 7 to a new bus % then a new row and column % are formed with
the off-diagonal terms equal to the corresponding terms of row
and column ¢ and the diagonal term equal to the self impedance
of the element plus the diagonal term of row 1.

Zy=2Zy; Zy =24
Zyn=2y+2;
When the line is of type (b), connecting the established busses i
and j, then a dummy row and column % are formed in the impedance
matrix with the off-diagonal terms equal to the difference between
the corresponding .terms in the rows and columns ¢ and j while
its diagonal term is the self impedance of the element plus the
difference between the 7 and j terms of row k.
Zu=Zy— Zy; Zy =2y — 2y
Zgy=2u—Zy+4
The dummy row and column k are eliminated by the rule of Eq. (6).

(iii) A line with mutual coupling, in which case a more com-
plicated procedure is entered because all elements of the group,
i.e., all elements either directly or indirectly coupled to this element,
must be processed together. The basic flow diagram for this
procedure is set out in Fig. 4 and this does the following :

(1) determines whether all elements of the group can be processed
at this stage, the order in which they are to be processed (those
which establish new busses first) and whether they establish new
busses or loops; and

(2) derives the group impedance matrix C, which has 41 or — 1
in the main diagonal, zero for all terms below the main diagonal
and depending on the bus numbers of the elements and the way
they are connected together and to the partial established network,
zero, + 1 or — 1 for terms above the main diagonal.

The elements of the group are separated into two lists, those
which establish new busses and those which form loops. The
programme starts by testing the group elements to find the first
one which can be added to the bus impedance matrix and putting
it into one of the two lists. The elements are then searched again
to find the next element of the group which can be added to the
bus impedance matrix assuming that the first element has been
added. The procedure is then repeated until it has been deter-
mined in what order the elements of the group are to be added to
the bus impedance matrix or that they cannot be added in any
possible way. In the latter case, the programme proceeds to the
next element in the list which is not in the group just tested.

On completion of the above two steps the elements are pro-
cessed in the order determined and the group mutual impedance
matrix Z,, formed. This latter operation is simply a re-arrange-
ment of the group mutual impedances which are not necessarily
stored in the order in which the line elements have been pro-
cessed. The matrix product C,.Z,,C, is then derived and the
values from this product added into their respective terms of the
bus impedance matrix. Finally, any loops formed by the group
are closed one at a time using Eq. (6). In the Appendix, this
process is outlined with reference to the network of Fig. 1.

a9

4.—Output.

Because of the present storage limitations on the computer,
the storing of the complete programme leaves insufficient working
space for solving system problems. It has therefore been divided
into two separate programmes, the first of which ends with the
determination of the bus impedance matrix and the output on paper
tape of the terms of the matrix plus all the sorted self and mutual
impedance data. The input to the second programme consists
of the output from the first programme plus the numbers of specified
elements for which line flows are wanted and specified busses if
an equivalent network is required.

The second programme firstly inverts the self and mutual
impedance matrix, Z,,,, of each group of coupled line elements.
The inversion is by the method of pivotal condensation, the succes-
sive pivots being the main diagonal terms (Refs. 5 and 14). This

;-S - . ) .- - . . -
FITH RRSITTANCR S%O PUYDAD INPROMKTE . -
- <ol

Fig. 5.—Part Print-up of Results for the Network, Fig. 1.

gives an inverse to the required degree of accuracy because, in
general, the self impedance diagonal terms have a greater modulus
than the off-diagonal mutual impedance terms. The symmetry
of the matrices is utilised to save space and operations during the
inversion process. The lower triangular parts of the resulting
admittance matrices, Y, are then stored one after the other as
calculated and called when required for the calculation of the current
distribution factors.

Taking the busses one at a time, in the order of their numbers,
a list of all the elements connected to the bus under consideration
plus any other specified elements is set up. The per unit sequence
impedance of the system to the bus and the mVA base divided
by this impedance are printed. The latter represents the three-
phase fault power at the bus when the positive phase sequence
network is solved. The magnitude and direction of the curent
distribution factors (considering unit current flowing out of the
bus and in at the reference bus, no current into or out of any other
bus) are then calculated and printed out for the listed elements.
The rules for these calculations are given in Egs. (14), (16) and
(17). The output is punched on paper tape by the computer and
is then printed on a flexowriter ; part of the flexowriter print-up
for the network of Fig. 1 is shown in Fig. 5.

If required the terms of the partial bus impedance matrix for
selected network busses are also printed and can be used to derive
an equivalent circuit for the network. On inverting this matrix,
the resulting off-diagonal terms are minus the admittances of lines
between busses and the sum of the terms in a row or a column is
the admittance of an element connected to the reference bus.

4 5
00805
/BUT0N
00508 0-00/4
0042 0-0773
o

Fig. 6.—Eguivalent Circuit for the Network, Fig. 1.
Impedance values in]per unit.
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Fig. 6 is the equivalent circuit for the network of Fig. 1 re-
taining busses 4 and 5. As the partial bus impedance matrix
represents the effect of the complete network at the selected busses,
it can be used in the calculation of the matrix for a second network
connected to the first network at one or more of the selected busses.
The calculation starts with this matrix, the final bus impedance
matrix being that for the second network including the effect of
the first network.

5.—Programme Runmning.

The computer running time for solving a network depends
on a number of factors such as the presence of resistance and mutual
coupling, the coding of the network, and the order in which the
line and generator elements are listed. While the programme
solves a problem coded in any way with the self and mutual im-
pedances listed in any order, it is more efficient if the node numbers
follow regularly round the network starting at a generator element
and the elements with the lowest node numbers listed first. It is
also better from the aspect of programme running time, if the line
elements with mutual couplings are listed in such a way that all
those in a group can be processed as soon as one element of the group
is read. The actual order in which the mutual impedances are
listed is not significant as these are sorted by the computer in any
case; the speed of sorting is improved slightly by listing line
elements with mutual coupling early in the line and generator list.

By varying the network coding and data listing, the network
elements are processed in a different order which may cause a
difference in the fourth significant figure of the resulting impedances
and distribution factors. As the data are not known to any higher
degree of accuracy, there is no advantage in varying the coding
or listing for the purpose of obtaining more accurate results.

6.—Conclusion.

The direct calculation of the bus impedance matrix by the
computer leads to simple rules for coding the network with node
numbers. By making the computer organise and sort the data
the input is kept to easily understood lists of self and mutual im-
pedances which can be assembled with little experience and a
minimum chance of error.

The computer automatically calculates the bus impedance
matrix by simple arithmetical operations and logical decisions
based on the node numbers and finally calculates impedances and
line flows for all busses of the sequence network. At present the
sequence networks are solved independently, but the programme
could be extended to combine these networks to determine line-
to-line, line-to-ground faults, etc., and resulting power flows
anywhere on the system.
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APPENDIX.

1. Addition of Mutually Coupled Elements to the Bus Impedance

Matrix :

This will be discussed with reference to Fig. 1 and Tables II and III.
After rearranging, the mutual impedances are held in storage in two groups,
in the first of which are lines 2, 3, 4, in that order, and in the second four
lines 12, 15, 13, 14. The first element read establishes bus 1, the second
element is mutually coupled and the computer determines that the group
can be added in the order : element 2 establishing bus 3, element 3 establish-
ing bus 2, and ‘element 4 forming a loop.” The connection matrix C,
set up for this group by the computer is :

31 2-1 2-1
3-1 1 o0 0
2--1 0 1 S T T an
2—1 0 0 1

where the numbers outside the matrix refer to the bus connections of the
lines 2, 3 and 4. These line elements are then processed in accordance
with Egs. (7) to (10) forming the matrix :

12 3 a

1 T2y Ze Zi Z4)
2 Zy Zas Zyy Zay
.................. (12)
3 Zyy Zya Zuy Zgy
4 Za Zy Zyg Zyd
Thé matrix product C,Z,.C, is calculated :
31 2--1 2-1
3-1 0 Zuy — 2wy ¥ Zne
2—-1 Zu 0 Zmr | e (13)
2—-1 |~ Zmi+Zus Zun - 2Z g

and then the result Z,,, added t0 Zy, , Z335 - Zny + Zme added to Z 5,
Zy43 Zmyaddedto Z,,, Z,, and — 2Z,,, added to Z,,. Finally, row and
column 4 are eliminated by the rule of Eq. (6) and the calculation proceeds

to the next element in the line list.

2. Fault Power and Current Distribution Factors :
From Eq. (1) for a fault on bus i
mVA base

fault power = ————
Zy;
Consider unit current flowing in at the reference bus and out of the
network at bus 7, then
v =Zu
L I_/, == 7. etcC.
Hence the current distribution factor for a line j — &, of impedance
Z, , with a fault on bus 7 is :

YATREAY
I 55 e e (16)
. Z
If the lines j — k and g — h are a mutually coupled group :
Li =Y Zy — Z) + Yis(Zos — Zn)  coverennnnnnnns 17)

where Y, Y, are terms of the admittance matrix obtained by inverting
the matrix :
T

! [’Z, Zm.]
P Zmr Zp

where Z,,, is the mutual impedance coupling lines / and p.

Zym =

3. Equivalent Circuit :

The equivalent circuit retaining busses 4 and 5 in the network of Fig. 1
has the bus impedance matrix :

4 5

4 [(0.00056 - j0.03366 0.00043 - j0.01648 o
5 |0.00043 -+ j0.01648  0.00066 - jo.o4750:l """ a9
which inverted gives the equivalent circuit admittance matrix :
4 5
4 [ 0.441 — j35.778 —0.002 -i- j12.415
5 [ —0.002 4 j12.415 0.242 — j25.354] ........ 20
From this is derived the per unit admittance of each element :
4-0 0.439 — j23.364
5-0 0.240 — j12.939 ...l (21)
4-—5 0002 4-j12.415

and inversion of these gives the per unit impedances of Fig. 6.

4. Computer Running Times: '

The times quoted refer to the Elliot 503 computer installed in the
Hydro-University computing centre.

Because of the size of the two programmes there is insufficient storage
space in the computer to hold the Algol compilers together with the trans-
lated programme. Hence, as the programme is compiled a version in
machine code is output on paper tape. This has the advantage that the
programme does not have to be compiled again and the machine code version
is more rapidly translated into the machine than the Algol version. The
times for the input of the two machine code versions of the programmes
are 25 and 20 sec., respectively, compared with several minutes for trans-
lating the original Algol versions.

The following times apply to a 33-bus system with 54 line and generator
elements, 47 mutual couplings, but not including any resistance. The
time for reading in the data and calculating the bus impedance matrix
by the first programme is 30 sec. followed by 2 min. to punch out all the
terms of this matrix and the sorted self and murtual impedance data for the
second programme. The reading in of the data and the inversion of the
mutual impedance matrices by the second programme takes 15 sec. while
the calculation of the line flows, etc., and punching out the results takes
another 35 sec. If more line flows are required, these can be calculated
and punched out at the rate of 4 a second. The overall computer time,
allowing for winding tapes, etc., is 5 to 6 min. and the time to print up the
results on the flexowriter is 10 min,

If the network has resistance the time to punch out the results of the
first programme is doubled while that for punching the results of the
second programme and printing on the flexowriter is increased by abou
25 per cent. It is seen from these times that not a great deal is to be gainec
by coding the network and listing the data for optimum calculation time.

Discussion

Mr. J. W. Phillips (Associate Member, Sydney Divi-
ston).—This paper constitutes a worthy addition to the growing
literature of computer application to the problems encountered ir
the planning, design and operation of electricity supply systems
The author set out to develop a programme for the determination of
short-circuit currents using a computer just acquired by his organisa-
tion and in doing so adopted the nodal approach whereby, by solving
the three sequence networks, he obtains the positive, negative anc
zero sequence impedances for each busbar. This in turn enables
him to determine the short-circuit currents at the busbars and ir
the various lines connected to these busbars. This method is
more sophisticated than, for instance, the nodal iterative approact
which is in common use. The author should be complimentec
on the vast amount of study and the quality and simplicity of the
exposition of the subject matter. I would think that his methoc
would serve well for a fault study of a large existing system witk
a view to deciding on protective settings, but would it be as suitable
for the purpose of forward system planning as an adequate A.C
network analyser ? As is known the system designer has no contro!
over the study once it is put into the computer, whereas with 2
network analyser he retains this control throughout the exercise
and could change the course of study at any point. How woulc
the time taken in preparing and carrying out a computer study by
the proposed method compare with that required for a similas
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network analyser study ? I also note that the programme is written
in the “ Algol ” language. Could it be readily translated into the
popular “ Fortran > language ?

Mr.R. K. Edgley (Associate Member, Sydney Division).
—I would support Mr. Phillips’s comments concerning the relative
convenience and utility of computers and network analysers for
power-system fault studies. Some years ago I had to assist my
Company in deciding which of the two to adopt for this purpose, and
although it was realised that a computer could carry out studies
much more quickly, and with greater accuracy, than a network
analyser, our decision was to build a network analyser. The main
reasons for the decision were : —

(a) The network analyser could have sufficient accuracy, consistent
with that of the available data, for the purpose ;

(b) As an analogue device, it enabled the engineers concerned to
gollow a study closely, and to see and understand what was being
one.

The decision was made at a time when commercially available
computers were in their infancy, but even though a wide range of
versatile computers is now available we still prefer the network
analyser for fault and power flow studies. This preference could
be conditioned by the fact that many of our studies are carried out
for other organisations whose engineers in general are not familiar
with computing techniques ; in this our usage differs from the
author’s.

The author mentioned that the application of his method was
.complicated by lack of sufficient computer capacity. In this con-
nection, my Company has been using computer methods (for other
than power system studies) for some years, although it is only just
installing a computer. This was made possible by the existence in
UK. of a countrywide high-speed data-transmission network,
which among other things allows users to “ talk ” to computers,
and computers to “talk” to one another by Telex methods.

In a recent paper* by S. Dossing, I note mention of the
nucleus of such a network, allowing data transmission at a rate
approximately 50 times higher than by the P.M.G. Telex network,
already in existence in Australia, although it is operated I believe
exclusively for the American National Aeronautics & Space Adminis-
tration. Has the author considered the possibility of extending his
computer capacity by “ talking > to another computer, and does he
know whether there are any plans to establish in Australia a high-
speed data-transmission network, either in conjunction with, or
separate from, the N.A.S.A. network ?

Mr. P. J. Hoare (Associate Member, Brisbane Divi-
ston).—The author is to be commended for a clear explanation
of the inclusion of mutuals in the impedance matrix solution of
short-circuit studies.

Can the programme allow for loads, differing machine voltages,
off-nominal transformer taps and line end faults? The Northern
Electric Authority has developed a Fortran short-circuit programme
for an IBM 1620 Computer at the University College of Townsville
which can allow for these refinements and for mutuals, although
in fact they are seldom used. This procedure has been extended
with a second programme to calculate total and selected feeder
sequence and phase currents and voltages for earth faults, utilising
as input data punched card output of the short-circuit programme.
This method is simpler, and considered preferable to one in which
fault currents are calculated directly from all sequence impedances
since a check can be made on the intermediate results, and very
little additional computer time is involved.

Would it be possible to develop the bus matrix to include only
busbars on which faults are applied or metered lines connected, and
what is the procedure for changing fault location or a feeder outage ?

The use of the bus impedance matrix as described would
definitely result in faster calculating time than the nodal iterative
method used by the Authority. However, with the latter method,
.ease of programming and saving in programme storage (for example,
the one developed by the Authority has only about 200 Fortran

T DossING, S.—Data Transmission. Elec. Engg. Trans. L.E.Aust., March, 1966, p. 21.
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instructions including the refinements mentioned above) may offer
advantages with a small, reasonably fast computer and small
systems of less than 30-50 busbars.

The Author in Reply :

The author appreciates the comments submitted by the
discussers. The question of using an A.C. network analyser or a
digital computer for solving power system problems is raised. In
the past, the network analyser has been used extensively and,
depending on factors such as its availability, the type of problem
and the training and preferences of the engineers concerned, it
will no doubt continue in use. However, the digital computer is
now applied, in an increasing extent, to power system analysis ;
if the best is to be obtained from this new tool it should not be
compared directly with the analyser. In methods of analysis and
computation, the computer has brought about a revolution re-
quiring a new approach to power system problems and to the
assembling of accurate data. It is doubtful if, at present, any
organisation would buy an analyser because the computer has many
applications in addition to electrical network problems.

To Mr. Phillips: The programme is particularly suitable for
the extensive, detailed short-circuit calculations necessary in
determining circuit breaker ratings and protective relay settings
required by the existing power system and for its planned extensions.
Because many mutual transformers are required, the representation
on the analyser of network sections with several parallel transmission
lines can present difficulties which do not arise in the digital com-
puter programme.

The initial problem preparation, i.e., drawing a circuit dia-
gram and listing the self and mutual impedances, is similar for the
analyser and computer studies, but with a computer no further work
is done by the engineer. The preparation of data tapes, running
of the programme on the computer and printing the results takes
about a day (irrespective of problem size) depending on the work-
load. The programme could be written in ““ Fortran > from the
flow diagrams; a direct translation from the  Algol ” probably
would not be satisfactory.

To Mr. Edgley : The recent addition of a unit of core backing
store (16,284 words) has overcome programme limitations caused
by insufficient computer storage space. Now a study of the com-
plete power system is possible without division into sub-networks
and deriving equivalent circuits ; in addition, programme running
time is reduced because the punching of intermediate results is not
necessary. The author believes that high speed links are available
from the P.M.G. for transmitting data direct to a computer but,
to date, little use has been made of this facility. When the distances
involved and the services provided by the airlines are considered,
the sending of large amounts of data on magnetic tape could be
satisfactory as well as more economical than a data-transmission
link. .

To Myr. Hoare : The author agrees that the nodal method does
lead to some simplifications, e.g., the admittance matrix is easy
to calculate, has many zero terms and the inclusion of mutual
coupling between lines (a difficult problem with the impedance
matrix) is relatively simple. However, an iterative solution of the
network is necessary for each fault, whereas in the bus impedance
method, the fault mVA and sequence current distributions are
automatically calculated, by simple arithmetic operations, for all
busbars.

The effect of constant impedance loads can be included by
listing an equivalent impedance, and off-nominal taps by the
impedances for an equivalent circuit (Ref. D1). Different machine
voltages, transformer tap changes, feeder outages and line end
faults can be included by the following procedure. The bus
impedance matrix for the basic network is calculated and held
in storage ; from this a sub-matrix for the buses close to the circuit
change is selected and modified (e.g., in the case of a line outage,
a new line with impedance equal to minus that of the original line,
is added as a loop element to the sub-matrix). From the modified
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sub-matrix, the effect of this line outage on the selected busbars is
easily determined.

A line end fault is then derived by adding the self-impedance
of this line to the fault impedance of the busbar, to which it is
connected, in the modified sub-matrix. For a line end fault on a
line with mutual coupling, the corresponding procedure is to
remove the group from the sub-matrix, then add them in again
with the line concerned establishing a new bus. However, a better
method in this case is to place a dummy bus, in the basic network,
at a suitable location on the line and lump the mutual impedances

in one section, so that the second section is a line without mutual
coupling. .
By this process, selecting the sub-matrix for any number of
busbars from the network bus impedance matrix, the effect of
léneboutages, tap changes, loads, etc. can be calculated at specified
usbars,

. Reference.

DI. CLARk, E.—Circuit Analysis of A.C. Power Systems.
Wiley, 1943 and 1950, Vol. 1, 540 p., Vol. 2, 396 p.
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The Digital Solution of the Load Flow Problem by Elimimation

By W. A. PreBBLE, B.Sc., B.E.
(Associate Member)*

. Summary—This paper first sets out the requirements of a digital programme for solving the load flow problem and briefly describes, with its limita-
tions, an iterative method.

Then a programme, based on the solution by elimination of a set of linear equations for the voltage corrections at each busbar, is described. ‘This
method has advantages in that all practical load flow problems are solved in three or four elimination cycles, there is no difficulty solving problems which
fail to converge using the iterative technique, and the resulting solution approaches the specified conditions at all busbars with the same degree of accuracy.

As the voltage correction equations differ from cycle to cycle, a reduction in the number of arithmetic operations and storage required by the com-
puter is achieved by establishing, for the elimination process, the order of column pivoting. From an examination of network connections, it is shown that
this is achieved by the selection for pivoting, at each stage in the calculation, of the column with the least number of non-zero terms ; when a number

of columns satisfy this criterion simultaneously, then the first such column is selected. .

A description of the computer programme is illustrated by the solution of a small power system network.

The Appendices include the derivation of the voltage correction equations, their solution by column pivoting and arrangement to limit round-off errors,
the calculated busbar voltage corrections for the small network and problem solving times on the computer.

List of Principal Symbols.
e + jf = node voltage.
a + jb = node current.
G + jB = admittance.
impedance.
= P 4+ jQ = complex power.
= voltage correction matrix.
= number of network busbars.
U, W, H, T = sub-matrixes of matrix M.
Matrixes are identified in the text by { ].

Subscripts identify particular martix elements and a primed element
denotes a specified quantity.

¥ = complex conjugate.
4 = incremental value.

ZRONNKNSY
i

Z=summat.ionfromm=ltom=N.

m
| | = modulus of a complex quantity.

1.—Introduction.

In planning extensions to an existing network, many load flow
studies are necessary for determining the most economical trans-
mission line arrangement to transmit power from the generators to
the loads under all anticipated operating conditions. The trans-
mission lines are required to carry the power under all conditions
of generation and load, maintaining busbar voltages within specified
limits even when some lines are out of service. Also required from
these studies are the tapping ranges of transformers or regulators,
and the size and location of any capacitors or reactors necessary to
ensure an acceptable flow of reactive power in the network.

In the past, a network analyser was used exclusively by the
H.E.C. for load flow studies. With the growth of the system, the
capacity of the analyser has been exceeded and the digital computer
is now used for solving the larger network problems. The computer
also has advantages (e.g., the production of a complete printed
record of the study, data tapes can be kept and easily altered for
repeating, at a later date, studies with changed system conditions) ;
in addition, features such as regulator tap changing, load variations
and line switching can be included in the programme.

*Paper No. 229535dpraented at The Institution’s Power Systems Conference, held in
Melbourne on 15th 16th August, 1967.

The author is a Section Leader in the Electrical Investigations Division, The Hydro-
EBlectric Commission, Tasmania,

Electrical Engineering Transactions, March, 1968

With the installation of the Hydro-University digital computer
in 1964, system load flow studies commenced using an iterative
procedure for solving problems (Ref. 1). This method was chosen
because of its successful use by other authorities (Ref. 2), it is easily
understood and programme writing is straightforward. However,
after about a year unsatisfactory features of this programme had
become apparent (e.g., some problems took too long to solve while
others did not converge to the required tolerance) therefore, a pro-
gramme using the elimination method was developed.

2.—Formulation of the Problem.

Although some of the early digital load flow studies used mesh
equations to describe the relatdon between the voltages and currents
in a transmission network, it is now accepted that the nodal equations
are superior. For a particular node k, the nodal equation is

I, =z Yio Vo

while the system nodal equations are
] =Y}Vl

[Vl =I[ZlI].

With these equations the network can be simply coded ; each
busbar is identified by a number and each transmission line, trans-
former or regulator by the two numbers of the busbars which it
connects. Any shunt capacitors or reactors are identified by a
busbar number.

For the solution of the problem sets of conditions are specified
at each busbar which, therefore, can be classified into one of three
types.—

(1) the slack or floating busbar, &, at which the voltage is specified,
i.e., e, = voltage magnitude and f, = 0. There is one busbar,
usually a generator, of this type required in the network because
the transmission losses have to be found and hence the total
generation is unknown ;

(2) voltage regulated or generator busbars at which the voltage magni-
tude and the real power are specified ; and

(3) unregulated or load busbars at which the real and reactive 1 .. wer
are specified.

In addition, the solution may be required to satisfy restraints
such as a limit on the reactive power generated at a type (2) busbar,
or limits on the voltage of a busbar controlled by a tap changing
transformer. i

©

L. HI=IYHVY e evveenaes )
or, their inverse
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3.—Iterative Solution.

For solving the problem, the H.E.C.’s initial programme was
based on the Newton-Raphson iterative technique developed by
Ward and Hale (Ref. 1) using Eq. (1) and rectangular voltage co-
ordinates, i.e.,

Vi=e +jfe
This method has advantages in that the network admittance matrix is

(1) easy to derive (Refs. 1 and 2) which leads to a simple computer
programme for its construction from a list of line impedances and
connections ; and

(2) for power systems, mainly empty ; hence computer space and time

are saved by storing and operating only on the non-zero terms.

In each iteration voltage corrections at each busbar, except
the slack busbar, are computed sequentially with, at this point in
the calculation, the voltages at all the other busbars considered
correct. The iterations are repeated until the voltage corrections
at all busbars are less than a specified tolerance.

Alternatively, the calculation is stopped if this tolerance is not
reached in a prescribed number of iterations. Thus the solution is,
at best, an approximation, the tolerance determining the degree of
accuracy attained. The rate of convergence depends on several
factors, e.g., the number of busbars, the choice of slack busbar
and the presence or absence of radial lines remote from the slack
busbar are some of the more important. The number of iterations
required for convergence to a solution is considerably reduced, if,
for a given number of iterations depending on the size of the network,
both components of the calculated voltage correction are multiplied
by a linear acceleration factor (Ref. 3).

Using a linear acceleration factor of 1.6 and reliable estimates,
obtained from system operating conditions and previous studies,
for the specified busbar powers and voltages, load flow problems
with as many as 44 busbars have converged to a tolerance of 0.00005
per unit voltage in 90-100 iterations. However, some problems
(including ones with fewer busbars) require 200-300 iterations even
with an increased tolerance ; while others apparently do not con-
verge at all. This applies aprticularly with networks representing
system emergency operating conditions such as line outages,
especially when the resulting network has a radial type configuration.

4.—More Direct Solution.

From an examination of the various methods (Ref. 3) of solving
the load flow problem it appeared that a direct method would result
in the solution of problems that have proved difficult and, apparently,
impossible to solve by the iterative technique.

These methods may be classified into three groups.—

(1) using the admittance matrix (Ref. 4);

(2) using the impedance matrix (Refs. 5 and 6) ; and

(3) using a hybrid matrix, i.e., a matrix with mixed impedance and

admittance elements, which is really a combination of direct and
iterative methods (Ref. 7).

The main disadvantage of methods (2) and (3) is that the im-
pedance matrix has, in general, no zero terms, therefore the whole
matrix must be stored for use in the calculations. Also more calcu-~
lation is involved in setting up the impedance matrix than for the
admittance matrix ; in Refs. 5, 6 and 7 a matrix inversion is used
but, this can be avoided (Ref. 8) by assembling directly from the
network line impedance and connection list. These disadvantages
are not so important on a modern computer with a large fast access
store.

In method (1) a voltage, usually 1 4 j0, is assumed for all
busbars, then 2(N — 1) linear equations for the voltage corrections,
ie., the difference between the assumed and the true voltages at all
except the slack busbar, are set up and solved (Appendix I). The
corrections so obtained are applied to the busbar voltages but,
because the true equations are non-linear, the result is an approxi-
mation to the true answer, therefore the cycle is repeated until all
corrections are less than a specified limit.

As the existing digital load flow programme used the admittance
matrix, it was decided to test method (1) by copying this programme
but replacing the Newton-Raphson iterative procedures with ones

for setting up and solving, by elimination (Appendix IT), the voltage
correction equations. So that the process could be examined in
detail, facilities for printing the equations and the resulting voltage
corrections after each cycle were also included.

This programme was tried with several small networks (up
to 20 busbars) ; in particular ones that had proved difficult to solve
by the iterative technique. The main features of the results
obtained are as follows.—

(1) the number of cycles required for a satisfactory result is indepen-

dent of the number of busbars, the presence of radial loads, or the
location of the slack busbar (in onc case this was at the end of a
radial line) ;

(2) the voltage correction on the fourth cycle is less than 0.00005 per

unit for both voltage co-ordinates at all busbars ;

(3) after the first couple of cycles, the voltage correction is of a sirnilar
order for both co-ordinates at all busbars (Appendix IV). Thisis
in contrast to the iterative method, where convergence to the
correct voltage is slower at busbars loosely coupled to the slack
busbar ; and

usually after three and certainly after four cycles, the computed
power differs by less than 0.005 MW and 0.005 MVAr from the
specified power at all busbars. With an iterative solution, this
difference is as high as 0.8 MW, occasionally higher, at some bus-
bars even with a convergence limit of 0.00005 per unit for the
voltage co-ordinates.

Following these successful tests a programme based on the
admittance matrix and using the elimination method to solve the
correction equations, was developed. The principal difficulty
with the programme is in devising techniques for the efficient
storing of the admittance and correction matrixes. Although the
size of these matrixes depends on the square of the number of network
busbars, most of their terms for large systems are zero (Ref. 9).
Thus by storing and operating on the non-zero terms only, a con-
siderable saving in computer storage space and operating times can
be expected.

The admittance matrix presents no difficulties in this respect
and, furthermore, is symmetrical and constant for a particular net-
work. As the terms of the correction matrix depend on the busbar
voltages, which vary between cycles, this matrix must be recalculated
for each cycle. For this reason, and also because it is unsymmetrical
and terms initially zero are assigned values during the elimination,
it is desirable to determine for the correction matrix of each problem

(1) the order of eliminating columns (Appendix II) which ensures that
a minimum number of locations are assigned values during the
calculation ; and :

(2) the storage requirements for all the terms used during the elinxina-
tion ; in particular, that for each column so that the terms can be
stored in their right relationship to avoid shifting and facilitate
indexing during the calculation. '

While the scheme used to achieve these objectives may not
be the optimum, it does, however lead to considerable savings in
space and arithmetic operations by the computer.

4

~

5.—Voltage Correction Equations.

The equations for the busbar voltage corrections can be

written
[48] = [M][4V]

40 U Ae
[ar) = [ 7] L]
The expressions for the terms of Eq. (5), set out in Eqs. (6)
to (17) below, are derived in Appendix I. In the following equa-
tions, & and m are two busbars, other than the slack busbar, connected
in the network by a transmission line, transformer or regulator.
At a load busbar %:
. 40, = Q' — Qs
Up = — b — eeBuy + fiGix
Wi = ay — eGex — fuBux
At a generator busbar %:

49, = |Vt ~ V|2 e 9
Upr =265 ceverirnenrieiniieiiienieinnn,. (10)
1 N O P P an
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At a load or generator busbar k :
AP; = P,g - Pg
Hy =ax + .G + fBu
Ty = by — B + /iGur
Uin = Tim = — &Bin + [iGin

Hip = — Win = 6Gim + fiBin
except that for a generator busbar k:
Ukn = Wim =0 ot Q17)

Hence, it follows that AQ, AP, Ae and Af are column matrixes each
with (N — 1) terms, while U, W, H and T are (N — 1) by (N — 1)
square matrixes.

It is seen from Eqgs. (6) to (17) that, excluding the slack bus-
bar, for each network connection there corresponds a term in the
U, W, H and T matrixes (including the zero terms of Eq. (17)).
As in general U,,, is not equal to U, , etc., the matrixes are not
symmetrical, but corresponding terms on either side of their main
diagonals have values and these terms correspond with those of the
network admittance matrix, Y, when the row and column for the
slack bushbar are excluded. Thxs symmetry, and the correspon-
dence with the admittance matrix, provide clues for the efficient
solution of Eq. (5) by elimination (Refs. 9 and 10) and for setting
up a system to store and locate all the terms of the connection matrix
used in the calculations.

6.—Elimination Scheme.

Fig. 1 represents, in outline, the connections of a small power
system network ; those to the swing busbar being indicated with
broken lines. The U-matrix corresponding to this network is

2 3 4 .5 6 1 8 9
U Uss -
Uss Uss Use U,y
Ud U
Uu

Uss

U70

Ues
U'l'l
UB‘I

® N U e W N
]
-
4

9L Uss

where the terms indicated are assigned values by Egs. (6) to (17).
In the following discussion, the elimination method of solvmg
Eq. (5), set out in Appendix II, is discussed with reference to Fig. 1

® ® ® O]

Fig. 1.—Outline of Network Connections.
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and its corresponding U-matrix Eq. (18). In Eg. (18), column:
numbered 2 and 4 each have one off-diagonal term corresponding
to a connection in Fig. 1. The elimination of the terms U, anc
U,, introduces no new terms in the U-matrix, just as a networl
reduction which eliminates busbars at the end of radial lines intro-
duces no new network branches. The first column with two off-
diagonal terms is 5, and the elimination of U, , U,, introduces ¢
new term U,y , but not a term Uy, as Uj, in column 2 has already
been eliminated. The equivalent operation in the network reduc-
tion is the elimination of busbar 5 with the formauon of the new
branch 2-3.

Column 6 is the next one with two off-diagonal terms and
as the terms Uy, and U, are already present, the elimination ol
Ujge and U,4 introduces no new matrix terms. This is equivalent
in the network reduction, to eliminating busbar 6 which introduces
a branch in parallel with the existing branch 3-7. The eliminatior
of the off-diagonal terms of column 8 introduces the new terms
U,y and U,,, and as this results in three off-diagonal terms ir
column 9, all the remaining columns have three or more terms
At this stage of the elimination, Eq. (18) has the form :

2 3 4 5 [3 7 8 9

21 Uy
3 Uss Us,
4 1 . Uy
5 Uss 1
...... (19
6 Uss 1 Ug
7 Ui, Un Uy
8 Uy 1 Ug
9 U 0 Ui |

The values of the terms Uy, Uy, etc. of Eq. (19) will, in
general, be different from those of corresponding terms in Eq. (18).
So far the calculation has resulted in the elimination of eight, and
the introduction of three off-diagonal terms, i.e., a net loss of five
terms from the U-matrix. The remaining columns ate processed
in the order 9 (introducing a term U,,), 3 (introducing terms U,
and Uj,) and finally 7 which completes the calculation.

From the above discussion it follows that an efficient elimina-
tion procedure for solving Eq. (5) is as follows.—

(1) processing, in order, the columns with one off-diagonal term.
These correspond to busbars with one network branch connection
and introduce no new terms in the matrix ;

(2) processing, in order, the columns with two off-diagonal terms,
These correspond to busbars with two network branch connec-
tions and introduce none, one or two new terms in the matrix
depending on the network connections and the columns eliminated
under (1). Note that the processing of one column may add a
term to another column in this category which then becomes a
column with three off-diagonal terms ;

(3) processing, in order, the columns with three off-diagonal terms,

ie., those corresponding to busbars with thiec network branch

connections. This is equivalent, in a network reduction, to a

star-delta transformation and could result in as many as six new

matrix terms corresponding to three branches. However, in
practice not more than two or three new terms are likely, becausc

(@) network connections are usually such that some of the terins

already exist in the matrix ; and (b) columns where new terms could

appear have been processed under (1) and (2). This is illustrated
in Eq. (19) when the three off-diagonal terms of column 9 are
eliminated resulting in one new term U,;; and

processing, in order, the columns with four, then those with five,

etc., off-diagonal terms until the elimination is complete. Theore-

ucally, large numbers of new matrix terms can occur ;. but, in
practice this is unlikely because of existing network connections
and, at this stage, many columns where new terms might appear
have been processed, e.g., from Eq. (19) the elimination of the
four off-diagonal terms in column 3 results in two new 1 .ms
U,; and Uy, .

The elimination scheme, discussed above for the U-matrix,
can be applied, with slight modifications, to the M-matrix. In
this case, the columns are processed in pairs, i.ev., referring to Fig. 1
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26 DIGITAL LOAD FLOW BY ELIMINATION—Prebble.

and its M-matrix, the off-diagonal terms Ugy, Hgas Hias Wag
Wyq and T, , in the column corresponding to busbar No. 2, are
eliminated first followed, in order, by the off-diagonal terms in the
columns corresponding to busbar Nos. 4,5, 6,8,9,3and 7. There-
fore, after processing the columns corresponding to busbars Nos. 2,
4,5, 6 and 8, the H-, W- and T-matrixes have terms in correspond-
ing locations to that of the U-matrix, as indicated in Eq. (19),
except that the diagonal terms in these columns of the H- and W-
matrixes are zero.

The preferred elimination scheme above is now compared with
that of eliminating the off-diagonal matrix terms, column by column,
in the order of the busbar numbers, i.e., 2, 3, 4, 5, etc. Using the
latter order of elimination, 15 new terms appear and 29 terms are
modified in the U-matrix of Eq. (18), whereas only 6 new terms and
22 modifications occur with the preferred scheme. It therefore
follows that, if these two elimination schemes are applied to the
correction equations for Fig. 1 (ie., Eq. (5)) then the preferred
scheme leads to a reduction in the number of M-matrix terms used
during the calculation and, also in the number of arithmetic opera-
tions on terms of the M- and 4S-matrixes.

7—Computer Programme.

In Fig. 2, the flow diagram for the load flow programme is
given. The calculation commences by reading in the system data
which is in two parts. The first part is basic data listing the
number of modifications, MVA base, numbers of busbars, trans-
mission lines (including transformers), regulators, generator busbars
(including the slack busbar), load busbars, shunt reactors or capaci-
tors and busbars with voltage limits. The second part is the line
data which, for the network of Fig. 3, are set out in Table I,

Any regulators are listed last and given numbers commencing
with 501 to distinguish them from the transmission lines and fixed
ratio transformers ; the tap refers to the higher numbered busbar,
i.e., in Table I busbar 5 has an 8 per cent boost. As the data for
each line are read, the busbar connections are stored, the resistance
and reactance converted to per unit admittance, the shunt suscept-
ance to per unit and these three values stored. For regulators the

READ NETWORK DATA

READ PROBLEM DATA |

COMBINE PARALLEL LINES
CALCULATE V-MATRIX (NAGONAL TE/

SET NODAL VOLTAGES

OETERMINE ORDER AND STORAGE
FOR CORRECTION EQUATIONS

i

7-0

I=1+1

I SET-UP & SOLVE CORRECTION m«non&]

READ MORE DATA
IODIFV ¥~ MATRIX

=2

Fig. 2.—Power System Network.

TABLE L
Line and Regulator Data.
Shunt
Line Busbar Resistance | Reactance | Susceptance | Nominal
No. Connections (ohms) (ohms) | (micromhos,| Voltage
or Tap %) | (&V)
1 5 2 1.25 3.4 42.0 110
2 2 1 1.34 3.85 48.0 110
3 1 6 10.36 18.25 230.0 110
4 1 7 14.67 20.34 268.0 110
5 7 6 3.6 22.15 30.0 110
6 7 8 0.18 0.69 5.0 110
7 7 3 11.25 19.72 252.0 110
8 6 3 18.21 45.09 102.0 110
9 8 9 0.0 0.04 0.0 1
10 9 4 4.83 19.37 233.0 220
501 3 5 0.0 245 1.08 110

per unit admittance multiplied by the tap is stored, together with
the tap setting. Hence the list of admittances stored represents
the off-diagonal terms of the admittance matrix, and can be used
directly in calculating terms of the M-matrix.

Following the reading of the system data, the problemv«data
are read. Tables II and III set out these data for the network
of Fig. 3.

QI0¢

Fig. 3.—Basic Diagram for Load Flow Study.

TABLE Il
Generator Busbar Data.
Reactive Power Nominal
Busgbar | Voltage Real Power Limits Voltage
No. kV) MW) (MVAr) &V)
1 110.0 110.
3 110.0 212.0 80.0 110.0 110

The first busbar listed is the slack busbar for which the voltag. -
magnitude and nominal voltage only are specified, but it may be
assigned any number. For the remaining generator busbars the
real power and upper and lower reactive power limits are also
specified.
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TABLE IIL
Load Busbar Data.
Busbar Real Power Reactive Power | Nominal Voltage
No. (MW) M &V)
2 32.0 0.0 110
4 122.0 48.0 220
5 0.0 0.0 110
6 —31.0 - -~10.0 110
7 —229.0 - —104.0 110
8 0.0 0.0 - 110
9 0.0 0.0 220

This list includes all busbars at which the voltage magnitude
is not specified ; the sign indicates whether the nett power flow is
li)ntobt;he system (positive), or out of the system (negative) at the

usbar.

Further problem data such as shunt reactors and capacitors,
voltage limits at regulator busbars can also be included at this stage.
This is followed by system modifications which can be either line
switching or load changing.

After reading all the data, the line list is searched and any
parallel lines combined, thus determining the number of network
connections which is useful in setting up the correction matrix.

BUS MW MVAr VOLTAGE
1 —9039  —19.04 110.00 +0.005
2 32,00 —0.00 113.89 +4.30j
3 212.00 90.87 109.64 +8.915
4 122.00 48.00 2b78  +17.30f
5 ~ 0.00 0.00 117.06 +7.10
6 —3100  —10.00 10451 —1.08j
7 - 22900  —104.00 100.52 —2.88j
8 0.00 —0.00 101.12 —2.17f
9 0.00 —0.00 20756 +7.045

LINENO BUS MW MVAr  BUS
1 2 11479 67.61 5
2 1 144.08 60.99 2
3 1 ~19.13 —22.25 6
4 1 —3457 ~26.31 7
5 6 —11.45 —16.84 7
6 7 119.79 51.95 8
7 3 —70.47 —15.80 7
8 3 —25.03 -434 6
9 8 120.09 53.06 9

10 4 —122.00 —58.82 9

501 3 ~116.50 —75.01 5

TOTAL LINE LOSS = 1561 MW  48.96 MVAr

27

Next, the diagonal terms of the admittance matrix are calculated
and stored, and two lists, one showing the number of connections
to each busbar, the other indicating where the corresponding ad-
mittance is stored, are set up to give easy access to non-zero Y-
matrix terms. The initial per unit voltage of each load busbar is
set at 1 + jO and of each generator busbar at ¢ - jO where e is the
specified per unit voltage magnitude.

Following this, lists showing the number of terms in each column
and row of, and their locations in, the U-matrix are set up. The
numbers of the busbars corresponding to columns with one off-
diagonal term are listed and the row list modified by removing terms
relating to these columns. Next listed is the first busbar correspond~
ing to a column with two off-diagonal terms. The elimination of
these two terms is then examined to determine whether it results
in new terms for any column not listed. If so, the necessary lists
are amended before removing the related terms from the row list
and proceeding to the next column with two off-diagional terms.
This procedure is continued columns with two, three, etc.,
off-diagional terms until all (N — 1) busbars are listed. The result
is three lists, the first of busbar numbers, the remaining two giving
theé maximum number of terms which appear in each column and
row when the elimination proceeds according to the first list.

The calculation now enters the elimination cycle. The cor-
rection matrix is set up using the column and row lists to allocate
storage space for each set of terms, thus avoiding term shiftiing

KV per unit degrees
110.00 1.0000 0:0000
113.97 1.0361 21622
110.00 1.0000 4.6469
215.47 0.9794 4.6059
117.28 1.0662 3.4731
10451 09501  —0.5909
100.57 09142  —1.6827
101.14 09194  —1.2298
207.67 0.9440 1.9429
MW MVAr MWLOSS MVArLOSS  TAP
—~11650  —7226 1.708 4.646
14679  —68.78 2111 7.789
18.39 20.95 0.737 1.298
32.28 23.14 2.288 3173
11.31 16.00 0.137 0841
—120.09 —53.11 . 0.303 1.163
65.62 7.30 4849 8.500
24.06 1.94 0971 2.405
—12009  —61.21 0.000 8.156
120.09 55.16 1.908 7.653
11650 71.68 0.000 3.333 1.080

TOTAL LINE CHARGING = 43.12 MVAr

BUS MISMATCHMW  MVAr LINE CHARGING MVAr
1 ~0.0000 0.0000 6.61
2 0.0000 0.0000 1.17
3 0.0000 0.0000 4.28

Fig. 4 —Partial Print of Results for Load Flow Study.
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during the calculation. After two cycles the results are examined,
and if necessary, regulator taps adjusted and generator busbars
which have exceeded their reactive power limits converted to load
busbars. The elimination cycle is then continued until there are
no further adjustments or until four cycles have been completed.

When this stage is reached the results are punched out on paper
tape for printing. These are
(1) at each busbar—the MW and MVAr power flowing into, or out of,
the network ; the voltage components and magnitude in kV and
per unit; the voltage angle referred to the swing busbar; the
line charging lumped at the busbar ; the reactive flow in any shuat
reactors Or capacitors ;

(2) for each line, transformer or regulator—the MW and MVAr
ﬂo;ring into or out of each busbar; the MW and MVATr loss;
an

(3) the total MW line loss and MVAr line charging for the network.

Any required network modifications are then carried out and
the elimination cycle re-entered, otherwise the calculation is
complete.

+Fig. 4 is a portion of the printed results for a load flow study
of the network shown in Fig. 3.

8.—Conclusion.

For solving the load flow problem, the more direct method of
using a set of linear equations to calculate voltage corrections at all
network busbars simultaneously is superior to the iterative method
of sequentially determining busbar voltage corrections. Only
three or four correction calculations are required to obtain an accurate
solution of any practical load flow problem.

It has disadvantages in that the correction equations require
considerable storage space and are recomputed for each cycle.
By taking advantage of the sparsity of the admittance matrix, these
can be overcome and a scheme established for the elimination pro-
cess based on the network connections when the slack busbar is
excluded. This leads to a considerable saving of computer storage
space and to a reduction in the number of arithmetic operations
during computation.

The computer programme developed using these techniques
efficiently solves system load flow problems.
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APPENDIX L
Derivation of Equations.

From Eq. (1), the current I, , at busbar &, is calculated from the net-
work constants and the assumed voltages. The following equation is then
used to calculate a power at the busbar:

S = Vi I%

However, as the correct problem voltage differs from the assumed
voltage [V] by a quantity [4V] the correct current will differ from [I] by
[41], therefore, the equation for the problem is :

H+A4 =[YIV + 4V] e 1)
and the specified power at busbar % is:
S =S+ A4Sy = (Va + AVYU* + AI%) e 22)
From Egs. (1) and (21)
: [AI] = [Y]AV] weveeererreereseereeaenenne 23)

Combining Egs. (20) and (22) and substituting for 41, from Eq. (23), -
A8y = AV I% + (Vi + 4V D Yiar dV*,

Equating the real and imaginary terms on both sides of this equation,
results in 2(N — 1) second-order equations in the unknown voltage correc-
tions—there will not be an equation at the slack busbar as the voltage correc-
tions are zero. At the load busbars all the other terms in Eq. (24) can be
calculated from the network and problem data, but at the generator busbars
the reactive power is unknown and hence one of the two equations contains
another unknown. However, as at a busbar % of this type the voltage
magnitude V', = Ve + 4V, is specified, the following equation can be
written

[Vt — [Valt = (Vi + AV YV + AV — ViV,
= Vi dV*, + AV(V*: + AV*)

Theoretically it is possible to solve, for the unknown voltage correc-
tions, the 2(N — 1) equations derived from Eqgs. (24) and (25). But,
as it is easier to solve linear equations, an approximate solution is obtained
by neglecting the terms involving powers and products of the voltage correc=
tions. In a power system network, the busbar voltages do not differ greatly
from nominal, in most cases less tha.n 10 per cent, therefore the corrections
are small. A result for the load flow problem which i is, for practical pur-
poses, exact can be found by repeating, three or four times, the set up and
solution of Eqs. (24) and (25) neglecting second-order terms.

Neglecting second order terms, Eg. (24) becomes
ASy = AV 1% + Vi) Y4 AV,*

or,
4Py + jaQ, = (dex + jAf)ar — b)) + (ex + jf) X

X S Gur — iBuiXden — jAfn)  --(26)
Eqﬁating the real and imaginary parts of Eq. (26):
4P, = ayde, + bydf, + Z (xGms + fiBui)den +
+ Z(— &:Bos + fiGad)dfn e (2T)
40, = — byde, + ardfy + Z (= B + FiGraden —
— 2. (Gos + feBa) A -ere-:(28)
Similarly from Eq. (25) : )
|Vl? — [Vt = VidV* + 4V, V%,
= 2exde, + 21 dfy  eeviiiiiinnn 29

Eqgs. (6) to (17) follow from Eqgs. (27), (28) and (29).

APPENDIX II.
Digital Solution of Equations.

The procedure used for solving a set of linear equations is outlined |
briefly. Consider the set of equations
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a1 Gy Gis Ll =16
Az Gas Ay X3 2]

.................. (30)
d31 Q3 Qs X3 Cs

in which it is required to determine x, , x4, and x5, assuming that the g-matrix
is not singular. . The procedure on the computer is to use the main diagonal
terms as pivots and eliminate the off-diagonal terms in successive columns
(Ref. 11). For example, starting with column 2, all terms in row two of
the a- and c-matrixes are divided by a3 . The term a,, is then eliminated
by subtracting a,,as;/a;» from a,, ; a@,:a23/ass from a,5 and a,s¢s/a,, from
¢,. In a similar way, ay, is eliminated modifying the row 3 terms; then
the off-diagonal terms in columns 1 and 3 are eliminated using ﬁrst ay s
then a;; as the pivot. With this procedure, no additional storage is required
by the computer and the final ¢c-matrix terms are the solution to the equa-
tions.

APPENDIX HI.

Accuracy of Method of Solution.

In the above method, it can be shown (Ref. 11) that the result is satis-
factory and not subject to round-off errors if the element of greatest absolutéa
that ¢ =1 an

value in each column is used as the pivot. Assuming
f = 0 at all busbars, then from Egs. (7) and (13):

Ui = — by — B
Hy=a,+ Gun

From Eq. (1)

ay + jby = Z (Gus + JBand)

For a network of lines having resistance, reactance and shunt suscept-
ance Z G is zero and z B,,;; is small, being the summation of the shunt

susceptances at the busbar, .. Hence from Eq. (33), a; is zero and &, is
small. As in power system networks the reactance of a line is usually
greater than its resistance, it follows that B,, is greater than G, and hence,
from Egs. (31) and (32), U, is higher in absolute value than H,; .

From Egs. (15) and (16):

Hmk = Gmk
For a power system, the diagonal term B,, is, in general, greater than
the off-diagonal terms B,,; , G, of the Y-matrix. Hence, from Egs. (31),
(34) and (35), U, is greater than U,,; and H,,, . If k is a generator busbar,
then from Eq. (10) - )
kk —

This, in general, is not greater than other terms in column % of the U- and
H-matrixes, but in this case all other terms in row % are zero.

Similarly it can be shown that, in general, T, is the largest element in
column k of the W- and T-matrixes. After the first elimination, ¢; and
fx will not differ greatly from one and zero respectively, therefore the con-
clusions of the above analysis still hold. Therefore, in the majority of
power system networks, 1 + jO as the starting busbar voltage ensures that
each time the correction matrix M is set up, its main diagonal terms are
the elements of greatest absolute value in their respective columns (except
as mentioned above for generator busbars).

In lower voltage networks of the distribution type, the resistance of a

line may be greater than its reactance and the presence of any cables increases-

the shunt susceptance at the busbars concerned. As can be seen from Eqgs.
(7) to (16) for busbar k, the elements of [M] depend not only on network
admittances and susceptances but also on ¢, and f;. ; and it can be shown that
for this type of network, a starting busbar voltage of 0.6 + j0.8 usually
ensures that [M] has a dominant major diagonal.

APPENDIX 1V.
Voltage Corrections.

Table IV lists the per unit voltage corrections calculated for the net-
work given in Fig. 3 and the data listed in Tables I, IT and III.
For the fourth cycle, the maximum value of the corrections to any
busbar voltage is — 10~° per unit for the in-phase component of the voltage
at No. 4 busbar.

" APPENDIX V.

.Computer Running Times.

The programme is written in Algol and takes 58 sec. to compile on
the Hydro-University Elliott 503 computer. For a load flow study of a
35-busbar system, the time taken from starting to read the data until pun-
ching of the output commences is 37 sec. Although the M- and 4S-
matrixes are held in the core backing store, thus requiring transfers to and
from this store during computation, only 25 sec. is required for setting up
and solving the elimination equations four times. The calculation and
punching on paper tape of the busbar voltages and loads, the line losses,
charging and power flows takes a further 1 min. 8 sec. giving a total com-
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TABLE 1V.
Busbar Voltage Corrections.
Busbar First Cycle Second Cycle Third Cycle
2 0.0395 +70.0396 | —0.0041 —;0.0004 | —0.00003 —;0.00004
3 0.0000 +50.0872 | —0.0033 —;0.0061 |—0.00001 —;0.00014
4 0.0069 +50.0723 | —0.0297 +;0.0060 | —0.00097 +;0.00030
5 0.0715 +70.0652 | —0.0072 —50.0006 | —0.00005 —j50.00008
6 —0.0392 —50.0091 | —0.0104 —j50.0007 | —0.00029 +50.00002
7 —0.0629 —;0.0253 | —0.0226 —50.0009 | —0.00070 +j0.00003
8 —0.0571 —j0.0194 | —0.0230 —50.0004 | —0.00072 +50.00005
9 —0.0290 +70.0294 | —0.0267 -+50.0024 | —0.00085 +50.00016

puting time of 1 min. 45 sec. for the study. The overall computing time,
including winding of tapes, is about 4 min. and the time taken for printing
the results on the flexowriter is 17 min.

Discussion

Mr. J. A. Callow (Member, Sydney Division).—The
author is kind enough to refer to work by the Snowy Mountains
Authority in Ref. 2, the load flow programme for the SNOCOM
computer. That was our first attempt at producing a load flow
programme, and we have since produced programmes for the
National Elliott 405 and for the GE225, the latter machine being
in use at present. In writing the later programmes, we made
various modifications to reduce preparation and computing times
and improve convergence. We have established clearly that for
any particular system the best result will be obtained by a programme
which is to some extent tailored to suit the system. For instance,
we found that for the particular configuration of the interconnected
330-kV system the package GE225 programme was not satisfactory.
Our present programmes include various options that permlt
a degree of “ tailoring ”.

We considered the elimination method for the GE225 pro-
gramme but found that for an extensive system with a large number
of busbars the large matrices required an amount of fast access
storage which was not available to us. Could the author indicate
how many busbars his computer can handle ?

In view of the author’s recent experience with both network
analysers and computers, could he comment on whether he
finds it possible to get the feel of a new problem on the computer as
quickly as on the network analyser? We have recently been trying
to simulate the interconnected system as a three-machine system in
which the machines would have the same voltages and angles behind
transient reactance as selected machines in' the full representation.
This requires the shifting of impedance from one line section to
another line section (i.e., to either side of critical loads) and a step-by-
step process is required with the computer because of the need to
check the results, particularly the voltages at the loads, before
proceeding with the punched cards for the next adjustment. We
had the feeling that we could have achieved the required result in
less time on a network analyser. However, for the following
stability studies, the punched cards for several different fault
locations could be produced in one batch, and left with the operator.

The Author in Reply :

Resulting from the growth and interconnection of power
systems, the need has arisen to solve load flow problems for large
complicated networks which has led to a great deal of effort being
expended on the improvement of existing, and the development of
more sophisticated computer programmes. Such programmes
are made possible by improvements in computers such as the con-
struction of large random access core storages, a considerable
increase in the speed of arithmetic and logic operations and the
introduction of languages like “ Algol ” by means of which the
power system engineer (without becoming a skilled programm.r)
can communicate directly with the digital computér in a language
in which he can think. -

For the successful application of the elimination (or Newton’s)
method to the load flow problem, it is essential to determine a
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preferred order of solving the voltage correction equations and this
is achieved by using the logical versatility of the computer to, in
effect renumber the network busbars. By this preliminary network
analysis the necessity of storing large matrixes is avoided, thereby
increasing the size of the problem that can be handled by the com-
puter and also decreasing the computation time by limiting the
number of arithmetic operations required.  As it is becoming recog-
nised that Newton’s is one of the best and most reliable methods for
solving load flow problems, many organisations can be expected to
adopt it as techniques for controlling the size of the matrixes used
are developed.

Using the H.E.C.’s programme which occupies some 6,500
locations of the 8K core store in the Elliott 503 computer, problems
with 70 busbars have been solved. For a problem of this size, the
remainder of the core store plus about 2,000 locations in the 16K
core backing store are used, leaving plenty of space available for
solving larger networks.

There is a physical correspondence between the system
parameters and controls and their representation on a network
analyser, which is therefore suitable for experimentation and an
excellent educational instrument enabling an engineer to readily
acquire a knowledge of the operating characteristics of a small
system. However, engineers using a digital computer soon become
familiar with the effect on system behaviour of altering various
parameters and tend to plan studies in a systematic and disciplined
way ; furthermore the computer’s powerful logical facilities can be
used to incorporate engineering decisions in programmes.

The author would agree that the network analyser is as fast as
the digital computer for studies on small systems, but it is a specia-
lised item of equipment which would not be bought today because
the digital computer can do all the work of the analyser and have
time available for solving other problems. As Mr. Callow has
mentioned, punched cards or tape can be produced by a computer
thus making it easy to interrupt a study or, at some time in the
future, do subordinate studies not originally contemplated.

The Institution of Engineers, Australia



TINNEY AND HART:

POWER FLOW SOLUTION BY NB\\'TON,S METHOD

TABLE X

‘Tvpe of Problem

Gauss—Seidel Methad

Newton'’s Method

eavily loaded systems

Svatems containing negative reactnnes,
stch as 3-winding transformers or series
capacitors

Svstems with slack bus at a desired loca-
tion

Long and short lines terminating on same
bus

Long radial type system

+Acceleration factors

Usually eannot solve systems with phase
whift beyond 70 dogrees

Unable o solve

Often requires trial-and-error to find a
slack bus location which will yield a solu-
tion

Usually cannot solve a system with a long-
to-short line ratio at any bus beyond 1000
to1l

Difficulty in solving
Number of iterations depends on choice

Solves xystems with phase shifts up to
00 degrees

Solves with case

More tolerant of slack bus location

Can solve a system with a long-to-short
line ratio at any bus of 1000 000 to 1

Solves a wider range of such problems

None required

of acceleration factors

automatically, with print-out of overloaded.lines only, takes three

minutes and six seconds using a flat voltage start for each case, and .

takes 26 seconds longer using voltages from ‘the previous case. It is
believed that the 11 percent savings in computer time is not worth
risking a possible convergence to a wrong solution.

The main disadvantages of Newton’s method are: 1) the program-
ming logic is considerably more complex, and 2) the memory require-
ments dictate a computer with at least 32K memory.

The advantages of Newton's method include greater speed and
aceuracy, and the ability to solve a wider variety of ill-conditioned
svstems than ever before. The authors are to be commended for their
work in presenting this method to the industry.

W. A. Prebble (The Hydro-Electric Commission, Hobart, Tasmania,
Australia): The following comments refer to the program, based on
the elimination method suggested by Van Ness and Griffin,! de-
veloped and tested early in 1966 and now used for solving the Com-
mission’s load flow problems.

Using rectangular Cartesian coordinates, i.e.,

Veet+if (11)

the neiwork voltage correction equations, written in matrix form, are

Q] _ I_U_LTV_’@

aP| |8
in which there are no rows or columns corresponding to the slack
busbar. The values used in the U, W, S and T submatrixes are given
by equations (14) and (15) of Van Ness and Griffin;! for generator
busbars the equation for voltage magnitude is included in AQ, U and
. Liquation (12) is solved by column pivoting, with the main
diagonal " and T terms as the pivots.

Az, for a particular problem, (12) is set up and solved more than
onice, it is ndvantageous to predetermine the order of column pivoting
which keeps the number of arithmetic operations (also the storage
requiirements) 10 a minimum for this problem. The network connec-
tions are examined and a’list, establishing the order of column
pivots, is set up so that at each stage of the calculation, the pivot is
the one in the column with the least number of off-diagonal terms;
when several columns satisfy this requirement simultaneously, the
first of these is used.

(12)

Manuseript received February 28, 19687 ,

v J. L Van Ness and J. H. Griffin, “Elimination methods for load-
fiow studies,” T'rans. AIEE (I'ower Apparalus and Systems), vol. 80,
pp. 204-304, June 1961.

From the network, omitting the slack busbar and the connections
to it, indexes are set up for locating the off-diagonal termsof the T
matrix. The columns with one off-diagonal term (corresponding to
busbars at the end of radial lines) are listed first, because when used
as pivotal columns no new terms are introduced into the matrix.
Next, the first column with two off-diagonal terms is listed and the
result of using it as the pivotal column examined; if this introduces
new terms in the matrix, then the indexes are modified. The pro-
cedure is repeated with the remaining columns having two ofi-
diagonal terms, then those with three, etc., until all the columns are
listed.

ISquation (12) is then set up and solved by pivoting on thell and T
diagonal terms pairs according to the order list, the indexes giving
the storage location of the terms used during the caleulation.

It is interesting to note that with rectangular voltage condinates '

the U, W, S, and T submatrix terms depend directly on thevalues of
e and f chosen. In a high-voltage system, the choice of 1 + j0 for the
initial busbar voltages makes the U and T diagbnal terms the ones of
greatest magnitude in their respective columns each time (12) is set
up (except for generator busbars where the U diagonal term is
initially two and all other terms in this U and TV row zero). For low-
voltage distribution line and cable networks, in which the resistance
may be greater than the reactance, a starting voltage suchas 0.6 +
j0.8 causes dominance of the major diagonal terms. However, in
practice no advantage has been found for starting with s voltage
other than 1 + jO; the solution is obtained just as quickly and
accurately even when the main diagonal is not dominant.

From the experience gained with the program, which is written in
Algol for the Elliott 503 computer, it is concluded that:

1) Any load flow problem can be solved accurately, ie, within
0.005 MW, 0.005 Mvar of the specified real, reactive powerat load
busbars and 0.005 MW, 0.005 kV of the specified real power, voltage
magnitude at generator busbars; for practieal problems thisrequires
two or three elimination cycles.

2) The choice of slack busbar is not important: radial ype net-
works with slack busbar at the beginning have been solved success-
fully. .

3) It is faster than the nodal iterative method using linearacceler-
ation.

P. L. Dandeno (Hydro-Electric Power Commission, Toronto. Ont.,
Canada): The authors have presented examples which give con-
vincing evidence of extremely high accuracies for load flow wolutions.
There may not be the need for such high accuracy for .normal load
flow cases; however, this discusser believes that the authorn’ method
could be used to great advantage in stability caleulations. This was
hinted at in their comments about related developments in the paper.

Manuscript received Febﬁmry 24, 1967.
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UNITED STATES
DEPARTMENT OF THE INTERIOR
BONNEVILLE POWER ADMINISTRATION
PORTLAND, OREGON 97208

October 3, 1967

In reply refer to:
ESBM

Mr. Allen Prebble

The Hydro-Electric Commission
Box 355D G.P.O.

Hobart, Tasmania, Australia

Pear Mr. Prebble:

Thank you for the papers and information which you sent to me in your
letter of May 4, 1967. Although you may be isolated by geography, you
certainly are keeping up with developments in your field.

During this last year it has become widely recognized that Newton's
Method is the best way to solve the power flow problem and most of the
major U. S. companies either have adopted this method or have plans to
do so. You were years ahead of most everyone in tais effort.

I am enclosing a copy of our latest paper. We recognize that it probably
is too brief for easy reading but there was a 10-page limitation. -We
intend to write more on this subject later. Although the problem formu-
lation is in terms of the polar form of solution, it could be adgpted to
the rectangular form which you use. We expect that the optimal power
flow will eventually replace the present cut and try solutions.

Our organization is acquiring a CDC 6400 computer that will enable us to
solve power flow problems of 2000 busses. With this computing power many
new applications should be possible. ’

I was also interested in your paper on short circuit calculations. Our
present program is similar, but we are considering the possibilities of
using the impedance matrix in factored form with sparsity techniques
when we rewrite the program. °

I would appreciate maintaining our correspondence and exchange of papers.

‘Sincerely yours,
William F. Tinney, Head -
Methods Analysis Group



as far as possible, the best features of previous methods into
onc process, with the accent on the rapid solution of the
larger modern systems.

Today, there is a widely held view that the N.R. algorithm
with ordered climination constitutes the best general-purpose
load-flow solver curremly available, for well and ill condi-
tioned systems of all sizes.

My own experience strongly conﬁrms these conclustons,
and the following example may be of interest. Having
developed a number of different production programs in
FORTRAN (coded efficiently within the limitations of the
language), I ran the 118 busbar test system used by the

author of paper 5830 P on the Manchester University Atlas.

machine, in order to comparc their total execution times.
The result for the A.G.S. method was similar to that given in
the paper. The NL.R. solution converged with a maximum
mismatch of less than O:0LMVA in 237, of the A.G.S. time,
at a commercial cost of £2. Much better comparative per-
formances can be obtained with machinc-orientated N.R.
programs. In addition, the mecthod is gencrally highly
successful on ill-conditioned systems, and has nonrestrictive
computer-memory requirements.

The 118 busbar system could not be accommodated in the
Atlas 16k core store using the nodal Zmatrix program, but a
rough calculation established that one iteration cycle would
have taken virtually as long as the complete N.R. solution,
ignoring the time required to obtain the Zmatrix. This is in
keeping with the trend that, for most' purposes, power-
system-nctwork solutions using nonsparse inverse nctwork
matrices arc rapidly becoming obsolcte.

For adjusted solutions, the advantages of the N.R. method
over the A.G.S. or the author’s new boosted G.S. (B.G.S.)

mecthod may become even more marked than for unadjusted -

solutions. Hence, for the larger systems and with machine-
orientated programs, the margin of superiority of the N.R.
method will still be considerable, and much more marked than
indicated in the example.

A. Brameller: Tt is very interesting to see that some
attempt has been made to compare the nodal and mesh
approach. For commercial purposes, it is important that the
total time of computation is a minimum. Could the authors
give us a cost or total-time comparison for the dlﬂ'erent
methods they propose?

The standard AEP networks (on which the authors of
Paper 5639 P have based their conclusions) are highly inter-
connected systems and relatively well conditioned. There is a
class of networks which display mathematical ill-conditioning
effects. Among such systems are those in which Lv. and h.v.
networks are interconnected through relatively high-im-
pedance transformers and also h.v. transmission systems
which carry bulk power over several hundreds of miles. Such
test systems are available, and I wonder whether the authors
investigated their proposed methods to such networks and,
if so, what are the results?

In the G.S. or direct solution, whether based on mesh or
nodal analysis, the selection of a referencefslack busbar can
in general affect the convergence rate. Work carried out in
AmericaB and confirmed by results obtained at UMIST,
suggest that the applications of N.R. methods gives con-
vergence in about four to eight iterations for the most difficult
networks. The convergence is virtually independent of the
choice of the referencefslack busbar. Could the authors
compare their methods with the N.R. methods, bearing in
mind that highly efficient topologically controlled elimination
processes are available which take advantage of the sparsity
of the admittance matrix both in computation and storage
requirement.

) D. W. Wells: I have tried to compare the convergence
rates of the examples quoted in the paper with some results
which I obtained using theé N.R. method. For the convergence
rate p, I have used the log of the largest eigenvalue of the
iteration matrix which I estimated from the convergence
obtained. After n iterations, the residuals are reduced by a
factor of about exp p For the various methods, p is as
follows:

A.GS. p = 0-005-0-05
B.G.S. p = 0-01-0-1
N.R. p=2-2-5-0
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This means that the B.G.S. method will take at least 20
times as many iterations as the N.R. method to produce a
result of the same accuracy. The relative times taken for an
iteration arc less easy to estimate, but if the Jacobian in the
N.R. mecthod is factoriscd, cach iteration will take con-
siderably less than 20 times as long as a B.G.S. itcration,
Even ailowing for the time taken to form the Jacobian, the
N.R. method is faster but the program is more complex.

W. A. Prebble (communicated): The hybrid mcthod,
shown by the authors of Paper 5639 P to have advantages
with regard to the number of iterations, the choice of slack
busbar etc., has the disadvantages that the system impedance
and admittange matrixes are required, and two iterative
procedures must be programmed. For solving load-flow
problems in the Hydro-Elcetric Commission of Tasmania,
the variational matrix, or Newton's method, is used, and this
expericnce, together with the following remieks, indicates
that it could be supcerior to the authors' hybrid method,

Table A summarises the resulls of solving by Newton's
method (starting with a voltage of | + jOp.u. at all except
the slack busbar) the IEEE standard test systems described in
Appendixes 9.6.1, 9.6.3, and 9.6.4 of the paper.

Table A
CONVERGENCE USING NEWTON'S METHOD

Number of nodes for which the error is

greater than:
System I
'0-0005 | 0-0005 0-001 0:001

MW MVAr MW MVAr
AEP 14 busbar 3 0 0 0 0
AEP 30 busbar 3 4 4 1 1
AEP 57 bustar 3 9 8 2 2

For each of the test systems, the error in the voltage magnitude’

at the generator busbars is less than 0-00005p.u. after three
iterations, and a fourth iteration reduces the errors at ail
busbars in the two larger systems.to less than 0-0005 MW
and 0-0005MVAr. From Table A, it is seen that the system
size has very little effect on the number of iterations required,
and for practical purposes these systems are solved in three
iterations. .

Table B, which lists the voltage corrections calculated in

Table B
PER-UNIT VOLTAGE CORRECTIONS
Node lte)(ra:ng_nz 1 he;a!llg_nl lte;a%a_r: 3

2 0-00 — 8-56f —3-91 — 4-99 —0-34 — 1-72)
3 0-00 — 22-16j | —25-14 — 5-00f —3-60 —1-34)
4 2:79 — 17-64j | —22-74 — 6:76f —4-99 — 1-045
5 2:90 — 14-915 | —18-67 — 6-85/ —4:07 — 1-39)
6 0-00 — 25-96/ | —32-17 — 2-87 ~5-60 — 2-27j
7 7-11 -~ 23-19f | —35-83 — 13-79f —9-95 — 1-99/
8 0-00 — 25-287 | —29-17 4 0-61j -3-88 + 0-55§
9 6-51 — 26-18;j | —42-21 — 10-99/ | —11-84 — 0-38)
10 5:89 — 26:39f | —41-83 — 10-29j | —11-51 — 0-58/
11 6:29 — 25-55/ | —39-28 — 14-11; { —11-01 — 3-32j
12 5-91 — 25-86j | —38:95 — 15-22j | —11:02 — 4-51j
13 5-44 — 26-06f | —39:17 — 13-51j | —10-81 — 3-755-
14 4-19 — 28-04j | —44-53 — 6°06f | —12-06 + 1-08f

each iteration for the AEP 14-busbar system, shows that all

voltages converge. quadratically at about the same rate to
their final values. For a fourth iteration, all corrections are of a_

magnitude 106 or less.

From the practical point of view, Newton’s method has the '

advantages that

(@) no acceleration is requn'ed and no testing for convergence )

is necessary
(b) the choice of slack busbar is nct critical B

(¢) it is extremely reliable in solving problems that fail to -

converge using the nodal-admittance technique.

However, it does have the disadvantage that, for a system of
nnodes, 2(n — 1) linear equations are set up and solved in

PROC. IEE, Vol. 117, No. 2, FEBRUARY 1970
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cach iteration, but, by taking advantage of nctwork geometry
to solve these in a preferred order,CP large systems can be
handled on a medium-sized computer in times proportional
to the number of nodes.

All the methods (including Newton® s) mentioned by the
authors arc basically that of the network analyser adapted for
digital computation it would seem that real progress can now
be made only by devising new techniques.

J. A. Treece (in reply): All contributors to the dis-
cussion have asserted that the N.R. technique has made G.S.
. obsolete for load-flow calculations; so 1 will address my
remarks to them all.

In my opinion the G.S. tcchnlquc will continue to survive
for some ycars. Special-purpose programs, built around a
basic G.S. load flow, cannot be easily reprogrammed. Al-
though the N.R. technique can be programmed efficiently,
with some difliculty, it is not known if it can stand up to a
normal production environment. Long-term studies alone
amount to over 300 a year, of which 409 exceed 400 nodes
in size. These studies sometimes contain 300 program-
controlled tap changers, and some have d.c. links built onto
the a.c. system; the d.c. link is extremely sensitive to voltage
changes. A technique as reliable as the G.S. technique is
absolutely essential. The exccution times quoted in Table G
show that, for large cases, the bootstrap method is superior
to G.S. by a factor of up to three times.” However, only
itcration times are compared. The input-output time has
become more significant, as itcration times have fallen, so a
new technique has to be extremcly fast to produce a reasonable
‘pay off". The only way to improve this situation is to con-
centrate on a technique which will handle outage cases very
quickly. Examples are frequently run with over 50 outages to
establish seeurity of the network. It is in this arca that both
G.S.and NLRL techniques need to be developed; yet nothing
seems 10 have been done. Perhaps this aspect of the problem
is not sufliciently glamorous to attract interest.

In comparing techniques, only mismatches provide a
reliable guide. The results quoted in many papers using voltage

Table C
MISMATCH "PLOT (ACCELERATION)
Nodes Iterations Mismatch Acceleration
1IEEE 118 148 1-63 1-60
134 1-58 1-64
123 1-57 167
112 1-56 1-70
104 1-60 1-72
97 1-57 1-74%
400t 7-0 1-75
CEGB276 | . 325 69 1-60
285 6-8 1-65*
— — 1-70%
CEGB 515 900 18-5 1-60
838 17-0 I-65
747 16-2 1-70*
92071 — 1-725
* Near-optil 1t Not 8 ) $ Diverging
Table D )
MISMATCH PLOT (BOOST)
Nodes * Iterations Mismatch Boost
IEEE 118 161 0-37 0-75
130 0-27 0-80
89 0-13 0-85
78 0-07 0-86
67 0-15 0-87*
) 78 0-11 0-88
CEGB 276 360 3-5 0-70
251 2-4 0-80
121 1-8 0-90*
247t 0-4 0-95
CEGB 515 684 3-6 0-85
456 1-1 0-92*
—_ —_ 0-95%
* Near-optimum t Diverging ¢ Unstable
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Table E
RATE OF CONVERGENCE (TWO POINTS)

Nodes NI M1 N2 M2 | 7 deccleration
-JEEE 118 40 23-0 97 1-57 1-74A
49 1-05 67 0-15 0-8783
CEGB 276 200 20-0 1285 6-8 1-65A
80 11-0 121 1-8 0-90B
CEGB 515 300 98-0 | 747 16-2 1-70A
300 5-8 | 456 1-1 0-92B
N1, N2 == number of itcrations
M1, M2 = mismatches
Table F .
ITERATIONS FOR SAME MISMATCH SOLUTION
Nodes Acceleration | Extrapolation® } Boost
- 1
IEEE 118 97 — ! 45 .
CEGB 276 285 200 95
CEGB 515 747 410 200

* Combined with acccleration

Table G
COMPUTING TIME IN SECONDS (CEGB CASES)

Time to rcuch_ Nodes Tine (A) Time (B) % Raneo of times
Voltage 276 40 °| | o,\/m

lolu.mu.s . 515 175 131 13-SA/B*
R -27(. - IJ"(_> N 'l7- 3 L-19B/A
100 ncrations sis 234 AR nf..\
Same 276 40 156 | 2-6A/B

mismatches 515 175 57-5 3-0A/B

* Mismatch ratio
A = acceleration
B = boost

tolerances only are of little value. I have taken the trouble to
provide mismatch values for the test examples used in my
paper. They are shown in Table C (A.G.S.) and Table D
(B.G.S.). These mismatehes are the maximum crrors obtained
when convergence to the conventional voltage tolerance of
0-0001 p.u. is used. Near-optimum boost values can be
obtained using the simple formula B = 0-94 — (10/N) for
a network of N nodes. I see no point in further complicating
the choice of B. The bootstrap method is applied by
simply adding —AV?!Y¥ V, to a running mismatch sum at
each node r (connected to s) during iteration on node s. The
successor nodes r > s are ignored during the s iteration, and
the partial products in this calculation are already available
in the normal G.S. procedure. Consequently B.G.S. iterations
only cost about 20% more than A.G.S. iterations as shown
in Table G. The inherent simplicity of the G.S. technique is
thus seen to be preserved. Table E shows two points on each
of the linear convergence curves (obtained by plotting log A/
against N) for several test examples. However, comparisons
based on convergence rates alone are suspect, since they take
no account of the logic required to program the processes.
We have some experience of techniques which, in terms of
number of operations, seemed superior, until they were pro-
grammed. Table F shows the number of iterations necessary |
to reach the same mismatch solutions, regardless of voltage
tolerance, and results for the massive extrapolation technique
(Reference 4 in Paper 5830 P) are included. For large values,
the B.G.S. technique is clearly superior to the other muhoda
when the increased cost of the iterations are taken into
account. Only 200 iterations are required, compared-with 747
(near-optimum A.G.S.) for the 515 node case, and the
iteration time has been reduced by 66 %;. These networks are
not particularly easy to solve, but they are not ill conditioned
for the G.S. technique—such cases do not often arise.’

L. L. Freris and A. M. Sasson (in reply): The duthors
agree with Mr. Cory’s statement that methods implicitly
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HEI2a Short circuit; :
. begin comment calculates the bus impedance matrix for a network with or without lnutual coup11ngs
integer A,D,I,J,K,L,Q,myn,p,C5,C6,C9; real a; integer array str{1:401];
I1:=1; instring(str,1); read a,n,m,p;
. comment mva base, number of lines, number of mutuals,highest bus number;
t= if m<5 then 5 else m;
begin 1ntqg__ array connec, linind[1:n,1:2],busind[i:p]l,mutind[1:K,1: 3] muline[1:3%K,1:2];
array react,resis[1:n],remat,immat[1!: (p+4)*(p+5) div 2], reimped,imimped[1:3*K];
comment maximum of four loops if the highest numbered bus is established,more than
four if it is not established;
switch s:=11,12,13,14,15;
comment insert procedures start,grouping,radial line,dummy bus,mutuals,
reorder,generator,reduce matrix,invert,lineflow,finish;

procedure start;

comment uses global varisbles a,m,n,p,connec,resis,react;

begin comment segment[1]; integer i,j,k,q,t; real r,x,y,v ;

t:=0; - ‘ '

. for itz step 1 until n do '
: begin read read q,;,k,r,x, '

‘ ) o : 1f j=k or j>p or k>p or J<0 or k<0 then

' ' begin Brznt ££1?1ine data error?,q,J,
t=t+l

end;
connecl[i,1]s=if j>k then k else j;
connec[1,2 =if j>k then j else k;

ggg read1ng of line data Btorxng line connections in connec with lower
numbered bus first,per unit values of reactance and resistance in react and resis;
if t>0 then stop
end t will have a positive value if there is a mistake in the bus numbers, in this case the numbers of
the line and its buses are printed and the program stops;

procedure grouping;
comment uses global variables a,m,C5,C6,C9,mutind,muline,react,resis,reimped,imimped,linind;

begin comment segment[1]; integer d,f,g,h,i,j,k,q,r,t; real u,vyX,y,z;
integer array fircon,secon,ind[1:m]; real array ristce,reatce[l:m];
switch ss:=111,112,113,114,115,116; .
hs=0;

for i:=1 step 1 until m do
begin read g, j,u,k,v,X,y;
if j=k or j>n or k>n or j<1 or k<! then
begin print £€£1?mutual data error?,g, j,k; hi=h+l
end;
fircon[il:=j; seconlil:=k; ind[i]:=
z:=if abs(u-1,0)>0,1 then a/(u*v) else 1,0;
ristce[i]:=x*z; reatce[i]:=y*z
end reading mutual coupling data storing line numbers and per unit values of resistance and reactance;

if h>0 then stop;

6:=C9:=i:=0;

=i4+l; if i>m then goto 116;

nd[1]£0 then goto to 111;

C5:=C5+1; indlil:=C5
j::fircon[i]; k:=secon[il;
linind[ j,2]):=C5; linind[k,2]:=C5;
muline[C6+1,1]:=3j; muline[C6+2,1]:=k;
d:=2; g:=1; h:=Co+g+(d-1)*(d-2) div 2;
re1mped[h] =ristce[i]; 1m1mped[h]?;}eatce[1]

112 ¢=i

113: k:,_:kil; if k>m then goto 114;

C
111: i
: i



if ind[k]¥O then goto 113;
qs f1rcon[k]- r::secon[k]
f q=j or r=j then
begin switeh sssiz1111,1112;
indlk]:=C5; t:=if g=j then r else q; £: =g;
1113 fe=1f+1;
if f>d then
begin d:=d+l; muline[c6+d,1]:=t; linind[t,2]:=C5; goto 1112
end storing 11ne number;
if témuline[C6+f,1] then goto 1111; '
1112: h:=C9+g+(£-1)*(£f2) div 2; reimped[h]:=ristce[k]; imimped [h]:=reatce[k]
end storing resistance and reactance in group impedance matrix;
goto 113;
114: g:=g+1; if g>d then goto 115;
, Je=muline{C6+g,1]; goto 112;
115: mutind{C5,1):=d; mutind[C5,2]1:=C6+1; mutind[C5,31:=C9+1;
C6:=C6+d; C9:=Co+d*(d-1) div 2; goto 111;
1l6: for i:=1 step 1 until C6 do muline[i,2]:=0 :
end grouping which sorts mutual impedances into groups, C5 number of groups, mutind gives the number of lines in

each group, the location of these lines in muline and the location of the mutual impedance values in 1m1mped
and reimped; :

procedure radial line;
comment uses global variables I,J,K,A,resis,react,remat,immat,busind,linind;
begin integer i, j,k,q,r;
q:=J*(J-1) div 2; r:=k*(K-1) div 2;
for i:=] step 1 until A do
begin j:=if i>J then J+i*(i-1) div 2 else -i+q;
k:= if i>K then K+i*(i-1) div 2 else i+r;
if busind[J]=0 then -
begin immat{ jl:=immat[k]; remat[ j]l:=remat(k]
end else
begin immat{k]:=immat[jl; remat(k]:=remat[j]
end

end;
if busind[J]=0 then
begin immat[q+J]:i=immat[r+K]+react[1]; remat[q+J):=remat[r+K]+resis[1];
busind[J]:=1
end else
begin immat[r+K):zimmat[q+J]l+react[I]; remat[r+k]:=remat[q+J]+resis[I];
busind[K]:=
end;
if KA then A:=K; 1linind[I,1]:=] - : :
end ralial line vhich adds a line from an established bus to a new bus, initiates an established bus
and a used line, updates A if necessary; :

procedure dummy bus;
comment uses global variables I,J,K,A,D,resis,react,immat,remat,linind;
begin integer i, j,k,q,r,t;
=CA+D)*(A+D+1 ) div 2; r:=J*¥(J-1) div 2; t:=k*(K-1) div 2;
for i:=1 step ! until A4D do
begin j:= if i>J then J+i*(i-1) div 2 else i4r;
k:= if i>K then K+i*(i-1) div 2 else i+t;
immat[q+i]l:= immat{ jl-immat{k]; remat[q+i):=remat( jl-remat([k]

end;
immat[q+A+D+1 Js=immat[g+J]-immat{q+K]+react[1];
remat [q+A+D+1):=remat{q+J]-remat[q+K]+resis[1];
t=D+!; linind(1,1]):=1 :
end dummy bus which adds an element forming a loop in the network, initiates a used olement and adds one to D;




procedure mutuals(E,R,U,V,W,X,Y);
comment uses global variables I,J,K,immat,remat,connec and procedures dummy bus,radml line;
Yvalue E,R,W,X,Y; integer E,R; integer array U,V,w; real array X,Y;
begin comment segment(1]; integer i,j,k,t,u,v,w;
integer array ind[1:R,1:2]; real array improd,reprod[l:R,l:R];
switch ss:=111,112,113,114,115,116,117;
procedure product(T,G,H,Z); ,
value T,G,H; integer T- integer array G; real array H,Z;
begin real z;
for 1::1 step 1 until T do
for Jje=1 step 1 until T do
begin Z[:.,J] =0,0;
for k:=1 step I until T do
begin z:=0,0;
for t:=1 sStep 1 until T do z:=z+H[k,t]1*G[t, j1;

Zli,j3l:=2 [i:j]‘iG[k,i]*Z

end
end Z is a second order matrix of size T and is the product transpose of matrix G
times matrix H times matrix G and holds the mutual resistances or reactances to be added
end product; - ' '
~for i:=1 step | until R do
1f i>E then ’
-beg:m 1:=V[i-E,2]; J:=connec[1,1]; K:=connec[1,2]; dummy bus
end else ,
begin I:=U[i,2]; J:=connec[I,1]; K:=connec[I,2]; =xradial line
end adds first elements which establish new buses to imaat and remat,
then adds elements which form loops, no mutual impedances added at this stage-
product(R,W,X,improd) ; product(R,W,Y,reprod);
for i:=1 step 1 until R do _
begin ind{i,1]:=i; 1nd[1,2].__i._§ i>E then A-E+i else U[i,3]
end at this stage the second location of ind lists the new
buses in the order in which they have been established and
also the dummy bus numbers;

, it=0;
111 it=i+l; if i>E then goto 114; j:i=i;
112: ' Je=j+1; if J>E then goto 11i; »
' if ind[i,2]<ind[j,2] then goto 112; t:=0;
113: t:=t+l; ke:=ind{i,t]-ind[j,t]; ind[i,t]l:=ind[i,t])~k;

ind[ j,t}:=ind[j,t]+k; if t=1 then goto 113; goto 112;
comment the second location of ind now the bus numbers in ascending order and the first

: location gives the order in which the bus was established; "
114: i:=R;
115: wezind[i,2]; ui=ind[i, 1]; ki=w*(w+l) div 2;

immat{k]:=immat{k]+ improd[u,ul; remat[k]:=remat[k]+ reprodlu,ul;
if i=1 then goto 117; j:=i;

116: je=j-1; if j=0 then
begin i:=i-1; goto 115
end;

t:=ind[j,2]; vi=ind[j, 1]; ks=w*(w-1) div 2+t;
immat{k]:=immat[k]+improd[u,v]}; remat[k]:=rematlk]+reprodiu,v];
goto 116;
comment adds group mutual impedances to immat and remat~

"117: end mutuals;

Erocedure reorder(1ab);
comment uses global variables 1,Q,11n1nd busind,muline,mutind re1mped imimped
and requires procedure mutuals declared first;

"label 1lab;
beg1n integer d,e f.b,h,l,J, »dsT,t, u,\. w;



es=f:1=0; - 11n1nd[l,2]° rs =xnut1nd[Q,l] ks —mut1nd[Q,2] -1;
begin integer array new[l:r,1:4],loop[l:xr,1:2], mat[l Tr,l 2*r]-
real array immumat, remumat[l r,i:r];
switch s$s:=111,112,113,114,115,116, 117 118,119, 1110 1111,1112,1113, 1114 1115;
for iz=1 step 1 unt11 r do
begin for j:=i step 1 until r do immumat[i, jl: _remumat[1,J]:=0;
‘ E’.I js=1 step 1 antil 2*rg_o_ mat[i, j]:=0 :

end;
11l:is=h:= o o
-112:i2=i+1; if i>r then
- begin for i:=} step 1 until r do muline[k+i,2]:=0; goto lab
_ end ex:.ts as group cannot be added at this stage;
ifm ullne[k+1,2]l=0 then goto 112; » _
q: zmulinelk+i,1]; w::connec[q,l] ‘t:=conneclq,21];
if busind(w]k0 and busind[t]EO then goto 114;
.-_comment this is a loop between established buses w and t;
if busind{w]k 0 and busind[t]=0 then
-begin switch sss:=again; Jj:=0;
" again g . je=j+l; 4if j>e then E_O.EQ 116;
: _ . if tknew[g,a] then goto again; g:=~1; goto 113
end this is a new bus t from established bus w or a loop
between established bus w and new bus t;
_if busind[w]l-0 and busind[t]:0 then :
- begin switch sss:-again; j:=0;
again e j:=j+1; if jde then goto 115;
: if wknew[j,3] then goto again; g:=1; goto 113
end th1s is a new bus w from established bus t or a loop
between establ:.shed bus t and new bus w;
‘ begin switch sss: =again; .j:=0;
agam° J:-3+l ; if j>e then goto 112;
' if w—new[3,3] then _
beg:m_swu:ch ssss:=repeat; wviz=j; h:=1;
repeats je=j+); if j>e then goto 116; :
' if ti:new[j,sl then goto repeat; gi=—1;  goto 113
end this is a new bus t from a new bus W Oor a loop v
between new bus t and new bus w; ‘
begin switch ssssizrepeat; if t!:new[g,:;] then got agaJ,n' v::j;‘ h:=1;
repeat: - Je=j+l; if j>e then goto 115; R ‘
C if w & new[J,3] then got repeat g.-l : g 113
. end this is a new bus w W from a new bus t or a 100p
' between new bus w and new bus t

end ;

113 h'-h+l ; - _ .
114: £ f+l- looplf, 11:=i; loop(f,2 Ji=q; d:=r+f; goto 118;

‘1158 e:_e+l' new[e,3]:=w; newl[e,4]:=t; mat[e,e]}:=-1; goto 117;

116 es=e+l; new[e,3]:_=t; newl[e,4]1:=w; matle,e]:=1; g .

117 new[e,1]:=i; new[e,2]l:=q; d:=e; g:=1; if h=1 then begin wu:=j; goto 1110 end;

118: if h=0 then goto 1112; ' -

119: mat[ j,d]:=mat[ j,d}+¢ if new [ j,4I<new[j,3] then g else —g); ui=j;

1110: j:=j-1; if j=0 then goto 1111 ; '

if new [u,4]= new[3,3] then goto 119 else got 11!0' v

1111 if h=1 then goto 1112 g3=-g; h:_h-l_; js=v;  goto 119'

comment updates loop or new bus count, . i‘ecords the order of the line in the group and
its number in the line 1list in the first and second locations of loop or new,
.1f a new bus records the bus numbers in third-and fourth locations of new,
the new bus number being :m the third. location, pPuts plus or minus one if

. necessary. in. the -r+f or e columns of mat ;
1112: - muline[k+i,2]:=1; if e+f <r then goto 111;.



for i:=1 step ! until f do
begin for j:=1 step J} until e do mat[j,e+il:zmat[j,r+il;
mat[e+i,e+i]:=1
.end completes connection matrix mat and shifts column r+f to column e+f
making a square matrix of order r; :

vi=zmutind[Q,3]-1; i:=0;

1113: is=i+l; if i=r then goto 1115; s
: if i>e then w:=100p[1-e,1] else w::new[i,l]; je=i;
1114: J:=J+l if j>r then goto 1113'

if j>e then t:=looplj-e,1] else tiznew[ j,11];

1f w>t then us=(w-1)*(w-2) div 2+t else u._(t- )*(t-z) div 24w; ,

'1mmumat[1,3] zimmumat[ j,i] szimimped[u+v]; remumat[i, jl: remumat[g,i] =reimped{u+v];

goto 1114;

comment forms square matrices immumat and remumat of ordexr r, main d1agona1 terms zero,

' off dxagonal terms equal to the mutual impedances between the elements of
group Q in the order in which these are to be added to 1mmat and remat;

11152 mutuals(e r,new,loop,mat,1nunmnat,remumat)
end
end reorder;

Erocedure generator;

comment uses global variables,I,A, D,connec,resis,react bus1nd 11n1nd,1mmat remat;
begin integer i, j,k,q,r;

k:=connec(I,2]; q:=k*(k-1) div 2;
if busind[k]=0 then | : '

begin immat[q+k]:=react[1]; remat[q+k]:=resis[I];

~ if k>A then Aszk; busind[k]:= :
end glgg '
begin r:=A*(A+1) div 2;
for i:=) steg ] unt:.l A do
begin j:= if i>k then k+i*(i-1) div 2 else i+q;
1mmat[r+1].-1mmat[g]- remat[r+1] =remat[ j]

end; :
immat{r+A+1]: =immat[q+k]+react L I_] ; remat[r+A+1]:=remat[q+k J+resis[1];
D:=D+]} i
end;

11n1nd[1 l]:-l :
end generator which adds an element from the reference bus either establishing a new bus in which

case an established bus is initiated and A updated if necessary, or forms a loop in which
: case D is updated, in either case a used 1line is initiated;
procedure reduce matrix;
comment uses global variables A: D,1mmat remat ;
begin integer i,j,k,h; real e f,g,r,t x,y,x),yl ; Sswitch ss:=111,112,113, 114'
1113 k:=CA+D)*(A+D+1 )div 2; x::remat[k] y._1mmat[k]
' e s=X*X+y*y; giz=v/e; f::x/e;
k:=(A+D)*(A+D-1) div 2; i:=];
112: je=1; he=i*(i- 1) div z- ‘ :
113: yezimmat{k+j]; yl.-1mmat[k+1] xszremat{k+3]; xl:=remat[k+i];
re=x*xl-y*yl; ti=x*yl+xl*y; o ’
remat{ j+h]l:=remat[ j+h]l-r*f-t*g ;
: immat{ j+h]:zimmat[ j+h]+r*g-txf ;
Ji=j+l; if j>i then
begin i:=i+l; if i=A+4D then goto 114 else goto 112
end; : ’ L ,

g oto 113

114: for ict=] stepl unt11 A+D do o '
: begin- 1mmat[k+1]._0 0; . remat[k+1].:0 0
end .
:=D-1; 1f D>0 then goto 111




end this procedure eliminates the last D rows of the complex matrix stored as remat and umnat

procedure invert(G,H,X,Y);
value G,H; integer G,H; real array X,Y;
comment uses global variables mutind,muline,resis,react, imimped,reimped;

begin integer d,g,h,i,j,k; Xeal z;
d:=mutind[G,1]; g::mutlnd[G,Z] 1; hi=mutind(G,3]-1;

begin _g_e_a}_ array S,Rl{1:d,!I: d];
switch ss:=111,112,113,114,115,116;
for i:=1 step 1 until d do
begin k::mu11ne[g+1 11; sfli,ils=react[k]; R[i,i]:=resis[k];
k:=(i-1)*(i-2) div 2+h;
for j:=! step 1 until i-1 do
begin S[i, jl:=S[j,il:=imimped{k+j];
Rli, jlt=R[j,i):=reimped[k+j]

end
end; -
for iso1 stgp J until d do
begin z:=l 0/(R[1,1]*R[1,1]+S[1,1]*5[1,1])
Rli,i)s=—z*R[i,i]; s[i,il:=z*s[i,il];

111: J:=J+l
if j=i then goto 111
if j»>d then goto 112
=if J<1 then i else j; h:=zif j<i then j else i;
ng.h].-n.1,1]*R[h.g] S[1.1]*S[h,g]
S[g,h].-R[:.,1]*S[h.g]+8[1.i]*R[hpg];

goto 111;
112: Jj:=0;
113: Ji=j+1; if j=i then goto 113;

if j>d then
begin if i=d then goto 116; goto 115 end;

k:=0;
114: . kizk+l ;
if k=i then goto 114; if k>j then goto 113;
ge=if J<1 then i else J,
he=if j<i then J else i;
RLj,k ]._1f k<i then R[J,k]+R[1.k]*R[h,g] sli,k]*s[h,g]

_ else R[J,k]+R[J,1]*R[1,k] S[J.:L]*S[l,k]
SLj,kle=if k<i t then S[j,kJ+R[i,k1*slh,gl+Sli, k]*R[h,g]
: else s[J,k]+R[J,1]{"S[1 k}+s[J,i)*Rli,k];

: .-goto.'114; o ‘
115: for j:=1 step ) until d-1 do

for k:=j+] step 1 until d do _ :
' begin S[J,k] =s [k,j); RLj,k]:=R[k, 3]
end

end;
116: or is:=] step 1 until d do
begin k:=zi*(i+l1) div Z+H-1 ; X[kl:=-sli,i]; v¥[k]}s=-R[i,i];
k:=i*(i-1) div 2+H-)
for Js=1 step 1 until i-} do
begnx X[J+k] -5[1,3] Y[ j+k]s=-r[i,j]
end '

e

end.
end .
end invert wh1ch inverts in situ using dxagonal pivots the complex matrix R+JS using
the properties that the matr1x is symmetrxcal and has no zero main diagonal terms;

procedure lzneflow(N,I,E G,H, F)
value N,I; integer N,1; integer array E; real array G,H,F;




comment uses global variables muline, mutind,connec,linind,immat,remat;
begin integer i,Jj,k,r,s,t,q,¥
r:=linind[N,2]; t:=mutind(r,1];
begin real array T[1:t,1:2]; switch sss:=1111;
q:=I1*(I-1) div 2;
for i:=] step 1 until t do
begin j:=muline[mutind[r,2]+i-1,1];
ws=connec[ j,1]; s:=conneclj,2];
js=if w>I then wx(w-1) div 2+1 else q+w;
k:=if s>I then s*(s-1) div 2+] else q+s;
Tli,l]J:=remat[k]-remat[jl; T{i,2):=immat[k]l~-immat(j];

end;
F(1]:=F(2):=0,0; s:=0;
1111 8:=5+];
if muline[mutind[r,2]+s-1,1]EN then goto 1111;
comment s gives the position of line N in muline;
q:=s*(s-1) div 2;
for i:=l stQp | until t do
begin j:=if i>s then i*(i-1) div 2+s glse q+i;
k:=j+E[r]-1;
F[11e=Fl1]+Tli,1]1%G[Kk]- T[1,2]*H[k]°
Fl2J:=Fl2]+T[i,1 I*HIk]+T[i,2]1%G[k]
end calculation of per unit current in line N for a fault on bus I

end
end lineflow;

Erocedure finish;
comment uses global variables a,n,m,p,C5,L,connec,linind ,mutind,resis, react,imimped, re1mped,
remat,immat and requires procedures invert and lineflow declared first;
begin integer i, j,k,d,e,f,g,h,t,w,1,J,K,M,P,q; real u,v,x,y,z,x1,yl,x2,y2;
switch sss:=1111;
k:=0;
for i:z] step | until n do if linind[i,1]=0 then
begin print £€1?error line not used?,i; ki=zk+l
end;
if k>0 th then stop;
. g3= =0;
if m>0 then for i:=1 step 1 until C5 do g: g+mut1nd[1,l]*(tnut1nd[1 1141) d1v 2;
read p-
 begin comment segment[1]; integer array indic[0:C5]),buslin[0:p,1:2], 11ne[l~lo]
real array imadmit,readmit[0:gl,cur([1:2];
sw1tch sss=111,112,113,114,115,116,117, 118 119, 1110
for i:=) step ) unt11 P do read’ buslln[1,l] busl1n[1,2]
1f m>0 then
begin j:=1; for i:=) step ! until C5 do
begin 1nd1c[1]._3,
invert(i, j,imadmit,readmit);
J:=J+mut1nd[1,1J*(mut1nd[1 11+1) div 2

end
ggg.inverts'zﬁg mutual impedance matrices and stores the values in imadmit

and readmit the location of each set being given by indic;
f:=0;
for i:=} step ! until p do

"~ begin k:=i*(i+1) div 2; if immat{k]=0,0 then goto 1110;

I:=J:e= K::l-

: s >1 then 112;

11? gg;gentlguggér'ST‘1§%3§'connected to bus i less than ten;

for j:=) step 1 until n do
1f connec[ j,11=1 or connec[J,Z] i then




begin e:=ze+l; linele]:=j
end; :
P>f then for j:=J step 1 until P do
buslin[j,1]=i then
begin e:=e+]; if e>]0 then
begin J:=j; K:=K+l; e:ze-1; goto 113
end;
t=f+1; 1linele]:=buslin[j,2]
end stores in sets of ten the lines connected to bus i
and the additional lines for which the line flows are required;
113: if M=0 then goto 114;
if 14e<56 then goto if I.'1 then 116 else 115;
top of form;

112:

1#-
("

-
+h

114: t=M+1; print £€€12s60?PAGE?,M;
print £€12? BUS LINE FROM BUS TO BUS CURRENT IMPEDANCE FAULT MVA?;
L:=if M=] then 5 else 3; if I>1 then goto 116;
115: x:zrematlk]); y:zimmat[k]; z:=1,0/(x*x+y*y); x2:=x*z; y2izy*z;
116: print £€12??,i;

q:=i*(i-1) div 2;
for j:=] step ! until e do
begin d:=1ine[j];
wi=connec[d,!]; t:=connec[d,2];
hi=if t>i then t*(t-]) div 2+i else q+t;
if w=0 then
begin utzremat[h]); vi=immat{h];

goto 118
end;

if m=0 then goto 117;
if 1inind[d,2]-0 then goto 117;

lineflow(d,i,indic,readmit,imadmit,cur);

goto 119;
117: g:=if w>i then wx(w-1) div 2+i else q+w;

us=remat[h]-remat{g];
vizimmat[h]-immat{g];
118: x1:=resis[d]; ylizreact[d]; z:=x1*xl+yl*yl;
curl1]:=Cu*xl+v*y1)/z; cur([2])s=(v*xl-u*yl)/z;
comment flow is positive from lower to higher numbexred bus;

119: if j>1 then print £€1?  ?;
print prefifo ?),d,w,t;

print £ ?ycur(1],special(2),cur(2],£j?;
if j=1 then begin print ¢ ?,%, special (2),y,£j?;
print £ ?,aligned(4,1), x2*a, special(2), y2*s,£3j?

end
end; Li=zL+e+l;
I:=I+]; 4if K=I then goto 111i;

1110:end
end;
read P; if P=0 then goto 1111; scaled (9); punch (2); prefix(££1??);
begin comment segment[l]; integer array row[l:P];
for i:=1 step 1 until P do read rowl[il;
- print £1 £q?equivalent circuit ?; i:=1; outstring(str,i);
- print €2u? ?,P,P*(pP+1) div 2,8 1 1 3 3?;
for i:=) step 1 until P do =
begin ki:=row[il; g::k*(k-l).gix 2;
- for j:=1 step } until P do
if row [jI< k then. :
begin d:= rowl[ jl; hiz g+d; .
print d,k,remat{h],immat([h]




11112

end

eon
————

- end
_end print out of terms for equivalent 01rcu1t
-print EEND?

end; : o
print out of fault at each bus in mva, per unit imepdance to each bus,mva flow in each
line connected to the faulted bus and in specified lines, also spec1f1ed terms of
the bus impedance matr1x,
for I:=-1 step J until n do linlnd[I l].-11n1nd[1,2] 0;
for I:= ) step 1 until p do busmnd[I] =0;
S*K for I:=i step 1 until Q do rexmped [I]:z1m1mped[1]::0,o;
p*(p+1) div 2; for I:=) step T until Qdo . - E ’ o
begin 1mmat[l].=0 0; remat[1]:=0.,0
end; : ) ‘ S o
samel1ne d1g1ts(3) aligned(l,4); I::l;'outstring(str,l); C5:=0;
start; : : : . o ) . :
if m>0 then group:ng,
A =D.=0
1 oo 1:=1; Q.:lOOO;
128 - if linind(1,1]=1 then
: begin I:=I+]; .
'if I>n then
begin f1n1sh goto 15
end; ‘
got 12 ‘ : : o .
end if element has been used then next element is read,if all elements used then
: goes to finish;: . ' :
13: . if connec[I,1]=0 then
‘ begin generator; :
if D>0 then reduce matrix; goto 11

end;
11n1nd[1,2]>0 then
‘begin reorder(14)
‘if D>0 then reduce matrix; goto 11
end 11ne element with mutual coupl1ng,a11 lines of the group are tested to determine
whether and in- what order they can be added to the matrix,if all cannot be added
ex1ts to next element;
Je =connec(I,1]; K:=connec[1,2];
if busind[J]=0 and busind[K]1=0 then got 14,
comment element cannot be added to the matrix as neither bus estab11shed
if busind[J]=1 and busind[K]=1 then
begin dummy bus; reduce metr1x; goto 11
end line element for which both buses are established and therefore makes a loop
in the network; '
radial line;

goto 11};

: comment line element for which one bus is established and which therefore establishes a new bus;
l4: ' :=I+1; if I>n then
: egzn f1nzsh goto 15
end;
if 11n1nd[I 1]=1 then goto 14;
_1 linind[1,21=Q then goto 14;

goto 13;

comment next element read and tested to determine whether it has been used or whether it
‘belongs to a group of which all the elements cannot be added at this stage;

15: end
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£SAMPLE NETWORK WITH MUTUAL COUPLING?
Basic Data )

base mva 100 .0

number of elements 7

number of mutual couplings 3

number of nodes ‘ 4

Element Data

number nodé connections ‘'self impedance

1 0 1 0,0 0,04
2 0 2 0.0 0,08
3 1 2 0,0 0,08
4 0 3 0.0 0,10
5 1 3 0.0 0,30
6 3 4 0,0 0.20
7 2 3 ‘0,0 0,40
Mutual Coupling Data:

number element - voltage element voltage
R .5 1,0 .6 1,0
2 5 _ 1,0 7 1,0
3 6 1,0 7 1.0
Additional Element Current Distribution Factors

1 : 2 1 4 1

2 )| 2 4 2

3 T 1 3 2 3

4 2 -4 3 4 .
a g -

Equivalent Circuit 0 END

sooesy

voltage -

1,0

b pudt et bud bk ot
o o o
00000

v mutual

o4
O
o

K}

impedance

-0,01
0,10
-0,05

N U

-



11

SAMPLE NETWORK WITH MUTUAL COUPLING

PAGE 1
BUS LINE FROM BUS  TO BUS CURRENT ' IMPENDANCF FAULT MVA
1 1 0 1 0.7407+0.0000.) 0.0000+0.0296J . 0.0+3375.0J
: 3 1 2 <0.1852+0.0000J : '
5 1 3 -0.0741+0.0000J
2 0 2 0.1852+0.0000J
4 0 3 0.0741+0.0000J
6 3 4 0.0000+0.0000J
7 2 3 -0.0000+0.0000J
2 2 ) 2 0.5471+0.0000J 0.0000+0.0438J" © 0.0+42284.6J
-3 1 2 0.3620+0.0000J : ' - , '
7 2 3 -0.0909+0.0000J
1 0 1 0.3704+0.0000J
4 0 3 0.0825+0.0000J
5 1 3 0.0084+0.0000J
e 3 4 ~0.0000+0.0000J
3 4 0 3 0.7117+0.0000J 0.0000+0.0712J . - 0.0+1405.1J
) 5 1 3 0.1747+0.0000J ; . '
6 3 4 -0.0000+0.0000J
7. 2 S ...0.1136+0.0000J
T o . ‘3 0.1852+0.0000J
2. 0_ 0.1031+0.0000J
3 1 2 0.0105+0.0000J
g 6 3 4 1.0000+0.0000J 0.0000+0.2515J - 0.0 +397.6J
1 -0 1 .0.2037+0.0000J
2 0 2 0.1589+0.00Nn0J
3 1 2 0.0570+0.0000J
4 0 3 0.6374+0.0000J
5 1 3 . 0.1467+0.0000J
7 2 3 0.2159+0.0000J

END”
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HEI13 Short Circuit;

begin comment solves
Sequence .

integer I,m,n,p,C2, c3,C4,C5,C6,C7,C8, CcY;-

real a;

C3:=

' comment cBS:

integer array str[l 30]; I:=1; instrmg(stn,ﬂ»
- Xread a,m,p,n; comment base mva,n\mber of lines,mutuals and highest bus number

= if p>0 then p+m+m else m; $= if p>6 then p else §6;

-mutind[O:p,1: 3] muline[0:p+p],buslines,conlines[1:C3+C3]; comment CBS:
real array admitt[1:m,] .2] busmat[1:n,1:2],1ine(1:C3,! 2],reped,mped[l.n].reimped,1m1mped[l'4*09]
comment insert procedures start,organise, factor,impedance,renumber,mutual sadmat ;

v groced ure start;
comment uses global variables a,m,n,linnum,admitt,connec, 11nind'

beg:m comment segment[1]; 1nteger gyhyi,drk; real v,X,y,z;

h:=0;

for i::l step 1 until m do

begin read g,J,k,x,y,v
1f j>n or k>n or J<0 or k<0 then

begin print ££1?11ne data error?,g,g,k - hizh+l
end ; :

llmumm =g; linind[i):=0;

connec[i,1]:=if j>k then k else j;

connec[i,2]: :Lf jok ‘then J elle k;

z:= if abs(v-! 1,0)>0,1 then a/(v*v) else 1,0;

'admtt[i l]::x*2° adm1tt[1,2] =y*z :

end;

- if h$0 th then stop

end start-

Erocedure organzse(D)

value D;

integer D;

sequence network including resistance and mutusl coupling by means of the factorised impedance matrix,
impedance and fault mva calculated for each bus together with current factors for specified lines;

mteger array linnum, 1inind[1 ml, ’ connec[l in,122],1nbus ,busmd sorder ,rowpon, term[1:n],

" comment uses global var:ables cs, CZ C4 1nbus,conlines,order, busind, rowpon,,Renumbers network busbars so that
~upper triangular matrix formed by elimination operating in order on rows with fewest remaining terms;

1113
112:

egln comment segment[l]- integer d,e,f,g,h,i,j,k,pydyT,t sltcol,nlone;

integer array linebus[1:Dl, row[l C8+20]; switch ss:=111,112, 113
C4:=d:z=]; 1ltcol:=C8; C2:=D;
for i:=1 step | unt11 D do 11nebus[1].=1nbus[1]

for 1::1 step 1 unt11 1tcol do row[1]:_con11nes[1] if D=2 then goto 113;

_gg_r =1 step | until D do if f linebus[i]=0 then
begin busind[1]:=1000; C2:=C2-} '
end; '

nlone:=C2-1 ;

i:=0; Jje=i;

is=i+l;

if i>D then

begin i:=0; j:=j+l; goto 112
end;

if Ji:hnebus[a.] then goto 112;
‘order[d]:=i; busindlils=d; rOWpon[d]._C4
- C4:=C4+j+1; d:i=d+l;

begin integer array number([1:j]; switch sss:=1111,1112;
ket=e:=0; ‘
for q:=1 step 1 until i do e:=e+linebus(q];
fize-j+1; 1ltcols=ltcol-j; linebus[il:=
for q:=f step 1 until e do
begin kizk+1; number[k] =rowl[q]
end the j busba.rs connected ta i are stored in number and

boolean b;

will now be

removed from row;



for q:=f step ! until ltcol do rowlql:=rowlq+j];
for q:=1 step 1 until j do
begin g:=numberlql;
for pi=q+l step 1 until j do
begin hiznumber[pl; e:=0;
comment search busbar h for a connection to busbar g;
Jor k:=z1 step 1 until h do
begin if k=h then f:=e+l; e:=e+linebus[k]
end ;
for k:=f step ] until e do if g=row[k] then goto 1111;
comment if connection then exit else make connection g to h;
b:= false; t=ltcoli=1tcol+2;
for ki:=p step -] until } do
begin f:=linebus(k];
if k=g or k=h then
begin linebus{k]:=f+]; .
row[e]:= if k=g then h else g;
if b then goto 1111;
b= true; es=ze-1;

£ne;
rize-£f+l1;
for t:=ze step -1 until r do row[t]:= if b then row([t-1]

else row[t-21];

t=o~f
end k;
1111 end p now remove connection i from busbar g;
e:=0; 1ltcol:=ltcol-1;
for k:=1 step 1 until g do

begin r:=zlinebus([k];
if k=g then
begin linebus[k]:=r-1; fize
end ;
e:=e+r
end;
1112: fe=f41;
if row[f]#i then goto 1112;
for k:=f step ] until 1tcol do row[k]:=row[k+1]

end q
end block;
if dknlone then goto 111;
113: 0:=2;
for i:=1 step 1 until D do
begin j:=linebus([il;
if jEO then
begin order[d]:=i; busind[i]z:=d; rowpon[d]:=C4;
d:=d+]; l{ d=C2 M C4:=C4+2;
if jk1 then
begin print ££1?error in organise?,d,i,j,ltcol,rowlel;
ei=e~1

end
end
end i;
if ek2 then stop
end organise;

procedure factor(D,cmn,rmt,imt);
value D; integer D; integer array cmn; real array rmt,imt.
Comment sets up able o7 Eactors With refnumbered netwo:"k busbars, Uses global variables (2,busmat,line,lnbus,



buslines,conlines,order,busind,rowpon,ternm;
begin comment segment[1]; integer d,e,f,g,h,i,j,k,p,q,t
real u,v,w,X,y,z; sSwitch ss:=111,112,113; e:=0;
for i:=] step 1 until D do
begin d:=1nbuslil; T if d=0 then goto 113; fize+l; e:ze+d;
k::bus:i.nd[;], Ji=rowponl(k];
rmt[ j]:=busmat{i,1]; imt[j]::busmat[i,zl;
"ds=0; tiz=k+l;
for q:=f step 1 unt:.l e do
beg:m conhnes[q] A _
E;_z: p:=t step 1 until 2 do if g=order[p] _then
begin ji=j+1; emnl[jls=p; d:=d+1;
h:=buslinesiql;
rmt{ jl:=1line[h,1]; imt[j):=line[h,2];
' goto 111
end p;
111: end q; term{kJz 1=d; :
113: end i upper half of admittance matrix stored with renumbered busbars, terms below the main
diagonal are now eliminated and new terms stored in the allotted spaces;

a5

e

112¢ +l H
_.rOWpon[i]; xs=rmt[ j1; ys=imt[j];
Z$=X*X+Yy*y; X$=X/Z; iz=-y/2z;
rmt{ jli=x; imt{[jl:=y; di=termlil;
comment X+jy inverse. of diagonal term;
begin integer array bus,locf0:d]; switch sss:=1111,1112,1113;
for k:=1 step | until d do :
begin gi=eizk+j; ::cmn[e]; h:=0;

i
J

1111 h:=h4l; if hzk then goto 1112;
t=bus[h]; if p<f then got 1111'
busf{h]:=f; f:=p; e:= loc[h] loc[h]° g:=e;
goto 1111; .
1112: bus[k]:= loc[k]s=

end bus lists the column numbers of TOoW i terms in ascend1ng order, loc lists the:.r locations;
for k::l step ! until d do
begin e::loc[k] f:_bus[k]
u::rmt[e]; vizimt(e];
Z$ =X¥Uu~-y*V; w-—x*v+y*u;
rmtlel:=z; imt[e]l:=w;
comment u4jv is the off~d1agonal term in row f wh:.ch will be eliminated,z+jw is the
corresponding term in row i divided by the diagonal term,the diagonal term in row f is now modified;
je=rowpon{fl; rmt[jl:=rmt[jl-u*z+v*w; imt[ jl:=imt[ jl-u*w-v*z;
comment row f now searched for terms in same column as remanung terms in row i;
h:=term(f]; t:=h+j;
for q:=k+1 step 1 until d do
begin g:=bus(ql; . e'=loc[q]
ut=rmtle]; vizimtle];
for p:=j+) step | until t do if g=cmn[p] then
begin rmt[pl: =rmt[pl-utz+v*w; imt[p): =zimt[ pl-u*w-v*z;
goto 1113
end modifying row f term,if no term then add new term;
t:=t+1; hizh+l; term[fl:=h; cmn[t]:=g;
rmt{t]s=—u*zi+vrw; imt[t]iz—urw-v*z;
1113: end q ‘ '

end k
~ end block;
if i<Q@ then goto 112

- end factor:



procedure impedance(D,E,F,G,cmn,rmt,imt); .

value D,E,F,G; integer D,E,F,G; integer array cmn; real array rmt,imt; :

comment calculates reped+j imped i,e, row D of the impedance matrix from the table of factors, Uses global variable's'cz,v
: rowpon, term,reped,imped;

begin  integer d,e,f,g,i,j,k; real u,v,w,x,y,z; Switch ss:=111,112; if G=2 then goto 112;
, k:=D+1; : :

for is=k step 1 until C2 do .
begin reped{i}:=0,0; imped[i]:=0,0
end;
e:=rowpon[D]; d:=term[D];
reped[D]:=rmt[e]; imped[D]:=imt[e];
for i:=] step 1 until d do
begin f:=e+i; gi=cmn[f];
reped[gles=-rmt[£f]; imped[gl:=-imt[f]

end;
for iz:zk ste 1 until do

beg':ﬁ":%::r‘é?e?[igz Yei=imped[il;

if x=0,0 and y=0,0 then goto 111;

d::term[1]° e:_rowpon[1]

for j:=1 step ! until d do

 begin f:=e+j; g:zemn[£];
Cutz-rmt[£]; vi=-imt[£f]; o
reped[g]' reped[g]+x*u-y*v- imped[gl:=imped[g]+x*v+y*u

»u::rmt[e]; :=imtfe];

reped[1]:= u-y*v 1mped[1] =X*V+y*u;
111:. -end ;
1123 ~ for i:=F-1 step -1 until E do

beg1n x:= if i<D then 0 .0 else reped[1]
= 1f i<D then 0,0 else imped[il;
e::rowpon[i]; d:=term[i];
for j:=1 step 1 until d do
begin f:ze+j; gi:=cmn{f];
us=—rmt[£]; viz=-imt[£f];
zs=reped[gl; w:=impedig];
Xi=X+u*z=-vHw; yizy+ukwiviz
end j;
reped[ils=x; imped[il:=y

end i
éend impedance;

grocedure renumber(D,N) ; _

comment uses global variables m,l;nnum,

value D; integer D; integer array N; .
begin integer i,3,k; switch ss:= 111;

- je=1 step I until mdo if k=linnum[j] then goto 111;
111: N[il:= j .
end renumber;

' procedure mutual; : : v
comment uses global variables a,p,C3, C4 C5, CG €7,C8,C9,linnum,linind,mutind,muline,line,reimped, imimped,admitt,busmat lnbus,

busl1nes,con11nes,order bus:md,rowpon,term,reped,1mped and requires procedures renumber, organise, factor and impedance;

begin 1ntege_r d,e,f,g,h,i, j,k,q,r,t; real u,v 1x,YvZ"
integer array f1rcon,secon,1nd,mutl spl;




real array resis,react[1:p]; switch ss:=111,112,113,114,115,116,117;
for i:=] step ! until p do
begin read g, j,u,k,v,X,y;
fircon[il:i=j; seconlil:i=k; ind[i]:=0;
zs= if abs(u-1,0)>0,1 then a/(u*v) else 1.0;
res1s[1] =x*z ; react[:.].-y*z
end reading mutual coup11ng data,converting to per unit and storing for sorting;
renumber(p, fircon); renumber(p,secon);
i3=C9:=0;
111: di:=i+); if i>p then goto 117;
if ind[i]d0 then goto 111;
C5:=C5+1; indlil:=
je= fircon[il; k:= secon(il;’
linind[jl:=C5; linind[k]:=C5; : '
mut[1]:=i; muline[C6+1]:=j; mulinelC6+2]:=
o de=2; C3.=g.=l
112: k._:. o
113: k._k+l; if k>p then goto 114;
if ind[k]$#0 then goto 113;
¢= fircon[k]; r:= seconl[k];
if q=j or r=j then
egm switch sss'—llll' '
ind(kJ:=C5; C3:=C3+1; mut[c3):=k;
t:= if q=j then r else q; fi=g;
1111 f£:=f+1;
- if >d then
begin d:=d+l; muline[C6+d]l:=t; linind[t]:=C5; goto 113
end;
- Af thnu11ne[C6+f] then goto 1111
_ end; go oto 113;
114: gi=g+l; 1f g>d then g oto 1153
: vj::muline[cs+g] goto 112; _ 3
115: mutind[CS,l']::d; mutind[CS,Z]:=CG; mutind[C5,3]12=C9; C8:=2%C3; e:x0;
for j:=1 step 1 until d do _ : '
begin h:=muline{C6+j]; t:=0;
for k:=1] step 1 until C3 do.
begin q:=mut[k]; f:= firconlql; g:= seconiql;
if h=f or h=g then
begin e:=e+l; ti=t+}; buslinesfe]:=k;
r:= if h=f then g else f;
for q:=1 step ) until d do if r=muline[C6+q] then
begin conl1nes[e].—q, goto 116
end

-

end;
116: end k; lnbus[jl:= »
busmat[ j,11s=admitt{h,1]; busmat[j,2]):=admitt[h,2]
end j; B
for j:=1 step ! until C3 do
begin h:zmut[j]; line[j,1]:=resis[h]; line j,2]:=react[h]
end setting up impedance matrix for inverting; organise(d);
begin integer array column[1:C4]; real array remat,imat[1:C4]; factor(d,column,remat,imat);
__;'_(_)_1_' je=1 step 1 until d_ql_g_ _ : :
begin h:zbusind{jl; k:=j*(j-1) div 2;
impedance(h,h,d,! column,remat,lmat)
for q:=h step 1 until d do
begin g:= if h=q then J else order[q}
fi= __1_f_ g>J_then g*(g-l) div 2+j else ktg; g:=CO+7T;
reimped(gl:=reped{q]; imimped(gl:=imped{q]




end
end
end storing admittance matrix of mutual couplings;
C9:=C9+d*(d+1) div 2; C63=C6+d; if d>C7 then C7:=d; goto 111;
117: end mutual;

' Eroced admat;
- comment uses global variables C3 c5,C7,C8,m,n, 11n1nd,mut1nd,mu11ne,re:unped,:m:unped adnutt,

connec,busmat,line, 1nbus,bus11nes conlines,reped, imped;
egm comment segment[l] integer d,e f.g.h,l.a.k.q.r, »gr,tr,fp, jp,kp, tp,sw; real X,y,z;
integer array loc[l n),at[0: C8 0 c7],bus[0:C81;
switch ss$=111,112,113,114,115,116, 117 118,119,1110,1111,1112,1113,1114;
for i:=1 step 1 until n do
begin loc[il:=0; 1nbus[1] 20; for j:=1,2 do busmatl[i,jl:=0,0

end;
is=C3:=C8:= 0; swiczl;
111: is=i+l; if id>m then goto 114;
' if 11n1nd[1]!:0 then goto 111;
Xc=admitt{i,1]; adm1tt[1,2]

Z =Xk +Yy*y; X2 ~x/z yi=-v/%;
admitt[i,l]::x;'admitt[i,z]:zy;
js=connec[i,1]; k:=connec[i,21];
112: for q:=k,j do ‘
begin if q=0 then goto ss[sv]; : :
busmat{q,!):=busmat[q,11+x; busmat(q,2]:=busmatiq,2]+y

- end; .
113: f::lnbus[,j]; g:=locl jl;
for q:=1 step ! until f do if k= conl::.nes[q+g] then
begm d:.—.busl:.nes[q+g]
, line[d,1]):=linel[d,1]-x; line[d,2]: =line[d,2]-y; goto sslsw]
end; C3:=C3+1; C8:= C842;
if C3>p+m+m then Erlnt ££1?admat error?, C3,1,sw
‘11ne[C3,!]: =-X; —x; line[C3,2]:=-y;
for q:=n step -l until j do
begm f:=1nbuslql; g.:loc[q] :
t:= if g>k then g+2 else g+1;
if qé:J then
begin for r:=f step -1 until 1 do
begin gri=g+r; tr:=t+r;
buslines[tr]:=buslineslgr];
conlines[tr]:=conlines(gr]
end;
loclql:=t
end;
if q=k or q=j then _
begin lnbus[ql:=f+1; tr:=t+( if g=J then f else f+1);
buslines[tr]:=C3; conlines[tr]:= if q=k then j else k
end ' '
end q;
goto s-sTEw];
114: i:=0;
1152 it=i+1; if i>C5 then goto 1111;
sw:=7; hs=mutind[i,1]; gr:=2*h; tp:=mutindli,3];
for jp:=1 step 1 until gr do for kp:=1 step 1 until h do at[jp,kpl:=0;
fp:=mutind[i,2]; e:i= jp:=0; ' ‘ .
117: Jjpi= jp + 13 1f jp>h then goto 1112 ; f:=muline[fp+jpl; js=connec[f,1]; k:=connec[f,2];

for tr: =j,k do if trl:o then )
beg1 -Tor kp:=1 step ! unt:Ll e do if tr=buslkp]’ then goto 116;




kp:zes=e+l; bus[el:=tr;
i16: at[kp,jpls= if tr=j then ~] else |
end tr forming bus list and incidence matrix;
tp+Jp*(Jp+|) div 2; x:zreimped[tr]; y:=imimped[tr]; pgoto 112; comment adding self admittance terms;

tr:=
t= 0

1l12: 'sw:= 10; Jjp ;
1113: jps= Jjp+l;
for kp:=] step ! until h do
begin x:=y:=0,0; ks kp*(kp—l) v 2;
for tr:=1 step 1 until h d
begin if tr=kp then then g goto 118;

d::at[Jp,tr] Cif d:o then Eoto 118

gri=tp+( if tr>kp then  tr*(tr-1) div 2+kp else k+tr);

xs=x+( 1f d=1 then . reimped[gr] else -re1mped[gr])

ye=y+( 1f d=1 then 1m1mped[gr] else -1m1mped[gr])
118 end;

reped[kp]:=x~ mped[kp].:
: _ end kp; fp:= busljpl; kpi= jp-1;
1114 kp:= kp+l- Xizy:=0,0;
for tr:=1 step ! until h do
begin d:=at[kp,tr]; 1f d=0 then got 119;
x:=x+( if d=-} then reped[tr] else -reped[tr])
yi=y+( if d=-1 then imped[tr] else -imped[tr]);
end sign changed so th_at positive value added to adm:.ttanée matrix;

119: end
g:=busfkp];
if jp=kp then :
begin busmat{g,1l:=busmatig,1]-x; busmatlg,2]:=busmatig,2l-y
‘end else '
begin j:= if fp>g then g else fp;
ks= _:_E; fp>g then fp else g; -goto 113
' ' end; '
1110: if kp<e then goto 1114 else if Jp<e then goto 1113 else got 115

11112 end admat-
samehne d1g1ts(3) . aligned(1 ,4)
start; C5:=C6:=C7:=0;
if p>0 then mutual; C8:=C7+C7;
admat; : ’
organise(n); I:=1; outstring(str,I);
begin comment CBS:; integer array column[l:C4]; comment CBS:; real array remat,imat[1:C4];
comment insert procedures lineflow and output;

procedure lineflow(E,F,D,J,X,Y);
value E,F,J; integer E,F,D,J; real X,Y; »
comment uses global variables mut1nd smuline,reimped,imimped, connec,reped,1mped busind and procedure
begin integer d,e,f,g,i,Jj)k,q,r,pi,pk; real u,v,x,y; switch ssi=1ll; ’ .
d::mutind[E,l]; e:=mutind[E,2]; '
comment d,e number and location of lines in group; j:=0;
111: j:=j+}; if mulinele+jlkF then goto 111; comment j is position of line in group;
X:=Y:=0,0; pit=mutind[E,3]; pki=j*(j-1) div 2;
for i:=} step 1 until d do
begin q:=mulinele+i];
f:=conneclq,1]; g:=conneclq,2];
q:= if £f=0 then 1000 else busind[f];
-r:=zbusindfgl;
for kizq,r do if k<D then
begin 1mpedance(J kyD,2,column,remat,imat); Ds:zk
end;
u::reped[r] ( if f=0 then 0,0 else repedlql);
vi=imped{r]- (.ii =0 gﬁgg 0.0 else impedlql);

impedance ;




qs= i_f_ i>j then i*(i-1) div 2+j else pk+i;
Xs=rei mped[p1+<ﬂ yi=imimped[pi+ql;
Xs=X+u*x~-v*y; =Y+u¥y+v*x

end linefldw :

Eroced ' output

comment uses global variables a,m,n,C2, 11nnum,11n1nd,adm1tt connec,busxnd,order,reped,xmped,column,
remat,imat and procedures renumber, impedance and lineflow; .
egm comment segment[!]; integer d,e,f,g,i,j,k,q,r,t,1h,bh,sw,lines,bus,L,M; real u,v,¥,X,y,z,ul,vl,xl,yl; boolean b;
Tead 1i lines,bus; _
if bus>0 then gr1n t punch(2),£1 £qZ?equivalent circuit value admittancef£u??,bus,bus*(bus+l) div 2, € 1 1 3 32
beg:.n integer array buses,lin[0:lines],row[0tbus];
‘switch ss:=111,112,113,114,115,116,117,118, 119 1110;
for i:=] step l until 11nes do read buses[;] 11n[1]
\ for i:=] step ! until bus do read row[i];
for is=l st ep 1 unt11 bus do

ke=fs= if i=1 then busind[d] else d;
for j:=i+l step p 1 until bus’ do
begin d:=row[ jl;
g:= if i=1 then bus1nd[d] else d
- Af g<f then
beg1n f:=g; ::j
end else if i=1 then row[ jl:=

nd;
kkEf the
- begin rowl[il:=f; row[qls=k
end else if i=1 then row[il:=
end sorting re-ordered bus numbers,lowest number first;
renumber(lines,lin) ; ‘ :
l1h:=0; bh:=M:=]; print ££12??
for 1::1 step 1 unt:.l n do
begin J::bus:md[:.] ~if j=1000 then g oto 119; sw:i=4;
' 4if M=1 then goto 112; o
, _:;2 1<52 then goto 113;
" 111t top of form;
112: print ££s60 ?2PAGE?,M; M:=M+};
print £€12? BUS LINE FROM BUS TO BUS . CURRENT ~ IMPEDANCE FAULT MVA?;
‘ L= if M2 then § else 3; - : ’
113: print £€12?2?,i; b:= true; goto ss[sw];
114: impedance(j, j,C2,1,column,remat,imat); d:=j;
ustzreped{jl; v:=imped[jl;
tzuku4vrv; xs=u/z; yi=v/z; swi=5; ki=0;

0

=
L
=
o]

115: k:= k+l; if k<m then goto 117;
if lineszlh then goto 1110; sw:= 6; e:= 0;" -

116: - e:= o+1; if e> lines then goto 1110; if i & buses [e] then goto 116;
lh:= 1h+l; ki= linfe]; g goto 117;

1110: goto if bh> bus then 119 else 1‘18;

117: f::connec[k 1]1;
if sw=5 and f>1 then goto 115; g._c0nnec[k,2];
11’ swW=5 and fEi and gki then goto 115;
'q.-11n1nd[k]

if q-0 then
begin q:= if f=0 then 1000 else busnxd[f]
r::bu51nd[g
tiz=qg,r do if t<d then

begln 1mpedance!3, »d,2, column remat,:.mat) ds=t



end-

ul::reped[r] ( if f=0 then 0,0 else reped[ql);
vl :zimped[r]-( li f=0 then 0,0 else imped[ql);

z:zadmitt[k,1]; w:
X1tzul*z-vl*w;

zadmitt[k,2];
yli=vi*z4ul*w

end else lineflow( q,k,d,j,xl,yl1);

if not " b then . print £€1°?
?),1innum(k],f,g;

?,x1 ,special(Z) 2 Y1,837;

Erlnt prefix(e
print €

e
print £

end
if b then b:= false;

118 p row[bh] J then

?,

?yu,special(2),v,2J?;
?,aligned(4, l),x*a,speclal(z),y*a eJ?

- begin if sw-e and lines-lh>4 then go oto 111

goto ss[sw]-

end-

begin for for k:=bh step 1 until bus do
begin d:=row([k];

f.—order[d]
print punch(z) prefzx(eel??) i, f,scaled(s),reped[d],zmped[d]

bh :=bh+1

end pr1nt1ng terms  for equivalent c1rcu1t-

119: end i;
if bqs>0 then print punch(z) £END?

end block
end output;
factor(n,column remat,imat) ;
v output
-end .
end ‘
end. short c1rcu1t°’
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£ZERC SEQUENCE 1668 MAXIMUM PLANT SAMPLE RFDUCED NETYGRK?

MVA base
No of lines
No of mutuals
Highest bus
Line data

=SPRNoUon 0w -

N .

o DR W

17
18

fe

21
22
23
24
25
26

-

{
28
- 30
31
32
33
34
35
36
a7
38
3¢
40
41
42

- 43
44

45 -

46
47
48
49
- 50
5
52

20

2

100,0
77

52

45

i

:D(Qr_o'mmwNNN—-——

18

QoW DUy o h

~ 10

1]
16

12

12
13 .

15
14
16
24

- 25

45
26
29
30
24
25
24
25
32
32
43
44
28
28
29
30
30
31

-

33
23
32
22
41
35

36
36

3¢

37

38
a9

11

0.0
16,748

21,39
24.73

10,382

20.53
11,0
14,13
0.0
12,42
14,13
13,23
13,92
0.0 .
0,88
23,68
22,95
0,706
13,22
0.086-
4 .65
4,65
T.82
16,1
24,48
25,005
0.57
C.57
.37
0037.
25,636
28,986
8,05
11,53
6,62
1,43
1.43
5,94
5,94
0,663
0,425
16.7
0.573
0,0
5.6
22,72
16,34
6,38
4,23
1,05
0,6!

4. .45

5,1

n

- w'x

0,105
©) ,34¢
5,83
68,53
87 .22
71,78
40,4
6l 4
0.}
50,24
54,9
25,24
56,11
0,055
3,72
79,0
76.7
2,36
48,65
0,349
26,71
26,71
235 .42
72 .63
106,22
111 ,63¢
1,82

1 .83
25.29
25,29
121,645
121,719

- 26,13

22,07
37.34
5.4
5.4
28.55
28,55
3,99
2,435
32.84
3,025
-0,003
45,08
108,49
85,5

22,99

3.43
6.04
3054

362

e DD v B e e e

1 N o

)
- O

02 0 by -
Lo G (G I Y
.

B = ae e 1

OO0 DO DO O
[ ]
00 O D

3

[ ]
RN

o b= e
2D Q
B
Q

110,0
110.,0
116.0
110,
22,0
110.0
110,0
110,0
110,0
110 .0
110,0
110,0
110.0

1100

110,0
1100
110,0
110,0
110 .0
88.0
110.,0
110.0
110,0
110 .0
1100
1100
110.0
88,0
110.0
1.0
110,0
220,0
220 .0
220.,0
220,0
220 .0

'220.0

220,0



mutual data

53

54
55
56
57
58
56
60
6!

62

63

(o200 et I )
o b

67

RN )

O oo NP U W W —

v 3

0T bW

19

21
22
23
24
25
26
27

28
20
30
31
32

NOONOOOOO0Og OO O 0 O

38

38
38
34
3¢
36
3¢

a1

RN

L)
D o000

D O2000
©

DDVDVWHD VDOO0O
o 0o 0o nDoowoso

11
11

— s
— b
e e

< ©

€

| SS ISP
Tt =

-

12

® [ ] - L]

o 0o o ©
(@]
N
[s>]

L]
OQOODODO0

e o o
[« == eNe]

OO0 QOO O0COO0OO0OO0O0O0O0g D00 DO O
L]

© ot

B BN DNDNDB ODO0H O
mslmbcnmwoo-o

N
=S

B D N
X I ;mo

&)
- JRN

39
46
47
48
39
4)
46
&7
48
41
16
47
48
3%
a8
24
3z

2

0.048
0,08¢6
N1l
0,07
0,086
0,20
0,134
0,568
0,284
0.26
0,185
0,645
-0.,0167
0,183
-0,0136
-0 ,0084
1.0
0,031
0,052
0,246
0,193
0,058
0,9
0,9
0,35
110,0
110,0
10,0
110.0
220,0
220,0
220,0
110 .0
1J0.0
220,0
220,0
220,0
110,0
1100

©110,0

220 ,0
220,0
220 .0

S oco
2000200

1 e e
NN -
¢« ¢ & o

MW N e NN
NN N e N

*

D20 29209
<

2%

=]

.

=)

*
o

2 & o o
D02

k)

® 3 ¢ o » & ¢ 9 @
QO D022 COOOQOOQC DD Q

. e S p b as B b B e M 2D g Ml L oy Ly e e ea e
°

. T
oo o}

0.569
3,744
1.872
-0,237
-2 ,654
-2.,028
0,626
7.158
5.451
-7.844
-5,977
1,867
7.158
5,353
5,357
-9,456
-7.206
2.%5
2,639
-0 .521
-1,612
-1 .228
0,384
-0,52)
-1.612
-1.228
0,384
0,545
-0.095
-0,521
14.3!5
2,654

2.232
23,763
18,749
-0 .59
-11,088
-9.159
2,825
42 922
56,671
-28,072
-25.,23
7.87
34,678
26,161
28,385
-32,631
-27 669
8.64
15.08¢
-2 .42
-6 .732
-5 .53
1,737
-2 .64
-6 528
-5.18
1.62
3,459
-0 _4¢
-2.,3
53267

10,752



Additional Element Current Distribution Factors

Flements

33 4
34 4
35 4
36 27
37 23
38 T
39 7
40 11
41 16
42 16
43 €
44 6
45 33
46 5
4% 24
48 24
49 24
50 46
51 a6
52 1)
19 21
8 4

220,0
220.0
220,0
110,0
110,0

110,0
10,0
110.0
1100
1100
1100
1100
1100
110,0
110,0
1100
1100
220.,0
220,0
110,0

16
8

30
21

22
28

13

W N s
[

-

20 .0
110.,0
Equivalent Circuit
19
2

2,654
-0,37¢
-0,37S
0.1¢
-0,64
1,171
4,171
-0,428
7,71
-0,238
-0,735
4,825
-2,702
4,55
-5,1¢
-3,456

1,234 -

9.483
-1,96
6,806

23

12,88
-1.53¢
-1.84
0 .46
-3.24
22,84
16,665
-2.705
43,85
-1.504
-0,356
17,61
-10.25
29,744
~1¢,386
-17,853
5.58
49,64
-15,5
a2 o7

1o 56
& 53E



Z2EROC SEQUENCE 1968 MAXIMUM PLANT REMICE:

BUS

10

LINE

(%}

jo N}
Mbd NN W dH WP

@ N

FROM RUS

NoOoO NN N O F =

~4 oo o N onN = W =

o~

ORPMPPE O WM

O O O O

~N @

VCJJD—‘
= Wbas Voo

T0 BUS

4
3
8

35
1

5

21
43
2
4

3
8

H

-
(=] [+ 0 ol o] g\

[
~

16
12

10
10

NFETWORK

CURRENT

.1R44+0,0053J
.0297=-0.0006J
.0633-0.0057J
.1210-0.0215J
.6N015-0.0226J

.0581-0.0072J
.0251-0.0052.)
.0763-0.00550
.3724-0.0020J
.5181+0.n1158

.6362+0.01450
.3638+0.0145J

.2118-0.0119)
.6147+40.021.6.
.1735-0.0097J

.1931+0.0286J
.8069~0.0286J

.4187-n0,0038Y
+1931-0-0175J
.3882-0.0213J

.3240-0.0196J
.1444-0.0155J
.5315-0.0351J

.35158+0.0246J
.2001+0.0094
.2764-0.0278J
.2076+0.0063J
.0667-0.0169J
.1223-0.0056J
.2001+0.0094J
.3269+0.0115J

.0588-0.0078J
.0554-0.00084
.0497-0.00048.)
.8359-0.0135J

.4668+0.0361 )
.5332-10.0361J

4

PAGE 1

IMPENANCE

.0011+0.07289J

.0012+0.0334J

.0177+0.1215J

.0018+0.0317J

.0031+0.0888J

.N052+0.0955J

.0068+0.1026J

.0084+0.0813J

.0048+0.0868J

.0098+0.1141

FAULT MVA

129.6+3458.4J

103.4+2993.8J

138.8 +874.9J°

175.7+3140.0J

39.8+1125.3J

57.2+1044.0J

64.2 +970.6J

125.6+1217.5J

63.7+1149.2J

75.1 +870.0J



BUS

11

12

13

14

15

16

17

18

19

20

21

LINE

11
15
16
17
68

13
15

16
18

19
69
77

17
18

12
69

19

20
21
22
23
56

20
24
25
26
57
21
22
23
56

27
28

6
79
30
31
32
33

FROM BUS

9
11
11

11
7

9
11

11
13

14
14
0

11
13

9
14

14

18
18
18
18

0

18
19
19
19

0
18
18
18

0

20
20

2
21
21
21
21

21

TO BUS

11
12
13
15
11

12
12

13
15

17

16
14

15
15

16
16

17

19
24
25
45

18

19
26
29
30
19
24
25
45
18

24
25

21
24
25
32
32
43

15

CURRENT

.0707+0.0083.)
.0598-0.0049.)
.0oon+0.0000u
.0np0+0.0000J
.8696-0.0132.

.1125+0.0042.
.8875-0.0042.

.5003+0.0004
.4997+0,0004y

.0000+0-0000J
.2110-0.0146J
.7890-0.0146J

.5146-0.0004.)
.4854+0.0004J

.8140+0.0564J
.1860-0.0564J

.0000+0.0000J

.4263-0.00040

0348-0.00634

.0351-0.0063J
.0370-0.0016J
.4668-0.0146.)

.5518+0.0043
.0251-0.0047J
.0128+0.001.0J
.0261-0.0048J
.3842-0.0128
.0333-0.0063J
.0336-0.0064J
.0356-0.0019J
.4492-0.0103.)

.4968+0.0006J
.5032-0.n006J

.1479+0.0065)
.2667+0.0091J
.2628+0.0094J
.0785+n.00N03Y
.0777-0.0034J
.1664-0.00R8J

PAGE 2
IMPEDANCE

0.0065+0.0965.)

0.0127+0.1188J
0.1373+0.6311J

0.0051+0.2761J

0.1353+0.6186J
0.0761+0.2510J

2 .7365+1 1+01J

0 .0010+0.0327J

n.n0011+0.0330J

0.N199+0.1144J

0.0264+0.1314J

FAULT MVA

69.9+1031.6J

89.1 +832.0J
32.9 +151.3J

6.7 +362.0J

33.7 +154.3J
110.6 +364.8J

2.4 +9.0J

95.7+3057.5J

100.7+3023.34

147.9 +848.7J

147.1 +731.5J



Fi;t198+9'911

r6°v96+ L°'vel

r‘a‘buZ}+v‘9bI

FgrebgT+T 9l

re*voL+ s°sti

rg°0gs+ 8°1T1

rp°£86+ £°66

ro*6g8+ 9°69

frE q16+ 8°'941

re*vie+ (°9s1

ry*cL0i+u°9s

Fry TLve+0'01 1L

VAW 1NV 4

rege0°0+4100 ° 0

FeIutT 0+8v10°0

“rygTy0 0+6600 -0

2850 0+,400 ° U

reget 0+9¢¢0 -0

' rgge1°0+0120 ° 0

reg9vt:-0+££20 -0

regirro0+8600 °0

FE901°0+<8TU " 0

re90t 0+¢810°0

"f0g60°0+6v00 ° 0

rey0v0°0+8T00 "0

4ONVUddW]

¢ duvd

rogooo*o+youvo”
ravto°0-9998°

ravto o+veet-o

rg600°0-59&8"
"Fe900°0+£940°"
fose00°0+TL40°

1600 0-t840"
FT600°0-9T16"

ret00°0-4v80"
rLetocu+8Le8”
rsL00°0-9950°
(0c00°0+2TT0"
revy00°0+95¢0°
reoou  0+gtv 00"

FOYOU*0-GTLG"
F0L00"0+2EVY"
r6uT0 0-£540°

r9200° 0+LEbb "
F2LT0° 0+THGE”
F9pTL°0-2202"

FTG00°0-9G4%"°
FrTs00°0+5bbs"

rrevo°0-9T65”
rogcu0-699¢”
rr9ec°0+9evt1”

reg900°0+9691°
re9o0 0+6&9%°
rFrogTI0°0-999¢°

rga00°0+2291°
reL0u-0+v04Lp”
r6ctu 0-vL9¢”

Fpa0U*0-£¢01"
réev00°u+0tyy”
ro6uL°0-99<0°

rote0*0-¢£969°
Fr1gL0°0-986T1"
resto 0-1savt?:

LNIHHND

9

¢
ee
£e

et
143
A

28
18
0¢
£g
. 1g
0
- og
0¢

0§
62
62

0¢
8¢
8¢

6
8¢

9¢
8¢
9¢c

<74
G¢e
G

e
ve
14

¢
0¢
1A%

2é
be
¢

SNnE Ot

£e

2é
0¢

133
134
1e

e

0§

1 X4

0¢

0s

68

g¢ -
61

62
LZ
6T

82
LS
9¢

Le
L2

0
9¢
6T

1e
0¢
8T

1e
02
81

0
4
gc
0
ac
e

SNH W0d4

g
b
b

4
A
1€

184
0v

T¢
Ty
‘Ov

65

8¢

92

6%
LT
74

8
9¢
q¢

LS
9¢

86
32
144

0f
8¢e
2c

6¢
LS
T
L
T’
v

124
0L
124

NI

£e

¢e

e

0g
62

82

L

9¢

be
ge

el

SNnd



BUS

34

35

36
37
38
39

- 40

41

42

44

45

END

46
47
70

4
46
48
49
59

47
48
50

50
51
60

51
61

49
52
62

52
63

45

34
76

7
33

34
42

23
64

FROM BUS

34
34
22

1
34
35
35

0

34
35
36
36
37
0

37
0

35

TO

BUS

35
36
34

35
35
36
39
35

- 36

36
37 .

37
38

37

38
38
39
40
39

40
40

41

44
42

43
43

44
44

45

45

11

CURRENT

.1334-0.0160J
L1539-0.0129J
.7127-0.0290J

.1742+0.0204.
.080n-0.00164
L.1367-0.0042.
.2975-0.0016J
.2616-0.0247J

.1852-0.0147J
.5629+0.0451
.2519+0.0304

.7022+0.0358J
.1969+0.0234J
.1009-0.0124J

.7829+0.0262
.2171-0.0262J

.6556+0.0459J
.1984+0.0223J
.1461-0.0236J

.7677+0.0581J
.2323-0.0581J

.0000+0.0000J

.5036-0.1087J
.4964-0.1087

.5444+0.0089J
.4556-0.0089J

.3190-0.0598J
.6R10+n.0598J

.7249+0.0534J
.2751-0.0534J

PAGE

4

IMPENANCE

0.0032+0

N.0033+0.

0.0069+0.
0.007140,

0:0074+0

0.0061+0.

0.0108+0.

0.0807+0.

0.0979+0.
0.0484+0.

N.1184+0.

0.0345+0

.0576J

n351.J

0516 J

L0617 J

03804

0430J

4083

4468J

19284

3691 J

.1774J

ns73J0

FAULT MVA

95.2+1732.0J
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HE]I 8z Complex Load Flow;

begin comment calculates voltage and load or generation at each bus, power flow in lines, line losses
and line charging for a given network;
integer I1,J,J},L,M,myn,0,mo,moi0,mil,t1,t2,t3,%4,cl!,c2,c3,c4,c5,C6,C7,C8,C9;
real R,T,a; integer array str[l 30]
1: l°-1nstr1ng(str,l);
read C9,a,n,m,o0,t],t2,t3,t4;
comment number of load flows, mva base, number of buses, lines, regulators, generators, loads, shunt
loads and special regulators;
mos= m4+0; molO0:= mo+]0; myli=m+ll;
begin integer array spgen[1:t1,1:2], spreglo:t], spbus(0:t3],modn([1:20,1:2];
comment CBS:; integer array connec[!:mo10,1:2],parallelll :m],
buslines,conlines(]:2*mo],colposn,rowposn, junct,order,linebus{1:nl;
real array gen[1:t1,1:2], reg(0:t4,1:2], shunt[0:t3, l.Z],value[l.ZO 1:31;
‘comment CBS:; real array load puvolt busmat[1:n,1: 2],
nomvoll[1:n], line[1:mo10,1:3],correction[1:2*n],diagonall 1 :2*n,1:2];
switch s:= 1t,12-
comment insert procedures input,admat orgamse solve,current,corvol,page,
output, mod1fy.ad3ust-

procedure input;
comment uses global variables nomvol,loed,connec,line, junct,gen,reg,spreg,spbus,shunt,spgen,a,m,n,mo,mol0,

t1,t2,t3,%4,C1;

begin comment segment(1]; o integer e, f,h,i, j,k; - : real X,Yy,Z,g4VyV;
' h:=0; : —

for i:=] step ! until mo do
begin read k,e,f,x,y,z,g;
if exf or e<1 or f < 1 or e>n or f>n then
begin h:= h+l; print £€€1?data error?,k,e,f
end;
js=if id>m then i+10 else i;
connec[j,1]1:=if e>f then f else e; connec[ j,2]:=if e>f then e else f;
ws= if abs(g-1,0)<0,1 then 1,0 else a/g/g;
viz (x*x+y*y)*w;
line[j,1]s= if x=0,0 and y=0,0 then 0,0 else if i>m then x*z/v else x/v;
line[ j,2]:= if x=0.0 and y=0,0 then 0,0 else 1f i>m then -y*z/v else " else -y/v;
line[j,3]1:= if i>m or " abs(g-1 .0)<0.1 then z else z*w-s/w
end reading line and regulator data, storing g bus numbers in ad jacent locations with lower
number first, per unit admittance for lines or tap times this for regs in first two locationms,
per unit shunt susceptance or tap in location three;
read j,x,g; Junct[J]'- Cl:= j;
108d[J,2] = x/g,
nomvol[jl:= g;
for i:=2 step 1 until t1 do
begin read j,x,y,v,%,g; Jjunct[jl:= j;

load[j,11:= y/a; load[j,21:= x/g;
gen[i,i]l:= v/a; gen[i,2]:= w/a;
nomvolljl:= g;

spgen{i,1]:= j; spgen[i,2]:=

end reading generator data, per unit power and voltage in load , bus number in junct,
nominal voltsge in nomvol, per unit reactive limits in gen, setting spgen;

for i:=] step | until t2 do
beg1n read Jj,X,y,g; junct[jl:= 500+j; nomvolljl:= g;
Toad[j,1]):= x/a; load[j,2]:= y/a
end reading load data, per unit real and reactive power in load, nominal voltage in
nomvol, 000 plus bus number in Junct
for i:=1 step J until t3 do

begin read j,x,y,g;



end input;

spbuslil:= j;

we= if abs(g-1,0)<0,} then 1,0 else a/g/g; viz (X*X+y*y)*w;
shunt{i,1])s= x/v; shunt{i,2]s= ~v/v

end reading impedances at busses, per unit admittance in shunt, bus number in spbus;
for i:=)] step 1 until t4 do
begin read j,x,y;

ks= j+m-490; spreg[i]:= k;
f:=connecik,2]; g:= nomvol[f];
regli,1]:= x/g; regli,2]:= y/g

end reading voltage limits on regulators, per unit limits in reg, setting spreg;
if h>0 then stop

procedure admat;

comment uses global variables parallel,busmat,buslines,conlines,linebus,connec,line,spbus ,shunt,
m,n,mo,mo10,mi1,t3,C2,C3; :
begin comment segment{1]; integer i,j,k,d,e,f,g; real x,y,z;

111:

112:

113:

114:

switch ss¢= 111,112,113,114;
for i:=1 step 1 until m do parallel[il]:= 0;

i:=0; dsi= m+l; C33= mo; C2:= m;
itz i+l

if id>m then goto 112;

if parallel{i]=0 then

begin f:=connec[i,1]; g:=connec[i,2];
Xe= yi=z:= 0,0; ke= 0;
for js= i+l step 1 until m do
begin if f=connec[j,1] and g=connec[j,2] then
begin k:= k+l; parallelljl:= d;
x3= x +line[j,1]; ys=y +linelj,2]; zt=z+linel j,3]
end -
end; |
if k>0 then - -
begin connec{d,1]:=f; connecld,2]:=g;
linef{d,1]:=1ineli,1]+x; line[d,2]s=1linel[i,2]+y; line[d,3]:=line[i,3)+z;
parallel[il:=d; de=d4l;
t= C2+41; t= C3-k
end combining parallel lines and storing in locations aftexr m, C2 gives m plus
the sets of parallel lines, C3 number of connections between busses
end;
goto 111;
for i:=1 step 1 until n do busmat[i,!]:= busmat(i,2]:= O ,0;
Tizksz d:z 0;
= i+l
e:=0;
for j:=1 step ! until C2,mi] step | until mol0 do :
begin if j <m then begin if parallel[jl#0 then goto 114 end; fi:=connec( j,1]; g:=conneclj,2];
if f=i or g=i then
T begin d:= d+1; buslines[d]:=j; conlines[d]:= if f=i then g else f; et=e+l;
x:=linel[j,1]; y:=line[j,21; z:=1ine[j,3];
busmat{i,1):= busmat[i,1]+(if j<C2 then x else if f=i then x*z else x/z);
busmat[i,2]:= busmat[i,2] + (if j<C2 then y else if f=i then y*z else y/z);
if j<c2 then busmat[i,2]:=busmat[i,2]+z
end forming diagonal terms of admittance matrix in busmat, listing lines
in order of bus connections and number of connections to each bus;
end; linebus{i]:=ze;
if e=0 then »
g:Ein print £€1?no connections to bus?,i; k:=k+
Pcil bty )




if i<n then goto 113;
for i:=1 step | until t3 do
begin j:= spbus(il;
busmat([j,1]:= busmat[j,1] + shunt(i,1];
busmat [ j,2]:= busmat[j,2] + shunt[i,2]
end adding admittances at busses to diagonal terms of matrix;
if k>0 then stop

end admat;

procedure organise;

comment uses global variables linebus,conlines, C),C4,C5,C6,n,mo setting up the global arrays
colposn,rowposn,order;

begin comment segment[11]; integer d,e,f,g,h,i, j,k,q,1tcol,ltrow,rkci,rich,cpi,ropi,cpch;
integer array colterm,rowterm,finterm,busind{1:n],row,column[1:3*mol0];
switch ss:= 111,112,113,114,115;

k:=1; f:=0;
for iz=] step 1 until n do. . .
R begin d:= f+1; f:= f +linebus[i];
if i=C1 then goto 112;
je0; colposn[1].- rOWposn[zl._ ;
for q:=d stqp 1 until f do-
~ begin g con11nes[q],

if g=Cl then goto 111;
column[k].- row(k]:=g;
=k#l; . ji= j41;
111: end;
if j=0 then : ’”“' P R e
begin grxnt eslack bus is the only bus connected tc> bus?,;, stop
end ; S E T : T N
colterm[1] = rowterm[i]._fanterm[1] Z3;
busind{i]:=0; . : 5
112¢ end column lists. rcw number of terms in, each column, TOW. 11sts column number of
terms in each row,: colterm and colposn’ g1ve number of terms and location in column,
rowterm and rowposn in row,. fxnterm stores maxxmum value of rowterm;
busind{cl}:=1; o : o c :
l1tcoli:=1ltrows=k~] ;

[N

je=de=1;
113: i:=0;
114 is=i+l;
if i>n then
begin d:=d+] ; goto 113
end; -

if busind[i]=) then goto 114;
li colterm[ilid then got 114 ;
order[jl:=i; busind[il:=1;
cpit=colposn[i]; t= cpi+d-];
for ki=cpi step 1 until f do
begin rkcit=column[k];
comment row number of term in column i which is to be eliminated;
ropit= rowposnl[il;
:= ropi + rowterm{il-l;
for hi:= ropi step 1 until g do
begin rich:= rowlh];
comment column number of term in row i;
if rkeciz rich then goto 115;
cpchs:= colposn[rich];
t= cpch + colterm{rich]-};




for q:= cpch step 1 until e do if rkeci= columnlq] then goto 115;
comment a new term to be added in column xich and row rkeci;
colterm{rich]:= colterm[richl+l;
for q:= rich+] step ! until n do if q&C) _then
colposnl[ql:= colposniql+];
e:= e+2; l1tcol:= 1ltcol+l;
for q:= ltcol step -1 until e do columnl[ql:= column{q-1];
column{e-1]s= rkeci;
if rich <i then
begin f:= f+1; ke= k+l
end; '
rowterm[rkcil:= e:= rowtermlrkcil+l;
if e>finterm[rkeci] then fintermlrkcil:=e;
for q:= rkci+l step 1 until n do if q E C3 then
rowposn[ql:= rowposn[ql+!;
es=e+ rowposnirkeil; ltrows:= ltrow+l ;
for q:= 1ltrow step -1 until e do rowlql:= rowlq-11];
row[e-1]:= rich;
if rkei<i then
begin g:= g+1; hi= h+l
end;
115:¢ end adding new term and modifying column,colposn,colterm,
row,rowposn,rowterm,finterm;
rowterm[rkcils= rowterm[rkecil-}1;
for q:= rkci+l step ! until n do if qkC] then rowposn[ql:= rowposnlql-};
ltrows= ltrow-]; g:=0;
for q:= rowposn[rkci] step 1| until ltrow do
begin if row[ql=i then g:=1;
if g=1 then row[ql:= rowlq+l]
end elimination of column i from row rkci

end;
Ji= J+l;
if jkn then

begin ltcol:= ltcol-d;
for q:=colposn{i] step ! until ltcol do column{q]:= column[q+d];
for q:z i+l step ! until n do if busind[q]=0 then
colposn{ql:= colposn[ql-d;
goto 114 ’
end column i terms removed from column;
C6:= js=k:i=l;
for i:=} step 1 until n do if ikCl then

begin colposn[il:= j; rowposn[i]:= k;
je=j+coltermlil;
g:= finterm[i]; k= k+g;

if g>C6 then C6:=
end setting maximum values in colposn and rowposn;
C4i=j-1; C5 :=k-1
end organise;

procedure solve (CTM,CMN,RTM,RW,ave,blw); _ :

comment uses global variables colposn, rowposn,C6,order,correction,disgonal,n Eliminates
pairs of columns in the prescribed order using the extra space in ave,blw, CTM,CMN,RTM and RW
to avoid shifting terms;

integer array CTM,CMN,RTM,RW; real array ave,blw;
begin }_2!5.259'.! d:e,f,’g,h',hJ,k,p,q,nl,rt,rp,rw,ct,cp,u,uW;
real X,Y,z,zl1,2z2,cor,diag; ‘integer array loc,colll1:c6];
Teal a;r;x uéte;ms,'wttefms[lzcsl; switch sss=1 1,112,113,114,115;

d:=1; nliz=n-];



111: i:=zorder(d]; u:=0; :
rt:=RTM[i]; if rt=0 then goto 113; comment number of terms in row i;
rp:= rowposn[il]; f:=0;

112:  j:= RWlirp+f];
cp:=colposn [jl; g:=cp+«mM[jl-1; :
for kizcp step ! until g do if CMN[kl=i then
begin f:=f41; loc[fls=k; collf]:=j;
if £ = rt then goto 113 else goto 112
end storing the locations and columns of row i off diagonal terms;

113:  f:= i! u=0 then i else in;
x:= if u=0 then disgonallf,1] else diagonal(f,2];
if uw=0 then .
begin d1ag. diagonal[f,zl/x;'diqgonal[f.zlzzdiag
end;
cor: correctxon[f]/x~ correction{f]s=cor; A
comment division of correction and sem1-d1agonal terms by d1agona1 pivot;
for j:=1 step 1 until rt do
begin k:= loc[J]
_1_'9_!: s=1,2 _d_g . .
‘begin y:=(if u=0 then ave[k,g] else blw[k,gl)/x;
if then ave[k,gl:=y else blw[k,gl:=y;
if g=1 then usterms[jl:=y else wtterms[ jl:=y
end
end division of off-d1agonal row i terms by diagonal p1vot and storxng,
f:='i£ u=0 then iin else i; :
y:= if u=0 then diagonallf,1] else. diag
for j:=1 step op 1 until rt do
begin k:=locl[jl; -
for g:=1,2 do
begin z:= y*(if g=1 then usterms[g] else wtterms[jl);
- 1f u:O then blw[k,g]._blw[k,g]-z else ave[k,g]._ave[k,g]—
: end
end modifying off-diagonal terms in correspond1ng row;
if u=0 then d1agonal[f,2]._d1agonal[f 2]-y*dlag,
correctionlf)i=correction[ f]-y*cor;
comment corresponding semi-diagonal term 15 el1m1nated'
uw:=e:=0; f:=if u=0 then 1 else 2;
cp::colposn[:] . cta:=cTMli];
114:  g:=cp+e; rw.~CMN[g]

comment term in row rw and column i;
ys=if uw=0 then ave[g,f] else blw[g,f]
if u=0 then
beg1n if uw—o then ave[g,Z].-ave[g,Z] y*diag else blw[g.z]._blw[g,zl-y*dxag
end mod1fy1ng term in column i+n;
g:: if uw=0 then v else Tw4n; correct1on[g] =correction[gl-y*cor;
comment modifying correction terms'
for j:=1 step 1 until rt do
begin h coll[j] , _
s=y* usterms[g] s=y*wtterms{ j];
1f h—rw then o
. begin d1agona1[g,l]._dxagonal[g,l]-zl- d1agona1[g,2]._d1agonal[g,2] -z2; goto 115
end otherwxse search for a term in row rw and column h; ,
p:= colposn[h] rp:=CTM[h];. ki=p+rp-1;
for q:zp step 1 until k do if- CMN[q]—'rw then
beg1n 1f uw=0. then K
‘begin avelq,1]: -ave[q,l]ezl; ave[q,z]::ave[q,zl-zz;
end else :
beg:m b1w[q,1]._b1w[q.1]—z1- blw[q,Z] =blw(q,2]-22




end; goto 115
end otherwise add a new term in row rw and column h;
ke=k l;
if uw=0 then
begin ave[k,l]::—zl; avelk,2]:=-2z2
end else
begin blw[k,1]):=-z1; blw[k,2]:=-22
end;

if ww=) then
begin CTM[h]:=rp+1; CMN[k]:=rw; k:=RTM[rwl]; RTM[rw]:=k+];
RW{k+ rowposn[rw]]l:=h
end;
115:¢ end elimination of term in row rw and column i;
if u=1 and uw =] and dénl then
begin rp:= rOWposn[rw] s=RTM[rw];
RTM[rw]s=k-1 ; k:=k+rp -2 g:=0;
for q:=rp step 1 until k do
begin if RWlql=i then g:=l1;
if g=1 then RWl[ql:= RW[q+1]
end elimination of i from row rw

end;
uws=uw+l; if uw =1 then goto 114;
e:= o+l; if e<ct then

begin uw:=0; goto 114
end;

us=u+l; Aif u=] then goto 113;

d:=d+1; if d<n then goto 11!

end solve;
- procedure current(X,Y,U,V);
comment used for calculating current at a bus and requires global variables R,T;

‘value X,Y,U,V; real X,Y,U,V;
begin . $= REX*U-Y*V;

. = T4+X*V4+Y*U
end current; : '

groced corvol

comment: sets ‘up’ correct1on equations and corrects bus voltges, requ:.res L ‘
procedures current and solve,uses global variables’ colposn rowposn, n,R,T,C4,C5, junct,load ,busmat , correction,
diagonal, puvolt 11ne,linebus,busl1nes,con11nes : : '

: }22522-: - integer d;e, f485i4J0k,q,bus;
o .. ~real u pVeXyYeTyt, W,z comment CBS.; real arraz above, below[l'c4 1:2]; D L
1nteger arraz rowterm, colterm[l n], columnf1s c4], row[l C5] . switch ss:= 1112f112;

'£2=0; for i:=] step | until n do colterm[1] =0
for 1::1 step ! until n do . )

begin d:_f+1 f:: f+11nebus[1]
if 1_CI then goto 112; A ' : .
bus:=junct[i]; comment if bus > 500 then load otherwise generator;

us=puvolt[i,1]; v:=puvolt[i,2];
xs=busmat[i,1]; y:=busmat[i,2];
t= T:=0,0; current(x,y,u,V);
wWi= -u*y+v*x- Zi= UXX4vHy;
. for q:=d step 1 until f do
begin j busllneS[q] t=conlines[ql;
r.:—line[j,l] t:=-line( j,2];
current(r,t, puvolt[g,l] puvolt[g,Z])
if g=C) then goto 11};
Xi= -—u*tyv T; y._ u*r+v*t
e:= c olterm[g]




Jj:= colposn[gl+e; ki:= rowposn[gl+e;
coltermlgl:= e+l ;
column[ jls= row[k]s=i;
below[ j,11:=y; belowl j,2]s=x;
above[j,1):=if bus>500 then x else 0,0;
abovel j,2]:=if bus>500 then -y , else 0 0
111: end; e:= n+i;
correction[e]:~load[1,l]du*R—v*T; '
diagonalle,1]:=R+z; diagonalle,2]:=T+w; s=load[i,2];
if bus>500 then
begin  correction[i]: x+u*T-v*R,
diagonalli,!):=-T+w; d1agona1[1,2].-R-z
end else
: begin correct10n[1]'=x*x-u*u-v*v-
diagonalli,1]:=2,0*u; diegonal(i,2]:=2 ,0%v
end calculation of terms in row i;
112: end setting up correction equations;
for it=] step 1 until n do rowterml(il]:= colterm[i]
solve(colterm,column,rowtarm,row,abova,below)
for i:=1 step ! until n do if i#Cl then
begin puvolt[i,1]: puvolt[z,l]+correction[i];
puvolt[i,2])s=puvolt[i,2 J+correction{i+n]
end correcting volteges at each bus

end corvol;

procedure page (u,v);
comment prints page numbers and headings, uses global varlables L,M;
value u,v; integer u,v;

begin switch as._lll 112 113,114 115;

MVAR LOSS

: _ goto ss[ul;
111 - , "~ top of form;
112: , print £€s60?PAGE?,M,££1277;
: s=M+1; goto ss[vl]; S :
113: print £ BUS MW MVAR ' VULTAGE KV PER UNIT DEGREES MVAR LINE CHARGING?;
if t 3>0 then print £ SHUNT MW MVAR?; goto 115;
114: print €LINE NO  BUS MW MVAR  MVA BUS MW MVAR MVA MW LOSS
115: ' L:=0
end page;

Erocedure output;
comment uses global variables a,m,n,moj0,mll,t3,R,T, L,CZ nomvol ,busmat,line,linebus,buslines,

* conlines,puvolt, connec,spbus,shunt,requlres procedures page and current;

begin comment segment[1]; integer d,e,f,g,i,j,k,r,q; real u,v,w,x 1 YeZs21,22, z3,z4 suml ,sum2 ,sum3, linch;

real array volt[l:n]; print £€12??; r:=5;
page(2,3); aligned(4,2); suml:=sum2:=sum3iz=linch:=0,0; fizk:=0;
for i:=1 step 1 until n do
beg1n ri=r+l; if r=6 then
beg1n ri=l; lﬁ L = 9 then page(1,3); L:=L+1; print ££1°??
end; '
u'-puvolt[1,l] vi=puvolt[i,2];
volt[1] =W =ukusvHv;
R:=T:=23:=0.0; current(busmat[1 1],busmat[i,2], u,v)
d:=f+l; f:=f+11nebus[1],
for q:=d step 1 until f do
begin e::busllnes[q] :=conlines(ql;
ourrent(—llne[e,l ].-11ne[e.2],puvolt[g, 1],puvoltig,2]);
if e<C2 then z3:-z3+line[e,3]
end calculation of current and susceptance at bus i;
22:=z3*w*a; linchiz=linch+z2;

TAP?;



x:=a*(u*R+v*T); y:=a*(v*R-u*T);
if x>1,0 then

begin sumliz=suml+x; sum2:i=sum2+y;

sun3: =sum3+sqrt(x*x+y*y)

end adding generation;
z:= if u>0,0 then arctan(v/u) else if abs(v)>0.0 then
sign(v)*1,57079633-arctan(u/v) else 3,14159265;
wi=sqrt(w); zl:=nomvol[i];
print £€1??,i,¢ ?,X,8 22Y,€ ?,u*zl ,special(2),v*zl,£j?;
print prefix(e ?),w*zl,aligned(2,4),w,2¥57 ,2957795,aligned(3,2),22;
if k < t3 then

begin for j:=1 step 1 until t3 do if spbus{jl=i then

begin k:=k+l; zi=volt[il*a;
print aligned(3,2),prefix(g ?),-shunt[j,1]*z,shuntl j,2 1*z

end
end
end printing generation,loads,bus voltasges, angles, line charging and shunt loads;
print ££12?TOTAL GENERATION=?,freepoint(4),suml,2 MW ?,sum2,€ MVAr ?,sum3,£ MVA?;
t=5; suml:i=sum2:=0,0; aligned(3,2);
for i:=1 step ! until m,ml} step ! until mol0 do
begin w:=lineli,2]; if wk0,0 then
begin r¢=r+l; if r=6 then
begin r:=1; if L=9 or i=1 then page(l,4); L:=L+l1; print ££1??
end; '
f:=connec{i, 1]; g:=connecli,2]); 4if i>m then sum3:=linel[i,3];
us=puvolt{f,1]; vi=puvolt[f,2]; z:=line[i,l];"
x:=puvolt[g,1]; y:=puvoltlg,2];
z1izu*x+v*¥y; Z2izu*y-v*x;
u:=z2*z; vizz2*w; x:=zl-( if i>m then volt[f]*sum3 else volt[f]);
ye=z1-( if i>m then volt[gl/sum3 else volt(gl);
- zli=(x*z-v)*a; z3:=(y*z+v)*a;
z2:=(=x*w-u) *a; z4:=(-y*w+u) *a;
x:=sqrt(zl*z1+22%22); if z1<0,0 then x:=-x;
y:=sqrt(z3*z3+z4*z4); if 2z3<0,0 then y:=-y;
2iz=-z1-23; wiz-z2-z4; sumlizsuml+z; sumi=sSum24w;
if i>m then print ££1??,490+i-m else print £€£17?,i;
print prefix(g ?),f,21,22,%,g,23,2z4,y,aligned(2,3) ,z,w;
if i>m then print € ?,aligned(1,3),sum3
end printing. line flows and losses
end ;

’

print £€12?TOTAL LINE LOSS=?,freepoint(4),sum!,€ MW ?,sum2,f£ MVAr ?,STOTAL LINE CHARGING=?,linch,£ MVAr?. .
end output; : )

procedure modify;

comment uses global variables a,C7,C8,value,modn,reads and stores network modifications;
begin comment segment{1]; integer e,f,q,j,i,k; real g,r,v,W,X,y,%;
procedure change(u);
comment uses global variables modn,value,connec,line,parallel,busmat,load,C8, If u=l restores original
network, if u-2 sets up new network and stores old values;
value u; integer u;
begin for i:=] step ! until C8 do
begin j:= modn[i,2];
Aif modn[i,1]=2 then
begin if u=2 then -
begin x:=load[j,1]; y:=load[j,2]
end;
1oad[ j,1):=valueli,1]; loadlj,2)s=valueli,2];
if u=2 then _
begin valueli,i1]:=x; value[i,2]:= y




end
end changing loads else
begin e:=connec[ j,1]; f:=connec{j,2];

x:= value[i,1]; i=line{j,1];

y:= value[i,2]; wvi=line[j,2];

z:= value[i,3]; wi=1line([j,3];

line[ j,1):=x; linelj,2])s=y; linelj,3]1:=2z; k:=parallellj];

if k>0 then
begin line([k,l J:=1line[k,1l+x-r; line[k,2)s=1line(k,2]+y-v; linel[k,3]s=1line(k,3]+z-w
end ;

if u=2 then
begin valueli,1J:=r; valueli,2]l:=v; value[i,3]:z=w
end;

for q:=e,f do
begin busmat[q, 1]:=busmatiq,!l+x-r; busmatq,2]:=busmatiq,2]+y-viz—w
end

end changing—ﬁnes
end

end change;

if C7>1 then change(l);
Tread H
for i:=) step 1 until C8 do

I

begin read k,e,modn[i,2],x,y;
if ezl then read z,g; modn{i,l)z= e;
if ez2 then
begin valuel[i,1]):=x/a; valueli,2]l:=y/a
end storing new loads else
begin w:= if abs(g-1,0)<0,1 then 1,0 else a/g/g;
viz (xX*x+y*y)*w;
value[i,1]:=if x=0,0 and y=0,0 then 0,0 else x/v;
value[i,2]):= if x=0,0 and y=0,0 then 0,0 else -y/v;
value[i,3]:= if abs(g~1,0)<0,1 then z else z*r~6/w
end storing new line data
end reading and storing modifications;
change(2)
end modify;

procedure ad just;

comment uses global variables t1,%4,R,T,J,J!,spgen,gen,spreg,reg,busmat,load, junct,linebus,buslines,conlines,
puvolt,line,connec and requires procedure current declared first;

)

begin comment segment[1]; integer d,e,f,g,h,i, j,k,q; real r,u,v,w,X,y,z,xl,yl;
h:=0;
for i:=2 step ! until t1 do if spgen[i,2]=0 then
begin j:=spgen[i,1]; di= j-1;
us=puvolt[j, 1]; vi=puvoltl j,2]; R:= T:= 0,0;

current(busmat( j,11,busmat[ j,2],u,v); f:=0;

for q:=1 step 1 until d do f:- f4linebusiql;

d:= f+1; f:= f+linebusl[ j];

for q:= d step J} until f do

begin e:-buslines{ql; g:z=conlineslql;

current(-linele,i],~1inele,2],puvoltig,’ ],puvoltig,2])

end calculation of current at bus J;

we= v*R-u*T; u:i= genl[i,1]; wvi= gen[i,2];

u>w or wWw then

begin if u>w then _

begih spgen[i,2]:=1; egen[i,1]:=loadl j,2]; load[j,2]:=zu
end else
begin spgen[i,21:= 2; genli,2]:=load[j,2]; load[j,2]:=v
end; '
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Junct[ jl:=500+j; h:= h4l
end changing generator to load if either MVA limit exceeded
end;
for is=1 step 1 until t4 do
begin j:= spregli); k:=connec[j,21];
us=puvolt(k,1]; vi=puvolt(k,2]; z:=line[j,3];
wi= sqrt(u*utvkv); wus= regli,1]; vi= regli,2]; ‘
if ( uww and abs(z-1,15)>0,0055) or ( v<w and abs(z-0,9)>0,0055) then
begin x:=line[j,1]; y:=line[j,2];
if J1=2 then
begin x1:= entier(100,0*%(if udw then w-u else v-w))/100,0;
vi= z + (if udw then -x1 else x1);
if v>1,1555 then vi= v-entier(100,0*(v-1,145))/100,0;
if v<0,8945 then v:= v 4+ entier(100,0*(0,905 - v))/100,0
end else vi= z+ (if udw then 0,01 else -0,01);
ri= v/z; Xliz X*r; yli= y*r; '
f:=connecf j,1]; linelj,1]:=x1; line[j,2]:=yl; line(j,3]:=v;
busmat[f,1]:=busmat[f,1]-x*z+x1*v; busmat[f,2]:=busmat[f,2]-y*z+yl *v;
h:= h+l
end changing tap, line and bmat if either voltage limit exceeded

end;
if hi0 then J:=2
end adjust;

sameline; digits(3);

input; admat ;

for I:=1 step ! until n do
begin puvolt[I,1]:= if junct[11>500 then 1.0 else load[X,2]; puvolt[1,2]:=0,0
end; ' '

organise; noflo;

Je=J12:=C7:=0;

1): I:=M:=1; outstring(str,I1);
123 Ji=d+l; J1i=J141; corvol;
if J>1 and (%1>1 or t4>0) then adjust;

if J<5 then goto 12; C7:= C7+41; output;
if c7<c9 then
begin top of form;
:=1; instring(str,1);
modify; Je¢=2; goto 11
end :

end load flow;
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regulator
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generator
busbar
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load
busbar

‘O 00 =1 O U N

studies

bushars

Tines

regulators
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shunts
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conrectiorn
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n
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voltage
magnitude
110,0
1100
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32,0
122.0
0.0
-31.0
-22¢.0
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0.0

J
i00.0

G
12
2
7
0
0

bushar
2

1

6
7
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212 .0
MVAr

0,0
48,0
0.0
-10.,0
~-104.0
0.0
0.0

resistance

1.25
1,34
10,36
26,34
7.2
0,18
11,25
18,21
0.0
4,83
29,34
7.2

0.0
MVAT limits
minimumn

80,0
nominal
voltage
110 ,0
220 .0
110 .0
110.,0
1100
1100
220 ,0 E

1

reactance

maximum

110.0

total shunt
susceptance
42,0

48,0

230.,0

134 .0

15,0

5,0

252 .0

102 ,0

0.0

233.0

134,0

15,0

tap

1,08
nominal
voltage
110,0

110.,0

nominal
voltage
1100
110.,0
110.0
110.0
10,0
110.,0
110.0
110,90
1.0
220,0
110,0
110,0

1100



LOAD FLOW FOR SAMPLE NETWORK

@
c
U

Lo o (RN Ie ) AS LI

TOTAL

MW

-90.39
32.00
212.00
122.00
-0.00

-31.00
-229.00
-0.00
0.00

GENERATION=

MV AR

-19.04
0.00
90.87
48.00
-0.00

-10.00
-104.00
0.00
-0.00

366.0 MW

12

VOLTAGE
110.00 +0.00.
113.89 +4.30J
109.64 +8.91J
214.78 +17.30J
117.06 +7.10J
104.51 -1.08J
100.52 -2.88J
101.12 ~2.17J
207.56 +7.04y

138.9 MVAR 393.8 MVaA

KV

110.
113.
110.
215.
117.

104.
100.
101.
207.

PAGE

00
97
00
47
28

51
57
14
67

1
PER UNIT

1.0000
1.0361
1.0000
0.9794
1.0662

0.9501
©0.9142
0.9194
0.9440

DEGREES

0.0000
2.1622
4.6469
4.6059
3.4731

-0.5909
-1.6427

.=1.2298

1.9429

MVAR L INE CHARGING

6.61
1.17
4.28
10.82
0.58

3.95
5.61
0.05
10.05
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"PAGE 2

q
&

LINE N0“"'§ MW T MVAR ‘MVA - BUS MW - MVAR  MVA- MW LOSS ~ MVAR LOSS TAP:
646 .

.789

.298

.586

.421

114,79 67.61 133.22
144.08 60.99 156.46
19,13 -22.25 - -29.34
.=17.28 - =-13.16 = -21.72

-5. 72 "-B.42 -10.18

©116.50 - =-72.26 = -137.09 1:708
-146.79 -68.78 ©  -162.11" 2.711 -
18.39- - 20.95 27.88 . 0.737
16.14 11.57 -, 19.86 - 1.144
. 5.66 - 8.000.  9.80. 0.068

Y

-120.09 -53.11 7. -131.31 " 0.303 = 1,163
 65.62 - 7.30 -  66.03 - 4.849 1 8.500
- 24.06 1.94 24.14 - 0.971 . 2.405 "
-120.09  -61.21 = -134.79 . -0.000... - 8.156._
120.09 . - 51.16 . 130.54 1.908. - 7.653

119.79 51.95 . - 130.57
- =70.47 ;;flsan_;_'-‘72mZZ“
-25.03 -4.34 -25.40
120.09 .  53.06_ ... 131.29
-122. 00 - -58 52 - =135.44

sl ey kRN
i ot

N
i

c%:ohuo; Mo LN
L. o : : ‘ .
] - : -

16.14. 11.577 . 19.86 1.144. 1.586
. 5466 - . 8.000 .. 9.80 . 0.068. .. 0.421.
'116.50 - 71. 6aﬁg.-;136g79- ©n.000  3.333 . 1.080

11 17 T8 i1, 16 'T'-éii;iz
12 6 =5,72 . - -8.42 . =10.18
501 3. -116.50 -75.01 '7'-138 56

wﬁﬁﬁpbdumJQy¢mw'

TOTAL LINE LOSS= 15 61 Mu "'é'éc’nv R” TOTAL LINE CHARGING- 43 12 MVAR
END : L .
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£SYSTEM 1CAD FLOW 1973 LOAD INGS?

number of studies 1
mva base 100 0
number of busbars 83
number of lines 86
number of regulators 8
number of generators i
number of loads 82
number of shunts 0
number of tap changes 0 .
line connection resistance reactance . total shunt nominal
: busbar busbar susceptance voltage
| 10 23 6.4] 11,12 523,00 1100
2 12 _ 36 3.0 8,18 27,0 110,0
3 8 36 . 14,0 , 30,7 99,0 110,0
4 8 12 - 11,16 20,26 245,0 110,0
5 9 38 - 1,18 3,36 42,0 110,0
6 8 ' 15 11,78 21,56 70,0 . 110,0
7 15 35 2,61 11.3 37,0 © 110,0
8 12 13 0,13 0,49. 17,0 . 110,0
9 11 12 0.16 0 .66 10,0 1100
10 2 13 : 0,0009 . 0,028 0,0 1.0
11 2 3 . 8,24 33.84 . 116,0 : 220,0 -
12 1 3 7,93 34 .44 108,0 220,0
13 3 4 B 1,96 8,53 27,0 220,0
- 14 4 2 6,28 25,85 89,0 : 220.,0
15 - 1 19 : 7,71 33.49 105,0 1 220,0
.16 1 : 7 4,14 16.39 242 .,0 220,0
17 10 , 24 13,25 - 22,0 - 65,0 - 110,0
18 | 24 0,0029 . 0,089 0.0 ‘ 1.0
19 24 . 25 = 3,41 9,11 125,00 110,0
20 41 : 28 0,175 1.1 2,0 110,0
21 21 T 32 7.3 . 18,0 61,0 110,0
22 6 - 19 4,57 ' 19.8 62,0 °~  220,0
23 5 . 32 ' 15,03 22 .2 68,0 1100
24 20 33 3.8 : 9,52 36,0 110,0
25 11 23 0,197 0,528 7.0 110,0
26 33 32 9,1 24,0 82,0 110,0
27 10 34 5,37 8.25 23,0 110,0
28 14 36 0.5 13,97 3.0 110,0
29 14 35 0.5 13,97 3.0 110,0
30 8 : - 16 5,25 8,08 23,0 110,0
- 31 16 17 : 19,22 29,03 85,0 _ 1100
32 17 18 10,03 15,4 43,0 - 1100
33 21 22 ‘ 3.43 7.24" 22,0 110,0
34 24 34 6,89 12,49 37,0 1100
35 29 39 2,75 6,7 21.0 1100
36 21 39 1,24 3.05 11,0 1100
37 31 32 0.45 1.11 4.0 - 110,0°
38 29 31 4,03 9,9 32,0 1100
39 22 - 82 3.8 11,3 78,0 1100
40 7 19 4,23 . 26,4 95 ,0 220 .0
4] 12 35 ' 3,0 8,18 . 27,0 110,0
42 21 30 1,25 6,0 22,0 110,00
43 5 40 0.47 0,69 2,0 ' 1100
44 32 40 14,7 21,5 . 66,0 110,0
45 40 37 6,04 8,9 27,0 110,0
46 10 . 38 1,35 3,88 48,0 110,0
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47 3 44 0,0069 0,135 0,0 1,0
48 15 43 0,008} 0,197 0,0 1,0
49 46 48 0,6} 2,66 9,0 220.,0
50 3 46 0,58 2,52 8.0 2200
51 50 57 0.2 1,17 4.0 220,0
52 4 50 . 0,36 1,99 6.0 220,0
53 54 55 5,91 . 8,3 28,0 110,0
54 53 54 0.61 0.89 3. 110,0
55 13 54 4,93 12 ,58 46,0 110,0
56 51 52 13,3 10,58 28,0 88,0
57 56 57 0.,0144 0.286 0.0 1.0
58 49 50 - 0,0246 0,568 0.0 1,0
59 45 - 46 0,0152 0.26 0,0 1.0
60 . 4T 48 0.0098 0,185 0,0 1,0
61 39 61 0,00897 - 0,211 0,0 1,0

- 62 - 63 64 30,54 28,73 156,0 88,0
63 64 65 3.58 2,82 15,0 88,0
64 64 66 : 11,02 10,06 54,0 88,0
65 - 42 .62 0,006 0,096 0,0 1,0
66 - 26 63 0,0 0,145 0,0 1,0
67 8 58 0,0054 0.,0666 0,0 1,0
68 8 59 0,0061 0,092 0,0 1,0
69 16 60 0,052 0,647 0,0 1,0
70 21 : 67 0,26 1,71 7.0 110,0
71 67 68 0,00448 0.105 0.0 1,0

" 72 24 69 0,00212 0.,0815 0,0 1,0
73 24 70 18,56 33,26 158,0 110,0
74 28 71 0,722 1.25 4,0 110,0

275 - 28 - 12 0,05 0,18 2,0 110,0
76 . 19 74 1,79 9,26 . 33,0 220,0

.17 19 76 1,75 9,07 32,0 220,0
78 19 =~ 78 2,68 13,98 44,0 220,0
79 .. 80 . ‘81 . 0,008 0,21 0,0 1,0
80 - 80 - 79 ' 0,036 - 0,273 0,0 1,0
81 73 74 0,0156 0.324 0,0 1,0
82 - 15 v 76 0,006 0,11 0,0 - 1.0
83 17 78 0,008 0,162 0,0 1,0
84 19. 80 3.42 18,15 62,0 220,0
85 1 83 0,00232 0,0875 0,0 1,0
86 . 30 82 1,86 4,84 34,0 1100
regulator _ - : tap '
501 8 9 00,0665 2,42 1,03 110.0
502 25 26 0,072 2,62 0,96 1100
503 6 32 0,201 5,7 1,0 110,0
504 19 21 0,27 10,5 0,98 1100
505 7 - 28 0,145 5,05 0,978 110,0
506 26 42 ‘ 0,81 13.4 0,98 1100
507 27 41 0,005 0,103 1,07 1,0
508 .12 Y , 0,0024 0,0206 1,03 1,0
) genérator voltage magnitude nominal voltage

‘83 16,05 - 14 ,70

load MW MVAR

1 0.0 0.0 220.0

2 -42 0 -21.0 220,0

3 0.0 0,0 220,0

4 0,0 _ 0.0 220,0

S -14,0 -7.0 110,0

6

0.0 0.0 220 ,0



0,0

-76.0
0.0
0,0
-1.5
-165.,0
-48.,0
0.0
-53.0
0.0
0,0
-16.0
-25.
0,0
-28,0
0,0

.=-20,0

-34,0
=3.0
0,0

. 0,0
- .114,0

-12,0
-5.,0

-32,0
-30,0

0,0
-6.0

- 0,0 .
0,0 .
:=10,0

30,0
0.0
0.0

-96.0

39,0

83,0
38,0
0,0
48.0

0,0

21,0
0.0
0,0

- -17.0

-6.0
0,0

. =14,0.

28.0
0,0
125,0
90,0

. 9,0
26,0

80,0
0,0

-30,0

-39 .0
0,0
0,0
0.6
-82 0
-24 .0
0,0

16,0

0,0
0,0
2.0
-4 ,0
0,0
-14 .0
0.0

-10 .0

=17 0
-1 .0
0.0
0,0
70,0
-6 ,0

. -2,0
-16 .0
~15.,0

-15 .0
0,0

-2 .0
0,0

~ 0,0

-4.0
10,0
0.0
0.0

0,0

-30 .0
12,0
40,0
16 .0

. 0,0

20,0
0.0
2,0
0,0
0,0
-7,0
-2,0
0,0
-6,0
12,0
0,0
20.0

12,0

4.0
16,0
48 ,0

0.0
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110,0
1100
110,0
110,0
1100

"110,0

1100
110,0

- 110,0
‘1100

110,0
220,0
110,0
110,0
110,0
110,0
110,0
110,0
110,0
14,0
110,0
110,0
110,0
110,0
110,0

110,0
- 110,0

110,0

1100

110,0
110,0

110,0

110,0

'110,0
22,0

10 ,52
10,5
10.5

- 220,0

10,5
220,0
10,5
220,0

- 88,0

88.0
110,0
110,0
1100
10,5
220,0
10,76
10,76
10,76
10 .2
10,75
88,0



65
66
67
68
69
70
71

72
73
74
75
16

77

78
79

8}

0.0
-4.,0
-5.0
0,0
60 .0
50,0
-13.0
-50,0
-118,0
30,0
0.0
80,0
0.0
50,0
0.0
6,0
0.0
44,0

-18,0

0.0
2.0
-2.0
0,0
40,0
15.0
-6.0
-25.0
-58,0
10,0
0.0
30,0
0.0
20,0
0.0
0.0
0.0
15,0
-6,0

18

88.0
88 .0
88.0
110.0
10 .2
14,7
88,0
110.0
1100
10.3
220 .0
10,1
220,0
10.3
220,0
21,1
220,0
10,1
110 ,0E
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SYSTEM LOAD FLOW 1973 LOADINGS
PAGE 1
BUS MW MV AR VOLTAGE KV PER UNIT  DEGREES MVAR LINE CHARGING
1 -0.00 0.00 233.48  +4.66J 233.53 '1.0615 1.1443 24.81
2 -41.99 -21.00 217.73  +5.64J 217.81 .  0.9900 1.4840 9.73
3 0.00 0.00 229.02 +14.86J 229.50 1.0432 3.7133 13.64
4 0.00 0.00 226.95 +13.87J _227.37 1.0335 . 3.4967 6.31
5 -14.00 -7.00 111.36  -3.68J 111.42 11.0129 -1.8912 0.87
6 0.00 0.00 231.85  +2.88J - 231.87 1.0540 0.7125 3.33
7 ~76.00 =39.00 230.66__ +0.26J .230.66  1.0485 _ 0.0642 . 17.93
8 TTeL 00 -0.00 "111.04 +10.300  111.51 ©1.0138 5.3022 5.43
9 0.00 0.00 114.53_ +9.38J . 114.91 = 1.0446  4.6825 0.55
10 -1.50 -0.60 113.11 +4 .58 - 113.20 1.0291 2.3204 8.44
Tt ~164.97 -81.98 104.47  -1.59y 104.48 = 0.9498 -0.8721 0.19
12 ~47.99 -23.99 .105.04  -0.92J . 103.04 . . 0.9549 _. . -0.5018 3.60
13 -0.00 -0.00 105.58 -0.62J 105.58 0.9598 -0.3342 0.70
14 =52.99 -15.99 104.25. -2.83J -  104.29 0.9481 -1.5562 . . 0.07.
T 15 " 0.00 0.00 108.35 +6.92J 108.57 0.9870 3.6535 1.26
16 720.00 -0.00 109.03  +7.77J) 109.31 0.9937 4.0742 1.29
A7 -16.00 -2.00 . 99.02 -3.094 ___ ..99.07 0.9006  _-1,7883 . __1.26.
i8 -24.99 -3.99 95.58  -6.51J ' 95.80 0.8709 -3.8943 0.39
19 -0.00 -0.00 236.30 +8.24y  236.44° 1.0747 1.9969 - 24.21
20 -28.00 -14.00 105.94  -8.65J 106.30 0.9663 -4.6663 .41
21 0.00 -0.00 116.24  +1.00J 116.24 1.0567 - - 0.4916 1.66
22 -20.00 -10.00 114.79 _-0.500  114.79 .1.0436 -0.2517 .. _1.32.
23 -33.99 -17.00 104.67- -1.42J 104.68 0.9516 -0.7762 5.81
24 -3.00 -1.00 115.93  +2.89J . 115.97 1.0543 1.4272 5.18
25 -0.00 0.00 " 116.00 +0.55J. 116.00 - .1.0545 0.2709 1.68
26 0.00 -6.00 111.55  -0.09J 0 111.55 1.0141 -0.0451 0.00
27 113.99 70.00 14.10 +1.24J 14.16 1.0112 5.0164 0.00
28 -12.00 -6.00 110.97  -2.84J 111.01 1.0091 -1.4656 n.10
29 -5.00 -2.00 115.21  -0.43J 115.21 1.0473 -0.2135 0.70
30 -32.00 -16.00 114.76  -0.96J 114.77 1.0433 -0.4794 " 0.74
31 -30.00 -15.00 113.78 . -2.03J 113.80 1.0345 -1.0230 0.47
32 -30.00 -15.00 113.89 ~ -1.98J 113.90 1.0355 -0.9965 3.65
33 '0.00 0.00 '108.32 -6.81 108.53 0.9867 -3.5990 1.39
34 -6.00 -2.00 114.03  +3.61J 114.08 '1.0371 1.8112 0.78
35 -0.00 0.00 105.87  +1.12J 105.83 0.9621 0.6038 0.75
36 -0.00 0.00 105.26 +0.17J 105.26 0.9569 0.0951 1.43
37 -10.00 -4.00 110.51  -4.24y 110.59 .1.0054 -2.1990 0.33
38 30.00 10.00 114.18  +7.59y 114.43 1.0403 3.8013 1.18
39 0.00 -0.00 116.37. +0.91J 116.37 . 1.0579 0.4494. .43
40 0.00 -0.00 111.38  -3.67J 111.44 - ©1.0131 -1.8883 1.18
41 -0.00. -0.00 111.70 -1.82J 111.71 1.0156 -0.9340 - 0.02
42 -95.99 -29.99 22.08  -0.44y - 22.09 1.0040 -1.1327 1 0.00
43 . 38.99 12.00 10.53  +1.484 10.63 1.0107 8.0142 n.no
44 82.99 40.00 11.33  +1.84y ©.11.48 1.093n 9.2128 0.00
45 38.00 16.00 .26 40 n.no

11

.74 -

T,

1.0855 -

8.7988 .



38.79

20

TOTAL GENERATION= 1051. MW ~ 412.0 MVAR = . 1142 MVA

PAGE 2 :
TBUSTT MW TMVAR T VOLTAGE KV’ PER UNIT DEGREES MVAR LINE CHARGING
46 -0.00 -0.00 229.50 +15.76J 230.04 1.0456 3.9287 0.90
47 48.00 20.00 _ 11.24 +1.67J 11.37 1.0825 . 8.4492. 0..00.
48 -0.00 -0.00 229.77 +16.29J 230.35 1.0470 4.0554 0.48
49 0 21.00 ._2.00_ . _10.80  +1.89J L10.96 .01.0438 . 9.9167 . 0.00.
50 -0.00 -0.00 227.09 . +14.29J 227.54 1.0343 3.6002 0.52
51 -0.00 0.00 86.38 -1.07J . 86.38 0.9816 -0.7074 0.21
52 -17.00 -7.00 82.75 -2.06J .82.78 _0.9406 =1.4230. . 0.19
53 -6.00 -2.00 103.66 -2.71J 103.70 0.9427 -1.4996 0.03
o4 0.00 .~0.00  _ 103.71  -2.68J . .103.75 . .. 0.9432. . . -1.4775.. ..0.83.
55 -14.00 -6.00 102.42 . -3.44 102.48 0.9316 -1.9220 0.29
56 . .28.00 12.00 11.11 - +1.50J S 11.21 1.0679 - 7.7001 0.00
.57 . .0.00 0.00 227.16 +14.43) .227.61 1.0346 - 3.6340 - 0.21
. 58 . 124.98 . 20.01 10.92 - +1.89J 11.08 - 1.0301. . 9.8146 0.00
59 . _89.99 - 12.01 .. 10.89 +1.88J _ ..11.05 ~1.0267 ...9.8239 ..0.00
60 9.00 4,00 010.91  +1.39J 11.00° 1.0221 7.2427 0.00
61 26.00 16.00 11.10 - +0.60Y 11.12 1.0899 3.1049 0.00
.62 - 79.99 48.00 11.27 +0.57J. 11.29. -1.0500 2.8877 0.00.
63 -0.00 -0.00 89.09 ~-1.25J° 89.10 1.0125 -0.8067 - 1.24
64 . 000 . 0.00 85.11 -3.46J .. 85.18 0.9679 -2.3271 . 0 1.63..
65 . -4.00 -2.00 - . 84.88 -3.50J 84.95 0.9653 <2.3628: 0.11
66 . =5.00 -2.00 84.25° -3.81J. 84.33 1 0.9583 -2.5863 n.38
67 . 0.00 -0.00 116.88 +1.80J "116.89 1.0627 . . 0.8838 0.10.
68 . 60400 40.00 . 11.21- +0.76J 11.24 1.1018 3.8804 0.00
_ 69 .. . . .50.00 ©15.00 © . . 15.64  +0.950 . .15.67 1.0661 . . _3.4887. 0.00
.70 0 0 =13.00 -6.00 90.08 -0.23J © 90.08 ©1.0237 ° -0.1445 2.00
71 0 +50.00 ©.-25.00 . -110.35 ~ =3.22J ©.110.40° . '1.0036 . -1.6736 0.05
72 1117099 -57.99 . 110.82  -3.00J 110.86 ' 1,0078 . -1.5510 0.02
©73 0 . .30.00 '10.00 C11.32 0 +1.364 11.41 .1.1074 - 6.8603 0.00 -
.74 .  0.00 - -0.00 236.84 +9.36J 237.03 1.0774 . . .2.2628 . 1.85 -
75 -~ 80.00° 30.00 11.16  +1.33J 11.24 1.1129 6.7932 0.00
76 =0.00 0.00 237.72 +11.16J - .237.98 . 1.0817 2.6873 1.81
77 '50.00 20.00 11.39 +1.28J ©11.46 1.1126 ..6.4355__ 0.00 _
. 78 -0.00. - 0.00 237.83° +11.03J° 238.09 1.0822 - 2.6546 2.49
79 ... .6.00 . 0.00 . 22.84 +1.46J 22.89 1.0849 ..3.6645 _ _0.00
80 - © 0.00 -0.00 237.96 +11.91J 238.26 1.0830 . 2.8657. 3.52
81 . 44.00 15.00 . 11.14 +1.41J 11.22 1.1114 7.2111 n.00
82 ~ -18.00 -6.00 114.44 =-1.30J - 114.45 .1.0404 ~-0.6518_ 1.47
83 =25.42 16:05 +0.00J 16.05 1.0918 0.0000 0.00



LINE NO

R

22 -

OV ~NO Vs W N

e
WM

o
G N

16
17
18
19

20

21

- 23

P

58

g

TR

27
28
29

31

32

33

34

35... .

36
37
38
39
40

41
42

43
44"
45

WS

10

24
28

21

ébﬁ_
11

32

10

14

14

16

17
21
24

59

21

31

29
22

12

21

32
37

MW

-81.42

13.29
=37.90
-61.16

.~58.86

-18.95
-57.44

- 90.30

121.77
111.05

71.29

59.93
-34.48
81.75
27.70

-68.08
-0.56
5.92

- =26.11

113.01

-21.75
70.50
11.87
28.00
43.21

. =29.07
- -4.26

30.13
-36.79

) -45014

-25.69
-28.59
-1.98
26.81

-1.05
8.35
-21.81
-8.36
75.62

26.30
-41.87
2.13
-12.38
10.00

MV AR

-41.38
-2.16
-7.02
-4.90

3.76

-5.11
-14.49
90.81

58.95
-105.07

56.80

-42.68

-49.44
59.55

13.75

-24.26
14.52
-8.83

9.85
52.89

-6.52
36.56

4.32
13.59
22.84

-15.00

14.83

6.08

19.85

- -6.86

~10.64
-4.67
-9.89
-16.46

8.92

5.45
7.31

-7.62
-0.72

37 .28

0.23

- =20.14

1.81
-4.67
3.67

21

19

BUS -

23
36
36
12
38

15
35
13
12
13

O b bW

24
24

25
41
32

32

33

23

33

34

35
16

17

18
22
34

39

39
32
31
8?2

19

35
30
40

.40

40

PAGE
MW -

77.25
-13.34
36.23
57.79
58-.55

18.58
56.67
-90.50
-122.03
110.83

-72.73
-60.71
34.35

-83.11

-27.83

67.68:

0.34
-5.92
.. 22.91
-113.23

21.47

C . -71.04
L -12.06

.~28.32
-43.75

28,32
4.16
-22.89

-30.18

36.19

41.68
24.99
28.36
1.84
-26.98

1.05
-8.35
21.65

8.34

-76.18

-26.49

41 .67

.'.2.13
12.18
-10.06

MVAR

-34.15
2.0?
3.35

-3.24
-4.65

4.44

11.13
-91.54

-60.06"

98.39

-62.72
39.26
48.85

~-65.12

-14,34

22.69
-14.88
8.74
-10.38
-54.28

- 5.84

. ~38.88

-4.61

. -14.41
=22.96

13.02

-14098
-6.80

_=11.14

'5.95
' 5.41

3.60 .

9.40

16.20

-9.32

-5.45"

-7.32

7.23

0.66
-40.80

-0.74
19.18
-1.81

4.38
-3.75

MVa

84.46
-13.49
36.38
57.80
58.74

19.11°

57.75.
-128.72
-136.01
148.21

-96.04
-72.30
59.72
-105.58
-31.31

71.39
14.88
-10.56
27.92

' -125.57

22.25
-80.98
-12.91

.~31.78__
-48.97

31.17
15.55
'-23.88
.",3 2. 1.7”.._~
36.68
42.03
25i25A
29.88
.16.30.
-28.54

555
-11.10

22 .82
8.37

-86.42

-26.50
45 .87
-2.79
12.95

-10.73

MW L.0SS

MV AR LOSS
4,173 7.239
0.049 0.134
1.672 3.667
3.379 6.134
n.311 0.885
0.365 0.668
N.777 3.365
N.193 . 0.728
0.268 1.106
0.215 6.676
1.443 5.926
0.787 3.418
0.135 0.588
1.354 5.574
0.135 "0.587
0.397° 1.570
0.218 0.362
0.003 0.089
. 0.197 - 0.528
0.221 1.390
0.279 0.687
N 0_- 536 2~o 323 —
0.326 _. ~.0.816
0.043 0.116
:,0’751 1'1;?80
0.100. 2.0.153 .
0.026 0.719
0.046. —1.291
0.591 0.910 .
3.460 5.226
0.697 . 1.070: .
0.232 0.490
0.141 __ 04255 ..
0.165 0.403
N.003 0.007
0.004 '0.011
0.162 0.398 .
0.02n " 0.060
N.562 3.527
0.188 0.513
n.200 0.959
0.000 0.000"
0.198 0.290
n.056 0.083

TAP



LINE NO

46
47
48
_ 39
50

51
52
53
54
55

56 -
.57
58
59

60

61
62
63
64

65

66
.67
68
=69
70

71
72
73
.74
75

76"
77
78
79
80

81
82
83
84
85

. 86
501
502
503
504
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BUS -

56

Go

45

f47~

39

.63
64
.64

42

216
21
67
24 .
24

28
28

19
19
19
80
79

73
75
77
19

30

25

19

MW

87.
82.
38.
47.
85

27.
48,
-14,
6.

200347

74
50
86
74

.43

88
76

13

00

-17.65"

-28.

-21.00
=38.00
-48.00

00

00

-118.

29.
79

43

-30.
-80-
-50.

49,

-25,

-9
-58.
-25.
-70.
-33

.93
.41
.01
.04
52

.41

17

.51
.95
.71
.80
.95 -
.27
.18

06

84
, .43
- 49.
.86
.00 .

68

00.
00
00
68
46

.67

88
91
50

.57

MV AR

4.19
30.41
. 8.79
2 16.08

28.84 .

9.86
9.96

1.97

T 756

-70‘32
-12.00
'2000

-16.00

-20.00

14.34

-2.26

-1.90
.=1.65

-1.15
19.95
~4.81

3.40

- 34.99 -

35.50

13.04
-4.48
-25.27
-58.22

'9.05
24.21
18.00
11.33
-0.00

-10.00
~-30-00

-20.00

13.90
37.21

..3.92 ..
3.68 -

8.70
-39.89
4.65

MVA -

87.
87.
39
_50.
90.

29,

49,
-15.

-21.

-19.
. =30.
=21
-41.
-52.

29.

-4,
-5,
89.

-9
89
69.

69.
51.
-14.
-56.
-131.

31.
R3.
52.
45

-31
-85.
-53.

51.
. ~45.

-10.
-59.
-27.
-31.
-33

84
93

.84

38
17
57
76

30
.31

69
11
46
09

23
00

63

.68

44

31

20

_ /48
124,
.64
757
21 -

57

55

62
01
19
64

18
03
84

.30
.00

.62

44
85
59
09

44

00
33
01

.89

22

BUS

38
44

43
48

46

57
50

.55

54
54

52
57
50
46
48

61

. 64

65
66 . .

62

63

58 .

59

60 -

67

68

69
70
71
72

74
76

78

81

- 80

74

76
78
80
83

82

- 26

32

21

 PAGE
MW

-88.55
-82.99
-38.99
-47.77
-85.52

-27.88

. ~-48.77

14.00
-6.00
20.13

17.00
27 .88
20.90

47.77

-26.00

9.05

4.00 °

. .5.00

-79.99

9.41
124.98 .
. -89.99

.=9.00

- -59.80

-60.00
-50.00

13.00 -

50.00
117.99

 -29.87
-79.64

-49081
-44.00
5.99

29.87
79-64
-49.81
-49.85
25.42

9.66
58.86
25.91
70.40

--33.55

MVAR

-6.53

-40-00_

-12.00
-16.21

© =29.23

-9.88

-10.06.
5.70
-1.97 .
7.03
6.81
v 9.67
-0.32
12.2% .
' 15.73 .

~ -16.00.

1.92
1.89
1.62
-48.00

S 1.02
-20.01

-4.00

-35.60

-40.00

'-15.00
4.00
24.95
57.97

-9.21
-25.33
-18.70
-15.00

-0.08

7.36
23.52
16.20

-14.76
-38.79

.88
~4,32
-8.86
37.11
-5.5%

MV A

- -88.79

.T§QL51".

-40.80
-90.38
-29.58

=-49.80

. =6.32

..39.71

15.12

21.32 .

18.31
.29.51
20.90

 -30.53
9.25

4.42

5.25.

-93.29

9.47
126.57 ..
-90.78
. =9.85 .

-69.60

-72011

-+52.20 .

- 13.60

55.88

131.46

-31.26
-83.57
-53.20
-46.48

5.99

30.76
83.04
52.38
-51.99
46.38

10.41
59.02
27.38
79.58
34.n1

MW LOSS MVAR LOSS
0.813 2.336
N.4a90 . 9.591
0.132 3.210
0..029 0.128
0.090 0.389
0.004 0.020
0..017 0.095
0.129 .0.181
0n.002 ..0.003
0.208 0531
0.651 '0.518
0-117  _2.327
0-.100 2.319
0219 _ _3.1.2.21,,
0.226 .4.268"
- 0.070 . 1.655
. 0.360.. ._0.339
'0.010 0.008
0043 __0.039
0.474 - '7.578
0.000 0.127
0 .477 7.193
...0.0D48 . .. 0.601 .
0.092" 0.606
. 0.192 4,498
0-.051 '1.954
0.271 0.485
0.185 0.320
0.071 0.254
0.031 0.161
0.216 1.119
0.134 0.698
N .140 3.674
0n.011 0.083
0.127 2.642
0 -354 6.483
n.187 3.795
0.163 . 0.864
n.o4> 1.579
0.015 nN.040
n.nis 0.639
n.oo4 0.158
0.098 2.783

0.023

0.899

TAP

1.030

0.960
1.000

0.980



LINE NO

505
506
507
508

TOTAL LINE LOSS=

END

BUS

7
26
27

12

MW

-67.31
-16.50
-113.99
-17.66

34.09 MW

PAGE 5

MV AR MV A BUS MW MVAR T MVA MW LOSS  MVAR LOSS  TAP
-38.90 -77.74 28 67.24 36.50 76.51 '0.069  2.399  0.978 .
10.01 -19.29 42 16.47 -10.42 19.49 1 0.025 _ 0.417  _ 0.980
-70.00 -133.77 41 113.23 54,25 125.56 0.764 15.743 . 1.070

-7. 1 9 -1 9. 0 é ' 51 1 7. 65 ) 7 . 1 1 . ﬁ__.,l..?..!. 0__3_, [ _0'0 0_.9_._ . __,.w_..o OAQJ 7__...,..,- ...__1_.0.0.340..__

182.8 MVAR TOTAL LINE CHARGING= 173.6 MVAR



