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SUMMARY

Any integer-valued function with finite domain E defines,
by means of an associated submodular function on 2 » a matroid
M(E). ,

The class ]} of matroids so obtained is closed under restriction,
contraction, and is self dual. We show it consists precisely of thbse
transversal matroids having a presentation in which the sets of the

presentation are nested.
We give an excluded minor characterisation of | .

We count the members of ] on an n-set and exhibit explicitly

those on a 6-set.

We extend the above investigation, using Rado's Selection ‘
Principle, and permitting E to be infinite, to pregeometries.

Finally, by examining some integer-valued functions on E" .

-with r possibly greater than 1, we discuss some of the properties

of the class of matroids so obtained.
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INTRODUCT ION

A matroid is essentially a set with an independence structure

+ defined on its subsets. The term matroid arose from the generalisation
of the columns of a matrix following consideration of the independence
of thosé columns. This thesis is concerned with a class of matroids
M(E) which can be defined in-a certain way from functioné defined on
the ground set E .

It is well knoWn that a matroid M(E) can be obtdined from
submodular increasing functions definéd on 2E » but in practice such
functions are rather rare. The motivation for.this thesis initially was
‘the hope that from the more prolific functions on domain E, it would
be possible in some way to build up to submodular functions which define
some well known.matroids. This hope was partially fulfilled, but the
investigation uncovered a simply defined and interesting class, ffrm]y
located in the usual hierarchies of matroids.

Matroid theory began in 1935 with Whitney's basic paper [27].
He had been working in.graph theory.for some years and had notjCed.
similarities between the ideas of indepgndence'and rank in graph: theory,
and the ideas of 1ingar independence and dimension in vector spaces,
and in this paper he used the concept of matroid to abstract and formalise
these simi]a}ities. |

At about the same time van der Waerden [24] was approaching the |
ideas of linear and algebraic dependence axiomatically, so he too was
instrumental in the b1rth of matroid theory.

After th1s bright beginning the study lapsed for about twenty years,

with the 1mportant exception of papers by Birkhoff [ 1],(9;;Lane [12] DiB] /
and Dilworth [ 6 1,L 7 1,L 81 on lattice theoretic and geometric aspects
of matroid theory, and two papers by Rado [18]1,[19] on'combinatqrial

applications of matroids and infinite matroids. Tutte [211,022]
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revived the study in 1958 with a characterisation of those matroids
which arise frdm graphs and at about the same time Rado [ 20] réturned
~ to the field with a study of the representability problem of matroids.

Since thén interest in matroids and their app]icationé has grown
rapidly and there is now a sizable body of literature on the subject.
0f particu]ar importance has been the applicatioﬁs of matroids to
transversal theory and the associated investigation of transversal matroids.
This work was pioneered by Edmonds and Fulkerson [10] and Mirsky and
Perfect [171, and has produced many new results aS'well as elegant

proofs of earlier results in transversal theory.

Many other aspects of combinatorial theory have been subsumed in
matroid theory over the past 15 years and the result has been a

. firmer linking of cqmbinatorics to the mainstream of mathematics.

Matroids have been used for engineering applications recently, for

example Weinberg's work on electrical network synthesis [25].

The theme of this thesis, matroids defined by submodular functions,
had-its beginning with a paper of Di]worth [ 81, in which seemed to be
implicit the fact that a matroid can be defined by its submodular rank
functién, The first explicit derivation of matroids from submodular
functibn;'is thought to be due to Edmonds and Rota [11] in 1966, and
a generalisation of this result was produced by McDiakmid.[14]. Further
work on the relationship between submodular functions and matroids was

done by Edmonds [ 9 1 and Pym and Perfect [17].

In this thesis Chapter 1 is simply a restatement of ‘the many
different axiomatic ways of defining a matroid together with some well
known results necessary for the development of the thesis. A similar resume

can be found in a paper of Wilson [28].
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Chapter 2 contains the basic "arithmetic" of the thesis. It
establishes that a submodular function on ZE can be derived from any
integer valued iﬁcreasing function defined on E .and characterises the
‘matroids so formed by sfandardising the defining functions. The class
M of matroids so obtained isshown to be self dual and closed under

. taking restrictions.

Whereas the treatment of the matroids of M was in arithmetical
térms in Chapter 2, in Chapter 3 the approach is more in the mainstream
of matroid theory. The class M 1is characterised in terms of the

~unique minimal non-trivial flats of its minors and also by its excluded
minors.

Chapter 4 shows that M contains exactly 2" pairwise non-
isomorphic members on an n-set. The number of matroids in the class
is compared to earlier Tower bounds established by Crapo [ 4] and
Pollobas [ 3 1 for the class of all matroids on an n-set. We then
examine those on a 6-set and by use of the excluded minor property the

matroids not in M are identified.

Chapter 5 establishes that [ is properly contained in the class of
transversal matroids and obtains a necessary and sufficient condition
for a transversal matroid to belong to || . Another condition in terms.

of circuits is produced for a matroid to belong to [{.

In Chapter 6 the results of the earlier chapters are extended to
the class of pregeometries, which are defined on possibly infinite
ground sets S by integer valued functions on S . The principal
tools in this investigation are the results on submodular functions (semi~

modular in {5 1) of Crapo and Rota, and Rado's Selection Principle.

The final chapter, Chapter 7, deals with functions defined on E" ,

from which submodular functigons and ensuing matroids are obtained.
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The value of the function on each r-tuple is the st of the yalueé of
functions (defined on E ) on the components of the r-tuple, and the
matroids so obtained are the union of matroids in M . As Welsh [26]
pointed out, this result is imp]icit in the more general résults of
Pym and Perfect [17] for sums of arbitrary submodular functions. The
matroids so obtained are shown to constitute exactly
the'class of transversal matroids. They are characterised in terms of
flats and circuits. We see that more graphic matroids are included in
this class of matroids than in M . Finally there fs a failed
conjecture. It had been hoped that it would be possible to obtain
submodular functions definiﬁg some well knbwn matroids from the functions
r

on E , by allowing r to increase. However a counter example is

provided.

With the exception of the abovementioned result implicit in work
by Pym and Perfect, the work in Chapters 2 to 7 inclusive is not

in the literature. -

The author gratefully acknowledges the help of James Oxley and
Don Row in obfaining theorem 3.6, and also particularly James Oxley for
obtaining the excluded minor characterisation of theorem 3.9, and
suggesting a detailed examination of the members of }M on 6-point

ground sets.



NOTATION
For most of the thesis we consider structures on a finite set,
and this set is designated E . When we deal with an infinite Set
it is designated S . Elements of E or S are denoted by lower
| éase‘]etters and subsets by upper case. The empty set is denoted by
$ , and A\B 1is the set consisting of elements which are in A but

‘notin B . AUB denotes the disjoint union of A and B .

Where the meaning is clear, we abbreviate {a} to a. For

example A u a means A v {a} and A\a means A\{a} .

A function from the set E to the set F is denoted by

~ f:E -+ F , and a function from the power set 2E

o F

to the power set
by 6:2F + 2
If T is a subset of E we denote the restriction of f to .T

by fl The matroid M on E restricted to T is denoted by M|T .

T

A family or collection of subsets of E 1is denoted by
(Eig_ E : Ei has the required property); or, if it is possible
~to list the subsets, by '(El,Ez, cees Em).

The set of integers is denoted by Z .



CHAPTER 1

There are several equivalent ways in which matroids may be
defined. Proof of‘their equivalence is in Whitney's.original paper

[27]. Some are listed below..

1. Independent Sets
This is the set of axioms favoured by many because of its obvious
relationship to linear algebra, which makes it easi]y recognized. It
is the set most common]y used in this thes1s
A matroid M(E I) consists of a | finite set E, together
with a non-empty collection | of subeetsAwn;en are ca]]ed
independent sets of E, satisfy the following properties:
(i)Te] anddel=dels
(i1) if 1,0 e [ and |J]| > |I|, then there exists a ¢ J\I such that

I uvae].

Any set not in | is dependent.

It follows from the above that all maximal independent subsets of
any ;ubset A of E have the same number of elements. The
maximal independent sets are known as bases and their size is the rank

of the matroid. This brings us to the next two axiomatic descriptions.

2. Bases
A matroid M(E, B) consists of a non-empty finite set E, together
with a non-empty collection B of subsets of E , which are called

““bases sat1sfy1ng the fo]]ow1ng propergy,,

1f BysB, ¢ B and a ¢ B,\B, there exists b e B,\B; such
“that (B; u b)\a e B. ) - -



3. Rank Function
A matroid M(E, p) consists of a non-empty finite set E , together
with an integer valued function p:ZE + 7 , called the rank function,

which satisfies the following properties:

(i) for each A c E, 0 < p(A) < |A];
(i) if AcB cE then p(A) < p(B);
(ii1) for any A,B < E , p(A) + p(B) = p(A u B) + p(A n B).

If p(Aua)=p(A), then a is said to depend on A , or to be
in the closure of A , and the set o(A) = {a € E: p(Au a) = p(A)}
is said to be the closure of A . This leads us to the next

axiomatic description.

4. Closure
A matroid M(E,o) consists of a non-empty finite set E , together

E E

with a function o:2° + 2 , called the closure operator, which satisfies

the following properties:

(i) for each A cE , Aco(A);
(ii) if A c o(B)', then o(A) < o(B) ;
(iii) if aco(Aub), a ¢ o(A), then b e o(A u a) .

This is the set of axioms adopted by Crapo and Rota [ 5], and they
- use the term pregeometry rather than matroid allowing E to be infinite.
The closures are also known as flats, and this term will sometimes be

used in this thesis.

The final set of axioms we consider is somewhat different, in that
it is not-inspired by 1inear'a]gebra but rather by graph theory. It is
in terms of circuits, which in graph theory are finite sequences of
distinct edges defined in terms of vertices as follows: {vo,vl} s
{vl,vz} s eees {Vm’vo}" i.e. théy are polygons. In a matroid a

circuit is defined as a minimal dependent set.



5. Circuits

A matroid M(E, () consists of a non-empty finite set E , together
with a collection (  of non-empfy subéets of E , called circuits,
éatisfying the following properties:
(i) no circuit properly contains another circuit ;
(i1) if aeCjnC,, where C;,C, c (' are distinct, then there

exists C e ( such that Cc (C; u C)\a.

This set of axioms was favoured by Tutte [23].

.Throughout this thesis we do not distinguish between the sets
of axioms defining the matroid and merely represent it as M(E) .

As well as the matroid entities mentioned above, 1i.e. independent
sets, rank funétion,.bases, closures and circuits, there are others
whfch are frequently used. Those which are used in this thesis are as
follows. | _

A cobase of the matroid M(E) is any set E\B, where B is a
base of M(E) . It can easi1y be shown that the collection of cobases .
of M(E) is the collection of bases of a matroid, and this matroid is
designated M*(E) and is called the dual matroid of M(E)} This
result was first esfablished by Whitney [271.

Following from the above, the corank p*:2E + 7 of the matroid
M(E) is the rank function of M*(E).

A cocircuit of M(E) 1is a circuit of M*(E).

A hyperplane is a maximg] proper flat of M(E) . It can be shown

that a hyperplane is the set complement of a cocircuit.

We now consider a few types of matroids which will be referred to
later. They are graphic matroids, transversal matroids and matroids
representable in Eué]idean space. First we need a definition of isomorphism

of matrodids.



Two matroids M (El) and M2(E2) are ‘isomorphic if there exists

1
a bijection e:E1 »> E2 which preserves independence.

A graphic matroid is one which is isomorphic to a matroid defined on
edges of a graph by letting the circuits of the matroid be the edge
sets of polygons of the graph. |

A transversal of a finite family |J = (El,Ez,...; Em) of subsets
of E 1is a set of m distinct elements of E , one chosen from each
of the subsets E% ; @ partial transversal of | is a transversal of
some subfamily of | . It is ea;ily shown that the partial transversals
of ] satisfy the‘properties specified above for independent sets of
a matroid. The bases of the matroid are the maximal partial transversals
of |J . We call a matroid M(E) a transversal matroid if there exists

some family |J of subsets of E such that the family of independent sets

of M(E) is precisely the family of partial transversals of [ .

' Euclideqn fepresentation of a matroid iS poésib]e if it is
isomorphic to the matroid induced on a set of points in R" by
fhe usual affine closure.
| As we saw above, a function p:ZE -~ Z having certain properties
defines a matroid whose rank function is p . One of those properties
was that for any A,Bc E, é(A) + po(B) 2 p(AuB) +p(AnB), and
. a function having this prdperty is known as a submodular function.
A function having the property that A ¢ B c E = p(A) < p(B) is an
inereasing function.v The following observation is used throughout this

thesis.

THEOREM 1.1 A submodular increasing function f:2E + 1 defines a

matroid on the set E .

!
|
|
o
|
i
|
|
|



Proof: Let (= (¢ #C e 25 £(C) < [C|, f(K) > [K| for all K< C).
We proceed to prove that C s tﬁe collection of circuits of a matroid.
(1) ObvioUsly no member of ( properly contains another member

of C .
(ii) For any C e ( , f(C) = |C| -1. We consider hdw any distinct
Cl,C2 e C whose intersection is non-empty, containing say the
element a. Now épp]ying the submodularity of f, and the fact that it

is increasing, we have

f(c

A

1Y Co\a) < f(Cpu € f(Cl) + £(C,) - £(Cyn C,)

5)

A

11 + [C,[-1 - [y n Gy
(¢, u Chal .

A

Furthermore we know that (C1 u C2)\a contains a set K such that
f(Jd) = |J| for all J < K, since at least Cl\a and Cz\a» have
this property. Therefore (C1 u Cz)\a contains a member of the

collection ( , whence ( 1is the collection of circuits of a matroid. //

COROLLARY 1.2  The collection [ of independent sets of a matroid
M(E) defined by a submodular increasing function f;ZE +1, 1is

given by
[ =11 € E: £(J) = |J]| for al1 J < I} v {¢} . //

The above corollary appeared in a paper by Pym and Perfect [17]
in 1970. As"kemarked,in that paper, Edmonds and Rota had already
proved a more comprehensive result.

It is necessary to point out, as did Pym and Péerfect [17]1, that if
M(E) 1is a matroid on E , it may be possible to find a function
f:2E ; Z which is not submodular, but for which the set I is

independent if and only if f(J) = |J] for all J c I . Their example



was as follows. Let M(E) be»the free matroid on E , and define

E

f:2° > Z by the equations (i) f(A) = |E| for A < E, and

(ii) f(E) = 2|E]|.

We recall from graph theory that a graph caﬂ have a loop, i.e. an
edge whose two vertices are identical, and multiple edges, i.e. edges having
the same two vértices. A graph having no loops 6r;multip1e edges is
called a simple graph. Analogously é matroid cah have‘e1ements of rank
zero, i.e. they are in the cloéure of the empty set, and it can have a
set. A such that |A] > 1, p(a) =1 forall ae A, and p(A) = 1.
A matroid having'neither of the above is a simplé matroid. Obviously
a graphic matroid is simple if and only if it islisomorphic to a matroid

defined in the abovementioned manner on a simple graph.



CHAPTER 2

In the previous chapter we saw that an integer-valued increasing
submodular function on a set E defines a matroid. Examp]és of
such functions are the dimension function on subsbaces of a vector
space (in which the submodular inequality bécomes an equality and
the function is modular), and the rank funcfion of a matroid. In
this chapter we construct a submodular function on arbitrary sized
subsets from a function defined on singletons, and in this manner

'generate a particular class of matroids.

We obtain the function f : 2E + Z from a functionu : E > Z

as follows. Let

- max{u(a):a e A} for all ¢ £ A ¢ ok .

-+
—
p-)
~—
It

*,
_—
S
g
i

and min{u(a):a ¢ E} for A=¢ .

LEMMA 2.1 Let f be a function as defined above. Then f 4is

inereasing and submodular.

Eﬁggf; It is obvious that f 1is increasing. For any subsets

ALB<E let ach, beB besuh that p(a) = u(x) for all x e A,
u(b) = u(x) for all x e B. If wu(a) =2 u(b) then f(A) = f(A u B)
and f(B) > f(A n B), whence f(A) + f(B) = f(A u B) + f(A n B).

The same resylt holds if p(b) > ua). //

, i
We call matroids induced by the funqtionfas defined above
! |

matroids of the class M , and similarly f is called a function
' i

of the class F . | ,

i

|
The geometric structure of the matroid i$ characterised by its
independent set, closures, circuits, bases, and we now examine
i

!
! .
J



some of these for the matroids of class || .

The independent sets of a matroid obtained from a submodular

function f are the family | of sets given by

[ =(I:f(3) 2 |J] forall JcI).
In terms of pw , | is given by the following lemma.

LEMMA 2.2 If M(E) ¢ M Zs obtained from the function u : E -+ Z,
then the collection of independent sets of M(E) <s precisely the

Family
[=¢u(lcE:¢#IcI=>Tae Jsuch that u(a) = |J}).
Proof: Suppose I 1is independent, i.e. f(J) = |J| for all J c I.

Then on any J < I the maximum value u takes is at least |J] ,

so there exists a ¢ J such that wu(a) > |J].

Conversely suppose _i‘e [ ; then obviouS]y.for every J c I,

|J] , whence I 1is independent. //b

v

f(J)

=

description of the circuits of a matroid of the class is given

in the following lemma.

LEMMA 2.3 If M(E) e M <is obtained from the function u : E » Z,
a subset C c E is a cireuit of M(E) <if and only if its elements

can be labelled aj, ..., a, (where |C| = r) such that -

r-1zua) > for all 1si<vr-l, and ufa,) =r-1.
Proof: Suppose the elements of C can be so\]abe]]ed. -Then
obviously f(D) > |[D| for all D cC\a} . Further f(D) > |D|

for all D.c C\{a,} where i #r, since this set is obtained from



C - {ar} by substituting a for a; s and u(ar) > “(ai) .
Therefore f(D) = |D] for all D < C and f(C) < |C| so C is a

circuit.

Conversely suppose C is a circuit; then wu(c) <r = |C| for
all c e C. Let a,, be an element of C on which u takes its
maximum value, which necessarily is r - 1. let a , be an element
of C\{ar} on which u takes its maximum value, which is r - 1.

By continuing this process we obtain q._ps -ees 3 so that

'u(ai) >ifor r-121421. //

The closure o(A) of a subset A < E 1is given in the following

Temma.

~ LEMMA 2.4 The closure o(A) of a subset A c E in the matroid

M(E) ¢ M <s given by

o(A) = AufacE : ua) < |},

where J 1is a subset of A maximum with respect to
(i) J s independent, and

(1) maxGita) fa edb= P o o
Eﬁggj:b-ﬂ; é;ow thé£—;iﬁyjééﬂééf%ﬁe& asévé:is ﬁfecise}y fﬁé“éibéd}é
of A in the matroid M(E). Obviously any b ¢ A is in both the closure
and o(A). Consider b ¢ A but in the closure of A. Then the joining
'of b to A does not increase the size of any maximal independent set
‘in A, whence u(b) < |J| and b ¢ o(A). Conversely suppose
b ¢ A, beo(A). Then p(b) < |J], whence b does not increase the size
of any maximal ihdepeﬁdent set in A, and b is in the closure of A. |

"Therefore o(A) and the closure of A in M(E) are identical. //
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Information about the matroids under consideration is more
accessible if some ordering exists on the elements of E. Since ;his
only involves relabelling the elements, no generality is lost. We say
that E 1is p-ordered when the elements of E are érranged and

identified by the symbols 'al, .-» @ (where |E| =n) such that

u(a1+1) > u(ai) for i=1, ..., n-1.

Similarly a set A c E is u-ordered if E is u-ordered, and we

identify the elements of A as a.

LR aim where il < ... < im.

We now move on to a consideration of bases and we recall that a

basis is a maximal independent set.

LEMMA 2.5 Any maximal set {aﬁj: wla.:) =23, 3 =.1, ce.s I}

Nayj
of the u-ordered set E is a basis of the matroid M(E) ¢ M.

Proof: The set is obviously independent and also maximal. !/

LEMMA 2.6 If there exist Qs Ay 15 cees B o€ E  such that

p(an) > ... > p(an_s) > u(b) for all b e E\{an, vy an-s} s

then aps ---5 A o are in every basis.

" Proof: Suppose the result is true for a5 -5 @ where Jj < s.

n-j’

We proceed by induction on j. Suppose a is not a member of

| n-j-1
every basis and let B be a basis such that an-j$1 ¢ B. .Then

fF((B\{a ,...r 2y _sPu a5 43) > f(B\la,..., a3} = Bl -3-1,
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whence f(B v {a }) = |B] +1, which contradicts the maximality

n-j-1
of B with respect to independence. Therefore if the result 1is true

for n, ..., n-j , it is also true for n - j-1.

We now consider the caée of j = 0. Suppose a, ¢ B, where B
is some basis. Then f(B u an) > f(B) > |B| , whence B u a, is

independent, which contradicts the maximality of B. //

It is obvious that there are many functions u which induce
the same matroid, sb we now find upper aﬁd lower bounds for all such
functions and estab]ﬁshAtheir uniqueness. We begin with a standardised
functioh obtained from w . This standardised function 1 1is defined

as follows on a u-ordered set E:

](ak) = min(p(ak), 1(ak_1) +1), .where

l(al) max(min(1, u(al)), 0) .

We sometimes say that a is a member of Zevel 1(ak), or has

level ](ak).

LEMMA 2.7 If 1(aj) = 1(ak) for elements aj, ay of a w-ordered
set .E and j < k, then u(aj) =Fdak) = ](aj) = 1(ak).

Proof: Since Jj <k we have 1(aj) < 1(ak_1) whence
1(aj) < 1(ak_1) + 1, Therefgre ](aj) = 1(§k) imp]ies:that
1(a

u(ak) , and since  1{(a.) < p(a.) < p(ak) we have the result. //

k) J J

LEMMA 2.8  The rank p(M)- éf-iﬁe matroid -M(E) e | on a u-ordered

set E 1is given by p(M) = max{1(a): a ¢ E} .

Proof: If max{1(a): a ¢ E} = r then 1 takes all values from 1 to r

(and possibﬁy also 0), and only those values. Hence we can choose
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a set B = {bl’ ces br} c B so that ](bi) = i for all

1 <i<r. Then “(bi) > i and hence B 1is independent. The function
1 maps any other a ¢ E to say k, and this property is shared by

bk e B. By Lemma 2.7 thefeforé u(a) = u(bk) whence the set

{b ces by, al is not independent. B is therefore a basis. //

1

LEMMA 2.9 A set comprised of single representatives of any number

of distinct levels is independent. : //

LEMMA 2.1C A wu-ordered set B = {ail’ cees aip} 18 a basis pf a

. rank p matroidv Me M <f and only if ](aip) = p and ](aij) > j
forall 1<3j<p-1. ‘

grggj; " Suppose 1(aip) = p ‘and ](aij) > j _for_ 1 <j <p-1; then
obviously {aij: 1<jJ< p}_ is independent and being of Size p must
be a basis. Conversely suppose B 1is a basis; fhen 1(a11) >1 and
also 1(a1j).z j forall 2<j < P> otherwise there exists j such

© that 1(a1j) =j-1 and 1(a;.) = ](aij-l)' The latter implies

iJ
that ”(aij) = j - 1 which contradicts the independence of B.
Lemma 2.8 establishes that 1(a; )=p . : //

1p
The function 1 js defined on all elements of E, and E is 1-ordered
(in the same sense as it is p-ordered), so it is natural to enquire
what sténdardised function is obtained from 1. It turns out that
the process of standardising the function is an idempotent process

as can. be seen from the following definition and lemma. We define

12(ak) min(l(ak), 12(ak_1)+1) and

al) max(min(1, 1(a1)),’0) ,

i.e. 12 is the standardised standardised function obtained from u.
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LEMMA 2.11 17 =1

Proof: We proceed'by induction on k. Suppose 12(ak) = 1(ak) ; then

12(a,,1) = min(1(a,, ), 1%(a,)+1)

= min(](ak+1), 1(ak)+1)

](ak+1) .

“(a)) = 1ap). /1

It is obvious that 1
LEMMA 2.12 1 <induces the same matroid M(E) e M as does u .

Proof: 1 dinduces a matroid_of the class by Lemma 2.1 and according
to Lemmas 2.10 and 2.11 the matroid has the same bases as that

induced by u . , //

LEMMA 2.1% If 1,h: E > 7  are standardised functions obtained from
W,v: E » Z respectively, and U,V induce the same matroid

M(E) ¢ M ,then 1 = h.

Proof: Let E be u-ordered and Tet ai be the first element of E

for which 1(ai) # h(ai). Suppose 1(a;) > h(ai) and 1(ai3 - k;

Then sing1e'representatiyes frém each of the 1f1eye1s 1, ..;,.k—l,hW1th a;,
constitute an independent set in the matroid induced by u‘, but

a debehdent set in the matroid induced by v . A similar result follows

if h(ai) > 1(a1) . Since both matroids are the same we conclude

1=h. . ' //

In summary; all functions u: E » Z which induce,the same matroid
‘M e |] effect the same standardised.function 1: E + Z, and 1

induces the matrqid M also.
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We move now to another function obtained from p. It is apparent
that any value of u(a) 1in excess of p(M) has no effect on the
structure of the matroid. Therefore we normalise u in the following

way:

w(a), if wu(a) < p(M)

fi(a) _
p(M), if wu(a) = p(M)

We also define a further function u': E - Z, which is obtained

'ﬂvm u , as follows:

max {u(b): b e C}, where C is a circuit

(2) of maximum cardinality containing a ,
u'(a _ :

o(M) , if a is not in any circuit.

LEMMA 2.14 The matroid induced by W' <is precisely the matroid

induced by Uu.

Proof: Let I .be independent in M(E), the matroid induced by .

Suppose there exists a ¢ I such that a is not a member of any
circuit; then T T :

! 4 T ‘
FUI) = max{p'(x):x e I} = p(M) = |I] |

i

[
A
3
L -

For those subsets J EJI whose elements are all members of some
circuit , f(J) > |J| implies that some b ¢ J is in a circuit of
cardinality at least |J| + 1, whence wu'(b) > |J] and f'(J) = |J].
Therefore fA(J) > |J] fo} all JcI and I is 1ndependeht in

the matrcid induced by vu'.

Conversely let I be independent in the matroid induced by u'
and suppose that for some J < I, f(J) < |J]. If J is not minimal
with respect to this property we choose J1 vhich is. Then J1 is a

circuit of M(E), which implies that for all b e Jis p'(b) < |J1|,
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whence I is not independent in the matroid induced by u' and we
have a contradiction. Therefore there cannot be any J < I for which

f(J) < |o] and so I s independent in M(E). ' //
LEMMA 2.15 If u, v <induce the same matroid M e M, then u' =v'. //

It has therefore been established that for a matroid of class [,
both 1 and u' “are unique. The following lemma shows that they
-are lower and upper bounds of all the normalised functions which induce

the same matroid, i.e. they are unique lower and upper bounds.

LEMMA 2.16. 1 <1 < u'.

Proof: The first part is obvious from the definitions of 1 and 1.
For the second, 1(a) = u'(a) for all a such that u(a) 2 p(M) -and

ﬁ(é) = u(a) < p'(a) for all a 'such that wu(a) < p(M). //

The uhiqueness of u' may be expressed in terms of the auto-
yorphisms of the matroid. - We define an automorphism of the matroid
M to be a bijectjon e:Et+ E such that ©.- I 1is independent in M :
%f and only if 6l islindependéﬁt iﬁ»M; (Here eI~mean§ {é(a): ael}.)

LEMMA 2.17 The qutomorphiéms of a matroid M(E) ¢ [{ are precisely

the ' -preserving permutations of E.

e

Proof: This follows immediately from the uniqueness of u'. //

We return now to a study of the standafdisedAfunctions 1.
A graph of 1 against the elements of the u-ordered sef E is
Arevea]ing because it piétoria][&; conveys'informétion about the
structure of the induced,matEOid. Bases,»cfrcuits and closures-are
more éaéi]y discerned. Ah example of a graphicé] matroid which

belongs to the class M is depicted below.
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/I 2345 6 78 9
' Fig. 1. 'Graph of function 1 for a graphical matroid.
Another way in which matroids may be characterised is by means

of cocircuits, and we use this characterisation to move towards duals
of matroids of class [M. A cocircuit is the set complement of a
hyperplane and therefore the cocircuit can be described in terms of a
basis and a single element of that basis. If Bi is a basis and
a1.j € Bi then we denote the associated cocircuit as D%ju This description
need not be unique, but every cocircuit can be so described.

LEMMA 2.18  If B, = {a ., ..., a;,} 8 a w-ordered basis of the
matroid M(E) ¢ M, and aij € Bi. then the cocircuit Dij 18 given

by

Dij = ({a:,1(a) >m(k < j: p(aik) = k)}\Bi) v {aij}‘

- where
m(k < §: w(ay,) = k) = max(k < j: u(as ) = k) if k exists,

=0 <f no such k exists.

Proof: The hyperplane obtained from Bi and aij falls into one of

two classes, namely (i) those for which there exists k < j such
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that u(a{k) = k , and (ii) those for which “(aik) > k for all
1<kz<j. For (i), Lemmas 2.4 and 2.10 establish that

O(Bi\{aij}) = (Bi\{aij}) v {a: 1(a) = max(k < J: u(a;) =k} ,
and the complementary cocircuit is as required.

For (ii), O(Bi\{aij}) = Bi\{aij} and therefore

L=
I

(E\Bi) U {aij} » which can be rewritten

(fa: 1(a) > ONBy) v {a;;) - /1

N

Les ]
i

1J
We now introduce another function derived from 1 , which will
be necessary in obtaining the dual matroid. We define 1*: E » Z,
where |E| = n and p is the rank of the matroid induced by 1 , as
follows:
1f(ai) = 1(ai_1) +n-1i+1-p

and ' ' ]*(al) =n-p

The following results are necessary in establishing duality.

LEMMA 219 (1) T*(a;) = 1%(a;,,) f 1(a;) = T(a, ) +1

1*(a,,,) +1 ?f 1(a;) = 1(a; ) -

and 1*(a1)

(1) 1> 3 = 1%(ay) < 1%(ay)

and 1> j< 1*(ai) < 1*(aj) . | //

It is obvious that 1* induces a matroid of class | on E,

and we denote this matroid by M. By the reasoning of Lemma 2.8,

LEMMA 2.20 1** = 1.

Proof: We 1*-order the é]ement;_of E .by reversing the p-order.

v~

This is consistent with Lemma 2.19. Then for any a; e E

(i being the position in the p-ordering), we have
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1**(ai) = 1*(a;,;) + n - (n-i+1) + 1 - (n-p)
= ]*(a_i_'_l) +1-n+ Ps
and by substituting for 1*(ai+1) we complete the proof. //

LEMMA 2.21 If ‘Ml(E)_ is the matroid induced by 1* , then the
levels of the elements of E in Ml(E) are the values of 1*

on the elements.

Proof: Let the standardised function obtained from 1* be L,

énd let the 1*—ordef1ng be the reverse of the u-ordering. Then for

all a; ¢ E, L(a;) = min(1*(a;), 1*(a

; 1.+1) +1) = ]*(ai) by Lemma 2.19. //

1
We come now to the most important result of. this.chapter, namely .
thét fhe class M 1is closed under taking dua1s. We Qée the fact
that one matraid is the dual of the other if and only if the circdits

of orie are precisely the cocircuits of the other.

THEOREM 2.22 =ML

Proof: We can assume, without loss of generality, that E is

u-ordered. We refer throughout to levels in M and M.1 and to

avoic confusion we call them 1-levels and 1*-levels respectively.
Lemma 2.19 implies that the 1*-levels have the following
structure. Elements on a particular 1-level in M occupy, in reverse

- u-order, successive 1*-levels, except for the first e]ément in that

1-Tevel, which occupies the same 1*-Tevel as the second element in the
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. non-zZ erpo
1-level. Al1 elements in successive single e]emen%\]-]evels occupy

the same 1*-level, and this 1*-level is that of the first element of
the multi element T1-level immediately greater_than‘them. If there is
no multi element 1-level greater than the abovementioned single
element 1-levels, then 1(an)v= p and 1(ah_1) =p - 1-, whence
1*(an) = 0 and the elements of all those single element 1-levels

occupy 1*-level O.

j determined by the basis

Bi = {ail’ cees aip} and the element a,

Consider a cocircuit Di
. i Let
m(k < j: “(aik) = k) =h and let m be such that u(am) = h

and u(am+1) > h. Then

}) v {ai'} ,

m+l’ 2 % i(h+1)® "> aip N

and it has n + h + 1 -m - r elements. Further, the maximum value

of 1* on {am¥1; cees an} is 1*(a_,,) =h+n-m-r, and

m+1
also by the reasoning above on the 1*-levels, 1*(a1j) =h+n-m-r.
A1l we now require for Dij to be a circuit of M1 , is for the

value of 1* on the n+h -m-r elements of Dij\aij arranged

in reverse p-order to be at least 1, 2, ..., nth-m-r respectively.

It is obvious that representatives of each of the 1*- levels
1, 2, ..., n+h-m-r have the required property. If therefore
sy (k # §) 1ds the 1one,‘first or second,e]emenf of the k-th
1-level its removal from {am, cees an} still leaves a representative
of its 1*-]eve1.- If ](aik) = k but L is not the lone, first
or segond element of the k-th 1-level then ‘its removal from
{am+1,...., an} a]so removes an 1*-Tevel, but this is compensated
for By the first or second element of the k-th 1-1evel, on which the

value of "1* s higher than on a. . Finally for each a, such
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that 1(a1k) > k , there exists a lesser 1-level (but greater than.
h) which does not have a representative in Bi ,» and therefore on
the 1one; first or second element of that 1-level the value of 1*
is at least ]*(aik)’ and therefore compensates for the removal of

ay, - This establishes that the removal of _a{k, k#3,hlsksp

from {a ,-an} leaves n+h+l-m-r elements which constitute

EPRY
a_circuit in Ml(E)'

We now show that every circuit in Ml(E)j is.a cocircuit in
M(E). Let L.= {a ¢ E: 1(a) =i} for all 1<i<p and ILiI = n;.
Further, let C* be a circuit in M; and Tet Lp ‘be the 1-Tevel
containing the first membef of C* , i.e. the element having the
lowest subscript. Since the value of 1* on the first and second
~elements of C* is the same, it fo]]ow$ that the first element is the
first element in the 1-level p or is a single element 1-Tevel.
The rank of C* in M, is then ig

n, - (p-p).
p 1

n; - (p-p+1) and the number
b _

i ~>10

of elements in C* is
' i
Let the h-th 1-Tevel be the greatest multi element 1-Tevel less

than p (we take h =0 1if no such level exists). Thén the number

S P S
of elements of 1-level greater than h is .} n, and the number of
o v ' i=h+l1

.+ p-p, whichequals p-h - 1.

those not in C* is ) n, - E n;

i=h+1 i=p
C* is a cocircuit if the above p - h - 1 elements, together with
an element of C* , belong to a basis of M. This element of C*

must not have a multi element 1-level between.its 1-1evé] and T-level

h.

Let the g-th T1-level be the Towest 1-level greater than h whiéh
has more than one element. If no such 1-1eve1vexists then 1*(a) = 0

for all a such that 1(a) >h and all such a "are single element
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circuits of ’Ml . It is.obvious that they are single element cocircuits

of M, and for this case the proof is complete.

If such an 1-level does exist we consider the 1-levels
q+l, ..., p . Suppose that for any j , g+l < j < p ; less than

L . _
p-Jj+ 1 elements of. Lj U'eeu U Lb are excluded from C* , i.e.

at least E n. - (p-j) membérs of C* aredin L,u ...ul .
i=j 1 J P

Since the maximum value of 1* on this union is § ni - (p-j+1),
, : i=j .
this implies that C* properly contains another circuit of M* ,

which is impossible, so we conclude that at least p - j + 1 elements

of Lj U eee Lp' are excluded from C* for g *t1cs iso

We now have that the number of elements of C* is

nq + (nq+1

contain an independent'set in M, disjoiht with C* , of size at

-1) + ;;. + (nérl). Further, 1-levels q "to. p inclusive

least p-q , and there are q-h+*l single e]ementvl-leve]s betwéen
1-level h and 1-level q. There are three possibilities for the

composition of C* , namely:

(i) 'C* contains all of 1-level g and none of the elemenfs from
| the ﬁing]e element 1-levels between h and q.
(ii) C* contains a]]-bf 1-level q and some of the elements
' from the single element 1—1eveis befween h and q.
(iii) C* doés not contain all of the elements from 1-level q,
| which implies thét it must contain some eiements from the

single element 1-levels between h and gq.

If possibility (i) applies then the p-q elements of 1-levels
qtl to p inclusive which were omitted from C* , together with
the q-h-1 elements between 1-levels h ahd q, and any element

from 1-1eve1 1, form part:of a basis, and hence C* is a cocircuit of M.
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if pOséibi]ity (ii) applies then p-q elements of 1-levels
g+l to p inclusive are not in C* and for every element of 1-levels
between h and q which is in C* there is an additional element
from 1-levels g+l tor inc]dsive not in C*. These elements not
in C*, together with the elements between 1-levels h and q not
in C*A; and any element from 1-level q , form part of a basis and hencé

C* 1is a cocircuit of M.

Finally if possibility (iii) applied then p-q+1 elements of
1-levels q to p inclusive are not in C¥* ,Aand for each element
of 1-levels between h and q which is in C* there is an element
from 1-levels q to o inclusive not in° C* . These elements not
in C* , and one é]ement betweeh 1-levels h and q which is in C* ,

form part of a basis and hence C* s a cocircuit of M. //

It is informative to look at the graphs of 1 and 1* and the

figure below is an example.

—

S

-
T

SN WA N oo

S

5 /0 s : 5 /0 5

Fig. 2. Graphs of 1 and 1* on a 15 element set.
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- It will be noted that there is a relationship between the
gradients of the two graphs. For ex&mp]e the gradient of the
function 1 for 1 < i s_4 is 0; whereas that for 1* for
2<1i<5 is-1, and the gradient of 1 for 8 < i <12 is 1
whereas that for 1* for 9<i <13 is 0. Inspection of the
relationship betwéen 1 and 1* shows that this is general, i.e.
1'(aj) =1 for is<js k.=' 1*'(aj) =0 for i+l < j < k+1

and 1'(aj)v= 0 for i < j <k > ]*'(aj) ==1 for i+l < j < k+l.

Another way of viewing the above is to represent the set as

in the figure below.

> .
*

9 2 1
8 3
$ | 7 4
51 121314 15 6 65
g -1 5 7
P 10 4 8
e 9 3t 131211109
2 5678 2t 14 |
/11234 /1 15
1-Tevels : 1*-levels

Fig. 3. Levels of 1 and 1*

In the above figure rows can be regarded as,comprising e]emenfs
for which there is no increase in level over the preceding element,
while co]umné comprise those for which there is an increase in level
over the preceding element. With this}c]assification'rows in 1
representation ére,co]umns in 1* representation and vice versa.
Again, because of the relationship betﬁeenA 1 and 1* , this

result is general.

We conclude this chapter with a lemma concerning restriction.
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LEMMA 2.23. MpIT = MIJIT , where the subscripts refer to the
inducing functions of the matroid of class M

Proof: We define flT(A) = hax{ulT(a): aecAl forall AcT.

It is immediately obvious thatonall Ac T, fIT = f. It follows
then that for any I < T which is independent in M , fIT(J) > |J|
for all J _c_I s »whence I independent in MulT > [ independent in

M .
UIT |
'Conve;se]y if I,. is independent in Mu then f(J) = flT(J) > |J| |

|T
for all Jc1 andalso I <T, whence I is independent in

MIT . o | /!
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" CHAPTER 3

Chaptef 2 was concerned with the 'arithmetic" of matroids of }. -
We now establish that a characterisation in more general terms 15
available. Firstly we show that | consists exactly of matroids, all of
whose minors are free or have unique minimal non-trivial flats.

Secondly we give an excluded minor characterisation of [{. Again in

" this chapter E is finite. The term flat rather than closure in used

so that we can conveniently speak of it without referencé to fhe sets
of which it is the closure. A flat F of M is non-trivial if it is
the clbsure of a proper subset. It is a non-trivial extension of a flat
H if it is the closure of . H v P for some proper subset. P of
F\H. Otherwise F 1is a free extension of H. |

Consider a matroid each of whose minors is either free or has a
unique minimal non-trina] flat. We denote the class of matroids

having this property by M.

Foo e e - SRR e ;

LEMMA 3.1  Each M'e«M' on a ground set E , has a finite chain

o) =_F0 f F1 ... © Fk-E_E, where Fi+1 18 the unique minimal
non-trivial extension of F1. for 0 <3 < k and Fk has no non-trivial

extenston. Each flat in M' <4is a direct sum of some F1. and a

free matroid.

Proof. Let' o(¢) ?‘FO and suppose there exists a chain FO c F1 c ..; F.

such that FJ.+1 is the unique minimal non-trivial extension of F. for

0sJ<i. Then either E 1is a free extension of Fi in which case

k = i, or there exists a minimal non-trivial extension of Fi . Suppose

there exist two such extensions H and H' . Then we consider the

minor M' o (E\(H n H')).
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Applying a standard result of matroid theory we have x ¢ o (H\H")

cont
< x e o((H\H') u (Hn H')) = H. Since the minor is a matroid only

on E\(H n H') we conclude x ¢ o (H\H') and x e E\(H n H")

cont
< x e H\H' , whence H\H' is a flat in the contraction.

As H is a hon-tr1v1a1 extension of Fi in M .it-contaihé a
circuit C which is not contained in Fi' Furthermore H n H' |
either is F. or is a free extension of it, whence C £H n H',
so H\H' cbntains a circuit in the contraction. Therefore H\H'
is a non-trivial flat in the contraction, and by the same reasoning
so is H'\H. If foi]ows ﬁhat both contain minimal non-trivial flats
which must be disjoint. This is impossible since M' ¢ [{' and we

conclude that there exists F which is a unique minimal non-trivial

i+l
extension of Fi-. By induction we obtain the required chain of flats.

‘Any'flat either (i) is free, or (ii) is an Fi , or (iii) is a
free extension of an Fi . Therefore a flat F 1is the direct sum

- of Fi , for some 0 < i é k , and the free matroid M'|(F\Fi) . //

We prove” [{' c ] by characterising the circuits of members of

LEMMA 3.2  For aﬁy M e M, hdving flats as specified in
Lemma 3.1, the circuits contained in F'i but not in 'Fi -1 are
exactly C satisfying |C| = p(F}.) +1,|Cn F\.jvl < p(Fj) for j < i.

These, for all 1, are the circuits of M'.

Proof: We proceed by induction. Either F0 = ¢ whence the circuits in

F1 have the required properties, or each element of F0 is a Toop C '
v |

satisfying {C| =1 = o(FO) + 1. Now suppose the circuits contained in Fj

but not in FJ._1 are as prescribed for all j < 1.
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If C is a circuit contained in Fi C¢F. i1° then o(C) is a flat
which by Lemma 3.1 is Fj’ some j and obviously J = i ; therefore
IC| = ) +1. For j<i ,CnF, #C >C n'Fj is independent

| = .) < F.) .
and |C n FJI p(C n FJ) < o J)

Conversely let C satisfy C cF., C£F, ;5 [C] =o(F) + 1,
IC o Fjl < p(Fj) for all j < i. From this prescription C is
dependent and so contains a circuit C' . If C' E.Fj for some
j<i, C']=1|C"n Fjl < |Cn Fjl < p(Fj) , which implies that
[C']| # p(Fj) + 1, contradicting the proven property of any such
circuit. Hence C' cF.,, C £F, . ,s0 [C']= p(F;) +1 = |C[,
and C =C' |

We have inductively characterised all circuits contained in some
Fi‘ But every flat is the direct sum of some F1. and a free matroid,

hence all circuits have been characterised. | //

LEMMA 3.3 M' <M.

Proof: Consider any M' ¢ M’ with a chain of npn-trivia] extensions
as specified in Lemma 3.1. We define an appropriate function.on the
ground set .E.of M' as follows: :

Q(F-|)s ifee F'I\F'i-l’ with F—]. = ¢
p(E), if e € E\F

u(e) =
k.*

The function u induces a matroid Mp e M and we prove Mu =M

by considering the circuits in both.

If C 1is a circuit in M' then for some i, C E-Fi R

CEF. 1 IC| = p(Fi)+1 and |C n F | j) for a]] i<i.

IN

Let C = {cl, cens cs} where 9( 1) < ... u(cs) = p(F ]C] -1-=

s - 1.
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For all r <.s, either C, € Fi\Fi-l’ or c. ¢ Fj\Fj-l for some J < 1.

~ In the first case, “(cr) = D(Fi) = s - 1, and in the second case

“(Cr) = p(Fj) > |C n Fj| > r. We conclude that s - 1 > u(;r) >r
for 1< i <s-1, and u(cs) =s -1, and so by Lemma 2.3 C is a
gircuit in Mu' |

! Conversely if C s a circuit in Mu’ s-1 > U(Cr) > min{r,s-1}

for 1<r<s=|C| and so u(cs) = s-1 = p(Fi)’ say. Then for

IN

all j<i,Cn Fy = Loy u(e.) < p(F)b e fepsr
S

= |C|] = p(F,) + 1. Hence C is a circuit

' (: F . "‘<-— F) F . - "But -
I JI ( J)

‘fm M. /1l

To prove M < M’ it suffices if we prove that M e M is i

- either free or has a unique minimal non-trfviai'%lat, and that M

is closed with resbect to taking minors.

LEMMA 3.4 Each M e M is a free matroid or has a unique minimal

non-trivial flat.

Proof: Let F and F' be minimal non-trivial flats in- M with
p(F) < p(F'). Lemma 2.4 implies that w(a) < p(F) for all a e F
and up(a) < p(F') for all a e F'. It follows also from Lemma 2.4

that F c F' and since both are minimal, F = F'. : //

We know from Lemma 2.23 that [ is closed with respect to
restrictions and it remains to show that the same applies for

contractions.
LEMMA 3.5  4ny contraction of a member of M is in M .

Proof: If M(E) e M, then for any TcE , Mo T = (M*[T)* |

and we know from Theorem 2.22 that M* ¢ M . ' //
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THEOREM 3.6 M = M’ . . //

We move on now to the second part of this chapter, namely the
excluded minor characterisation. We characterise M’ and hence M,
by its excluded minors. For k = 2, 3, ... consider a set E,

El = 2k , E=E 0 E, with |E}| = [E)] =k and put
C ey g1 o 60 64 Fp €4 €] ko)

TLEMMA 3.7 C is the collection of circuits of a matroid kM with

vundeflying set E, for each k =2, 3, ... .

Proof: Consider any two distinct members Cl’ C2 of ( witha

common element e. Then l(C1 u CZ)\e| > k+1 and so (Ci U-CZ)\e
contains a member of ( . , //
LEMMA 3.8 KM 4 ' . \

Proof: Both E; and E, are minimal non-trivial flats. //

1 2

THEOREM 3.9 M’ <s characterised by the family kM_, k = 2,_3, cees

of excluded minérs.

Proof: We consider any matroid which is not'in M ;5 it has at

Teast one minor which has two minimal non-trivial flats. We choose
: . Pf‘DPe{'
a minor M which satisfies this condition but whose owqﬁminors are

in M’ . This is possible since, if not, the matroid has no minor
which has a unique minimal non-trivia]'flat or is free, and minors

of rank 1 obviously have this property.

The chosen minpr has two minimal non-trivial flats, say E1
)af M\‘w‘\w.' vaw

and E,n - If . E # El'u E, we choose e e E\(E; u E,) and obtain

the restriction M|E\e. Since. I .independent in M<>1 independent

in ME\e for I < E,, i =1or 2, it follows that £, and E,

1
are minima]‘non-trivia] flats in M|E\e.  But this is
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a contradiction of our choice of minor. Thus "E =E, u E

1 2

We now prove that E1 and E2 are circuits of M. Suppose
E1 is not a circuit; then M has a circuit C which is properly
contained in Ei and we consider the contraction . Mo (E\e) where -

e ¢ E,\C .. This qontraétioq has non-trivial flats El\e and Ez

1
(or E2\e if e e E2) and these are minimal, which is a contradiction.

Therefore E1 is a circuit, and similarly E2 is a circuit.

This paragraph shows that E1 and E2 are disjoint. We assume

to the contrary that e ¢ E1 n E2 , and consider the contraction
Mo(E\e) . In this. El\e and Ez\e are both circuits and flats,
and hence minimal non-trivial flats. Therefore E\\e = E\e ,
whence E, = E, , which éontradicts our choice of M. Hence E,
and E2 are disjoint. | |

We show that |Ei|,= |E2|. Choose any element in E, say
e e E2 , and form the minor Meo(E\e). In this contraction Ez\e
is a circuit and a flat, and hence a minimal non-trivial flat.

Also ocont(El) ='_c(E1 u e)\e. is a non-trivial flat, and by the

choice of M, cannot be minimal. Therefore

(E2\e) < (E,) , whence p(Ez)-l < p(E1 ue)-l= p(El) .

Pcont pcont 1)

since e # E, = o(E,) , and it follows that p(Ez) < p(El) . Choice

1)
of any a « E1 similarly leads to p(El) < p(EZ) , and we conclude

that |E1| = |E2| =k , say, for some k >1.

It only remains to prove that the circuits other than E1 and
E2 in M are exactly the subsets of E of size k+1 which contain
neither Ei nor E2 .. Since E1 and E2 are minimal non-trivial
flats of M. it follows that all circuits have at least k elements.

Suppose C s a third circuit of M and Ic] = k; then C n E,#0
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and C n E, # 2 . The flat o(C) is non-trivial with rank k-1, and
it has a subset F which is a minimal non-trivial flat. Considering

the minimal non-trivial flats E, and F as above, we have

1
E=E 0F,Fisacircuit and |F| = k . Therefore F =C and

Cn E1 = @ which contradicts the necessary properties of C, and so

{C| 2 k+1 . We need only to show that p(M) = k to prove that all
circuits other than E1 ‘and E2 have size k+l. Choosing e E2
and considering the cohtraction Mo(E\e) as above, we have

Eo\e < (Ei) = o(E1 u e)\e , whence E, < o(E1 u e) and so

E,ue spans M, giviné "p(M) = k. Consequently M = Ky , for

%cont

some k > 1. _ ‘ ' //
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CHAPTER 4

The numbers of simp]e matroids on ground-sets of small sizes are
well known [ 21, and using this information it is easy to find the
numbers of matroids on those sets. It is natural to enquire how
many of fhese belong to the class M . In this chapter we list all
matroids on sets up to size 6, and by making use of the éxc]uded minor

property we identify those which are not in M.

It is necessary first of all to establish a method. of counting
matroids on small sets. The following definition and lemmas are to

that end.

For any . T < E, the restriction M|T of a matro1d M on a ground
set E is a szmpZe matroid assoczated with M , Or a canontcal matroid

of M if

Tno(e) =6 ,|Tnola) =1 for all a ¢ Erxa(9).

LEMMA 4.1 M|T <4s a simple matroid.

a(¢) nT = ¢ and orest.(a) =g(a) nT=a ,

Proof: 0rest.(_¢)

since |[T.n o(a)|

LEMMA 4.2 ALl simple matroids associated with M are isomorphic, and
maximal siﬁple restrictions of M. Any restriction of M isomorphic

to these simpie matroids assoctated with M <is itself associated withk M.
Proof: Let M|T and M|T' be simple matroids associated with M.

Then there exist bijéctions a:o(a) »a e T, olg) ~ ¢ and

B:o(a) ~a e T', o(¢) - ¢ , whence there also exists a bijection

Ba'l =0:Tuo(p) >T vol(e) .
If 1= {al, cers ar} 'is independent in M then o(1) = of. U o(a )).
i=1
Suppose I c

T and 6(I) s dependent, i.e. there exists a e T
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éuch that a ¢ o(é(I)\a). Then a e o(U o(b):b ¢ 6(I)\a) , whence

a e o({e'l(b):b e 6(I)\a), and it follows that o(a) 'and hence e'l(a)
is a member of the same closure. This contradicts the independence of

I , and we conclude that 8(I) dis independent. Therefore 6 is an

isomorphism from M|T to M|T'

For a ¢ T, aceo(b) for some beT, so MTua is not simple.

Therefore M|T is a maximal simple restriction.

Suppose M|T' = M|T and M|T is associated with M . Then
obviously T' does not contain two elements, one of which is in the
closure of the other, whence |T' n o(a)] =1 for all a e T', and also

T' no(¢) = ¢ . Therefore M|T' 1s associated with M . //

LEMMA 4.3 Two matroids M and M' are isomorphic exactly when there
is a mdpping "O:E +_E' such that 6lT is an isomorphisﬁ of associated
simple matrofds M|IT and M'|T' and |o(a)\o(9)| = |0'(6(a))\0'(¢)l
for all a e E\6@and |o(0)] = o' (¢)] .

Proof: M, M' isomorphic implies that there exists 6:E + E' , whence
e|T is a bijection of T onto T' and. elT(I) is independent in
M'|T* for 1 independent in M|T. Also 6 being an isomorphism

guarantees  |o(a)\o(¢)| = |o'(6(a))\o'(¢)| and |o(¢)i = |o'(¢)] -

Conversely suppose there'exists 6:E » E' such that 6|T:T - T
is an isomorphism of M|T and M'|T* , and N
lo(a)\a(¢)] = |o'(6(a)\c'(¢)| and |o(¢)| = [o'(¢)] . Suppose &(I)
is dependent in M' , while I  is independent in M . Then there exists
J <1 such that 6(J) is independent in M' and a e o'(6(J))
for aeI\d. We take J' c T such that J' consists exactly of

single representatives of the closures of all elements ofv»e(J). Then
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aeoc'(Jd') , whence a v e'l(J') is dependent in M. There exists

Kecl, |K|=1]3"]=1]Jd], such that K consists exactly of single
repreéentatives of closures of all members of e'l(J') and Ku a

is dependent. The latter is impossible whence 6(I) is independent in—
M' if I 1is independent in M. The conditions upon the size of the
closures of the empty set and of singletons ensure thaf 8 is a bijection

and hence an isomorphism.. | ' //

Every member of a sef §f pairwise'non-isomorphic matroids on a
ground set of size 6 has 5 canonical simple matroid, and of course a “
* number have ‘the- same canonical simple matroid. On the other hand every
simple matroid on a ground set of'size up to 6 can be exténded to a matroid
on a ground set of size 6 by the inclusion of additipna1'e1ements in
the closure of the empty set or of one or moré of the elements of the
simp]e’matroid. " Therefore the matroids on a ground set of size 6 partition
naturally into classes, each class being the non-isomorphic matroids
'héving the same‘canonica1,sﬁmp1e matroid. Lemma 4.2 says that the sameness
is only to isqmorphism, i.e.'thé classes are distinguished by having
a$SOCiated pairwise non-isomorphic simple matroids. It is easy to list
all the non-isomorphic simple-matroids up to size 6. We do this'byv
taking the set . E = {1,2,3,4,5,6} and ]isting the simple matroids
M|T for some T ={reE:r<m#l}, m=0,1, 2, ..., 6.

Associated with each matroid_ M having M' as a canonical simple
matroid we have-the'pértition {Ei:O <ism}b , where E; is the
closure of i and E0 is the closure of the empty set. (Ed ‘of course
may be empty). It follows from Lemma 4.3 that two such matroids M, M,
- having partitions {E}} . {Ef} are 1somorphic exactly when there exists

an automorphism 6 of M' such that '|E§| ='|Eéij , for i=0,1, 2, ...

m.
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Therefore for each M' we count the number of partitions which pairwise
do not have this property.

size
We first list the simple matroids on a set oant'most 6. We know

that there are 43, and as all are sub-matroids of ordinafy euclidean
space we so represent them. Where possible they are also shown as

graphs underneath.

TABLE 1
Simple Matroids on T = ¢
- 0. rank 0°
Simple Matroids on T = {1}
o/
/
-—— .
1. rank 1
Simple Matrbids on T ={1,2}
/ 2
[ o
i d
/
2. rank 2

Simg]e’Matroids on T = {1,2,3}

LN

3. rank 2 4. rank 3



Simple Matroids on T = {1,2,3,4}

/ 2 3 4 / 2
4 K
[ ] [ ]
7
& 2 V4
5. rank 2 6. rank 3
4 /
[ 2z LX7
3
/ 3 4 / SN\ 3 P,
7. rank 3 8. rank 4
Simple Matroid.on T = {1,2,3,4,5}
| A
/2 3 4 5 -
he . .- * S 03
o4
9. rank 2 10. rank 3
¢ 7
/ 2 3
11. rank 3 -
4
/ 2 3 4

13. rank 3 14. rank 4



/ | | v
: : 4
'4!!’!‘J ’ 44!!!Ilii’r;r
2 AR
2 . I 4
/ 3 z
4 g . | 7 5
15. rank 4 16. rank 4
5 points in general
position in E4
/ B N\¢ /5
17. rank 5
Simple Matroids on T = {1,2,3,4,5,6}
6 ,/
L ]
2 3 4 5 6 S 2
.4 .3
18. rank 2 19. rank 3
» _ , 3
® * Z
/ .3 //
o K2 g rs 5 'y
20. rank 3 21. rank 3

22. renk 3. 23. rank 3

37.
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3
2
3
Sl
Z .
/ s °
3 15 °
4
p, L 2 3 4
24. rank 3 25. rank 3

.6‘v
—o / 2 3 4 5
4 > . . - .
27. rank 3
2 ,
/ & 5
3
g 3
6 4 /
N2 J
28. rank 4 ‘ 29. rank 4
5 | ' / .
3
4 4
, 2
/ > Y3
T
30. rank 4 31. rank 4

32. rank 4 o | 33. rank 4
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S 3

34. rank 4 35 rank 4
2  3
—L -
-2
3 /
4 5
36. rank 4 37. rank 4
/- . -
—z s  ote. i ceneral sosn. in £
skew Pts. in general posn. in
M . . , .
a 7 | | &
.2 é
38. rank 4 ' 39 rank 5
g o 3 A plus one pt in
5 Pts. in general posn. in E
plus one pt. in 4th dimension Akv 3 4th dimension
| e . | 2
J / .
' 4 J 8
40, rank 5 S 41. rank 5
&
plus one pt. in o '
v 3 4th dimension - 5
6 Pts. in-general posn. in E
/23 - .

/N 4N fs f/(2>\§§//2>\§?/2\\

42. rank 5 | 43. rank 6
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The table below lists all the matroids on a ground set of 6
elements in terms of the simple matroids with which they are associated
and the partitions described above. The column M|T Tists the simple

matroids as numbered above.

TABLE 2
[T| M|T |Egls1Eqlsenns [E I Notation = Cumulative
: number as for M Total
in Table 1
0 0 6 0.1 1
1 1 51 1.1
42 1.2
33 1.3
24 1.4
15 1.5
06 1.6 7
2 2 411 2.1
321 2.2
231 2.3
222 2.4
141 2.5
132 2.6
051 2.7
042 2.8
033 2.9 16
3 3 3111 3.1
2211 3.2
1311 3.3
1221 3.4
0222 3.5
0321 3.6
0411, 3.7
4 3111 3.8
2211 3.9
1311 3.10
1221 3.11
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0222 3.12
0321 3.13

0411 3.14 30
5 21111 4.1
12111 4.2
02211 4.3
03111 4.4
6 21111 4.5
12111 4.6
02211 4.7
03111 4.8
7 21111 4.9
11112 4.10
12111 4.11
02112 4.12
02211 4.13
03111 4.14
01113 4.15
8 - 21111 4.16
' 12111 4.17
02211 4.18

03111 4.19 49
9 111111 5.1
021111 5.2
10 111111 5.3
021111 5.4
11 111111 5.5
021111 5.6
011121 5.7
12 111111 5.8
021111 5.9
012111 5.10
13 111111 5.11
021111 5.12
011112 5.13
14 111111 5.14
021111 5.15
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15 111111 5.16
- 021111 ' 5.17
011112 5.18
16 111111 5.19
021111 5.20
011121 5.21
17 111111 5.22
021111 5.23 72
6 18 | 6.1
to - all are to _
43 0111111 6.26 26
98

LEMMA 4.4 There are exactly 2" pairwise non-isomorphic members of

M on a ground set of size n.

Proof: Without loss of genera1ﬁty we can choose one ordering of the n
elements of the gréund set E from all the orderings imposed by the
various functions u which induce the matroids of M on E. Each of
the matroids of rank r on E is distinguished by the first elements of

E on which the standardised fuﬁction 1 takes the values.1, 2, ..., r.
There are (:) ways of choosing those elements in the correct order,
i.e. there are (2) matroids of rank r on E. Summing from r = 0

to r=n we have that there are 2" matroids on E. //

It is interesting to note that 2" s exactly the lower bound
given by Crapo [4]:for the number of matroids on a set of size n.

2 :
/12 for sufficiently large n has

However a sharper bound, namely 2
subsequeht]y been obtained [31. The sharper bound shows that ‘M

is a relatively small sub-class of the class of all matroids.
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From the above lemma we see that there are 64 matroids on a
ground set of size 6 which are in M, and 34 which are.not. Those
.34 are distinguished by the excluded minor propefty of . the previous
chapter. There are two possibilities for the excluded minor
kM(E1 0 E2) , namely k =2 and k =3 . The minor given by k =2
ié a graphical matroid‘conéisting of two rank 1 cifcuits, i.e. two sets
of 2¥mu1tip]e edgés; The k =3 minor is the matroid whose euclidean
representation is twp non-intersecting three points lines in the same

plane.

We Tist all 98 matroids on a set of size 6 and distinguish those
which are not members of M by an asterisk.  We use the notation listed
in the above table for all of the matroids, and where possible we '

represent them as graphs.

(T)

_—% _ %@7 e
P e

1.5



=
G
—
"
N

2.1

2.4

3.1

3.4

3.7

44.

O — O
2.5 2.6
2.8 2.9
3;2 ' 3.3
3.5 3.6



M(T

4
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AN =N e

3.8

3.11

3.14
M(T) =5
lo(¢)] = 2 o

'__
M(T) = 6

These are not graphic, and are represented in euclidean space.

4.5

3.9 13.10
3.12 3.13

lo(@)| =1 4o o o

4.2
¢ - >0
4.4
<:::I;;;;;;;1- |
4.6 | 4.7



4.8

MT) =7

4.9

M(T

4.15

8

4.16

4.19

4.10

4.11
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M(T) = 9 These are not graphic and are represented in euclidean space.

5.1 : | | 5.2
M(T) = 10 These are not graphit and are représented in euclidean space.

lo(¢)| =1

5.3 . : : 5.4

M(T) = 11 These are not graphic and are represented in euclidean space.

5.5 5.6 5.7

M(T) = 12

I * I * - j * | '
5.8 5.9 510 o

M(T) = 13 These are not graphic and are represented in euclidean space.

. . U ] *
lO(d))l =1 .__‘_—_,__—.v s . - . ——¢—o—0

5.11 512 5.3

M) = 14

5.14 | 5.15
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M(T) = 15
*
5.16 5,17 5.18
M(T) =16
o , | | .
5.19 5.20 5.21 .
M(T) = 17

~5.22 5.23 -

M(T) = 18 to 43

These matroids (6.1-6.26) are ‘preci‘se1y those listed above under
the heading "Simple Matroids" on T = {1,2,3,4,5,6}, and so they are
not listed again. However those which are not in || are shown for

completeness.

i

. _ - — |

6.4 (Non-graphic) | | .6.5(l\lon}graphic)
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<>

| 6.6 (Non-graphic) ‘6.7 (Graphic)
6.9 (Non-graphic) .. 6.14 (Non-graphic)
D
6.15 (Graphic) : 6.18 (Graphic)
><]
6.20 (Graphfc) ' 6.21 (Graphic) |

As can be seen from the above, there are 68 graphic matroids on
a set of size 6, 42 of which are in } and126 aré not. There are

2® non-graphic matrdids, 22 of which are in M and 8 are not.

The ca]cu]at1on of the number of non-isomorphic matro1ds on a set

of 6 elements seems to be a new result, and so we state it as a theorem.

THEOREM 4.5 There are 98 non-isomorphic matroids on a set of 6 elements.

/
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CHAPTER 5

In the previous chapter we saw that not all matroids of the c]ass‘
M are graphic. It is natural to enquire whether they are a subclass
}of any well known class of matroids, and in this shorf<¢hapter we
answer the questjon as we]i as establishing a necessary‘and sufficient

condition for a matroid-to belong to M.

LEMMA 5.1 A matroid M e M on a ground set E is a transversal

matroid.

Proof: We construct the family of subsets [J = (A.:1 < i <p),
where Ai = {a ¢ E:1(a) 2 i}. By Lemma 2.10 a transversal of |J
is precisely a.basis of M, whence partial transversals are precisely

the independent sets of M . //

- This is a most intereSting result because M* being also in [ -
is also transversal. Therefore here we have a subclass of transversal
matroids whose dual is also transversal. That not all transVersa] j
matroids have duals which are also transversal is shown by the foliowing
example. Figure 4 below is a graphic matroid which is tfansversa], and

its dual (Figure 5) is also graphic but is-not trarnsversal.

.
\f_/
Fig. 4 Graphic Matroid . Fig. 5 GraphiC'Matrojd
which is transversal which is not transversal
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The above are the matroids 6.15 and 3.5 of the previous chapter

and of course they are not in M.

Not all transversal matroids whose duals are also transversal,

belong to M. The following example shows this.

/

z Z 4
3
Fig. 6 Graphic Matroid ‘ Fig. 7 Transversal Matroid
transversal but ¢ M dual of Fig. 6

fhe_matroid of ng. 6 is transversal with family
({1,2}, {3,4}, {1,4,5}) , and the family of the transversal matroid of
Fig. 7 is ({1,2,5}, {3,4,5}) . They are obviously dual. The

excluded minor characterisation shows that they are not in M .

The fo]]owing theorem shows precisely which transversal matroids

are members of M .

THEOREM 5.2 . A matroid M on a ground set E is a member of H if and only

1f it is transversal having a presentation of a family of nested sets.

Proof: Given M(E) e M we construct a family | = (Aizl <i<op),
where Ei =f{aekE: 1(a) =i} , and p is the rank of M(E) . The

E; form a chain ordered by strict inclusion.

Cbnversely 1ef M(E)- be a transversal matroid with family of

> E

) > E

representable sets |} = (Eizl <1 < p) such that E 92 en -

1
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For all a e E;\E; 1<is<p-1,weassign 1(a) =i , and

+1°
for all "a ¢ Ep weassign 1(a) = p . The function 1 induces a
matroid of the class’ M dn E and the transversals of |J are

precisely the baéeé of the induced matroid. ' //

We conclude this chapter with a necessary and sufficient condition

for a matroid to belong to'the:class M..

THEOREM 5.3 Let M(E) be a matroid of the class [| whose independent
sets are the fhmiiy [ . Let (C be the fbﬁily of circuits of M(E) .

Let

["=(I: 1 €], b¢ I whereb is acoloop) !

and for 1 e |, CI'= (ca: aelC elacl, lCa|m1'n).

(A particular 'Ca might not be unique, and the family might have
some rpepetitions of C,'s.) Then ME) e M if and only if for

any CI , at most i eircuits have cardinality < i+l for 1 < i s |I|-1.

Proof: Suppose M(E) ¢ M and E is p-ordered. Consider any
= » . 7 . -
I={ag, «oos @b e ' and let (= (Cypy .ony Cp) 5 where

Cinay; #¢ and IC;1 s minimum. Then |C.| ? “(aji) > i
from Lemma2:3and at most i circuits have cardinality < i+l .

This applies for 1 < i < |I|-1."

Conversely let M(E) be a matroid with circuit structure as

descfibed. We define a function u on the set E as follows:

if a is a loop, let u(a) =0
if a is a coloop, let u(a) = p(M) ;-
if a is neither a loop nor a coloop, let u(a) = [C | - 1,

where C. n a # ¢ and |C_| minimum.
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This function. u induces a matroid M'(E) ¢ M , with the family of
independent sets J . We have to show that J =1 . For any 1 e ]

let [ = {bl, cees bs} U {b cees bt} , where the first subset is

s+1’
a member of ]’ and the second is not. Because of the assumed

circuit structure, I ¢ J.

For Je J welet J= {Cl’ cees cm} where i > j= “(Ci) > u(cj).
Suppose for some i <m, {cl, cons ci} is indépendent in M(E) but |
{Cl’ .;., Ci+1} is dependent. Then the latter contains a circuit of
size at most i+l and that ciréuit must meet c.., .
“(Ci+1) = 1 , which is impossible since J 1is independent in M'(E) ,

Therefore

so we conclude that the independence of {cl, cees ci} implies the
independence of {ci, coes ci+1} . Since at most one of the circuits
of M(E) meeting {cl, c2} has cardinality < 2, {cl,-cz} _is
independent in M(E) , and induction on i gives us that J is

independent in M(E). . o //
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CHAPTER 6

In the previous chapters the ground set upon which the matroid is
induced is finite. This chapter deals with infinite ground_sets, and in this
case we use the term pregeometry rather than matroid. From Crapo and

Rota [ 5] we have the fo]]dwihg definition:

A pregeometry G(S) is a set S endowed with a closure relation o

having the following properties:

(i) the exchange property: if a e o(A ub) and a ¢ o(A) , then
b e oA u.a), |

(ii) the finite basis property: any A c S has a finite subset

A; < A such that o(A.) = o(A).

f

(We recall that a closure relation o is defined by the properties

(a) AeolA), and (b) A <o) >o(A) < of8) ,
| for all ABcS .)

As for matroids, a pregeometry has a family of 1ndependent sets, and
the pregeometry is cdmp]ete]y defined by this family. The family |
turns out to have the same propefties as the collection of independent
sets of a matroid, namely:

~

(1) dclel é’ Je |

(2) I,0e] and |I] > |J| > there exists an element x ¢ I\J
such that J u x e [. ‘
In addition property (ii) above, the finite:basis property,vensures that
(3) all members.of | are finite, and have finitely.

bounded size.

Therefore a pregeometry G(S) consists of the non-empty set S, together
with a non-empty family | of subsets (called the independent sets) of S,
satisfying (1), (2) and (3) above.
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We are concerned in this chapter to show that the characterisation
of the class M matroids revealed in Chapter 3 carries over to the

class of pregeometries induced in the same manner as M .

A restriction GT(S) of a pregeometry G(S) , or a subgeometry as
Crapo and Rota call it, is the set T endowed with the closure relation

_Orest given by
°rest(A) = g(A) n T5

It is easy to show that a restriction is a pregeometry.

LEMMA 6.1 1f G(S) <s a pregeometry on a ground set S and T is a

finite subset of S , then GT(S) 18 a matroid. //

LEMMA 6.2 Let the function u:S > I be bounded above. Then y defines

a pregeometry G(S) whose family | of independent sets is given by

del,and 1e] ifandonty if max{u(a): a ¢ J} = |J|
L forall $FJdcl.
Proof. Since u s bounded above we are assured of the existence

of max{u(A): a ¢ A} for all A cS. Otherwise the reasoning is the

same as in Lemmas 2;1‘and 2.2. v /Y

We can, without loss of generality, assume that 0 < u(a) < p(G)

for all a ¢ S, since the function v:S - Z given by

v(a) = min {max{0;u(a)}, p(G)} defines the same pregeometry as G. This

assumption is made for the rest of the chapter.

We call pregeometries derived in the above manner pregeométries of

the class (3 .

- The next proOf-réquires Rado's Selection Principle which is as follows:



56.

Let ] = (Ai: i e I) be a family of finite subsets of a set S. Let

J denote the co]]ectioh of all finite subsets of the index set I and
for each Je J , let 6, be a choice function of the subfamily

(Ai: i € J) . Then there exists a choice function 6 of |J with

the properfy'fhat, for each J ¢ J, there isa K with- JcKe N

and 6|J = eKIJ' (For proofAsee Mirsky [151.)

THEOREM 6.3  The piegeometry G(S) is in ( emactly when each of

its finite restrictions (submatroids) is in M .

Proof: If Gu e,G- then M = Gﬁ]T is defined by ulT , using the

same reasoning as in Lemma 2.23.

Conversely if for each T cc S, G|T = Mu for some up:T > 7,
. T
~we define a family (X)S by :

X =10, 1, 2, ..., o(G&)} forall acs.

Then for each T cc S the function u, is a choice function. Rado's
Selection Principle ensures the existence of a choice function

u:S >+ Z with T c Kee S.=> i s HK|T T MT o and as X -= {0,1,2, - .- pCa)}
for all a e S, this choice function is bounded. The function u |

induces a pregeometry Gu on Z.

It remains to show that Gu is identical to G. This will be so

if I “independent in Gﬁ<=>I independent in G .

If 1 is independent in G then max{p(a): a € J} = |J| for all
,'J < 1 , whence max{ulK(a): a ed} 2 |J] for I cKeccS. Therefore

I is independent in 'Mul = G|K , and hence in G .
. 1K

Conversely if I is independent in G then |I| <« and there |

exists K with I c Kcc S such that I 1is independent in G|K =M,
. |K



57.

Therefore ,max{ulK(a): aedlz|J] forall Jc 1, whence

max{u(a): a ¢ J} = |J| for all J c I, and I is independent in Gu' //

We define a minor of a pregeometry to be any contraction of a

. finite restriction.

THEOREM 6.4 (G <s characterised by the.famiZy kM s, k=2,3, ... of

excluded minors.

Proof: This follows immediately from Theorem 6.3 and Theorem 3.9. /]

THEOREM 6.5 Each GU ¢ § 7s characterised by having a finite chain

o(¢) = Fy cF is the unique minimal

0 R

< Fk < S, where F,
non~trivial extension of the flat . Fi ,. unless 'Fi has no.such extension

i+1
in which case F1.+1 = E. Fach flat in GU 18 a direct sum of some Fi
and a free matroid. B
Proof: ~ If a pregeometry G has such a chain then so does any finite
restriction. Therefore, by Lemma 3.3., any finite restriction is a -

matroid in M , whence G e G-

Conversely let G e G and suppose G has two minimal non-triVia]

extensions F and F' of a flat H. Then there exist circuits C c F

and C' < F' with f(C) = f(F) and f(C') = f(F') . Now in the

(F) and o (F') are minimal non-trivial

restriction G|C u C', Opest rest

extensions of oreﬁt(H) , but since the restriction is in M we have
Orest(F) = Orest(F') , i.e. Orest(c) = orest(c ). It follows from
this that f(C) = f(C') , whence F = F' . We begin the chainm with the

closure of the émpty set and from the above the rest’follows.

Any flat is (i) free, or:(ii) an Fi L or (iii) a free extension
of an Fi . Therefore a flat F is the direct sum of Fi , for some

0<i s k, and the free matroid MI(F\F5) . ‘ //

/

)
|
}

|
!
1
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THEOREM 6.6 If G e  then it.is transversal.

Proof: Let Si = {a e S: pla) =i} for i=1, 2, ..., p(G). Then
U= (Si: 1 <ic<p(G)) is a family of subsets of S whose transversals

are bases of G . : - //

THEOREM 6.7 G ¢ § <f and only if it is transversal having a

presentation of.a fumily'of nested sets.

Proof: Suppose G e (3 . Then by Theorem 6.6 it is transversal and its

family of representable sets has the desired property.

Conversely let G be a transversal pregeometry with family of

subsets |J = (S.:

i < S

1 <i < p(G)) having the property .Sp E-Sp-l en 5.

We define a function u:S.+ Z by

(]
e

u(a) if ace Si\S for 1 <14 <p-1,

i+l

u(a) = p if ae S

u(a) = 0 if a¢sS
Then the pregeometry Gu induced by u has as its bases sets which
can be described by B = {al, ;..,.ap: u(ai).z'i for 1 <1 < p}.
It js obvious that»the_transversa1s of |J and the bases of Gu are

precisely the same, i.e. G = Gu e . . //

The other properties of the class [ carry over to the class

where appropriate.
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CHAPTER 7

In this chapter we examine the matroids induced by u:Er + 7 via
the submodular function f:2E % Z. This somewhat enlarges the class M ;
for instance some simple graphical matroidé were'exc]uded from ;M But
afe induced by the function defined on r-sized subsets. It also
provides matroids with a richer structure; |

We begin with the function u:Er +~ Z and, as in Chapter .2, obtain

f£:2F + 7 as follows. Let

f(A) max{u(al,...,av): 81500050 € A} for all ¢ # A < E,

r

f(R) min{u(al,...,ar): ays-.sa, € E} for A =¢.

Functions derived in this manner are said to be]ong'to the

class F'.

Functions 6f this class are always increasing functions, but they |
are not always submodular. Consider forvexamp1e ‘u:E2 > Z defined
"~ as follows. Let wu(a,b) be the intéger part of the distance between |
the points a and b 1in Euclidean space E . Let A = {a,b} s
B = {c,d}, and u(a,b) =5, wn(c,d) =5, u(a,c) = 12, u(b,d) = 12.
Then obviously f(A) + f(B) < f(A u B) + f(A n B).

There are some functions on r-sized subsets which induce submodular
functidns'in.the.manner'of Chapter 2 but.it is not the purpoﬁé of
this thesis. to characterise thém, if indeed this is possible. However
we construct one such function as follows:

.~ be functions from E into Z . We define a function

Let Hps oees u
wE" + 7 by

: u(al,...,ar) = ul(al) + ...+ “r(ar) ‘for all . a; E.
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It follows that f(A) = max{ul(al) + ...+ “r(ar): 8150058 € A}

‘whence f(A) = fle) + ...+ fr(A) , for all A < E , where
fi(A) = max{ui(a): aeA}l “for 1<i<r. Inorder to distinguish the
function f from that of Chapter 2, we designate it f"  and we have

r

floef 4o+ F .

LEMMA 7.1 »The function fr:ZE + 1 is submodular.

Proof. For any A,B cE

AnB) + ...

f7(AuB)+f(AnB)=F(AuB)+...+f(AuB)+fl

+'fr(A n B)

IA

fl(A) + fl(B) + ... +‘fr(A) + f%(B)

f(A) +£7(B) . | i

The function u therefore defines a matroid on E . It is natural
to enquire what functions on r-tuples are expressible as sums of
functions on singletons. Thé'an§Wer'is that there are not very many,

as the next lemma shows. -

LEMMA 7.2 A function w:E x E+1 can be written
u(ai,aj) =_u1(a1) + uz(aj) for all ai,aj e £ if and only if-
u(ai,ah) - u(ai,ak) = u(aj,ah) - p(aj,ak) fbg all ai,aj,ah,akve E.
: ’ - N .
Proof. . vau(ai,aj) ulﬁai) +)u2(aj) for»§11 ai,aj then by
substitut1on we hgve[ “(ai’ah),' u(aifak) = u(aj,ah) - u(aj,ak).
Conversely suppose we have a function u:E x E ~ Z such that

U(ahaak) '_U(ahaaj-) = U(a.iaak) - U(a.i,aj) .-. Then- U(a.iaaj) is
determined by the 2n - 1 terms u(al,al) seees u(al,ah),u(az,al),

ces u(an,ai), where |E| ='n. . We must show that there exist

ul,uZ:E > 7 SUCh that the n2 equations
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ul(ai) + uz(aj) = u(ai,aj) are satisfied. There is an infinite
number of solutions for ul(al), s ul(an) , uz(al), ...,uz(an) to

the 2n - 1 equations

Ul(al) -+ UZ(al) =']—l(a19al) .

ul(a1)_+ wola ) = u(ay.a )

uy(ag) + (ay) = lagea)

u(a ) +'u2(a1> = ula »a,)

and by fixing an infeger value of say ul(al) we obtain one integer
value for each of the others. It remains to show that thié solution
is consistent with the remaining n2 - (2n-1). equations. This is so
since . |

up(ag) +uy(ag) = wy(ay) + uz(al) +ulay) + uy(ay)

- uylag) - uylay)

At

u(azay) + ulagsay) - u(al,al)‘

u(ai,aj) . _ //

Similar but more complicated results apply for u defined on

larger subsets.

LEMMA 7.3 deleted
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Since fr is submodular it defines a matroid on E thse
independent sets are given by [ = {I: f'(J) = [J| for all J < I} .
We designate'this matroid as M , and say that it belongs to the

class Mr .

We define the union of r matroids Mi, s Mon E ‘as the
matroid whose independent sets-are each precisely the union of r -
subsets of E , each of whjch is independent in a distinct Mi . The

matroid 'Ml U oo U Mr 1s_defined by the collection | of.independent

sets given by [ = {I: I = Lu..ul,le Ii} » where Ii is

r.’
the collection of independent sets of the matroid Mi .

2

LEWA 7.4 Suppose ° =, + f, and that 2, and f, induce the
matroids »Mz, Ml and M2 respeétively on a ground set E. Then
M2 =M uM

1 2

- Proof. For any 11,12 independent in M1,M2 respectively,
2 _ ' :

f (Il U 12) = fl(I1 u 12) + fz(I1 v 12) > fl(Il) + f2(12) >
1,1+ 11, |

[\

111 U IZI;
COnversely'$uppose'theré exists a set I of cardinality m+l which
is independent in M2 but cannot be partitioned into two sets, one
of which is independent M1 and one in M2 . Funther suppose that
all sets of size =m can be so partitionéd. We chobse a e I such -

that ul(a) > ul(x) for all x ¢ I\a , and partition I\a into



63.

I1 and 12

Then fl(I) = fl(Il) = |11] = ul(a) , and furthermore there exists no

which are independent in M1 and M2 respectively.

b e I, such that y,(b) > f,(I,) , otherwise I could be partitioned

1
as required.

. nM o :
- Theset I,ua is dependen%c whence f2(J2 ua)s= ]le for
- ) 2 _ _ _
some J, 5‘12. Suppose qz =1, ; then f (1) - fl(I) +,f2(1) = |Ill
+ ]Izl <-|1] , which contradicts the independence of I in M.
Therefore J, < I, and uz(a)‘s f2(J2) = ]JZI. If there exists no

b e I, such that uo(b) > fZ(JZ) then (I, v J,ua)= |11| + IJZI ,
which is impossible since the set I1 u‘J2 u a 1is independent in M2 .
Such an element therefore must exist, and by interchanging a and b

we obtain I1{1) and 137 ub. Again there exists ofl) < 1{1) b

with J, c Jéi) and c e (I2 ub)\Jéi) such that f2(J§i)) = ldéi)l = uz(c),

2 L\
otherwise I would partition as required. But then I§1)-U'J§1) uC
would be dependent in M2 , unless it is possible again to interchange
elements as above. The Tatter must be true, and in this manner after a
(s) (s) '
L™ 1 of the
and 12- respectively, and an element x. not an

finite number s of interchanges we arrive at

same Ssize of I1

‘element of either, such that 'fl(I) = fl(Igs)) = 111[‘ and.
fz(I) = f2(1és)) = IIZI = “Z(X) » which contradicts the independence of
I in M2 . We conclude that if independent sets of size m -in M2'

partition as required, then so do those of size m+l .

For 1] =1, f%(I) 2 1 implies that .(I) 21 for i=1or 2
or both, whence I = I1 v] 12 where Ii is independent in',Mi for
i=1, 2. ' . T //
We now extend.the 1emma to'the general case of the union of

r matroids.
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THEQREM 7.5  Suppose Fio ooes e F and define matroids

Ml’ cens Mr~e M respectively, and that £ = f1 o4 fr
defines the matroid M « M . Then M = Mpou... qu .
Proof. Suppose M" = M1 Uese LJMm for somé, m < r, and there exists

I independent in 'Mm+1 which cannot be exbressed as-the union of
m+l sets, each independent in a distinct. Mi . .We take the-union of
maximal sets of I , eath of which is independent in a distinct My s
this is obvious]y.a proper subset of I . Therefore there exists

a e I which when joined to each of these maximal sets forms a set

~which contains a circuit in the appropriate Mi .

It follows from the\ebove that I 1is dependent in M Using

! m+1

this and the fact that I 1is independent .in M , we have

+104 - 31! for- .
L) 2 £00) e+ £ (0) 2 9] forall g e L,
but 1K) = £,(K) + ...+ £ (K) < |K]

for some K c I . If Ki is the subset of K which is independent in
Mi , we have fi(K) > fi(Ki) > lKiI , whence fm(K) > |K] -1. But
#“+1(K) > |K| ,‘so it follows that fm+1(K) > 1. Therefore there exists
b e K such that pm+1(b) > 1. Suppose b =a ; then a is independent
in M ' |
b#a; thenb e I, for some 1i. and ui(b)-f 0. It follows that

» which is contrary to our original supposition. Suppose

(Ii\{b}) v {a} s independent in M, and b 1is independent in Mm+1 s

which also contradicts our original supposition. Therefore

u M implies that. Ml - My oeeu Mo Lemma 7.4

mael

m _
M o= M1 U ..o

shows that the result is true for m =2, so ifvis true for m = r by

induction. ' | o : /1
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_ LEMMA 7.6 deleted

LEMMA 7.7 Suppose ui(a) =0or 1l for all a € E and for
i=1, 2,..., v . Then a set {al,...,ar} ' is independent in Mr(E) o
if and only if the ui's can be permuted such that “i(ai) =1 for

i=1,2, ..., r.
" Proof. Clearly the'set is indepehdent if such a permutation does exist.

Conversely assume {al, ey ar} is independent. Suppose the
result is true for independent sets of size m <r , -i.e. there exist
Hpseeosll such that u.(a.) =1 for i=1,2, ..., m. Ifitis

not true for m+l then o (a m+1) =0 for j>m. Also if “j(ai) =1

for j>m and i <m then ui(a , otherwise by rearrangement

m+1)~—

of the u's’ the theorem is true for m+l . But since a_., fis

independent some 1y, maps'it to 1, so we conc]ude that “j(ai) =0

for j>m and i <m. This plus My (a ) =0 for j>m gives us

m+1
that f({al,.. 3041 }) = m, which is impossible since the set is
independent. Therefore if the result is true for .m it is true for

m+l. Clearly the result is true for m=1. , //

Suppose now that u(al,...,ar) = ul(al) + ...+ ur(ar) and that
the maximum value of any Wy on E is k . Then we can write

A (PR S IR TI
By u11 _ u1k » Where

Wij@=1 if s u;(a)
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and “ij(a) =0 if j > ui(a).

In our usual way we define a function ’fij:ZE > Z(2) as follows:

fij(A) = max{uij(a):a e A}.

Then for'any A c E it is easily verified that

fi(R) = fi (A) + ..o+ . (R).  Therefore f =f )+ ... +f, .

LEMMA 7.8 M" =M., u ... u My » where My, is the matroid defined

11
by Hije

Proof . It is only necessary to prove that Mi = Mil U veo U Mik .

If 1 is independent in M. then fi(J) > |J] for all
J < |I] , whence there exist distinct a el ,m:= 1,2,..., |1,
such that ui(am) >m, i.e. “im(am) = 1. Thefefore a_ s

independent in M. =~ and M, E-Mil U oo u My
Conversely consider a union Iil U vee U Iik » Where Iim is

independent in M. are non-empty

im* e suppose that all the I,

im
since if the inclusion we seek is true for this, it is true for some

empty. Now I.. = {a}, where a is such that uij(a) =1 for js<m,

which implies that ui(a) >m. Therefore I1.1 U «oo U Iik'is independent

in \Mi\, whence M].1 U oo U Mik < M. //

We designate the closure in the matroid M e er by the relation

E E

o':2° + 2°. The following explores the structure of closures in the

class Mr and their relation with closures in matroids of the class

M.

LEMMA 7.9. In the matroid M'(E) e M , for all A E_E R

o' (A) = A u B, where B <s maximal with respect to f'(B) = |J] ,



L I=b '
(V) o n > (V)JD usyz | > Lw proagvu

oyg U diqsuo¢4vzaa 2aN8070 aq4 81 33 « 3z:-Lo I 1174 viE

// . |Il - IJII +.... + III| = (I)J 0s pU? ‘vl‘... ‘Z c-[ = |.
404 |L1| = (!I)LJ = (I)L; uayy fsaquadOJd paatnbau ay3z butaey

1 I

JI e I uyim g Q'-J- 0 I =1 asoddns A|as43Au0)

‘W uL juspuadapur [ 40 395qns [ewixew @ st Y1 os pue
c¢nts = (Dt weurang cpfr) = (fnts opue roccntrea
.eouaqM"‘|“1| ETTE | Il J TR (If)IJZ 11

adogauayl ¢ |'1] = (‘)ty = (1)t aeys pue 'y uL juspuadspur st
o

!I SU3YM JI n:-: I =1 23°ey3 Mmouy oM '|1[ = (1)3 23soddng ‘jooud

wers g = aof |1 = (F1)fs pup Yo by wr 1 Jo sesqns
‘quopuadopuy qounzow © 83 '] adeya 1ttt g '1 =1 Jf2 Aquo pup f2

1] = (1) wouz ° W> W uz quopuedopup s1 [ osoddng 01" [ WWHIT

"13S SLy} 3N0ge dJ0W SN S|} PuuP| 3X3U
ayr |e] = (P)JJ eyl yons p 39S ﬁUapuadapu; aqq 1Nn0ge pausaduo0d

3Je 3M BUNSO|D BY} 4O 3UNONJ3S 3Y3 BuLuLwualap uL A[SNOLAQQ

/] S gny=(y),0 ad0gadeyl CgNISgny pue > g

douaym ¢ () 3 = (), uwsul c[u| = (4) 4 (1) pue uapuadapu
st.) (1) 03 309dsa4 yztm [ewrxew st 9> x'_axaqm <yl o= Q)JJ

01 309dsad Y3LM [ewLXew © SL (g d43YM ¢ q n 3'3 y 9asoddng

‘gnySy ALsnotaqp ‘anoqe

PaqLJAISap Se g Ny 29S © 9Aey aM 3 oy Aue J0) 3soddng ;;ooxd

el = (0) 4 (11) pup © (3) M

uz quopuadopuz s1 p (L) 07 29edsad Y3310 JpULIDU ST Y o 0 2d9yn

19



68.

Proof. Suppose D g_or(A) . Welet D= b, U D, 1

< B\A, where B is the set defined in Lemma 7.9. Obviously

with D, c A\B

and D2

= o;(A) . If J= J; 0 ... 0J, is the maximal independent

set contained in A such that £7(3) = |J| , then Jy < I for

D

i=1,2, ..., v, where Ii is the maximal independent set contained

in A such that f.(I.) = |I,| . Therefore f'(D,) = 9y + v+ [0,
< |Il| + ... IIPI , whence fi(DZ) < |Iil for at 1east one i , and
) 02 S-oi(A)f : . | : S //

We move on now to consideration of circuits in matroids of the

class M

LEMMA 7.12. If C <is a circuit in the matroid M e« M then

C 3.C1 U...uC_ , where Ci 18 a eircuit in M_i e .

r

Proof. If C is a-circuit in M" then for any a e C, C=d u a
where J s iﬁdependent in' M" and f(C) = f(J) = |J|. Therefore
by Lemma 7.10 J = Jyo...09. , Ji being a maximal subset df J
independent in Mi'; and ui(a) < lJil for i=1,2,...,r. It
follows then that 'Ci cdjua where Cj is a circuit in Ms s and

so C 3_C1 U voe U Cr . | | /]

LEMMA 7.13. If C s a circutt in M" then for each i1, 1 <1 <r,
there exist at least two elements b,C € C such that

U.I(b) = U.i(c) = IJ-lI .

Proof. If not then we only have say u;(b) = IJil and f(C\b)< |C| -1,

whence C is not a circuit. - //

It is now possible to construct circuits in M. We select

M

independent sets Jl’ J2, cen Jr from Ml’ 93 tees Mr respect1ve1y
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such that f.(J.) = f,(J,) forall ik, f,(3;) = [d] for all i,
and the J.'s are disjoint. If there exist, for each i , at least
two elements b,c e J, U ... 0 J. such that “i(b) = ui(c) = IJiI
then we join to the above disjoint union any a ¢ E such that 0 <
“i(a) < IJil for all i , and this givés a-circuit in M" . If

for any i , only one e]emeﬁt‘ b in J, U ;.g ﬁ J. s such that
ui(b) = IJiI and otherwise ;uk(a) s.|Jk| , and this joined to the
disjoint union of independent sets is a circuit in MC.If

J = Jy0...0 Jr"as above and there exists a ¢ E\J such that

ui(a) = IJil for all i then C =Jua isa circuit in M and

we have C = C1 U ... U Cr , Where Ci = Ji ua 1is a circuit in Mi .

If Bl’ ""Br are the collections of bases of the matroids

Moy o Mr e M then clearly the bases of M" are the maximal

1’
members of the family (B1 U ... uBB;e Mi)'

We turn now to the consideration of dual matroids of those in
*
|ir. The matroid M"  has as its bases the sets which are the
complements of maximal members of the family (B1 U ... uB: Bi € Bi)'
More succinctly, the bases are the minimal members of the family
‘& * *_ * *
(B1 n...nB.: B« Bi)’ where Bi is the set of bases of M. .
. T
Hence in general M does not belong to Mr . However below is an
example of a member of MZ ‘whose dual also belongs to M2 , in

fact .it is self dual.

Let E-é.{al, a2,'a3, 34} with 11,12:E 1 'two standardised
functions . (levels) as shown in figure 8 below. '

1 ‘ 1

1 : A 2 oL
1 ag 3, 1 I ' a, a;
_O Y 0 a4' as
Fig 8. 1, and ]2 on E

1
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Then 11 and 12 define two matroids M1 and .M2 having collections
of bases ({a3}, {a4}) and ({al}, {az}) respectively. The collection

2 _ . ‘
of bases of M~ = M1 u M, is ({al, a3}, {al, a4},.{§2, a3}, {a2, a4}).
The matroids M; and M; have standardised functions or levels as

shown in figure 9.

* *

L A2
3 ay 33 a,
2 a, 2 v ay
1 a; a3 1 a,

. % %
Fig 9. 11 and 12 on E
*
1
({a4,a2,a1}, {a3,a2,a1}) and ({al,a3,a4}, {az,a3,a4}) respectively,
2

_The matroids M, and M; have collections of bases

*
whence the collection of bases of M2 is precisely that of M

As we remarked in the beginning‘of this chapter, éome very simple
graphical matroids, such as that on a quadrilateral with onéldiagonal,
are not in ] . However the class M |, being more‘comp]ex, does
admit some of these, including the example mentioned above. This is

shown below, and we chose matroids of rank 1 td build the required

matroid.
— %1 % %3 % %
2
w1 0 0 o
4 3 3y w1l 0 1 0 1
a5 M3 0 0 0 1 1

Fig 10. Quadrilateral with diagonal



/1.

A further complication is admissible in M5 , where the Mi's are

of rank 1, as shown in figure 11.

123456 78 9
/ 7 wl{t 10000000
u210101000'0

z S € | uf0 00110100
Mg |00 000110 1

5 —— ¥ J0.0 0000 01 1

ng 11. Me¢ Ms is graphical matroid

It seems that the graphical matroid on a chain of triangles in
thé mannér of figﬁre 11 above could be represented as matfoids-be]onging
to the class Mr for some r. However the limitation of this class
for representation of graphical mafroids becomes obvious when we
consider a quadrilateral with two diagonals, as'the following Temma

shows.

LEMMA 7.14. It is not possible to find ul""’”r such that they
define a matroid M e M on the edges of the graph below which is

identical to the graphical matroid.
' ' a

4

Proof. It is possible to find the required functions if and only if
it is possible to find a certain number of functions which map the
edges to 0 or 1 only, such that these functions define the necessary

‘matroid. We consider then only functions mapping the edges onto 0 or 1.

Suppose it is possible to find Hys Hos ees i.e. f,, f

_ 1> 22
mappingVOnly to 0 and 1, such that they define the required matroid.
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Then for {a,b,e} there exist, without loss of generality, f., f

1 72

which each map the set to 1. Further, fi({a,b,e}) =0 for

i#1or 2, whence fl(x) = fz(x) =1 for at least one x e {a,b,e}.
Assume x = e ; then fk({c;d,e}) = fj({c,d,é}) =1 for some k,j,

and fi({cgd,e}) =0 for i #k,j . It follows then that k and j
are 1 énd 2, whence f({a,b,c,d}) = 2 which is 1mpqssib]e¥. Therefore
we can assume, without loss of generality, that fl(a).= fz(a) =1,

If fi({d,f}) =1 for i#1or2 then f({a,d,f}) = 3 which is
impossib]e. Therefore f({a,b,d,f}) = 2 which is also impossib]e and

we conclude that it is impossible to find the required fl; fz, oo o 1/

We saw that matroids of the class M are transversal. This

result is now extended to the class Mr, and strengthened.

THEOREM 7.15. M" ¢ M is transversal.

Proof. From Lemma 5.1 M;, ..., M  are transversal matroids, whence
there exist families (X)Il, e (X)Ir of sets of E sgch that

the partial transversals of (X)I. for 1=1,2, ..., r are
precisely the independent sets of1 Ml’ cees Mr respectively.

Therefore the independent sets of M are precisely the partial

transversals of (X)I where 1 = I1 U voo U Ir . : //

The following theorem Shows that the reverse is also true.
THEOREM 7.16. Let M(E) be a transversal matroid of rank r. Then
M(E) < [f.

Proof. Let | be a presentation of M(E) and let (El,‘..., Er)

be a subfamily of |{J such that its transversals are bases of M(E).

We define functions Hys oo “r:E +~ Z as follows. Let ui(a) =1 for



73.

ae Ei and “i(a) = 0 for a ¢ Ei;

Suppose I = {al,...,am} is independent in M(E). Then there
exists a subfamily (Eil""’Eim) of |J with aj e Eij and
“j(aj) =1 for 1<js<m. Therefore I 1is independent in the

matroid M" defined by ul;...,ur.
Conversely suppose I = {al,...,am} is'independent in M" defined

by My s.essHp- ‘Then there exist Mjgs----Hiy such that

uij(aj)-é 1 forl <] < m, where éjf € Eij and it follows that I

is independent in M(E). ' . - //

We now definev Mf to be the class of matroids consisting precisely
of all subclasses Mr , r finite. Then we have the following exact

description of the matroids of this thesis.

THEQOREM 7.17. The class of all finite transversal matroids is

exactly Vf. -/
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A FAILED CONJECTURE

We remarked in the introduction that one motivation for this
study was the hope of building up from functions defined on singletons

to functions defined on subsets of size r, in order théreby to obtain

E

a function f:2- - Z which is 1dehtica1 to a well known submodular

function or perhaps-even to the rank function of a well.known matroid.

Another approach is to begin with a submodular function f:ZE > 7
and define f':E" »~Z by f'(A) = max{f(B): B <A, |Bl <r}. We

1 is submodular and we conjecture that if £ is

r+i1

know that f

" submodular then f

functions fl, fz, to fP , where p 1is the rank of the matroid defined

_is also. From this we would have submodular

by f, and furthermore fP and f define the same matroid.
rb . . r+l .
Howeverr f  being submodular does not imply that f is
submodular as the following example shows.

let E = {a,b,c,d} with f:2E > Z given by

f(a) =2 , f(b) =f(c) = f(d) =1
f(ab)

f(bc) = f(cd) = f(ac) = f(bd) = 2,

f(ad) = 3

f(abc) = 2, f(bcd) ; f(cda) = f(dab) = 3
f(abcd) = 3 .

Then f 1is increasing and submodular. We know from Chapter 2 that

1 is submodular, but f2 is not, as can be seen by considering the

2

f
sets A= {a,b,c} and B = {b,c,d} . Then f2(A) + f(B) =2+ 2,

while f2(A 0 B) + f2(A uB) = 2 + 3.
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