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Abstract 

Plants develop through at least three distinct phases after germination: a juvenile 

vegetative phase; an adult vegetative phase; and a reproductive phase. Therefore, there 

exist two main ontogenetic transitions, the juvenile-adult vegetative transition or 

vegetative phase change, and the adult vegetative-reproductive phase transition or 

reproductive phase change. The genetic and physiological control of the transition to 

flowering has been studied intensively over the past four decades but the other major 

transition has received much less attention. This study investigates the genetic and 

physiological regulation of vegetative phase change in the garden pea (Pisum sativum L) 

using a novel heterochronic mutant, accelerated phase change (apc), which expresses a 

consistent difference in the rate of vegetative phase change when compared to the wild 

type plants. Genetic analyses, using morphological and enzyme markers, revealed that the 

apc locus is on linkage group 131 (between a and aat-p genes) of the garden pea. 

When the apc and the WT plants were grown under 8 h and 18 h photoperiods to 

determine the effect of environmental cues on vegetative phase change, the results 

demonstrated that not only is the timing of vegetative phase change affected by 

environment but the vegetative and reproductive phase changes are regulated 

independently. 

Using isogenic lines differing only in the apc mutation, the nature of changes in the 

morphology of the shoot apical meristem (SAM) associated with the vegetative phase 

change was examined. The dimensions of the SAM (width, height and volume) were 

measured without fixation using an environmental scanning electron microscope. The 

materials were harvested at a critical time (11 days of age) when the vegetative phase 

change was being initiated in the SAM of the apc mutant but not the WT. The study found 

that the dimensions of SAM are larger in the apc mutant than in the WT plant suggesting 



that the vegetative phase change to the more complex leaf type is controlled genetically 

via changes in SAM morphology. 

Reciprocal grafting techniques showed that vegetative phase change was not significantly 

altered in the apc scion by the WT stocks and vice versa. This indicated that the site of 

action of the apc mutation is in the shoot system. 

To determine whether vegetative phase change involved changes in endogenous hormones 

in the shoot apex, the levels of GA1, GA20, IAA and ABA were quantified using GC-MS-

SIM. The plant materials were harvested at 11 days after sowing, at the critical time that 

vegetative phase change was being initiated in the apc SAM, but not in the WT plants. 
Differential changes in the hormone levels between the apc and W7' SAM were sampled 

by excising only the 2mm long shoot apices. The results showed no significant difference 

in GA1, GA20 and IAA levels between the apc mutant and the WT, which indicates that 
these hormones are not involved in the vegetative phase change in the garden pea. 

Although, a significant difference in ABA levels was detected in the SAM of the WT and 
the apc plants, ABA does not appear to be a crucial hormone in vegetative phase change. 

Further work showed no significant differences in the rate of vegetative phase change 

between a prominent ABA-deficient mutant (wi/) and the WT (Wit). The ABA-deficiency 
of the apc mutant does, however, appear to have a small effect on drought response, with 
the apc and the WT plants showing differences in transpiration rate and stomatal 

conductance. 
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CHAPTER 1 

General introduction 

1.1 Introduction 

The plant shoot passes through a series of different developmental phases during post-

embryonic growth (Poethig, 1990; Bassiri et al., 1992). This development can be 

broadly divided into: a juvenile vegetative; an adult vegetative phase; and a 

reproductive phase (Evans and Poethig, 1995; 1997; Lawson and Poethig, 1995). With 

the onset of the juvenile phase, the shoot apical meristem starts to produce a stem, true 

leaves and axillary buds (Poethig, 1990). The duration of this phase varies between 

species (Besford et al., 1996). In some species, such as Arabidopsis, the juvenile phase 

lasts for a few days (Martinez-Zapater et al., 1995; Medford, 1992) whereas in Hedera 

it persists for many years (Hackett, 1980). The adult vegetative phase is often 

characterized by different vegetative traits e.g. leaf shape, leaf trichome density, and 

phyllotaxy (Hackett, 1985; Martinez-Zapater et al., 1994); it may also be defined by 

the ability of the shoot to undergo sexual reproduction (Hackett, 1985). 

The transition to reproductive phase is indicated by the transformation of the shoot 

apex from vegetative into reproductive forms such as an inflorescence, flower, or cone. 

This phase is the last phase in the life of the shoot system for some plants (i.e. annual 

plants), but not for others (i.e. perennial plants). In annual plants, this is the final 

transition before senescence, whereas in perennial plants the shoot system may be 

perpetuated by a lateral vegetative meristem after the terminal meristem becomes 

reproductive or the primary meristem remains permanently vegetative and lateral 

shoots produce the reproductive structures (Poethig, 1990). 

Thus, during post-embryonic growth the plant shoot undergoes two main transitions, 

namely, the transition from juvenile to adult vegetative (or vegetative phase change) 

phase and transition from adult vegetative to reproductive phase (reproductive phase 
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change). Whether the vegetative phase change is linked to reproductive phase change 

is still unclear (Evans and Poethig, 1995). 

1.2 Vegetative phase change 

Although vegetative phase change has been studied for many years, the regulation of 

this process remains unsolved (Poethig, 1990; Bongard-Pierce et al., 1996). This may 

be partly because many aspects of phase change studied in woody plants differ from 

that in herbaceous plants (Poethig, 1990; Wiltshire et al., 1994). Also vegetative phase 

change (i.e. leaf heteroblastic development) is affected not only by the developmental 

program of phase change in the shoot (Brink, 1962), but also by the factors of 

physiological aging (i.e. size and vigour) (Allsopp, 1967; Wareing and Frydman, 

1976). However, in woody plants the features resulting from the physiological aging 

are distinct from those resulting from the phase change because they can be reversed 

by the manipulation of the growth conditions of the shoot (Wareing and Frydman, 

1976). 

By contrast, developmentally regulated changes resulting in leaf heteroblasty in 

herbaceous plants are more difficult to distinguish from changes resulting from 

physiological aging because leaf form tends to be more plastic in herbaceous plants 

(Bongard-Pierce et al., 1996). The production of juvenile or adult leaf forms can be 

influenced by varying the level of exogenously supplied carbohydrate or minerals in 

such plants (Njoku, 1957; Feldman and Cutter, 1970 a, b; Steeves and Sussex, 1989). 

Thus it has been suggested that vegetative phase change or leaf heteroblastic 

development in herbaceous plants may be regulated primarily by quantitative changes 

in the physiology of the shoot rather than by a programmed switch in gene expression 

(Allsopp, 1967). 

Studies have suggested that leaf heteroblastic development is controlled by 

morphological and physiological factors that arise both within the shoot apical 

meristem (SAM) (e.g. Robbins and Hervey 1970) and from outside of the shoot apical 

meristem (e.g. Irish and Jegla 1997). Changes in SAM size following change in the 

leaf heteroblastic development along the shoot has been shown in some species such 

'2 



I General Introduction 

as Lycopersicum sp. (Whaley, 1939); Darlingtonia (Frank, 1976) and Arabidopsis 

(Robbelen, 1957; Medford et al., 1992). In Arabidopsis, the SAM enlarges in size 

during ontogeny as leaves increase in complexity (Medford et al., 1992). In many of 

these studies, although the results indicate that changes in the morphology of the SAM 

does occur, it is unclear whether this was coincidental or a causal relationship (Telfer 

and Poethig, 1994; Van Lijsebettens and Clarke, 1998). 

If SAM size is the principal factor in leaf heteroblastic development, the question 

arises whether the changes to the SAM are internally directed or is there a 'signal' 

produced outside of the SAM that induces the change in SAM size, which, in turn 

affects the leaf heteroblastic development along the shoot. 

It has been proposed that leaf heteroblastic development is controlled by a change in a 

signal produced from outside the shoot apical meiistem (e.g. Irish and Jegla 1997). 

Irish and Nelson (1988) observed that the vegetative phase change can be delayed by 

removing the leaves. This indicates that the leaves are a source of the signal. Grafting 

studies on Pinus radiata, Pinus taeda, Larix laricina, and Pseudotsuga laricine 

demonstrated that phase change results in changes in the growth habit of the apical 

meristem that persists even when the mature meristein is re-exposed to physiological 

conditions associated with a young plant, including input from a juvenile rootstock 

(Sweet, 1973; Greenwood, 1984; Greenwood et al., 1989; Ritchie and Keeley, 1994). 

This suggests that there is a chemical signal(s) transferred from root to the shoot that 

maintains juvenility. This is supported by other studies in Hedera helix and Ribes 

nigrum where it is suggested that the decay or decline of the signal produced and 

transferred from root to the shoot induces phase change, based on changes in the leaf 

shape (Frydman and Wareing, 1973 a, b; 1974; and Schwabe and Al-Doori, 1973). 

In contrast, Moose and Sisco's (1994) study using the g115 mutant in Zea mays 

indicated that vegetative phase change is controlled in a cell-autonomous manner 

because this mutant acted directly in the epidermal juvenile-to adult phase transition 

but did not affect other factors involved in the process of phase change. 

3 



1 General Introduction 

Regardless of where the regulator of the vegetative phase change is produced, the 

question remains as to the kind of signal effecting the process. Some studies in both 

woody and herbaceous species have suggested that the signal involves endogenous 

hormone(s). In Hedera, gibberellic and abscisic acid have been suggested as possible 

regulators of vegetative phase change (Frydman and Wareing 1973 a, b; 1974). The 

ratio of both hormones seems to affect the rate of the vegetative phase change. If the 

GA level in the plant was decreased but ABA increased, vegetative phase change was 

achieved. Evans and Poethig (1995) suggested that certain gibberellins (i.e. GA 1 , GA5, 

GA3 or other GAs) are required for vegetative phase change, because the application of 

those hormones can accelerate the vegetative phase change in the dwarf mutant in 

which the process was delayed. A study on the vp8 mutant of Zea indicates that a 

reduction in ABA levels cannot be related to a delayed vegetative phase change in that 

mutation. 

The involvement of environmental cues such as photoperiod on the vegetative phase 

change is inconclusive because some studies indicated that the vegetative phase 

change is an independent process from environmental factors (e.g. Wiltshire et al., 

1994), however, some other studies have demonstrated that photoperiod seems to be a 

factor in vegetative phase change (Martinez-Zepater et al., 1995; Telfer et al., 1997). 
Martinez-Zepater et al. (1995) have shown that short days (SD) delay the vegetative 

phase change, using trichomes as the indicator of vegetative phase change. 

Many complex morphological differences between species can be attributed to positive 

or negative changes in temporal parameters: time at which a process begins, the time at 

which it ends, and the rate at which it occurs (Alberch et al., 1979; Gould, 1982). In 

plants, such changes can also cause morphological variation within an organism 

because of the prolonged, polar nature of shoot growth. All plants undergo significant 

changes in morphology during the shoot growth. Leaf shape is one of the most 

conspicuous features of the heteroblastic development in both woody and herbaceous 

plants (Poethig, 1990; Hall and Langdale, 1996). Leaves produced on the juvenile 

shoot are usually smaller and simpler than those of the adult shoot and may differ in 

many other respects (Poethig, 1990, 1997; Smith and Hake, 1992). For instance, in 

maize, leaves borne on the juvenile shoot are not only shorter and narrower than those 

4 
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on the adult shoot, but their epidermal cells are of different shapes than those of adult 

leaves, and they lack the hairs present on the adult leaves (Poethig, 1990). 

1.3 Heterochrony 

Heterochrony is defined as a variation in timing of a developmental event in plants 

(Lord and Hill 1987). A major advance in the study of heterochrony was .the 

formalization of the terminology by Alberch et al. (1979). The application of the 

terminology to plants has been illustrated succinctly by Wiltshire et al. (1994), who 

suggest that heterochronic variation can be categorized into paedomorphic and 

peramorphic forms. The first form includes: pro genesis, neoteny and post-

displacement. Pro genesis results when the descendent reproduces precociously and, if 

senescence follows, the descendent can complete its life cycle while still in juvenile 

vegetative morphology. Neoteny results if the time to reproduction remains unaltered, 

but the rate of vegetative morphological change is slower. Post-displacement occurs if 

the onset of a particular phase of morphological development is displayed. 

Peramorphy is a form in which the descendent is vegetatively more adult than the 

ancestral adult, and this form can be attained by altering the same three variables in the 

opposite manner. If the time of reproduction is delayed but the rate of change in 

vegetative morphology continues, such that the final phase of the descendent is more 

complex than that in the ancestral adult, the resultant change is referred to as 

hypermorphosis. A similar result can be attained by a faster rate of morphological 

change (acceleration) or by the early onset of a vegetative developmental phase (pre-

displacement). Takhtajan (1972) proposed different words such as prolongation, 

abbreviation and deviation to point out heterochrony in plants, but these do not appear 

to have gained the same widespread use. 

Heterochrony appears to be an important mode of plant evolution (Poethig, 1990; 

Freeling et al., 1992) because small changes in regulatory genes, such as those 

controlling the expression of phase change or temporal pattern of organ development, 

result in obvious changes (Itoh et al., 1998) or markedly different morphological 

features in the descendent species (Goldschmidt 1940). 

5 



I General Introduction 

Identification of heterochronic mutants has provided important clues in the 

investigation of vegetative phase change. Such mutants display a prolonged juvenile 

phase or accelerate the expression of the adult phase (Lawson and Poethig, 1995). In 

maize, for instance, Tpl, Tp2, Tp3,Cg, d and Hsf1-0 mutants delay vegetative phase 

change because all show a prolonged expression of the juvenile vegetative phase 

(Poethig 1988a,b; Betrand-Garcia and Freeling, 1991; Bassiri et al., 1992). In contrast, 

g115 mutant causes a precocious expression of the adult vegetative phase (Evans et al., 

1994; Moose and Sisco, 1994). In both kinds of mutants, vegetative phase change 

seems to be affected by a change in the time and the position of the end of the juvenile 

vegetative traits and the onset of the expression of adult vegetative traits (Bassiri et al., 

1992; Evans et al., 1994). 

Although heterochronic mutants have been identified in species such as in Zea and 

Arabidopsis, these mutants do not provide an ideal model for the study of 

heterochrony often showing gross and dysfunctional abnormalities rather than 

regulating development in a manner that could conceivably be favoured under some 

selective regime (Wiltshire et al., 1994). Furthermore, the ontogenetic changes in 

morphological characters such as leaf shape are not always clear and this leads an 

inability to further characterize the cause of heterochronic changes (Wiltshire et al., 

1994; Ray et al., 1996). By contrast, the garden pea (Pisum sativum) shows obvious 

and discrete markers at different phases of ontogeny that lends itself to heterochronic 

studies (Wiltshire et al. 1994; Hall and Langdale, 1996). 

1.4 Pea as a model of phase change 

The garden pea's utility as a model system derives from the fact that the difference 

between juvenile and adult vegetative phase is clearly displayed in the leaf morphology 

(Smith and Hake, 1992, Wiltshire et al., 1994; Van Lijsbettens and Clarke, 1998). In 

the normal development of the garden pea, the leaves at the first two nodes above the 

cotyledons are reduced to cataphylls but at the 3 rd Inode the first true leaf (2-C) bears a 

pair of leaf-like stipules at the base of the leaf, and is a compound leaf with two 

leaflets and tendrils. At higher nodes, the leaf develops additional pairs of leaflets (3- 

6 
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C, 4-C, 5-C, 6-C, and occasionally 7-C and 8-C) and tendrils and so that the 

complexity of the organ increases during heteroblastic development (Marx, 1987; 

Wiltshire et al., 1994). 

In addition, the mutagenic program conducted recently in the pea has successfully 

isolated a mutant showing an acceleration in the initiation of the vegetative phase 

change as compared with those in the wild type plants (or peramorphy). It is named 

accelerated phase change (apc) mutant. In this study, this mutant was used as a tool to 

investigate the mechanism of vegetative phase change in the pea. 

1.5 The aims of the study 

The general aim of this study was to investigate the genetic and physiological control 

of vegetative phase change in the garden pea (Pisum sativum). This was addressed 

using several approaches. The first was to determine the position of the apc gene in 

linkage groups of the pea using morphological and molecular markers (Chapter 3). 
The second was to study whether the vegetative phase change is effected by 

morphological changes in the shoot apical meristem (SAM) (Chapter 4). For this, the 

size of SAM was compared between the mutant apc and the WT at a critical time of 

growth. The third aim was to determine whether vegetative phase change also involves 

changes in endogenous level of hormones: GA1, GA20, IAA and ABA in the shoot 

apex (Chapter 5) using Gas Chromatograph-Mass Spectrometry-Stimulating Ion 

Monitoring (GC-MS-SIM). The next aim (an extension of Chapter 5) was to clarify 

whether the apc mutant is a new ABA-deficient mutant, and whether a reduction of 

ABA level per se accelerated the initiation of the vegetative phase change (Chapter 

8).The fourth was to determine the site of action of the apc mutation using grafting 

experiments (Chapter 6). The fifth was to observe whether the vegetative phase 

change is affected by environmental cues, especially the effect of photoperiod 

(Chapter 7) in order to examine the independence of reproductive and vegetative 

phase changes. 

7 
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General materials and methods 

2.1 Plant materials 

Plant materials used in this study are line L107 (initial line cv. Torsdag) designated as 

the Wild Type (WT) and a novel isogenic line, Af3, derived from it in a mutagenic 
program using ethyl methyl sulfonate (EMS). Both lines are held in the collection of 

the School of Plant Science at University of Tasmania, Hobart. 

Using isogenic lines or monogenic lines is an absolute requirement in the investigation 

of the physiological process of the plants (Koornnef et al., 1982) because differences 
in the same genetic background between the mutant and the wild type will give 

incorrect attribute(s) for the process (Reid 1993). With single gene contrasts it is clear 
that observed physiological and biochemical differences are causally related 

(Koornneef et al., 1982). For this reason, the backcrosses and self-fertilization were 
carried out repeatedly between the mutant Af3 (apc) plants and L107 wild type (Apc) 
plants until the isogenic apc line was obtained. 

The known genotype background of both L107 and Af3 lines is E, Le, Af Sn, Ppd, Hr, 
Fa, Na) but the lines differ principally in vegetative phase change. One indicator of 

phase change is a change in the number of leaflets from 4 to 6. This change occurs 

later in the L107 wild type plants than in the apc mutants. In the WT plants, the first 

leaf with 6 leaflets occurs at node ?_ 15, whereas in the mutants it is seen initially at 

node < 15 (Wiltshire et al., 1994). 

2.2 Growing condition 

Unless otherwise noted, the WT and the apc plants were grown in either 14 cm slim 

line-pots or plastic tote boxes (41 x 32 cm) in a 50:50 (by volume) mixture of 

vermiculite and 2-3 cm dolerite chips topped with 2 cm layer of sterilized 1:1 mixture 

of peat moss, coarse river sand, and added macronutrients (Osmocote N: P: K 
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19:2:6 at rate of 1 kg/m 3). The testa of seeds was nicked prior to sowing to facilitate 
even germination, and seeds were sown at a depth of ca. 1.5 cm below the soil surface. 

The plants were grown either in controlled environment growth cabinets or in a heated 
glasshouse, depending on the aim of the project. In the growth cabinet, plants were 
exposed to an 18 hr photoperiod with a mixed fluorescent (Thorn 40 W white tubes) 

and incandescent (Mazda 100 W pearl globe) illumination source (25 limol.m -2 .s -1  at 

pot top). The day and night temperature in the cabinet were 20 ° C. In the glasshouse, 
the plants were grown under long day (LD 18 hr) and short day (SD 10 hr) conditions 
depending on the requirement of the project. In LD treatments, natural daylight was 
extended using a mixture of 8 fluorescent tubes (L4OW/20S cool white, Osram 
Germany) and 4 incandescent globes (100 W Pearl, Mazda Australia). The intensity of 

the supplementary lighting was 25 — 30 grnol.rn -2.s4  at pot top. The day and night 

temperature fluctuation in the glasshouse varied with the season. The means of daily 
temperature ranged from 13 - 21 ° C in winter and 17 — 27 ° C in summer. In the night 
compartment, temperature was maintained at 16 ° C throughout the year. 

The plants were watered once a day until emergence through the soil surface, and then 
suspended until the plants had ca. 3 leaves expanded. The plants were then watered 
daily or four times a week depending on plant size and the season. Plants were 
fertilized weekly with nutrient solution (Aquasol ®, Hortico Australia, N:P:K 23:4:18 
at a rate of 1 g/1 and iron chelate at a rate of 0.05 g/l. To minimize disease and insect 
damage, plants were sprayed weekly with fungicide and insecticide. 

2.3 Characters recorded 

Description of vegetative phase change characters recorded in pea (after Wiltshire et 
al., 1994) were the node of vegetative transition where the leaf with 3 leaflets (3-C), 
four leaflets (4-C), five leaflets (5-C), six leaflets (6-C), seven leaflets (7-C) and eight 
leaflets (8-C) are initially generated, counting from the cotyledons as zero. The node 
of flower initiation (F1) was number of the first node on the main shoot to bear a 

flower initial regardless of whether or not the bud actually develops into an open 
flower (Murfet, 1977). 

9 



2 General Materials and Methods 

2.4 Linkage analysis 

To determine the position of apc in the linkage groups of Pisum both morphological 
and molecular markers were used. Morphological markers were evaluated on the 
phenotypic characters, for example, the presence of anthocyanin, presence of wax on 
the abaxial leaf surface, stipule and pod characters (see Table 3.1 in Chapter 3). 

Molecular markers were evaluated using gel electrophoresis of isoenzymes. The 
characteristic states were divided into slow (S), intermediate (H) and fast (F) rate. The 
slow, intermediate and fast rates are identified as homozygous recessive, heterozygote 
and homozygous dominant (Weeden and Marx, 1984). 

In this study, enzyme analysis was performed for aspartate amino transferase, one of 
the primary markers in chromosome group 1 recommended for linkage analysis 
(Weeden et al., 1994). The protocol of this analysis was based on an outline of enzyme 
analyses produced by The Molecular Division of the School of Plant Science, 
University of Tasmania, Hobart. Healthy leaf samples were collected from the F2 

progeny and enzyme samples were extracted using a Tiis-HC1 buffer (pH 8.4), run on 
the standard gel system. Following incubation at room temperature in the dark, the gel 
was assayed using 50 ml of 1 M Tris-HC1 buffer (8.0) containing 100 mg L-aspartic 

acid (Na salt), 50 mg a-ketoglutate, a trace of piridoxal phosphate, and 50 mg fast blue 

BB. The segregation of this enzyme was considered together with the morphological 
markers. 

2.5 Grafting techniques 

In order to examine the site of production of the effects of the apc mutation, two kinds 
of grafting techniques were used in this study. The first technique was similar to that 
described by Murfet (1971). Grafts were made epicotyl to epicotyl when the shoot had 
emerged completely from the potting mixture and had a total stem length of about 2 
cm (4 - 5 days after sowing). The stem of the scion was cut below the first scale leaf 
and the stem of the stock was decapitated below the first scale leaf. In the second 
technique, the scion stem was cut below the second true leaf and the stem of stock was 
cut below the second true leaf. The plants used for this type of graft were around 8-9 

• days old after sowing. The cut end of scions was made into a wedge shape and inserted 

10 
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into a slit made in the stock plants down the center of the epicotyl to approximately 12 
mm. A small plastic ring was slipped over the epicotyl of the stock to hold the scion in 
place. 

The grafted seedlings were watered, and humidity was maintained by placing a plastic 
bag over the seedlings and pot rim, held in place with a large rubber band. The 

seedlings were initially watered every second day. The bags were turned daily to allow 
appropriate gas exchange. After about 4 days, when the xylem connection between the 
scion and the stock appeared to have developed, the intact bags were replaced with 
bags with cut corners. At the first appearance of new growth in the scions (about one 
week), the bags were removed completely. 

Any lateral shoots from the cotyledonary axil of the stock were removed in order to 
prevent the shoot competing with the scion for available nutrients. 

2.6 Hormone analyses 

Analysis of hormones followed the procedure in an outline of hormone analysis 
developed by The Physiological Hormone Division of the School of Plant Science, 
University of Tasmania, Hobart. The analysis of hormone levels of gibberellins (GA1 
and GA20),  indole acetate acid (IAA), and abscisic acid (ABA) were carried out in 
number of steps: extraction, addition of internal standard, purification, fractionation, 
and quantification. 

2.6.1 Extraction 

Shoot apices were harvested at ca. 2 mm in size from the plants (WT and apc) at 11 
days old. These tissues were immediately weighed and transferred to cold (-20 °C) 100 
% Me0H. The Me0H used contains a trace of the antioxidant botylated 
hydroxytoluene (BHT). Prior to the extraction the tissue was kept at —20 °C for 24 
hours. 

To begin extraction, the methanol was diluted to 80 % by adding dH20. The extracts 
were homogenized with a rotary cutter, and stored at 4 °C for 24 hours. Extracts were 
then filtered through a layer of Whatman No. 1 filter paper. 

11 
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2.6.2 Addition of internal standards 

Internal standards added into the extracts were [17,17- 2H2} GA 1 , [17,17-2H2] GA20 ,  2H3 

ABA, 5D IAA (see Table 5.1 for more detail).  [3112} GA20 which was used as tracer in 

the extract for quantification, with approximately 360000 dpm [3H2] GA20  (1.11.TBq. 
mmol-1 ). The extracts were kept at — 20 °C for 24 hours before the purification was 
performed. 

2.6.3 Purification 

After 24 hours, the extracts were dried under vacuum at 30 °C until less than 1 ml. A 
Sep-Pak Plus C18 cartridge (Waters Assoc. Milford, MA, USA) was preconditioned 

using ca. 10 ml of 100 % Me0H and ca. 10 ml of 0.4 % acetic acid. The dried extracts 
were dissolved in 1 ml of 1% acetic acid, passed through the Sep-Pak at a rate of 5 

mL.min-1 . Another 1 ml and 2 ml of 0.4 % acetic acid were transferred into the Sep-

Pak. The extracts were eluted with ca. 10 ml of 70 Me0H in 0.4 % acetic acid, and 

were dried in vacuo. 

2.6.4 Fractionation 

Fractional processes were performed using C18 High Performance Liquid 

Chromatography (HPLC, Waters Assoc., Milford, MA, USA) system. This consists of 

two M-45 Solvent Delivery System, a model 6UK Universal, Liquid Chromatograph 

Injector fitted with a 2 ml sample loading loop, Model 660 Solvent programmer, Z-

Module Radial Compression Separation System and a 10 ml Radial-Pak A cartridge 

C18 column 100 x 8 internal diameter. The solvent was filtered regularly through 0.5 

mm type Eli (Me0H) and 0.45 mm type OE 67 ( dH20) millipore filters. 

The sample was dissolved in two successive volumes of 1.0 ml with 20 % Me0H in 

0.4 % acetic acid, injected into the HPLC loading loop through a UK6 sample 

injection unit and 0.45 lIm filter (Gelman Science, MI, USA). After allowing 3 

minutes for the loaded material to equilibrate in the loading loop, the sample was 

injected and run on the following program: 20-70% Me0H in 0.4 acetic acid over 25 

minutes, gradient curve #6 (linear), flow rate of 2 ml.min4 . 
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2 General Materials and Methods 

2.6.5.Methylation 

After the sample fractions were grouped based on the retention time of each hormone, 

and dried using the concentrator, the samples were methylated by adding 200 wn of 

100 % Me0H and 750 p1 of diazomethane. They were then dried under nitrogen. The 

sample was redissolved in 1 ml of dH20 and 400 pi of ether added. When separation 

had occurred between the ether and the water, the ether was drawn into a Pasteur 

pipette, and the sample was put into a GC-MS vial. Two more washes of 400 ill ether 

were conducted. Any remaining water in the vial was removed by drying under 
nitrogen or concentrator prior to the quantification. 

2.6.6 Quantification 

Prior to quantifying, derivatisation was performed for the grouped fractions of GA,, 

GA20 and IAA by adding 3 l.tl  of pyridine and 10 Al of bis (trimethyl-sily1) 

trifluoroacetamide (BSTFA). Those fractions were then heated at 80 °C for 15-20 
minutes. Full scan mass spectrometry and high resolution GC-SIM (HR-SIIvI) were 
performed using a Hewlett-Packard 5890 Series 11 gas chromatograph linked via 
direct inlet to a Kratos Concepts ISQ mass spectrometer controlled by a Mach 3 data 

system. A 1 pi spitless injection was made at 250 °C onto the same SGE BPI column. 
The carrier gas was helium with the head pressure programmed to maintain a flow rate 
of approximately 2 For the quantification of GA, and GA20, the oven 
temperature was programmed to rise from 60 °C to 240 °C at 30 0C.min-1  then 290 °C 
at 3 °C.min-I . For the quantification of IAA and ABA the temperature program from 
60 to 150 °C at 30 °C and then at 3 °C min-1  to a final temperature 290 °C. The 
ionization potential was 70 eV. The masses of the characteristic ion were calculated to 
4 decimal places and the detection was achieved by voltage switching at a resolution 
of 10 000 (10 % valley definition) and a cycle time of 0.6 second. Perefluorekerosene 
was used to provide reference masses for HR-SIM. 

Endogenous hormone levels were subsequently calculated on the basis of peak areas 
after corrections were made for the contribution of naturally occurring isotopes and for 
the presence of unlabelled hormones in the internal standards (Lawrence et al., 1992). 
The formula for quantifying the level is: 
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2 General Materials and Methods 

The level of endogenous hormones (ng g FW -1 ) = 

CEPA 

CISPA 
x Amount of IS added (ng g FW -1 ) 

where 

CEPA 	corrected endogenous peak area 

CISPA 	corrected internal standard peak area 

IS 	internal standard 
FW 	fresh weight 
ng 	nano gram 

gram 

Ions monitored for quantification of the endogenous hormones were 506 and 508 

(GAO, 418 and 420 (GA20),  202 and 207 (IAA), 190 and 193 (ABA). Identification 

was confirmed based on retention time and the presence of additional ions. Those ions 

were 448 and 450 (GAO, 375 and 377 (GA20), 261 and 266 (IAA), 162 and 165 
(ABA). 
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CHAPTER 3 

Position of the apc gene in linkage groups 
of Pisum sativum 

3.1 Introduction 

The accelerated phase change (or apc) gene is so named because the pea plants 

carrying this mutant allele display an accelerated heteroblastic transition. As described 
in Chapter 2, the vegetative phase change in leaflet number from 4 to 6 is displayed 
earlier in the apc mutant than in the wild-type (WT) plants. This transition occurs at or 
before node 15 in the apc mutant, whereas in the WT it occurs initially after node 15. 

Therefore, this gene can be categorized as heterochronic acting in a peramorphic 
manner by acceleration (Wiltshire et al., 1994). 

In a preliminary study of the position of the apc gene in the linkage groups of pea, RJE 
Wiltshire (unpublished data) suggested that this gene lies on linkage group II, as 

defined by Weeden et al. (1998) at a distance of 21 cM from the a locus but could not 

determine in which direction. This study aims to clarify the position of this gene using 

linkage analysis with additional markers. 

3.2 Materials and methods 

3.2.1 Plant materials and growing condition 

The lines of the garden pea (Pisum sativum) that were used as the parents in this work 
were L31, A23, SGE80 and Af3. All lines carry the wild-type phenotype (Apc), except 
Af3 which carries the mutant phenotype (apc). 

To determine the position of the apc locus in linkage groups of P. sativum, crosses 

were made first between lines (i.e. A23, L31, SGE80) carrying the Apc dominant allele 
and the line carrying the apc recessive allele (Af3). Seeds of the F1 produced from the 



3 Position of the apc gene 

crosses were planted, and self-fertilization between the F1 plants was allowed to 

produce the F2 progeny. The F2 seeds were grown under the glasshouse conditions as 

described below. 

After removing a small piece (1-2 mm2) of the testa, the seeds were sown at a depth of 

2 cm below the soil surface in 14-cm slim-line pots. The pots contained a 1:1 mixture 

(v/v) of vermiculite and 10-mm dolerite chips, covered by a 2-cm layer of sterilized 

1:1 peat and sand mixture. The pots were watered daily until just before seedling 

emergence, and after the seedlings were fully emerged, they were watered every 2 

days for the first 2-3 weeks. Nutrient solution (Aquasol) was supplied once weekly. 

The mean daily temperature in the glasshouse during this experiment ranged from 13- 

21 °C. Night temperature was 16 °C. 

All F2 progenies were grown under an 18-hour photoperiod (natural light 

supplemented with a mixed incandescent/fluorescent light), except those generated 
from crosses between A23 and Af3. These were grown in far-red light during the first 

10 days, then in the same LD conditions,as the other progenies in order to investigate 
the light response of plants from such a cross. The plants were grown until senescence 

occurred. 

3.2.2 Characters scored and data analysis 

The principal character recorded was the rate of vegetative phase change, with the 

critical transition being the first node at which the leaf expanded six (6) leaflets 

counting from the cotyledons as node zero. Other characters recorded were based on 

the morphological markers and one enzyme marker (Table 3.1). 

To determine whether there is a linkage between the apc and each marker gene used in 

this test or not, the segregation data between the apc and each marker gene were 

collected and analyzed using the chi-squared test. If linkage was detected, the 

recombination value (RF) and its standard error were calculated using the Product 

Ratio Method outlined in Stevens (1941). The distance between apc and the other 

genes in the linkage group were then determined. 
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3 Position of the apc gene 

3.3 Results 

All crosses between the apc mutant plants and the WT plants bore fully fertile F 1  
plants. This generation also displayed the normal phenotype in which all leaves with 

six leaflets were produced initially at node > 15, indicating that the apc allele acts 

recessively in these varying genetic backgrounds. As shown in Table 3.2, all 

individual segregations were in accordance with expectation (3:1 ratio, P > 0.05). 

The results of the segregations in the F2 generation are shown in Table 3.3. The apc 

gene displayed linkage with some markers in linkage group H. Very significant (P < 

0.0001) linkage was detected between the apc gene and the a marker for two crosses 

(L31 x Af3 and SGE80 x Af3, with x2  of 32.74 and 27.54, respectively). The 

combined data from the two crosses (L31 x Af3 and SGE80 x Af3) also generated a 

linkage 7C2  = 59.58 (P < 0.0001 and RF ± SE at 20.3 ± 3.0%). A highly significant (P < 

0.0001) linkage of 14.4 ± 3.6 cM was also found between the apc gene and the Aatp 

marker, and apc was also linked to If (P < 0.001 and RF ± SE at 30.8 ± 5.1%) (Table 
3.3 and Figure 3.1). 

Although apc shows linkage with the above markers in linkage group II , no significant 
linkages were observed between this gene and the bib, funl, k, wb, or s markers 

located below the a and If loci on the same linkage group (Table 3.3). 

The RF values between apc and a (20 cM) and between apc and Aatp (14 cM) are 

smaller than the distance between a and aat-p (29 cM) which, clearly indicates that apc 

lies between Aatp and a (Figure 3.1). 

17 
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3.4 Discussion 

This linkage analysis has clearly established the position of the new gene, apc. The 

new locus lies between Aatp and a on linkage group ll, as defined by Weeden et al. 

(1998), which has been putatively assigned to Blixt's (1959, cited in Weeden et al. 

1998) Chromosome 6 (ibid.). The apc locus appears to be 20 cM from a, which 

confirms the initial study of RJE Wiltshire (unpublished data), and is slightly closer to 
the Aatp locus (14 cM). This places the locus in very close proximity to the Sequence-
Characterised Amplified Region (SCAR) V20_1100 mapped recently by Rameau et 

al. (1998). 

The linkage distance between the two critical marker genes, a and Aatp, established 

during this study is in close accordance with those from previous studies, adding 
confidence to this result. Estimates of this linkage distance range from 26 cM (Weeden 

et al. 1993), 27 cM (Swiecicki and Wolko, 1987) to 38 cM (Rozov and Gore!, 1994). 

The linkage between a and Aatp in the present study of 29 ± 5.0 cM was in close 

accordance with the lower estimates. 

The linkage between a and bib of 33 ± 5.2 cM is also consistent with the data obtained 

by Kosterin and Rozov (1993) who obtained evidence of linkage between the a and 
bib genes at a distance of 34 cM. 

There is, however, less confidence in the linkage values obtained for lf Estimates of 

the linkage between a and lf range from 9 cM (Murfet 1971b), 11 cM (Rozov and 

Gorel, 1994), 12 cM (Weeden et al. 1996) to 19 cM (Swiecicki and Wolko, 1987) but 

the present result found linkage to be 26 cM. This overestimate is most probably a 

result of the difficulty in discriminating between the Lf and Lf-d alleles when the 
plants were grown under long day conditions. Undoubtedly, results that are more 

accurate could be obtained using another allele such as If-a, but that may confound the 

scoring of apc. 
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3 Position of the apc gene 

Table 3.1 Characters scored for linkage analysis of loci on linkage group H (as defined 

by Weeden et al., 1998). 

Gene 	 Phenotype description 

Aatp-F/S 	 Fast/slow running of aspartate aminotransferase enzyme 
Apc/apc 	 Accelerated phase change reaches 6-leaflets after / before node 15 
A/a 	 Anthocyanin present/ anthocyanin absent 
Lf-d/Lf 	 High /medium flowering node. 
FunI/fun/ 	 Responsive/unresponsive to the far-red light 
Bib/bib 	 Normal/narrowed leaflets, stipules. The stem is slightly 

thickened just above the first scale leaf. 
K/Ic 	 Wing normalladpressed to keel 
Wb/wb 	 Wax present/absent on leaf under surface, stipules and pods. 
Sis 	 Seeds free/seeds stuck together 
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Table 3.2 Monohybrid F2 segregation for 9 characters in three crosses. 

Cross* Gene D R N X2(3:1) Probability 

1 a 85 38 123 2.28 0.2> P >0.1 

3 a 93 29 122 0.10 0.8> P >0.7 

1 apc 97 26 123 0.98 0.4> P >0.3 

2 apc 83 33 116 0.74 0.4> P >0.3 

3 apc 86 26 112 0.19 0.6> P >0.5 

3 Aatp 85 37 122 1.85 0.2> P >0.1 

2 fun 85 31 116 0.18 0.6> P >0.5 

3 bib 85 37 122 1.85 0.2> P >0.1 

1 if 92 31 123 0.02 0.9> P >0.8 

1 s 96 27 123 0.61 0.4> P >0.3 

1 wb 90 33 123 0.07 0.8> P >0.7 

1 k 96 27 123 0.61 0.4> P >0.3 

*1 = cross L31 x Af3; 2 = cross A23 x Af3; 3 = cross SGE80 x Af3. 
D = dominant 	R = recessive 	N = number of plants 
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Table 3.3 Dihybrid segregation data for apc and 8 markers in linkage group 11 (as 

defined by Weeden et al., 1998). 

Gene 
pairs 

'Phase Crosses 
DD 

2Phenotype 
DR 	RD RR 

Total X2 3P 412F 5SE 

apc a C a 79 18 6 20 123 32.74 <0.0001 19.06 4.0 
apc If C a 79 18 13 13 123 10.77 <0.001 30.75 5.1 

apc s R a 77 20 19 7 123 0.47 ns 

apc wb R a 71 26 19 7 123 0.00 ns 

apc k R a 76 21 20 6 123 0.32 ns 

a If C a 74 12 18 19 123 19.19 <0.0001 26.47 4.8 
a wb R a 68 20 25 13 126 1.81 ns 
a k R a 68 17 28 10 123 0.61 ns 

If wb R a 69 23 21 10 123 0.62 ns 

If k R a 72 20 24 7 123 0.01 ns 
ape fun C b 60 23 25 8 116 0.15 ns 
apc a C c 74 12 9 17 112 27.54 <0.0001 20.96 4.4 
ape bib R c 64 22 19 7 112 0.02 ns 
a bib R c 60 33 25 4 122 4.93 <0.05 33.08 5.2 

DF DH DS RF RH RS 
ape Aatp C c 24 48 14 0 4 22 112 43.22 <0.0001 14.35 3.6 
a Aatp C c 27 46 20 5 7 17 122 14.47 <0.001 28.94 5.0 
bib Aatp R c 30 32 23 13 10 14 122 2.68 ns 

I  C = coupling R = repulsion 
2  D = dominant R = recessive 
3  P= probability 
4  RF = recombination frequency 
5  SE = standard error 
ns no significance P> 0.05 

RF> 50 % 

F = fast H = intermediate S = slow 
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A) 
ca. 26 	 ca. 12 4 	 I 	I 	• 

Amp 	 a 	 If 

B) 
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bib fun Aatp 	apc 	 a 	 If 
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Figure 3.1. Linkage map for the mutant apc generated from Table 3.3. A) Linkage 
map of Weeden et a/. (1996) and B) Linkage map of the present study 
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CHAPTER 4 

Morphological basis of vegetative phase change within the shoot apical 
meristem 

4.1 Introduction 

The shoot apical meristem (SAM) generates the aboveground portion of the plant 

(Clark, 1997) and, therefore, ontogenetic changes must arise as a consequence of the 

changes that take place in the SAM during plant development (Medford et al., 1994; 

Napoli and Ruehle, 1996). The most obvious changes during ontogeny are manifested 

in the leaves and these changes in shape and complexity are most often used as 

markers for assessing the process of vegetative phase change (Poethig, 1990). As 

products of the shoot apical meristem, the shape, size or complexity of leaves seems to 

be affected by changes in the SAM (Allsopp, 1954; Crotty, 1955). 

The nature of the changes in the SAM has been examined in a number of studies, for 

example by Whaley (1939) who found that the size of leaves produced in the SAM of 

tomato (Lycopersicum sp.) plants was directly correlated with the size of the SAM 

itself. Popham (1960) also showed that a shoot apical meristem of larger volume was 

associated with the formation of larger lateral appendages such as leaves, whereas 

smaller meristems give rise to smaller appendages. Similar results were also found in 

Darlingtonia (Frank, 1976). 

In heteroblastic plants, it might be expected that the abrupt change in form would be 

mirrored by an abrupt change in SAM characteristics. In ivy (Hedera helix) the size of 

the shoot apex differs between the morphologically divergent juvenile and adult 

growth phases (Hackett, 1985). The difference has also been found in other species 

e.g. Arabidopsis (Robbelen, 1957; Medford et al., 1994), Marsilea (Allsopp, 1954; 

White, 1968), Darlingtonia (Frank, 1976). Muehlenbeckia plactyclados (Bruck and 

Kaplan, 1980), and Pseudopanax crassifolius (Clearwater and Gould 1994). Medford 

et al., (1992) observed that change in the SAM size from juvenile to adult vegetative 

growth phase is also followed by change in its shape. 



4 The morphological basis of vegetative phase change 

Although the studies mentioned above concluded that there is a correlation between 

changes in the shoot morphology and changes in leaf heteroblastic development, the 

question remains whether it is a causal or coincidental relationship (Telfer and Poethig, 

1994). The difficulty with these studies is that measurements performed on the shoot 

apex of the different growth phases of normal plants are often confounded by the effect 

of varying chronological or physiological ages of plants at differing stages of maturity. 

Furthermore, the effects of the transition to reproductive phase change may also 

confound the changes at the apex. Previous studies have also necessarily measured the 

shoot apical meristem after fixation, which may distort differences in the tissue. 

A model system is required that enables a direct comparison of the SAM between 

plants of the same chronological and physiological age but that differ in vegetative 

development, without the confounding transition to reproductive phase change. The 

ideal system would be a comparative study between isogenic lines differing in the 

timing of a heteroblastic transition that occurs relatively independently of any 

transition to flowering, in other words a heterochronic mutant line. Likewise both the 

mutant and the wild type plants must be grown under controlled environmental 

conditions and, preferably, the measurements of the SAM should be conducted on 
fresh material to avoid fixation artifacts. 

The garden pea (Pisum sativum) provides a model species in which leaf complexity 
increases in a clear, predictable manner with ontogeny (e.g. Gould et al., 1987; 
Wiltshire et al., 1994; Stafstrom, 1995; Lu et al., 1996). However, few studies have 
investigated whether this vegetative transition involves a change in the SAM. The pea 

is also a powerful genetic tool because its preferential inbreeding characteristics and 

short generation time facilitates the development of pure-breeding lines. 

This study uses a novel heterochronic mutant, apc, in a comparative study with its 

isogenic parental WT line, Torsdag (L107) to determine the morphological 

characteristics of the shoot apical meristem (especially, height, width and volume) at 

the critical time when the vegetative phase change from 4- to 6-leaflets is being 

initiated in the SAM of the apc plants but not in the WT. An Environmental Scanning 

24 



4 The morphological basis of vegetative phase change 

Electron Microscope (ESEM) was used for direct observation of the apex in a fresh 
(unfixed) condition. 

4.2 Materials and Methods 

4.2.1 Plant materials 

In order to compare the shoot apical meristem at a similar chronological age, isogenic 

lines were used that differ in the rate of leaf development. As the wild-type, L107 
plants (Apc) express the phenotype of a 'normal' vegetative phase change with the node 

of the transition from 4- to 6-leaflets occurring at node ?_. 15. By contrast, the 
phenotype of the recessive, mutant allele (apc) in the Af3 line expresses an 
'accelerated' vegetative phase change with the node of the transition from 4- to 6- 

leaflets occurring at node <15 under the same long-day conditions (see Chapter 7). The 
reproductive phase change (onset of flowering) does not occur until node 16 in both 

lines (see Chapter 7). Therefore, as the leaf primordium of node 14 is being initiated, 
apc is undergoing the transition to 6-leaflets, whereas the WT is still at the 4-leaflet 
phase, and the neither is initiating flowers. 

The Af3 line was derived from L107 in a mutagenesis program conducted by J. Weller 

at the School of Plant Science, University of Tasmania, and made near isogenic by 

repeated backcrossing to the parental line. The growth rates of the two lines do not 
differ substantially. 

4.2.2 Growing conditions 

The plants used in this study were grown 20 (10 wild-type and 10 mutants) per plastic 

tote box (41 x 32 x 12 cm) in a media consisting of a 1:1 mixture of vermiculite and 

dolerite chips topped with 2-3 cm of potting mix. The testa of each seed was nicked, 
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and then the seeds were planted 2 cm below soil level. The plants were grown in day 

and night temperatures of 200C under LD (18 hours) conditions with the light 

provided by a combination of 8 fluorescent tubes (LM W/20S cool white, Osram 

Germany) and 4 incandescent globes (100 W Pearl, Thorn Australia) in a variable 

height fixture delivering 200 j.trnols m -2 
S

-1 at the box surface. The plants were watered 

daily. 

4.2.3 Determination of harvesting time. 

In order to determine the critical time of harvesting of the shoot apical meristem at the 

initiation of the crucial 14 th  node, two trials were conducted. In the first trial, the WT 

and the apc plants were harvested at age 10-16 days after sowing (DAS). The shoots 

were dissected carefully under a binocular dissecting microscope (Wild M3B, 

Heerbrugg Co., Switzerland) to record the order of the primordia, counting the first 

scale leaf as the first leaf to the last node in the shoot system. The youngest 

primordium was identified as a bulge in the shoot apical meristem (see Figure 4.1). 
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4 The morphological basis of vegetative phase change 

Figure 4.1 Electron scanning micrographs of shoot apical meristems of apc (top) and 

WT (bottom) dissected to measure the apical size at the initiation of the 14 th  leaf 

primordium. 
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4 The morphological basis of vegetative phase change 

Prior to the shoot dissection, the plastochron index (PI) of each plant was determined 

using the formula of Erickson and Michelini (as presented by Maksymowych and 

Erickson, 1973), where Log n  = length of the smallest leaf > 10 mm, Log n+1 is the 

length of the next leaf. 

 

Loge -Log 10 
PI — 	  

Log n - Log n +1 

Equation 4.1 

where: 

  

PI 	Plastochron index 

The serial number, counting from node 1, of leaf 

which is longer than 10 mm 

Log n 	the logarithm of length of leaf n (= 10 mm) 

Log n + 1 the logarithm of length of the next leaf (< 10 mm) 

In this study, a slight modification in the formula was made to accommodate for the 

compound nature of the pea leaf. The reference length was taken as the length of 

petiole from stipules to the first leaflet pair, so that n is the serial number, counting 

from the base, of the leaf with a petiole longer than 10 mm. 

• The ages (in chronological time) of each specimen were recorded. The range of the 

times for both WT and apc plants in which the primordium 14 (P14) were initiated, 

were used a reference for the second trial. 

In the second trial, the plants were harvested based on the range of time for production 

of P14 obtained from the previous experiment. The youngest primordia order was also 

counted using the same technique conducted in the first trial. The time and the 

youngest primordia order were recorded, and the ranges and averages of both 

parameters were compared between WT and apc. 
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4 The morphological basis of vegetative phase change 

4.2.4 The measurement of shoot apical meristem dimensions 

The shoot apex of plants for this work was harvested at the age determined previously. 

Before the examination by ESEM (ElecScan 2020), the leaf primordia at node 9-12 

were removed from the shoot apex with the aid of a binocular dissecting microscope to 

reveal the apical meristem region and youngest leaf primordia. The apical material was 

then quickly transferred to an aluminum stub. The shoot apical meristem was 

maintained in a fresh condition during the examination. To enable this the ESEM was 

maintained with a beam of 15 kV, the specimen changing pressure of 5 —7 T, and the 

wet mount or cold stage was used. The detector used during the investigation was ISD. 

Measurement of the SAM was by a micrometer Max-Series Electronic Digital Caliper 

(Japan Micrometer MFG. Co. Ltd) 

The measurement of the shoot apical meristem dimensions generally followed that of 

Thomas and Kanchanapoom (1991). This included: height (H); diameter or width (W); 

and volume (V), of the meristem. The height was measured as a straight line drawn 

from the tip of the dome perpendicular to a line from the point of insertion of the 

youngest leaf primordia (H1) and the primordia below the youngest primordia (H2). 

Figure 4.2 Shoot apical meristem dimension: W (width), H (height), YP (youngest 

primordia), and P (primordia). 
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The width was measured as a continuous line drawn from the point of insertion of the 

youngest leaf primordium perpendicular to a point on the opposite flank (W1) and the 

older primordia to the point on the opposite flank (W2). 

Volume estimation was calculated by using the formula as follows, 

 

4 
V= —xfixH 2 xW 

3 
Equation 4.2 

where: 

  

V 	volume of shoot apical meristem 

n 	pi (3.14) 

H 	dome height 

W 	meristem width or diameter 

Data obtained in both the harvesting determination and the measurement of the shoot , 
apical dimension of the WT and the apc were analysed using the student's t-test (Excel 

Microsoft 97) and factorial ANOVA (StatView 4.4) 
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4.3 Results 

4.3.1 Determining harvesting time 

Trial 1 

There is a positive correlation between 'day after sowing' (DAS) and the order of 

youngest primordia (YPO) in shoot apical meristem of both the WT and the apc plants 

(Figure 4.3) in which the coefficients of determination (r 2) are 0.81 P < 0.0001 (WT) 

and 0.76 P < 0.0001 (apc) respectively. Likewise, a close relationship is evident 

between the plastochron index (PI) and the YPO in both the WT (r2  = 0.91, P < 
0.0001) and the apc plants (r2  = 0.88, P < 0.001). These results indicated that both 

chronological time (DAS) and PI could be used as an accurate indicator of 

developmental stage and when the plant could be harvested. 

The means of the time for the production of primordia 13 — 16 by the WT and the apc 

plants (DAS) are presented in Figure 4.5A. A comparison of the data shows that 

timing of initiation of the primordia in the two genotypes was generally similar. 

Although the age at initiation of the 14 th  primordia (YPO 14) was slightly less in the 

WT (10.95 ± 0.08, n= 17) than that in the apc (11.25 ± 0.03, n= 25), these differences 

were not significant at the P> 0.05 level. 

The comparison of the PI between the WT and the apc plants over the YPO 13 — 16 is 

displayed in Figure 4.5B. The results show no significant difference in the PI 

measured from the WT and the apc at each YPO. 
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Trial 2 

The mean of the node (n), the plastochron index (PI), and youngest primordia order 

(YPO) measured at a range of plant age 10.8 — 11.5 day after sowing (DAS) are shown 

in Figure 4.6. The comparison in those parameters shows no significant differences 

between the WT and the apc (P > 0.05). 

A comparison of the average time required by the WT and apc to produce P14 initials 

is presented in Figure 4.7 revealing no difference (P > 0.05) between genotypes. A 

similar result is shown in the comparison of PI between both genotypes (Figure 4.8). 

Therefore, it can be assumed that the critical time of the production of the P14 in the 

WT and the apc was 11 days after sowing within 95% confidence limits (t-test). 

4.3.2 Determining morphological changes 

Plastochron Index 

The mean plastochron index (P1) differed slightly between Trial 1 and Trial 2 (Figure 

4.8). It indicates that the plants in the second trial were further advanced in 

developmental terms, but still within the critical range for 14 th  primordia initiation. 

Within trials, however, there was no significant difference (P > 0.05) between the WT 

and the apc mutant in development. 

The morphological basis 

No significant alterations to the SAM dimensions were obviouswithin the measured 

plastochron for the WT plants because there was no significant association between 

differences in the SAM and PI within P14. The results of regression analysis presented 

in Figure 4.9 show the values of the coefficient of determination between the PI and 

the shoot apical dimensions: width (W1 and W2), height (H1 and H2) and volume (V1 

and V2) were generally less than 0.03. A similar result was also found in the apc 

mutant (Figure 4.10). Therefore the results indicated that the variation in the PI values 

of plants in Trial 1 and Trial does not have a significant effect on the variation in the 
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4 The morphological basis of vegetative phase change 

size of shoot apical dimension measured and so the data from the two trials could be 

combined. 

During the initiation of the crucial 14 th  primordia, all measured dimensions of the 

SAM were smaller in the WT than in the apc plants (Table 4.1). Table 4.2 shows that 

the size of the SAM dimension was significantly affected by genotype (P < 0.0001 F-

test), but not by trials (P> 0.05) nor interaction between genotype and trials (P > 0.1). 

4.4 Discussion 

Changes in leaf heteroblastic development, or vegetative phase change, during plant 

ontogeny appear to be directly related to changes in the size of the shoot apical 

meristem in pea. Using isogenic lines of the garden pea, differing only in a 

heterochronic gene (apc) affecting the rate of the leaf development, all indices of shoot 

apical meristem size (width, height and volume) were larger in the apc mutant than in 

the WT at the initiation of the crucial leaf primordia 14 (P14). This clearly indicates 

that the transition in leaf complexity in pea is associated with a change in the 

morphology of the shoot apical meristem. This is consistent with the findings of 

Medford et al. (1992) who indicated that heteroblasty in leaves arrayed along the main 

shoot of Arabidopsis may be due to alteration in shoot apical meristem size. A similar 

result has been obtained in species such as Lycopersicum (Whaley, 1939), Zea (Abbe 

et al., 1942), Marsilea (Allsopp 1954) Darlingtonia (Frank, 1976), Begonia dregei 

(McLellan, 1990) and Pseudopanax crassifolius (Clearwater and Gould, 1994). 

An increase in shoot apical meristem size has also been reported just before 

reproductive phase change was initiated in Sinapsis alba (Bernier, 1971; 1997). 

Therefore, such an increase seems to be one of the factors required for the initiation of 

both vegetative and reproductive phase changes of some plants. 
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4 The morphological  basis of vegetative  phase change 

A number of studies have found that leaf morphology in some plants is determined 

when the organ is still within the shoot apical meristem. For example, the fate of the 

leaf margin in the narrowsheath mutants of Zea (Scanlon et al., 1996), and the adaxial 

and abaxial leaf polarity (Evan and Barton, 1997) are determined early in the initiation 

of the leaf at the apex. Medford et al. (1992) pointed out that the leaf shape is also 

determined by the size of the shoot apical meristem at the time of leaf initiation. This 

indicates that there is a factor(s) within the SAM required for determining the identity 

of the leaf form produced along the shoot (Cutter 1965; Halperin, 1978; Smith and 

Hake, 1992). Medford et al. (1992) also stated that the existence of a key process 

controlling the vegetative shoot for generating distinct shoot form (including the leaf 

heteroblasty) should be localized in the shoot apical meristem itself. 

Hackett (1980) and Laufs et al. (1998) have shown that an increase in shoot apical 

meristem is a consequence of an increase in an accumulation of cell divisions. Many 

studies, in fact, have shown a correlation between increase in cell division and increase 

of the shoot apical meristem size. Bernier (1971) observed that the increase in shoot 

apex of Sinapsis alba was recognized with an increase in cell division within the 

SAM. In Agropyron repens, if the cell number (cell division) increases or decreases it 

will be followed by an increase or decrease in shoot apex size as well (Rogan and 

Smith, 1974). The increase of the SAM size causing increased cell numbers from 

juvenile to adult phase growth has also been observed in Arabidopsis (Medford et al., 

1992; Laufs et al., 1998). Other studies in the clavata mutant of Arabidopsis (Leyser 

and Fumer, 1992) and the fasciated mutant of tomato (Szymkowiak and Sussex, 1992) 

found the mRNA representing cell division was distributed thoroughly within the 

region of shoot apical meristem during plant development. This indicates that cell 

divisions occurring within the SAM during plant development act as a regulator of 

shoot apex size. A study of a similar mutant in soybean has also shown that the 

increase of SAM is a result of a faster rate of cell division (Tang and Knap, 1998). 

This leads to the question of how the changes in the morphology of the shoot apical 

meristem affect leaf form. As mentioned above, it has been suggested that the change 

in the SAM is controlled by the rate of cell division within this tissue. Because of an 

increase in cell division, the number of cells in the tissue increases automatically 
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4 The morphological basis of vegetative phase change 

(Laufs et al., 1998). King (1983) states that more cells are needed to support the more 

active Tate of growth in the shoot apex during the transition phase. In Arabidopsis, the 

different size of the shoot apical meristem also represents the rate of cell division in 

the SAM, which is followed with a difference in the shape of leaves produced between 

the mutant and the WT plants (Leyser and Furner, 1992). Therefore, the ability of the 

SAM to drive cell division within itself must be considered a requirement for the onset 

of leaf heteroblasty in plants (Greenwood 1984; Greenwood and Hutchison, 1993). 

Laufs et al. (1998) also proposed that a high rate of cell division which was observed 

in a large part of layer 1 (L1) of the SAM, supports the primordia formation. However, 

the expression of a specific phase in the shoot can result from an increase in size and 

complexity of shoot apical meristem effected by extrinsic change in the apical 

meristem and changed input to the shoot apical meristem (Poethig, 1990). 

Based on the results of this study, and other studies mentioned above, it is proposed 

that the apc mutant accelerates vegetative phase change in pea via an increase in the 

rate of cell division in the shoot apical meristem. As a result of such an increase, the 

apc mutant can produce cells more rapidly than the WT plant as shown by the result in 

which the size of the SAM was significantly greater in the apc than the WT, so more 

cells are supplied for leaf formation. Because achievement of a certain number of cells 

required to induce a leaf identity occurs earlier in apc, an increase in leaf complexity 

also occurs earlier in apc than in the WT. The evidence from this study also indicates 

that the increase in the shoot apical meristem is not a coincident process, but a causal 

process of the increase in leaf complexity. 
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4 The morphological basis of vegetative phase change 

1-  

Figure 4.3. Relationship between days after sowing (DAS) and youngest primordia 

(YPO) in the shoot apical meristem of WT (A) and heterochronic apc (B) plants. N = 

55-57 

36 
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Figure 4.4. Relationship between youngest primordia (YPO) and plastochron index (P1) 

in the shoot apical meristem of the WT (A) and heterochronic apc (B) plants. N = 55 - 

57. 
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Figure 4.5. Time represented as days after sowing (DAS) needed by the WT and 

heterochronic apc plants for producing youngest primordia (YPO) from 13 to16 (A). 

Plastochron index (P1) is measured from the plant with the different YPO (B). The bar 

lines represent the mean value and standard error. The population number of WT and 

the apc plants was 9- 18. 
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4 The morphological basis of vegetative phase change 

Figure 4.6. Leaf development indices, including number of leaves with a petiole longer 

than lOmm (n), plastochron index (P1) and youngest primordium (YPO) measured from 
WT and the heterochronic mutant apc 10.8-11.5 days after sowing (DAS). The bar 

lines represent the mean and standard error. N = 14 — 20. 

Figure 4.7 Age at harvesting of WT and heterochronic apc plants in days after sowing 

(DAS) for shoot apical meristem measurements. The bar lines represent the mean value 

and standard error. N = 14 — 20. 
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4 The morphological basis of vegetative phase change 

Figure 4.8 Plastochron index (P1) measured from Trial 1 and Trial 2 of the WT and the 

apc plants. The bar lines represent the mean value and standard error respectively. N = 

16 — 26. 
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4 The morphological basis of vegetative phase change 

Figure 4.9 Relationship between PI and width (W1, W2), height (H1, H2) and volume 

(VI, V2) in the SAM of the WT plants. N = 17- 23. 
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4 The morphological basis of vegetative phase change 

Figure 4.10 Relationship between plastochron index (P1) and width (W1, W2), height 

(H1, H2) and volume (V1, V2) in the SAM of the apc plants. N = 16 - 26. 
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4 The morphological basis of vegetative phase change 

Table 4.2 The effect of genotype (WT vs. apc), trial and genotype-trial interaction on 

the width (W1, W2), height (H1, H2) and volume (V1, V2) of the SAM at the initiation 

of the 14th  leaf primordia (6-C in apc, 4-C in WT). 

Traits 
Effect of Genotype (G) Effect of Trial (T) Effect of Interaction between G X T 

F-test p F-test p F- test 

WI 40.01 0.0001 2.12 0.15 0.21 0.65 

HI 36.10 0.0001 0.17 0.66 0.11 0.74 

Vi 36.28 0.0001 0.74 0.39 0.07 0.77 

W2 16.74 0.0001 2.99 0.09 0.66 0.42 

H2 36.99 0.0001 1.69 0.20 0.01 0.92 

V2 20.43 0.0001 2.62 0.11 0.32 0.57 
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CHAPTER 5 

Quantification of the endogenous level of GA S, GAzo  IAA, and ABA 

in the shoot apex of pea at vegetative phase change 

5.1 Introduction 

Growth hormones play a crucial role in developmental processes of plants e.g. stem 

elongation, flowering and senescence (Pharis and King, 1985; Poethig, 1990; Ross et 

al., 1993). Hormones have also been considered as a major determinant of vegetative 

phase change (Allsopp, 1965), largely because of quantification studies that have 

demonstrated differences in the levels of endogenous hormones between phases of 

plant growth. In ivy (Hedera helix), for example, the gibberellin (GA) levels are lower 

in adult shoots than in juvenile shoots (Frydman and Wareing, 1973a,b; Rogler and 

Hackett, 1975a) and also in black currant (Ribes nigrum) (Schwabe and Al-Doori, 

1973). These finding have been interpreted that a reduction in GA level may be a 

promoter of the initiation of the phase change. This view was reinforced by application 

experiments where gibberellins induced a reversion of the shoot from adult to juvenile 

characteristics (Robbins, 1960; Marc and Hackett, 1991). 

Another indication of the involvement of GA in vegetative phase change has been 

shown in a study of maize mutants, such as dwarf] (dl), dwa,f3 (d3),dwarf5 (d5), and 

anther earl (an]) (Evans and Poethig, 1995). These mutants showed a dwarf habit in 

response to a significant decrease in the GA levels compared with the WT. This was 

caused by blocks in the GA synthesis pathway e.g. from GA20 to GA1 (Phinney 1984; 

Spray et al., 1984), from GA20 to GA5 (Fujioka et al., 1988), and GA 20 to GA3 

(Fujioka et al., 1990). Because of the effect on height, these mutants showed a delay in 

the transition from juvenile, vegetative to adult, vegetative phase change, but when 

exogenous GA were applied, the rate of transition in the mutants was the same as the 

WT (Evans and Poethig, 1995). 



5 Endogenous levels of GA I ,GA 20,1AA and ABA 

In addition to changes in GA levels, endogenous ABA levels also alter during plant 

growth. In ivy, the ABA level is higher in the adult shoot than in the juvenile shoot 

(Frydman and Wareing 1973 a). In heterophyllic aquatic plants, e.g. Hippuris vulgaris, 

it was found that this hormone increased from juvenile to adult phases (Goliber and 

Feldman, 1989). These results suggest that an increase in ABA level may be involved 

in the phase change. This is supported by some studies that found that production of 

adult leaves in the juvenile shoot (or submerged shoot) can be promoted by application 

of exogenous ABA hormone (Anderson, 1978; Mohan Ram and Rao, 1982; Deschamp 

and Cooke, 1984). 

Many of these studies of the roles of hormones in plant growth and development 

follow two approaches. Firstly, correlating change in endogenous levels with 

physiological effect and /or, secondly, applying the pertinent hormone and 

investigating the resulting response (Finkelstein and Zeevaart, 1994). 

An alternative method is the identification of single gene mutants that display 

phenotypic differences suggestive of an altered hormone level or response (Reid and 

Ross, 1993). This approach has successfully elucidated many physiological processes 

in the garden pea relating to hormone function, from the first hormone mutants with 

dwarf and wilty phenotypes attributable to GA and ABA, respectively (Phinney, 1956, 

1961; Tal and Nevo, 1973) to more recent studies examining the interaction of 

hormones, such as GA and auxins (Ross et al. 2000). The garden pea has been used 

extensively in these types of studies investigating the effect of changes in endogenous 

hormone levels on a range of growth and developmental processes (e.g. Ross et al., 

1993; Zhu and Davies, 1997), but none have addressed the possible role of hormones 

in the vegetative phase change. 

The site of action of hormones involved in the juvenile to adult phase change is clearly 

at the shoot apex. However, past studies of hormone levels in other species may have 

been confounded by the size of the tissue samples assayed, swamping small 

differences in levels in the apex, or by dramatic differences in the size or age of plants 

from which the material was harvested for comparison. In this study, the role of 

hormones on the vegetative phase is examined in precise assays of the shoot apical 
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5 Endogenous levels of GAI,GA20,IAA and ABA 

tissue. The endogenous level of GA1, GA20, IAA and ABA hormones were quantified 

from material harvested at a critical time when the phase change to the 6-leaflet form 

was initiated in the apex of the apc mutant but the isogenic control WT plants of the 

same size and age were still initiating leaves with 4-leaflets. 

5.2 Materials and methods 

5.2.1 Plant materials 

The plant materials used were the L107 cv Torsdag (W7) and the isogenic line Af3 

(apc) as described in Chapters 2 and 4. 

5.2.2 Growing conditions 

Plants were grown in plastic tote boxes (41 x 32 x 12 cm) in a 50:50 (by volume) 

mixture of vermiculite and 2-3 cm dolerite chips topped with 2 cm layer of sterilized 

1:1 mixture of peat moss and coarse river sand in the growth cabinet. Plants were 

exposed to an 18 hour photoperiod with a mixed fluorescent (Thorn 40 W white tube) 

and incandescent (Mazda 100 W pearl globe) illumination source (25 gmo1.m -2 .s-I  at a 

pot top). The day and night temperature in the cabinet was 20 ° C. 

5.2.3 Experimental design 

The experiment compared the endogenous levels of GA1, GA2, IAA and ABA in the 

shoot apices of WT and apc plants at the critical time (11 days after sowing, see 

Chapter 4) when the vegetative phase change from 4- to 6-leaflets takes place in the 

shoot apex of apc but not WT plants. The size of the shoot apices dissected from the 

• plants were ca. 1- 2 mm (Figure 5.1). The shoot apices were immediately put into cold 

Me0H (- 20 °C) with added BHT. The bulked samples were divided and analyzed 
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5 Endogenous levels of GAI,GA20,IAA and ABA 

separately. The harvesting data, including the age, the fresh weight of the shoot apices 

and the amount of the internal standard added are presented in Table 5.1. 

Figure. 5.1 The size (in height) of the pea shoot apex harvested for hormone analysis. 

The analyses of the GA1, GA2, IAA and ABA levels were based on the protocols 

developed by the Plant Hormone Division of the School of Plant Science at the 

University of Tasmania, Hobart. The analysis of hormone levels was carried out in 

following steps: extraction, addition of internal standard, purification, fractionation, 

and quantification (for more details see Chapter 2). 

5.4.4 Data analysis 

Means of the level of each hormone in the shoot apex of the WT plants were compared 

with those in the apc mutant, using Student's the t-test, performed in Excel 97 on PC 

computer. 
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5.3 Results 

The results of the quantification of endogenous levels of the hormones in this study 

using GC-SIM-MS are presented in Table 5.2 and Figure 5.2. Generally, the shoot 

apex of the apc plant contained higher levels of GA1, GA20 and IAA, but less ABA 

compared to the shoot apex of WT (Figure 5.2). 

5.3.1 GA1 and GA 20levels 

The results show that the mean GA 1  level in the shoot apex of the apc mutant initiating 

6-leaflet leaves is higher than the shoot apex of the WT apex initiating 4-leaflet leaves. 

However, the comparison of the levels between both genotypes shows no significant 

difference at P > 0.05 using the t-test. The means of GA 1  level in the WT and the apc 

plants are 7.9 and 12.5 ng/g FW -I  , respectively. The level of GA20 is also slightly 

higher in the apc than in the WT, but again this difference was not significant. The 

means of GA20  level were 18.8 ng/g FW -1  in the apc and 12.5 ng/g FW-I  in the WT. 

In general, the shoot apex of both the WT and the apc has a higher level in GA20 than 

GA 1 . 

5.3.2 IAA level 

The shoot apex of the apc plants had 16% more IAA than the WT shoot apex (Table 

5.2), but the difference is not significant (P> 0.05) (Figure 5.2). The means of IAA 

levels of the shoot apex in the apc and in the WT were 51.9 and 44.4 ng/g FW-1  , 
respectively. 

5.3.3 ABA level 

The level of ABA in the shoot apex was 36 % lower in the apc plant than in the WT 

plant (P <0.05). The means of the ABA level quantified by GC-SIM-MS were 9.8 ng/g 

FW-l in the WT and 6.6 ng/g FW -1  in the apc. 
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5.4 Discussion 

The involvement of GA in vegetative phase change was suggested by studies of 

woody plants in which significant differences were found in GA content in the shoot 

of different growth phases. The levels of GAs in juvenile shoots tended to be higher 

than in the adult shoot (Fryman and Wareing, 1973a,b; Rogler and Hackett, 1975a). 

This is not supported by the present finding in pea, with no dramatic difference found 

in the GA, and GA20 levels in the shoot apices of the 4-leaflet WT and 6-leaflet apc 

plants, using GC-MS SIM. The results suggest that large differences in GA1 or GA20 

levels in the shoot apex are not crucial to the regulation of leaflet number in pea. 

As discussed in Chapter 4, the vegetative phase change appears to be related to the 

rate of cell division in the SAM. The present results indicate that differences in GA 

levels are not required to effect changes in cell division. Other studies have 

demonstrated that the rate of cell division of plants was not affected by GA application 

(Barrat and Davies 1997; Daykin et al., 1997). A study on a dwarf mutant of pea cv 

Meteor showed that the GA treatment did not accelerate the cell division rate of the 

SAM (Daylcin et al., 1997), with no difference in cell doubling times, mitotic indices 

and percentage labelled mitosis between the GA-treated plants and the control plants. 

The same result was also found in the pea stem (Barrat and Davies, 1997). A more 

recent study in rice (Oryza sativa) plants also showed that GA promoted cell 

elongation rather than cell division (Matsukura et al., 1998). Evans and Poethig (1995) 

also suggested that GAs were not actually required for the vegetative phase change. 

Although, the delay of the initiation of the vegetative phase in the dwarf mutant, 

restored by GA application in the heterochronic phenotype of the dwarf mutant, was 

relatively minor compared to other heterochronic mutants such as Teopod mutants, 

and the GA treatment of the WT had only a small effect on the timing of the process. 

Therefore, it can be concluded that the vegetative phase change may depend on several 

factors, including GA (Evans and Poethig, 1995). Similar conclusions were also 

obtained from studies in ivy (Wareing and Frydman, 1976) and in the heteroblastic 

plant, Pseudopanax crassifolius (Horell et al., 1990). 

50 
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No consistent difference was found between the levels of IAA in the shoot apices of 

the WT and the apc plants, suggesting that a large difference in IAA is not involved in 

vegetative phase change in pea. This is supported by an observation that the 

application of IAA to ivy did not induce morphological change from juvenile to adult 

form (Robbins, 1960; Hackett, 1975). 

The level of ABA detected in the shoot apex of the apc mutant was, however, less than 

in the WT in all three replicates. This indicates that there is a decrease in endogenous 

ABA levels during the vegetative phase change in the pea from the 4- to the 6-leaflet 

form. Changes in ABA levels during plant ontogeny have also been demonstrated in 

woody plants, for example, in ivy, the ABA level was higher in the adult shoot than in 

the juvenile (Frydman and Wareing 1973b; Rogler and Hackett 1975b). These studies 

suggest that phase change may be promoted by an increase in the ABA level. In 

another study, the main factor in phase change was suggested to be an increase in size 

and complexity of the plant, rather than an increase in ABA levels during plant 

development, which were a consequence of an increase in plant stress (competition for 

water) caused by the increase in size and complexity (Walton 1988). 

The mutation vp8 in maize causes a delay in vegetative phase change, with a higher 

node of transition from juvenile to adult traits in vp8 than in the WT (Evans and 

Poethig 1997). A previous study found that the vp8 mutant had a significantly lower 

level of ABA than the WT (Neil et al., 1986). The reduction in ABA level in the 

mutant was investigated only in the seed at a single point in time (Evans and Poethig, 

1997), so the levels operating in the shoot apex at phase change are unknown. 

Therefore, although, a reduction in ABA level has been found in the pea mutant apc, 

there is no conclusive evidence that it is the controlling factor in the acceleration of 

vegetative phase change. The effect of the ABA in the vegetative phase change is 

examined in more detail in Chapter 8. 
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Genotype 

(days) shoot apex (g) 2H2GAI 2H2  GA 20  2H3  IAA 2H3  ABA 

5 Endogenous levels of GA I,GA20,IAA and ABA 

Table 5.1 Harvest details and internal standards added for the quantification of the 

endogenous GA1, GA20, IAA and ABA levels in the shoot apex of the WT and the apc 

plants. 

Age 	FW of 	Internal standard added (ng) 

Replication 1 

WT 11 0.33 4 4 10 3 

apc 11 0.42 4 4 10 3 

Replication 2 

WT 11 0.61 4 5 25 5 

apc 11 0.72 4 5 25 5 

Replication 3 

WT 11 0.44 4 5 25 5 

ape 11 0.41 4 5 25 5 
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Table 5.2 The endogenous levels of GA1, GA20, IAA and ABA in the shoot apex of 

the WT and the apc. 

Genotype 

Endogenous levels (ng.g FW 

GA 1  GA 20  IAA ABA 

Replication 1 

WT 6.2 5.5 36.6 10.7 

apc 4.7 10.2 68.3 3.9 

Replication 2 

WT 10.7 12.3 66.3 10.3 

apc 11.4 12.9 45.8 6.6 

Replication 3 

WT 6.8 19.6 30.2 8.5 
apc 11.4 33.4 41.5 7.5 
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Figure 5.2 Comparison of the endogenous levels of GA1, GA20, IAA, and ABA in the 
shoot apex of the WT and the apc. The bar lines represent the mean value and standard 
error. The different letter indicated a significant different in the level of the hormone at 
p < 0.05 using t-test. N= 3 replications. The data were derived from Table 5.2 
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CHAPTER 6 

Revealing the site of action of the apc mutation 

6.1 Introduction 

Grafting experiments have proved useful tools for determining the site of action of 

developmental mutations in a number of species. For example in the control of 

branching, Tucker (1979) showed that the site of action of lateral suppressor (Is) in 
tomato was in the shoot system because the mutant was unable to branch, despite 

being grafted to the cv. Craigella plant (with weak apical dominance). In the pea, by 
contrast, the site of action of the rms-2 mutation appears to be in the root and shoot 
because the branching pattern was controlled by the rms-2 via a graft-transmissible 
substance produced in the root system and supplied to the shoot system (Beveridge et 
al., 1994). 

Grafting studies have widely been performed to determine the site of action of genes 

controlling other aspects of development, particularly flowering. In the pea, grafting 

studies indicated that the site of action of the Sn gene in the control of flowering is by 

the production of a flower inhibitor in both shoot and cotyledons (Murfet, 1971). A 
grafting study in Arabidopsis found that the acaulisl (acll-1) mutation, which caused 

cessation of development of inflorescence meristems, does not affect diffusible 

substances because the grafted acl1-1 inflorescence was not affected by grafting onto 

the WT plant, nor was the WT inflorescence affected by _grafting on the acl1-1 
(Tsukaya et al., 1993). Satoh (1996) also found that the root was the site of production 

of a graft-transmissible substance that promoted vegetative to reproductive transition 
in Cucurbita. 

Grafting experiments have demonstrated that the site of production of a substance(s) 

controlling vegetative phase change in the woody species, English ivy, appears to be 

in the root system (Fryman and Wareing, 1973 b). In many model systems, however, 
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the control of vegetative phase change is difficult to disengage from the reproductive 

phase change. The apc mutation is particularly useful in this context for it has been 

shown to accelerate vegetative phase change in pea without dramatically affecting 

reproductive phase change (Chapter 7). When grown under short day (SD) conditions 

apc plants attain the six-leaflet form of leaf (6-C) approximately seven nodes earlier 

than in the WT. 

In this study, we use near isogenic lines of the apc mutant and WT (L107 Torsdag) in a 

combination of grafts (epicotyl to epicotyl and 4 th  node to 4th  node) to reveal the site of 

action of the apc mutation on vegetative phase change in pea. 

6.2 Materials and Methods 

6.2.1 Plant materials 

Plant materials used in this study were the L107 cv Torsdag as W7' plants and the 

isogenic lines derived from Af3 as mutant apc. Both line have the same genotype 

background (E, Le, Af Sn, Ppd, hr, Fa, Na) except that the Apc gene controls the rate 

of vegetative phase change. L107 line carries the dominant gene (Apc), while the Af3 

carries the apc recessive gene. Gene apc accelerates vegetative phase change in pea 

(see Chapters 2 and 7 for further details). 

6.2.2 Growing condition 

Plants used as stocks were grown one per pot in 14 slim-line pots, while plants to be 

used as scions were planted in tote boxes at a density of 50 plants per tote box. Plants 

were watered daily, and nutrient solution (aquasol) was supplied once weekly after 

active growth had resumed. The plants were grown in the glasshouse under LD (18 hr) 

and SD (10 hr) conditions. Source illumination provided is described in Chapter 2. 
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6.2.3 Experimental design 

The grafts used to determine the site of action of the apc mutation, included grafts 

between genotypes (test-graft) and grafts within genotypes (self-grafts) as controls. In 

addition, intact plants of both apc and WT were grown under SD to determine the 

effect of grafting on plant growth. The rates of vegetative and reproductive transitions 

in the various combinations were compared. 

Two types of grafts were used (Figure 6.1). The first graft type was made between the 
first internode (epicotyl) above the cotyledons on both stock and scion (graft A). The 
second type was made between both stock and scion at internode 4 (four) described as 
graft B. 

The plants used as stocks and scions were of a similar age for each graft type. In graft 
A they were performed 4-5 days after sowing, and graft B 8-9 days after sowing. The 
critical vegetative phase change at the leaf primordia level takes place 11 days after 
sowing (see Chapter 4). 

The cut end of each scion was made into a wedge shape and inserted into a slit made 

in the stock plants down the center of the epicotyl to approximately 12 mm. A small 

plastic ring was slipped over the epicotyl of the stock to hold the scion in place. 

The grafted seedlings were watered and humidity was maintained by placing a plastic 

bag over the seedlings and pot rim, held in place with a large rubber band. The 

seedlings were initially watered every second day. The bags were turned daily to allow 

appropriate gas exchange. After about 4 days, when the xylem connection between the 

scion and the stock appeared to have developed, the intact bags were replaced with 

bags with cut corners. At the first appearance of new growth in the scions (about one 

week), the bags were removed completely. 
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graft A 	 graft B 

Figure 6.1 Types of grafts: Graft made between the first node internode above the 

cotyledon on both stock and scion (graft A) and between the sion and stock at 

intemode four (graft B) 
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6.2.3 Characters scored 

Characters scored included the node of vegetative transition to the first leaf with three-

leaflets (3-C), four-leaflets (4-C), five-leaflets (5-C), six-leaflets (6-C), seven-leaflets 

(7-C) and eight-leaflets (8-C), counting from the cotyledons as node zero. The node of 

flower initiation (PI) was the first node on the main shoot to bear an initial flower, 

regardless of whether or not the bud actually developed into an open flower. Slow and 

weak grafts were excluded. 

Data from grafts grown under LD and SD conditions were analyzed separately. A 

comparison was performed between self-graft and test-graft which possessed a scion 

of similar genotype. In order to determine the effect of the grafting experiment on the 

plant, growth comparisons were made between the intact plant and the self-graft. The 

means of treatment were considered to be significantly different at P 0.05 and were 

separated by the Scheffe F-test. Analyses were performed using StatView 5.0. 

6.3 Results 

6.3.1 Comparison between self-graft and test-graft in graft A 

The apc/apc vs the apc/WT under long day and short day conditions 

WT stocks did not significantly affect (P > 0.05) the initiation of vegetative phase 

change (3-C, 4-C and 6-C) in the apc scions in the epicotyl to epicotyl grafts (graft A) 

under either LD or SD conditions (Table 6.1 and 6.3). Under LDs, the vegetative 

phase change to six-leaflets (6-C) occurred at a mean of 16.8 (±0.28) nodes in the apc 

scion of the apclapc self-graft and 15.7 (±0.37) in the apc scion of the apcIWT test-

graft. 
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6 The site of action of the apc mutation 

The apc scions grafted onto the WT and apc stocks displayed similar maximum leaf 

complexity. All scions in both apcIWT test-grafts and apclapc self-grafts reached a 

leaf complexity with six leaflets (6-C) in LD (Table 6.1) and eight leaflets (8-C) in SD 

(Table 6.3). 

No significant difference (P > 0.05) was found in reproductive phase change (Fl) 

between the apc scions of the test-graft and the self-graft of graft A under either LD 

or SD conditions. 

The W7'/W7' vs the WT/apc under long day and short day conditions 

The apc stocks were unable to induce WT scions to the six-leaflet form (6-C) under 

LD conditions. The apc stocks were also unable to accelerate the vegetative phase in 

the WT scions It was evident that there was no significant difference (P > 0.05) in 

response in terms of 4-C between the WT scion of the W77apc test-graft and the WT 

stock of WT/WT self-graft. The means (±SE) of the first node of 4-C in the test-graft 

and the self-graft were 13.4 (±0.29) and 13.3 (±0.29), respectively. Under SD 

conditions, there was no significant difference (p > 0.05) in the 6-C of the WT scion 

grafted to the different stocks (Table 6.4). 

The maximum leaf complexity in the WT scions of the WT/apc test-graft was similar 

to the leaf complexity in the WT of WT/WT self-graft: 4-C under LD and 6-C under 

SD. 

The WT scion was not affected significantly by the apc stocks in respect of FL The 

means (±se) of the first node of Fl were 15 8 (±0.22) in the WT scion of the W77apc 

test-graft, and 15.9 (±0.20) in the WT scion of the WT/WT self-graft under LD, and. 

20.1 (±0.27) in the WT scion of the test-graft, and 20.2 (±0.30) in the WT scion of the 

self-graft under LD. As found in vegetative transition, H was also not significantly 

different (P> 0.05) in the WT scion of the test-graft and in the WT scion in the self-

graft (23.4 (±0.27) in the test-graft and 23.6 (±0.29) in the self-graft). 
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6.3.2 Graft A vs graft B 

The apc/apc vs the apc/WT under long day and short day conditions 

As described above, the WT stock without true leaf (graft A) cannot inhibit the rate of 

vegetative phase change in the apc scion. In graft B, the WT stocks complete with true 

leaf were also unable to delay the rate of the vegetative phase change in the apc scions 

under either LD (Table 6.1) or SD (Table 6.3). The means of 6-C in the apc scions of 

the apc/apc self-graft (14.4±0.22) in graft B were not significantly different (P > 0.05) 

to that of the apc/WT test-graft (14.9±0.25). 

The maximum leaf complexities were also unaffected by graft B, for, in both test-

grafts and self-grafts, the apc scion reached six-leaflets under LD and eight-leaflets 

under SD. 

The WT/W7' vs the WT/apc under long day and short day conditions 

The apc stock with a true leaf did not affect significantly the WT scion regarding the 

rate of the vegetative phase. A similar response was shown in graft A in which there 

is no significant difference in the rate of phase change in both the WT scion of the self 

graft and of test graft under LD and SD (Table 6.2 and 6.4). 

In graft B (under SD) the means (±se) of the vegetative phase change (6-C) of the WT 

scions grafted to the apc stock and the WT stock were 19.93 (0.22) and 20.75 (0.22) 

respectively. The apc stock did not affect the maximum leaf complexity of the WT 

scions; either, each scion of both self-grafts and test-grafts reached six-leaflets. 

As shown in Figure 6.2, the vegetative phase change in the graft plant was slower 

than in the intact plant. This may be because the stocks of graft B have produced a 

true leaf, which provided more energy for recovery, whereas in graft A an epicotyl 

used as stock was unable to photosynthesize, so the recovery occurred more slowly. 
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6.4 Discussion 

The present study indicates that the vegetative phase change (or leaf heteroblasty) in 

the garden pea does not involve a graft-transmissible substance(s) from root system to 

shoot system since the apc stock did not accelerate the vegetative transition in the WT 

scions and the WT stocks were unable to inhibit the vegetative transition in the apc 

scions. Furthermore, that the marked difference in maximum leaf complexity of the 

apc and WT scions was unaffected by the opposite stock. Therefore this study 

demonstrates that site of action of the apc mutation is confined to the shoot system. 

The present study also indicates that the vegetative phase change or the leaf 

heteroblasty seems to be controlled by the shoot system itself. This is consistent with a 

number of previous studies. Robbin and Harvey (1970) assumed that the heteroblastic 

characteristics shown along the shoot from one phase to another are regulated by 

physiological control derived from the shoot system. 

As described in the result section, the apc and WT stocks with a true leaf did not 

significantly affect the rate of vegetative phase change of the opposite scions. It 

indicates that there is no graft-transmissible substance from the leaf to the shoot apical 

meristem capable of inducing vegetative phase changes. A previous study in Zea (Irish 
and Jugle, 1997) indicated that the leaf primordia may be the site of production of a 

transmissible substance required to promote vegetative phase change since the rate of 

vegetative phase change depended on the number of primordial leaves in the shoot 

system. Therefore, there are two possible sites of action of the apc mutation, namely, 

shoot apical meristem itself and/or leaf primordia. To verify this a further study is 

required using Y grafts in which two scions with different genotypes are grafted to a 

stock with same genotype, to determine if the growing point of apc can accelerate the 

vegetative phase change in connected WT plants. 
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Table 6.1 The response of vegetative and reproductive transition in the test-graft 
(apc/W7) and the self-graft (apc/apc) grown under LD (18 hr). 

F. 
CJ 

Graft' 	cc; 
co 

Graft (scion/stock) 

F - value 

 

(-) apc./WT 2  n3  apc/apc 2  

3-C 9.67 ± 0.33 3 9.33 ± 0.33 3 0.17 ns 

4-C 10.44 ± 0.24 9 10.11 ± 0.26 9 0.29 ns 

5-C 16.00 ± 0.37 6 15.33±0.33 3 0.54 ns 

6-C 16.78 ± 0.28 9 15.67 ± 0.37 9 2.39 ns 

7-C - - 

8-C - - 

Fl 15.33 ± 0.17 9 15.11 ± 0.20 9 0.76 ns 

3-C 9.33 ± 0.33 3 10 1 0.33 ns 

4-C 10.45 ± 0.25 11 9.75 ± 0.25 8 1.31 ns 

5-C 18.25 ± 0.25 4 15.83±0.31 6 8.49 0.05 

6-C 18.55 ± 0.49 11 17.12 ± 0.40 8 2.11 ns 

7-C - - 

8-C - - 

Fl 14.73 ± 0.24 11 14.25 ± 0.16 8 0.92 ns 

A 

B 

1 Graft performed between epicotyl and epicotyl (A) and between scion cut below node 4 and stock cut 
above node 4 (B) 

2 Values represent mean and standard error 
3 Number of plants displaying the characteristic scored 
ns: no significance at p = 0.05 
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Table 6.2 The response of vegetative and reproductive transition in the test-graft 
(WT/apc) and the self-graft (WT/WT) grown under LD (18 hr). 

Graft (scion/stock) 

Graft' CO 

 

F - Value 

 

WT/apc 2 
	

n3 	WT/WT 2  

A 	3-C 	12.67 ± 0.67 	3 	12.25 ± 0.25 	4 	0.81 	ns 

4-C 	13.44 ± 0.29 	9 	13.33 ±0.29 	9 	0.10 	ns 

5-C 

6-C 

7-C 	- 

8-C 	 - 

F1 	15.78 ± 0.22 	9 	15.89 ± 0.20 	9 	0.05 	ns 

B 	3-C 	12.00 ± 0.58 	3 	12.00 ± 0.63 	5 	0 	ns 

4-C 	12.57 ± 0.53 	7 	13.68 ± 0.60 	9 	0.95 	ns 

5-C 

6-C 	- 	 - 

7-C 	 - 

8-C 

Fl 	14.43 0.20 	7 	15.00 0.17 	9 	1.26 	ns 

1 Graft performed between epicotyl and epicotyl (A) and between scion cut below node 4 and stock cut 
above node 4 (B) 

2 Values represent mean and standard error 
3 Number of plants displaying the characteristic scored 
ns: no significance at p = 0.05 
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Table 6.3 The response of vegetative and reproductive transitions in the test-graft 
(apc/W7) and the self-graft (apc/apc) grown under SD (10 hi). 

Graft (scion/stock) 

Graft' co F- value 

apc/WT 2 n3 apc/apc 2  

A 3-C 10.67 ± 0.33 3 10.50 ± 0.57 8 0.01 ns 

4-C 11.60 ± 0.21 14 11.21 ±0.30 14 0.40 ns 

5-C 16.33± 0.88 3 16.00 ±0.32 5 0.09 ns 

6-C 17.14 ± 0.25 14 17.00±.0.18 14 0.05 ns 

7-C 21.20 ± 0.20 5 21.14 ± 0.14 7 0.01 ns 

8-C 22.13 ± 0.17 14 22.14 ± 0.36 14 0.00 ns 

Fl 21.80 ± 0.14 14 21.93 ± 0.16 14 0.03 ns 

B 3-C 9.50 ± 0.50 4 9.00 4 0.10 ns 

4-C 9.60 ± 0.13 14 10.07 ± 0.25 15 0.60 ns 

5-C 13.85 ± 0.34 7 12.50 ± 0.22 6 2.59 ns 

6-C 14.86 ± 0.25 14 14.40 ± 0.21 15 0.57 ns 

7-C 19.86 ± 0.34 7 19.25 ± 0.25 3 0.57 ns 

8-C 20.79 ± 0.26 14 19.93 ± 0.30 15 1.65 ns 

Fl 20.64 ± 0.32 14 19.47 ±0.32 15 2.72 0.05 

1 Graft performed between epicotyl and epicotyl (A) and between scion cut below node 4 and stock cut 
above node 4 (B) 

2 Values represent mean and standard error 
3 Number of plants displaying the characteristic scored 
ns: no significance at p > 0.05 
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Table 6.4 The response of vegetative and reproductive transitions in the test-graft 
(W7'/apc) and the self-graft (W7/W7) grown under SD (10 hr). 

Graft' 

C
ha

ra
ct

er
s  

A 	3-C 

4-C 

5-C 

6-C 

7-C 

8-C 

Fl 

B 	3-C 

4-C 

5-C 

6-C 

7-C 

8-C 

Fl 

Graft (scion/stock) 

F - Value 

WT/apc 2  3 n, WT/WT 2  

16.64 ± 0.34 14 15.60 ± 0.35 15 1.80 0.05 

23.07± 0.16 14 23.73 ±0.23 15 1.30 ns 

- 

23.36 ± 0.27 14 23.60 ± 0.29 15 ns 

- 

13.36 ± 0.20 14 14.17 ± 0.27 12 0.97 0.05 

19.93 ± 0.22 14 20.75 ± 0.22 12 1.30 ns 

- - - 

20.14 ± 0.27 14 20.17 ± 0.30 12 0.09 ns 

I Graft performed between epicotyl and epicotyl (A) and between scion cut below node 4 and stock cut 
above node 4 (B) 

2 Values represent mean and standard error 
3 Number of plants displaying the characteristic scored 
ns: no significance at p = 0.05 
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Figure 6.2 Grafting effect on the graft growth in SD: a) WT scion, b) the apc scion. 
The bar lines represent the mean and standard error values. 
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CHAPTER 7 

Effect of photoperiod on vegetative phase change in pea 

7.1 Introduction 

Many studies have reported the effect of photoperiod on developmental events in 

plants, e.g. the germination of seeds (Vince-Prue, 1975), root and tuber formation 

(Bhella and Robberts, 1974; Machackova et al., 1998), and senescence (Proesbting et 

al., 1978). The control of photoperiod on the transition from vegetative phase to 

reproductive phase has also been demonstrated in many species, including: 

Arabidopsis (e.g. Telfer et al., 1997; Xu et al., 1997); Pisum sativum (e.g. Weller et 

al., 1997); Hardenbergia violacea (King, 1998), and Sorghum bicolor (Lee et al., 

1998). 

Photoperiod has also been shown to affect the rate of vegetative phase change, or leaf 

heteroblastic development, in a number of species. A study on Ulex europaeus 

conducted by Millener (1961) found that the longer photoperiod induced the 

development of the adult phase, and that this was not a function of the total amount of 

light available for photosynthesis. In Ipomoea caerulea, there is pronounced 

differences in heteroblastic development between plants grown under 8 hr and 16 hr 

photoperiods (Ashby, 1950). However, Njoku (1956) pointed out that such differences 

(e.g. leaf shape) were not caused by a direct effect of photoperiod, but by the onset of 

the flowering process. 

The onset of vegetative phase change in Arabidopsis, recognizable by the formation of 

trichomes on the abaxial surface of the leaf, occurred earlier in plants grown under LD 

than under SD (Chien and Sussex, 1996). However, this study also suggested that the 

vegetative and reproductive phase changes were associated. The independent 

examination of the control of vegetative and reproductive phase changes is often 

difficult, with vegetative phase change often being the precursor to, or perhaps the 
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product of, the transition to flowering. Although there is often an association between 

the phase changes in the pea, the two processes can be separated (Wiltshire et al., 

1994) so that the photoperiodic control of vegetative and reproductive phase changes 

can be examined independently. 

The garden pea's utility as a model system derives from the fact that the difference 

between juvenile and adult vegetative phase is clearly displayed in the leaf 

morphology (Smith and Hake, 1992, Wiltshire et al., 1994; Van Lijsbettens and 

Clarke, 1998). The normal development of the garden pea is described in Chapter 1, 

but, in summary, the leaves at the first two nodes above the cotyledons are reduced to 

cataphylls and the 3"I  node the first true leaf (2-C) with two leaflets. At higher nodes, 

the leaf develops additional pairs of leaflets (3-C, 4-C, 5-C, 6-C, and occasionally 7-C 

and 8-C), so that the complexity of the organ increases during heteroblastic 

development (Marx, 1987; Wiltshire et al., 1994). 

In this study, a mutant accelerated phase change (apc), showing an acceleration in the 

initiation of the vegetative phase change compared to the wild type plants is used to 

investigate the effect of photoperiod on the vegetative phase change, and the 

association between the vegetative and reproductive phase changes. 

72 Materials and Methods 

7.2.1 Plant material 

The plant materials used in this study were the L107 cv Torsdag, and the isogenic line 

Af3. They posses similar genetic background (e.g. Lf E Sn, Dne, hr, Ppd, Af), except 

in a gene controlling vegetative phase change. L07 carries the dominant allele Apc, 

whereas At) carries the recessive allele apc. 

7.2.2 Growing conditions. 

Plants were grown in 14 cm slim-line pots filled with a 1:1 mixture of vermiculite and 

dolerite chips topped with 3-4 cm of peat-sand potting mixture in a phytotron in which 
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daily temperatures were 20 - 23 °C in the day and 13-18 °C in at night. The plants were 

watered daily and nutrient solution (Aquasol) was provided once a week. 

In order to determine photoperiodic effects on the vegetative and reproductive phase 

changes, two photoperiods were used: SD (8 h daylight) and LD 18 h (natural day 

extended by light from fluorescent tubes [Wotan 40 W cool white] and incandescent 

globes [Sylvania 100 W] providing 25 mmol \M-2S-1  at pot top). The temperature of 

dark compartments was maintained at 16 °C. 

723 Chatucters scorecl 

Characters scored included several stages of vegetative and reproductive transitions. In 
the vegetative transition they included the first node at which a leaf bore 4-leaflets (4- 

C), 5-leaflets (5-C), 6-leaflets (6-C), 7-leaflets (7-C), or 8-leaflets (8-C). The character 

scored in the reproductive transition was flower initiation (FI) taken as the first node to 

bear a flower initial regardless of whether or not the initial developed. The nodes were 

counted starting from the first scale leaf as node 1. 

The time of vegetative and reproductive transitions was also scored. The time was 

measured from day after sowing (day zero) until the 4-C, 5-C, 6-C, 7-C and 8-C leaf 

emerged from the enclosing stipules (for the vegetative transitions), or until the flower 

initially opened (for the reproductive transition, FT). All characters were scored from 

the primary shoots, not laterals. 

7.3 Results 

The apc mutant differed from the WT in both vegetative and reproductive phase 

changes under both photoperiods (Table 7.1), with significant genotype x photoperiod 

interactions (Table 7.2). The vegetative transitions to the 4-leaflet (4-C), 5-leaflet (5- 

C) and 6-leaflet (6-C) conditions were initiated more than one, three and four nodes 

earlier in apc than the WT under LD photoperiod (Table 7.1). Under short days, the 

differences in the initiation of 4-C, 5-C and 6-C between apc and the WT were 

magnified, with the transition to the six-leaflet form occurring seven nodes earlier in 
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the mutant line (Table 7.1). This acceleration also occurred in the chronological time 

of vegetative transitions under each photoperiod (Table 7.1). The 4-C, 5-C, 6-C 

transitions were accelerated by about 2, 8, 8 days (in LD) and 2, 16, 16 days (in SD) in 

apc by comparison with WT plants. 

The main difference between the two genotypes, however, was in the final vegetative 

phase change to the eight-leaflet form (8-C). None of the WT plants progressed past 

six leaflets, whereas all 20 replicates of the apc mutants under each photoperiod 

attained the eight-leaflet leaf (Table 7.1). 

The effect of apc on reproductive phase change was less pronounced than the effect on 

timing of vegetative phase change. Under LD photoperiod, there was no significant 

difference between the apc and the WT plants in the rate of reproductive transition, 

whether measured in nodes or days (H and FT. Table 7.1). There was a small, but 

significant, difference between genotypes when grown under SD conditions, with 

flowers initiated (FI) two nodes earlier in apc than in the WT and flowering (Fl) a 

corresponding 3 days earlier (Table 7.1) 

The effect of photoperiod on vegetative and reproductive phase changes also differed 

between genotypes. The transition to four-leaflets was not affected by photoperiod in 

either apc or WT plants. The means (i-se) of 4-C under LD vs. SD were 9.85 (0.11) vs. 

9.65 (0.11) in apc plants, and 11.55 (0.11) vs. 11.59 (0.12) in the WT There were no 

significant differences in the number of days to 4-C, either (Tables 7.1, 7.2). The 

transition to the six leaflet (6-C) form was delayed under SD in the WT by 3.5 nodes 

or 10 days, but by less than one node and only 2 days in apc (Table 7.1, Figures 7.1 

and 7.2). The reproductive phase change also occurred later under SD conditions in 

both genotypes, but the difference was less marked (5.9 nodes, 16 days in WT, and 4.4 

nodes, 13 days in apc). 
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7.4 Discussion 

Vegetative phase change is controlled by photoperiod in garden pea lines derived from 

Torsdag (L107). In this study, WT plants grown under short day conditions (SD) 

showed a delay in their vegetative phase change to the six-leaflet form of 3.5 nodes 

(21%) compared with plants grown under long day conditions (LD). The apc mutant 

reached all vegetative developmental transitions (4-C, 5-C, 6-C) at an accelerated rate, 

compared with the WT. Furthermore, the apc plants under both photoperiods attained a 

greater degree of complexity (8-C) than the WT (6-C), although this transition to the 

most complex leaf form was also later under SD than LD (2.9 nodes, 18%). This is 

consistent with the finding on Arabidopsis in which the vegetative phase change was 

postponed in SD (Martinez-Zapater et al., 1995), using the appearance of the 

trichomes on the abaxial leaf epidermis as a marker of juvenile-adult vegetative 

transition (Chien and Sussex 1996; Telfer et al., 1997). Studies on Solanum aviculare 

also concluded that vegetative phase change was delayed by shorter photoperiod 

(James and Mantel!, 1994). 

Some early studies (e.g. Milliner, 1961) have suggested that the rate of heteroblastic 

development is affected by photoperiodic conditions via the production of 

carbohydrate. In theory, plants grown in LD can be assumed to receive more light than 

those in SD. This increases photosynthetic activity in the plants, with a consequent 

increase in carbohydrate that could supply more energy for the developmental 

processes in the plant. Investigations on the effect of carbohydrates on vegetative 

phase change in Marsilea (Allsopp 1954; 1955) found that increased carbohydrate (i.e. 

glucose) concentration induced an increase in the rate heteroblastic development. 

In this process, photoperiod may act as the second factor by changing nutrient status as 

mentioned previously, or metabolic processes e.g. the production of endogenous 

hormone (s) as demonstrated in some studies on senescence process (Xu et al., 1997). 

In this process, photoperiod may also produce certain endogenous substance(s) that 

could affect the rate of phase change. Yet the plant response to changes in nutrient 

status, or the levels of endogenous substance, is under tight genetic control. Therefore, 

photoperiod affects vegetative phase change through a modification of carbohydrate 
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level or metabolism and the change may form part of a signal of the vegetative phase 

change transition. 

The results of this study indicate that vegetative phase change and reproductive phase 

change are separable but appear to be coordinated in garden pea, as suggested for 

Arabidopsis by Martinez-Zapater et al. (1994) and Telfer et al. (1997). In both the WT 

(L107) and the mutant (apc) plants, the final transition in vegetative phase change to 

the most complex leaf form occurs very close to the node of reproductive phase 

change. This is despite the dramatic difference in flowering produced by different 

photoperiods (six nodes difference in the WT and four nodes in apc) and the dramatic 

acceleration of the rate of vegetative phase change in the apc mutant. 

Growing the WT L107 plants under SD photoperiod delayed flowering compared to 

the• plants under LDs, and also delayed the change to the six-leaflet leaf, although by 

only 3.6 nodes, so that the plants attained their most complex leaf near flowering under 

both photoperiods. In the apc mutants, the transition to the six-leaflet leaf was 

markedly accelerated and occurred well before flowering. In apc the most complex 

leaf was the eight-leaflet leaf rather than the six-leaflet form, but it too was attained at 

the same node as the first flower under LDs and one node before flowering under SDs. 

The independent regulation of vegetative and reproductive phases has been shown in 

previous studies (Lawson and Poethig, 1995; Evans and Poethig, 1997; Itoh et al., 

1998). Tp and Vp8 mutants of Zea prolonged the juvenile phase but did not affect the 

initiation of reproductive phase change (Lawson and Poethig 1995; Evans and Poethig, 

1997). Abedon et al. (1996) found that flower initiation was negatively correlated with 

the first leaf with adult wax but correlated with the last leaf with juvenile wax, 

suggesting independence of some aspects of vegetative phase change from 

reproductive phase change. In woody plants, too, such as Eucalyptus risdonii, it has 

been demonstrated that vegetative and reproductive phase changes were highly 

heritable and under independent genetic control between populations (Wiltshire et al., 

1998). Therefore the two developmental transitions in pea may be under separable 

genetic and physiological control, however, in this particular background (Torsdag, 

L107), reproductive phase change coincides with the vegetative phase change to the 
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most complex leaf form. This may be due to a shared control mechanism or due to 

inadvertent selection for maximal leaf area at the time of greatest photosynthetic load, 

the onset of reproduction. 

/ 
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Table 7.1 Means and standard errors of parameters measured from the WT and apc 

plants grown under 8 h (SD) and 18 h (LD) photoperiodic conditions. 

Photoperiod 

Pa
ra

m
e t

er
s  

         

 

SD 

    

LD 

  

WT 

 

apc 

  

WT 

 

apx 

 

         

X + SE n 	X + SE X + SE n 	X + SE 

Nodes 

4-C 11.59 ± 0.12 17 9.65±0.11 20 0.01 11.55±0.11 20 9.85±0.11 20 0.01 

5-C 20.00 ±0.41 4 12.58 ±0.26 20 0.01 16.25 ±0.25 4 12.57 ±0.20 20 0.01 

6-C 20.76 ±0.20 17 13.75±0.14 20 0.01 17.20 ±0.12 20 13.05±0.18 20 0.01 

7-C 18.20 ± 0.36 10 15.00 ± 0.00 4 

8-C 19.40 ± 0.13 20 16.50 ± 0.11 20 

Fl 22.70 ±0.24 17 20.80 ± 0.22 20 0.01 16.80 ±0.12 20 16.40 ±0.17 20 ns 

Time 

4-C 28.94 ± 0.31 17 26.95 ± 0.15 20 0.01 28.50 ± 0.32 20 26.55 ± 0.13 20 0.01 

5-C 48.75 ± 0.85 17 32.33 ± 0.51 20 0.01 39.25 ± 0.48 20 31.17 ± 0.31 20 0.01 

6-C 50.76 ± 0.50 17 34.75 ± 0.41 20 0.01 40.90 ± 0.18 20 32.55 ± 0.41 20 0.01 

7-C 44.50 ± 0.79 10 40.00 ± 0.00 4 

8-C 48.60 ± 0.29 20 41.60 ± 0.23 20 

FT 60.06 ± 0.81 17 57.20 ± 0.59 20 0.01 43.90 ± 0.22 20 44.55 ± 0.13 20 ns 

ns no significance at p > 0.05 
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7 Photoperiodic effect 

Table 7.2 Effect of genotype, photoperiod, genotype x photoperiod interaction on 

vegetative and reproductive phase changes in the WT and apc plants 

Effect of 
	

Effect of 	 Effect of Interaction 

Genotype (G) 
	

Photoperiod (P) 	between G and P 

F-test 	p 	F-test 	p 	F-test Pa
ra

m
et

er
s  

Nodes 

4-C 254.69 0.0001 0.50 ns 1.09 0.30 

5-C 291.38 0.0001 33.50 0.0001 33.07 0.0001 

6-C 1179.02 0.0001 172.03 0.0001 77.62 0.0001 

7-C 30.27 0.0001 - 

8-C - 270.83 0.0001 - 

FI 36.64 0.0001 731.9 0.0001 15.63 0.0002 

Time 

4-C 66.35 ns 3.02 ns 0.01 0.93 

5-C 359.33 0.0001 68.11 0.0001 41.57 0.0001 

6-C 990.28 0.0001 242.81 0.0001 77.62 0.0001 

7-C - 12.74 0.004 - 

8-C - 347.39 0.0001 

FT 4.83 0.03 822.15 0.0001 12.2 0.0008 

ns no significance at P > 0.05 

76 



7 Photoperiodic effect 

Figure 7.1 The relationship of the node in vegetative (from 4-C to 8-C) and 

reproductive phase change in WT (a) and the apc (b) plants grown under LD (18 h) and 

SD (8 h). Each column represents the mean and standard error of 4-20 plants. 
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Figure 7.2 The relationship of the time between vegetative (from 4-C to 8-C) and 

reproductive phase change in WT (a) and the apc (b) plants grown under LD (18 h) and 

SD (8 h). Each column represents the mean and standard error of 4-20 plants. 
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CHAPTER 8 

Consideration of the apc mutant as 
a new ABA-deficient mutant 

8.1 Introduction 

Phytohormone mutants are a powerful tool for investigating physiological and 

developmental processes in plant growth (Reid, 1993; Reid and Ross, 1993). Synthesis 

mutants affecting the production of endogenous hormones in plants have been 

particularly useful in identifying physiological roles for gibberellins, auxin, ethylene, 

cytokinin and abscisic acid (Reid, 1993) and for genetic dissection of the synthesis 

pathways. In ABA—deficient mutants, for instance, there are blocks in the steps leading 

to the synthesis of active ABA, e.g. oxidation of ABA aldehyde to ABA (Taylor et al., 
1988; Walker-Simmons et al., 1989) and in carotenoid biosynthesis (Neil et al., 1986) 

that lead to reduced endogenous ABA levels in the mutant compared with the WT. 

This reduction then causes characteristic physiological abnormalities in the mutant, 

such as a tendency to wilt through excessive transpiration as a function of increased 

stomata! conductance (Neill and Horgan 1985; Quarrie, 1987). ABA-deficient mutants 

have been isolated and characterized in various plants, including: flacca (flc), sitiens 
(sit) and notabilis (not) from tomato (Tal 1966; Tal and Nevo, 1973); droopy (dr) from 

potato (Sinunonds 1965); aba from Arabidopsis (Koornneef et al., 1982); and 

viviparous (v) from Zea mays (Moore and Smith,1985; Neil etal., 1986). 

A similar mutant isolated in pea, named wi/ty (wit) (Marx, 1976), also has 

characteristic physiological differences from the WT: lower percentage water content; 

lower water potential; and a lower diffusive resistance in the leaves (Donkin et al., 
1983), associated with reduced levels of ABA (Wang et al., 1984). 

ABA plays an important role in the control of a wide range of essential physiological 

processes, including: seed development; dormancy; and adaptation to environmental 

stress (Zeevaart and Creelman, 1988). A possible role of ABA in the vegetative phase 
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change has been suggested in number of species; however, the results are 

contradictory. Studies in a woody species (ivy) and a heterophyllic aquatic species 

suggested that changes in ABA levels seem to be crucial in inducing the juvenile-adult 

transition (Frydman and Wareing 1973a; Anderson, 1978; Goliber and Feldman, 

1989), whereas study of a viviparous8 mutant of maize proposed that vegetative phase 

change is not affected by change in ABA level (Evans and Poethig, 1997). 

In Chapter 5, the shoot apex of apc mutant was shown to possess significantly lower 
levels of ABA than the WT plant, using GC-MS-SIM measurement. This study 

examines whether the apc mutant displays the characteristic physiological profile of an 

ABA-deficient genotype, and if the altered ABA levels in the shoot apical meristem of 

a known ABA mutant (wit) also confer accelerated vegetative phase change. 

8.2 Materials and Methods 

8.2.1 Plant materials 

Plant materials used in this study were the pure line L107 (Apc) and Af3 (apc; F7), and 
Line 5843 (Wit)  and the F4 progeny of a Line 5843 x L233 cross (wit). The seeds of 
the Wi/ and the wi/ plants used in the present study were kindly provided by Shona 

Batge (University of Tasmania, Hobart). Genetic background of L107 and Af3 lines are 
given in Chapter 2. 

8.2.2 Growing conditions 

Seeds were nicked and sown in a 14 cm slim pot containing the standard pot mix. The 

plants were grown under LD (18 hr) under glasshouse conditions. The natural daylight 

was extended using a mixture of 8 fluorescent tubes (L4OW/20S cool white, Osram 

Germany) and 4 incandescent globes (100 W Pearl, Mazda Australia). The intensity of 

the supplementary lighting was 25 innol.m -2 .s -1  at the pot top. Plants were watered 

once or more a week, depending on the weather, to maintain the plants in a mildly 

droughted condition. Nutrient solution (Aquasol) was provided once a week. 

80 



8 New ABA-deficient mutant 

8.2.3 Characters scored 

Physiological characteristics (transpiration rate and stomatal conductance) were 

compared between the apc and WT plants and between the known ABA-deficient wi/ 
and the Wi/ plants to verify that the apc mutant is ABA-deficient. These characters 

show consistent differences in most ABA-deficient mutants when compared to the WT 

plants. The transpiration rate and stomatal conductance were measured using a 

diffusion photometer (The Analytical Development Co. Ltd., Hoddesdon England). 

Flow of air (CO2) into the system was at a range of 399 — 400 ml/m'. The average of 

temperatures during measurement was 28.36 ± 0.07. Measurements were made on one 

of the basal leaflets of a mature leaf, the third leaf removed from the most recently 

fully-expanded leaf in each plant. Because of the complicated measurement of an 

intact leaflet using a chamber of the photometer, the data representing the 
physiological traits between the Apc and the apc, and the Wi/ and the wi/ were obtained 
from direct measurements. 

The rate of vegetative phase change in the segregating F4 progeny of the known ABA-
deficient mutant was measured as the first node with four- (4-C) and six-leaflets (6-C), 

counting the cotyledons as node zero. The node of flower initiation was also measured. 

8.3.4 Data analysis 

Each leaf (or each plant) for the measurement of the physiological characters and the 

phase change characters was subjected to replication. Tests for significant differences 

in the means of the physiological traits and the phase change traits of the Apc and the 
apc, and the Wi/ and the wit were performed with Student's t-test in Excel (Microsoft 
Office 97). 
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8.3 Results 

8.3.1 Physiological characterization 

Transpiration rate and stomatal conductance were compared between the leaves 

(leaflets) of the apc mutant and WT Apc plants and between those of the known ABA-

deficient wi/ and WT Wi/ plants (Table 8.1). The physiological traits in the apc and the 
Apc and the wi/ and the Wi/ plants showed similar results. The mean transpiration rate 

was higher in the apc (1.70 ml/cm2/m-I ) leaflets than in the Apc (1.21 ml/cm2/m-I )(P < 

0.001) and higher in the wi/ than in the Wi/ plants (2.52 and 1.86 m1/cm2/m-I , 
respectively). The mean stomatal conductance was also significantly higher in the apc 
(0.05) than in Apc (0.03), and higher in the wi/ (0.09) than in Wi/ (0.05) (P < 0.001, 
Table 8.1). 

8.3.2 Phase change traits 

To establish whether a reduction in ABA level is associated with an earlier vegetative 

phase change, the mean first initiation of four leaflet (4-C) and six leaflet (6-C) leaves 
were compared between the apc and the Apc and between the wi/ and Wi/ (Table 8.1). 

There was a significant difference in rate of initiation of the vegetative phase change 

between apc and the Apc, but no significant ontogenetic differences were found 

between the wi/ and the Wi/ plants. The first leaf with 4 leaflets (4-C) was about two 
nodes earlier in the apc than the Apc, whereas that transition occurred at the same node 
in both the wi/ and the Wi/ plants. The six leaflet (6-C) condition was initiated nearly 5 

nodes earlier in the apc than in Apc (12.6 vs. 17.4 nodes, P<0.00001). Only 25 % of 
the Wi/ progeny produced leaves with six leaflets, but there were none in the wi/ 

plants. The node of flowering initiation occurred one-half a node earlier in apc than in 

Apc (P = 0.001) but there was no significant difference in the first flower initiation 

between wi/ and the Wi/ plants (Table 8.1). 
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8.4 Discussion 

8.4.1 Physiological characterization 

When grown under controlled-drought conditions in the glasshouse, the apc mutant 

showed a greater transpiration rate than the WT Apc, a similar proportional increase to 

that of the known ABA-deficient mutant, wi/ over the WT Wi/, under the same 

conditions. This result is in accord with studies on other mutants; for example in not, 

sit and flacca of tomato (Tal and .Imber, 1970; Nevo and Tal, 1973), aba of 
Arabidopsis (Koornneef et al., 1982), and dr of potato (Quarrie, 1982; 1987). 

In the present study, the increase in the transpiration rate of the apc mutant is likely to 

be caused by the increased stomatal conductance observed in each mutant. Studies in 

three non-allelic, recessive, wilty mutants of tomato (not, flc, and sit) found that the 

mutants possessed higher rates of transpiration than normal plants because their 

stomata open wider and resist closure in the dark (Tal and Nevo, 1973). In the dr 

mutant of tomato, increase in stomatal conductance also led to excessive transpiration 

(Quarrie, 1987). 

The increased transpiration rate induced by an increase in stomatal conductance is 

linked to the ability of plants to produce a signal required in stomata! control. The 

signal causing the stomata to close has been identified as ABA (Jones and Mansfield, 

1970; Zeevaart and Creelman, 1988; Giraudat et al., 1994). Evidence describing the 

link was obtained by several studies (e.g. Davies and Zhang, 1991), including the tight 

correlation between the degree of stomatal closure in the leaves and the ABA 

concentrations in xylem (Zhang and Davies, 1990; Tardieu et al., 1991). Studies in 

potato have also shown that excessive transpiration induced by increased stomatal 

conductance was found in a genotype with a low endogenous ABA content and 

insufficient capacity to synthesize this hormone (Quarrie, 1982, 1987) and that 

conductance can be reduced by applying ABA (Quarrie, 1982). The ABA levels in not, 

flc and sit mutants of tomato were much lower than in the normal plants (Neil and 

Horgan, 1985). These mutants cover a range of the phenotypic expression of water 

stress from relatively mild in not, in which endogenous ABA concentration were 
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between one-third and one-half those in the WT, to relatively severe in sit, where ABA 

levels were less than 15 % of the WT plants (Jones et al., 1987). Application of ABA 

restored the wild phenotype (Bradford, 1983; Taylor, 1984; 1987). 

The present study, therefore, provides additional evidence to support the suggestion 

(Chapter 5) that the apc mutant is new ABA-deficient mutant in pea plants. The wi/ 
and apc mutants are clearly not allelic forms of the same gene, for wi/ is positioned in 

linkage group DI (Marx 1976) whereas apc is located in linkage group II of pea 
(Chapter 3). 

8.4.2 Phase change 

The present study confirms the significant difference in the initiation of the vegetative 

phase change in Apc and apc plants. The apc mutant is clearly heterochronic, with an 

earlier vegetative phase change to both the four and six leaflet form than in the WT By 

comparison, the ABA-deficient wi/ mutant showed no significant difference in the rate 

of the vegetative phase change when compared to the WT Wi/ plant. The results 

indicate that the ABA level of the shoot apex is not the principal influence on 

vegetative phase change in pea. 

This finding is supported by a previous study on maize (Evans and Poethig, 1997) that 

suggests that the postponement of vegetative phase change in the vp8 is not caused by 

a reduction of ABA level (Evans and Poethig, 1997). However some studies have 

reported that ABA can induce changes in leaf morphology in various plants e.g. in a 

fern (Liu 1984), a monocot (Anderson 1982), and some dicots (Mohan Ram and Rao, 

1982; Deschamp and Cooke, 1984; Young and Horton, 1985; Kane and Albert, 1987). 

Application of ABA to submerged shoot (or juvenile shoot) of Callitriche heterophylla 

induces the formation of the aerial-type leaf (adult leaf) (Deschamp and Cooke, 1984). 

Therefore, it can be suggested that change in ABA level during the growth process 

produces a range of different responses to vegetative phase change in different species 

but is not the controlling factor in the vegetative phase change in pea. 
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Table 8.1 Comparison of the means of physiological and phase change traits in the apc 

and the Apc, and in the wi/ and the Wi/ grown under drought conditions and LD (18 hr) 

ape Ape 

Parameters 
X ± SE II X ± SE 

Transpiration rate (inl/cm 2/m- 5 1.70 ± 0.13 14 1.21 ±0.09 14 0.001 

Stomatal Conductance 0.05 ±0.00 14 0.03 ± 0.00 14 0.0005 

Node of 4-C Initiation 9.86 ± 0.10 14 12.07±0.13 14 <0.00001 

Node of 5-C Initiation 11.20 ± 0.20 5 16.80 ± 0.20 5 <0.00001 

Node of 6-C Initiation 12.57 ± 0.17 14 17.38 ±0.14 14 <0.00001 

Flowering Initiation 16.50±0.14 14 17.14 ± 0.10 14 0.001 

wi/ Wi/ 

Transpiration rate (ml/cm 2/m-1 ) 2.58 ± 0.16 25 1.86±0.12 15 0.003 

Stomata! Conductance 0.09 ± 0.01 25 0.05 ±0.00 15 0.006 

Node of 4-C Initiation 11.48 ± 0.09 25 11.60 ± 0.91 15 ns 

Node of 6-C Initiation 15.71 ± 0.64 6 ns 

Flowering Initiation 15.20 ± 0.13 25 14.80 ± 0.75 15 ns 
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Chapter 9 

Conclusions 

9.1 Vegetative phase change 

The nature of vegetative phase change has been reported widely for different species 

by a number of investigators (e.g. Allsopp, 1967; Poethig, 1990; Evans and Poethig, 

1997; Itoh et al., 1998), however the regulation of this ontogenetic change is less 

adequately described (Poethig, 1990). One possible reason is that the model species 

used do not display a clear demarcation between different phases of growth. In the 

present study, the apc mutant of the pea garden (Pisum sativum) was used as a model 

of the vegetative phase change because this mutant showed a clear difference in the 

rate of vegetative phase change, when compared to the wild type plants free from the 

confounding effects of reproductive phase change or marked differences in size or 

other characteristics (Chapter 1 and 2). The vegetative phase change from the four- to 

the six-leaflet condition occurs at an earlier node in the mutant than the WT. The 

linkage analysis has revealed that the apc locus is positioned between the aat-p and a 

genes of Linkage group II (Chapter 3). 

As shown in Chapter 7 and 8, the vegetative phase change in the apc and the WT took 

place at a predictable position along the shoot, even though both plants were grown 

under identical conditions. The vegetative phase change to the 6-leaflet condition 

occurred initially at node < 15 in the apc and at node 15 in the WT. The predictable 

position of the vegetative phase change has also been shown in maize for four 

observable traits (leaf width, the presence of epicuticular wax, epidermal hairs and the 

staining reaction with toluidine blue), with vegetative phase change occurring between 

nodes 6 and 8 in tp2 plants, but much higher in Tp2 plants (Dudley and Poethig, 1993). 

Another study in the gl15 maize mutant, found that juvenile characteristics were 

replaced with adult characteristics in the leaf epidermis at node 2 or 3 (Avato, 1987; 

Coe et al., 1988). The predictable nature of these positional changes suggests that the 

nature of the vegetative phase change is genetically controlled (Galinat, 1966; Poethig 
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1988a; Bertrand-Garcia and Freeling, 1991; Dudley and Poethig, 1993) as are shifts in 

timing of expression of phase-specific characteristics (Bachman, 1983; Hilu, 1983; 

Gottlieb, 1984). 

Previous studies have indicated a correlation between vegetative phase change and a 

change in size of the shoot apical meristem (e.g. Allsopp, 1954; Crotty, 1955; 

McLellan, 1990; Clearwater and Gould, 1994), with an increase in size of the SAM 

associated with an increase in leaf complexity. This finding is consistent with the 

results from the present study in which the apc mutant showed acceleration in 

vegetative phase change and a significantly larger shoot apical meristem when 

compared to the WT (Table 4.2). An increase in size of the shoot apical meristem is a 

product of an increase in number of cells within shoot apical meristem through cell 

division (Hackett, 1980; Medford et al., 1992; Laufs et al., 1998), presumably as a 

function of cell division activity in the meristem (Itoh et al., 1998). Therefore, the 

accelerated vegetative phase change of pea produced by the apc mutation may also be 

controlled genetically by a change in the rate of cell division within the shoot apical 

meristem. 

Such a change in activity of the shoot apical meristem may be mediated by an 

alteration of hormonal status. Indeed, many studies have suggested that vegetative 

phase is associated with changes in endogenous levels of hormones (Allsopp, 1967; 

Hackett, 1985; Poethig, 1990; Evans et al., 1994). Chien and Sussex (1996) have 

shown that gibberellins, in particular, are involved in vegetative phase change 

transition in Arabidopsis, especially in the regulation of trichome formation on the 

adaxial and abaxial leaf surfaces. The present study suggests that gibberellins (GA 1  and 

GA20) and auxin (IAA) are not involved in the vegetative phase change in pea because 

quantification of GA1, GA20  and IAA levels in the shoot apex revealed no consistent 

differences between the WT and the apc at the time of initiation of the crucial node 

(Chapter 5). This is an agreement with the study on the sin] (short integument]) 

mutant of Arabidopsis that suggested that a delay of vegetative phase change in the 

mutant was not caused by change in gibberellin metabolism (Ray et al., 1996). 

87 



9 Concluding discussion 

Although there appears to be a significant decrease in the ABA level in the apc mutant 
(Chapter 5) at the initiation of the phase change to the six-leaflet condition, compared 

to the WT pea of the same age and size, this is probably not a cause of acceleration of 

vegetative phase in the mutant (Chapter 8). A previous study in vp8 mutant of Zea 

(Iris and Jegla, 1997) found that the decrease in ABA level in that mutant was not the 

crucial factor in vegetative phase change. 

Rather than responding to a control, such as a plant growth hormone, from an external 

source, the grafting studies of Chapter 6 indicate that the control of shoot apical 

meristem activity (or size), and the acceleration of phase change, is internally 

regulated. This study found that the site of action of apc mutation is neither in the root 

nor in expanded leaves, in contrast to studies that have suggested both organs as 

sources of transmissible signals for vegetative phase change (Rogler and Hackett, 

1975a,b; Evan and Poethig, 1995). Therefore, if vegetative phase change in the pea is 

mediated by hormones, they are produced within the shoot apical meristem or leaf 

primordia, or in both tissues. 

Although many studies have shown that environmental cues such as photoperiod also 

affect vegetative phase change (Rogler and Hacket, 1975a), it does not mean that 

photoperiod determines the process directly. The present study has demonstrated that 

the significant effect of photoperiod on vegetative phase change occurred in both apc 

and WT plants (Chapter 7). Hence, it is suggested that the vegetative phase change in 

pea seems to be controlled genetically via an increase in responsiveness, or 

unresponsiveness of SAM to photoperiod (Martines-Zapater et al., 1994; Coupland, 

1995). 

9.2 The vegetative phase change vs the reproductive phase change 

Experiments under different photoperiods clearly indicated that vegetative and 

reproductive phase change are separable phenomena, since the number of nodes from 

the vegetative phase change initiation to the reproductive transition of both the apc and 

WT was markedly different under LD and SD conditions (Chapter 7). This study is 

consistent with some studies on mutants of Zea that concluded that the timing of 
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9 Concluding discussion 

reproductive phase change is not dependent on the transition to the adult vegetative 

phase (Bassiri et al., 1992; Evans and Poethig, 1997). In vp2, for instance, the mutant 

produce significantly more leaves than WT plants but initiated a tassel (reproductive 

phase marker) in the same time as the WT. A study in amp] mutant of Zea also showed 

that the mutation prolongs the juvenile phase without affecting the timing of 

reproductive phase change (Telfer et al., 1997). Other studies in both herbaceous and 

woody plants have suggested that the vegetative phase change is a prerequisite for 

reproductive phase change (Allsopp, 1967; Bruck and Kaplan, 1980; Hacket, 1985; 

Zimmerman et al., 1985). Heterochronic mutants such as apc, that can shift the 

developmental timing of these ontogenetic events more or less independently, provide 

the tools to examine the interdependence of these processes. 
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