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Abstract. The correspondence between soliton solutions of nonlinear 

partial differential equations and homoclinic orbits in appropriately 

chosen phase spaces of these equations is well-known. Perturbations 

of homoclinic orbits can be studied by use of the Melnikov technique; 

this focusses on the splitting of such orbits into stable and unstable 

invariant manifolds and explains the emergence of chaotic phenomena 

via Smale horseshoes. 

In this thesis the Melnikov method is applied to the homoclinic 

orbits corresponding to solitons of the Korteweg-de Vries (KdV) and 

modified Korteweg-de Vries (radV) equations. These equations are 

reduced to third order ordinary differential equations by a travelling 

wave ansatz, defining a three-dimensional phase space of the 

equivalent systems of three first order equations. The geometry of 

periodic and homoclinic orbits and their structural changes under 

perturbations is investigated. It turns out that the three-

dimensional phase spaces foliate into a continuous family of invariant 

two-dimensional subspaces. By integrating the equations to second 

order the analysis by Melnikov's method is restricted to these 

subspaces and is considerably simplified. The Melnikov integrals 

stemming from the periodic and dissipative part of the perturbations, 

determining the onset of chaos, are then evaluated for the reduced KdV 

and MKdV systems. They are used to calculate the critical ratios 

between perturbation amplitude and dissipation coefficient at which 

tangency between stable and unstable manifolds occur. At these 

critical ratios the transition/bifurcation from regular to chaotic 

behaviour occurs. It is observed that the Melnikov function for the 

periodic perturbation of the IlKdV case vanishes for certain 
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perturbation frequencies and parameter values, as confirmed by 

numerical work. The apparent discrepancy between structurally 

unstable homoclinic orbits and stable solitons is discussed and it is 

shown that solitons can persist despite the splitting of their 

corresponding homoclinic orbits under perturbation. Finally, 

subharmonics and resonance for the periodic solutions under 

perturbations are investigated using fourth order averaging techniques 

applied over the solution periods, which reveals a period doubling 

bifurcation in the subharmonics. 
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1. Introduction 

Although chaotic phenomena such as turbulence or fluctuations in 

ecological populations, stock market, weather, etc. have been known 

for decades, if not centuries, satisfactory mathematical modelling of 

dynamical systems and the techniques for analysing them are rather 

recent. However, there are two principal causes for the rather 

dramatic increase of successful studies into chaos. One is the influx 

of methods and results from fields of pure mathematics such as 

topology, functional analysis and operator theory into the applied 

sector, mainly differential equaticns. The other is the application 

of numerical techniques and iterative methods in conjunction with 

electronic data processing or machine simulation of analytic models. 

The combination of these two is responsible for the drastic surge in 

knowledge and improved understanding of chaos in the last two decades. 

1.1 	The definition of chaos and related concepts 

Just as mathematics, the analysis of chaos itself can be divided 

into two categories. The study of maps and the structure of the sets 

they generate in terms of fractals and strange attractors can be 

considered pure, whereas the study of chaotic behaviour in 

differential equations is more application-oriented. Before 

introducing the techniques and problems of the study of chaos in 

differential equations it is appropriate to consider the various 

definitions of chaos as they can be found in the literature. 

The first mathematical definition of chaos was developed for one-

dimensional maps by Li and Yorke [1]. It is closely associated with 

their discovery that period three implies chaos and is usually 

presented as a theorem. Their definition can be considered relevant 
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even in the present context of differential equations, as most other 

definitions are extensions of the Li-Yorke definition. 

Theorem by 'Li and Yorke.  Let J be an interval and F: J J be 

continuous. Suppose there is a point a E J that satisfies 

either 

F 3 (a) 	a < F(a) < F 2 (a) 
or 

F 3 (a) >, a > F(a) > F 2 (a) 

Then (1) For every integer k>0 there is a point in J having 

period k. 

(2) J has an uncountable subset S (called the scrambled 

set) that contains no periodic points and satisfies the 

following conditions: 

For each p, q distinct in S we have 

limsup IFn(p) - Fn(q)I > 0 
n co 

and 
liminf IFn(p) - Fn(q) I = 0 . 
n m 

For each p E S and each periodic q E J we have 

limsup IF(p) - Fn(q) I > 0 . 
n m 

Marotto [2] extended this theorem to n dimensions and his work in turn 

has been generalized further by Shiraiwa and Kurata [3]. The crucial 

element in the above theorem is the presence of subsequences in the 

mapping sequences Fn which lead to 	7-'flInonzero separation 

of two arbitrarilyf 	 close points p and - q 
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in the limit of an infinite number of iterations. This can be 

interpreted as sensitive dependence on initial conditions, which is, 

in one form or another, the key ingredient in every chaos definition 

as well as in the definitions of subsets in mathematical spaces in 

which dynamical systems exhibit chaos, or strange attract.ors. 

The concept of sensitive dependence on initial conditions is by no 

means a new one. In fact, occurrences of the phenomenon have been 

reported as far back as Adam and Eve. Who could have forseen the 

profound consequences of a naive little pleasure like eating some 

fruit (e.g. like an apple). For further details see reference [4]. 

The other important condition for chaos is the existence of 
• us 

nonperiodicity. Ott [5], for instance, proposes to define a map as 

chaotic if it has sensitive dependence on initial conditions, is 

nonperiodic and has a vanishing average correlation function. The 

correlation is defined between two points in the iteration sequence 

such that if the number of iterations between the two points is taken 

to the infinite limit, the average of the correla.tion function 

vanishes. 

The study of chaos in differential equations requires a definition 

of chaos in abstract spaces such as function spaces. Auslander and 

Yorke [6] propose the following definition. 

Definition of chaos by Auslander and Yorke. 	If 	X 	is a 

compact metric space and t a continuous surjection from X 

to itself then (X, t) is defined to be a compact system. The 

point x E X is said to be stable if for each E > 0 there is 

a (5 > 0 such that d( rn(x),rn(y)) < E for each y with 

d(x,y) < 6. 	and each 	n E N. The compact system (X,t) is 



- 	_ 
- 

' 

defined to be chaotic if no point x E X is stable and if 

there is some y E X whose orbit is dense in X. 

• 
Clearly, the absence of stability implied in the definition can again 

be translated into sensitive dependence on 	initial conditions. 

Although the chaos definitions discussed above are based on discrete 

maps they are useful for differential evolution equations as well, 

since these equations can be considered as generators of semigroups 

with discrete subgroups. In practical applications, this means 

discrete timesteps on the solutions. 

_ 

_ 

1.2 	Chaos in differential equations 

Beginni09 with Poincare in 1880 [9] there has been a continuous 

evolution of the mathematics underlying the phenomena that are now 

described as chaotic. Amongst the many contributions to this 

development the work of Duffing in 1918 [10] about mechanical forced 

oscillations and van der Pol in 1927 [11] about electrical forced 

oscillations could be considered poioneering. On the other hand Ott 

- 
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[5] concludes on the basis of the existing literature that it can be 

surmised that "...virtually all the activity in this field (at least 

when restricted to problems in the physical sciences) has occurred 

since 1975. The notable exceptions to this statement are the papers 

of Lorenz (1963) and of Ruelle and Takens (1971)." Both papers are 

concerned with systems containing no explicit time dependence, that 

is, the systems are autonomous. Lorenz [12] (see also Sparrow [13]) 

investigated machine solutions of a. three dimensional system of 

nonlinear ordinary differential equations (ODEs) which was derived by 

spectral ansatz frcm a partial differential equation (PDE) describing 

the evolution of Benard instability: the instability that results when 

a fluid layer is heated from below. He was able to establish the 

existence of chaos in particular regions of the phase space with an 

intricate geometric structure. 

The work of Takens and Ruelle [14] is an early example of using 

results of pure mathematics such as topology to study solution•

structures of PDEs such as the Navier-Stokes equations. Their 

mechanism for the onset of turbulence is basically a sequence of three 

Hopf bifurcations which generate a three-torus in phase space. They 

further show structural instability of the vector fields which 

generate solution curves on the suface of this torus. This is done by 

defining a Poincare map based on the period of the third Hopf 

bifucation. The phase space of this Poincare map contains the torus 

relating to the two initial Hopf bifurcations. They further showed 

that in a C 2 -neighbourhood of this Poincare map there exist horseshoe 

diffeomorphisms. These diffeomorphisms were discovered by Smale [15] 

who investigated most of their properties such as Cantor set 

structure, hyperbolicity and the resulting structural stability, as 
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well orbits of all periods and a nonperiodic dense orbit. 	These 

properties cause sensitive dependence on initial conditions. As a 

consequence, small .perturbations on the solution generating vector 

fields will - produce structural change into vector fields which - 

generate horseshoe diffeomorphisms, with the ensuing chaotic 

behaviour. 

It is important to realize that this mechanism invalidates the tp èzs  

mechanism proposed by Landau and Lifshitz [16]. . Their idea was that 

DrreckVICE. an  infinite - number of periods in 
- 

superposition. Such a solution cannot develop as the superposition of 

three periods already causes structurally unstable solutions. 

Takens and Ruelle also consider the possibility of repeated double-

looping of the two-torus by a map in the neighbourhood of the Poincare 

map and thereby generating a sequence of Smale-Williams solenoids. 

This is related to period doubling in three dimensions and thereby 

creates a link to the mechanism of chaos by period doubling as 

developed by Feigenbaum [17,18]. Before discussing this alternative 

mechanism, it is appropriate to take a view of the problems arising in 

connection with the application of. the results of Takens and Ruelle to 

specific differential equations. 

The main problem for a given autonomous system dx/dt = X(x) is the - 

determination of the eigenvalues of the operator X in the evolution 

equation and their critical points where the Hopf bifurcations occur. 

For a given ODE system this is simply done by linearizing the system 

about the stationary solution and calculating the eigenvalues of the 

Jacobian. 	A Hopf bifurcation or transition to a periodic solution 

occurs when a complex conjugate pair of eigenvalues crosses the 

- imaginary axis, that is, -  when their real - part changes sign under 
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variation of the bifurcation parameter. Once this occurs an analytic 

approximation to the periodic solution can be constructed. The 

problem starts with the second Hopf bifurcation, which does not take 

place in the space spanned by the dependent variables of the ODE 

system but in the function space containing the periodic solution of 

the first Hopf bifurcation. Asa consequence, it is rather difficult 

if not impossible to construct an analytic approximation to this new 

doubly periodic solution. (It has been brought to the author's 

attention that Fowler et. al. [19] give an example of a system where 

such an approximation can be constructed.) 

For PDEs the problem arises with the first bifurcation already, 

since the place of the Jacobian in the ODE case is now taken by a 

differential operator defined in the solution space of the PDE. The 

determination of eigenvalues now requires spectral theory and an 

analytic computation of eigenvalues is a nontrivial problem for even 

the most simple differential operators such as the Laplacean. 

Further work on chaotic solutions of first order PDEs has been done 

by Brunovsky [20], Lasota [21] and Wolfe and Morris [22]. Brunovsky 

and Lasota consider an equation with one space-variable and a form 

which permits effective use of the method of characteristics. This 

allows them to derive a set of conditions for the equation and its 

boundaries which causes solutions to be chaotic according to the 

definition of Auslander and Yorke given in section 1.1. Wolfe and 

Morris generalize these results to arbitrary dimensions of the space 

variable and the dependent variable. As in the case of the work of 

Takens and Ruelle, applications of these results to specific equations 

are still missing at this time, since the conditions on the equations 

as well as on the boundaries are rather restrictive. 
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As opposed to the models for chaos described so far, which focus 

mainly on PDEs and which encounter substantial technical difficulties 

in their direct applications, the mechanism based on period doubling 

has been verified in various dynamical systems in general and ODEs in 

particular such as the Lorenz equations, the Duffing model and the 

forced oscillator with friction. However, it should be emphasized at 

this point that the Duffing and Lorenz equations are spectral 

reductions of PDEs. A short discussion of the various reduction 

techniques of PDEs to ODEs and their present significance in chaos 

modelling is therefore appropriate. 

1.2.1 Reduction of PDEs to ODEs 

We give a list of the four most frequently used reduction methods, 

not necessarily in order of importance. 

, 1. Reduction by spectral ansatz. 	Although this technique is an 

approximative Galerkin method, it has shown to preserve the chaotics 

of the underlying PDE models and reflect them realistically in the 

behaviour of the ODE system. It consists of formally expanding the 

solution into a Fourier series with respect to the spatial variable 

and truncating after a finite number of terms. The time dependent 

Fourier coefficients are the new dependent variables in the 

resulting ODE system, whose dimension is equal to the order of 

truncation. The most prominent example is the Lorenz system, which 

has been briefly discussed at the beginning. Its truncation is of 

third order with two temperature Fourier modes and one velocity 

Fourier mode. The other well-known example is just as important and 

reduces the integro-differential equation of the elastodynamic beam 

to the Duffing system by a one-mode truncation with respect to the 
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deflection of the beam from the stable equilibrium. For details see 

Tseng and Dugundji [23], Moon and Holmes [24], Holmes [25], Moon 

[26], Marsden and Holmes [27], Greenspan and Holmes [28], and 

Guckenheimer and Holmes [29]. 

2. Approximation by finite differences or finite elements. The 

finite difference method approximates the continuous spatial domain 

of the PDE by a finite selection of discrete points such that the 

temporal evolution of the unknown variable, such as e. g. velocity 

in the case of the Navier-Stokes equation, is monitored at these 

points or sites. In this case the solution ansatz consists of a 

finite sum taken over the set of these selected points. The 

individual terms in this sum are products consisting of unknown time 

dependent functions multiplied with the initial values of the 

unknown variable at the selected points. The time evolution at one 

of these selected points is therefore described by an ODE. The 

number of ODEs equals the number of selected points and the coupling 

between ODEs of neighbouring points is naturally introduced by the 

finite difference approximations of the spatial differential 

operators. 

The finite element method is basically like a finite difference 

method except that the selected points are replaced by weight 

functions with finite support and overlap with neighbouring weight 

functions to provide coupling. This is a Galerkin method as well 

since if rpriurps the weight functions to coefficients in the 

resulting ODE system by taking scalar products of them with an 

appropriate set of test functions, usually identical to the weight 

functions. 
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These two methods are ready made for machine calculations as the 

number of ODEs can be substantial. Their significance for chaos 

studies is therefore in the numerical analysis of turbulence in 

atmospheric physics and fluid dynamics. For detailed discussions 

and applications of these methods see e.g. Fletcher [30,31] and 

Temam [32]. 

3. Similarity solutions. 	The majority of nonlinear evolution 

equations are invariant under scaling transformations of the type 

(x,t,u) (aax,abt,acu). Here, x, t, u are independent space and 

time variable and dependent variable. a, a, b, c are real scalars. 

Invariants of this transformation are of the type yl=xl/a t- l/b, 

v 1 =u1/c t1/b, y 2 =x-1/a ti/b, v 2 =u-1/c ti/b. Substituting a pair of • 

these invariants into the equation will cause t to appear in each 

term of the equation to the same power and therefore factor out, 

leaving a nonlinear and nonautonomous ODE with yi and vi (i=1,2) 

as independent and dependent variable respectively. This equation 

is, in the case of the Burgers, KdV, and /1KdV, a generalized Riccati 

equation with solutions like Hermite polynomials or Painleve 

transcendents. To date there is no mechanism for chaos that seems 

to be applicable to this type of equation or solutions thereof. For 

details see e.g. Olver [33]. 

4, Travelling wave ansatz. Introducing the variable y=x-ct in the 

PDE leads to an ODE with the independent variable y. The solution 

is therefore a wave of fixed shape travelling with speed c. This 

type of ansatz leads to the well-known cnoidal waves for the KdV and - 
■.■ 

radV equation and provides an easy way to obtain soliton solutions. 
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For further discussions see e.g. Whitham [34]. 	This is also the 

approach used in the present context to establish the connection 

between saddle connections and solitons. 

1.2.2 The period doubling mechanism 

Compared to the previous models the period doubling mechanism holds 

two significant advantages; firstly it provides a simpler analysis, 

and secondly it is applicable to both dissipative and area-preserving 

or Hamiltonian systems. 	The Hopf bifurcation, and thereby the 

Takens-Ruelle mechanism, is limited to dissipative systems. 	This 

limitation is shared by the models developed by Brunovsky, Lasota, 

Norris and Wolfe since some of the conditions imposed on it are 

equivalent to dissipation. 

The phenomenon of period doubling was *ailtt'.Fied by Feigenbaum 

[17,18] in his investigations of one-dimensional unimodal maps. In 

our context the period doubling map is a Poincare map of at least two 

dimensions depending on a bifurcation parameter. Our starting 

assumptions are an at least three-dimensional dynamical system with 

periodic behaviour, which presents itself as a fixed point of the 

Poincare map. 	This Poincare map undergoes a pitchfork bifurcation as 

the parameter reaches a critical value. 	This first pitchfork 

bifurcation transfers stability from the stable fixed point to an 

orbit with period two. In terms of analysis, this happens when an 

eigenvalue of the linearized Poincare map leaves the unit circle in 

the complex plane by crossing through -1. In geometrical terms the 

orbit representing the original periodic solution splits in such a way 

that it can be embedded on a Mobius strip transversal to the plane of 

the Poincare map. This leaves two penetration points on this Poincare 
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plane which represent an orbit of period two. 	An infinite number of 

subsequent pitchfork or period doubling bifurcations corresponds to a 

sequence of critical values bifurcation :parameter with an 

accumulation point. 	The period of subsequent solutions increases 

therefore in powers of two, and grows to an infinite period once the 

bifurcation parameter reaches the accumulation point. This 

nonperiodic orbit is a stable and dense attractor. 

As Eckmann [35] notes, this attractor has no sensitive dependence on 

initial conditions; chaotic behaviour can be attributed to denseness 

and aperiodicity. On the other hand, however, attention should be 

drawn to the work of Greenspan and Holmes [28], which demonstrate 

sensitive dependence on initial conditions for period doubling via 

pitchfork bifurcations. They use averaging methods to study Poincare 

maps in resonant and subharmonic systems which arise through 

superposition of two frequencies; one is the system frequency and the 

other that of periodic external forcing. The method of analysis 

employed by Greenspan and Holmes goes back to Melnikov [36]. This 

method has found widespread use in the study of chaotic dynamical 

systems and is used in this thesis. Before introducing it, some of 

the geometry and associated dynamics has to be considered. We also 

draw attention to the descriptions of the subject by Wiggins [37], 

Holmes and Marsden [27], and in [29]. 

1.2.3 Saddle connections and perturbations 

In the following introduction to perturbed saddle connections we 

focus on the homoclinic orbits. As noted by Wiggins [37], the study 

of such orbits connected to a saddle goes back to Poincare [38] in his 

work on - the three body -  problem, where he also coined the term 
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"homoclinic". 	Generalizations 	of 	the 	hoMoclinic 	orbit are 

"heteroclinic" orbits, that is, orbits connecting two different - 

saddles, and heteroclinic cycles, -which is a _set of heteroclinic 

orbits with their saddles connected to a closed cycle. The following 

description extends easily to these generalizations. 

a) Autonomous perturbations 

We assume a planar autonomous and area preserving dynamical system 

with two fixed points; one saddle and one centre, as shown in figure 

2b. The phase portrait therefore must contain a homoclinic orbit 

connecting the saddle to itself and enclosing the centre. This 

homoclinic orbit or saddle connection can be understood as half of the 

saddle's stable and unstable manifold represented by an identical 

curve in phase space. If the system is now subjected to a small 

autonomous perturbation which is a function of the dependent 

variables, the position of the fixed points will shift slightly and 

the eigenvalues determining their type will be slightly perturbed. 

The saddle is determined by a pair of real eigenvalues of opposite 

sign, and if the perturbation is small enough this situation and 

therefore the saddle will remain. The centre corresponds to a pair of 

imaginary eigenvalues of opposite sign, sitting on the imaginary axis 

symmetrically with respect to the origin. Almost every perturbation 

of the type introduced above will shift them not only parallel to the 

imaginary axis, but also transverse to it. That means these 

eigenvalues become complex conjugate and the centre turns into a sink 

for negative real part or negative perturbation, and into a source if 

the real part or perturbation is positive. Consequently, the set of 

closed orbits concentric about the original center break up and turn 
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into spirals. 	Since the homoclinic orbit is an element of this set, 

it is subjected to this breakup as well; in other words, stable and 

unstable manifold split. In case of a sink the unstable manifold must 

spiral inward and in case of a source the spirals are directed 

outwards accordingly. This change or break in symmetry from closed 

orbits to spirals and from homoclinic orbit into separated stable and 

unstable manifold is a prime example of structural instability. 

b) Nonautonomous periodic perturbations 

We assume the same dynamical system and phase portrait as in a), 

except that it is now subjected to a small time periodic perturbation. 

Asa consequence, the perturbed system will be nonautonomous and its 

phase portrait will vary periodically with time. To take advantage of 

this periodicity we define a Poincare map which describes, the 

evolution of the system in time intervals equal to the period of the 

perturbation. This way we retain a time independent phase portrait, 

although it is the one of the Poincare map and not of the original 

perturbed system. If the perturbation is small enough this phase 

portrait will be similar to the perturbed one in a) - the saddle and 

centre will relocate slightly. The centre, however, will retain its 

stability type and the homoclinic orbit will split into stable and 

unstable manifold which will intersect transversally at a countably 

infinite number of points. 

Another essential difference compared to a) is the behaviour of the 

concentric and periodic orbits. They will undergo phase locking or 

resonance as Will be studied in detail in section 7. One should note 

at this point that, in contrast to the other system reactions, the 

tranSversal intersection of manifolds and the phase locking cannot be 
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concluded directly from the geometry of the unperturbed phase space 

and the type of perturbations imposed on it They appear of course in 

numerical simulations and the phenomenon of phase locking makes sense 

on the basis of physical arguments and is familiar in engineering 

applications. However, it is the application of Melnikov analysis 

which demonstrates the appearance of transversal intersections and 

phase locking by use of mathematical perturbation techniques. 

To develop an understanding for the emergence of chaos it is 

sufficient to assume the presence of transversely intersecting 

manifolds and study their dynamics as the perturbed system evolves in 

time as will be done in the next section. 

1.2.4 Dynamics of the Poincare map 

. Suppose the perturbed and intersecting manifolds in the phase space 

of the Poincare map appear as in figure la. This type of picture is a 

consequence of uniqueness of solutions and the hyperbolic deformation 

• near the saddle point. Uniqueness of solutions implies that a point 

on an invariant manifold cannot leave the manifold under the Map 

associated with it, which explains the attribute "invariant". An 

intersection is a point shared by both manifolds and therefore cannot 

leave either of them under the Poincare map. Since the saddle is an 

accumulation point for the Poincare map or its inverse, it takes (in 

the limit) an infinite number of intersections for a particular 

intersection to be mapped forward or backward into the saddle. A 

generalization of this effect to sections of the manifolds is known as 

the A-Lemma (see (28,29)). 

We now monitor the evolution of the rectangle Po in figure lb, 

(which is, for explanatory -  Purpose -s, an 'idealization of figure la) -  
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under the dynamics of the Poincare map P. After vertical stretching 

and bending in the process of a number of Poincare iterations (three 

in figure lb), Po will have completed one cycle and returned to its 

approximate starting position, however •in the shape of a horseshoe, 
^ 

denoted by P 3 . This cycle is clearly the first iteration of Smale's 

horseshoe diffeomorphism [15] as already mentioned in connection with 

the Takens-Ruelle mechanism and subsequent iterations or cycles will 

reveal all the dynamic and chaotic properties of the Smale horseshoe. 

1.2.5 Melnikov's method 

Given a particular dynamic system and perturbation as described 

above, the question arises if and under what conditions will it show 

transverse intersections of the perturbed manifolds. The obvious 

approach is to construct a distance function between the perturbed 

manifolds, and this is precisely what Melnikov [36] achieved by using 

perturbation methods. Although his method determines this distance to 

a first order approximation in a power expansion only, his results 

agree surprisingly well to numerical calculations. An outline of the 

different steps in Melnikov's construction is given below. For 

mathematical details see [28,29]. The el cd, e-r-ca 4+ . 

1. Expand the solutions lying on the two perturbed manifolds 

formally in powers of a parameter representing the size of the 

perturbation, e.g. the amplitude. 

2. Derive a first order variational equation by substituting the 

solution expansions of step one into the original 'Perturbed 

system and truncating after the linear term. 
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3. Define a first order distance function by taking the distance 

between the the first order terms of the two expanded solutions 

in step one. 

4. Project this distance onto a line perpendicular to the 

unperturbed homoclinic orbit at a point in time equivalent to 

the initial time in the solutions of step one. 	The projection 

can be performed by employing a wedge product, which is a 

vector product reduced to the two dimensions of the phase 

plane. 

The projected distance of step four cannot be calculated in 

practical terms as it contains the first order terms of the 

solution expansions introduced in step one; these solutions 

and their expansions are not known analytically. This problem 

can be resolved as follows: 

5. Take the time derivative on the projected distance function of 

step four. Note that this is done with respect to the current 

time and not the initial time of the solutions involved. 

6. Eliminate the time derivatives of the first order solution 

expansions arising in the expression of step five. This is 

done by substituting the variational equation of step two and 

results in a linear evolution equation for the first order 

approximation of the projected distance function of step four. 

7. Integrate the evolution equation of step six from -co to +a. 

The integrand in the resulting integral contains the initial 

time of the solutions involved. This is the time at which the 

integral approximates the distance between the manifolds. 
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The distance formula resulting from the above procedure is an integral 

with respect to time over the wedge product between the unperturbed 

solution and the perturbation. Also note that the outlined derivation 

does not depend on a particular type of perturbation; it can be 

dissipative as described in 1.2 a) or periodic as in 1.2 b), or a 

combination of the two. Since this involves perturbation parameters 

such as the amplitude of the periodic perturbation and the damping 

coefficient of the friction perturbation, it provides a means for 

finding critical values at which the distance •function disappears; 

therefore a comparison to machine simulations becomes possible. 

Technical details will be discussed in section 6. It is important to 

note that Melnikov's method can be extended to dissipative systems, 

which adds an extra term to the integrand of the distance formula. 

For details, see Holmes• [39] and Salam [40]. The Melnikov technique 

has also been applied by Lima and Pettini [41] to model the 

suppression of chaos by external forcing in the Duffing-Holmes 

oscillator. Recently the distance approximation for Hamiltonian 

systems has been extended to second order by Liu and Gu [42]. 

However, their applications focus on subharmonics and 

ultrasubharmonics of the perturbed pendulum. 

summary, 	saddle 	connections are 	linked to chaos via 

perturbations, structural instability, and Smale horseshoes. On the 

other hand, homoclinic and heteroclinic saddle connections correspond 

to solitons and shock wave solutions respectively in nonlinear 

evolution PDEs, as illustrated by Jeffrey and Kakutani [43]. It is 

therefore natural to subject these solution types to perturbations and 

investigate their reaction. We now give an introduction to solitons 
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in connection with the KdV and /1KdV equation, as they are prime 

examples for soliton solutions and have found widespread applications. 

1.3 	Solitons and cnoidal waves 

According to Drazin [44,p.8], solitons are 	not precisely defined". 

However, we can adopt his description as a working definition: 

A soliton is any solution of a nonlinear equation or system which 

1) represents a wave of permanent form; 

2) is localized, decaying or becoming constant at infinity; 

3) may interact strongly with other solitons so that after the 

interaction it retains its form, almost as if the principle of 

superposition were valid. 

In the present study the properties 1) and 2) are of particular 

interest, as these correspond to a saddle connection in an appropriate 

phase space. Solitons with different values at negative and positive 

infinity are sometimes referred to shock waves in the literature. As 

will be shown later, they relate to heteroclinic saddle connections, 

whereas solitons with identical values at negative and positive 

infinity relate to homoclinic orbits. 

Solutions which are periodic wave trains of infinite length are 

called cnoidal waves since they can be represented by Jacobi's 

elliptic cn function. In the limiting case of an infinitely long 

period they degenerate into solitons. 
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1.3.1 Stability of solitons and cnoidal waves 

Liapunov stability of solitons was shown by Jeffrey and Kakutani 

[43] for the KdV equation in particular and by Benjamin [45] in • 

general. 	Their methods consist of adding a perturbation to the 

soliton solution and showing that this new state must relax into 

'soliton state. 	We give an outline of Benjamin's method as it is the 

more general one. 

Assuming the soliton and its second derivative to vanish in the 

infinite spatial limits, he proved, using a Lagrangean variational 

formulation, that the Hamiltonian of a soliton solution represents a 

local energy minimum within a neighbourhood (in solution space) of the 

soliton containing non-soliton solutions. Since the soliton soutions 

of a given system form a continuous set parameterized by the wave 

speed, any small enough perturbation out of this set will return the 

system into the soliton set, but not necessarily to the soliton with 

the wave speed before. perturbation. Benjamin [46] also proved 

Lyapunov stability of cnoidal solutions with respect to perturbations 

of the same period by the variational method. His result was extended 

by Drazin [47] to Lyapunov stability of KdV solitons with respect to 

an arbitrary frequency by use of Floquet theory. 

Considering the earlier mentioned fact that solitons and cnoidal 

waves correspond to saddle connections and closed orbits /  

respectively, which are known to be structurally unstable, this almost 

seems to be a contradiction. It is therefore necessary to elaborate 

on this problem and demonstrate the compatiblilty of the two concepts 

under the various conditions. 
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First we note that stability of a particular set of solutions does 

not only depend on their functional form, but much more on the 

character of the underlying system. Benjamin and Drazin use the 

original PDE KdV equation for their variational analysis, and permit 

variation in the wave speed. This means, that a perturbation can 

affect the wave speed and shape of a soliton or cnoidal wave, but it 

cannot change them into other solution types. On the other hand, they 

are restricted to solitons vanishing at the spatial infinities. The 

concept of structural instability, however, relates to KdV reduced to 

two first order ODEs by travelling wave ansatz and integration. As a 

consequence, the wave speed is a fixed parameter within the ODE 

system. 

Secondly, it is important to distinguish the types of perturbation. 

Benjamin as well as Jeffrey and Kakutani add their perturbations to 

the soliton solutions and do not specify a particular type of 

perturbation, which means that no specific time evolution of the 

perturbation must be allowed. In the case of KdV, reduced to an ODE 

system, a time periodic forcing perturbation plus dissipation is added 

to the system. These type of perturbations invariably force 

oscillation and damping onto the unperturbed solution, which means 

that a solution type without these characteristics will change. 

1.3.2. The Nelnikov technique and solitons of the KdV and NKdV 

equation. 

As already mentioned, Jeffrey and Kakutani [43] have shown that 

soliton solutions of the KdV and NKdV equation are associated with , 

homOclinic orbits in phase space. This association ha S been further 
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developed by Holmes and Marsden [27] as well as by Birnir [48]. Since 

the main application of the Nelnikov method is to the splitting of the 

homoclinic orbit into stable and . unstable 'manifolds due to 

perturbation of the nonlinear differential equation, we have in this 

work used the method to study the effect of periodic .  and dissipative 

perturbations on the equation,. 

Ut 	U xUm 	Uxxx = 0 • 

For m=1 this is the KdV equation and for m=2 it is the MKdV equation; 

from now on we label them collectively as the (N)KdV equation. To be 

more precise, we have extended equation (1.1) to the (N)KdV-Burgers 

equation by allowing for-a dissipation term proportional to u., and by 

adding an external force term that is periodic in space and time. 

We shall in fact only be studying the "reduced (M)KdV equation" 

which arises when a travelling wave ansatz is made: 

u(x,t) = u(x-ct) a u(y) , 	 (1.2 

where c is the wave speed. In this way we are left with the reduced 

third order ordinary differential equation (ODE), 

Uyyy 	UyUM 	CUy 	0 	 (1.3) 

As explained by Olver [33], the most general periodic solution to this 

equation for m=1 after two integrations reads. 

u(y) = A cn 2 (war + cs) + m , 	 (1.4) 

where the constants A, w and N are actually interrelated and cn is the 

standard Jacobian elliptic function. It is called [33,44] the cnoidal 

wave solution. In the limit where the homoclinic orbit is approached 
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and the elliptic modulus 	, the solution (1.4) degenerates to the 

form 

u(y) = 3 sech 2 (y/2 + 8) , 	 (1.5) 

which is the soliton or solitary wave solution. 

A generalization of this soliton to m 	1 is shown in [44] to be 

u(y) = 3 sech 2 /m(y/D + 8) 
	

(1.6) 

D = v[2(m+1)(m+2)/3m]/m . 

In order to motivate this study, we shall review in - section 2 some 

of the applications of the (M)KdV equation to fluid waves and plasma 

physics, introduce dissipation in this context (thus going to the 

(M)KdV-Burgers equation) and include periodic wave perturbations. It 

is also appropriate to introduce other PDEs which reduce under the 

ansatz (1.2) to the form . (1.3). Examples are the .Boussinesq 

equations, the BBM equations, and model equations for waves in elastic 

media. In section 3 we apply a travelling wave ansatz to the (M)KdV-

Burgers equation and the other equations introduced in section 3 under 

periodic forcing and analyse the phase portrait associated with the 

cnoidal and soliton solutions for a generalised (M)KdV equation 

ut + au xum + bu xxx  = 0 	 (1.7) 

Sections 4 and 5 analyse the wave solutions of the reduced (M)KdV 

equation and their geometry in the phase space. The Melnikov method • 

is reviewed in section 6 and the Melnikov integrals as well as 

tangencies of manifolds and bifurcation curves are calculated. This 

'section is guided by"the well-known application of the beinikov theory 
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to the Duffing system by Greenspan and Holmes [28] or Guckenheimer and 

Holmes [29]. In section _7 the dynamics - of resonance - and subharmonics 

are.studied. Section' 8 presents the numerical work such as the plots . : 

of the manifolds in the phase portraits and compares the computations 

to the calculations of section 6. A summary and interpretation of 

results is given in section 9. 
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b) 

Figure 1. (a) Intersecting invariant manifolds connected to a saddle 

s. (b) Idealization of (a); the rectangle Po undergoes three Poincare 

iterations and returns to its original position deformed into a 

horseshoe P 3 • 

21 



2. The (N)KdV equation in fluids, plasma and lattices, and related 

equations 

Most of the numerous publications on the (M)KdV equation in the last 

two decades have concentrated on properties of the equation itself 

such as conservation laws, inverse scattering theory, group structures 

and transformations between solutions. In the present context it is 

necessary to review some of the physical background to the MKdV 

equation so as to provide some framework for the type of perturbations 

that are introduced which then permit analysis via Melnikov's theory. 

It is also useful to look at equations which are related to the MKdV 

equation in the sense that a -travelling wave ansatz reduces them to 

the same ODE as it does the (M)KdV equation. Our examples in this 

context are the Boussinesq equations, the BBM or Peregrine equation 

and a nonlinear equation for dispersive waves in elastic media. 

Furthermore, we note that an exponential wave ansatz reduces the cubic 

Schroedinger equation to equation types equivalent to the (M)KdV 

equations reduced by travelling waves. We now present a catalogue of 

cases where the (M)KdV equations or some variant of it emerges. 

2.1 	Shallow water waves 

The general KdV equation 

ut + a u xu + b u xxx  = 0 
	

2.1) 

was originally derived by Korteweg and de Vries in 1895 [49] to 

describe gravity waves on a layer of an inviscid, incompressible fluid 

of finite depth undergoing irrotational motion. In this context 

equation (2.1) has two applications: 
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1. It describes the evolution of the height perturbation 

hi(x,t) = h(x,t) - ho, 	 2.2 

where h 0  is the height of •the unperturbed layer and h(x,t), the 

height of the perturbed layer, plays the role of u in (2.1). 

2. It describes the evolution of the horizontal component of—the 

perturbation velocity. 	Including the influence of viscosity adds a 

dissipation term -via" to equation (2.1) and thereby leads to the 

KdV-Burgers equation 

u t  + a u xx  + b uxxx  - 	u xx  •= 0: 
	

(2.3) 

An external forcing term in form of a horizontal acceleration u p  

periodic in space and time; 

up (x,t) = a cos(wx - wpt) 	 (2.4) 

provides a periodic perturbation to equation (2.3). 	The dissipation 

term 	- 1711xx 
	and the periodic perturbation (2.4) will, after further 

reduction, allow the application of Melnikov's theory. 

2.2 	Waves in liquid-filled elastic tubes 

It was shown by Johnson [50] that the propagation of waves in a 

viscous fluid contained in an elastic tube can be described by the 

KdV-Burgers equation 

ht + h xh + hxxx - 5 hxx = 
	 (2.5) 

with x as radial coordinate and h(x,t) a quantity proportional to 
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the radial perturbation of the tube wall. An external perturbation of 

the type (2.4), namely 

h p (x,t) = a cos(wx - wpt), 	 2.6) 

can again be added to (2.5) by introducing an external pressure 

vibrating periodically in x and t. 

2.3 	Magneto-acoustic waves in plasma 

Kawahara [51] showed that the equations describing a magneto-acoustic 

wave in plasma under the effect of ion-electron collisions can be 

reduced to a KdV-Burgers equation. In this case the dependent 

variable is a first-order perturbation of the plasma velocity and ion-

electron collisions are responsible for the dissipation term. 

External forcing can be imposed by fluctuating electromagnetic fields 

with time and space dependence as in (2.4) or (2.6). 

2.4 	Alfven waves in plasma 

Alfven waves have also been studied by Kawahara. In a review of his 

analysis in [51] the following equation is derived: 

8f/8t + f 2  8f/8x = 	83 f/8x 3  . 	2.7) 

This is of course the MKdV equation and the dependent variable f is 

proportional either to the density or velocity fluctuations due to 

dispersion of the plasma. The wave solutions of (2.7) are the Alfven 

waves, i is a constant and V, is the phase velocity of an 

idealized (i.e. nondispersive) Alfven wave. 	External forcing of the 
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type explained for magneto-acoustic waves in section 2.3 provides 

periodic perturbations. - 

2.5 	Lattice waves 

By lattice we mean here the atomic structure of solids and the 

vibrations of the atoms is usually described by so-called lattice 

waves. We consider the one-dimensional model consisting of a number 

of particles each of mass in connected to its two neighbours by two 

springs. Instead of a spring force proportional to the equilibrium 

displacement y, say, of the individual particle, Zabusky [52] 

considered the nonlinear dependence between spring force F and y: 

F = x(y + a y+1) 
	

(2.8) 

with K, a, p being constants. It is shown in [52] that the dynamics 

of a one-dimensional lattice with a spring force of type (2.8) can in 

the continuous limit be reduced to the equation 

8u/8t + uP 8u/8x + i 8 3 u/8x 3  = 0 , 	(2.9) 

with u=8y/8x and 	a constant depending on 	a 	and 	P. 

Perturbations in the form of mechanical vibrations presented in the 

form (2.4) can be considered for periodic forcing. 

2.6 	The Boussinesq equations 

More than twenty years before Korteweg and de Vries, Boussinesq [53] 

derived the equation 

Utt = bUxxxx -F . eUxx 	a(11 2 )xx 
	 (2.10) 
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from potential theory as a model equation for the dynamics of shallow 

water waves, as elaborated upon by Ursell [54]. u is the vertical 

amplitude of the waves and a and e are positive coefficients 

depending on the thickness of the water layer. The coefficient b 

depends on the layer thickness as well and is negative for the "good" 

and positive for the "bad" Boussinesq equation. To study the 

propagation and dispersion of lattice waves as described in section 

2.5, Zabusky [52] considered, besides equation (2.9), under assumption 

(2.8) the equation 

Ytt = - (e + ayx)Yxx - bYxxxx 	 (2.11) 

Here, y is the lattice displacement and a, b, e are positive 

coefficients depending on the resonant frequency, the distance between 

lattice nodes, the coefficient a of (2.8) and the wave speed in the 

limit a-30. This can be considered as a potential form or first 

integral of the bad Boussinesq equation as it reduces to equation 

(2.10) with b positive if differentiated with respect to x and the 

substitution y x  = u is made. 

As noted by Manoranjan et.al . [55] the two Boussinesq equations have 

received little attention compared to other soliton producing 

equations such as (M)KdV, Burgers, sinh-Gordon, and sine-Gordon. One 

reason for this is the second time derivative on the dependent 

variable, causing a higher degree of technical difficulty in their 

analysis. Some of the mathematical properties of the bad Boussinesq 

equation have been studied by Hirota [56] whereas some of the 

mathematics of the good Boussinesq equation have been covered in [55], 

and by McKean [57]. Perturbations of the form (2.4) can model 
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mechanical vibrations as well as a periodic structure of the solid 

bottom of a fluid layer. 

2.7 	The BBM (Benjamin/Bona/Mahoney) equation 

As an alternative and improvement to the KdV equation, Benjamin, Bona 

and Mahoney [58] proposed 

ut + eu x  + au x u + gu xx t = 0 	 (2.12) 

as a model equation for the propagation of long waves in shallow 

water. This equation was also used by Peregrine [59] to model the 

evolution of an undular bore in a shallow water channel and is 

therefore sometimes called the regularized long-wave (RLW) equation or 

Peregrine equation. The dependent variable u is, as in the case of 

KdV, the fluctuation of the horizontal velocity component or the wave 

height and the coefficients a, e, g depend on the layer thickness. 

It is elaborated in [58] (section 3, p.63) that the addition of a 

forcing term f(x,t) to (2.12) provides an important generalization. 

In the present context this term would of course again have the form 

and interpretation of (2.4). 	Moreover, (2.12) could be extended to 

cover dissipative effects as well by adding the viscosity term 
	

vUx x 

as in the case of the KdV-Burgers equation in section 2.1. 

2.8 	Nonlinear dispersive waves in elastic media 

Toda [60] derived the equation 

Utt = aUxUxx 	bUxxxx 	eUxx 
	 (2.13) 

as the continuum limit of an equation of motion for an infinite chain 

of particles connected by springs of nonlinear spring constant. It is 
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therefore used to model wave propagation in an anharmonic lattice or 

in elastic solids respectively (see Grindlay and Opie [61]). The 

dependent variable u is in this case the wave deflection and an 

additional term of the type vu xx x induces dissipation. 

It is shown in [60] that the asymptotic transformation 

=A/ve (x - ve t), r = a 3 t, 	= b2/(v2 e), 
(2.14) 

u = 2ve 	= 

reduces (2.13) to the KdV equation 

av/or + v av/a + 6233v/83 = O. 	(2.15) 

2.9 	The cubic Schroedinger equation 

The equation 

iut + im xx  + vlul 2 U = 0 	 2.16) 

is known as the nonlinear or cubic Schroedinger equation and is of 

central importance for wave propagation in optic fibres (for an 

extensive survey see Kumar [62]). Drazin [44] shows that the ansatz 

u = r(y)exp{i(8(y) + nt)), y = x - ct 	(2.17) 

leads to differential equations for phase 8(y) and squared amplitude 

s(Y) 
 

8 y  = (c + A/s), 	ws y 2  = -2[s 3 - 2(n-c 2 /4)5 2 	Bs + A 2 /2]. 	(2.18) 

A and B are integration constants and it is clear that the second 

equation in (2.18) originates from the equation 

vs yy  = -3s2 + p(4n-c 2 )s  (2.19) 
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by integration. 	On the other hand, Whitham [63] uses the alternate 

ansatz 

u = r(y)exp{i(cx/2-(4)), y = x - ct 	(2.20) 

in (2.16) to derive the equation 

yryy  = (c2/4-w)r + Yr 3 . 	 (2.21) 

The equations (2.21) and (2.19) for amplitude and amplitude squared 

respectively are equivalent to the first integrals of the KdV and l'adV 

equations reduced by travelling wave ansatz, as will be shown in 

section 3.2. 
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3. Travelling wave reductions 

Before we perform the reductions -on the equations introduced in 

section 2, we explain the effect of scale transformations on system 

coordinates. Periodic and dissipative perturbations are only included 

in the reductions of (M)KdV. To extend Boussinesq and BBM reductions 

to perturbed systems, we can simply add the dissipative and periodic 

perturbations as discussed previously. 

3.1 	Scale transformations 

In a large number of systems, including the examples above, it is 

possible to make the following approximation [43] in the dispersion 

relation for the frequency Q: 

Q(k) = c ok + c1k 3  + 	 (3:1) 

This is a necessary but not sufficient condition for the reduction of 

the original systems to the (M)KdV or (M)KdV-Burgers equation. The 

dispersion relation (3.1) leads to a phase velocity Vp  of the form 

Vp  = Q/k = c o  + c1k 2  + 	 3.2) 

This reveals the coefficient c o  as the long wavelength limit of the 

phase velocity. 

Let x, and t o  stand for the original space and time variables. By 

introducing a scale transformation 

X = kn ( X 0 — 0 0t 0 ), t = k n+ 2 t 0  , 	 (3.3) 

(which is used throughout for dispersive systems) it is possible to 
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retain a travelling wave ansatz with phase velocity 	on the new 

coordinates x, t : 

y = x - ct 	krt(x0-  Vito), 	Vi = c 0  + ck 2 : 
	

(3.4 

with a new phase velocity V1. 	Comparing Vi 	with the expansion 

(3.2) we observe that c corresponds to the coefficient ci so 

Vp 	for k < 1. 	 (3.5) 

That is, due to the expansion (3.2) and the transformation (3.3), any 

additional travelling wave ansatz (3.4) leaves the phase velocity Vp 

(or its approximation c o ) 'almost invariant' for k small enough. 

Moreover we note that the space coordinate x in any KdV type 

equation is moving with velocity c o  with respect to the stationary 

coordinate x o . The applications in sections 2.1 to 2.4 listed above 

use the power n=1 in (3.3) whereas the NKdV equation (2.9) for 

lattice waves in section 2.5 can be derived for n=0. 

3.2 	Reduction of KdV and /1KdV 

We begin with the equation 

-u, + a urn 	b uxxx + 6 uxx 	a cos(ux-w pt) = 0.. 	3.6 

This is for m=1 a KdV-Burgers equation and for m=2 a NKdV-Burgers 

equation extended by an external periodic forcing term. 

A travelling wave ansatz 

y = x - ct, 	c = wp /w 	 (3 : 7) 

reduces equation (36) to 

	

C u y  + a umu y 	b Uyyy 	u yy  + a cos(y) 	0. 	(3.8) 
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Redefining units of x and t, the wave speed c can be normalized 

to unity without loss of generality. Adopting this convention from 

now on and integrating equation (3.8) gives 

u + a u+1/m+1 + b uyy  + & u y  + a sin(wy)/w = 
	

(3.9) 

with 1(1 	as integration constant. This equation is our main object 

of analysis. From now on we will study the two different cases m=1 

(KdV) and m=2 (MKdV) separately. The first step is to find analytic 

solutions of (3.9) for vanishing dissipative and periodic forcing 

terms (a = 8 = 0). These solutions are of course the travelling wave 

solutions of the KdV or MKdV equation and after reintroducing small 

dissipative and periodic forcing terms (1 > a, 8 > 0) as 

perturbations, we have the conditions necessary for Melnikov's method. 

3.3 	The reduced Boussinesq equation 

Following Manoranjan et.al . [55] we rewrite the Boussinesq equation 

(2.10) as the first order (in time) system 

Wt = buxxx + eux + a(u 2 )x 

ut = wx • 

The ansatz y = x - ct reduces (3.10) to 

-cw y  = buyyy  + euy  + a(u 2 ) y  , 

(3.10) 

(3.11) 
-cu r  = wy  . 

Eliminating w y  and integrating leads to 

- u + buyy  + au 2 /2 = ki , 	 .(342) 
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where we have set c 2 	= -1 in order to obtain a form equivalent 

	

3.4 	The reduced BB11 equation 

The wave ansatz y = x - ct reduces the B13/1 equation (2.12) to 

(c + e)uy  + au yu 	gcuy y y  7 0. 	(3.13) 

An integration gives 

(c + e)u + au 2 /2 + gcuyy  = 	 (3.14) 

Setting 

c + e = 1, 	g(e - 1) = b 	 (3.15) 

gives (3.14) in a form equivalent to (3.12). 

	

3.5 	The reduced elastic media wave equation 

Under the wave ansatz the equation (2.11) introduced in section 2.6 

reduces to 

-c 2 uyy  = au yuyy  + buyyyy  + euyy  . 	(3.16) 

Integrating and substituting v=u y  leads to 

bv yy  (a/2) v2 + (e + c 2 ) v = kl • 

The substitution 

c 2  + e = 1 

changes (3.17) into the form (3.12). 

(3.17) 

(3.18) 
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4. Wave solutions of the KdV equation and their geometry 

Here we derive the wave solutions for the KdV equation and analyze 

their geometry in both the three-dimensional and the reduced two-

dimensional phase space of the ODE systems resulting from the wave 

reduction. 

4.1 	Cnoidal and soliton solutions of the KdV equation 

The "unperturbed" equation 

u + a u 2 /2 + b uyy  = 
	

(4.1) 

is obtained from (3.9) by setting a=6=0 and m=1. Multiplying it by 

uy , integrating and regrouping terms, leads to 

uy  = v[u 3 + 3u 2 /a + 6k1u/a + 6k2/a]i(a/3b) 

= V[(u-r)(u-rz)(r3 -u)]./(a/3b). 
(4.2) 

The method of quadratures gives an elliptic integral (see e.g. Byrd 

and Friedman, [64], #236.00, p.79) and consequently the cnoidal wave 

solution 

u(y) = A cn 2 [X(Y-Y0),k) + r2 

of the reduced KdV equation 

u y  + a u y u + b Uyyy = 0. 

The abbreviations in (4.3) are as follows: 

(4.3) 

(4.4) 

A = r3-r2, 	X = v[a(r3-r1)/3b]/2, 

yo  = arbitrary phase shift, 

k = v[(r3-r2)/(r3-ri)] = elliptic mOdulus i 	(4.5) 
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In the limit k -> 1, the solution 4.3 reduces to 

u(y) -> A sech 2 [X(y7y 0 )] + r 	 4.6) 

which is the soliton solution of the KdV equation. We further note in 

this limit 

ri = r2, 	r3 = 3/a - 2r1 
(4.7) 

kl = ar1 2 /2 - rl, 	k2 = r 1 2/2 - ar1 3 /3. 

These relations are easily derived -by matching powers of 	u in 

(u-r1) 2 (r3-u) with those in the RHS polynomial of (4.2). 

4.2 	The phase space of the reduced KdV equation 

In order to investigate the phase space of equation (4.4), within 

which the solutions (4.3) and (4.6) prevail, we represent equation 

(4.4) as a three-dimensional system of first order equations: 

= Ul 

Illy 7 U2 
	 (4.8) 

U2y = (1 - au)ul/b. 

Clearly, the complete set of fixed points (u s , uls, u2s) of this 

system is the entire u-axis in the phase space spanned by U, U1, U. 

Moreover, it is trivial to verify that the system (4.8) linearized 

about any of these fixed points has at least one eigenvalue equal to . 

zero (all three eigenvalues are zero for au s =1); the fixed points 

become degenerate. This means that the problem of degenerate fixed 

points for the (unreduced) KdV equation as noted by Birnir [48] 

carries over to the reduced version (4.4) or (4.8) respectively: 
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The situation changes, however, with the two -dimensional system 

arising from (4.1) integrated once more, 

= (k1 + u + au 2 /2)/b 
	

(4.9) 

Its fixed points 	s, is) in u-u 1  space are 

uis = 0, _ 	us+  = (1 ± 	+ 2ak1])/a 
	

(4.10) 

with eigenvalues 

X+ = ± V[(1 - au s ,)/b] = 	v[± i(1 + 2ak.1)/b] 	
(4.11) 

Depending on the integration constant 	kJ., three topologically 

distinct cases are possible for the phase portrait: 

case 1: 	kl  < -1/2a. 	 (4.12) 

(4.10) shows that there are no real zeros for US+ and thus no 

fixed points for the system (4.9); see Figure 2a). 

case 2: 	lc > -1/2a. 	 (4.13) 

(4.10) and (4.11) produce a saddle at 	(u s _,O) 	and a centre at 

(u s +,0); see Figure 2b). 	According to (4.10) the distance 

between them is 

d = 2./[1 + 2aki]/a-

case 3: 	kl  = -1/2a.  

(4.14) 

(4.15) 

   

The distance d between saddle and center is-zero and so is the 

eigenvalue X. This corresponds to a doubly degenerate Hamiltonian 

bifurcation in Greenspan's and Holmes' [28] terminology. The 

position of this degenerate fixed point is 1/a; see Figure 2c). 
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• The phase diagram for.the original-3-dimensional system (4.8) can now 

easily be constructed, Add the .dimension -..u2=uyy  to the two-

dimensional phase diagram of the system .(4.9).. Then in any section 

parallel to the u-u2 plane there is a family of parabolas defined by 

(4.1) and continuously parameterized by kl. Each one of these 

parabolas defines a surface - P parallel to the ul(=u y )-axis in 11-111 -  

112 space. Every such surface contains a - phase portrait tOpologically 

equivalent to one of the three possible cases described by (4.12), 

(4.13), (4.15). The specification of these three cases is: 

case 1. 	The surface P is bounded away from the u-axis. 

case 2 	The surface P is penetrated by the u-axis at the saddle 

and centre of the phase portrait contained on P. 

case 3 	The surface P touches the u-axis exactly where saddle and 

centre of the phase portrait on P merge. 

Figure 3 elucidates this geometry. 

4.3 	Analytic solutions and the phase portrait 

We briefly comment on the three configurations above and on their 

connection to the analytic solutions mentioned in section 4.1. The 

vital quantity is the polynomial on the RHS of (4.2) with roots ri, 

r2, 

case 1: 	The polynomial has one real and two complex conjugate 

roots. 

47 



case  : 	The three roots are real, which corresponds to the cnoidal 

and soliton solutions. It is clear that the cnoidal 

solutions (4.3) define the family of closed orbits, 

concentric to the center (u 9+ ,0) and parameterized by 

the elliptic modulus 	k 	(see (4.5)), whereas the 

homoclinic orbit connected to the saddle (u,-,0) and 

enclosing the concentric orbits provides the soliton 

solution (4.6). 

case 3 	The three real roots coalesce at u=1/a. Centre and saddle 

meet there. 

4.3 	Antisoliton solutions 

Following Manoranjan et.al . 	[55] 	we refer to the solutions 

corresponding to the stable and unstable parts of the invariant 

manifolds opposite to the homoclinic orbit as antisoliton solutions. 

Assuming the homoclinic orbit to the right of the saddle as in section 

4.1, the condition for antisoliton solutions reads 

u(y) 	ri . 	 (4.16) 

Solving equation (-1) as in section 4.1, but under , the condition 

(4.16) and use of [64], p.68, *231.00, gives the solution 

u(y) = - A sn -2 [X(y-y o )] 	ri , 	 (4.17) 
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with A, X and k as in (4.5). It reduces in the limit ri=r2 or k=1, 

respectively, to the antisoliton solution 

u(y) = - A cosech 2 [X(y-y 0 )] + r i  , 	(4.18) 

or a double pole at y=y 0 . 	Antisolitons are of interest as they 

interact strongly with solitons under perturbation. 
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uy  

Figure 2. Phase portrait of the system (4.9). Cases: 

(a) kl < -1/2a, 	(b) kl > -1/2a, 	(c) kl = -1/2a 
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Figure 3. (a) A family of periodic orbits on a parabolically curved 

invariant surface in the phase space of system (4.8) enClosed by a 

homoclinic orbit. (b) Set of homoclinic orbits in the phase space of 

system (4.8). 
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5. Wave solutions of the 1lKdV equation and their geometry 

Our method of analysis of these solutions is similar to that of 

section 4. It turns out that in the phase portrait of the reduced 

NKdV equation permits considerable more variety than the one of the 

KdV equation. This variety is controlled by the coefficients of the 

NKdV equation and manifests itself in the geometry of fixed points and 

saddle connections. Hence we place more emphasis on the homoclinic 

and heteroclinic saddle connections corresponding to solitons and 

shock waves. This way the difference between the different phase 

portraits possible and their dependence on the NKdV coefficients is 

emphasized. The similarity of the reduced NKdV equation to the 

Duffing oscillator with weak feedback control, as studied by Wiggins 

and Holmes [65], is worth mentioning, as the unperturbed system of 

their oscillator can be considered a special case of the following 

analysis. A comparison to the study by Wiggins and Holmes is 

presented in section 5.7. 

5.1 	Saddle connections 

As in the case of the KdV equation we begin with the equation (3.9). 

We set a=6=0 and m=2 and obtain the equation: 

U + a u 3 /3 + b u yy  = ki, 	 (5.1) 

Multiplying it by u y , integrating and regrouping terms, leads t 

vl-u4- 6u2/a + 12k1u/a + 12k2/a]1(a/6b) 	5.2) 

= 1[(u-ri)(r2 -u)(r3 -u)(r4 -11 )lv(a/6b), 
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with the convention ri<r2<r3<r4. We obtain real solutions 	u 	such 

that 

rl ‘ u < r2 < r3 ‘ u ‘ r4 for a, b < 0. 	(5.•2') 

By adjusting the integration constant k2 we can obtain r =r3 which 

will show up in the space spanned by u y  and u as a figure eight 

phase portrait, i.e. two homoclinic loops connected to one saddle. 

Figure 4a illustrates this case for various values of kl. The role of 

this integration constant will be studied in detail in sections 5.6 

and 5.7. We will abbreviate this figure eight case as (f8). 

Alternatively, we can change the signs in the roots of (5.2) such - 

that 

u y  = v[u 4 + 6u 2 /a - 12k1u/a 7 12k2/a]./(-a/6b) 	(5.3) 

= V[(u-r1)(u-r2)(r3 -u)(r4 -u))1( -a/6b). 

Now, real solutions are obtained for 

ri < r2 ‘ u ‘ r3 < r4- with a < 0 < b. 	(5.2') 

Again by adjusting 	k2 so that rl=r2 (or r3=r4 resp.) we obtain 

in u,-u space two saddles and one homoclinic orbit. 	This geometry, 

which we abbreviate as (2s), is shown in Figures 4h for various values 

of kl. 

The two cases described above are the only ones exhibiting saddle 

connections. We study the case (f8) shown in Figure 4a first. 

5.1.1 The figure eight (f8) phase portrait 

Applying the method of quadratures to (5.2) gives an implicit 

representation of the solution u(y): 
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I 	- 
V[a/(6b)](Y-Y0) = I du/v'[-u 4-  6u2/a + 12k1u/a + 12k2/a] 

= j du/i[(u-r1)(r2 -u)(r37 11)(r4 -u)]. 	(5.4) 

In order to find the solution relating to the left homoclinic orbit 

we note the condition for this solution u with respect to the roots 

r11 r2, r3, r4 to be 

	

ri ‘ u < r2 = r3 < r4 7 	 5.5) 

It is clear that r2 or 	r3 	is now identical with the saddle 

position on the u-axis of the u-u y  phase plane. The integral in (5.4) 

now becomes 

i[a/( 6b)](Y-Y0) = j du/4(u-r1)(r4 -u)1(r2 -u). 

r1 

The substitution v = 1/(u-r2) (see [66], p.89,42.281) gives 

V[a/(6b)](y-y 0 ) = j dv/V[-1 + Bv-+ Cv 2 ], 

1/ 0  

(5.4) 

(5.5) 

B = r1+r4-2r2, 	C = (ri -r2)(r -r)  0,  v c  = 

This can be readily integrated see [66], p.81,, 49.261)_: 
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v[a/( 6b)](Y-Y0),= fln(2./(CR(v)]+2Cv+B) - ln(2i[CR(v 0 )]+2Cv 0 +B)1/VC, 

Resubstituting B, R, v o , v, we can solve for 	and obtain after 

some basic manipulations: 

u(y) = C/((r1+r2)cosh((Y-Y0)./(Ca/6b)) +2r2} + r2. 	(5.7 

The roots r1 and r4 can be expressed in terms of the coefficients 

a, b and r9 by matching powers of u between the two 

representations in (5.2) and solving the resulting algebraic system 

for ri and T4. Although the system is oyerdetermined, and r4 

have the unique solutions 

r1 = -r2 - ./[ - (2T2 2 + 6/a)], r4 = -r2 +1[ - (2r2 2 + 6/a)]. 	5.8) 

The derivation of the right homoclinic orbit is identical -- except 

that the roots r4 and r1 are interchanged. 

5.1.2 The two saddles (2s) phase portrait 

The method of the (2s) analysis is of course the same as for (f8). The 

condition on the roots and solution for the homoclinic orbit connected 

to the left saddle (see figure 4b) is now 

= r2 < u 	r3 < r4 1 	 (5.9) 

with ri or r; being the saddle position on the u-axis in the u-uy  

diagram. Using as starting point equation (5.3) and following the 

analysis of (f8) we obtain as (2s)-counterpart to the (f8)-solution 

( 5 . 7 ), 
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u(y) = C/{(r1+r3)cosh((y-y0)1[-Ca/(6b)]) + 2r1) + ri, 	5.10) 

C = - (r37r1)(r4 -r -i) > 0, -  

r3 = -ri -v[-(21- 1 2 + 6/a)], r4 = 7r1 +v[-(2r1 2+ 6/a)]. _(5.11) 

The replacements 	r4 	r2 	give us the solution for the 

homoclinic orbit connected to the right saddle. 

5.2 	Homoclinic orbits (f8) and (2s) combined 

By substituting the roots (5.8) and 5.11) into the corresponding 

solutions (5.7) and (5.10), we can express the homoclini orbit 

solutions of (f8) and (2s) in a combined form: 

u(y) = C/CA cosh(E(y-y o )) + 2rs) 
(5.12) 

A = A+ = ±4-2(r s 2 +3/a)], 	C = -6(r 5 2 +1/a), 

E = E+ =  

r s  = position of saddle on u-axis. 

(f8): 	a,b < 0 , 0 < r 9 2  < -1/a , 

A-: left loop, 	A,: right loop. 

(2s): 	a < 0 < b , -1/a < r s 2  < -3/a , 

A-: loop on left saddle , 	A,: loop on right saddle , 

r s  negative 	r, positive 

5.3 	Heteroclinic orbits and other limit cases 

We first look at the limiting case r s  = ±v[-1/a]. It is easy to ,see - 

that for .(f8) either the right (+) or left (-) loop shrinks to a 

point. The "surviving" loop, however, is still given by solution 
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(2s) the loop on the right (+) or left (-) . saddle shrinks (5.12). For 

to a point. 

The heteroclinic limit for (2s) appears when 	s 7 ±v(-3/a].- ,The 

two saddles at u = +v[-3/a] and u = -v[-3/a] are connected by two 

heteroclinic orbits (see figure 5b). Symmetry to u- and u y-axis and 

elliptic fixed point in the origin •is evident. Taking_ this 

heteroclinic limit of the above solution (5.12) gives only the two 

fixed point solutions u = ±v[-3/a] corresponding to the two saddles. 

To determine the solutions corresponding to the two heteroclinic 

orbits, we note that the conditions for these solutions u and the 

roots of the polynomial in (5.3) are 1(1=0 due to symmetry and 

= r1 = r2 < u(y) < r3 	r4 = 
	

(5.13) 

These conditions reduce (5.3) to 

±/[-a/(eb)j(y-y 0 ) =I du/(r 2-u 2 ), 	(5.14) 

0 

with the solution 

u(y) = ±v[-3/a] tanh(±(y-y6)/v[2b]). 	(5.15) 

5.4 	Periodic solutions 

The derivation of the periodic solutions is the same as for the 

homoclinic or heteroclinic solutions, except that the conditions on 

the solutions and polynomial roots lead to elliptic integrals. We 

therefore just list these conditions and the corresponding elliptic 
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integrals, referring to [64], and then present the solutions in 

cOmbined forms. 

Conditions between roots rl, 	r2, 	, r4, and solutions u: 

(f8) - inside right loop: 

rl <r 2 < r3 < u 	r4, 	[64], p.120, 4256. 

(f8) - inside left loop: 

ri 	u < r2 < r3 < r4, 	[64], p.103, #252. 

(f8) - outside loops: 

r1 ‘ u 	r4, 	r2, r3 	complex conj., 	[64], p.133, 4259. 

(2s) - inside loop on right saddle: 

ri < r2 	u < r3 < r4, 	[64], p.116, 4255. 

(2s) - inside loop on left saddle: 

ri < r2 < u ‘ r3 < r4, 	[64], p.112, 4254. 

(2s) - between heteroclinic saddle connections: 

r1 < r2 	u 	r3 < r4, 	r1=-r4, r2= -r3, 	[64], p.116, 4255. 

Periodic solutions inside the homoClinic loops: 

u(y) = (rd -r0)/(assn 2 Ns(Y-Y0),k1 - 1) 	rd, 

Qs = V[(r4 -r2)(r3 -ri)a/(24b)], 

a s 2  = (rb -rc)/(rb -rd), 

k 2  = (rh-rc)(ra -rc)/((r4 -r2)(r3 - 1- 1)) 

= as  2  (ra —rd)/(ra —re 

(5.16) 

(f8) - inside right loop: 

r a  = rl, rb = r4, r c  = r3, rd = r2 	(5.17) 
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• (f8) - inside left loop: 

r3, rb =r2, rc = ri, 

(2s) - inside loop on right saddle: 

r a  -= ri, rb 	-= r3, rd = r4. (5.19) 

(2s) - inside loop on left saddle: 

r a  -='r4, 	rb = r3, - rc = r2, rd = rl. 	(5.20) 

(f8) - outside loops: 

u(y) = (r4B + riA + C(rIA - r4B))/(B + A + C(A 7 B)), (5.21) 

A 2  = (r4 - (r2+r3)/2) 2  7.(r2 -r3) 2 /4, 

B 2  = (ri - (r2+r3)/2) 2  (r2 -r3) 2 /4, 

C 2  = cn{(y-y 0 )v[aAB/(6b)], k}, 

k 2  = ((r4 -ri). 2  7  (A-B) 2 )/(4AB). 

(2s) - between heteroclinic saddle connections: 

u(y) = r3sn((y-y0)r44 -a/(6b)], k), 	(5.22) 

k = r3/r4, 	• r3 2 + r4 2  = -1/a. 

Here 	sn, cn, dn are Jacobi's elliptic functions and k is their 

modulus. 

5.5 	Antisoliton solutions 

Clearly, the MKdV system cannot display antisolitons in (f8) mode but 

in (25) and heteroclinic mode only. Referring to section 5.2, the 

(2s) antisolitons are described • by the solution (5.12) under the 

conditions: 

A,: antisoliton u(y) on left saddle, r s  negative, 

-m < u(±m) < ri = r s  = r2 < r3 < r < u(y o ) < o, 
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A-: antisoliton u(y) on right saddle, r s  positive, 

-m < u(Yo) < ri < 
	

< r3 	rs  = r4 < u(±m) < m. 

Note that these antisolitons are not simply double poles as for the 

KdV system. In fact, they are pairs of simple poles at 

y = yo  ± cosh-1 ( -2rs/A+)/E+ , 	(5.23) 

as can be seen from (5.12). 	The antisolitons relating to the 

heteroclinic mode are given by 

u(y) = E1[-3/a] coth( - E(Y-Y0)/V[ 2b]) 

with the conditions 

E=1: antisoliton u(y) going from left to right saddle, 

(5.24) 

u( - m) < -v[73/a] = r1 = r2 < r3 = r4 7 v[ - 3/a] < u(w), 

E=-1: antisoliton u(y) going from right to left saddle, 

u(m) < - ,/[-3/a] = ri = r2 < r3 = r 4  = ./[-3/a] < u(-m), 

These antisolitons represent shockwaves combined with simple poles at 

Y=Yc.• 

5.6 	The phase space of the reduced MKdV equation 

It is evident that the solutions derived above are valid for the 

unperturbed and reduced MKdV equation 

. u. + a u 2 u y  + b Uyyy . 0. .) 
(5.25) 

As in the case of the KdV equation, we are interested in the way these 

solutions are embedded in the 3-dimensional phase space of the system 

u y  = Ul 
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Uy = U2 
	 (5.26) 

u2 y  = (1 + au 2 )ul/b. 

This is of course the reduced 111(dV equation (5.25) represented as a 

first order system. Since this system exhibits the same problems as 

its corresponding system for the KdV equation, namely only degenerate 

fixed points occupying the entire u-axis, we again reduce to a 

two-dimensional system: 

Uy = Ul 

(5.27) 
ul y  = C -  k1 + u + au 3 /3)/b . 

This system is equivalent to equation (5.1) and has the three fixed•

points 

(0,r1), 	(0,r2), 	(0,r3). 	 (5.28) 

r < r2 < r3 are the roots of 

- 1(1 + u + au 3 /3 = 0. 	 (5.29) 

Therefore, for a > 0, there exists only one real fixed point and we 

investigate only the cases for a <0, consistent with our analysis of 

saddle connections in sections 5.1 and 5.2. We distinguish the three 

different cases: 

case 1:  k1 2  > -4/9a.  

One real fixed point exists. Depending on the signs of kl and b, it 

is either (0,r1) or (0,r3) of varying type: 

ki, b < 0: (0,r3) = center, 

ki, b > 0: (0,r3) = saddle, 

1(1 < 0 < b: (0,r1) = saddle, 
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> 0 > b: (0,1- 1) = center. 

case :  k1 2  < -4/9a.  

Three real fixed points exist. Their type depends on sign(b); 

b < 0: (0,r1), (0,r3) = center; 	(0,r2) = saddle; 

b > 0: 	(0,r1), (0,r3) = saddle; 	(0,r2) = center. 

case 3:  k1 2  = -4/9a.  

Two real fixed points exist. Their type depends on sign(b); 

1(1, b < 	0: (0,r 1 ), (0,r2) 	coalesce; (0,r3) = center; 

b > 	0: (0,1- 1), (0,r2) 	coalesce; (0,r3) 	= saddle; 

1c1 < 0 	< b: (0,r3), (0,r2) coalesce; (0,ri) 	= saddle; 

kl > 0 > 	b: (0,r3), (0,r2) 	coalesce; (0,r1) 	= center. 

To construct the phase space for the 3-dimensional system (5.26) we 

add - as before - the dimension u2=u yy  to the phase diagram of the 

2-dimensional system (5.27). The situation is similar to the KdV case 

except that the invariant surfaces P containing the 2-dimensional 

phase portraits are defined by (5.1). The correspondence between the 

three described cases, their geometry in 3-dimensional phase space and 

the calculated saddle connections is now easily established. 

case : 	P is penetrated by the u-axis only once, The penetration 

point is a center for b < 0 and a saddle for b > 0. 

case 2:  P is penetrated three times by the 117-axis. The case b < 0 

corresponds to the (f8)-related .solutions contained on P and the 

penetration points are the two centers and the saddle between them. 

The case b > 0 corresponds to the (2s)-related solutions and the 

penetration points are the two saddles and the center between them. 
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As already noted; this degenerates for k 1=0 to the heteroclinic 

solution (5.15). 

case 3: 	Border case between cases land 2. Two penetration points 

merge into one as the u-axis passes through a local extremum of P 

defined by (5.1). See also section 5.3. 

The described geometry is illustrated in figures 5 and 6as well as in 

figure 4. 

5.7 	Comparison with the Duffing Problem and the Forced Pendulum 

The main difference between the systems under consideration here and 

the Duffing system as well as the pendulum is shown by the role of the 

integration constant ki. Since the saddle position r. must be on the 

u-axis, that is, it has the coordinates (u=r s , uy =0, u yy=0), it can be 

seen from eq. (5.1) or (5.29) to be a function only of a and, more 

important, of ki, 

r s  + a r 5 3 /3 = 	 (5.30) 

kl therefore controls the shape of (f8) or (2s) in the phase portrait 

whereas k9 determines the solution within it. 	Another interpretation 

of the role of kl .  would be the parameterization of the set of 

invariant two dimensional Subsystems /  into which the phase space is 

foliated. Such an interpretation can be inferred from section 5.6 and 

is described in connection with the KdV equation. 

Setting r s =k1=0 leads in the reduced and unperturbed -11.--u y  phase 

diagram to symmetry with respect to both u- and.u,-axis. In (f8) mode 

this of course reduces the problem to the Duffing system studied 

extensively and in detail by Greenspan and Holmes [28] and 
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Guckenheimer and Holmes [29]. In-(2s) mode the similarity to the 

forced pendulum 	(see 	e.g. 	Guckenheimer and Holmes) is only 

superficial. In the pendulum problem the two saddles can be 

identified, which means an inherent periodicity in the phase diagram. 

In other words, there is a countably Infinite number ofsaddles and 

pairs of heteroclinic orbits connecting them-. On the other hand the 

symmetric MKdV (2s) mode has only two saddles and the - "outer" halves 

of their invariant -manifolds are unbounded. This difference also 

manifests itself in the heteroclinic orbit solutions of the type 

u(t) = ±2 arctan(sinh t), 	 (5.31) 

as given by Guckenheimer and Holmes, clearly different from solution 

(5.15). Any study of a system relating to the MIWV (2s) mode has not 

been found in the literature so far. 

Wiggins and Holmes [65] study the Duffing oscillator with weak 

feedback control, and without this weak feedback perturbation their 

system is equivalent to the (unperturbed) (f8) mode. Their 

perturbation, however, relates to fluctuations of the integration 

constant ki. Moreover, both the Duffing system and the pendulum are 

genuinely two-dimensional systems, whereas the reduced NKdV system is 

three-dimensional, and although its Melnikov analysis can be reduced 

to two dimensions, the results of this analysis were justified by 

reproducing them numerically in the full three-dimensional phase 

space. 
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Figure 4. 	(a) Figure eight phase portrait in u-uy-ki space. The 

cubic uyy  is given by (5.1) and yields the set of fixed points. The 

figure eight is symmetric for k1=0 and degenerates into one loop for 

k1=t(1+1/(3a))/a. (b) Analogous illustration to (4a), but for the two 

saddles phase portrait. 
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a) 

Figure 5. 	(a) Periodic orbits in u-u y-uyy  phase space enclosed by a 

pair of homoclinic orbits for (f8) mode. (b) Set of homoclinic orbits 

for (f8) mode in u-uy -uyy  phase space. 
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Figure 6. 	(a) Periodic orbits in u-u y-uyy  phase space enclosed by a 

homoclinic orbit for (2s) mode. (b) Set of homoclinic orbits for (2s) 

mode in u-u y-uyy  phase space. Note the pair of heteroclinic orbits 

representing the limit case. 
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6. Perturbations and the Melnikov method 

Before calculating. the Melnikov integrals for the 2-dimensional 

systems of, first order ODEs corresponding to the KdV and liKdV 

equation, an investigation of the perturbed phase space and a short 

review of the Melnikov theory is needed. For a detailed introduction 

to the Melnikov method, see [28], [29] and [37]. 

6.1 	Phase space of the reduced (M)KdV equation under perturbations 

Now we include the dissipation term and the periodic perturbation 

before investigating the phase space of the reduced KdV and NKdV 

equation. We therefore express equation (3.8) with c=1 as a three-

dimensional first order system: 

Aly = Ul 

= U2 
	 (6.1) 

U2y = (1 + aum)111/b - 6 u2/b - a cos(wy)/b , 

which represent KdV for m=1 and 111(dV for m=2. In particular, we 

examine the effect of perturbations on the invariant surfaces P. The 

set of P is now defined by equation (3.9) and, as opposed, to the 

unperturbed case, each surface of P has a slope of value (5 in the 

u1-direction, induced by the dissipation term cSu y : The periodic 

forcing term induces a y-periodic oscillation ofthe set of P with 

frequency w and amplitude a/b along the u yy -axis. It. is important 

to note that, despite these perturbations, a point in phase space 

representing the reduced KdV or NKdV system remains on its particular 

surface P for all times. This indicates that the phenomenon of 

Arnold diffusion does not happen in such systems. 
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• 6,2 	Outline of Melnikov's theOry .  

First, we •- look at the homoclinic orbits. 'Consider a'tWo-dimensional 

system like 

Ut = fi(u,v) 	E gi(u,v,t) 
(6.2) 

vt = f2(u,v) 	E g2(U,Vit) 

gi(u,v,t) = gi(u,v,t+T), 	i=1,2 	(6.3 

where E is the perturbation parameter and T is the period. The 

unperturbed system (e=0) is assumed to be integrable and has analytic 

solutions 111, vl, uk, vk. In the u-v plane they define a homoclinic 

orbit q1(t -t0)=0.11(t-t0),v1(t-t0)) connected to a saddle s and a 

family of concentric periodic orbits qk(t -to)=(uk(t -to),vk(t-t,)), 

0<k<1, enclosed by qi, such that qk->cil for k-A., as shown in Figure 

lb. Introducing a small E to the unperturbed system will cause qi 

to split into a stable and unstable invariant manifold, Ws(t) and 

Wu(t), respectively. To first order in • E the distance 	between 

Ws(t) and Wu(t), measured perpendicular to q 	and at time t,, can 

be expressed as 

A(t o ) = e M(t0)/If(c11(0))1 + 0(E 2 ) 	(6.4) 

Here, fl(t) is the Melnikov integral defined as 

co 

11(to) =  f1(g1(t-t 0 ))g2(q1.(t-t 0 ),t) - f2(q1(t -t0)).g1(q1(t -t0),t))dt 

- co (6.5) 

and If(c11(0))1 	is the modulus of the vector ( (11(0)),f2(q1(0))) -  
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Under the periodicity stated in (6:3), the distance A(t o ) defined in 

(6.4) implies the following theorem with corollary. For proofs see 

[28] and [29]. 

Theorem 6.1. If M(t o ) has simple zeros and -maxima and minima of 

order one, then, for 00 sufficiently small, Ws(t o ) and Wu(t o ) 

intersect transversely. If M(t o ) remains bounded away from zero, 

then Ws(t o ) A Wu(t o ) = 

Corollary 6.2. Assume the perturbation" (gi,g2) in .(6.2) depends on 

a parameter 11 E R: 

gi = gi(u,v,t;p), 	i=1,2 . 	 (6.6) 

Suppose M(t o ,p) has a quadratic zero: 

M(r,i1b) = (d11/dt 0 )(r,i2b) = 0 , 
(6.7) 

(d 2 1'I/dt 2 )(r,pb) y 0, 	(dM/4)(r,p.b) y o . 

Then 11B = 
	0(E) 	is a bifurcation value for which quadratic 

homoclinic tangencies occur, 	there are points of tangencies 

between Ws(t o ) and Wu(t o ) for t o  = r. 

What the theorem and its corollary basically say is that since 

M(t o ) 	approximates A(t o ) up to a factor, a vanishing 11(t 0 ) means 

a vanishing 	A(t o ). 	Therefore 	W(t 0 ) 	and 	Wu(t o ) 

4:iir--vcktittes 	an& p aoce 	t 6ANci. 

	

In the same way as the homoclinic orbit 	q 	splits under 

perturbations, the periodic orbits 	q - break .up and may become 

quasiperiodic with periods Tk and T such that 

Tk = - pT ; 	p = irrational number 	(6.8) 
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or may become multiply periodic 

nTk = mT; 	m,n = coprime integers 	(6.9) 

where Tk is the period of the unperturbed orbit. The criterion as 

to whether periodic orbits according to the resonance condition (6.9) 

occur or whether there are quasiperiodic orbits is determined by a 

theorem and corollary similar to the ones above. They are based on 

the subharmonic Melnikov function: 

mT 

Nmin(to)=. 	(fi(clk(t-to))g2(clk(t -t ),t) -f2(qk(t -to))gi(clk(t-to),t)]dt 

0 	 (6.10) 

Theorem 6.3. 	If Mm/n(to) has simple zeros and maxima and minima 

of order one and dTk/dh > 0, then, for E(n) 	E > 0, the system 

(6.2) has a subharmonic orbit of period nTk=mT. (h = Hamiltonian 

of unperturbed system) 

Remark. It can be shown that, for periodic orbits with period Tk of 

Hamiltonian systems whose Hamiltonian is 

h(u,v) = - v 2 /2 + 	+ u 2 /2 + a uj/j)/b , 

the requirement dTk/dh > 0 is met away from their centres. 

Corollary 6.4. 	Assume the perturbation (gl,g2). in (6.2) depends 

on a parameter p E R: 

gi = gi(u,v,t;}), 	i=1,2 . 

Suppose Nm/n(t0,11) has a quadratic zero: 

71 



rimin(t,FLb) = drIm/n/dt t,gb)- =.0 , 	
(6.11) 

d211m/n/dt 2 (T,!ib) y o, 	dmm/n/d(-c, fib ) 	• 

Then 	=  0(E)  is a bifurcation value at which saddle-node 

bifurcations occur. 

For proofs we refer again to [28] and [29]. 	Theorem 6.3 is a 

criterion for the existence of resonance under condition (6.9) and 

corollary 6.4 states the conditions for transition into resonance by 

saddle-node bifurcations. 

6.3 	The Melnikov integral of the reduced and perturbed KdV equation 

We begin by expressing equation (3.9) with 	m=1 	as a two- 

dimensional first order system of ODEs: 

Uy =1.11 
(6.12) 

= (a u 2 /2 + u + ki)/b - 8 u, - a sin(wY)/w 

after rescaling 8 -> 8/b, a 	a/b. From hereon we will only work with 

this rescaled equation. (6.12) is the system (4.9) with perturbation 

added, and comparison with the system (6.2) therefore shows 

fl = U , 	Egi = 0 , 
(6.13) 

f2 = (a u 2 /2 + u + ki)/b , Eg 2  = - 8 u l  - a sin(wY)/w. 

Introducing one more rescaling, Eg2 	g2, and observing that y plays 

the role of time t, the homoclinic Melnikov integral becomes 

co 

11(Y0) = j ulg2 dy = I uy  [-Su y  -(a/w)sin(wy)] dy 

-m 
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cc m 

j u_cos(wy) dy - au sin(wy)/w I 
-m 

—co 	 —co 

-2XA sech2(. X(y-y 0 )) tanh(X(y-y 0 )) .] 2  dy 

+ laA j sech2(X(y-y 0 )) cos(wy) dy . 	(6.14) 

- co 

Here we have integrated by parts and substituted the scliton solution 

(4.6). After shifting ”y+yo  and applying some basic trigonometric 

identities the two integrals can be found in Gradshteyn and Ryzhik 

[66] (p.96,#2.416.1; p.505,43.982.1): 

M(Y0) = 16 SXA2/15 - arm) cos(wY0)/(X 2 sinh(nw/(2X))) . (6.15) 

For the subharmonic Melnikov integral we obtain, in similar fashion, 

Mm1n(y 0 ) = j 

0 

mT 

1g2 dy = - aAj cn2(Xy) cos(w(y+y 0 )) dy 

mT 

- 48X 2 A 2  j sn 2 (Xy) cn 2 (Xy) dn 2 (Xy) dy 

0 

= — mA I, — 46A 2 A 2  Id .  (6.16) 
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We have substituted the cnoidal Wave solution (4.3) here. 	The 

integral 	I p , denoting the periodic part of 11m/n, is evaluated using 

a Fourier expansion of dn 2  = 1-k 2 -k 2 cn 2 ,- as given in Greenhill [67] 

(p.286,4449): 

I p  = I [(k 2 -1+dn 2 (Ay)/k 2 ] [cos(wY)cos(wY0) -sin(wy)sin(wY0))dY 

0 

mT 

= j [k 2 -1+E(k)/K(k)+n 2 /K 2 (k).f(jcos(jOty/K(k))/sinhOnK(k 1 )/K(k))]. 

0 

[cos(wy)cos(wy o ) - sin(wy)sin(wy0))/k 2  dy 

Here K, E are the first and second elliptic integrals and k' 2  = 1- 

k 2 . Due to orthogonality of circular functions the only nonzero term 

in the integral (6.17) is 

mT 

jrc2cos(wy 0 )/(K2(k)k2sinh(j7tK(k . )/K(k)) icos(jiay/K(k))cos(wy) dy 

0 	(6.18) 

iff the orthogonality condition 

jnA/K(k) = w 	 (6.19) 

applies. Otherwise all terms vanish. From (6.19) and the resonance 

condition 

mT = nTk 	with T - = 2n/w, Tk = 2K(k)/X 	(6.20). 

74 



we find 

jnX/K(k) = w = mnX/nK(k) or j= m/n. 	(6.21) 

In other words, for the indices j to be integer we have the condition 

n = 1 

I p  therefore collapses to 

it cos(wy0)/(X 2 k 2 sinh(wK(k . )/X)) • 

(6.22) 

(6.23) 

The dissipation part 	Id 	can be similarly evaluated using [66] 

(p.630,*5.134.3). The Nelnikov integral then becomes 

I(yo) = Aawn cos(wy 0 )/(X 2k 2 sinh(w((k')/X)) + 

16A 2 M [(1-k 2 )(k2-2)2K(k) + (k 4 -k 2 +1)E(k)]/(15k 4 ) . 6.24) 

Note that 1 is a function of m such that 

k(m 	m) 9 1 , 	 (6.25) 

and the homoclinic limit is correctly reached for k 

Mm(Yo) 	11 (y0). 
	 (6.26) 

6.4 	Tangencies and quadratic zeros 

From (6.14) it is clear that the homoclinic Melnikov function m(y0) 

has quadratic zeros for cos(wy o ) = 1. Therefore, by corollary 6.2, 

the invariant manifolds W and Wu must have tangency points, and 

we define the tangency ratio R(w) for a=c .: and (S=Ge : 

R(w) = ac /S c  = 16AX 3 sinh(nw/2A)/(15nw) . 	(6.27) 
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This ratio or the perturbation frequency 	play the role of the 

parameter 	in corollary 6.2, which can now be expressed in the 

form: 

-a/6 > R(w) 	<=> 	Ws A Wu y 0 (transverse intersection) 

<=> 	Ws A Wu y 0 (tangency) . 	(6.28) 

a/6 < R(w) 	<=> 	Ws A-Wu = 0 , 

Using (4.5) and (4.7), A and X can be replaced in (6.27) and R(w) 

can be rewritten in terms of the coefficients a, b and the saddle 

position r s  (= rl = r2) on the u-axis: 

R(w) = 2bB 5 sinh(nw/B)/5anw , B = V[(1 - ar s )/b] . 	6.29) 

The limit cases are 

R(w=0) = 2bB 4 /5a , 

r s  = 1/a (saddle and center merge): R(w0) = m 

R(w=0) = 0 . 	6.30) 

Figures 7a and 7b show the bifurcation curves of R versus w and 

saddle position r s  respectively. 

The critical ratio ac /6, at which saddle-node bifurcations occur 

is determined from the subharmonic Melnikov function (6.24), 

Rm(w) = 16AX 3 [2(1-k 2 )(17,2-2)K(k)+(k 2 +1)E(k)lsinh(wK(k e )/X)/(15n 6k 2 ). 

( .6.31) 

This can also be rewritten in terms Of a, b and - . We find through 

(4.5) and the resonance condition (6.20), 

A = 12X 2 k 2 b/a , 	X = . WK(k)/nm , 	(6.32) 
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R(w) = 64w4K 5 (k)b [(1-k 2 )(k 2 -2) 

+ (k4-k 2 +1)E(k)] sinh(nmK(k 1 )/K(k))/(5m 6m 5 a). 	(6.33) 

Corollary 6.4 can now be expressed as 

a/6 > Rm(w) 	,<=> 	resonance 

a/8 = Rm(w) 	<=> 	saddle-node bifurcation 	(6.34) 

a/8 < Rm(w) 	<=> 	quasiperiodicity. 

Since the functional dependence o 	on m is rather complicated 

due to the dependence of X on k through the roots ri; 2 

as can be seen from (6.32) and (4.5) --- the critical ratio a,/8, at 

which bifurcations occur cannot be determined by straightforward 

application of (6.33). To evaluate Rm we first eliminate X from (4.5) 

and the resonance condition (6.32) and obtain 

V[a(r3 -r1)/(3.1))] = 
(6.34a) 

k 2  = (r3 -r2)/(r3 -ri). 

This relation shows the dependence of the elliptic modulus k or the 

roots rl, r?, r3 as given by (4.2) on the order of resonance m and the 

perturbation frequency w. From (4.2) we can further derive by 

matching powers 

3/a = rl+r2+r3, -6k1/a = rir2+r2r3+r3ri, 6k2/a = r i r2r3. 	(6.34b) 

The integration constant kl can be determined from 	4.1) by 

substituting ,a given saddle position (r,0,0) on the u-axis: 

kl = ar 2 2 /2 - r s. (6.34c) 

The integration constant k2 Varies within the set of periodic 

solutions (4.3) and therefore -  cannot be determined without knowing 
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which solution becomes resonant for a given w and m. The three 

determining equations for ri, r2, r3 are therefore (6.34a) and the 

first two equations of (6.34b), which can be used to express two of 

the roots in terms of the third one and substitute them into (6.34a), 

which can now be solved numerically for k. This modulus so obtained 

can therefore be used to evaluate Rm via (6.32) assuming -the 

coefficients a, b, saddle position rs, resonance order in and - 

perturbation frequency w given. Illustrations of Rm are provided by 

Figures 7c and7d. 

6.5 	The Melnikov integral of the reduced and perturbed MKdV 

equation 

As in the KdV case in section 6.3, we begin by expressing equation 

(3.9) - this time with m=2 - as a two-dimensional first order system 

of ODEs: 

U y  = Ui 
(6.35) 

Uy = (au3/3 + u + kl)/b - 6 u l  - a sin(wY)/41 

after rescaling 6 -> 6/b, a -> a/b. Following the procedure in section 

6.3, we express the Melnikov integral M(y o ) as 

M(Y0) = -6  J 
r 
i U- 2  dy +alucos(wy) dy 

-m 	-m 

= 	ND Jr. 	 (6.36) 

We first calculate M(y o ) for the homoclinic orbits by substituting 

the solution (5.12) or its derivative into (6.36). The dissipation 

part ND becomes now 
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MD = ju 2 . dy = (AEC) 2 1 sinh2E(y-y3)/(A  cosh E(y-y 0 ).2r .$) 4  dy. 

-co 	 -co 	 (6.37) 

Using the substitution x=E(y-y o ) and noting evenness of the 

integrand w.r.t. x the integral reduces to the form as in Gradshteyn 

and Ryzhik ([66], p.346, 43.516.4): 

co 

MD = 2E(AC) 2 j sinh 2 x /(A cosh .x  + 2r) 4  

-co 

2E(AC)=K 4  sinh 2 x /(KA cosh x  + 2Kr s ) 4  dx 

-co 

-4E(AD) 2K 4 F(2)F(3/2)Q 1 2(2Krs)/(VNKAF(4)) 

= -A[ -C]Q 1 2(2rs/V[ -C]). 
	 6.38) 

F is the gamma function and K is a technical constant determined by 

comparison of the integral above with [66], p.346, 43.516.4: 

imaginary for (f8); r s 2  < -1/a, 
K = ./[-C] = 
	 (6.39) 

real for (2s); -1/a < r s 2  < -3/a. 

is the associated Legendre function of the second kind: 

Q 1 2(z) = -3,/[z 2 -1] tanh-1 (1/z) 	(3z 2 -2)/i[z 2- 1] 	(6.40) -  

This reduces for imaginary argument to 

Q 1 2(ix) = i(31[x 2 +1] tan -1 (1/x) - . (3x 2 +2)/v[x 2 +1]). 	(6.41) 
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Therefore 11D stays real for (f8) as well and can be expressed in 

terms of A, C, E and r s  (see (5.12)) for (2s) and - (f8) as 

MD2s+ .-E1(2r sA 2 M-C] tanh-1 ,(v[-C]/2r 3 ) 	4r 3 2 +,2C/3)) 6.42). 

Npf8t = -E_,(2r$ A2/vC] tan-  7v[C]/2r s  + 4r s 2 + 2C/3). (6A3) 

Remark. The integral in (6.38) can also be evaluated without the use 

of special functions. Integration by parts gives 

isinhx /(A coshx + 2r s ) 4  sinhx dx = 1/(3A)Icoshx /(A coshx + 2r s ) 3 dx 

-m 

co 

= 8/(3A) 
	

(u 3 +u)/(A u 2 + 4r 3 u + A) 3  du , 

0 

where the last integral is obtained using the evenness of cosh and the 

substitution u=exp(x). It can be found in [66] (p.69; #2.175.3, 

#2.175.9) and it is straightforward to verify .rI D2 s + (6.42) for 4A2- 

16r s 2 K0 and 11.9f8 (6.43) for 4A 2 -16r s 2 >0. 

Note that for the left loop (E-) of, Mrife,-. : 

lim 	tan-1 (-v[C]/2r s ) = +(-)n/2 . 	(6.44) 

r s .++( - )0 

The main branch of 	tan-1 (-v[C]/2r s ) 	is shown as a pair of solid 

curves in figure 8. To eliminate the ,discontinuity (6.44), the branch 
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situated below the main branch shown as dashed line in figure 8 is 

chosen for r s  > 0. Equivalently for the right loop (E,): 

lim 	tan-  ( - V[C]/2rs) = - (+) 77/2 . 
	6.45) 

r s +( - ) 0 

Therefore, for 	rs  < 0, the branch below the main branch is chosen. 

For the periodic part NA note that we can substitute U=u-r 3  for u 

and shift y-,y+y o : 

/1,1(y ) 	j U(y) cos w(y+y o ) dy . 	(6.46) 

-m 

Using the solution (5.12), the identity 	cos(a+p) = cos a cos p- 

sin a sin p and symmetry properties of circular functions, 	11,4(y o ) 

reduces to 

MA(Yo) = -2C cos(wIro) j cos(wY)/( 1  cosh(Ey)+2rs) dy • (6.47) 

0 

This integral is shown in [66] (p.505, 413.983.1) to have two distinct 

evaluations: 

1. 	21- 2  > A > 0 => 0 < -1/a < r s 2  => (2s): 

MA2st.(Yc.) = ±2v[-C] cos(wy,) it sin(VE cosh -1 (2r s /A))/{E sinh(nw/E)}. 

(6.48) ' 
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2. 	IA1 > 12r  s 1 > 0 => 0 < r 3 2  < -1/a = 	-(f8): 

.11A1, 8+(y o ) = ±2v[C] cos(wy o ) it sinh{w/E -cos -1 (2rs /A+))/{E sinh(nw/E)}. 

Note that, due to symmetries of the hyperbolic and circular functions,- 

the superscripts or signs on A and ,E can be omitted or pulled in 

front of the RHS in (6.48) and (6.49).. Only in the argument of cos -1  

in (6.49) do the different signs on A change the absolute value of 

MAfg, corresponding to the two different loops. - :kccording to the 

convention of (5.12) we therefore distinguish two cases: 

MB-: left loop, 	MAf8+: right loop. 

As for the KdV case in section 6.4 we define the tangency ratios R2s 

and Rf8 for the critical values ac and 6 c  where the Melnikov 

functions have quadratic zeroes and stable and unstable manifolds 

become tangent. Following the considerations of section 6.4 the 

ratios turn out to be 

R2 sI  = -C2r s A 2 /1[-C] tanh -1 (v[-C]/2r s ) + 4r s 2 	2C/3) 

E 2 sinh(nw/E)/(2nv[-C] siniw/E cosh -1 (2r s /A+))), 	(6.50) 

Rfs+ = - {2rsA 2 /1[C] tan-1 ( - '[C]/2rs)  4r s 2  + 2C/3) 

E 2 sinh(nw/E)/(21tv[C] sinh{w/E cos -1 (2r s /A+))). 	(6.51) 

Figures 9 and 10 show R' s , and Rf8+ plotted against r s  and w. 

6.6 	The Melnikov integrals in the degenerate limits 

We study the Melnikov integrals of (2s) in the limits r s  = v. [-1/a] 

and r s  = v[-3/a] and of (f8) in the limit r, = 
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It is easy to verify that 

lirn 	D2st =  lint  D2s+ =  0, 

	

r s .÷±4-1/a] 	1- -.)±./[-3/a] 

lim 	R2s, 
	lint 	 o). 	 (6.52) 

r s ->tv[-1/a] 
	

r -)tv[-3/a] 

To investigate the limits for the right loop of (f8) note that by 

definition of E, and C in (5.12) we have E,/v[C]=v[a/6b] and 

observing the continuity argument in connection with (6.44): 

lim 	tan-1 (-v[C]/2r s ) = 0, 	 6.53) 

r s ->+v[-1/a] 

which corresponds to the main branch of tan -1 , and 

lim 	tan'( - '[CJ/2r) = 
	 (6.54) 

r s -v[-1/a] 

corresponding to the first negative branch of tan - l. Substituting 

these limits into (6.43) gives 

	

lim 	Ilpfs, = 0 , 	 (6.55) 

r s ->+v[-1/a] 

 

liM  MDf8+ = v[-2/3b] 4n/a . 	(6.56) 

r s ->-v[-1/a] 

Equivalently, the limits corresponding to the left loop are 
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liM  

lim 

r s -H-4-1/a] 

(6.57) 

(6.58) 

For the periodic part Milf8+ we obtain in a straightforward manner 

lim 	f8+ = 0 ,  (6.59) 

r s ->+1[-1/a] 

and by asymptotic analysis 

liM 	MAf8+ = 2 cos(wy o ) nV[6b/a] exp(wv[-2/3b]) , 

r 9 4-i[-1/al 
(6.60) 

as well as for the left loop: 

liM 	MAf8— = 0 / 
 (6.61) 

r s - V[-1/a] 

liM 	MAf8— = 2 cos(y 0 ) nv[6b/a] exp(wv[-2/3b]) . 

r34+V[ - 1/a] 
(6.62) 

liM 	Rf8— = ./[-1/a] 2/3b exp(wv[-3b/2]) 	(6.63) 

is determined via MDf8, (6.56) and MAf8+ 	6.60), whereas 

lim 	Rf8, = w 	 (6.64) 

r s 4+ ,/[-1/a] 

is taken on Rfais 	6.51). For the left loop the limits reverse again 
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their symmetry: 

iim 	f8- 
	[-1/a] 2/3b exp(wv[-3b/2]) , 	6.65) 

r 8 ->+ ,,, [-1/a] 

Jim 	Rfs- = m . (6.66) 

 

Besides the limits discussed we can determine the Melnikov integral 

for the heteroclinic solution (5.15). Substituting it into 

(6.36), dissipative and periodic part Mhp and rinA as well as the 

tangency ratio R, become 

co 

MhD = -3/2ab jsech 2 (Y/'[.2b]) dy = v[2/b] 2/a , 	(6:67) 

-co 

. 	r 
NhA = V[ -6/2ab] 'cos( 0 ) 	cos() sech 2 (y/./[2b]) dy 

-m 

= v[-6b/a] nu) cos(wy 0 )/sinh(nwi[b/2]) , 	• (6.68) 

R, = 2/(71b./[ -3a]) sinh(nwv[b/2]) 	(6.69) 

Like in the homoclinic case, the integrals are evaluated after 

shifting Y -)Y+Yo and observing trigonometric symmetries through use 

of [66] (p.99 ,#2.423.12 and p.505, #3.982.1). 
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6.7 	Subharmonic Melnikov integrals' - 

As before, we split. the Melnikov integral into 'periodic part 

NAmin(y0) and dissipative part MDmin: 

min(yo ) = a KAm/n(y o ) — 8 mDmin 
	

6.70) 

We begin with the periodic part MAm/ri(y o ). Setting fi=u y , u being - 

the periodic solution (5.16), and gi=0, g2=sin(wy) for the periodic 

perturbation in the definition (6.10) leads to the integral 

mT/n 

MAm/n(Y0) = I cos(wY)/(a2Sn2{Q(Y-Y0),k)  - 1) dy . 
	(6.71) 

0 

Like the subharmonic Melnikov integral for the KdV case in section 

6.3, the evaluation of this integral requires a Fourier expansion of 

the term 1/(a 2 sn 2 {Q(y-yo ),k) - 1). This is done by logarithmic 

differentiation, as described in [67], and leads in the present case 

to a differential equation with no closed form solution. Therefore we 

cannot analytically evaluate (6.71). A numerical evaluation for n=1 

would be sufficient and requires the determination of the modulus k 

as a function of the coefficients a, b saddle position r., 

resonance order m and perturbation frequency w. Such a calculation 

depends on numerics as well and has been described in connection of 

the evaluation of the tangency ratio Rm (6.33) of the KdV problem (see 

eqs. 6.34a, 6.34b, 6.34c). The main operation in this calculation is 

the determination of roots of the function defined by (6.34a). 

Unfortunately the corresponding function in the present radV problem 

shows extremely sensitive dependence towards variation of the 

polynomial roots rl, r2, r3, r.; defined by (5.2) which resulted in 
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the failure of all algorithms employed despite the use of double 

precision numerics. This extreme sensitivity is clearly a consequence 

of the very dense resonance band structure close to the homoclinic 

orbit. However, we can make the estimate 

Mm/r(y)  NA(Y6) for m large, 	. 	(6.72) 

since 
lim m m / n (yo) = 
	 (6.73) 

111--)0D 

according to the theorem by Chow et.al  [68]. (6.72) therefore applies 

for MAm/n(y o ) provided m is sufficiently large. Moreover, due to 

orthogonality of circular functions and the resonance condition 

mT = nTk 	with T = 2n/w, Tk = 2K(k)/60 	(6.74) 

we find, like in the KdV case ((6.18) - 6.22)), that 

mAmi n (y ) = 0 
	

for n 	1 . 	(6.75) 

We can therefore approximate the periodic part of the subharmonic 

Melnikov function of (f8) for m large enough by 

MAf8 m (Yo) 	Df8 COS(WY0) 	 (6.76) 

and therefore 

MAfsm(yo) = 0 for Yo 	n(2n+1)/w , 	(6.77) 

and equivalently for (2s) 

N42s m (Y0) — D29 cos(wy o ) sin(J) , 
(6.78) 

MA2sm(w=jwc,Y0) 	= 0 for y 0  - 2nn/w 

or 	= 2n/F, 
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where j, n = 0, 1, 2, 	and Df8, D2s  and 	F 	are functions of 

a, b, rs, and 	m. 	According to theorem 6.3 and corollary 6.4 a 

'critical ratio a c k5 c  -can-mow be defined just as in the case of the • 

KdV equation ((6-.31) - (6.34)): 

(ac/c5c)f8 = RI f8(W) = MDf8 m /Df8 . 

(6 -. 7 9 ) 
( ack5 c) 2 s = Rm 2s( w ) = m m sm/(D 2 s sin (uF)) 

The dissipation parts 
	

MDf8 m 
 and MD2sm can be evaluated via [64], 

(p.219,#362,25 and repeated use of #336.02, p.201) after substituting 

the derivative of the solution (5.16). 

= 	v2(y) dy 

0 

= Qs(r -r )2{frp/(a s 2c1) + ECE/ci +KCK s 2 )/(6c 0 2 c1) 

(6.80) 

K, E, R = complete elliptic integrals of first, second, and 

third kind' 

= 3c3 3  -.8c3c2 - 24c 0 2 c1 2 k 2-  

CE = 3C3 2  — 8C0C1C2 

CE = 3C3 2  — 8C0C1C2  2C0C1C3k 2  

Co =  — 1 

Ci = a s 2 — k2 

C2 = 32 — a s 2 — a,212 

=  32  2?  2a,2k2 - a, 4  

QS = V[(r4 -T2)(r3 -r1)a/( 24b)ii 

cc,.2 = (r 1) —r,)/(rb —rd), 
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k 2  = (rb—r0(ra—rc)/((r4 —r2).(r371- 1)) 

a5 2 (ra -rd)gra -rc) = elliptic modulus squared 

r a , rl, etc. are the polynomial roots defined in connection with the 

solution (5.16). 

As opposed to the periodic solutions enclosed by the homoclinic 

orbits, the periodic solutions (5.22) enclosed by the heteroclinic 

orbits lead to a subharmonic Melnikov integral whose periodic part can 

be evaluated in closed form. Setting the subharmonic boundaries 0 and 

mT in . (6.36) and substituting (5.22) the subharmonic counterparts to 

(6.67), (6.68) and (6.69) become 

M ra hD = r3r4V[ -a/6b] j cn 2 {(Y-Y0)r4v[7/6b]) dn 2 {Y-Y0)r[-a/6b]) dy 

0 

= 2(E - 1-k 2 )/(1+k 2 ) K)/(ak(i+k 2 )), 	(6.81) 

mT 

nha = r3 j cos(y) sn((y-y 0 )r4v[-a/6b)) dy 

0 

= 2r3wnv[-6b/a]/r4 csch(nmK'/2K) cos(wy o ) , 	(6.82) 

Rmh = v[ -6ab] nwr3k(1+k 2 ) csch(nmK72K)/(r4(E-(1 -k 2 )K/(1+k 2 )), 

(6.83) 

K = first complete elliptic integral, 

K' = associated first complete elliptic integral, 

E = second complete elliptic integral, 
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k = k(m) = elliptic modulus with 

lim k = 1 . 
m-->m 

The integral in (6.81) can be found in [64] (p.212, #361.03). 	As for 

the KdV case in section 6.3, (6.82) is evaluated by Fourier expanding 

sn (Byrd and Friedman, [64], p.304, #908.01) and observing 

orthogonality of circular functions. The following limits are easily 

verified: 

liM 	M mA = 211Ah, 
	l im 	= 21'Iph. 	(6.84) 

The factor 2 accounts for the fact that Mm and Nmp approach the sum 

of the respective Melnikov functions NAh and Mph of the two (i.e. 

upper and lower) heteroclinic orbits. 

6.8  Consequences of the vanishing MA2st 

	

As can be seen from (6.48), 11A2s;; 
	vanishes for all 

	
Yo 
	if the 

perturbation frequency assumes multiples of a certain critical value 

OC • This behaviour is also illustrated in figures 11 and 12. 

Moreover, figure 11: in particular exhibits a rapid decline of the 

amplitude of 111.42 I with increasing perturbation •frequency w. It 

is evident that this periodic part of the Melnikov integral is 

responsible for the transversal intersections and quadratic zeroes of 

the invariant manifolds required in theorem 6.1 and corollary 6.2. 

Since the result (6.48) is confirmed in section 8 by numerically 

generated Poincare maps of invariant manifolds, it therefore means the 
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absence of these intersections and tangencies, and the Smale-Birkhoff 

Homoclinic Theorem becomes inapplicable at - the critical perturbation

frequencies wc  and for all practical purposes at higher perturbation 

frequencies as well. As a consequence, horseshoes and hyperbolic 

invariant sets with the related chaotic behaviour are nonexistent, 

which has been verified numerically (see section 8). 
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a) 

-3.00 	 - 1.00 
	

0.50 

• 	saddle 

Figure 7. Bifurcation curves for KdV evaluated at a.b.i. 

(a)Homoclinic curves.(eq. 6.29) a c /6, vs. saddle position for various 

perturbation frequencies w. 

(b)as figure 7a, but a c k5 c  vs. co for various saddle positions. 
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d) 
3 4 

I 	1.0 
saddle 

alpha/dell 

20. 

16. 

12. 

8.0 

L2.0  L4.0 	 —3.0 

alpha/delta 

20.0_ 

16.0_ 

12.0_ 

8.0 _ 

4.0 _ 

3.0 
omega 

(c)Subharmonic curves (eq. 6.33) of orders as indicated and their 

homoclinic limit (label: 0) in a c /4 	w with saddle at u=0.0. The 

.fourth order curve has a peak of ae /r4*160. 

(d)as figure 7c, but a,y6c  vs. saddle position with w=1.6. 
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saddle 

position 
1.10 

Figure 8. 	Three branches of the function tan -1 (-v[C]/2r 5 ) vs. the 

saddle position r s , represented by pairs of dotted, solid, and clashed 

lines. See (5.12) for the form of C. The significance of the jump 

discontinuity is explained by (6.44). 
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a) saddle 
position 

b) 

4.0 

8.0 

12.0 

alpha/delta 

20.0 

16.0 

alpha/delta 

Figure 9. Bifurcation curves for the MKdV case in (2s) mode defined 

by (6.50) and evaluated at a=b=-1. (a) a c /6 c  vs. saddle position for 

various perturbation frequencies w. (b) a c /6 c  vs. w for various 

saddle positions. 
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alpha/delta 

14.0 

saddle 
position 

alpha/delta 

• 	20.0 

J 
113.0 — 

b) 

Figure 10. Bifurcation curves for the tadV case in (f8) mode defined 

by (6.51) and evaluated at a=-1, b=1. (a) a 0 /6 c  vs. saddle position 

for various perturbation frequencies w. (b) a c /6 c  vs. w for various 

saddle positions. 



1(elnikos.  — periodic part — (2s) 

20.0 	1.73 

16.0 

12.0 

8.0 

4.0 

1.0 	 2.0 	 3.0 
°mein 

    

    

  

.0 
omega 

—1.0 _ 

  

Figure 11. 	Periodic perturbation contribution to the Melnikov 

function for the MKdV case in (2s) mode as given by (6.48) and 

evaluated for a=-1, b=1. (a) Melnikov function vs. perturbation 

frequency hi for various saddle positions. (b) Magnification of (a) 

for small and negative values of the Note-thP-

virtual disappearance of the function for values of w> 4. 
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8.00 

20.0 _ 

omega 

12.0 _ 

10.0 _ 

8.0 _ 

6.0 _ 

4.0 _ 

2.0 _ 

saddle 
position 

1.2 	 1.4 	 1.6 1.0 

Figure 12. Zeroes of the Melnikov function for figure 11 graphed in 

the saddle position-w plane. 
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7. Subharmonics and resonance 

To study the effect of perturbations on the periodic solutions 

enclosed by the homoclinic or heteroclinic .  orbits we first discuss a 

method of power expansion of perturbations for determining the average 

flow of the Poincare map. This method is originally due to Melnikov 

[36] and was further adapted by Greenspan and Holmes [28]. In the 

present context we extend the expansion in [28] to some higher order 

terms as they reveal period doubling. 

7.1  Structure of the subharmonic Poincare map 

Our analysis follows closely Greenspan and Holmes [28], but is 

extended to higher orders. To take advantage of the periodicity of 

the unperturbed solutions considered, it is advisable to introduce the 

action angle variables I and 8. We begin with their definition: 

Tk 

I(u,v) = 	v du = const., 	8(u,v) = Q(I)t . 	(7.1) 

0 

Here, Q(I) is constant with respect to time and is an angular velocity 

defined by 

2(I) = 21t/Tk . 	 (7.2) 

u and v are the dependent variables of the original system (6.2) which 

reduces without perturbation to 

uo t = f l (uo, vo) 
(7.3) 

vo, = f2(uo, vo ) 
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with Tk as period of the solution (uo,v ). The system (7.3) can now 

be rewritten in terms of unperturbed action angle variables 80, Io as 

eo t = Q(Io) = aeo/auo f 1 (uo,v0) •.apo/avo f 2 (uo,v0) 

lo t  = 8I0/3110 f i (uo,vo) + .810/8v0 f 2 (uo,v0) 	-8H/380  = 0, 
	(7.4) 

with H as the Hamiltonian of the unperturbed system. Also observe: 

(aI0/8H)(8H/auo) = -f2/Q(I0) 
(7.5) 

8I0/ovo = (8I0/131.)(aH/8vo) = fl/Q(Io )• 

Introducing a perturbation (00), (7.4) extends to 

eEt  = 38E/ou (fi(u,v)+agi(u,v,t)) + 88E/ov (f2(u,v)+ag2(u,v,t)) 
• 	(7.6) 

IEt = 81E/au (fi(u,v)+Egl(u,v,t)) + 31E/3v (f2(u,v)+ag2(u,v,t)). 

With the definitions 

'Q(I 1) E aevau fi(u,v) + aeE/av f2(u,v) 

F(IE,8E,t) E oIE/au g i (u,v,t) + aIL/av g2(u,v,t) 
	

(7.7) 

G(IE,8E,t) a 38E/3u gi(u,v,t) + aeE/av g2(u,v,t) 

we can express the system (7.6) as 

8Et = EG (IE,8E,t) + Q (IE) 
(7.8) 

IEt = EF(IE, 8E,t) . 

We now split the perturbed solutions 8E, IP of (7.8) into unperturbed 

solutions Q(Io)t, Io with perturbation contributions p, h with a 

coefficient Vs, measuring the size of perturbation: 

GE = Q(Io)t + 
(7.9) 

IE = 	10 	+ VE h 
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and observe that I ° t =  . The system (7.8) now becomes 

Q( I0) + Pt = E G(I 0 + vE h, Q(I0)t + cp, t) + g(I0+ iE h) 
(7.10) 

vE ht 	E F(I 0+ VE h, Q(I0)t + (1), t) . 

A Taylor expansion about I0 w.r. E up to 0(E2), reduces (7.10) to 

= £ 1 / 2  Q01  h + E[Q0" h212 + Go] + E3/2[Q0'" h3/6 + Go' h] 

+ E2[g0,,,,  h 4 /24:+ Go" -h 2 /2] , 
(7.11) 

= E172 Fo + E Fo' h + - E3/2 1" h 2 /2 + E2 F0' 11  h 3 /6 , 

with the following technical abbreviations: 

E G(1 0 , Q(I 0 )t 	cp, t), 	Fo E F(I0, Q(I 0 )t 	(1),_ t), 
(7.12) 

Q0 E Q(10), A' E 8A/8IE(I0), A" E 32A/31E2(10), etc. 

The system (7.11) in conjunction with averaging methods according to 

the averaging theorem as stated by Guckenheimer and Holmes [29] is our 

central device for the analysis of the Poincare maps of periodic 

solutions under perturbation. The averaging theorem describes the 

approximation of a nonautonomous periodic system by this system 

averaged over its period plus a small periodic perturbation. As a 

result, fixed points in the averaged system correspond to small 

periodic motions in the original system. The application of this 

theorem will require the evaluation of the coefficients in (7.11), 

such as F ° , G o , Q°, and their derivatives, as defined by (7.7) and 

(7.12). This evaluation, on the other hand, depends on the specific 

original system, that is, the reduced KdV or HMV system in our case. 

In its lowest order (i.e. 0(vE)) truncation, however, we can perform a 

qualitative analysis of the system (7.11) without reference to a 
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specific case. 	We begin by expanding 	° under use of (7.7) and the 

relations (7.4): 

Fo = F(10, Qot + p,  t) 

= 8I 0 /31.1 0 -gl(uo,vo,t) + 810/3v0 g2(uo,vo,t) 

	

'= (f(uo,v0) A g(uo,vo,t))/Q 0. 	(7.13) 

Here A defines the wedge product: fAg = fig2 - f2g1. Since 

uo = uo(t + /Q0), vo = vo(t + p/Q0) 
	

(7.14) 

we introduce the shift 

t + p/Q0 
	

(7:15) 

and rewrite po  as 

Fo = F(I0, Qot, t - p/Q0). 

= {f(u°(t),v 0 (t)) A g(uo(t),v0(t),t-T/Q0))/go. 	(7.16) 

Truncating (7.11) after the 0(./E)-term and, according to the averaging 

theorem, using the transformation: 

h 	+ E1/2 v , 	 (7.17) 

= 	t)dt 	F- (cp, t) = Fo - FO 

one gets the system 

= VE Q°1 (7 	VE V) 

= ,/E/Q0 F(I0. Qot, t - /Q0)  . 
(7.18) 
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We average the system (7.18) over the period mT = Tk and note that F:" 

= 0 and therefore V = 0. The resulting system 

Pt = E Q01  

(7.19) 

= vE/(mTQ0) I F(I , Qot, t - T/Q0) dt - 

0 

= VE/27T Mm(V/Q0) 

is autonomous and approximates the flow of the Poincare map up to 

0(vE). Moreover, mTQ0=2 , according to mT=Tk and (7.2). The 

definition of the subharmonic Melnikov integral Mm(p/Q0) is evident by 

(7.16) and can be expressed by its periodic and dissipative part: 

n(T/Q0 ) = a cos(pw/Q°)  IPA  - 6  'Imp 	(7.20) 

The fixed points (p s , h s ) of the system (7.19) are now 

= 0 , 

Ts = 27mQ0 /w ±arcos(611 01 D/(anA)), n = 0, 1, 2, . • 
7.21) 

a/6 > Rm(w) , 

with the integer n accounting for the multiplicity of branches of 

arcos and Rm(w) being the critical ratio for bifurcation as defined in 

(6.34). (7.19) linearizes about the fixed points to 

{ 

g 
= 	

- 

vE 
- anS20) 	sin(p .3 )/Q0) 0 	[ 

0 	

1 	

(7.22) 
Tr  

with the eigenvalues 

X 2  = - EawQ 0 1(71Q0 ) 11 7, A sin(cPsw/Q°) 	(7.23) 
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For the -  fixed points in (7.21) this produces for 0 	71)7Q0  < mi=Tk, m 

saddles (sin(y s w/Q0)<O, +cos -1 (61mD/(aMmA)) in ,(7.21)) and m centres 

'(sin(y 3 w/Q 0 )>0, -c0s -1 (6MmD/(aMmA)) in (7.21)). - These sinks and 

centres are created by a doubly degenerate Hamiltonian bifurcation at 

a/6=Rm(w) or sin(y s w/Q0)=0 and cos -1 (6Mma(aMmA)=0 respectively. 

According to theorem 6.3, they correspond to a subharmonic orbit of 

period mT=Tk. Moreover, the system (7.19) has the Hamiltonian 

H = IE {Qcor2 /2 — j WT/Q 0 ) d17/(2n) ) 

(7.24) 

= is {Qo'F 2 /2 - sin(T1J/Q0) aQ0/(27(()) MmA - 6T/(211) Mmp + K) , 

with K as integration constant. However, the system (7.19) is 

structurally unstable and therefore unrealistic. 	Note, however, that 

the Hamiltonian (7.24) can be used to make an 0(ie) estimate of the 

width of the m-th order resonance band. 	This width is equal to the 

maximal vertical diameter of the homoclinic orbit of the system 

(7.19). Observe that for K=0 the Hamiltonian (7.24) vanishes on this 

homoclinic orbit. We therefore obtain its maximal vertical diameter by 

setting K=H=0 in (7.24) and solving for 2h (= vertical coordinate), 

being the width AI(m) to 0(vs) accuracy of the m-th resonance band: 

QI(m) = 21i= VE 2(sin(y 30 w/Q0) aQ0/w Mm A 	Mmp)/(nQo') 

(7.24) 
with 	y so  = . -cos -1 (6MmfgaMmA) , 

denoting a center position. . In order to improve on the structural 

instability we apply the averaging theorem over the full system 

(7.11). Again employing the transformation (7.17) - (without introducing 

a double overbar), the system becomes 
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ht j= a21  a22  h , 

rot] =  all [PI 
(7.27) 

TPt 	E 1 / 2  QO' 	+ E[QO I V 	gp li_E 2 /2 + Go] 

£312 [Qo'  'V  Q0 " 1  7 3 /6  Go'h] 

+ £2 [Q0' I V2/2  Qo " I V "n 2 /3 + Go 'V  Qo' 	-E4 /24 + Go" 72/2] 

= Ei/ 2 F0 + E ForE + £3/2 [F0iv + Fo" E2/2] 

+ E2 [FO"V T + Fo"' 173 /6] .  (7.25) 

Averaging over the system (7.25) (and dropping the overbars on p, h) 

gives 

= £ 1 1 2  Q0 1  h+ <Qom h2/2 + Go] + £3/2 Not" h 3 /6  G°'11 11 

E 2 [Qo"V 2 /2  G° 1 11  CP I "! h 4 /24 + Go" h 2 /2] 
7.26) 

h t  = E1/2. p7 + Ey:) ,  h + 0/2 [Fo'V  Foil h2/2] 

+ E 2 [T71-7 V h + YETrr 113/6] . 

As the contributions of the 0(E)-, 0(E3/2)-, and 0(E2) terms are 

small, the fixed points (p s ,h) of the system (7.26) will be close to 

those defined in (7.21). The linearization of (7.26) about these fixed 

points is 

ail = 	Of E 3 / 2 Go l fh 5  E2 [(GoW)f  Go' 'fh 2 /2 

a 21  = E1/2y71  + EFo' f h s  + 0/2[F0'V f  + F0"fh s 2/2] 

+ E2[(r377) f  + F0rnfh s 3/6] 

a12 = EQ0" h s  + £312  [Q0" 1  11 3 2/2 	G0 1 ] 

+ E 2 140"" h s 3 /6 + G° I1  hs] 

a22 = EF71' + E.3/277 	he  + E 2 [F0"V + F°"' hs 2 /2] 

Af E 3A/3p(p) . 
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The actual stability type of the fixed points which appear as centres 

in the O(./E)-analysis is determined by the divergence of the vector 

field defined by (7.26) and evaluated at (c s ,h s ). This is the trace 

of the matrix in (7.27): 

div(T:(Ts,hs), ht(9s,hs)) = all I -  a22 	(7.28) 

It is therefore necessary to determine G°f, (G°'V)f, F° 1 , 0"V. The 

other terms in all and a22 can be ignored as h0. 

We begin with Fo' which is, according to the definition 7.7) and 

the shift (7.15), before averaging 

Fo' = F'(I0, Qot, t - p/Q0 ) 

= 3/31 (f(uo(t),v 0 (t)) A g(uom,v0(t),t-T/Q0))/go 

= (f'Ag + fAg')/Q0 - fAg Q0 1 /Q0 2  . (7.29) 

Averaging over the period mT gives 

mT 	mT 

Foi = 1/(mTQ0) ( .1 f'Ag dt + 	fAg' dt) - rim(pm)go , /g02. 

0 	 (7.30) 

For f' we note I-I0 and therefore 

f' = 8f/8u0 81.10/8I0- + 8f/8vo 8v0/8I0 	(7.31) 

It is important to observe that 

1/(2010/8u0) y auokm. , 1/(8I0/8v0) 	8v0/8I0 , 	(7.32) 

and therefore the inverses of (7.4) cannot be used at this point. 

3u0/8I0 is calculated from the differentials 
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dIo = 81 /8110 duo + 810/8vo dvo 

- deo = 880/8uo 41,10+ apiavo.dv. 
	(7.33) 

Eliminating dv gives 

880/8v0- 8I0/8v0 d8o/dIo. = duo/dI0(880/8v0 810/8u0- 880/8uo 8I0/8v0) 

. (7.34) 

Since the action-angle variables 80 and Io are independent of each 

other we have 

d8 /dIo = 0 , 	 (7.35) -  

and therefore 

du/dI = 8u/8I + 8u/88 aval = 8u/8I , _ 	(7.36) 

8u0/8I 0  = (880/8v0)/(880/8v 0  8I0/8u0,- 800/8u0 810/8vo) 

(7.37) 

Recalling that by definition of the action angle variable 80, 

880/8t = Qo = constant , 

880/8uo and 880/3y0 therefore become 

880/8u0 = ae/at at/au. = Qv uo, = Qom , 

aeo/avo = ae/at avavo = Q0/ vo t  = go/f 2  

(7.38) 

(7.39) 

(7.40) 

Substituting these and (7.4) into (7.37) gives 

8u0/81 = -Q0/(2f2) . 	 (7.41) 

Eliminating du from the differentials leads by a similar procedure to 

8v0/810 = Q0/(2f1) . 	 (7.42) 
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f' as expressed by (7.31) finally becomes 

' = 8f/8u0 (-Q 0/2f2)-+ 8f/8v 0 ( Q.0 /2f1) 

= 20/2 (f/fl 	fu/f2) (7.43) 

Accordingly one determines for g' 

0/2 (g/f1 - gu lf 2 ) • 
	 (7.44) 

With f' and g' the substitution of Fo' is now 

= 1/(2mT) 
	

( (f iv /fi -fi uM )g2 - ( f 2v /f i - f2./f 2) g 1 ) rdt 

0 

mT 

+ 1/(2mT) j (giu + g2v - f1/f2 g2. — f2/f1 giv) dt 

0 

- Nm(T/Q )Q0I /Q02 . 	 (7.45) 

To calculate 77f. we begin with the definition (7.7) expressed for E=0: 

G(I0, 80,t) = 880/8u0 gi(uo,vo,t) + aevavo g2(uo,v ,t) . 	(7.46) 

Substituting (7.39), 	(7.40), averaging over mT and taking the 

derivative w.r.t. To gives 

• mT 

677f = 8G(I0,80,t)/4 0-  = 20/mT j (8g1/40  1 
	

+ 8g2/40  1/f2) dt. 

(7.47) 

(7.45) and (7.47) are the two terms required for evaluation of the 
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divergence (7.28) up to 0(E), as will be done specifically for the 

(M)KdV case in the next subsection. 

7.1.1 Evaluation for (M)KdV 

Below we list the nonzero terms required for the evaluation of Gof, 

Fo' (and (Go'V)f, Fo"V for later use) for the (M)KdV case. The 

derivatives (primed quantities) can be calculated via the expressions 

x' = Qo 2 (x/f1 - xu/f2) 	 (7.48) 

x' = Q0/2 (x'/f1 — x v flifi 2  — xu 1 /f2 + xu f2 1 /f2 2 ) 

+ Q072 (x/f1 — xu/f2) 
	

(7.49) 

which are generalizations of (7.43) or (7.44) and their second 

derivatives. In the expressions below n=1 applies to KdV and n=2 to 

MK(IV 

fl = uy  = v 

•f2 = vy  = -u(a un/(n+1) + 1)/b - ki/b , 

g2 = — 6 v + a sin(wy) , 

f2 u  = -(a un .  + 1)/b , 

fl y  = 1 , 

g2v = 	6 , 

f2uu = - na  

fl , = Q0/(2v) 

f2' = 7Q0 /2 f2/f2 

f2u = —Qo/2 f2/f2 
= Q01 /(2v) — Q02/(4v3) 

= - Q0 	 Qo 2/4 ( ' "u/f 2 — ' 2 11 t 	12 f2/f 2 	 f2u 2 /f2 3 ) 

g2' = 	6  fi' 
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g2" 	6 fill, 

t 	y 	 (7,50) 

The average of Go now becomes according to 7.46) with substitutions .  

from (7.50) and (7.39), (7.40) 

mT 	mT 

Go = Q0/mT (-6 ffv(y)/v y (y))dy + a rj(sin w Y 	T/Q°)/vy(Y)1(1Y} 

0 	0 
	

(7.51) 

Note that the first integral vanishes due to periodicity of the 

integrand, as v(y) and vy (y) are first and second derivative f the•

periodic cnoidal wave solution u(y) for KdV given by (4.3) and for 

MKdV given by (5.16). (7.47) reduces to 

aw/mT) {-sin(wpo/Q 0 ) j sin(wy)/v y (y) dy 

0 

mT 

+ cos(wpo/Q0) j cos(wy)/v y (y) dy) . 	(7.52) 

0 

177  reduces to 

Fo ,  = - 6 - Q01/g02 mm(p/Q0) 

mT 

+ a/(2mT)1{sinwy cos(wpo/Q0) + cosy sin(u.190/Q 0 ))/v(y) dy. 

0 	 (7.53) 
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To determine the divergence (7.28) at the fixed points cp s -yo we use . 

the decomposition (7.20) and observe from system (7.19) that 

cos(wy s /Q0)=0. .(7.28) now reduces within 0(E) to 

div(4t(Ts,hs),ht(T..2,hs)) = E07 7f(Ts) + F 

vrT 

Ea 	{sin(wpaQ0)/(mT) j[-w sin(wy)/v y (y) +cos(wy)/(2 (y))]dyl 

0 

Ecf, {Qo'/Q02  MDm — 1). 	 (7.54) 

Similar to the case of the integral (6.71), the evaluation of the 

integral in (7.54) would require a Fourier expansion of 1/v(y) and 

1/vy (y). This procedure is described for elliptic functions by 

Greenhill [67], however v(y) and v y (y) represent the first and second 

derivative of the periodic solutions (4.3), (5.16) and (5.22) of the 

KdV, MKdV and heteroclinic limit of the radV wave quations. Such an 

expansion is therefore too difficult as mentioned in connection with 

the integral (6.71). A numerical evaluation of the integral is 

contingent on the knowledge of the elliptic, modulus k of the periodic 

solutions (4.3), (5.16), (5.22) (or the roots rl, r2, r3, r4 as 

defined in (5.2)) and the problems with its numerical determination 

have been described in connection with the subharmonic Melnikov 

integral (6.71) too. However, the integral in (7.54) turned out to be 

negative for all evaluations with arbitrarily and densely selected 

values for the elliptic modulus k ranging between .0 and 1 and lower 

resonance orders m in connection with the solutions (4 ..3), (5.16), 

(5.22). (For higher mY8 precision problems in the evaluations arise) 

Noting that sin(wy 3 /Q0)>0 if p, is one of the centres in the 0(,,,E) 
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analysis performed in connection with equations (7.20) 7- (7.23) and 

' that Q°'<0, . one can conclude the divergence (7.54) to be negative and 

the centres under the 0(.1E) approximation turn out to be sinks created 

by a saddle-node bifurcation as described by (6.34). This 0(E) 

approximation is therefore sufficient to determine the stability type 

of the fixed points between the saddles, provided one accepts 

numerical evaluations as mentioned above. 

7.1.2 Higher orders and period doubling 

The Taylor series (7.11) expands up to 0(E 2 ) whereas the averaging 

techniques employed on it are based on an expansion including only 

0(vs) and 0(E) terms. For details we refer to the averaging theorem 

and its proof as stated in [29]. As a consequence, the resulting 

system (7.26) -does not contain all terms of 0(E3 / 2 ) and 0(E 2 ). -A 

determination of all terms of these orders would require averaging 

techniques derived from expansions up to 0(E 2 ). The second order 

averaging used here, however, is •sufficient for the analysis as 

performed so far, as it only includes terms up to 0(E) of,the 

expansion (7.11). Moreover, it is sufficient to show, period doubling 

in at least one of the terms of 0(>E) present in the system (7.26), as 

this is already enough to show its occurrence. This is the aim of 

this subsection and we also observe that resonance related phenomena 

such as period doubling can be attributed only to the periodic and not 

the dissipation contribution of the perturbation. -We therefore take 

only periodic perturbation into account in the following analysis, 

that is, we set ay0, 6=0. We determine the 0(E 2 ) term Go'V in (7.26) 

in our analysis and later it will become evident which other terms 
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contribute to period doubling. Beginning with the factor V, we find 

from (7.16), (7.17) (reda11.7=Mm/Q0: mTQ07270 

V = j(Fo - F )dy = Mmy/(27t) - iFody 	(7.55) 

Substituting from (7.50) into Fo and using the decomposition (7.20), 

this reduces to 

V = a(cos(pw/Q 0 ) MmAy/(27)- 1/Q0 	j v(y-p/Q0) sin(wy)dy . (7.56) 

Shifting y 	y+p s /Q0 in the integral we finally obtain for V 

V = - a sin( 	p/Q0) A(y) + a cos(pw/Q0) B(y) 	, (7.57)• 

A(y) 	= 	1/Q0  v(y) cos(wy) dy 

B(y) 	= 	Ay/(270- 1/Q0 j v(y) sin(wy) dy . 

From the definition (7.7) and the identities (7.39), 	(7.40) and gi=0 

Go ,reduces to 

G0 = 880/8u0 gi + aervavo g2 = Qclf.2 g2 , 	(7.58) 

with the derivative Go' 

Go' = No'g2 + Q°(g2 l f2 -  g2f2'))/f2 2  

= a sin() .C(y-cp/Q0) 	 (7.59) 

C(y-T/Q0) = 	Q02/2 3v 7/8u(y-T/Q0)/v y (y-T/Q0))/v y 2 (y-cp/g0) 
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Go'V now becomes• 

In0" 

Go'V = 1/(mT) I Go'V dy 

0  

(7.60) 

rnT 

= a 2 /(mT) j sin(wy) C(y-p/S20) (sin(wp/Q0) A(y) + cos(/Q0 B(y)) dy 
0 

Shifting y y+p/Q0 again gives 

Go'V = a2/(mT) sin(wy/Q0) cos(wp/Q0) 	C(y) (A(y+p/Q0) cos(y) 

0 

+ B(y+T/Q0) sinw(y)] dy 

mT 

+ a 2 /( mT) sin 2 (wp/ o0) C(y) A(y+p/Q0) sinw(y) dy 

  

0 

mT 

+ a2/(mT) cos 2 (wp/Q0) j C(Y) B(Y -FT/Q0 ) cos(y) dy . 

0 
	

(7.61) 

The factors in front of the integrals clearly have half the period of 

. sin(wcp/Q0) or cos(wp/Q0). In other words, two periods of sin 2 (wp/Q0),- 

cos 2 (wp/Q0), or sin(wp/Q0)cos(wp/Q0) equal one period of sin(wp/Qo) 

or cos(w9/Q0). This has nontrivial implications for the 0(E 2 ) system 

(7.26) as it indicates period doubling. From the constructionof Go'V 

in (7.61) we can conclude that every term consisting of a product of 
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Go or Fo or derivatives thereof -with V,or its derivatives has products 

of circular functions with a factor of a= as in (7.61) and jtherefore 

contributes to period doubling. The other period doubling terms in 

(7.26) are therefore Fo'V and Fo"V. One further observes that this 

is solely an effect of the sinusidal perturbations -  irrespective of the 

specific type of the underlying system. Onjthe other hand,,  it depends 

on the underlying system -- whether these higher order period doubling 

terms are large enough compared to lower .order terms in order to 

exhibit the effect. To investigate consecutive -period doublings in. 

higher order terms would require an extension of the aver -aging theorem 

to higher orders, a point already addressed at the beginning of this 

subsection. However, this would mean application of an averaging 

transformation-of the type 

h 	h + E1/2V + EVI + E3 / 2 112 	, 
	 (7.62) 

with the terms Vi constructed from powers of F. Clearly, this-would 

make the calculations extremely tedious, although straightforward and 

mechanical, which raises the possibility of automating them using 

symbolic manipulators. 

The presence. of higher order period doublings would suggest a 

sequence of period doubling 'bifurcations as described in a result-

obtained by Gavrilov and Shil'nikov [69,70] and further elaborated 

upon in- [28]. It is shown in [69,70] and [28] that for -  certain two-

dimensional diffeomorphisms with a hyperbolic fixed point homoclinic 

tangencies Or transversal intersections of the flow are created by 

saddle-node bifurcations depending on the value of some external 

parameter. That is, the two transversal intersections emerging from a 

tangency are a sink and a saddle with one half of its unstable 
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manifold being attracted by the sink. 	A further increase of the 

external parameter causes the sink to undergo a period-doubling or 

flip bifurcation where the sink degenerates into a saddle and two 

sinks. Each one f these sinks attracts one half of the saddle's•

unstable manifold. 

-7.2 	Flow between resonance bands 

Since the flow between bands must be structurally stable it suffices 

to use the system in 0(./E) approximation. We therefore write the 

system (7.22) as a linear second order ODE: 

cht = 	' Mm/2n , 

which has the solution y with derivative Pt: 

= - E Q0 ' Mm t 2 /4n + c1t + c ,? , 

QC°  Mm t/2n + c 

(7.63) 

(7.64) 

Expressed in terms of y and h, 

= — E Q0I nint 2 /4R 	C2 / 
(7.65) 

h = - 	Mmt/2n + c1/Q0' . 

The phase portrait of (7.65) - identical to the one of (7.64) - is now 

clear: 

For Mm = 0 it is a vector field parallel to the y-axis and with 

shear equal to Q 1 (I0). For h>0 its orientation is to the right and for 

h<0' it is to the left. h=0, y=c2 (y-axis) are the points of 

orientation reversion, that is, degenerate fixed points. See figure 

13a. This case is possible for the (2s) mode only and arises for w = 

2nn/F as in (7.26) and without dissipation. 

116 .  . 



For Mm > 0  setting h(t=0) = 0 or ci = 0 and eliminating t gives -  for : 

the vector field a.continuous set of parabolas parameterized by _c2: 

it 90 1 /Mm 11 2 + C2 	 -(7.66) 

	

The 	set of their apices is the entire y-axis. 	See figure 13b. Note 

that the case M'=0 described above is the correct limit as 

	

7.3 	Averaged subharmonic flow for (M)KdV 

We summarize the results of section 7 in combined form for the various 

cases possible. 

1. (M)KdV in (f8) or heteroclinic mode. 

The resonance bands- exist for a/6 > Rm(w) and consist of 

saddles With sinks created by saddle-node bifurcations at 

a/6=Rm(w). Neighbouring'bands are connected by a flow with 

approximate parabolic curvature as described above for the (2s) 

case with 6>0. The nonvanishing periodic part of the Melnikov 

function takes the place of Skimp in (7.64) or .(7.65) 

respectively. See figure 13a. 

2. MIKdV in (2s) mode. 

(a) no dissipation; 6=0 

The resonance bands consist of saddles and sinks as in case 1. 

In case of a vanishing Melnikov distance neighbouring bands are 

separated by a line of degenerate fixed points. See figure 

13b. 
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(b) nonzero dissipation; 6>0 - 

The situation is the same as in case 

7.4 	Dynamics 

We look at the dissipative cases first. It is clear from figure 14 

that the entire set of resonance bands, except possibly those of order 

( 3, occupies an annular region close to the saddle connections with 

area of less than 1 per cent of the interior, a and 6 determine the 

size of the attracting basins around the sinks in the individual 

resonance bands as can be seen from (7.24'). The probability of an 

orbit decaying inward therefore depends on the initial conditions as 

well as on a and 6. It will increase with 6 and decrease with a, a 

tendency to be expected on considerations of energy dependence. Due 

to the finite size of the attracting basins and their structural 

stability, a system will maintain its resonance under slight 

perturbations of a and 6 as well as the coefficients a and b. A 

continuous variation of a or b must lead to an increase or decrease of 

the order of the subharmonic on which the system is locked. 

For the case without damping observe that for (M)KdV in (f8) or 

heteroclinic mode the system drifts out of the range of the homoclinic 

or heteroclinic orbit. In the (f8) case this leads to chaotic 

oscillations with finite amplitudes whereas in the KdV or heteroclinic 

case the system transforms into antisolitons. 

The case of MKdV 	in (2s) 	mode without dissipation 	is 	the most 

interesting one 	as it shows that external forcing (without damping) 

does 	not 	always 	mean unbounded growth. This 	is 	of 	course 	a 

consequence of the circle of degenerate fixed points which confines 

the system to the interior of the homoclinic orbit even in the absence 
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of dissipation. 	The interesting question is of course the system's 

behaviour on the circle of degenerate fixed points. According to the 

averaging theorem this means a Poincare map of infinite period and 
- 

therefore no resonance. 	The annulus representing the outer 

neighbourhood of this circle is repelling whereas the annulus 

corresponding to the inner neighbourhood is attracting towards the 

circle. As a consequence machine generated Poincare maps permit a 

limited number of iterations since infinitesimally small perturbations 

are sufficient to displace the system from the circle into the outer 

annulus. This causes a drift outwards through the resonance bands and 

circles of fixed points. 
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a) 

b) 

Figure 13. 	Structure of averaged vector fields between resonance 

bands expressed in action angle variables (h,p). 	(a) Line of 

degenerate fixed points at h=0 is approached and abandoned 

asymptotically by the averaged vector field. (b) The vector field 

assumes parabolic curvature as it crosses h=0. 
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Figure 14. 	Period of solutions (5.16) within the homoclinic orbit in 

(2s) mode for coefficients a=-1, b=1 and graphed for various saddle 

positions. The abscissa is the ratio of the distances saddle-solution 

(based on u-axis) vs. saddle-center. 
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8. Numerical calculations and computer graphics 

With the exception of Figures 1, 2, 4, 13, all plots are produced by 

use of the graphics package PLOT79 [71] and occasional application of 

the subroutine . library NUMERICAL . - RECIPES [72] in combination with . 

FORTRAN77 on a VAX780. phase portrait trajectories (figures . 5, 6) 

and invariant manifolds (figures 15 to 19) also required application 

of the Runge-Kutta-Fehlberg FORTRAN ODE solver RYY45 (authors: 

Shampine and Watts, see [73]) on the three dimensional (M)KdV ODE 

systems derived from -(3.8) with both a=6=0 and nonzero 

perturbations. The invariant manifolds shown on the figures 15 to 19 

show tangencies between the .stable and unstable invariant manifolds . 

for the KdV system and the NKdV system in (f8) and (2s) mode and their 

ratios a/6 at these tangencies are in perfect- agreement with the 

evaluations of the formulas (6.27), (6.50) and (6.51) as determined by 

the Nelnikov method. In general, agreement between calculated ratios 

and those determined from tangency graphs of manifolds was within five 

percent for perturbation amplitudes a.2 and perturbation 

frequencies 1(wa and with coefficients a and b between 	and 

3. However, this good agreement breaks down for manifolds relating to 

relatively small unperturbed homoclinic orbits, that is, for saddles 

close to the saddle-center merging points, and for manifolds in the 

(2s) mode close to the heteroclinic limit. These cases correspond to 

the regions close to the poles in figures 7a, 9a and 10a. 	In these 

regions the applicability of the first order Meinikov method becomes 

questionable, as is evidenced by the large perturbationamplitudes 

involved. Figure 18 demonstrates the existence of a surface invariant 
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with respect to perturbations in the three-dimensional phase space of 
— 	- - 

the reduced KdV. equation - as - .described in section 4. An analogous 

invariant surface for the reduced MKdV equation ,as described in 

section 5 can be verified graphically as well. The important 

phenomenon of a vanishing Melnikov distance relating to the periodic 

perturbation for the MKdV case in (2s) mode is.corroborated in figure 

19 for the critical perturbation frequency w=2.92. Except for a 

small neighbourhood around the saddle the invariant manifolds overlay 

exactly within the accuracy of the graph. 

In practical terms, the graphs for the invariant manifolds are 

generated by starting with a point Pi with coordinates (u4, 10 -6 , 0). 

u; is therefore the saddle position on the u-axis with an offset by - 

10 -6  from the u-axis; the offset is needed to obtain a finite 

displacement of pi under the Poincare map pi 	P(pi), which is then 

performed by advancing pi by a timestep equal to the perturbation 

period T = 27t/w. A good approximation for the initial line element - 

on the invariant manifold 	Wu 	-(or Ws -respectively, by using 

negative time) can now be obtained by generating further points using 

pi 	as initial condition and solving the perturbed system (3.20) for 

a=0 and small timesteps. 	The stepsize is decreased exponentially 

with respect to the :number of steps performed in order to compensate 

for the 'stretching of the manifold under increasing time. After 

about 200 to 300 timesteps the set of points so generated will 

have reached a small enough neighbourhood of P(pi) to stop the 

process and readjust the resulting line of points to pass directly 

through P(p). Further iterations of this line element assemble the 
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invariant manifold and are generated by- simply Poincare mapping 

itsindividual points. 	It is evident from this method that the 

shorterthis initial line element is, the better the approximation of 

the manifold will be. a consequence, higher frequencies w are 

needed to analyse smaller homoclinic orbits. 
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a=b=1; saddle at u=-.5; a=.064; 6=-.02; w=1.2. 

uy .  

_ 1.0 

uy  

Figure 15. Invariant manifolds at the point of tangency. 	KdV with 

Figure 16. 	Invariant manifolds at the point of tangency. MKdV-(f8) 

with a=-3; b=-1; saddle at u=-.02; a=.064; 6-.05; w=1.5. 
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Figure 17. 	Invariant manifolds at the point of tangency. MKdV(2s) 

with a=-.1; b=1; saddle at u=-4.8; a=.069; £=-.01; w=1.3. 

Figure 18. Perspective view of Figure 15 in u-u y-uyy  space. 
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uy  

Figure 19. 	Invariant manifolds of 1KdV-(2s) for a=-.25, b=.5, saddle• 

at u=-3.2, a=.3, 6=0 and w=2.92, which is a critical perturbation 

frequency value with vanishing periodic part of the Melnikov function. 

Except for a small neighbourhood about the saddle the manifolds 

overlay exactly within accuracy of the diagram. 
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9. Summary and conclusions 

In this study, three main results can be 'highlighted. They are as 

follows: 

1. Invariant two-dimensional subsystems in the three-dimensional 

phase space of the reduced (M)KdV systems exist. 

2. Concepts of stability of solitons and structural instability of 

homoclinic orbits are compatible. 

3. The Melnikov distance vanishes for distinct perturbation 

frequencies over the entire time range in the MKdV system. 

These three results are obtained by direct analytic calculation within 

the first order perturbation approximation of the Melnikov method. 

However, they are supported by numerical calculations too and will now 

be discussed in detail. 

9.1. 	Invariant subsystems 

An important fact about the reduced (M)KdV system is that the 

Melnikov analysis of its degenerate three-dimensional ODE system can 

be relegated to a two-dimensional system obtained by integration and 

parameterized by one integration constant. As a result there is a set 

of homoclinic orbits embedded in the phase space of the 3-dimensional 

system as depicted in Figures 3b, 5b, 6b, corresponding to a set of 

solitons which are more peaked (i.e. higher -and narrower in wave form) 

and have higher wave speed for larger homoclinic orbits. Assuming this 

wave speed to be held constant and subjecting the system to a 

perturbing periodic wave train (with the same wave speed) and to 
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• dissipation will reduce solitons to cnoidal waves, which will change 

their, frequency until a state of resonance with the forcing frequency 

is reached and the forcing energy • balances dissipation. Such a 

balance cannot be reached in case of weak dissipation or relatively 

large amplitudes of the perturbing wave.- train. In that case an 

antisoliton solution is induced, which manifests .itself in numerical 

simulations as unbounded growth. -  An exception is of Course the MKdV 

system in (f8) mode, because it does not possess antisolitons but only 

pairs of solitons; these exchange .stability and show oscillatory 

behaviour in random fashion. 	The associated dynamics take place in 

one and the same two-dimensional subspace. 	In other words, an 

invariant wave speed causes invariant subspaces between which no 

Arnold diffusion is possible. 

As pointed out previously, the space coordinates of the KdV equation 

already have a velocity Vp with respect to the space, coordinates of an 

underlying system describing the dynamics of the actual physical waves 

(e.g. in water and plasma), which have V p  as their phase velocity. 

That is, the KdV equation is just a further reduction of this system 

transformed onto a coordinate system moving with velocity V P , and a 

similar rationale applies to the MKdV equation. Moreover, it has been 

shown that a wave ansatz with speed c on the KdV equation leaves V p  

quasi invariant. As a consequence, the wave speed of the actual 

plasma or fluid soliton can be different to the one of the perturbing 

wave train. Since the requirement of invariant phase speed applies to 

the ansatz speed c, the plasma or fluid soliton - again is not affected 

by this restriction. 
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9.2. 	Stability properties of solitons 

Closely related to the invariance property described above is the 

question of soliton stability. The stability analysis of solitons and 

cnoidal waves, as developed by Jeffrey and Kakutani [43] and Drazin 

[44] and mentioned - in the introduction, is based on•LyapunOv stability : 

and is restricted to perturbations within the solution space of the 

unperturbed and unreduced (M)KdV equation. Furthermore, - their 

perturbations do not carry the restriction of invariant wave .speed. 

As a consequence, the entire phase space of the reduced (M)KdV system 

• corresponding to one particular wave speed may undergo a change as 

much as the two-dimensional subspaces are no longer .invariant with 

respect to their structure or wave solutions. It signifies that the 

homoclinic orbit within a particular subspace as well as the subspace 

•itself is deformed as the wave speed is changed or else the solution 

may transfer to another subspace. 

In the framework of structural stability and Melnikov method the 

primary subject of perturbation is not the solution but the system 

itself. That is, the perturbation changes the system to a different 

one with a different phase space and solution space which contains no 

solitons. This indicates that even if the wave speed may not be kept 

invariant and may respond to the perturbation, the new solution of the 

perturbed system will be a soliton only if the perturbation is such 

that the perturbed solution space contains sOliton solutions. This 

shows that the type of perturbation is important for the mechanism of 

structural instability, not necessarily the constraint to a particular. 

invariant wave speed, although the present analysis restricts by the 

ansatz (3.7) to identical soliton and perturbation wave speed. 
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9.3 	Absence of Melnikov distance 

According to the Smale-Birkhoff homoclinic theorem [29] transversal 

intersections of invariant manifolds are crucial for the formation of 

Smale horseshoes and production of chaos. As determined in section 

6.5 and confirmed by numerical generation of diagrams (see figure 19), 

the reduced and perturbed MKdV system in (2s) ,mode will not always 

split the homoclinic orbit into stable and unstable manifold. The 

homoclinic orbit will survive for certain discrete forcing frequencies 

and multiples thereof and for all practical intents and purposes for 

larger frequencies, as illustrated by ,figure 11. Transversal 

intersections will therefore not exist at these critical frequencies 

and the system cannot display chaos: the homoclinic orbit survives at 

these frequencies and merely oscillates with them. This impliess 

structural stability for the homoclinic orbit at these frequency 

values but structural instability at other frequency values, i.e., 

almost everywhere in parameter space. - The interpretation in the 

soliton picture would be that of a breather or bion, or an oscillating 

soliton (see e.g. Drazin [44]). The unperturbed MEdV equation is 

known to have breathers [44]; however, in the ,present case the 

oscillation frequency is induced by a perturbation. 

As shown in section 7, the disappearance of subharmonic . Melnikov 

functions inside the homoclinic orbit creates a set of concentric 

circles each of which consists of degenerate fixed points and 

separates two neighbouring resonance bands.. In other words, 

identically vanishing Melnikov functions alternate with those with a 

finite number of zeroes. Looking at the individual circle, one can - 

divide its neighbourhood into an outer and inner annulus. Depending 

on the values of dissipation coefficient 6 and perturbation amplitude 
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a, -the circle will be attracting with respect to one annulus and 

repelling with respect to the other. As a consequence the system can 

drift through this set of circles to a resbnance band which is bounded 

by a pair of circles which both repel into the resonance band. The 

resonance properties for an identically vanishing Melnikov function 

are therefore not very different from those with transversal 

intersections due to the stability properties of the circles of 

degenerate fixed points. 

The important observation which -can be made through tle entire 

thesis is that the Melnikov analysis is clearly relevant in its 

applications beyond the detection of tangencies and intersections 

between invariant manifolds. Although it is only a first order 

approximation method, it has predicted in this study .interesting 

phenomena such as invariance of subspaces, which bear on solitons and 

the non-splitting of manifolds. The inherent nature of these 

characteristics in the studied systems has been substantiated 

convincingly by numerical methods, which are entirely independent of 

the Melnikov technique. 
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