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Abstract. The correspondence1'be£ﬁeen.solitoh‘ sdlutibns éf nonlinear
partial differentiai equétions_and homoclinic orbits inbappropriately
chosen phase spacés of these>equétions is weli—knoﬁﬁ. 'Peftufbétions ’
of homoclinic orbits can be studied by{use of the ﬁeinikov technique;
this focusses on the splitting of such orbits into stable and unstable
invariant manifolds and éxplains the emergence ‘of chaotic phenomena
via Smale horseshoes.

In this thesis the Helnikqv method is applied tp "the ﬁomoclinic
orbits corresponding- to solitons  of the Korteﬁeg—de Vfies (K4v) aﬁd
_modifigd Korteweg-de Vries (IMKdV) equations. These equationsyare
feduced to third érder'ordinafyvdifferenﬁial equations by a travelling
wave ansatz, defining a three-dimeﬁsibnal .phase space of the
equivalent systems of thfee' first order equations. The geometry of
periodic and homoclinic orbits and their struétu:ai changes under
perturbations is investigated. ’It"turns out that the three-
dimensional phase spaces foliate into a continuous family of invariant
two-dimensional subspaces. By integfating the equations to second
order the analysis by Melnikov's method is restricted to these
subséacés and is considerably simplified. The Melnikov integrals
stemming from the periodic and dissipaﬁive part of the’perturbations,
determining the onset of chaoé, are then evaluated for the reduced Kdv
and MKdV systems. They are used to calculéte £he ~critical ratios
between perturbation amplifude ahd dissipation coefficient at which_
tangency betweeﬁ stable and unstable manifolds occur. . At these
critical ratios the transition/bifurcation from regqular to chaotic
behaviour occurs. It is observed that the Melnikov function for the

periodic perturbation_ cf the MKAV case vanishes for certain



perturbation £frequencies and parameter »Values,’ as confirmed by
numerical wqu. The apparent fdiscrepancf. beEWeen sfruéturaliy'
unstable,ﬁomoclinic orbits énd:stablé:501itons'isidiScuSSéd ~and it is-
shown that solitonsv can persist despite the 'éplﬁtting of their
corresponding. homoclinic orbits  under -pertﬁrbatién. Finally,

subharmonics " and resonance bfor the periodic 'solutiéns 'undér-
perturbatiops aré investigated using fourth order éveréging techniques

applied over the _solution per%ods; which_revéals a period doubling

bifurcation in the subharmonics.
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1. Introduction
Alfhough ‘chaotié’ phénomena such »asv>turbu1ence' or fluctuations in
ecological pbpulations, Stock>@afket,j,weathef{ etﬁ{-‘have been‘known'
‘for decades, if not centuries;“satisfactory'mathemaﬁical modelling of
dynamical systems and the techniquésﬂ fof ahalysing them are fatﬁer
recent. However, thére are tﬁo principal: causes fqrAthe rather
dramatic_increase-of succeésful studiés into éhaoé! One‘iS'thekinflu% :
of méthods and results from fields‘ of pure mathematics éuch as
topology,,functionai analeis and operafor theory into_ the applied
sector, mainly‘ differential‘equaticns. " The other is the appiication
of numerical techniques and iterative methods in conjunction with
éleétronic data processing or machine siﬁulation of énalYticvmodelé.
The combination of these two is responsible for the drastic surge in

knowledge and improved understanding of chaos in the last two decades.

1.1 The definitioh of chaos and related concepts
Just as mathematics,:the analysis of chaos itself can be divided
into two categories. The study of maps and the structure of the sets
they _generate in terms of fractals ,ahd strange attractors can be
considered pure, whereas the study of chaotic behaviﬁur in
differential‘. equations is more application-oriented. Before
introducing the'teghniques and problems of the study of éhaos in
; differential equations it is appropriate to consider the variousv
definitions of chaos as they can be found in the literature.

The first mathematical definition of chaos was qevelopéd for cne-
dimensional méps by Li and Yérke [1]. It is cloself associated with
their discovery that period three implies chaos and 1is usually

presented as = a theorem. Their definition can be considered reievant



even in the present context of differential equations, aé most other .

definitions are extensionsvof'thevLi—Yorke definition;.

' Theorem:byv‘ﬂi éndM Yofké; Let J.be‘aﬁ'intefvélmand FE»J'e J bei
_continuous. Sﬁpposé fhere is a ‘point a € J that saﬁiéfiéS'
eithér |
F3(a) <-a < F(a) < FZ(a>
or : : ‘
Fi(a) » a > F(a) > F2(a)
Then (1) For every integer k>0 there is a point in J having’
period k. “
(2) J has an uncountable subset S (called the scrambled
set) that contains no periodic points “and satisfies the

following conditions:
For each p, q distinct in'§ we have
limsup IFn(p) - Frn(q)! > 0

n=->o

and

]
o

liminf IFn(p) - Fn(q)!
n-so

For each p € 5 and each periodic q € J we have

~
o

limsup Fn{p) - Fn(qg)|

n->o

Marotto [2] extended this theorem to n dimensions and his work in turn
has been geﬁeralized further by Shiraiwa and Kurata [3]. The crucial

element in the above theorem is the presence of subsequences in the

mapping sequences Fr which lead to <i~\\d, ;;lg,§§>nonzero separation

A,

. - . - "'ﬁ”\. V\'.f,, ’Ml\./\,} \\‘:‘z o H 3 -
of two arbltrarllyqf;“\’\_ L i . -1, close points p and' g
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in the limit of é.n 'infinite r'iumbe’f; of fiterations . ‘This can be
interpreted as 'siélv'xsitive dependencef on .in-itia.lv v'conditions, ’wﬁiéh, is,
- in -o_né : form'orﬂ_ a_.hofher, '_the -key irigfedienf in évery chaos_.,.d'efinit;ionz o
as well as in the definitions of subsets - in mathemtical ~ spaces in_' 
which dynamical systems exhibit chaos, or strange attractors. o
The concept. Qf sehsitivel ‘dep_eﬁdence on initial ‘condi‘;t.ions is by no
means & new one. In fact, occurrences of the, phenomenon have beeﬁ‘
reported as far backA as Adam and Eve. Who could have_ forseen the
profound éonsequ_ences of a naive vlit‘.‘tle »pleaéux_‘e like eating some
fruit (e.g. 'li‘ke' an apple). For f'urfher detvails see refefence [4].
The "other imﬁortar}t condition for chaos is the ‘existence of
"'nonperiodicify': dtt [5], for instance, propéses to defihe a map ag
chaotié if it has sensitive dépendence on initial conditions, is
nonperiodic and has a vanishing average correlation function. The
correlation is defined between two points in t.hev itefation sequence
such that if the number of iterations between the two points is taken
to the infinite limit, the average of : the correlation functioﬁ
vanishes.
The study of chaos in diffefential equations requires a definition
of chaos 1in abstract spaces ‘sucl;x as function spacés. - Auslander and

Yorke [6] propose the following definition.

Definition of chaos by Auslander -and Yorke. If X. is a

combact metric space and T a cdntinuous swjection from X
to itself then (X, ) 1is definéd to be a compact system. The
point x € X 1is said to be stable if for each £ > 0 there is
a &> 0 such that  d(zn(x),n(y)) < e “for e€ach y with

d(x,y) < & and each n eN. The compac_t system (X, T) is



defined to be chaotic if no point x & X is stable and if

. there is some' y € X whose orbit is dense in X.

Clearly,ithe absencé of stability implied in the définitién.éan again

be translated into 'senSitivé depéndence ‘on initial cénditions.
' 7,91 ' -
Although the chaos definitions discussed above are based on dlscrete

maps they are useful for differential evolution equations as wéll,»
since these equations can be considered as genérators of semigroups
with discrete 'subgrouPs. In practical applications, this means’

discrete timesteps on the solutions.
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1.2 Chaos in differential equations

Beginning with Poincare in 1880 [9]‘ there has been a continuous
evolution of the mathematics underlyiny the phenomena that are now
described as chaotic. Amongst the many contributions to this
development the wérk of Duffing in 1918 [10] abou§~mechahical forced
oscillations and van der Poi» in 1927 [11] about electrical forced
oscillations could be considefed poioneering.  On the other hand Ott
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[5] qoncludes on the basis>of the existing:literature that it cénvbé _
- surmised that» J...virtua]ly ali the actjvjty'in this>fieid (at least
when reétrictedl'fo probléms in tﬁe physical,Séienées)vhas dccu:rgd_:
since 1975, Thé>notable exﬁeptiobs.tq,this _Stafement'ére the paper§
of Lorenz (1963) and of Rueile‘ éhd thens (1971)i"‘>Both papers afé
concerned with' systems containing nd explicitv time @ependence, that
is, the systems are autonomous. Lorenz [12] (sée aiso Sparrbw [13])
iﬁQestigatéd machine so}utions of a. three dimensibnal sysﬁem of
noﬁlinear ordinary differential equations-(opES) which was -derived by
spectral ansétz'frcm a partial diffeféntial,‘equation (PDE) descriSing-
the evolution of Benard instability: the instability.ﬁhat results when
a fluid layer is heated from below. ~ He was able to establish the -
existence ofv.chaosvin particular regions of the phase space with an
intricate geometric structure.

The work of Takens and Ruelle -[14] is an early example of using
results of pure mathematicé such as topology to study solution
structures of PDEs such as the Navier-Stokes equations. v Their
mechanism for the onset of turbulence is basically a sequence of three
Hopf bifurcations which generate a three-torus in phase space. They
further show structural ‘instability of the vector fields which
generate solﬁtion curves on the suface of this torus. This is done by
defining a Poincare map baSed on the period of the third Hopf
bifucation. The phase space of this Poincare map contains the torus
relating to the two initial Hopf bifurcations. They'further shéwed
that in a C2?-neighbourhood of this Poincare map thgre exist horseshoe -
diffeomorphisms. These diffeomorphisms were discovefed bvamale [15]
who investigated most of their properties such as Cantor set

structure, hyperbolicity and the resulting structural stability, as

i1



well orbits of all periods and a - nonperiocdic "dense orbit. = These

properties cause sensitive .dependence on initial conditions.'°As-a -

consequenqe, sma11»perturbatioﬁs,;pn the solutlon generatlng vector; _'_E

‘fields will :produce structural “chanée nto vector »flelds whlch'
§enerate horseshoe  diffeomorphisms, with ~ the “ensuing 'chaotlc
behaviour. |

It is imporﬁant to realize that this meehanism'inValidates fhe rf\n;e, o(
mechanism pfbposed by Landau énd Lifshitz.tle]. .vfﬁeir idea was that

'(‘Eggﬁﬂlgﬁt¥de§bg9g;iii pj}5§3§c5~ an infinite -number of perlods in
superpositlon. ‘Such a solution cannot develop as the superposition of

" three periods already causes structurally uﬁstable solutioné.

fTakens and Rﬁelle also considér the_poésibility of repeatéd-double—
looping of the two;torus by a map in the neighbourhédd of the Poincare
map and thereby generating a sequence of Smale-Williams solenoids.
This is related to period doubling in three dimensions and thereby
creates a 1ink to the mechanism of chaos by period doubling as
developed by Feigenbaqm [17,18]. Before ' discussing this alternative
mechanism, it is»appropriate to take a view of the problems arising in
connection with the application of. the results of Takens and Ruelle to
specific differential équations. |
The main problem for a given autonomous system dx/dt = X(x) is th¢
determination of the eigenvalues of the operator X in the evolution
equation and their critical points where the Hopf bifurcations occur.
~ For a given ODE system this is simply done by lineérizing the system

.about the stationary solution and caléulating the\eigen&alﬁes of the

Jacobian. A Hopf bifurcation or transition to a éeriodic solution

occurs when a complex conjugate pair of eigenvalues crosses the

imaginary ‘axis, that is, when their vreal ~part changes sign  under

12 .



Variation_of the bifurcation parameter, Onceithis oconre an analytic
approximation to the periodio’ soiution can . be - constructed. The
problem starts with the__second:Hopf_bifurcation}_whioh»does_not take
place in the space>spanned by - the 'dependent_ variables of the ODE
system but in the function space containinéithe periodic solution of
the first Hopfrbifurcation. As-a conseouence, it is rather»difficult
‘if notv-impossible to. construct an analytic approximation to thisvnew
doubly periodic solution. (It has been brought to the:author's
attention that Fowler et. al. [19]vgiye an ekamplebof a’system where
such an approximation can be constructed.). |

For PDEe the problem arises with the first bifurcation'already,
since the place of the Jacobian in the ODE case is now taken by a
differential operator defined in the solution space of the PDE.. The
determination of eigenvalues now. requires spectral theory and an
analytic computation of eigenvalues is a nontrivial problem for even
" the most eimple differential operators such as the Laplacean.

Further work on chaotic solutions of first order PDEs has been done
by Brunovsky [20], Lasota [21] and Wolfe and Morris [22]. Brunovsky
and Lasota consider an eQuation with one space-variable and a form
which permits effective use of the method ofv'characteristics. This
allows them to defive. a set of conditions for the eqoation and its
boundaries which causes solntibns tc be chaotic 'aocording to the
definition of Auslander and ,Yorke given in section 1.1. Wolfe and.
Morris generalize these fesults to arbitrary dinensions of the space
variable and the dependent variable. As in the case of the work of
Takens and Ruelle, applications of these results to speoific equations
are still missing at this time, since the conditions on the equations

‘as well as on the bocundaries are rather restrictive.
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As opposed to the 'modeis for chaos:deécribed so far, ’ﬁhich foéusv
mainly on PDEs and Which eﬁcoﬁnter substaﬁtial ﬁechnicai difficulties
'iﬂ their direqt applications{Athe meChanisﬁ_-baéédvon .period déubling
lhas been yerified’in-various.aynamical systems. in geheral énd Obﬁs iﬁ
particular such as the Lofenz'eQuations,>»the Duffing model and the
forced oscillatorv.with friction. However, it should -be emphésized ét
this poiﬁt that the Duffing 'énd -Lorenz bequatibns afe spectral
reductions of PDEs. A short idiscuésiQn»of the various redﬁction‘
techniques of PDEs ﬁo ODEs and their pfesepﬁ significance in chaos

modelling is therefore appropfiate;

1.2.1 Reduction of PDEs to ODEs
We give a list of the four most frequently used réduction methods,

not necessarily in order of importance.

:'1. Reduction by spectral ansatz;” ' Althoﬁgh this technique is an
approximative Galerkin method, it has shown to préserve the chaotics
of the uhderlying PDE models and _reflect.them realistically in the
behaviour of the ODE system. It consists ofrformally expanding the
solution into a Fourier series with respect to the spatial variable
and truncating after a finite number of terms. The time dependent -
Fourier coefficients are : the  new dgpendent' variables “in the
resulting ODE system, _whose dimension is equal to fhe order of
truncation. The most prominenﬁ example is the Lorenz system, which
has been ‘brieflf discussed at the beginning. Its truﬁcation is of
third order with two temperature TFourier modeéx.and one velqcity
Fourier mode. The other well-known example is just as important and
reduces the integro-differential equation of the elastodynamic beam
to the Duffing system by a onefmode truncétion with respect to the

14



deflection of the beam from the stable equilibrium. For détaiis-see
Tseng and Dugundji [23], nboﬁ.and _Holmes [24], Holmes [25], Moon
[26], Hérsden'.and;;Holmes {271, Greenspah and .Holmes_f[zsj,'and-hr“

Guckenheimer and Holmes [29][

2. DApproximation by finite differences or finite elemenﬁs. The

finite difference method approximates the continﬁqus spatial domain
of the PDE by a finite. selection of discrete pointsbsuch fhat>the
temporal evolution of the unknown variable, such as é;'g. veioéity
in the case of the Navier-Stokes équation, is monitored at these
points or sites. In this case the solution ansatz consisﬁs of.é
finite sum takén over the set of these selected poinis; The
individual terms iﬁ this sum are products consisting of unknbwn.time'
dependeﬁt functions mﬁltiplied with the. initial values of the
uhknown variable -at the selected pointé. The time evolution at one
of these selected points is therefore described by an ODE. The
number of ODEs equals the number_of selected points-and the coupling
between ODES of neighboﬁring points is naturally introduced by the
finite difference approximations of the spafial differential
operators.

The finite "element méthod is basically like_a finite difference
method except that the selected points are replaced by weight -
functions with finite support and oyerlap_with neighbouring weight
functioﬁé to provide coupling. This .is a Galerkin method as well

since it reduces the weight functions to coefficients in the .

resulting ODE system by taking scalar productéx of them With an
appropriate set of test functions,vusually identical to the weight

functions.
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These tﬁé méthods are ready made 'fbr machine._calculétions as the
number of 'OﬁEs.can beiéubétantiali | Their .significénce £or Cﬁaos -
studies is fheféfqré in the ,nuhgrical'fAnalysisf_pfl;iﬁrbulencg iﬁ
atmgspheric phfsics and fluid dynamics. ‘For detailed discussions.
and applications of‘theSe’_methdds see e.g. Fleﬁcﬁef. [30,31j and

Temam [32].

3. Similarity solutions. The majority of :nonlineaf'evolution .

equations afe ’invariant under scaling transformatioﬁs of the type
(x,t,u) » (qéx,abt,acu). Here, *,»ﬁ; u Jafe independén{ space and
time variable and dependeﬁt vériable.' a,-a, b, ¢ are reéi scaléfsQ-
Invariants of this. transfofmation._are of ﬁhe fype y1=x1(a t-1/b,
vi=ul/e t-1/b, yo=x-1/a £1/b, vamu-1/¢ ti/b. Substituting a pair of
these invariants info the equation ﬁillk cause t to appear in each
term of the.equation to the ZSame power and therefore factor out,
leaving a nonlinear and nonautonomous ODE>with iyi and vi (i=1,2)
as indepéndent and dependent variable respectivelf. This equation
is, in thé éase of’the Burgers, KdV, and HKdﬁ, a genéfalized Riccati
equation with solutions. like Hermite bolynomials of Painleve
transcendents. To date there-is no mechanism for chaos that seems
to be applicablé to this type of equation or solutions thereof.- qu

details see 'e.g. Olver [33].

a,

4. Travelling wave ansatz. Introducing the variable y=x-ct in the

PDE leads to an ODE with the independent variable y. The solution
is therefore a wave of fixed shape travelling with speed c¢. This
type of ansatz }eads ththe well-known cnoidal wavés for.the Kdv and -
MKQV equatioh and provides an éasy way to obtain soliton solutionms.
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‘For further discuésions see e.g. Whitham [34]. i This is .also the
approach used in the present contéxt tq’estab1ish the connection -

. between saddle connections and solitoms. . .

1.2.2 The pefiod déubling hech&nism

Compared-to the.previous models the period doubling meéhanism ho}ds
two significant advaﬁtages; firstly itbproyides ‘a‘simpler aﬁalyéis,
and seéondly it is applicable/to both dissipative and‘area—preserving
or Hamiltonian systems. The Hopf bifurcation, and thereby thé
Tékens~Rﬁe11e mechanism,'ié limited to dissipative systems. _Thié
liﬁitatién is sharéd by the models develobed by Brunovsky, Lasota,
: Morris and Wolfe since somé of the conditions imposed 'on it are
eéuivalent to dissipatidn. | |

The phenomenon of period doubling was Qiggggffgfd by Feigenbaum
[17,18] in his investigationS' of one-dimensional unimodal maps. In
our context the period doubiing m&p is a Poincare map of at least two
dimensions depending on a bifurcation parameter. Our starting
assumptions are an at least three—dimensidnal dynamical system with
periodic behaviour, which presents itself as a fixed point of the
Poincare map. This Poincare map undergoes a“pitchfork“bifurcation as
the parameter reaches a cfitical value. This fifst- pitchfork
bifurcation transfers stability £from the stable fixed point to an
orbit with period two. In terms of .analysis, this .happens when an
eigenvalue of the linearized Poincare map leaves the unit circle in
the complex plane by crossing through -1. In geometrical terms the
orbit representing the original periodic solution splits in such a way
that it can be embedded on a Mobius strip transversallto the planerf

the Poincare map. This leaves two penetration points on this Poincare

17



plane ﬁhich represent an orbit of period.two. : An infinite numbér of
subsequent pitchfork zor.périod>doubliﬁg bifuréati;né corresponds to a |
sequence of critical yaiues .of- {hg Qbifﬁrcétidnv,paféméfér_;with an.
ac;umuiation point. - The period tof subsequeﬁf solutions ihcféaseév
therefore in pbwérs ofitwo,»and'groﬁs-to aﬁiinfinite ﬁeriod_oﬁée_the
bifurcation parametef » reaches ° the accﬁmu;ation- point. This
: vnonperiodic orbit is a sfaﬁle and dense attractor.

As Eckmann [35] notes, this attrac£or'has'no sensitive dependence on
initial conditions; chaotic 5ehaviour.'can be attributed té denéeness "
and aperiédicity. Oﬁ the other hand, however, aftehtioh.shoﬁld be

drawn to the - work of. Greenspan and Holmes [28]; thch demqnstraté.»
sensitive dependencebonvinitiél__éonditioné for. period doﬁbiing‘via
pitchfork bifurcations. They uée averégiﬁé meﬁhods to studyvfoihbare
maps in resonant and subharmonic systems which arise through
superposition'of' two frequencies; one iS-£hé system frequency and the
~other that of periodic external forcing.  The methbd 6f analysis
employed by Greenspan and Holmes goes back to Melnikov [36]. - This
method has found ﬁidespreéd use in the study of chaotic dynamicél
systems and is used in this thesis. Before introducing it, scme of
the geometryvand associated dynamics has to be considered. We:élso
draw attention to the descfiptions_of ‘the subject by Wiggins [37],

Holmes and Marsden [27], and in [29].

1.2.3 Saddle connections and perturbations

In the following introduction to perturbed saddle connections we
focus on the homoclinic orbits. As noted by Wiéginé [37], the studf
of éuch orbits connected to a saddle goes back to Poincare [38]} in ﬁis

work on the three body problem, where ne also coined the term
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"homoclinic".  Generalizations - of the homoclinic orbit are

"heteroclinic" orbiﬁs, that is}: orbité cénnéctihg two different -

saddles, and heteroclinié'vcycles}'.ﬁhich ‘is 1a‘,$et_ of heteroclinic ... .

i

orbits with their saddles connected td a closed cycle. - The following

description extends easily to these generalizations.

a) Autonomous perturbations

" We assume a planar autonomous and area preserving' dyngﬁical System
with two fixed pointsf_ ohe.saddlé and one Centfe, as'showh-in figure
2b. The phase portrait therefore must cohtaiﬁ' a hohoclinic orbit
connecting the saddle to itself and énélosing fhe centre. This
homoclinic orbit 6f saddle connéctidn'caﬁ be dnderstqéd as half of:£hé
saddlé's stable and unstable manifold represehted by an identical
curve in phase space. If the system is now subjected to a small
autonomous berturbation which 1is a function of the dependent
variables, the position of the fixed points will shift slightly and
the eigenvalues determiniﬁg their type will be_slightly perturbed.
The saddle is determined bj a‘ pair of real eigenvalues.‘of opposite
sign, and if the perturbation is small enough this situation and
therefore the saddle will remain. The centrekcorfeéponds to a pair of
. imaginary eigenvaiués of opposite sign, sitting on the imaginary axi;
symmetrically with respect to the 6rigin. Almost every perturbation
of the type introduced above will shift them nof only parallel to the

imaginary axis, but also transverse to it. That means thesé
eigenvalues become complex conjugate and the centre tufné inio a sink =
for negative real part or negative perturbation, and into a source if
the real part or perturbation is positive. Consequently, the set of

closed orbits concentric about the original ' center break up and turn

19



into.spirais Since 'fﬁe homoclinié ofbit is an élementfof:this-set;
it is subjected to this breakup as well ~in othef Qordé, ;iable'and
' unstable manlfold spllt In case of a 51nk the unstable manlfold must-
‘spiral 1nward and in pasg of a sourcev the- splrals are dlrected.
outwards accprdingly. This éhahge or break in symhetry froh closed

orbits to spirals and from homoclinic orbit into separated stable and

unstable manifold is a prime example‘df structural iﬁstébilify.

_ b) Nonautonomous.periodié perturﬁatibns

We assume the same dynamicai sYétéﬁ and phasé portréit ésvin a),
except that it is now subJected to a small time periodic perturbatlon
As'a consequence, the perturbed system will be nonautonomous and its
phase portrait will vary periodically with tlme. To take advantage of
this periodicity we define a Poincare map which describes: the
 evolution of the system in time intervals equal t6>the period of the
perturbation. This way wevrétain a time independent phase portrait,

although it is the one of the Poincare map and not of the original

perturbed system. Ifb the perturbatioﬁ is small-enough this phase
portrait will be similar to the perturbed one in a) - the saddle and
centre will relocate slightly. The centre, however, will retain its

stabiliﬁyvtype and the homoclinic orbit will split into stable and_
" unstable manifold which will bintergect transvérsally at a countably
infinite number of pointsl_ |
Another essential difference compared to a) is the behaviouriof the
concentric and periocdic orbifs. They will undergo phase locking or
resonance as will be studied in detail in section 7. ”One ‘shﬁuld note
at this point that, in contrast to the other system reactions, the

transversal 1ntu.sect10n ot manltolds and the phase locking cannot pe

20



concluded directly from the gebmetry of ,£he,unperturbed phése épaqe
énd the'type bpréffufbatidnsvimpdséd on if. fhéy apéeaf of éoUr;e in
numéri;aliéimu}étipns':gnd-thé phenpmenon of phase iogkiﬁglmakes.SQﬁsév
6ﬁ the basis of physical Aarguments énd ~is familiar ' in engineering
applications.'_-.However, it ’iS'fhe apéiiéation_of,nelnikov analysis
which demonstrates the jappearapce; of tfansversél».interséctibns and
,phase'lockiﬁg-by use of'mathemétical §erturbation'téchhiques;

To devélop_ an  understanding fér fhe emergénée of chaos it is'
sufficient .ﬁo assume the presence iof tranéversely intersectiné
mahifolds and stuﬁy.fheir dynamiéé as the perturbed systémtévﬁl?és_in

time as will be done in the next section.

1.2.4 Dynamics of the Poincare map

. Sﬁppose the perturbed and intersectin§ manifolds in the phase space
of the Poincare map appear as ih figure la. This type of picture»ié a
consequence of uniqueness of solutions and the hypérbolic deformation
- near the_ saddle point. Uniqueness of solutions impliés_that a point
on én invariant manifold cannot léave the manifold under. the map
associated - with -it, which explains the attribute "invariant". An
intersecfionuis a point shared by both ﬁanifoldS“ and therefore cénnot
leave either of them under the Poincare map. Since the saddle is an
accumulation point'for the Poincare ﬁap or its inverse, it takes (in
fhe limit) an infinite number of intersections for a_particular
intersection .to be ﬁapped forward or backward into the 1sadd1¢. ):\
generalization of this efféct té sections of the manifolds is known as
the A-Lemma (see [28,2§]). | |

We now monitor the eyolution of -the rectangle Pé in figure 1b,

(which 1is, for explanatory purposes, an idealization of figure la)
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under the dynémiés ‘of the Poincare map P. ‘After vertical stretching

and bending: in the p'rocess:‘ of -'a number of Poipcare'ilt'e-fatior»is' (three

in figure 1b), ',_PO’ will ‘have éomp_le'ted one cycle and . feturnéd to its.

ap'proximat“e starting position, however 1n the shape of a hor»‘sesho‘e.,
denoted by P3. This. cycle is clearly ‘the firs‘t it‘;ez_"a.{’gi‘qn of Smale's
horseshoe diffeomqrphism [15] as alreadj mentiApnAed .A.i_n'connectibn with
the Ta.kens—Ruéllé mechanism and subsequent it;:ratyiohs or cycles will

‘reveal all the dynamic and chaotic propefties of the Smale horseshoe.

1.2.5 Melnikov's method

| Given a particular dyﬁamic sﬁ/stem' and perturbation as described
above, the quéstion:arises if a.nd  under.what'. choﬁditions will it show
transverse intersections of the perturbed manifolds. The obvious
approach is to constlfuct a distance function between the.perturbed
manifolds, and _this is precisely what »Mevlnikov‘_[36] achieved by using
perturbation methods. Although his method determines this distance to
a first order approximation in a power expansion only, his results
agree surprisingly well to .numerical calculatiAons.’ An outline of the
different steps in Melnikov's construction is given below. For

mathematical details see [28,29]_. They ore elabsroted “pom toter.

1. Expand the solutions lying on. the two perturbed manifolds
formally in powers of a parameter representing the size bf the

perturbation, e.g. the amplitude.

2. Derive a first order variational equation .by substituting the
solution expansions of step one into the original perturbed

system and truncating after the linear term.
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' Define a first order distance function by taking the distance
between the the first prderiferms of,ﬁhg'twd expaﬁded solutions

in step one.

Projeqt .this- distance §nto a. line' 'perpendiéular_ té' thé
unpertﬁrbéd homoclinic orbit at‘ a;boiﬁt in time'eqﬁivalent to
the initial time in the solutigné of step one. " The projection
can be performed by émployiﬁé a wedge product, which is a
:vector product reduced to the two diménsions',qf tﬁe-phasé

"plane.

The vprojected distance of step four cannot be calculated in
practical terms aé it contains ﬁhe first order terms>§f the;
solution gxpansiéns introduéed}in step one;  these solutions
and their expansions are nof known analyticaily. This prqblem

- can be resolved as'follows:

Take the time derivative on the projected distance functioniof
step four. Note that this is done with respect to the current

time and not the'initial'time of the solutions involved.

Eliminate the time derivatives of the fifst order solution
expansions arising in the 'eﬁpression of step five. _This is
done by substituting the wvariational eﬁuation éf‘step two énd
results in a linear evolution equafion ‘for the first order

approximation of the projected distance function of step four.

Integrate the evolution equation ~of step ‘gix.f:om' -0 to +to.
The integrand in the resulting integral contains the initial
time of the solutions invoivedk Thisiis the time at VhiCh the
integral épproximates the distaﬁce between the manifoids.
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The distance formula resui{iné éfom £he'above prgqedure ié an integral
Qith»résp§Ct to time over the »wedge produét betweenjthelunpefturbed h
solution and the perturbatioh. Aiso;note that the outlined derivation
doeé not depend on _a_:partiéular type of pérturbatioﬁj it can be
~dissipative as described in 1.2 a) or.periodié asAin  1.2 b), ora
combination df: the two. ~ Since thié inv§lvés perturbation égrametéré
such as the ahplitude of the periodic‘pertﬁrbation and tﬁe.damping
coefficient - of  the friction perturbation, it proQides a méansifor
finding cfiticalealueé ét which thé distance -functién disapﬁeérs;
»therefore a comparison to machine simulationéi becones . possible.
-Technical details will.be diséussed in éection 6. It is imﬁortant ﬁo
nofe that Melnikov's method can bé “extended to dissipafive systems,
which adds an extra' term to the integrand of the distance formula.
- For details, see Holmes [39] and Salam [40]. The Melnikov iéchnique
- has also been. applied by Lima and Pettini [41] to model the
»suppréséion ‘Qf chaos by external forcing: in the }Duffing—Holmes E
oécillator. Récentlf the distance approximation for Hamiltonian
systems has been extended to_>second order by Liu and Gu t42}.
However, their appiications focus on subharmonics  and
ultrasubharmonics of the perturbed pendulum. |

In summary, saddle connections are linked to chaos via
perturbations, structural instability, and Smale horseshoes. anthe
other hand, homoclinié and heteréclinicvsaddle connections cérrespond,
to solitons and shock wave solutions respectiygly in nonliﬁear
evolution PDEs, as illustrated by Jeffrey and Kakutani [43]. It is
.therefore,natural to_subject these solution types'to perturbations and

investigate their reaction. We now give an introduction to solitons.
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in connection with the "KdV and MKdV -equation, as they are prime

.e%amplés for soliton solﬁtions and have found widgspréad.applicationé. ’ '

1.3 Solitoﬁ; and cnoidal waves
According to Drazin [44,p.8], solitons are "not precisely defined".

However, Wwe can adopt his déséription asNa yorking dgfinitibn:
A soliton ié any.solﬁtion of a nbnlinear equgtion Of'system which
1) répresents a.wave of pefmanent form;“
2) is localized, decaying or.becoming éonstant at infinity;

3) may interact stfohgly with other solitons so that after the
interaction it retains ifs form, almost as if the principle of

superposition were valid.

In the preéent study the properties 1) and 2) afe of particular
interest, as these correspond to‘a saddle connection in an appropriate
phase space. Solitons with different values at negative and positive
infinity are sometimes referred to shock waves in the literature. As
| will be shown later, they relate to heteroclinic saddle»cohnectidns,
whereas solitons with . identical values 'at.‘negative and pésitivé
infinity relate to homoclinic orbits. B |

Solutions which are periodic wave trains of infinite length are
called cnoidal waves since they can be represented by Jacobi's
elliptic cn function. In the limiting case of an- infinitely long

period they degenerate into solitons.
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1.3.1;_S£abili£y of:soiifons and cndidal_ﬁavés;ﬂ.Q-'
Liapunov stabiiiﬁy of,.éqiitons *was;shown,by Jeff;ey_and.Kakutaﬁi '
[43] for the Kdv eduation in, particular' énd by  3enjamin [451 ;n-
general. : fhéir methods cénsisf of adding .g'pe;turbafion to the
soliton solution and.showing that this new vState must relax into
‘soliton staté. We give anjéutline of Béﬁjamin's méthdd as it ié the
more general one. o | o |
Assuming the soliton and its secphd derivatiye 'tqv vanish in.the
infinite spatidl limits, he éroved, uéing é Lagréngean variational
formulation, that the Hémiltohian of»a soliton soiution represents a
local enefgy minimum within a néighbcurhood (in’solution space) of the
soliton containing non—soliton solutions. Since the soliton soutions
of a given system form a continuous set parameterized by the wave
speed, any small enough perturbation out of this set will» réturn the
' system>into the»soliton> set; but not necessarily to the soliton with
the wave speed bgfore. perturbation. Benjamin [46] also proved
Lyépunov étability. of énoidal solutions with respect to perturbations
of the same period by the variational method. His result was extended
by Drazin [47] to Lyapunov stability df Kdv sélitdns with respect to
an arbitrary frequency by use of Floquet theofy. |
Considering the earlier mentioned fact that solitons and cnoidal
waves  correspond | to saddle connections ahd closed orbits,
respectively, which are known to be structurally'hnstable, this almost
seems to be é coﬁtradiction. It is therefore neces;afy to elaborate
on this problem and demonstrate thé compatiblilty of the two concepts

under the various conditions.
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First we note that stability of a pérticuiéf sef of Eolutions ddgs f
'_not only depénd» on.,their_'funbﬁionai >fofm, :bﬁﬁ ﬁuch  ﬁﬁfezféﬁ.£h§ 
character of  thé unéerlying system.":»Benjamih aga,Drazin;pse thé"
origiﬁal PDE KdV'quétion for their variationél anéiysisf- éﬁd permit
.Variation in -fheb wével speed. This.meané, that a pérturb#tion'canf
affect the wave speed and shape of a solifon or -cnoidaliﬁave;' but it
cannot change them into other.soiution tyées; dﬁ the other hand, they
are restricted to solitons vanishing at the sp;tial infihities.»-fhe 
.;concepﬁ of structural instability, howevef, relates to Kdv reduced fo
twd first order ODEs by travelling wave ansatz.and intégration. As §~
conéequence, "the wave speed 1is a fixed parameter within the ODE .
system. |
Secondly, it is iﬁportant to diStinguish the types of pertﬁrbation.
Benjamin as well as Jeffrey and. Kakuﬁani add their perturbations to
the soliton solutions. and do not ‘specify a particular 'type_qf
| perfurbation, which means that no specific time evolution of the
perturﬁation must be allowed. In the case of KdV, reduced to an ODE
system, a time periodié forciﬁg perturbation plus dissipation is added
to the system. These +type of _perturbations' invariably force
oscillation and .damping onto the unéerturbed solution, which means

that a solution'type without these characteristics will change.

1.3.2. The HNelnikov technique aﬁd..solitons .of thé KdV and MKd4V
equation._ . | - |

Bs already mentioned, Jeffrey and Kakutani [43] have shown.that
soliton solutions of the KdVv and MKdV equation -are associated Qith

homoclinic orbits - in phase space. This association has been further
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developed by Holmes and narsden [27] as well as by Blrnl; [48] vqince
the main appllcatlon of the Helnlkov method is to the spllttlng of the
homocllnlc orb*t into stable and- | unstable manlfolds due to
perturbatlon of the nonllnear dlfferentlal equatlon, we have in this
work used the method to_study the effect ,of perlodch and dlSSlpatlve

perturbations on the equation,:
Ut + uxun +"uxxx = 0. » "l : ’ ' o ) i (1;ly

For m=1 this is tne Kdv equatlon and for m=2 1t is the MKdV equatlon,
from now on we label them collectlveTY as the (M)KdV equation. To be
" more precise, we have extended equatlon (1.1) fo the (M)KdV-Burgers
equetion by allowing for-a dissi?ation term proportional to uxx and b}v
" adding an external force term that is periodic in space and time.

We shall in fact only be studying the "reduced (I)KdV equa;ion"

which arises when a travelling wave ansatz is made:

u(x,t) = u(x-ct) = u(y) , ‘ (1.2)

where ¢ is the wave speed. In this way we are left with the reduced

third order ordinary differential equation (ODE),
uyyy + uyum - Cuy = 0_- . ‘ (1.3)

As explained by Olver [33], the most general periodic solution to this

equation for m=1 after two integrations reads.

-~
e
.
[1>8

g

u(y) = A cn2(uwy + 8) + 1,

where the constants A, w and M are actually interrelated and cn is the
standard Jacobian elliptic function. It is called [33,44] the cnoidal

wave solution. In the limit where the homoclinic orbit is approached
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and the elliptic modulus k + 1, the solution (1.4) degenerates to the

- form | - . |
Cu(y) = 3 sechz(y/2 + 8) , sy
which is the soliton or solitary wave solution.

A generalizatioﬁiof this soliton £o‘m < 1 is shown in [44] to be
u(y) = 3 sech?/s(y/D + 8) , - - (1.6)
D = s[2(m*1)(m+2)/32]/m .

In order to moti?ate'this stu@y, we shall review in'-section 2'soﬁe
of the applications of \thé (M)KdV equation fo fluid wéves and plasma
-physics, introduce dissipation in this context (thus, éoing to the
(M)KdV-Burgers equatibh) and inﬁlude pefiodic wave perturbations. It
is also appropriate to introduce other ‘PDEs which reduce under the
_ ansatz (1.2) fo. the fofm _(i;3). Examples are  the _Bqussinesq
equations, the BBNM equations, and modél equations for waves»iﬁ elastic
media. In section_Brwé:apply a travelling‘wave ansatz to the (M)Kdv-
Burgers equation and the other equations introduced in section 3 under
periodic forcing and analyse the phase portrait associated with the

cnoidal and soliton solutions for a generalised (M)KdV equation

ue taugu® + buyyx =0 . ’ (1.7)

Sections 4 and 5 aﬁalyse the - wave solutions éf the - reduced (IM)KAV
equation and their geometry -in the phase space. The Melnikov method
is reviewed in section 6 and the MNelnikov integéal; as well as
tangencies of manifolds and bifurcatiqn curves are calculated. This

"section is guided by the well-known application cf the Helnikcv theory
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to the Duffing éyéfem by Gréenspan'ahd Holme§ [28] of Guckenheimér and.

AHolmeva29]. ‘In Seqti§n 7 théxthémiCS'of"résoﬁance_:ahd stharméhids
" are studied. _Section’ﬁjpresénts theuﬁumerical work suéh_as the plots -
of the manifoldsvin the'phaseiporfraitS'and ”cbmpares £heAcoﬁputations’
to the éalculatith-of section 6. A summéry and.inferpfefation of

results is given in section 9.
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Figure 1. (a) Intersecting invariant manifolds connected to a saddle
s. (b) Idealization of (a); the rectangle Po undergoes three Poincare
iterations and returns to its origihal position deformed into a

horseshoe P23,



2. The (M)Kdv equatibn “in fluids,"'plasma and lattices, and related

equations

Most of the numérous pubiications on the (ﬁ)KdV equation in the last

‘two decades have cbncehtrated on properties_ Qf the equation itself
such as conservation laws; inverse scatteringsthsory, group.structures
and transformations bétwsen solutions. In the present context-it is
necessary to review 'somé of 'the physical background'to the MKAV
equation ss as to'provide some framewsrk for the typs of perturbations

that are introduced which then permit analysis via Melnikov's theory.

It is also useful to look at equations which are related to the MKAV o

equation in the sense"thst a»ltraveliing wavs'ansatz reduCes_them to
the same ODE as it doesv the (M)KdV equation. Our examples in fhis
context ars the Boussinesq equations, the BB or Peregrine equation
and a nbnlinesr; equation for dispersive waves in elastic media.
Furthermore; we>ﬁote that an exponential ware snsatz reduces the cubic
Schroedinger equations to equation types _equivalent to the (M)KdAV

equations reduced by travelling waves. We now present a cataldgue of

cases where the (M)KAV equations or some variant of it emerges.

2.1 Shallow water waves

The géneral KdV equation
ut + a U.;.;u + b u:{x;: = O . v . (2-1)

was originally derived by Korteweg and de 'Vriesx in 1895 [49] to
describe gravity waves on a layer of an inviscid, incompressible fluid
of finite depth _undergoing irrotational motion. In this context

- equation (2.1) has two applications:
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1. It describes the evolution of the height perturbation hl'
hi(x,t) = h(x,t) = ho, o L(2.2)
where ho is the height of the unperturbed layer and h(x t) the

helght of the perturbed layer, plays the role of 'u in (2,1).

2. It describes the evolution .of the horizontal compohent of'theA
perturbation velecity. Includlng the 1nf1uence of v1sc051ty adds a
dissipation term -»uyx to equation (2.1) .and thereby leads ‘to the

Kdv-Burgers equation
S By t @ Uxx + b Uyxyx — ¥ ux¥'= 0. ' (2-3)

An external forcing term in form of a horizontal acceleration ug

periodic in space and time;

Up(X,t) = a cos(ux —'mpt) ' (2.4)
provides a periodic perturbation to'equetion( (2.3). The dissipation
term  -vuxx “and the periodic perturbation (2.4) will, after further

reduction, allow the application of Melnikov's theory.

2.2 Waves in liquid-filled elastic tubes
It was shown by Johnson [50] that the propagation of waves in a
viscous fluid contained in an elastic tube can be described by the

KdV-Burgers equation
he + hxh + hyyx = & hyx = O.; ' . N (2.5)

with x as radial coordinate and h(x,t) a quantity proportional to



the radial perturbation of the tube wall. BAn ekterﬁal perturbétion_of

the type (2.4),>hame1y
ho(x,t) = @ cos(ux - wpt), . 7 (2le)

can agaih be " added to (2.5) by introduéing -an external pressure

vibrating periodically in x and t.

2.3 Hagneto—aéoustié wéves in plasﬁa

'Kéwahara [51] shqwed that the equétions describihg a magneto—aéoustic

wéve in plasma under the effect of ionfeleétfon icollisions can be
reduced to a KdV—Bufgersﬂ'equation. In this Acasé the dependent 
variable is.a first-order perturbation of the plasma velocity and ion-

electron collisions aré responsible fqr "the ‘dissipation term.

External fbrcing cankﬁe imposed by fluctﬁating'electromagnetic fields

wifh time and space dependence as in (2.4) or (2.6).

2.4 Alfven waves in piasma
Alfven waves have also been studied by Kawahara. In a review of his

analysis in.[Sl] the following equation is derived:
3f/3t + £2 3f/8x = Vop 33f/3x3 . , L (2.7)

fhis is of coufse the MKAV equation and tﬁe dependent variable £ is
proportional either to {he density or velocifyAfluctuétions.dﬁe to
.dispersion of ths plasma. The wave solutionsléf (247) are the Alfven
waves, n iz a constant and V., 1s the phaée velocity of an

idealized (i.e. nondispersiVe) Alfven wave. External foréing of thse
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type explained for magneto-acoustic waves in section 2.3 pro?ideS'

periodic perturbations. |

2.5 Lattice waves

By lattice we mean here the atomic structure of solids and the
vibrations 6f the atoms is usualié deécribed by so—calied lattice
 anes. We consider the one-dimensional model Consiéting  of a numbef
~of particles each of mass m connected ﬁo. its two neighbburs»by twé
springs. instead'of a spring force éroportional fp the equilibrium _
displacement j, say, of the individual particle, Zébusky [52j

considered the nonlinear dependence between spring force F  and yf
F=x(y+ayp+1), - (2.8)

'with X, a, p being constants. It is shown in. [52] that the dynamics
of a one-dimensional lattice with a spring force of type (2.8) can in

the continuous limit be reduced to the equation
S gu/ot + ur du/adx + p 3u/dxd =0, (2.9)

with u=dy/8x and p a constant depending on K and p.
Perturbations in the form of mechanical vibrations presented in the

form (2.4) can be considered for periodic forcing.

2.6 The Boussinesq equations
More than twenfy years before Korteweg and de Vries, Boussinesq [53]

derived the equation

Us: = DUyyxy + €Uxy + a(u?)yy _ (2.10)
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from potential theory as a model equation for the dynémics_ of shallow

 water waves, as elaborated upon by Ursell [54].  u -is the vertical

amplitude of the waves and a- andfﬁ.e‘¢1§re positivelqoeﬁficiehtSKv."

dependingvon the thicknéssb of the water layer.. The.éoefficient_'b
" depends onhfhe layer thicknéss as well ana is negatiVe' for -the ”good"
© and positive for  the  “badﬁ Boussinesq equation. To study the
» propagation and diséersion of 1attiéé‘waves as'described vin section
2.5, Zabusky [52] Consideréd!“besides'equation (2;9), undér assumption

(2.8) the equation
Yer = ~(e + ayx)¥xx ;'bexxx . . ) ) (2.11)

Here, y 1is the laftice displacement andv a, b,,‘e' aré positive _
coefficients depending on,ihe resonant frequency,.the distaﬁCe between
latfice nodes, the céeffiéient a of (2.8) and the wave speed in the
1imit ' a>0. ~ This can be qoﬁsidéred_as a pdtential>form or first
intégral of the bad Boussinesq equation as it reduces to equation
(2.10) with b posiﬁiveiif_differeﬁtiated,with f65péct to x ahd,the
substitution yy = u is nade.

As noted by Manoranjan et.al. [55] the two Boussinesq equations have
received litfie attention compared to other soliton producing
equatioﬁs such aé (M)KdV, Bufgérs, sinh;Gordon,-and sine-Gordon.  One
reason .for .this is- the secondi time derivative 'onvﬁhebdepéndent
variable, causing'a higher degree of technical difficulty in their
analysis. .Some of the.mathematical properties of fhe bad Bouséinesq
equation 'have been studied by Hirota [56] . whereas some of the
mathematics of the good Boussinesq equation have been-covered in [55],

and by McKean [57]. Perturbations of the form (2.4) can model
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mechanical vibrations as well 'aéha__périodic structure of the solid B
bottom of a fluid layer;-:

2.7 The BBM:(Benjamin/Bqna/néhoney) equation:

As an alternative and improveméntfto>the'KdV equation, Benjamin, ﬁona

and Mahoney [58] proposed
u; + eux * auxu + guxxt = o S : (2.12)

"as a model eguation for the bropagation of long waves in shallow -
water. This equation ﬁés also uéed by _Peregriné [Sé] to modéi fhé-‘
evolution of an undular bore in .a shallow watef'channel and is.
-therefbre sometimes called the regularized long-wave (RLW) equation or
Péfegrine'equation.f Thé dependeﬁt>variab1e u is; as in the case of
Kdv, the fluétuation of the horizontal velocity component or the ﬁave :
height and the coefficients  a, é,vg depend on fhe layer_thickness.
It is elaborated in [58] (sectibn 3, p.63) that the éddition of a
forcing term f(#,t) ’to_(2,12) provides an.important generalization. -
In the present context thié term would of course agéin have thé form
and interpretation of (2.4). . Noreover, ‘(2f12) could be.extended to
cover dissipative effects as weil by adding the viscosity term  wuy.x

as in the case of the KdV-Burgers equation in section 2.1.

2.8 Nonlinear dispersive waves in elastic hedia;

" Toda [60] derived the equation

Ut = @UyUyxx + DUyuxx + ey x ' : Coe (2.13)

as the continuum limit of an equation of motion for an infinite chain

of particles connected by springs of nonlinear spring constant. It is



theréfofe used to modei 'ﬁaQe propagation in an énhé;ﬁonic latticé”of
bgin él;stiqisdiids fespecéively (see 1Grindléy; éﬁdV‘OPie [61]); The
: deéendent variabie iuf iél.iﬁ'this case ﬁhe'vwéve'deflecfion and énli

additional termvof the type wuixx inducés dissipatibn._ |

It is shown in [60] thatvthefasympfotic'tranSfofmatioh

T =,a//é (x ~ ve t), ©=a3, &= b2/(v2 €),.

o S (2.14)
u = 2ve¢ 2(%,t), - v = 3z/3% .
reduces (2.13) to the KdVv equaﬁion
av/at + v 3v/BF + 8233v/3E3 = 0. e (2.15)
2.9 The cubic Schroedinger equation
~ The equation
fus + pugx + vlulzu =0 | o (2.16)

is known as the nonlinear .or cubic Schroedinger equation and is of
central importance for wave propagation in optic fibres (for an

extensive survey see Kumar [62]). Drazin [44] shows that the ansatz
u = r(y)exp{i(8(y) + nt)}, y=x-ct (2.17)

leads to differehtial equations for phase 8(y) and squared amplitude

s(y) = r2(y):

8y

M

(c + A/s), wsy? = -2[s3- 2p(n-c?/4)s? - Bs + A2/2]. (2.18)

A and B are integration constants and it is clear that the second

equation in (2.18) originates from the equation

¥syy = =352 + p(4n-c?)s + B~ _ (2.19)
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by integration.. On the other hand, Whitham (63] uses.the alternate

. ansat?

u = r(nexp{i(ex/2=6t)}, 'y = x - ot o @aoy
in (2.16) to derive the equation

Vryy = (c2/4¥m)r + w3, ' | - : _ (2.21)

The equations (2.21) and (2.19) for amplitude and amplitude squared
respectively are equivalent to the first integrals of the Kdv and anV'-
equations reduced by travelling wave ansatz,  as will be. shown in

section 3.2.
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3. Travelling wave reductions

o ﬁefdre. we ﬁerférm- the _redﬁctiohs -on the equétions-infrodﬁcédiin
section 2, ve ekplain the effect' Qf»SEaLe _transformatiqns‘on syéteh
coordinatéé. Periodic and dissipaﬁive-éérturbations are onlyiincluded>
in the reductions of (H)Kdv. To extend_Boussinesq and - BBH_feductions.
to perturbed systems, we dan simply add'the:dissipative énd'pgriddib

perturbations as discussed previously.

3.1 Scale transformations
In a large number of systems, including the examples above, it is
possible to make the following approximation- [43] ‘in the dispersion

relation for the fréquency Q:
Q(K) = Cok + c1k3 + ... . o - (3:1)

This is a nécessary but not sufficient condition for the reduction of
the original systems to the (H)Kdv or (M)XKdV-Burgers equation. The -

‘dispersion relaﬁion'(B.l) leads to a phase veloéity Vy of the form

Ve = QK=o+ cikZ L. . S (3.2)

This reveals the coefficient ¢, as the loné wavelength 1imit of the

phase velocity.

Let X, and t, stand for the original space and time variables. By

introducing a scale transformation
x = Kn(Xo-Coto), t = kn+Zt, , | T (3.3)

(wvhich is used throughout for dispersive systems) it is possible to
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retain a travelling wave ansatz with»iphasé velocity . ¢ on the new

coordinates x, t :

y=x-ct=ko(xom Vite), Vi=cotck? -~ . (3.4)

with'a new phaSe velocity' V;. Comparing Vi with the ekpaﬁsidn .

(3.2) we cobserve that. c _correspondsvto,the coefficient ¢:> sQ
Ve~V - for k<1, ; (3.5)

That is, due té the expansion (3.2) ahd thé transformation t3,3), any
additional travelling aneAansatz (3?4)‘leaves the phése vel'ocity":v.p
(or its approximation'co)_ '‘almost invariant' for k small enough.
Moreover we note that the spacek coordinate X ‘ in any KdV type
equation is ﬁoving witﬁ velocity co. with reépect to the statidnafy
coordinate x,. The applicatioﬁs in sections 2.1 to 2.4 listed above
.use thelvpower> n=l  in (3;3) whereas the MKdV equation (2.9) for

" lattice waves in section 2.5 can be derived for n=0.
3.2 Reduction of KdV and HKdV"
We begin with the equation
“U: + @& Wiy, + b uyxx +t 8 ux)é +>Ct COS(NX‘mpt) = 0. . (3.6)

This is for m=1 a KdV-Burgers equation and for m=2 a MKdV-Burgers
equation extended by an external periodic forcing term.

A travelling wave ansat:z
Yy = x - ct, c = w/w _ _ (3.7)
reduces equation (3.6) to

cu, +aucruy +buyyy + 8 uyy + acos(uwy).= 0. (3.8)
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Redefining units  of x .and .t,;the wdvejsﬁééd ¢ can be normélized
to unity wifhbut_loss of generality.'--Adopting ‘thisﬂbonvention from

now on and integrafing»equation (3.8) gives
Ut aue+tli/mtl + b,uyyi+ § uy + « sin(uy)/w = ki, (3.9)

with® k; as iﬁtegration constant._.This eqﬁafion,is our main»oﬁjeﬁtv
of analysis. From.now on we.will'stuay the tﬁo differen£ cases m=1
(KdV) and m=2 (HKdV) separately. Tﬁe firsﬁ sﬁep is to find analytic
solutions qf (3.§) vfbr vanishin§ dissipa£ive ahd periodic forcing
térms (¢ =8=0). These solutions are of course'the travelling wave
solutions of fhe‘KdV 'ér MKdV equation-ahd aftér reintroducing small
disSiﬁatiVe' and  periodic forciﬁg terms .(1 > a, 8 6) as.

perturbations, we have the conditions necessary for Melnikov's method.

3.3 The reduced Boussinesq equation
Following Manoranjan et.al. [55] we rewrite the Boussinesg equation

(2.10) as the first order (in time) system

bu;,;xx + Uy + a(u:’)x P

Wy = ,
(3.10)
ut=wX .
. The ansatz -y = x - ct reduces (3.10)_to
-cwy = buyyy + euy + a(u?)y , o
. » (3.11)
-cuy = Wy .
Eliminating wy and integrating leads to
“u + buyy + auz/2 = k: , o .(3.12)

42



where we have set c2 + e = -1 .1in crder to obtain a form equivalent

“to (3.9) with a = & = 0.
3.4 The redu;ed'BBH edﬁaﬁion B | |
vThe wave ansaﬁz f = x.— ct reduées-the EBH equétion’tz.lﬁ) to .
(c_+ e)uy +.auyu + gClUyyy = O-f _ ;: ' | .(3;;3)
An integration giyes
| (é + e)u + au2/2v+ gcuyy = k1 . ﬁ y o »Jv(3.;4)
Setting
c+e=1, g(e- 1).= b - - (3.155
gives (3.14) in a férm equiva;ent tﬁ'(é.lz).
3.5 The reduced elaStiq media wave equation
Under the wave ansatz the equaiion (2.11) introduced inbsectioﬁ 2.6

reduées to

~C2Uyy = éuyuyy_+ buyyyy + eUyy . (3.16)
Integrating and substitu#ing V=Uy leads to

bvey + (a/2) v2 + (e + czj v'= ks . A (3.17)
The substitution

c2+e=1 | . - (3.18)

changes (3.17) into the form (3.12).



4. Wave solutions of the Kdv équation and their geometry

Here we derive the wave solﬁtion5 fornthe>KdV’equation-and‘analyze
their geometry in both the three-dimensional - and the reduced two-
dimensional phase épace of the ODE systems resulting from the wave

reduction.
4.1  Cnoidal and soliton solutions of the KdV equation -
The "unperturbed"’equation
u+au2z/2 +buyy =k, ' _ ' (4.1)

is obtained from (3.9) by setting o¢=6=0 and m=1. Multiplying it by

Uy, integrating and regrouping terms, leads to

=
1]

v[ud+ 3uz/a + 6k;u/a + 6k/al~(a/3b)
' ’ (4.2)

v[(u-r1)(u-r2)(rs-uw)]v(a/3b).

The methed of quadratures gives an elliptic integral (see e.g. Byrd
and Friedhan, [64], $#236.00, p.79) and consequently the cnoidal wave

solution
u(y) = AAcﬁ2[X(y—yo),k] + 1 : | (4{3)
of the reduced KdV equation
u; +a uyu + b»uyyy = 0. | ‘ (4.4)
The abbreviqtions in (4.3) are as follows:

R =rj3r:, A= v{a(rs-ri)/3bl/2,
Yo = arbitfary phase shift,
k = v[(rs-r:)/(rs-r:)] = elliptic modulus, (4.5)
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In the limit-,k 51 the solution:(4.3) feduges to
u(y) » 2 sechz[k(Y%Yé)] +1;2’: » >. o f',“' : (4.6)'

which is the soliton solution of the KdV equatidn. We fufther note in

this limit
T = ro, ‘r3 = 3/a'—’"2r1 » o S .
_ o : » v ' ' : (4.7)
Ky = ar12/2 - r;, - ky =r;2/2 - ar;3/3.

These relatibns are easily derived by matching powers of u >in

(u-ri)2{(rs-u) with those in the RHS polynomial of_(472);

4.2 The phase space of the reduced KdV equation
In order to investigate the phase space of equation (4.4), within
which the solutions (4,3) and (4.6) prevail, we represent equation

(4.4) as a three-dimensional system of first order eqdations:

uY = ul

Uiy = U , a ' (4.8)

i}

Uzy (1 - au)ui/b.:

Cleafly, the ;omélgte set va fixed poipts (uz, u1s, uzg),éf this
system is the entire u-axis in the phase space spanned by u, ui, u:.
Moreover, it 1is trivial to verify tﬁat the system (4.8) linearized
about any of these fixed points has at least one eigenvalue equal to -
zero (all three -eigenvalues are zero for aus=1i; fhe fixed points
. become degénerate.' This means that the problem of\degenerate fixed
points for the (unreduced) KdV equation as noted by Birnir [48]

carries over to the reduced version (4.4) or (4.8) respectively.
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The situation changes, however, with -the two-dimensional systeém

arising from (4.1) ihtegrated once mere,.-

]

U.y u1

' uiy = (ki o+ u';’aﬁz/z)/b . : . 'f-<4{9je
Its fixed points (usk Uig) . in u-uy epace are

Ws =0, W= (1 211_¥ 2ak:1)/a S a0y
with eigenvalues

A= /0 - an)/b) = vl L 2B/

Depending on the»vintegration .constant kK1, three topologically
' dis{inct cases are possible for the phase portrait:
- case 1t ki < -1/2a. - _ - (4.12)

(4.10) shows thet there are no real zeros for us. and thus no

fixed points for the system (4.9); see Figure 2a).

case 2: ki > -1/2a. | (4.13)

(4.10) and (4.11) produce a saddle at (ug-,0) and a centre at
(us+,0); see Figure 2b). According to (4.10) the distance d

between them is

d = 2/[1 + 2aki]/a. ©(4.14)

case 3: ki = -1/2a. - - (4.15)

The distance d between saddle and center is-zero and so is the

eigenvalue A. This corresponds to a doubly degenerate Hamiltonian

bifurcation in Greenspan's and Holmes' [28] termihology. The

position of this degenerate fixed point is 1/a; see Figure 2c).
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The phase diagra@_féf,fhé originéifé—dimenSionai_sttem (4.8)vqahlnpw
easily 'Eé coﬁstfugted,_ >>Addl'th¢ ;diméhsion _:,ué;uyy tovthertﬁo-
dimensidnal phaée diagraﬁzéf the systeh>:(4.92.{llfheﬁ in;;any_seCtion
parallel.£6 ﬁhe u—gg'pléﬁé there is~égféﬁi1y1of pérabéiés>défiﬁed by
(4.1) and continﬁéusly parameterized _pj k;f | Each oﬁe of these
pafabdlas defines a surfaéév'P- parallel to the.ul(;Uy)“éKis in u4u1¥
u spacé. Every sﬁch surface cpntains é  bhaSe poftrgit topologically -
eguivalentifo 'qne'ofi £he three vboséible cases deséribed by (4.12),

(4.13), (4.15).>»The'specificainn of these three cases is:
case 1. The surface P is bounded avay from the_u—axis{>.

case 2. The surface P is penetrated by . thé"u¥axis at the saddle

and centre of the phase ﬁbrtrait contained on P. .

case 3. The surface P touches the u—axis’exactly where saddle and

cehtre of the phase pprtraitfon P merqge.

Figure 3 elucidates this geometry.

4.3 Anélytic-solutions and the phase péffrait

We briefly comment on the' three confiéurations aboye énd .qn’their
connection to the ‘analytic soluﬁiéﬁs mentidned iﬁ seq£ibn 4.1. The
vital quantity is the polynomial on the RHS of'(4.2) with roots '_rz,

>, ;.

case 1: The polynomial has one real and two complex conjugate.

roots.
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A'é§§g_g: " The three roots are rgai,-which bbfrespohds tq'the.éﬁoidai"
and soliton solutibns.}iﬂ-lt‘fis’ éléaf ”fhat “the cnoidal
solutions (4.3) definei'thé ‘faﬁily of _élosed orsits,
.ccncenfricvtd éhe'dentefi _(ué+;0) andv parameterized by
the elliptic modulus k- (see (4.5)), whereas the
hémoclinic orbit conﬁeétéd to thev séddle (uSQ,O) .-apdb
enclosing the céncentfic orbits provides fhe soliton

solution (4.6).

case 3:  The three real roots coalesce at u=1/a. Centre and saddle

meet there.

4.3 Antisoliton solutions

Following ﬁanoranjan et.al. [55]' ‘we refer to the solutions
qprresponding to the stable _aﬁd unstable .parts of the ihvariant
manifoldé opposite to the homoclinic orbit as'antisoliton solutions.
Assuming the»homoclinic orbit to the right of the saddle as in section

4.1, the condition for antiscliton solutions reads'
u(y) < r: . | | (4.16)

Solving equation (4.1)- as in section 4.1, but under the condiﬁion

(4.16) énd use of [64], p.68, #231.00, gives the solution

u(y) = - A sn-2[A(y-yo)] + ri | (4.17)
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‘with A, A and k as in (4.5). It reduces in the limit ri=rj or k=1, .

respectiyely,;to:thé antisoliton s¢iutioﬁ'
" u(y) = - A cosech?[AM(y-yo)] + ri , ,' o O (4a8) B

or a double pole at y=y.. '_Antisglitons;are of interest.as‘they ‘

interact strongly with solitons under perturbation.



c)

Figure 2. Phase portrait of the system (4.9). Cases:

(a) k1'< -1/2a, (b) k1 > -1/2a, :(cj ki = -1/2a



b)

Figufe 3. (a) -A family of periodic orbits -on a éarabolically curved
invariant surface ‘in the phase space -. of system :(4.8) 'enélosed' by a
homoclinic orbit. (b) Set of homoclinic orbits in the phase space of
systém (4.8). | | | |
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5. Waye solutions of the.HKdV equation and'their‘geometry :
Our methodw of analysis of.-these'isolutions;Tis.sinjlar_toﬂthat ofh -
section 4. It turns out that in’ the phase Iportrait of -the'reduced )
MKdV eduation permlts con51derable more varlety than the one of theh
KdV_equation. This variety is controlled by the coeff1c1ents 'of the
HKdV'equation and_manifests.itaelf>in the geometry}of fiued points and
sadole connections. Henoev we plaeer more'emphasis on-the homoclinic

and. heteroolinic saddle'iconnections corresponding to soiitons and:
shook waves. This uay the differenoe“ between the"different phase

‘portralts p0551b1e ‘and thelr dependence on the MKAV coefficients is
| empha51zed The 51m11ar1ty of the reduced HKdV equatlon to the
.Dufflng osc1llator with weak feedback control, as studied by ngglns
_ and Holmes [65], is worth mentioning, as the unperturbed system of
their oecillator .can be <considered a special case of the following

analysis, A comparison to the study by Wiggina and Holmes is
presented in eeotion 5.7;,

5.1 Saddle connections

‘As in the case ~of the KdV equation we begin with the equation (3.9).

We set a=8=0 and m=2 and obtain the'equation;
u+aud/3 +buyy =k, ' _ N o (5.1)

Multiplying it by uy, integrating and regrouping terms, leads to =~

uy = ¢s{-ut- 6u2/a + 12kju/a + 12kg/a]v(a/6b)“_\ - (5.2)

v[(u-ri) (rz-u) (r;-u)(rs-u)]v(a/éb),
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with the convention ri<r;<rs<rq. We obtain real solutions u . such
that
ri ¢u<ry<rs <ura. for a, b<0. - - (5.2")

By adjusting fhe.integration cbnstant"kg wé Céh ébtain ri=rj which )
will show up in the space spahned bj uy  and | u as a figure eight
phase portfait,» i.e._ twa 'homoclinid loopé cqnﬁeétedvtd one -saddle.

' Figure 4a illusfrates this céée for»varioﬁs valués of k;. The role of
tﬁis iniegfation cohstant,wiil be sfudied in detéilvinvsectiqns‘sfé
~and 5;7.> Wé'wiilvabbreviate-this figure eightjcasé as ka)._
Alternativelf, we can éhange the signs in thev roots of (5.2) such -

that

= y[us+ 6uz/a - 12k;u/a - lzkg/a]i(;a/éb) . (5.3)

o
<
|

i

¢[(u-r1) (u-rz) (r3-u)(ra-u)]v(-a/6b).
Now, real solutions are obtainedifor
r{ <r, <u rs <rsg with a <0 < b. : C(5.2Y)

Again by adjusting> ‘kz so that ri=r; (or r3=ri; resp.) we obtain
in uy-u space twoAsaddles'and one homoclinic 6rbit.~ This geometry,
which we abbreviate as (25)) is shown in Figures 4b forAvarious values
of ki. |

The two cases described above are the only ones exhibiting saddle

" connections. We study the case (£8) shown in Figure 4a first.

'5.1.1 The figure eight (fB) phase portrait
Applying the method of quadratures to (5.2) gives an implicit

representation of the solution u(y)::
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j du/v/[-ut- 6uz/a + 12k;u/a + 12k;/a]l
u

n

/a/(6D)] (y-Yo)

-
(5.4)

du//[(u-r1) (r-w) (ra-w)(ra-w)]..
. .
In order to find the solution relating to the left homoclinic orbit
we note the condition for this solution u with respect td'the roots
ry, rz, rs, rs to be

r1'\<u<rz=r3<r4 (5.5,)

It is clear that r; or r3 is now identical with the saddle

position on the u-axis of the u-uy phase’ﬁlané. The.integral ih'(5.4)

now becomes

u
/1/(60)1(y-ya) = | dw//[(ura) (remw](ra=w). (5.4)
. L
The substitution v = 1/(u-r:z) (see [66], p.89,42.281) gives
v
/la/(60)] (y-ye) = | dv/4[-1 + B + cval, (5.5
=1/(r1-r2)

B = ritri-2r;, C = (rl—fg)(rg—ré)'> 0, Vv

This can be readily integrated (éee 667,

- 54



/[a/(6D)1(yYe) = {In(2/[CR(v)]+2Cv+B) - In2/ICR(Vo) 1420V B)} /4C,

R=-1+Bv+Cve, . = (5:6) -

Resubstituting ‘B, R, Vo, vV, we can SOlVe‘fOf “u and ~ébtain7after':*"’

some basic manipulatidhs:
u(y) = C/{(ri#ry)cosh((y-yo)v(Ca/6b)) +2r2} +r2.  (5.7)

The roots r; and rg- cankbe‘expregsed in terms of the coefficientsA

a, b and rs by matching .powers iof.: _ﬁr bétweenA theutwd‘['
representationé in® (5.2) and sleing'the .rééulting algebréic System'
_for r: énd rs. Although thevsystem is derdetermined, irl and 'f4

haveAthe unique soiutions
ry = -r; —¢[-(2rz2+ 6/a)], rs = -ry +/[-(2r;2+ 6/a)]. (5.8)

The derivation of the right homoclinic orbit is identical 4—'except

that the roots r. and r, are interchanged.

5.1.2 The two saddles (2s) phase>portrait
The methéd of the (2s) analysis is of course the same as for (£8). The
condition on the roots and solution for the‘homoclinié orbit connected

. to the left saddle (see figure 4b) is now
ri =ro <ur; <ry, o (5.9)

with fl or r; being the saddle position on the u-axis in,fhe u-uy
diagram. Using as 'starting point equation (5.3) and following the
analysis of (£8) we obtain as (2s)-counterpart to the (£8)-solution -

(5.7),

55



u(y)

C/{(r1#r3)cosh((y-yo) /[-Ca/(6b)]) + 2ri} +ri,  (5.10)
- =v.’(r'a‘bl‘i)(1'4_‘1“1»)'_> 0, » o -
ry = -r; ~/[~(2r:2+ 6/2)]; rs = 1 +/[-(2ri2+ 6/0)]. . (5.11) °
The replacemenﬁs o ’evr4, “r; » r» give us the'soluticn for the

~ homoclinic orbit connected to the right saddle.

5.2 Homoplinic.orbits (£8) and (2s) combined
By substituting the roots - (5.8) and"s.ll). into the correéponding
solutions (5.7) and (5.10), we can express,.the homoclinic orbit

solutions of (£f8) and (2s) in a combined form% -

u(y) = C/{A co;h(E(y—yO)) f>2rs} t rg,

(5.12)
A=A =vi/[—2(r52¥3/a)]. C = -6(rg2+l/a),
E = E, = #/[-a/b(rs2+1/a)], ’
rs = position of saddle on u-axis.
£8): © a,b< 0, 0<re < -1/a ,
A-: left loop, A.: right loop.
(28): a<0<b, -1/a<rsz < -3/a,
A-: loop on left saddle , ~ A.: loop on'right saddle ;
rs negative ry positive
5.3 Heteroclinic orbits and other limit,céses

We first look at the Iimiting case rs = zv/[-1/a). .. It is easy to see
that .for '(fB). either the right (+) or left (-) loop shrinks to a

point. The "surviving" loop, however, is still giVen by sclution
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(5.12). For;(ZS)'the.idop‘on the right (+) or 1e£t (—)'sadd1e shrinks

' ' £0 a Point.“' o L e o | R
Tﬁe ﬁéiérociinic iiﬁit fdr:(zé)iapbeéf$ v§hén7:vrs'?} £Jf—3/a];‘fThé,“":
_twq_saddlés _ati u = +J[?3/a] ,énd'»ﬁi= f{[43/é] are cpﬂpected;by twé
hetgroclinic:orbits (seé figure'Sb)}n'Symmefry to u- aﬁd:vuy—éxis and
elliptic fixed point in the>,ofigih is evident. Taking = this
hetero;linic-iimit -of the above solution (5.12) giVés'Voﬁly the two
fixed point sci@tions u = xv[-3/a] jcorﬁesponding to fhe two séadleé. v
To aetermine the solutions cofrespdnding to the .twoiheteroclinié "
orbits; we note that the"conditith'for these solutions u and the

roots of the polynomial in (5.3) are k1=0 due to symmetry and - :
=v[-3/a] =ri =12 <u@y) < ry = ry = +¢v[-3/a]. = (5.13)

These conditions reduce (5.3) to

u
t/[-a/(6D)] (y-Yo) = j'du/(rs2-u2), | . (5.14)
_ _ X
| with-the solution
u(y) = zv[-3/a] tanh(z(y-yo)/v[2b]). . (5.15)

5.4 Pefiodic solutiqns

The derivation of the periodic soiutions is the«"same as for the
homoclinic or .heteroclinic sqlution;, except that <the conditions on
.fhe_solutions -and polynomial roots lead to eiljptic integrals. We

therefore just 1list these conditions and the corresponding elliptic

57



integrals, referrihg to-v[64]; ;and then 7pfesent the :SOIﬁtibnS'in
combined forms. |

Conditions between roots r;, rz;irg, rg, and solutions u:

(£8) - inside right loop:

ri<ry<r;<uxrsg [64], p.120, #256.

(£8) —'insiae ieft loop:

ri <u<dry <rs<ry .  [64], p.103, #252.

(£8) - outside loops:

ry <u<re, Tz, rs complex conj., [64], p.133, #259.

(2s) - inside loop on right saddle:

ri <r;<u<rs<r, [64], p.116, #255.

(2s) - inside loop on left saddle:

ri <rp <u«rs <rg, [64], p.112, #254.

(25) - between heteroclinic saddle connections:

ri {ry U «r3 < rsg, ri=rai, ro=-ri, [64], p.116, #255.

Periodic solutions inside the homoclinic loops:
u(y) = (ra=re)/(@:2sn2{Qs(y-ys),k} = 1) + ra, (5.16)
Q. = v[(ra=rz)(rs~r1)a/(24b)],

as?2 = (rp-re¢)/(rp-ra),

1

k2 (re=re)(ra=re)/((re=r2)(ra=rs))

ag? (ra—rd)/(ra—rc)vo_

(f8) - inside right loop:

Y= =r;, ry =°rs Y. =Tr3, Tg =Trs. ' : (5.17)
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(£8) - inside left loop:
Ty = r3, T =ry, To = rQ,»ir& =:r4f» o o :(5:18),"
(28) - inSidefioop:6h'fight‘sédd1e:'

ra = Fi1, Fy =Ty, Fec=r3, Ta=reg. . . - (5.19)

(2s) - inside loop on left saddle:

Ya = Ty, 's = Irs, - r_C =T, ra = ri. . A . A . (5'20) |

(f8) - outside loops:

u(y). =,.'(r4.B + A+ C(rﬂ\ - 1"4B))/(B + A,+.C.(A - B)), >(5.2".l)

A2 = (rg = (r2#13)/2)2 = (r27r3)?/4,
Bz'=»(r1 - (r2+r3)/2)2 — (r%—r3)2/4;>
c2 = en{(y-yo)7[akB/(6b)], Kk},
K2 = ((remri)? - (A-B)2)/(4RB).

(2s) - between heteroclinic saddlé connections:
u(y) = rasn{(y-yo)rav[-a/(6b)], k}, (5.22)

k = rs/ry, - rs2+rg?=-l/a.

Here sn, cn, dn are Jacobi's elliptic functions and k 1is their

modulus.

5.5 Antisoliton solutions

Clearly, the HKdV system cannot display antisolitoﬁé'in (f8) mode but
in (2s) and heteroclinic mode only. | Referring +to section 5.2, £he,'
(25) antisolitons are describéd . by thé solutidni (5.12) under the

- conditions:

A.: antisoliton u(y) on left saddle, r. negative,

-0 < u(ze) < r; =r: = r. < rs < r; < u(ys) < e
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Af: antisoliton u(y) on right saddle, rg poéitivé;

»"‘ﬁ) < u(yO) < 1"1- < fg < r3 >_=' rs = r;; < u(im) { o,
Note that these éntisoliﬁohév“are-nati'simélyvdoub1e>pblés aé”f§; £hé”'
Kdv sstem. In fact,ﬂthey.are'pairs of'simple,pdles’at'>'
Yp = Yo £ cosh’l(-2r3/Aﬁ)/E+ ) ' ' _ o (5.23)

as can be seen from (5.12). The antisolitons relating to the

heteroclinic mode are given by
u(y) = e/[-3/a] coth(-e(y-yo)/v[2b]) , - - (5.24)
with the conditions

e=1: antisoliton u(y).going from left to right saddle,

u(—m) < —/[f3/a] =r; =r; < Iy =Ty = v[-3/a] klu(m),

g=-1: antisolitbn.u(y) going from right to’left saddle,

w(e) < -v[-3/a] =11 =r: < r3z =r; = ¢[~3/a] < u(-o).
These antisolitons represent shockwaves combined with simple poles at

Y=Yo-

5.6 The phase space of the reduced MKAV equaﬁion
It is evident that the solutions derived abo?e are valid for the

unperturbed and reduced MKdV equation
‘uy + a uluy + b uyyy = O. o : _ (5.25)

ARs in the caée_of the KdV equation, we are interested in the way these

solutions are embedded in the 3-dimensional phase épace of the system
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Uiy = uz e o - (5.26)

=
o
I

(1 + au?)u;/b.

Thié is of course the reduced anV_equaiipn (5?25) representedlias a
first order system._' Since fhis system exhibits fhe same'prdbléms as
its corresponding system for>the_Kdv eéhation; namely only degeherate
fixed points occupying the entife ‘u-axis, we again reduqé to a

two-dimensional system:.

uy ul

(5.27)

ury = (- k1 + u + au3/3)/b

This system is equivalent to equatidn (5.1) and has the three fixed
points

(0,r1), (0,rz), (O,r3). (5.28)
ri < s ( rs are the robts of
~k; +u+aud/3 =o0. - (5.29)

Therefore, for a > 0, there exists only one real fixed point and we
~ investigate only the cases for a < 0, consistent with our analysis of -

saddle connections ' in sections 5.1 and 5.2. We distinguish the three

" different cases:

" case 1@ k1?2 > -4/9a.

One real fixed point exists. Dependihg on the signs of k; and b, it

is either (0,r:) or (O,r:) of varying type:

ks, b < 0: (0,r3) = center,

ki, b > 0: (0,r3)

saddle, -

k; < 0 < b: (0,ry) = saddle,
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k: > 0> bi (0O,r;) = center.

-case 2:  ki2 < —4/%a.
Thrée real fixed points exist. Théir:{yPe’dépénds oh'éign(b)}

b < 0 (O,rl),_(O,rs) 'saddlef:1

'centerf :(O,fz)

b > 0: (0,ri), (0,rs) = saddle; (0,r;) = center.

case 3: “ k2 = —4/9a.

Two real fixed points exist. Their tYpe depends on sién(b);

ki, b <0: (0,r:), (0,r3) éoalesce;» (0,r3) = center;

ki, b >0 (O,r:), (0,r2) coalesce; (0)r3) = saddle;
ki < 0 < b: (0,r3), (0,r2) coalesce; (0,ri) = saddle; -
= cénter.

ki > 0> b: (0,r3), (0,r;) coalesce; (0,ry)

>To_construct the phase space fér the 3-dimensional system (5.26) we
ada - as beforev— the_dimension - u2=uyy to the phase diagram of the
"~ 2-dimensional system (5.27). The situation is similar to the KdV case
except that the rinvariént surfaces P vcohtaining the 2-dimensional.
phaserportraits aré defined:by (5.1). Thé correspohdéncé between the

three described cases, their geometry in 3-dimensional phase space and

the calculated saddle connections is now easily established.

case 1: P is penetrated by the u-axis only once. The penetration

point is a centér for .b < 0 -and a saddle for b > O.

case 2: P is.peneﬁfated three times by the u-axis. The case b<o0
corresponds to the (f8)-related .solutions contained on P and the
penetraiion points are the two ceﬁters and the sédéle betweéﬁ thém.
The case b > 0 corresponds to thev(25)—re1ated éolutioné and the

penetration points are the two saddles and the center between them.
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‘As already noted, fhié degenerates for k:=0 ft@ Mthe_heterocliﬁic

. solutionf(5.15).'v,-,

case 3: _>qudér case between cases 1;and,2, lTwo:pénefratibh poin{s
' merge into one as the u-axis pésses'thfbugh Aa-local extrémum of P

defined by (5.1). See also section 5.3.

The described geometry is illustrated in figureé 5 and 6 as-well as in

figure 4.

5.7 Comﬁarisén with the Duffing Prdblem andjfhe_Forced.Pendulum

The main difference between the’systémé under considérafion here and
the Duffing system as well as the peﬁdulum:is shown by the role of the
: integration constant k:. .Sinée the saddlé pbsiﬁioh re must be on.the
u-axis, fhat is, it has the coordinates (u=rs, uy=0, uyy=0), it can be
_ seen from eq. (5.1) or (5.29) to be a function 6n1y of a and, more

important, of ki,
rs +ared/3 =k, S | (5.30)

k; therefore cdntrols the shape of (£8) or (2s) in the phase portrait
whereés K determiﬁés the solution witﬁin'if.v Another interprétation
of the role of ky 'would be the parametérizatién qf the set of
invariant two dimensionai_Subéyéﬁemé, inté which the phase space is
foliated. Such ah interpretaﬁion can be inferred from section 5.6 and
ié described in conﬁection with the Kdv gquation.

Setting r;=k;=0 leéds ih the - reduced and, uhpegturbed u-uy phése
diagram to symmetry with respect to 5oth u- énd-u;—axis. In (£8) mede
this of coursé reduces the broblem ‘to the..Duffing system studied

extensively and in deéetail by Greenspan - and Holmes [28] and
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Guckenheimér‘and'ﬁdlmes [29]. >Iﬁ~~(255 -mode the'isimilarity to the

forced pendﬁlum‘? (see .e,g;  _qﬁékehhéi@er fand .Hqimes).;i$' 6niy:
' Superficiéi; _? in- the‘ pen&uium*fpréblem‘ the'_two fséddiegizcéh " be.
‘identified, which means an .inheltf_ent_ p’é_r:iod_i'city.in-the phase diagram.
In 6tﬁer Qérés, there is a éouﬁﬁably-infinite 'nuﬁbgp:of  $éddle5 énd
pairs of heteréclinic‘orbits cOnﬁéétingvfﬁemu “On the other hana the -
symmetric MKdV (2s) mode>has oniy two sadd1e$ iand the '"outer"'hélQeé
of their invariant »manifoldst_are ﬁnbbunded.' This difference aiso‘

»manifeSts'itself in the hetefoclinic_orbit solutions of the type
u(t) = #2 arctan(sinh t), = = :' (5.31)

asvgiven by Guckenheimer and Hoimes(' cleafly different f{from solu£ion>
»(5.15). Any studf of a system rélating to fhe>anV (2s) modé has not
been found in the.literature so far. |

Wiggiﬂs and Holmes [65] study the Duffing.ioscillatorb with weak
feedback ¢ontrol, and without this weak feedbéck perturﬁation their
system 1is equivalent to tﬁe .(unpefturbed)»: (£8) mode. Their
perfurbation, however, rélaﬁes vto. fluctuatioﬁs' of tﬁe integration |
constant k;. lMoreover, both the Duffiﬁg system and the pendulum are
genuinely two-dimensional systems, whereas the reduced MKdV system is
three—dimensiénal, and although its Helnikov analysis can bevfeducedb.
to two dimensions, the results of this analysié were justified»by
reproducing them numerically in the .full three—-dimensional phase

space.
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ki ==(141/3a)/a

ki N

u ;\/ S Ky = (1';*];/1_33),./3
b) - f§f~\\‘-;\\ . ; :

Figure 4. (a) Figure eight phaée portrait ~iﬁ'u-ﬁy—k1 space. The

cubic uyy is given by (5.1) and yields the set of fixed point;. The

figure eight is symmetric ‘for k1=0 and degenerate; inio one loap for

k1;¢(1+1/(3a))/a. (b) hhalogous iliustration-to (4a), but for the two

. saddles phase portrait. o | - .
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Figure 5. (a) Periodic'orbits in u—uy—uyy_phase'space enclosed by a
pair of homoclinic orbits for (£8) mode. (b) Set of homoclihic orbits
for (£8) mode in u-uy-uyy phase space.
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Figure 6. (a) Periodic orbits in u-uy-uyy phasé space enclosed by a
homoclinic orbit for (2s) mode. (b) Set of homoclinic orbits fOf'(ZS)
mode in u-uy-uyy phase space. Note the pair of heteroclinic orbits '

representing the limit case.
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6. Perturbations and the Melnikov method

Before calculating. the _ne1nikoy integrais :forivthesz—dimensional o
systems of first order ODEs corresponding to the ‘KdV: and HRdV
eQuation, an investigation of the perﬁurbed phase sp&:e and a short

review of the Melnikov- theory is needed. For a detailed introduction -

to the Melnikov method, see [28], [29] and [37].;

6;1 Pﬁase spaée of the reduced (M)KdV equation under;;erturbations
Now we include_the dissipation .term .and the  periodic perturbatiqn v
béféré ninvestigafing the phase space of the feduuxi Kdv énd MK&V
equatioh. Ve ﬁhefefore express equation (3;8) with  c=1 1 as Aé three-

dimensional first order system:

Uy = U1
Wy = wr - o - (6.1)

w2y = (1 + aur)ui/b - & uz/b - a cos(wy)/b ,

which repfesent KdV for m=1 and MKAV for m=2.. In particular, we
examine the effect of perturbations on the invariant suwrfaces P. ‘The
set of P is now defined by equation (3.9) and,»ést)pposed_to the
unperturbed case, each surfaée'of P has a slope 6f vah;e-'s - in the
u;-direction, induced by the dissipatioﬁ term &uy. The periodic
forcing term induces a y-periodic oscillation’of the set of P with
frequency « and amplitude o/b along the ﬁyyfaxis. It is important
to note that, despite these perturbations, a. point ir1‘_phase space
representing the reducéd KdV or HKdV syétem feﬁains én its particular
surface P for all times. This indicates that the phenomenon of

Arnold diffusion does not happen'in such systems;
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6.2  Outline of Melnikov's theory .
 First, we - look at the hombclihic»orbité;‘”Considér'a“EWd—dimehsionAI

system like

£1(W,v) + € gi(u,v,t)

Uz = ' ’ )
» (6.2)
éi(u;VI_t) = gi(u,V:t'*'T): | i=1'2 - - ' . (6.3)

where £ 1is the perturbation parameter»and- T is the period. ‘The
unperturbed systém (e=0) is assumed to be integréble and has analytic

solutions wu;, 'vi, Uk, V. in’the u-v plane they défine a homociinic
orbit ql(t?to)=(u1(t-to),vl(t-té)) connéctea to a saddle s and a
family of conéentrié_ periodic orbits  qu(t-te)=(uy (t=to),vi(t=ts)),
0<k<1, enclosed by qi, such that qysgq; for k1, as showﬁ in Figﬁre
"1b. Introducin§ a small' € to the unperturbed Syétem wi11.¢au$e q:
o split into a stable and unstable invariant_manifold; Ws(t) and
Wu(t), respectively. TO'firsﬁ order in ‘€ the distance A between
Ws(t) and Wu(t), measured perpeﬁdicular'to q: and at time t., can

‘be expressed as
B(to) = € M(te)/1£(qi(0)) 1 + OCe2) . - (6.4)
Here, M(t.) 1s the Melnikov integral definéd as

o

: .
M(te) = | {f:(q: (tte))g(qu(t-te), t) — fal(qu(t-to))g(qu(t-to), 1)}dt

el | : . (6.5)

and f(q:(0))! is the modulus of the vector (£:(q:(0)),£2(q:(0)))-
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Under the periodicity stated in (6.3), the distance A(to) defined in.
(6.4) implies the'following ;iheorem'with oorollery; -Eor proofs'eee

-tZB] and [29].;-“

Theorem 6.1. If M(t,) has simple Zeros - and'»maxima “and foinime of
order one, - then, for €50 sufficiently small, Wé(t;)"and Wu(tey)
intersect fransversely.- If M(t,) remains bounded away from zero;r

then Ws(to) A Wa(to) = 0.

- Corollary 6.2, Aesume the perturbation‘ (gi,gg) in (6.2) depends on
a parameter p € R: ) '
g: = gi(u,v,t;p), i=1,2 . ', N _ - (8.6)
,Supoose M(to, p) has a quadratic'zero; o
M(z, pp) = (dM/dto) (T, mp) = 0, e
o C (6.7)
(d2n/de?)(z, po) # O, (di/dp) (T, pp) # O . -
Then s = pp + O(g) is a bifurcation value for whicfxquadratic
homoclinic -tangencies occur, 1i.ew, there are points of tangencies

between Ws(t,) and Wu(ty) for to, = t.

What the theorem and its corollary basically say “is that since
M(to) approXimates 6{ts) up to a factor, a vanishing M(t,) meane
a vanishing  A(to). Therefore  We(ts) and  Wu(te) ﬂ@f@iﬁéﬁl}iﬁiﬁﬁ,

Hor Valmes of and g oot €5 €, omd My 4
I e U .

In the same way as the homoclinic orbit '~ 'g: - splits under

perturbations, the periodic orbits qkA- break ;ﬁp“ and  may become

quasiperiodic with periods Ty .and T such that
T, = pT ;  p = irrational number ";,'ﬂ - (6.8)
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or may become multiply periodic
nTk_= mT;  -m,n = coprime integers = - - (6.9) .

where Ty is the'périod of the ﬁﬁperturﬁed orbiﬁ. The-gritérioh as -
to whethef periodic orbits accordiné to the resonance 'conditioh'(6.9)>
.occur or whethef there arevquasiperiodic ‘orbits is_ detérmined by a
'theoreﬁ and cérollary sihilér to the dnes_above; 'They- are based on

the subharmonic Melnikov function:

mT

- N
H2/n(te)= | [f1(Qk(t‘to))gz(qk(tfto),t)-fz(Qk(t'to))91(qk(t-to),t)]dt

o . | . : | (6.10)

Theorem 6.3. -If Mm»/n(t,) has simple zeros and maxima and minima
of order one and di/dh > 0, £hen, for  g(n) >» e >0, the system
(6.2) has a subharmonic orbit of period nTy=mT. (h = Hamiltonian

of unperturbed system)

Remark. It can be shown that, for periodic orbits with period Ty of

Hamiltonian systems whose Hamiltonian is
h(u,v) = - v2/2 + (kiu + u2/2 + a ui/j)/b ,

the requiremént dTyx/dh > 0 is met away from their centres.

Corollary 6.4. Assume the perturbation (g:,9:) in (6.2) depends

cn a paraméter "R ER:
g: =-g;(u,v,t;p), i=1,2 .

Suppose M=/n(t,,p) has a quadratic zero:
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Me/n(z,pp) = dME/n/dto(z, pp) =.0 o
- S L D S (6.11)
d2Mn/n/dt2(T, pp) # 0, - dlm/n/dp(z,py) 7 0 .

Then ps = py + O(g) Ais a "bifurcation value ,at‘whi;h_saddle—nodg,

bifurcations occur.

VFor "proofs we refer again to [28]-_and. [29]}." Theorem 6.3iis a
criterion for the existence of resonance under condition_-(ﬁ.é) and
corollary 6.4 ‘states the conditions_for transition into resonance by

saddle-node bifurcations.

6.3 ‘The Melnikov integrél of the redﬁéed and perturbed Kdv equ&tion
. We begin 'by expressing. equation (3.9) with = nm=l as  -a two-
dimensional first order system of ODEs:

Uy = U
(6.12)

Uiy (auwz/2+u+tky)/b-38u -« sin(uwy)/w ,

after rescalihg 5 5 8/b, «.» a/b. From hereon we will only work with
this rescaled equation. (6.12) is the»system: (4.9) with perturbation

added, and comparison with the_SyStem.(6.2) therefore shows

£

u: Eg1=ol
(6.13)

£

(a u2/2 + u + k1)/b , €92 = - 8 u: - « sin(uwy)/w.

Intfoducing one more rescaling, €g; » gz, and observing that :y plafs.
the role.of time t, the homoclinic Melnikov.integral becomes
o ) - |
n(ye) = [ uwigz ay = [ uy 16wy ~(e/wsin(up)] dy

-0 -0
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o EEE s I

o

= -8 J uygvdy +4a J»u;c§$(Qy)_dy ;saﬁ éih(@y)/m ]
< ,-- v» : : . . -
-0 ' -0 '
:

= -5 | -2 sech?(M(y-ye)) tamh(A(y-ye))]2dy

~o | |

@ , :
+ dA J_Sech2(k(y~yo)) cos(uwy) dy . | ' - (6.14)
Tl

Here we have integrated by parts and substitutéd the scliton solution
(4.6). After shifting y»y+y., and applying some basic trigonometric
identities the . two integrals can be found in Gradshteyn and Ryzhik

[66] (p.96,#2.416.1; D.505,#3.982.1):

H(yo) = 16 8MNA2/15 - anw cos(6yo)/(A2sinh(mw/(2N)) . (6.15)

For the subharmonic Melnikov integral'we obtain, in similar fashion,

mT - » mT
M2/n(yo) = | £1g2 dy = = @ [ en?(y) cos(u(ytye)) dy

0 0

mT
. _
- 48M7AZ | snZ(hy) cn?(Ay) dnZ(Ay). dy
, .
== o I, - 48M2A2 14 .. (6.16)
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We have substituted the cnoidal >havei Solutiﬁnf (4.3)’fhefé,vm:The )

integrali I, denoting the periodic part of ?ﬁm/n; is'eQélpaﬁéd'ﬁsiﬁg 3T5;gf

a Fourier expansion of dn2 =.1—k5fk2cn5,~.aé~éiveﬁ"in»Gfeehhillffé?ii.v'M

(p.286,449):

mT
I, = J [(k2-1+dn2 (Ay) /k?] [cos(my)éos(wyo)Fsin(wy)sin(wyo)]dy
X |

mT

= | Dk -14EQR) /K(K)+R2/K2 (). F(Joos (Imhy /K(K)) /sinh(Fnk(k' ) /RCK))] .

[cos(uy)cos(uyo) - sin(ay)sin(uys)1/k? dy . (6.17) .

Here K, E ‘are the first and second elliptic integrals ahdﬂ.k‘?’=31; -
k2. Due to orthogonality of circular functions the only nonzero term

in the integral (6.17) is I SRR

mT
‘jnzcos(uyO)/(K2(kjkésinh(jﬁx(k'))K(k)) jcos(jﬁxy/x(k))cos(gy)'dy.g N

o (6.18)
iff the orthogonality condition
JIA/K(K) = u | - , (6.19) -

applies. Otherwise all terms vanish. From (6.19) and the resonance . = -

condition
T = nT.  with T = 2n/w, Ti = 2K(K)/A  (6.20)
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we find
jnx/K(k) ='u»= mrA/nK (k) qf‘j = m/n. .,' | (5.21).
In other wﬁrds;‘fof tﬁe}iﬁdices j_to'be integer we havé-the cbnditiqn_
n=1 . | _‘ - o | - (6.22)
I, therefore céllapses to

I, = wn cos(wyo)/(A2k2sinh(uK(k')/A)) . . (6.23) .

The dissipétion part Ig can be similarly evaluated using [66]'

(p.630,#5.134.3). The Melnikov integral then becomes

Ma(ye) = Rawn cos(uye)/(A2k2sinh(uK(k')/A)) +

' 16A?55'[(1—k2)(ké—2)2x(k) + (k4-k2+1)E(kK)]/(15k4). (6;24)
Note that k ié,a %ﬁnction_of. ﬁ such that
k(m > 9} )1 ) R | (6.25)
and the homoclinic limit is correctly reached for k » 1:

Mo(yo) » N(yo). . S (6.26)

6.4 Tangencies and»quadratic zeroé

From (6.14) it is clear that the homoclinié Melnikov function M{y.,)
has quadratic =zeros for dos(myo) =1, Therefore, by corollary 6.2;
the invariant manifolds We¢ and Wuv must have féngency points, and

we define the tangency ratio R(w) for e=c; and éiéc:
R(w) = ac/8; = 16AA3Isinh(nw/2A)/(15nw) . (6.27)
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This ratio or the perturbation freqﬁency;__m_:_piéyﬂ't@é role of the
parameter p in’corollafy 6.2;.wﬁichb can’nOW-'Eé'éxﬁressed in thé

form:

-a/s >.R(m) <¥} CWs A WU # O'(trahsvefse-intersection)

a/é

R(w) . <=> Ws AWug#FO (tangency) = . :. S >(6.28)

a/6 < R(w) <=> W AW:=0.

Using (4.5) and (4.7), A and A can be feplaced in’(e.z7) and R(w)
can be rewritten in terms of the coefficients a, b . and the saddlei

poSition rs (=r: =r;) on the u-axis:
R(w) = 2bBSsinh(nu/B)/5amw , B = ¢[(1 - ars)/b] . - (6.29)
The limit cases are

R(w=0) = 2bB4/5a -, .

]
8

rs = 1/a (saddie and center mefge)i R(w#0)

R(w=0) (6.30)

1]
o

Figﬁres 7a and 7b show the bifﬁrcation'curves of R versus w«w and
saddle position r; respectively.
The critical ratio o./6. at which saddle—node bifurcations occur

~ is determined from the subharmonic Helnikov:functionk(6.24)}

Re(w) =_16AA3[2(1-k?)(k?—Z)K(k)+(k2+1)E(k)]sinh(mK(k')/A)/(lSnme).‘
| ’ | S (6.31)
This can also be fewritten in terms of a, b and <m[‘ We find through

(4.5) and the resonance condition (6.20),

A = 12A2k?b/a , A= wK(K)/m - (6.322)
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Rm(w) 64w4K5(k)b [(1 k2 )(k2 2)

+ (k4—k“+1)E(k)] 51nh(an(k )/K(k))/(SnbmSa) U633y
Corollary 6.4 can now be exﬁreééed as’

/8 > Ra(w) = resonance

a/é 'Rm(m) =  saddle<node bifufcation o : (6734)  

a/8 < Rn(w) <=> quasiperiodicity.
Since the functional dependence of ko on "m- is réthervcomplicated
due to the dependehce of A onl k 'through the roots- rl;'rzg~r3-——
as can be seen frqm (6.32) and (4,5)»7—— the critical ratio a./8. at
which bifurcations - occur canndt ~be determined by straightforwafd
application of (6.33).' To evaluate R» we first eliminate A from (4.5)
"and the resonance condition (6.32) and obtain
- v[a(rs—r1)/(3b)]1 = wK(k)/(m), .
- (6.34a)
= (rg=rz)/(rs=ri). '
' This relation shows the dependence of the elliptic modulus k or the -
roots r:, rz, r; as given by (4.2) on the order of rescnance m and the
perturbatioh frequency w. From"(4.2) we can further derive by

~ matching powers
3/a = ritratrs, -6k:/a = rirztroratrar;, ék:/a = rirors. (6.34Db)

The integration constant k; can be determined from (4.1) by

substituting a given saddle position (rs,0,0) on the u-axis:
ki = ars2/2 - rs. -  (6.34c)

The integration constant k: varies within the set of periodic
sclutions (4.3) and therefore  cannot be determined without knowing
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which'solulion becomes.resonanﬁ for a:?givenx: w -and ”m.' fhéliﬁfeé
determining equaﬁlonS» for rf}l.f;;wfﬁv'a?e fnefefore (6.34a)'and the_
first two equalions of (6 34b), wh1ch can be used to express two of ;
the roots 1n terms of the thlrd one and substltute them into (6 34a),
which can nOW-be solved numerlcally for k ThlS modulus S0 obtalned_'
can therefore be' used 'to_ evaluate Re’ via ;(6.32) assuming -the
coeffidients a, b, - saddle’ position -_rs; resonance order' m and .
perturbatlon'frequency w_given. vIllustrationszof Ro are prov1ded by

Figures 7c and7d.

6.5 The MNelnikov integral of the reduced and 'perturbed HKdV :
equation | . |
As ln the KdV case in seotion 6;3, we begin by expressing equation
(3!9) - this time with m=2 - as a fwo—dimensionallfirst order system
of ODEs: | | |

w o= W

’ o (6.35)
(au3/3 + u + ki)/b - 6 uy - a sin(uwy)/w , - -

u]_y

after rescaling § e's/b,.a 5> a/b. Following the procedure in section

6.3, we expressbthe Melnikov integral lNM(y.) as

© ' .o
r . r
M(ye) = -6 J uy? dy + « J u cos(wy) dy

-o . -o

1]

-8 My + oMy . . (6.38)

We first calculate M(y.) for the homoclinic orbits'by substituting
the solution (5.12) or its derivative into (6.36). The dissipaﬁion
part‘ Mr becomes now



° L
Mp = Jvuyz.dy = (AECj?jisinhZE(y-Y:)/(A cosh E(y-yo)+2rs)¢ dy.

!

o  ‘“’- - o . . ; -(6>.3v7>) .
Using the substitution x=E(y-Yo) and noting ‘evenness of the

integrand'w.r.t. x the integral reduces to the form as in Gradshteyn

and Ryzhik ([66], p.346, #3.516.4):

@
: [ ' B
Mr = 2E(AC)2J sinh?4 /(R cosh x + 2rg)? dx

[14]
= 2E(AC)3K4J sinhzx/(KA cosh g + 2Kr:)¢ dx

=_—4E(AD)2K4r(2)f(a/z)Qiz(2Krs)/(/[n]KAF(4))
- RE/[-C]Qi2(2rs/v[-C1).  (6.38)

[ is the gamma function and X 1is a technical constant determined by -

comparison of the intégral above with [66], p.346, #3.516.4: .

imaginary for (£8); rs2 < -1/a, _
o : ' (6.39)

K= ¢y[-C] = :
real for (2s); -1/a < r:2 < -3/a.
Qit, is the associated Legendre function of theisecond kind:
Qla(z) = —3/{22-i] tanh-}(l/z) -_(32?—2)/«[25—1]; | (6.40)
This reduces for imaginary argument to
Q1;(ix) = i{3v[x2+1] tan-z(l/g) - (3x2+2)/¢[x2+1]}. (6.41)
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. Therefore Hp" stays1re§1 jfor (fB)'kas well and can be>é%pressed in

terms of R, C, E and rs (see (5.12)) for (2s) and (8) as .

=
o
I
w
+
"

-E;(2rsA2//[~C] tanh-i(/th]/Zr;) + 4r,24.20/3), (6.42)

=
ts
th
o
[Es
i

~E, (2rsA?/¢[C] tan-1(-v/[C]/2r:) +‘4£92+ 2/3). (6.43)

Remark. The integfal in (6.38) can also be evaluated wiihquf the use

of special fﬁnctions. Integration byiparts éives»_- |
5 - - - o . 'mf
Jsinhx /(A goshk"+ 2r5)4 sinhx dx =-1/(3A)Jcbsh$ /(A-coshxk+ 2:;)3dx -

- N R ' -

= 8/(3A) | (w+u)/(A u?+ 4rsu + )3 du,

where the last integral is obtained usiné the evenneSs-of cosh and the
substitution u=exp(x). It can be found in [66] (p.69; #2.175.3,
#2.175.9) and it is straightforward to verify Mpss. (6.42) for  4AZ~

16rs2<0 and Mprs. (6.43) for 4A2-16r52,0.

Note that for the left loop (E-) of Mpzg::

lim  tan-1(-v[C]/2rs) = +(-)n/2 .  (6.44)

rs++(-)0

The main branch of tan~ i1 (-v[C]/2r:) is shown as a pair of solid

curves in figure 8. To eliminate the discontinuity (6.44), the branch
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situated below the main branch shoun  aS dashed line in figure 8 is
. chosen for rs > 0. ’Equiyalehtly f6r thé :ight'loop,(E+)f'
Clim o tanmi(-v[Cl/2rs) = -(M)w2. . (6.45)
rs>+(-)0 R B o -
Therefore, for ~ re <0, ;the branch below. the main branch is‘chosén;
For the périodic part M: note that.we can sub$tituté U=u-rs for u -

and shift ysytyo:

-@
: [ | | |
Ma(yo) = | U(y) cos w(ytyo) dy . o (6.46)
Using - the soiﬁtion (5412),- the .identity cos(atp) = cos @ cos p-
sin « sin p and symmetry prbpertiés of circular functions, Ma(ys)

reduces to

1]
Ma(ys) = —2C cos(wyo) J cos(uy) /(A cosh(Ey)+2rs) dy . (6;47)

0]

This integral is shown in [66] (p.505, #3.983.1) to have two distinct

evaluations:

1. 2r: >A >0 => 0 <=-l/a <rs2 => (28): .

Mazs:(ye) = iZJt—C] cos(wy:) =n sin{w/E cosh-l(zrs/éi}/{E sinh(nu/E)}.
| | (6.48) °
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2. IAL> 12rel > 0 => 0<rs2 < -l/a => (£8): .

Mitss(7) = #2/[C] cos(uyo) 7 sinh(e/E cos~(2ra/A.))/{E sinh(re/E)}.

" (6.49).

Note that, due>£o.symmetfies of thélhypgrbOIic and ciréulaf fﬁnctibns,~
the superscripts. or signs 'on.ﬂA and ,E caﬁ be omitﬁed:or pulled in
front of the RHS'in (6.48) and (6.49). Only in the argument of cos-1
in (6.49) dp the different signs. on A change ﬁﬁe'abSOIute'value of
Marg, corresponding to the tﬁov different loéps: f"According- tc.thé

convention of (5.12) we therefore distinguish two cases:
Mare-: left loop, Marg+: right loop.

As for the KdV case in seétion-6;4iwe define the tangency ratios ﬁzs
and R:s for the critical values «; -.and &c. where the Melnikov
functi&ns. have quadratic"zéroes and stéble and unstéblé manifolds

become tangent. Following the consideratioﬁs’ of 'secﬁion 6.4 the

-ratios turn out to ber

Rzes = —{2rsA2/v[-C] tanh"l(/[-C]/er) + 4rg? +_ZC/3}

E2sinh(nw/E)/(2nv/[-C] sin{w/E cosh-1(2r:/A.)}), (6.50)

Rési =‘-{2rSA?//[C] tan-1(-v[C}/2rs) + 4rgé + 2C/3}

Ezsinh(nw/E)/(2nv/[C] sinh{w/E cos-:(2r:/A:)}). (6.51)
Figures 9 and 10 show R§s+ and Rfg. plotted against ry and w.
6.6 The Melnikov integrals'in the degenerate limits

We study the Melnikov integrals of (2s) in the limits r. = v/[-1/a]

and rs'= v[—-3/a] and of (f8) in the limit r: = x/[-1/3].
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It is easy to verify that '

lim MAQSi = R lrim-" ) I’Ifngi
. Fgatv[-1/a] o rgeii[—é/a]iu , o
lim ’ ;Hp2s: = 1im. . Hpés:'
re2xv[-1/a] reoxv[-3/a]
lim RZSi = ' 1im . RZ’S.—:-
rso>+v/[~-1/a] - - ,.rgei/[fS/a]> 

(6.52)

To inQestigate the limits for-the' right loop of (£8) nptevthat by -

definitibn of_ E:: and C'\ in (5.12) we,haVe‘ E./v[C]=v[a/6b] "and

observing the continuity afgumentfin'connectioh.with (6}44):

lim  tan-1(=/[C]/2rs) -0,

restv[-1/a]

which corresponds to the main branch of tan-1, and

lin  tan-i(-v[C]/2re) = -m,

rs>-v[-1/a]

corresponding to_the first negative branch of tan-!.

these limits into (6.43) gives

lim 'n_lj)f8+ = O ’

rsa+¢[—1/a]

lim Mpre-

res-v¢[-1/a]

}{—2/3b]'4n/a‘.

(6.53)

(6.54)
Substituting
(6.55)

(6.56)

Equivalently, the limits corresponding to the left loop_aré
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lim  Mpeg- =0, - (6.57)

reov[-17a]

lim  Mprs- '?[—2/§b];gﬁ/a‘j,,' n | . (6.58)

 restv[-1/a] ) - L ﬁf B
~ For the periodic part Mars+ we obtain in a straightférward manner

~ lim - Mazss =0, o “  ' ... (6.59)

restv[-1/a]
and by asyhptotic‘analysis
lim . Masg. = 2 cos(uye) n/[6b/a] exp(w/[-2/3b]) ,

r.3-v[-1/a] . o
' : (6.60)

as well as for the left loop:;'
lim Mitg- =0, ’ (6.61)
rso»—v[-1/a]
lim Matg- = 2 cos(wye) n/[6b/a] exp(wJ[—Z/Bb]) .
reatv[-1/a] “
(6.62)
lim  Reg. = /[-1/a] 2/3b exp(uv[-3b/2]) (6.63)
rea-v[-1/a]
is determined via Moes+ (6.56) and Mzrs. '(6.60),‘whereas
lim Rigs = o | - (6.64)

rsty[~1/al

is taken on R:fz: (6.51). For the left locp the limits reverse again
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their symmetry:

© lim -~ Res- = v[-1/a] 2/3b exP(w;[—sb/zj) o f.(s.ss)--
Crewtva SRR
| lin . Reg- = o . ':~ L o -  (6.66)

res-v[~1/a]
" Besides the limits discussed we can deterhiheithe Melnikov intégrél _
Hh' for the heteroclinic solution (5.15). Y'Subétituting .it ipto
(6.36), dissipative and periodic part Mup and Mnha as well as the

tangency ratio Ry. become

L)
Mup = -3/2ab j'sechz(y//[zb]) dyl=>/[2/b] é/a , (6.67)

-0

1]

'Hgﬁ = J[—6/2ab]fcos(wyo)'j cos(wy) sech2(y/v{2b]) dy
| o
- J[-6b/a] mw cos(uyo)/sinh(rav(b/2]) , - (6.68)
R, = 2/(nbv[-3a]) sinh(mev[b/2]) . - | (6.69)

Like in the homoclinic case, the integrals are evaluated after
shifting y»y+y. and observing tfigonometric symmetries’thfough.use

of [66] (p.99 ,#2.423.12 and p.505, #3.982.1).
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6.7 Subharmonic Helniko? integrals" -
As before, we split. the ‘Melnikov inﬁegra1' into périodic7-par£

Mzm/n(yo) and dissipative part'nbm/n{
'Mm/n(yo) = a Man/n(yo) - & an/n .7' o o _:--, : ”(6}70) ..

We begin with the periodic part Mam/n(yo). Setting fi=uy, u being
 the'periodic solution (5.16), and_ §1=O, g2=sih(wy)_ for theﬁ?eriodic

peftUrbation-in the definition (6.10) leads to ﬁhe integral»

mT/n

o o - j o . o
Ma=/n(yo) = | cos(wy)/(azsn2{Q(y-Yo),k} - 1) dy . (6.71)
_ . S . .

Like the subharméﬁic He1ﬁikov integral for the KdV case in section
6.3, the evaluation 6f this integral requires a Fourier expansion of =
tﬁe term 1/(a2sn2{Q(y-Yo).k} - 1). This is done by logarithmic’
differentiation, as described in (671, and,ieads in the present case
to a.differeﬁtiai equation with no clésed form solution. Therefore we
cénnot analytically eQaluate (6.71). A numerical evaluation for n=1
would be sufficient and requires the determination 6£ the mbdulus Kk
as a function of> the coefficients a, b saddle position r¢,
resonanée order m and perturbation frequen¢y w. Suchra éalculatioﬁ
depends on numerics as well and has beeﬁ described in connection of
the evaluation of the tangencyvrafio R2 (6.33) of the KdV problem (see
eqs. 6.34a, 6.34b, 6.340). 'The main operatibn in this calculation is
the “determination of roots of the function defined -by (6.34a).
Unfortunately the corresponding function in the present MKAV problem .
shows extremély sensitive dependence towards ~variation éf the

polynomial roots r., Yriz, rg, r; defined by (5.2) which resulted in
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the failure of all algorithmé‘ emplbyed _ﬁespite'*thé use of double
- pfecision ﬁumericé.'_This extrehé>sehsitivity is cleafiy a:cénéequentg
“of the very,denée vfesonancé band structure close to the homoclinic

orbit. However, we can make the estimate

Mar/n(yo) ~ Hg(yo) for m'largehl S (6.72)
lim Mam/n(yo) = Ma(¥o), . N : - (86.73)
m-o ' | - '

according to the'théorem by Chow-ef,él-[68]; (6.72) therefore applies
for Hgm/n(yo)' provided m is sufficiently large. Moreover, due to

; Qrthogonality of circular functions and the fesonahce condition

mT = nTx with T = 2n/w, Tk = 2K(K)/Q - - (6.74)

we find, like in the KdV case ((6.18) - (6.22)), that
Mam/n(ye) = 0. . forn# 1. . (6.75)

Wé can therefore approximéte-'the periodic part of the subharmonic

Melnikov function of (£8) for m large enough by

Mara®(Yo) ~ Drs COS(UYQ) : ' , : .b : - 66-76)
and therefcrg

ngfgm(yo)'=_o for yo - n(2n+1)/w , | (6.77)
and equivalently»for (2s) -

Ma252(Yo) ~ D2s cos(uwys) sin(uwF) .
. : (6.78)
Mirsm(Ww=jwe,¥o) =0 for y. ~ 2m/w

or w; = 2n/F,
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‘where j, n = O,‘l, 2, ..., and D:ss, Dis and F  are fuhctionéiof .

a, b, rs, ahd‘ h. 7 »Aécofding'to;theoremv6;3 and éorollafy"é.é av]f L

‘critical ratio .e./8:. -can-mow be défined quﬁ as in-‘thé-case”.of}the.:-

Kdv gquatibn.((6;31) —>(§.34)):

it
H

(ac/8c)ss = Rusg(w) = Mprg™/Dsg .

(5.79)

(ac/6c)2s = R925(w) = Mpy5®/(Dresin(u)) .

The dissipation parts Mp:g® and Mprs® can be evaluated vié-[64}g
(pQ219,#362q25_aﬁd repeated use of #336.02, p.201) after substituting -

 the derivative of the solution (5.16).

- mT

Mo J vi(y) dy
0

Qe (re-ra)2{MCs/(xs2c;) + ECz/c1 +KCx/ws2}/(6Co2C1) |,

(6.80)

K, E, [ = complete eliiptic integréls of first, second, and

third kind’

Ce = 3c33% —-.8csco - 24c 2c12k?”
Cz = 3c3?2 - BCoCicCo |

Cy = 3&3 - SCGC1C2.— 2cgcicsk?
Cy = asz.— 1

Ci1 = Qsz_' k2

c; = 3R2 - as? - az?k2

3 = < 3KZ + 2u.2 + 2a.7K? -

Qs = v[(rs-r2)(rs-ri)a/(24b)],

as? = (rz-rc¢)/(rp-ra),
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ra, ri, etc.

(rb-rgi(ra4r;)/((r4-rg){raffz))v

@.2(ra-ra)/(ra-rc) = elliptic modilus squared . -

are £heipdlynomial roots defined "in écnﬁectiqﬁ' with the

solution (5.16).

‘As opposed- to the periodic sclutioﬁs_enclosed by_theihomocliﬁic

orbits, the periodic solutions r(5.22)‘ enq1osed :by>_the,hetéroqlinic,.fi

orbits lead to a subharmonic Melnikov integrél whose periodic'parf can

be evaluated_iniciosed form. Setting the subharmoﬁicfboundéries 0 and

mT in -(6.36) and substituting (5.22) the subﬁarmbnic counterparts to

(6.67), (6.68) and . (6.69) become

mT
Moo = rarsvl-a/6b) | en2{(y-ye)rsvi-a/6h)} dn2{(y-yo)rivl-a/eb]} dy
o
= 2(E - (1-k2)/(1+k2) K)/(ak(1+k2)), (681

Mona

Ry

mT

= rs [ cos(uy) sn((y-yo)revl-a/eb]) dy

2r3wn¢{—6b/a]/r4 csch(ﬁmK'/ZK) éos(wyc) . o (6.32)

v[~6ab] nursk(1+k2) csch(mK'/2K)/(rs(E-(1-k2)K/(1+k2?)),

(6.83)

'K = first complete elliptic integral,

K' =

E =

associated first complete elliptic integral,

second complete elliptic integral,_
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k= K(m) = elliptic modulus with

limk =1 .
ms>o - -

i

fhe integral iﬁ (6:81) can be fdﬁhd in [643 (b.éiz, #é61.03?, As'fdr
thé KdV case in section 6.3; (6;82) is evaluated by Fourief'éxpanding
sn- (Byrd. and Friedman, [64]5 _ p;304, h,#QOB'Olj Vvand >obsefving
orthogonality of circulér functions. The:fbllduing limits are'easiif

verified:"

lim M=z = 2Man, lim Mep = 2Mpn. . - (6.84)

ksl,mso0 . ksl,mso

The factor 2 accounts for the fac£ that Mn,; and M=, approach +the sum
‘'of the respective Melnikov - functions Msn and Mpr of the two (i.e.

upper and lower) heteroclinic orbits.

6.%  Consequences of the'vanishing Mzre-s

-
-

As can be seen from (6.48), Maog-

vanishés for all yo Aif the
perturbation ffequency assumes multiples -of’a‘certain critical value
We . This behaviour _is also illustrated in fignresA llAAand 12.
Moreover, figufe llr'iﬁ particular exhibits a‘rapid decline ofbthé

amplitude of IM;2¢

-
-

|  with increasihg perturbatioﬁ“frgquency W, It _
is evident that this periodic part of fhé Melnikov integral is
responsible for the transversal intersections and ~qu§dratic zeroes of
the invariant manifolds required 1in theorem 6.1 and corollary €.2.
Since the result (6.48) is confirmed in séctionlle by numerically

generated Poincare maps of invariant manifolds, it therefore means the
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absence of these in£erséctions énd tangencies, énd the Smale-Bifkhoff
ﬁomoclinic Theorem becbmes inappliqable at-the critical perturbation
frequencies wc and for-ail practical purposes at higher perturbation
frequencies as _well. As a consequence, horseshoes and hyperbolic .
invariant sets with the related chaofic' behaviour are nonexistent,

which has been verified numerically (see section 8).
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Figure 7. Bifurcation curves for KdV evaluated at a=b=1,

‘(a) Homoclvinic curvés.(eq. 6.295 ac/8c vs. _sadcile position for various
perturbation fre'quencies W,

(b) as figure 7a, but ac/éc vs. w for vé.rio_us saddle posi_tions.
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8.0 |
40 |
c) 3
: 0.0 1.0 R 20 .
- omega
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| 1o
saddle

!
"(c) Subharmenic curvés (eq. 6.32) of crders as indicated and thelr
homoclinic limit (label: 0) in ¢/ vs: w with saddle at u=Q.O}VThe
_fourth order curve has a peak of e /Se~160.

(d) as figure 7c, but a¢/Se vs. saﬁdle pqsition'uith w=1.6.
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Figﬁre 8. Three branches of the function tan-1(-v[C]}/2rs) vs. the
saddle position rs, represented by pairs of dotted, solid, and dashed
lines. See (5.12) for the form of C. The significance of the jump

discontinuity is explained by (6.44).
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Figure 9. Bifurcation curves for the MKAV case in (2s) mode. defined

by (6.50) and evaluated at a=b=-1. (a) e./8: vs. saddle position for
various perturbation frequencies w. (b) a./8: vs. w for various

saddle positions.
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Figure 10; Bifurcatiqn curves for the MKdV case in (f8) mode defined
by (6.51) and evaluated at’aé—i, b=1. (a) ac/&c QS:_saddle position
for various perturbétion frequencies w. (b) ec/éc Vvs. W for various

saddle positions.
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Melnikov - periodic part - (2s)
200 _ 1.73
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Figure 11. | Periodic perturﬁétioh' contribution to the MNelnikov
function for the MKdV case in (25) mode ési.giyen by (5.48) and
evaluated for a=—i, -b=i. -(a) Heinikov funéﬁion\vs. perturbatiop
frequency w for various saddle positionms. (b). Hagpification of (g)
for small and nega{ivé .valﬁes »éf the ;elnikovgfunctioa;anGtEthe-
virtual disappearance of the function for values of w >4
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Figure 12. Zeroes of the Nelnikov function for figure 11 graphed in

~ the saddle position-uw plane.
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7. Subharmonics and fesqnance .

| To . study tﬁé- effééﬁ. ofi,per£Ufbatiéns>.9n‘ the periodic sﬁlutioﬁs'
enclosgd by the homoclinic 6f heterqcliﬁic '§r$itS'we 'fi?st discussva'
' méthod of powefvexpansion of perturbatioﬁs f&f detérminih§vthe;avefagé
flow of the Poincare map. This hethod - is originélly 'duev£o Heipikov
[36] and Qas.furtﬁer adapted by Greenspan and :ﬂolmes [28]; In:the
éfesent context wé extend the expansioﬁ in‘[28] to some higher order.

“terms és they reveal period doubling.

7.1 'Sfructure of the subharmonig Poincare map

Our' analysis . follows élosely Greenspan and Holmes [28]; buﬁAis
extendea’to‘highér orders. To take.advantage. of the periodicity of
the unperturbed solutions considered, it is gdvisable to introduce the

action angle variables I and 8. We begin with their definition:

v du = const., B(u,v) = Q(I)t . - (7.1)

: Here, Q(I) is constant with respect to time and is an angular velocity
defined by

(1) = 2n/Tyx . - , . o - (7.2)

u and v are fhe dépendent variables of the original system (6{2) which

reduces without perturbation to

o
Q

ot
1]

fl(uol VO) (
, 7.3)

<
(&)
!

Pl

= fa(ue, ve
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with Ty as period of the solution (uo,ve). The sYstém,(7.3)~‘cap now -
be rewritten in terms of ﬁnpefturbed action éhgle‘variables'BO/ Io asf--ﬁ

Q(I0) = 38°/auc £, (us,vo) +.880/avo £5(uo,vo) = aH/alo

m
(o]
+
0

(7.4)

[ ]
[s}

o+
i

alo/aus £ (uc,ve) + dlo/dvo f£,(uo,vo) = —a3H/38° = 0,

with H as the Hamiltonian of the unperturbed_syétem. Also observe:

 Blo/dus = (3le/3H)(aH/3uc) = —f,/Q(I°)

o (7.5)
£1/9(19).

dlo/dve = (3Io/8KH)(aH/dve)
Introducing a perturbation (E#O), (7.4) extends to

dBE/du (fl(u,v>+sg1(u,v;t)) +'58§78v (£2(u,v)tega(u,v,t))

BE, =
: (7.6)
I Et =

31 E/3u (fi(u,v)+eg;i(u,v,t)) + AIE/dv (f2(u,v)*+ega(u,v,t)).
With the definitions

Q1) = 3BE/Bu £1(u,v) + 3BE/3v £,(u,v) ,

F(I£,8E,t)

W

dIE/3u gi(u,v,t) + d1£/3v g2(u,v,t) , . (7.7)

G(I£ 85 t)

98E/du gi(u,v,t) + 38EF/3dv g2(u,v,t)

Wwe can express the system (7.6) as

BE = eG(IF, BEt) + QUIE)

(7.8)

try
"

I t EF(IE' Bglt)

We now split the perturbed solutions 8g, Ir of (7.8) into unperturbed
solutions Q(I°)t, Io with perturbation contributions ¢, h with a

coefficient ve, measuring the size of perturbation:

gE

H

It + ¢, k |
' - 7.9

tn
I

IE= I¢ + yeh ,
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‘and ¢bsetve that ;9t=0.:_The_sysﬁem (7.8) nowibecomgs"

Q(Ic) + ¢ = € G(Io+ ve h, Q(Io)t + 9, t) + Q(Io+ ve h) , ,
: : | e : : (7.10)

/e he =& F(Io+ ye b, QIo)t + 9, £) .

A'Taylor expansion about Io w.r.t. IE upvto Otsf), reducesl(7.10) to

oy = g1/2 Qo' h + g[Q0'' h2/2 + Go] + 63/2[90"' h3/6 + Go! h]
N +EA[QO"" hA/2A+Go|I h/z] , o
(7.11) 
hi = €1/2 Fo + € Fo' h + €3/2 Fo'' h2/2 + € Fo!'' h3/6 ,
with the following fechnical abbreviations:
Go. = G(Io, QIo)t + ¢, t), - Fo = F(Io, Q(IO)t + 9, t), .
. : } (7.12)
Qo = Q(Ie), A' = 0A/3IE(Io), A'! azA/aIEQ(IO), etc.

The ‘system (7.11) in 'conjunction with ayeraging methods'according to
the-averagiﬁg theorem as éfatéd by Guckenheimer and Holmes [29] is our
central device for the analysis of the Poincare maﬁs’df pe#iédic
solutions under pertﬁrbation. The avefégihg theorem describes the
approximation of a nonautonomous__periodic, system by this system
averaged over its‘period plus a émall’periodic ~perturbatioﬁ;‘ As .a
result, fixed :points in the  averaged - system vcorrespond to small
periodic mofions in the original syétem. The applicétiOn of this
theorem will require the evaluation of the ccefficients in (7.11);
such as Fo, Go, Q°,1and their derivatives( as defined byA(7.7)'ahd
(7.12). This evaluation, oh the other hand}‘depends on the specific
original'syétem, that is, the reduced KdV of HKdV system in our case.
In its lowest order (i.é. O(ve)) truncation, however, we can perform a

qualitative anélysis of the system (7.11) without reference to a
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specific case. We begin by expanding Fo uhderluéefofv(7.7)}andAthe

relations (7.4):

i

Fo = F(Io, Qot + 9, t)

I

3Io/3uc g;(uo,vo,t) + dlo/dve gy (uo,ve,t)

(f(ﬁO,VO) A g(uO,VO,t))/Qﬁ'rr S T .(7.13)(
Here Avdefines £he wedge'prodgct: ng ; f1g§ ; f;g;.> éincé"
~ue = uo(t + ¢/QO)”i>VO = v0(t‘+l@/9§) , -: o " (7.14)
we inﬁrodu;e the sﬁift |
t + ¢/Q§ ot | | - N ’ (7;155
and rewrite Fo aé }

Fo = F(Io, Qot, t - 9/Q0)

{£(uo(t),vo(£)) A g(uo(t),ve(t), t-9/92)}/% . (7.16).

Truncating (7.11) after the O(«E)—term-and, according to the averaging

theorem, using the transformation:

h>h+e/2v, >0, , ; ' (7.17)

r .
V= }F~(@, t)dt , F~(9p, t) = Fo - Fo ,

one gets the System

ve Q@' (h + ve V)

-a
o
]

(7.18)
K. = ve/@0 F(Io, @0t, & - §/2) |
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' We average the system (7.18) over the pefioﬁ mT'# Tk'énd nbte that F°

= 0 and thereforé;v-% 0. The résuliing;syétéh. S

T o= v/e Q' K

r+

C(7aey
mT':’ o .

i

7€/ (mTQ0) J F(Io, Qot, i»— §/0) dt -
_ o , .

/€/27 M= (F/Q0)

is autonomous and approximates the flow of  the Poincare map up to
O(/e). noreerr, _MTQO=2ﬁ, according to 'mT=Tx and (7.2). The
definition of the subharmonic Melnikov integral M=(¢/Qc) is evident by

(7.16) and can be expressed by its périodic and dissipative part:
Me(9/9) = @ cos(pu/9) Mg = §Mop . (7.20)
- The fixed points (¢:, hs) of the system (7.19) are now I

hS = O.l

Qe 2mQe/w sarcos(&Mmp/(aMM2z)), n =20, 1, 2, ...,

- o o (7.21)
@/8 > Ro(w) , :
Vith the integer n accounting for the multiplicity of branches of

arcos and Re(w) being the critical ratio for bifurcation as defined in

(6.34). (7.19) 1ineafizes about the fixed points'to'

X : 0 - Qe T

: = Je . ’ L S (7.22)
Bt —a/(nQ0) M7z sin(gsw/Q°) of (R

with the eigenvalues

A2 = - anQOl/(.nQo) Mz g Sj_n(q)sw/Qo) . o (7.23)
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For the - fixed points in (7.21) thls produces for 0 « o/QO < ml—Ty, m s

saddles (51n(¢sw/90)<0 +cos 1(6Hmp/(unmA)) 1n (7 21)) and m centres"

(Sln(st/Q°)>05 —cossl(énép/(anmA)) in _(7.21))- These 51nks and"l

centres are created by a doubiy degenefete Hamiltonian bifurcation at

a/6=RM(w) or 51n(¢¢m/QC) =0 and - cos- 1(5n“p/(ﬂnmﬂ) 0 respectlvely

‘According to theorem 6.3, they correspond to a subharmonlc orblt of e

period mT=T;. Moreover, the system (7.19) has the Hamlltonlan

H= ve {Q2'W2/2 - J Mo (F/°) a3/ (27) }1
(7.24)

= ve {90'F2/2 - sin(Fu/9e) aQo/(2nw) Ne; - 67/(2m) Mop + K}

with K as integra£ion constant. Hoﬁever,'-the “system  (7.19) - is
_structurally unstable and therefore unrealistic. Note, however, that
. the Hamiltooien (7724)'¢an' be used +to make an O(ve) estimafe of the
width of the m—th order resonance band. This width is equel to the
maximal vertical diameter of - the homoclinic orbit of the system
(7;19)f Observe that for K=0 the Hamilﬁonian (7.24) vanishes on this
homoclinic orbit. We therefore obtain its maximal vertical diameter by
setting K=H=0 in (7.24) and solving for 2h (= vertical coordihate))

being the width AI(m) to O(ve) accuracy of the m—-th resonance band:. .

AI(m) = 2h = ve 2(sin(@sow/Q0) aQo/w M= + S@SU vz f,)/(nQo') ,
: : (7. 24" )
with 9o = —cos~i(é&lnp/(dllmg)
denoting a center position. In order to improveé oo the structural
instability Qe apply the averaging, theorem over the full system
- (7.11). Again employing the transformation (7.17) (without introduoing

a double overbar); the system becomes
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Py = gl/2 Qo"Tf+ e[@'V + Qo"' Ez/z + Go]

+ €32 [Qo"v'rT+ ottt Rise + Go'h]

+ sz[Qo"vz/z + Qo' ' 'y hz/3 + Go'V + gerrry ‘E /24 + GO" ’52/2] '
Ry = €1/2 Fo + g Fo'h + €3/2 [FO'V + Fo'! E /2]

4+ g2[Fo 'V E + Forr! h3/6] . L (7.25)

Averaging over the sYétem (7.25) (and dropping the overbars>on 9, h)

giyes
. = €172 Qo' h+ g[Qo''! h2/2 ; @3]'+ g2/2 [Qo''! h3/6 4 Go'h]
+ 'sz[Qo"v_i/z +Go'V + Qo''t! hes24 + Go'' h2/2] -
: (7.26)
"hy = €1/2. F¢ + €5 h + £3/2 [i“?v'{?‘oﬁ h2/2] |

€2[F5TY h + FSTTT hise] .

As the contributions of the 0O(e)-, O(e3/2)-, and O(e2) terms are
small, the fixed points (¢s,he) 6f the system (7.26) will be close td

those defined in (7.21). The linearization of (7.26) about these fixed

points is
P:1= 1811 a2 P _ . i v ’
: (7.27)
hie)= [az21 az22] (hj, ' : '
ajy = eGo; + €3/2857¢chs + e2[(GFV)¢ + G 'shy?/2

azy = £:/2Fc; + gFo'the + €3/2[Fo'V; + Fo''thgo2/2)

+ g2[(Fo''V)s + Fo'''ths3/6]

o3}
iy
)

1]

€Q5'" hg + €3/2 [Qo''' hg2/2 + Go']

+ €2[Q0'" "' hy3/6 + Go'' hy]

az; = €F5" + €3/2 F57" h, + e2[Fo v + Fo " hg2/2]

A: = 3R/39(9:)
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~ The actual stablllty type of the flxed p01nts which appear as centres,
in the "0(7/€) ana1y51s 1s determlned by “the d1vergence of the vector
field deflned by (7 26) and evaluated at (¢=,h ). This is the trace

of the matrix in (7.27):

div(q»—.(cps,hs), he(9sz,h:)) = ay; + asg . (7.28)

It is theref ore necessary to determlne GCL, (Go'V) ¢, f§7, FO}'V. The
other terms in ai; and ar» can be 1gnored as h¢=0.
We begin with Fo! which'is, accordlng to the deflnltlon (7 7) and'

the shift (7. 15), before averaging

Fe' = Fr(Io, Qot, t - ¢/Q° )

1

8/81 (f(uo(t), V°(t)) A 9(u°(t) vo(t), ¢- ?/9°))/9°.

(£11g + ng )/% - £ag @1/ (7.29)
Averaging over the period mT gives
mT nT

m—

57 = 1/(nTQ0) {j £'Ag dt + | £1g' dt) - Mm(p/Q0)Q0' /@02,

0 0 (7.30)
For f' we note.I~10 and therefore
£' = 3f/3uc Buc/dlo + Bf/dve dvosdle . : (7.31)
1t is important to observe that
1/(dIc/8u”) # Bue/dlc , 1/(dI°/ave) # avo/aio', ' '(7.32)

and therefore  the inverses of (7.4) cannot be used at this point.

duc/dle is calculated from the differentials
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dIe

I

’axo/auo'duo'+vaxé/ev5 dve SRR
i o - (7.33) .
dBe. T

aeo/auo duo + aﬂo/avo .dvo
Eliminating dv gives
880/8vo- dlo/ave dBo/dle = duo/dIo(d8e/ave 3lo/duo- 380/3uo azé/aVO)
o (13a)
‘Since the action-angle variables Bov and Io are independent of eech
othef we have
dgs/die =0, . - ' f C U (7.35)

E and therefore

du/dl = du/dI + du/ab as/al = au/dl , . | (7.36)

aue/alo = (880/3vo)/(860/dve dlo/duc - dBo/duo Blo/dve) .

(7.37)

Recalling that by definition of the action angle variable 8o,

d8o/3t = Qo = constant , ' ' . (7.38)
oBo/aduc and 0B80/dvc therefore become

dBo/8uc = 3B/3t ot/duc = Qo/ue. = Qo/f; , (7.39)

38o/dve = 3B/dt dt/dve = Qo/vo. = Qo/f; , . (7.40) -
Substituting these and (7.4) into (7.37) gives- -

Buo/alo = -Qo/(2f1) . _ o (7.41)

Eliminating du from the differentials leads by e similar procedure to

avesale = @o/(2£1) . . o (7.42)
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vf' as expressédiby (7.31) finaily bécomes -
£' = 3f/3uc (-Qo/2f,)-+ af/dvo (Qo/2fy)

=00/2 (£v/f1 - £u/E2) , . (7.43)
Accordingly oﬁe aetefmines for g'
g' = @/2 (gu/fr = gu/f2) © o (7.44)

" With £ ahd g' the substitution of Fo! isvnow‘.f

‘mT
o = 1/(2nT) j (£19/E1-F10/E2)92 = (F2v/Er-E2u/E1)g1)
mT

4 1/Qnm) [ (giu+ 920 - £1/£2 gou ~ £2/£1 g9uv) dt

o
.f.nm(é/QO)QOE/QO?'; B ’ ‘ (7.45)

To calculate Go: we begin with the definition (7.7) expressed for e=0:
G(Io,B0,t) = aéo/auo gl(ﬁo,yo;£)_+ aeo)avo g2(uo,ve,t) . (7.465

Substituting (7.39), (7.40), averaging over uT and taking the
derivative w.r}t. ¢° gives . ‘
- mT

3o = (T, B°,T) /390 = @o/mT | (8g2/3¢ 1/£1 + dgz/8p° 1/£3) dt.
: o - - LT (7.47)

(7.45) and (7.47) areb the two terms reqﬁiredb for.evaluation of the
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divergence (7{28) up to 0O(e), as wiii be -done-specificaiiy for thef’

(M)KAV case in the next subsection.

7.1.1 Evaluation for (M)KAV

- Below we list the nonzero terms required for"the eValuation of Gos,

Fo' (and (GO Dz, Fo''V for 1ater use) for the (M)Kdv case ‘The

derlvatlves (primed quantltles) can be calculated via the expressmnc
!0 = Q0/2 (xy'/E1 = ef1'/E12 - Xu'/Ex + xuf2' /£22)
+ 912 (xo/f1 - Xu/f2) o (7.49)

.which are generalizationé of (7.43) or (7.44)' and their second

derivatives; In the expressions below n=1 applies to KAV and n=2 to
HKdV-

fl = ﬁy>= v,

£, = vy = ~u(a un/(ntl) + 1)/b - ki/b

g: = —.5 v + a sin(uy) ,

fou=-(@ur +1)/b,

fiv =1,

gev = — &,

fauu = - na uin-1)/b

£ = Qo/(2v)

£,' = -Q0/2 fou/fz

f2u' = -90/2 f2uu/f2 |

£, = 90! /(2v) = @02/ (4v%)

£,00 = - Qo'/2 f‘h/fz +902/4 (Fruu/fr — £202/£29)

g:' = -8 f;',
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9;"'= -8 £,
tay T @soy
The average of GO now becbmes>accbrdiﬁ§ £d1(§Q46)_wi£h substitu£ioh§i:
from (7.50) and (7.39), (7.40) .. - - |
mT - T
Go = Qo/mT {-& JI{V(Y)/\'y(y)}dy ta JI{sln w(y + ¢/Q)/vy(y)}dy} . -
o o T . (7.51)
Note that the first integral vanishes ‘due to periodicity of the
integrand, as v(j) and vy(y) are firstiand second derivative of the

periodic cnoidal wave solufion_ u(y) for KdV.given.iby.(4.3)'and for

MKQV given by (5.186). (7.47)'reduces to.

mT

| T = (aw/m) {-sin(uge/e0) | sin(uy)/vy(v) dy

0
'mT_>
. o
+ COS(w¢°/9°)‘J cos(wy) /vy(Y) dy} . (7.52)
. , . _

Fo7 reduces to

Fo' = - 6 - Q0'/Qo2 Ma(g/Qc)
mT

+ a/(ZmT)j{sinwy cos(w¢0/90) + coswy sin(mwO/QO)}/v(y) dy.
0 (7.53)
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' To determine thevdivefgence  (7.28) at .the'fiﬁed.points P~ 90 We ﬁsé

- the _deqompritioni-(7,éQ), and. = observe }ffqm» _system 1(7.19)-_that Lo

cos(QQS/Qo)%O;.(7.28)'now reduces within O(e) to

div(ee(9e,ha) he(0:ihe)) = (@0(gs) + Fo7(:))

)
= ex  {sin(ues/Q°)/(nT) J[-.w sin(uy) /vy (y) " +cos(uy)/(2v(¥))1dy}
4 €8 {Qo'/Q02 Mpo - 1}. ) L '(7.54) R

Similar to the case.of the integral (6.71), the _evaluation of the
integral in,,(?.Sé) would require a Fourier expansion of 1/v(y) and
1/v§(y). This procedure' is described for_.elliptic functions By
Greenhill t67], however v(y) and vy(y) represent the first and'secénd
'defivative ofrﬁhe périodic solutions (4.3), (5.16) and '(5.22) of: the
KdV} anV and heteroclinic limitvof the MKAV wave'quations.i Such an
expansion is therefbre too difficult as mentioned in connection with
the integral (6.71). A numerical evaluation of the iﬁtegral is
contingent on the knowledge of the»elliptic.modulus k of the periodic
Qolutions (4.3), (5.16), (5.22j (or £he roétsA ri, rz, rs, ra as
defined in (5.2)) and the problems with_its numerical déterminatién_
have been describéd in connection with the subharmoﬁic ﬁelnikov
integral (6.71) too. However, the integral in (7.54) turned out to be
negative for all evaluations with arbitfafily and densely selected
values for the elliptié modulus k ranging between;uonand_ 1 and lower
resonance orders m in connection with the solutibns (4f3), (5.16),
(5.22). (For higher m>8 precisioﬁ froblems in the evalgations arise)

Noting that sin(wes/Q2)>0 if Q; is one of "the centres in the O(ve)
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analysis performed in connection w1th equations (7 20) —t (7 23) and -

"~ that Qo0'<0, . one- ‘can conclude the divergence (7 54) to be negative and_f"vm

the centres under the O(/s) approx1mat10n turn out to be 51nks created
by a saddle—node blfurcation as 'deacribed' by (6 34). . ThlS'O(E)
bapproximation is tnerefore sufficient to determine the stability type -
of the ii#ed 'points between the saddles Anrov1ded one accepte

numerical evaluations as mentioned above

7.1;2 Higher orders and periodidoubling

The Taylor series (7.11) 'expandsdup to O(ef) whereas the averaging
techniques employed on it are based ‘on an expansion including onlfd
0(?5) and O(E)'terms._ For details we‘ refer to the averaoing theorem
and its ~proof as Vstated_in '[29j{ Asia consequence, the resulting
system (7.26) -does not: contain all dterms of O0(eg23/2) and 0O(e2?). |
determination of all iterms of these orders would require averaging
dtechniquesiderived from expansions un. to 0O(e2). . The second order
averaéing used here, however, is sufficient for the analysis as
“performed so far, as it only includes terms up to O(e) ,of,the
expansion (7.11). Moreover, it is'eufficient to show period doubling
in_at least one of the terms of O(>e) present in the system (7.26), as
this is already enough to show its occurrence. This is the aim of
this subsection and we also observe that resonance. related phenomena'
such as period doubling can be attributed only to the periodic and not
the dissipation contribution of the perturbation. -\We therefore take
only periodic perturbation into  account in the following analysis,
that ie, we set o0, 6=0. We determine the 0(e?) term GOlV in (7.25)

in our analysis and later it will become evident which other terms
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contribute to period doubling. Beginning_withﬂthé faétpr- v, we find -
. from (7.16), (7.17) (recall Fo=Ma/Qo, mT@o=2m) -

Ve J‘('FE_T_._ Fo)dé’ ﬁ_,nmy/(z.n) - Jf'édy '_ ': . 8 4 _ : (755)

Substituting from (7.50)’into _Foxaﬁd uéing-the~decomposi£ion‘(7,20), :

this reduces to
V = a(cos (ou/2°) Meay/(2m)- 1/9° [ v(y-9/9°) sinuy)dy . - (7.56)
Shifting y » yt+es/Q in the integral we finally obtain~for.v_,

V=r-a sin(w¢/95) A(y) + é-¢05(¢Q/Q°)‘B(y) - (7.57)

1700 [ viy) cos(up) dy

A(y)

By) = Meay/(2m- 1/9° [ v(y) sin(uy) dy .

From the definition (7.7) and the identities (7.39), - (7.40) aﬁd g:=0,

Go reduces to
G> = 3B°/due g1 + 38o/ave g, = Qo/f2 g7, . ©(7.58)
with the derivative Go' .

Ga'

{Qo'gy + Q°(g:'f:- gofa')}/E:2

« sin(uy) C(y-9/9°) , ' "- . HAA .; | ?(7-59)

Cy-9/99) = {9'+ 902/2 dvy/3u(y=9/2%) /vy (y=0/9°)} /V4? (y=9/9°)
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Go'V ﬁqw becbmeé"
e e
GV = 1/(nT) [c-o"v dy T (7.60)
= | | S
= «2/(mT) J sin(uy) C(y-9/9°) {sin(wg/Q°) A(y) + cos(gu/Q) B(y)} dy -

Shifting y » y+@/§0 again gives

-mT
&V = a2/(nT) sin(we/20) cos(we/2) [ C(y) [Aly+e/2e) cosu(y)

0

+ B(y+9/2%) sina(y)] dy

mT » A
+ /() sin?(ug/2) | C(y) A(y+e/9°) sinu(y) &

0

mT
+ a?/(nT) cos?(ue/%) | C(y) Blyte/9°) cosu(y) dy -

0 ' A(7.61)

The factors in front of the integrals cléarly have half the.period of
'sin(w¢/90) or cos(uwe/Q¢). In_other words, two periods qf sin2(we/Qc),
l cosz(we/Q°), cr sin(we/Q°)cos(we/Q2) equal one périod of sin(m@/éc)'
or cos(we/Q0). This has nontrivia1>implicatidns for the 0(e2) System
(7.26) as it indicates period doubling. 'From the construction qf Go'V
in (7.61)»we c#n conclude that ever? term consisting of a product éf-
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Go 'or Fo or defiyati.vesvthereof w1thV or 1ts dériv_a‘ti\'fe-s ivhag proauct§-— i
of circular: funci_:ijonisi'witﬁ a.fac':t;or‘ qf -cz-?» as 'in-- (7.61) é.nd'jth'erévfo're' e
contributes;t:é period doubling. -:Th’g 'othe.ri‘-‘ .peribd doubllng termé-iﬁ o
v(7.26) ;';_Lfe therefofe:fo_'v- ;lnd -fo_"_v One fuifther 'obser?\:rés‘ »tha.t thls .
is 'sblely ar-lv effect of the sinusidal pértﬁ?bétions' ifreépécti?e __of the
specific type of the underljing.sy.sfem.. On:tAhe éthér ha;nd;v it.v'aepends o
on the underlying sys.tem - ‘wheth‘e‘r .'t.hevs'e 'hic_‘;her <‘3‘"rdérﬁ'péf‘i‘<‘3_d,dc'uublir'1§' ‘
terms are large enoﬁgh compared to .lowér _.order“_";term‘s” in Bfaerv to ©
Aexhibit the. effect. To inves.t.i»g.ate conéecutivé.ipe'riod doﬁbiings’ih_
highér ofder ,tefms would require va»n exténsién’ of £he averag'ing the-orém'

- to higher or*dérs, a pdiﬁt alréady addressed at'tlllevbegirinin»g of 'th_ié
sﬁbsect»ion.- However, this would»rme'an applic'ationh of' an averéging.

transformation of the type
hsh+ €/2V+ eV, + €3/2Us 4 .00, 05 , (7.62)

with the- ,terrﬁs VL vconstru.éted» from péwers,'of Fe,  Clearly, this._wéuld _
make the calA'cﬁlations éktrémely tedious, although straightforward and
méché.nicai, which raises the possibility ‘of a;utomating them using
symbolic manipulators.

- The presence  of higher' order ;.Jeriod”doublings wou.ld suggest a
sequeﬁce of periodv doﬁbliné “bifurcations '_as desc.ribed in é. resul‘;.
obtained by Gavrilov and Shil'nikov  [69,70] and _furthef,elaborated o
upon in . [28]. It is shown in [69,70] and [28] that for certain .two-
dimensional diffeomorphisms wit_fx a 'hyperbolic\fi‘xed. point hoqulinié
tangencies or transversal intersections '<.3f the flov are crééxﬁed by
saddle—nodé bifurcations depending on the' value of some external

parameter. That is, the two transversal intersections emerging from a

tangency are a sink and a saddle with one half of 'its unstable
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',maﬁifoid being {éttracfedi bf 'théjiéink.”  A.§ﬁft£ér incréase-§f'tﬁe .
- extéfnal paréﬁétef.cauéeé‘theisin#;v£6:'uﬁdér§o, éyfﬁefidd—dqﬁﬁliﬁg éf.ﬁ
f’flip bifurcatioﬁ'lwhefejﬁﬁhe jsink.:degenEfatés intp a-éaédlélahd two
sinks. Eaﬁh one of these Sinks aﬁfracts one halﬁi‘éf the saddle's

unstable manifdld. .

7.2 Flow between resonance bands
Since the flow between bands must’be,structuraliy‘stable it suffiéesA
to use the system'ih O(vE) approxiﬁatich.f We therefore write the

system (7.22) as a linear second order ODE:
Qie = - €Q! Me/2n, L (7.83)
which has the solution ¢ with derivati?e Pt

- g Qo! Hr: t2/4n + cit +co,

e =
P L - (7.64)
pr = = € Qo' Mm /2 + ¢,

Expressed in terms of ¢ and h,
9 = - € Q'Mut2/4n + ¢t + ¢ ,
' (7.65)
h = - ve Mot/2n + c1/Q0" .

The phase portrait of (7.65) - identical to the one of (7.64) - 1is now

clear:

For Mz = 0 it is a vector - field parallei' to the ¢-axis and with ‘
- shear equal to Q'(I9). For h>0 its orientation isAto the right and for
h<0 it is to the left. h=0, 9=c; (¢-axis) are ‘the ‘points of
orientétion revérsion, that is, degenerate.fixed péints. See figure
13a. This case.is-possible'for thév(2s) moae only and arises for w =

2m/F as in (7.26) and without dissipation.
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;Forinmv > 0 sétfinélh(t=o)v; Q_qr c; = 0 and eiiminating t“givés fbr-f_::’-

" the vector field a continuous set of pérabolas parameﬁefiééd by ot
g=-2m QM h24 cy . . - (7.66)

The set of their apices is the entire ¢-axis.  See figufe -13b. Note

‘that the case Mr=0 described above isythe>éorrect limit as M=s0.

7.3 Averaged subharmonic flow for (IM)KdV
We summarize the results of section 7 in combined form for>the various

cases possible,
1. (M)XdV in (f8) or heteroclinic mode.

The resonance bands - eXiét for a/é‘ > Ra(w) and cohsist of
saddles.’yith. sinks created by saddle—nodé_ bifurcafions at
&/6=Rm(g). 'Neighbouringibénds are connectedu by a _flow ﬁith
Aapprqximaté parabblic curvature as described above for the (2s)
case with’$>0. The nonvanishing périodic bart' of the Melnikov‘
function takes thé place of &llap in (7.64). or .(7.65)

respectively. See figure 13a.

2. IMKAV in (2s) mode.

'(a) no dissipation; §=0

The resonance bands consist of saddles and sinks as in case 1.
In case of a vanishing Melnikov distaﬁce neiéhbouring.bands are -
separated by é line idf degenerate fikea points. : See figure

- 13b.
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(b) nonzero dissipation; 620--

The situation is the same as in case 1.

) 7;4_ Dynamicéi

We-look ét the ;dissipative cases first.  It]is clear ffom fiéﬁre iév
that_theventire set of respnanée bgnds, éﬁcept possiblyvthosé of order
< 3,- occupies an annular region élose'toithe saddle connectibns.with
area of less than 1 per cent of thé interiqr., a ‘and ) determiﬁé the
sizé of .the attracting basinsi around the sinks in thé individualt
resbnance bands as can be seen from (7.24'). The probability of an
orbit decaying inward therefore depeﬁds 6ﬁ tﬁe initial conditions as
well as on a»aﬁd 8. It will increase "with s and decrease with o, a
iendenéy to bé expected oﬁ considerafioﬁé oflenergy dependenée.. Due
to the finite size of the attracting basins and their structural
stabilitf, a vsystem will maintain Zits resonance under slight
perturbatidns of e¢and & as well as the coefficients a and b. A
coﬁtinuouS'yariation of a or b must lead to an iﬁcrease‘or,decrease of
the order of the subharmonic on which the system is locked.

For the case without damping observe that fer (()KdAV in - (£8) or
heteroclinic mode thevsystem drifts out of thé range of the homoclinic
or heteroclinic orbit. In rthe (£8) cése this leads to chaotic
oscillations with finite amplitudes whereas in the KAV or heteroclinic
case the system transforms into antisolitons.

The case of MKdV in (2s) mode without dissipation. is the most-
interesting one as it shows that external forcing (without damping)
does not always mean ~unbouﬁded growth. This 1is of course a
. consequence of the éircle of degenerate fixed-points which confines

the system to the interior of the homoclinic orbit even in the absence
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- of dissipation; The -interestiﬁg_quésfion':i$iof'¢oﬁfse the stténﬁél'
~ behaviour oﬁ:the Circie of aégenerAté fiXed points{,“h;cording_itoithe'

averaging theorem this means 'a Poincare map .of .infinite period and

‘therefore. no resonance. z‘The_ annulus = representing the .outer

neighbourhodd' of thiS'Téir¢1é isirrepelling ‘whereas the anﬁulﬁs 
corresponding to.the_innerﬁ neighbourﬁpod is attf;cting tpwérds>thé
circle. .As a :cohsequehce maéhiné géneréted'?éinéare 'mabshpeﬁnit'a N
limited number.of_iterafions-sincé infinifesimaliy small perigfbaﬁiOns
are Sufficient to displace the §YStem ffomvthe circlé into the outer
annulus. This cauéés a drift outwardé through the resonance bands and

circles of fixed points.
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> 9
a)
h
A
> ¢
b)
Figure 13. . Structure of .averaged vector fields between resonance
bands expressed in action angle vafiables (h,9). ~ (a) Line of

degenerate . fixed points ‘at h=0 is approached .and abandoned
asymptotically by the averaged vector field. (b) The vector field

assumes parabolic curvature as it crosses h=0.
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Figure 14. Period of solutions (5.16) within thé hbmocliniq orbit in
' (2s) mode for coefficients a=-1, b=1 and>graphed. for various saddle
positions. The abscissa is the ratio 6f'thé distahces éaddle—solution

(based on u-axis) vs. saddle-center.
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8. Nﬁmericai'balcuIAtions and-computer'graphicé

- With the 'egcgptioh of Figures 1, 2,1 4, 13, a11'p1_bt$'a're_pmduced b}
use of the graphiés}package PLOT79 [71] andv.O§ca§ién31 app1i¢;ti§n bf
| the subroutine"librafy NUMERICAL: RECI?ES"[7zi‘ih coﬁbination with
FORTRAﬁ77 on a VAX?BO. Phase portrait ﬁrajeqtérié§ (figures 3; -5, 6)
and iﬁvariant manifolds:(fighrgS» iS to‘195 aléé‘requiréd appiicatipn
of fhe Runge—Kutté-Féhlbefg FORTRAﬁ ODE' So1§er A RRFéSiA(authérs:
Shampine and -Watts, véee '[73j)' éh thé thfee>di§énsional (H)kdv ODEr.
systems derived | from -(3.8) v-wiﬁh ’bothl ' a=6=d : andAbnonzero
perturbations. The invariant maniféldé shown on the fiQﬁféS,lS-to 19
show tangencies 5etween'the :stablé and unstable iﬁ?ariant manifolds -
for the Kdv system and the NMKdV system_in (£8) and (2s) mode and their
ratios «a/8 at these vtanjéncies are in perfe¢t< agreement with the
evaluations of the_formulas (6.27), (6.50) ahd't6.51) as determiﬁed by
the Helnikov method. In general, agreement between ;alﬁulated ratios
and those detefmined from tangeﬁcy graphs of manifolds was within five
percent for  perturbation amplitudeé a%.z, and perturbation
frequéncieé l<m<3’ and with coéfficients a and b between ;l-and
3. However, ﬁhi; good agreement breaks down for manifolds relating to
reiatively smail' unperturbed hohoclinic orbits;'that is, for saddles
close to the saddle-center mergihg points, and for manifolds in the
(2s) mode ciosé to the heteroclihié'limit.- These cases correspohd to
_the regions close to the poles in figures 7a, 9a AandAJOa. In these
regions the applicabiiity of the first order nelnikoQ method becomes
questionable, as is evidenced by the large-perturbatipn amplitudes a

involved. Fiqure 18 demonstirates the existence of a surface invariant
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with respect to perturbations inithé-thrée—dimenéiqhal phase spéce qf

the reduced ‘KdV,'eqhatioh iaéj dqscribed in section 4. An anaioéoﬁs" :

invariant surface _for’»ﬁhe rédﬁced} ﬁKdV equétipn’,as. described in '
seﬁtion 5 can :be verified éréphiéélly> aé 'wéli. 'Theiimpérﬁan£l'
phenomenon of a vanishingrnelnikoy.di;téﬁée félatiﬁg t6’ £he pe;iﬁdié
pefturbatidn for the MKAV éaée inv(2sj mode iﬁgéorrdborated in figure
19 for the critical perturbation fréquéncy-f",ﬁ=2792. : Exéépﬁ, fqrva i
small neighbourhood. afound theiéaddle the invariant:ménifoldsvoverlay.

exactly.within the accuracy of the'graph.>

In practical term;, the graphs for 'the-.invariant manifolds are ' -
~ generated bf stafting with a'point .pi'wiﬁﬁ coordinateé (u:, 10-¢, 0).
u; is therefore the saddle posiﬁibn on the u-axis with an foset by
10-¢ from the wu-axis; the offset is needed tov obtain a finite
displécement of ﬁi uhder the foincare»map 'pi;9 P(pi); ﬁhich is then.
. pefformed by advancing pi: by a timestep equal to thé perﬁurbation
period T = 2mr/w. A good approximation for tﬁe»initial line element
on the invariant manifold | Wu (or W= -respeétivély, by'using
negative time) can now bé obtained by generating further peints using
p: as initial condition and solving thebperturbed system (3.20) for:
a=0 and small timeéteps. ~ The stépsize is deéregsed exponentially
with respect to the number of steps éerformed in order to compensate
for the 'stretching' of the ménifold under increasing time; After-
about 200 to 300 timesteps theAsét of po@nts so ‘generated will.
have»reached a Sﬁall enough neighbourhooa of> , P(pi2 " to stop the
process and readjust.the resulting line of points tO‘paSs directly

through P(p:). Further iterations of this line elément assemble the
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invariant manifold .and are genéfated. by - simply Pdiﬁcarevmapping g

itsinaividuai- points. -,It;vis evidént - from .£his ﬁethod thét_the
shorterthis initial line element is, the- better the épproki@atioﬁ of
the manifold will be. rAs a éonSequéncé,'higher freqﬁencies W ‘are

needed to.analyse smaller hpmoclini¢_orbitéhi»'
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Figure 15. -Invariaﬁt manifolds at the point. of tangency.  KdV with

a=b=1; saddle at u=-.5; ¢=.064; 5=—.02; w=1.2.

Figure 16. ~ Invariant manifolds'at the point of tangency. HKdV-(fS)

with a=-3; b=-1; saddle at u=-.02; u=.064; 6=.05; w=1l.5.
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Figure 17. Invariant manifoids»ét the'point -of tangency. MKdV(2s)

with a=-.1; b=1; saddle at u=—4;8;'a$}069; 8§=—.01; w=1.3."

Figure 18. Perspective view of Figure 15 in u-uy-uyy space.
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Fiqure 19. Invariant manifolds of anV—(ZS)_for a=—.25, b=.5, saddle
at u=-3.2, «=.3, 8=0 and =2.92, which is a critical pér£urbatioh
frequency value Qifh_vanishing_periodic part of th¢ nelnikdv function.
Except for a -small neighbourhood about the Sa&die the manifolds

overlay exactly within accuracy of the diagram.



9.vSummary and conclusions

In fhis study, three main results cén be 'highlighted. . They are as
follows: = ' ' » |
1. Invariant two-dimensional subsYstems in the-three—dimenSional

phase space of the reduced (M)KdV sYstems:exist.':

2. Concepts of stability of sblitons"and structural instability of

homoclinic orbits are compatible.

3. The, IMelnikov distance vanishes for distinct perfurbatibn

frequencies dver the éﬁtire:time:rangé in the anV system.

These three results are obtained by direct analytic calculation within.
the first order perturbation apprOXimation of the nelﬁikov method.
However, they’are»supported by,nﬁmerical calculations too and will now

be discussed in detail.

9.1. | Invariant subsystemé
An important fact .about +the reduced (M)KdV system is that_the

lMelnikov analysis of its degenerété three—dimensionai ODE sjstém'can
' be relegated to a two-dimensional system obtained by integration and

parameterized by one integration constant. Bs a resﬁltvthefe ié a set
of homoclinic orbits embedded in the phase space bf the 3-dimensional -
system as depicted in Figures 3b, 5b, 6b, corresponding to a se{ of

solitons which are more peaked (i;é. higher“aﬁd nar;éwer in wave form)

and have higher wave speed for larger homociinic ofbiés. Assuming this

wave speed to be heid censtant and subjecfing the system to a

perturbing periodic wave train (with the same wave speed) and tc
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_ dissipétion»will' re&ﬁce'sdli£0ns tb énoidai,waves,-which wiil éhangei
fheirvffequéncy until a-étate of‘resonénée.witﬁ "fhejf;rcihg freﬁuencé '
is reached Aand the forcing> enefgy5 baiances‘ diésibafion. Such a
balance canno£ be reaéhed in case of weak dissipéﬁion‘or[reiatively
large amplitudes of the pefturbing' ﬁave:itraiﬁ. 5,In'tha£ case'én
antisoliton solution ié induced, which manifests .itself in numerical
simulations as- unbouﬁded.growth.' An exception is of course the MKAV
system in (£8) ﬁode, because it.does not'posseés antisolitons butvonlyv
paifs of solitons; thése exch;ﬁge ,s£abilityv and show oscillatory

vbehavidur in random fashion. Thé associated aynémics takevélace-in

.one and the séme two-dimensional 'subspace; In other words,-an :

~invariant wave spéed causes"inVariant subépaces between uhich no

Arnold diffusion is'poésible; h . .

As pointéd out previously, the space coordinates of the KdV equation
already have a Qelocity Vp with respect to the space coordinates of an
underlying system describing the dynamics of the actual physical waves
(e.g. in water and plasma), which have V; as their phase velocity.
That is, the KdV equation is:just a further reducticn of this system
transformed onto a coordinate system moving with veloéity Vp, and a
similar rationale applies to the HK&V equation;A Moreover, it has been
shown that a wave ansatz with speed ¢ on the KdV equation leaves Ve
quasi invariant; As a consequence, the wave speed of the actual
plasma or fluid soliton can be different to.the one of the perturbing
wave train.. Since the requirement of invériant phase speed applieé to
the ansatz speed c, the plasma or fluid soliton’agaiﬁ ié not affected

by this restriction.



'9.2. : Stabillty properties of solltons B
Closely related to the 1nvar1ance property. descrlbed above is the _
question of soliton stability, The- Sbab1llty ana1y31s of solitons and
cnoidai waves, 'as deVeloped -by Je*‘rey and Kakutani [43} and Drazin
[44] and mentloned in the 1ntroductlon, is based on Lyapunov stabl‘lty_f
and is restricted to .perturbatlons_wuthin the solution space of the
unperturbed and unreduced (M)KdV equation.v Furthermore, "their
perturbations do ”not oarry the restriction of invariant waveisoeed.
As a conseduence,_the entire phase space ofithe reduced (M)KdV system
" corresponding to ‘one particular' wave speed may undergo “a'Change‘as
much as the twojdimensional Subspaces- arev no 'longer _invariant with
respect-to- their structure .or wave solutions. It signifies that the
homoclinic orbit within a particular subspace as well as the subspace
- itself is deforned as the wave speed is changed or else the solution -
mai transfer towanother:subspaoef» | |
In the framework of structural. stability and Heinikov method the
primary subject of perturbation ‘is not the solution -but the system
itself. That is, the perturbation changes the system to a different
one with a different phase space and_solntion space which contains no
solitons. This indicates that»even if the wave speed may not be keot'
invariant and may respond to the perturbation the new solution of the
perturbed system w111 be a soliton only if the perturbatlon is such'
that the perturbed solution space contains _sOliton solutions. This
shows that the type of perturbation is important for the mechanism of
structural instability, not necessarily the oonstraint to a particular
.invariant wa&e speed, although the present analysis restricts by the

ansatz (3.7) to identical soliton and perturbation wave speed.
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9.3 Rbsence of Heiﬁikoy distance

Acéordiné tb' the Sméle;Birkhéff héﬁociiniq theorém t29] tfanSvéfsal
interéecfions of'iﬁvariant.manifolds afg cruciéi féf fhe, fdrmétioﬁ of
Smale horseshoes and production. of chéoé. '>As detefmiﬁed in éebtion
6.5 and confirmed by numeficai gené?afion;of diagfamé'(seé figuré 19), -
the reducgd and perturbed MNK4V syétem in.(2$) ;mode will not always
split the hémoéligic orbit into stable 'énd unstabié manifold. The
homoclinic orbit will survive for éerfaip discreté forciﬁg frequehcies
and multiples therecf and for éll -practipaiiintents >and pdrposes for
largef frequencies, asl illﬁs£ra£ed»'by ,figufe 11. Transversalv
" intersections will therefore not exist at these cfitical frequenﬁies
and tﬂe system caﬁnot display éhabé: thé'homocliﬁic'bfbit.survives ?t
these frequencies and merely ‘oscillétes' with vthem.' This impliess
structural stability for the homo;linic -qrbit at these frequency
vélues,bﬁt sffucturallinstability at othér frequency valués, i.e.,
almost everywhere in pafameter space.  The interpretation inAthe
sqliton picture would be that-bf a'breather or bion, or an oscillating
soliton (see é.g. Drazin '[44]). The unberturbed MKdV equation is
known to have breéthers [44}; ‘however, in the present case the
oscillatioﬂ frgquency is induced by a pertufbatio#.

As shown in section 7, the diséppearance of subharmonic lMelnikov
functions inside the homoc1iﬁic orbit creates a set of coﬁceﬁtric
circles ' each 5f which consists of degenerate fixed points and
separatés two -'neighbouring resonance rbaﬁds;  In ofher ﬁords,
identically vanisﬁing Melnikov functions alterﬁate yith those with a
finite number of zeroes. Looking at the individual circle, one can -
divide its neighbourhood into an outér and inner annulus. ‘Dependihg

on the values of dissipation coefficient & and perturbation amplitude



@, -the circié will be,_3ttracting.bwithrrespeéﬁ to 6né-;nnuiﬁs and
reﬁelling wiﬁh;fespeét té-the §ther}’_As'é cdﬁéequencej:the system bén B
drift'thfbﬁgh this set of circles_to a fesénancevbana'ﬁhich is'béunded“
by a pair Qf_birtlés which bofhvrepel_'inﬁé thé resénancé band. = The
fesonanéé properties“ for ?an'idéhficéiif vénishing-ﬂélnikpv function
are therefore not vefy different 'frbﬁ those with htgathersal
intersections dué' to fhe stability pfoperties '6f‘ tﬁe circies of
degeneraté fixed points. - | | |
The»imbortaﬁt observation thich -cén be  made ~through ~tﬁe eﬁtire .
thesis 1is thaf the NMelnikov anaiyéis is clearly_reievant in itslt
applications beyond the detection of tangenciés and intefsectioﬁs
between’,invariant manifolds. - ‘Although i£ is oniy'é first ofder
approximation metﬁod, ifi has predicﬁed in’ this study,inte?esﬁing
phenbmena sﬁch as invariance of subspaces{ which bear on solitons and
_the 'hqnfspiitfing of manifolds,' The inherent nature of theéé
~ characteristics in }fhe studied systemé 'hés been substantiated.

‘convincingly by numerical methods, -which are entirely independent of

‘the Melnikov technique.
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