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Abstract 

Algebraic structure is at the heart of mathematics and graded ring structures 

arise in many natural applications and contexts. Particular examples of graded 

rings actively investigated in recent decades include generalized matrix rings, 

the Morita rings associated with Morita contexts, polynomial rings and the ring 

of symmetric functions. We describe a graded construction for all these rings. In 

order to extend our investigation to as wide a class of graded rings as possible, 

we consider rings graded by partial groupoids. We present homogeneous sums 

as graded by induced partial groupoids. 

Homogeneity of ideals and radicals of graded rings is one the most interesting 

and fundamental ideas in graded ring theory. We introduce a consistent def­

inition for the graded Jacobson radical for group graded rings without unity. 

We compare the graded Jacobson radical for both rings with unity, and those 

without. We find that for group graded rings, the descriptions are equivalent. 

We provide some necessary lemmas for rings without unity which have appeared 

in the case the ring is afforded unity. These lay the relevant foundation for our 

investigations. For example, we show that :T(R) n Re ~ :T(Re) (where e is 

idempotent) for all groupoid graded rings without unity. 

We give a generalization of Bergman's 'folklore' lemma for group graded rings 

with unity to partial groupoid graded rings without unity. Since homogeneous 

sums and generalized matrix rings are both graded by induced partial groupoids, 

our generalization of Bergman's lemma applies to these graded rings as well. Our 

results also yield three corollaries on the Jacobson radical of graded F-algebras 

(where F is a field). 
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In 1985 Anderson, Divinsky, and Sulinski defined an invariant ideal Io in which 

R 1IoR1 ~ Io for any Z2 -graded ring R and found that the Jacobson radical 

was 'invariant' in all Z2 -graded rings. We define a new concept of 8-invariance 

and it turns out that the results of several previous authors fit our definition. 

For example a 1989 result of Jespers and Wauters is equivalent to saying that 

the Jacobson radical is 8-invariant in all generalized matrix rings. We specify, 

with necessary and sufficient conditions on 8, exactly for which graded rings 

the Jacobson radical is 8-invariant. 

The ring of symmetric functions is a graded ring with important applications 

in mathematical physics. Structural aspects of this graded ring are described. 

Using the transition matrices of the symmetric functions we are able to write 

the spin characters of the symmetric group in terms of the ordinary ones. This 

leads us to describe a new algorithm for the spin characters. We also present 

simpler algorithms in two special cases. 

We include the ring of Hirota derivatives as a practical example of a graded 

ring without unity. The BKP equations are one example of its homogeneous 

elements. Setting up this example leads us to introduce the generalized Q­

operators and we describe some connections between them and the BKP equa­

tions. By associating the generalized Q-operators with shifted Young diagrams, 

we generate the lower weight portion of the BKP hierarchy. 

Motivation for these studies is directed mosLly Ly Lhe investigations of other 

authors and driven mostly by curiosity. 
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Introduction 

Mathematics is a universal language able to be shared between people from na­

tions all over the world. Not only is mathematics a beautiful abstract expression 

of patterns, it is also used to describe the world around us, be it in physics or 

engineering, chemistry and biology. When one starts out on a PhD, the young 

mathematician has already begun to feel that all areas of mathematics are, in 

some sense, connected. Of course, since Gauss, it has become impossible to gain 

a grasp on all areas; yet one then realizes that a solid foundation in any one 

of the areas of algebra, analysis, topology or number theory for example; will 

provide some understanding of the others. For me, algebraic structure is the 

attraction. 

Graded rings provide an elegant way to describe many situations. In this thesis, 

we give some new results from the abstract area of the Jacobson radical of 

graded rings. As a 'real-world' example of a graded ring without unity, we 

include the ring of Hirota derivatives. Also, via symmetric functions we provide 

a new combinatorial recipe for calculating the spin characters of the symmetric 

group. 

Every effort has been made to present these topics in such a way as to be easily 

understood. 
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Semigroup graded rings were first mentioned by Schiffels in 1960 [64] with a focus 

on rings graded by cancellative semigroups. Indeed, rings graded by cancellative 

semigroups or commutative semigroups have been of particular interest (see [2], 

[9], [11], [12], (13], [21], [33] and [53], for example) and results for group graded 

rings are plentiful (see [3], [8], [17], [49], [50] and [54] for example). Throughout, 

we try to extend the definitions and results to as wide a class of graded rings as 

possible. By considering rings graded by partial groupoids, we achieve this. 

Groupoid graded rings have only been considered more recently and the first 

positive results on groupoid graded rings were obtained by Kelarev in [38]. In­

deed, one can view generalized matrix rings as graded by partial groupoids; but 

it is not associativity which the structure grading the ring lacks, it's complete­

ness of the operation. It makes sense in this case to complete the operation 

by adjoining a 7.firo. Tn doing so, the grading structure becomes the Brandt 

semigroup of matrix units (with a zero). And so our main consideration for 

groupoid graded rings is to give as generalized an account as possible. 

Amitsur's comprehensive account of Morita contexts [2] appeared in 1971. In 

this thesis, we approach Morita contexts as rings graded by the Brandt semi­

group of order 2. We provide a definition of an S-invariant radical, and Amit­

sur's paper includes a result which says, using this definition, that the Jacobson 

radical is S-invariant. Anderson, Divinsky and Sulinski wrote an impressive 

paper [3] in 1985 in which a definition of an invariant radical appeared. 

Subsequent to Amitsur's paper is the work of Jespers and Wauters [69] on 

generalized matrix rings which appeared in 1989. One of their results tells of 

the invariance of the Jacobson radical. Others have published on the concept 

of S-invariance, such as [30], [31], [62], and [63]. In some senses, the previous 
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results in this area have forced our definition of S-invariance, in order, at least, 

to sort out the different semigroups which satisfy the property. 

We first examine the results of these previous authors in the context of our 

new definition of S-invariance. We are able to provide necessary and sufficient 

conditions on S to ensure that for any ring graded by S, its Jacobson radical 

is S-invariant. Our main theorem and lemmas from Chapter 3 appear in [39]. 

Gardner and Kelarev [22] have subsequently generalized our results and found 

that the concept of S-invariance extends to other radical classes. 

Graded rings with finite support have been actively investigated recently (see, 

for example, [7], [13], [19]). Evidently, every group graded ring with finite sup­

port is a cancellative homogeneous sum. We show that homogeneous sums are 

graded by an induced partial groupoid. It's convenient to adjoin a zero to partial 

groupoids, and this is the approach we take early on with the Brandt groupoid. 

In the case a zero is adjoined, the partial groupoid becomes a semigroup, and 

so we describe both generalized matrix rings and Morita contexts as Brandt 

semigroup graded rings. 

Homogeneity of the radical has received a lot of attention over the past few 

decades (for example in [5], [6], [8], and [50]). The consistent approach has been 

to investigate connections between the graded Jacobson radical and the radical 

itself. 

In the book of Nastasescu and Van Oystaeyen [49] on group graded rings, two 

equivalent descriptions of the graded Jacobson radical appeared, for rings with 

unity. Two years later Nastasescu [50] found that n.J(R) ~ Jgr(R) for a finite 

group G of order n E N where R is a G-graded ring with unity and Jgr is the 
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G-graded Jacobson radical. It seems an equivalent lemma in the case for rings 

without unity had appeared in a preprint of Bergman [8]. No confirmation of 

this 'folklore' lemma has yet appeared. The lemma in itself is okay; but what is 

not clear is whether or not the property relates to rings with unity or to those 

without. To this end, we provide a carefully considered definition of the graded 

Jacobson radical for rings without unity. Using this description of the graded 

Jacobson radical we are able to circumvent any potential problem by showing 

that if the lemma is true for the case of rings with unity, then it is also true for 

the case of rings without unity. 

In Chapter 4, we describe homogeneity situations using a partial groupoid grad­

ing. We are able to generalize Bergman's 'folklore' lemma for finite group graded 

rings to rings graded by partial groupoids. Our main theorem, along with several 

corollaries and examples from Chapter 4 appears in [39] and [41]; noteworthy is 

that at that time we had not made the necessary precursive connection to rings 

without unity that we do indeed give here. 

So, why all the fuss about unity? For those of us who prefer not to afford the 

ring a unity, we are from time to time pestered by others who can not see the 

point. Indeed what is often demanded is: "Can you describe to me a practical 

example of a ring without unity that has natural applications?" We attempt 

to provide such a ring here - a graded one of course - and in order to provide 

a suitably practical example we conduct a thorough search through the ring of 

symmetric functions. It turns out that this graded ring is naturally combinatoric 

in behaviour and so you will find from time to time some discussion that may 

seem a little out of place. If you make it to the end of the text, then hopefully 

the reasons for their inclusion are put into context. 
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A further motivation for including a somewhat comprehensive account of the 

ring of symmetric functions is that it is a highly applicable graded ring, promi­

nently used by mathematical physicists in a diverse range of settings. 

Soliton equations are a non-dispersing shallow water wave equation admitting 

abundant exact solutions (see [26] for example). In 1971, Hirota [25] developed a 

method for writing these non-linear P.D.E.s as linear combinations of differential 

operators, called Hirota derivatives. We describe the ring of Hirota derivatives 

as a graded ring without unity. 

In 1983 Jimbo and Miwa [34] released a landmark paper on soliton equations. 

Included in the paper is a description of the KP and BKP equations in Hirota 

form. The equations come in a hierarchy. The BKP equations, for example, 

occur at every even weight larger than 6. In 1988 Nimmo [51] developed a 

connection between the Schur S-functions and the KP hierarchy using Young 

diagrams, and left the problem of doing the same thing for the BKP equation 

open. We utilize the ideas developed by Nimmo [51] to give the Hirota deriva­

tives a relevant meaning in the theory of symmetric functions. This leads us 

to introduce generalized Q-operators. We make some connections between the 

BKP hierarchy and the generalized Q-operators, and also some conjectures, 

leaving many aspects of this study open for further investigation. By represent­

ing the generalized Q-operators as shift Young diagrams, we generate the lower 

weight portion of the BKP hierarchy. Initial conjectures were published with 

Salam [55], although the required foundation was not included. All the required 

details are included here to ensure that the construction is valid and does indeed 

imply symmetric function behaviour. The approach given here is different from 

that in [32] and [52], in that we do not use supersymmetric functions. 
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In 1911, Schur [65] described various symmetric functions and introduced the 

spin characters of the symmetric group in his definitive paper on the projective 

representation of the symmetric group. The spin characters were not paid much 

regard until the 1960s when Morris wrote a very comprehensive account [46] and 

gave some recursive formulae for them. More recently, spin characters have been 

of interest. For example in 1995, Morris [48] gives further improvements and 

results subsequent to his previous work. Also, it is with the spin characters that 

we are able to describe the generalized Q-functions we use to (partly) develop 

the BKP hierarchy. 

By examining the various transition matrices between the different bases of the 

ring of symmetric functions, we are able to write the spin characters of the sym­

metric group in terms of the ordinary characters of the symmetric group. This 

approach allows us to describe a new, non-recursive, combino.torial o.lgorithm 

for the spin characters. 

An index is included at the back of the thesis followed by a glossary of notation. 

Entries in the glossary of notation with a * in place of a page reference are not 

explicitly introduced in the text of the thesis. They are used in this thesis, and 

so are included in the list to provide clarity and completeness. 

The Bibliography includes some entries (specifically [57] and [58]) which are not 

directly referred to elsewhere in the text. We include them in the Bibliography 

as they are importanL vaµen; iu t>emigrouµ theory which have been influential 

to the investigations here. 

We hope you find this thesis self-contained, enjoyable, comprehensive and easy 

to read. 

xiii 



Chapter 1 

Preliminaries 

This chapter i~troduces background information and prerequisites for under­

standing the thesis. It contains the standard facts that we need, well known in 

the theories of semigroups, rings and radicals, partitions, and Young diagrams. 

Our new results and related terminology are presented in the later chapters. 

1.1 Groupoids and groups 

A groupoid (S, o) is a non-empty set S together with a binary operation o. The 

binary operation on the set is not necessarily associative. The properties of 

the binary operation are often used to describe the groupoid. For example, a 

set S together with a commutative binary operation is called a commutative 

groupoid. It is worth pointing out that in many texts, and indeed in this thesis, 

we denote the groupoid (S, o) more simply as S. Of course, the operation on S 

must always be made clear. 

If a groupoid is associative, then it is called a semigroup. Properties and stan-
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dard results from semigroup theory will be discussed in Section 1.2. 

A subset T of a groupoid S is closed under the operation o on S if s o t E T for 

any s, t ET. The binary operation just defined on T is said to be the operation 

induced on T from S. A non-empty subset T of S forms a subgroupoid if it is 

closed under the operation induced from S. 

A subgroupoid T of a groupoid S is a left (right) ideal of S if ST ~ T (re­

spectively, TS ~ T). If T is both a left and right ideal of S then T is called a 

two-sided ideal, or more simply, an ideal of S. 

If A is a non-empty subset of a groupoid S, then the intersection of all sub­

groupoids of S containing A is also a subgroupoid of S denoted by (A). An 

element a of a groupoid S generates Sand is a generator of S if (a) = S. If A 

is a non-empty subset of S and (A) = S, then A is called a set of generators of 

s. 

A groupoid S is left (right) cancellative if the equality zx = zy (respectively, 

xz = yz) implies x = y for any x, y, z E S. A groupoid Sis cancellative if it is 

both left and right cancellative. 

A partial binary operation o on a set S will assign to some of the ordered pairs, 

a value in S. In other words, a partial binary operation on Sis a mapping from 

a non-empty proper subset of S x S into S. When discussing the properties of 

partial groupoids we use the standard terminology of groupoid and semigroup 

theory assuming that the corresponding products used in the definition are 

defined. For example, a partial groupoid is left (right) cancellative if the equality 

zx = zy (respectively, xz = yz) implies x = y for any x, y, z E S whenever the 

products zx and zy (respectively, xz and yz) are defined. 
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Example 1.1 Let n be an odd integer. Consider a set S with n elements and 

let each element of the set S be represented by a vertex of an n-sided regular 

polygon. We define a partial binary operation on S by setting a o b equal to the 

element represented by the vertex of the polygon opposite the side connecting a 

and b when a and b are next to each other; and undefined otherwise. The opera­

tion is cancellative and commutative; but not associative. To see this, let the set 

S ={a, b, c, d, e} be represented by a pentagon and consider the product aoboc. 

a 

e b 
(aob)oc =doc=a 

d c ao(boc) =aoe=c =f.(aob)oc. 

The set S under this operation is a finite cancellative partial groupoid. 

If a groupoid S satisfies the identity xy = x (respectively, xy = y) for any 

x, y E S, then associativity is easily verified and S is called a left (right) zero 

semigroup. 

A semigroup with identity is called a monoid. Suppose (G, o) is a monoid with 

identity element e and that for each element a E G, there exist an inverse 

element b E G such that a o b = boa = e, then G is said to form a group under 

the operation o. If the operation is also commutative, that is if a o b = boa for 

all a, b E G, then the group G is called Abelian. 

In this thesis, we are not concerned directly with groups; however we do make use 

of two results from finite group theory. The first is a consequence of Lagrange's 

Theorem, and the other a consequence of Sylow's First Theorem. 
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Theorem 1.2 (Lagrange's Theorem, [29], Corollary I.4.6) If H is a subgroup 

of a finite group 0, then the order IHI of the subgroup H divides the order IOI 

of the group 0. Indeed, the number of distinct left (right) cosets of H in 0 is 

IOI/IHI. 

In fact, the converse to Lagrange's Theorem is not true. When a group 0 has 

order n, then for a divisor m of n, there may not exists a subgroup of order m. 

Sylow's First Theorem tells us which subgroups of certain order must exist. 

Theorem 1.3 (Sylow's First Theorem, [29], Theorem II.5.7) Suppose 0 is a 

group of order pnm where n, m E N, p is a prime with p and m relatively prime. 

Then 0 contains a subgroup of order p' for each 1 :::; i ~ n. 

The following corollary is an immediate consequence of Lagrange's Theorem 

and Sylow's First Theorem. 

Corollary 1.4 For a finite group 0, the least common multiple of the order of 

all subgroups of 0 equals the order IOI of the group 0 itself 

Proof. Lagrange's theorem tells us that the order of any subgroup of 0 is 

a divisor of the order IOI of 0. So we don't have subgroups of orders which 

aren't multiples of the prime factors of IOI. This means that the least common 

multiple of the order of all subgroups is bounded above by IOI. Sylow's Theorem 

ensures that for each prime factor p1 of JOI diving into IOI say n1 times, there is 

a subgroup of order p;1 of 0. This then means that the least common multiple 

of the order of all subgroups of 0 is exactly the order of the group 0 itself. D 
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Theorem 1.5 ([29], Corollary II.4.4) Let G be a group with g any element 

m G and Z9 the centralizer of g in G. Then the number of elements m the 

conJugacy class H9 of g is determined by 

We illustrate this theorem in the context of the symmetric group in Exam-

ple 1.30. 

1.2 Semigroups 

The terms introduced in Section 1.1 for groupoids also apply to semigroups. 

An element a of a semigroup S is regular if there exists b E S such that aba = a. 

A semigroup in which every element is regular is called a regular semigroup. Two 

elements a and b of a semigroup S are inverses of each other if aba = a and 

bab = b. A semigroup that contains a unique inverse element for every element 

in the semigroup is called an inverse semigroup. 

Example 1.6 Suppose a is a regular element of a semigroup S, say axa = a 

with x ES. Consider the element b = xax. Then 

aba = a(xax)a = ax(axa) = axa =a 

and 

bab = (xax)a(xax) = x(axa)(xax) = xa(xax) = x(axa)x = xax =b. 

Hence b is an inverse of a. 
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An element e of a semigroup is idempotent if e2 = e. A semigroup 8 is a band if 

all elements of 8 are idempotent. A commutative band is called a semilattice. 

Let E(8) denote the set of idempotents of a semigroup 8. For idempotents 

e, f E E(8), we define a partial order on E(8) by writing e s; f if ef = fe = e 

and we say that "e is less than or equal to !". If e s; f and e # f then we write 

e < f and say that e is less than f. If the semigroup 8 contains a zero element 

0, then 0 is less than any other idempotent element of 8. A nonzero idempotent 

e of a semigroup 8 is said to be primitive if 0 is the only idempotent of 8 less 

than e. A semigroup with 0 is null if ab = 0 for all a, b E 8. 

The definition of a subsemigroup is analogous to that of a subgroupoid. That 

is, any non-empty subset T of a semigroup 8 is a subsemigroup of 8 if T is 

closed under the operation o on 8 (and T is itself a semigroup under the binary 

operation induced on T from 8). Associativity in T is guaranteed since o is an 

associative binary operation on 8 and T is a subset of 8. 

A proper two-sided (left, right) ideal T of a semigroup 8 is (left, right) maximal 

if it is not contained in any other proper two-sided (left, right) ideal of 8. A 

two-sided (left, right) ideal M of a semigroup 8 is said to be (left, right) minimal 

if it does not properly contain any other nonzero two-sided (left, right) ideal of 

8. If a semigroup 8 has a minimal two-sided ideal K, then K is unique and is 

contained in every other two-sided ideal of 8. This minimal ideal K is called the 

kernel of 8. A semigroup is said to be siinple if it has no pruµer Lwu-si<le<l ideals. 

For example, the kernel of a semigroup, if it exists, is itself a simple semigroup. 

A semigroup 8 with zero is said to be 0-simple if 8 2 -:f. 0 and the only proper 

two-sided ideal of 8 is 0. With 8 2 -:f. O we exclude the null semigroup. 
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By a completely 0-simple semigroup, we mean a 0-simple semigroup containing 

a primitive idempotent. 

Example 1. 7 Let I be a set and put S =(Ix I) U {O} where the element 0 is 

distinct from any element in J. For i,j, k, l EI define a binary operation· by 

(i,j)·(k,l) 

O·(i,j) 

{ 
( i, l) if j = k 

0 otherwise 

= (i,j)·O=O·O=O. 

Then S is closed under this operation and forms a semigroup. The elements 

( i, j) E S are called I x I matrix units. Consider any element of the form 

(i,i) E S. Then (i,i) 2 = (i,i) · (i,i) = (i,i) and we see that these elements 

are the only nonzero idempotents of S. Since S has nonzero idempotents, then 

S 2 f:. 0. In fact, S is completely 0-simple. To see this, suppose that S has 

an ideal A that contains a nonzero element ( i, j) E A. Then for any element 

(k,l) ES, there is (k,i),(J,l) ES so that (k,i) · (i,j) · (j,l) = (k,l). This 

means that S = S(i,j)S. Since A is an ideal of Sand (i,j) EA, we see that 

S(i,j)S ~SAS~ A. So A= S, and Sis 0-simple. Now, for any two distinct 

nonzero idempotent elements (i,i), (j,j) ES, we see that (i,i) · (j,j) = 0. So 

the idempotents are primitive, and S is completely 0-simple. 

Lemma 1.8 ([14], Theorem 2.51) If a semigroup is completely 0-simple, then 

it is regular. 

We denote by s0 the semigroup S with a zero element adjoined and by S 1 

the semigroup S with an identity element adjoined. So S 0 = SU {O}, and 

S1 = SU { 1}. For all purposes of our proofs, in the thesis, we may assume that 

0 and 1 are external to S in the notation just given. 
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Let a be an element of a semigroup 8. A principal ideal is an ideal generated 

by a single element, and we denote by: 

L(a) the principal left ideal 8 1a = {xa Ix E 8 1 } of S generated by a; 

R( a) the principal right ideal a81 = { ax I x E 8 1 } of S generated by a; 

J(a) the principal (two-sided) ideal 8 1a81 = {xay I x,y E 8 1 } of 8 generated by a. 

The set of all generators of 8 1a is denoted by La; the set of all generators of 

a81 is denoted by Ra; and the set of all generators of S 1a81 is denoted by Ja. 

Let a and b be elements of a semigroup 8. The Green equivalence relations, .C, 

R, and J are defined by: 

a.Cb if and only if L(a) = L(b) 

and we say that a and b are in the same .C-class; 

a Rb if and only if R( a) = R(b) 

and we say that a and b are in the same R-class; 

aJb if and only if J(a) = J(b) 

and we say that a and bare in the same .:!-class. 

The following results can be found in Clifford and Preston [14] or Howie [28] 

and are stated here without proof. 

Lemma 1.9 ((14], Lemma 1.13) An element a of a semigroup 8 is regular if 

and only if a.Ce or a Re for some idempotent element e E S. 

In other words, an element a of a semigroup 8 is regular if and only if the 

principal left (right) ideal of 8 generated by a has an idempotent generator. 
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Theorem 1.10 ([14], Theorem 1.17) A semigroup S is inverse if and only if 

every principal left ideal and every principal right ideal of S has a unique idem­

potent generator. 

Lemma 1.11 ([14], Lemma 2.14) Any idempotent element e of a semigroup S 

is a right identity element of Le and a left identity element of Re. 

Let I be an ideal of a semigroup S. The Rees factor semigroup S /I is described 

as the semigroup formed by taking every element of S\I (under the operation 

induced from S), adjoining a zero element, and identifying every element of I 

with the zero element. Sometimes we say that I is factored out of S. 

Let S be a semigroup. Consider the principal two-sided ideal J (a) generated 

by an element a of S. Denote by I (a) the set consisting of all those elements of 

J(a) which do not generate J(a). That is, I(a) = J(a)\Ja· It is easy to see that 

if I(a) is non-empty, it is an ideal of S. Indeed, look at any x E I(a) and y ES. 

Since x E I(a) C J(a) and J(a) is an ideal, it follows that xy E J(a). Also 

J(xy) ~ J(x) c J(a) so xy does not generate J(a). Hence xy E I(a). Similarly 

yx E I(a). Since I(a) is an ideal of S contained in J(a), it is an ideal of J(a). 

We call the Rees factor semigroup Fa = J (a)/ I (a) a principal factor of S. 

Lemma 1.12 ([14], Lemma 2.39) Each principal factor of a semigroup S is 

either 0-simple, or simple, or null. Only if S has a kernel is there a simple 

principal factor, and in this case, the kernel is the only principal factor. 

Corollary 1.13 Let e be a primitive idempotent of a semigroup S. Then the 

principal factor Fe= J(e)/I(e) is completely 0-simple. 
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Suppose S is any semigroup and let I and J be indexing sets with i E I and 

j E J. We adjoin a zero element 0 to S that is not contained in either of the 

indexing sets I or J. By an I x J matrix over s0 , we mean a mapping A from 

I x J into s0 . The assignment of the element ( i, j) to a E S 0 is denoted by aij. 

If III = n and IJI = m, the Ix J matrix over s0 is an array of elements of the 

form 

( ~~~ ~~: ~~= ) 
an1 an2 anm 

where each ai3 E s0 . We write A= (ai3 ). We use (a)i3 to mean the matrix over 

s0 having a E S 0 in the ith row and lh column and zeros everywhere else and 

call (a )i3 a Rees I x J matrix over s0 • It is important to notice the positioning 

of the brackets, since this distinguishes an I x J matrix over s0 from a Rees 

I x J matrix over s0 • In the special case of an I x I matrix over 8° where 

S = {e}, the matrices-(e)i3 with i,j EI are isomorphic with the matrix units 

(i,j) introduced in Example 1.7. Sometimes the matrix units (e)ij are denoted 

more simply by ei3 when, in context, it is clear that we are referring to matrices 

rather than to a matrix entry. 

Let I and A be sets with i,j,k EI and A,µ,v EA. For any semigroup S, we 

can define a binary operation o on the set of Rees I x A matrices over s0 . Let 

P = CP>.i) be a Ax I matrix over S 0 and for any (a)3µ, (b)k,,, put 

where a, b,P>.i E S0 • The set of all Rees Ix A matrices over s0 forms a serni­

group under this operation. We call this' sernigroup the Rees I x A matrix 

semigroup over the semigroup with zero s0 with sandwich matrix P and denote 

it by M 0 (S; I; A; P). 
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Theorem 1.14 (Rees' Theorem, [14], Theorem 3.5) A semigroup is completely 

0-simple if and only if it is isomorphic to a regular Rees matrix semigroup over 

a group with zero. 

Example 1.15 Let I be an indexing set with i,j E I and consider the one­

element group G = { e }. We adjoin a zero to G and describe the I x I identity 

matrix A over G0 as having elements ( 8,J) determined by 

{
e if i=j 
0 if i-:/: j. 

If we use the identity matrix A as the sandwich matrix, then the set of Rees 

I x I matrices ( e ),J over G0 forms a Rees I x I matrix semigroup over { e, 0}. In 

fact, the semigroup so formed is clearly isomorphic with the completely 0-simple 

semigroup of matrix units from Example 1.7. It follows from Rees' Theorem 

that M 0 ( { e, O};I; I; A) is a regular semigroup. In fact, we shall see in the next 

Theorem that M 0 ({e,O};I;I;A) is an inverse semigroup. 

The Brandt groupoid was introduced by Brandt in 1927 [10] as a particulary 

elegant example of a partial groupoid satisfying a set of 4 axioms. We shall 

restrict our interest in the Brandt groupoid to the case when the operation is 

complete. This is done by simply sending any undefined pairs to an adjoined 

zero. In doing this we form a semigroup. Also, we shall not make use of the 

axiomatic definition here, but rather, speak of the Brandt semigroups as the 

Rees matrix semigroups that they are isomorphic to. For further details on the 

axiomatic approach and the Brandt groupoid, the reader is referred to [14]. 

The Rees matrix semigroup M 0 (G0 ; I, I; A) over a group G0 with zero, indexing 

sets I with III = n and sandwich matrix given by the n x n identity matrix A, 

is called the Brandt semigroup and is denoted by B(G,n). 
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We sometimes write the elements of B(G,n) as triples by putting B(G,n) = 

(I x G x I) U { 0} with multiplication of elements given by 

(i,g,j). (k,h,l) 

(i,g,j). 0 

{ 
( i, gh, l) when 
0 otherwise 

= O·(i,g,j)=O·O=O 

gh =I= 0 

In the case when G0 = { e, O}, the Brandt semigroup is just the semigroup of 

n x n matrix units, and so we denote the semigroup of n x n matrix units more 

simply by En. 

Theorem 1.16 ([14], Theorem 3.9) A semigroup S with zero is a Brandt semi­

group if and only if S is a completely 0-simple inverse semigroup. In fact, the 

following three conditions on a semigroup S with zero are equivalent. 

(i) S is a Brandt semigroup. 

(ii} S is a completely 0-simple inverse semigroup. 

(iii} S is isomorphic with a Rees I x I matrix semigroup over a group with 0 

with the I x I identity matrix .Ci as the sandwich matrix. 

Example 1.17 Let A be a set and suppose {Sa \ a EA} is a family of semi-

groups each with a zero element. We can identify all zeros of each these semi-

groups Sa with, and denote them by, the same symbol 0. 

Let S~ = Ba/O mean the set Ba with zero disjoined. Now let S consist of the 

zero element together with the disjoint union of all sets S~. Define the product 

of two elements x and y of S to be their product in Ba if they are from the 

same Ba; or zero otherwise. That is, BaSf3 = 0 if a=/= {3. Then S together with 

the product just described, forms a semigroup called the 0-direct union of the 

semigroups Ba. 
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Clearly, S is a regular semigroup if each of the semigroups Sa is regular, and 

every primitive idempotent in Sex is also primitive in S. Since completely 0-

simple semigroups are regular (Lemma 1.8) and, by definition, contain primitive 

idempotents, it follows that the 0-direct union of completely 0-simple semigroups 

is regular and contains a primitive idempotent. 

Theorem 1.18 ([15], Theorem 6.39 and Exercise 6.5-5) A semigroup S is a 

0-direct v-nion of completely 0-simple inverse semigroups if and only if S is an 

inverse semigroup in which every nonzero idempotent is primitive. 

1.3 Rings and radicals 

We refer to the ring (R, +, x) more simply as R, and write the multiplication 

by juxtaposing the elements. If the multiplicative operation in a ring R is 

commutative, we call R a commutative ring. If R is not the ring 0 consisting of 

just the zero element and if a multiplicative identity exists then it is written as 

1 and the ring is said to be a ring with unity or a ring with an identity element. 

Throughout, we assume that all rings are associative, but it is neither assumed 

that they are commutative or with unity. 

The notation I <J R will mean "I is an ideal of R". A ring R is said to be simple 

if R 2 f=. 0 and R has no proper two-sided ideals. 

If A is any subset of a ring R, we denote by (A) the smallest ideal of R containing 

A, and this is equal to the intersection of all ideals of R which contain A. We 

call (A) the ideal of R generated by A. 
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Suppose I is an ideal of a ring R, then the residue classes modulo I form a ring 

called the quotient ring, denoted by R/ I. Sometimes we say that I is factored 

out of R. If R is commutative or with unity, then the same is true for R/ I. 

Every ideal of a ring is the kernel of some ring homomorphism. In fact, any 

homomorphic image of a ring R is isomorphic to some quotient ring R/ I of R. 

This property is the First Isomorphism Theorem ([29], Corollary III.2.10). 

Theorem 1.19 (Second Isomorphism Theorem, [29], Theorem III.2.12) Sup­

pose I and J are ideals of a ring R. Then I/ (In J) is isomorphic to (I+ J) / J. 

Let R be a ring. A left R-module consists of an additive Abelian group A 

and a ring R together with a mapping R x A --+ A. This mapping acts as a 

multiplication on each element of A by each element of R on the left, and so 

we denote the image of (r, a) in A by ra EA. For all r, s ER and a, b EA the 

following conditions must be met: 

(i) r(a + b) = ra + rb; 

(ii) (r + s)a = ra + sa; 

(iii) r(sa) = (rs)a. 

Properties (i) and (ii) mean that the mapping is linear and property (iii) means 

that the mapping is associative. A right R-module is defined analogously. 

Let R and S be rings. An Abelian group A is an R-S bimodule provided that 

A is both a left R-module and right S-module and 

(iv) r(as) = (ra)s 
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for all a E A, r E R and s E S. 

A class is a collection of objects which satisfy certain defining properties. Classes 

are more fundamental than sets. Hungerford [29] provides and elegant example 

which distinguishes the subtle difference between a class and a set. 

Example 1.20 ([29], pp.2) Consider the class M = {X I X is a set and X tJ. 

X}. ]VJ is a class; but not a set. To see this, suppose M is a set. Then either 

]VJ E ]VJ or ]VJ tJ. M. However, if M E M then M tJ. M, and similarly if M tJ. M 

then M E M. These contradictions mean that M cannot be a set. 

A class X of rings is called a radical class if X satisfies the following axioms: 

(i) X is closed under homomorphisms. 

That is, if REX and I <l R then Rf I EX; 

(ii) Every ring R contains an X-ideal, X(R), which contains every other X­

ideal of R; 

(iii) (a) X is closed under extension. 

That is, for I <l R if I EX and Rf I EX then REX; 

or 

(b) X (R/X(R)) = 0. 

For any ring R, the X-ideal described in property (ii) is the X-radical of R. If 

a ring R is in the radical class X, then R is an X-radical ring. For any radical 

class X, we consider the class S of all rings R for which X(R) = 0, and call S 

the semisimple class corresponding to X. We call a ring R in the semisimple 

class S corresponding to X, an X-semisimple ring. 
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A radical class X is hereditary if every ideal of an X-radical ring is itself an 

X-radical ring. This means that for any ring Rand ideal I of R, the equality 

X(I) =In X(R) holds. 

An element a of a ring R is quasiregular if there is some b in R such that 

a o b =a+ b - ab = 0. From this point on, we reserve the use of the symbol o 

to be the binary operation we have just described. 

A quasiregular ring is one in which all elements are quasiregular. In this case, 

for each a E R there exists a unique b E R with a o b = boa = 0. We say that b 

is the quasi-inverse of a. 

The class .J' of all quasiregular rings is an hereditary radical class called the 

Jacobson radical class. If Risa ring, then there is a quasiregular ideal .J'(R) E .J' 

of R which contains every other quasiregular ideal of R. The ideal .J'(R) is the 

Jacobson radical of the ring R. Throughout this thesis we reserve use of the 

symbol .J'(R) for the Jacobson radical of the ring R, and when we say a ring 

is semisimple we mean that it is .J'-semisimple. Also, we might sometimes call 

the Jacobson radical of the ring, more simply, the radical of the ring. 

When we speak of idempotent elements in a ring R, we simply mean those 

elements e E R which are idempotent in the semigroup formed by R under 

multiplication. 

Example 1.21 Let R be a ring and suppose the Jacobson radical .J'(R) con­

tains some idempotent e ER. Since all elements of .J'(R) are quasiregular, there 

is some a E .J'(R) with a o e =a+ e - ae = 0. Multiplying bye on the right 

gives ae + e - ae = 0 yielding e = 0. So for any ring R, the Jacobson radical 

.J'(R) contains no nonzero idempotents. 
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Since fields contain a multiplicative identity, it follows from Example 1.21 that 

all fields are semisimple. 

We use C to denote the field of complex numbers; lR to denote the field of real 

numbers; Z to denote the ring of integers; and N or z+ to denote the set of 

natural numbers. 

Theorem 1.22 ([29], Theorem ix.2.3 ) If R is a ring, the following properties 

hold for the Jacobson radical .J(R) of R: 

{i) .J(R) is the intersection of all the left annihilators of simple left R-modules; 

(ii) .J(R) is the unique largest quasiregular ideal of R. 

Example 1.23 Suppose R is a nil ring. Then for any r E R there is a positive 

integer n E N such that rn = 0. It follows that 

r o (-r - r 2 - r 3 - r4 + ... + -rn-l) = 0. 

So every nilpotent element of a ring has a quasi-inverse. In fact any nil ideal is 

a quasiregular ideal and so the Jacobson radical contains all nil ideals. 

Suppose (R, +, x) is a ring and let I be an indexing set of order III = n, with 

i, j E I. An n x n matrix over R is a mapping M from I x I into R. The 

assignment of the element ( i, j) to r E R is written rij. We put M = (ri1 ) in 

the same way we did for a matrix over a selnigroup (pp. 10) , and addition +m 

in Mis given by (r,1 ) +m (t,1 ) = ((r+t)ij) for r,t ER. Since (R,+) is an 

Abelian group (M, +m) forms an Abelian group. Multiplication Xm in M is 

described by (r,3 ) Xm (t,3 ) = ((2:~=1 r,ktk1 ),3 ), and (M, Xm) forms a semigroup. 

So (M, +m, Xm) is a ring called then x n matrix ring over the ring R. 
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An n x n matrix over a ring R is often called a square matrix, and is denoted by 

Mn(R). For i,j EI, the entries r,1 ER with i = j are called diagonal entries. 

If r,j = 0 whenever j > i we say that the "entries above the diagonal" are zero, 

and call the matrix lower triangular. Similarly, if r,1 = 0 whenever i > j we 

say the "entries below the diagonal" are zero and the matrix is called upper 

triangular. These definitions only make sense for the class of square matrices. 

We conclude this section with a property of the Jacobson radical of square matri­

ces over a ring. For proof or more detail the reader is referred to Karpilovsky ([37]). 

Proposition 1.24 ([23], Corollary 4.9.7 with Theorem 4.9.3) For any ring R 

and any positive integer n, 

J(Mn(R)) = Mn(J(R)). 

Corollary 1.25 The ring of n x n matrices over any field is semisimple. 

1.4 Partitions 

This section introduces the terminology of partitions and the symmetric group, 

along with the preliminaries required for Chapter 5, where we investigate some 

of the relationships in the ring of symmetric functions. 

Each group of finite order is isomorphic either to a. Rymmflt.rk group or to a 

subgroup of a symmetric group, and so the symmetric group may be considered 

as one of the most elegant and useful examples in elementary group theory. 

A permutation of n objects is a bijection from the set {1, 2, · · ·, n} ~ N onto 

itself. The symmetric group Sn is the set of all permutations of n objects under 
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composition. Composition of permutations is performed from right to left. So 

7rp is the permutation obtained by first applying p, followed by 7r. The order of 

the symmetric group is n!. 

If 7r is a permutation then the two-line notation for 7r is the array 

which one might read as "1 goes to 7r(l), 2 goes to 7r(2), etc." The two-line 

notation can become a little cumbersome. Another standard way of writing a 

permutation is as a product of cycles. 

A cycle of length k, (i1, i2, · · ·, ik), is an ordered k-tuple of elements from a 

subset of the numbers {1, 2, ... , n} (with n 2: k), which are exchanged amongst 

themselves. More specifically, the cycle (i1,i2, · · · ,ik) is the permutation 

Example 1.26 Consider the permutations 

(
1 2 3 4) 

a= 4 1 3 2 and b = ( ! ~ ~ ; ) . 
Then a = (142)(3) and b = (1423). We can read the cycle bas "1 goes to 4, 

4 goes to 2, 2 goes to 3, and 3 goes to l", cycling through the numbers from 

left to right. The identity permutation is e = (1)(2)(3)(4). 

Every permutation can be written as a product of independent cycles. Incle-

pendent cycles are ones in which each number appears in, at most, one cycle. 

The cycle structure of a permutation is the number of cycles of each length 

appearing in it when it is written as a product of independent cycles. We write 
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the cycle structure as 

where each rnk is the number of independent cycles of length k. In Example 1.26, 

the permutation a has cycle structure (11, 2°, 31, 4°) and the permutation b has 

cycle structure (1°, 2°, 3o, 41). 

All permutations of the symmetric group Sn with the same cycle structure 

belong to the same conjugacy class and all permutations in a conjugacy class of 

Sn have the same cycle structure. Another way to describe the cycle structure 

is to use the concept of a partition. 

A partition A is a finite list of positive integers A = (A1A2 ···Ad) arranged in 

weakly descending (meaning non-increasing) order so that 

The components Ai of the partition A are called parts, and the number of parts 

in a partition>.. is called the length of the partition and is denoted by l(A). The 

sum of the parts A1 + >..2 + · · · + Ad = n is called the weight of the partition 

and is denoted by I.A.I. We write>.. I- n to mean A is a partition of weight n and 

often say, more simply, that A is a partition of n. We reserve Pn to mean the 

set of all partitions of w~ight n. The number of occurrences of a part A, in a 

partition A is called the multiplicity of A, in A and is denoted by m>., (A) or in 

context, more simply by m>.,. We usually write the multiplicity of each part as 

a superscript with 

The reverse lexicographical ordering Ln on the set P n of all partitions of n E N 

is the subset of P n x P n consisting of all ordered pairs (µ, >..) such that either 
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µ = A or else the first non-vanishing difference µ, - A, is positive. Ln is a 

total ordering, which means that every element of P n can be put in reverse 

lexicographical order with any other element of Pn, and if(µ, A) E Ln we write 

µ 2: A. If µ f. A and µ 2: A, we write µ > A and say that µ is larger than A in 

the reverse lexicographical ordering. 

Example 1.27 When n = 5, £5 arranges P5 in the sequence 

Using partitions, we have a neat way of describing the conjugacy classes of the 

symmetric group. Let's see what we mean here, by example. Notice that we 

usually call the conjugacy class of a permutation more simply the class of the 

permutation. 

Example 1.28 Consider the symmetric group S3. 

Element: ( ~ 2 ~); 2 

Cycles: (1)(2)(3) 

Class: (13) 

Element: 

Cycles: 

Class: 

( ; 2 ~); 1 

(12)(3) 

(21) 

( 
1 2 3 ) 
2 3 1 ' 

(123) 

(3) 

( ~ 2 ~); 2 

(13)(2) 

(21) 

( 
1 2 3 ) 
3 1 2 

(132) 

(3) 

( ~ 2 ~); 3 

(1)(23) 

(21) 

The identity element of any symmetric group Sk is always in a conjugacy class 

by itself; its cycle structure is (1 k). 
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Suppose 7f E Sn is a permutation with conjugacy class described by A E Pn a 

partition of weight n EN. Whenever we talk of the conjugacy class H'lr of 7f we 

use H>,.. The number of elements in the class H>.. is denoted by h>._. Likewise, 

Z>.. is used for the centralizer Z'lr of 7f and Z>.. denotes the number of elements in 

the centralizer Z >... 

Lemma 1.29 ([61], Proposition 1.1.1) For a partition A f- n of weight n, the 

number of elements in the centralizer Z>.. is determined by Frobenius' formula 

where m>.., is the multiplicity of the ith part of the partition A and the product 

is taken over all i for which Ai is a part of A. 

Let 7f E Sn be a permutation with class A E Pn· Theorem 1.5 tells us that 

we can determine the size h>.. of each conjugacy class H>.. by the size Z>.. of the 

centralizer. That is, h>.. = IH>..I = ~· For the symmetric group Sn the size of 

each conjugacy class is 

n! n! 
h>.. = - = m,,_ • 

Z>.. ITi \ 'm>..,! 

Example 1.30 Consider the symmetric group S4. The number of elements of 

S4 is 4! = 24. The number of partitions of weight 4 is 5. Written in order, 

they are (4), (31), (22), (212), and the identity (14), and each of these partitions 

corresponds to a class of S4. The number of elements in each class of S4 is: 

h - 24 1· 
(14)-14x4!= ' h( 2 - 24 - 6· 

21 )-2xl2x2•- ' 

h - 24 - 8· 
(31)-3xl - ' h _24_ 6 

(4)-4- . 

Indeed, 1 + 6 + 3 + 8 + 6 = 24. 
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Every partition,\ f- n of weight n can be associated with a Young diagram y>­

involving n boxes (cells, circles, dots, etc.,) with the ith row containing .\, boxes. 

Example 1.31 Suppose .\1 = (44321) and >-2 = (6321). Then .\1 f- 14 and 

l(.\1) = 5 while .\2 f- 13 and l(.\2) = 4. The Young diagrams for >-1 and >-2 are 

* 

* * * *l*l*I 
* * * 

* * * * * - -
* * - -

A Young tableau T for a partition ,\ f- n is an assignment of n numbers (not 

necessarily all different) to the n boxes of the Young diagram Y >-. Standard 

numbering means that the assignment of the numbers 1, 2, · · · , d :::; n is such 

that the numbers are strictly increasing from left to right across each row and 

strictly increasing down each column. When the numbering is standard we call 

the tableau T standard. 

There are several methods of semi-standard numbering. One of them is unitary 

numbering in which the assignment of the numbers 1, 2, · · ·, d :::; n is such that 

the numbers are weakly increasing (meaning non-decreasing) from left to right 

across each row and strictly increasing down each column. 

The staircase of a Young diagram consists of all the boxes in a continuous outer 

ribbon going from the lower left to the upper right (or vice versa). The staircases 

of the Young diagrams in Example 1.31 are marked with *'s. 

Another type of semi-standard numbering is regular numbering in which the 

assignment of the numbers 1, 2, · · ·, d:::; n is such that the numbers are: 
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(i) weakly increasing from left to right across each row; 

(ii) weakly increasing down each column; 

and 

(iii) like digits form a continuous staircase of some subdiagram. 

When the numbering is unitary we call the tableau 7 unitary and when the 

numbering is regular we call the tableau 7 regular. 

Example 1.32 Suppose >. = (3212). Then >. f-- 7, l(>.) = 4 and the Young 

diagram for >. is 

For this Young diagram, some examples of unitary tableaux are 71 and 72 

r r 
unitary unitary 

Some examples of regular tableaux are 73 and 74 
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r r r 
regular regular not regular 

The tableau 7 5 is not regular since the 2s are not arranged in a continuous 

staircase of any subdiagram. Actually, T5 is not unitary either. 

For each Young tableau we define a word by reading the numbers in successive 

rows from right to left, starting at the top row. The numbers which make up 

the word are called the elements of the word. A standard word is one in which 

the numbers 1, 2, · · ·, n each occur only once. The indices of the elements of the 

word are defined recursively by : 

(i) the number 1 has index 0 ; 

(ii) if r has index i, the number r + 1 has : 

(a) index i if it is to the right of r or ; 

(b) index i + 1 if it is to the left of r. 

For each standard word w, the charge of the word, c(w), is the sum of the 

indices of each element of w. The charge of a nonstandard word is the sum of 

the charges of the standard subwords. We extract the subwords recursively by : 

(i) Check if the word is standard. If it is, we are done, otherwise - proceed ; 

(ii) Starting from the left, mark the first 1 that occurs in the word ; 
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(iii) Call the largest marked number in the word k, and search for the first 

occurrence of k + 1 reading across from k to the end of the word, cycling 

through to the start of the word if required, always from left to right : 

(a) if k + 1 is found, mark it and go back to the start of step {iii) to 

search for, and mark, the appropriate k + 2. 

(b) if no k + 1 is found, the marked numbers form a standard subword. 

Extract the marked standard subword and go back to step (i) to 

begin the extraction of the next standard subword. 

Example 1.33 Consider the following tableau 'T which is both unitary and 

regular: 

'T=•· 

The word associated with this tableau is w = 221143. We extract the standard 

words: 

221143 

221143 

22114~ 

221143 

and removing the first standard word w1 = 2143 leaves w2 

standard. So we have the set W of standard subwords of 'T 
w = {2143; 21 }. 
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The indices, which are written as subscripts, are 

Summing all these indices tells us that the charge of the word w = 221143 is 

c(w) = 5. 

Let >. be a partition with Young diagram y>-. Suppose p = (p1 , p2 , ···,Pd) is 

a partition ~f length d with p I- l>-1 the same weight as >.. We can inJect the 

partition p into the diagram y>- by writing P1 l's; P2 2's; · · ·; Pd d's into the 

boxes of y>- to form a Young tableau. 

Example 1.34 Consider>.= (42) and p = (321). Then all the possible unitary 

tableaux formed by injecting p into >. are: 

ITliIIliJ 
~ 

ITliJiT3l 
~ 

All th~ possible regular tableaux formed by injecting p into >. are: 

CiliJ2l2l 
~ 

rs 

ITiiliTIJ 
~ 

rg 

There are no possible standard tableaux formed by injecting p into >.. 

A negative application is an injection of numbers giving a regular tableau in 

which like digits occupy an even number of rows. Since like digits must form a 
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staircase (of some subdiagram) in regular tableaux, we can think of a negative 

application as one which gives a staircase (of some subdiagram) of even height. 

By definition, negative applications only have meaning when regular tableaux 

are formed. In this example 78 has 1 negative application and 79 has 0 negative 

applications. In Example 1.32 73 has 2 negative applications and 74 has 1 

negative application. 
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Chapter 2 

Graded Rings 

Semigroup graded rings have been of interest for several decades since their first 

appearance in 1960 in [64], mainly devoted to rings graded by cancellative semi­

groups. Rings graded by cancellative semigroups or commutative semigroups 

have been of particular interest (see [2], [9], [11], [12], [13], [53], and [64], for 

example) and results for group graded rings are plentiful (see [3], [8], [17], [54], 

and [62] for example). 

Groupoid graded rings have only been considered more recently and the first 

positive results on groupoid graded rings were obtained by Kelarev in [38]. We 

begin with a definition of a groupoid graded ring, and then extend this to define 

a partial groupoid graded ring. 

Throughout, we try to extend the definitions and results to as wide a class 

of graded rings as possible. By considering rings graded by partial groupoids 

(where possible), we achieve this. 
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2.1 Examples 

Let S be a groupoid (semigroup, group) and let R be a ring (not necessarily 

with unity) which can be expressed as a direct sum R = ffisES Rs of additive 

subgroups Rs of R with s E S. If RsRt ~ Rst for all s, t E S then we say 

that R is a groupoid-graded ( semigroup graded, group graded) ring. We refer to 

R = EB sES Rs as an S-grading of R and the subgroups Rs as the s-components 

of R. Ifwe have the stronger condition that RsRt = Rst for alls, t ES, then we 

say that the ring R is strongly graded by S. Any element rs in Rs (where s ES) 

is said to be homogeneous of degrees. Each element r ER can be expressed as 

a unique sum r = L:sES r5 of homogeneous elements rs E Rs. We define the 

support of r to be the set supp(r) = {s Es I rs =f:. O}. We can extend this 

definition to supp (R) = LJ supp (r) = { s E S I Rs =f:. O}. If supp (R) is a finite 

set then we say that the ring R has finite support. 

For any subset G ~ S we define Ra= L:gEG R9 • Similarly put re = L:gEG r9 • 

If G is a subsemigroup of S then Ra is a subring of R. If G is a left (right, 

two-sided) ideal of S then Ra is a left (right, two-sided) ideal of R. 

If Sis a partial groupoid, then we say that R = ffisES Rs is S-graded when: 

(i) RsRt =f:. 0 implies that the product st is defined; 

(ii) RsRt ~ Rst whenever st is defined. 

If st is defined for all pairs s, t E S, then condition (i) is redundant, and the 

definition coincides with that of a groupoid graded ring. 

There are various classes of rings which can be presented as graded rings. The 

following examples are of interest to situations considered in later chapters. 
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Example 2.1 (Homogeneous Sums.) Homogeneous sums are equivalent to 

rings graded by partial groupoids. 

Let R be a ring not necessarily with unity, S a finite set, and let R be the 

direct sum of additive subgroups Rs where s E S. Denote by H(R) = UsESRs 

the set of all homogeneous elements of R. Then R = EB sES Rs is said to be 

a homogeneous sum of additive subgroups Rs whenever H(R) is closed under 

multiplication. This idea was first mentioned by Kelarev in (38]. 

Suppose R = EBsES Rs is a homogeneous sum. If RsRt =/= O, then there exists 

a unique element u in S such that RsRt ~ Ru. To see this, we will set up a 

contradiction. Firstly, since RsRt =/= 0, there exists r8 E Rs and rt E Rt with 

rsrt = x =/= 0. Since H(R) is closed under multiplication, x E Ru for some 

u E S. Next, suppose that RsRt i Ru. Then there exists some a E Rs and 

b E Rt with ab = c E Rv with u =/= v E S. Now, put a' = (rs +a) E Rs and 

b' =(rt+ b) E Rt. Then a'b' = d E Ry for some y ES and also 

Ry 3 a'b' = (rs + a)(rt + b) = r8 rt + r8 b +art+ ab. 

But Ry is an additive subgroup of R and recall that r8 rt E Ru and ab E Rv 

with u =/= v. This contradicts the homogeneity of the sum. Indeed, u = v = y. 

This means we can introduce a partial operation on S by putting st = u for 

all triples s, t, u E S such that 0 =/= RsRt ~ Ru. Then S becomes a partial 

groupoid, which we call the partial groupoid induced by R. 

Example 2.2 (Ring of 2 x 2 matrices over JR.) Let M = M2(IB.) be the ring 

of 2 x 2 matrices with entries from the field of reals. Consider the elements 

en= [ ~ ~ ] 
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Clearly JVI = euR +e12R +e21R +e22R, and in fact JVI is graded. We put B2 as 

the set of these four eiJ, ( i, j ::::; 2) above with a zero 0 adjoined. Under normal 

matrix multiplication (as described on page 17), B2 forms the semigroup which 

grades M. To write this formally we just need to put Re,
3 

=%JR. Because B2 

also has a zero we also need to put Ro= 0 and then JVI = ffisEB
2 

Rs. So in fact 

M is a contracted B2-graded ring. 

The semigroup B2 which grades the ring here is just the Brandt semigroup 

described in Example 1.15. 

If e is an idempotent element of a groupoid (or semigroup) S and R is an 

S-graded ring, then the e component of R is a subring of R. This is easy 

to see. Since Re is an additive subgroup, we need only consider the product 

R~ = ReRe s;;; Re2. This means that Re is also closed under multiplication and 

so is indeed a subring of R. 

Example 2.3 Consider the subring R of M2(R) xM2(R) given by R = Re+R9 

where 

Re={([~~],[~~]) lrER} 

R9 = { ( 0, [ ~ ~ ]) I a, b, c, d E R} . 

Since ReRg ~ R 9 , R9 Re s;;; R9 , R9 R9 s;;; R9 and ReRe s;;; Re we see that R is 

graded by the two-element semilattice Y2 = { e, g} with identity element e. It 

follows that 
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is a subring of R. In fact, since R is graded by a semilattice, R9 is also a subring 

of R. 

If S is a semigroup with zero 0 and R an S-graded ring with Ro = 0 then we 

say Risa contracted S-graded ring. In Example 2.3 the semilattice Y2 graded 

ring R is not contracted since g is the zero of the semilattice but R9 -:f. 0. 

Example 2.4 (Generalized Matrix Rings.) A ring R = EB~J=l Ri3 is said to 

be a generalized matrix ring if 

if J = k; 
otherwise. 

Following in the same fashion as Example 2.2 with a relaxing of the size of the 

matrix from 2 to any n EN, we consider the Brandt semigroup Bn made up of 

a zero element 0 and the matrix units elements ei3 for i, j ::; n. 

The Brandt semigroup Bn grades R. We write this formally as R = EBsEB,, Rs. 

We have to put Ro = 0, and so generalized matrix rings are contracted En-graded 

rings. 

Example 2.5 (Semigroup Rings.) Let A be a ring, S a finite or infinite 

semigroup (respectively, group). The the semigroup (group) ring A[S] of S over 

A is the associative ring consisting of all finite formal sums 

where each coefficient as E A. The word 'formal' here means that, in general, 

we only make use of the form of each term without calculating any exact values. 
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Because the sums are finite, only finitely many of the coefficients as can be 

nonzero. 

Consider another element f3 = L:sES bss of A[S]. Then addition in A[S] is 

defined component-wise by 

a+ /3 =Lass+ Lbss = L(as + bs)s. 
sES sES sES 

Multiplication in A[S] is given by 

af3 = (~ass) (~bss) 

~ (fs aubv) S 

where (a.,,u)(bvv) = (aubv)(uv) for u,v ES. Now for any semigroup (group) 

ring R = A[S], if we put Rs = As for each s ES then 

R = AS = ffi As = ffi Rs 
sES sES 

is an S-graded ring. We cannot generalize this construction to make 'groupoid' 

rings, because we could loose associativity of the multiplication in the ring. 

Example 2.6 (Morita Rings associated with Morita contexts.) Morita con-

texts where introduced in 1958 by Morita in his paper on "Duality for Modules". 

In 1971, Amitsur wrote a comprehensive and interesting paper [2] on "Rings of 

Quotients and Morita Contexts". 

A Morita context is a set M = (R, V, W, 8) where Rand Sare rings, Vis an R-8 

bimodule, W is an S-R bimodule and the products V x W to Rand W x V to 

S are associative bilinear mappings. This means that the following conditions 

are satisfied: 
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(iii) (rv )w = r( vw) 

(iv) s(wv) = (sw)v 

where v1,v2,v E V, w1,w2,w E W, r ER, and s ES. 

Associated with any Morita context M = ( R, V, W, S) is a set of matrices 

N = { [ : ~ ] I r E R, v E V, w E W, s E S} . 

which forms a ring under normal matrix addition and multiplication. We call 

the ring N the Morita ring associated with the Morita context M. To ensure a 

well-defined grading we need to put No = 0, and so the Morita ring associated 

with a Morita context is a contracted B2-graded ring. 

Example 2.7 (Ring of Polynomials inn commuting indeterminates over R.) 

Let R be a ring. Elements of the formal finite power series 

form a graded ring called the ring of polynomials over the ring R in n commuting 

indeterminates. 

Suppose R does not have a multiplicative identity. To describe the construction 

of the ring of polynomials over the ring R, we need to introduce a element 1, 

external to R and put 1 x a = a x 1 = a for any a E R. We shall not adjoin 

1 to R. We do not need to consider this element 1 under addition with any 

elements of R as this case will never arise. Also, this external element 1 is not 

in R[x1 , x2, · · · , Xn]. If R is with unity, then we shall use 1 to mean the multi­

plicative identity of R. Now, whenever .A,= 0 we put x>., = 1. The coefficients 
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all n-tuples (A1, A2, ···An) the two elements 

and 

""""' b >.1 >-2 >.,, L_.; >.1,>.2, · >-nXl X2 · • ·Xn 
(>.1,>.2,.··An)ENn 

are considered equal. The x~1 x~2 
• • • x~n are called monomials and a term is a 

coefficient multiplied by a monomial. The monomial x~1 x~2 
• • • x>." is said to 

i1 i2 'ln. 

have degree k if k = L,; A1 . 

The indeterminates are not unknown or variable elements from the ring R, but 

the idea of them goes hand in hand with the idea of grading of the ring. In 

a sense, the indeterminates are indexing or separating (as described formally 

above) elements of the ring. 

Whenever the sum of the powers A1, A2, ···An equals m E N for each nonzero 

term of the polynomial, we say that the polynomial is homogeneous of de-

gree m. Let Rm[x1,x2, · · ·xn] consist of all homogenous polynomials of degree 

m. Then Rm[x1, x2, · .. Xn] forms a group under the addition induced from 

R[x1, x2, · · · Xn]· Put R0[xi, x2, · · · Xn] = R. Since 

for any m, l E N we see that the ring of polynomials over the ring R in n 

indeterminates is a strongly graded ring.· To verify Lhit;, we uee<l Lo give Lhe 

operations in R[x1, x2, · · · Xn]. 

Addition is just component-wise so that 
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L (a>.1,>.2, >.n +nb>.1,>.2 ,-·>.n)x~'X~2 ···x~n 
(>.1,>.2,-··An)ENn 

where + R is the addition given in R. We see that the Rm [x1 , x2 , · • · Xn] do 

indeed form an additive subgroup under this operation. 

Multiplication is not so easy to just jot down here and we will not attempt it 

since it is not crucial to the thesis. We will describe the multiplication in enough 

detail to justify our remarks above about the grading of the ring. The multi­

plication of elements in R[x1, x2, · · ·, Xn] is what you would expect intuitively 

in that we distribute across the brackets. In other words, we multiply each and 

every term in one polynomial by each and every term in the other. Multiplying 

coefficients is easy since this is just multiplication in the ring R. We must be 

careful of the order of the operation, since if our ring R is non-commutative, 

then so is the polynomial ring. To multiply the indeterminates we use the rule 

that x; x~ = a,~+k and x;
1 
x~2 = x;

1 
x~ whenever ii =f i2. This description of the 

multiplication, although not exactly explicit, is enough to see that the multi­

plication of the homogeneous subgroups does indeed give the grading described 

above. 

2.2 The ring of symmetric functions 

Symmetric polynomials form a graded subring of the ring of polynomials in n 

indeterminates over Z. Because this subring is graded, we can set up an inverse 

system of natural projections enabling an inverse limit of the additive subgroups. 

We describe this process in Section 2.2.1. By taking the inverse limit, we are 

essentially allowing the symmetric 'polynomials' to have an infinite number 

of indeterminates. After taking the inverse limit to allow an infinite number 

of indeterminates, the members of the graded ring are called, by convention, 
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symmetric functions. This is the approach taken by MacDonald in his definitive 

text (44] on symmetric functions, and our discussion here follows this style 

of construction. An alternative approach (see [61]) is to define the ring of 

symmetric functions as the vector space spanned by all monomial symmetric 

functions. 

The Schur S-functions are an important base for the ring of symmetric functions. 

They establish a strong connection between the theory of symmetric functions 

and the combinatorial theory of the Young diagrams. 

2.2.1 From symmetric polynomials to symmetric functions 

A polynomial from the ring Z[x1 , x2, · · ·, Xn] of polynomials inn indeterminates 

is a symmetric polynomial if it is invariant under the action of the symmetric 

group. The symmetric group acts on polynomials by permuting or interchanging 

the variables, and so symmetric polynomials are just those which don't change 

when we permute or interchange the n indeterminates. 

The set of symmetric polynomials in n indeterminates 

forms a subring of the ring Z[x1 , x2, · · ·, Xn] of polynomials inn indeterminates. 

Fork 2: 0, let A~k) consist of the homogeneous symmetric polynomials of degree 

k, and include the zero polynomial in each A~k) for all k;::: 0. Including the zero 

means that each A~) is a group under addition. Also, since A~k) A~) ~ A~k+J), 

the ring 
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forms a graded ring of symmetric polynomials in n indeterminates. 

Define the monomial symmetric polynomial m>.(xi, x2, · · ·, Xn) inn indetermi­

nates corresponding to a partition ,\ = ( .A1, ..\2, · · · , ..\3 ) with j ::::; n parts and of 

weight k, by using .>.0 to mean the partition,\ with n - j zeros adjoined, so that 

>.0 = (.>..1 , ..\2 , • · ·, ..\3 , 03+1, ···,On) is a partition of length n. Then we sum over 

all the distinct monomials in n indeterminates { X1, x2, · · · , Xn} with the parts of 

,\ 0 as exponents. The idea is that whenever j < n, in each monomial j - n of the 

indeterminates have the form x?·, and vanish, with j indeterminates surviving 

(with a nonzero exponent). That is 

where the sum is over all distinct permutations of ,\ 0 putting any x?· = 1. Since 

,\ f- k, then m>.(X1, x2, · · ·, Xn) is homogeneous of degree k. 

Example 2.8 Suppose,\= (21) with x = (x1,x2,x3,x4). Then 

is a symmetric polynomial of degree 3. 

In the theory of symmetric functions it is the convention to work in infinitely 

many variables. To construct the graded ring of symmetric functions, we use the 

natural projection Pn+l,n : An+l --+An making any Xn+i terms in An+l equal 

to zero. Clearly Pn+I,n is a surjective ring homomorphism. Next, we restrict 

Pn+l,n to act on polynomials of degree k::::; n by putting 

k • A(k) A(k) 
Pn+l,n · n+l --+ n 
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l k 1 Tl . . h t k (A(k) ) A(k) T k' so t iat Pn+I,n is a so injective. 11s means t a Pn+I,n n+I = n . a mg 

the limit of this inverse system 

A(k) = limA(k) 
• +--n n 

gives A(k), the set of homogenous symmetric functions of degree k, with zero. 

The A (k) are additive groups, and we use these additive groups to construct the 

graded ring of symmetric functions by putting 

Taking the inverse limit of symmetric polynomials of degree k in n indetermi-

nates is a neat and subtle way of supposing an infinite number of indeterminates 

without changing the nature of the elements of the homogeneous subgroups. If 

we were to simply just extend the number of indeterminates infinitely this would 

allow the product IJi(l+x,), for example, into the ring. Since this product does 

not have finite support, it cannot be an element in any graded ring. 

Next, we use the natural proJection p~: A(k) _, A~k) mapping symmetric func-

tions of degree k in n indeterminates to symmetric polynomials of degree k to 

describe certain classical symmetric functions. Notice that the projection p~ is 

also an isomorphism for all n ~ k. 

For any partition>. 1-- k, the monomial symmetric function m>..(x) must satisfy 

the projection to n indeterminates 

for every n ~ k, where m>..(x1 , · · ·, Xn) is the symmetric polynomial inn inde­

terminates. This style of constructing the monomial symmetric function is the 
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approach taken by MacDonald [44]. The monomial symmetric functions are also 

described as elements from the formal power series ring (see [61], for example). 

The space spanned by all monomial symmetric functions of degree k is A (k), the 

additive subgroup of degree k symmetric polynomials ([61], Proposition 4.3.3). 

This means that the monomial symmetric functions form an integer basis for 

the ring of symmetric functions A, and so any symmetric function from A can 

be written, in a unique way, as a finite linear combinations of monomials with 

integer coefficients. Whence A= Z[m.>.). 

2.2.2 Power-sum symmetric functions and the Schur S­
functions 

There are several other bases for A(k). We are specifically interested in two of 

them: the power-sum symmetric functions, and the Schur S-functions. 

For any r E N, the rth power-sum symmetric function is Pr(x) = Li2':l x~. 

The power-sum symmetric functions are multiplicative and so for any partition 

>. = (>.1, · · ·, Ak) we write P>. = P>.1 • • • P>.k. The power-sum symmetric functions 

P>. are well known as a Q-basis of the ring of symmetric functions (see [44), page 

16 for example). 

A popular way to describe symmetric functions is via their generating functions. 

The generating function for the power-sum symmetric functions is 

This is because 

d 1 
P(x) = '°""' -d log--. 

L.,; t 1- Xit 
i2':1 
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LLX~tr-1 
i;:::l r;:::l 

= LPrtr-1 
r;:::l 

(2.1) 

and the power-sumpr is described as the coefficients oftr-l (as in Equation 5.2). 

Of more use to us in the coming chapters (specifically see Section 5.3) is the ap­

proach taken by Littlewood in his book [43] on "Group characters and matrix 

representations of groups". Littlewood talks about functions which are asso­

ciated with power-sum symmetric functions, and we will call these functions 

Littlewood-associated functions. For example, for the power-sum symmetric 

functions the Littlewood-associated function is 

1 
G(a; t) = IJ (1 - o: t) 

i;:::l i 

with connection to the genera.ting function made by observing that 

G'(a; t) d 1 
G(a; t) = L dt log (1 - o:,t) 

i;:::1 

(2.2) 

An important family of symmetric functions are the Schur S-functions. Frobe-

nius was able to describe them via a characteristic mapping. We give a brief 

overview here, sufficient to lay the groundwork required, and suggest either [43] 

for a comprehensive treatment or [44] (Section I. 7) for a more concise account 

relevant to this setting. 

A characteristic mapping is an isomorphism from the ring genera.Led by the 

characters of the symmetric group into the ring of symmetric functions. The 

structure preserving properties are a key feature of the mapping, especially in 

the context of making analogies at later stages of this thesis. Frobenius' theorem 

says that there is a ch?-racteristic mapping which maps the group characters x>-
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of the symmetric group to the symmetric function S>.(x). Explicitly we have 

s>.(x) = L z;;1x;Pp(x) 
pf-l>-1 

where x>- is the character on the class p, which has centralizer of size z;1 ; and 

Pp(x) is a power-sum symmetric function. The power-sum symmetric function 

occurs in the description here definitively. Indeed the right hand side of this 

expression is just the characteristic mapping of x>-, the left hand side being its 

image in the ring of symmetric functions. The symmetric functions S>.(x) are 

called Schur S-functions. 

The Schur S-functions form a Z-basis of the ring of symmetric functions ([24] 

or [44], I.3.3) and provide a connection between the theory of symmetric func­

tions and the combinatorial theory of Young diagrams. The foundations of the 

combinatorial approach to Schur S-functions are outlined in Appendix C. 

2.2.3 Transition matrices 

If u>,(x) and vµ(x) are any two bases of the homogeneous subgroup of symmetric 

functions A(k) of degree k, each indexed by partitions of weight k, then there 

is a non-singular (invertible) matrix M ( U>., vµ) with integer coefficients M>.µ so 

that 

u>,(x) = LM>.µVµ(x). 
µf-k 

The matrix M(u>,,vµ) of coefficients lYhµ is called the transition matri.'C from 

U>.(x) to vµ(x). 

The transition matrix K from the Schur S-functions s>,(x) to the monomial 
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symmetric functions mµ(x) has coefficients K>.µ in the equation 

S>.(x) = L K>.µmµ(x). 
µf-l>-1 

The numbers K>.µ are called Kostka numbers and the matrix K is called the 

Kostka matrix. Actually, it turns out that there is a broader definition of Kostka 

numbers and the Kostka matrix, which we meet in Chapter 6. When we do 

meet the Kostka numbers and Kostka matrix again, we see that there is a t 

dependence that has not come into play yet. It turns out the the case described 

here is for when t = 0. 

The transition matrix from the power-sum symmetric functions to the Schur 8-

functions is just the character table of the symmetric group Sn. This is because 

of the orthogonality of the characters. This means that 

Pp(x) = L x;s>.(x) 
>.f-lpJ 

where x~ is the character x>- on the class p. 

(2.3) 

In Appendix A we give Schensted's algorithm for calculating the ordinary char-

acters of the symmetric group which we utilize in Chapter 6 within our new 

algorithm for calculating the spin characters of the symmetric group. 

2.3 Graded Ideals 

In line with our previously mentioned motivation of extending the definitions 

and results to as wide a class of graded rings as possible, we start of with a 

definition of a partial groupoid graded ideal. Of course, if 01:ir ideal or ring is 

graded by a stronger structure, all of these definitions and results will still hold. 
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Let S be a partial groupoid and suppose I is an ideal (left, right or two-sided) 

of an S-graded ring A. Then I is said to be an S-graded ideal if 

sES sES 

Suppose that B is another S-graded ring. A homomorphism f : A -r B of rings 

is said to be graded if f (As) ~ B s for all s E S. If our graded ring homomorphism 

f is surjective, then clearly J(As) = B5 • Further, if f is bijective then we say 

that f is an S-graded isomorphism. 

Karpilovsky [37] gives a detailed account of the behaviour of the Jacobson rad-

ical of graded rings with unity. We require two analogous propositions based 

on Karpilovsky's comprehensive account, but in the context of partial groupoid 

graded rings without unity. For these next two propositions, we include a refer-

ence to the analogous results in Karpilovsky, and supply proofs here whenever 

appropriate. 

In some parts, the proofs in Karpilovsky still hold in this context. However, be-

cause for example, our ring doesn't contain unity, in other instances we require, 

and have supplied, the appropriate proofs. 

The following proposition occurs analogously with Karpilovsky's (37] Proposi­

tion 22.6; in which A and B are graded algebras. The proofs here are based 

wherever possible on those given in Karpilovsky. 

Proposition 2.9 ([37], Proposition 22.6) Let S be a partial groupoid and A 

and B be S-graded rings. 
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(i) If I is an S-graded ideal of A, then A/ I is an S-graded ring by setting: 

(A/I)s =(As+ I) /I for alls ES. 

(ii} If f : A ----+ B is an S-graded homomorphism, then f(A) is an S-graded 

subring of B and kerf is an S-graded ideal of A. The map g: A/kerf----+ 

f(A) given by (a+ kerf) ....... f(a) for a EA is an S-graded isomorphism. 

(iii} An ideal I of A is S-graded if and only if I is the kernel of some S-graded 

homomorphism f: A----+ B of S-graded rings. 

Proof. 

(i) Since A is an S-graded ring and I is an S-graded ideal of A, we have 

sES sES sES 

Consider the factor ring A/ I. For each s E S we see that As/ Is = 

As I (I n As) = (As + I) I I by the Second Isomorphism Theorem (The­

orem 1.19). 

Now, we suppose st is defined and by putting (A/I)s =As/Is, we consider 

the product of (A/ I)s and (A/ I)t for any s, t E S to show that A/ I is 

graded. We see that 

(A/ I)s(A/ I)t = [(As+ I)/ I][(At +I)/ I] 

= (As +I) (At +I)/ I 

~ (AsAt +I) /I 

(A/ I)s't 

since st is defined. 
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Next, suppose (A/I)s(A/I)t =/:- 0. We must show that st is defined. Since 

0 =J (A/I) 5 (A/I)t ~ (AsAt+I)/I we see that AsAt =/:- 0. Since A is 

S-graded then st must be defined, as required. 

Hence (A/I)= EBsEs(A/I)s. 

(ii) Since f (A) is a subring of Band f is an S-graded homomorphism, f(As) C Bs 

for alls E S, and so 

f(As) ~ f(A) n Bs for alls E S. 

Since Bis S-graded and f is structure preserving, we can take a graded 

sum of these sets giving 

f(A) = EB f(As) = EB (f(A) n Bs). 
sES sES 

This means that f(A) is an S-graded subring of B. 

Next, f : A --+ B is a ring homomorphism and so kerf is an ideal of A. 

Now for any a E kerf we have a= EsES as and f(a) = EsES f(as)· Since 

f is an S-graded homomorphism, we know that f(as) E Bs for each s ES. 

Because B is S-graded, this means that each as is in the kernel of f. So 

indeed, kerf = EBsES (kerf n As) is a graded ideal. 

Finally, we consider the mapping g: A/kerf--+ f(A) given by g (a+ kerf) I-) 

f(a). To show that g is an S-graded isomorphism is straightforward know-

ing, as we now do, that the kernel is a graded ideal. For any s E S we see 

that 

g ((A/kerf)s) g ((As+ kerf)/kerf) 

as desired. 
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(iii) We have already shown that the kernel is an ideal. (The remainder of this 

proof coincides with that given in Karpilovsky). Now suppose that I is 

some S-graded ideal of our S-graded ring A. Then the natural homomor­

phism A 1-+ A/ I is a graded homomorphism with kernel I. 
D 

Proposition 2.10 ([37], Proposition 6.18) Let S be a semigroup, R is an S­

graded ring with .J(R) the Jacobson radical of R and e an idempotent element 

of a semigroup S. Then 

Ren .J(R) ~ .J(Re)· 

Proof. Put A =Re n .J(R) with a E A and let r E Re. Then ra E ReRe ~ Re 

since e is idempotent and ra E .J(R) because .J(R) is an ideal of R. So 

ra E Ren .J(R) and similarly ar E Ren .J(R). Hence Ren .J(R) is a two-sided 

ideal of Re. 

Since .J(Re) contains all quasiregular ideals of Re, we will show that each Xe E 

Ren .J(R) has a quasi-inverse in thee component of R. 

Take Xe E Ren .J(R). Since x E .J(R), there is a y E .J(R) so that x o y = 0. 

The support of y is the set supp (y) = {s E S J Ys -:f. O}. The support of y is 

finite and 

Xe oy Xe +y-xy 

Xe + Ye + LYs - XeYe -
sope 

0. 
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es = e 
s-:f.e 

XeYs - L XeYs 
esope 

(2.4) 



We identify four of the terms in the sum just given as belonging to Re 

Xe +Ye - XeYe - L XeYs E Re 

es = e 
sf- e 

with the remaining terms coming from homogeneous components of the ring 

other than Re. In other words supp (I:#eYs - L:e#eXeYs) S: S\{e}. 

Since the entire sum (Equation 2.4) equals 0, we can component-wise add the 

terms and reconcile the sum in each component. So for the e component of R 

we have 

Xe +Ye - XeYe - L XeYs = 0. 

es = e 
sf- e 

We see that if the end most term here equals zero then Xe o Ye = 0 and we are 

done. We proceed now to show that this is indeed the case. 

Since we are reconciling Equation 2.4 component-wise, we can look to the terms 

of the sum in the homogenous components of R other than Re. The component­

wise reconciliation requires that (I:#e Ys - I:e#e XeYs) = 0 and so 

LYs = L XeYs· 
s-f.e es-f.e 

Because of the component-wise reconciliation, I supp (y) \ { e} I must equal the 

cardinality of { es I es f- e, s E supp (y) \ { e}}. 

Now, let's consider the mapping Be between these two sets which sends each 

s E {supp(y)\{e}} toes E {es I es f- e,s E supp (y)\{e}}. The sets are the 

same size and so Be is bijective mapping onto { es E snpp (y) / { e} I es f- e} for 
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all s =f. e. It follows that es = e only when s = e. This means that 

L XeYs =0 
es = e 
s =f. e 

because no such s exists. And so the terms in the Re component of our original 

sum are just 0 = Xe +Ye - XeYe = Xe 0 Ye· Since Ye E .J(R) n Re, then this ideal 

of Re is indeed quasiregular and contained in .J (Re). D 

We describe the graded Jacobson radical here for group graded rings with unity. 

In Section 2.4 we give an equivalent description of the graded Jacobson radical 

for rings without unity. In Balaba's recent paper [5] both descriptions are used 

and we also discuss her conditions on their equivalence in Section 2.4. 

Let G be a group with identity element e and R a G-graded ring with unity. A 

G-graded left (right,two-sided) ideal T of R is an G-graded-maximal left (right, 

two-sided) ideal if T =f. R and T is not contained in any other proper G-graded 

left (right, two-sided) ideals of R. In this case the graded Jacobson radical 

J 9r(R) of R is defined to be the intersection of all G-graded-maximal left ideals 

of R. The grading of the radical is by the same structure G which grades the 

ring R itself. We state Bergman's Lemma for finite group G-graded rings with 

unity. 

Theorem 2.11 ([8]), ([50], Theorem 5.4) Let G be a finite group of order 

n EN and let R be a G-graded ring with unity. Then n:J(R) ~ J 9r(R) where 

J 9 r is the G-graded Jacobson radical. 

In Section 2.4 (Theorem 2.13) we extend this result to rings without unity and in 

Chapter 4 (Theorem 4.2) we give a generalization Bergman's Lemma by relaxing 
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to a partial groupoid grading. 

2.4 Unital extensions of graded ideals and rings 

Several investigations of the graded Jacobson radical of rings have appeared over 

the last two decades (see [1], [5], [6], [16], [37] or [50] for example) often for rings 

which are afforded unity. It suits us here to explore the graded Jacobson radical 

of rings without unity, and our aim is to provide the necessary connections to 

rings with unity. 

By a unital extension of a ring, we mean an embedding of a ring R without 

unity into a ring Ru with unity. We do this in the standard way (see [29] for 

example) by describing a monomorphism from R to Ru. 

The ring Ru is made up of the additive group R EB Z, where R is a ring without 

unity and Z is the ring of integers. Elements in R EB Z are denoted by ordered 

pairs {(r,n) I r E R,n E Z}. 

Addition in Ru is component-wise and multiplication is given by 

(r,n)(s,m) = (rs+mr+ns,nm) 

where r, s E R with n, m E Z and the product mr (and analogously ns) means 

the sum of the ring element r with itself m times in the case of a non-negative 

integer m, or the sum of the additive inverse -r of the ring element with itself 

!ml times in the case of a negative integer m. The product rs is determined by 

the ring multiplication, and the product nm is just the usual product of integers. 

The set Ru together with component-wise addition and the multiplication just 

described, forms a ring with an identity element (0, 1). The essential idea here 
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is that the embedding is described by a monomorphism in order to preserve the 

structure of our original ring R. 

For the remainder of this section, we require specifically that R be group graded. 

In order to consider unital extensions of graded rings, this restriction makes 

sense. It allows us to place the 'unity' carefully into our graded ring without 

causing major offence to the structure of our ring. 

So we begin with a ring R graded by a group G with group identity e. Any 

element r E R can be written uniquely as r = L,gEG r9 . We embed our G­

graded ring R into Ru in a similar manner described for embedding rings in the 

previous paragraphs, maintaining all the notation introduced there. We identify 

R with its copy in Ru and since (0, l)R9 ~ R9 and R9 (0, 1) ~ R9 for all g E G, 

we can grade Ru by putting the identity element (0, 1) in the e component, 

whence: 

For any r E R we have 

Ru = R~ fB EB R9 . 

gEG\{e} 

(r, n) = (re, n) + L (r9 , 0). 

g E G 
g i= e 

Recalling that Re is a subring of R, we can see that the e component in Ru is 

just given by the standard unital extension of Re in R. We shall reserve the use 

of Ru to always mean the unital extension of R. 

Let S be a groupoid (or semigroup or group). A left module T over an S-graded 

ring R is an S-graded left module if there exists additive subgroups T8 of T with 

52 



and RuTv ~ Tuv for all u, v E S. The graded right module is defined analogously 

with the ring interacting from the right. Throughout this section we will use 

module to mean left module and graded module to mean graded left module. 

We omit the entirely analogous discourse for right modules. 

Let S be a groupoid (or semigroup or group). An S-graded module T over 

an S-graded ring R is a graded-simple module 0 and T are its only graded 

submodules. 

The left annihilator of any S-graded module T is 

A(T) ={a ER I at= 0 for all t ET}. 

Annihilators of modules are ideals. 

We reverted briefly to our more general S-graded rings for the previous two 

definitions only, and return now, and until the conclusion of this section, to 

rings graded by groups with group identity e. 

For a ring R graded by a group G, the graded Jacobson radical J 9r(R) of R 

is defined to be the intersection of all left annihilators of all G-graded-simple 

R-modules. We use the gr here to indicate a graded structure. Indeed, for a 

group graded ring R, the radical is graded by the group G which grades the ring 

itself. If the ring is not graded by a group, then this description of the graded 

Jacobson radical may turn out not to be graded! 

For rings with unity, the definition of the graded Jacobson radical J 9r(R) just 

given is equivalent with the definition given on page 50 ([49]). Since this defini­

tion is sensible for both rings with unity and those without, we will use J 9 r(R) 

to mean the graded Jacobson radical as just described. 
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Aside 2.12 After an exhaustive search of the literature by others 

and me it was found that no actual definition of the graded Jacobson 

radical for rings without unity has yet appeared. In (5] a compre­

hensive account of special radicals of graded rings without unity 

was presented. Unfortunately the descriptions given in the section 

for the Jacobson radical came (in the most part) from [49], on group 

graded rings with unity. The error is only noticeable to the acute 

observer in that the word regular is omitted in the description of the 

radical involving maximal ideals. The definition given here is the 

obvious one, but was only decided upon after careful consideration. 

To date, it is only okay for group graded rings. In [1] the idea of 

describing graded Jacobson radicals (for rings with unity) in a more 

relaxed grading is discussed. Included in the paper by Balaba [5] is 

an interesting example of when this description yields an ideal which 

is not graded. We present her example at the end of this chapter. 

We get the following generalization of Theorem 2.11 for rings with unity to rings 

without unity. 

Theorem 2.13 Let G be a finite group of order n EN and let R be a G-graded 

ring with or without unity. Then n.J(R) ~ Jgr(R) where Jgr is the G-graded 

Jacobson radical. In other words, for any r zn .J(R) all homogenous components 

of nr belong to .J(R). 

A proof in the special case of a ring with identity was given in 1984 by Nastasescu (50]. 

An unpublished 1973 paper of Bergman [8] is widely quoted as the original source 

of this result. We have not had access to the latter paper, and have been unable 
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to find out whether it deals with rings generally or only unital ones. We there-

fore prove the result assuming the special case applying to rings with unity, in 

view of the inaccessibility of [8], and for the sake of completeness. 

Proof. We shall use module throughout to mean left module. As previously 

stated, the argument with right modules is symmetrically analogous to the one 

with left modules. 

Suppose M is a module over a ring R and denote by Ru the standard unital 

extension of R. The module M becomes a unital Ru module by putting 

(r,n)m = rm +nm 

for (r,n) E Ru and m EM. 

Let Y be a G-graded R-module with Y = EB9Yg and RhYg i;;;; Yhg· For (re, n) E 

R~ and any y9 E Y9 we have (re, n)y9 = reYg +ny9 E Y9 and so Y is a G-graded 

unital Ru-module. Any G-graded unital Ru-module is a G-graded R-module 

Similarly, if K is an G-graded R-submodule of a G-graded R-module M, then 

K is a unital G-graded Ru-submodule the G-graded unital Ru-module M, and 

vice versa. 

So any G-graded-simple R-module is also a unital G-graded-simple Ru-module, 

and vice versa. 

Let G be a group and suppose M is any G-graded-simple R-module over a 

G-graded ring R with left annihilator A(M). Take any a E A(M). Then 

a= L;gEG a9 • For any h E G, pick an m E lvh (since Mis graded). Then 
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where each of the a9 m E lvlgh for each g E G. Since the sum runs over distinct gh 

(here G is a group), we have a9 m = 0 for all g E G. And so all the homogeneous 

components a9 E A(Jvf) are in the annihilator of JvI and the annihilator is a 

G-graded ideal 

A(M) = EB (R9 n A(M)) = EB A(M)9 • 

gEG gEG 

Consider the group graded ring R with unital extension Ru with M again a 

G-graded-simple R-module. We describe the set 

A(M)u = {r E Ru I rm = 0 V m EM} 

containing the elements in Ru which 'kill' the elements in Jvl. This set forms a 

graded ideal of Ru. 

For any a E A(M), the element (a, 0) E Ru is in A(M)u since (a, O)m =am= 0. 

And so, A(M) ~ A(M)u. It is clear to see that the elements (a, 0) E Ru behave 

exactly as the elements a ER. So to compare A(.M) with its unital extension, 

we need only consider the the e-component. 

Suppose there is an (re, n) E Jgr(Ru)\:!9r(R). Then (re, n) E A(M)~ 

A(M)u n R~ with n =/= 0. So for all graded simple R-modules JvI we have 

(re,n)m =rem+ nm= 0 n =/= 0. 

This means that multiplication of an element in any simple module by re has the 

same effect as multiplying by -n E Z. For every prime p, Zp can be considered 

a graded-simple R-module with trivial ring multiplication so that (re, n)x = nx 

for any x E Zp. It is graded by letting Zp be thee component, with all other 

components being equal to zero. This implies that nx = 0 where n E .Zand so 

p ml1st divide n. 
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Since Zp is a graded-simple R-module for any p, then for all (re, n) E .J9r(Ru)\.J9r(R) 

we require that p must divide n for all p. This implies that n = 0 and we have 

our contradiction. 

This means that no extra killers are admitted by unital extension. Hence, if R 

is a ring without unity, then .J9r(R) = .J9r(Ru). Applying Theorem 2.11 yields 

which completes the proof. D 

In Chapter 4 we generalize Theorem 2.13 for the case of rings graded by can­

cellative partial groupoids. 

We conclude this chapter with Balaba's example, as mentioned earlier. 

Example 2.14 ([5], Example 6) Consider the set S = {(1, 1), (1, 2), (2, 1), (2, 2)} 

under 

(r,s) · (t,u) = (r,u) (r,s,t,u E {1,2}). 

Then ( S, ·) forms a rectangular band. The semigroup ring A = kS with coeffi­

cients in a field k is S-graded in the usual way. That is 

A= kS = k(l, 1) EB k(l, 2) EB k(2, 1) EB k(2, 2). 

Let M be any S-graded-simple A-module. Then (1, l)M = (1, 2)M and the 

element (1, 1) - (1, 2) annihilates M, for any simple A-module M. This puts 

(1, 1) - (1, 2) in Jgr(A). 

Now if we put N = A(l, 1), then N is a graded-simple A-module but (1, 1) 

doesn't annihilate N. The consequence is that (1, 1) ~ .J9r(A). 

This means that .J9r(A) is actually an ungraded ideal of A. 
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Chapter 3 

Rings with Invariant 
Radicals 

Let S be a semigroup and R = E9 sES Rs an S-graded ring. If e is an idempotent 

element of S, then the Re component of R is a subring of R (see pp. 32). 

The results of several authors have included investigations of the relationships 

between the Jacobson radicals .:l(Re) and .:l(Rt) of the subrings Re and Rt for 

idempotents e, fin S. For example, Amitsur considered invariant radicals in his 

lengthy paper on Morita contexts [2] and Jespers, Wauters gave comprehensive 

results for generalized matrix rings [69]. These authors found that the Jacobson 

radical was invariant for the graded structures of their respective interests. 

3.1 Simultaneous generalizations using S-invariance 

We now introduce a new concept of S-invariance which enables us to obtain 

simultaneous generalizations of several previous results known by other authors. 

We say that the Jacobson radical is S-invariant if, for every S-graded ring 
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R = EBsEB R8 , and for all idempotents e, f E E(S) and all x, y E S such that 

xey = f, the following inclusion always holds 

This definition is motivated by the results of Andrunkanivic [4], Anderson, Di­

vinski and Sulinski [3], Amitsur [2] and Wauters, Jespers [69]. We also find 

necessary and sufficient conditions on S to ensure that the Jacobson radical is 

S-invariant. 

Amitsur [2] considered radical classes invariant in Morita contexts. 

Theorem 3.1 ([2], Theorem 20) For all Morita contexts M = (R, V, W, S), we 

have V .J(S)W ~ .J(R) where .J is the Jacobson radical. 

With the new concept of S-invariance introduced at the start of this section, 

we obtain the following generalization of Amitsur's result. This generalization 

allows us to use Arnitsur's result whenever a ring has a B2-grading. 

Lemma 3.2 Amitsur's Theorem is equivalent to saying that the Jacobson rad­

ical is B2-invariant. 

Proof. Recall that a Morita context is a set M = (R, V, W, S) where R and 

S are rings, V is an R-S bimodule, W is an S-R bimodule and the products 

V x W to R and W x V to S are associative bilinear mappings. 

Consider the element vsw E V .J(S)W where v E V, s E :J(S) and w E W. 

Since s E :J(S) the element swv E :J(S) has a quasi-inverse, s' say. Thus 
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swv + s' - s' swv = 0 and so s' = twv for some t E .:J ( S). This yields 

swv + twv - twvswv = (s + t - twvs)(wv) = 0. 

Consider the element r = vtw + vsw - vtwvsw and now consider the product 

So 

rv ( vsw + vtw - vtwvsw )v 

= v(sw + tw - twvsw)v 

v(s + t - twvs)wv 

0. 

r 2 = r(vsw + vtw - vtwvsw) = rv(sw + tw - twvsw) = 0. 

Hence (-r) o (r) = 0 and (-r) o (vtw) o (vsw) = (-r) o (vtw+vsw-vtwvsw) = 

(-r) o (r) = 0. So any vsw from V .:J(S)W is quasiregular with a quasi-inverse 

in V .:J(S)W, and so V .:J(S)W is a quasiregular ideal in R. 

Since every B2-graded ring is a Morita context (Example 2.6), Amitsur's result 

says that the Jacobson radical class is B2-invariant. D 

Several authors have considered radicals invariant in group graded rings; in­

cluding Andrunkanivic [4], Anderson, Divinski, Sulinski [3], Jaegermann [31) 

and Sands [63]. Here we provide a simultaneous generalization of these results. 

Lemma 3.3 For every group G, the Jacobson radical is G-invariant ([4], [63]). 
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Proof. Let R be any G-graded ring, where G is a group. For any g E G we have 

a Morita context given by [ R~~ 1 ~~ ] where 1 is the identity element of the 

group, and g-1 E G is the inverse of g. From Amitsur's result (Theorem 3.1) 

we get R9 :T(R1)R9 -1 ~ :T(R1). Since 1 E G is the only idempotent, we need 

only consider this product. So the Jacobson radical class is G-invariant. D 

Wauters, Jespers [69] considered generalized matrix rings. One of their results 

is equivalent to saying that the Jacobson radical is En-invariant for all n. 

Lemma 3.4 The Jacobson radical is En-invariant for all n. 

Proof. Suppose R is a En-graded ring. Take any nonzero elements x, y E En 

and nonzero idempotents e, f E En with xey = f. 

Recall that the Brandt semigroup En is the semigroup of n x n matrix units 

over an indexing set I with III= n, as given in Example 1.7. We can express x 

as (i,J) where i,j E J. Similarly, we can express y as (k,l) with k,l E J. Also, 

we can express any nonzero idempotents as (m, m) and (n, n) with m, n E J. 

Because the product xey = (i,j) · (m, m) · (k, l) is defined and nonzero, it follows 

that j = m and so we must have k = m = j. Next, since (i,j) · (j,J) · (j, l) = 

xey = f = (n, n) we see that n = i and so must l = n = i. Therefore the set 

(x, e, y, f) is just a Brandt semigroup E2 over an indexing set of order 2. 

Put R' =Rx+ Re+ Rf+ Ry. Then R' is a E2-graded subring of R. Lemma 3.2 

yields that Rx:T(Re)Ry ~ :T(RJ) where :T is the Jacobson radical class. Since R 

is an arbitrary En-graded ring, it follows that the Jacobson radical is En-invariant. 

D 
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3.2 S-invariance of the Jacobson radical 

We start by giving necessary and sufficient conditions on the semigroup S for 

the Jacobson radical class to be S-invariant. These conditions generalize some 

previous results by other authors, as mentioned in Section 3.1. 

Theorem 3.5 Let S be a semigroup, P(S) the ideal generated by all idempo­

tents in S and, L(S) the union of all ideals of S contained in P(S) which do 

not contain idempotents. Let K = P(S)/L(S). Then the following conditions 

are equivalent: 

(i) the Jacobson radical class is S-invariant; 

(ii) K is a 0-direct union of Brandt semigroups; 

(iii) if a E K\O, then there exists a unique element x EK such that axa =a; 

(iv) K is an inverse semigroup in which every nonzero idempotent is primitive; 

(v) K is an inverse semigroup which is the union of its 0-minimal right ideals. 

Remark 3.6 Amitsur's result on B2-invariant radicals holds for other radical 

classes and the same can be said for S-invarfance. Specifically, the Baer, Levitzki 

and Nil radicals are also S-invariant for the semigroup described in our main 

theorem. It makes sense that the concept of S-invariance can be applied to other 

radical classes. Indeed, subsequent to our paper [40], Gardner and Kelarev, 

in [22], provide a large selection of radical classes which are S-invariant for the 

S-graded rings described our Theorem 3.5. 
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Before we give the proof of this theorem, we will construct some examples of 

graded rings for which the Jacobson radical is not invariant. 

Lemma 3. 7 Let S be a semigroup and e, f E S be nonzero idempotents such 

that SeS ::::>Sf S. Then there exists an S-graded ring R such that the Jacobson 

radical class is not S-invariant. 

Proof. Let U = SeS and V = SJS. Since f EU, then there exist x,y ES 

such that f = xey. We may assume that x and y belong to V because otherwise 

we could replace x and y by fx E V and yf E V using the equality f = J3 = 

(fx)e(yf). Let M = .M2(lR), the ring of 2 x 2 matrices with entries from the 

field of real numbers JR, and let T be the subring e12R Consider the semigroup 

ring M[S]. Clearly M[V] is an ideal of MS and T[U] is a subring of M[S]. 

Hence the sum R = T[U] + M[V] is a subring of M[S]. For any s ES we put 

{ 

Ms if 
Rs = Ts if 

0 if 

s E V 
s E U\V 
s.;. u. 

Then Rx = Mx, Ry =My, Rf = Mf and Re =Te. Since R; = T 2e2 = 

0 it follows that Re is quasiregular. Thus 0 ":/- eid = (e11e12e22)(xey) = 

(e11x)(e12e)(e22Y) E Rx.J(Re)Ry. It follows that the Jacobson radical is not 

invariant, because obviously .J(RJ) = 0 cannot contain ei2f. D 

Example 3.8 Consider the subring R of M2(JR) xl\!h(JR) given by R = Re+R9 

where 

Re={([~~],[~~]) lrElR} 

R9 = { ( 0, [ ~ ~ ]) I a, b, c, d E lR} . 
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The ring R is graded by the two-element semilattice Y2 = { e, g} with identity 

e. Since R; = 0 it follows that .J(Re) =Re. Suppose that the Jacobson radical 

is invariant. Then 

However this contradicts Corollary 1.25 since R9 ~ M2(JR) is semisimple. 

Lemma 3.9 Let S be a semigroup. If S contains a subsemigroup isomorphic 

to the two-element semilattice, then there exists an S-graded ring R such that 

.J(R) is not S-invariant. 

Proof. Let S be a semigroup. Consider the ring R graded by the two­

element semilattice Y2 constructed in Example 3.8. Suppose that Y2 ~ S. 

Let P = M2(JR) xM2(lR), D9 = R9 , De = Re and Ds = 0 for any s E S\¥2. 

The subring D = ffisEB Ds of Pisa contracted S-graded ring and the Jacobson 

radical is not invariant. D 

Example 3.10 Consider the subring M of M2 (JR) given by M = Mx +My 

where 

Mx = { [ ~ ~ ] I a, b E lR} 

My = { [ ~ ~ ] I c, d E lR} . 
The ring Mis graded by the two-element left zero band X2 = {x, y}. Consider 

the ideal of Mx given by 
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Since I; = 0, Ix is a quasiregular ideal of Mx. Suppose there exists a quasiregu­

lar ideal K of Mx with Ix CK. Then [ ~ ~ ] EK and K cannot be quasireg-

ular. It follows that .J(Mx) =Ix. Similarly .J(My) = { [ ~ ~] I r ER}. 
Now, suppose that the Jacobson radical is invariant. Then My.J(Mx)My ~ .J(My)· 

Take any u, v E My and any w E .J(Mx), then 

My.J(Mx)My 3 uwv = [oc od][oo ro][os ot] 

[~ ~.][~ ~] 
[ c~s it ] 

~ .J(My)· 

This is a contradiction and the Jacobson radical is not invariant. 

Similarly, the subring N of M2(IB.) given by N = Nx +Ny where 

Nx = { [ ~ ~ ] I a, b E IB.} 

Ny = { [ ~ ~ ] I c, d E IB.} . 

graded by the two-element right zero band Z2 = {x,y}, does not have an in-

variant Jacobson radical. 

Lemma 3.11 Let S be a semigroup. If S contains a subsemigroup isomorphic 

to the two-element left or right zero band then there exists an S-graded ring R 

such that .J(R) is not S-znvariant. 

Proof. Consider the rings M and N graded respectively by the two-element 

left zero ideal X 2 and two-element right zero ideal Z2 as constructed in Ex-

ample 3.10. Suppose that either X2 ~ Sor Y2 ~ S. Then, as in the proof of 
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Lemma 3.9 we can construct a contracted S-graded ring whose Jacobson radical 

is not invariant. D 

3.3 Proofs and remarks 

Remark 3.12 Actually the equivalence of points {ii), (iii), {iv) and {v) in our 

Theorem 3.5 is given in Clifford and Preston's second volume on the algebraic 

properties of semigroups. For further details, see Exercise 6, Section 6.5 in {15]. 

We now give the proof for Theorem 3.5. 

Proof. (i) ::::} (ii) : Suppose that the Jacobson radical is S-invariant. Denote 

by E(S) the set of all idempotents in Sand let P(S) be the ideal generated by 

E(S). If P(S) = ©, the asserLiou h:; Lrivial, au<l 80 we may ai:;i:;ume P(S) =f. ©. 

Let L(S) be the union of all ideals of S contained in P(S) which do not contain 

idempotents. Clearly P(S) =f. L(S). 

We shall use the same letters to denote the elements in S and their images in 

the quotient semigroup P(S)/L(S). 

For any nonzero element a E P(S)/ L(S), denote by (a) the ideal generated by 

a, by I(a) the ideal of non-generating elements and by Fa the principal factor 

(a)/ I(a) containing a. 

First, suppose that P(S)/L(S) has a nonzero idempotent e which is not prim­

itive. Then P(S)/ L(S) contains a nonzero idempotent f =f. e such that ef = 

fe =f. Therefore Sf SC SeS. This contradicts Lemma 3.7 and it follows that 

all nonzero idempotents of P(S)/ L(S) are primitive. 
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Next, take any nonzero a E P(S)/ L(S). We shall show that a has an inverse 

element. To do this, it is enough to show that the principal factor Fa is an 

inverse semigroup. 

Since a E P(S), there exists a nonzero idempotent e E E(S), with a E SeS. 

Since a ~ L(S) there exists an idempotent f E (a). So SJS ~ (a) ~ SeS. 

Lemma 3.7 shows that SJS =(a)= SeS. This means that e E P(S). Consider 

the principal factor Fa. Since Fa contains a primitive idempotent (namely e), 

it follows from Corollary 1.13 that Fa is completely 0-simple. 

Since Fa is completely 0-simple, from Lemma 1.8 it follows that Fa is regular. 

By Lemma 1.9, each .C and each R class contains an idempotent. Let f E Fa 

be an idempotent. From Lemma 1.11 this idempotent is a right identity of 

L f. Suppose L f contains another idempotent, h say. Since f is a right identity, 

hf =h. Also f is primitive, so it follows that if his less than or equal to f, then 

either h = 0 or h =f. Now, by Lemma 3.11 Fa cannot contain a subsemigroup 

isomorphic to the two-element left or right zero band. Hence f = h and each 

£-class and each R-class of S contains exactly one idempotent. 

From Theorem 1.10 it follows that Fa is an inverse semigroup and so a has an 

inverse element. Since a was an arbitrary element, it follows that P(S)/ L(S) 

is an inverse semigroup in which every nonzero idempotent is primitive. Using 

Theorem 1.18 together with Theorem 1.16 we see that P( s) / L( s) is a 0-direct 

union of Brandt semigroups. 

(ii) ==> (i) : Let S be a semigroup, R an S-graded ring, G a group and I a 

non-empty indexing set. Suppose that the quotient semigroup P(S)/ L(S) is a 

0-direct union of Brandt semigroups {(i,g,j) I i,j E I,g E G0 }. 
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Let e, f E S be idempotents and take any x, y E S such that e = xfy. Then the 

idempotents e and f must belong to the same 0-direct component of P(S)/ L(S). 

First, consider the case when x and y are also in the same 0-direct component 

as e and f. Pass to the principal f1).ctor F of P(S)/ L(S) containing e, f, x, y. 

Again we shall use the same letters e, f, x, y to denote the images of e, f, x, y 

in F. 

Let 1 E G denote the identity element of G. Since e, f (j_ L(S), then clearly e, f 

are nonzero idempotents of F. It is easily seen that e = (i, 1, i) and f = (j, 1, j) 

for some i,j E J. It follows from the equality xfy = e that if x = (i,g,j) for 

some g E G0 , then y = (j,g-1,i), where g-1 E G is the inverse of g. 

For each g E G0 , denote by R 9 the sum of all R(i,g,J) where i,j EI. For any 

g,h E G0 and any i,3,k,l EI we get (i,g,j)(k,h,l) = (i,gh,l) if j = k, and 

(i,g,j)(k,h,l) = 0 otherwise. In both cases R(i,g,J)R(k,h,l) ~ Rgh· Therefore 

n = E9gEG0 Rg is G0-graded. The identity component, R1 = E9i,J R(i,1,J) is a 

generalized matrix ring. Therefore :J(R,1 ) n Re = :T(Re) for any idempotent 

e E S (Proposition 2.10). Since n is group graded and .J(R) is G-invariant 

(Example 3.3) it follows that R 9 :T(R1)R9 -1 ~ .J(R1). Also Rx ~ 1l9 and 

Ry ~ Rg-1 so we get 

as required. 

Second, consider arbitrary x, y E S. Put 1vI = Rx:T(RJ )R.y and let T = R!M R! 

be the ideal generated by 1vI in Re. In order to prove 1vI ~ :T(Re) we shall show 

that T ~ :T(Re)· 
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Let F be the principal factor of S containing e and f. Then ex and ye are 

nonzero elements of F, because otherwise we would get e = exfye = 0. For 

such elements we have proved that :!(Re) 2 Rex:l(RJ )f4e· 

Consider the ideal T 3 ~ T R!M R!T ~ ReRx:J(RJ )f4Re ~ Rex:l(RJ )f4e ~ 

:!(Re)· Hence T ~ :!(Re), as required. 

(ii) {::} (iii) {::} (iv) {::} (v): For the equivalence of (ii), (iii) and (iv) see Venkate­

san [68]. For the equivalence of (ii), (iii) and (v) see Preston ([56] and [57]). 

Alternatively, the equivalence of (ii), (iii), (iv) and (v) are stated in the exercise 

set concluding Section 6.5 of Clifford and Preston's second volume [15]. D 

Remark 3.13 Actually it is of interest now to consider when RxJ(Re)Ry :J 

J(RJ) because this will give us some ideas on the stronger property 

This happens only in the trivial case when S is without idempotents, so that 

there are no e, f, x, y such that xey = f. To this end, take a ring R with zero 

multiplication, and consider the semigroup ring RS. Then all products on the 

left hand side are zero, and so don't contain the right hand side. 
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Chapter 4 

Rings with Hornoge'neous 
Radicals 

By defining a homogeneous radical we give a generalization of Bergman's Lemma 

(Theorem 2.13) on finite group graded rings to rings graded by partial groupoids. 

Graded rings with finite support have been actively investigated recently (see, 

for example, [7], [13], [19]). Evidently, every group graded ring with finite 

support is a cancellative homogeneous sum. We saw in Examples 2.1 and 2.4 

that homogeneous sums and generalized matrix rings are both graded by induced 

partial groupoids. Therefore our main theorem and corollaries apply to these 

graded rings, as well. 

4.1 Hon1ogeneous su1ns 

Let S be a non-empty partial groupoid and recall that each element r of an 

S-graded ring R = EBsES Rs can be expressed as a unique sum r = l:sES r 8 of 

homogeneous elements r8 E Rs for s E S. The support of each r E R is given 
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by supp(r) = {s ES I r8 # O}. We have seen (Example 2.1) that the set of 

homogeneous elements H(R) = UsES Rs is the union of all components Rs for 

s E S. Similarly we put 

H(r) = {rs I s E supp (r)}, 

and assume H(O) = 0. 

If I is a subset of R, then we put H(I) = UrEI H(r) and supp (I)= UrEI supp (r). 

A subset I of R is said to be homogeneous if H(I) ~I. If I is a homogeneous 

subring of R, then it is clear that I = ffisES Is is a homogeneous sum, where 

Is= In Rs . 

. Let R = ffisES Rs be a homogeneous sum and H(R) = UsES Rs be the set 

of homogeneous elements of R. We say that R is a cancellative homogeneous 

sum if, given any homogeneous elements x E R8 , y E Rt, z E H(R) and any 

u ES, each of the conditions 0 # xz, yz E Ru or 0 # zx, zy E Ru implies that 

s = t. This is equivalent to saying that the partial groupoid induced by R is 

cancellative. 

For a partial groupoid S, denote by m(S) the least common multiple of the 

orders of all subgroups of S. Evidently, m(S) :=::; ISI!. However, it seems the 

value of m(S) must be much less than IBI!. So let's give a better upper bound 

for m(S) in terms of IBI. 

Remark 4.1 Take a positive integer n and list all primes p1,p2, ... ,Pk which 

are less than n. Consider the set Mn of products of the form p~1 
• • • P%k, where 

p~1 + · · · + P%k - k < n and define m(n) as the maximum product in Mn. Then 
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for every partial groupoid S, 

m(S) S m(ISI). 

Proof. Put n = IBI and m = m(S). Consider the prime decomposition of 

m = p~1 
• • • p~k. Given that m is the least common multiple of the orders of all 

subgroups of S, for every 1 Si S k, we see that S has a subgroup Ti such that 

p~· is a factor of jT,j. By Sylow's First Theorem (Theorem 1.3), T, contains a 

subgroup Hi of order precisely p~'. 

For any i "f. j, the intersection of H, and H1 will either be empty or contain only 

the identity element. Since the union of all the sets H, is contained in S, we 

havep~1 +·. +p~k-x =I u:=l H,I s ISI = n, where 0 s x s k-1 is included in 

this sum to cover any cases of non-empty intersections in the subgroups because 

of potential shared identities. This means that p~1 + · · · + p~k - ( k - 1) S 

p~1 + · · · + p~,,, - x S ISI and hence p~1 + · · · + p~k - k S ISI - 1 < ISI, so 

that that m belongs to llifn. Therefore m is less than or equal to the maximum 

number m(n) in Mn. D 

When dealing with homogeneous sums R = EBsES Rs with S a finite set, we 

consider S as a partial groupoid induced by R and denote the least common 

multiple of the orders of all subgroups of S by m(R). So, if R = EBsES Rs is a 

homogeneous sum then, considering S as a partial groupoid induced by R, we 

get m(R) = m(S). 
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4.2 Homogeneous components of the radical 

Theorem 4.2 Let R be a cancellative homogeneous sum, and let m = m(R). 

Then, for every r E .J(R), all homogeneous components of mr belong to .J(R). 

Before we give the proof, we show that the number m(R) in the main theorem 

cannot be replaced by smaller numbers. 

Lemma 4.3 Let S be a finite partial groupozd and put m = m(S). Then there 

exists an S-graded ring R so that for any number e < m 

f.H(.J(R)) i :J(R). 

Proof. Consider the prime decomposition m = p~1 · · · p~k of m. As in the proof 

for Remark 4.1, denote by Hi a subgroup of order p~' in S. Let Fi be the ring 

of residues modulo p~'. Denote by R the direct sum of group rings Fi[H,], for 

i = 1, ... , k. For s E S, put Rs = 0 ifs does not belong to the union of all 

subgroups of S. Ifs is contained in some subgroup of S, then denote by Rs the 

direct sum of all sets F,s such that s E H, for appropriate i = 1, ... , k. It is 

easily seen that R = EB:=l F,[Hi] = ffisEB Rs is S-graded. 

Next, take any i = 1, · · ·, k and consider the natural mapping <Pi : F,H,-+ Fi 

induced by collapsing Hi to the identity element 1. Specifically, </J, sends 
a1 

I:;;,1 f3 h3 -+ I:;=l f3 where the f3 's are in F, and the h3 'sin Hi. Then </J1 is a 

surjective ring homomorphism called the augmentation map. The kernel of the 

augmentation map is given by 
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and this is the augmentation ideal. Karpilovsky ((37) Theorem 43.6) tells us that 

the Jacobson radical of F,[H,] is the augmentation ideal plus :f (F,). Actually 

:f(F,) = (p,) <J Zp~'" So :f(Fi[H,]) ~ ker<f>. 

It follows that the Jacobson radical of each F,Hi is equal to the augmentation 

ideal of F,H., i.e., to the set 

{t, f,h, J, E F., h, EH,, t,f; ~ 0}. 

This means that :f (R) is the direct sum of all these augmentation ideals. 

Look at any number f, less than m. There exists i such that p~' does not divide 

£. Take any g E Hi\ { e }, where e is the identity of H,. The element 1-g belongs 

to :f(R). However, f, "I- 0 in F,, and so 0 "I- fg ~ :f(R). D 

4.3 Proof 

Proof of Theorem 4.2. Suppose the contrary. Then we can find a mini­

mal counter-example to the theorem, that is, there exists a cancellative partial 

groupoid S with minimal IBI and an S-graded ring R such that m(R)H(:f(R)) g; 

:f(R). Let k = IBI and n = m(R). 

First, consider the case where I supp (RsR)I < k for some s ES. We will denote 

Rs by W. (This notation is needed so that we may refer back to this part of 

the proof later when we shall use the same reasoning with another set W. Our 

argument is valid for any set W contained in one homogeneous component of 

R such that I supp (WR) I < k). Let K = R1 W R1 . Since K is a homogeneous 

ideal of R, evidently R/ K is a homogeneous sum, too. We are going to show 
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that Rf K is also a counter-example to the theorem. This will allow us to factor 

out K and assume that W = 0, which will lead to a contradiction. 

Denote by E(R) the additive subgroup generated by the set nH(.J(R)) of homo­

geneous components of elements of n.J(R). Take any x E .J(R) and y E H(R). 

For any such y, there exists r E Rand b E S such that y =Tb. Given that S 

is cancellative, all XaY belong to distinct homogeneous components for different 

a E S. Therefore (nxa)Y = n(xr)ab E nH(.J(R)). Thus nH(.J(R)) is an ideal 

of the multiplicative semigroup H(R). Hence E(R) is an ideal of R. 

Recall that K = R1WR1 and let us introduce I= R1WR, L = E(R) n K, 

F = E(R) n I and P = IE(R). Then P ~ F ~ L ~ E(R) are ideals of Rand 

we will show that they are all quasiregular. 

We begin with P. Pick any e E nH(.J(R)). There exist r E .J(R) and g E S 

such that e = nr9 . Consider an arbitrary t in S. Given that W is contained 

in one homogeneous component of R, obviously Rt WR is a homogeneous right 

ideal of R. Since quasiregularity is inherited by right ideals, we get 

Denote by T the partial groupoid induced on supp (Rt WR) by Rt WR. Let 

f, = m(T). Since ITI < k, the minimality of k implies that fH(.J(Rt WR)) ~ .J(Rt WR). 

If a product uv is defined in T for some u, v E T, then the product uv is 

also defined in S. Therefore every subgroup of T is also a subgroup of S. 

It follows that f, divides n. Therefore nH(.J(RtWR)) ~ .J(RtWR). Since 

RtWRr ~ .J(RtWR) and e = nr9 we get 

RtWRe ~ nH(.J(RtWR)) ~ .J(RtWR). 
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Given that e was an arbitrary generating element of E(R), it follows that 

Since E(R) is an ideal of H(R), we see that RtWRE(R) is a quasiregular right 

ideal of R. Therefore P = I E(R) = 'L.tES Rt W RE(R) is a sum of quasiregular 

right ideals and is hence quasiregular. 
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Further, P = IE(R) 2 FE(R) 2 F 2 implies (F/P)2 = 0 and so F/P is 

quasiregular. Since P is quasiregular and F / P is quasiregular, it now follows 

that F is also quasiregular. 

In order to show that L is quasiregular, consider the homogeneous ideal [{ = R 1 W R1 . 

Clearly, K 2 = R1 W R1 [{ ~ I. Therefore, we obtain 

£ 2 = (E(R) n K) 2 ~ (E(R) n I) = F. 

Since F is quasiregular, L is also quasiregular. 

Next, let R denote the S-graded quotient ring R/ I<. For X ~ R and r E R 

denote by X and r the respective images of X and r in R. Denote by V the 

partial groupoid induced on supp (R) by Rand let m(V) = u. Then E(R) is 

the additive subgroup generated by uH(.J(R)). All products defined in V are 

also defined in S, because RsRt i- 0 implies RsRt i- 0. Hence all subgroups of 

V are also subgroups of S. It follows that u divides n. This and .J(R) ~ .J(R) 

give us E(R) ~ E(R). 

Suppose that R is not a counter-example to our theorem. Then E(R) ~ .J(R), 

and so E(R) ~ E(R) ~ .J(R). Hence E(R) is quasiregular and therefore 

E(R)/L 9'! E(R) is quasiregular. Since Lis quasiregular, this implies that E(R) 

is quasiregular. This contradiction shows that R is also a counter-example. 

Therefore without loss of generality we may assume that W = 0 from the very 

beginning. 

Finally, since Rs = l¥ = 0, we see that R is a homogeneous sum of Rt where 

t runs over S\ { s }. This contradicts the minimality of k and so the case when 

I supp (RsR)I < k for some s ES is impossible. 
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Now, consider that case when I supp (RsR)I = k for alls ES. Then the products 

st are defined for all pairs s, t E S. 

First, suppose that S is not associative. Then there exist a, b, c E S with 

(ab)c "I a(bc). Thus RaRbRc ~ R(ab)c n Ra(bc) = 0. Therefore I supp (RaRbR)I < k. 

As for the case when I supp (RsR) I < k, we can set RsRt = Wand we get W = 0. 

This means that RsRt = 0. As we have shown above this case is impossible. 

Second, suppose that S is associative. Then S is a semigroup. Since every 

finite cancellative semigroup is a group, our counter-example is graded by a 

finite group. However, for rings graded by finite groups the theorem is true by 

Theorems 2.11 and 2.13. This contradiction completes the proof. D 

The following example shows that Theorem 4.2 cannot be generalized to homo­

geneous sums which are not cancellative. 

Example 4.4 Let R =Ro+ Ri be the subring of M2(~) x M2(~) where 

Ro = { ( 0, [ ~ ~ ]) I a, b, c, d E ~} 

Ri = { ( [ ~ ~ ] , [ ~ ~ ]) I r E ~} . 

The set S = {O, 1} with respect to ordinary multiplication of integers is an idem­

potent semigroup. Clearly R is S-graded and S is not cancellative. Consider 

the ideal 

Since J 2 = 0, I is a quasiregular ideal and since R/ I c::: .i\lh(~) is semisimple, it 
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follows that I= :T(R). Take any x EI, say 

XO 

where r E JR. Evidently, Ro is an ideal of Rand so Ron :T(R) = :!(Ro) = 0. 

However 

0 =f nxo ~ :!(Ro) 

for any n E N. Hence the analogue of our main theorem for homogeneous sums 

which are not cancellative does not hold. 

4.4 Corollaries 

If G is a finite group then Lagrange's Theorem along with Sylow's First Theorem 

(Corollary 1.4) says that the least common multiple of the order of all subgroups 

of G equals IGI. Then by definition m(R) equals IGI for every G-graded ring R. 

Thus, in the case of a ring graded by a finite group Theorem 4.2 tells us that 

IGIH(:T(R)) ~ :T(R). This is exactly Bergman's lemma (Theorem 2.13). 

Recall from Example 2.4 that a ring R = Ef)~=l Ri1 is said to be a generalized 

matrix ring if 

if j = k; 
otherwise. 

Considering the induced partial groupoid on the indexing set 

s = {(i,j) I i,j = 1, ... ,m}, 

we see that S is cancellative and has only subgroups of order one. Therefore 

m(R) = 1. So Theorem 4.2 shows that the radical of R is homogeneous. That is 
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H(:T(R)) ~ :T(R) for every generalized matrix ring R. This was earlier proved 

by Bergman in [9] and Wauters, Jespers in [69]. 

Let an F -algebra R be a cancellative homogeneous sum over a field F of char­

acteristic zero or prime characteristic greater than ISJ where S is the partial 

groupoid induced by R. Then m(R) is invertible in F, and we immediately get 

the following. 

Corollary 4.5 Let an F -algebra R be a cancellative homogeneous sum, S the 

partial groupoid induced by R and F a field with char F = 0 or char F > ISI. 

Then the Jacobson radical of R is homogeneous. 

Our results can be used to deduce various corollaries concerning semisimplicity 

of graded rings. For example, by analogy with group graded terminology we 

say that homogeneous sum R = E9 sES Rs is non-degenerate if and only if each 

of the equalities (rR)e = 0 or (Rr)e = 0 implies r = 0, where e E E(S) is any 

idempotent. We now have the following corollary. 

Corollary 4.6 Let S be a finite cancellative partial groupoid with identity e, 

let F be a field with char F = 0 or char F > ISI, and let R = ffises Rs be a 

non-degenerate S-graded F -algebra. If Re is semisimple, then R is semisimple. 

Proof. Suppose that R is not semisimple. Corollary 4.5 shows that there exists 

a nonzero homogeneous element x E :T(R). By non-degeneracy (xR)e =f 0. 

Hence there exists a homogeneous element y such that 0 =f xy E Ren :T(R). 

Since e is the identity of S, clearly Re is a direct summand of the right Re-module 

R. Therefore Proposition 2.10 tells us that RenJ(R) ~ J(Re)· Thus :T(Re) =f. 

0. This contradiction shows that R is semisimple. 0 
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Say that an S-graded ring R is faithful if and only if r Rt = 0 implies RsRt = 0, 

and Rtr = 0 implies RtRs = 0, for any s, t E S and 0 =f. r E R 8 • 

Corollary 4. 7 Let S be a finite cancellative partial groupoid, F a field with 

char F = 0 or char F > ISI, and let R = E9sES Rs be a faithful S-graded 

F-algebra. If all subrings among the homogeneous components Rs are semisim­

ple, then R is semisimple. 

Proof. Suppose that R is not semisimple. To get a contradiction we shall 

prove that, for some idempotent e, the homogeneous component Re is a ring 

with nonzero radical. 

Put I= .J(R). Corollary 4.5 says that I is homogeneous and that I= ffisES Is, 

where Is = In Rs. Let T be the support of I, that is, the set of all s such 

that Is =f. 0. Faithfulness easily yields that RT = E9tET Rt is a subring of R. 

Obviously RT is not semisimple because .J(RT) 2 I. To simplify the notation 

we assume that R = RT and that all components Rs are nonzero. 

If all rings among the components Rs are nilpotent (in particular, if there are 

no rings among these components), then R is nilpotent by [38], Theorem 1. 

Look at any component Rs. Recursively define t1 = s, Qi = Rs, and ti+l = t;, 

Q2+1 = Q2 Rt,, for i 2: 1. Given that R is nilpotent, there exists a positive 

integer n such that Qn =f. 0 and Qn+l = 0. Put t = tn. The faithfulness and 

QnRt = Qn+1 = 0 yield R; = 0. Thus Rt E .J is a radical ring, a contradiction. 

Next, consider the case where a component Re is a ring but is not nilpotent. 

Then R~ ~ Re gives us e2 = e. 
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Choose a nonzero homogeneous element r from Ren:f(R). This time we denote 

by I the quasiregular homogeneous ideal generated in R by r, and let T be the 

support of I. As above, we may assume that R =RT and all the components 

Rs are nonzero. 

We claim that Re is a direct summand of Ras a left Re-module. 

Indeed, pick any s E S. There exist t E S and y E Rt such that 0 i= ry E Rs. If 

Rery = 0, then ReRs = 0 by faithfulness. On the other hand, if Rery i= 0, then 

choose an element x E Re such that xry i= 0. We get (xr)y E Ret = Rs and 

x(ry) E Resi whence es = s. Therefore ReRs ~ R8 • It follows that EBefsES Rs 

is a left Re-module. 

By Proposition 2.10 :!(Re) ;;:2 Ren :f(R). Therefore 0 i= r E :!(Re), a contra­

diction. 0 

82 



Chapter 5 

The Ring of Hirota 
Derivatives 

Just as Frobenius had shown that the ordinary group characters of the sym­

metric group mapped to S-functions, Schur called the characteristic mapping 

of the irreducible characters of the projective representation (we call these the 

spin characters), Q-functions. These Q-functions have come to be called Schur 

Q-functions. In this chapter, we just call them more simply, Q-functions. In 

Chapter 6 we describe a more generalized version of Q-functions through the 

Hall-Littlewood polynomials. 

The aim of this chapter is to present a graded ring without unity which has 

physical world applications. Graded rings, of course, arise in many natural 

contexts, and so we chose a graded ring from one of many. The title of this 

chapter reveals the choice of ring, and our investigation leads us to a hierarchy 

of partial differential equations (PDEs) called BKP equations. It turns out that 

the solutions to these equations (see [32]) are the Schur Q-functions. 
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Our main idea is to make use of the characteristic mapping used by Schur in 

order to introduce generalized Q-operators. We describe the algebraic struc­

ture of the generalized Q-operators as additive subgroups of the ring of Hirota 

derivatives, and use shifted Young diagrams to represent them. In the final 

sections of this chapter, we make some connections between these generalized 

Q-operators and the BKP equations. For example, we use a Pieri-type formula 

for Q-functions as a raising operator for the shifted diagrams and show that this 

action generates a lower weight part of the BKP hierarchy. The fact that this 

action generates the lower part of the hieracrhy was published by us in a previ­

ous paper, [55] with co-author Salam. At that time, however, we had not made 

the necessary connections to the characteristic mapping, nor to the generalized 

power-sum symmetric functions. In the first three sections of this chapter, we 

now make those connections. We also conjecture that certain elements of the 

subgroups of generalized Q-operators are the so-called seeds of the BKP hier­

archy. In the final section of the next chapter we show that equations in Hirota 

form can be written in terms of the generalized Q-operators. 

We use C to denote the complex numbers, and GL(k) to denote the general 

linear group of k x k invertible matrices. 

5.1 The Q-functions 

The Q-functions were first introduced by Schur as a projective representations 

analogy of Frobenius' theorem for ordinary characters. A proJective representa­

tion of the symmetric group Sn is a mapping M from Sn into GL(k) so that for 

x,y E Sn 

M(x)M(y) = T(x, y)M(xy) 
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for some r(x, y) EC* = C/{O}. Because the linear transformations are invert­

ible the mapping r is a 2-cocycle. The set of cohomology classes of 2-cocyles 

forms an Abelian group called the Schur multiplier. We refer to Section 1 of [67] 

for further details, or to [27] for a comprehensive account. In our case, since we 

are mapping from the symmetric group, the nature of the equivalence classes 

of these 2-cocycles is available. Indeed, they have a 2-element classification for 

n ~ 4 as Z 2 • This equivalency is determined by the Schur multiplier. (It is inter­

esting to note that the account of Schur multipliers recommended in [27] is writ­

ten by Karpilovsky [36], author of [37] on the Jacobson radical of graded rings.) 

Representations M of Sn for which r(x, y) = 1 correspond with the ordinary 

linear representations; otherwise there are group elements so that r( x, y) = -1 

and these correspond to a double cover Sn of Sn. It is the characters of this 

double cover that we mean when we talk about the irreducible characters of 

the projective representation. The double cover is sometimes called the spin 

representation and its characters are called spin characters. We use this termi­

nology, and in Chapter 6 we write the spin characters in terms of the ordinary 

ones. We also use this relationship to describe a new combinatorial algorithm 

to determine spin character values. 

Some specifics on spin characters, in the context of Q-functions, are noted here. 

Denote by(~ the spin character(>. on the classµ of the symmetric group Sn. 

Use OP to mean the class of partitions with all parts odd integers, and call the 

members of OP odd part partitions. Use DP to mean the class of partitions 

with all parts distinct integers (so that the parts are written in strict descending 

order) and call the members of DP distinct part partitions. Only spin characters 

(>. with >. E DP on the class p E OP are relevant here, consistent with the same 

restrictions required on the spin characteristic mapping, as in [65], and [27]. 
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For any A E 'DP, the Q-function Q>. is determined by the mapping of spin 

characters (>. so that 

Q;.(x) = L 2! [l(>.)+l(p)+eJ z;ic;Pp(x) 

P f- IAI 
p E OP 

(5.1) 

where: l(J\) means the length of the partition A, as discussed in Section 1.4; E 

is 0 or 1 as required; (; are the spin characters on the class p E OP; Pp(x) 

are the power-sum symmetric functions; and, zµ is the size of the centralizer, 

determined by Frobenius' formula (see Lemma 1.29). The right hand side of this 

expression is just the characteristic mapping of(>., analogous with the mapping 

discussed on page 43. 

This formulation of the Q-functions is due to Schur and first appeared in [65]. 

The Q-functions appear in their more generalized form as Hall-Littlewood func­

tions in [27] (see also Section 6.1). The Q-functions we just described here are 

also referred to as Schur Q-functions; but as mentionerl in the introrlnction to 

this chapter, in this thesis, we usually call them, more simply, Q-functions. 

5.2 The ring of Hirota derivatives 

Recall that the main aim of this chapter is to provide examples of graded rings 

with applications. The first of these examples will be the ring of Hirota deriva-

thres, whose elements play a crucial role in the describing certain soliton cqua-

tions. One of the first descriptions of soliton wave beJ:i.aviour was made by 

Scottish engineer, mathematician, and physicist John Scott Russell [59] who 

observed (from horseback) a non-dispersing shallow water wave traveling along 

a canal in Scotland. For an accessible and insightful introduction to solitons, 
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see [45]. 

The Hirota derivatives Dx are differential operators acting on a pair of functions: 

where Ox 1 is the standard partial differential operator with respect to x1 . 

Example 5.1 

Dxf(x) · g(x) (8x 1 - Ox2) f(x1)g(x2) 
f x19(X2) - f (x1)9x2 
fxg - f9x· 

I x1=x2=x 
I x1=x2=x 

The minus sign is the thing to notice here. In this sense, the Hirota derivatives 

are an anti-symmetrical version of the classical Leibniz rule for differentiating 

products of functions. 

If the Hirota derivatives act on a pair of the same function (i.e. on f · f) 

more than once, then the 'splitting' of the variable into dummy variables with 

re-evaluation at the end allows the resultant to survive the first act: 

n;J(x). f(x) 

An interesting aspect of the previous expression is that 
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This relationship is key to the way these differential operators play a crucial 

role in describing soliton equations. This is demonstrated in Example 5.3 of 

Section 5.4. 

Use IQ(D,,] to denote polynomials of Hirota derivatives with rational coefficients 

with the additive subgroups of degree k monomials of D,, denoted by IQ[D,,J(k). 

Then the Hirota derivatives form the basis of a graded ring 

IQ[D,,] = EB IQ(D,,](k) 
kEN 

since IQ[D,,J(m)IQ[D,,J(n) ~ IQ(D,,j(m+n). The structure grading the ring is the 

natural numbers under addition (N, +),a semigroup without unity. This means 

that the ring IQ(D,,] is a graded ring without unity. It seems mention-worthy 

that the ring IQ(D,,] does not contain constants. 

The Hirota derivatives are multiplicative and extend into many variables by 

introducing a partition notation by firsL puLLiug, for example x = x1, and 

writing D,, more simply as D1. Then D>.. = D>..1 D>..2 • .. D>..k for any parti­

tion >. = (>.1, >.2, · · · , >.k). For partitions written using multiplicity of the parts 

5.3 Littlewood-associated functions and the gen­
eralized power-sums 

The function Littlewood associated with the power-sum symmetric functions 

(see Section 2.2) is 

G(a; t) =IT (1 - a,t)- 1 

i<::l 
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which is connected to the generating function P(a) by observing that P(a) = 

G'(t) · G(t)-1, as shown in Section 2.2. 

If the Littlewood-associated function for a power-sum symmetric function is gen-

eralized in a meaningful way to a symmetric function of several sets of variables, 

then the symmetric functions are called generalized power-sum symmetric func­

tions, with corresponding generalized Schur functions obtained via the group 

characteristic mapping. These are introduced in Section 6.4 of Littlewood's 

book [43] on group characters and matrix representations of the symmetric 

group, where two other Littlewood-associated functions are described for which 

properties of the power-sum symmetric functions hold: the reciprocal, and the 

rational. The rational function gives rise to generalized power-sum symmetric 

functions in two sets of indeterminates a and {3. The Littlewood-associated 

function in rational form is 

II 
(1 - {3,t) 

F(a,{3;t)= ( )" 
1-at •:2:1 i 

with connection to the generating function given by 

F'(a, f3_; t) = L ~log 1 - {3,t 
F(a,{3,t) dt 1-a,t 

i 

made by analogy with Equation 2.2. 

In this case 

'""" d 1 1- {3,t L.,- og---
> dt 1- a,t 

i_l 

LPr(a, f3)tr-l 
r:2:1 
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and so the generalized power-sum symmetric function is (see [42], p.109) is 

Pr(a, (J) =La~ - LfJ;. 
i:2'.l •:2:1 

Because we are using Littlewood-associated rational functions, this ensures a 

meaningful analogy between the power-sum symmetric functions and the gener-

alized power-sum symmetric functions, and so the generalized power-sum sym-

metric functions are multiplicative with P>. = P>.iP>.
2 

• • • P>.k for any partition 

For each n E N assign the power-sum symmetric function Pn(x) to the partial 

differential operator Bx,,. Then we can write 'l/J(Pn (a, (J)) = Dn as the natural 

assignment of the generalized power-sum symmetric function Pn to the Hirota 

D>.1 • • • D>.k = D>.. The idea of making a connection between the generalized 

power-sum symmetric functions and the Hirota derivatives was first mentioned 

by Nimmo in [51]. 

Since the ordinary characteristic mapping of generalized power-sum symmetric 

functions defines generalized Schur S-functions, we use the spin characteristic 

mapping introduced by Schur to analogously define generalized Q-functions. So 

for any ,\ E 'DP the generalized Q-functions are given by 

Q>.(x) = L 2~(l(>.)+l(p)+E)z;1(;Pp(a,(J) 
pEOP 

where Pp(a, (J) are the generalized power-sum symmetric functions in two vari­

ables with rational Littlewood-associated function. The coefficients are exactly 

as in Equation 5.1. 

We introduce the idea of a natural assignment of generalized Q-functions to a 
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a linear combination Hirota derivatives by noticing that 

'1/J(Q;..(x)) = 'ljJ ( L 2!(l(>.)+l(p)+<lz;1c;Pp(a,,B)) 
pEO'P 

L 2!(l(>.)+!(p)+€) z;ic;'l/J(Pp(a, ,B)) 

pEO'P 

2.:: 2W(>.)+!(p)+<) z;1c;np. 
pEO'P 

We denote 'lj;(Q;..) by Q;.. and call it a generalized Q-operator. 

Example 5.2 By definition, the generalized Q-operators Q;.. are only mean-

ingful for distinct part partitions ).. with weight at least 4. The first suitable 

partition (lowest in the reverse lexicographical ordering) is ).. = (31). In this 

case the sum is over all µ E OP of weight 4. This description gives rise to two 

summands. One for p = (14 ) and one for p = (31). Using the spin character 

tables given in Appendix B, we readily obtain 

5.4 Hirota's form and the BKP equations 

Often the PDEs that arise in connection with some physical ('real-world') prob­

lems are not easily handled by direct analysis. A good example of this is a 

family of evolution equations called the BKP equations. The BKP equations 

are non-linear PDEs that occur in a hierarchy. In 1983 Jimbo and Miwa [34] 

gave a detailed analysis of the BKP hierarchy of equations using vertex opera-

tors to describe the connection between members lower in the hierarchy to those 

of higher degree. With a view to exploring the structure of the BKP hierarchy 

in a graded ring context, we will begin with the lowest order equation in Hirota 

form. 
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Writing a PDE in Hirota form means expressing it as a polynomial of Hirota 

derivatives acting on a pair of polynomials T satisfying a certain bilinear con-

ditions ([34], Theorem 2.1 describes the bilinear identity). When this condition 

is met, the polynomials are called T-functions. 

Example 5.3 The Kadomtsev-Petviashvilli equation, more easily called the 

KP equation ( Ut + 6uux + Uxxx)x + 3uyy = 0 is changed into Hirota form by 

substituting 

82 D 2 
u = 2- logT = 2-x-(T · r) 

8x2 fx 

and then integrating with respect to t to give 

( D! + DxDt + 3D~) T · T = 0. 

We index the Hirota derivatives in partition notation with x = x1, y = x2 and 

t = -~x3 by convention, yielding 

The solutions to the KP equation turn out to be Schur S-functions (see [32] 

or [70]). 

The bilinear Kadomstev-Petviashvzli equation, called the BKP equation, first 

appeared in [20] and [34]. The Hirota form of the first non-trivial BKP equation 

is 

This equation is the first in a hierarchy of equations. Only equations of even 

weight occur in the hierarchy. Also, the number of equations of any particular 

weight n can be determined. Let any partition with all parts even be called 

an even part partition. Then the number of equations of weight n in the BKP 
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hierarchy is given by the number of odd part partitions of weight n minus the 

number of even part partitions of weight n ([34], pp. 999). 

Nimmo [51] put forward the idea of diagram KP and BKP hierarchies with the 

KP and BKP equations being represented by Young diagrams. The idea of the 

BKP diagram hierarchy is illustrated by Figure 5.1. The first BKP equation 

(weight 6) is symbolized at the top the figure by BKP(). Nimmo called this 

equation a seed, because when we apply a rasing operator to it (this action is 

illustrated by the downward arrows, R, in the figure) higher order equations 

in the hierarchy are generated. Nimmo also determined the existence of new 

seeds in the hierarchy occurring whenever the weight of the equation is an even 

triangular number. Two of the weight 10 BKP equations arise under the action 

of the rasing operator, and the third weight ten equation is a new seed. 

For the KP hierarchy, Nimmo was successful in producing a shift s-operator, 

represented by Young diagrams, and found a suitable raising operator to gen­

erate the hierarchy. For the BKP hierarchy, Nimmo was unable to to find a 

suitable shift operator. Nimmo proposed that the same raising operator used 

for the KP hierarchy would also generate the BKP hierarchy but also says that 

"this is the consequence of a fundamental algebraic property that is not yet 

apparent to the author and is the subject of further investigation". 

In Section 5.6, we provide a diagram BKP hierarchy with generalized Q-operators 

being represented by shifted diagrams. We also make use of a Pieri type formula 

as the raising operator. This raising operator was conjectured by us in a pre­

vious paper [55] with Salam, as mentioned in the introduction to this chapter. 

But at that time we had not made the necessary connections to the characteris­

tic mapping and the generalized Q-functions. The improvements are significant; 
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Figure 5.1: Nimmo's idea for a diagram BKP hierarchy 

Weight: 

6 

8 

v 
10 

but there is still more to be done. 

5.5 Generalized Q-operators 

Recall that for >. E VP the generalized Q-operators are determined by 

Q>. = L 24<Z(>.)+l(p)+E) z;1(; Dp. 

pEO'P 

Since the generalized Q-operators are only written in terms of Hirota derivatives 

parameterized by odd part partitions, we put H = tQ [D1, D3,. ·., D2n-1], the 

ring of polynomials of Hirota derivatives in odd parts with rational coefficients. 

Then Di, D3, · · ·, D2n-1 are linearly independent and form a basis for H. Next, 

we consider the class of distinct part partitions >. with length l(>.) = k and 

weight l>-1 = 2n 2 4. Denote by fik the additive subgroup of H made up of 

linear combinations of generalized Q-operators Q>. with integer coefficients. The 

hat notation is used to mean that the weight of the partitions is even, with the 

index k being the length of the partitions. 

Elements from the group fik have a Young-diagram type of representation as 
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shifted Young diagrams, which are used for strictly distinct part partitions. The 

defining characteristic of the shifted Young diagrams is that the first box on 

any row must start along the main diagonal, thus ensuring that the parts of 

the partition are strictly decreasing (whereas the row lengths in ordinary Young 

diagrams are weakly decreasing). We denote shifted Young diagrams by y>- and 

throughout this chapter we just call them diagrams. 

Proposition 5.4 Every group fik has a core element and a core. The core is a 

diagram which is contained in the diagram of every other element in the group. 

In particular, whenever k = (-1, 0) (mod 4) the core is called a triangular core. 

In the case that k = (1, 2) (mod 4), the core is not triangular, and we say it 

contains a thorn. 

Proof. Put k = 0 mod 4. This means k = 4m for some m E N. Consider the 

distinct part partition .A with 4m parts so that .X1 = 4m, .X2 = 4m -1, · · · , A4m = 

1. Then .A has even weight and the core element of ii k is just Q >-. This is because 

the diagram of Q.>- is contained in the diagram of all other elements of fik. That 

is, .A is the lowest weight partition in the reverse lexicographical ordering of 

length k with even weight. The core is clearly triangular. 

Fix the case k = -1 mod 4 relative to the previous one by putting, without loss 

of generality, k = 4m - 1 with m the same as before. The core in this case 

is obtained by deleting the 4m boxes of the top row of core y>-. Clearly the 

diagram is still triangular, and since we are ignoring an even number of boxes, 

the corresponding generalized Q-operator is indeed in fik=4m-l· 

In the final two cases, the thorns occur because of the restriction here to par­

titions of even weight. Start with the case k = 1 mod 4. Again, fix this case 
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to the previous two and add an extra row of 4m + 1 boxes. In doing this, we 

have made a triangular diagram of odd weight. This forces the addition of the 

extra box (which we call the thorn) to the top row. (This is illustrated in the 

Example 5.5). The diagram made in this way is the core of fik=4m+l· A similar 

argument occurs for the case k = 2 mod 4. Notice that the triangular numbers 

fork= (1, 2) mod 4 are always odd, forcing the addition of the thorn. D 

Example 5.5 Elements in the group fi1 are indexed by length 1 partitions 

(necessarily distinct part) with weight even and greater than or equal to four. 

The core element is 0(4 ) and the core is 

I I I I I . 

The group fi2 consist of length 2 partitions with even weight w ;:::: 4. The parts 

of the length 2 partitions in fi2 are just .X1 ;:::: 3 and .>.2 = .>.1 -2n, where 2n < w. 

The core element is 0(31) and the core of fi2 is 

qp, 
The box located at the right-most end of the top row of y(3l) is the thorn. 

The group H3 has the first triangular core 

er§. 
The diagrams of some lower weight elements of fi3 are shown here. Notice that 

all the diagrams of elements in H3 contain the core. 
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We conjecture a connection between the triangular core elements of ilk and the 

seeds in the BKP hierarchy. 

Conjecture 5.6 The seeds of the BKP hierarchy are just the core elements of 

ilk which have triangular cores. The weight of the seeds is ~k(k + 1). 

Example 5. 7 The first triangular core occurs in il3 and the core element is 

Q(321)· Using Equation 5.1 we find that 

This is the first non-trivial equation of the BKP hierarchy. The weight of the 

equation is 6. 

The next triangular core occurs in il4 and the core element is Q(432i)· In this 

- 16 
case we get Q(4321) = 28350 (681 - 9082) where 

are two of the three weight 10 equations given in Jimbo and Miwa [34), with 

the third one being 

In the next section we apply a raising operator to the first triangular core and 

we obtain two other linearly independent weight 10 equations. 

The next triangular core occurs in il7 and the weight of the equation is 28. Our 

investigation of the BKP seeds has not extended this far yet. 
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5.6 The BKP hierarchy 

In order to explore the structure of the BKP hierarchy and the role of the 

subgroups ilk of generalized Q-operators, we turn first to the idea of describing 

a meaningful notion of 'multiplication' for the generalized Q-operators. Since 

the generalized Q-operators are elements in the ring of Hirota Derivatives, then 

the obvious choice is multiplication by the base elements. 

Recall that the the relationship between the Dr and the Q>.. is analogous to 

that between the Pr and Q>.. which is analogous to that between the Pr and Q>... 

(We have used only the notation here rather than verbal description for ease 

of reading). This means that the action of DrQ>.. is analogous to PrQ>.. To do 

this, we make use of a Pieri-type formula for the Q-functions in which strips 

1mrl double strips come into play. 

If >. and µ are distinct part partitions with µ ~ >. (meaning that the shifted 

diagram ofµ is contained in that of.>.), then the difference .>./µforms a shifted 

skew diagram y>../ µ. A shifted skew diagram y>../ µ is said to be a strip if it is 

connected and contains at most one box on every diagonal coordinate x E y>. of 

the shifted diagram y>... The height of a strip is the number of rows it occupies. 

A shifted skew diagram is called a double strip if it is the union of two strips 

which both start on the first diagonal. To calculate the depth of a double strip 

y>./µ, we split it into two strips, Y1 and y2, using the rule that a box lying on 

the jlh diagonal of y>../µ belongs to Yk (k = 1, 2) if the intersection of y>../µ and 

the jlh diagonal has cardinality k. Then the depth of the double stripy>./µ is 

d(>./µ) = IY;I +ht(y1) 
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where: ht(y1 ) is the height of the strip Y1; and Jy2J means the number of boxes 

in the the strip Y2· 

Example 5.8 Suppose µ = (54) and >. = (7542). Then the skew shifted dia­

gram y>./ µ is a double strip. 

r-1-1-1-1-

1 I I I I * * 
L-+-+-+-+--t---t-~ 

I I I I * 
L - ~.,....,...._.-.-__,___, 

The shaded boxes represent Y2· The depth of y>./µ is 4. 

Theorem 5.9 ([46]) and [35] Forµ E DP we have 

PrQµ = L 2l(>.)-l(µ)h~(r)Q>. 
).. 

(5.3) 

summing over all distinct part partitions>. such that J>.J = JµJ + r; and y>.fµ is 

a strip or double strip with 

>. -{ (-l)ht(>./µ)-l ify>./µ is a strip; 
hµ(r) - 2(-l)d(>./µ)-l if y>./µ is a double strip 

where: ht(Aj µ) is the height of the strip y>./µ; and d(>./ µ) is the depth of the 

double strip y>./ µ. 

Remark 5.10 The coefficients 2t(>.)-l(µ) will only occur non-trivially whenever 

the action of the raising operator increases the height of the diagrams. i. e. when 

Dr : fik 1---t fik EB fik+l· The implications of this action on the BKP hierarchy 

are yet to be investigated. Further, the application of double strips has not yet 
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appeared in this investigation as double strips will not occur until higher weight 

equations are investigated. 

Corollary 5.11 Forµ E VP we have 

D/jµ = L 2l(>.)-l(µ) h~(r/J>. 
>. 

with all the same conditions and notations as stated in Theorem 5. 9. 

(5.4) 

Conjecture 5.12 Applying the action of Theorem 5.9 to the core elements with 

triangular cores in fik generates the BKP hierarchy. 

Figure 5.2: Construction of a lower weight portion BKP Hierarchy 

Weight: 

6 

8 

10 

v 

v 
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Example 5.13 The first core element with a triangular core is Q(321). Applying 

the action described in Theorem 5.9 produces 
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This yields a weight 8 equation: 

which is a scalar multiple of the one given in [34]. 

Figure 5.2 illustrates the weight 6 to weight 10 portion of the diagram BKP 

hierarchy. For weight 10 we find three linearly independent equations (one of 

these is the new seed described in Example 5.7): 

- - - - - 16 
Q(721) + 2Q(541) - Q(532) - Q(631) + 2Q(4321) = 28350 (1681 - 3082 - 10583) 

- - - - 16 
Q(721) + Q(532) - Q(631) - 2Q(4321) = 28350 (-1081 - 21082 + 10583) 

- 16 
Q(4321) = 28350 (681 - 9082) 

where 8 1, 82 and 83 are the three weight 10 equations given in [34], and also 

previously on page 96. 

5. 7 Conclusions 

The Hirota form of the equations in the BKP hierarchy are elements in a graded 

ring without unity. The ring consists of polynomials of Hirota derivatives. The 

even integers under addition grade the ring and we have 

H = EB H(2n) 

2nE2N 

where H(2n) is the homogeneous subgroup of degree 2n. The members of the 

BKP hierarchy are homogeneous elements of this ring. The ring also has an 
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interesting collection of subgroups Hk of generalized Q-operators. Some connec­

tions between these subgroups and the members of the BKP hierarchy are being 

realized. We have shown that the diagrams of generalized Q-functions can be 

used to develop a low weight portion of the BKP hierarchy, and in Section 6.4 

(of the next chapter) we write the Hirota derivatives in terms of generalized 

Q-functions. Keeping in mind that our initial motivation was to develop an ex­

ample of a graded ring without unity that has a strong connection to real-world 

applications, we conclude this chapter. 
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Chapter 6 

Spin Characters of the 
Symmetric Group 

In Chapter 5, in order to make the connection between the Q-functions and 

the Hirota derivatives, we made use of the spin characters. In this chapter 

we relate the spin characters of the symmetric group to the ordinary ones. 

The connection revolves around the different transition matrices between the 

symmetric functions. Because we write the spin characters in this way, we are 

also able to describe a new combinatorial algorithm for the spin characters. The 

algorithm we write is just an amalgamation of two existing ones. 

Our algorithm yields two simple special cases. One of these special cases links 

directly back to Schur's work in 1911, in that a corollary to our algorithm was 

known to Schur [65] (according to [48]). 
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6.1 The Hall-Littlewood functions 

The Hall-Littlewood functions are a generalized type of symmetric function and 

their introduction is made easier by the fact that have already met Schur's Q­

functions. Indeed the Schur Q-functions can be described as a special case of 

the Hall-Littlewood Q-functions, as we see by the end of this section. We only 

give the details we require to describe our main result on the spin characters. 

The field is quite young; but a thorough treatment was given by Hoffman and 

Humphries [27] in 1992. 

The Hall-Littlewood polynomials are symmetric in then indeterminates x1, · · · , Xn 

with coefficients in Z[t], making them elements in the ring An[t] of symmetric 

polynomials with coefficients in Z[t]. We approach the Hall-Littewood functions 

in the same manner that we approached the symmetric functions in Section 2.2. 

That is, we first describe the Hall-Littlewood polynomials and then pass to the 

inverse limit to give the Hall-Littlewood functions using natural projections. We 

sometimes write HL as an abbreviation of "Hall-Littlewood". 

The Hall-Littlewood P-polynomials are given by 

where S~ is the subgroup of permutations w E Sn such that Aw(i) = .A,. We 

pass to the inverse limit requiring that, for every .A I- k, the image of the Hall­

Littlewood functions P;>..(x;t) from the subgroup A(k)[t] be the Hall-Littlewood 

polynomials P;>..(x1 , • • • ,xn;t) in Ahk)[t] for each n 2: k. The HL P-functions are 

algebraically independent over Z[t] and form a Z[t]-basis of the ring A[t] ([44], 

Proposition III.2. 7). 
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The Hall-Littlewood Q-functions are scalar multiples of HL P-functions given 

by 

Q>.(x; t) (6.1) 

where 

b>.(t) =II 1Pm>., (t) 
i:2:1 

and 

1Pr(t) = (1 - t)(l - t2
) ••• (1 - n, (6.2) 

with m>., being the multiplicity of the part Ai in A. 

When t = -1, Equation 6.2 vanishes for any r ~ 2. This means that the 

multiplicity m>., of any part Ai must equal 1. In other words, the HL Q-function 

Q>.(x; -1) is non-zero only for distinct part partitions. Indeed, the HL Q­

functions Q>.(x; -1) are exactly the Q-functions introduced by Schur and the 

subject of Chapter 5. This provides an important link to the spin characters 

because Schur's Q-functions are given definitively as a characteristic mapping. 

Notice also that when t = -1 (and necessarily A E VP) 

rr(1--1) 

and Equation 6.1 becomes 

Q>.(x; -1) = 21(>.) P>.(x; -1). 

The transition matrix X(t) between the power-sum symmetric functions and 
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the Hall-Littlewood P-functions has coefficients x;(t) determined by 

Pp(x) = L x;(t)P>.(x; t). 
>. 

(6.3) 

When t = 1 the HL P-functions are just the monomial symmetric functions: 

P>.(x; 1) = m>.(x). 

When t = 0 the HL P-functions are the Schur S-functions: P>.(x; 0) = B>.(x), 

and so the entries in the transition matrix X(O) are the ordinary group charac­

ters of the symmetric group (see Equation 2.3) 

To determine the orthogonality relationships for the Hall-Littlewood functions, 

MacDonald [44) compares equivalent series expansions of 

The expansions we give here all come from section III. 7 of MacDonald's book [44). 

Firstly, 

where Z>.(t) is a generalized form of Frobenius' formula for the size of the cen-

tralizer, and is given by 

Also 

Z.\(t) = Z,\ IT (1 - t>., )-
1

. 

i:2'.l 

IT 1 - tXiYJ "°"' = ~P>.(x;t)Q>.(y;t) 
1- XiYJ ' i,J /\ 

L b>.(t)P>.(X; t)P>.(y; t). 
>. 
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And so 

L Z>.(t)- 1P>.(x)p>.(Y) = L b>.(t)P>.(x; t)P>.(Y; t). 
>. >. 

Comparing coefficients, via Equation 6.3 we get 

X'(t)z(t)-1 X(t) = b(t) 

and 

X(t)b(t)-1 X'(t) = z(t) 

where: X'(t) is the transpose of X(t); and b(t) (respectively z(t)) is used to 

denote the matrix with the entries b>.(t) (respectively Z>.(t)) along the diagonal, 

and zeros elsewhere. From these come the orthogonality relations: 

Using 

gives 

L zp(t)-1 x;(t)X~(t) = 8>.µb>.(t), 
IPl=n 

L b>.(t)-1 x;(t)x;(t) OpaZp(t). 
l>-l=n 

X(t)-1 = b(t)-1 X'(t)z(t)-1 

Q>.(x; t) = L Zp(t)-1 x;(t)pp(x). 
p 

Lemma 6.1 When t = -1 and p is an odd part partition, the entries in the 

transition matrix X ( t) between the power-sum symmetric functions and the Hall­

Littlewood P-functions are scalar multiples of the spin characters of the sym­

metric group. Specifically, for p E VP 

x;(-1) = 2t[!(>.)-!(p)+E}(; 

(; = 2t[1CPl-1<>-l-€1x;(-1). 
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Proof. Form the orthogonality relations, we have 

Q>.(x; t) = I>p(t)-1 x;(t)pp(x). (6.7) 
p 

When p is an odd part partition and t = -1, Equation 6.4 yields 

Using this, we evaluate Equation 6.7 at t = -1 to get 

Q>.(x; -1) = 2.:.:: z;121(p) x;(-1)pp(x). (6.8) 
p 

Since Q>.(x; -1) is Schur's Q-function, we can compare this equation to Schur's 

original equation introducing the Q-functions (Equation 5.1): 

Q>.(x) = L 2~(1(>-)+l(p)+e) z;ic;Pp(x). 
pEOP 

Comparing coefficients gives Equation 6.5. Re-arranging to make the spin char-

acters the object gives Equation 6.6. D 

6.2 A new recipe for the spin characters 

A rich and well-established connection between the theory of symmetric func­

tions and the combinatorial properties of Young diagrams and tableaux en-

ables us a write a new combinatorial algorithm for calculating the spin char­

acters. The algorithm we describe is just an amalgamation of two existing 

theorems/ algorithms: the first is due to Lascoux and Schutzenber and appears 

shortly (Theorem 6.2); the second is Schensted's algorithm for the ordinary 

characters of the symmetric group. Appendix A gives the details of Schensted's 

algorithm. 
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The Kostka matrix K(t) is the transition matrix between the Schur S-functions 

and the HL P-functions and has coefficients K>..µ(t) in the equation 

B>..(x) = L K>..µ(t)Pµ(x; t). 
µ 

The numbers K>..µ(t) are called Kostka numbers. 

When t = 1, recall that the HL P-functions are just the monomial symmetric 

functions. In this case, the Kostka numbers and Kostka matrix just described 

are the same as those given in Section 2.2.3. 

We are interested in the case t = -1. Lascoux and Schiitzenberger found a 

combinatorial formula for the Kostka numbers for any value of t. Their formula 

depends on the charges of words formed by injected partitions to form unitary 

tableaux. We refer to Section 1.4 for all the required definitions. 

Theorem 6.2 (Theorem of Lascoux and Schiitzenberger, [44], Theorem III.6.5) 

The elements of the Kostka Matrix are given by 

T 

where the sum is over all possible unitary tableaux T formed by injecting p into 

the Young diagram Y\ and c(T) is the charge of the word associated with the 

tableau T. 

Example 6.3 Lett= -1 and consider Kc42)(2212)(-l). The possible unitary 

tableaux and their associated words are: 

ITIIf2J1J 
~ 

W1 = {221143} 

ITIIJ]]]] 
~ 

W2 = {321142} 

CilIIIill 
~ 

W3 = {421132} 
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For the word w1 , the set of standard subwords is {2143, 21} as described in 

Example 1.33. The indices are also determined in the example just mentioned 

larly we obtain 

Hence Kc42)(22 12) (-1) = (-1)5 + 2 x (-1)3 + (-1)4 = -2. 

The Kostka matrix K(t) can be used to connect the transition matrix X(t) and 

the ordinary characters. Specifically ([44], Equation III.7.6') 

x;(t) =I: x~Kµ;,(t) (6.9) 
µ?:_), 

where the sum is over all partitions µ ~ .A in the reverse lexicographical ordering. 

Theorem 6.4 Suppose .A E 'DP is a distinct part partition of weight n with 

length l(.A), and p E OP is an odd part partition of weight n and length l(p). 

The spin character(>- on the class p is 

(; = 2~[Z(p)-Z(>-)-e] L Kµ;,(-l)x~ 
µ?_), 

(6.10) 

where the sum is over all partitions µ greater than or equal to .A in the reverse 

lexicographical ordering; xµ is the ordinary character of the symmetric group 

Sn on the class p; Kµ;,(-l) are the Kostka numbers with t = -1, and € is 

appropriately 0 or 1. 

Proof. Using Equation 6.6 from Lemma 6.1 with Equation 6.9 is all that is 

required.D 
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Remark 6.5 Theorem 6.4 allows us to determine the spin characters using 

known combinatorial methods for calculating the ordinary characters. We give 

a recipe using a "build-up" method. This means that for larger order characters, 

we do not rely on needing to know the spin characters of lower orders. Of 

course, it may be of interest to investigate a recipe using a staircase stripping 

method. We give the build-up method here because it fits well with Lascoux 

and Schiitzenberger's algorithm for the Kostka numbers. 

Algorithm 6.6 Suppose >. E VP is a distinct part partition of weight n and 

p E OP is an odd part partition of weight n. To calculate the spin character c; 
of the symmetric group Sn, we must consider partitionsµ f-- l>-1 whereµ 2: >. (in 

the reverse lexicographic ordering). For each of theseµ: 

(i) Calculate the charge c( T) of each of the unitary tableaux T formed by in­

Jecting >.intoµ. Compute the sum L
7

(-l)c(r) ; 

(ii) Calculate the number of negative applications of each of the regular tableaux 

er formed by inJecting p intoµ. Denote by ne(crµ) the number of tableaux 

er which involve an even number of negative applications and by n 0 (crµ) 

the number of tableaux er which involve an odd number of negative ap­

plications. Find the difference ne (erµ) - n 0 (erµ), and call this difference 

An( erµ)· 

Then 

(6.11) 

where: T has shapeµ; l(p) and l(>.) denote the lengths of the partitions p and>. 

respectively; and € is 1 if l (p) - l ( >.) is odd, and 0 otherwise. 

111 



Proof. Part (i) of our algorithm is exactly Lascoux and Schiitzenberger's al­

gorithm for the Kostka numbers K µ>. (-1). Part (ii) of our algorithm is exactly 

Schensted's build-up staircase recipe for the ordinary characters which is de­

tailed in Appendix A. Lascoux and Schiitzenberger Theorem (Theorem 6.2) 

require tableaux of shape µ. Since Schensted's build-up staircase recipe also 

requires tableaux of shape µ, we naturally merge the two algorithms. Indeed, 

Equation 6.11 is just Equation 6.10 with Kµ>.(-1) replaced by 2:
7
(-l)c(r) using 

Lascoux and Schiitzenberger's theorem (Theorem 6.2) and with x~ replaced by 

D.n (aµ) using Schensted's recipe (Algorithm A.l). D 

Example 6. 7 Suppose we want to calculate the spin character ((42) on the 

class p = (313 ). Then we must consider all partitions µ of weight 6 such that 

µ ~ >. = (42). So we put µi = (6); µ2 = (51); µ3 = (42) and sum over these 

µ,. Figure 6.1 contains a table in which each row is indexed by each one of the 

~ii just listed. The left hand column in the table shows the sum 2:
7

(-l)c(r) 

from part (i) of Algorithm 6.6. The middle column shows the calculation of 

the differences D.(aµ) described in part (ii) of Algorithm 6.6. In the right-most 

column multiples of the two are summed, producing a total to be multiplied by 

2~(l(p)-l(>.)-E). In this case we calculate (~;i) = __:2. 

Spin character tables are provided in Appendix B. Referring to the table for 

characters of degree 6, we look for the column headed (313) and the row indexed 

by (42). The entry there is the value of (~;;i) and this value is -2. 
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Figure 6.1: Diagrams and calculations for Example 6.7 

Unitary Tableaux Regular Tableaux 
Inject A= (42) Inject p = (313) 

µ = (6) 
1111111112121 1111111213141 

w = {221111} #neg= 0 
w = {211o;21lo;lo;lo} 

c(w) = 2 ne(aµ) = 1 no(aµ) = 0 
(-1)2 =1 .6.n(aµ)=l-0=1 

µ = (51) 

[1]11111121 [1]11112131 llJ 11112,l 4 I 

w = {211112} #neg= 0 #neg= 0 
w = {lo2o;21lo;lo;lo} 

[1]11113141 [1]11213141 

c(w) = 1 #neg= 0 #neg= 1 

(-1)1 = -1 ne(aµ) = 3 no(aµ) = 1 
.6.n(aµ)=3-1=2 

ffiETITI 2 
µ = (42) 

tffijiill 4 • 4 

w = {111122} #neg= 0 #neg= 1 
w = {lo2o; lo2o; lo; lo} 

~ 4 • 2 

#neg= 0 #neg= 1 

tEifillJ 3 • 3 

c(w) = 0 #neg= 0 #neg= 1 

(-1)0 =1 ne(aµ) = 3 no(aµ) = 3 
.6.n(aµ) = 3-3 = 0 

Also l(p) = 4 and l(.X) = 2. Hence 
(42) •1-2 

((313) = 2 2 x -1 = -2. 

Key for Notation 
# neg the number of negative applications 
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6.3 Special cases 

6.3.1 Length one partitions 

In the special case when .X is a length one partition of weight n, i.e. so that 

.X = ( n), our algorithm for the value of the spin character (>.=(n) on any class p 

simplifies. 

Theorem 6.8 Suppose A= (n) is a length one partition of weight n. The spin 

character c;=(n) on the class p is 

c;=(n) 

where 

8 = { ; 

2~[l(p)-8] 

whenever n is odd 
whenever n is even. 

(6.12) 

Proof. Consider the special case that .X = ( n) is a length one partition of 

weight n. Using our recipe (Algorithm 6.6) we need consider onlyµ 2: .X. Since 

.X = (n), the onlyµ satisfying this requirement isµ= (n). This means that the 

sum overµ in Equation 6.12 reduces to the product of Lr(-l)c(r) determined 

in step (i) and .6.n(aµ) determined in step (ii) of Algorithm 6.6, both evaluated 

atµ= (n). 

Whenever µ = ( n) and .X ---= ( n), the only unitary tableaux formed by the 

injection of .X into µ is the trivial one row tableau with l's everywhere. So the 

extracted word w = (111···1) of length n is a standard word with charge 0. 

Hence we always have Lr(-l)c(r) = (-1)0 = 1. This reduces the spin character 

calculation to the product of .6.n(aµ) and a power of two. 
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Next, Lin(uµ) in step (ii) of Algorithm 6.6 depends on the number of negative 

applications involved in injecting the class p into yµ. This calculation becomes 

trivial in this case since the number of rows in yµ is one, meaning the number of 

negative applications must always be 0, since we will never have an even number 

of rows. There is always one and only one way to inject any partition p into a one 

row diagram to give a regular tableau. Indeed, we always have only one trivial 

even negative application in this case. And so we always obtain 1 even and 0 

odd negative applications for any p, whence Lin(uµ) = ne(uµ) - n0 (uµ) = 1. 

Hence, in the special case that..\= (n), we always get Lin(uµ) · (~:::;7 (-ly(rl) = 

1 summed only once in the case µ = ( n); and so the spin character is just 

2~(!(p)-!(>.)-c). Since l(.X) = 1, this expression reduces further to 

Next, combine the constants 1 and E (where E = 0or1 appropriately), by putting 

-1 - E = -o where 

{ 
1 whenever l(p) is odd 
2 whenever l(p) is even. 

Finally, notice that since p f- n is an odd part partition, if n is even, then p 

must have an odd number of parts. Likewise, when n is odd, p must have an 

even number of parts. This means we can describe o in terms of n and remove 

the dependance on l (p). D 

Example 6.9 The first row of the character table corresponds to the irreducible 

character (>.=(n). Using Corollary 6.8 we can easily give the first row of the spin 

character table for different n. Let's consider the case when, say, n = 10. Since 

n is even, the value of o here is o = 2. 
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d10) = 2!CL(p)-2) 

class: (91) (73) (713) (52) (5312) (515) (331) (317) (110) 

l(p) 2 2 4 2 4 6 4 8 10 

d10l 1 1 2 1 2 4 2 8 16 

Next, we provide the first row in a spin character table of odd degree, say, 

n = 11. This makes it easy to see how the 8 in Corollary 6.~ is written without 

dependence on l(p); but rather by the parity of n. In this case, n is odd and so 

the value of 8 here is 8 = 1. 

( (11) - 21.(l(p)-l) p - 2 

class: (11) (912) (731) (714) (521) (532) (5313) 

l(p) 1 3 3 ' 5 3 3 5 dll) 1 2 2 4 2 2 4 

class: (516 ) (3312) (3215) (318 ) (111) 

l(p) 7 5 7 9 11 dll) 8 4 8 16 32. 

Looking at the spin character tables given in Appendix B, we see that all the 

characters calculated are in fact true and correct. 

Remark 6.10 A similar form of Rqna.tion 6.12from Theorem 6.8 is mentioned 

by Morris [46] as having appeared in Schur's original paper [65]. We have, of 

course, obtained this result in a completely different way to that of Schur. 
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6.3.2 When the class is the identity element 

For distinct part partitions .A = (.A1, · · ·, Ak) of length k, shifted diagrams can 

be represented in another type of diagram y>. with a main diagonal of k boxes 

marked with a* say. Put .A, boxes in the ith row to the right of the marked 

box for each 1 sis k. Then put .A, - 1 dashed-boxes in the ith column below 

the marked box for each 1 <is k. The diagram y>. constructed in this way is 

called the shifted symmetric diagram. 

Example 6.11 Consider A= (431). The shifted symmetric diagram yC43i) is 

* 
* 

L __ .f ____ l 

Graphically, the hook-length of a partition p at coordinate x in the Young dia-

gram YP is the number of boxes along the row to the right of x plus the number 

of boxes down the column below x plus 1 (for the box x itself). For the shifted 

diagram Y\ the hook-length h(x) for each x E y>. is defined to be the hook­

length at x in the shifted symmetric diagram y>.. We write h(x) as h(x) to 

clarify this point. 

Example 6.12 Consider .A = (431). Then for the shifted diagram Y\ the 

hook-lengths have been calculated and injected into the diagram y>- at the 

corresponding boxes for all coordinates x E y>.. 
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* 7 5 4 2 

* 4 3 I 

* I 

Proposition 6.13 ((44], p. I34) When the class p is restricted to the identity 

element (In) of the symmetric group Sn, the coefficients in transition matrix 

Xfi,,) from the power-sum symmetric functions Pp=(l") to the HL P-functions 

P>.1-n(x; t =-I) can be calculated using the hook-lengths of the shifted diagram. 

Explicitly 

>. n! 
Xc1,,l(-I) = _ 

ITxEY>. h(x) 

where h(x) is the hook length at x in the shifted diagram y>- of>. f- n. 

Using this hook-length formula and making use of Equation 6.6 yields the fol-

lowing corollary to Theorem 6.4. 

Corollary 6.14 Let p f- n and>. f- n be partitions of weight n with p =(In). 

Then the spin character (fn on class p =(In) is given by 

;->. - 21.[n-!(>.)-e] n! 
'>(1") - 2 

ITxEY>. h(x) 

where y>- is the shifted diagram of A.; h(x) is the hook length of x E Y\ and E 

is 0 or I accordingly. 

Proof. Combining Equation 6.6 from Lemma 6.I with the hook-length formula 

given in Proposition 6.I3 completes the proof. D 
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Example 6.15 Consider the class (16 ) of 85. For>.= (42) we have l(>.) = 2. 

The diagram y>.. of >. with the hook lengths for each coordinate x E y>.. injected 

at each x E y>.. is 

and so 
1>-=(42) 
'>(16) 

[_~_I ! I : I ~ I 1 I 

1 n! 22(n-l(>..)-<) ~ 

ITxEY(>..) h(x) 

= 2!<6-2-e)~ 
6 x 4! 

2!<4)5 

= 20 

where the appropriate value for E is E = 0. 

Example 6.16 Consider the class (16 ) of 85. For>.= (6) we have l(>.) = 1. In 

this case we can use Theorem 6.8 to determine 

1(6) - 2~(6-2) - 22 - 4 
'>(16) - - - . 

For the purpose of illustration, we apply Corollary 6.14 here and leave it to the 

reader to see, by example, how this hook-length formula can be used to prove 

Theorem 6.8. The shifted symmetric diagram of y>.. of>. with the hook lengths 

for each coordinate x E y>- injected at each x E y>- is 
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and so 
,..>-=(6) 
'>(16) 

n! 2Hn-l(>.)-e) ___ ~-

I1xEY(>.) h(x) 

1 ( ) 6' 22 6-1-e __: 

6! 
2~(4) = 4 

where the appropriate value for E here is 1. 

6.4 Generalized Q-operators revisited 

To conclude this chapter, we make one final proposition about the BKP hi­

erarchy. Its appearance here is somewhat out of place, in that it relates to 

the contents of the previous chapter; but this result relies upon Lemma 6.1 

developed earlier in this chapter. 

Recall that we use ilk to be the additive subgroup of the ring of Hirota deriva­

tives whose elements are the generalized Q-operators with l(>.) = k and l>-1 = 

2n 2: 4. Put ii = ukflk as the direct union of additive subgroups of the ring. 

Proposition 6.17 The members of the BKP hierarchy are elements of the sub­

group ii of generalized Q-operators. Indeed, any Hirota derivative is expressible 

as an integer sum of generalized Q-operators. Explicitly 

Dp(x) = L T!(l(>.)+l(p)-e)(;Q.x(x) 

'DP3.\1-lpl 

where E is 0 or 1 accordingly. 
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Proof. This result is a consequence of Lemma 6.1, keeping in mind that the 

generalized Q-operators are developed via Littlewood-associated functions and 

the spin characteristic mapping introduced by Schur (Equation 5.1). 

To begin, recall that the transition matrix between the HL P-functions P>,(x; t) 

and the power-sum symmetric functions Pp(x) has coefficients X~(t) in the equa-

tion 

Pp(x) = L x;(t)P>. (x; t). 
)., 

Now, using Equation 6.5 from Lemma 6.1 we readily obtain 

pp(x) = L:2~(l(>.)-l(p)+€)(;P>.(x;t). 
)., 

(6.13) 

Next, we evaluate Equation 6.13 at t = -1 and replace the HL P-functions 

P>.(x; -1) with HL Q-functions Q>.(x; -1) via Equation 6.3 to give 

Pp(x) = L r~(l(>.)+l(p)-€)(;Q>.(x; -1). 
'DP3>-1-IPI 

Since the Q>.(x; -1) are just the Schur Q-functions, relying upon the analogue 

between the power-sum symmetric functions and the Hirota derivatives set up 

in Section 5.3 completes the proof. D 
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Appendix A 

Ordinary Characters of the 
Symmetric Group 

Schenstead [66] gives an excellent description of a recursive staircase algorithm 

for calculating the ordinary characters of the symmetric group "based upon a 

famous formula due to Frobenius" ([66], p.142). From this she goes on to give 

a build-up staircase form of this algorithm. We employ Schensted's "build-up" 

algorithm in part (ii) of our Algorithm 6.6. 

Algorithm A.1 (Schensted's build-up staircase algorithm, [66], 3.5.3) To 

calculate the character x~ on the class p in the irreducible representation µ, 

first draw the Young diagram yµ; then inject p in a regular manner, with 

the added restriction that like digits must form a continuous staircase of some 

subdiagram of yµ. The value of the character x~ is equal to the number of 

ways of doing the above that involve an even number of negative applications 

minus the number of ways of doing the above that involve an odd number of 

negative applications. 
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Example A.2 Supposeµ= (22 ) and p = (212 ). Then all the possible regular 

tableaux formed by injecting p into µ are 

The tableau r1 involves 0 negative applications (an even number of negative 

applications) and r2 involves 1 negative application (an odd number of negative 

applications). The character xg~~) is equal to the number of tableau that 

involve an even number of negative applications minus the number of tableau 

that involve an odd number of negative applications. Hence xg~~) = 1 - 1 = 0. 
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Appendix B 

Spin Character Tables 

Spin character tables from [46] and [27] up to degree 10. 

The rows are indexed by the characters of the irreducible representations (>. in 

distinct part partitions; the columns are headed above by the class p, an odd 

part partition. For example, to look up the character (<41) on the class (312), we 

go to the table 'Degree 5', read down the left hand side to the character (<41l, 

written as (41), and then across to the column headed by (31 2). The entry 0 

found there is the value of the spin character (~~;). 

Degree 4 Degree 5 

class__, II (14
) I (31) 

(~i~ II ~ I -~ I 

class - II (15
) I (312

) I (5) 
(5) 4 2 1 

(41) 6 0 -1 
(32) 4 -1 1 
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Degree 6 D 7 egree 

class ~ II (16) I (313) I (51) I (32) class ~ II (17) I (314)1 (512) I (321) I (7) 
(7) 8 4 2 2 1 
(61) 20 4 0 -1 1 
(52) 36 0 -1 0 1 
(43) 20 -2 0 2 -1 

(421) 28 -4 2 -2 0 

(6) 4 2 1 1 
(51) 6 2 -1 -2 
(42) 20 -2 0 2 
(321) 4 -1 1 -2 

Degree 8 

class ~ II (18 ) I (315) I (513) I (3212) I (71) I (53) 

(8) 8 4 2 2 1 1 
(71) 48 12 2 0 -1 -2 
(62) 112 8 -2 -2 0 2 
(53) 112 -4 -2 4 0 1 
(521) 64 -4 1 -2 1 -1 
(431) 48 -6 2 0 -1 1 

Degree 9 

class ~ II (19) I (316) I (514) I (3212) I (712) I (531) I (33) I (9) 

(9) 16 8 4 4 2 2 2 1 
(81) 56 16 4 2 0 -1 -2 -1 
(72) 160 20 0 -2 -1 0 2 1 
(63) 224 4 -4 2 0 1 1 -1 
(54) 112 -4 -2 4 0 -1 -4 1 
(621) 240 0 0 -6 2 0 -6 0 
(531) 336 -24 4 0 0 -1 6 0 
(432) 96 -12 4 0 -2 2 -6 0 

Degree 10 

class ~ II (110
) I (317) I (515

) I (3214) I (713) I (5312) I (331) I (91) I (73) I (52) 

(10) 16 8 4 4 2 2 2 1 1 1 
(91) 128 40 12 8 2 0 -2 -1 -2 -2 
(82) 432 72 8 0 -2 -2 0 0 2 2 
(73) 768 48 -8 0 -2 2 6 0 -1 -2 
(64) 672 0 -12 12 0 0 -6 0 0 2 
(721) 400 20 0 -8 1 0 -4 1 -1 0 
(631) 800 -20 0 -4 2 0 1 -1 1 0 
(541) 448 -28 2 4 0 -2 2 1 0 -2 
(532) 432 -36 8 0 -2 1 0 0 -1 2 
(4321) 96 -12 4 0 -2 2 -6 0 2 -4 

125 



Appendix C 

A Combinatorial Approach 
to Symmetric Functions 

There exists a rich and well established connection between the ring of symmet­

ric functions and the combinatorial theory of Young diagrams. This connection 

is highlighted by the fact that one can define both the S-functions and the Q-

functions in a purely combinatorial setting. We provide the starting point for 

the combinatorial approach here. For further details, see [61) for S-functions 

and either [60) or [67) for more on the Q-functions. 

C.1 Schur S-functions 

The Schur polynomials may be determined combinatorially by 

S>.(X1,x2, · · · ,xn) = LXr =LIT Xrv 
T T yEr 

where the sum is over all unitary tableau r of shape >. formed by injecting 

partitions p with j>.j parts p, from the set {1, 2,. .. , n} corresponding to the 

indices in the n-tuple indeterminate. 
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Example C.1 Suppose >. = (21). When x = (x1, x2, x3) there are 8 possible 

unitary tableaux of shape >. with entries from the set {1, 2, 3} : 

[III] ; ill3J ; [III] ; ITJ2l ; llil 
~ ~ ~ ~ ~ 

From these tableaux, we give the Schur polynomial 

The Schur polynomials are symmetric because if we swap the indeterminates 

with one another, the polynomial remains unchanged. Just as in Section 2.2 

we extend the number of indeterminates the Schur polynomials by taking an 

inverse limit to describe the Schur S-functions. The Schur S-functions provide 

a Z-basis for the ring of symmetric functions. 

For Example C.1, the corresponding Schur S-function is 

sc21)(x) = l:x,x; + 2 L XiX3Xk 0 

i,3 •<J<k 

C.2 Schur Q-functions 

Let x (x1,x2, · · · ,xn) E JRn be an n-tuple indeterminate. The Q-

polynomials may be determined combinatorially by 

Q>.(X1,x2, · · · ,xn) = LXr =LIT Xry 
T T yEr 
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where the sum is over all standard shifted tableau T of shape A formed by 

injecting partitions p of length IAI, with parts Pi from the set made up of the 

union of the sets of marked and unmarked alphabets {l, 2, · · ·, n}U{l', 2', · · ·, n'} 

corresponding to the indices in the n-tuple indeterminate. Order the set of 

alphabets so that l' < 1 < 2' < 2 < 3' < · · ·. The rules for standard injection 

into a shifted diagram are that rows and columns must be weakly increasing with 

the added restrictions that marked numbers may not have row-wise repetition, 

and that unmarked numbers may not have column-wise repetition. The marking 

of the numbers is only relevant for the injection; with the value Xry un-marking 

any marked numbers. 

Example C.2 Suppose A= (21). When x = (x1,x2,x3) there are 32 possible 

standard shifted tableaux of shape A with column alphabet {l, 2, 3}, and row 

alphabet {l', 2', 3'} : 

l1fil j l1'IIJ j l1fil j l1'IIJ j ITID 
II] II] lIJ lIJ LI] 

l1'IIJ j l1fil j l1'IIJ 
lI] lIJ lI] 

'10 j [J!0 j '10 j [J!0 j lilTI 
II] II] lIJ lIJ LI] 

~ ; l11D ; 11'0 
lI] lIJ lIJ 

l2'ill ; l2'TIJ ; ITill ; ITill 
lI] lIJ lI] lIJ 
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~ ; 12'0 ; '2fil ; l2TIJ 
w~w~ 

11!0 ; ~ ; !Pill ; li0 ; [£ill 
~w~~w 

li0 ; liill ; ITJ:IJ 
w~w 

From these tableaux we can give the Schur Q-polynomial 

The Q-function is determined by the inverse limit, and in this case we obtain 

Qc21)(x)=4L::x,x;+s L x,x3xk. 
i,3 i<3<k 
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Index 

0-direct union, 12 
0-simple semigroup, 6 
r-functions, 91 

Abelian see commutative 3 
adjoining ' 

a zero element, 7 
an identity element 7 

algorithm ' 
for the ordinary characters 121 
for the spin characters no' 

associative mapping, 14 ' 
augmentation map, 73 

band, 6 
Bergman's Lemma 

for G-graded rings w / o unity, 54 
for G-graded rings with unity 50 
our generalization, 72 ' 

bilinear mapping, 35 
bimodule, 14 
binary operation 

closed, 2 
induced, 2 
partial, 2 

BKP equation, 91 
BKP hierarchy, 92, 100 
Brandt groupoid, 11 
Brandt semigroup, 11 
build-up algorithm, Schensted, 121 

cancellative, 2 
homgeneous sum, 71 
partial groupoid, 2 

centralizer, 5 
described by partitions 22 
size of in the symmetri~ group, 22 

character 
ordinary 

algorithm for, 121 
as a transition matrix, 44 105 

spin, 84 ' 
algorithm for, 110 
as a transition matrix, 106 

characteristic mapping, 42, 85 

charge of a word, 25 
class, 15 

conjugacy see conjugacy class 5 
Green equivalence, 8 ' 
radical, 15 
residue modulo I 14 
semisimple, 15 ' 

closed 
under extension, 15 
under homomorphism, 15 
under the operation 2 

coefficients, 35 ' 
commutative 

group, 3 
groupoid, 1 
ring, 13 

completely 0-simple, 7 
component of a ring 30 

idempotent, 32 ' 
conjugacy class, 5 

described by partitions 22 
identity element of Sn, '21 
o! the ~ymmetric group, 21-23 
size of m the symmetric group, 22 

contracted S-graded ring, 33 
core, 94 

thorn, 94, 95 
triangular, 94, 95 

core element, 94 
cycle, 19 

independent, 19 
cycle structure, 19 

degree 
homgeneous of, 30 
of a monomial, 36 

depth of a double strip 97 
diagram ' 

BKP hierarchy, 93, 100 
shifted Young, 94 

skew, 97 
symmetric, 116 

Young, 23 
distinct part partition 84 
double strip, 97 ' 
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element 
core, 94 
homogeneous 30 
idempotent, 6 

in a ring, 16 
inverse, 3 

in a semigroup, 5 
of a word, 25 
primitive, 6 
quasi-inverse, 16 
quasiregular, 16 
regular, 5 
support of, 30 

entry, diagonal, 18 
extracting subwords, 25 

factor 
principal, 9 
Rees semigroup factor, 9 

factor out 
ideal of a ring, 14 

. ideal of a semigroup, 9 
faithful S-graded ring, 80 
field, semisimplicity 17 
finite,support, 30 ' 
First Isomorphism Theorem 14 
Frobenius' ' 

formula, 22 
Theorem, 43 

function 
'T, 91 
generating, 41 
Littlewood-associated, 42, 88 

G-graded maximal ideal 50 
general linear group 83 ' 
generalized ' 

power-sum symmetric function 89 
Q-function, 89 ' 

generalized Q-operator 90 
genera~zed matrix rings, 33 
generatmg function, 41 

power-sum symmetric functions 41 
generator, 2 ' 

idempotent, 8 
set of, 8 

graded 
homomorphism, 45 
ideal, 45 
Jacobson radical 

for a r~ng with unity, 50 
for a nng without unity 53 

maximal ideal, 50 ' 
module, 53 

simple, 53 
graded ring, 30 

contracted, 33 

examples 
2 x 2 matrices, 31 
generalized matrix rings, 33 
homogeneous sums, 31 
Morita contexts, 34 
Morita ring, 35 
ring of polynomials, 35 
semigroup ring, 33 
symmetric functions, 37-44 

faithful, 80 
strongly, 30 

Green equivalence relations, 8 
group 

Abelian, 3 
general linear, 83 
graded ring, 30 
group ring, 34 
one-element, 11 
symmetric, 18 

group ring, 33 
groupoid, 1 

Brandt, 11 
cancellative, 2 
graded ring, 30 
ideal of, 2 
partial, 2 

Hall-Littlewood 
P-functions, 103 
Q-functions, 104 

height of a strip, 97 
hereditary radical class, 16 
Hirota derivatives, 86 

partition notation, 87 
polynomial ring, 87 

HL, see Hall-Littlewood, 103 
homogeneous 

components of an element, 71 
element, 30 
of degree s, 30 
symmetric polynomials, 38 

homogeneous sum, 31 
cancellative, 71 
non-degenerate, 79 

homomorphism of rings 
closed under, 15 
graded, 45 

hook-length, 116 

ideal 
augmentation, 73 
of a groupoid, 2 
of a ring 

G-graded maximal, 50 
S-graded, 45 
factored out, 14 
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generated by a set, 13 
of a semigroup 

factored out, 9 
maximal, 6 
minimal, 6 
principal, 8 

idempotent, 6 
component of a ring, 32 
element in a ring, 16 
generator, 8 
partial ordering on, 6 
primitive, 6 

identity element 
adjoined to a semigroup, 7 
multiplicative, 13 
of Ru, 52 
of Sn, 19, 21 

identity matrix, 11 
independent cycles, 19 
indexing sets, 10 
indices of a word, 25 

as subscripts, 27 
induced operation, 2 
inject a partition, 27 

negative application, 27 
regular tableau, 24 
unitary tableau, 24 

inverse element, 3 
inverse limit, 40 
inverse semigroup, 5 
Isomorphism Theorems, 14 

Jacobson radical, 16 
S-invariant, 58 
graded, 50, 53 
homogeneous components of, 72 

Jacobson radical class, 16 
John Scott Russell, 85 

Kadomtsev-Petviashvilli equation, 91 
kernel 

of a semigroup, 6, 9 
of an S-graded homomorphism, 46 
of the augmentation map, 73 

Kostka 
matrix, 44, 108 
numbers, 44, 108 

calculating, 108 
KP equation, 91 

Lagrange's Theorem, 4 
lcm of orders of subgroups, 71 
left 

cancellative groupoid, 2 
cancellative partial groupoid, 2 
ideal of a groupoid, 2 

R-module, 14 
graded, 52 

zero semigroup, 3 
length of a partition, 20 
linear mapping, 14 
Littlewood-associated function, 42, 88 

the rational and the recipocal, 88 
lower triangular matrix, 18 

mapping 
associative, 14 
augmentation, 73 
bilinear, 35 
characteristic, 42, 85 
linear, 14 

matrix 
2 x 2, 31 
diagonal entries, 18 
generalized matrix ring, 33 
identity, 11 
Kostka, 44, 108 
over s0 , 10 
over a ring, 17 
Rees Ix A matrix semigroup, 10 
Rees I x J matrix over s0 , 10 
ring, 17 
sandwich, 10 
square, 18 
transition, 43 

Pµ(x) to P>.(x), 104 
triangular, 18 
units, 7, 10, 12 

maximal 
G-graded ideal, 50 
ideal of a semigroup, 6 

minimal ideal of a semigroup, 6 
module, 14 

S-graded-simple, 53 
left/right, 53, 55 
S-graded, 52 
unital, 55 

monoid, 3 
monomial, 36 

symmetric function, 40 
symmetric polynomial, 39 

Morita 
contexts, 34 
ring, 35 

multiplicitive 
power-sum symmetric function, 41 

multiplicity of a part, 20 

natural projection, 40 
negative application, 27 
non-degenerate homogeneous sum, 79 
null semigroup, 6 
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numbering 
regular, 23 
semi-standard, 23 
standard, 23 
standard shifted, 127 
unitary, 23 

odd part partition, 84 
order of the symmetric group, 19 
ordering 

on idempotents, 6 
on partitions, 20 

orthogonality relations, 106 

P-function, 103 
partial 

bin11ry opcmtion, 2 
groupoid, 2 

graded ring, 30 
induced by R, 31 

ordering on idempotents, 6 
partition, 20 

distinct part, 84 
hook-length, 116 
length, 20 
notation for Hirota derivatives, 87 
odd part, 84 
of n, 20 
ordering, 20 
parts, 20 

multiplicity of, 20 
to inject a, 27 
weight, 20 
written by multiplicity, 20 

parts of a partition, 20 
multiplicity of, 20 

permutation, 18 
as a product of cycles, 19 
two-line notation, 19 

polynomial 
of Hirota derivatives, 87 
ring, 35 

action of Sn on, 38 
symmetric, 38 

monomial, 39 
Schur, 125 

power-sum symmetric function, 41 
generalized, 89 
generating function, 41 
Littlewood-associated function, 42 

primitive idempotent, 6 
principal 

ideal of a semigroup, 8 
factor, 9 

projective representation, 83 

Q-function, 85 
generalized, 89 
Hall-Littlewood, 104 
Schur, 104 

Q-operator, 90 
Q-polynomial, 126 
quasi-inverse, 16 
quasiregular 

element, 16 
ring, 16 

quotient ring, 14 

radical class, 15 
hereditary, 16 
Jacobson, 16 

radical see Jacobson radical, 16 
Rees, 

I x J matrix over S0 , 10 
I x A matrix semigroup, 10 
factor semigroup, 9 

Rees' Theorem, 11 
regular 

element, 5 
numbering, 23 
semigroup, 5 
tableau, 24 

residue class of a ring, 14 
r~verse lexicographical ordering, 20 
rmg 

commutative, 13 
graded, 30 

by a group, 51-57 
by a partial groupoid, 30 
contracted, 33 
strongly, 30 

group ring, 33, 34 
ideal of 

G-graded maximal, 50 
S-graded, 45 

Jacobson radical of, 16 
left 

R-module, 14 
Morita ring, 34 
of Hirota derivatives, 87 
of polynomials, 35 

action of Sn on, 38 
Hirota derivatives, 87 

of symmetric functions, 40 
integer basis, 41 
rational basis, 41 

of symmetric polynomial 
integer basis, 43 

partial groupoid graded, 30 
quasiregular, 16 
quotient, 14 
residue class modulo I, 14 
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semigroup graded, 30 
semigroup ring, 33 
semisimple, 16 
simple, 13 
strongly graded, 30 
unital extension, 51 
with unity, 13 

Russell, John Scott, 85 

s-component of a graded ring, 30 
S-functions, see Schur S-functions, 126 
S-graded 

(left) module, 52 
simple, 53 

ideal, 45 
ring, 30 

contracted, 33 
S-grading, 30 
S-invariant, 58 

Bn invariant, 61 
G invariant, 60 

sandwich matrix, 10 
Schensted's Algorithm, 121 
Schur Q-function, 85, 104 
Schur S-function, 43, 105, 126 
Schur polynomial, 125 
Second Isomorphism Theorem, 14 
seeds, 96 
semigroup, 1 

0-simple, 6 
Brandt, 11 
completely 0-simple, 7 
graded ring, 30 
ideal of, 2 
inverse, 5 
left zero, 3 
null,6 
of I x I matrix units, 7 
Rees Ix A matrix semigroup, 10 
Rees factor semigroup, 9 
regular, 5 
simple, 6 
with identity element adjoined, 7 
with zero element adjoined, 7 

semigroup ring, 33 
semilattice, 6 
semisimple, 16 
set of generators, 2, 8, 10 
shifted Young diagram, 94 

skew, 97 
symmetric, 116 

simple 
S-graded module, 53 
ring, 13 
semigroup, 6 

spin character, 84 
algorithm for, 110 
as a transition matric, 106 

spin representation, 84 
square matrix, 18 
staircase, 23 
standard 

numbering, 23 
tableau, 23 
word, 25 

strip, 97 
height of, 97 

strongly graded, 30 
subgroupoid, 2 
subsemigroup, 6 
support, 30 
Sylow's First Theorem, 4 
symmetric functions, 104 

HL P-functions, 103 
HL Q-functions, 104 
monomial, 40 
power-sum, 41 

generalized, 89 
generating function, 41 
Littlewood-associated function, 

42 
ring of, 40 

integer basis, 41 
rational basis, 41 

Schur Q-function, 85 
Schur S-function, 43, 126 

symmetric group, 18 
action of 

on the ring of polynomials, 38 
identity element, 21 
ordinary characters of 

algorithm for, 121 
as a transition matrix, 44 

size of centralizer, 22 
size of conjugacy class, 22 
spin character, 84 

algorithm for, 110 
as a transition matrix, 106 

symmetric polynomials, 38 
HL P-polynomials, 103 
HL Q-polynomials, 126 
homogeneous, 38 
monomial, 39 
ring of 

integer basis, 43 
Schur, 125 

tableau, see Young tableau, 23 
term, 36 
Theorem 

Frobenius', 43 
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Lagrange's, 4 
Lascoux and Schiitzenber's, 108 
Sylow's First, 4 

thorn, 94 
transition matrix, 43 

characters of Sn, 44 
Kostka matrix, 44, 108 
power-sum to HL P functions, 104 

triangular core, 94 

unital extension of a ring, 51 
identity element, 52 

unital module, 55 
unitary 

numbering, 23 
tableau, 24 

unity, 13 
upper triangular matrix, 18 

weight of a partition, 20 
word 

charge of, 25 
elements of, 25 
indices of, 25 
standard, 25 

Young diagram, 23 
shifted, 94 

skew, 97 
symmetric, 116 

Young tableau, 23 
regular, 24 
standard, 23 
standard shifted, 127 
unitary, 24 

zero element, adjoined, 7 
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Glossary of Notation 

Symbol 

E, s ES 
3, s 3 s 
rt, s rt s 
ISI 
c 
c 
0 
n 
u 
S\T 
AxB 
f :A--+B 
f(a) = b 
a f-t f(a) 
(a) 
(A) 

0 

a-l 

-a 
gcd(a, b) 
lcm(a, b) 
Zg 
Hg 

E(S) 
(i,j) 

Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 
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