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Abstract

Three-dimensional geophysical inversion of EM data aims to give an idealised
estimate of the 3D geoelectrical structure of the subsurface which can mea-
ningfully describe a set of observations. Rigorous 3D inversion of time-domain
electromagnetic data is an onerous computational challenge, often taking several
hours or even days. Motivated by the demand for a rapid and reliable 3D inver-
sion method for TEM data, a fast, approximate 3D inversion schieme of Lransieul
electromagnetic data has been developed. The new scheme combines the TEM
moments concept and geologically constrained 3D inversion methodology. The
TEM moment inversion scheme builds on the pre-existing vPmg potential field
modelling and inversion framework which has been extended and modified so as
to accommodate approximate 3D TEM inversion. The method has potential for
fast, constrained 3D inversion of large airborne TEM data sets.

The moment transform of TEM data is a time-weighted integral of the impulse
response which accentuates late-time features. Due to the time integration, a
TEM decay is effectively reduced to a single value. Depth resolution is lost due
to the time integration, which, in effect, converts the nonlinear 3D TEM inversion
problem into a linear 3D magnetic inversion problem.

Using TEM moments, EM interaction may tolerably be ignored, therefore
justifying linear superposition of TEM responses. 30 TEM forward modelling
is realised as a linear combination of a discretised 3D target response and a
continuous background response. Superposition of the TEM moment responses of
magnetic dipoles, distributed on a cubic mesh, gives the target response whereas
the TEM moment response of a half space serves as the background response.
Computations are based on analytical formulae. For the approximate scheme,
a reduction in accuracy is accepted as a trade-off for much improved speed of
calculation.

For the 3D inversion, a starting model (or a set of weights) generated from
conductivity-depth imaging (cDI) is used to inject depth resolution. The CDIs are
based on total magnetic field data which facilitates derivation of unambiguous
apparent conductivities for fixed-loop TEM. Depth resolution is also recovered by
means of geological constraints and depth weighting. The underlying model is
both geological and petrophysical, so that the inversion can be focused on selected
units. A fast steepest descent method is employed, so that computationally
slow matrix inversion is not required Typically, for ground-TEM, the fast
approximate 3D inversion completes in minutes, thus facilitating exploration
of non-uniqueness. The inversion scheme was successfully tested on synthetic
fixed-loop TEM examples and on fixed-loop TEM field data from South Africa.
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Chapter 1

Introduction

1.1 Scope and objectives

Rigorous three-dimensional (3D) inverse modelling of time-domain electroma-
gnetic (TEM) data is complex and time-consuming. In the mineral exploration
industry, however, there is often a perceived requirement to interpret the data
quickly Simplified approximate 3D solutions therefore facilitate, fast and flexible
data interpretation of large TEM data sets acquired over 3D geology. The focus
of the present work is on rapid 3D inversion of TEM data as an aid in exploration
for deep conductive targets.

The transition from pre-dominantly shallow mineral exploration to deep
exploration is inevitable as it becomes increasingly less likely to discover large
outcropping bodies (McMonnies and Gerrie, 2007; Williams, 2008). However, as
exploration depth increases, interpretation of a limited set of isolated geophysical
observations will progressively become more ambiguous. Therefore, an approach
of integrated interpretation of all information available is needed to reduce
uncertainty (Knox-Robinson and Wyborn, 1997; Paterson, 2003).

The current thesis accommodates integration of geological information for
constrained inversion of TEM data in order to resolve the geoelectrical subsurface
structure of concealed mineralisation. The presented methodology is a novel and
innovative approach to tackle the 3D inverse TEM problem in an approximate
and rapid fashion. The presented 3D interpretation scheme is complementary
to existing 1D interpretation schemes and aims to help build confidence in the
geological interpretation of the subsurface.

1D approaches are fast, but artifact-prone. The aim of the project therefore
is to, in effect, generalise conductivity-depth-imaging (CDI) processing to 3D.
1D interpretation of TEM data in form of CDI and 1D inversion can serve as
preparatory steps for 3D constrained inversion. However, 1D interpretation
schemes may contain artifacts when applied to data arising from 3D geology
which therefore may lead to spurious features in the 3D inversion. Therefore, a
novel CDI scheme, based on multi-component TEM data, was developed in order
to minimise the impact of 3D geology on CDIs
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Fast, approximate EM modelling employs the TEM moment transform which
is a weighted time-integration of the TEM earth response (Smith and Lee, 2002b).
Because the TEM moment transform puts emphasis on ’late-time’, EM interaction
is tolerably disregarded. For this thesis the first order TEM moment is exclusively
used which is equivalent to the resistive limit response. Smith and Lee (2002b)
note that TEM moments may enhance deep and conductive features which may
otherwise be difficult to detect. Complicated non-linear expressions for the
time-domain response of simple bodies simplify in the moment domain.

Geophysical inversion has achieved widespread acceptance as a valid interpre-
tation tool and major progress has been made by integrating geological models
as constraints (Fullagar and Pears, 2007; Oldenburg and Pratt, 2007) Potential
field inversion techniques have progressed from representations using simple 3D
models to integrated interpretation using Common Earth Models, which speci-
fies a litho-structural model based on quality geology, structural interpretation,
petrophysical and geophysical data, defining a coherent model for the formation
of the 3D geology (McGaughey, 2006; Oldenburg and Pratt, 2007).

The TEM moment transformation of transient EM data to TEM moments
transposes the inversion problem from the non-linear time-domain to the linear,
potential field-like, moment domain. The inversion employs the potential field
inversion framework of the program vpmg (Fullagar et al., 2000, 2004; Fullagar
and Pears, 2007; Fullagar et al., 2008). VPmg is modified so as to accommodate
the TEM moments methodology; the new program is referred to as VvPems3D.

The significance and innovation of the presented thesis is the fast integrated
3D interpretation of TEM data, based on parametrised approximate TEM solutions,
for arbitrarily shaped anomalous volumes in terms of time constants utilising
geological constraints and potential field inversion devices. In short, the objectives
of the thesis can be summarised as

¢ the development of an approximate, fast 3D-TEM forward modelling program
using analytical parametrised TEM solutions as a combination of a discrete
target response and a continuous background response.

o the derivation of an unambiguous apparent conductivity based on B-field
amplitudes for fixed-loop TEM which serves as a preparatory process of 3D
inversion.

o the realisation of a true 3D inversion scheme for TEM data using the
approximate forward modelling solution.

¢ the presentation of a fast and efficient 3D integrated interpretation technique
utilising geological constraints for TEM data as a supplement to fast 1D
interpretation schemes

The remainder of this introductory chapter provides a synopsis of the transient
electromagnetic prospecting method. First the governing equations and the TEM
methodology are presented, followed by a brief literature review of EM modelling
and inversion. The chapter concludes with an introduction to the TEM moments
modelling and inversion method and an overview of following chapters.



1.2 Synopsis of inductive TEM exploration

1.2 Synopsis of inductive TEM exploration

The aim of electromagnetic (EM) prospecting is to resolve the subsurface geoe-
lectrical structure. Inductive EM methods in applied geophysics are used to
determine the distribution of electrical conductivity in the subsurface. Because
the employed frequencies are low, dielectric properties can be neglected. EM me-
thods measure the decaying earth response due to an electromagnetic excitation.
For this study the designated method of surveying is the inductively coupled
transient electromagnetic (TEM) method which satisfies the electromagnetic dif-
fusion equation which therefore inevitably results in the relatively low resolution
of geoelectrical imaging techniques. The method is sensitive to electrical condue-
tivity ’averaged’ over the volume of the ground in which induced currents are
caused to flow The theoretical expositions of the TEM exploration method may
be found for example in Grant and West (1965); Kaufman and Keller (1983) and
Ward and Hohmann (1988). The application and practise of the method is dealt
with in depth in Nabighian and Macnae (1991) and West and Macnae (1991).

The work presented here is focused primarily on mineral exploration for
detection of deep and strong conductive targets (e.g. Palacky, 1983; Nabighian
and Asten, 2002; Nabighian and Macnae, 2005). The transient electromagnetic
method is widely-used in Australia for exploration for electrically-conductive base-
metal mineralisation The method uses the time-varying magnetic field produced
by abruptly terminating a steady current in a large, square or rectangular
transmitter loop to mmduce the flow of eddy currents in buried conductors. The
decaying secondary magnetic fields associated with the eddy currents are detected
at a coil receiver or magnetometer, and can be used to determine the depth,
size, shape and conductivity of concealed mineralisation. Typical ranges of the
conductivity of earth materials are shown in Figure 1.1

Measurement configurations in mineral prospecting for ground TEM surveys
customarily employ a square or rectangular transmitter loop in conjunction with
a co1l receiver or magnetometer. The receiver can be placed in the centre of the
loop, termed central-loop or in-loop, or the receiver can be placed outside the
transmitter which results in an offset-loop or slingram configuration. During
measurements, the transmitter loop can either stay in a fixed position and only
the receiver locations vary (fixed-loop) or both the transmitter and receiver
move simultaneously (moving-loop). The details in field setup and technique can
however vary considerably (e.g. Nabighian and Macnae, 1991, p.453), dependent
on the objectives of the measurements.

1.2.1 Governing equations

EM phenomena are governed by Maxwell’s equations and by the constitutive
relations which link the interaction of electric and magnetic fields and fluxes
with the physical properties of the earth. Diffusive EM methods are described
by a parabolic partial differential equation, the diffusion equation, describing
the variation in space and time of diffusive EM fields. The diffusion equation
follows from the EM wave equation in the quasi-static approximation. The
governing equations are presented in the following followed by a synopsis of the
TEM prospecting method.
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Figure 1.1 — Typical ranges of resistivities of earth materials after Palacky (1988,
Fig.2).

Maxwell equations

The conception of the electromagnetic induction exploration method is based
on the Maxwell equations. For time-varying fields, the differential form of these
equations are given by:

V. -D=gq Gauss’s law (1.1)
V xE=-9,B Faraday’s law (1.2)
V- -B=0 Magnetic flux (1.3)
VxH=0D+J Ampeére’s law (1.4)

Gauss’s law in differential form states that the electric flux density (or
dielectric displacement) D diverges from any distribution of charge ¢ . Faraday’s
law of electric induction relates the change of the magnetic flux density (or
magnetic induction) B to the vorticity of the electric field intensity E. Unlike
Gauss’s law, which gives evidence of electric charges, the equation for magnetic
flux gives reference that there are no magnetic charges but only magnetic moments
and that the field lines of the magnetic flux density B are closed curves. Ampere’s
law describes the induction of the magnetic field intensity H by changes in the
dielectric displacement and/or by moving charges as denoted by the electric
current density J. D and H involve macroscopic properties of the material. All
quantities and units are described in Table 1.1.
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Symbol Meaning ST Un_lt Abbreviation
where applicable

E Electric field intensity Volt / metre V/m

B Magnetic flux density Tesla T

D Electric flux density =~ Coulomb / metre? C/m?
Magnetic field

H intensity Ampere / metre A/m
Electric current 9 2

J density Ampere / metre A/m

o Electric conductivity Siemens / metre S/m
Magnetic

I permeability Henry / metre H/m
Dielectric

€ permittivity Farad / metre F/m
Electric charge 3 3

q density Volt / metre V/m

L Inductance Henry H

R Resistance Ohm Q

T Time constant second s

Ho Vacuum permeability 4w - 1077 H/m

€0 Vacuum permittivity ~ 1/séx- 107° F/m

8;, 8 Time differential 8/dt, /0t

operators

Table 1.1 — Definition of symbols and units.

Constitutive relations

Maxwell’s equations are completed by the constitutive relations, connecting
the vectors D and B to the field intensities E and H together with Ohm’s law,
relating the electric current density J in a material medium as the result of the
electric field intensity E. Generally, the constitutive relationships have tensorial
character where the tensors ¢, 4 and ¢ depend on position, time, the microscopic
structure of the material, as well as bulk properties like density and temperature
(Ward and Hohmann, 1988, p.133). The constitutive equations in these linearised
forms are valid in substances other than ferroelectrics or ferromagnets and for
weak enough fields:
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D=cE (1.5)
B=uH (1.6)
J=0E (1.7)

where the scalars €, p and o denote the (dielectric) permittivity, the (magnetic)
permeability and the (electrical) conductivity respectively. For the purpose
of TEM exploration it is usually assumed that earth materials are isotropic,
linear and homogeneous media with electrical properties independent of tiume,
temperature and pressure. Also, for the purpose of this study, it is always
assumed that the magnetic permeability is to be that of free space with p = pyg.

Free charges in conducting media

All substances exhibit conductivity to some degree and the range of observed
values is of many orders in magnitude. The maximum possible range is from
pure sulphur (10716 S/m) to native silver (1.6 x 108 S/m) (Telford et al., 1985,
p-289). Within regions of non-vanishing conductivity there remains no permanent
distribution of external charges. From the divergence of Ampére’s law (Equation
1.4) the continuity equation, which expresses the conservation of charge by
current flux, may be derived. Specifically

V.J=—8yq (1.8)

A relationship for the relaxation time for decaying currents in a uniform conduc-
ting media is found via Equations (1 7) and (1.5):

th+%q=0 (1.9)

with solution
q = goe™ (/) (1.10)

The equation gives the density of charge at any instance of time where ¢q is
equal to the charge density at time ¢ = 0. The initial charge distribution decays
exponentially and independent of the applied field. The relaxation time, defined
by €/o, required for the charge at any point to decay to /e of its original value,
is for homogeneous earth materials of conductivity 107* S/m less then 1076 s
(Stratton, 1941, p.15). Unless frequencies occur with w > o/¢, i.e. frequencies
far in excess of optical frequencies, free charges in homogeneous media may be
neglected. Hence

vV-J =0
(1.11)
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Wave equations

Maxwell’s equations are partial, linear, coupled differential equations of the first
order. They may be decoupled by making use of vector identities together with
the simplified constitutive equations for neutral media, resulting in the wave
equations The wave equations are decoupled differential equations of the second
kind for the electric and magnetic field. The wave equations follow by first taking
the curl of Faraday’s law and Ampére’s law, and substituting each into the other.
By making use of V x V x V = —V?V in a Cartesian coordinate system, where
V denotes one of the vector fields E or H, one obtains the time-domain wave
equations, according to

V:E
V*H

po & E+ pcd} E (1.12)
po O H+ pedf H (1.13)

Quasi-static approximation

For earth materials at frequencies less than 105 Hz, displacement currents can
be neglected and the electromagnetic fields are assumed to be quasi-static (Ward
and Hohmann, 1988, p.136). That is for distances which are small in relation to
the wavelength of radiation from an antenna, the fields are everywhere almost in
phase with the antenna circuit, this close-in region is identified as the quasi-static
zone (Grant and West, 1965, p.470). Quasi-static therefore refers to the regime
for which the finite speed of light can be neglected and fields are treated as if they
propagate instantaneously. Inductively coupled TEM recordings generally take
place in the quasi-static zone Since charge does not disappear, Equations (1.11)
hold for the interior, but not for the surface where o and ¢ are discontinuous
and charges may accumulate.

Diffusion equations

Permittivity €, permeability u, conductivity o and time determine the behaviour
of the wave equation. With the exception of water, permittivities seldom vary
more than an order of magnitude (Grant and West, 1965, p.469). The permeabi-
lity is considered to be that of free air. The conductivity, however, varies over
many orders of magnitude. Diffusive EM takes place in the quasi-static zone, so
that displacement currents are much smaller than conduction currents. Hence,
the wave equation (1.12) simplify to the Laplace equation in insulators and to
the diffusion equation in conductors:

VE
V’H

uo 0 H (1.15)

The diffusion equations imply that the resolution of EM methods will decrease
with increasing distance from the source. The signals are highly dispersive and
strongly attenuated in conductive media. Finding solutions for the diffusion
equations is the fundamental objective for 3D transient electromagnetic modelling.
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1.2.2 Concept of the TEM exploration method

The excitation for geophysical inductive EM methods is a time-varying primary
magnetic field, which, according to the Maxwell equations, induces electrical
currents in conductive surroundings (Figure 1.2a). The induced electrical and
magnetic fields, recorded at receiver stations, are termed the secondary fields.
In routine applications of the transient electromagnetic exploration technique,
the ground is energised by means of a sharp turn-off of steady-state current in
an insulated transmitter loop. During and after current turn-off, a time varying
magnetic field is generated which in turn induces an electromotive force in the
conducting surroundings according to Faraday's law. In a conductive earth,
these electric fields generate currents as specified by Ohm’s law (Figure 1.2b).
These currents successively generate a secondary magnetic field as described by
Ampere’s law (Figure 1.2c). The transient secondary EM fields are subsequently
recorded at a series of measurement times at designated recording stations.
Recordings are obtained via coil receivers which measure the rate of change of
the magnetic flux density cutting the coil (9;B), or via magnetometers which
measure the magnetic flux directly (B).

Transmitter Loop

Conductor

b) \

Figure 1.2 - Schematic illustration of inductive TEM exploration after Grant and
West (1965, p.445).

Immediately after current shut-off in the transmitter loop, the inductive limit
is encountered. In the inductive limit, the induced current is confined to the
surface underneath the transmitter and is governed purely by geometry defined
by transmitter, receiver and target. The ground responds (instantaneously) like
a perfect conductor. At early times the induced current system in the subsurface
primarily reflects the conductivity of the top layers. At later decay times the
current has diffused deeper into the ground, and the measured signal then
contains information about the conductivity of the deeper layers. Recordings of
the secondary EM fields will therefore give information about the conductivity as
a function of depth. As time passes by, the currents in the host propagate away
and resistance in the subsurface weakens the induced currents, and eventually
the current density dissipates due to these Ohmic losses.
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Configuration principles

Ground TEM data acquisition employs either the moving-loop or fixed-loop survey
geometry. In the fixed-loop geometry, a large transmitter loop 1s laid out on the
surface of the earth, and remains in position for the duration of the TEM survey
For each transmitter setup, TEM measurements are made sequentially at a series
of receiver positions along a survey line, usually oriented perpendicular to the
loop. Loop sizes vary from several hundreds of meters to up a few kilometres and
are positioned for maximum magnetic field coupling with prospective targets.
Typically, rectangular transmitter loops are employed, with the long side oriented
parallel to the expected strike of the target conductors. Although the moment-
based modelling and inversion is not restricted to fixed-loop, for the course of
this study all model calculations and field data examples are for the fixed-loop
configuration. The fixed-loop configuration is shown in Figure 1.3a.

Traversing lines

(a) Fized-loop TEM

8/

Figure 1.3 — Schematic of principal field layouts for ground-TEM survey types. The
TEM source (Tx) consists of a fast turn-off, high current transmitter driving a large
loop placed on the ground, where the transmitter loop dimension is dependent on
the desired depth of mnvestigation Recordings are obtained at designated receiver
stations (Rx) where measurements are obtamned during the transmitter turn-off
time. Two basic TEM configurations are illustrated: (a) Fixed-loop configuration
where the receiver is moving along lines perpendicular to the long side of the
loop. (b) Moving in-loop configuration where both, transmitter and receiver move
together. In case of in-loop the recewver is centred in the transmitter loop.

{b) Moving-loop TEM

Because the transmitter is stationary during the survey, appropriate placement
of the loop is essential in order to ensure electromagnetic coupling between the
primary magnetic field of the transmitter and buried conductors. Therefore, a
good understanding of the prospective target is needed as for example acquired
from other geophysical measurements. Large transmitter loops induce strong
eddy currents in conductive near-surface weathered material, and interpretation
of fixed-loop data from a single transmitter loop can be ambiguous in areas
of irregular conductive overburden (Spies and Parker, 1984). Furthermore,
good conductors located close to the transmitter loop can strongly suppress
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the response of more distant targets. For these reasons, fixed-loop survey lines
are typically remeasured using two transmitter positions; this ensures adequate
energising of buried targets by the primary field of the transmitter, but increases
the logistical cost of the technique.

In the moving-loop geometry, transmitter and receiver are moved simulta-
neously along a survey line, and a single TEM measurement is made for each
transmitter setup. The logistical difficulties involved with moving large transmit-
ters mean that loop sizes for the moving-loop method are typically restricted to
100-200 m. This limits the depth of investigation, and moving-loop surveys are
generally used for reconnaissance. Because the transmitter is moved regularly
during the survey, electromagnetic coupling with buried conductors is guaranteed,
regardless of their orientation. A drawback of the moving-loop technique is that
spatial sampling of the anomalous response is typically much less dense than for
the fixed-loop method; this may result in some ambiguity in interpretation. The
moving in-loop configuration is shown in Figure 1.3b.

Ground TEM transmitter systems customarily employ approximate square
bipolar transmitter waveforms as illustrated in Figure 1.4. In case of 9;B measu-
rements the earth’s impulse response is recorded, and in case of B measurements,
the earth’s step response is recorded. Formally, the impulse response I(t) can
be posed as the time derivative of the step response S (t) with

I(t)= %S @)=—(0 @) H(E) +u(?) %H (t)) (1.16)
where the sign is conveniently chosen. & (¢) is the Dirac delta function with units
1/s, u(t) is the dimensionless Heaviside function and H (t) is the magnetic field
decay associated with the decay of the induced current systems in the ground
with units A /m. Limiting values are H (0), which corresponds to the inductive
Iimit, and H(co) = 0 The magnetic flux density B is related to H via the
constitutive relation, Equation (1.6).

The use of a repetitive transmitter waveform allows readings to be stacked,
with a resulting improvement in signal-to-noise ratio. The data sets are recorded
in decay-time windows which are arranged with a logarithmically increasing width
to improve the signal-to-noise ratio particularly at late-times. The transmitter
and hence the primary magnetic field alternates for each single current step-off
and a typical sounding consists of several hundreds repeated transients. Stacking
reduces the noise proportional to 1/+/N where N is the number of measurements
in the stack.

Typical time delays monitored on the decay waveform vary from tens of
microseconds to hundreds of milliseconds for mining applications and for shallow
engineering applications time windows can vary from fraction of microseconds to
about ten milliseconds. All synthetic and field data examples in the present work
are for channel delay times consistent with the SMARTEM-V receiver (Duncan
et al., 1998). The SMARTEM-V channel centre times for 42 channels range from
0.1 ms to 710.31 ms and are displayed in Table 1.2. The transmitter parameters
such as ramp turn-on and turn-off for ground-based systems vary widely.
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Figure 1.4 — Typical approximate square bipolar transmitter waveform and
transients recorded at the centre of the transmitter loop. Panel (a) shows the
current 1n the transmitter loop; the induced electromotive force is depicted
panel (b) and the generated secondary magnetic field transient in the off-time is

shown 1n panel (¢).

l Channel Delay Width Channel Delay Width
1 0.100 0020 22 9 390 2.340
2 0125 0.030 23 11.660 2.920
3 0150 0040 24 14.470 3.620
4 0.195 0.050 25 17 965 4490
5 0.240 0060 26 22.310 5.580
6 0295 0.070 27 27.695 6.930
7 0.365 0090 28 34 380 8 600
8 0455 0110 29 42.685 10.670
9 0 560 0140 30 52.990 13.240
10 0.700 0180 31 65.785 16.450
11 0 870 0220 32 81 670 20.420
12 1075 0270 33 101.395 25 350
13 1340 0340 34 125 875 31470
14 1665 0.410 35 156.275 39 070
15 2.065 0.510 36 194.010 48.500
16 2.565 0.650 37 240.855 60.210
17 3.185 0790 38 299 015 74 750
18 3.955 0.990 39 371.220 92 800
19 4.905 1230 40 460 860 115.220
20 6.090 1.520 41 572.150 143.040
21 7 565 1890 42 710 310 177 580

Table 1.2 — Channel delay times for the SMARTEM-V instrument for 42 channels

from 0.1 ms to 710.31.
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TEM response over a conducting half space

The solutions for a vertical magnetic dipole source on a homogeneous half space
provides an understanding of the basic principles of TEM soundings. A vertical
magnetic dipole transmitter is realised by a small horizontal loop source carrying
a dipole moment m. After instantaneous step-current shut-off of the dipole
source, azimuthal induction currents are induced which circulate around the
dipole axis.

positive
negative

EM response

10 e § .y -y i o} i~ T
10 10 10° 10 10
time (ms)

o plb i o R

Figure 1.5 — TEM decay responses for a homogeneous half space excited by a
vertical magnetic dipole placed on the ground. The half space has a conductivity
of 0.01 S/m and recordings are obtained for » = 100. Because of the logarithmic
scale, the sign change in the vertical component H. will manifest as a jump in
the data. Shown are the decays for Ey in V/m, H, and H, in A/m as calculated
using Equations (1.17), (1.18) and (1.19) with unit source dipole moment.

Mathematically, the secondary electric field on the ground surface is (Ward
and Hohmann, 1988, p.214):

2
Byt r)= —ﬁﬁ <3erf(71") ~Fr (3+2v%r%) 6_72T2> (1.17)
where
po o ’ .
=V 35 with units 1/m and for times ¢ > 0

The vertical component of the secondary magnetic field on the surface is
given by (Ward and Hohmann, 1988, p.215):

m 9 e’ 19
H = — —1)erf - —+4 1.1
() = ((Wﬂ Yertm) - o (2 + w)) (118)
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The accompanying horizontal component 1s (Ward and Hohmann, 1988, p.216):

m 2,,.2 27.2
HP (t’ T) = _47;'7‘3 (Il (72 > - I2 (72 )>6_72T2/2 (119)

where t denotes the time, 7 the horizontal transmitter-receiver distance, where
erf () denotes the Error function, I1 (), Iz (-) are modified Bessel functions of
the first kind of order 1 and 2 respectively.

Figure 1 5 shows the decay response profiles for each component as calculated
with Equations (1.17), (1.18) and (1.19) for a unit source dipole moment. Upon
transmitter shut-off, a circular current is induced below the transmitter source,
which, according to Lenz’s law, is distributed in such a way as Lo maintain
the magnetic field at the value that existed before shut-off. The initial current
distribution then starts to diffuse and decays into the subsurface. As the
(physical) current system diffuses and decays it moves outward and downward
which has been described by Nabighian (1979) as a system of ’smoke rings’ blown
by the transmitter loop (Figure 1.6).

Nabighian (1979) showed that the transient EM field observed over a conduc-
ting half space can be represented by a simple current filament of the same
shape as the transmitter loop, moving downward and outward with a decreasing
velocity and diminishing amplitude. The current filament is a mathematical
abstraction which replicates the magnetic field on the surface. When the ’smoke
ring’ passes below the observation point, the vertical magnetic field changes sign
and the horizontal field is maximal. Neither the electric field, nor the horizontal
component changes sign. The zero-crossover of the vertical component migrates
outward with time.

hy>0 h,s0 h,<O

TN

Tocus of maximum
elactric field

=30

locus of equivolent
current filament

equlvalent ~47°

curreni filoment

Figure 1.6 — Current diffusion and equivalent current filament concept from
Nabighian and Macnae (1991, p.435). This diagram traces field lines of magnetic
flux, thus the current filament is associated with maximum magnetic field (located
at the |B|,,,.. depth). The depth of the maximum physical current,|E|,, ., is
shallower. The vertical magnetic field changes sign near the tume that the current
maximum passes beneath the observation point. The magnetic field can be
represented approximately as due to an expanding circular line of current. The
downward movement of the current filament occurs at about 47°, whereas the
actual induced currents maximum moves with about 30°.
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1D imaging concepts of TEM data based on the current diffusion in a homo-
geneous half space can utilise the equivalent current filament or the physical
current system. The physical current maximum, |E|,,,.., travels down into a half
space along a straight line path at an angle of approximately 30°, whereas the
image current filament travels in a similar manner but more steeply at about 47°.
This is so because the equivalent current filament which has an infinite current
density must always be deeper than the maximum of the actual distributed
current system (Fullagar, 2008b). The consequence of this is that depth conver-
sion methods based on image currents will inherently overestimate penetration
depths. The depth conversion method used in this thesis (Chapter 4) pertains
to physical currents.

The decay curves in Figure 1.5 show that at late times the vertical magnetic
field component decays more slowly than the horizontal magnetic field com-
ponent. During the late stage the TEM response decay follows a power-law and
is characterised by a relatively high sensitivity to changes in conductivity of the
medium. The late-time asymptotic forms for the field components are given by
(Kaufman and Keller, 1983, p.334):

. mrpg (poy3/2 1
Es = 0 (T) 15/2 (1.20)
~ T2 (HooN¥E L
7.~ 5(5) w7 .21
mr 2 1

The vertical magnetic field component at the late stage of the response is
independent of source-receiver separation. The late-time asymptotes plot as a
straight line on log-log decay plots as in Figure 1.5.

TEM response of confined conductors in free space

The time-domain response of a simple loop-circuit can be expressed as an
exponential function (e.g. Nabighian and Macnae, 1991, p.429). Correspondingly,
the step response of any confined conductor can be expressed as a sum of
exponentials where each term in the sum corresponds to the response of a simple
loop-circuit inside the conductor (Kaufman, 1978):

oo
He(t) =) Gpe /™ (1.23)
k=1

where Gy contains the geometrical relationship between the k-th loop and
the receiver. Each term of the sum in Equation (1.23) corresponds to a non-
interacting ’eigencurrent’ with a geometrical coupling factor Gy and a time
constant 7, (West and Macnae, 1991, p.929). The term ’eigencurrent’ refers
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to the solution of the homogeneous differential equations for the fields in a
given conductivity distribution. Each ’eigencurrent’ independently satisfies the
differential equations (Dyck, 1991, p.929). The time constant is defined as the rise
time, characterising the conductor’s response and is related to the conductivity
and the size of the conductor. At the late stage of the decay of the currents, the
behaviour of the field is described only by one exponent and one time constant.

Inductive and galvanic coupling

The previous section considered inductive coupling for confined conductors in
free-space. However, for a confined conductor buried in a conductive host,
time-varying electromagnetic excitation gives rise to two modes of current flow.
Inductive vortex currents flow in the target according to Faraday’s law (Figure
1.7a) whereas, when currents induced in the conductive host are diverted into
the conductive target, the current is deemed ’galvanic’ (Figure 1.7b). Inductive
currents will be distributed in such a manner as to cancel the primary magnetic
field. Likewise, galvanic currents tend to cancel most of the primary electrical
field inside the conducting target (McNeill et al., 1984; Nabighian and Macnae,
1991, p 443). Galvanic currents result from charge accumulations which arise on
the surface of a target conductor embedded in a conductive host medium. The
decay of those accumulations is a galvanic current flow.

The continuity equation in a source free medium, together with Gauss’s Law
(Equation 1.1) and the constitutive relations (Equations 1.5 and 1.7), provide
insight into the phenomena, viz.:

V-J=0 = V.(¢E)=0
V.-D=q = v.g=-12

[0

The above equations are valid if Ve = 0. Applying the product rule of differen-
tiation to V-(o E) and combining the resulting equations, yields (Nabighian and
Macnae, 1991, p.442)

g=—€eE-V(log o) (1.24)

According to this result, electrical charges appear whenever there is a non-
vanishing gradient of conductivity and the electric field has a component parallel
to it. The strength of the galvanic currents 1s governed predominantly by the
host conductivity at the target’s location. However, conductivity-contrast with
respect to host, the location of the transmitter with respect to the conductor
and conductor dimensions are all effects which contribute to galvanic coupling
(Spies and Parker, 1984).

Reid and Macnae (2000) investigated galvanic current flow in the case for
airborne EM. Two cases where galvanic currents can dominate the inductive
vortex currents are identified:
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e at early delay times for all transmitter offsets, and
e at late delay times when the transmitter is distant from the target.

Early time galvanic current flow is most pronounced for targets of large strike
extent and low conductance. Walker and West (1992) identify these targets
as galvanically undersaturated enabling them to channel all the host current
flowing close to the target. Additionally, the low conductance of such targets
implies that they are unable to support a strong vortex current system, and
their response is thus due almost entirely to current channelling,.

Moderate to strong conductors, however, give rise to a strong vortex response
at late times, even when they are embedded in quite conductive host rocks
(Reid and Macnae, 2000). With a focus on late-time and deep conductive
targets, galvanic coupling is considered of minor importance for the TEM moments
modelling approach in most practical cases. Throughout this study galvanic
currents will be disregarded.

P
H
)

oo‘mwoﬂ

(a) Left Primary magnetic field HP cutting the plate
Right' Inductive coupling with primary field HP generate
vortex currents Jy which in turn generate the secondary
magnetic field HS |

(b) Left Primary electric field EP flowing through the
plate Right Galvanic coupling with primary field EP
generate galvanic currents Jg which in turn generates a
secondary magnetic field HS

Figure 1.7 — Inductive and galvanic coupling for a plate example (from Nabighian
and Macnae, 1991, p.445). The upper panel (a) shows inductive coupling with
the primary magnetic field generated by the transmitter, whereas the lower panel
shows galvanic couphng with the primary electric field of the transmitter.
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Inductive and resistive limit

Generally, an EM response is circumscribed by two limiting extremes referred
to as inductive and resistive limit. The limiting extreme for very early times
is known as the inductive limit, and the resistive limit is encountered at late
times. From a physical point of view, the inductive limit reflects the state of
the magnetic field during the transmitter on-time. After turn-off, the magnetic
field decays as a consequence of the attenuation of secondary currents which
will initially be distributed in such a manner as to maintain the magnetic field
everywhere at the value that existed before turn-off. At the inductive limit, the
response is independent of ground conductivity and is a function of geometry
only (King and Macnae, 2001).

The resistive limit of a confined conductor characterises the magnetic field of
the steady state current, flowing in the conductor after the secondary currents
have fully penetrated the body. In the resistive limit, the rate of change of
the electromagnetic field is sufficiently slow that eddy current self-interaction is
negligible The electromagnetic response varies linearly with conductivity and is
additive for bodies that are not in contact (Macnae et al., 1999). Conductive
bodies in contact with each other are not additive in the resistive limit, due to
charge accumulations at the conductor interfaces, giving rise to galvanic current
flow (Reid and Macnae, 2002).

Based on the results of Kaufman (1978), Stolz and Macnae (1997) use
the limiting values of the sum of exponentials (Equation 1.23) to model the
approximate response of 3D conductors. The limiting values of the inductive
limit (1L) and the resistive limit (RL) for confined conductors, evaluate as (King,
1997, p.27):

o= Y Gy (1.25)
k

RL = ZGka (1.26)
k

where equation (1.25) corresponds to the inductive limit which is independent
of the time constant of the conductor. Equation (1.26) defines the resistive
limit which is linearly related to the time constant of the conductor and bears
resemblance to the modelling approach taken in the current thesis.

1.2.3 Brief review of transient electromagnetics
1D-EM inversion

Automated routine interpretation of TEM data is mostly based on one dimensional
(1D) earth models. 1D interpretation schemes resolve the subsurface conductivity
from measured TEM earth responses into a 1D earth parametrisation of one, or
more layers, of contrasting conductivity distributed with depth. In rigorous
1D inversion schemes, layered earth models are sought that minimise a specific
measure of misfit between model and measured data and which meaningfully
describe the observations either as smooth minimum structure models or as
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models with sharp boundaries (e.g. Backus and Gilbert, 1967; Jackson, 1972;
Jupp and Vozoff, 1975; Lines and Treitel, 1984; Huang and Palacky, 1991; Treitel
and Lines, 2001).

Fullagar and Oldenburg (1984) solved the inverse least—squares problem in
the frequency domain for circular loop sources. They used many more layers
than observations and thus solve an under-determined inverse problem. Layers in
the starting model could be sub-divided during the course of inversion However,
for incomplete and noisy data the mathematical solution is non—unique and a
number of models fits the data equally well. Fullagar and Oldenburg (1984)
therefore used an averaging function during model appraisal which results in a
smooth model that contains only as much structure as required to fit the data.

The inversion for simple models is also known as the Occam scheme in which
the smoothest model is sought, so that its features depart from the simplest case
only as far as is necessary to fit the data (Constable et al., 1987). The smoothest
model is found by minimising a non-linear least-squares function simultaneously
to the roughness of the model, which is defined as the integrated square of the
first or second derivative with respect to depth.

An over-determined least-squares problem typically allows the variation of
both conductivity and thickness of a very limited number of layers. The over-
determined approach may be more adequate to incorporate a priori information
that may indicate a rich model structure with sharp defined layer boundaries
(Commer, 2003).

Auken et al. (2004, 2005) present an interpretation approach for laterally
constrained 1D inversion of 3D TEM data, where neighbouring models are constrai-
ned laterally on layer resistivities and interfaces and therefore effectively solves
a 2D TEM inverse problem. Related to the approach of Auken et al., is the
approach by Scholl et al. (2009) who developed a 1D joint inversion algorithm
for interpreting multi-component TEM data using independent smooth models
for collocated TEM data sets to invert data acquired over 3D geology.

Approximate 1D-EM imaging

Approximate 1D methods, based on a half space or a thin sheet assumption
provide a rapid, first-pass interpretation of electromagnetic data, and are very
widely used within the mineral exploration industry (e.g. Eaton and Hohmann,
1989; Fullagar, 1989; Smith et al., 1994; Reid and Fullagar, 1998; Christensen,
1997). Routinely employed are conductivity-depth imaging (CDI) techniques,
however 1D-EM inversion is becoming increasingly common.
Conductivity-depth imaging is based on the diffusion rate of the induced
current system into a homogeneous half space, allowing mappings of apparent
conductivity vs depth (e.g. Raiche and Gallagher, 1985; Macnae and Lamontagne,
1987). Existing 1D conductivity-depth transformations for TEM data are designed
for traditional survey geometries, such as moving-loop and fixed-loop, where data
are acquired at one or more receivers using a single transmitter loop. Although
these transformations are very rapid, estimation of a unique conductivity can
be difficult, particularly for geometries where the receiver is located outside



1.2 Synopsis of inductive TEM exploration

19

the transmitter loop (e.g. Reid and Fullagar, 1998). As described in Chapter
4, Schaa et al. (2006) used magnetic field amplitudes from multi-component
measurements to overcome ambiguity in apparent conductivity calculations for
fixed-loop survey geometries.

Conductivity-depth imaging is complementary to rigorous inversion schemes
as it may serve as an Initial processing step to provide a starting model for
rigorous inversion. Interpretation based on CDIs may be less biased by three
dimensional (3D) effects than rigorous 1D inversion which parametrises the earth
into a finite number of layers (Spies and Frischknecht, 1991, p.373) However,
like 1D inversion, 1D-CDI techniques can contain artifacts when applied to data
arising from 3D-TEM geology (Newman et al., 1987; Stolz et al., 1995; Scholl,
2005). Processing of TEM earth responses from complex geological settings are in
general not readily amenable to rigorous or approximate 1D-TEM interpretation
techniques. Therefore 3D solutions for TEM data interpretations from complex
geology are essential

3D-EM modelling

3D-TEM data interpretation is often tackled by manual trial-and-error 3D for-
ward modelling schemes. Analytical solutions of the forward TEM problem
can only be given for a small class of symmetrical and simple structures, like
spheres and cylinders in free-space where conductivity boundaries correspond to
constant-coordinate surfaces (Hohmann, 1988). Publications for a conductive
and permeable sphere in free space in the time- and frequency-domain for a
variety of sources are numerous (e.g Debye, 1909; Wait, 1951; March, 1953; Wait,
1953, 1960; Lodha and West, 1976; Nabighian, 1970).

The problem of a sphere in a conducting full space for magnetic dipole
excitation has been treated by Singh (1973), who gives an asymptotic solution
which accounts for host-sphere EM interaction. A conductive sphere embedded
in a layered half space has been solved in the time-domain by Lee (1974, 1980)
for a coincident loop excitation. He used the Galerkin method to solve the
integral equation numerically. Based on Lee’s work, a semi-analytical solution
was devised for a conductive and polarisable sphere in a conductive half space
for a coincident loop system which separated terms for sphere response, half
space response and interaction response (Lee, 1983; Lee and Thomas, 1992)

Among exact numerical solutions, the thin plate model has attracted signifi-
cant use in 3D-EM modelling. Lamontagne and West (1971) solve the thin plate
problem in free space for a Turam system which is a frequency-domain fixed-loop
technique. Annan (1974) devised a numerical method for determining the EM
response of a thin plate in free space for any type of EM source in the frequency
or time domain. Of importance in understanding 3D-EM responses is the plate
model in a conductive layered host which has been introduced by Lajoie and
West (1976) for a Turam system. The free-space time-domain solution for a thin
infinite plate, or half-plane, for dipole or circular loop excitation, was provided
by Weidelt (1983). The frequency-domain EM response of a thin vertical tabular
conductor situated in a two-layer earth was obtained by solving the electric field
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integral equation numerically by Hanneson and West (1984). Hanneson (1992)
also provided a time-domain solution for the EM response of a dipping plate in
a conductive half space for the UTEM system. Walker and West (1991) devised
an integral equation solution for a thin plate in a conductive host which can be
used to model scattering over large ranges of conductivity.

Realistic geological 3D structures, with inclusion of topography and faults, are
subject to finite differences and finite elements schemes, solving the underlying
difference equations within a 3D grid (e.g. Wang and Hohmann, 1993; Druskin
and Knizhnerman, 1994; Newman and Alumbaugh, 1997; Commer and Newman,
2004; Sugeng et al., 2006). However, due to the demand of discretising the
entire model on a grid, the requirements for storage can easily overwhelm the
computational facilities currently available.

The volume integral approach introduced by Raiche (1974); Hohmann (1975);
Weidelt (1975) solved the prototype for localised regions of anomalous conducti-
vity in an otherwise homogeneous background. Zhdanov et al. (2006) devised a
3D-TEM formulation of the integral equation method for complex structures with
inhomogeneous background conductivity. The main advantage of the integral
equation method is that only the scattering volume is subject to discretisation
thus reducing the scale of the problem. The technique’s main weakness is its
restriction to low conductivity contrasts. However solutions for high conductivity
contrasts with the integral equation technique have been reported recently (Far-
quharson and Oldenburg, 2002; Farquharson et al., 2006). Likewise Zhdanov et al.
(2007) introduced an integral equation method for large conductivity contrast,
based on the equations for ’integral currents’, instead of the fields, where the
"integral currents’ are obtained by integrating the current density over each cell.

Based on the various exact forward modelling schemes, Australia’s Com-
monwealth Scientific and Industrial Research Organisation (CSIRO) developed
geophysical software suites for EM data interpretation for the minerals exploration
industry. From 2010, the Fortran 90 source code for all programs will be open
source (Raiche et al., 2007). A comprehensive overview of recent rigorous 3D
forward modelling techniques can be found in Avdeev (2005).

Approximate 3D-EM modelling

Approximations to the rigorous modelling schemes involve simplifications to the
exact approaches described above. Commonly employed in the integral equation
techniques are simplifications where the unknown total field is replaced by some
kind of approximation, giving a problem of the Born type (e.g. Habashy et al.,
1993; Zhdanov and Fang, 1999; Tseng et al., 2003). Born type solutions are
usually restricted to low-contrast conductivity problems, but Torres-Verdin and
Habashy (1994) presented a high-contrast 2.5D-EM modelling solution based on
an extended Born approximation.

Approximations to the thin-plate models are attained via simple free-space
loop circuits or current filaments residing in the plane of the plate (Barnett, 1984;
Duncan, 1987; Lamontagne et al., 1988) which find wide use in 3D-EM modelling
and inversion. McNeill et al. (1984) derive a fast, approximate transient EM
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solution for a thin conductive plate buried in a conducting half-space energised
by a large loop. The vortex and galvanic components are calculated in the
time-domain with a single-turn wire loop and a distribution of current dipoles,
respectively, disregarding EM coupling. Likewise, Liu and Asten (1993) derive
approximate time-domain solutions for a thin-plate in a resistive host overlain by
a thin conductive overburden. They include the EM coupling between overburden
and plate in an approximate fashion by convolving the overburden-delayed driving
field with a wire-loop response

Based on Liu and Asten (1993), Sattel and Reid (2001) devise an automa-
ted interpretation routine for time-domain AEM data where EM anomalies are
modelled by magnetic dipoles superposed on a layered earth response which
serves as a background response. The method is extended by Sattel and Reid
(2006) to account for galvanic current flow which is modelled by electric dipoles.
A frequency-domain solution is published by Bourgeois et al. (2000), which
also employs magnetic and electric dipoles in a conductive background as an
approximate model of the EM response of an anomalous volume.

3D-EM inversion

A full EM solution of the 3D inversion problem, based on volume integral equations
in the frequency-domain, was provided by Eaton (1989). Wang et al. (1994)
provided a solution for the 3D-EM inversion problem directly in the time-domain
utilising imaging methods originally developed for seismic wave fields. Haber
et al. (2007) solve the forward problem using finite volume methods in the
spatial domain and a backward Euler method in the time domain. A modified
Gauss—Newton strategy is employed to solve the inverse problem. A field data
example, defined on a mesh-volume containing 394,440 cells took 19 days on a
single Opteron 244 processor.

In the context of marine controlled source EM, a frequency-domain solution
is presented by Commer and Newman (2007) who employ a non-linear conjugate
gradient algorithm as their framework of the inversion scheme in a parallel
computation approach. A synthetic example which involves 2,406,104 cells for
three frequencies is computed on 144 processors and takes about two days.

A hybrid frequency-domain method for fast 3D-EM 1version is proposed by
Cox and Zhdanov (2008) who combine a quasi linear approach, analogous to the
Born approximation, with a rigorous inversion scheme. A field data example,
consisting of about 300,000 cells, took about 9 hours for three frequencies on a
2,4 GHz AMD-64 processor The review on exact EM methods by Avdeev (2005)
lists further achievements in stringent 3D-EM inversion.

Approximate 3D-EM inversion

Approximate vehicles for 3D-EM inversion schemes are based in their majority
on the forward modelling devices of the Born type (e.g. Zhdanov and Hursan,
2000; Torres-Verdin and Habashy, 1994). Christensen (1997) and Wolfgram et al.
(2003) have described rapid quasi-2D transformations for surface and airborne



22

Introduction

EM data. Ellis (1995) compares various exact and approximate 3D-EM modelling
and inversion schemes together with 1D methods for the simulation of AEM data
over a 3D conductivity earth model.

Zhdanov et al. (2002) devised a conductivity-depth transformation based
on a thin-sheet model, which accounts approximately for the effect of small 3D
conductive inhomogeneities on the TEM response A number of other transfor-
mations have also been developed for electromagnetic data, based on concepts
from seismic data processing (Lee and Xie, 1993; Zhdanov et al , 1996)

Farquharson and Oldenburg (1999) used approximate model sensitivities to
obtain a linearised inversion scheme in order to handle larger data sets. A spatially
constrained inversion, analogous to the solution of Auken et al. (2005) described
earlier in the 1D inversion section, that produces quasi-3D conductivity modelling
of electromagnetic EM data using a 1D forward solution is presented by Viezzoli
et al. (2008, 2009). The constraints are built using Delaunay triangulation, which
ensures automatic adaptation to data density variations. The method produces
laterally smooth results with sharp layer boundaries that respect the 3D geological
variations of sedimentary settings. In a different approach, however related to
the method of Auken et al. (2005) and Viezzoli et al. (2008), is the holistic
inversion approach of Brodie and Malcolm (2006) for simultaneously calibrating,
processing, and inverting frequency-domain AEM data. A spline-based layered
conductivity model varies laterally in each layer to retrieve a pseudo 3D structure.

The limiting EM responses, the inductive and resistive limit, are utilised for
fast 3D-EM inversion of airborne data (King, 1997; Stolz and Macnae, 1997).
In a separate development, Smith and Lee (2002b) have described a moment
decomposition for transient electromagnetic data, which is deployed for this
thesis for rapid multidimensional inversion.

3D potential field inversion

Generally, for potential field interpretation, an inversion method must introduce
particular constraints, in order to reduce the number of possible solutions (Silva
et al., 2001). The potential field inverse problem is non-unique because the
information content in potential field data is generally insufficient to determine
the size and shape of causative bodies unambiguously (Grant and West, 1965,
p-210). Mathematically, it follows from Green’s third theorem that a potential
field can be reproduced by an arbitrarily thin source layer ("equivalent stratum’).
The source layer can lie just below the observational surface, which implies that
potential field data do not have intrinsic depth resolution.

Due to its simplicity and speed, the 3D potential field inversion problem is
often tackled using a parametric approach which solves for the parameters of
simple geometric bodies, for instance prisms or spheres with homogeneous source
distribution (Grant and West, 1965; Bhattacharyya, 1980; Wang and Hansen,
1990; Zeyen and Pous, 1991). Single or multi-body parametrisation is used to
model discrete changes in the properties of the subsurface and usually is an
over-determined problem (Oldenburg and Pratt, 2007). Fedi et al. (2005) notes
that assumption of parametric bodies leads to inversion solutions with good
depth resolution.
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Nonparametric methods provide a more comprehensive framework for inver-
sion of potential field data where a general 3D physical property model of the
subsurface is sought. Pure property inversion schemes most commonly adopt
a uniform 3D-mesh and results usually in an under-determined problem (Fedi
et al., 2005; Oldenburg and Pratt, 2007). Non-uniqueness is tackled by including
constraints such as property bounds and weights (e.g. Li and Oldenburg, 1996,
Silva et al., 2001).

Portniaguine and Zhdanov (2002) developed a method for 3D magnetic
inversion to produce sharp images using a standard regularisation approach.
The objective function consists of a misfit functional and a stabilising functional
which helps generate a focused image of the subsurface. A sensitivity-based
weighting scheme is applied furthermore to introduce corrections for the source
distribution. The algorithm is part of the GRMAG3D package of the University
of Utah Consortium for Electromagnetic Modeling and Inversion

In order to produce recovered models with sharp boundaries van Zon and
Roy-Chowdhury (2006) used linear programming (LP) techniques to minimise the
absolute residuals (4;-norm). Mathematical constraints are defined implicitly via
the LP formulation of the inverse problem as linear inequalities in the variables.

The University of British Columbia (UBC) Geophysical Inversion Facility (GIF)
has developed 3D inversion codes for potential fields which have become de-facto
industry standards (McMonnies and Gerrie, 2007). Voxel parametrisation of
geology has provided the basis for the 'UBC-GIF’ inversion scheme, in which the
rock properties associated with each voxel act as the parameters to be optimised
(Jessell, 2001). For the 'UBC-GIF’ inversion scheme, geological information is
accommodated via a reference model in combination with weighting functions
and property bounds (Li and Oldenburg, 1996, 1998). The 'UBC-GIF’ reference
model typifies the area of investigation and represents the best guess for the
true distribution of the physical property. The regularisation imposed by the
"UBC-GIF’ inversion approach seeks a model that is smooth and deviates as little
as possible from the reference model (Wilhams, 2008).

A different approach for potential field inversion is to use a lithologically
described volume instead of voxel parametrisation alone. Lane and Guillen (2005)
note that the use of ’litho-category’ as the primary variable and property as the
secondary variable has a natural appeal for geoscientists, because it eliminates
the need for a post-inversion interpretation. The implementation of the inversion
in Lane and Guillen (2005) utilises a Bayesian approach where a large number of
models 1s generated. Both geometry and property of the litho-regions are varied
during geostatistical inversion. The algorithm is part of the Intrepid Geophysics
GeoModeller package (Guillen et al., 2004).

The potential field modelling and inversion framework vPmg (Fullagar et al.,
2000, 2004; Fullagar and Pears, 2007; Fullagar et al., 2008) combines the various
approaches of parametric, voxel parametrisation and lithological categorisation
(Oldenburg and Pratt, 2007). VPmg minimises a chi-squared misfit function
iteratively via a steepest descent method and incorporates 'soft’ constraints such
as weights and ’hard’ constraints, based on petrophysical measurements Bounds



24

Introduction

are incorporated furthermore. In vPmg each voxel is associated with a rock type,
facilitating therefore 'lithological’ inversion. The VPmg framework is utilised in
this thesis for inversion of TEM moments.

1.3 Approximate 3D inversion of TEM moments

The method combines the TEM moment concept with constrained potential field
inversion techniques. The fast approximate 3D forward modelling scheme relies on
linear superposition of TEM moments associated with sub-surface volumes. The
predicted net TEM moment response of the ground is compared with the measured
TEM moment response. Accumulation of TEM moment responses of magnetic
dipoles, which exhibit linearity with respect to time constants, provide the basis
for the approximate forward modelling approach. Rather than conductivity, the
geoelectrical subsurface is delineated in terms of time constants.

The TEM moment transform is defined as a time-weighted integral of the TEM
earth response. Parametrisation of both modelled and measured data is achieved
by the TEM moment transform. For measurements during system off-time, where
t > 0, the impulse response I () consists of the decaying part only with the delta
function at zero time removed (Equation 1.16), the TEM moment transform, in
vector notation, is then defined as (Smith and Lee, 2002b)

M® = / ooI(t) t"dt  (n>0) (1.27)
0

where M(" is the TEM moment vector of order n with units of A -s™ /m.

The TEM moment forward response of an anomalous volume is modelled as
a discretised target 3D-response embedded in a continuous background. The
background is represented as a homogeneous half space, while the target is
comprised of point conductors, defined on a cubic 3D mesh. After excitation,
each point conductor hosts a magnetic dipole with strength proportional to the
product of local primary field, time constant and effective cell volume. Linear
superposition of a dense network of point-conductors approximately reproduces
the TEM moment response of a confined conductor if its time constant is assigned
to each point-conductor.

The approximate 3D-TEM forward modelling algorithm implemented here, is
based upon vortex currents only and ignores electromagnetic interaction between
volume elements. Mutual interaction includes coupling via the magnetic field
and coupling via the electric field. For the TEM moment modelling approach
adopted in this thesis, negligence of electromagnetic interactions is considered a
tolerable approximation. The current study exclusively makes use of the the first
order TEM moment (n = 1) The 1% TEM moment transform weights late-time
responses and is equivalent to the resistive limit response (Smith and Lee, 2002b).

In effect, the transformation from multi-channel time-domain EM data into
the moment-domain converts the 3D-TEM inversion problem into an approximate,
linear 3D magnetic inversion problem. The relationship to the magnetostatic
problem is illustrated in the following chapter. Depth resolution as provided
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by the multi-channel TEM data is lost during the process of time-integration.
Conductivity-depth imaging sections, which convert time to depth explicitly, may
be used to generate starting models or constraints for inversion. Alternatively,
depth control during inversion is based on a priori information which can be
provided as geological constraints or weighting.

The potential field modelling and inversion framework vPmg is extended and
modified so as to accommodate approximate 3D-TEM moment inversion. The
new program can be described as a litho-inversion scheme where the model is
both geological and petrophysical before, during, and after inversion, so that the
lithological significance 1s preserved throughout the inversion process. For the
TEM moment inversion scheme implemented during this project, the model space
is comprised of a mesh of cubic cells where the geological setting is mapped onto
the 3D mesh, i.e. a 3D analogy of a geological map so that each cell is assigned
to a particular rock type, the model is therefore categorical (i.e. geology) as well
as numerical (i.e. physical property).

To address the non-uniqueness of the potential field inverse problem and to
limit the space of possible model solutions, inversion constraints are incorporated.
If geological information is available, the inversion can incorporate the information
as particular geological constraints to guide the solution towards one that is
consistent with the geological knowledge.

Inversion constraints are accommodated via ’soft’ constraints and ’hard’
constraints (Fullagar and Pears, 2007). Property bounds designate the minimum
and maximum property value allowed in each geological unit. The inversion
can be restricted to a certain geological unit or combinations thereof. Soft
constraints are implemented as inversion weights, either as 1D depth weights
or as 3D conductivity weights. Depth weighting is a subjective, general device
to counteract the geometrical decay of the potential field response in order to
penalise shallow solutions. Conductivity weights are based on conductivity-depth
1maging and are less subjective than depth weights and constitute a data-adaptive
weighting scheme. Conductivity weights favour solutions close to the DI models.

1.4 Thesis structure

Chapter 2 introduces the TEM moment transform. First the time-domain
solution of a sphere in a dipolar and uniform field is derived. Following this, the
TEM moment transform is employed to obtain the TEM moment response of a
sphere. The TEM moment of a point conductor is derived. The TEM moment
transform for a uniform conducting half space for a rectangular loop source is
derived subsequently. All solutions are analytical and therefore very fast to
evaluate numerically. The procedure for obtaining TEM moments from measured
field data is delineated. For the course of this thesis, attention is restricted to
the first order moment which is equivalent to the resistive limit response.
Chapter 3 presents the approximate 3D forward modelling scheme. The
TEM moment response for arbitrarily shaped conductors is approximated as a
combination of a continuous background response and a discrete target response,
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neglecting volume interactions. The continuous background is modelled as a
uniform conducting half space, whereas the discrete target is comprised as a linear
combination of point conductors. The approximate forward modelling effectively
calculates the TEM moment transform for arbitrarily shaped conductors by
assumption of validity of superposition The validity of neglecting the host rock
EM interactions is addressed in a qualitative manner based on a semi-analytical
formulation which separates terms describing sphere response, host response
and interaction response. The TEM moment forward modelling is tested at two
prism-models residing in a conductive host, calculated with rigorous sD-EM.

Chapter 4 specifies the new 1D imaging technique which employs B-field
amplitudes as obtained from multi-component TEM measurements. For the 3D
inversion procedure, conductivity-depth sections serve as a preparatory process,
either as initial values for cell time constants for the starting model or as a device
to formulate weights assigned for inversion. Ambiguity, which is of concern when
calculating apparent conductivities from single-component data for fixed-loop
geometry, is not problematic when calculating apparent conductivities from
multi-component B-field amplitudes. Unique derivation of apparent conductivity
for fixed-loop geometry, based on B-field amplitudes, has been demonstrated
during the course of this study.

Chapter 5 describes the linear potential field inversion of single-component
TEM moments, utilising geological constraints. A fast steepest descent formu-
lation, which does not require matrix inversion, is employed to recover the
geoelectrical structure of the subsurface from measured TEM data. The linear
inversion scheme requires computation of the initial model and associated deri-
vatives only once, subsequent model updates are calculated via the derivatives.
The TEM moment inversion methodology is tested at the response from two
prism-models residing in a conductive host, calculated with rigorous 3D-EM.

Chapter 6 describes application of the fast approximate inversion scheme
to measured field data acquired over a complex folded 3D target. 3D inversion
of the fixed-loop field data is carried out with different starting models and
constraints, so as to examine the variety of possible solutions due to non-
uniqueness. Information from borehole logs assist in evaluation and plausibility
of the inversion results. A conventional plate forward modelling solution is also
included for comparison.

Chapter 7 presents a summary and conclusions based on previous chapters.
Appendix A comments on possible further developments of the TEM moments
approach.



Chapter 2

Methodology of the TEM
moments approach

Introduction Parametrisation of both modelled and measured data to a mi-
nimal set of parameters has been used successfully for the interpretation of TEM
data (Macnae et al., 1999; Stolz and Macnae, 1997; King, 1997). The limiting
extremes at infinite and zero frequency, the inductive and resistive limit respec-
tively, embody the essential characteristics of the transient induction process
that usefully describe the data. The modelling of transient electromagnetic res-
ponses at the inductive and resistive limit 1s considered a suitable technique for
mineral-type targets where conductivity contrasts are relatively high (Nabighian
and Macnae, 2005). The inductive limit is a function of the target geometry,
whereas the resistive limit displays a linear relationship with respect to the target
conductivity. In the time domain, the value at zero-time for step response data 1s
the inductive limit; the integral of the step response from zero to infinity equals
the resistive limit (Lamontagne, 1975). The concept of modelling at the inductive
and resistive limit has been generalised by Smith and Lee (2002b). They defined
integrals of the impulse response, weighted by time raised to power n, as TEM
moments. Zeroth order moment equals the inductive limit and the resistive
limit is the first moment order. Higher order moments accentuate late-time and
hence deeper conductive features, however late-time noise will be emphasised
also. A number of publications on the subject of the moment transform of TEM
data have been published by Richard Smith, Terry Lee and co-authors (2002b;
2002a; 2002¢; 2005; 2006). Except for the work of Smith and Lee, and Hyde
(2002), there are at this time no other publications on the use of TEM moments.
However, substantial papers on modelling at the inductive and resistive limits
have been published (e.g. Macnae et al., 1999; Stolz and Macnae, 1997; Reid
and Macnae, 2002; King, 1997), which constitute instances of TEM moments,
although until recently not identified as such.
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The TEM moment of a compact body exhibits a linear relationship to its
time-constant. The moment domain response for multiple targets in a resistive
host is given by superposition of the responses of the individual targets. The
main advantages of the TEM moments concept are the simplifications of related
time-domain expressions and the processing of measured TEM data which both
leads to simpler and faster processing algorithms. Eventually, parametrisation
of both modelled and measured data in the moment domain, leads to a simple
and very fast approximate 3D inversion scheme for interpretation of TEM data.
From an interpretation perspective, use of TEM moments may facilitate detection
of deep conductive features. From a computational perspective, complicated
expressions of simple bodies in the time-domain, simplify in the moment domain
(Hyde, 2005).

This chapter presents and explains the concept of the moment domain formu-
lation. After introducing the definition of the TEM moment transform, emphasis
is put on the derivation of the TEM moments of a sphere in a dipole and uniform
field. Based on the TEM moment formulation for a sphere, the analytical TEM
moment of a point-conductor is introduced. The point-conductor formulation
forms the basis of the approximate 3D forward modelling scheme, described in
Chapter 3. Furthermore, the TEM moments of a half space for rectangular loop
excitation follows. The approximate 3D forward modelling scheme combines
the TEM moment response of point-conductors and a homogeneous conducting
half space The analytical moment domain solutions provided for a half space,
excited by a rectangular loop source, are derived from expressions related to the
incomplete Gamma function, for the horizontal component, and to the Error
function for the vertical component. Lastly, the TEM moment transform for
measured data is introduced. This involves extrapolation of the measured data
at early and late time using a half space model.

2.1 The TEM moment transformation

2.1.1 Moment transform definition

For measurements during system off-time, where time ¢ > 0, the TEM moment
transform, in vector notation, is defined as (Smith and Lee, 2002b):

M = / "1 t)t"dt  (n>0) (2.1)
]

where M is the TEM moment vector of order n with units of A-s™ /m I(t)
is the impulse response which consists of the decaying part only with the delta
function at zero time removed (c.f. Equation 1.16). Mathematically, the order is
not restricted to integer values; e.g. Lee et al. (2003) show the moment response
of order /2 for a half space with dipole excitation. Formally, the moments are
undefined if the integrand does not converge on the integration interval. For
example, the TEM moment transform of the impulse response for a half space
due to a vertical magnetic dipole source does not strictly exist for orders n > 2
since the half space decay exhibits a t~5/2 asymptotic behaviour (Smith et al.,
2006). Mathematically, the TEM moment transform is equivalent to the Mellin
transform.
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2.1.2 Moments for the magnetic field and its derivative

Re-writing the defining moments integral, Equation(2.1), in terms of the magnetic
field H (¢) or its time derivative 8,H (t), assuming perfect step or impulse response
and integrating by parts, the TEM moment transform is stated as:

for measurements of H (¢) in A/m

o0
M®™ = / H(t)-t"'dt  n>0 (2.2)
0

for measurements of 8,H (¢) in A/(ms)
> 9
M® = — / —H(@)-t"dt n>0 (2.3)
0o Ot

In this thesis, the definitions of the TEM moment in terms of the magnetic field
(Equation 2.2) or its time derivative (Equation 2.3) are used. For realistic finite
time ranges, the definitions given in Equations (2.2) and (2.3) are not equivalent.

2.1.3 Inductive and resistive limit as TEM moments

Inductive and resistive limits were previously introduced in Chapter 1.2.2 and
have traditionally been defined in the frequency domain as the limiting values
of the magnetic field response at infinite and zero frequency (Grant and West,
1965). The inductive limit is reached as the frequency is increased towards
infinity whereas the resistive limit is defined as the limiting absolute value of the
slope of the magnetic field response as the exciting frequency approaches zero.
In terms of zeroth and first order TEM moments (Smith and Lee, 2002b) these
are

MO = lim H(w) (2.4)
® - i
MW = lim 8, |H (w)| (2.5)

For time-domain magnetic field measurements, the zeroth and first order
TEM moments evaluate to

MO - / ~ 8HL(t) dt = H (0) (2.6)
0

M® = —/ootatH(t)dtz/ooH(t)dt (2.7)
0 0

The integration result in Equation (2.6) for the zeroth order moment constitutes
the inductive limit whereas the first order moment in Equation (2.7) is the
resistive limit.
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2.2 Quasi-static time domain EM response of a
sphere

In order to derive the moment-domain expression for a point-conductor in
Section 2.5, the quasi-static time-domain expressions for a sphere in a dipolar
field are derived first. Solutions for the electromagnetic response of a conducting
sphere in free-space were given as early as 1909 by Debye (1909), who introduced
scalar potentials to solve for the anomalous response for a plane wave source.
March (1953) adopted Debye’s approach in a geophysical context for a dipolar
source. Wait (1953) started the derivation of his solution with the potential for
a fictitious magnetic pole source. This approach has been adopted by Grant
and West (1965) and Nabighian (1970), who derived a time-domain scalar
magnetic potential for a pole source. The magnetic fields are found by taking
the gradient of the pole-source potential. The dipole solution is finally obtained
by differentiating the response in direction of the dipole moment (Grant and
West, 1965). Smith and Lee (2002b) applied a Laplace transformation to the
frequency-domain solution of Grant and West (1965) to obtain the time-domain
solution of the impulse response of a sphere in a dipolar field.

2.2.1 Scalar magnetic potential of a pole source

Following Nabighian (1970), the response is obtained by solving a boundary
value problem whose solution is facilitated since the external magnetic fields
are derivable from a single scalar magnetic potential. The solutions of the
system’s differential equation, which are required for the interior of the sphere,
are matched to solutions of Laplace’s equation at the spherical boundary (Wait,
1960). Accordingly, displacement currents are neglected and the solution is of
quasi-static nature. This assumption is valid for low enough frequencies which 1s
usually the case for inductive EM systems.

The anomalous magnetic potential Uy is solved for outside a permeable
and conductive sphere, due to a transient magnetic pole source having time-
dependence e** with period 27 /w and {=+/-1. The secondary magnetic fields
are then given by taking the gradient of the potential

HPO®(t) = —VU (2.8)
Nabighian (1970) starts by placing a transient magnetic pole source on the
vertical axis (Figure 2.1) and removes the pole instantaneously at time £ = 0
giving rise to a differential equation of the perturbed system. The differential
equation is solved by introducing a vector potential F for the electric field E with

a corresponding magnetic scalar potential U of the Lorentz gauge (Schelkunoff,
1943, p.403):

E = —-VxF (2.9)

U = —V-F (2.10)
W
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Figure 2.1 - Conducting sphere excited by a transient magnetic pole source
(after Grant and West, 1965, p.517). The position of the pole source is at point
¢ on the vertical axis. The radial distance from O to ¢ is denoted ro, the radial
distance to the receiver at p is denoted r. The polar angle separating r and rg is
given by 6 whereas ¢ is the azimuthal angle. Superimposed are the components
of a dipole moment, m,, mg and mg, where the transverse dipole moment mg lies
in the same plane as the source ¢ and observation point p. The transverse dipole
moment my lies perpendicular to this plane.

where p is the magnetic permeability. Because of the polar symmetry, the vector
potential F has only a radial component 1. v is denoted the scalar stream
function of the TE (transverse electric) mode after Schelkunoff (1943),

F = i, (2.11)
= —— (2.12)
where i, denotes the radial unit vector. The electric field vector is given by

Equation (2.9) and the magnetic field vector is derived via application of Faraday’s
law

I

-V x (vi) (2.13)
= iv x V x (‘¢’ir) (2.14)

where . = Eg = Hy = 0. The stream function is a solution of the differential
equation of the perturbed system

5 0

e —
87.2

o (. 0 2.9
Y+ Snd 50 (smﬁﬁw) = k*r*y (2.15)

with wavenumber k? = iojuw — epuw? where € is the electrical permittivity and o
is the electrical conductivity.
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The elementary solutions 1 of Equation (2.15) are proportional to products
of spherical Bessel functions and Legendre polynomials. With the elementary
solutions of Equation (2.15), Nabighian (1970) derives the characteristic equation
of the differential equation to solve for the boundary conditions while neglecting
displacement currents in the region outside the sphere. The eigenvalues of the
characteristic equation are given as an infinite sum over the zeros of the Bessel
function of the first kind for fractional order.

2.2.2 Secondary magnetic potential

Once the boundary conditions have been solved, the secondary magnetic potential
U outside the sphere can be derived using Equation (2.12). The solution
Nabighian (1970) derived is

Upt) = p ;azeﬂ ((—i{%& (cos0)> Fy (¢) (2.16)
- 1 5o

Fo(t) = 22¢4+1)) 7 exp (—t W) (2.17)
s=1 8y

where Equation (2.17) is given here for the non-magnetic sphere with u = .
The sphere radius is a. The zeros of the Bessel function of the first kind for
order £ — 1/2 are denoted z, . The pole strength is denoted p and P; are the
Legendre polynomials. The geometrical parameters are described in Figure 2.1
on the preceding page.

The geometric part of the solution is given as a sum of induced multipoles and
the time-dependent part of the solution is given as an infinite sum of exponentials
for each multipole. Each of the exponentials exhibits a time response like a
simple loop circuit, the amplitude decaying with time in exactly the same way
for all receiver points (Lamontagne, 1975). Each exponential in the sum of
Equation (2.17) forms an eigencurrent, adopting the name from the solutions of
the characteristic equation which are the eigenvalues zs ¢.

2.2.3 Impulse response solution

The solution in the preceding section is for a step current shut-off. If the impulse
response is required, the step response is differentiated with respect to time (c.f.
Equation 1.16). Carrying out the differentiation, the impulse response of the
time-dependent part is given as

8 2(204+1) & T3

—F@) = @) Fp(t) - ——— —f — 2.18

ot 2 (t) () Fe(t) oua ;exp opa ( )

where the term with the Dirac delta function, § (¢), has only a value at t = 0
and evaluates to
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(o 0]

S F(t)y=2(2+1)> =} (2.19)

s=1

For measurements during the off-time, the Dirac delta response is omitted.

2.2.4 The field solutions

The gradient of the potential, Equation (2.16), solves for the secondary magnetic
pole fields after step current shut-off:

Hgole — Z 7'0 ePe (COS 0) Fe (t) (220)
pole S 2£+1 e
1 9
pole _ —— =
Hy - rsinf 8¢ Uo=0 (222)

which correspond to the frequency-domain solutions in Grant and West (1965,
p-517). The secondary magnetic dipole field may be obtained by spatial dif-
ferentiation of the monopole solution in the direction of the dipole moment
(Panofsky and Phillips, 1962, p.14). Since an arbitrarily oriented dipole can be
decomposed into its components in each of the cardinal directions, it is sufficient
to differentiate the monopole expressions in the direction of each decomposed
dipole moment at the source position ¢(xg, yo,20) (c f. Figure 2.1).

For the derivation of any dipole expression a reciprocal feature may be invoked,
that is, the differentiation with respect to the source point q(zo, yo, 20) may be
interchanged to a differentiation with respect to the observation point p(z,y, z)
when it is convenient to choose so (Panofsky and Phillips, 1962, p.5). A sign
change occurs when invoking the reciprocity feature. The directional derivatives
of the monopole field with respect to the source point,Vy, are required in the
direction of the dipole axis m, where 1 is given by

1 . .
m= s (mpiy + melg +mgpiy) (2.23)

where p is the pole strength. This expression arises from the definition of the
dipole moment m¢ = pd{ where d¢ is the infinitesimal length of the dipole in
direction £ = 7,6, ¢ (Grant and West, 1965, p.506 and p.517). The directional
derivative operator in the direction of m is given by

1 o 19 1 98
(th - Vo) = ( are T ™7 B0 +m¢—_r0sineoa_90> (2.24)
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Applying the operator, Equation (2.24), to the magnetic pole fields, Equations
(2.20)—(2.22), yields the expressions

) 0
szzpole — anjla_m (Hfoleir + HgOIeio) (225)
dipole @ii ( poles poles
) 1 a
Hdlpole _ Tg v (Hpole- HI"’le' ) 2.27
® p Tosinfy 00y \ " ¥ el el

where the subscript of Hgip °l¢ (¢ = r,0 ¢) refers to the direction of the magnetic
dipole moment and where the dipole moments m¢ (£ = 7,6, ¢) have units A - m?2.
The derivatives are evaluated when both, source and observation point, lie in
the same plane, or when the dipole transmitter lies perpendicular to this plane
(Figure 2.2).

For a particular dipole transmitter orientation with dipole moment m+, the
dipole solutions have the general form

o
HOole = Z5 NGy (P, PLO) - Fi (1) (2.28)
£=1

where the functions Gy describe the geometric response as described in subsequent
sections. The components of the geometrical response are dependent on dipole
source orientation and are defined by the terms in square brackets in subsequent
Equations (2.29)—(2.33). In the following field expressions, the first subscript
refers to the orientation of the magnetic dipole source and the second subscript
denotes the magnetic field component.

N

A
(%o Yo 2o)

‘L\A
T

0 p(xyz)

Figure 2.2 — Coordinate system for secondary magnetic fields for a conductive
sphere in a dipolar field. The left Figure (a) shows two fixed coordinate systems,
offset by angle ¢ — ¢9. The primed frame is referenced with respect to the
transmitter, the other with respect to the observation point. The frame depicted
in (b) shows where the two frames coincide when the transverse transmitter dipole
lies in the same plane as the observation point, i.e. ¢ — @9 = 0. Another case
where both frames coincide is when ¢ — ¢g = 7/2.
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Solution for radial dipole source The solution for a radial dipole source is
straightforward with

mra

Hdzpole —
T p Ory

(Eztei, + HE'*4y)

thus, the following components are obtained (Grant and West, 1965, 17-45,
p 517):

Hor ()=~ 2 o F SR °Sﬂ RO (29)
Heo(t)=— Z 241 {%ﬁ—)] - Fy(t) (2.30)
H,,"¢ (t) =0

Solution for transverse dipole source The solution for a transverse dipole
source, lying in the plane of the source and the observation point, follows with

ngpole — mg 1 0 (Hpole i + HpOlelg)
p 10000
The magnetic dipole source is synthesised from two monopoles lying in the
¢ — ¢o = 0 plane, and has constant unit vectors. Under differentiation, the unit
vectors evaluate to zero. The magnetic field vectors can be differentiated with
respect to the observation coordinate 6, invoking the reciprocal property, thus
(Fullagar, pers. comm.)

dipole — ﬁ i a pole pole ¥°1 a17‘ mg 0 Hpole H:DOle 810
H, » 7o (aooH b 50 ) T e \ 90 o 30,
_ 0 1 0 oles
— Hpo es i P
pro (89 + 39H )

With the derivative of the associated Legendre polynomial (see next section),
the transverse dipole gives rise to the following components (Grant and West,
1965, 17-48, p.518)

me ari1 | £ P} (cosb)
Hp,r (1) = Z M [W - Fy(t) (2.31)
2P, (cosf cos@ Py (cos 6)
H0 9 me Z 26+1 3 ( ) ( E-}-)]é+2 sin 6 . F[(t) (232)
TTo

Hp g (t)=0
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Solution for transverse perpendicular dipole source The magnetic field
due to a dipole source, synthesised from two monopoles aligned perpendicular to
the plane of the source and the observation point, i.e in the ¢ — ¢g = 7/2 plane,
does not produce a radial and polar magnetic field component at the observation
point (Figure 2.2). However, the change in the ip unit vector will produce a ¢
component (Fullagar, pers comm.)

Y m, 1 3 . .
ngo = ?¢ To sin 00 8—90 (HSOIEIT + HgOleIG)

mMe oles
= ——L cscHHP™
PTo $ ¢

where again the reciprocal feature has been invoked and sinf = sinfy. Thus,
using the derivative of the associated Legendre polynomial, the magnetic field
evaluates as (Grant and West, 1965, 17-49, p.518)

H¢7T (t) = O
Hyp(t) =0
oo 4 1
m, e escd - P} (cos6)
Hyp(t) = ——2 5 g2+ | 22 - Fy(t 2.33
26 (£) dr (rro)+? () (2:33)

2.2.5 Evaluation of associated Legendre polynomials

The first derivative of P, is denoted P} and is known as the associated Legendre
polynomial. Derivatives of the associated Legendre polynomial of the first order
can be evaluated using suitable recurrence relationships!, e.g. Arfken (1985,
p-669) which evaluate with z = cos to

1-2)"2PF} (2) = %Pf(m)—%f(f-}-l)Pg(w) (2.34)
P2(z) = 2(1_—;)WP}(95)—£(@+1)P@ (2.35)

where the prime denotes differentiation with respect to the argument, then

sin@ \ sinf

P} (cos) = ! <QS—0P,Z1 (cosf) —£(£+ 1) Py (cos 0)) (2.36)

thus the derivative for the associated Legendre polynomial of first order is

1There are two sign conventions for associated Legendre polynomials; some authors include
a factor of (—1)™ where m is the order of the associated polynomial. Here, the definition of
Grant and West (1965, p 223) is used which does not include the factor.
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%P} (cosf) = —sinf- P (cosb) (2.37)
£(£+41) Py (cosf) — cot 8 P} (cosf) (2.38)

When the receiver and dipole source are coincident, the separation angle 6 will
be zero in which case the terms involving the division by sin§ have the limiting
value

P} (cosb) A (2.39)
sin 6 2 om0 ’

2.3 TEM response of a sphere in a uniform field

In a uniform field, the solutions reduce to just the £ = 1 term. The uniform field
approximation is valid if the sphere dimension is small relative to the distance
to the source. If the source and observation point are more than about one
sphere radius away from the sphere surface, the first dipole moment will strongly
predominate, however higher order multipoles are still prevalent. For shallow
conductors at a distance < 0.1 radius, a large number of multipoles need to
be considered (West and Macnae, 1991, p.30). Lodha and West (1976) report
that in most cases, where the sphere is close to source and observation point,
15 multipoles are sufficient. Dyck et al. (1980, 1.2) notes that the multipole
expansion of ¢ = 10, for a dipole-dipole system, achieves an accuracy of better
than 1%, provided that both transmitter and receiver are at least one radius away
from the surface of the sphere. As a guideline, the uniform field approximation is
adequate if the source and observation points are at least in a distance of about
seven times the sphere radius (Telford et al., 1985, p.347). This restriction is
relaxed for large loop systems where the generated primary field is intrinsically
more uniform than a dipole source.

Assuming a radial magnetic dipole source at a distance such that the uniform
field conjecture holds true, the solutions for H,, (Equation 2.29) and H,p
(Equation 2.30) for the uniform field approximation, are

2cosf

Hyy = Ho™; ad- Fi(t) (2.40)
H.p = Hy s%ea3 - Fy(t) (2.41)
The axial primary field of the magnetic dipole source is
my
Hy=—— 2.42
0 drrd (2:42)

where m, is the magnetic moment of the radial dipole transmitter. The time-
dependent part for step-current shut-off evaluates as

o $2 P
Fi(t) = 6Y a,5-exp (—t ﬁ) (2.43)
s=1
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For the uniform field response of the time derivative of the magnetic field, 8;F;
(Equation 2.18 on page 32) is substituted for the time-dependent part, viz

9 =R 7 2 ( waZ) (2.44)

The uniform field response is equlvalent to the response of a magnetic dipole
oriented in the direction of the polar axis, located at the sphere centre and
exhibiting a transient moment.

2.4 TEM moments of a sphere

The TEM moment transform of order n for a sphere in a dipolar field for step
current shut-off follows from Equation (2.2) and (2.28):

o o0
m
MM = —T\ " g2+q,. / "L Ry (t 245
pp Zla en | 2 (t) (2 45)
The components of the geometrical response G, are dependent on the dipole
source orientation and can be inferred by comparison with the terms in square
brackets in Equations (2.29) to (2.33). Integration of the time-dependent part

of the step response Fy (t) yields

n/ Fg(t) N i 1dt—2(2e+]_ nz / " le —-k;tdt
0 s=1 SZ

2.46
(2e+ 1)F('I’L+1 2n nzz—2(n+l) ( )

— 7T2n7_nfe (n)

where 7 = (uoa?)” /n?" is the sphere time constant, raised to the n-th power;
and where

fe(n) =2(2£+1)T (n+1))_ g; 2+ (2.47)
s=1
where z, denote zeros of the Bessel function of the first kind for order £ — 1/2
(Equation 2.16). The integral in Equation (2.46) has been evaluated using the
definition of the Gamma function (Abramowitz and Stegun, 1965, 6.1.1)

{o0]
I'(z)= kz/ t*~le~ktgs (z>0) (2.48)
0
where
pe ot (2.49)
T opa? )

Comparison with the solution of Smith and Lee (2002b, Eq 25), who derived the
result for the impulse response by direct integration, demonstrates equivalence.
Thus, the TEM moment response of a sphere in a dipolar field is given by

o0
(n) _ . 2n U _n 2441 .
M T ZE=1 a* Gy fo(n) (2.50)
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2.4.1 Ewvaluation of sum of Bessel zeros.

The infinite sum of Bessel zeros occurring in the solution of the TEM moment
transform of the sphere (Equation 2.46) can be solved analytically for moment
orders up to n = 4 as reported by Smith and Lee (2002a). The evaluation of the
sum of Bessel zeros is given by Watson (1944, p.502)

o0
2 (n) =Yz 2t (2.51)
s=1

where v is the order of the Bessel function. In this case v = £ — % where £ is the
order of the current multipole expansion. The equations for the Bessel zeros up
to order 4 are

w(0) = WIH) (2.52)
«U) = Sy 1;2 v +2) (2:53)
“@ = For (i T2 (v +3) (2:54)
w(@) = 28 (v 4+ 1)* (u54l—/ ;21(111 +3) (v +4) (2:55)
w(d) = v+19 (2.56)

2w+1)°w+2>(+3)(v+4) (v+5)

In case of point conductor TEM moments, which follows in the next section,
the sum over the zeros of the Bessel function may be expressed as a Bernoullian
number? 8, (Watson, 1944; Smith and Lee, 2002a), with

22n+1

= m |Bantal (2.57)

2175 (n)
The Bernoullian numbers are tabulated, for example Abramowitz and Stegun
(1965, p.810) list the first 60 Bernoullian numbers.

2.5 Point conductor TEM moments

The general form of the TEM moment of a sphere in a dipolar field was given
earlier in Equation (2.50). The first term in the summation includes a factor
of a®. Therefore, if the time constant of a small sphere is identical to the time
constant of a large sphere, i.e. if ca? is invariant, then M(™ of the small sphere

2Smuth and Lee (2002b) report a typographic error n the discussion of Bessel zeros 1n
Watson (1944). the second last equation on page 502 of Watson needs to be corrected by
changing Br to Bar.
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will be approximately equal to M of the large sphere provided the difference
in their volumes is taken into account. The quality of the approximation is
governed by the size of the second and subsequent terms in the summation:

M® = WQ"%TnZa%“Ge- fo(n) (2.58)
=1

o0
m
= 7r2“4—7:T" a®- (G1 “fim) + Za%GeH - fes1 (n)) (2.59)
£=1
Suppose the product 77a3 is maintained constant as the sphere radius decreases.
In the limit as a approaches zero, the contribution from the second and subsequent
terms in the expansion becomes negligible, and the n-th TEM moment for a point
conductor may be defined as (Fullagar, 2007b)

M®™ = f (n) w2"%7”a3 -Gy (2.60)

The different contributions to the point conductor moment are readily identified:
transmitter-moment m;, time constant 7, effective volume a3, geometry G, and
the constant part arising from the moment transform. Changing the effective
volume does not affect the time constant and, vice versa, a change of the time
constant does not modify the effective volume. The point-conductors approach
is equivalent to the uniform field approach. However, proximity of the point
conductor to the transmitter is immaterial because the point conductor occupies
no volume, so higher order multipoles are never involved.

For a radial transmitter dipole, the TEM moment of a point conductor resolves
to

9 ecT n 6
M® — o road. <_:ﬂ> A (260)
where the primary field is defined via (Equation 2.42)
My
Hy=-— 262
0 4mrd (262)

Of interest is the first order TEM moment of a point conductor which finds use
in the approximate forward modelling scheme described in Chapter 3. For an
arbitrarily oriented magnetic dipole source, the first order TEM moment can be
written more generally as:

3 (B f-) t—b
47r3

where b and # are unit vectors parallel to primary field Hy and r respectively,
and where 7 is defined as

MO =q. (2.63)

2
n = Ho2ra® fy (1) 17 = 2ra® ("1“—;> H, (2.64)
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which agrees with the frequency domain resistive limit expression given by Grant
and West (1965, p 496,17-15) for a non-permeable conducting sphere in a uniform
field. 7 is the magnetic dipole moment of a sphere (Grant and West, 1965, p 495)
in the resistive limit, which is equivalent to the first order TEM moment.

By introducing the sphere volume V = 4/37a2, the result for the first order
TEM moment of a point conductor has the more simple form-

3(b-¢)i-b
43
2 3(b-¢)-b
= —ILZWr ————
10 oV 473
3(b-#)i-b
43
Thus the 1st TEM moment of a point conductor is analogous to the response of
a magnetic dipole, with dipole moment aligned in the direction of the primary

field, and proportional to the product of primary field, volume and time constant
HyV 7. For further references, the point-conductor formula is written as

MY = Gr (2.66)

MO = g.
(2.65)

~ H()VT .

where
3 (13 . f') £—b 2

:H _—
G = HoV 4773 10

(2.67)

2.5.1 Primary field

The primary field Hy may result from sources other than magnetic dipoles.
The forward modelling algorithm in Chapter 3 is described in the context of
fixed-loop EM. For a rectangular loop source in free space, under the quasi-
static approximation, the primary field for a point-conductor can be calculated
deploying the law of Biot-Savart (Fullagar, 2007b). The net magnetic field H,
along a wire of the transmitter loop in z-direction is given by

T2 2
Hy=4izo/ d_izi 2Z0 2(2) (2.68)
0 P dmyg + 25 \r

with r = \/z2 + yZ + 2Z the distance from cell centre to an infinitesimal linear

current element of the wire carrying a current I. Integration is carried out

between the wire endings zi1and zs. A similar approach is adopted for the

remaining wire segments of the transmitter loop. The primary field Hy for

a point-conductor is obtained by the sum of the net magnetic fields of each
transmitter wire segment.

In the case of a magnetic dipole source, the primary field at the cell centre is

obtained by invoking the familiar dipole formula (e.g. Smith and Lee, 2002a),
viz.

My
Hy = z3
4rr

(3 (ﬁltz ) f'tm) f't::: - ﬁltm) (2'69)
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where my, is the magnitude of the magnetic moment of the source dipole with
unit vector g, The unit vector ¥, is parallel to the position vector connecting
transmitter and cell centre

2.6 Comparison with magnetostatic solution

In magnetostatics, the property being sought is the magnetic susceptibility yx.
The magnetisation Dt is related to the applied magnetic field Hy as (Blakely,
1995, p.87)

m = xHp (2.70)
where it is assumed that x is not dependent on field intensity The magnetostatic

potential at an observation distance r 1s then given (Grant and West, 1965,
p.308) as

Alr) = - /V e (2.71)

S / x-HoViav (2.72)
\ 4 r

The moment expressions for the sphere with uniform field excitation for step-
current shut-off can be re-written as a gradient of a magnetic scalar potential. By
inspection of Equation (2.63) a scalar potential for the TEM moments is found
to be .
_ M-t
= Tgrrs
where n = Hy2ma? f; (1) w%7. All quantities have been defined earlier in Section
2.4. The potential itself can be written as a Green’s function potential

A(r)

(2.73)

. 1
Ar) = - (i) Vo
the quantity in brackets may be identified as the magnetic dipole moment of
the sphere directed parallel to the inducing field Hy. Introducing the volume
magnetisation (Blakely, 1995, p.93) of a sphere

4
(i) = §7ra3 - M (2.74)
the magnetisation can then be expressed as
3 -~
m = §H0 ‘f (2.75)

where f1 = fi (1) 7?7, and the potential can therefore be identified outside a
sphere with volume V; as

Al) = - DJIV%dV (2.76)

s

~ 1
= 35 [ moviav @.77)
2 v, T
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The derivation of the potential is completely analogous to that of the magneto-
static potential as described in Grant and West (1965, p.212f.). The expression
can be further simplified by noting that
2
~ woT
= — 2.78

Ro= 5 (278)
The magnetostatic potential for the TEM moment response can then be expressed
as

2 1
A(r) = —— | 7-Hp-V—=dV (2.79)
10 V., T
A —/ T7-Hp- VldV (2.80)
Vs r

The time constant 7, replaces the magnetic susceptibility x in the magnetostatic
formulation of the 1st TEM moment (c.f. Equation 2.72). In effect, the moment
transformation converts the TEM inversion problem into a magnetic inversion
problem.

2.6.1 Program implementation

The discourse so far concentrated on the TEM moment response of a conductive
sphere in the field of a magnetic dipole source. For uniform field excitation,
or equivalently, for point-conductors, the expressions describing the secondary
response simplify considerably. Altogether, the TEM moment expressions are
of simpler form than their time-domain counterparts. Both, time-domain and
moment-domain solutions for dipole and uniform field excitation have been
implemented in a Fortran 95 program. This section illustrates some examples as
calculated with the TEM moments program.

45 Synthetic towed bird AEM profile
4x10

T 50m
3x10"° Rx 220m
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Figure 2.3 — Synthetic towed bird AEM profile of 1°* TEM moment. The profile
shows the z-component of the M' TEM moment (resistive limit) of a conductive
sphere in free space for uniform field excitation. The sphere is centred at (OE, ON,
-220z), radius is 50m and conductivity is 0.1S/m. The AEM Tx-Rx system consists
of a receiver offset by 130m horizontally and 50m vertically from a vertical dipole
transmitter (of unit moment). The plotting point is at the receiver. This profile
agrees with the resistive limit response of the sphere as shown in Smith and Lee
(2002b, Fig.2).
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In order to establish validity of the TEM moments program, the synthetic
profile shown in Figure 2.3 was calculated using the TEM moments formulation
for the first moment order. The example is taken from Smith and Lee (2002b,
Fig 2) and shows an airborne EM response over a conducting sphere. Shown
is the z-component of the first order TEM moment which is equivalent to the
resistive limit response of the sphere. The AEM Tx-Rx system consists of a
receiver offset by 130m horizontally and 50m vertically from a vertical dipole
transmitter (of unit moment). The calculated profile corresponds almost exactly
to the profile presented in Smith and Lee (2002b, Fig 2) to the extent that it
can be evaluated from the diagram without access to the original digital data.

To further validate the calculations of the TEM moments program, the time-
domain response for a conductive sphere is compared with the result as computed
with program SPHERE (Dyck et al., 1980). SPHERE calculates the eigenvalues of
the characteristic equation (Nabighian, 1971, Eq.10) for eigencurrents up to 300.
The maximum capacity of the multipole expansion of SPHERE is £ = 10. The TEM
moments program evaluates the eigencurrents, that is the sum of Bessel-zeros,
by implementation of a look-up-table containing a wide range of Bessel-zeros for
multipole orders up to £ = 25 A convergence criterion, dependent on the sphere
time-constant, terminates the sum of Bessel-zeros.

TEM response of conductive sphere
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Figure 2.4 — Synthetic fixed transmitter profile for a conducting sphere centred
at (OE, ON, -150Z). Units are given 1n terms of the magnetic flux density B. The
sphere has a radius of 50m and a conductivity of 50S/m Step response recordings
are at 20m intervals from -200E to 200E over the centre line of the sphere for
channel delay times: 0.8813, 1.069, 1.313, 1.619, 2.006, 2.506, 3 144, 3 956, 4.994,
6.313 (msec) The transmitter 1s a horizontal magnetic dipole with dipole moment
(1,0,0) fixed at OE,ON. Calculations are carried out for multipole order £ = 10.
Superimposed are the responses from the program SPHERE (Dyck et al., 1980).
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The example shows the response of a conducting sphere excited by a horizontal
magnetic dipole and is depicted in Figure 2.4. The horizontal dipole source is
centred at (OE,0N), 150 m above the centre of a sphere. The sphere has a radius
of 50 m with a conductivity of 50 S/m. Step response recordings are at 20 m
intervals from -200E to 200E over the centre line of the sphere. The order of the
multipole expansion is 10 in order to account for induced higher multipoles. The
time-domain response curves from SPHERE and the TEM moments program in
Figure 2.4 plot essentially on top of each other. The results are identical to about
the sixth significant Figure. Differences arise due to the different implementations
of the evaluation of the sum over the Bessel-zeros. The geometrical response in
both programs are exactly the same. Temporal and spatial contributions are
calculated separately.

TEM moments for uniform and multipole field excitation
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Figure 2.5 — Comparison of 0-th TEM moment for uniform and dipole field
excitation. Synthetic recordings are obtained at 20m intervals along the mid-line
over a sphere buried at (OE, ON,-150m) with radius of 50m and conductivity of
50S/m. The vertical dipole transmitter is placed over the top of the sphere at
OE, ON. Shown are the X and z components for uniform field excitation and for
multipoles up to order ¢ = 25. The uniform field is calculated for £ = 1.

The validity of the point-conductor or uniform-field approach is tested in
Figure 2.5 which shows the zeroth order TEM moment response for the same
model configuration as is shown in Figure 2.4, except here for a vertical magnetic
dipole source at (OE,0N). The zeroth TEM moment for uniform field excitation
is compared to the dipole field excitation, here for multipoles up to 25 in order
to achieve the highest accuracy possible.

The zeroth TEM moment equals the inductive limit (Equation 2.6) and shows
the largest difference between uniform and dipole field excitation. For the
model under consideration, the sphere radius is large compared to source and
observation distances, so that the field is non-uniform over the volume of the
sphere and higher order multipoles are induced. When the observation points
are at greater distances, i.e. at eastings larger than +130m, both uniform field
and dipole field responses are quite similar. Since the highest order multipoles
decay most rapidly, the inductive limit exhibits the largest differences between
uniform and dipole field excitation.
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TEM moments for uniform and multipole field excitation
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Figure 2.6 — Comparison of 1-st — 4-th TEM moment for uniform and dipole field

excitation. The configuration is like in Figure 2.5. Higher order TEM moments for

uniform and dipole field excitation agree better than lower order TEM moments.
As the response progresses towards the resistive limit, the eigencurrents of
the highest order multipoles have already decayed, and the uniform field matches
the dipole field to a higher degree as can be seen in Figure 2.6 (b), which depicts
the 1st order TEM moment (resistive limit). Second to fourth order TEM moments
are shown, respectively, in panel (c) to (e) in Figure 2.6. The fourth order TEM
moment for uniform field excitation is virtually indistinguishable from the dipole
field response. The dominance of the s = 1 term in Equation (2.51) results in
the better agreement for the higher order TEM moments (Smith and Lee, 2002a).

2.7 The TEM moment of a half space for a rectan-
gular loop source

In the following, analytical expressions for the first order TEM moments for
a half space with rectangular loop excitation are derived for the vertical and
horizontal magnetic field components. The forward modelling concept uses
a continuous conducting half space as the response of the background. TEM
moments for horizontally layered structures excited by a magnetic dipole source
have previously been derived by Smith and Lee (2002¢). In the limit when the
layer has infinite depth extent, a first order half space moment is obtained. The
concept for the half space moment has been extended to fractional order by Lee
et al. (2003). Hyde (2005, p.83) derives the vertical half space moment for order
up to n = 1.4 for a circular loop source. These previous results are suitable
for airborne EM, but they are not generally applicable to ground TEM, which
commonly employs large rectangular loop systems.
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2.7.1 The vertical-component half space TEM moment

Raiche (1987) derived the analytical solution of the transient EM response of a

conductive half space for rectangular loop excitation with step-current shut-off.
His solution describes the electromagnetic force dB,/dt induced in the receiver.
The B, response is given by integrating Raiche’s solution with respect to time.

The time integral of the B, response subsequently provides the vertical TEM
moment response of order one. For consistency reasons, the development of
the equations will here be given in terms of the magnetic field H, where it is
understood that the magnetic permeability is that of free space The expression
for the dH,/dt time-integral is given as the sum of the results for each line
segment of the transmitter loop, viz.

(y2,22) (z1,11)
+G (2,9,
(y2,21) (z1,y2)

(z2,y2)
+G (2,y,t)
(z2,31)

(y1,21)
+G(z,y,t)
(y1,22)

H,= G((L'; Y, t)

where sub- and superscripts in brackets denote the corners of the transmitter loop.

The response for a line segment of the transmitter loop evaluates as (Fullagar,
2002)

I |1 z? y
G(z,,t) = — | — [ 2+ = — 29222 ) Yerf(vyp) —
(z,9,1) Srad l72 ( + 7 vz ) per (vp)
y(t)
2 .’Ezy 2 2 2 2 2
——Ze TP — eV Parf(vy1, 2.81
N " (vy) (2.81)

7=0

where G (z,y, t) denotes the vertical magnetic field; z and y denote corresponding
coordinates of the ends of the line current relative to the receiver and r =

vx2 + y2. Also,
- —V;&“, £>0 (2.82)

where ¢ denotes the channel delay time.

The 1st TEM moment is given by the time-integral of the expression for
G (z,y,t) in Equation (2.81); for evaluation the integration variable is expressed
in terms of v with

— _Ho
dt = —5 5y (2.83)

and the integration of G can be expressed as

) v(t)
Kot =- ["caya=- [T 0L sy
t/
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The solution of this integral is given as (Fullagar, 2002)
op 1 n ()
K (z,y,t) = [7@ (x,y>t)+2—,y2]0 +

(t)
o T s serf(vy)
I— ve 2L 2.
167rw/0 e o dy (2.85)

where 7 is defined by

g -
n= Ilﬁ:x (—%erf('yp) +erf(yy) e™” ) (2.86)

The n = 1 moment is equivalent to the complete time integral of the H-field
response after step-current shut-off. Therefore, from Equation (2.84)

1 7 ou © _e2erf(yy)
Mi=|Z_—c+ 1| +12E£ / Tt Y 2.87
fo [2 472G+272 + 6r ; e ~ dry (2.87)

o0

0

where the integral term is analytical with

0o 2y
/ ¢ ” erf (yy) dy = sinh™* (%) (2.88)
0

The term in brackets in Equation (2.87) vanishes at early time since, as v — oo,
the expression is zero and in the late time, when « — 0, the term also approaches
zero. Thus follows the expression for the first order vertical moment response
due to one side of a rectangular loop source (Fullagar, 2007b):

) C 1% g (Y
M, (z,y) = Il67rw sinh (z) (2.89)

In Figure 2.7 the 1st order Z-component TEM moments are shown for a
resistive (1 mS/m) and a conductive (200 mS/m) half space with rectangular
loop source excitation. Synthetic recordings are obtained at 50 m intervals along
the centre line of a rectangular loop source with side lengths 250Ex 500N, centred
at (OE, ON). In order to recognise the effect of the integration over a finite time
range, as is realised with the incomplete TEM moments, the TEM moment response
of both incomplete and complete moments are on display in Figure 2.7 The
incomplete moments are calculated by evaluating Equation (2.84) between the
integration limits ¢; and oo, where ¢, is the first channel delay time; subsequently
the moment contribution from ¢x to co is subtracted, where ¢y denotes the last
channel delay time. The complete moments are computed using Equation (2.89).
For the spline-integrated TEM moments, the time-domain solution is numerically
integrated between the first and last channel delay time. The contribution
between 0 and #; is denoted ’head’ contribution and the term ’tail’ is used for
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Complete vs Incomplete 1st TEM Moment ( Z-component)
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Figure 2.7 — First order vertical TEM moment of a half space with rectangular loop
source. The left panel shows the result for a resistive half space of 1m.S/m whereas
the right panel shows the response for a conductive half space with 200m.S/m.
Several responses are recorded: (i) the complete 1st TEM moment as given by
Equation (2.89); (ii) the incomplete moment given by evaluation of Equation (2.84)
between the first and last channel delay time; (iii) the spline-integrated result of
the time-domain response between the first and last channel; (iv) summed response
from contributions from 0 to the first channel ("head’) and last channel to infinity
('tail’), and the spline-integrated response. Channel delay times correspond to the
SMARTEM instrument channels (Chapter 1, Table 1.2).

the part between ¢y and oo, both of which are calculated employing Equation
(2.84) together with Equation (2.89). The summed response of splined-integrated
moments, together with ’head’ and ’tail’ equals the complete TEM moment. This
example illustrates the method of calculation of TEM moment data for a half
space for which measurements are only available over finite time ranges. The
numerical integration scheme provides a suitable approximation. The spline
integration is based on the methods described in Davis and Rabinowitz (1975,
pp-50-55 and pp.367-377 ) .

2.7.2 The horizontal-component half space TEM moment

The expression for the horizontal components of the magnetic field due to
a horizontal electrical dipole over a conducting earth is given by Ward and
Hohmann (1988, p.236) . For a rectangular loop source the galvanic terms which
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are included 1n the expression can be neglected, leaving the inductive terms

Idyou -
dip Eathat- A ad _ . z
HIP (t) o 1 [Io (z2) — Iz (z)] e (2.90)
where I is the transmitter current, Iy and I are, respectively, the modified
Bessel functions of the first kind of zeroth and second order with argument
z = opor?/8t, and dy indicates the electrical dipole direction. With the use of

the following recurrence relation for modified Bessel functions (Abramowitz and
Stegun, 1965, p.376)

2v
I,,_l (Z) — L,+1 (Z) = ? I,, (Z) (291)
the expression can be further simplified, thus

Idy

HE# () = 2V 11 (2) e~ (2.92)

2rr

The expression (Equation 2.92) for the horizontal magnetic field due to a
horizontal electrical dipole needs to be integrated with respect to time to solve
for the first moment expression. Integration around the loop wires yields the
response of a rectangular loop source.

Integrating expression (2.92) with respect to time directly leads to a divergent

integral, which can be seen by comparing the following expression from Luke
(1962, §4.6)

o _Tp+s+1)T(-p—1/)
e YPI, (t) dt = 25T (12) T (s — p)

subject to the conditions p+ s > —1 and p < —%, thus forp=—-2and s =1
one condition is violated for this solution. However, for a rectangular loop
source, for every dipole on the near side of the loop there is a contribution
from an oppositely oriented dipole on the other (parallel) side of the loop and
an analytical expression can be derived by considering the opposing electrical
dipoles together. Let 71 and let 5 denote the radial distances to the opposing
dipoles on far and near side of the transmitter loop respectively. The moment
net response (Fullagar, 2007b) is expressed as

(2.93)

/ ” HZ () dt = / ” (Hzeom (t) — HI®" (v)) dt
0 0

o/ 1.
=/0 (me_zh (2) — 27”%6 I (mz)) dt (2.94)

K= (%)2 (2.95)

In order to solve for the first order moment the time integration is bisected
into two integrations from 0 to ¢ and from ¢ to co. The integral expressions over

where
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the finite time ranges are called incomplete moments borrowing the name from
the incomplete Gamma functions involved.
Setting R

2
uor uor

t)=z2="——=dt=—
gt =2="g 822
If g(t1) = 21, g(tn) = zn then the general expression for the TEM moment

response for two opposing, y-directed electrical dipoles is

dz (2.96)

tN ol ZN e *? e~k
/ H;Let tydt = _Idym_ /71 (711 (2) — 5 I (K,Z)) dz (2.97)

" KZ

Net moment response for t;, =0 and iy =t

The integration limits transform as g(t1) = 23 = oo and g(ty) = 2z’. The
modified Bessel functions in the integral is replaced by its defining series expansion
(Abramowitz and Stegun, 1965, p.375)

L= i 2.98
n=

Substituting the series expansion then gives:

t
/ HIe () dt =
0
—_ Idyo-—“ i _1— /z (e—Zz2ﬂ—1 _ n2ne—nzz-n—1) dz (2.99)
16m <= 227tinl(n+ 1)1 /oo

The individual integrals can easily be solved by recognising that they conform
to the definition of the incomplete Gamma function (Abramowitz and Stegun,
1965, p.260), viz.

7

/ e 72y = -T'(2n,2) (2.100)

[o ]

mzn/ e 2" 14y = -T'(2n,k2) (2.101)
oo

which gives the result for the incomplete net-moment response between ¢; =0
and ty =t

t o A !
/ Hret () dt = —Iay 2t 5 T2 ) — T (2, ) (2.102)
0

16w <= 22ntinl(n +1)!
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Net moment response for t; =t and ty = oo

The integration limits are given by g (¢1) = 2’ and g (¢5) = 0. The solution of
the integral between these integration limits is similar to (2.102), except here
the n = 0 term is problematic due to the upper integration limit. Separating
the n = 0 term yields

L 0 -z 2n—1 2n —Kkz 2n—1
- Id y167r222"+1n'(n+1)'/ (6 z — K"z )_
0 —z —Kkz
op |1 e’ e
Tdy Y16r { /z, ( z z )+
o

1 0
> Pl (n+ 1)1 / (e7%z" 71 - fcz"e"‘zz%-l)} (2.103)
ni(n+ : ’
1 z

n=

The first integral due to the n = 0 term is solved by using the series expansion

of the exponential function which gives rise to the following equation (Fullagar,
2007b),

fcz’)k
= 22( TR ) (2.104)

The series expression in Equation (2.104) can furthermore be expressed in terms
of Euler’s constant 7, the Exponential Integral E; and a logarithm (Abramowitz
and Stegun, 1965, p.229). The Exponential Integral is then expressed as an
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incomplete Gamma function (Abramowitz and Stegun, 1965, p.230), viz
1 (=) _ (=) _
2 = kk! kk! N

= (F =) = B (&) +7 +In (5 + By (s2)

(In (') —In(x2') + T'(0,2") = T' (0, k2"))

-1 <r (0,#) =T (0,57) + In (é)) (2.105)

The expressions in Equation (2.103) for all n > 0 are well behaved and can
be expressed in terms of the incomplete Gamma function as in Equation (2.100)
and Equation (2.101) Therefore the contribution to the horizontal TEM moment
between t and oo evaluates to

[e.o]
/ HP® () dt =
t

_oop | In(k)  T(0,2)-T(0,x7) <~T(2n,2)—T(2n,x2)
Idylﬁ'fr{ 2 T 2 2, 22n+1inl (n + 1)

n=1

_ g0k ) In(x) o~ T (2n,2') =T (2n,k2")
= —Idy7,> { T i ) (2.106)

n=0

Net moment response for t; =0 and ty = o

The integration limits transform as g (¢1) = 0 and g ({x) = 00 = 2’ and the
integral can be solved with the results of the incomplete moments from the
previous sections establishing the complete net-moment (Fullagar, 2007b),

ty

lim HI (t)dt =

tnN—00 0
. op | In(k) T (2n,2") =T (2n,k2")
Jm —ldyTe { a2 gantin (n+1)!

n=0
_ [yt o)
=176,
since limy' 00 ' (2n,2') = 0 and lim,r oo I'(2n,52') =0

(2.107)

Horizontal-component TEM moment for a rectangular loop source

The result for the complete net-moment (Equation 2.107) can be solved by
integrating analytically around the transmitter loop. With the definition of &
(Equation 2.95) it follows

Y2 2 2
+.’12
Ml =128 / (L% 2.108

z 321 J,, o y? + 3 dy (2.108)
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Complete vs Incomplete 1st TEM Moment ( X-component)
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Figure 2.8 - First order horizontal (X) TEM moment of a half space with rectangu-
lar loop source. The configuration is the same as in Figure 2.7. Several responses
are recorded: (i) the analytical complete TEM moment via Equation (2.107); (ii)
the incomplete moment as evaluated using a combination of Equation (2.102) and
Equation (2.106); (iii) numerical integration between t; and ¢ty labelled "Spline’;
(iv) the summed response of spline-integration, ’head’ and ’tail’.

where |z3| < |z1|. Using
Y2 y Y2
/ In (y* + a®) dy = |:y In (y* + a®) — 2y + 2atan™" (5)] " (2.109)
Y1 Y1
the horizontal complete TEM moment for a rectangular loop source over a half
space is given as (Fullagar, 2007b)

2., .2
+

M= g8 lewm{d T

T L y? + 22 "

Y2
215 tan™! (%) — 2z tan ™! (j—l)] (2.110)
n

For finite time ranges, integration around the loop is performed numerically
(Press et al., 2002, p.1054).

On display in Figure 2.8 are X-components of the complete and incomplete
TEM moments of a half space with rectangular loop source. Shown are the
responses for a resistive half space of 1 mS/m (left) and a conductive half space
with 200 mS/m (right). As was the case for the vertical component in Figure
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2 7, synthetic recordings are simulated at 50 m intervals along the centre line
of a rectangular loop source with side lengths 250Ex 500N, centred at (0E, ON)
The complete moment (i) is calculated with Equation (2.107). The incomplete
moment (ii) is evaluated using a combination of Equation (2.102) and Equation
(2.106) for integration limits ¢; and £y. A numerical spline-based integration
between first and last channel solves for the response labelled *Spline’ (iii) which
is identical to the analytical incomplete moment response. The summed response

of spline-integration, *head’ and ’tail’ (iv) equals the analytical complete moment.

Because induced currents will decay much faster for a resistive half space, the
incomplete TEM moment gives a ’flat’ anomaly shape. For a conductive half
space, the incomplete and complete TEM moments are nearly identical beeause
induced currents decay much slower.

2.8 TEM moments of measured data

The complete TEM moments are defined for a time-range from 0 to co. Clearly,
measured data only exist over a finite time range. In addition, measured data

are for non-ideal waveforms exhibiting the effects of previous transmitter pulses.

Retrieving the complete TEM moments as closely as possible for a set of measured
data over a finite time range is important for the 3D inversion of TEM moments in
order to maintain the linearity with respect to the time constant. The inversion
benefits from the linear relationship. Incomplete TEM moments defined over finite
time-ranges do not exhibit this linear relationship, rendering the inversion process
non-linear. Although the inversion scheme is capable of non-linear inversion, the
execution time will increase significantly.

observed range

B-Field (pT/A)

v v T T G
0 10 100 1000 0
Time (msec )

Figure 2.9 — Schematic of Head and Tail contribution to TEM moment res-
ponse. Very early times are denoted ’head’ and very late times ’tail’ contributions.
"Head’ and ’tail’ responses are calculated by extrapolation, based on a half space
conductivity model for the times in question.
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Smith and Lee (2002b) propose an approximate integration scheme to calcu-
late moment responses from measured data

M® = / "t —to) (1) dt (2.111)
to

with ¢ is a time half-way through the on time and [ are time derivatives of
observed magnetic field TEM data. The moment estimate is close to the true
moment as reported by Smith and Lee (2002b) if the time constant of the
conductor is large compared with ¢3. However, in practise the integration is
limited by the last channel delay time and the integral would not extend to
infinity. If the measurements are deconvolved to obtain the ideal step- or impulse
response, the TEM moments transform as defined in Equations (2.2) or (2.3) may
be applied for the time range available (Hyde, 2005).

The procedure proposed here for estimating the TEM moments response
from measured TEM data involves extrapolating the early- and late time TEM
moment, contributions for completion of the incomplete moment transform. The
extrapolation scheme for measured magnetic field TEM data H (t) is given as

tN ~ t1 lo%e)
M"=—n / " H (t) dt + /0 t" 1 H,, (t)dt + /t t" " H,, (t)dt
t1 N
’head’ *tail’

(2.112)
where H,, and H,, are extrapolated magnetic field data calculated from apparent
conductivities o; and on associated with the data measured at the times in
question (i.e t; and tn). The calculation of apparent conductivities is described
in detail in Chapter 4. The ’head’ and ’tail’ contributions are schematically
illustrated in Figure 2.9. Apparent conductivities derived from total field data
|H| are preferred, because total field data gives non-ambiguous results as opposed
to single component data for fixed loop measurements. The use of apparent
conductivity reduces the effect of previous pulses, since the apparent conductivity
calculation takes previous pulses into account.

The integral ranging from 0 to £; is denoted ’head’ contribution and the
integral form ¢y to oo is called the ’tail’ contribution. Once estimates of the ap-
parent conductivity have been retrieved, the head and tail moment contributions
are found by invoking Equations (2.102) and (2 106) for the horizontal compo-
nents and Equations (2.87) and (2.89) for the vertical component. The moments
integral of the measured data TEM H (t) is calculated via spline integration.

Smith and Lee (2002b) note that the theoretical and measured moments
should be reasonably close if the measured response has decayed to the noise level
before the end of the off-time. It is furthermore mentioned that small nonzero
responses at the end of the off-time will have a minimal effect for the zeroth TEM
moment, however, for higher order moments, the effect may become significant
so that the waveform should be explicitly considered. For the current thesis, the
waveform is always assumed to be an ideal step-current.



Chapter 3

Approximate 3D modelling of
TEM moments

Introduction Approximate 3D modelling computes the TEM response of the
ground with accuracy traded for speed so as to accelerate the computations.
The forward model solution presented in this chapter employs TEM moments
of a dense network of point conductors (magnetic dipoles) to approximate the
EM response of 3D targets. Electromagnetic interactions are ignored and linear
superposition of point-conductor responses yields the approximate TEM moment
response of the 3D target. Consequently, computation of the combined response
of a 3D assembly of point-conductors 1s very fast.

The 3D forward modelling approach presented here is described in the context
of fixed loop EM ground systems However the method is flexible and applicable to
moving-loop as well to airborne problems. The model volume is divided into a 3D
grid comprised of cubic cells. Typically, for ground-loop TEM, the model contains
the transmitter loop and should extent well beyond the receiver locations to avoid
edge effects. The depth of penetration is judged with reference to conductivity-
depth pseudo-sections and the vertical model dimension is selected accordingly.
Because point conductors are derived for cubic cells, all subcells of the model
space are of fixed cubic dimension and may range from centimetres to hundreds
of meters, depending on the size of the target and computer memory. The
3D model space is referred to as 'Voxet’, which is the terminology of Gocap
(Paradigm™) for a three-dimensional set of voxels (Jessell, 2001; Mallet, 2002).
GOCAD is a commercial software solution for modelling geological objects in 3D

The TEM moment forward response is modelled as a combination of a conti-
nuous background and a discrete target response. The background is represented
as a homogeneous half space, while the target 1s comprised of a distribution
of point conductors on the 3D grid. For the background response, analytical
expressions are utilised for the first order TEM moment of a half space excited
by a rectangular loop source. The moment contribution of a point-conductor
is computed using a simplified form of the expression for a sphere in free space
which is proportional to its time constant. Linear superposition of a dense net-
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work of point-conductors approximately reproduces the TEM moment response
of a confined conductor if the time constant of the conductor is adopted by
each point-conductor. 3D forward modelling of time constants employing point
conductors is scale invariant, i.e. given a conductor’s time constant, the TEM
moment response does not substantially change with subcell dimension

This chapter describes the implementation of the TEM moment forward
algorithm for arbitrary anomalous volumes. The algorithm described herein is
implemented as a set of Fortran 95 modules. Following the introduction of the
background response, the target response is described and the linear superposition
of point conductors is tested for free space examples. The section thereafter
qualitatively analyses the impact of ignoring host-rock EM interaction. The
chapter concludes with a comparison between exact and approximate (point
conductor) TEM moment responses for 3D targets in a conducting half space. The
exact moments are calculated via integration of decays generated by rigorous 3D
algorithms.

3.1 Background response

Approximate 3D modelling of TEM moments requires addition of a continuous
background response to a discrete target response The discrete target response
1s defined from superposition of the responses of point conductors defined on a 3D
grid (Section 3.2). In the basic formulation of the forward algorithm each point
conductor inherits the orientation of the primary field, therefore the magnetic
dipole orientations associated with each point conductor are effectively frozen
in the directions of the primary field, which as a consequence prohibits current
diffusion For this reason a continuous background is introduced, so that the
TEM moment response of the host-rock is treated as a continuous background
response in the model. The background response is computed as the 1st order
TEM moment of a homogeneous conducting half space, introduced previously in
Chapter 2, Equations (2.89) and (2.107).

In ground-loop TEM, the near-transmitter zone is most responsive at early
delay times and ground sensitivity is pronounced in the vicinity of the transmitter
loop. Since the target algorithm effectively approximates free-air responses of
3D conductors, the half space response represents the air-earth interface as
well as the pronounced sensitivity near the transmitter loop. Moreover, the
induced migrating host-current is characterised by the TEM moment response
of a continuous conducting half space. Thus, the half space response captures
early-time and near-transmitter responses as well as the late time response of an
extensive unbounded medium This concept underlies the assumption, discussed
in Section 3.4, that electromagnetic interactions between host and target may
tolerably be ignored. As a first step in data interpretation, conductivity-depth
imaging is carried out which yields a conductivity model from which a half
space conductivity may be inferred. Generally, the background model is not
restricted to half space models, and can be extended to layered earth models.
For the algorithm discussed herein, the background will always be composed of
a conducting half space due to 1ts computational simplicity and speed.
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3.2 Discrete target response

The target is defined on a 3D grid and is comprised of closely-packed cubic cells,
each containing a point conductor at its centre. Electromagnetic interaction
between volume elements is ignored. Effectively, the discrete target response
is the sum of the contributions from a dense network of point conductors, or
magnetic dipoles, where each dipole inherits the orientation of the exciting
primary field. The effect of the primary magnetic field is described in Section
3.2.2.

The calculations are in terms of the time constant of the associated point
conductor of each cell. In this formulation, the forward algorithm is scale
invariant, so that different subcell sizes give almost the same TEM moment
response for the same time constant. Summation of the TEM moment responses
of all cells approximately reproduces the TEM moment response if the point
conductors inherit the time constant of the body to which they belong.

The point conductor formulation is mathematically equivalent to the formu-
lation of a sphere under uniform excitation. However, in the point conductor
approach, the effective volume is the volume of the cubic cell, not the volume
of a sphere, where the time constant, not the conductivity, is adopted as the
electrical property of the cell. This is because the TEM response from an extensive
conductive body should be almost independent of the cell size used to model
it. If conductivity were maintained constant as cell size is decreased, the time
constant would decrease in proportion to LXL, where L is the cube dimension.

3.2.1 Calculating the target response

For the forward algorithm, only the first order TEM moment M is used, which
has been defined in Chapter 2 (Equation 2.7). For confined conductive bodies
in free space the first order TEM moment 1s proportional to the time constant
7. In this sense, applying the moment transform linearises the TEM problem.
Implementation of the approximate 3D TEM forward modelling scheme consists
of superposition of the TEM moments of all constituents of a subcelled anomalous
volume together with the background response. Superposition relates the TEM
moment at a particular measurement location (z,y, z), to a distribution of point
conductors (Equation 2.66) and is stated for the 1st-order TEM moment as (e g.
Blakely, 1995, p.197)

K
M (z,y,2)" = Mo (2,5, 2)7 + > G (1) 7 (3.1)
k=1

where M (:c,y,z)(l) denotes the background moment discussed earlier, K is the
number of cells defined for the anomalous volume and summation is carried out
over k; ry 1s the position vector that connects the observation point (z,y, 2)
and cell centre of the k-th cell; 75 is the the time constant of the k-th cell.
Gy, is the geometrical coupling factor of the k-th cell which corresponds to a
point-conductor or magnetic dipole at the cell centre and was given earlier by
Equation (2.67):
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3(Bk~fk)f'k—6k 2
4713 10

where By j is the magnitude of the primary magnetic induction at the centre
of the k-th cell, and Vj is the volume of the k-th cell.; ¥ is the the unit vector
parallel to position vector ri. In the simplest form of the forward algorithm, the
unit vector b is parallel to the primary field vector By.

The point conductor formulation is consistent with the analytic solution for
the TEM moment of a sphere if the product 7V is maintained constant as the
sphere radius decreases; in the limit, the TEM moment response equals that of
a point conductor which has previously been defined in Equation (2.60). In
the context of fixed-loop TEM, the primary magnetic field is calculated for a
rectangular loop source in free space employing the law of Biot-Savart. Other
inductive sources however, like magnetic dipoles for AEM, can easily be adopted.
Equation (3.1) is implemented as a set of Fortran 95 modules as the principal
algorithm for calculating the TEM moment response of a 3D target.

Gy (rx) = Box Vi

(3.2)

3.2.2 Effect of primary field and conductivity gradient

Using point-conductors, current migration ef-
fects in compact conductors cannot be repli-
cated because induced vortex currents are in
effect confined to each subcell and the currents
always flow perpendicular to the primary field
direction at the point conductor location. Ho-
wever, current flows preferentially parallel to
the boundaries of good conductors, i.e. or-
thogonal to conductivity gradients. Thus EM
induction is controlled by the component of
the inducing field which is parallel to the local
conductivity gradient. During this study, the
algorithm used for inversion (Chapter 5) exclu-
sively employs the basic formulation (Equation
3.2) where the point conductor inherits the orientation of the primary field. Howe-
ver, a modified forward algorithm which adjusts the components of the primary
field according to the conductivity gradient is in an experimental stage (c.f.
Appendix A). The modified forward algorithm defines local 'next-neighbour’
gradients based on the difference in conductivity or time constants of adjacent
cells. Denoting the current cell with subscript ‘i’ and the six adjacent cells with
subscripts ‘I, ‘v’ and ‘n’, ’s’ and ‘u’, 'd’ (Figure 3.1), the differences are defined
as:

Figure 3.1 - Local subcell and ad-
jacent cells in 3D mesh.
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where superscripts ‘p’ and ‘n’ refer to the values of the ‘positive’ or ‘negative’
face. Attached to the definitions of the local gradients are two conditions. First,
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if the time-constant of a cell is below a threshold, the time-constant is treated
as zero during assignment of the difference. Second, if the ratio of the involved
cell time-constants are within a certain margin, they are treated as equal during
assignment of the difference. One way to define a conductivity or time constant
gradient is to adopt them from the differences with maximum amplitude (Fullagar,
2008a):

NP

vr, = Sl |ay)
n

V1, = % otherwise

where V7, are the components of the gradient of 7 with j = z,y or z and where
L is the cell dimension.

Gradient contrasts define geometric boundaries of geoelectrical structures.
Certain structures impose a strong constraint on the induced vortex current
flow, for example a horizontal slab where currents will predominantly flow in the
horizontal plane of the slab at late times if the lateral extent is much larger than
the vertical extent. In order to model this current flow correctly, the effective
primary field has to be adjusted accordingly. Strong gradients (hence conductor
boundaries) can be identified if the differences of the adjacent cells are tested
accordingly. If a possible boundary is detected, the gradient is set to the most
reasonable direction. According to this simple model, the effective inducing
field B, acting on the target cell is the component of the primary field in the
direction of the conductivity gradient; thus

B, = (B - fi,) fi, (3.3)

where By is the primary field and where i, is the unit vector in the direction of
the gradient V7,. Thus B, is zero if the primary field is perpendicular to the
conductivity gradient; this tallies with the physical notion of null coupling. If
the conductivity gradient 1s zero, the unmodified primary field in zero gradient
cells is adopted.

3.2.3 3D grid time constants

As the model space is subdivided into a 3D grid of cubic cells, each cell is assigned
a time constant. The time constant of a confined conductor serves to classify
the conductor quality. The time constant is defined as the time interval over
which the late-time signal decreases to /e of its initial value, i.e. characterises
the exponential decay. A general expression for the time constant (Nabighian
and Macnae, 1991, p.467) can be given as

T=K po-A (3.4)

with K a numerical coefficient and A a geometrical coefficient proportional to
the effective cross-section of the conductor. Usually, the geometrical factor will
be difficult to estimate for geologically realistic objects.
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For the 3D grid it is reasonable to regard the time constant 75 of a cubic
cell as approximately equal to that of a sphere having the same volume and
conductivity; this is implicitly the position taken by Newman and Hohmann
(1988, eq.35). The sphere time constant (Kaufman and Eaton, 2001, p 172) for
a sphere with radius @ and conductivity u is defined by:

2
oua

Ts = ;) (3.5)

From the condition of equal volumes for sphere and cubic cell, the radius is

calculated as:
w 6\ (L
= 3 = —_— 3 = -_— - -
V=L 34 > a (77) <2> (3.6)

and on this basis, the time constant 73 of a cubic cell in the 3D model grid can

be defined as*
S8\ (LN’ opu _ opl?
= (%) (5) 7z~ 956 (8.7)

where L is the cubic cell dimension.

Simple structures such as spheres and thin plates in free space have ana-
lytical expressions for their time constants which are employed for testing the
approximation as illustrated in subsequent Section 3.3. Generally however, the
time constant of a complex body is an empirical quantity as estimated from the
time-domain decay curves by fitting an exponential to the late time part of the
decay response (Nabighian and Macnae, 1991, p.459). Estimation of reliable
time constants is furthermore complicated if the target resides in a conductive
host-rock environment.

The following procedure automatically calculates the time constant from an
observed TEM moment response. In the context of forward modelling, observed
response means here the response for a certain model as obtamned by other
methods and third-party software. Because the time constant has a linear rela-
tionship with respect to the first-order TEM moments, a simple linear regression
fits the amplitudes of the observed response to the amplitudes of the model res-
ponse as calculated from an initial estimate of cell time constants with the pomnt
conductor algorithm. Initial estimates may be based on time constant analysis
of the decays or apparent conductivities from conductivity-depth imaging are
assigned as initial time constants. The result of the linear regression rescales
the initial estimate of the cell time constants to fit the observed response in a
least-squares sense.

Let d € RN be the data vector of the observed response for N data points
and c(7) € RN the vector of the calculated response as a function of the cell
time constants 7 € R¥ for K cells. The relationship between observed and model
TEM moments is linear with respect to time constants:

d=c(f-7)=F-d(r)
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Therefore, if the factor 8 is known, imitial estimates of cell time constants can
be rescaled as to match the observed response as close as possible. The rescaling
factor g is found by minimising the sum of squares of measurement misfits for a
set of N data points, viz.:

N
man! S = Z (dn —B-c)?, (3.8)

n=1

Setting the derivative with respect to 5 to zero, and solving for 8 results in:

_ E dn.cn
X

As a measure of the quality of the fit, the dimensional root-mean-square (RMS)
can be utilised; the RMS is quoted in data units and is defined as

B (3.9)

1 N
2
RMS= N ng=1 (dn - Cn)

3.3 Linear superposition of point conductors

In the following section the linear superposition of TEM moment responses from
point conductors is illustrated for the examples of a large sphere and a thin
vertical plate, both situated in free space and excited by a rectangular loop
source. In both examples the anomalous volume is subjected to discretisation
into subcells with dimension L = 2, L = 5 and L. = 10 where each subcell
contains a point conductor at its centre with the time constant of its ’parent’
conductor. The number of cells, K, of the subcelled volume is given by the ratio
of the anomalous volume, V4, to the subcell volume Vg, .

3.3.1 Subcelled sphere in free space

Let a large sphere have a radius of R=50 m and a time constant of 7 = 0.32
msec (conductivity is 1 S/m). Depth-to-top of the sphere is 200 m and centre-
coordinates are (OE, ON). The sphere is energised by a fixed transmitter loop,
centred at (450E,0E) with side lenghts of 100 mx200 m A survey line traverses
the centre of the sphere at 20 m intervals from -200E to 200E.

The exact Z-component of the first order TEM moment of the large sphere
together with the approximate response for three different subcell sizes is depicted
in Figure 3.2. The exact sphere response was calculated with the TEM moment
program introduced earlier in Chapter 2.6.1. Each subcell response was calculated
for the same time constant as the large sphere. Subcells whose centres lie within
the radius of the large sphere are members of the subcelled volume. The number
of cells for each subcell dimension of 2 m, 5 m and 10 m are, respectively,
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1st TEM Moment of Subcelled Sphere ( Z-Component)
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Figure 3.2 - TEM moment response of a subcelled sphere in free-space for a 50
m sphere energised by a fixed transmitter loop. The panels show the responses for
the subcelled sphere for various subcell dimensions of 2 m (top), 5 m (middle) and
10 m (bottom). Superimposed is the response of the large sphere in the dipole
approximation (uniform field excitation). The number of cells for each subcell
dimension are Vo = 65450, V5 = 4189 and Vip = 524.

Vo = 65450, V5 = 4189 and Vjp = 524. The large sphere response has been
calculated as a dipole term at the sphere centre (uniform field excitation) which
is acceptable given the distance to the transmitter loop which is approximately
9R (c.f. Chapter 2.3). In fact, the RMS misfit between the uniform field
approximation and the exact response for multipoles up to order 15 is very small
with RMS= 2.9 x 10~7 pTs/A. The differences between the response curves of the
large sphere as calculated for the uniform field approximation and the subcelled
sphere are small, which is indicated by the RMS values in the plot of Figure 3.2.
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The least-squares optimisation (discussed in Section 3.2.3) for the sphere and
the approximated response curves give the following values

By =099 B5=0.97 Bip=0.94

where the subscript denotes the subcell dimension. The least-squares values are
close to unity, demonstrating that the time constant value is close to the optimal
value in a least-squares sense. The subcell size with L=2 gives the most accurate
response because of the higher degree of discretisation.

3.3.2 Subcelled plate in free space

The next example illustrates the TEM moment response of a subcelled thin-plate
in free space. A plate and a sphere respond differently to the primary exciting
field. A sphere supports current flow in any direction; in the case of the plate,
the effective inducing field B, (Equation 3.3) is the component of the primary
field in the direction perpendicular to the plane of the plate where the strongest
conductivity gradient occurs (Figure 3.3). As described in Section 3.2.2, eddy
currents in each subcell will be aligned perpendicular to the local primary field
vector in the basic form of the forward algorithm. For the plate example, the
calculations are carried out twice: first with the basic configuration employing
the full primary field, and then with the simple gradient scheme where only the
primary field component is accepted which is perpendicular to the plane of the
plate as to simulate the true plate / primary field interaction (Figure 3.3).

Primary Field — Thin Plate in Free Space
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Figure 3.3 — Primary magnetic field at the location of a thin plate in free space.
The effective, inducing component of the primary field is perpendicular to the
plane of the plate. The inducing component is schematically indicated by the
superimposed black arrows at the plate location. The transmitter loop location is
indicated by the two red circles on the Easting axes.
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The time constant of a thin plate is given by Lamontagne (1975, p.160) and
Nabighian and Macnae (1991, p.470) as

Tp = -top £/10 (310)

where to,, is the plate’s conductance; ¢ the plate’s thickness, o}, its conductivity
and ¢ is an average dimension of the plate, calculated as £ = 1.815 y/ (area/w),
which follows by equating the time constant of a disk with radius ¢ and conduc-
tance S to the plate’s time constant (Fullagar, 2007b). The time constant of a
disk with conductance S and radius a is given by Kaufman and Eaton (2001,
p-233) as

Ta=p-S-a/b5l1 (3.11)

In the following model the plate has a conductivity of 2 S/m and a width
of t = 20 m; strike length and depth extent are SL = 300 m and DE = 200 m
respectively. Based on Lamontagne’s formula, the time constant of the plate
evaluates as 7, = 1.26 msec. A fixed rectangular transmitter loop is centred at
(-100E,0N) with side lenghts of 100E x 150N. A survey line traverses the centre
of the plate at 20 m intervals from -200E to 200E. Time domain calculations
are carried out for 45 channel delay times ranging from 0.01 msec to 1400 msec.
As in the sphere example the subcell dimensions are L =2, L =5 and L = 10
where each subcell contains a point conductor at its centre with the same time
constant as the ’parent’ plate.

The plate response was calculated with the plate modelling software MAX-
WELL (Duncan and Perry, 2008) using the ’thick plate’ option and subsequently
transformed to the moment domain by numerical integration, employing splines
(Davis and Rabinowitz, 1975). MAXWELL employs the concept of current fila-
ments as an approximation to the EM response of a thin plate (Barnett, 1984;
Duncan, 1987). The MAXWELL solution simulates a thick plate by placing
multiple plates on the external faces.

The z-component of the first order TEM moment of the plate together with
the subcelled response for three different subcell sizes is shown in Figure 3.4.
The Figure displays the result of the subcelled responses as calculated with
two variants of the forward algorithm' the full primary field and the horizontal
primary field component. The displayed response curves for the gradient method
are for a re-scaled time constant of 77, = 2.16 msec as obtained from the
least-squares fit. The relative large rescale factor for 7,4t may result from the
approximate nature of the MAXWELL solution for a thick plate. The least-squares
optimisation give the following values for the various subcell sizes

By =217 PBs=217 Pio=2.17

The rescale factors are all identical up to the second figure, because the subcells
all fit neatly into the plate volume. Only the response of the subcelled volume as
calculated with gradient method gives a reasonable good fit to the plate response,
especially at the location of plate. The differences between the subcelled response
(gradient method) and the plate response is indicated by the RMS value which
for all subcell dimensions is 0.002 pTs/A, about a third from the peak plate
response.
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1st TEM Moment of Subcelled Plate ( Z-Component)
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Figure 3.4 - TEM moment response of a subcelled thin plate in free-space for
a plate with a conductivity of ¢ = 2S/m; thickness t = 20m, strike length
sL=300 m and depth extent of DE=200 m. The panels show the responses for the
subcelled plate for various subcell dimensions. The number of cells for each subcell
dimension are Vo = 65450 V5 = 4189 Vig = 524. The subcelled responses are
calculated with the basic method (full primary field) and with the gradient method
(horizontal primary field component). The response curves for the gradient method
are calculated for cell time constants which have been rescaled with a least-squares
fit with 75+ = 2.16 msec (see text). Superimposed is the response of the thin
plate as calculated with MAXWELL. Only the gradient method can give a good fit
to the plate response. The RMS values are given for the gradient method.

1st TEM Moment (pTs/A)
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3.3.3 Proximity of transmitter source

Since the point conductor response is also a function of the primary field vector Bg,
the question arises how the proximity of the transmitter loop affects the accuracy
of the approximate TEM moment response. It is expected that if a shallow target
in proximity to the transmitter is represented by a dense cubic network of point
conductors, the TEM moment response will still be fairly accurate, provided the
subcells have been assigned the appropriate time constants. However, since the
point conductor model is unable to replicate current migration effects in large
conductors because of the "frozen dipole direction’ (Section 3.2.2), it is important
to distinguish compact conductors from unbounded conductors. A conductor is
considered compact if it has a typical dimension which is not much greater than
the transmitter loop dimension. If a conductor is located close to the transmitter
loop and can be considered very large n relation to the transmitter loop, it will
behave like an unbounded conductor. The background response, however, will
(hopefully) capture the response of an extensive conductor.

The following examples illustrate the effect of a transmitter loop close to a
compact subcelled volume. In the first example a sphere with a radius of R= 50
m and time constant of 0.32 msec (¢ = 1 S/m) is placed at different depths, with
depth-to-top R/2, R, 2R and 4R, and excited by a fixed square transmitter loop
centred over the top of the sphere. In the second example a small, shallow sphere
with a radius of 1 m is excited by a fixed square transmitter loop for different
loop sizes; the sizes of the transmitter loop are, respectively, R, 2R and 4R.

For the first example the subcell dimension is R/10 (5 m) which resulted in
an accurate approximation when the transmitter loop is far away (Figure 3.2).
Because the transmitter in the following examples is relatively close to the sphere,
the exact TEM moment responses of the sphere have been calculated by taking
into account higher order multipoles up to 15 (c.f. Section 2.3). Additionally,
calculations are repeated for the dipole approximation (uniform field excitation)
The square transmitter loop is centred at (OE,ON) with side lengths of 2r (100
m). A survey line traverses the centre of the sphere at 20 m intervals from -200E
to 200E. The vertical component TEM moment results are depicted in Figure 3.5.
If the cubic cells are assigned the time constant of the large sphere, the subcelled
response overshoots the peak sphere response, but becomes more accurate as
the sphere is moved to greater depths. At receiver locations larger than +100
Easting, the response curves effectively coincide.

The second example illustrates the effect of transmitter loop size on the TEM
moment response for a shallow, small subcelled sphere. The radius of the sphere
is R=1 m, depth-to-top is R/2. The time constant of the sphere is 7 = 1.3 x 1074
msec (0 =1 S/m) and the subcell dimension is R/20 (0.1 m), resulting in 4224
cells for the subcelled sphere with a volume ratio of 0.991. The results are shown
in Figure 3.6 and illustrate that the response of the shallow, subcelled sphere
gets more accurate as the transmitter loop gets larger.
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Subcelled sphere in different depths
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Figure 3.5 — Superposition of point conductor responses for a sphere in different
depths. The sphere has a radius of 50 m and a time constant of 0.32 msec. Cubic
cell dimension is 5 m. The fixed transmitter loop is centred above the sphere at
coordinates (OE,0N) with side lengths of 100 m as indicated by the triangles on

the Eastings axis. The grey-shaded area illustrates the location of the sphere.

The vertical component TEM moment responses of the large sphere are displayed
for uniform field excitation and for multipole field excitation. The error values
indicate the relative error at the peak location as compared with the multipole

response.
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Figure 3.6 — Exact and approximate vertical component TEM moment response
for a small shallow sphere for various transmitter loop sizes. A survey line traverses
over the centre of the small sphere at intervals of R/2 m from -8E to 8E. Sphere
radius is 1 m with time constant 7 = 1.3 x 10~* msec. The subcells have dimension
L = 0.1. On display are curves for the subcelled response, the sphere response
for multipole expansion up to 15 and for the uniform field approximation. The
transmitter loop varies from R (top panel) to 2R (middle panel) and for 4R
(bottom panel) . The error values indicate the relative error at the peak location
as compared with the multipole response.
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Generally, the subcelled sphere responses for both examples match the target
responses more accurately for conditions where the primary field can be considered
uniform. The primary field 1s less variable and more uniform at greater depths as
it is likewise beneath the large transmitter loop at all depths. This is noticeable
from the bottom panels 1 Figures 3.5 and 3.6 where the differences of the large
sphere responses for the uniform field approximation and the multipole expansion
are small.

The shapes of the approximate TEM moment anomalies resemble the exact
profiles. The subcelled TEM moment responses for both examples with the largest
errors have been subjected to the linear least-squares scheme (with respect to
the multipole sphere response) and the rescaled response is superimposed mn the
top panels of both Figures 3.5 and 3.6 (open circles mark the rescaled response).
The rescaled approximate TEM moment response curves closely resemble the
multipole sphere response The rescale factor in case of the large sphere 1s
f = 0.68 which gives a rescaled time constant of 7 = 0.22 msec and in case of
the small sphere 8 = 0.7, giving a time constant of 7 = 8.9 x 107® msec. The
approximate forward modelling algorithm recovers the profile shape very well,
albeit for a smaller time constant.

3.4 Effect of host-rock

The approximate TEM moment forward algorithm presented above ignores pos-
sible electromagnetic interactions between cells comprising the anomalous volume
Because the TEM moment method is intrinsically a late-time method, mostly, this
approach is justified in resistive environments. Neglect of interactions, however,
may lead to systematic errors in conductive environments where the effect of one
conductive volume modifies the transient electromagnetic field of neighbouring
volumes.

This section explores the inaccuracy associated with the TEM moment method
when neglecting electromagnetic interaction for the case of a sphere in a uniform
host. The analysis is based on the results of Lee (1980) which are greatly
simplified in Lee (1983) in which an asymptotic semi-analytical formulation for
the transient coincident loop EM response of a conductive sphere buried in a
conducting half space is presented. Lee’s formulation is convenient, since it
decouples the combined electromagnetic response into individual terms for half
space, sphere and interaction. Thus Lee represents the net dB/dt response as
the sum of three contributions,

V=Vt+Vi+V, (3.12)

where V}, is the half space voltage response for a coincident loop with step current
shut-off (e.g. Raiche and Spies, 1981); V; is the contribution from the sphere as
if it were placed in free space; and V, denotes the interaction term.

The interaction term includes both, inductive and galvanic coupling between
host and sphere (Chapter 1.2.2). Galvanic coupling arises due to electrical
charges which develop at surfaces dividing domains with different conductivity
values If axial symmetry is exhibited, and the primary electrical field does not
intersect surfaces between media characterised by different conductivities, only
inductive coupling arises (Kaufman and Keller, 1985, p.483).
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Figure 3.7 — A coincident loop system traversing a buried sphere after Lee (1983,
Fig.1). The loop radius is a; sphere radius is b. The host conductivity is denoted
by or and the sphere conductivity by os. The horizontal distance from the loop
centre to the sphere centre is defined as x and the vertical distance as d. The
presented expressions for the secondary voltage response are primarily accurate
for oppud®/t < 0.2 (Lee and Thomas, 1992).

Figure 3.7 shows a sphere of radius b and conductivity os buried in a conduc-
ting half space with conductivity o,. A coincident loop system with radius a
records the transient voltages for an ideal step current shut-off. From Lee (1983),
the time-domain voltage-response functions V},, Vs and V; for coincident loop
measurements are given by:

Vi

aploy/T \/Uh;uﬂz ~1)* (2k +2)! onpa’ b
k! k+1

t (E+2)! (2k +5) 4t
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where I is the transmitter current; o® = 0}, /0s, 8> = o,ub?; the functions G,
G> and G3 give the geometrical parts of the response and are given in detail
in Lee (1983, Eq.8, Eq.9 and Eq.10); C'(t) and J () are the time dependent
functions of the interaction term and are given as (Lee, 1983, Eq.14 and Eq.13):

C(t):ai’{(%—g).ﬂt)—%} (3.14)
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3.4 Effect of host-rock

73

Special attention is drawn to the time-dependent function J (¢) of the interaction
term, Equation (3.15), which characterises the response of a sphere in a conductive
host at later times. Lee (1983) showed that the J (¢) function represents a series of
fields which collectively at later times decay like ¢~7/2. Eventually, the J (¢) term
will dominate the exponential sphere transient at late times but can be significant
less than the host rock contribution which decays like t~5/2 for voltage response
measurements (see also Lee, 1982). This is in contrast to the EM response of
a sphere in a highly resistive host which decays as a single exponential at late
times.

The expressions in Equation (3.13) are used to calculate normalised TEM
profiles for a range of delay times and half space conductivities. The norinalised
responses are displayed as surface plots which represent the percentage error when
the effect of the host rock is neglected. Two different sets of normalised responses
are calculated. In the first set, the contribution of the host is emphasised and in
the second set, the effect of neglecting the interaction term is accentuated. The
normalised host response and the normalised interaction response are respectively
calculated as

V-V
14

|4
V-V

Normalised host response = ‘ (3.16)

(3.17)

Normalised interaction response = ‘

The surface plots in Figure 3.8 show the normalised responses for both
cases when the loop is centred directly above the sphere when interactions are
solely inductive. The model parameters are given in the caption of the figures.
The surface of Figure 3.8a illustrates the first case |(V — V;) /V| which may
be understood as defining the percentage error which is incurred if host rock
contribution is neglected as compared to the free-space sphere response (see
also Lee and Thomas, 1988, Fig.12). Figure 3.8b illustrates the second case
[V./ (V —V,)| which represents the percentage error contribution which arises
by neglecting the interaction term. Corresponding surface plots when the loop
is not m axial symmetry with the sphere, and therefore gives rise to galvanic
coupling, are depicted in Figure 3.9.

At early to intermediate times and low to medium half space conductivities,
the influence of the sphere is mostly perceptible as seen in both Figures 3 8a and
3.9a, indicated by the broad curved feature in red. This region at intermediate
delay times from «~1-10 msec and for a conductivity range from -1 mS/m to
10 m/Sm, characterises the visibility window where the target is detectable
(Kaufman and Eaton, 2001, p.440). For ¢ 2 10 msec the relative contribution of
the host grows rapidly; here, the target decays exponentially, and the interaction
term as a power-law of ¢7/2; the host response, which decays as t5/2, 1s
pre-dominant and eventually, the sphere is undetectable.
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(a) Surface of normalised TEM responses |(V — Vi) /V| at
0 Easting. The broad curved feature in red indicates the
influence of the sphere’s predominance mostly at early to in-
termediate times and low to medium half space conductivities.
The effect of the host is predominant at higher half space
conductivities and late times. At 10 msec and for o), = 10
mS/m, V = 6.282 x 1076 Volt/Amp (c.f. Lee, 1983, Fig.7) .
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(b) Surface of normalised TEM responses |V;/ (V}), + V5)| at 0
Easting. The surface represents the error when calculating
the TEM response as the sum of host and sphere and ignoring
host rock interaction. At high conductivities and at early
time, the error is as high as ~14%. At late times the error is
below 3%, independent of the host conductivity. Because of
the axial symmetry of the measurement configuration at 0
Easting, V; comprises inductive coupling only .

Figure 3.8 — Surface of normalised TEM responses of a buried sphere in a conduc-
ting host recorded directly above the sphere at 0 Easting. The radius of the
coincident loop is @ = 100 m and the sphere radius is b = 50 m. The sphere is
buried at d = 75 m and has a conductivity of o = 5 S/m. Delay times range
from 1-100 msec and half space conductivities range from 1-100 mS/m.
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(a) Surface of normalised TEM responses |(V — V) /V| at
150 Easting. The broad curved feature in red indicates the
influence of the sphere’s predominance mostly at early to
intermediate times and low to medium half space conductivi-
ties. Host-rock is predominant already at medium half space
conductivities and intermediate times.
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(b) Surface of normalised TEM responses |V;/ (Vj, + V)| at
150 Easting. As compared with the error-surface at 0 Easting,
the error values are much higher due to galvanic coupling
effects at far offsets. At high conductivities and at early time,
the error is as high as ~28%. At late times the error is small
and weakly dependent on the host conductivity.

Figure 3.9 — Surface of normalised TEM responses of a buried sphere in a conduc-
ting host recorded at 150 East. The radius of the coincident loop is a = 100 m
and the sphere radius is b = 50 m. The sphere is buried at d = 75 m and has a
conductivity of os =5 S/m. Delay times range from 1-100 msec and half space
conductivities range from 1-100 mS/m.
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Figures 3.8b and 3.9b illustrate the effect of the interaction term at 0 Easting,
directly above the sphere and at 150 Easting, respectively. A sign change occurs
in the surface plot for 0 Easting at ~4 msec which results in discontinuities
on a logarithmic scale. The error reaches a minimum at the zero cross-over
where the sphere response is the strongest and the detectability of the sphere is
maximal. At earlier times, <4 msec, and with increasing host conductivity, the
effect of the interaction term reaches a maximum of ~14%. With increasing host
conductivity and at time >4 msec the error values increase until ~12msec where
the effect of the interaction term declines independently of the host conductivity.
At later times the host response with a decay rate of t~%/2 is predominant over
the interaction term with a decay rate of t~7/2. Except for the zero-crossover,
the surface plot in Figure 3.9b exhibits similar characteristics where a maximum
occurs of 28% at early time and high host conductivity. The surface is generally
more flat at Easting 150 than at Easting 0 due to weaker responses, however the
relative errors are larger due to the additional contribution arising from galvanic
coupling.
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Figure 3.10 - Normalised incomplete TEM moment of the interaction term for
a range of host conductivities at 0 Easting (top) and at 150 Easting (bottom).
The radius of the coincident loop is @ = 100 m and the sphere radius is b = 50
m. Calculations are for a sphere buried at d = 75 m which has a conductivity of
os =5 S/m. The calculations are repeated for a sphere with a conductivity of 10
mS/m. Half space conductivities range from 1-100 mS/m.
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The calculated coincident loop voltages of the sphere-in-host responses have
been transformed to (incomplete) first order TEM moments by numerical in-
tegration between the first and last channel where channel times range from
1 — 100 msec. The model is that of Figures 3.8 and 3.9. The calculations have
been repeated for the same model but for a sphere with a conductivity of 10
mS/m. The TEM moments at 0 Easting and at 150 Easting are shown for a
range of host conductivities from 1 mS/m-100 mS/m in Figure 3.10. For both
sphere conductivity values, the error values when neglecting host-rock interaction
are as high as ~8% at 0 Easting and are about ~15% at 150 Easting for large
host conductivities. The maximum normalised TEM moment error values due to
neglecting interaction are smaller than the corresponding maximum time-domain
values. Conductivity values as large as 100 mS/m are typically found in weathe-
red layers and sedimentary rocks (Figure 1.1), however host-rock conductivity
and therefore the error values will usually be lower.

From the field behaviour of the TEM moment response of a buried sphere
for coincident-loop surveys it may be deduced that the main contributions
in conductive environments arise from the sphere and the half space with a
minor contribution from the interaction term which depends mostly on the host
conductivity. Therefore, 3D forward modelling can reasonably be realised as
a superposition of free-space responses of point conductors in a homogeneous
conducting background.

3.5 Comparison with fully 3D electromagnetic mo-
delling schemes

The fully 3D electromagnetic modelling software MARCO (Xiong and Tripp, 1995;
Raiche et al., 2007) was employed to calculate the transient response for two
distinet prism models embedded in a conductive host. The moment transformed
TEM decays of the prism responses are compared with the combined TEM moment
response of discrete target and continuous background MARCO is a 3D-EM integral
equation solver, designed to model multi-block targets in a layered earth. The
synthetic time-domain data has been transformed to the moment domain by a
numerical integration scheme, as was outlined in Section 2.8 of Chapter 2.

The two models can be considered ’extreme’ in their dimensions and, for the
second model, also in its conductivities. The first example models an extensive
horizontal slab with moderate conductivity of 1 S/m in a rather resistive 1 mS/m
host, whereas the second example models an extensive vertical dyke with high
conductivity of 50 S/m in a fairly conductive host of 50 mS/m. The models are
primarily designed to challenge the forward algorithm with two difficult, nearly
unbounded, models which exemplify large ore deposits at great depths.

In contrast to the previous free-space examples, the prism models here are
embedded in a conducting half space, so that very early and very late time will
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be associated with the response of the host-rock. Because the MARCO prism
responses are for a finite time-range, but the moment transform is the time-
integral from zero to infinity, extrapolation is carried out at very early ("head’)
and very late times (’tail’) by virtue of Equation (2.112). The extrapolation
at early and late time uses an analytical half space model for the times in
question which captures the near transmitter loop response and the response of
an extensive unbounded medium respectively. In case of measured field data,
the half space models are based on conductivity-depth images or can rely on
borehole logs, if available. For the forward modelling examples, the half space
conductivity is known beforehand and is employed for the extrapolation of the
"head’ and ’tail’ moment contribution.

3.5.1 Horizontal slab in resistive host

The first example is for a conductive, extensive horizontal slab model with
dimensions 800E x 800N x300z embedded in a more resistive host. The horizontal
slab model is depicted in Figure 3.11. Because the transmitter-loop is much
smaller than the lateral dimensions of the slab, the model virtually represents a
layered conductive structure. The slab model is designed so as to test whether the
forward algorithm (Equation 3.1) is able to replicate the response of a massive
horizontal volume in a conducting medium.

Horizontal Slab Model

Figure 3.11 — Horizontal slab model in resistive host. Subcell size of the slab is
10 m, giving a total of 192,000 cells for the volume of the slab. Each subcell has
been assigned the time constant of the slab model, which is 7545 = 2.61 msec.
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The slab has a conductivity of 1 S/m and the half space conductivity is 1
mS/m. The depth-to-top centre coordinates are (0E,0N,-400z). The fixed, square

transmitter loop is centred over the slab at (OE,0N) with side lengths of 500 m.

Survey lines for Northings from -500N to 500N, separated by 100 m, traverse the
prism model from -500E to 500E at 50 m intervals. Synthetic vertical B-field step
response recordings were calculated for 45 channel delay times ranging from 0.1
msec to 1340 msec (Chapter 1, Table 1.2). The time domain data is subsequently
transformed to first order TEM moments by a spline-based numerical integration
scheme and extrapolated using 'head’ and ’tail’ moment contributions for the
half space conductivity value of 1 mS/m.

There is no formula applicable for the time constant of the thick horizontal
slab in a conducting environment, therefore the time constant is empirically
found from the time-domain decay curves. The decay curve and time constant fit

are displayed in Figure 3.12 which shows the empirically estimated time constant.

The time constant is estimated as

Tslab 2 2.6 msec

The model space is defined by the Voxet on display in Figure 3.11. The model
subcell dimension is 10 m, giving a total number of 192,000 cells for the volume
of the slab. All slab-subcells contain a central point conductor with time constant
of 7 = 2.6 msec. The vertical TEM moment response curves are displayed in
Figure 3.13. The agreement between the MARCO model and the subcelled TEM
moments is remarkably good as is also evident from the RMS values which are
very small as compared with the peak amplitude response at all Northings. The
least-squares optimisation, as calculated for the entire data set, for the MARCO
model response and the subcelled response curves gives the following value
Bstap = 1.01. The least-squares value is close to unity, demonstrating that the
assumed time constant of 2.6 msec is close to the optimal value in a least-squares
sense.

B-Field (pT/A)

Figure 3.12 - Time constant decay curve of horizontal slab at 0 East of survey line
0 North. The late-time response of the horizontal slab is noticeable at intermediate
times. The late-time response for channels > 24 decays with a power-law.
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Figure 3.13 — Vertical component TEM moment response curves at a range of
Northings for the horizontal slab model. The subcelled TEM moment responses are
calculated for cell time constants of 2.6 msec, equivalent to the empirical slab time
constant. The triangles on the Easting axes indicate the position of the Tx-loop.
TEM moment response of 1 mS/m host shown in grey.

3.5.2 Vertical dyke in conductive host

The second example shows the TEM moment response of a highly conductive,
extensive vertical dyke model embedded in a conductive host. The dimensions of
the vertical dyke are 100Ex1400N x 1000z with depth-to-top centre coordinates
(750E,0N,-400z) . Conductivity of the dyke is 50 S/m and the host conductivity
is 50 mS/m. The vertical dyke model is depicted in Figure 3.14a. The model is a
simplistic representation of a massive sulfide deposit in a conducting environment.
For such a model, given the host conductivity and the target strike, host-rock EM
interaction can be expected including current channelling at early time (Section
1.2.2). The model is designed as to test whether the forward algorithm is able
to replicate the response of a plate-like massive vertical volume in a highly
conducting medium when host-rock EM interaction is ignored.
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A fixed, rectangular transmitter loop is centred at (0E,0N) with side lengths
of 500Ex1000N. East-west survey lines, separated by 200 m, run at Northings
-1000N to 1000N and traverse the prism model from -500E to 1500E at 100 m
intervals. Synthetic step response Bz-decays were computed for 45 channel delay
times ranging from 0.1 msec to 1340 msec (Table 1.2), which subsequently have
been transformed to first order TEM moments, using 'head’ and ’tail’ moment
contributions for the half space conductivity value of 50 mS/m.

The synthetic decay curves are employed to estimate the time constant of
the vertical dyke, because Lamontagne’s time constant formula (Equation 3.10)
1s correct only for free-space plates, but invalid for plates in a highly conducting
half space. Moreover, the formula is not strictly valid for an extensive plate
where the plate dimensions are larger than the dimension of the transmitter loop
(Lamontagne, 1975, p.144). The time constant, based on the transient decays,
was difficult to evaluate because of the predominance of the host contribution.
Af stations west from the plate, all decays exhibit a power law decay from inter-
mediate times onwards, only at stations east from the dyke could an exponential
be fitted to the decays. The time-domain decays at selected stations together
with the time-constant fit at 0 Northing are shown in Figure 3.14b. Based on
the decay curves at 0 Northing and 1200 Easting, the estimated value for the
dyke’s time constant is

Tdyke = 475.2 msec

The dyke model was discretised into 10 m subcells where each cell has been
assigned the time constant of the dyke; there are in total 140,000 cells filling the
volume of the vertical dyke. The vertical TEM moment results of the subcelled
dyke together with the TEM moment response of the MARCO model are displayed
in Figure 3.15. Due to the relatively high host conductivity, the TEM moment
response curves are close to the host response. 'Stripped’ TEM moment responses
(after subtraction of host response) are on display in Figure 3.16 in order to
emphasise the isolated response from the vertical dyke.

Because the target will predominantly support eddy current flow in the plane
of the plate, the calculations are shown for the conductivity gradient method.
The panel for 0-North in Figure 3.15 also superimposes the result as calculated
using the standard form (full primary field) of the forward algorithm. The half
space response is plotted as well. For this example, the bulk of the response is
due to the host. The TEM moments of the MARCO response and the subcelled
dyke are very close at all Northings, as is also indicated by the associated RMS
values which are small as compared with the TEM moment response curves.
Small deviations become apparent at large receiver offsets, East from the dyke
position. The TEM moment response curves have been subjected to the linear
least-squares fit which produces an optimal time constant value as to fit the
the MARCO response. The least-squares factor evaluates as Sgyxe = 1.005 and
is close to uity, demonstrating that the assumed time constant value gy is
close to the optimal value in a least-squares sense.
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Vertical Dyke Model

-14002

(a) Vertical dyke model in conductive host. Subcell size
of the dyke is 10 m, giving a total of 140,000 cells for the
volume of the dyke. Each subcell has been assigned the
time constant of the dyke model, which is estimated as
Tdyke = 475.2 msec.
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(b) Time constant decay curves of vertical dyke at various
stations. The decays are at 0 Northing for Eastings 700 (a),
1000 (b),1200 (c¢) and at 1300 (d). The decay curves for
stations labelled 'c’ and ’d’ exhibit the response of the dyke.
The other response curves mostly display a power-law decay
for the entire time range. The yellow curve (c) indicates the
decay used for estimating the time-constant.

Figure 3.14 — Vertical dyke model (top) and time constant analysis (bottom).



3.5 Comparison with fully 3D electromagnetic modelling schemes

83

1st TEM Moment (pTs/A)
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Figure 3.15 — 'Full’ Z-component TEM moment response profiles at a range
of Northings over vertical dyke model. The Figure shows the response curves
as calculated with the conductivity gradient method for Northings from ON to
-1000N. The panel for ON also shows the response as calculated using the basic
configuration of the forward algorithm. On display are the TEM moment responses
for the vertical dyke (MARCO), the point conductor response from the subcells and
the host response. Triangles on the Easting axes indicate the position of the Tx

loop; the grey shaded area indicate the position of the dyke.

—F 3 Subcelled + Host —<— Half space (50 m.S/m)

1st TEM Moment (pTs/A)
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Figure 3.16 — 'Stripped’ Z-component TEM moment response profiles at a range
of Northings over vertical dyke model. The figure shows the TEM moment response
curves with the host response of 50 mS/m subtracted. On display are the “true”
residual response curves as calculated with MARCO, the point conductor response
curves of the subcelled volume as calculated with the gradient method (orthogonal
primary field) and with the basic form (full primary field) of the forward algorithm.
At large receiver offsets, east from the plate the residual responses from the
subcelled volume diverge somewhat from the MARCO residuals.
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In case of the point conductor approach, host-rock EM interaction is ignored
which is included in case of the MARCO result. The TEM responses at most
stations west of the dyke decay with a power law for the entire time range,
characterising the host rock response. The stripped TEM moment response
curves in Figure 3.16 are shown for the basic form (full primary field) and for the
gradient (orthogonal primary field) forward algorithm. As can be expected, the
gradient method matches the stripped MARCO response more closely because of
the plate-like target characteristic At large receiver offsets East from the target,
the deviations between the MARCO and the subcelled response are noticeable,
interpreted to be most likely a residual of the host rock response.

3.6 Concluding remarks

The forward algorithm of the TEM moment inversion scheme was presented
in this chapter. The algorithm relies on linear superposition of TEM moment
responses of point conductors which comprise the subcelled anomalous volume.
The forward algorithm is posed in terms of the time constant of the prospective
target, resulting, therefore, in a scale invariant formulation, independent of
subcell size. The TEM moment response is linear with respect to the cell time
constant, consequently simplifying the TEM problem. Time constants can simply
be rescaled employing a linear regression as to match the target response curves.

The free space examples in Section 3 3 showed that the subcelled volume of a
sphere approximately matches the parent conductor, independent of subcell size.
In the case of a free space plate, the time constants of the subcelled volume had
to be rescaled as to match the plate response, presumably due to the approximate
nature of the plate response. The TEM moment algorithm gives more reliable
results in conditions where the primary field can be considered uniform, as
delineated in Section 3.3.3

The purely inductive algorithm is put to the test mn Section 3.5 where the TEM
moment responses of two extensive prismatic models embedded in a conductive
environment are compared with the result from the point-conductor forward
algorithm. The prism models are calculated using an exact integral Equation
solver which includes host-rock EM interaction. The time constants of the
subcelled volume are found by inspection of the associated time decays of the
prism responses. The response of the subcelled model using the point conductor
approach compares favourably for both examples, building confidence in the
approach. At far receiver offsets, in the case of the more conductive vertical dyke
example, small deviations, as compared to the exact model response, become
apparent which are interpreted to be a consequence of the negligence of host
rock EM interaction.

The negligence of host rock EM interaction is analysed in a qualitative manner
in Section 3.4. Estimation of the TEM moment response as a combination of a
continuous background and a discrete target response is a rational approximation
for the modelling of 3D targets.
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Chapter 4

1D 1maging of TEM data

Introduction The objective of 1D imaging of TEM data is to retrieve an
approximate portrayal of the geoelectrical subsurface structure which plausibly
explains a set of observations. In the context of the project, the 1D imaging
scheme serves as a preparatory process for the 3D inversion procedure Due
to the time-integration of the TEM decays, the TEM moment transform loses
depth resolution. The loss of depth resolution may be compensated for by the
preliminary result of the 1D imaging scheme, which is encompassed to the 3D
inversion as an element of a starting model.

Among the varieties of 1D imaging schemes, conductivity-depth-imaging, or
CDl, is a familiar form of processing of TEM recordings (c.f. Chapter 1). In
this thesis, CDIs portray the subsurface geoelectrical structure as cross sections
of apparent conductivity versus depth via ’stitching’ of 1D conductivity-depth
curves. It constitutes a very fast low-cost technique to provide an image of the
conductivity directly from observed data which provides fast preliminary results.
The cDIs effectively serve as a starting model for 3D inversion where the apparent
conductivity-depth pairs serve either as a way to assign initial property values
or for formulating 3D inversion weights.

Sensible portrayals of the subsurface conductivity in the CDIs are advantageous
1 order to condition the 3D inversion, since misleading conductivity-depth
sections may lead to spurious features in 3D mversion. However well-defined for
in-loop measurements, apparent conductivity is either dual-valued or undefined
for vertical component ground-loop TEM measurements over a half space outside
the transmitter-loop, both for step and impulse response data (Spies and Eggers,
1986). On a uniformly conductive ground, non-uniqueness arises because the
vertical and horizontal components of the magnetic induction B(t) (and 8,B)
are not monotonically decreasing with time. Computing apparent conductivity
from vertical component fixed-loop TEM data can be problematic, therefore,
for receiver positions located outside the Tx-loop. In particular, if B, < 0, for
stations outside the loop, the apparent conductivity is extremely high at mid- to
late-times.
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Specifying a sensible apparent conductivity in an automatic fashion can be
difficult, complicating generation of apparent conductivity-depth pseudo-sections
for fixed-loop and slingram TEM (Fullagar and Reid, 1992; Reid and Fullagar,
1998) Reid and Fullagar calculated both apparent conductivities, and rejected
the one which was associated with decrease of apparent depth with time Here,
apparent depth conveys the notion of the depth to the physical current maximum
(electric field maximum) in a half space of conductivity equal to the apparent
conductivity at the time in question for impulse response measurements (Fullagar,
1989). Calculating apparent depths has been generalised for B-field data, 1n
which case the apparent depth is the depth of the maximum B, in the half space
(Fullagar, 2002).

It is well known that CDIs may contain artifacts when converting TEM data
to apparent conductivity due to non-uniqueness. However, the artifacts are not
always solely due to non-uniqueness, but may also arise from 3D geology — any
anomaly which includes two peaks or which includes a cross-over is prone to
artifacts. For example a single conductor with a cross-over anomaly will produce
two conductive zones in the ODI for vertical component TEM data.

The total magnetic induction amplitude (|B|) on a homogeneous ground,
however, is a non-increasing function of time. Consequently, if multi-component
fixed loop B-field data are available, an unambiguous apparent conductivity
can be derived from |B|-data at all times. Generally, B-fleld data is preferable
over impulse response data for computing apparent conductivity (e.g. Spies
and Eggers, 1986). In the case of 8;B measurements, CDIs can be calculated
from ’quasi-|B|” data: impulse response data can be time-weighted and sum-
med to yield quasi-|B| amplitudes which expedites computation of apparent
conductivities more reliable than single component 9;B data (Schaa et al , 2006)
In the inductive limit, the EM response is unrelated to conductivity and appa-
rent conductivity from magnetic induction amplitudes is undefined, however.
Computing apparent conductivity from |B| or quasi-|B| amplitudes facilitates
generation of more accurate conductivity-depth sections from fixed loop TEM.

This chapter establishes the unambiguous derivation of apparent conductivi-
ties from |B|-field amplitudes. The technique’s suitability is first demonstrated
on synthetic layered earth models. The recovered layered conductivity structure
from conductivity-depth imaging resembles the true layered model without arti-
facts. Extension to 3D environments follows. The conductivity-depth imaging
scheme is demonstrated at a vertical prism model and a horizontal prism model
residing in a conductive host. Furthermore conductivity-depth imaging of a
dipping plate in a conductive host is illustrated. Apparent conductivities from
|B|-field amplitudes is shown to be less biased by 3D effects than conventional ¢DI
interpretation which are based on the vertical component only The method can
then recover a smoothed representation of the 3D geoelectrical structure of the
subsurface. Lastly, the imaging technique is demonstrated on multi-component
B-field data, acquired across a Proterozoic metavolcanic sedimentary sequence
hosting Pb-Zn-Cu-Ag mineralisation.
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4.1 Apparent conductivity

Apparent conductivity is defined as the conductivity of a homogeneous half space
which produces the same response for a given EM configuration as the actual
measurement over an inhomogeneous earth. The concept of apparent conductivity
is considered a convenient data transformation for transient electromagnetic
data, because it effectively normalises the theoretical variations in the response
due to measurement configuration over a homogeneous half space. Derivation of
reliable apparent conductivities is desirable, but not always possible, because
apparent conductivity derived from single component transient electromagnetic
data is often non-unique (Spies and Eggers, 1986). When the receiver is offset
from the centre of the transmitter loop, the apparent conductivity is dual-valued
or undefined for single component impulse or step response-data. Non-unique
behaviour of the apparent conductivity occurs because the transient B, and
B, components on a uniform half space do not decay monotonically with time
(Figure 4.1). Apparent conductivity based on |B|-field amplitudes, however, is
unique over a homogeneous conducting ground. Derivation and examination of
unambiguous apparent conductivity from |B|-field amplitudes is the subject in
this and subsequent sections.

The units of apparent conductivity are Siemens per metre (S/m); the alge-
braic inverse is known as apparent resistivity which is measured in Ohm-metre
(€ - m). The only instance where the apparent conductivity is equal to the true
subsurface conductivity 1s in the case of a homogeneously conducting earth. Ana-
lytical formulae for apparent conductivity can only be derived in the asymptotic
cases for very early and very late time. Spies and Frischknecht (1991) provide a
comprehensive list of asymptotic formulae for a variety of measurement configu-
rations. The asymptotic formulae, however, are not applicable to intermediate
times where a sign change occurs. This is commonly observed for separated
loop systems. In order to calculate an apparent conductivity defined over the
entire measurement time range, a single parameter inversion of the half space
response is implemented (Fullagar, 1989; Reid, 1994; Reid and Fullagar, 1998).
The single parameter inversion technique is here applied to generate unique
apparent conductivities from total field amplitudes.

4.2 Unambiguous apparent conductivity from ma-
gnetic field amplitudes

The following section describes the derivation of apparent conductivities from
B-field amplitudes. If o, denotes the observed |B|-field response at the n-th
channel, and ¢, the calculated |B|-field half space response at the n-th channel
and z-th iteration, then the x? misfit measure is defined as

2

On — C

o), = (2% (@)
en

where ¢, is the error associated with the observation of the n-th channel, where

the error is assumed to be a realisation of a normal random distribution with
zero mean. The error may be characterised as a fraction of the observed data via
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Figure 4.1 - Fixed loop TEM decay curves over a homogeneous half space with
conductivity 0.1S/m. Displayed are response curves for B,, B, and |B| in u7'/A
and for 0;B; and 9;B. in ,uV/AmZ. The transmitter loop is 250 x 250m, and
the receiver is at dimensionless offset X/L of 1.5 ( X is the receiver offset and L
denotes the transmitter side length ). Only the |B| decay is monotonic.

€n = peerr X (%) (4.2)

where pcerr is a parameter controlling the desired degree of fit between observed
data and half space model.

The inversion proceeds iteratively to solve for an apparent conductivity which
minimises the x? misfit measure. The x? misfit at the (i+1)-th iteration is related
to the misfit at the i-th iteration by the following first-order approximation
(Reid, 1994, p.35):

2\
2\i+1l 2 i 6(X )
A ) (_80 ¢ (13)
where do is the unknown conductivity perturbation. The perturbation is chosen

so that the y? target misfit at the next iteration is zero, thus

_ O, (1.4

where (§0)" is an estimate for the conductivity perturbation at the i-th iteration.
The derivative of the x? misfit measure is given as

3] (X2)i op—ct\ 1 9c
n _ _ n n 4.
do 2( €n ) €, Oo ki
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The derivative of the x? misfit measure utilises the first derivative of the
total magnetic induction with respect to the inversion parameter o.

Oc 1
S B0+ B0B,+ 50,5 (9

where the sub- and superscript (n and ¢) have been omitted for convenience.

Expressions for the derivatives of the horizontal and vertical components of the
B-field will be given in section 4.2.1 below.

For a single parameter inversion, the expected value of a x? random variable
with zero mean and normalised by its variance is 1. Thus, the inversion is
considered successful if the misfit measure is equal or less than 1. If the misfit
is larger than 1, the conductivity is perturbed by dc* and from an updated
conductivity o**! = ¢* 4 §0°, a new half space model is computed. The process
is repeated until an apparent conductivity is found which reduces the x? misfit
measure to a value less than 1. If convergence cannot be achieved in a specified
maximum number of iterations, the inversion fails. The inversion is deemed to
have stalled, if the data does not fit into any half space model.

4.2.1 Derivatives of magnetic field amplitude

The half space response of the magnetic field amplitudes due to step-current
shut-off of a rectangular transmitter loop is calculated directly in the time-domain
using analytical expressions. The analytical expression for the vertical component
B, (t) half space response is obtained via analytic integration of the expression
for the impulse response from a line current segment (Fullagar, 2002). Recalling
Equation (2.81) in terms of the magnetic induction B:

wl |1 z? y
G (my:t) =5 — [; (2 oz 272-'132) L) =

9 7(t)

2
Yere® _ —e~7 P erf (vv) 4.7)
Y Y 4=0

2 g2

VT P

where G (z,y, t) denotes the vertical magnetic field; z and y denote corresponding
coordinates of the ends of the line current relative to the receiver and r =
v z2 +y2. Also,
_ Vo
v= 17 t>0

where ¢ denotes the channel delay time. The net B, response is then given by
the summing of the contributions G (z,y,t) from each side of the transmitting
loop.

Recalling Equation (2.92), the horizontal component of the quasi-static
magnetic field at any point on the surface of a homogeneous half space of
conductivity o due to step current shut-off of an ungrounded y-directed electric
dipole is (Ward and Hohmann, 1988, p.236):
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I dy2 I (2) - (4.8)

BIT (1) = 27r

where z = ouor?/8t, I is the transmitter current, I is the modified Bessel
function of the first kind of order 1, and dy indicates the electrical dipole
direction. Integrating Equation (4.8) around the transmitter loop perimeter
yields the horizontal component of the magnetic induction. Integration of this
expression along the y-sides of the loop, defines the x-component, and vice-versa.
Numerical integration is performed with a Romberg integration scheme (Press
et al., 2002). The magnetic induction amplitude is then given by

IB(t)] = /Ba(t)? + By(t)?2 + B (t)? (4.9)

The total magnetic induction, |B(¢)|, may be computed from multi-component
step response measurements. The total magnetic field for a homogeneous half
space is a non-increasing function of time as was shown earlier in Figure 4.1. It
is therefore intrinsically well-behaved for determination of apparent conductivity,
except in the inductive limit (c.f. Chapter 1.2.2).

If only windowed impulse response measurements are available, amplitudes
of a quasi-step response, referred to as quasi-|B|, may be calculated via a time-
weighted summation (approximate integration). For the n-th channel, quasi-B,
for a single component £, is defined as

J
QF=>"t,.8,B" (4.10)
n J 7
1=n

where J is the total number of channels; ¢; the delay time for channel j; 6tB;°
the time derivative of a magnetic field component k, and QF is the quasi-B value
for the corresponding field component & and channel n. Quasi-|B| amplitudes
are computed as per Equation (4.9). ‘

The time derivatives of the vertical and horizontal magnetic field components
can be taken directly from Raiche (1987) for the vertical component, and from
Ward and Hohmann (1988, p.237, Eq.4.181) for the horizontal component with
the galvanic terms neglected. The expression in Ward and Hohmann (1988) is
numerically integrated along the transmitter loop sides. Apparent conductivity
based on quasi-|B| is dual valued, but is usually ‘virtually unique’ (c.f. Fullagar
and Reid, 1992) insofar as only one of the alternative values is geologically
plausible. Overall, apparent conductivity can be derived more reliably from
quasi-|B| than from impulse response data.

In order to compute the apparent conductivities, the derivatives with respect
to conductivity are needed for the various components of B or 3,B. The horizontal
component 8, B, is found by integrating the expression for the electrical dipole
0y B%P around the transmitter loop perimeters. The conductivity derivative for
a horizontal electrical dipole of the horizontal component of magnetic induction
is found to be:
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8, Bl (r) = 11U (uo (o=1) - mots) e (411)
where the Bessel function arguments are z = por?/8t. The integration of
Equation (4.11) along the y-sides of the transmitter loop gives the x-component,
8, B, and integration along the x-sides gives the y-component, 8, B,,.

The analytical expression for the vertical derivative, 8, B,, is found by diffe-
rentiating Equation (4.7) with respect to ¢ which results in (Fullagar, 2002):

I
0.8, =~1.7 i (4.12)

where 8, B, is Raiche’s analytical formula for computation of the impulse response
of a homogeneous half space for a rectangular transmitter loop (Raiche, 1987,
Eq.8).

In case that apparent conductivity is computed for quasi-|B| amplitudes, the
conductivity derivatives of the voltage responses are needed. Differentiation with
respect to o of the expressions in Ward and Hohmann (1988, p.237, eq.4.181),
yields

*1d 1
80 (athW) (t) = l;ﬁwtg |:2Z . (Io - Il) - (1 + ;) . 11:| -e? (413)

As before, integrating the dipole expression along the y-sides of the transmitter
loop gives the x-component, 8, (8:B;), and integration along the x-sides gives the
y-component, 8, (8:By). The vertical derivative 8, (8,B,) is given as (Fullagar,
2002)

2 Y2
0, OB wnt) = | oo art(y-)] (414
Y1
where (z,y1) and (z,y2) are the coordinates of the ends of the line current
relative to the receiver.

4.3 Time-depth transformation

The time-depth transformation assigns an apparent depth to the apparent
conductivity for a given channel delay time. The procedure is based on that
proposed by Fullagar (1989), but adapted for B-field data. In the original
algorithm for 8;B,-field data, the assigned apparent depth at a particular channel
was the depth to the physical current maximum in a half space with apparent
conductivity at the given channel. For B-field data (and |B|-amplitudes ), the
apparent depth is the depth of the maximum B, in the half space. The |B|,, .
depth is the same as the Bz, depth: the maximum B-field is located on the
axis of the Tx-loop. The |B|,,,, depth is approximately v/ (t/ou) (Fullagar,
2009, pers. comm.).
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The concept of diffusion depth was introduced in the context of TEM by
Nabighian (1979). He described the downward and outward diffusion of the
induced eddy current system in a conducting half space as a diffusing smoke
ring blown by the transmitter loop. The TEM response at the surface of a half
space can be approximated by a single current filament of the same shape as the
transmitter loop which moves downward and outward from the transmitter with
increasing time (c.f. Chapter 1). The current filament has a diffusion velocity
of v = 2/+/ (wout). The current filament, or image current, however diffuses
downward and outward from the transmitter loop at an angle of ~ 47° with
respect to the surface; the physical current maximum at an angle of ~ 30°. This
is so because the ’equivalent current filament’, which has an infinite current
density, must always be deeper than the maximum of the actual distributed
current system. Accordingly, depths calculated based on the current filament
approximation always exceed those based on the position of the physical current
maximum for the same delay time and conductivity (Reid, 1994, p.100).

4.4 Total B-field CDI processing for layered earth
models

Model studies of two- and three-layered models have been conducted in order
to investigate the performance of the conductivity-depth transformation for
total magnetic field responses over a layered earth. A Fortran 95 program
has been written to compute the frequency- and time-domain layered earth
response for fixed-loop sources. The vertical component of the B-field response
for a rectangular loop source with step current excitation was calculated in the
frequency domain using the method of Poddar (1983): applying reciprocity, the
receiver coil was regarded as the transmitter and its electric field was integrated
around the transmitter loop. The layered earth Hankel transform kernels were
taken from Kauahikaua (1978), with the half space response defined analytically
in a separate term outside the Hankel integral. This approach has been adopted
previously by Anderson (1984).

The horizontal B-field components were derived by integrating the horizontal
electric dipole response along the loop sides. The integral expression for a
horizontal dipole is given in Kauahikaua (1978) and in Anderson (1984). All
Hankel transforms have been evaluated with the double precision filter coefficients
of Guptasarma and Singh (1997). A Romberg integration scheme then solves for
the integration along the transmitter loop perimeters. The frequency domain
solutions of the vertical and horizontal components are subsequently transformed
to the time domain using the double precision cosine filter coefficients of Anderson
(1983) The transient B-field is splined and the time derivative of the spline is
accepted as the 5;B value (e.g. Raiche, 1998). Figure 4.2 demonstrates the result
for apparent conductivities for 2-layered earth models and Figure 4.3 shows the
results for 3-layered earth models and illustrate the processing of the TEM decays
to apparent conductivity versus depth.
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Figure 4.2 — Apparent conductivities for 2 layered earth models. The model
decay curve (red) is shown on the left hand panel. The grey curves show the decay
for each apparent conductivity. The centre panel shows the apparent conductivities
as plotted against channel delay time. The model parameters are specified as well
in the centre panel. Conductivity/depth curves are shown on the right hand panel.
The upper panels refer to a thick resistive layer over a conductive basement. The
lower panels refer to a thin conductive layer over a resistive basement. The right
hand panel shows the depth-transformed apparent conductivities with the true
conductivity-model superimposed (dashed red curve).
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Figure 4.3 — Apparent conductivities for two 3-layer models. The model parame-
ters are specified in the centre panel. The upper panels refer to a thick resistive
layer embedded in a more conductive host. The lower panels refer to a thin
conductive layer under resistive cover and over a resistive basement. Synthetic
recordings are at respective receiver-transmitter offsets of 200m and 100 m for
a square transmitter loop with side lengths 50 m. The right hand panel shows
the depth-transformed apparent conductivities with the true conductivity-model
superimposed (dashed red curve).
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The layered earth test-models, referred to as model A to D, test the theoretical
variations possible in stratified media. Synthetic fixed-loop soundings were
computed along a mid-line of the fixed transmitter loop. The 2-layered earth
models, referred to as A and B, represent, respectively, a resistive overburden
over a conductive basement and a conductive cover over a resistive basement.
Model A exhibits an initial fast decay in the overburden and subsequently a slow
decay rate in the conductive basement. The situation in model B is opposite:
the decay is slow in the conductive cover and faster in the resistive basement.

Figure 4.2 shows the results for the 2-layered earth model at a receiver location
outside a 250 x 250 m transmitter loop. The results of the three-layered earth
models at a receiver location outside a 50 x 50 m transmitter loop are shown
in Figure 4.3. The 3-layered earth models, referred to as C and D, represent
a conductive layer in a resistive host (C) and a resistive layer embedded in a
more conductive host (D). The layers introduced in model C and D respectively
decreases or increases the decay rate of the induced current systems.

Moving from left to right, the three panels in Figures 4.2 and 4.3, display
the main stages of the processing from |B|-field versus time to conductivity
versus depth curves. The leftmost panel shows the |B| decay curve of the model
(red) at one offset, with total magnetic field half space decays superimposed for
the apparent conductivity at each delay time. The dimensionless transmitter-
receiver offset, X/L (where X denotes the receiver offset, L the long side of the
transmitter), selected for display is 1.5 for models A and B, 4.0 for C and 2.0 for
D. In the second panel, the apparent conductivity is plotted as a function of delay
time at the selected offset. The right hand panel shows the depth-transformed
apparent conductivities at the selected offset, with the true conductivity-model
superimposed (dashed red curve) Depths correspond to maximum B, depth in
a half space. At each receiver station, a depth-conductivity profile is obtained.
The apparent conductivities are assigned to depth points directly beneath the
receiver station.

To obtain a conductivity-depth pseudo section, the depth profiles from all
receivers are interpolated or ’stitched’. Pseudo-sections for the two-layer examples
(models A and B) and the three-layer examples (models C and D) are depicted in
Figures 4.4a and 4.4b respectively. The mterpolation procedure uses an nverse
distance to a power gridding method which is a weighted average interpolator.
The recovered models, as shown in the conductivity-depth pseudo sections, give
a smoothed portrayal of the layered geoelectrical structures. The depth-to-top
of all layers are correctly depicted. The depth-to-top of the second layers in the
three-layered models, are underestimated which is a consequence of the diffusion
method.

The inductive limit is encountered at large transmitter-receiver (Tx-Rx)
offsets, and/or early delay times and/or for high conductivity. At the inductive
limit the B-field responae is independent of ground conductivity and a funclion of
the Tx-Rx geometry only. Apparent conductivity is therefore undefined. Data at
(or above) the inductive limit can easily be excluded from apparent conductivity
calculations. Hence the undefined regions (in white) at shallow depth and far
offset in the conductivity-depth pseudo-sections for models A, B, and C (Figure
4.4a and 4.4b).
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(a) Conductivity-depth pseudo sections for two-layered earth models. The left hand panel
illustrates a thick resistive layer over a conductive basement. The right hand panel represents
a thin conductive layer over a resistive basement. True layered model structure is indicated.
Superimposed, underneath the receiver stations, are the diffusion depth points.
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(b) Conductivity-depth pseudo sections for three-layered earth models. The left hand panel
portrays a thick resistive layer embedded in a more conductive host. The right hand panel
illustrates a thin conductive layer under resistive cover and over a resistive basement. True
layered model structure is indicated. Superimposed, underneath the receiver stations, are the
diffusion depth points.

Figure 4.4 - cpis for two-layered earth (top) and for three-layered earth (bottom).



4 4 Total B-field CDI processing for layered earth models

99

4.4.1 Unambiguous total magnetic field apparent conduc-
tivity

Non-uniqueness of separated loop apparent conductivity arises because the
EM response is not necessarily either strictly increasing or decreasing. As a
consequence, CDIs based on single-component data may contain artifacts which
show spurious conductive regions. In 3D environments, apparent conductivity may
not be well defined since any given half space model cannot fit the 3D TEM response.
As a result thereof, in order to fit the response, artificial conductive regions
may originate which give a misleading picture of the subsurface geoelectrical
structure.

Over a layered half space, the apparent conductivities based on |B|-field
amplitudes are unique except at very early time, when the inductive limit is
encountered and the ground TEM response is independent of conductivity. A
unique apparent conductivity can be found because the decay of {B| TEM data
over a conductive half space is always monotonically decreasing with time. Based
on the layered earth models, previously introduced in Figures 4.2 and 4.3, the
following discourse examines the non-uniqueness of apparent conductivity based
on amplitudes of the magnetic flux density.

Mathematically, uniqueness manifests in single solutions for the x? misfit
function, previously introduced in Equation (4.1) In order to obtain all possible
minima of the x? misfit for layered models A to D, the x? minima for a wide
range of conductivities and times have been calculated. Images of the x2-misfit
in time-conductivity space reflect the behaviour of the inversion inasmuch as they
define the regions where apparent conductivity is defined. The x>-misfit images
have been calculated for 7 decades of conductivity at 100 points per decade and 4
decades of time at 50 points per decade. For each apparent conductivity and time,
a half space response was calculated for the appropriate transmitter-receiver
geometry, and the x2-misfit was computed for each of the four layered models.
The x2-misfit is then represented as a function of conductivity and timne.

x2-misfit images for total magnetic field are shown in Figure 4.5a for models
A and B and in Figure 4.5b for models C and D. Areas along the left boundary
in each panel, grading from blue to white, are associated with the inductive
limit response. The inductive limit is attained only at the very earliest times
and is extensive in model A and B Apparent conductivity is undefined in these
zones. The inductive limit extends to later times for model B because of the high
conductivity of its uppermost layer. The thin blue-white curvilinear running
from left to right across the images connects the (conductivity, time) pairs for
which x? drops below unity. For almost the entire time-range there is only
one minimum x? corridor for each model, demonstrating the unique nature of
apparent conductivities computed from |B] values. The shape of the corridor
reflects the geoelectrical structure of the corresponding model
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(a) x2-misfit images of total magnetic field apparent conducti-
vities for models A (left) and B (right), at dimensionless offset
X/L = 1.5. A single narrow corridor of low misfit can be traced
across to the right side of each image and reflects occurrence of
a unique apparent conductivity. The inductive limit is attained
only at the very earliest times and is extensive in model A and B
(blue-white region at upper left).
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(b) x2-misfit images of total magnetic field apparent conducti-
vities for models C (left) and D (right) at dimensionless offsets
X/L =4 and X/L = 2 respectively. A single narrow corridor of
low misfit can be traced across to the right side of each image
and reflects occurrence of a unique apparent conductivity.

Figure 4.5 - y’-misfit images of total magnetic field apparent conductivities for
two- and thee-layered earth models.
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(a) Images of x?-contour of B, and B, responses for model B at
a transmitter-receiver dimensionless offset of 1.5. The y?-contour
for B. illustrates the non-unique nature of single component step
response apparent conductivity. The B, response is non-unique
at early and intermediate times but , like |B|, exhibits essentially
unique behaviour at late times.

Log10( Time ) [ms]

Log10( Conductivity) [S/m]

quasi-|B|

0123 45678 91 0 2 4 6 8 10 12 14 16
Log10( Chi2)

(b) x2-contour plots for quasi-|B| and ;B for model B at a
transmitter-receiver dimensionless offset of 1.5. Processed multi-
component data quasi-|B| is virtually non-unique, inasmuch that
only the lower branch of y2-minima is geologically plausible. In
contrast, the single component data 9¢B. exhibits non-unique
behaviour. At intermediate time, the apparent conductivity is
undefined or multi-valued.

Figure 4.6 — Comparison with quasi-|B| and single component data.
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4.4.2 Comparison with quasi |B|-field amplitudes and single
component data

The panels in Figure 4.6a show x2-misfit images (for model B) for the horizontal
and vertical components of B. Apparent conductivity based on B, is also ‘vir-
tually unique’ at late times. The intersection of the two corridors at intermediate
times signifies the peak B, response; apparent conductivity is unique at that
point. The x2-misfit image for B, reflects the impact of the inductive limit at
early times. The apparent conductivity is unique as B, starts to decay, for as
long as B, remains negative. Apparent conductivity is dual valued at later times,
when B, is positive. The x>-misfit image for quasi-|B| in Figure 4.6b combines
characteristics from the 8;B, image and the |B| image’. The two minimum x?
corridors are well separated at all times. Early tume apparent conductivity is pro-
blematic, but at later times the quasi-|B| apparent conductivities are ‘virtually
unique’, since one conductivity can be rejected as geologically untenable. The
x2-misfit image for 8; B, includes intermediate regions with no minima; apparent
conductivity is undefined there. Some x? minima in the centre of the image are
associated with the zero-crossing of the decay curve. The shown x?misfit images
for single components 8;B,, and B, exhibit two minimum x? corridors, hence
two apparent conductivities, at most delay times. In all panels the shape of the
lower late time apparent conductivity corridor reflects the geoelectrical structure
of the model.

4.5 CDIs of 3D structures

Performance of the conductivity-depth conversion for 3D structures is investigated
in the following section. For layered earth structures, apparent conductivity
is well defined at all times (except in the inductive limit) if generated from
total-field amplitudes. The CDI routine is based on the unbounded half space
response and the exponential decays associated with compact conductors are
foreign’ to it. Therefore, 3D structures may exhibit characteristics which may
lead to spurious features in the CDIs.

Three types of simple 3D structures are considered below to test the degree
to which the CDIs reflect the true conductivity distribution. First, the response
of a vertical prismatic body buried in a conducting host is transformed to a
conductivity-depth section. This experiment is repeated for the same prism at a
different depth. Second, the response of a flat lying slab in a conductive host is
subjected to conductivity-depth conversion The last example shows the ¢DI of
a dipping plate in a conductive host.

1The x2-image for quasi-|B| has been calculated on a coarser grid due to computational
expenditure
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4.5.1 Vertical prism in a moderately conducting host

The following model consists of a vertical prism with dimensions 120 x 800 x 400
(E-W, N-S, Z). The prism has a conductivity of 2.S/m buried in a host with
conductivity of 2m.S/m. Conductivity-depth sections from total-field amplitudes
and Z-components are obtained for two different burial depths: (a) depth-to-top
is 200m, (b) depth-to-top is 400 m. The model configuration is shown in Figure
4.7. The step response is calculated with the integral Equation solver MARCO
(CSIRO) which calculates the EM response of prisms in a layered host.

Model vertical prism

cross section Easting (m) Easting (m) plan view
-600 -400  -200 0 200 400 600 600 400 -200 0 200 400 600
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Figure 4.7 — Vertical prism model for a synthetic fixed-loop survey. The configu-
ration shown is for model (a) where depth-to-top is 200 m. The second model (b)
is identical but has depth-to-top of 400 m. Synthetic recordings are obtained over
the centre-line of the model at 50 m intervals from -600 East to 600 East. The
channel delay times are consistent with the SMARTEM channels (Table 1.2).

The step response of the prism (a) for the Z-component is depicted in Figure
4.8 on the left panel, the right panel shows the X-component. The Z-component
responses on negative Eastings, < —50m , are all flat, and the decay curves of
the Z-component are virtually half space responses at all times at these locations.
A crossover anomaly in the Z-component is apparent at positive receiver offsets
~ 200m from the Tx-loop centre and indicative of termination of the subsurface
conductor. The first three channels are mostly influenced by the host; cross-overs
of the first three channels at far offsets, ~ 500F, ~ 550F, ~ 600E, are due to the
smoke ring’ current passing the receivers. The horizontal component will always
be zero at the loop centre over homogeneous ground; here, however, it shows
some distortions due to the presence of the anomalous prism. At the location of
the prism, the absolute value of the X-component is maximum.

The conductivity-depth sections for |B| and B, are shown in Figure 4.9a for
a burial depth of 200 m and in Figure 4.9b for a burial depth of 400 m. Because
of the resistive host, currents have already diffused to a depth of ~ —200m at
the first channel delay time. A conductive high has been defined in all cDIs,
indicative of a conductive 3D feature. The profiles of both, |B|-field amplitude
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Figure 4.8 — Stacked profiles TEM step responses of Z-component (left) and X-component
(right) over a vertical prism at 200m depth in a resistive host. Black triangles indicate Tx
loop wires. Gray band marks projected position of the prism. Red / blue numbers refer to Rx
channels. The responses are calculated with the integral Equation solver MARCO.

and Z-component, are similar, however the Z-component CDI exhibits spurious
conductive features at large, positive, receiver offsets. The conductive zone
extents much further east in the |BJ|-cDI, coinciding with the lateral extent of the
buried prism, whereas the conductor is cut short on the B, ¢DI by virtue of the
cross-over (Figure 4.8). Non-uniqueness of B, apparent conductivity becomes an
issue in the vicinity of the cross-over: as B, approaches zero the most acceptable
apparent conductivity is zero, the alternative being extremely large. On the other
hand, |B;| is maximum at the B, zero crossing, with the result that the true
extent of the conductor is more faithfully captured in the |B|-field amplitudes
CDI.

The conductive zone is extended further west, external to the true prism
beneath the transmitter loop; this attribute is more pronounced in model (b). At
receiver offsets near the transmitter and away from the prism, the EM response
is mostly that of the host, however slightly increased due to the presence of the
conductive body. Apparent conductivity will consequently characterise the higher
EM response amplitudes at these offsets, resulting in the extended conductive
zone to the west. Another characteristic of the prism €DIs is the separation
between conductive high on the west and conductive low on the east of the buried
prism which is a consequence of the transmitter-receiver offsets. At far offsets, on
the eastern side of the prism, the EM responses have smaller amplitudes resulting
in lower apparent conductivities. The CDIs for the prism at 400 m depth display
virtually the same behaviour, however the result is a more smoothed image of
the true model due to larger diffusion depths. The good indication of depth is
noteworthy in both cases.
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(a) cp1 of 2 S/m vertical prism at 200 m depth from total-field data (left panel)
and from Z-component step response data (right panel). Superimposed is the true
model and the data points as obtained from the conductivity-depth conversion.
The cp1 on the right hand panel displays regions where no conductivity is defined.
Here, apparent conductivity is undefined. Due to the complicated behaviour of the
Z-component at far receiver offsets, east from the prism (Figure 4.8), no half space
model fits the response. In addition, a spurious conductive feature is apparent at
Eastings > 400F on the right hand panel. The half space conductivity of 2mS/m
is depicted very good in both cpis.
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(b) cpr1 of 2 S/m vertical prism at 400 m depth. At greater depths, the conductive
zones depicted in both ¢pis are broader due to increased diffusion depths. As in
model (a), the Z-component cpr1 consists of artifacts, apparent at Eastings > 200E.

Figure 4.9 - cpis of vertical prisms in a moderately conducting host.
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4.5.2 Horizontal slab in conductive host

A thick horizontal slab in a conductive host is modelled with MARCO. The
model is shown in Figure 4.10 and displays a square prism with 500 m side
lenghts and with 200 m depth extent; depth-to-top is 300 m. The resulting EM
response is symmetric with respect to zero Easting where the amplitudes of
the Z-component are maximum and the X-component has a cross-over. The
response characteristics are suitable for conductivity-depth conversion of Z-
component data. The resulting CDIs from the single component as well as the
multi-component data give similar results.

Figure 4.11 shows the resulting ¢DIs with the true prism superimposed. The
depicted depth-to-top in both CDIs concurs with the true depth of the slab,
however the main conductive zone is located below the actual prism and extents
to deeper depths. Since the decays have increased amplitudes over the centre
of the conductive body, apparent conductivities reflect a conductive half space
which match these amplitudes over the centre. On the other hand, amplitudes
are not increased (|B|) or diminished (B,) at the prism edges, thus apparent
conductivities will be lower here. As a consequence the conductive zone will
extent deeper over the centre of the body. The conductive zone is somewhat
broader in the total-field ¢DI which is a consequence of higher amplitude values
of the total-field response at the flanks of the prism. Here, the Z-component has
smaller amplitudes, the X-component however has maximal amplitudes over the
lateral extents of the body resulting in higher total-field amplitudes. The half
space conductivity from the model can be inferred from the depicted cpis (blue
region).

Model horizontal slab
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Figure 4.10 — Horizontal slab model for a synthetic fixed-loop survey. Recordings
are obtained over the centre-line of the model at 50 m intervals (SMARTEM channels,
Table 1.2). The transmitter loop is centred over the slab with side lengths
proportional to the slab side lengths. The model configuration results in a
symmetric TEM profile.
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Figure 4.11 — c¢p1 of horizontal slab. The left hand panel shows the cp1 from
B-field amplitudes whereas the right hand side shows the cp1 obtained from the
vertical component of the step response. The true model is superimposed together
with the data points as obtained from the conductivity-depth conversion. Both
cpis depict the actual depth-to-top of the prism.

4.5.3 Dipping plate in a conductive host

This section investigates how the response of a plate conductor transforms
under conductivity-depth imaging. Since the conductive region is confined to a
bounded and very narrow region, it can be anticipated that conductivity-depth
imaging is less indicative of the true conductive region because of the diffusive
nature of the imaging scheme, which is based on unbounded half space decays.
Nonetheless, conductivity-depth sections of the plate models based on total-field
data is suggestive of conductive 3D features, which is not always the case for
CDIs obtained from Z-component data. The model configuration is depicted in
Figure 4.12. The models are calculated with the EM modelling program LEROI
(CSIRO) which computes the full EM response of conductive plates in a layered
earth.
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Figure 4.12 - Dipping plate model for a synthetic fixed-loop survey. Recordings
are obtained over the centre-line of the model at 50 m intervals (SMARTEM channels).
The conductance of the plate in both cases is 100 S in a conductive host of 5 m.S/m.

Z Component

EM Response (pT/A)

| v v
-10 - T T T + T T T T - !
-600 -500 -400 -300 -200 -100 O 100 200 300 400 500 600

Easting (metres)

Figure 4.13 — Z-component TEM decay of dipping plate underneath transmitter
loop for every second channel from 12 to 20. The selected channels chosen for
display, show the transition from mainly host influenced decay to mainly plate
influenced decay. Superimposed (in grey) are the responses from the host only.
The grey shaded area indicates the position of the plate in plan view and the
triangles on the abscissa axis display the transmitter position. The cross-overs of
channel 18 and 20 approximately mark the edge of the buried conductor. The
positive lobes of the anomaly profile is directed towards the transmitter loop, and
in this case, over the conductive feature.
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The stacked profile of the Z-component is shown in Figure 4.13 from channels
12 to 20 for every second channel. It depicts the transition from mainly host-
influenced to mainly plate-influenced response. For comparison, the host response
is superimposed. The zero crossing is indicative of the edge of the buried
conductor. The positive lobes of the response are directed towards the transmitter
loop, which, for this particular model geometry, coincides with the orientation of
the plate. Because of this model characteristic, apparent conductivity is well-
defined for the Z-component CDI at the location of the anomalous conductive
volume (Figure 4.14) .

The depicted conductive zones in both ¢DIs for total-field and Z-component,
Figure 4.14, extent to great depths and does not reproduce a plate conductor.
Nevertheless, the emergence of the conductivity gradient in both CDIs coincides
with the location of the plate. This is typically observed in cDIs for plate-like
conductors. It can be furthermore observed that the top of the conductive zone
approximately coincides with the plate’s dip along its depth extent. The top of the
plate, however, is not honoured in both ¢DIs. The ¢DI from Z-component data on
the right hand panel, exhibits broad white patches where no conductivity-depth
data is defined due to the negative responses at far Eastings.
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Figure 4.14 - cp1 of dipping plate underneath the transmitter loop from B-field
amplitudes (left) and from Z-component step responses (right). Superimposed
are the plate models and the data points from the conductivity-depth conversion.
Both cpis give a good indication of the depth to the centre of the plate whereas
the top of the plate is not honoured in both cpis. The Z-component ¢DI shows
extensive editing for Eastings > 100 m at depths where the white patches occur.
Apparent conductivity is undefined here. The half space conductivity displayed in
both cpIs agrees with the model half space conductivity (5mS/m).
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4.6 Field data example

Apparent conductivities derived from |B| measurements have been used to
generate a conductivity-depth image from multi-component B-field data. The
fixed-loop TEM data were acquired across a Proterozoic metavolcanic sedimentary
sequence hosting Pb-Zn-Cu-Ag mineralisation buried in a resistive environment.
The transmitter loop had dimensions 400x800 m, with the long side of the loop
oriented north-south, perpendicular to the survey line. The loop was centred
at (11050E, 7900N), and the TEM data were recorded on line 7600N. Receiver
station spacing was 50 m or 100 m. The transmitter on and off times were 900
ms (0.2778 Hz fundamental), with a turnoff ramp of 0.5 ms. A low temperature
SQUID sensor was used, in conjunction with a SMARTEM receiver. Channel centre
times ranged from 0.1 ms to 710.31 ms (Table 1.2).

Figure 4.15 displays the response curves from channels 1 to 41 for every
fourth channel. Shown are the Z-component, X-component and the total-field
amplitudes, calculated from all three (Z,X,Y) components. The data is very
clean, even at 700 ms after shut-off. A cross-over in B, is evident near 10500E,
indicating termination of a conductor below. The anomaly shape of the response
curves suggests a west-east dipping conductor extending below the transmitter
loop. Even at very late channels, the transients have not decayed to zero and
exhibit responses from a conductive feature. This advocates that the conductive
body is thick.

As a first estimate, the response has been modelled by a west-east dipping
plate residing in a resistive host as shown in Figure 4.16a. The plate modelling
was carried out with the integral Equation solver LEROI. The plate parameters
are given in the caption of Figure 4.16a where the measured B, response is
superimposed. It can be seen that the anomaly shape of the plate resembles
the anomaly response curves of the measured data. Noticeable, however, is the
rapid decay of the plate response, even for a relative high conductance of 5005
Higher conductance values renders the response towards the inductive limit of
the plate and does not improve the fit, which substantiates the suggestion of a
thicker conductor.

The response data for all components (X,Y,Z) from the plate model as well
from the observed data have been converted in conductivity-depth pseudo images.
CDIs were generated in two stages. first, apparent conductivities were computed
at each delay time, then depths were assigned according to the depth of the
maximum B, in a half space with conductivity equal to the apparent conductivity
at the time in question. The resulting pseudo-sections for the B-field amplitudes
are imaged and contoured in Figure 4.16b. The apparent conductivities are
very low at early times, with the result that the CDIs are blank at shallow
depths; current has already diffused hundreds of metres through schists and
quartzites before the first delay time. The CDIs of both data sets, measured and
synthetic, have similar conductive zones at comparable depths. However the
main conductive zone is located at a deeper depth in the cDI of the measured
data and consists of a smoother transition zone from low to high conductive
values which probably reflects a thicker body. Also, the apparent conductivities
are much higher than those which could be obtained for the plate model. The
conductive zone of the plate is much deeper than the actual model.
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Figure 4.15 — Stacked profiles for field data fixed loop TEM. Arrows indicate
the position of the 400m x 800m transmitter loop. Readings are taken every 50
or 100m. To avoid cluttering in the Figures, responses are shown for every fourth
channel (all channels from 1 to 41). The B, cross-over near 10500E is interpreted
to mark the edge of a buried conductor. Shown are also the X-component and
the total-field amplitudes as calculated from Z-, X-, and Y-component.
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(a) Plate model and observed data (Z-component). The plate strike length is
700 m with depth extent of 600 m. It has a dip of 40°and a dip direction of 90°.
The conductance of the plate is 500 S buried in a resistive background of 0.2 mS/m
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(b) Conductivity-depth pseudo-sections from measured (left) and modelled (right) multi
component fixed loop TEM field data.

Figure 4.16 — Z-component of measured field data and plate model (top) together
with total-field cpis for measured and modelled data (bottom).



4.7 Concluding remarks

113

4.7 Concluding remarks

Conductivity-depth pseudo sections from |B[-field amplitudes can provide a
better image of discrete or truncated conductors than CDIs based on individual
components, since zero crossings of a single component are not depicted as resis-
tive zones. Data acquired in 3D environments translate to |B| ¢DIs which exhibit
3D features. Conductivity-depth images from |B|-field amplitudes supplements
interpretation of TEM 3D data, however careful analysis of the decay response
curves is required to elucidate the 3D characteristic.

The EM responses of thick prismatic bodies translate well to conductivity-
depth images as obtained from |B|-field amplitudes. Vertical prismatic bodies,
offset from the transmitter loop, tend to produce an elongated conductive high
in the |B|-CDI towards the transmitter loop, but reliably images the top and the
edge away from the transmitter; on the opposite side, a resistive zone manifests
in the cpI (Figure 4.9a). The result for the flat lying slab is analogous.

In case of plate-like conductors, however, the underlying geoelectrical struc-
ture may not be faithfully captured in the CDIs and cannot be easily 1dentified as
a conductive plate. This is because the CDI routine is based on the unbounded
half-space response, which cannot ’capture’ the response of the bounded, narrow
plate-conductor very well. Notwithstanding these complexities, processing B-
field amplitudes general results in CDIs which identify 3D structures whereas the
use of Z-component data alone may result in incoherent images of the subsurface.
Principal guidance in interpretation of total-field cDIs from 3D environments is
not given by the conductive high depicted in the image, but by the conductivity
gradient, i.e. edges of the conductive zone where the conductivities start to
deviate from the background response.

The measured field-data is interpreted, as a first approximation, as a dipping
plate. While not quite sufficient to assess the conductivity of the target, it
may reveal geometrical parameters, like dip and depth extent, of the target.
The total-field cDI of the measured data, as well as the plate model, exhibit
significant similarities and establishes some confidence in the interpretation of
the data. The plate model, as captured in the ©DI, locates the conductive zone
at much deeper depths than the actual model. In consequence, the CDI from
the measured data may reflect analogous behaviour. In addition, the transition
zone from background conductivity to higher conductivity seems to mark the
edge of the dipping conductor. As can be recognised from the contour lines,
the dip approximately agrees with the plate model. The lateral extent of the
conductive zone is interpreted to approximately reflect the depth extent of the
target. When comparing the DI for the field data with the *best-fitting’ plate,
the two results are alternative preliminary interpretations. The cDI defines the
conductivity of the host nicely, and provides an image of a laterally-localised
conductor. In the absence of any independent ’a priori’ information it is difficult
to prefer one interpretation over the other.

In summery, ODIs from B-field amplitudes assist in interpretation of 3D
structures without producing spurious features and therefore may well provide
a starting model for 3D inversion. The CDIs provide initial estimates of time-
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constants for the 3D inversion scheme or can be encompassed as inversion weights
which favour solutions close to the DI models. ODI processing fits half space
responses to TEM data which may exhibit 3D-TEM characteristics, therefore ex-
ponential decays associated with compact conductors cannot unambiguously
be imaged. This limitation is addressed by allowing for confined conductors
as implemented in the fast, approximate 3D-TEM inversion scheme, which is
discussed in the next chapter.



Chapter 5

3D Inversion of TEM moments

Introduction Three-dimensional geophysical inversion of EM data aims to
give an idealised estimate of the 3D geoelectrical structure of the subsurface
which can meaningfully describe a set of observations. Inversion is a numerical
process whereby an initial model is adjusted to improve the fit between the
measured geophysical data and the corresponding calculated data based on the
model (Fullagar et al., 2008). Inversion proceeds as an optimisation problem by
minimising an objective function which 1s a metric that measures the difference
between observed and modelled data. At minimum, a geophysical model defines
a distribution of one or more physical properties in the subsurface. The present
study incorporates geological constraints in an innovative and novel approach for
fast, integrated 3D inversion of parametrised TEM data where recovered model
parameters after inversion define the geoelectrical structure of the subsurface in
terms of time constants.

Rigorous 3D inversion of time-domain electromagnetic data is an onerous
challenge, mainly due to computational requirements TEM measurement configu-
rations can easily result in problems too slow for practical inversion on standard
computation facilities. However, 3D inversion of TEM data is feasible using
the method described here. First, the TEM moment methodology effectively
compresses the number of data points by integrating the response data with
respect to time, thus reducing a decay to a single value. This results in a smal-
ler numerical problem which is faster and less demanding in terms of memory.
Second, using TEM moments, EM interaction may tolerably be ignored, therefore
facilitating linear superposition of TEM moment responses which reduces the
computation time remarkably. Third, the approximate forward calculation uti-
lises analytical TEM moment expressions, so that calculations are fast. Fourth,
if posed in terms of the time constant, the TEM moment transform renders the
non-linear time-domain problem into an approximate linear moment-domain
problem. Derivatives of linear inverse modelling schemes are mode] independent,
therefore expediting successive model updates via initially calculated derivatives
which accelerates the inversion process substantially Furthermore, the 3D inver-
sion scheme employs a fast steepest descent method; computationally expensive
matrix inversion is not required. The reduction in accuracy with respect to
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fully 3D-EM solutions is accepted as a trade-off for much improved speed of
calculation. Typically, for ground-TEM, the described 3D inversion problem,
completes in minutes rather than hours or even days, thus facilitating flexible
data interpretation where various different models can be subject to analysis in
a short time frame.

Because of the time-integration of the TEM moment transform, depth reso-
lution is lost and conditioning the inversion becomes essential. In effect, the
moment transformation converts the 3D TEM inversion problem into a 3D ma-
gnetic inversion problem. Thus, a potential field inverse problem is solved where
non-uniqueness is significant, 1 e. multitudinous source distributions explain the
data equally well. Non-uniqueness is balanced by including geological information
in the inversion and/or by utilising standard potential field inversion devices,
such as depth weights and property bounds (Oldenburg and Pratt, 2007; Li and
Oldenburg, 1998, 1996).

For fast, approximate inversion of TEM moments the vPmg inversion approach
has been adopted. VPmg is a gravity, gravity gradient, and magnetic 3D modelling
and inversion program, designed for integrated interpretation utilising geological
constraints (Fullagar et al., 2000, 2004; Fullagar and Pears, 2007; Fullagar et al.,
2008). vpPmg inversion proceeds from a geological litho-model, defined on a 3D
grid, which reflects the available geological knowledge, so that each cell is assigned
to a rock type. The underlying model is both geological and petrophysical
(categorical and numerical) before, during, and after inversion, so that the
lithological significance is preserved throughout the inversion process. Fullagar
and Pears (2007) mention that vPmg allows for flexible property inversion, since
preservation of domain boundaries implies retention of rock type designation.
Therefore property changes can be restricted to a particular geological domain, if
desired. The greater flexibility, as compared with property-only inversion styles,
can be attributed to the fact that the underlying model is categorical as well as
numerical.

For inversion of TEM moments, selected domains of the categorical model are
subdivided into cubic cells, each carrying a point conductor at its centre. The 3D
inversion of TEM moments furthermore distinguishes 'background’ and ’target’
response which can each be subject to individual optimisation. As described in
Chapter 3, the background is comprised of a conducting half space whereas the
target is effectively a distribution of cells in free space. The recovered model time
constants define the geoelectrical structure of the subsurface During inversion,
the time constants associated with each point conductor are subject to iterative
adjustment so as to fit the observed data.

This chapter describes the inversion method developed to produce a 3D
distribution of time constants that explain a given set of TEM moments First,
the details of the 3D inversion of TEM moments is delineated, subsequently
model preparation and examples are presented. The examples concentrate on
inversion of the Z-component TEM moments of the horizontal slab and vertical
dyke model, which have been previously introduced in Chapter 3. In order to
test the mversion algorithm and examine the variability of the inversion results
due to non-uniqueness, the inversion proceeds from different starting models
so as to explore some of the range of acceptable models. For different starting
models and constraints, the inversion could recover time constant models which
approximately indicated the location of the true conductive body.
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5.1 Overview of the inversion algorithm

The following section is meant as a qualitative overview of the TEM moment
inversion program developed during this study. The TEM moment inversion
program builds on the VPmg potential fields framework and is referred to as
VvPem3D. VPmg has been developed to specifically address enforcement of geolo-
gical constraints, in particular drill hole information, so as to reduce the inherent
ambiguity of interpretation of potential field data. This is achieved in vPmg by
assigning each cell to a rock type, so that the geological significance of boundaries
is preserved. In vPmg, the subsurface 1s discretised into close-packed identical
rectangular prisms, and internal contacts divide each prism into cells. After
inversion the model is fully recognisable as a geological model, i.e. comprised of
lithological or structural domains.

Usually, the rock types of interest are distinguished on the basis of their
physical properties where rock properties are derived from drill core or hand
samples, or logged downhole. Petrophysical properties provide the link between
mineralogy and geophysics, and hence between geology and geophysics (Fullagar
and Pears, 2007). Based on the measurements, geological models are comprised of
surfaces, mainly litho-stratigraphic boundaries and structures, which divide the
ground into rock type domains. The surfaces are interpolated between mapped
or drilled points on geological contacts and structures. Away from the borehole
logs, the geological model can be highly interpretative in nature, however.

Fullagar and Pears (2007) note that algorithms operating on geological models
can exert a greater degree of control over rock properties and permit flexibility
in the conduct of inversion. For example, property changes during inversion
can be confined to selected rock types and property bounds can be linked to
each geological unit. Property bounds designate the minimum and maximum
property value allowed in each cell. Adoption of a categorical model structure
does not limit options for property inversion: ’unconstrained’ property inversion
can be performed on a categorical model, with changes restricted to specific
units or permitted throughout the entire subsurface.

For TEM moment inversion, a uniform 3D grid is adopted, comprised of cubic
cells with a point conductor at the centre of each (Chapter 3). The geological
model is mapped onto the 3D grid, subdivided into distinct geological units which
results in a simplified litho-model of the underground and therefore facilitating
geologically constrained inversion. The model is defined within a continuous
conducting background, modelled as a half space, which may optionally be held
fixed or variable during inversion. The 3D model is categorical (i.e. geology) as
well as numerical (i.e. property). Each cell is explicitly assigned to a geological
unit. The geological units can be homogeneous or heterogeneous. If a geological
unit is homogeneous, all its constituent cells share the same property value. If a
geological unit is heterogeneous, each of its cells has an individual property value.
Inversion of the properties of heterogeneous units produces intra-unit variations
of property values, bounded by specified minimum and maximum values. Figure
5.1 illustrates schematically the litho-categorical property table for a model.
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Camgary masc) | imews) | cmasc)
Quartzite Schist 0 0 0
Iron Formation 100 0 1000
Aluminous Schist 0 0 0
Pink Gneiss 0 0 0

Figure 5.1 — Parametrisation of rock property model after Fullagar and Pears
(2007). Each cell of the geological model belongs to a predefined geological category.
The cell properties, in this case time constants 7, are assigned accordingly so that
the lithological significance of each cell is captured and carried through inversion.
In this example, only the category where ore mineralisation is expected is ’active’
for inversion and a start value and bounds are assigned. The property bounds
designate the minimum and maximum property value allowed in each cell for each
category. If lower and upper bounds are identical, the unit is deactivated.

Heterogeneous property inversion Heterogeneous property inversion for
single-component TEM moments is fully supported in the current implementation
of the TEM moment inversion algorithm. This inversion style can be described as
an extended 'UBC-GIF’ inversion style. Like 'UBC-GIF’ inversion, heterogeneous
property inversion of TEM moments is based on a regular 3D grid where each
cell is allocated a property value but additionally also to a rock type, so that
the geological integrity is preserved throughout the inversion process.

The number of active parameters is usually larger than the number of data
so that an 'under-determined’ problem is solved. Consequently, there is a large
degree of freedom which is limited by introducing constraints. The inversion
proceeds on defined geological units. The properties of all cells within each
unit lie between the bounds defined for that unit. The heterogeneous property
inversion proceeds as a conventional inversion style where an objective function
is minimised in a least squares sense. The details of the inversion are described
in Section 5.2 below. Alternatively, inversion proceeds by subjecting individual
model cells to random property perturbations; the perturbation is accepted if it
produces a reduction in misfit. For this thesis, the conventional heterogeneous
property inversion style is exclusively utilised.

Homogeneous property inversion If a geological unit is assumed to be of
homogeneous conductivity, the same property is assigned to each cell which
belongs to the particular unit. Homogeneous units can be designated as active
or inactive during inversion. If a unit is active, lower and upper bounds define
the permissible range of property values. Homogeneous property inversion is a
discrete body inversion to find a relatively small number of homogeneous body
parameters (Oldenburg and Pratt, 2007). It may serve to examine the degree to
which the data can be explained by inter-unit variability alone. The assumption
of homogeneity is often a useful starting point when very little is known about



5.1 Overview of the inversion algorthm

119

local rock properties; inversion can then define the optimal ’average’ property
(Fullagar and Pears, 2007). The number of active parameters during homogeneous
property inversion is usually less than the number of data so that the problem is
‘over-determined’. Because there are only a few active parameters, homogeneous
property inversion is fast, even if the model is large and geometrically complex.

Homogeneous property inversion is not utilised for inversion of the discrete
target response in the current study. The employed optimisation procedure
of the background response, however, is a special case (single-parameter) of
homogeneous property inversion.

Gceometry inversion The geological contacts that define the litho-units of
the geological model can be subject to inversion themselves thus constituting geo-
metry inversion. In geometry inversion, the geological surfaces are manipulated
to achieve an improved fit between observed and calculated data. The geological
significance of contacts is preserved so that the model is still recognisable as a
geological model after inversion During geometry inversion, the properties of all
cells are fixed. In VPmg, geometry inversion proceeds by successive adjustments
of the horizontal cell boundaries, therefore defining an ’adaptive mesh’ (Fullagar
and Pears, 2007; Fullagar et al., 2008). Geometry inversion of TEM moments
has yet to be implemented.

5.1.1 Rock property constraints

Non-uniqueness is an issue in potential field inversion techniques because mul-
titudinous source distributions produce equally valid mathematical solutions.
That is to say, from Green’s third theorem it follows that a potential field
can be reproduced by an arbitrarily thin source layer or ’equivalent stratum’
(Grant and West, 1965, p.214). Discretisation of data and source give rise to an
under-determined problem (if there are more model parameters than data points)
and the presence of noise add to the ambiguity of the inverse problem (Fedi
et al., 2005; Oldenburg and Li, 2005). Non-uniqueness is addressed by including
geological and petrophysical information to ensure the solution is consistent
with prior knowledge and/or by imposing a set of quantitative weights that
approximate geological expectations when geological data is lacking (Williams,
2008). Geological maps, surface samples from trenching or underground drifts
and drill holes may supply geological context and actual physical property measu-
rements. In addition, magnetic and gravity potential field data provides further
mformation for categorising and for geological interpretation (McMonnies and
Gerrie, 2007; Oldenburg and Pratt, 2007). For inversion of TEM moments within
the vPmg framework, inversion constraints can be classified in ’bound’, *hard’
and ’soft’ constraints, where hard constraints are based on measurements and
soft constraints are flexible and subjective to a certain degree.

If geological /petrophysical context is supplied via a geological litho-model,
the inversion may be geologically constrained by only allowing cells to change
which belong to a specified unit where ore mineralisation is expected. Such a
case is explored in Chapter 6 which demonstrates 3D inversion of measured TEM
field data. The main challenge is the assembly of the geological model which is
the result of an interdisciplinary geoscientific cooperative effort.
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Bound constraints Property bounds enforce a particular range of property
values within a region where the physical properties are known to vary within
the supplied bounds. Bound constraints are most commonly employed and may
be applied globally, to all cells, or different bounds can be applied to sub-sets of
cells, for instance to individual units of the model (Fullagar and Pears, 2007).
In geometry inversion, pierce points and drill trajectories can be expressed as
bounds of designated contacts during inversion in vPmg (Fullagar et al., 2008).

Hard constraints Hard constraints reflect ground-truth, primarily based on
rock property measurements logged downhole or measured on drill core, and
are incorporated in the rock property model as fixed property cells. In vPmg,
the property of a cell in an heterogeneous unit can be held to a fixed value if
petrophysical measurements are located within 1t (Fullagar and Pears, 2007). In
the context of geometry inversion, hard constraints are pierce point constraints
which preserve drilled contact positions during geometry inversion (Fullagar
et al., 2008).

Soft constraints In addition to ’hard’ constraints, multiplicative weighting
factors may be applied, referred to as ’soft’ constraints. In vPmg, property
changes can be limited in the vicinity of fixed cells, since rock property usually
exhibit a degree of correlation over a certain length range (Fullagar and Pears,
2007). In general, the concept of multiplicative weights for TEM moment inversion
are designed so as to counteract the geometrical decay of the potential field
response with distance from the sensor so that all cells have an equal likelihood
of containing sources. Two variations of weights are considered below: vertically
(1D) defined depth weights and spatially (3D) defined conductivity weights. Depth
weights are intended so as to counteract shallow solutions. Alternatively, conduc-
tivity weights can be applied which are calculated using apparent conductivity /
depth pairs from the cpis. The conductivity weighting scheme can be applied to
favour solutions which preserve the spatially defined conductive regions as seen
in the cpis. The implementation of soft constraints is described in Section 5.2.6
below. In the context of geometry inversion, soft constraints are multiplicative
weights which limit the movement of unconstrained contacts which are located
in the neighbourhood of a pierce point (Fullagar et al., 2008).

5.1.2 Discrete target and continuous background response

Because the TEM moment forward calculation is the linear combination of a
continuous background and a discrete target response, the inversion algorithm
distinguishes between ’background’ and ’target’ response. The target is the
sought-after anomalous volume comprised of a distribution of cell time constants
defined in the geological litho-model. The background is calculated as the
TEM moment response of a continuous half space (Section 3.1). Background
conductivity can be optimised in conjunction to the inversion of the target
response. Mostly, the assumption of an homogeneous half space as a background
model is geologically artificial, however numerically convenient since it captures
early-time and near-transmitter responses as well as the late time response of an
extensive unbounded medium.
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The background conductivity 1s inferred from the conductivity-depth images.
If in situ measurements are available, for example from bore hole logs, they may
serve as a measure of conductivity for the half space model Given an estimate
of the half space conductivity, the background is isolated from the measured
TEM data vector during inversion by simply subtracting the half space TEM
moment response from the measured TEM data vector (’stripped response’). The
remainder of the TEM moment data vector is treated as the target response,
which effectively arises form a distribution of conductive cells situated in free
space. The background may either be optimised simultaneously or held fixed at a
predefined conductivity value for the half space. Optimisation of the background
response proceeds by mcaons of a simple linear regression, whereas the 3D target
response is subject to a steepest descent inversion technique.

5.1.3 The starting model

The starting model comprises an initial time constant estimate for the discrete
target model and also an estimate of the background conductivity. The voxelised
time constant model 7° together with encompassed hard and soft constraints
constitutes the starting model for the discrete target. The inversion constraints
favour particular desired features. An initial estimate of the background conduc-
tivity, for example from CDIs, constitutes the starting model for the background.

In the absence of in-situ data from boreholes, as is the case in greenfield
exploration, a starting model may be purely conceptual. In this case vPem3D
may be initialised with a minimum structure model; for example an uncategorised
discrete target model where all cells are initialised with zero time constants,
together with a weighting scheme, in conjunction with an estimate of the back-
ground conductivity. In the case of a minimum structure model where all time
constants are initialised with zero, the starting model is here referred to as a
‘zero starting model’. Depending on the details of the starting model, different
recovered models will be obtained after inversion which may all be equally valid
mathematically.

A time constant model 7° may also be initialised with starting values based
on the apparent conductivity values interpolated from CDIs; such a model is
referred to as a ’CDI starting model’. Cell time constants based on CDI values
are calculated as described in Section 3.2.3 via a simple linear regression which
automatically scales the cell conductivities so as to fit the observed TEM moment
response to the calculated moments. Because conductivity is linearly related to
the time constant, the rescaled conductivities are accepted as a first approximation
to the time constants. Since the inversion distinguishes between a continuous
background and a discrete target response, the estimate of the background
conductivity is first subtracted from the CDIs so that the rescaled conductivities
are assoclated with the target response only.

5.2 The inverse problem

Measured data contain always contributions which are not captured in the
forward model response, altogether referred to as 'noise’, so that the model
response after inversion is only as accurate as defined by this noise-level. The
noise-level, or data uncertainty is user-defined and is assumed to be a normal



122

3D Inversion of TEM moments

random variable with zero-mean. Usually the data uncertainty is defined as a
fraction of the measured data amplitudes. The 3D model response, which is
defined as the combined response of target and background, is adjusted during
inversion until its response reproduces the measured data to the predefined
desired accuracy as defined by the data uncertainty.

The target response, which consists of the TEM moment response with the
background removed, is attributed to a distribution of cells in free space. The
background is treated separately and is optionally subject to a simple linear
least-squares optimisation. In this section, the target model inversion is described
first. The background optimisation 1s discussed in Section 5.2.5.

Let the time constants of all cells be represented by the parameter vector T,

T=(m,72,...,7%) €RX (5.1)

where K denotes the number of cells of the discretised 3D model space. RX
denotes the K-dimensional Euclidean vector space Let the N TEM moments
derived from a set of imperfect TEM measurements be represented by the data
vector d,

d=(dy,ds,...,dy)" €RY, (5.2)
where previously an estimate of the background has been subtracted. Associated
with the measurements are the data uncertainties q,

q=(q1;Q27"'aQN)T ERN- (53)

During inversion a 3D time constant model is sought that adequately explains
the set of measured TEM moments which satisfies the relationship

d=f(r) (5.4)

where f represents the TEM moments calculated for the time constant model T
and is a vector valued function with f : R — R, Parameter estimation involves
the iterative construction of a time constant model by linearised improvement of
a starting model 7°. Linear approximation of f (7) around 7° gives (Jupp and
Vozoff, 1975)

d~f (TO) + Doér (5.5)
where 67 denotes the sought-after perturbation vector which is defined via
T =70 +67. D € R¥*¥ is the Jacobian or sensitivity matrix where each element
measures the sensitivity of the n-th data value to the k-th parameter

_ Ofn(T)

Dy, = a7, (5.6)

For a linear problem, above Equation (5.5) is exact

The inverse problem in VPem3D attempts to minimise error-weighted residuals
between observed and calculated data by finding a new perturbation vector é7*
at successive iterations + From Equation (5.5), the inverse problem follows with

Q(d - ¢*) = QDér* (5.7
where Q is a diagonal matrix consisting of the data uncertainties with Q =
diag (Ya:, Yaz, - - -, /a,) and where ¢* = f (7*) denotes the calculated forward

model solution at the :-th iteration. At iteration (¢ + 1), the model response
¢l =f (7* + 67°) is approximated via

't ~ ¢ + Dot (5.8)

which is exact in the linear case.
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5.2.1 Objective function

A variety of inversion schemes exist for obtaining an optimised solution, e.g.

Meju (1994). A mathematical review of various inversion schemes can also be
found in Soleimani (2008). Here, a fast steepest descent method, originally
implemented in VPmg, is employed for inversion of the target response. The
steepest descent method successively corrects a model estimate in direction of
the negative gradient of a misfit measure. Matrix inversion is not required. The
misfit 18 measured by means of an objective function S (7) which is here defined
in terms of a least-squares criterion. The least-squares criterion is an element of
the family of £,-norm solutions, derived from a maximum-likelihood formulation

which gives rise to various probabilistic inversion schemes (c.f. Tarantola, 2005).

The most commonly employed measure is the dimensionless norm of the £ type,
equivalent to the least-squares criterion The £2 norm arises naturally from the
assumption of a Gaussian distribution of errors so that the misfit is governed by
a Chi-squared distribution and the objective function is commonly referred to as
the x? misfit function. It measures the degree of misfit between model response
and observed data as the Euclidean distance The x? random variable is defined
in terms of the weighted residuals as

S(r)=x*=(d-¢)'QTQ(d—¢) (5.9)

For inversion, the y2-misfit is subject to minimisation for which the method of
steepest descent is utilised as described in the next section. Because the expected
value of a x? random variable is 1, if normalised by N, the recovered model
after inversion is regarded as acceptable if the x2-misfit of the model is 1 or less
(e.g. Oldenburg and Li, 2005) The inversion is also terminated if the maximum
number of iterations is completed, or if the misfit does not decrease on successive
iterations and is stalled.

The solution for the linear inverse problem, arising for vertical component
TEM moments is described here. In linear inverse problems, sensitivities are
model independent, which expedites successive model corrections via initially
calculated sensitivities. Recalculating an updated forward model and sensitivities
after each iteration is therefore not necessary. For the linear inversion of the
vertical TEM moments, the forward model response at the :-th iteration is simply

¢ =Gr* (5.10)

where G is the TEM moment forward operator, or kernel, with elements G
(Equation 3.2) which quantifies the contribution of a point conductor in the k-th
cell to the n-th observation (c.f. L1 and Oldenburg, 1998).

If each cell is assigned a point conductor with individual time constant and the
heterogeneous inversion problem is solved, the model space under consideration
is typically comprised of a large number of cells. An alternative approach is to
treat defined geological units homogeneously and the homogeneous inversion
problem is solved. Both, the under- and over-determined cases, utilise a steepest
descent inversion technique, but their computational details differ somewhat.
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Summed up briefly, the inversion procedure involves the following steps:

0. Construct a starting model and define constraints
1. Compute the forward model

2. Test for convergence or exit criteria

a true: exit
b false: proceed to step 3.

3. Compute the gradient of the misfit and the step length
4. Update the model and data

6. Return to step 2.

5.2.2 The method of steepest descent

The inversion proceeds by successive approximation, seeking at each stage a
change 1n the parameter vector which can reduce the magnitude of the misfit
vector. In order to find an optimal solution 7*, the descent method iteratively
minimises the misfit measure S (7). From an initial parameter-estimate 7°, the
method generates a series of new estimates, until it converges to a minimum of
the misfit function

At the start of the 1-th iteration let 7* be the current parameter-estimate of
the function’s minimum. The 2-th iteration then consists of the computation
of the perturbed parameter value §7* in direction of the steepest descent from
which the new estimate 7°7! is obtained, according to equation

T = 4570 (5.11)
In the method of steepest descent, the perturbed parameter vector 47 is given by
6t =—o- VS (1) (5.12)

where o is a scalar known as the step length. Thus the perturbation is anti-
parallel to the gradient of the misfit. During inversion, the perturbation vector
&7 is tested if it exceeds a pre-defined size and truncated accordingly in order
to avoid large ’jumps’ in the solution space; truncation is applied one vector
component at a time. The truncation size is user-defined and passed via an
inversion control-file.

At each iteration 7 a new step length and descent direction is chosen, subject
to the descent condition

ST <S8 () & S(rt+61Y) < S (7%) (5.13)
The step length o* is found by evaluating the minimum of S (7*!), thus
o' =argmin S (7° + 67%) (5.14)

where ’arg min’ denotes the argument for which the minimum is attained.
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5.2.3 Under-determined case ( K > N )

The under-determined case commonly occurs for heterogeneous property inver-
sion. In order to maximise computational speed, summations over N data are
preferable to summations over K parameters (Fullagar, 2007a). To obtain an
updated parameter vector, 7%+1, the descent method (Equation 5.12) requires the
computation of the perturbed parameter vector §7° at each iteration 2. Writing
out the normalised objective function (Equation 5.9) for the next iteration ¢ + 1
gives.

1 & (dp - ?
S =23 (—qC_> (5.15)
n=1 n

where ¢! is the model update via Equation (5.8) for the n-th data point, viz.
K
& =ct + Y Dpyér} (5.16)
k=1

where §7; is the perturbation in the descent direction, previously given in
Equation (5.12). Substituting Equation (5.16) into (5.15) gives

N

8 (r*+1) = é 3 (e +de)’ (5.17)
n=1
where 4 .
& = ("q;c") (5.18)

denotes the weighted residual at the ¢-th iteration and where de?, is the change
in residuals. Recalling Equation (5.12) it follows that

K
dey, = —a* Z lanVkS (‘rl) = —a’A}, (5.19)

k=1 1"

where the gradient of the objective function for the k-th parameter evaluates as
2 = (dn—cy\ 1

VS (t}) = —= (u> -—D 5.20

™) =3 ,; n @ (5-20)

The step length o* is obtained by minimising S (7**!) with respect to o
(Equation 5.14). At the minimum is

0
Oa?
Therefore, substituting from Equation (5.19) into (5.17) and differentiating,

S’(‘r”l) = 0

N
—% > (e -0t AL) AL =0 (5.21)
n=1
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Hence, the step length that minimises S (7**!) is given by (Fullagar, 2007a)

o et
2
Yo (AL)
where summations are over N data. With a new step length at each iteration, a

new model is calculated via Equation (5.11) and the model response is updated
via Equation (5.8).

(5.22)

5.2.4 Over-determined case ( N > K )

The over-determined case commonly occurs for homogeneous property inversion.
In order to maximise computational speed, summations over K parameters are
preferable to summations over N data (Fullagar, 2007a). The objective function
1s given by the y2-misfit according to Equation (5.9),

() = % ZN: <M>2 (5.23)

n=1 In

The gradient for the k-th parameter evaluates the same as Equation (5.20). The
step length is chosen to simply scale the steepest descent perturbation as needed
to halve the x2-misfit,

VS (") 0T = - , (5.24)
and with é7 = —a- V.S (Equation 5.12) follows for the scaling factor o?,

5@
2- VS (m))*

T

(5.25)

where the squared magnitude of the gradient of the x?-misfit is given via (Fullagar,

2007a)
2 N [08)?
? _— —
Ivs @I =3 (52 ) (5.26)
k=1
where summations are over K parameters. Thus, iteration proceeds as in Equation

(5 11) by computation of the gradient and the scaling factor at each iteration
step.

5.2.5 Background optimisation

The background response is modelled as the TEM moment response of a continuous
conducting half space. The background-portion of the measured TEM moment
response is initially estimated from a half space conductivity, as most commonly
inferred from ¢DIs. The background-portion is subtracted from the measured
TEM moments and during inversion, an optimisation procedure optionally finds
the optimal half space conductivity in a least-squares sense so as to fit the



5.2 The inverse problem

127

background-portion of the TEM moment response. This optimisation is closely
analogous to ’enclosing half-space’ optimisation in vPmg.

The first order TEM moment of the half space response is linear with respect
to the half space conductivity oj. For any wire-segment of the transmitter loop,
the half space TEM moment responses can be calculated, respectively for the
vertical and horizontal component if needed, using Equations (2.89) and (2.107)
in Chapter 2. The background conductivity can be fixed or variable. If variable,
then during each iteration the current estimate of the background response is
subject to a simple least squares regression. By assumption, the observed TEM
moment vector o is given by

o=t+on-b (5.27)

where t is the target response and b is background. The spatial variation
in background is controlled by survey geometry, but its amplitude is linearly
dependent on conductivity o). Let an estimate of N ’observed’ background TEM
moments at the «-th iteration be represented by the data vector d,

d=o0-t (5.28)

The background d* is calculated by subtracting an estimate of the discrete target
response from the observed TEM moments. The initial background response d°
is calculated for the starting conductivity value ¢ which is based on CDIs or
in-situ measurements. The objective is to find a new half space conductivity at
each iteration which gives an improved fit to the ‘measured’ background. That is,
at each iteration a scaling factor 3* is sought to rescale the half space responses
and half space conductivity, viz.

d=pg-d° (5.29)

The least squares fitting proceeds by minimising the sum of squares of measure-
ment misfits for a set of N data points, and was also applied in Section 3.2.3 of
Chapter 3 for calculating initial estimates of cell time constants. The required
scaling factor is

EN Jn ) Ci?;
g==n (5.30)
> (49)

5.2.6 Implementation of rock property constraints

Bound constraints Property bounds for each unit are usually enforced du-
ring inversion. For TEM moment inversion, typically a positivity constraint is
employed, i.e. a lower bound of zero, in order to ensure non-negative time
constants. Time constant analysis from the TEM decays or previous inversion
results may serve as guidelines to incorporate upper bounds. If conductivity
measurements are available, the ’conversion factor’ is applied which re-scales the
conductivities so as to match the measured data. The conversion factor is based
on a least-squares regression, introduced earlier in Section 5.1.3.
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For homogeneous and heterogeneous property inversion, vPem3D checks
whether bounds of the actual unit have been reached when updating the properties
after inversion. The optimisation problem for the property inversion cases may
be stated as

minimise: S (7)

subject to: T < T < Tmaz

In practise each value of the updated parameter is tested, and if a bound has
been exceeded, the associated cell time constant is truncated at the bound value
for the associated unit.

Hard constraints It was mentioned earlier in this chapter that hard inversion
constraints in vPmg capture ’ground-truth’ which reflect geological information
in form of drill pierce points and petrophysical information, primarily based
on downhole logs or core measurements. For TEM moment inversion, which
recovers time constants, the aforementioned ’conversion factor’ is applied to
measured conductivities. The re-scaled conductivity is accepted as a time-
constant 'measurement’. Hard constraints are implemented as cell property
values, via the supplied rock property model. During inversion the assigned cell
properties are held fixed.

Soft constraints Soft constraints in vPem3D are implemented as multiplicative
weights, either as 1D depth weights or as 3D conductivity weights, in order to,
respectively, penalise shallow solutions or to promote particular features as seen
in the corresponding ¢cDIs. The weights, 1D or 3D, are encompassed as a diagonal
weight matrix W € REK*X The weights are applied to the sensitivity matrix D.
The columns of D relate to parameters, i.e. time constants of individual cells.
The weights modify the relative importance of each cell parameter. Accordingly,
those elements of the perturbation vector é7* with weight near unity will be
accentuated during inversion relative to elements with small weights. Zero
weights set parameter changes to zero, and hence exclude them from inversion.

The inverse problem (Equation 5.7) is adjusted so as to accommodate the
weighting matrix as follows:

Q(d-c') = QDW (W47 (5.31)

where (W~167%) = 67* denotes the vector of unknowns The problem is solved
with the steepest descent method as described earlier. A new model is obtained
upon 'unweighting’ the solved perturbation, viz.

57t = Wos (5.32)

An updated time constant model and model response is then obtained, respecti-
vely, via Equations (5.11) and (5.8).
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Calculation of the weight factors The following section describes compu-
tation of 1D depth weights and 3D conductivity weights. The 1D depth weights
are designed so as to counteract the geometrical decay of the forward operator G
(Equation 3.2) and to force conductivity variation to greater depth. The depth
weigths are calculated according to the following empirical function (G.Pears,
Mira Geoscience, pers. comm., 2008)

w(z, S0, do) = tanh(so (z— d())) (5.33)

where z denotes the depth to the k-th cell and where sy denotes a ’slope’ factor.
The slope factor affects the decay rate of the weights: a smaller value gives a
more slowly decaying weighting scheme as depicted in Figure 5.2. The reference
depth d forces the weights to greater depths by introducing a surficial layer
with zero weights. These depth weights decay more slowly then the "UBC-GIF’
depth weights for magnetic inversion, which are defined via a z=3/2 dependence
(Li and Oldenburg, 1996). By introducing a ’slope’ and 'depth’ parameter, the
vrem3D depth weights offer some flexibility to smoothly accentuate different
depths.

900 1200 1500 1800
1 1 1
2
=
-2
Q
=
§
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o= 0.001
$p=0.001
e
1 T T T T T T T T i
0 300 600 900 1200 1500 1800
Depth (m)

Figure 5.2 — vrem3D depth weights for various 'slope’ and 'depth’ factors so and
dop. Smaller so tend to accentuate deeper features and dp counteracts the strong
influence of the transmitter at shallow depth. Zero weights prevent parameter
changes and weights near unity emphasise parameter changes.

The best choice for sq is subjective; it may be chosen by preliminary inspection
of accompanying conductivity-depth sections; for example if conductivity occurs
at large depth, a smaller slope factor may be chosen and vice versa. Adequate
inversion results from synthetic examples were obtained if sy was chosen so
that the weights decayed to about 0.5 at the depth where the conductive high
emerges in the ¢DI. The reference depth dj is introduced in order to exclude
surficial layers which neutralises the impact of the strong transmitter footprint
at shallow depths. The factor dy is chosen according to the CDI sections where
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the transition from background to higher conductivity values occurs Selection of
50 and dp is further illustrated at two synthetic examples in subsequent sections.
The 3D conductivity weights are based directly on interpolated conducti-
vity/depth pairs from the CDIs and are less subjective than depth weights. This
approach directly reflects the diffusive transient field decay so that conductivity
weights inject depth resolution which 1s required for TEM moment inversion
Caution is needed if the CDIs contain artifacts or cannot be considered an au-
thentic, generalised representation of the geoelectrical subsurface. In that case
the weights would impose spurious features and the inversion may fail.
Apparent conductivity values are mapped between 0 and 1 and assigned
as spatial 3D weights distributed according to their assigned location. The 3D
weights are simply obtained by a linear mapping of the apparent conductivities

via:
()
(Ily,z) a'maz

where o, is the apparent conductivity at location (z,y, 2); omas is the maximum
occurring apparent conductivity value of the entire data set so that the maximum
occurring weight is 1. Because the weights are mainly specified to counteract the
geometric decay of the target response, that is the response without background,
the estimated background has been subtracted from the CDI values before calcu-
lating the weights. Conductivity weights give priority to conductivity structures
as seen in the CDIs and penalise solutions deviating from the CDIs.

w (04) >0 (5.34)

($iy7z)

5.3 3D Inversion example Horizontal Slab

The following section illustrates heterogeneous property inversion of TEM mo-
ments for the thick horizontal slab buried in a resistive environment previously
introduced in Section 3.5.1 (Chapter 3). The synthetic example is for a fixed-loop
system with instantaneous current shut-off The recordings are for 45 channels
with finite widths where channel centre times range from 0.01 msec to 1359
msec and comply with the SMARTEM instrument (c.f. Chapter 1, Table 1.2). All
B-field components are computed in pT/A. The ’observed’ TEM moment vector
is calculated from the time-domain EM response as computed with MARCO. Only
the moment transformed MARCO Bz-field decays are inverted. The number of
data points is 231. The TEM moments as obtained from the MARCO responses
are extrapolated at early and late time to provide complete TEM moments (c.f.
Equation 2.112). 5% random Gaussian noise was added to the complete TEM
moments. During inversion, components of the perturbation vector éT are
truncated at a maximum possible change of 0.2 msec in order to avoid large
jumps’ in the solution. The value for the step-size is chosen as a fraction of the
estimated time constant of the slab 74,;. The examples were computed on a
standard Pentium 4 2.8-Ghz processor from 2006.
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Figure 5.3 — Horizontal slab model with a conductivity of 1 S/m in 400 m depth
in 1 mS/m host. Fixed-loop TEM survey lines from —500N to 500N traverse the
model area with receivers from —1000E to 1000E at 100 m intervals. There are
in total 231 receiver stations. All three B-field components are computed at 45
channels complying with the SMARTEM instrument (Table 1.2). Transmitter on
and off times are 2000 ms (0.125 Hz fundamental).

The model is depicted in Figure 5.3; it shows a thick horizontal slab centred
at (OE,0N) with depth-to-top of 400 m and dimensions 800Ex800N x300z. The
conductivity contrast between host and target is 1000, since the host has a
conductivity of 1 mS/m and the slab a conductivity of 1 S/m. The time constant
of the slab has been estimated from the decay curves as 74,5 = 2.6 msec, as is
illustrated in Chapter 3. A fixed, square transmitter loop, with side lengths of
500 m, is directly above the prism. Model dimensions are 3 kmx2 kmx2 km for
east, north and depth, respectively. The model is discretised into 25 m cubic
cells which amounts to a total of 768,000 cells. Not all cells will participate,
however, depending on the model setup for inversion as described below.

TEM moments of horizontal slab Figure 5.4 shows the complete vertical
component TEM moments as calculated from the '"MARCO’ decays via Equation
(2.112). The complete TEM moment is the sum of the 'incomplete’ TEM moment
and the 'head’ and ’tail’ contributions. The 'incomplete’ TEM moments are the
moment transformed decays between the first and last channel delay time. 'Head’
and ’tail” are calculated by extrapolating the magnetic field data using a half
space model at early and late times. Panel oN in Figure 5.4 also shows the
‘incomplete’ TEM moment together with the 'head’ and ’tail’ contribution. For
the resistive half space model, the 'tail’ contribution is practically zero since the
B-field response has already decayed to zero for the 'tail’ time range. 5% random
Gaussian noise has been added to the complete TEM moments, which translates
to a data uncertainty of about ~0.004 pTs/A relative to the highest occurring
TEM moment amplitude. The noise contaminated TEM moments are input for
inversion with assumed data uncertainty of 0.004 pTs/A for all data points.
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Figure 5.4 - TEM Bz-moments of horizontal slab with 5% random Gaussian
noise added. Superimposed in panel ON are the ’incomplete’ TEM moment together
with the ’head’ and ’tail’ contribution.
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Figure 5.5 — Conductivity-depth sections based on total B-field amplitudes for
the horizontal slab model. The highest conductivities are centred at about -
750 m, near the base of the prism. Apparent conductivities in larger distances
from the prism depict the half space conductivity of 1 mS/m. Lateral model
dimensions are indicated by corners p1= (1500, —1000N), p2= (—1500E, —1000N)
and P3= (—1500E, —1000N). Vertical model extent is 2000 m.

Conductivity-depth sections A conductivity-depth image of the TEM de-
cays of the horizontal slab model are shown in Figure 5.5 which depicts an
eastwest CDI-section through the centre of the model (0N). The CDIs are cal-
culated from total B-field amplitudes using all three components (c.f. Chapter
4). Apparent conductivities range from about 1 mS/m to about 5 mS/m. The
apparent conductivity value of 1 mS/m depicts the host conductivity of the
model and may serve as an estimate of the host conductivity during inversion.
Interpolated apparent conductivities extend to larger depths than the actual slab.
However, the conductive high, depicted in the CDIs, is a good first approximation
to the location of the slab. The top of the conductor is well defined by the
conductivity gradient in the ¢DI, and lateral position of the conductor is well
defined in plan. The base of the conductor is not well defined. Interpolated
conductivity- depth pairs are utilised to initialise the CDI starting model and to
calculate the conductivity weights for the zero starting model.

Depending on the starting models and constraints used, recovered time
constant models after inversion may exhibit significant differences due to the non-
unique nature of the TEM moments inversion. A preferred time constant model
may only be identified after exploring some of the range of acceptable models
so as to develop an understanding of the variability of the results (Williams,
2008). In order to test the inversion algorithm and examine the variability of
the inversion results due to non-uniqueness, 3D inversion is carried out with four
different starting models and constraints:
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1. Unconstrained-starting model:

The starting model is initialised with zero time constants in all cells and
without any constraints. 3D inversion of the unconstrained-starting model
involves all cells. No positivity constraints are imposed. The unconstrained
inversion has the largest degree of freedom and 1s expected to fit the data
very well. In general, solutions for the unconstrained inversion do not reflect
the true subsurface conductivity structure and illustrates the importance
of encompassing constraints.

. CDI-starting model:

The time constant starting model 7 is generated from ODI pseudo-sections.
The cDI-starting model includes an inactive 'layer-unit’ of 200 m at the
top and an active unit which occupies the remainder of the model Voxet.
The vertical extent of the ’layer-unit’ is chosen according to the CDI sec-
tions which show the transition from background conductivity to higher
conductivity values at a depth of about 300 m (Figure 5.5). The active
unit is set up with a positivity constraint for the time constants. Only the
cells in the active unit take part in the inversion. No weighting scheme
is applied. For the cDI-starting model, the background conductivity is
variable and subject to optimisation. The CDI-starting model is useful for
providing depth-information for inversion of TEM moments.

. Zero-starting model with conductivity weights:

The zero-starting model is useful when there is little prior knowledge
of the target, as for example in greenfields exploration. Here, the zero-
starting model is combined with conductivity weights. This setup is closely
related to the ODI starting model and depth information is injected via
the weights based on ¢DI values (Section 5.2.6). The zero-starting model
with conductivity weights favours solutions which bear resemblance to the
¢pis. All cells of the model Voxet take part in the inversion. A positivity
constraint for the time constant of all cells is enforced. The background
conductivity is held fixed during inversion.

. Zero-starting model with depth weights:

The zero-starting model is conditioned with depth-weights. To illustrate
the effect of depth weights, two different depth weighting schemes are
employed (Equation 5.33). First, the weights are calculated with parameters
so = 0.004 and dy = 200. The choice of sg and dy was guided by the cb1
sections so that the weights have decayed to ~0.5 at the centre of the
conductive high at 750 m depth (Figure 5.5). Second, the weights are
calculated with parameters sop = 0.0005 and dy = 350. The weights are
more slowly decaying with a value of ~0.2 at 750 m depth. The depth
factor dp is chosen so as to coincide with the top of the conductive high in
the oDIs. The half space conductivity is held to a fixed value of 1 mS/m.
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5.3.1 Unconstrained starting model

In unconstrained inversion of static magnetic data one expects to achieve a good
fit to the data, with the changes in susceptibility concentrated near the receiver
stations at the ground surface (Oldenburg and Pratt, 2007). For TEM moment
inversion, the significant difference with respect to inversion of static magnetic

data is the presence of a primary magnetic field which varies from cell to cell.

The transmitter footprint, and therefore model sensitivities, is strong in the
vicinity of the transmitter, so that changes do not only appear at the top near
the receivers but also near the transmitter.

Time Constant (msec)
0

-0.04 -0.02

Figure 5.6 — Recovered time constant model after inversion of the horizontal slab
TEM Bz-moments based on the unconstrained starting model. Figure (A) shows a
horizontal section at 12.5 m depth. Figure (B) shows an eastwest and northsouth
section which highlight the distribution of time constants with depth. Because
the recovered model is clustered near the surface, the time constant values are
very small.

Figure 5.6 shows the recovered time constant model after unconstrained
inversion of vertical component TEM moments. Although inversion was successful,
the recovered structure bears no resemblance to the thick slab model and manifests
the non-unique nature of the inverse problem. Panel (A) in Figure 5.6 displays
a horizontal section at a depth of 12.5 m. The time constant pattern in the top
layer is complex and alternates between negative values along the survey lines
and positive values in between, with reversed polarity inside the transmitter
loop. At far receiver offsets the time constants are zero. The figure in (B)
shows cross-sections through the centre of the model. The recovered conductive
region is at shallow depths. The time constants are mostly positive inside the

transmitter loop whereas outside the loop, the time constants are mostly negative.

The polarity in time constants reflects the orientation of the primary field of
the transmitter inside and outside the loop. Because the cell point conductors
adopt the primary field direction, the cell time constants are negative outside
the loop so as to reproduce a positive TEM moment response. The half space
conductivity was held to a fixed value of 1 mS/m during inversion.

Vertical component TEM moment profiles of the recovered time constant
model are shown in Figure 5.7 and appear to be better than the noise level.
Because no constraints were applied, variations in the the recovered time constant
model are concentrated at the top so that the data is overfitted. Overfitting
usually implicates that an unrealistic model has been generated with excessive
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structure in

order to fit the noise which also explains the relative high number of

76 iterations (Oldenburg and Li, 2005, p.16). Initial misfit was y* = 51.3; final
misfit was x? = 0.9. Inversion succeeded after 16 min. and 19 sec. (16:19 min).

Thick Slab Recovered TEM Moments
Unconstrained Starting Model — Err = 0.004 pTs/A — lter=76
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.7 — Recovered Bz-TEM moment responses based on unconstrained

starting model. The recovered time constant model gives rise to TEM moment
responses which also fits the noise with a fit of better than 0.004 pTs/A after 76

iterations.



5.3 3D Inversion example Horizontal Slab

137

5.3.2 DI starting model

An eastwest cross-section through the recovered time constant model, based
on the ¢DI starting model for the horizontal slab, is shown in Figure 5.8. The
starting model was initialised with time constants based on apparent conductivity
values which have been rescaled using a least-squares multiplicative factor of
B = 0.7 as described earlier in Section 5.1.3 and Chapter 3.2.3. No weighting
scheme was applied. The starting model consists of an inactive ’layer-unit’,
extending 200 m below the surface, and the active unit, defined as the remainder
of the model. The ’layer-unit’ effectively suppresses the strong influence of the
transmitter loop at shallow depths. The active unit consists of 700,800 cells. A
positivity constraint has been employed.

0 East

(A)

Time Constant (msec) LE
05 1 1.5 2 ! W

Figure 5.8 — Cross-section through recovered time constant model after inversion
of the vertical component horizontal slab TEM moments using the CDI starting
model. Inversion was successful after 2 iterations. Figure (A) shows a northsouth
section and Figure (B) an eastwest section through a region of elevated time
constants at the model centre. The recovered model is in distinct resemblance to
the cp1 starting model.

During inversion, the background conductivity was held variable and subject
to least squares optimisation at each iteration. In order to test the optimisation,
the start value was based on a 'bad’ guess of 0.5 mS/m. After inversion, the half
space conductivity was 0.71 mS/m which somewhat underestimated the true
background conductivity (1 mS/m). The recovered time constant model has a
distinct resemblance to the ¢DI starting model. The maximum recovered time
constants are in good agreement with the estimated time constant value of the
slab (7gqp 2 2.6 msec).

Together with the TEM moments of the recovered time constant model, Figure
5.9 depicts the TEM moments of the starting model. The starting model provided
a good fit to the data with a misfit of x> = 2.24. Accordingly, the inversion
succeeded after 2 iterations with a minimum change to the starting model.
Runtime was 14:22 min. Because the starting time constant model 7¢ was
initialised with time constants larger than zero, the forward model calculation
took considerably longer than for the starting models based on a zero time
constant model.
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Figure 5.9 — Recovered vertical component TEM moment responses based on
cpI starting model. Half space conductivity after inversion was 0.71 mS/m. The
calculated TEM moments fit the the observed data set to better than 0.004 pTs/A.
The TEM moment response of the cpI starting model provides a good fit to the
data. The inversion was successful after 2 iterations.
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5.3.3 Zero starting model with conductivity weights

Closely related to the DI starting model is the zero starting model with conducti-
vity weights. All cells of the model Voxet take part in the inversion. A positivity
constraint for all model parameters is enforced. The conductivity weights are
shown in Figure 5.10 (A). On display is an eastwest section through the mo-
del centre (ON). Parameter changes are favoured for cells associated with high
starting conductivity. Away from the conductive high, the conductivity weights
approach zero. Cells associated with a zero weight are effectively turned off and
will not change during inversion. Zero weights occur where apparent conductivity
equals the host conductivity (1 mS/m) or smaller.

(A Conductivity Weights
08

0.2 04 06

Figure 5.10 - Conductivity weights and recovered time constant model after
inversion for zero starting model. The left panel (A) shows an eastwest section
(ON) through the starting model with the conductivity weights on display. The
right panel (B) shows the same cross-section through the centre of the recovered
time constant model.

An eastwest cross-section though the model centre of the recovered time
constant model after inversion is shown in Figure 5.10 (B). In contrast to the
recovered time constant model of the ¢DI starting model, the recovered time
constants here are mostly confined to the volume of the horizontal slab. The
highest occurring time constant is ~5 msec, which is about double the estimated
time constant of the horizontal slab (2.6 msec). The TEM moment response is
shown in Figure 5.11. Initial misfit was y?> = 51.3 for an uncertainty of 0.004

pTs/A and inversion succeeded after 4 iterations with a runtime of 9:17 min.

Because initial calculation of the forward model is avoided when using a zero
starting model, the runtime is significantly shorter than for the cDI starting
model.
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Figure 5.11 — Recovered vertical component TEM moment responses based on
the zero starting model with conductivity weights. The inversion was successful
after 4 iterations. The calculated TEM moments fit the the observed data set to
better than 0.004 pTs/A. During inversion, the half space conductivity was held
fixed to 1 mS/m.



5.3 3D Inversion example Horizontal Slab

141

5.3.4 Zero starting model with depth weights

The zero starting model is here conditioned with depth weights. As previously
described, the inversion based on the zero starting model with depth weights
is carried out for two different weighting schemes. First, a weigthing scheme
is devised calculated with parameters sy = 0.004 and dy = 200, referred to as
weigthing scheme (a). Second, inversion is carried out for a weighting scheme

based on factors sp = 0.0005 and dy = 350, referred to as weigthing scheme (b).

The smaller 'slope’ factor gives a more slowly decaying weighting scheme which
forces the weights to greater depths. Figure 5.12 shows an eastwest cross-section
through the centre of the model (0N) for weighting scheme (b).
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Figure 5.12 — Depth weigthing scheme calculated for a ’slope’ factor of sg = 0.0005
and a 'depth’ factor of do = 350 (c.f. Equation 5.33).

The recovered model after inversion with weigthing scheme (a) is shown in
Figure 5.13a. The figure shows an eastwest section through the model centre
(oN). All cells of the model were restricted to non-negative time constants. A
region of elevated time constants approximately coincides with the horizontal
slab, however somewhat shifted above the upper edge of the slab. Compared
with the previous result based on conductivity weights (Figure 5.10), the region
of elevated time constants is disseminated throughout a larger volume. The
inversion was successful after 4 iterations with a runtime of 9:45 min. During
inversion, the half space conductivity was held to a fixed value of 1 mS/m. Initial
misfit was y? = 51.3 for an uncertainty of 0.004 pTs/A.

Figure 5.13b shows the recovered time constant model based on weighting
scheme (b). The recovered model shows the region of elevated time constants
mostly confined to the volume of the horizontal slab. The inversion succeeded
after 6 iterations; runtime was 10:32 min. As before, the half space conductivity
was held to a fixed value of 1 mS/m. Both inversion results, based on different
depth weighting schemes, give a solution which fit the TEM data to a data
uncertainty of better than 0.004 pTs/A and demonstrates the inherent non-
unique nature of the inverse problem. Figure 5.14 shows the TEM moment
response profiles of the recovered time constant model for weighting scheme (b).
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(a) Recovered time constant model based on zero starting model
with depth weights for sp = 0.004 and dy = 200. The recovered
time constant model broadly coincides with the position of the slab

however appears somewhat elevated above the top of the horizontal
slab.
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(b) Recovered time constant model based on zero starting model
with depth weights for sop = 0.0005 and do = 350. The recovered

time constant high is largely confined within the volume of the
horizontal slab.

Figure 5.13 — Recovered time constant models for a thick horizontal slab based
on a zero starting model conditioned with two different depth weighting schemes.
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Figure 5.14 - Recovered vertical component TEM moment responses based on the
zero starting model with depth weights for a factor of so = 0.0005 and do = 350.
The inversion was successful after 6 iterations. The calculated TEM moments fit
the the observed data set to better than 0.004 pTs/A. During inversion, the half
space conductivity was held fixed to 1 mS/m.
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5.3.5 Review of inversion results for horizontal slab model

Heterogeneous property inversion of the vertical component TEM moments for
the horizontal slab model have been conducted for four different starting models.
All inversions concluded successfully with a misfit of x% < 1 after inversion Due
to the non-unique nature of the TEM moments inversion, the recovered time
constant models exhibit significant differences, depending on the starting models
and constraints used. The non-unique nature is illustrated most clearly by the
inversion result for the unconstrained starting model which generated a shallow
time constant model after 76 iterations with very low time constant values,
clustered near the transmitter loop and receivers. The TEM moment response
for this model fits the noise-level, 1.e. overfits the data which also explains the
high number of iterations.

Inversion parameters of the various schemes employed are displayed in Table
5.1. Initial x2-misfits for the starting models initialised with zero time constants
are identical; this misfit characterises the difference between the measured
TEM moments and the 1 mS/m background response. The CDI starting model
has a considerably smaller initial misfit. The small misfit is indicative of the
fairly accurate image of the horizontal slab model provided by the conductivity-
depth sections. Consequently, after only 2 iterations the inversion for the cp1
starting model succeeded and the resulting time constant model retains a distinct
resemblance to the CDI sections. When the zero starting model is conditioned
with conductivity weights, inversion generated an acceptable time constant model
after 4 iterations, confined by the volume of the slab. Likewise, when conditioned
with depth weights, successful inversions generated time constant models in fairly
good agreement with the horizontal slab after only a few iterations.

Table 5.1 — Inversion parameters of the horizontal slab model. Number of data
points is 231. Data uncertainty is ¢ = 0.004 pTs/A and maximum step size
éT = 0.2 msec.

Starting-model Ohost (mS/m) thart Iter. Time # Active
(start / final) (min.sec) Parameters
"Unconstramed’ 1.0/ 1.0 51.3 76 16.19 768,000
'Cpr’ 0.5 /0.71 2.24 2 14:22 700,800
"Zero’ 3D-weights 1.0 /1.0 51.3 4 9:17 768,000
"Zero’ 1D-weights (a) 1.0/10 51.3 4 9 45 768,000

'Zero’ 1D-weights (b) 1.0 / 1.0 51.3 6 10-32 768,000
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5.4 3D Inversion example Vertical Dyke

The second example illustrates heterogeneous property inversion of the TEM
moment response of the extensive vertical dyke model embedded in a conductive
host, previously introduced in Section 3.5 2 (Chapter 3). In this second example
the extensive target is offset from the transmitter loop. As in the previous
example of the horizontal slab, all B-fleld components are calculated in pT/A at
45 ’SMARTEM’ channel delay times for a fixed-loop layout. East-west survey lines
along -1000N to 1000N at 200 m intervals traverse the model area with receiver

stations between -500E and 1500E at 100 m intervals yielding 231 data points.

The fixed transmitter loop has side lengths of 500Ex1000N and is centred at

(OE,0N) with the eastern wire 450 m west from the nearest edge of the dyke.

The dimensions of the vertical dyke are 100Ex1400NXx1000Z; 1t is centred at
(750E,0N) with depth-to-top of -400 m. Conductivity of the dyke is 50 S/m
and the host conductivity is 0 05 S/m. The time constant of the model was

previously estimated from the TEM decays as Tgyre =~ 475 msec (Chapter 3.5.2).

The model, shown in Figure 5.15, is comprised of 50 m cubic cells with a total
of 180,000 cells

Synthetic step response recordings were computed at times ranging from
0.1 msec to 1340 msec with MARCO. The moment transformed MARCO Bz-field
decays constitute the observed data vector where 5% random Gaussian noise
have been added. The TEM moments as obtained from the MARCO responses
are extrapolated at early and late time using Equation (2.112) to provide the
complete TEM moments. The components of the perturbation vector 47 are not
permitted to exceed the predefined step-size of 3.5 msec during inversion. The
value for the step-size was chosen as a small fraction of 74yx.. The examples
were computed on a standard Pentium 4 2.8-Ghz processor from 2006.
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Figure 5.15 — Section and plan of vertical dyke model. Depth-to-top is 400 m,
width is 100 m, strike 1s 1400 m and depth extent is 1000 m The dyke 1s buried in a
conductive host (50 mS/m). The conductivity of the target 1s 50 S/m. Fixed-loop
TEM survey lines from -1000N to 1000N at 200 m intervals traverse the model area
with receivers from -500F to 1500F every 100m. There are 1n total 231 receiver
stations.
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Conductivity-depth sections Figure 5.16 shows an eastwest conductivity-
depth section through the centre of the model (ON). The apparent conductivities
are calculated from total B-field amplitudes using all three components (Chapter
4). Overall, the cDIs present a diffuse image of the vertical dyke. The depth-to-
top and depth-extent of the prism are represented fairly accurately in the CDI,
but there is a broad conductive area west of the vertical dyke which extends
below the transmitter loop. On the eastern side of the dyke, the apparent
conductivities are smaller than the host conductivity of 50 mS/m. This apparent
conductivity pattern, as calculated from B-field amplitudes, is typically seen for
vertical prisms buried in conducting hosts (c.f. Chapter 4.5.1). Away from the
conductive regions, the host conductivity of 50 mS/m is recovered. Maximum
apparent conductivity is 74 mS,/m.

Apparent Conductivity (mSim)
40 45 B0 55 60 65

Figure 5.16 — Conductivity-depth section of vertical dyke model based on total
B-field amplitudes for an eastwest cross-section through the centre of the model
(ON). The cpI depicts the depth-to-top and the depth-extent of the prism fairly
accurately. A broad conductive region extends west of the dyke, underneath the
transmitter loop. Apparent conductivities east from the dyke are smaller than the
host conductivity of 50 mS/m. Maximum apparent conductivity is 74 mS/m.
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As in the example of the horizontal slab various starting models are construc-
ted in order to examine the variability of the inversion results due to non-
uniqueness and to test the algorithm for a different model where the transmitter
is offset from the target:

1. cpI-starting model:

The time constant starting model 74 is initialised with cell time constants
based on the ¢cDIs. The CDI-starting model is furthermore categorised
into an inactive 'layer-unit’ of 200 m at the top and an active unit which
occupies the remainder of the model Voxet (165,600 cells). The vertical
extent of the ’layer-unit’ is motivated by CDI sections where the transition
from background conductivity to higher conductivity values occur at a
depth of about 300-400 m (Figure 5.16). A positivity constraint is imposed
on the time constants of the active unit. No weighting scheme is applied.
For the cDI-starting model, the half space conductivity is variable during
the inversion process and subject to optimisation. The host conductivity
is mitialised with a value of 30 mS/m.

2. Zero-starting model with conductivity weights:
The zero-starting model is initialised with conductivity weights and a
positivity constraint. All cells of the model Voxet take part in the inversion.
The conductivity weights are calculated from the cbDI-based conductivity
model of the dyke (Equation 5.34) The half space conductivity is held to
a fixed value of 50 mS/m as estimated from the CDI sections.

3. Zero-starting model with depth weights:

The zero-starting model is conditioned with depth-weights. As before, the
time constants are constrained to non-negative values. The weights are
based on a ’slope’ factor of sp = 5 x 10~ and a ’depth’ factor of dy = 200.
The weights decay to a value of 0.5 at a depth of ~ 1200 m where the
maximum conductivity in the cDIs occur (Figure 5.16). The inversion is
carried out with a fixed half space conductivity of 50 mS/m and is repeated
where the half space conductivity is subject to optimisation as well.

TEM moments of vertical dyke Figure 5.17 shows the vertical TEM moment
response from the vertical dyke model. Because the model is symmetric with
respect to ON, and the noise does not vary significantly, only the southern lines
from -1000N to ON are shown.

As before, moment transformation of the synthetic Bz-TEM decays, including
head’ and ’tail’, produces the complete TEM moments. 5% random Gaussian
noise has been added to the complete TEM moments. The noise contaminated
vertical component TEM moments are input for inversion. For a noise level of 5%,
the data uncertainty for inversion translates to about 0.15 pTs/A with respect
to the maximum TEM moment amplitude at ON.

Because the strong host response obscures the response from the dyke, the
'stripped’ responses are shown in Figure 5.18. For the ’stripped’ responses, the
50 mS/m host response has been subtracted from the ’full’ TEM moments. The
‘stripped’ TEM moments depict an estimate of the free-space response of the
vertical dyke prism. At 750E, the ’stripped’ responses exhibit a zero cross-over,
which is indicative of the Bz response of the vertical dyke
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Figure 5.17 — TEM Bz-moments of vertical dyke model as calculated from moment
transformed '"MARCO’ decays. Superimposed are the TEM moments with 5% random
Gaussian noise; these are input for inversion. The 50 mS/m background TEM
moments are shown also.
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Figure 5.18 — 'Stripped’ Bz TEM moments of vertical dyke model where the
background TEM moments have been subtracted from the 'full’ TEM moments. The
stripped TEM moments depict an estimate of the free-space response of the vertical
dyke prism. Because the noise level is based on the 'full’ TEM moments, the noise
level appear higher in the stripped response, so that 5% noise is more severe than
in the previous case: host contribution is more significant. Zero-crossovers occur
over the centre of the vertical dyke at 750E.
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5.4.1 cCDI starting model

Initial time constant values are assigned to each cell of the active unit after the
apparent conductivities have been rescaled with a least-squares multiplicative
factor of B = 2.6 (Section 5.1.3). Figure 5.19 shows cross-sections through the
recovered time constant model after inversion. The recovered time constant model
bears resemblance to the CDI starting model, however the region of elevated
time constants has shifted eastwards and towards the upper part of the dyke.
Panel (A) displays an eastwest section through the model centre at 0 North,
panel (B) shows a northsouth section through the vertical dyke prism at 750
East and panel (C) presents a horizontal section at a depth of 525 m where the
maximum time constant value is found. The time constant values are well below
Tayke == 475 msec, which was based on time constant analysis of the MARCO
decays (Chapter 3). Since elevated time constants are distributed throughout
a larger volume than the vertical dyke, the recovered time constant values are
smaller than 7gyke so as to reproduce the TEM moments

Also shown in Figure 5.19 (D) is a 3D iso-volume of the recovered time
constant model where only time constants greater than 40 msec are displayed.
The elevated recovered time constants larger than 40 msec are clustered around
the location of the original vertical dyke model but extend somewhat westwards
towards the transmitter loop as is noticeable in the eastwest cross-section of
panel (A). The westward extension of the recovered model is also seen in the
CDI sections of the model. The conductivity model is based on total B-field
amplitudes which is not necessarily ideal for inversion of Bz TEM moments.
Inversion of |B| TEM moments may produce a model which resembles the dyke
more closely. |B] TEM moments inversion is the subject of future work (Appendix

A).

The half space conductivity was initiated with a bad’ guess of 30 mS/m. After
inversion, the half space conductivity was ~45 mS/m. The vertical component
TEM moment response of the recovered time constant model is shown in Figure
5.20. On display are the responses for three survey lines at -800N, at -400N,
and at ON. The responses at line -800N are outside the transmitter loop and
approximately over the edge of the vertical dyke. The TEM moment responses
at -400N are near the transmitter wire and traverses the vertical dyke. The
responses at ON are recorded across the centre of the loop and dyke. The left
hand side shows the ’full’ TEM moments and the right hand side shows the
'stripped’ responses where the host response for 45 mS/m has been subtracted.

Figure 5.20 also shows the Bz TEM moment response of the starting model
for three survey lines. The TEM moments of the starting model approximately
corresponds to the observed TEM moments with an initial misfit of the starting
model of x> = 2.27. The inversion of the noise contaminated TEM moments,
based on the CDI starting model, succeeded after 15 iterations with a runtime of
4:15 min.
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Figure 5.19 - Cross-sections for (A) ON, (B) 750€ and (C) plan at depth 525 m
through recovered time constant model after inversion of the vertical dyke TEM
moments using the ¢DI starting model. Inversion was successful after 15 iterations.
The recovered model bears resemblance to the cpI starting model, however the
region of elevated time constants has shifted eastwards and towards the upper
part of the dyke. The iso-volume in panel (D) is for time constants larger than 40
msec.
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Figure 5.20 - Bz TEM moment responses of recovered time constant model based
on the ¢p1 starting model. On display are TEM moments for three survey lines at
-800N, at -400N and at ON, which run, respectively, outside the transmitter loop,
just inside the transmitter loop and over the transmitter loop centre. The left
hand side displays the ’full’ TEM moments and the right hand side the ’stripped’
responses without the host response.
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5.4.2 Zero starting model with conductivity weights

For the zero starting model with conductivity weights, all cells are active during
inversion. A positivity constraint for the time constants was enforced during
inversion. An eastwest cross-section of the conductivity weights is shown in
Figure 5.21. Larger weights are associated with higher conductivities. Zero
conductivity weights are associated with the half space conductivity or smaller
values. A sharp transition from higher weights near the centre of the prism to
zero weights occurs east of the dyke, so that changes in the parameter vector
are prohibited east of the dyke.

The recovered time constant model after inversion is shown in Figure 5.22.

The dyke is accurately located in plan (Panel C), and its upper part is accurately
located in section (Panels A and B). The recovered geoelectrical structure is
mostly confined to the volume of the vertical dyke, however it is clustered in
the upper third of the dyke model. The maximum values of the recovered time
constants are larger than 300 msec, close to the time constant estimate for the
vertical dyke (74yre = 475 msec).

As before, the 'full’ and ’stripped’ vertical component TEM moment profiles
are shown for three lines in Figure 5.23. The half space conductivity was held
fixed at its true value of 50 mS/m. Initial misfit was y2 = 4.74 for the data

uncertainty of 0.15 pTs/A and the inversion was successful after 67 iterations;

runtime was 5:52 min.
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Figure 5.21 — Conductivity weights for vertical dyke model for an eastwest cross-
section through the centre of the model (ON). Changes in the time constant for
cells associated with high conductivity are preferred, whereas parameter changes
are penalised for low conductivity cells. Cells associated with a zero weight are
effectively turned off and will not change during inversion. Zero weights occur
predominantly at the top of the model and east of the vertical dyke.
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Figure 5.22 — Recovered time constant model of vertical dyke data assuming
a zero starting model with conductivity weights. The recovered time constant
model seems concentrated near the top of the dyke. Panel (A) displays an eastwest
section through the model centre at 0 North; panel (B) shows a northsouth section
through the vertical dyke prism at 750 East and panel (C) presents a horizontal
section at a depth of 575 m where the maximum time constant value is found.
Panel (D) is a 3D iso-volume of the recovered time constant model where only
time constants greater than 100 msec are displayed.
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Figure 5.23 — Bz TEM moment responses of recovered time constant model for
the zero starting model with conductivity weights. The left hand side displays the
full’ TEM moments and the right hand side the ’stripped’ responses without the
host response. During inversion, the host conductivity was held fixed at 50 mS/m.
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5.4.3 Zero starting model with depth weights

A depth weighting scheme, based on weights calculated with so = 5 x 10~* and
dy = 200, is employed to condition the depth of the causative volume. The
weights are shown in Figure 5.24. Inversion is carried out with a fixed background
conductivity (50 mS/m) and is repeated with a variable conductivity in order to
examine the impact of a variable background when the background conductivity
is relatively high. Optimisation for the background conductivity is based on an
initial 'bad’ guess of 30 mS/m.
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Figure 5.24 — Depth weighting scheme based on so = 5 x 10~* and do = 200.
The weights decay to a value of ~ 0.5 at a depth of ~ 1200 m which coincides
with the maximum conductivity of the cDis.

Figure 5.25 shows the recovered time constant model with the fixed half space
conductivity of 50 mS/m. Elevated values of the recovered time constants are
found at depths broadly coinciding with the upper half of the vertical dyke model.
However large time constant values are distributed throughout a large volume
extending well above the vertical dyke. The top of the recovered time constant
model is at dp = 200 m. Initial misfit was x> = 4.7 for the data uncertainty of
0.15 pTs/A; inversion succeeded after 91 iterations; runtime was 6:33 min.

The inversion was repeated for the variable host conductivity (starting value
30 mS/m). The result is depicted in Figure 5.26. The recovered time constant
model has a distinct resemblance to the result for the fixed half space conductivity.
After inversion, the half space conductivity was 46.7 mS/m. The recovered time
constants are spread out within a greater volume of the model in order to
account for the 'missing’ host conductivity. Initial misfit was x? = 4.1 for the
data uncertainty of 0.15 pTs/A; inversion was successful after 49 iterations;
runtime was 4:36 min.

Because the background response is very strong, a fixed background conduc-
tivity during inversion imposes a strong constraint so that the inversion requires
a considerable number of iterations in order to achieve a fit to the data. Having
a variable host conductivity gives less restrictive constraints with more degrees
of freedom so that the inversion finds a solution more readily. The TEM moment
responses are shown in Figure 5.27 for the recovered time constant model for
the fixed background.
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Figure 5.25 — Recovered time constants for the vertical dyke model based on a
zero starting model conditioned with depth weights (so = 0.0005 and do = 200).
The half space conductivity was held fixed during inversion (50 mS/m). The
recovered time constant model approximately coincides with the upper third of the
vertical dyke model, but somewhat extends laterally and above the dyke. Highest
time constant value of ~55 msec is found at a depth of 525 m (C). The iso-surface
in panel (D) shows elevated time constants larger than 30 msec.
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Figure 5.26 — Recovered time constants for the vertical dyke model based on a
zero starting model conditioned with depth weights (so = 0.0005 and do = 200).
The half space conductivity was variable during inversion (start value 30 mS/m);
final value was 46.7 mS/m. The recovered time constant model approximately
coincides with the upper third of the vertical dyke model, but somewhat extends
laterally and above the dyke. Highest time constant value of ~50 msec is found
at a depth of 525 m (C). The iso-surface in panel (D) encloses cells with time
constants larger than 30 msec.
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Figure 5.27 — Vertical component TEM moment response profiles of recovered
time constant model based on zero starting model conditioned depth weights. The
50 mS/m background conductivity was held fixed during inversion. On display are
three survey lines at -800N, at -400N and at ON with the left hand side displays

the ’full’ TEM moments and the right hand side the ’stripped’ responses.
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5.4.4 Review of inversion results for vertical dyke model

Heterogeneous property inversion of the Z-component TEM moments for the
vertical dyke was carried out for a CDI starting model, a zero starting model
conditioned with conductivity weights and a zero starting model conditioned
with depth weights. Five percent Gaussian random noise was added to the
Z-component TEM moments, which translates to a data uncertainty of about
0.15 pTs/A. Depending on the starting models and constraints used, various
differences arose in the recovered time constant models. The inversion parameters
for 4 inversion runs are displayed in Table 5.2.

Table 5.2 — Inversion parameters of the horizontal slab model. Data uncertainty
is ¢ = 0.15 pTs/A and maximum step size 67 = 3.5 msec. Number of data points
is 231. Starting value of host conductivity is 30 mS/m (where applicable).

Starting-model Ohost (mS/m) thart Iter. Time # Active
(start / final) (min:sec) Parameters
‘opr’ 30/ 45 2.3 15 4:15 165,600
'Zero’ 3D-weights 50 / 50 4.7 67 5.52 180,000
"Zero’ 1D-weights (a) 50 / 50 4.7 91 633 180,000
*Zero’ 1D-weights (b) 30/467 4.1 49 436 180,000

All inversions attained a fit to the vertical dyke TEM moments and concluded
successfully with a misfit of x> < 1. When compared with the result from the
conductivity-depth imaging, the approximate 3D inversion produced a ’sharper’
image of the geoelectrical subsurface structure. All recovered time constant
models could indicate the position of the upper part of the vertical dyke prism.
By design of the forward algorithm, each point conductor is parallel to the local
primary field. For the vertical dyke example currents will predominantly flow in
the plane of the dyke and taking into account conductivity gradients could be
important. Conductivity gradients are part of future work (Appendix A).

oD1 starting model The initial misfit of x% = 2.3 was relatively small since
the cDI starting model already gave a fairly good fit. Inversion for the CDI
starting model succeeded after 15 iterations. Variable background conductivity
was 45 mS/m after inversion. Elevated values of the recovered time constant
model are indicative of the location of the dyke. A broad conductive area is
extending westwards as is also seen in the corresponding CDIs. Because CDIs are
generated from total B-field amplitudes, it is expected that inversion of |B| TEM
moments may produce a model which resembles the vertical dyke more closely.
This is a subject of future work (Appendix A).
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Zero starting model with conductivity weights The initial x2-misfit
of 4.7 for the zero starting model is the misfit between the ’observed’ TEM
moments and the strong 50 mS/m background response. The time constant model
accurately depicts the upper part of the vertical dyke. Because small conductivity
weights penalise conductive material eastside of the apparent conductive high,
elevated values in the recovered time constant model are mostly confined to the
volume of the dyke, though clustered in the upper third of the dyke. Recovered
time constant values of up to ~330 msec approach the estimated time constant
of the dyke (7ayre = 475 msec).

Zero starting modecl with depth weights Recovered time constant models
based on the depth weighting scheme give a satisfactory image of the vertical dyke
model. Calculations have been conducted for a fixed and a variable background
conductivity. In the case of the least-squares optimised background, resulting in
a final half space conductivity of 46.7 mS/m, the recovered time-constant model
values are somewhat more disseminated in order to compensate for the 'missing’
host conductivity. The recovered time constant structure is partially located
above the top of the vertical dyke and lower time constant values are truncated
at dg = 200 m. The higher number of iterations, in case of the fixed background,
is interpreted to be due to the fairly strong host response which effectively
imposes a strong constraint so that the inversion requires a considerable number
of iterations in order to achieve a fit to the data.

5.5 Concluding remarks

The algorithm for inversion of TEM data generates acceptable models as de-
monstrated for two distinct, synthetic examples. The inversion is fast and hence
various different starting models can be examined in short time. The synthetic in-
version examples illustrate how the non-unique nature of heterogeneous property
inversion of TEM moments may be addressed by including a set of quantitative
weights. The use of conductivity-based starting models and/or weights is very
effective.

Depth information is restored by using CDI values either as initial time
constant values or as weights. In particular, zero starting models with conducti-
vity weights produced fast and accurate results. Because zero starting models
omit initial calculation of the forward model response, the inversion is signi-
ficantly faster than for cDI starting models. The ¢cDis for both models were
already indicative of the true model and 3D inversion constrained by conductivity
weights basically refined the CDI results.

Depth weighting penalises shallow solutions but is subjective to a certain
degree. For inversion of TEM moments, the depth weights are guided by inspection
of the cDIs, defined such that the weights decayed to about 0.5 at depths
coinciding with the maximum apparent conductivity. Based on the depth
weighting schemes, TEM moment inversion gave solutions in overall agreement
with the synthetic models. The next chapter illustrates how incorporation of
geological constraints, based on drill core samples, guides the inverse problem to
a solution consistent with the available geological knowledge.
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Chapter 6

Application of approximate
3D TEM inversion to field data.

Introduction This chapter illustrates application of the novel potential field-
like 3D inversion approach to TEM field data with incorporated geological informa-
tion as constraints. Fixed-loop B-field data were obtained along multiple survey
lines employing a low-temperature SQUID sensor in conjunction with a SMARTEM
receiver. The TEM data were acquired across the Proterozoic metavolcanic-
sedimentary succession which hosts the Gamsberg zinc deposit in South Africa.
The time-domain EM field data are transformed to TEM moments (c.f. Chapter
2.8). Vertical component TEM moments which are linear with respect to time
constants are subject to inversion for geoelectrical structure.

Geophysical information from magnetic and gravity surveys and geological
information as well as petrophysical information from drill core samples are
incorporated into a 3D geological model of the TEM survey site which is located
in the Eastern portion of the Gamsberg prospect. This model expedites 3D
integrated inversion of the TEM moments by guiding the inversion towards a
solution that is consistent with the geological knowledge. The geological model
consists of three formations: Nousees Mafic Gneiss, Gams Formation and Pella
Quartzite. Only the Gams Formation carries significant mineralisation. The
entire volume of the geological model consists of 738,224 cubic cells with side
lenghts of 20 m. The Gams Formation unit consists of 33,886 cells.

Due to the non-unique nature of the TEM moments inversion, the recovered
time constant models may exhibit significant differences, depending on the
starting models and constraints used {(c.f. Chapter 5). A preferred solution
may only be identified after exploring some of the range of acceptable models
to develop an understanding of the variability of the results (Williams, 2008,
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p-69). 3D inversion is therefore carried out with different starting models and
constraints. Inversion solutions are deemed successful if the x2-misfit of the
modelled TEM moments are less than or equal to unity.

First, a minimum-structure starting model, initialised with zero cell time
constants (i.e. cells that have zero time constants) and without any constraints,
is subject to inversion The minimum-structure model 1s defined as the entire
volume of the supplied geological model and 3D inversion resolves the subsurface
structure in terms of time constants within the boundaries of the supplied
geological model. An unconstrained inversion without additional geological
information has the largest degree of freedom and is expected to fit the data
very well. The unconstrained solution is mathematical only and in general only
poorly reflects the true geoelectrical subsurface.

Second, a minimum-structure starting model is generated from CDI pseudo-
sections together with a positivity condition for the time constants. The cbDI
starting model yields a solution in close resemblance to the DI conductivity
structure. Inversion based on the cDI starting model was only successful when
the inversion employs a 'bound cancelation’ directive which deactivates any cell
from inversion if its time constant attains a bound. Because cells are dynamically
deactivated during inversion, bound cancelation imposes a gradually changing
constraint which effectively reduces the number of active cells during inversion.

Third, a minimum-structure starting model initialised with zero cell time
constants is subject to inversion The inversion employs soft constraints which
are defined either as (1D) depth weights or as (3D) conductivity weights. A
positivity condition for the time constants was also employed. The starting
model conditioned with conductivity weights is closely related to the CDI-starting
model and penalises solutions inconsistent with conductivity-depth-imaging.
The starting model conditioned with depth weights recovers smoothly varying
time constants with depth. Inversion based on depth weights yielded solutions
consistent with the information from drill holes, however inversion based on
conductivity weights failed.

Fourth, a geologically constrained inversion is carried out in which the active
geological unit is specified from the supplied geological model: only cells compri-
sing the Gams Formation unit were able to change. A positivity condition for the
time constants was employed. Based on the geologically constrained inversion, a
recovered time constant model was obtained with sharp boundaries.

The time domain data can also be reasonably fitted to a conventional plate
model. The inversion results for the Gamsberg data are consistent with the plate
forward modelling and with the bore hole information. Inversion of the Gamsberg
data set was considerably faster than interpretation based on interactive plate
forward modelling. 3D inversion of the measured field data all completed in
a relative short time. The longest run-time was ~30 minutes for inversion of
the fleld data set for 738,224 cells, calculated on a Pentium 4 2 8 GHz processor
from 2006. Shortest run-time was about 3 min for the geologically constrained
inversion of the measured field data, involving only 33,886 cells.
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6.1 Geological context

The Gamsberg zinc deposit lies within a Precambrian volcano-sedimentary
succession, hosted by the Mesoproterozoic Bushmanland Group, South Africa.
Gamsberg is one of five stratiform base metal deposits that are located in the
Bushmanland Province and are collectively known as the Aggeneys-Gamsberg
deposits (McClung et al., 2007). The other four deposits are Black Mountain,
Broken Hill, Broken Hill Deeps and Big Syncline.

6.1.1 Exploration history

The Gamsberg deposit is located ~16 km to the east of the Broken Hill mine
near Aggeneys in the Northern Cape Province of South Africa. The Gamsberg
project is owned and managed by Anglo American plc (Base Metals Division).
Exploration of Gamsberg commenced in 1972. Geological, geochemical and
geophysical results, together with the discovery of significant gossan-capping in
the north-western part of the prospect, merited detailed follow-up investigations.
Rozendaal (1986) notes that geophysics played a particularly important part in
the early assessment of the deposit by indicating the down-plunge continuation
of the widest part of the gossan below outcropping quartzite. Unfortunately,
the details of initial geophysical exploration have not been published. Surface
drilling was commenced in 1972. By the end of 1973 a total of 47 boreholes had
been drilled into the area of greatest development of gossan at Gamsberg West.
By the end of 1978, a total of 42,130 m of surface diamond drilling and 16,317 m
of percussion drilling as well as 22,026 m of underground diamond drilling had
established a reserve of 150Mt averaging 7.10 per cent zinc and 0.55 per cent
lead (Rozendaal, 1986).

6.1.2 Lithology and stratigraphy

Gamsberg is located in the Namaqualand District in the north-western part of
the Northern Cape Province. The Gamsberg mountain, from which the deposit
takes its name, is a steep-sided inselberg, about 7 km long and 5 km across,
rising to an elevation of 1150 m above sea level and approximately 250 m above
the general level of the surrounding plain. The flat top of the mountain has been
partly eroded to form an internal basin. The base metal deposit is exposed as a
prominent gossan along the western margin of this erosional basin

Because of the complex structural pattern of the Aggeneys-Gamsberg district,
different stratigraphic columns and stratigraphic names emerged in different
areas. The stratigraphic nomenclature for the current thesis is based on the
publication of Rozendaal (1986), which focuses solely on the Gamsberg zinc
deposit. Bailie et al. (2007) mncludes a recent overview of various nomenclatures
used for the Bushmanland Group.

The Gamsberg stratigraphy has been subjected to complex deformation, and
mineralisation is understood to occur within a complex folded ’sheath’ which
extends for several kilometres (Figure 6.1b) The known deposit is located in the
Gams Formation, where it crops out at the western end of the inselberg. The
succession at Gamsberg consists of basal quartzo-feldspathic gneiss, identified as
the Haramoep Gneiss formation. The Haramoep Gneiss is overlain by sillimanite-
bearing pelitic schist, the Namiest Schist, which is ~ 70 m thick. The Namiest
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Gamsberg

Formation Lathology

Quartz-feldspar-amphibole gneiss/fels,
Nousees Mafic Gneiss pyroxene-plagioclase-quartz fels and quartz-muscovite
schist.

a  Upper unit characterised by a concentration of
pyroxenoid, garnet and magnetite with a
stratigraphic thickness of 0—9m

b  Mineralised layer holding sulphides of zinc and
lead with quartz-garnet- amphibole rocks and
graphitic quartz-sillimamte-muscovite- feldspar
containing major amounts of pyrite and
pyrrhotite. The stratigraphic thickness of the
zone varies from 0-80m

Gams Formation

¢ Basal banded garnet-clinopyroxene marble and
banded quartz-garnet-feldspar-clyno- pyroxene
rock with a maximum thickness of 10m

Pella Quartzite Massive recrystallised milky quartzite.
Namiest Schist Quartz-biotite-muscovite-sillimanite schist.
Haramoep Gneiss Pink granite-gneiss.

Table 6.1 — Litho-stratigraphy of the Bushmanland Group exposed at Gamsberg,
after Rozendaal (1986).

Schist grades upwards into the Pella Quartzite, a thick succession of metaquartzite
and interbedded lenses of aluminous schist which is about 250-375 m thick. The
Pella, Quartzite forms the exterior and interior cliffs as well as the flat top of
Gamsberg.

The Gams Formation is in sharp contact with the Pella Quartzite and has a
thickness of about 0-80 m. The ore bearing Gams Formation is a mineralogically
complex unit which is exposed along the periphery of the Gamsberg erosional
basin. The Gams Formation is further subdivided into three members a, b
and ¢ as described in Table 6.1. The Gams Formation is overlain by a thick
succession consisting of quartz-muscovite schist, lenses of conglomerate, and
bands of micaceous quartzite and amphibolite. These upper units are collectively
identified as the Nousees Mafic Gneiss formation, and are about 400-500 m thick
Formations and typical hithologies are shown in Table 6.1.
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6.2 Gamsberg-East geological model

Information from magnetic and gravity surveys as well as airborne EM and ground-
loop EM, together with geological mapping and drill core logs were compiled into
a digital geological 3D-model (T.Chalke, Mira Geoscience, pers. comm., 2008).
Away from the drill holes the model is highly interpretative in nature. The
3D-model of Gamsberg-East was kindly supplied by Anglo American Exploration
Division. The model had been constructed in Gocad by Mira Geoscience. The
model, displayed in Figure 6.2, is a simplified representation of the local geology
at the TEM survey site at Gamsberg-East. The 3D-model consists of three units,
described earlier:

(i) Nousees Gneiss (1) Gams Formation (iii) Pella Quartzite

The basinal structure of the Gamsberg prospect means that Nousees Mafic
Gneiss is effectively enclosed by the folded Gams Formation. Only the Gams
Formation where ore mineralisation occurs is shown in Figure 6.2. Superimposed
are drill markers in green which designate locations where mineralisation has
been verified (members a, b and c in Table 6.1). The drill markers form the base
of the ore mineral bearing Gams Formation. The depth of the mineral bearing
locations range from ~200 m to ~1000 m.

The 3D-model of Gamsberg-East contains the TEM survey site. The trans-
mitter loop, with dimensions 645x275 m, is included in Figure 6.1a. TEM data
have been recorded along nine NNE-SSW survey lines traversing the transmitter
loop. The survey lines are ~ 1.5 km long.

Downbhole resistivity has not been measured in drill holes at the TEM survey
site (pers. comm., O. Terblanche, Anglo American). However, about 3.5 km
west from the transmitter centre at Gamsberg West, downhole resistivity logs
were recorded in four boreholes (Trofimezyk, 2004). Within the ore horizon
(Gams Formation), resistivity values are found to be of the order of tens of Q-m,
consistent with the Zn-rich nature of the mineralisation. High resistivity values,
from ~ 10002-m to greater than ~ 10,000 Q-m, are observed within the country
rock (Nousees Gneiss and Pella Quartzite).

The 3D-model has dimensions 1480 m East, 1720 m North and 2320 m depth
extent. Subcell size is 20 m, so that the model consists of 738,224 cells with 74
cells in east direction, 86 cells in north direction and 116 cells along the vertical
axis. The geological 3D-model was input for the employed litho-inversion scheme.
The Gams Formation is ~ 80 m thick and the number of cells in the Gams
Formation is 33,886 which amounts to ~ 4.6 % of the total number of cells. The
Gams Formation is truncated at the western and southern limits of the Voxet.
Ground topography is assumed to be perfectly flat for modelling and inversion
but varies between 20 m and 200 m in the southwest and northeast respectively.
The UTM coordinates (Zone 34J) of the corners of the volume, shown in Figure
6.2, are

Pl (305927E,6762737N)
P2 (304467E,6762737N)
P3 (304467E,6764437N)
P4 (305927E,6764437N)
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(a) Top view of Gamsberg from Google Maps. The exploration area
is at the eastern end of Gamsberg. The red markers indicate the

corners of the geological model. The corners of the fixed transmitter
loop are marked by circles.

0 1 2km

Pella Quartzite

Gams Iron Formation

Namiest Schist

Nousees Mafic Gneiss

(b) Generalised geological map after Rozendaal (1986) shows the distribution of
the local stratigraphic units constituting the Gamsberg prospect.

Figure 6.1 — Aerial view (top) and geological map (bottom) of the Gamsberg
prospect.
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Figure 6.2 — 3D-model of Gamsberg-East. On display is the folded Gams For-
mation unit as viewed from the northeast (A). The inset shows the ’back’ of the
Gams Formation as viewed from the southwest (B). The coordinates of the corners
Pl, P2, P3 and P4 are given in the text. Model extents are 1480 m East, 1720 m
North and 2320 Z. Superimposed, in green, are markers at drilled intersections
of the Gams Formation. The markers designate locations where drill holes have
intersected mineralisation which was recognised in the drill cores at depths ranging
from ~200 m to ~1000 m. The transmitter loop is shown in red.
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6.3 EM equipment and data acquisition

TEM field data were kindly provided by Anglo American Exploration Division,
South Africa. The TEM survey was designed to test the possible extension
of an already identified subsurface conductor (pers. comm., O. Terblanche,
Anglo American). The transient EM data were measured in fixed-loop layout
using a low-temperature Superconducting Quantum Interference Device (SQUID)
sensor. Fixed-loop surveys are routinely conducted for detailed characterisation
of deposits when there is already a good understanding of the prospective target.

(a) Cryostat and sQuiD (b) Dewar with liquid
magnetometer. helium in field opera-
tions.

Figure 6.3 — Cryostat with sQUID magnetometer and liquid helium dewar for TEM
measurements. In figure (a) the cryostat containing the sQUID is shown, being
depressurised. In order to fill the cryostat with liquid helium, the chamber has to
be evacuated, so that air-constituents do not freeze out during the filling process.
Figure (b) depicts the dewar with liquid helium for a three week operation schedule.
The dewar has a height of approximately two meters. These pictures were taken by
the author during a similar TEM survey in 2008 at Saxby, Queensland, Australia.

(a) zoNGE GGT-30 transmitter (b) SMARTEM-V receiver

Figure 6.4 — Transmitter and receiver during field operations. The transmitter,
shown in figure (a), is powered by a mobile generator during field operations. The
SMARTEM-V receiver is depicted in (b). These pictures were taken during a similar
TEM survey in 2008 at Saxby, Queensland, Australia.
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SQUIDs combine the physical phenomena of flux quantisation and Josephson
tunnelling, providing sensitive detection of magnetic Aux. A SQUID consists of
a superconducting loop interrupted by two Josephson junctions connected in
parallel on a superconducting loop. If the SQUID is biased with an appropriate
current, the voltage across the sQUID is a function of the flux in the ring and
therefore a function of the external magnetic field. When the flux in the loop
is increased, the voltage oscillates with a certain period. By detecting a small
change in the voltage, one is able to detect a change in flux (Kleiner et al., 2004).
The low-temperature SQUID sensor is immersed in a liquid helium filled cryostat
and cooled down below the superconducting temperature (4K). This system
requires the refill of liquid helium periodically (Figure 6.3).

The main advantage of a SQUID system is the ability to measure very small
signal amplitudes in the range of tens of femto-Tesla. The measured magnetic flux
(B-field) does not decay as rapidly as traditional voltage (dB/dt) measurements,
which ensures better resolution at later times and therefore a greater depth
of investigation with enhanced signal-to-noise ratio. Hence, sQUIDs offer the
capability to detect conductors well below the detector threshold for conventional
coil detectors (Leslie et al., 2008). sQUID systems are now routinely used by
mineral exploration teams (Hughes, 2006; Webb and Corscadden, 2009).

All three Cartesian components of the B-field at Gamsberg-East were recor-
ded with a SMARTEM-V receiver in conjunction with a Zonge GGT-30 transmitter
(Figure 6.4). The transmitter on and off times were 900 ms (0.2778 Hz funda-
mental, 18 Amp ), with a turnoff ramp of 0.4 ms. The SMARTEM-V channel
centre times for 41 channels ranged from 0.1 ms to 710.31 ms (Chapter 1, Table
1.2).

6.4 The field data

Figure 6.5 shows the survey layout. TEM data has been recorded along 9 survey
lines at ~31 receiver stations per line (260 observation points in total). Receiver
station spacing was 50 m, except when crossing the transmitter loop; line spacing
was 100 m. The profiles are oriented 23 degrees east of grid north. Stacked
profiles of the time-domain B-field are shown in Figure 6.6 and in 6.7 for the
Z-component and X-component. The X-component is defined as the component
along the lines and the Y-component is perpendicular. To avoid cluttering, the
EM responses are shown for every third channel from the 4th to the 40-th channel
on a linear-log scale. The stacked z-component profiles are contaminated with
noise at early and late times, but channels from 10-30 (0.7 ms-52.9 ms) are
mostly clean. At early times the Z-component recordings are dominated by the
strong transmitter loop response whereas at late times, higher frequency noise can
be seen, the source of which is not known. The spike feature in the zZ-component
of line 100E at distance 300 m may be due to an instrumentation problem or
could be “cultural” noise, e.g. a metal object; these data were discarded. The
X-component recordings are noise-contaminated for the entire time range. The
Y-component from all lines have small amplitudes and have been omitted due to
anomalous high noise values ( noise/signal ~ 0.8).
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Crossovers seen for channels > 14 mark the edge of a large buried conductor.
All profiles exhibit similar characteristics with sharp zero crossovers in the first
third of the survey profiles starting at channel 14. These crossovers are marked
with green arrows in Figure 6.6. The Z-component crossovers migrate to the south
as lines further east are considered, and thus are thought to reflect termination
of the subsurface conductor in this direction. The cross-overs migrate NNE
with time, suggesting a dip or plunge to NNE. The crossover locations are also
indicated in Figure 6.5 by the oblique solid line. Additional crossovers, seen for
a few channels < 14 at lines -200E, -100E and OE, may indicate the presence of
a more shallow, minor conductor. These crossovers are marked with an blue
arrow.

Fixed Loop EM Survey
304250 304500 304750 305000 305250 305500 305750 306000
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Figure 6.5 - Fixed-loop TEM survey layout at Gamsberg-East. TEM data has been
recorded along 9 survey lines at ~31 receiver stations per line (260 observation
points in total). The profiles are oriented 23 degrees east of grid north. For
processing, the data have been converted into a local coordinate system with
the transmitter loop centre as the origin and the local northings as the receiver
plotting points. The transmitter loop had dimensions 645x275 m, with the long
side of the loop oriented perpendicular to the survey lines. The loop was centred
at (305138E, 6763677N). The zero-crossovers in the z-component are indicated by
the oblique solid line crossing the survey lines.
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Gamsberg TEM response Z-component
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Figure 6.6 — Stacked Bz-profiles at Gamsberg-East. The TEM responses are
shown for every third channel from the 4th to the 40th channel on a linear-log
scale. Green arrows show sharp zero-crossovers for channels > 14. Blue arrows
indicate sharp zero-crossovers for channels < 14 at lines -200E, -100E and OE.
The crossovers are interpreted to indicate termination of a deep conductor and a
small conductive feature at more shallow depth, respectively. The yellow markers

indicate the transmitter loop centre-line.
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Gamsberg TEM response X-component
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Figure 6.7 — Stacked Bx-profiles at Gamsberg-East. The TEM responses are
shown for every third channel from the 4th to the 40th channel on a linear-log
scale. The yellow markers indicate the transmitter loop centre-line.
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Figure 6.8 — Time constant maps from Gamsberg z-component TEM decays for
three different time ranges. In Figure (A), the time constant map is calculated for
delay times ~1-10 msec (channels 11-22). Figure (B) shows the time constant
map as calculated for delay times ~10-100 msec (channels 22-33). Figure (C)
shows the time constants as calculated for delay times ~100-600 msec (channels

33-41).
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6.5 Time constant analysis

A time constant (7) analysis of the z-component decays for three different time
ranges is shown in Figure 6.8. Such an analysis enables the isolation of any induced
conductive responses progressively deeper or later in time (Terblanche, 2008). The
analysis also gives an indication of the range of time constant values which can
be expected after 3D inversion of the TEM data. The time constant decay analysis
involves computing decay constant values (7) along three logarithmic decades of
the z-channel data from, respectively, delay times ~1-10 msec , ~10-100 msec and
~100-600 msec. The time constants are automatically calculated by fitting an
exponential to the decays in the specified time range for all profiles. The fit is
accepted if it does not exceed an error of 2 % and if the absolute signal level is
greater than 0.1 pTs/A. The time constants are displayed as 2D maps in Figure 6.8.
The colour code indicates the value of the time constants. Panel (A) shows the time
constant map for the first time range, panel (B) for the second and panel (C) for the
third time range.
Panel (A) is dominated by transition from low 7 in the west to high in the east where
it shows a broad feature of elevated time constants. In the southwest of map (A)
an isolated area of high time constants is visible. The isolated area approximately
coincides with the zero crossovers for channels < 14 (blue arrows in Figure 6.6).
It is interpreted to represent the response of a localised and minor, more shallow
conductor. The broad feature of elevated time constants in map (A) represents
the response of the large conductor at delay times ~1-10 msec. The perimeter of
the broad feature in the southwest of map (A) approximately coincides with the
zero crossovers for channels > 14 (green arrows in Figure 6.6). In panel (B) the
broad conductive area continues to the northeast. A conductive zone emerges in
the southwest of panel (B) which is thought to be artificial, due to the anomaly
crossovers at stations in the southwest. The broad feature of elevated time constants
further migrates to the northeast in the third panel (C) and is indicative of deeper
conductive or late time features in these areas.

The migration of the broad conduc-
1000 800 600 400 200 O Depth  tive zone between map (A) and (C)
(m) suggests dip or plunge of the conduc-
P1 tive zone to the NNE. Comparison
with the geological model shows that
the general trends of elevated time
constants correlate reasonably well
with the occurrence of mineralised
drill sections. Figure 6.9 shows the
geological model with the drill mar-
kers superimposed on the Gams For-
mation. The colour gradient indicates
depth. The shallow drill marker (in
vellow) coincides with the isolated
conductive feature in panel (A) of the
time constant map. Likewise, the drill
markers at successively greater depths
Figure 6.9 - Plan view of geological model with approximately coincide with position
drill markers at increasing depth superimposed. ©of the migrating conductive zones in

panel (B) and (C) respectively.

Easting

P2
P3 Northing
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6.6 Conductivity-depth imaging

cDIs have been calculated (c.f. Chapter 4) from total-field data using the z-
and X-component. The CDI sections were used to devise conductivity weights
which served as inversion constraints. Furthermore, a 3D conductivity model,
interpolated from the CDI sections, served as a starting model for inversion as
outlined in section 6.8.2. Apparent conductivity values were also employed for
calculating the 'head’ and ’tail’ contributions of the TEM moment response, as
described in Section 6.7.

To avoid the introduction of noise in the calculation of the apparent conduc-
tivities, the TEM profiles have been smoothed using a Savitzky-Golay (SG) filter
prior to calculating CDI sections. The SG filter is a low-pass filter designed to
smooth noisy data and can be thought of as a generalised moving average (Press
et al., 2002). The main advantage of Savitzky-Golay filtering over moving average
is the tendency to preserve features of the data such as relative maxima and
minima. The simple moving average is obtained as the lowest-order version of the
SG filter. The filter is applied along the lines so that apparent conductivities vary
smoothly at successive stations along individual survey lines. The SG algorithm
is based on performing a least squares linear regression fit of a polynomial of
degree k over at least k+1 data points around each point. The chosen polynomial
degree was 3 over 5 data points for the z-component and over 7 data points for
the X-component. Figure 6.10 shows an example for three channels along line
-400E at early, intermediate and late time.

12, L1 che 1] [] ch24-z 04 O chao-Z
2 _-"w. ;‘f"-k ’ .-‘-’H?.‘
E ‘ hf"q’. i :v | 'fi "
=8 > 0 / 0.0 .
B ; ‘ \_j | S\..;U
o ¥ -400E 1l -400E a4l ~ -400E
Northing Northing Northing

Figure 6.10 - Example of Savitzky-Golay filter for z-component along line -400E
at early, intermediate and late time. Open squares mark data points. In black is
the smoothed decay which preserves relative maxima and minima. Noise at early
and late time is noticeable throughout the entire data set. Intermediate times are
mostly clean with low noise levels.

Figure 6.11 (A) shows a conductivity-depth section through the 3D conducti-
vity model interpolated from the CDI sections. A conductive high zone emerges
at large depths, with the maximum conductivity at 1840 m. The conductive high
coincides with the location of the postulated lower limb of the Gams Formation
fold. Figure 6.11 (B) displays a plan at 1840 m, in which high conductivity
values are clearly apparent. The mineralised regions in shallower depths as
specified by the drill sections do not manifest in the cDIs. Because conductivity-
depth-imaging is based on a half space model, it need not resemble the true
conductivity structure, and there may be both, shallow and deep mineralisation.



178 Application of approximate 3D TEM inversion to field data.

Apparent Conductivity (mS/m)

Figure 6.11 - cpis of the Gamsberg data from total B-field amplitudes (based
on z and X component only). Figure A) shows a South-North ¢pi1 section through
the conductivity model; the interpolated intersection of the Gams Formation with
this section is superimposed. Figure B) displays a horizontal cp1 section at 1840
m where the maximum apparent conductivity occurs. The colour bar applies for
both figures; the maximum value of apparent conductivity is ~ 100 mS/m. The
zero-crossovers in the Bz-profiles suggest termination of a subsurface conductor;
crossover positions are indicated by the oblique solid line in Figure B).
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Gamsberg B, - TEM Moments
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Figure 6.12 — 1st order TEM moments from Bz-decays at Gamsberg-East (solid
squares). The transmitter position is indicated by the triangles on the bottom
axes. The TEM moment is the sum of the incomplete TEM moment with the
’head’ and ’tail’ contribution. ’"Head’ and ’tail’ are based on total-field apparent
conductivities. Error bars specify the assumed data uncertainty of 0.04 pTs/A.
Each receiver station is associated with a TEM moment response, giving a total of
259 TEM moments comprising the observed data vector.
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6.7 Transformation of field data to TEM moments

Chapter 2 (Section 2.8) described the calculation of ’complete’ TEM moments from
measured field data. The complete TEM moment is the sum of the ’incomplete’
TEM moment, which is defined as the TEM moment transform over the observed
time range, and the ’head’ and ’tail’ contributions. "Head’ and ’tail’ are calculated
by extrapolating the magnetic field data at early and late times using estimated
apparent conductivities. The extrapolated magnetic field data for *head’ and *tail’
are calculated from total-field apparent conductivities, o7 and oy, associated
with the data, measured at the first and last channels, respectively Inversion of
the Gamsberg TEM moments was restricted to the vertical component only. The
1st order TEM moment for measured Bz-data, B (t), is calculated according to
Equation (2.112) :

tN t1 oo
MO = / B(t)dt+ / B, (t)dt + / B, (t)dt
t1 0 tN

"head’ tarl’

where B,, and B,, are early and late time extrapolated magnetic field data
at each receiver station. For transformation to the moment domain, the first
three channels and the last channel have been omitted to avoid contamination of
the TEM moments due to noise. Therefore, the effective measured time range is
0.195-572.15 msec. The data at station (305008E, 6763128N) of line 100E have
been discarded.

As discussed earlier, the TEM decays have been smoothed along the survey
lines so that apparent conductivities vary smoothly from station to station, which
is critical to avoid the introduction of noise in the TEM moments when calculating
’head’ and ’tail’ contributions. The late time noise in the TEM decays varies
from line to line but is on average about 5% in the latest channels of measured
Bz. Late time noise is accentuated when transforming the TEM decays to TEM
moments, therefore the first integral for B (t) is evaluated using the smoothed
TEM data (c.f. Chapter 2 8). The integrals for head’ and ’tail’ use the apparent
conductivities from the smoothed TEM decays and are solved by applying the
analytical formulae derived in Chapter 2, Equations (2.84) and (2.89).

Figure 6.12 displays the Gamsberg-East TEM moment profiles. The figure
shows the complete TEM moments, together with the incomplete TEM moments
and ’head’ and ’tail’ on the same vertical scale. Apparent conductivities are high
at great depths, so that the tail contribution is substantial, however the shape
of the complete TEM moment curves essentially conforms to the shape of the
incomplete moment curves but with larger amplitudes. Negative values as seen
in the incomple moments, are not reflected in the ’head’” moments because the
extrapolation employs total-field apparent conductivities. The data uncertainty
is set to a standard deviation of 0.04 pTs/A, which 1s about 5% of the maximum
TEM moment amplitude.
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6.8 Inversion of Gamsberg TEM moments

vpPema3D inversion of the Gamsberg-East TEM moments produces a 3D distribu-
tion of time constants. VPem3D inversion was described in Chapter 5. Each
receiver station is associated with a TEM moment response, giving a total of
259 TEM moments comprising the observed data vector. The inversion para-
meter vector is composed of the cell-time constants. For all inversion runs,
the model Voxet is comprised of heterogeneous units with many more model
parameters than observations, hence an under-determined inverse problem was
solved. Inversion solutions are deemed successful if the y?-misfit of the modelled
TEM moments are less or equal unity. The plausibility of the inversion results
was evaluated by comparing the information from drill hole intersections with
the recovered conductivity structures. In addition, conventional trial-and-error
forward modelling employing a plate-model was carried out and compared with
the location of the recovered time constant models.

The host (Nousees Gneiss and Pella Quartzite) conductivity was held fixed
at 1 mS/m during inversion. The value for the host conductivity was chosen
according to apparent conductivity values at depths > 500 m, well above the
conductive zone, as seen in Figure 6.11. The apparent conductivity values at the
northern end of the survey line averages at ~1-2 mS/m for depths of 400-500
m. The value of 1 mS/m is also reflected in the downhole resistivity logs at
Gamsberg West, which intersected quartzites and schists.

3D inversion is carried out with different starting models and constraints.
Depending on the starting models and constraints used, the recovered time
constant models may exhibit significant differences due to the non-unique nature
of the TEM moments inversion Variability of the inversion solutions is examined
by proceeding the inversion with different starting models as described in Chapter
5. Confidence in the results 1s gained if different starting models arrive at the same
solution. All examples were computed on a Pentium 4 2.8 GHz processor from
2006. vrem3D inversion of the Gamsberg TEM moments was executed in different
fashions, based on four different starting models as follows (c.f. Chapter 5):

1. Unconstrained-starting model:

The starting model was initialised with zero time constants in every cell.
No constraints were employed during inversion; so that time constants were
allowed to also have negative values. During unconstrained 3D inversion
all cells were involved. The unconstrained inversion has the most degrees
of freedom and is expected to fit the data very well. Solutions of the
unconstrained inversion do not reflect the true subsurface conductivity
structure. However, unconstrained inversion illustrates the effectiveness of
the inversion algorithm and the importance of geological constraints.

2. CDI-starting model.
In order to neutralise the impact of the strong transmitter footprint at
shallow depths, the CDI-starting model was categorised into two umts: an
inactive surficial layer and an active unit which encompasses the remainder
of the model Voxet. Only the cells in the active unit took part in the
inversion. The active unit was set up with a positivity bound for the time
constants. No weighting scheme was applied. The starting model was
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initialised with time constants, calculated from the conductivity-depth
values (c.f. Chapter 5 1.3). The inversion was performed twice: first as a
’default’ property inversion, where all cells of the active unit are retained
during inversion, regardless whether they hit their bound. Second, the
inversion was repeated with the option of ’bound cancelation’. Bound
cancelation effectively imposes a dynamic constraint where cells are 'deac-
tivated’ during inversion if their time constant attains a bound which
as described in Section 6.8.2. The CDI-starting model favours solutions
exhibiting resemblance to the conductivity structure of the cDI sections.

3. Zero-starting model:

The starting model was initialised with zero time constants in every cell. A
positivity condition was applied to the time constants. The inversion was
performed twice: first including conductivity weights and second with depth
weights. The zero-starting model in conjunction with conductivity weights
is closely related to the ¢DI-starting model. The zero-starting model may
be employed when there is only little knowledge of the exploration target,
as for example in greenfields exploration.

4. Geological model:
The starting model was initialised with zero time constants in every cell,
but changes were constrained to the Gams Formation unit. Only cells in
the mineralised Gams Formation unit are involved, effectively imposing
a strong geological constraint on the model solution. Model solutions
are restricted by the volume of the Gams Formation unit. A positivity
condition to the time constants was imposed.

6.8.1 Unconstrained inversion

Unconstrained 3D inversion exemplifies the impact of non-uniqueness and the
influence of inversion constraints. The starting model is 1nitialised with zero
cell time constants. The entire model is active so that all cells are involved
during inversion. The time constants are not bounded and are allowed to have
negative values. The unconstrained inversion produces a mathematically valid
solution which however may not be geologically acceptable as demonstrated on
the synthetic example of the horizontal slab in Chapter 5.

The TEM moment profiles are shown in Figure 6.13 The recovered time
constant model after inversion reproduces the Gamsberg TEM moments and
achieves a fit of better than the data uncertainty of 0.04 pTs/A in a x2-sense.
Figure 6.14 shows the time constant model after inversion. Elevated values
of recovered time constants are clustered at shallow depth around the loop
perimeter and along the receiver stations. The time constants are mostly positive
inside the transmitter loop whereas outside the loop, facing the long wires, the
time constants are mostly negative The time constant polarity reflects the
orientation of the primary field of the transmitter and inside and outside the
loop (c.f. Chapter 5.3.1)
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Figure 6.13 -~ TEM moments from recovered time constant model based on the

unconstrained inversion. Solid squares mark the observed Gamsberg TEM moments.

Open squares mark the calculated TEM moment response of the recovered time
constant model. Inversion succeeded after 254 iterations and the calculated TEM
moment response fits the data very well. Runtime was 44 minutes on a Pentium 4
2.8-GHz processor from 2006.
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Gamsberg East Unconstrained Inversion
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Figure 6.14 — Recovered time constant model after unconstrained inversion of
the Gamsberg-East TEM data. The starting model was initialised with zero cell
time constants. Panel (A) shows a northsouth and eastwest cross-section through
the centre of the inverted model. The inset (B) displays a horizontal section
at 10 m depth. The recovered cell time constants are clustered at the surface
around the loop perimeter and immediately below the receivers. The polarity in
time constants reflects the orientation of the primary field. The TEM moment
model-response curves fit the measured TEM data to an accuracy of better than

0.04 pTs/A.
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6.8.2 Imversion with CDI starting model

The cell time constants of the CDI starting model were initialised with values from
the Gamsberg CDIs by re-scaling (re-scale factor was 7.5) the cell conductivities
so as to fit the observed TEM moment response as close as possible (c.f. Chapter
5.1.3). Inversion based on CDI starting models tend to favour solutions which
resemble the conductivity structure from the CDIs. Therefore, no depth weights
are applied, which avoids overly stringent inversion conditions. Because the CDIs
suggest possible conductive mineralisation at great depths, 3D inversion with a
CDI starting model explores the possibility of deep conductive features.

The ©DI starting model is coniprised of an ’inert’ surficial layer, designed
to reduce the impact of high sensitivity in the vicinity of the transmitter. The
active unit is defined as the remainder of the model. The layer thickness of 200 m
was inferred from the supplied geological information since drill logs confirm
mineralisation at depths greater than 200 m. The active unit consists of 674,584
cells and time constants are set up with a positivity bound.

‘Default’ property inversion, where all cells of the active unit are retained
during inversion, regardless whether they hit their bound, did not succeed: for
the specified uncertainty of 0.04 pTs/A, the inversion stalled after 32 iterations
with a x2-misfit of 3.2. The x*-misfit of the starting-model was 5.5. Runtime
was 26 min. Inversion failed due to the polarity of the primary field and the
resulting attempts by the inversion to assign negative time constant values for a
range of cells at shallow depth (c.f. Unconstrained Inversion). However, because
the time constants are constrained by a lower bound of zero, the inversion cannot
find a suitable distribution of time constants so as to fit the data. The recovered
time constant model exhibits distinct resemblance to the CDI-starting model
(Figure 6.15). The magnitude of the recovered time-constant values are of the
same order as depicted in the time constant map of Figure 6.8 (C), which is
based on time decays between channels 33—41.

In order to compensate for the effect of the primary field, the inversion was
repeated employing a 'bound cancelation’ directive which cancels any cell which
hits its lower zero-bound during inversion. Bound cancelation can therefore
reduce the number of active cells during inversion. The modality of the inversion
changes when deploying the bound-cancelation option. Figure 6.16 (A) shows
an eastwest cross-section through the model, straddling the Gams Formation. A
region of elevated time constants emerges near, but above, the locations of the
drill markers. Because cells are turned off when reaching their lower bound, a
sharp contrast in time constants is observed in the eastern part of the model at
525 m depth. The conductive region at great depth (~ 1800 m) is interpreted
as a residue of the CDI-starting model: due to non-uniqueness a valid solution
was found without further adjustment of time constants at great depths. The
Gams Formation as viewed from the southwest is displayed in Figure 6.16 (B).
An isolated region of high time constant values is noticeable at ~320 m depth
which approximately co-locates with the isolated region in the time constant
map of Figure 6.8 (A).

During inversion with bound cancelation, the number of active cells decreased
from 674,584 to 521,966 cells after inversion. The inversion with bound cance-
lation was successful after 24 iterations and the TEM moment response of the
recovered model matched the data to an accuracy of better than 0.04 pTs/A.
Runtime was 24 min. The TEM moments profiles for the recovered time constant
models for both methods are shown in Figure 6.17.
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Gamsberg Inversion
CDI-Starting-Model (standard-method)
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Figure 6.15 — Recovered time constant model after standard inversion based on
a cpl-starting model. With the specified uncertainty of 0.04 pTs/A, the inversion
did not not achieve the desired y*-misfit and stalled after 32 iterations. The
recovered time constant model exhibits distinct resemblance to the CDI-starting
model. A cross-section through the voxet in Figure (A) shows a conductive region
at large depth of about 1840 m which straddles the Gams Formation unit which
is superimposed. Inset (B) shows the region in plan view at 1840 m. The receiver
stations are displayed as colour-coded residuals.
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Gamsberg Inversion
CDI-Starting-Model (bound-cancelation-method)
(A) P2 "
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Figure 6.16 — Recovered time constant model after inversion with bound-
cancelation, based on a cpI-starting model. With the specified uncertainty of 0.04
pTs/A, an acceptable fit was achieved after 24 iterations. Figure (A) shows an
eastwest cross-section Two regions of elevated time constants are seen at 525 m
and at 1950 m depth. Inset (B) shows an isolated region of high time constant
values in the neighbourhood of various drill markers. The receiver stations are
displayed as colour-coded TEM moment residuals.
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Figure 6.17 — TEM moment profiles for recovered time constant model after inversion based
on a CbI-starting model. TEM moment responses are shown for the standard inversion method
and for the ’bound cancelation’ method. For reference, the background response is shown for
the centre-line OE, which is calculated as a 1mS/m half space response. The TEM moment
response from the starting model is shown dashed. Only the TEM moment response from the
bound-cancelation method gives a fit better than 0.04 pTs/A. The fit deteriorates along the
southwestern edge of the model.
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6.8.3 Inversion with Zero starting model

Unlike inversion based on the CDI starting model, which is biased according to
CDI values, evolution of cell time constants during inversion for zero starting
models is steered only by the model sensitivities and the supplied constraints, so
that inversion with the zero starting model may further elucidate the Gamsberg-
East mineralisation. The starting model was initialised with zero time constants
in every cell. A positivity condition was applied to the time constants.

Inversion is first carried out with (3D) conductivity weights which were
calculated from CDIs as described in Chapter 5.2.6. Conductivity weights penalise
solutions deviating from the CDIs resulting in an output that incorporates some
of the aspects of the CDI starting model. Parameter changes are favoured for
cells associated with weights near unity which coincide with the location of the
conductive high in the cpis. Offside the conductive highs, the conductivity
weights approach zero. Zero weights occur where the ¢DI values depict the
background conductivity of 1 mS/m or smaller. The inversion with conductivity
weights was ineffective, because cells associated with a zero weight were effectively
turned off so that changes at shallow depths were prohibited. The inversion
stalled after 43 iterations with a y*-misfit of 3.7. Initial misfit was x? » 62.

The inversion was repeated with less restrictive (1D) depth weights which
recovers smoothly varying time constants with depth. The depth-weights were
calculated via Equation 5.33 with a slope factor of so = 10™%, which produces
slowly decaying weights, and a depth factor of dy = 200, which excludes changes
in a surficial layer to neutralise the effect of the transmitter. The slowly decaying
depth weights promote (but are not restricted to) solutions at a depth of ~1840
m where the conductive high in the CDIs emerges. Figure 6.18(A) shows a
northsouth section through a highly conductive region of the recovered time
constant model between ~500 m—800 m. The maximum time constant, ~ 60
ms, of the recovered model occurs at a depth of about 620 m. Due to the finite
resolution of the method, the conductive region straddles the Gams Formation
unit and the conductive zone extends in all three units of the geological model.
The conductive structure broadly coincides with the localities of the mineralised
intersections of the Gams Formation. The drill intercepts therefore corroborate
the inversion result. The inset, Figure 6.18(B), displays the 'back’ of the recovered
time constant model as viewed from the southwest. In addition to the broad
reglon of elevated time constants, an isolated localised region of elevated time
constants is noticeable at a depth of -280 m near several drill markers. Figure
6.19 shows the recovered time constant distribution as a 3D iso-surface of time
constants > 40 msec which illustrates the gross 3D structure of the recovered
time constants. The lateral position of the isolated region, as well as the broad
conductive region correlates reasonably with features in the time constant maps,
Figure 6.8 (A) and (B), respectively. The magnitudes of the recovered time
constants of the inverted zero-model broadly agree with the time constant values
as calculated from the TEM decays (Figure 6.8B).

With the specified uncertainty of 0.04 pTs/A, the inversion of the zero-model
succeeded after 107 iterations and the final model is acceptable with x2 < 1;
runtime was 32 min. The TEM moment profiles of the recovered time constant
model are shown in Figure 6.20. The fit of the lines traversing the loop is better
than for lines outside the loop
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Gamsberg Inversion
Zero-Starting-Model with depth weights
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Figure 6.18 — 3D view of the recovered time constant model after inversion of the Gamsberg-
East TEM data using a zero starting model, conditioned with depth weights. Panel (A) shows a
northsouth-section through the region of elevated time constants. The receiver locations are colour-
coded according to the residual of the TEM moment after inversion. The recovered conductive
region broadly coincides with the locations of the drill markers indicating mineralised Gams
Formation. The inset (B) displays the same section as viewed from the southwest’. An isolated
region with time constants ~ 20 msec can be seen near 280 m depth. The maximum time constant,
~ 60 ms, of the recovered model occurs at a depth of about 620 m.




6.8 Inversion of Gamsberg TEM moments 191

Gamsberg Inversion
Zero-Starting-Model

1> 40 msec

Figure 6.19 - 40 msec iso-surface of recovered time constant model after inversion
of the Gamsberg-East TEM data using a zero starting model, as viewed from the
southeast. (c.f. Figure 6.18). The isometric volume illustrates the gross 3D
structure of the recovered time constants. The number of cells within the iso-
surface is 15,929. The 3D iso-surface lies between 450 and 900 m depth. Drill collars
and trajectories are shown with markers at the bottom of the Gams Formation.
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Gamsberg TEM moment Inversion 'Zero Starting Model'
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Figure 6.20 -~ TEM moment profiles for the recovered time constant model using a zero starting
model conditioned with depth weights. The *Observed’ response denotes the TEM moments derived
from Gamsberg-East field data. *Calculated’ denotes the TEM moment response of the recovered
time constant model. The calculated TEM moments, fit the the Gamsberg-East data to better
than 0.04 pTs/A in a x2-sense. The fit deteriorates at stations in the southwest-corner, near the
model boundaries.
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6.8.4 Geologically constrained inversion

Geologically constrained inversion takes advantage of the pre-existing knowledge
of Gamsberg-East, mainly in form of bore hole information, which were used to
construct the geological model. In this case only cells which fall within the Gams
Formation are inferred to contain significant mineralisation and were allowed to
change their time constants, so that the solution provides combined geologic and
physical property value information for the volume of interest. The time constants
of the Gams Formation unit were initialised with zero time constants and a
lower bound of zero was enforced. Standard property inversion was acceptable
with x? < 1 after 164 iterations; x2-misfit of the starting model was ~62 (data
uncertainty 0.04 pTs/A). The inversion of 33,886 model parameters took less
than three minutes on a Pentium4 2.8 GHz processor. Because all cells were
retained during inversion, regardless whether they hit their bound, the number of
iterations was relatively high. When invoking the 'bound cancelation’ directive,
the inversion succeeded after 96 iterations due to the deactivation of cells during
inversion.

The recovered time constant distribution of the Gams Formation is depicted
in the histograms of Figure 6.21. About 42% of all time constants in the Gams
Formation are between 0 and ~40 msec and 0.1% of time constants lie in between
~1000-2000 msec. The location of the high time constant values are indicated
in Figure 6.22.

Gams Formation Time Constant Distribution

§ Value=14183 Value=2862

~ Percent=41.85% = Percent=8 44%
= [min max}=[0,38.3] = & [min max]=[194.5,284 8]
3 o =
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(A) Time constant in msec (Linear Scale) (B) Time constant in msec (Log Scale)

Figure 6.21 — Recovered time constant distribution of the Gams Formation unit
on a linear (A) and logarithmic scale (B).

The inverted model for the 'standard’ property inversion method is depicted
in Figure 6.22. In comparison with the inversion result based on the zero-starting
model, the cell time constants are substantially higher. In the zero-starting
model case, elevated 7 values are disseminated through a large volume of the
model, extending across all three units of the geological model. In the geologically
constrained case, 7 values are confined to the Gams Formation, so the time
constants are necessarily higher so as to reproduce the TEM moment response.
Figure 6.22 shows a broad conductive region, generally coinciding with the drill
markers. As was the case for the zero-starting model, an isolated, localised area
of conductive cells is apparent near the southwest corner of the Voxet, which is
also visible in the time constant map of Figure 6.8(A). The area is highlighted
in the inset of Figure 6.22. Figure 6.23 shows the recovered time constant model
as eastwest and northsouth sections and illustrates the imposed sharp contrast
with the host-rock (Nousees Gneiss and Pella Quartzite).
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Gamsberg Inversion
Geological-Model (Inversion confined to Gams Formation unit)
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Figure 6.22 — 3D view of the recovered time constant model after geologically-
constrained inversion. The figure illustrates the spatial distribution of cell time
constants after inversion restricted to the Gams Formation. The receiver locations
are colour-coded according to the residual of the TEM moment after inversion.
The inset (B) highlights an isolated area of conductive cells near drill markers
at 230 m depth. In order to emphasise the highly conductive region, the colour
bar maximum value is 1600 msec, the maximum inverted time constant is ~ 2000
msec.
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Figure 6.23 — Eastwest section (left) and northsouth section (right) of recovered
time constant model after inversion of geological constrained model for Gamsberg-
East. Highest recovered time constant of ~2000 msec is at ~590 m depth.
Geological constraints ensure that the recovered time constant of the potentially
mineralised Gams Formation is in sharp contrast with the host-rock (Nousees
Gneiss and Pella Quartzite). The inferred boundary of the Gams Formation unit is
superimposed. The inset on the right shows the northsouth section for a different
colour scale with a maximum time constant of 500 msec in order to emphasize
mineralisation at great depths where time constants in excess of 120 msec are
observed.
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Figure 6.24 — Map of the amplitude of the normalised primary field (vertical
component) intersecting the Gams Formation. Receiver stations are depicted as
colour-coded residuals. Poor fits in the southwest corner of the model coincide
with a sign-change in the vertical component of the primary field. The Gams
Formation is nearly flat in the southwest corner at an elevation of ~-210 m. The
Gams Formation dips towards the southeast and is nearly vertical below the last
survey line where dependence on the z-component primary field is less significant.

The TEM moment response of the recovered time constant model is depicted
in Figure 6.25. A poor fit is noticeable at receiver stations between distances
200-800 m of survey lines -400E, -300E and -200E. Coincident with the locations
of the poor fit is a sign-change in the vertical component of the primary field
B, where it intersects the Gams Formation at a relative shallow depth of ~210
m (Figure 6.24). In this area, the current flows preferentially in the almost
horizontal plane of the Gams Formation. The observed TEM moment response is
positive, so that a sign change in the z-component of By impedes the response
of associated point-conductors which are bound to the orientation of the primary
field, resulting in the relative poor fit. It is expected that this limitation of the
algorithm will be resolved for inversion of total-field TEM moments, which is
unaffected by sign changes (c.f. Appendix A)
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Figure 6.25 - TEM moment profiles for recovered time constant model after
geologically constrained inversion. The 'Observed’ response denotes the Gamsberg-
East TEM moments. ’Calculated’ denotes the TEM moment response of the
recovered time constant model. The calculated TEM moments fit the the Gamsberg
data set to better than 0.04 pTs/A in a y?-sense. However, the fit deteriorates at
stations between distances 200-800 m of survey lines -400E, -300E and -200E due
to a sign-change in the vertical component primary field (c.f. Figure 6.24).
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6.9 Conventional forward modelling employing
plate conductors

Plate conductors are highly idealised representations of geological entities but
are widely used for interpreting observed TEM data due to their speed and
simplicity. However, despite the necessarily simplistic geometry, they can provide
reasonable geometric representation of some geological features. Plate modelling
in conjunction with conductivity-depth imaging was the only computationally
feasible method for analysing 3D TEM data until recently. VPem3D inversion
results of Gamsberg-East are compared with the results from interactive plate
forward modelling in order to illustrate congruence to an established method
and to gain confidence in the VvPem3D inversion results.

The strong anomaly crossovers in the z-component with elongated positive
lobes over the transmitter loop suggest termination of a dipping plate conductor
extending below the transmitter. The locus of the zero crossovers was indicated
in Figure 6.11(B) trending southeast across the survey lines. The depth-to-top
of the plate model may be approximately estimated by the width of the anomaly
at two-thirds its maximum amplitude which evaluates as ~ —420 m (Gallagher
et al., 1985). Guided by these preparatory observations of the TEM data, a plate
forward model was computed and subjected to trial-and-error adjustments. The
Mazwell Plates program was employed, which models plates in a free space.
Given the resistive nature of the host rock environment, the free-space model is
appropriate. The plate model is illustrated in Figure 6.26, and its parameters
are defined in the figure’s caption. A Gamsberg-East CDI section with the plate
model superimposed is shown in Figure 6.27; and the plate model together with
the result for the geologically constrained inversion in Figure 6.28.

6764500N

6764000N

Figure 6.26 - 'Best fit’ plate model model for the Gamsberg-East data set. The
model is sensitive to geometry, size and conductivity. Top of the plate is centred
at (304845E,6763260N) at 450 m depth. Dip is 37° ; dip direction is 55°. Strike
length is 1300 m; dip extent is 950 m. Thickness is 50 m and conductivity is 4
S/m. Number of ribbons and skew was set to 15 and 0.4 respectively.
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The trial-and-error approach took considerably longer than the runtime of
any of the inversions in order to achieve a satisfying degree of fit in anomaly
profile shape and magnitude. Figure 6.29 shows the response for the z- and
X-components. The decay rate of the observed TEM data is slower than the decay
rate of the plate. If the plate conductivity is increased the response approaches
the inductive limit, demonstrating the limitation of the plates approach. Based
on Lamontagne’s formula for a plate conductor (Equation 3.10) the time constant
of the plate evaluates as 7, ~ 30 msec.
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Figure 6.27 — Gamsberg-East ¢DI section with plate model superimposed. The
plate location coincides with the shallow gradient of apparent conductivity values.

Comparison of the plate model with the Gamsberg-East cDIs in Figure
6.27, illustrates that the plate location coincides with the apparent conductivity
gradient at the top of the anomalous zone in the ¢pI. The depth of a plate
conductor often coincides with the conductivity gradient (Chapter 4.5.3). The
conductive high at great depth in the Gamsberg DI, therefore, may be a product
of the conductivity-depth transformation. The plate model is compared with the
result of the geologically constrained inversion in Figure 6.28, which demonstrates
the overall consistency of the inversion result with the plate model in terms of
location, however the effective orientation of the plate model and the elevated
time constants of the geologically constrained inversion differ somewhat. In
terms of conductivity (or time constant), however, the plate model is inadequate
since the amplitudes cannot be fitted very well for any plate conductance.
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Gamsberg Inversion / Plate model
(geologically constrained model)

g time constant (msec)
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Figure 6.28 - Plate model and recovered time constant model for geologically
constrained inversion. The plate model generally coincides with the highly conduc-
tive region of the recovered geologically constrained model. Inset (B) shows the
’back’ of the model.
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Figure 6.29 — Observed Gamsberg-East Bz and Bx TEM data and plate model

responses for three survey lines. In terms of shape and anomaly cross-over, all lines
provide a reasonable fit. The chi-squared misfit however is large with x? ~ 700
due to the poor fit in amplitudes. Displayed are the responses for every fourth
channel from channel 4 to channel 40 at lines -200g, OE and 300E for the z- and

X-component.
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6.10 Discussion of inversion results

The applicability of the novel approximate 3D-TEM inversion scheme described in
this thesis has been demonstrated for a ground-TEM field data set. The recovered
time constant models of the successful inversions, initialised with different starting
models and constraints, all exhibit similar features, providing some confidence
in the results. The measured vertical component TEM decays were transformed
to lst order TEM moments employing total-field apparent conductivities for
extrapolation at the earliest and latest valid channel to provide ’complete’ TEM
moments. 3D inversion of the vertical component TEM moments was carried
out based on four different starting models: (i) unconstrained inversion, (ii)
inversion with DI starting model, (iii) inversion with zero starting model and
(iv) geologically constrained inversion.

Successful inversions identified a broad conductive region that generally
coincides with recognised mineralisation from drilled intersections. The location
of the zones of elevated conductivity in the recovered time constant models are
also broadly consistent with the result from interactive plate forward modelling,
providing further confidence in the obtained inversion results. Furthermore,
a localised, minor conductive feature at shallow depths from ~220—280 m in
the southwest of the study area was identified in the inversion results as also
supported by by time-constant analysis of the TEM decays at early time between
1-10 msec. Both the broad conductive region as well as the isolated feature are
visible in the vertical component TEM decays as anomaly crossovers.

For all inversions, a poor fit was noticeable at receiver stations between
distances 200-800 m on survey lines -400E, -300E and -200E, thought to be
mostly due to a sign-change in the vertical component of the primary field at
the conductor location. Total-field inversion, which is subject of future research,
should resolve this limitation of the algorithm as total-field data is theoretically
unaffected by sign changes (c.f. Appendix A). Possible additional factors
that may contribute to misfits in the TEM moment response may include a
poor representation of ground topography (which was assumed to be perfectly
flat) and proximity of receiver stations to model boundaries (where the Gams
Formation was truncated in the southwest).

The unconstrained inversion gave a successful mathematical fit to the data,
but it resulted in a geologically unreasonable time constant model with conductive
zones aggregated near the surface close to receivers and also near the transmitter,
due to high sensitivity in the vicinity of the transmitter. The result highlights
the importance of encompassing constraints due to the non-unique nature of
TEM moment inversion. Moreover, the unconstrained inversion illustrated the
impact of the sign-reversal of the primary field on the recovered time constant
model. The polarity of the primary field is reflected in the signs of the time
constant values, which were unbounded during unconstrained inversion.

Inversion based on the ¢CDI starting model did not adequately converge
when retaining all cells during inversion, however it was successful with the
option of ‘bound cancelation’ which deactivates cells which hit their lower bound.
Depending on the primary field direction, time constants may trend to negative
values, but will be deactivated because they hit their lower bound. Hence, the
inversion is constrained to a dynamically smaller volume, therefore changing
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the modality and outcome of the inversion. When retaining all cells however,
the inversion did not achieve the desired fit because the algorithm constantly
tries to adjust cells at shallow depths where sensitivities are largest, but fails
to assign the calculated time constant when cells hit their lower bound. At
the next iteration the process is repeated. The recovered time constant model
when the inversion stalls, closely resembles the CDI sections. The recovered time
constant model for the successful inversion shows conductive material at great
depths as evinced by the CDI sections and also shows conductive material at
shallow depths approximately corresponding to drill results and plate forward
modelling. Because of non-uniqueness, conductive material at great depths
cannot be unambiguously supported, however the TEM data do not preclude
the occurrence of mineralisation at great depths as suggested by the cDIs which
show a highly conductive, deep conductor.

In order to develop an understanding of the variability of the results, the
inversion was repeated with a zero starting model with time constants constrained
to non-negative values. When conditioning with conductivity weights defined
from the CDIs, the inversion failed to adequately converge. The inversion failed
since time constant changes at shallow depths were prohibited: conductivity
weights restrict changes to areas with high conductivities and penalise solutions
which deviates from the CDIs. The mversion succeeded when depth weights are
employed which are less restrictive and which favour changes distributed with
depth. High conductive zones in the recovered time constant model straddle the
Gams Formation unit and broadly identifies conductive material as supported by
recognised mineralisation from drilled intersections. A localised, minor feature
was also identified at shallow depths. Conductive material at great depths is not
inferred in this inversion result which may be a consequence of non-uniqueness.

Finally, geologically constrained inversion was performed where only cells
which are member of the Gams Formation were allowed to change their time
constants to non-negative values. Because of the restriction to the Gams Forma-
tion, inversion results produced a time constant model with sharp boundaries,
consistent with pre-existing geological information. Elevated values of the recove-
red time constants are located in the fold nose of the Gams Formation, coinciding
with recognised mineralisation from drilled intersections. An isolated conductive
feature was also imaged at shallow depths, as was the case for the zero starting
model with depth weights. However, deep mineralisation, as suggested by the
CDIs, was not apparent in the resulting time constant model.

Run-times and some inversion execution parameters for the successful inver-
sion runs are compiled in Table 6.2. The zero-starting model and the geologically
constrained model were initialised with zero cell time constants, accordingly
the result of the initial forward calculation was zero and hence this process can
be bypassed which translates into faster run-times. By contrast, the forward
calculation of the CDI-starting model takes ~8 min. Because the size of the
geologically constrained inverse problem is much smaller, as compared with
the zero- and CDI-starting model, 164 iterations completed in 3 minutes. The
relatively small x? value for the cDI-starting model results from the rescaling
of cell conductivities so as to optimise the fit with respect to the observed TEM
moment response.
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initial x2 iterations run time active cells
CDlI-starting model
(*bound cancelation’) 553 24 24 min 674,584
Zero-starting model
(depth weights) 619 107 32 min 738,224
Geologically
. 61.9 164 <3 mmn 33,886
constrained model

Table 6.2 — Inversion execution parameters for inversion of Gamsberg-East TEM
moments. Data uncertainty was ¢ = 0.04 pTs/A and maximum step size é7 = 2.5
msec. Number of data points is 259. Background conductivity was held fixed to 1
mS/m. All models result in x* values of 1 or less.

6.11 Concluding remarks

The rapid, approximate 3D inversion employing TEM moments of field data,
acquired over complex geology, offers a complementary interpretation tool to
conductivity-depth imaging and conventional plate modelling. The approximate
3D inversion identified mineralisation as a bulk conductive feature when employing
a zero starting model with depth weights. Geologically constrained inversion
produced a confined distribution of elevated time constants in sharp contrast
with the host rock which reflects mineralisation from drilled intersections more
realistically. Different starting models produced successful inversions which
arrived at nearly the same solution. Mineralisation at great depths, as depicted
in the CDIs, cannot unambiguously be substantiated with the 3D inversion results.
Because of the non-unique nature of TEM moment inversion, a preferred time
constant model may only be identified after exploring some of the range of
acceptable models. It is advisable therefore to begin the inversion from a number
of different starting models and assess the inversion results with other data.
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Conclusions

7.1 Summary and discussion of research

Motivated by the demand for a rapid and reliable 3D inversion method for
TEM data, an approximate moment-based method has been developed, utilising
geological constraints and potential field inversion devices. The present thesis
provides a proof of concept for fast and practical, approximate 3D inversion of
TEM moment data. The method has been illustrated in the context of fixed-loop
ground-EM. Because the presented 3D inversion method is general and very fast,
it is also suitable for AEM.

Fast, approximate EM modelling employs the TEM moment transform which
is a weighted time-integration of the TEM earth response from 0 to co. Measured
TEM responses, defined for finite time-ranges, are extrapolated using apparent
conductivities at the first and last valid channel. Extrapolation is required
because the forward algorithm employs complete TEM moments defined for
a time range from 0 to co. Linearity with respect to the time constant is a
property of complete TEM moments. Due to the weighted time-integration,
the TEM moment transform compresses a multi-channel TEM decay to a single
parameter. In the course of this thesis the 1% order TEM moment, equivalent
to the resistive limit, has been exclusively utilised. The moment transform
accentuates late-time features, so that EM interaction may tolerably be ignored.

The 3D inversion scheme relies on linear superposition of TEM moments
associated with discretised sub-surface volumes and recovers the geoelectrical
subsurface in terms of time constants via a steepest descent formulation. Com-
putationally expensive matrix inversion is not required. Accumulation of TEM
moment responses of point conductors defined 1n a continuous background has
provided the basis for the approximate forward modelling approach. Linear su-
perposition of a cubic network of point-conductors approximately reproduces the
TEM moment response of a confined conductor if its time constant is assigned to
each point-conductor. The predicted net TEM moment response of the ground is
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compared with the measured TEM moment response and the inversion is deemed
successful if the chi-squared misfit is unity or less.

Because depth-resolution 1s lost during the TEM moment transformation,
CDIs serve as a device to restore depth information. The CDIs are based on
total B-field amplitudes which facilitates derivation of unambiguous apparent
conductivities for fixed-loop TEM. Conductivity models interpolated from CDIs
serve as a an initial estimate for a time constant starting model or can be
employed to define a spatially defined weighting scheme. Conductivity weights
penalise solutions which deviate from the conductivity model. Depth weights
may be used alternatively to condition the depth and shape of causative bodies
during inversion. Depth weights are subjective and penalise shallow solutions.

The weighting scheme is part of the integrated inversion approach which
builds on the vPmg potential field modelling and inversion framework. In vPmg,
each cell is linked to a rock type, therefore facilitating lithological inversion so
that the recovered time-constant model is still recognisable as a geological model
after inversion. Adoption of a categorical model structure does not limit options
for property inversion which can be performed on a categorical model, with
changes restricted to specific units or permitted throughout the entire subsurface.
vPmg was modified so as to accommodate the TEM moments methodology; the
new program is referred to as vPem3D.

The following three sections summarise the key-points of the conducted
research and comments on achievements and limitations. Possible extensions
and future work is described in Appendix A

7.1.1 Approximate forward modelling

Fast, approxi\mate forward modelling has been accomplished by adding the
analytical TEM moment response of a homogeneous half space to the analytical
TEM moment response of a discretised target 3D-response while disregarding
EM interaction. The discrete target is comprised of a cubic network of point
conductors in free space After excitation, each point conductor hosts a magnetic
dipole with strength proportional to the product of local primary field, cell
volume and time constant. The TEM moment response as modelled with point
conductors is virtually scale invariant, i.e. independent of the cell size.

In the simplest form of the algorithm, each dipole inherits the orientation
of the local primary field (a modified forward algorithm which adjusts the
components of the primary field according to the conductivity gradient is in
an experimental stage, c.f. Appendix A). Accordingly, ’smoke ring’ current
diffusion cannot be simulated because induced vortex currents are static. For
this reason a continuous conducting half space was introduced. The half space
response captures early-time and near-transmitter responses as well as the late
time response of an extensive unbounded medium. The concept of the linear
combination of target and host enables separation of the ’uninteresting’ host
response from the ’interesting’ target response.
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The inaccuracy associated with the approximate forward solution when
neglecting EM-interaction has been qualitatively examined for the case of a sphere
(5 S/m and 10 S/m) in a uniform host for a range of half space conductivities (1-
100 mS/m). The analysis was based on an asymptotic semi-analytical formulation
for a coincident loop configuration which decomposes the contribution from host,
sphere and interaction, which includes contributions arising from inductive and
galvanic coupling. The results show that the main contributions arise from the
sphere and the half space. The TEM moment contribution from the interaction
term depends mostly on the host conductivity and is small (< 5%) for typical host
conductivity ranges, and can be as high as ~15% for relatively high conductivities
as found in weathered overburden.

In order to explore the suitability of the TEM moment modelling approach
for application to measured field data, the approximate forward solution has
been compared with fully 3D-TEM solutions, calculated by the integral equation
solver MARCO. The examples are calculated for prisms buried in a continuous
conducting half space. Two models which exemplify large ore deposits at great
depths have been considered.

The first example is for a sizable horizontal slab of 1 S/m in a rather resistive
background of 1 mS/m and buried directly under the fixed transmitter. The
relatively small subcell dimension of 10 m chosen to demonstrate the rapid,
approximate TEM moment computation for a large number of cells (192,000 cells)
The vPem3D calculation completed in ~5 minutes. The computation for the
fully 3D model by MARCO were calculated on a much coarser grid comprising a
total of 1000 cells and completed in ~14 minutes. The time constant of each
point conductor was assigned the time constant of the slab as estimated from
the TEM decays. The TEM moments of the MARCO slab and the approximate
VPem3D response agree, with RMs difference in the order of ~1% of the maximum
amplitude.

The second example is for an extensive vertical dyke model of 50 S/m in a
conductive host of 50 mS/m which gives rise to host-rock EM interactions. The
fixed transmitter was centred at (OE,ON) with the eastern wire 450 m offset from
the nearest edge of the dyke For a subcell size of 10 m (giving a total of 140,000
cells) the computation in vPem3D completed in ~ 21/2 minutes. The fully 3D
response was computed by MARCO on a coarser grid for 1000 cells and completed
in ~16 minutes. The TEM moment responses of MARCO and vPem3D agree, with
RMS difference in the order of ~2% of the maximum amplitude. Comparison of
the stripped TEM moment responses, i.e. with the half space response subtracted,
illustrates that the vPem3D responses reasonably reproduce the shape of the
MARCO responses. Deviations become apparent most clearly for lines traversing
the centre of the dyke where the responses are the strongest. Because the vertical
dyke will predominantly support eddy current flow in the plane of the plate, the
calculations for vPem3D are imprecise since each point conductor inherits the
orientation of the primary field.
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7.1.2 Robust 1D imaging

Construction of a starting model for 3D inversion as well as calculation of the
TEM moment data from measured TEM decays is supported by conductivity-
depth-imaging. The transformation of measured TEM decays to TEM moments
employs apparent conductivities: the incomplete TEM moment as obtained by
integrating the measured decays between the first and last channel are augmented
at early and late time using contributions from half space decays defined for
the apparent conductivities at the first and last channel respectively. For TEM
moment inversion, interpolated CDIs restore depth information in the starting
model which has been lost due to the process of time-integration in the moment
transform. CDIs may supply initial estimates of cell time constants or may
serve as a set of spatially defined inversion weights which favour solutions close
the conductivity distribution of the ¢DIs. It 1s desirable, therefore, that the
calculated apparent conductivity values are reliable so as to avoid misleading
ODI starting models.

Sensible portrayal of the subsurface conductivity in the CDIs is desirable in
order to reliably condition the 3D inversion and to initiate the TEM moment
data for inversion. Although well-defined for in-loop measurements, apparent
conductivity is either dual-valued or undefined for vertical component ground-
loop TEM measurements over a half space outside the transmitter-loop, both
for step and impulse response data. In particular, if B, < 0, for stations
outside the loop, the apparent conductivity is extremely high at mid- to late-
times. Artifacts may also arise from 3D geology. The ambiguity inherent in
the calculation of apparent conductivity for fixed-loop TEM has been overcome
by making use of multi-component B-field amplitudes. Apparent conductivity
based on B-field amplitudes is unique because on a homogeneous ground, B-field
amplitudes are a non-increasing function of time, except when the inductive
limit is encountered. The technique’s suitability was demonstrated on layered
earth models. Apparent conductivities could be computed unambiguously and
the recovered layered conductivity structure from conductivity-depth imaging
resembles the true layered model without artifacts. Conductivity-depth imaging
based on B-field amplitudes from synthetic 3D models has furthermore been
shown to be less biased by 3D effects than conventional CDI interpretation which
are based on the vertical component only. By interpolating total-field CDIs a
smoothed representation of the 3D geoelectrical structure of the subsurface can
be generated.

7.1.3 3D inversion of TEM moments

The inversion algorithm is sourced from vPmg. Parameter estimation was realised
by iterative construction of a time constant model via linearised improvement
of a starting model using a fast steepest descent formulation. A user-controlled
step size avoids large jumps in the perturbation vector at each iteration. The
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steepest descent method successively corrects a model estimate in direction of the
negative gradient of the chi-squared misfit At minimum, the recovered model
defines a distribution of time-constants in the subsurface. For single component
TEM moments, property inversion is linear and derivatives are independent of
the model, therefore facilitating successive model corrections via the initially
calculated derivatives only. The algorithm distinguishes background and target
response. The background conductivity can be held fixed to an a priori estimate
(for example from CDIs) or can be optimised employing a simple least-squares
regression. The target response is subject to steepest descent inversion. The
inversion may employ a ’bound cancelation’ directive which deactivates any cell
from inversion if its time constant attains a bound. Bound cancelation effectively
reduces the number of active cells during inversion (thereby enhancing speed).

Each voxel in the model is associated with a property value and a lithological
unit, so that the lithological significance is preserved throughout the inversion
process. The mapping of the geological model onto the 3D grid facilitates geolo-
gically constrained inversion where only selected units participate in inversion
which are expected to carry significant mineralisation. Inversion proceeds from a
starting model. Together with selected inversion constraints, the starting model
comprises the geological litho-model with initial time constant values assigned to
each cell. The time constant model may be initialised with zero values or may
be based on interpolated CDI sections. The starting model is then subject to
suiceessive corrections so as to find the optimal distribution of cell time constants
which can explain a set of observed TEM moments.

Inversion constraints are needed owing to the inherent non-uniqueness asso-
ciated with the potential-field-like inversion of TEM moments. For inversion, 3D-
conductivity-weights or 1D-depth-weights have been employed. Bound constraints
can furthermore be imposed to selected units. Also, the property of a cell in a
heterogeneous unit can be held to a fixed value if petrophysical measurements
are located within it. The conductivity-weights are calculated from apparent
conductivity-depth pairs and penalise solutions which deviate markedly from
conductivity-depth-imaging Depth-weights are designed to suppress the impact
of the transmitter and to penalise shallow variations in conductivity. The depth-~
weights are based on an empirical tanh-function and can be 'tuned’ to suppress
surficial layers and to emphasise conductive features at certain depths as seen in
the CDIs.

3D-Inversion of synthetic examples

The vertical component TEM moments of the previously described synthetic
models of the horizontal slab (768,000 inversion parameters) and vertical dyke
(180,000 inversion parameters) were subjected to the 3D inversion scheme. For
inversion, the TEM moments of both synthetic examples have been contaminated
with 5% Gaussian random noise (231 data points). The calculations were
conducted on a Pentium 4 2.8 Ghz processor from 2006. For both examples, the
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synthetic TEM data is converted to an initial 3D conductivity model interpolated
from ¢CDIs based on total B-field amplitudes. In case of the horizontal slab model,
apparent conductivity is disseminated throughout a large volume, extending far
below the prism. Depth-to-top of the prism and the lateral model dimensions
are adequately reflected in the cDIs. In case of the vertical dyke model the CDIs
depict the depth-to-top and the depth-extent of the prism fairly accurately.
However, a broad conductive region is pronounced west of the vertical dyke
which extends far below the transmitter loop.

The purpose of 3D inversion of the two synthetic examples was to test
whether the mversion can rapidly provide more accurate representations of the
geoelectrical subsurface than the cDIs. In order to illustrate non-uniqueness,
3D inversion was performed with various distinct starting models: (i) a cpDI
starting model initialised with time constant values based on CDIs; (ii) a zero
starting model with conductivity weights and (iii) a zero starting model with
depth weights. A positivity constraint to the time constants was imposed to
each starting model.

For the slab example, the inversion solution based on the CDI starting model,
resembled the CDI conductivity structure; inversion succeeded after ~14 min (2
iterations). In case of the vertical dyke example, the recovered time constant
model gave an improved representation of the true dyke model; inversion was
successful after ~4 min (15 iterations). In order to suppress shallow conductivity
structure, the CDI starting models were 1nitialised with an inert surficial layer,
resulting in a reduced number of parameters as compared with the zero starting
models.

The recovered time constant models based on the zero starting model condi-
tioned with conductivity weights were mostly confined by the volume of the
original body. In case of the slab, inversion succeeded after ~9 min (4 iterations)
and in case of the dyke, inversion was successful after ~6 min (67 iterations).

Dependent on the details of the used depth weighting scheme, different results
were obtained from the zero starting model with depth weights as a result of
non-uniqueness The resulting time constant models calculated for different depth
weights gave a good representation of the underlying true model. An acceptable
fit was achieved after about 10 min for the horizontal slab (4 iterations) and
after about 5 min for the vertical dyke (49 iterations).

Because the zero starting models do not need to calculate a forward model
response, it is considerably faster than inversion based on the CDI starting models.
Inversion based on the zero starting model with conductivity weights produced
the most convinecing results for both synthetic examples.

3D-Inversion of measured field data

The applicability of the approximate 3D inversion scheme was demonstrated on
fixed-loop TEM field data from South Africa. Further objective was to build
confidence in the existing interpretation or to see whether new conclusions could
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be drawn based on the inversion results. Information from drilling, geological
data and from geophysical measurements were incorporated into a simplified
geological model which consists of three lithological units: quartzites, ore zone
and mafic gneisses. The cell size was 20 m and the total number of cells in the
geological model was 738,224; the number of cells in the ore zone unit was 33,886.

Different starting models were tried: a ODI starting model, a zero starting
model conditioned with conductivity weights and a zero staring model with
depth weights. Additionally a geologically constrained starting model was used
where parameter changes were restricted to the ore zone unit and which was
initialised with zero time constants. A positivity constraint was imposed during
all inversions.

The various starting models were constructed to highlight various aspects
of the data. For example inversion based on the zero starting model with
conductivity weights penalised solutions inconsistent with the cDIs. On the other
hand, the zero starting model with depth weights recovered smoothly varying
time constants with depth. The geologically constrained starting model produced
sharp boundaries where recovered time constants were confined to the ore zone
unit.

The inversion based on the CDI starting model was successful if ’bound
cancelation’ was invoked (24 iterations in ~24 min). Elevated time constant
values of the recovered time constant model broadly corresponded with occurrence
of mineralisation from the drill holes. A broad conductive region of low time
constants is furthermore apparent at great depths, which is interpreted as a
residual of the CDI starting model.

Inversion based on the zero starting model conditioned with depth weights
produced a model with a broad conductive region which generally coincides
with the drilled ore zone and also with the result from plate forward modelling.
Inversion was successful after 107 iterations in about ~32 min.

The result from the geologically constrained inversion produces a time
constant model with sharp boundaries at depths coinciding with the drill inter-
cepts and the result from plate forward modelling. Inversion for 33,886 active
cells succeeded after 164 iterations in less than 3 minutes.

3D inversion of the synthetic examples and the measured field data all com-
pleted in a relative short time. The longest run-time was about ~30 min for
inversion of the field data set which involved 738,224 parameters and 259 data
points. Shortest run-time was about 3 min. for the geologically constrained
inversion of the measured field data, involving only 33,886 cells. Inversion of the
field data set was considerably faster than interpretation based on interactive
plate forward modelling.

The recovered time constant models of the synthetic examples could all
indicate the position of the true model, subject to selected constraints. As
compared with the results from conductivity-depth-imaging, vPem3D provided
much more accurate representations of the geoelectrical subsurface than the
¢DIs. The inversion result for the measured data is consistent with bore hole
information and plate forward modelling.
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Concluding remarks

The presented approximate 3D inversion scheme is supplemental to 1D inter-
pretation and helps building confidence in the geological interpretation of the
subsurface. The inversion scheme was successfully tested on synthetic fixed-loop
TEM examples and on fixed-loop TEM field data from South Africa. The innova-
tive key elements which were successfully completed during the current study

were

the development of an approximate, fast and practical 3D-TEM forward
modelling program as a combination of a discrete target response and a
continuous background response. The forward calculations are based on
analytical parametrised TEM solutions in terms of TEM moment responses
of point conductors added to the TEM moment response of a half space.

the device for transforming measured TEM decays to complete TEM moments
by extrapolating at the earliest and latest channels using a half space model
based on apparent conductivities for the times in question.

the development of a reliable and robust 1D-imaging scheme in the context
of fixed-loop TEM, which is based on the calculation of unambiguous
apparent conductivities derived from B-field amplitudes Conductivity-
depth imaging serves as a preparatory process for approximate 3D inversion
and facilitates injection of depth information. It is also used to extrapolate
‘measured’ TEM moments.

the development of a rapid 3D inversion scheme of TEM moments, which
builds on the vPmg potential field framework, utilising geological constraints,
primarily derived from boreholes, and potential field inversion devices such
as depth weighting and property bounds.



Appendix A

Future work

Subsequent sections briefly describe future work which can be classified into
three objectives:

®

(if)

(iii)

Enhanced speed

This point involves technical aspects only. It is anticipated that
the program execution can be accelerated by simple measures like
recognising constrictions in the code. Primarily, however, enhanced
speed will be realised by parallel programming due to the increased
availability of multiprocessor computers. Because point conductor
responses are each independent, a parallel scheme is thought to be
promising.

Improved accuracy

More appropriate forward modelling improves accuracy. For example,
induced vortex currents are static in the current implementation of
the target response due to the ’frozen’ dipole direction of the point
conductor. Implementation of the gradient scheme, described earlier
in Chapter 3, will improve accuracy, since current flows preferen-
tially orthogonal to conductivity gradients. Another example is the
background response which is calculated as the response of a homo-
geneous conducting half space. While this facilitates fast and simple
execution, it may often be a poor approximation to the host-rock
geology. A better approximation, and therefore improved accuracy,
may be a layered earth response as background.

Greater generality

The current implementation of vPem3D is applicable for fixed-loop
TEM. An example for greater generality includes implementation of
moving loop and slingram systems Inversion can be furthermore
generalised to include higher order TEM moments and inversion of
total-field TEM moments. Implementation of homogeneous body
inversion and geometry inversion are further examples of greater
generality.
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Conductivity gradient method

In the forward algorithm, each point conductor inherits the orientation of the
local primary field. As a consequence the magnetic dipole orientations asso-
ciated with each point conductor are effectively frozen in the directions of the
local primary field. However, a modified forward algorithm which adjusts the
components of the primary field according to the conductivity gradient is in an ex-
perimental stage. The modified forward algorithm defines local 'next-neighbour’
gradients which simply can be obtained from the difference in conductivity or
time constants of adjacent cells.

The principle of the gradient methodology has been demonstrated at a *thick’
plate model. The TEM moment response of the subcelled volume has been
compared with the TEM moment response of the plate-model as computed from
the TEM decays of the approximate plate modelling software MAXWELL. Each
VPem3D point conductor was assigned a rescaled time constant based on the
analytical time constant of the plate. The vPem3D response curves match those
of the plate when the primary exciting field consists only of the component
orthogonal to the plane of the plate.

In the modified algorithm, the gradient scheme initially assigns a local gradient
to each cell in the starting model. During inversion, after each iteration, the
gradient is recalculated after update of cell time constants. In homogeneous
conductive areas, the gradient evaluates as zero in which case the local primary
field is adopted without modification. The gradient scheme is subject of active
research and promises an interesting approach for computation with improved
accuracy of TEM moments for arbitrarily shaped conductors.

Conductive overburden

The fully 3D synthetic examples in the current thesis concentrated on two different,
extensive models buried at great depth in a homogeneously conducting host.
Likewise, the field data example was a large conductor with complex geometry
buried in a resistive host. All cases, synthetic and field data, were modelled via
superposition of a discrete target TEM moment response and a homogeneous
conducting half space response. The case of a conductive overburden, which
commonly occurs in Australia, has not been investigated in the current study.
The effect of overburden is to delay and smooth the target response, similar
to the effect of a conducting host rock. At early times, the effect is known as
‘overburden blanking’ where only information from the overburden is present in
the TEM decays. At later times the response from the target becomes visible if
the blanking effect is not too strong. Superposition of overburden response and
target response is a valid approximation at late times (Nabighian and Macnae,
1991, p.446).

The TEM moment transform will virtually ’smear’ all contributions from the
overburden response onto the entire time range of the decay, resulting thus in an
increased TEM moment response For the present inversion scheme, where the
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background is a homogeneous conducting half space, the presence of a conductive
overburden will manifest predominantly in a higher half space conductivity.

Improved accuracy may be achieved by a more direct approach by identifying
conductive overburden from corresponding cpis and include them explicitly
as a conductive layer in the modelling and inversion scheme. The analytical
formulation of the TEM moment response of a conductive layer of finite thickness
for magnetic dipole excitation has been reported previously by Smith and Lee
(2002¢c). The TEM moment of a layer of finite thickness has a very simple
formulation and is linear with respect to conductivity, therefore facilitating
simple-least squares optimisation which could be incorporated in the inversion
scheme. The derivation of the TEM moment response of a layer with finite extent
for rectangular loop excitation has yet to be realised, however .

Moving loop

The current study focused on fixed-loop ground-TEM but can readily be ge-
neralised to moving loop systems. Computationally, there is no difference in
calculating the TEM moment response of an assembly of point conductors for
moving loop or slingram. Because the modelling and inversion scheme is fast,
it is suitable also for AEM. The TEM moment of a point conductor is related
to the exciting EM system via direction and strength of the primary magnetic
field at the point conductor’s location. If the primary field vector is known at
the point conductor’s location, the same formulation as given in Equation (3.2)
is employed for calculating the point conductor response. Algorithmically, the
program has to account for a multiple transmitter system in case of moving-loop
or slingram configurations.

Higher order moments

The implemented forward and inverse modelling scheme in VvPem3D relies on the
first order TEM moment which is equivalent to the resistive limit. Smith and
Lee (2002b) use approximate moment orders from 0 to 9 for interpretation of
measured data. The normalised higher order moments have larger amplitudes
than the smaller order moments at the location of a known bedrock conductor.
Smith and Lee (2002b) note that the higher order moments put greater emphasis
on the late-time data. This can bring out conductive features that are deeper
than other less conductive features, and normally only seen in the late-time data,
however at the expense of simplicity, speed and sensitivity to noise. Nonetheless,
generalisation to multitudinous TEM moments of varying order for the vPem3D
inversion scheme may serve as a proxy for time channels in order to inject depth
information in the inversion and to emphasise deep conductive features. (Smith
et al., 2006, Fig.6) shows a synthetic imaging result obtained from TEM moment
mversion for moment orders 0.5, 1.0 and 1.5.
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Total field inversion

The property inversion scheme currently implemented in vPem3D inverts vertical
component TEM moments. The advantage of vertical component inversion is
that the inversion is linear. In linear inverse problems, sensitivities are model
independent, which expedites successive model corrections via initially calculated
sensitivities. Recalculating an updated forward model and sensitivities after
each iteration is therefore not necessary. However, vertical component TEM
moments which exhibit anomaly cross-overs caused by current migration in
anomalous conductivity volumes cannot be replicated due to the ’frozen field’
effect (Nabighian and Macnae, 1991, p.440).

Generalisation to inversion of total magnetic field moments can circumvent
difficulties associated with anomaly cross-overs. The total magnetic field is
always positive and not directly affected by current migration anomaly cross-
overs. Moreover, the information content in total field amplitudes exceeds that
of single component data, resulting in a more unambiguous inversion problem,
therefore. Starting models are predominantly based on |B|-field amplitudes
CDIs for these reasons. A disadvantage however, is that total field inversion is
non-linear because sensitivities are now model-dependent, viz.:

3
8,|M| = ﬁ-ZM, @:M) j=1,...,3

J=1

where j denotes a component and M is the moment response so that model
dependence is encountered since the first order moment is linearly related to the
time-constant. Most accurate results for successive model updates are obtained
by re-calculating new sensitivities at each iteration so that the inversion process
gets considerably slower. Alternatively, the model dependence of the sensitivities
is ignored and the inversion scheme is regarded as ’quasi-linear’ so that successive
model updates are approximated with the initially calculated derivatives. |B|-
field amplitudes inversion is expected to provide an additional useful tool to
resolve ambiguity in TEM moments inversion.

Homogeneous body inversion

A geological unit is homogeneous if all cells in the unit share the same time
constant. During inversion, the time constant of a unit may change without
intra-unit variations. Single or multi-body parametrisation is used to model
discrete changes in the time constants of the subsurface where each surface
encloses a volume of the rock that has uniform time constants The inverse
problem is formulated to find a relatively small number of time constants which
describe the homogeneous units. Because usually there will be far more data
points than homogeneous units, the problem is over-determined. The advantage
of generalisation to homogeneous body inversion is to easily and rapidly recover
the bulk properties of target volumes so that the lithological significance remains
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unchanged during inversion. Because only a few parameters are involved, the
inversion is very fast Moreover, homogeneous property inversion may serve as a

first step in data inversion, followed by heterogeneous and geometry inversion.

The homogeneous property inversion is described in Section 5.2.4 and is a
standard vPmg option.

Geometry inversion

In geometry inversion, the geological contacts that define the boundaries of
the litho-units of the geological model are subject to inversion. The geological
surfaces are manipulated to achieve an improved fit between observed and
calculated data. The geological significance of contacts is preserved so that the
model is still recognisable as a geological model after inversion. During geometry
inversion, the properties of all cells are fixed If drill pierce points are available,
geometry inversion can refine geological surfaces between holes. They are held
fixed for geological credibility and to reduce the inherent ambiguity of geophysical
interpretation. Geometry inversion 1s a standard option in vPmg.

In vPmg, modification of geological boundaries is achieved by moving the cell
boundaries, with cell rock types invariant. The mesh deforms and arbitrarily small
boundary adjustments are permitted. During geometry inversion, continuous
vertical movement of the horizontal cell boundaries is permitted, but vertical
prism boundaries are fixed. This type of ’adaptive mesh’ is implemented in
vPmg. The geological units can be heterogeneous or homogeneous and, as in
heterogeneous property inversion, soft and hard constraints can be encompassed
to the inversion Fullagar and Pears (2007); Fullagar et al. (2008). Generalisation
to geometry inversion in vPem3D will be a major subject of ongoing active
research in the near future.
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