```
INDUCTION OF CHANGE IN THE FUNGUS
    CHAETOMIUM BY IRRADIATION WITH
        MONOCHROMATIC ULTRA- VIOLET
    AND THE MECHANISM OF THE
        REACTION.
```

Thesis presented to the University of Tasmania for the degree of Master of science.

$\frac{30}{24}$
$\frac{3}{46}$

CONTENTS

1. SURiLary
2. INTRODUCTION
Z. HETHODS
(a) The erowing of the colony
(b) Sampling of spores for irradiation.
(c) Preparation of the spore sample for irradiation
(d) Irradiation of the spores.
(e) Measurement of irradiation dose.
(f) Biological dose indicator.
3. Results
(a) Variation in O. globosum
4. Characters selected for observation.
5. Wode of occurrence of the variants.
(b) Zuantitative analysis of induced variation.
6. DISCUSSION
7. AOKNOMLEDGZENTS
8. BIBLIOGRAPHY

SUMIDARY

1. Change induced in the fungus Chaetomium by irradiation of the spore with monochromatic ultra-violet has been investigated from a quantitative viewpoint.
2. The methods used in irradiation and growth of the material and the measurement of irradiation dose are described. Samples of spores were irradiated monocnromatically at 265, 313 and 334 mu. Colonjes of single spore origin were obtained by single-spore and dilution plating and each grown in single petrie dishes.
3. Variation was induced by irradiation in tha short, midale and long ultra-violet, and included genetic effects, lethal effects and "growth-damage". The nature of variation is discussed.
4. The relative quantities of the genetic effects and "growthdamage" differed at each wavelength, the short ultra-violet being much more effective in inducing "growth-damage" than genetic effects, and the long wavelangths less effective. Tne lathal effects are shown to involve genetic change.
5. Nvidence is presented associating tne genetic effects with qualitative jene change, wnich is considered to involve reaction by the protein component of nucleoprotein.
6. "Growth-damage" is considered to involve an effect upon nucleic acid whereby the normal functioning of the nucleus is prevented, resulting in aberrant cell growth.
7. Nucleoprotein is visualised as providing the mechanism of heredity, the protein component being concerned with qualitative gene action and nucleic acid with the reproduction of the genetic protein. protein and nucleic acid react independently.

IVTRODUC PION

These investigations into the association of gene change sidth a photochemical-type reaction were begun by professor illcAulay in the Physics Department of the University of Tasmania, and in 1940, when the author undertook the investigation, some work had already been carried out on the induction of change in the ascomycetous fungus Chaetoniun zlobosum Kunze with monochromatic ultra-violet. ividence for a chemical mechanism of gene action has been accumulated from a wide variety of investigations. Few of them, however, have been designed to determine whetner photocnemical change could be induced in the system. 4 vidence for this woula not only provide additional proof of chemical aechanism, but might, if thresholds of action could be shown, enable the mechanism to be analysed. Such analysis would seek, firstly, to resolve the functions of nucleic acid and gene protein, and finally: if genetic change could be induced selectively, to study gene change at specific loci. In this paper variation inauced in c. glooosum by ultra-violet radiation will be considered in relation to the genetic mechanism and, in particular, to the functions of nucleic acid and gene protein.

The literature on the genetic effects of ultra-violet radiation is not extensive, chiefly because of the technical difficulties associated with its use, and until 1939 few quantitative results had been published. This Iiterature often shows a lack of appreciation of the fundanental differences in action of ultraviolet and the ionising radiations. A controlled and specific photochemical reaction is induced by ultra-violet, while the latter produce their effects by ionisations which occur haphazardy

[^0]in so far as the type of problem which can be solved by it is
concerned.
In the fungi Dickson (1932, 1933) investigated effects induced in various species of Chaetomium by X-rays and ultra-violet radiation. No essential difference: was noted between character change induced by X-rayiny spores or mycelium, or between changes induced by X-rays or ultra-violet. Any one variant character appeared to be produced independently of any other; the aifferent variant characters, of which there were a large number, could occur singly or several could be associated in the same variant. Variants induced in irradiation of other variants differed from their parents in much the same way as these parents differed from the original species. In so far as some characters were concerned, a reverse change was possible. NicAulay (1939), irradiating spores of Ghaetomium globosum with ultra-violet at wavelengtns from 254 mu to 365 mu , found eviaence for the selective production of a variant st 2 by long mavelengtns. The order of magnitude of the dose required to produce change at 313 and 334 mu was 100 times and at 365 mu 1000 times the effective dose in the 230-265 range. Emnons and Hollaender (1539) reported on inutations induced in dermatophyte fungi by irradiation of the spores with monochromatic ultra-violet over tne range 230 nu - 29 mu . They founc the rate of matation to reacn a maximun and then to decrease rapidly with increasing dose. Host of the mutants (which were classified by inspection) showed an increase in pigment production and a decrease in growth rate. A few were indistinguishable from other species or other varieties of dernatophytes. Reversions were recorded. The percentage of mutation ranceratuetren 1.3 and 2.9. Lindegren and Lindegren (1941) found in geurospora that diminished fertility, which was due to chronosomal rearrangenent, was induced by K - ray treatment but not by ultra-violet irradiation at 254 mu . The changes induced by the latter included single gene mutations as well as "degenerate phenotypes", whose numbers significantly exceeded those of the single gene group.

In Drosphila wackenzie and wuller (1940) showed that ultra-violet irradiation resulted in gene mitation as distinct from gene rearrangement, but this finding has since been contradicted by Slizynski (quoted in Cold Spring Havor Symposium, "Genes and Chromosomes").

In maize, Stadler (1941) found that numerous endosperm deficiencies and enbryo abortions resulted from ultra-violet irradiation. Chronosome rearrangements were not proauced, whereas they were common in X -ray caterial. Unlike the X-ray results also, the frequencies of the endosperm deficiencies ana erioryo abortions induced by ultra-violet irradiation were different. The uitra-violet dosage was the sane at all wavelengths and under these conditions the ultraviolet effect did not occur at wavelengths longer than about 310 mu , and 254 mu was the most effective wavelength for the production of endosorm deficiencies, "the effect diminishing with both snorter and longer wavelengths and reaching a negligiole value at $302^{\prime \prime}$.

In the liverwort Sphaerocar pus, Knapp and Scnreiber (1941) found that the frequency of mutation inauced by ultra-violet radiation was a maximum at $26 \mathrm{~m}_{\mathrm{m}} \mathrm{m}$, failing off on either side and reaching zero at 313 mu. t'qual doses of radiation were applied at all wavelengths. Genetic effects and an effact on sporogoniurn attacnment were found, the latter having a high frequency of occurrence at short wavelengths.

In general, the iiterature presents an incomplete picture of the mechanism of the chanes inciuced by ultra-violet radiation. The range of ultra-violet wavelengtns nas been explored incompletely, either because only a single $w_{a} v e l e n_{0} t h$ was investigated (ilackenzie and $\dot{d} u l l e r, ~ 1940$), or because the dose applied at long wavelengths was too small (Smmons and Holleender, 1939) Knapp and Schreiber, 10,1), or because method of test or cultural technique could not show up differences in effect (tminons and Hollaender, 1939). Firoreover because nucleic acid was known to be a universal constituent of nucleoprotiin and to absorb strongly in the short ultra-violet, it was concluded invariably that the results obtained were to be interpreted in terms of nucleic acio absorption, and even that gene change depenced upon initial a.bsorntion by nucleic acid (mackenaje and wuller, 1940). In many cases the similarity founa between the freqneuey of the induced effect and the curve of nucleic acid absorption is fallacious. However, the data of Knapp ana schreiber (1941), Lindegren and Lindegren (1941), and Staciler (1941) are indicative rather of differential effects of ultra-violet raaiation, associated on the one hand with nucleic acio absorption and on the other hand with absorption in the gene protein.

Study of the effects of ultra-violet radiation upon
C.globosum has had to take into account a number of features of its biology (Appendix l). The colony is fundamentally a cell population and considerable variation was observed in it. The term "variation as used in this work on C. globosun denotes. heritable change as distinct from environmental nodification. The nature of this heritable change is concluded to be qualitative gene change at least in those variants used for the assessment of radiation effect. However, variants of a group all resembling the parent type more or less closely, were not used om these experiments as a measure of radiation effect because they could either appear spontaneously or be incuced by the irradiation. Variants of this residual group are described by the term "strain", which is used in the same sense as "variety",
"race", "subspecies" and so on are used in other organisms; all such terms describe forms more or less genetically similar to the parent.

In elaborating an experimental procedure for this work the composition of the colony and in particular the functional individualism of its cell units, had a profound effect. Factors which had to be taken into account were:-
(1) Character change was not distinct but showed great intergradation and there was lack of constancy in response to the irradiation between successive experiments. Results were therefore assessed over a series of experiments rather than single ones, which in turn made it necessary to select the characters in which change was to be observed so that variation could be determined by inspection rather than by detailed examination. Because a large number of colonies had to be examined, the use of characters requiring detailed examination was not practicable.
(2) The occurrence of strains in both control and irrediated series made it desirable to disregard them in assessing the effect of the irradiation. (Even so, it was most difificult to set limits in practice to their range, particularly in respect to those involving characters of the mycelium and perithecium, which made up a majority).
(3) Irradiation had different effects on different spores, intiluencing early growth as well as causing variation. The spores had therefore to be considered individually and the colonies obtained from them grown singly. Single spore and didution plating metnods were therefore employed and the colonies isolated in single petri dishes. Such methods were also required to obtain quantitative data.
(4) Spores were irradiated, not only because they were uninucleate while the mycelium was multinucleate, but because any sample of mycelium would consist of several cell units each of which could be affected and then reproduce separately and independently.
(5) Variation in response by the material necessitated the use of a biological dose indicator to measure the mean radiation effect on the sample, the physical measure of dose only providing information concerning the anount of radiant energy reacning the nucleus, in itselt subject to considerable error because of technical difficulties and the lack of absorption data for the biologioal material. The biological indicator was, moreover, the only basis for comparison between wavelengths,

Of the range of ultra-violet wavelengths available in the mercury vapour spectrum, (which was the source used), it was decided to work with three only in these experiments, namely 205 , 313 and 334 mu. These three wavelengtns were selected not only because data from a long series of wavelengtas might obscure a general mechanism in a preliminary examination, the mechanism becoming evident if data were compared from a few wavelengths covering the ultra-violet range, that is, short, middle and long ultra-violet;
but also because they lie, respectively, within, on the boundary of, and outside that region of the ultra-violet for which induced change has been reported. Apant from the work of IfcAulay (1939), ultra-violet wavelengths longer than about 300 mu have been consiciered senerally ineffective in inducing heritable change.
(a) THE CROMAG OF THE COLONY.

Colonies of single spore origin were odtained from the juradiated and control spore samples by dilution and single spore Notiog the colonies so obtained were then grown in separate petri dishes. Usual aseptic methods were used at all stages.

Single spore platings were first made froin each sample to determine their ferminetion and early growth chersoteristics. A hard cleared filt agar was poured into a petri dish in a thin layer and allowed to solidity. Two intersecting lines were drawn on the underside of the dish with a glass pencil and sinall regularly spaced scratches made in the agar to cross them. (Textfig. $1 A$). A small dab of spores, as few as possible, was lifted from the spore sample on a coverslip (see below) with a rounded platinum needle tip and placed on the agar to prevent overgrowth from it. Under a binocular microscope single spores were picked up with a platinum point and one placed at an eno of eacn small scratch in the agar. The spores were spaced aoout 1 cin from each other.

This method of single spore plating was found to be reliable With \underline{C}. _loposum spores and was develojed as a fairly quicis routine method. The spores, which measure about $9 \mu \times 7 \mu$, could be seen and handled readily under the binocular microscope using the high power objective and 10 X eyepiece (total magnification about 60 X). A fine point was ground on the needle which was about an inch long and of fairly stout platinum wire so that it did not bend readily. Before using it each day the needle was usually reground to a clean point of such a size that an individual spore could be touched. Much of the success of tile method dapended upon getting a satisfactory needle point. Tine needle was mounted firinly in a metal holder selected to Dalance comfortable in the hand; in this way it could be held loosely enough to minimise shaking and vibration. except for slight movements, chiefly the vertical noveuent of picking up and putting down the spore, all manipulation was done by moving the petri aisn with

A. Diagram of typical plating of single opores Crose lines marked on bottom of dish. geratches in surface agar. Spores transferred singly from ostrifal mass and plated close by end of each scrateh.
B. Holder for cover glasses spread inith spore sample. Control and irradiation samples mounted in constant relation to spectrum by guide 11 nes, screened from scattered short waveleagth radiation with cut-off filter, and constant environment maintained by air filow.

06
with the other hand. It was found that with practice tne movements of needle and dish were co-oráinated ana smooth, with a minimun of shaking and irregular movement in the microscope field. The routine platings in this work were 100 irradiated and 50 control spores; they would take about 4 nours to plate.

The single spore plates were examined froun tine to time and each spore recorded as naving either (a) failed to gerninate, When there was no sign of any germination of the spore; or
(b) formed a visible colony or failad to do so, when a germinated spore did or did not reach such a size that it was clearly visible to the naked eye (arbitrarily about 5 am diameter; if a colony reached this size it would continue to grow in nearly every case).

Dilution plates were not prepared until an approxinate germination count had been determinea from the single sjore platings.Using these counts as a basis, dilutions were calculated to give a plate in which the colonies would not be crowded. Dilution plates were then prepared in the usual way. The spores left on the coverslips vere suspended in water; the cover glass mas aroped into a conical flask containing the required volune of sterile water and snaken thorougnly. 1 ml of suspension was pipetted into each sterile petri aish.iuelted agar was then mixed well with the susjension and allowid to soliaify. The plates ware incubated and all the colonies in one or more of the dishes picked off as they appeared and plated out each in a single petri dish.

The control and irradiated series were made up partly of colonies appearing in the cilution plates and partly of colonies of the single spore plates. Usually all the visible colonies were taken from the sinsle spore plates in the irradiated series and a total of up to 200 colonies obtained with the addition of colonies appearing in one or more of the ailution plates. The colonies from the single spore plates comprised about $36 ;$ of all the
were plated usually, couprising colonies from single spore and dilution plates. The colonies vere incubated at constant temparature until meture, when they were examined and counteo. The incubation temperature was about $28^{\circ} \mathrm{C}$. In the earlier experiments temperature coula not be controlled accurately and differed sufficiently throush the incubator sgace to cause apprecis.ble effects. Such environnental mouifications couldy however, be discounted by maintaining the positions of tine nlates by stacking them in sequence in frames. In later experiments on the other hand, incubator te:uperature was controlled witnin sinell linits and heat layerine mininised by mechanical.stirring of the air. By this means environuental modification was so reduced as to be negligible.

By neans described above, series of irradiated and control colonies were obtained, each colony in its petri aish being of single sjore origin. This was definite with those colonias taken from the single spore plates because eacn spore had been plated inaividually, and was probably the case with the dilution glate material also.
(b) SANPLING OF EPORES FOR IRRADIATION.

Spores were gathered from a single spore colony with a sterile brush and thoroughly mixed with a few drops of sterile water on a microscope slide. This suspension was then smeared over the slide and ellowed to dry off. This sample of spores was arawn upon for a series of experiments.
(c) PREPGRATION OF THE SPORE SAMPLE FOR IKRALIATION

The wavelength beain focussed by the monocnromator was a slightly curvea band about 25 ma long $x \underline{1} .5$ mu wiae within which the siore sample had to be contined. A narror band of spores was suread on a microscope cover glass in tne followints way. A good quality camel-hair brush was trimmed to o long point consisting of $2-3$ nairs only, ana sterilised in the
autoclave. A guide plate had already been prepared by cementing to a glass plate a $2^{\prime \prime} x$ l" microscope cover glass, marked on its $^{\prime \prime}$ gitan under surface in indian ink with two lines spaced about 1 mm apart, i.e. less widely than the wavelength beam, and with the same curvature as the beam. The guide plate was sterilised by flaming and a sterile $\frac{5}{5}$ " x 镸 microscope cover glass mounted on it across the guide lines; a simple and effective way of fixing the cover glass to the plate was to touch each of its corners with a molten bead of paraftin wax. Moistening a brush in sterile water, spores were picked up on its tip from the spore sample and transferred to the coverglass. As with single spore plating, the mounted cover glass was observed with the high power binocular, the brush being held in the focus while the other hand moved the guide plate. First, heavy dabs of spores were set within the guide IInes, then they were apread into a narrow dense line, and finally the band was widened out and thinned within the boundaries of the guide lines with a clean damp brush. The chief difiiculty was to thin the spore: band so that spores were not clumped together or over-1ying one another; this was desirable so that spores were not shielded from the irradiation. In this and other techniques spores were in contact with water for minimum time as it appears that growth begins within 2-3 hours (Appendix 1).

Two cover glasses were spread with spores for each experiment one was irradiated and the other used as a control. The glasses were mounted for irraciation in a holder (Text-fig. lB) with a uranium glass base. Guide lines with thepsame spacings as the spectral lines were marked on this base so that the control and irradiation spore bands were always mounted in the same positions relative to the spectrum projected by the monochromator, the control being in the visible spectrum and the experimental spores in the selected wavelength beam. Fluorescence in the uranium glass enabled the selected spectral line to be focussed accurately on the spore band; at short wavelengths where the cover glass acted as a cut-off filter shielding the uranium glass, the line could be focussed on the spore band by means of the guide lines and

MONOCHROMATOR
Top left: side view of monochromator, Top right: half front view of monochromator, Bottom: enlarged view of irradiationdable.
Explanation: A: adjustment for moving prisms, B: uranium glass sample holder (Text-fig. 1B) fits here, C : mounting holding fused quartz prisms, D: tube holding telescope lens of fused quartz, E: screw for adjusting horizontal position of table and thermopile, F: thermopile and slit, G : adjustment for rotating thermopile, H: collimator slit, I: screw for adjusting vertical position of table and thermopile.
by the bluish fluorescence of the soores thenselves.
During irradiation a stream of ary air was passea over the spores to remove any ozone formed and to naintain control ana irradiation spores at tas sane temperature. A constant air flow was maintained fron a filter punp - aspirator bottle setup, the air being aried by pessing througn calciwin chloriae.

The experiments were usually arranged so that tnere vas an interval of about two days between spreading the spore oena and its irraaiation, and another two daye fron the end of irradiation to olating.
(c) IERADIGTON OSTHESPORES

The nonochronator used in the present work was that cescribea by acsulay (1939), cetails of which are snomn in Taxtofiy. 2 . The irradiation table was Iixed to a vertical column wich could ne noved by a rack and pinion to bring any part of tne spectrum into focus. The table could also be movea norizontally so tnat any ojectral line could be brouknt to a definite position on the taile.

The ultra-violet source usea in these experiments res
 unit witn the outer envelope removed). In a few of tne earlier exneriments the source was an "Hanovia" UVS 500 lamp, but this type was founo unsatisfactory. Eecause oniy ultra-violat entaring the collimator slit was used, intensity per unithwas of importance rather than the total lamp output. In this respect the "Hanovia" lamp compared unfavourably with the "inerck". Noreover, the "ierchan" would function continuously for several weaks at a time, winle the "Hanovia." type was unreliable, breaking down continually during long irraaiations. Pie long life of the "inergéal" was another grood feature of this type of lamp.

To shield the spores from scattered radiation, particularly froin the highly effective short wavelengths during long wavelength irradiations, monocnromator and lamp were enclosed and the spores

THERMOPILE CIRCUTT:
-. GAGVAMOMETER.

- ACCUMTUATOR

HERMOPILE CALIBRATIOT BEMCH.

$$
\pi . x \geq
$$

- Turester - BAND LAMP

screened with cut-off filters. Tnese filters vare selected so that mavelengths shorter than that being usea in the irradiation were not transmitted. The filter was "Corex" glass in 265 mu irradiations, and various thicknesses of microscope slides in 313 and 334 mu irradiations. That these methoas were very affective was shown by the absence of inauced effects in controls and short wa, velength effects in long wevelength irradiations even tnough the auration of long wavelength irradiations was nuch greater; thus, at 334 mu spores were irrediated for about 4000 times as Long as at 265 nu. The fil.ters used for 313 mu irradiations were not effective in screening off all short wavelengths and transmitted a little 297-302 mu light; this probably explains the greater variability in results at this wavelength,

The dose of incident radiation was determined from measurements of the intensity of the spectral beam, using a calibratea thermopile end sensitive galvanometer. The apparatus consisted essentially of a tnermopile-galvanoneter circuit, with a subsiaiary circuit for routine cnecking of galvanometer sensitivity (Text-fig. 3). Therropile. Various thermopiles were used during the work, usually eitner a Hilger f8o or a locally made vacuum thermopile. The tnermopiles were mounted behind a slit; in all work tine slit wiath was 0.008 inch, adjusted to a feeler ggauge. Continual trouole was experienced witn the thermopiles, due nainly to variadility in response (sensitivity), creep and fluctuations caused by temperature change. The thermopile and slit were mounted on the vertical column carrying the irraciation table in such a way that table and thermonile could be interchanged (Text-fig. 2). The spectral bean Whose intensity was being measured was focussed on the slit by its fluorescence of uranium glass.

Galvanometer. A Cambridge "Broca" galvanoneter was used throughout the work. In spite of heavy shielaing to minimise the effect of varying magnetic fields and wall inounting to reduce mechanical vibration, the instrument was subject to variability, particularly
as regards sensitivity. Galvanoneter sensitivity was aiways cnecied before using against a stanaard voltage, approx. 1 X 10-6 volt, before making routine intensity measureinents. Calibration of Thermopile and Galvápineter. The thermopile-galvanometer circuit was calibrated against the emission of a stanaard lamp, the type used being a Kipp and Zonen tungstan band lamp. Lains and thermopile were mounted on an optical bench (Text-fig. 3) and galvanometer deflection measured for stanaara aistance between slit (thermopile) and lamp filament. procedure. The following general yrocecure was adopted. At frequent intervals, usually before each measurement, the thermopile-was caliprated against the standard lamp, and the sensitivity of the galvanometer determined by means of the yoltage applied through the potentiometer circuit. A figure was thus obtained for thermopile sensitivity in terms of units of galvanometer deflection equivalent to a known lamp output, and was the standard for the series of intensity measurements. In measuring spectral beam intensity, slit and thermopile were adjusted so that the beam vas focussed sharply on the slit and galvanoneter deflection recorded; a nean value was taken for at least six swings to and from rest. In all work the thermopile was adjusted, to ultra-violet beam ana to stancará lamp enission, for maximum gaivanometer aeflection. Such adjustment was most important, because (a) slignt sikewness to the plane of the bean would mean that the tnerinocouple junctions would be radiated incompletely, giving low values, and (b) the narromess of the slit necessitated accurate centering of the thernocouple junctions behind the slit. Altogetner, in any maa.surement of a spectral line, attention had to be paid to the following adjustments:- (1) the alignment of the sjectral band to the slit, (2) its sharp focus (horizontal and vertical) on the slit, (3) the centering of the thermopile below the slit, and (4) the tilt of the thermopile (skewness to Dean). After these adjustments were made, the cut-oft filter suitable to the chosen wavalength was placed above the slit, i.e. the intensity neasurement represented the inciaent eneryy falling on
on the spore.
some Calibration and Intensity Measurements
(a) Calibration of Thermopile:

Deflection of galvanometer for emission of standard lamp $\quad 130 \mathrm{~mm}$.
Intensity of lamp at slit (90 cm), from tablэ 8
Galvanometer sensitivity (potentiometer)
i.e. energy of lamp emission $4.06 \times 10^{3} \mathrm{ergs} / \mathrm{cm}^{2} / \mathrm{sec}$ produces
a galvanometer deflection of 130 mm .
thermopile constant is:

$$
4.06 \times 10^{3} / 130=31.2
$$

(b) Intensity Measurements:

All intensities were measured on filtered radiations d.e. the measurements represented incident energies at the spore. Dose was calculated as: intensity x irradiation time.

Two measurements of 313 mu were:-
$\begin{array}{ll}\text { (1) Galvanometier deflection for spectral beam } & 210 \mathrm{~mm} . \\ \text { Galvanometer sensitivity } & \\ 132 \mathrm{~mm}\end{array}$
Intensity 313 mu
$=$ Thermopile constant x galvanometer deflection x galvanometer sensitivity correction x time (hour).
$=31.2 \times 210 \times 132 / 132 \times 3600$
$=2.36 \times 107 \mathrm{ergs} / \mathrm{cm}^{2} /$ hour
(2) Galvanometer deflection for speotral beam 162 mm Galvanometer sensitivity

108 mm
Intensity 313 mu
$=31.2 \times 162 \times 132 / 108 \times 360$
$=2.22 \times 107$ ergs/cm²/ hour
(c) Miscellaneous Values:-

Wavelength	intensity	
334 mu	$4.0 \times 10^{6} \mathrm{ergs} / \mathrm{cm}^{2} / \mathrm{hour}$	
do	4.4×10^{6}	do
313 mu	2.4×10^{7}	do
do	3.2×10^{7}	do
265	8.7×10^{6}	do
do	9.8×10^{6}	do
do	do	do

(f) Biological Dose Indicator

The biological effectiveness of the dose of irradiation was measured by the extent to which colony formation was inhibited. The data for these measurements were obtained from the single spore plates, counts being made of the numbers of germinating sporas which were successful in forming visible colonies. The ratio of this quantity to the total quantity of germinating spores indicated the mean effect of the radiation on the sample. These visible colony counts, as they were called, were made as a routine in each experiment rather than physical measurements. On the basis of equal biological effect at each wavelength, about 46% visible colonies(mean), the following is a summary of the dosage data:-

Spectral intensity

265 mu	313 mu	334 mu
1.0×10^{7}	2.5×10^{7}	4.5×10^{6}
3 mins	10 nours	9 days
0.05×10^{7}	25×107	100×107
28%	26%	42%
0.014×107	6.5×107	42×107
20%	42%	39%
0.0028×107	2.7×107	16.4×107
$\times 1$	$\times 1000$	$\times 6000$

The above figures should be taken as representing an order of magnitude rather than the actual mean dose, since no account could be taken of variables arising in the physical measurements, and in biological variation; while for the correction for absorption in the spore wall and cytoplasm Uber's (1939 and Appendix 3) figures for maize pollen were used.

Footnote 1: McAulay (1939) gives the order of magnitude of the optimum dose for production of change in C.giobosum as 2×107 ergs $/ \mathrm{cm}^{2} /$ at 265 mu and 200×107 ergs $/ \mathrm{cm}^{2}$ at both 313 and 334 mu , while MCAulay and Taylor (1939; fig. 3) give the doser for 50% germination of 2 . globosum spores as 1.3×107 ergs $/ \mathrm{cm}^{2}$ at 265 mu , 15×107 ergs $/ \mathrm{cm}^{2} \frac{1}{\text { at }} 313 \mathrm{mu}$ and 150×107 ergs $/ \mathrm{cm}^{2}$ at 334 mu . McAulay's figures are based on a multispore plating technique.
(a) VARTATION INi C. GLOBOSUL

1. Characters selected for observation

The variants selected for observation in 0. globosun were tinose in whicin change had occurred in the character of mycelium, peritheciun or some feature of growth in the colony; variation was determinea by inspection. Distinctions between the variants Were not clear-cut, intergracation being extrene. Variation in one character was frequently associated with variation in enotier. Por example, mycelial variant would often have atypical perithecia; and variation of growth form covered a.wide variety of inaiviauals showing not only a considerable vaxiation in this character but diftering greatly in other respects, some naving jerithecia otnars none, some pigmentation others none, and so on. Description of the variants would, in fact, involve descriytion of inciviauals in most cases, wnicn for the purpose of this investigation of irradiation effect would be meanimeless. A brief account will therefore be given of the way in whicn each character was found to vary, descriptions being supplenented by photographs in suitable instances (Figs. 1-43): dycelial Variants (Figs. 34,35). Variation in nycelial characters could involve increase or reduction in the amount of aerial mycelium. The hyphae coula form a dense mat over the surface of the colony or aerial nycelium could be almost lacking or the surface myceliun could form a tough layer. The colour of the myceliun ranged from white to brown and reddish.

Variation involving mycelial characters was usually associated with variation involving a diminution in the nuaber of peritnecia, or their absence. In fact with many forms it was the smaller numbers or lack of peritnacia ratner than tne cnaracter of the myceliun wnich was the distinguisining feature of the variant. Peritnecial Variants. The perithecia were suoject to a great deal of variation, involving their number and distribution as well as their size and colour. The peritnecia coula de larger than in the normal or tiny, sparse or occur in zones, and could be

X ... as colony of Fig. 19.

Y ... as colony of Fig. 24.

Z ... as colony of Fig. 28.
$A_{1} . .$. normal mycelium.
LMN... part of colony showing "damage".

B1 ... empty space in agar medium into which mycelium has failed to grow.
C_{1}... fringe of mycelium showing "growth-damage". It is devoid of perithecia.

B2 ... empty space into which mycelium has failed to grow.
C_{2}
D_{2} ... damage mycelium, consisting of an outer fringe devoid of perithecia and with heavy brown pigment formed within the medium (cross hatching); and an inner part D_{2} more or less free from pigment and containing a few scattered perithecia.

D3 ... colony in which growth has
D3 ... colony in which growth has mass of "damage" mycelium, densely matted and knotted; with heavy pigmentation.

E3 ... Secondary growth of normal mycelium into space B_{3} surrounding central mass.
A_{2}... normal mycelium. The rest of the colony shows "growthdamage ${ }^{\text {" }}$

Diagrammatic representation of three colonies showing "growth-damage" of various de grees. X.. light "damage"; Y,Z.. heayy"damage".
colourud brown yellow, black and so on. The variant Fla which vas used as parent in many of these experinents and nad vern icduced oribinally by ultre-violet irradation of c.gobosung differed princigally from C. glooosum in its peritnecia being smallex, brown in colour and not so numerous.

Variation in Colony Development.

(a) Variation involving growth rate (figs. 36, 37). These variants vere distinguishable from the parent only in their growth rate. The slow growing types usually occurred as sectors, the rest of the colony beiny normail. This nornal ayceliuia would eventurily enclose the slower frowing ificelium. Usually the slow Yrowino wyceliua nao its orizin at the cautre of the colony, but a forin was founc in one experinent in wich slow exowing sectors, (winich brea true in subculture) developed around the edge of the colony (Fig'. 37).
(b) Variation involving growth form (Figs. 30-43). The cherecteristic feature of these variants was that growtn of tne myceliua appearea to be airected alony axes, like the spokes of a wheel. There were two wain types between whicn were wny intergraaations. The "seaweed" type superticially resemplea one of the hed Algae such as Rnizoglossum; aerial hyphae were or were not developed and the subsurface myceliun could be so sparse that the colony was nearly invisikle. In the "scollop" type the mycelium appeared to have been laid down in successive small semicircular segnents; it resembled ghaetomiun elatum in this respect.
(c) "Growth-damage" (Figs. 16-29, 33; Text-fig. 4). "Growthdamage" was an easily recognisable anc characteristic conaition. It nad the same features whether it was found in C. Elobosun, in its variants or in other spacies of Chaetomium: the condition was sinilar in C. globosum; in its variant Fla, and in its variant st 2 which closely resenoles chaetomiun marorum; as well as in Chaetomium elatum. The plate colony showed spaces empty of myceliun, and when the conaition was not pronounced (Figs. 16-20; Text-fig. 4 X.) the rest of tne colony wes normal
and the "danage" consisted of a fxinge of myceliun devoia of perithecia, wnich poundec the enpty mediun. However, when the concition was mora marked (figs. 21-29; Text-íig. 4. Y, Z), a, 1 the aycelium of the colony or "damage" sector was more or less abnorfal, neavy brown pignent being formea witnin the ager meaidia especially at the outer limits of erowth; a dew jeritnecia occurrea scattered here and there over tse surface. Tne sura face mycelium in tne most extrame conaition (fies. 20-29; Textfig. 4 2. consisted of a central nass of heavily metteu ena knotted hypnae. iuyceliuf ano perithecia coula eventualiy appear in the
 they probably orisinatea secondarily in nornal myceliun and not in "damaged" nyceliun. only very incomplete infornation is at present available concerning the spores irom such perithecia and frow those scattered in the nycelium dif areas of "danage"; those that grew nearly always developed into normal colonies, so that it is grodeble that most of the peritnecia hed been formed in "undamaged" normal mycelium. imycelial subcultures froa "damege" areas either did not grow, or proauced colonies snowing norinel and "danaje" sectors, or produced norinal colonies.
(Certain other forns were tentatively classified as "growtho damage" types, although their true nature was far frou certain. (Tables 1-3, Group 8). They were much lass cominon than the true "growth-asnage" form, their frequency being of the saine order as that of the other variant types. In then early growth of the colony was abnormal, patches of sparse and abnorinal myceliun occurring at the centre of tne colony. Surrounaing this aboncrinal tissue was mor \Rightarrow or less typical mycelium. Tne myceliun of the "da:iage" areas vas frequently prownisn).
2. Hode of occurrence of the variants

The variants were found eitner as wnole colonies or as sectors in the colonies. It was most usual for thex to occur as sectors (see Figures generally). Lany of the mixed colonies were known to have originated in single spores: all those from
the single spore plates did so and it was likely that colonies
from the dilution plates had single spore origin in most cases. All variant types, ana the "growth-damage" forms in particular, could appear as sectors. In size these sectors rangza from very small ones arising near the edge of the colony to those occupying almost the whole of the colony, their shape and tne area of the colony occupied being aetermined by the relative growth rates of variant and norinal inyceliun in the mature and first formed colony (Pontecorvo and Gemmell, 1944; Plonley, Aupenaix 2). Although it was usual for only one variant tyne to occur in a colon放 (either with or without the normal tissue) colonies were found occasionally in wnich two or more variant sactors occurred (Figs. 30-33). Nost of these mixed colonies were found in dilution plates, but some came from the single spore plates so that there mas no doubt that they could have single syore origin.
s number of variants, narejculardy tnose in wajch change had occurred in myceliun or perithecium, were found quite comonily in both control and experimental series. They resenbled the tyoical form more or less closely and could be traced through a series of gradations to it. In accordance wito usual biological practice, the tern "strain" is used to aescribe these variants closely resembling the parent organism. The strains most usualiy found were those in which size, colour, numbers and distribution of the peritnecia, and colour, density and characters of the aerial mycelium were aftectea (Figs. 1-15.). perithecia ranged in size from small to large, in colour from the usual dark green to blue-green or to yellow-green and white (sterile), wrile spores were extruded abundantly or not at all. There were nore jerithecia than typically or few to none, and they were distributed evenly over tne plate, or in zones, or irragularly. Aerial mycelium was more sparse tnan in the tyoical form or more dense; in extrene cases there yas little development of aerial nyceliun or it was so densely nattea as to hiae the perithecia and form a thick mass filling much of the space above the agar surface. In colour the aerial myceliun ranged from white to pinx anä brown. It was quite usual for
for variants to appear in or to de isolatea froa old colonies. only one or two types were found as a rule, wost of wich did not produce fertile spores; in a common forn there were no peritnecia ana the aerial nyceliun was aense and fluffy, while. in another form perithecia were few or absent and the aerial aycelium sparse.

In practice the strain was delinitea from the measured cnange inauced by irradiation by the regular and nornal appearance of the former in the control series; the latter, of which "seaweeds" and "scollops" and "growtn-dainage" are typical, were found rarely or not at all in controls. As the variant cnaracter civerged from the normal it decame increasingly aifficult to cecide whether to classify thefform as inauced variant or strain; the colony illustrated in Fig. 9 was just such a case, representink in extreme the reduction in number of the parithecia wnich was founa in many induced variants (Figs. 34,35.). (0) UAMTITATIVA ANAYYSIS OF IMDUCED VARIATION.

Spores of C. G GOOSun were irradiated nonocuromatically at 265, 31 , ano 334 mu. Colonies growing trom these spores and from the control spores were groupea oy inspəction/(a) inauced variants ana (0) the rest of tne colonies comprisine normal colonies (including those snowing environnental moaification) and the strains. In each experinent as many of the variants as possible vere subcultured; all types of inauced variant (except "Erowth-damaye") were found to oreea true.

The inaucea variants were classified into eleven groups accoraing to the aominant cnaracter cnange exnioited (Tavies $1-3$): iycelial variants

1. Aerial myceiium $10 n g e r$ and more dense than in normal.
2. Aerial myceliuin sparse or lacking.
3. Aerial nyceliun leathery.
peritnecial variants
4. Perithecia same size as normal or larger but colour difteren
5. Perithecia smaller than nornal ana coıour difterent.
"Srouth-qainage"
6. Light and havy "achage"; no formation of brown pigant.
[8. Light enc neavy "dearee", with brown pienentetion,
"Danace" other than grougs o and 7: rascing fron light "camage" at colony centre to neavy "damage" mitin knots of white nycelium.]

Tariation involving growth rate
9. Variant growth rate slower than normal rate.

Variation involving srovith form
10. "Geavea" forns
11. "scolley" forns.

Other than "eronth-aemage" (furougs o-0), the mexinus frequency of sccurrence of any veriant type is only about $\mathrm{l}_{\boldsymbol{i}}$, with a inean value of about 0.4\%. However, Deause tre variants intererace so auch, the incividual yrouss are incetinite and any erparate nadysis of then is araninghess.

The experiannte listea in the tanles cover two strains of
 The variants prouacea by irradiation of these aifferent aderiante are of the sara typa so tnat tnsy ay da grounec tosetnar in a general way, sucn general eroups representing tile type of affect proauced by the irraciation. Table 2 for 313 nu irradiation includes one experiment, 035, which is atypical of the series. The nien percentage of "damacge" in this experiment is quite unlike its occurrence in a 11 other experiments at 313 mu. Tne visicle colonies is low but, ageinst tnis, neavier coses in other experiments heve not resulted in the mroduction of nore "cemage"; the highest roauction of 14.3\% "dawage" in ixpt. 071 for nil\% visiole colonies is muen less than the 40.5% "azinabe" for 29.4\% visible colonies in ixpt. 03j. Tnere are grounas, therefore, for rejecting tnis axperinent as not deine representative of irraciation at 313 , au. It is possivie that leakade of snort mavelenth light (e.g. 297 or 30 c au) affectea the syores anrine irradiation; tne result is typical of snort wavelengtn irraoiation.

Two groups of variants ney de aistinguisned quantitative in Tables 1-3. The first incluaes those in winch there has veenchange
in the character of mycelium, perithecium ano colony develop..ent and in winch genetic cnage will de snown to nave been involved;in the second group "growth-aamaye" nas occurred, whicn will be snown to be due to reaction involving nucleic acia:-

Havelengtin of Irradiation		
265 mu	315 mu	334 mu
Lethri affect (visible colonies) 44.1\%	39.2\%	45.9\%
Cenetic effects (Groups 1-5,9-11) 3.9\%	4.1	4.10
"Growth-aamage" (Groups b-8) 31.3%	3.0%	1.3,
Factor of 2.65 mu dose xl	$\times 1000$	$\times 6000$

These results may be sumarised as follows:-

1. Heritable variation is inauced by short, niadle anci long Uitra-violet irraaiation.
2. The dose of irraaiation proaucing equal total genetic effect difiers considerably at the three mavelungtus tested, at 313 mu being adout 1000 times ana at 334 mu apout 0000 times the 265 mu aose.
3. I duction of genetic effects bears the same ratio to inhiuition of colony formation at each wavelensth, so that similar reactions are involved in each.
4. "Growth-damage" is quantitatively quite unlike the genatic effect. It occurs much more often at $c 65$ wu, ana less often at long wavelantns, being negligiole at 334 nu.

Before examining the results of the experiments reported nere in relation to the archanism of gene action and in particular to the functions of nucleic acid and and gene protein, those aspects of variation in C. Hlobosum will be consiaered which concern, firstly, the high frequency of variability ooserved and, seconaly, the nature of the change involvea in variation. (a) VAKIATION IN C. GEOBOSUL

1. Frequency and characteristics of variability

Although organisms show consiaerable differences in the
frequency with which variants are found in their populations, these differences are observed rather than real, and arise primarily fron differences in reproauctive rate. The fundamental identity of mutation rates is snown by the aeta of Gowen (1941) on the induction of heritable variation by X-rays:-

Tobacco mosaic virus nutations per roenteenaper particle l.cxlo-
gobacco aucuba virus mutations b.1x10
phytomonas stewartij nutations $3.7 \times 10^{-}$
Urosopnila wila type genes mutations $1.0 \times 10^{-}$
Drosophila mutant genes mutations $1.2 \times 10^{-}$
To sone extent mutation frequencies are a feature of the particular population ana gene, but differences are simdi ana all values are of tie same oroer. In Orosophila, for example, not ondy wexe different strains found to nave aifterent mutation frequencies, but different Loci in the chromosomes also snowed differences (Blough, 1941).

Reprodactive rate has two effects upon the observed variability of a population: as it increases mutation appears to occur ofoften ano evolutionary processes in the popilation are speeded up, so that the observer of the becterial or virus culture exaninas a changing population as compared with the relatively stable popLations ooserved in the higher animals and glants. These conditions have often led to doubt whether variation or environnental moditications is involved in groups having high reproauctive rates, so that such workers in bactariolo ey as Topley and filson have declarea (1936) that "the sienificance of many of the observations
that bave oeen recoraed is at the rowent aifficult to assess"; a, ranark mhicn may be apuliea equally to tna 土abi. fian re isoauctive retes associated witn a motation frequency of the usual. low orner can lead to a nish observea variadi+ity. uany variants can epoear potentia,ly aurins cultural iffe ana tne culture vill cnange if the variant is more successiun in tne enviromant then the oxiginal paxent, selection operating witnin the jopuletion. Tnis variability will be ennancea oy tue chanses in the environment in wnich tne population is living, tae system beins e chosed one. Ihus in culturas of dacterdun dactje exropegbs the mroportion ot snake-forns changes with glucose concentration in tne aedium (Hinshelvood and Lodge, 1944); and it is well known that o 1 d b-cterial cultures show nore variation than young, cultures of the same organism. In virus, hish reproductive rate has similar effects and variants are often found, particularly under axperiaental conaitions where tne selection fector is prevented tron ojexatiag.
 and viruses. CI funcanental significance in tue stuay of tuis veriability is tne conjosition of the colony, minch hets been snomn (apnanaix 1) to function as trouyn comosed ot ischated unjts each growing inda sencantly. A regular pattera of cails is built Mp in tne colony by holaino tne cells tixea in socee oy tne ajar neaium. The occurrence of sectors is furtaər evidence of tuis celd incivicuality; in the sectoring colony noxmal ana vaxient myceliun grow inciependuntly, and the snape of tas sector aepenas ujon their reletive Exowth rates. Tae (. Elouosum colony, consistine ot a. nass oi functionally inciviaual cells, tnerefore has tne wo3ertiقs of a, ceम1 population enc in it verietion mill normaliy
 or maskeo will depend on tnsir josition in the colony; if tasy Ainse at the outer rouing eage a sector of sons sort win ȧvaloy, but if they arise within the colony their presence will oe snown ordy miva smores or mycelium from the site are subculturea.

These pronerties of the colony nave determined both the experimental method and tne way in winch the radiation effect had to be assessad:-
(a) Varients could be isolated oy suore or aycelial subculture fron the colonies, especially fro:n old cultures, as aight be expectea with cnanging cudturial environnent.
(b) A wide range of strains were of normal occurrence.
(c) It was imgossible to oitein a genetically uniform spore sanple even from a parent colony ot single spore origin.
(d) It was impossiole to ootain a unitora eitect in axy oue experiaznt or to rejeat, excent in a benaral way, tue results of any experiment in furtner experiments aide under apparently tne same conaitions.
(e) A consiajrable range of aifect (intergraaation) was ooserved in respect to any one type of variation, as mignt be expected if the spore sample traatea mere not genetically unitoru.

All these conaitions bave limited the usefulness of the
material for critical genetical work ana have mace it necessary to adopt arny of the experinental procedures enployed:-
(a) Single spore rolating was necessary so that colonies would orisinate in single spores (ana also to obviate overgrowth fron adjacent spores in multispore platings, tne spores beins affected diflerantly by tae irraaiation)
(b) Results had to be assessea over as many experinents as possible and in a general way, the characters selected for observation deine trose tnat coula de recounisea witnout detailea examination, ana types oi cnenge defing noteci ratner tnan soecific variations recorded
(c) Dose measurements vere fiven more accurately in terns of the bioloyical inaicator which recoraed the mean effect of tne radiation on the particular sample, than by physical measuranent giving a ficzure for the radiant eneryy falling on the spore.
2. The nature or the chanee involved in variation

Inaucea variation in C.sloposulu cannot be snown evsulutely to invoive nuclear chenge because cytogenetic studies cannot de made ana cross-breeding cannot be carriea out. All otner sources of evicience, however, show the change to be a nuclear o ne. Such eviaence rests, firstly in the fact that these inauced variants breed true in suioculture, and althourh it is always possiole that
the chenge is a cytoplasmic effect or environantel modification nhon nycelial suncuiture is tne criterion, the wantenance of the veriant tarouph single spore suoculture is inoicative of genetic change. secondy, the occurrence of variants as sectors shoms that enviromental moajijoation is not involved. such colonies act virtually as tneix om controls with veriant ana noxmal myceliun frouins siqu by sicu, so that there can be no aifterential effect of the environnent. Triraly, a cytoplasaic effect, unless it involves some body with sinilar properties to the plasmogena, canot be involvad when the variant agoars ars a sactor of a codony of single spore orizin, anu all variant tu, es can appear so. uytoOLasmic jrocestes are unaer genetic control so taat tneir perpetaitios and sestegation throush one group of cells is inpossiole unless tuere has bean genetic change aiso.

The action of the irraaiation on tne nucleus nas the cherauteristics of an activation of the notochemical tyoe. Tne variant nay conorise the mhole colony, the activation being stawlished inneaietaly; or strbilisation acy be aelayed until the original spore nucleus nas diviced a number of times. In most of tire latter cases stabi」ity is attainec quickly, the sectors originating at or near tue centre of the colony, but it nay de calayed, or never attainec as in cychic variation in tne so-caliea "everseltatins strain". Tiuss "everealtating strains"are colonies in waich vasiation occurs spontanaousiy in each cultural life. Tne two cases of "eversaltation" recoraed in these exveriments mere inaucaa
 Dosunfila porent occuringe as sectors of the colony. in one foran the verient mas of the shom growino aycelial ty, ana in ine otnet it wes of the vense aerial mycelial uy ee witn siminar grouta rate to tne zarent. In the Iirst tne jarent orea trae in zuocuntaxe anile tne variant was unstable, supcustures trom it taroming sectors or the parent; in tne secona case tae variaist vas strobe eari tag careat unstable, tarowing sectors oi tue variant in suocature. Oyclie veriation has also peen rejortea in oncteria.

invoiveo in inumcea vaidution，tarue chasses of efiect may de
aistinguissea：
（a）a genetic efiect（Grouss 1－i，9－11）prodably qualitetive gene change，
（i）a letnal effect，ana
（c）＂Eromtn－0日atge＂（Grouns oーy）．
Genetic effect：－It is not noscible to determine wnetner tue genetic effect represents unalitative gene change or a mecinaical alteration such as deletion，translocation，terainal deficiency or gross or minute rearrangement，but there is evioence agoinst mechanical alteration ：firstly，Lindegren and Lindegren（1994） found in weuroscore that diminisned fertility，whicn is cue to chromosomal rearrangenent，was not induced oy ultra－violet
 tena rearraugenent is inauceo seloon if ever in Zagazys oy ultra－ violet irraciation；and lastiy，tne occurrence of the cyalic chetsee of unstable variant vack to garent recurced avove is contrary to any idea of gene deletion or aestruction and inaicative of qualita－ tive ஞூ ae cnange．

上etnel effects：－Irradiation of C．gicoosun siores can orevent their germination or so affect early growtin that the mycelivn soon dies，the so－called visible colony effect．The ratio of these （2） lethan effects to genetic effect is the same at 205,313 ana 334 mu ， and it is therefore concluded that the letnal effect nes involvea qualitative gena cnange．However，decause the letnal affect occurs mucn aore often than the genatic effect，tne reaction anst involve any one of a very large number of jenes，and in tact is so comon that sone eeneral raaction involving the eene orotein is

Footnote 1．Hesults are contracictory in irosnnile．

pootnote 2．The kiliing of cells and organisins by radiations， Grins ana otner treatsents nas deen widely stuaiea in violony．now－ ever，for the interpretation of results tie exfect st idea shoulo de aryporiate to the＂roblen ana affined precisely．Tne word＂sill＂ can cover a wide range of affect frow iduldiate deatn，to death some－ tinle in the futareaitur there nave deen a numper of cell aivisions． Not only is there a sreat difference Detween the aoses required to kill at tne extrenes but tne treataent may act in aifferent ways，so that wile the doninant effect in the snort ultra－violet is a genetic oce，in the $\mathcal{L O}_{\mathrm{E}}$ ultra－violet a physiological efiect may vecome
agorent or even axceed the genetic one，the very larea doses a，jolied at 334， 305 inu and longer wavelenstas deint suffici＝mt yo
aftect other cell conponents，such as an enzyme system，fore reauily．
（feott， 1937 ）．
inoicatea ratnex tnan sucilic eene reactioss. tris conchusion
that Letnal action can involve fenetic cnenze nes also been arxived
 to normal "iakes it urobable tiat a considerable proportion of the letnals are gene mutations rather than chromosome beaks or major deficiencies".
(c) "Growth-oage". Three features dictinguish "gro:th-aanage" fron tha qualitative genetic exfects:-

1. "grovitn-aanage" is a conaition, not a qualitative cnenje in some feature. Al colonias exnibitino the conuition nave the same general apjearance although "aamege" may differ consiaerably in degree anu brown pigment may or mey not ba formea. It cannot de saia that "growtraamage"involves change in any cneracter in the sense thet variant cnaracters aifter from those of tneir parent.
2. "Crowth-danage" may affect the myceliun of a varïant induced by the same irraaiation (Figure 33), althougn it is vadily found in myceliun of the parent type.
3. The conaition itself cannot bu transmitted, exceot pernaps to a Liniteo axtent. It ajears to involve soms scrt gí nuclear derance:uent wnicri uitinately srevents normal prowtin ratner than qualitative jene cnenye. - vcelial suocultures frca "cainese" areas usuaily teilec to erow, or proauced "danagea" iyceliun; whes nornal wyceliun was tormec it coulo nave orisinated in nornal myceमiuni inchuatc in tne inoculun. The saue nay oe saia of growtn from spores t'ron "damased" colonies; mnen normal colonies aeveiopec, as nearly aliays ha, jenea when the suores mere viable, it mas likely that the soores orivinated in normal inycelius.

Analogous forme apper to have been rejorted in the
Iiterature in connection with ultra-violat treataents. The "a3generate phenotypes" described by Lindegren and Lindegren (1941) in Heurospora crassa aopear to resemple Chaetomium "gro:th-aemege" very closely. In fact, tne written aescrijtions of tie "ceevenerate jnenoty:e" couid be applied equaमly to Ghajtomiun and to ij. orasse e.s゙・ N. crassa L.4 : "a tyical degenerate anenotyaj mitn joorly eromine, stragaly oroming mycelium, wostly Deneatuthy surance, anc. a. dark-brown supstrate coiour". Generaıly speakin ${ }_{3}$, nycelial subculture (hyohal tip) proouced cultures of the deennerate tyoe or ware not viable; matings of aegenerate to control myceliun yielciea asci ruicn beve nornal colonies or were inviable, degeneretes binn jroaucea occasionally and only trow olo asci. Tnese results are in conformity with the ark so far carried out on cuactomiun "cianae"; it remains to de seen whetner tnese Oncetomiun sjores and neurosogra
ascos ores are develo, en exclusively in noraal tissue, that is,
mhetner gane transmission is invossiobe, as seens to be inaicatac. The frequencies of occurrence of mutants (4.5\%) and Mogenerate phenotyres" (2.7\%) at 254 mu in li.crassa are quite unlike tnose of
 ever, in the deurospora experinents the cose was very nieh, less tnan 1% of soeraatia surviving treatinent, flating tecnrique was unfavouraole for counting; ana the colonies were grown in tupes. Which :ould wask the appearance of the "degenerate shenotypes". In Chaetomium when colonies were crovided in dishes "ajanage" was nasked to a great extent by overgrowth of norinal myceliun. In the experiments of Emincns ana Hollaender (1939) on ultra-violet induced change in dermatophyte fungi, "danage" was not recorajed, presumady because the cultures ware grown in tubes in these experinents also.

In their work on Sphoerocarwus Knapp ana Scoreider (1941) founc genetic effects as mell as an effect on suorogoniun attacnment in the sporphyte generation develoging fron tne irradiatea sjernatozoid. The very nigin frequancy of tne latter at snort neveleniths nakes it unlikely that tne effect on sporogonium attacnment resesents action of a dorinant lethal, and it is temptine to consiaer it as deing a "eromth eftect" ana Chaetomium "aamaje", =sjecielly in viem of its muvn greater froquency at cób ana cuo mu than tnat of mutation. stroler's (1,941) vork on naize is aiso inoicative of a non-genetic effect in anicn grovtin is aberrant, the enoosyerm aeficiency. Tnese deficiencies consist of patcnes of endosyern in mich cells have not cieveloyea. In experiments witn ultra-vioiet it was found tnat a nigh proportion of the deficiencies were fractional, only portion of the endosjeran shoring the conaition, and it snoula be noted tnat "danage" in onastomium idefso rractional, nost coionias hevine soac normal myceliun. Tne snciospera deticiencies, moreover, neve a aifferent frequency aistrioution to tnat of enbryo abortion, wnicn is e genetic effect.
(i) THE SCHANIS OF GEGE OTION
many Lines of researcn have snown the genetic mecnanisa to de
cnemical one．むviaence tor tnis nas cone iron stuaies of゙ chromosone absorption spectra，Iron chunical anolysis of virus nuc－ Leourotein，froin stain reactions；and from sucn finainjs tnat sontaneous ötne mbtation in drosoonila sas a tenjerature coetijcieat，as njant ou axyectaa in a caenjcad jrocese（ jound．

Iy（t）；end taat flowex colour is aue to tne proauction or
 1440）；a．ad so on．

The eviaence nas led to tne 1 urtner conchusion tnat tre mecnenism of nereaity is associated witin auceoprotein metanolis．m． Tne constituents of nuileoprotein are nuclaic acia in its evs－ ○．xyrivose or riorose foriu，and arotうin；froal their nature tne vroteins wight be $\exists x p e c t a 0$ to oe concernea with the suecitic réactions controlled by tne ane while tne non－specific nucleic acid is concerned with tine factionins of the protein convonent， ujther in ita reproauction or as a prosthetic group betwean Áne protein ance cell reactiond If tinis is so－anci tie cycle of attaonment and aetacnment of nuoleic acia fron tne orotain fiore of tna cnronosone strong 1 y inaicates such a role－it sho：ra we 」ossible to aoaix́y eacn component saparateमy by means of a sjecific ajent such a．s ultra－violet raaiation．Suca a aifierentiel effect woula involve a predominately nucleic acia reaction in the snolt ultra－violet wnere tais componeint aiosords strongiy， and associpitu witn it out to a nucn sinaller aegree a group of prolem reactions each navins tae sane seneral chardoteristics put aifíering qualitativeमy anong tnenselves．As wavelenuth increasus absorption by nucleic acia ana oy protein dininish greatıy，nucleic acid awsorption reaching a nagligiole value at about 313 mu and oprotein absorption，though small，exceeaing nueleic acid absor，tior at longer mavelengths than this．iucin greatar aoses of irraaiation shoula tnerefore be neeaed to proauce the same amount of each reaction and at vavelengths longer than 313 mu the reaction associated mith nucleic acid absorption snould ozcone neglifible． In tne present experinents ultra－violet raaiation has inuucea
two diffarential effects neving the cnaracteristics to be
expected if changes took place sevarately as a result of nucleic acid and protein absorption. quantitatively and qualitatively the Eenetic aná lethal effects may de associatea with absorption by gene protein, and "growth-aanage" with absorption by nucleic acid.

The genetic effects are not oniy yualitative cnanges wnich can concern a number of different characters ana can de innerited, but the dose of irradiation needed for their production is wat aient be expected for absorytion by protein. The dose neseeo to produce equal jenetic effects is 6000 tines greater at 334 mu than at 265 nu, a factor which is of tne same order as the ranye of differences in absorption by grotein over tnese wavelenetins. Onange in the aosorption coetficient of the protein urease, for example, nas a factor of 5000 times over tne wavelengtn range 190́-300 (Kubowitz ana Haas, quoted by Veloruck, 1y40).
"Grovith-danage" is quite undike genetic cnange. Tne conaition snows great uniformity and does not seem to be neritable. At 265 mu it occurs much more often than genetic cnange out at 313 mu "growth-danage" is founc less often than genetic change ara at 334 mu is neglisible.

نifterential effects similar to those found in these experinents nave oaen found by other workers, althougn rasuits rere nearly almays interpretedas a nucleic acia effect. This, it fifs been pointed out, was due chiefly to liaitations innerent in tnwir experiments. Tne aata of Bunons and Hollaenaer (1yjg) and dackenzie and muller (Iy 40 t appar to refer to genetic effects only, the exporinental results merely expressing a general decrease in absorption ith increasing wavelength ratier than sjecific nucleic acid absorption. Re-exanination of the results of snapp and schreiber (1941), 山inaegren ana windegren (1941) aná stader (1941) shows, nowevar, tnat aifferential effects were induced, growth and genetic eff゙ects beins aistinguisnea qualitatively and quantitatively. Tne aata of Knapp and scnreiber aistinguish an effect on sporogonium attacnment from genetic effects, tiose of Lindegren and iindegren between "degenerate phenotyoes" and
ana single gene mutations ana tnose of stadler batween enaosperm deficiancies and embryo abotion. In all tnese cases tne uasntitative deta complate the association between the nonspecific growth effects and nucleic acid absorption, and $d e-$ tween the genetic effects and absorption by protein.

A relationship has now been deduced between macleoprotein and the nechanisin of heredity whereby the protein component is concerned with qualitative genetic cnange and the nucleic acid component rith the functioning and reproduction of the gene. Gene protein and nucleic acici function inde pendently to the extent that eacn can be activated sejarately; activation of nucleic acid and transfer of energy from it to the gene rorotein are not involved in gene sutation, as wackenzie and muller (1940) hove suggastad. Inciepencence is not visualised ms menning thet nucleic acid and protein are not associated intimately (of nucleoprotein virus crystals), but only tnat tney nave inaepenasnce of action. In tnis association tne protein is tas specitic raactant while the nucheic acia bound seem to ide concerned witn tat re, roauction of that. protein.

NO One type of genetic cnange nes been Iounc to de essociatea particularly with any wavelength, ana it is coubtful whether eitner the induciny agent or tne naterial are suitale for an investigation of gene autation. Certainly it would seem preferable eitner to use "pure" nucleiprotein, in the iora of virus, or to coupere uncer airferent treatinents sharply defined genetic effects of tne types founa in tha hisner aninals and plants. noreover, metnoo asd material shoula be selected in sucn a wey tnat the letnels can be analyseá, tnis chass incuaina unaer the conaitions of nost tecnniques dno particularly when sjerm ano pollen axo treatza not only ki」lea inaiviadols but those not abie to comsete vilth wore active forms. Incuction of sjecific geastic erfacts by suəciiic reagents winl be tne ultinate aroblen of analysis of tha mecmeinsu of nureciity.

BI BLIOGRAPHY

Brown, W. (1926). Studies in the genus Fuserium. IV. On the occurrence of saltations. Ann. Bot., 40. p. 223.

Delbruck, M. (1940) Radiation and the hereditary mechanism. Amer. Nat., 74/753. p. 350.

Dickson, H. (1932) The effects of Z-rays, ultra-violet light, and heat in producing saltants in Chaetomium cochliodes and other fungi. Ann. Bot., 46 p. 389.

Dickson, H. (1933) Saltation induced by X-rays in seven species of chaetomium. Ann. Bot., 47, p. 735.

Emmons, C.W. and Hollaender, A. (1939) The action of ultraviolet radiation on dermatophytes, II. Mutations induced in culture of dermatophytes by exposure of spores to monochromatic ultra-violet radiation. Amer. J. Bot., 26/7, p. 467.
Gowen, J.W. (1941). Mutations in Drosophila, bacteria and viruses. Cold Spring Harb. Symp. 9. p. 187.
Hinshelwood, C.N. and Lodge, R.M. (1944) A physico-chemical study of some induced changes in the morphology of Bacterium lactis aerogenes. A theory of the balance and adaptive variation of certain enzyme processes in bacteria. Proc. Roy. Soc. B. 132/866. p. 47.
Knapp, E and Schreiber, H (1941) Quantitative Analyse der. mutationsauslosenden Wirkung monochromatischers U.-V.-Iichtes in spermatosoiden von Sphaerocarpus. Proc. 7 th Internat. Congr. Genetics, 154 p. 175 .
Lindegren, C.O. and Lindegren, G. (1941) X-ray and ultra-violet induced mutations in Neurospora II. Ultra-violet mutations. J. Heredity, $32 / 12$, p.435.

Lawrence, W.J.C. and Price J.R. (1940). The genetica and chemistry of fiower colour variation. Biol. Rev. $15 / 1$ p. 35.

McAulay, A.L. (1939) Productions of saltants of Chaetomium giobosum by monochromatic ultra-violet irradiation. Pap, Proc. Roy. soc. Tasm., (1938) p. 131.
McAulay, A.L. and Taylor, M.C. (1939). Lethal and quasi-lethal effects produced by monocnromatic ultra-violet irradiation. J. exper. Biol. 16/4 p. 474.

Mackenzie, K and Muller M.J. (1940). Mutation effects of ultraviolet light in Drosophila. Proc. Roy. Soc. B. 129/857, p. 491 .

Plough H.H. (1941) Spontaneous mutability in Drosophila.cold Spring Harb. Symp. 9. p. 127.
Pontecorvo, G. and Gemmell, A.R. (1944). Colonies of Penicillium notatum and other moulds as models for the study of population genetics. Nature. 154/3913. p. 532.

Scott C.M. (1937). Some quantitative aspects of the biological action of X - and y-rays. Med. Res. Council, special report series 223.
Stader, L.J. (1941) Genetic studies with ultra-violet radiation. proc. 7th Internat. Congr. Genetics, 283, p. 269.
Topley, W.W.C. and Wilson, G.S. (1936). Principles of bacteriology and immunity, 2 nd ed. Arnold.

Uber, F.M. (1929 Ultra-violet spectrophotometry of zea mays pollen
with the quartz wicroscope. Amer. J.Bot., $26 / 10 . \rho \cdot 799$.

ACKHONEDGEMNS
The author is indebted to Professor A.L. FCAulay for advise during the work and to Niss Joan Fora who carried out much of the routine culture work. A Commonvealth Hesearch Grant enaolea this work to be undertaken:

FIGURES 1-15

Figures 1-15: Strains

Cnaetomium globosum. Figs. l-ll

Ch. globosum saltant Fld. Figs. 12-15.
Figures $1-6$ show typical variations of normal globosum which has dense, evenly distributed peritnecia (as Fig. 16 apart from sector light danage). The peritnecia of tnese colonies are distributed in zones or irregularly. Note that many of the colonies show a dense massing of the perithecia at the centre; this found commonly. Fig. 4 shows two strains as sectors. Figures 7-9 show the commonly occurring reduction in the number of perithecia. These strains merge into mycelial saltants showing sparse aerial myceliun (Figs. 44,45), the colony shown in Fig. 9 probably belonging to this class. Note the sectoring. Figures 10-11 show the character of dense aerial mycelium. Note the sectoring.

Figures 12-15 show similar types of variation in C.globosum saltant Fld. to those found in C. globosum.

7

$\varepsilon /$

z/

9
s

$$
H
$$

ε

FICURTS 16-29

Figures 16-29: "Grouth-aauage" - Groups 7 end 8 .
mile these figures only show "damage" in 0. . gloposurn, "damage" in C . glo oosum saltant HLa. na.s the same characteristics.

The figures illustrate the range of "damage" found. Colonies uay de normal excent for a sinall sector of "óa uage" (Hig. 10) or show littie or no normal ayceliun (Fies. 2j-cy). Tina characteristic orown pigutation of heavy "azuage" is weli shown (Fiss. 2i-29); it torns a, the edge where rovilh stops. AIter prowth stops the tree space lettit ia the olate any decome occupied by aycelium srowingout into it (see erticuierly Hiきs. 26-29).

25

FIGURES 30-43

Figures 30-33: Mixed colonies
Figure 30: Iornal plus strains plus slow growing sector, the slow growing sector showed in subcuiture as a "scollop". Figure 31: Normal plus strain plus lignt danage plus "scollop". Figure 32: Normal plus strains.

Figure 33: Mycelial variant dense aerial mycelium plus light darnage.

Figures 34-35: 泪ycelial variants.
Figures $34-35$ show the variant type of Group 2 in which perithecia are absent and the myceliun appears sparse, lying close on the surface of the agar plate. The growth rate is normal.

Figures 36-37: Variation involving growth rate
Figure 36 shows the typical characteristic of Group 9 with the siow myceliun growing from the centre of the colony and soon surrounded by the faster normal mycelium.

Figure 37: Note the sectoring into normal and slow growing saltants around the edge:of the colony and the surrounding of the slow myceliun by the faster growing normal aycaliun.

Figures 38-43: "Seaweeds" and "Scoliops".
Figures 30-41 show "seaweed types". On the one hand there are the slow growing forms with áense nyceliun of Fies. 38-40, ana on the other hand the fine sparse myceliun types of Fig. 41; the latter type gave the name to the group from their resenblance to some of the Red Algae.

Figures 42-43 show "scollop" types.

37.

TABLE 1

UUANTITATIVE ANALYSIS OF VARIATION INLUCED BY 264 mu IRHADIATIOIN Material irradiated: Chaetomium globosum strains LJ and KB, C. globosum saltant Fld.

Control and Experiment Germinations: actual count shown in each case is written as, sa,, $50 / 60$ meaning 50 germinating of a total of 60 plated, either control or irradiated spores.
wisible Colonies: percentage of spores germinating that grow to colony visibility. The percentage shown refer to the irradiation series. When all controls do not grow to visibility, the $\%$ visibility in the controls is the first percentage shown. No. of colonies: the number of colonies in the irradation series. plated out and forining colonies. They comprise colonies from the single spore and dilution plates.
Variant Groups, Frequency of occurrence: The variants are classified into the groups aescribed on pages.18: and 19. Note that in a number of experiments sowe or all "damaged" colonies of Groups 7 and ó were not definitely classified into one or other eroup but were merely descrided as Group 7-0: fijures are shown between the two groups in the table.
Total "Damageá"Colonies: total of groups 7,8 and 9. Total "danaged" colonies found in the irradiation series is snown as percentage of all colonies grown in irradiation series. Gotal Genetic gifects: total of all groups other than "danaged" colonies. (Groups 7,8,9). Total of these found in irradiation series is shown as percentage of all colonies grown in irradiation seriès.

265 mu.

TABLE 2.
UUNTITATIVE ANALYSIS OF VARIATION INDUCSI BY 313 mu IRRADIATION Material irradiated. Chaetomium globosum strains LJ and KB, O. Globosum saltant Fid.

Control and experiment Germinations: as for Table 1.
\% Visiole Colonies: as for Table 1.
No. of Colonies: as for Table 1.
Variant Groups, Frequency of Occurrence: : as for Table 1.
Total "Damaged" Colonies: as for Table 1.
Total Genetic effects: as for Table'l.
sxperiment 035: as pointed out on page 19; there are grounas
for rejecting this experiment as not being typical of irradiation at 313 mu .

TABLE 3.

UUANTITATIVE ANALYSIS OF VARIATION INDUCED BY 334 mu IRRADIATION Waterial irradiated: Chatomium globosuin strain KB, C. globosum saltant Fld.
Control and experiment Gerininations: as for Table 1.
Gisible Colonies: as for Table 1.
No. of Colonies: as for Table 1.
Variant Groups, Frequency of occurrence: as for Table 1. Total "Danaged" Colonies: as for Table 1.

Total Genetic effects: as for Table 1.
Notes: (a) In many of the experiments, the control series does not show 100\% visible colonies. This is probably due to very slight short wavelength leakage (or reflection) affecting both irradiation and control series. The amount of leakage must be negligible, even with the irradiation series wnich is more favourable placed in the mount to receive it, for no "damaged" colonies were found in the control series and the occurrence of these types in the irradiation series is much smaller than production of other variants. The average time of an irradiation at 334 mu is about 200 hours compared with about 3 minutes at 365 mu .
(b) Experiment 061: the three variants put in Group 7 (marked "a") are hotypically "damaged". They show the feature of brown pigment characteristic of this group but belong to in no other respect.

334 mu .

COLOTY FORWATIOR IN THE FONGUS
CHAETOSIUM GLOBOSUM KORZT. BY
H.J.B.PLOMLZY AND J.M.FORD

```
N. J. E. PLOLLIY and J. L. HOED
```


SUEARY

1. The increase in size of the colony of the ascomyceta Chaetomium globosum runze growing on agar yel has been investifated in detail. Increase in colony diameter, change in colony density., growth within the inedium; and increase in total length and anount of myceliom; have all been studied, as well as girouth of the hyphae the selves. Growth has been comgared on complete and incomplete media. observations on the morphology of the nyphae are reported.
2. Growth of the hyphae is logaritinmic but in the for ation of the colony such a growth rate is maintained only winle the environment remaing constant. In the young colony where there is no restriction on growth by the enviromment growth is logarithaic, but as the colony ayes an anvironnental restriction operates. Eecause the cells are fixed in the environment, the environment ${ }^{\text {a }}$ restriction acts in two ways to build up a colony pattern:
(a) growth inside the colony falls off from logaritnaic until a maximum hyphal aensity eventually results, and,
(b) narginal growtin settles down to a constant rate.
3. The fingal colony is found to be a cell popuiation, so that examination of its functions should be made from this point of view.

INTRODUCTION

fost workers have studied tne growth of fungi in relation to the effectis upon it of some environmental factor. Growth has been measured either as increase in colony diameter or by weighing the colony. By the first method a single colony can be observed continuously; but this may have little meaning because the relationship between colony diameter and the mass of tissue in the colony is unknown. It has often been noted, for example, that one treatment will result in the growth of a dense aerial myceliun while in another treatment the eerial myceliun is relatively sparse; here comparison of growth rates by measurement of colony diameters is almost meaningless. Adair and Hoore (1941) attempted to overcome the deficiencies of the method by deterinining from photo-electric measurements all the growing material in the colony. Their method, however, was unsatisfactory with sinali colonies.
neaknesses of the metnod of deternining growth by weighing
are,firstly, that the colony must be grown on liquid media, and, secondly, that as the determination involves destruction of the colony, the experiment must be designea on a statistical basis.

Apart from such growth measurements, unaertaken cniefly as a basis for comparison of environments, there nas been little detailed consideration of the factors involved in the formation of the colony in fungi. In fact it has not been clearly establishea whether a fungus is to be considered as an individual organism or as sone type of colony. In the present paper the growth of the asconycete Chaetomium globosum Kunze has been analysed.

MATERIAL AND WETHODS

The material used in the se experiments was a Dutch strain of the fungus C. globosum Eunze. Piatings were made on 1% malt agar, or on plain ager when starvation effects were being examined, in petri dishes selected for uniformity of size, and flatness of bottom. The amount of medium poured. was always about the same and with the 10 cm . dianeter $\rho l a t e s$ usad the agar depth was o to 8 mm . In certain experiments, especially those where a colony was to be stained and mounted or photograpned, the depth was less, although always greater than the maximum colony radius being considered, so that tnere would be no question of any asymmetrical growth because the bottom of the dish had been reached. The plates were incubated at $28^{\circ} 0$. All colonies grown from spores were of single spore origin. The age of the colony was reckoned from the : time of spore plating. To obtain the age from germination about six hours should be deducted, this being the period from soore plating to spore germination. All data on colony development given in this paper are in terms of time from plating.

The following methods were used in measuring the colony:Colony diameter -. From germination until colony aiametミr reached 3-5 mm, measurements were nade with nicroscope and eye piece micrometers; when larger, a millineter rule was used. neasurenents were made along two dianeters narkea out at rignt angles and a nean value
taken. When measuring the very small colony just germinated, one diameter was taken along the most prominent, hypnae and tnis, and a dianeter at rignt ansles, were used as"axes in all subseyuent measurements on the colony.

Depth of Mycelium: - Thin vertical sections were cut through the agar culture. Depth of mycelium in the section was measured with micrometer or millimeter rule.

Density of hyphae per unit area - The surface of the colony was photographed and from it an accurate sketch made of tne nyphae. The depth of focus of the optical system included all hyphae in a surface layer 0.16 min deep. The area of the sketch was divided into concentric rings of equal dianeter whose centre was tne colony centre (usually the spore site). The length of mycelium in each ring was steoped off with dividers and a density figure calculated. When the whole surface area could not be ineasured satisfoctorily, as was usual with large colonies, one or more sectors were measured. Usually measurements were taken of a single colony from time to time so that change in density could be aetermined; measurement on aifferent colonies gave a crude picture of density change because ditferent colonies of the same age, particuiarly young coloniés, showed aifferences in aevelopment due to differences in the pre-germination period, in environmental conditions and so on.

Individual Hyphae - Hyphae were either measured witn microscope and eyepiece micrometer, or were pnotographed and sketches maae. Small colonies were measured similarly.
heasurenents were usually made on the living colony but some preparations were fixed and stained. Colonies for the latter were obtained by plating single spores on microscope slides covered with a thin layer of agar.. When the colonies had grown to the required stage, they were fixad in Flemming's weak solution and stained with iron \&lum haematoxylin or Delafield's Haemotoxylin; erthrosin in clove oil or safranin were sometimes used as counter-stains.

MORPHOLOGY

1. The colony. The thick mallad spore, an ovoid with average dimensions $9.2 \mu x \cdot 7.0 \mu$ germinates four to six nours after plating, the germ-tube being protruded from a pore at one end. The very young colony is made up of one or two hyphae. These remain unoranched for a tine so that the younc colony is usually much longer than oroad. Atter six to eignt hours side oranches develop from the original nyphae, growing out more or less at right angles to them. (Plate 1A). As the colony grows the hyphae increase in number and the colony rounds off, this form being reached about 30 hours after plating (plate 1B). At this stage aerial hypnae begin to appear first at the centre of the colony. As growth proceeds and the margin expands they extend over more and more of the surface. In the two-day old colony the aerial myceliurn is quite dense, especially at the centre. The colony is now increasing in diameter at a constant rate and the mycelium around the edge has taken on a combed appearance; a portion of the. growing edge of a 46 hour coloni is shown in plate ID.

In the very young colony the diameter of the hyphae
ranged from $2.8-4.2 \mu(T a b l e 1)$. As the colony aged, the nyphae formed in the peripheral growing iringe were of this size, but those formed within the colony were nore and nore tine, having a diameter of only. 0.8-v.2 μ.

When the colony was starvea by frowing it on plain agar the mycelium was not only: much more sparse than that in a colony heving adequate food, but the hyphae were much finer; tne original hyphae and those of the growing firinge had a diameter of $1.9-3.5 u$ and branch nyphae oniy $0.32-1.1 \mu$. Although starvation had a very marked effect on the size of the hyphae and density of the myceliun, that is, on the amount of growing substance, the diameters of nornal and starved colonies of the same age were not very different/. (Platele) The older starved colonies had irregular and indistinct outilines.

The sinaller size of orancn hyonae in all colonies, and of the hymae generaily in the starvadolony than those in the normal colony, is due to star vation. Trie hyphae are fixea in the agar medium; within the colony food becones depleted (and raste products accumulate). Growth is tnerefore restricted and this shows itself not only as a slowing of growth in length but also a dininution of hyphal dianeter, which permits greater efficiency in growth.
2. Structure of the myceliun - Tne mycelium is septate and multinucleate. The first septuin aevelops 10-12 hours after plating (4-6 hours after germination), and is laid down 46μ more than. 100μ behind the growing tip.

Table 1 records data concerning hyphal structure. It is evident that there is no constancy in length of cell and number of nuclei: to each cell; however, the amber of nuclei ana septa in colonies of the same age is approximately tne sane.. The apical cells are longer tnan tne others and possess more nuolei. Aerial hyphae are often tiner than oranch hy phae; they are difiticult to exanine for cell structure.

Cell dimensions and number of nuclei in the starvea colony are given in Table l. The hyphae are finertnan thoee of nornal colonies.

GROTTH OF THE COLONY

The fungal hypha usually grows by elongation of its tip (8nith, 1924); it grows in tnis way in c. giobosum. In a series of measurements of portions of hyphae between successive side brancies, no evidance was obtained of any elongation. Orinkling of the hyphae was not noticed in the colonies and this would be expected if elongation took place penind the hyphal tip, because side branches would act as anchors preventing a tip being pushea forward.
(a) GROMTH OFA SIUGLE HYPHA

The growth of the inaividual hyona was aeterminea irom
measurenents made from time to time of tine length of a: selected hypha and its side oranches (Table 2). Lengtin was measured from the tip of tne hypha beck to some arbitrary fixea point, usually its junction with another hypha; side orancnes were, of course, neasured fron tip to junction vitn parent nypha.

The data are plotted in Graph 1, logarithm of lengtn against period of growth, for the selectea hypna ana side prancues; growth of one of the branch hyphae is snown separately aiso. Each of the se graphs alay be considered in three parts, firstly, the part $A B$ when growth is proceeding very rapialy in an unbranched hypha; secondy, the part $A O$ showing the growth of the nypha olus its branches; and thfiqly, the part/AD showing the growth of the original hypha alone, without its brancnes. In the graph for the branch hypha the corresponaing regions are A'B', $A^{\prime} C^{\prime}$, and $A^{\prime} D^{\prime} ;$ growth in this system has the sane characteristics as that in the systein $A B C D$.

For convenience the part $A C$ of the graph will be consiaered first; it includes all neasurements on nypha plus branches except the first two (AB). The regression equation of perioa of growth X against logarithm of hyohal length Y for these five points is:$1 \quad Y=0.1023 X+1.7792$.

Correlation is highly significant at tne l\% level, that is, growtn is logaritnaic. Exponential growtin is funaamental to the nyphae, either as a whole (AC) or aloney (A'S1). Tne departure from the. exponential shown in $A B$ and $A D$ is not real; in $A B$ a contribution to growith is coming from myceliun outsiae the nypha, while in AD the apparent faling off in logarithmic growth shown by the original hypha when branch hyphae appear is the result of the increase in the number or growing points.

In $A B$ a part of the growth being measured is a contribution of growing suostance fron beyona the point of junction of the branch with the main stem; and trie same effect is evident when some aroitrary point on the ny ne is chosen from whicn to take neasurements. The curve $A D$, on the otner nand, is a complex function related to the number of growing points, that is, to tre
number of oranch hy hae present in the system. The growing point is, as it were, supplied by a "catchnent ares" of mycelium; when the amount. of growtn exceeds the capacity of the groning point other growing points appear, and when measurenents are taken from sone arbitrary point on the hypha, growth rate appears to exceed the normal rate of logarithmic increase until the whole area concerned in growth of the hyphal tip is deing measured. It foilows, that the unbranched growing hypha. nas a functional cell length, this deing the length at whicn division occurs by the putting out of a orancn hypha; it is the point of inflection A, A^{\prime} in Graph 1. Growth of a hypha is therefore funaamentally growth of inaividual cell units. Growth of these units is logarithinjc and this character is snown by the hyphae thenselves. so long as only a) single growing point is being consiaered, or the total lengtin of mycelium growine mithout restriction in the system; when the hypha has branches, growth of the nypha alone does not appear to be logarithmic because in the length of hypha measured are oarts, having constant value, of otner cell units. As will be snown later, when the system becomes stabilisea so that the numper of growing points in the area is constant, as in the growing fringe, the rate of growth of any hypha appears to be constant and the rate of expansion of the Iringe is linear not exponential. (b) GHOTH OF A HYPHAL TIP AHTG SEOTION FRON THE PAREAT OCLOMY Difficulty was experienced in growing hyphal tips cut fron an actively oroming colony. Although tips as small- as about 34μ coula be cut oft, tney coula not be grown. The smallest piece of mycelium that me nave been aole to grow after section was a hyphal tip about 300μ lone. This is much lonyer than the apical cell (Taole 1).

Grorth aata for a nypha after section from an actively groving colony are sumarised in Table 3 and Graph 2 and the form of the colony is shown in Figure 1. The mycelium is consioered arbitrarily in two pieces to rigit and left of a point 'a' (Figure 1), which cane to be the apuroxinate centre of the new colony. Such division was also necessary Decause
the mycelium in the left hana piece next to the point of section ajd not recover nornal growth for some time.

Growth in the right hand viece shows the same characteristics as growth of tne inaiviaual hyphae (Gravn 1), that is, in the part $A B$ of the growth curve a contribution to growth is coming from mycelium in tne left hana piece, and in the part AC growth of the mycelium is logaritnmic. sventuaniy growtin rate starts to decline from logaritnaic at D. wile the corresponding part of Graph 1 shows the effect on the data of the inclusion of mycelium in the length measured which is not contributing to the growth of the tip, the section A'D nere refresents the effect of restriction of growth rate within the colony. Due to change in the environuent vithin the colony the amount of new mycelium formed there is not the same as in areas in which the original environuental concitions continue to hold. There is not only tnis falling off in growth rate, which is shown particularly by the density measurements, but further aiminution in actual growta foriows the decrease in diameter of hyphae formed with/ the colony.
(c) INGFEASE IN SIZB OF TAE OOLONY

1. Mean Dimension :

Typical measurements of mean colony aianeter for yrowtn on 1% malt agar and plain agar are plotted in Grapn 4 , the Inear and logarithmic forms being snown.

Mean diameter of tne colony:increases in tne following:
way:-
(1) Rate of increase in nean aiadeter is logaritnnic at first.
(द) Atter a colony aiameter of about 0.8 mm (about a 30 hour colony) has been reacned tnis loyaritnmic rate diminisnes until the rate becones unitorn ana tne colony spraad over tne surface of the medium at a constant rate, wich; in e. blobosuar can continue incefinitely.

A few ooservations have been mace on growth just after gemination of the spore (Graph 5) . Growth auring this neriod
also is logaritumic. If the graph is arawn back to the
equivalent length of the spore contents (कbout 5μ), the time scale is cut at $2-3$ hours. This point will represent the time after plating at wnich growth begen in the spore.
2. Growth in Depth - when the colony was grown in a Jetri dish, the rate of growth downwaras into tne medium was the same as the rate of growth over the surface of the dediun (Graph 6). Growth was three dimensional from the time of germination of the spore, hyphae growing into the agar as well as over the surface; and the rates of growth into and over the surface of the medium were the same so that the colony was hemispherical.

In the petri dish growth continued in this way until the botton of the aisn was reached, after which the colony had the shape of a truncated hemisphere. Growth proceeded reeularly on the surface and through the medium. surface growth did not appear to be altered when the botton was reached; no such effect should occur uniless there were staling (vide Brown (1923, 1926) who investigated the growth of staling fungi on deep and shallow plates). However, wnen the agar was deeper or its surface linited, growth cownwaras finaily stopped. When colonies were grown in tubes, downward erowtn slowed. or ceased when tne surface myceliun (1). Th reacnea the sicies of the rubes (Grapn 7). The abrupt change in rate of downwara frowth showed that the effect followed occlusion of the surface, i.e. that no gaseous or otner excnenge took place through the mycelium itself.

Footnote 1: Colonies were grown in tures of agar and after a tine depth of growth neasured by cutting sections. Such measurements however, were subject not only to an error as to the deepest point of growth, which was difticult to determine; but also to that of contraction of the agar during the experiment, which was as much as $0-7 \mathrm{~mm}$. The appearance of the se tube colonies suggests that most of the shrinkage was in the surface agar: there was a surface layer of very aense and natted hyphar, then a zone in waich the hyphae ran parallel to the surface and were very densely packed, while below tnis tne hyphae radiated normalily. Such packing was not found in the normal colony and the parallel layers of hypnae coula only have resulted from snrinkage in the surface ot the colony. Arbitrarily do per cent of the contraction has deen considered as being in the surizce, and has been adaed to the crude depth measurement.

3. Density: the distribution of the hypinae in the colony

Final eviaence concerning the orowtin of nyphae within the colony and the method of colony forination was provided by deta showing the way in which the hywae were aistributea in tne colony. Because growth within and on the surface of the meaium were the same, mensurement of the aistripution of hyphae over tne surface of the colony woula aescribe tneir aistrioution in the who ce colony. measurenents ware tnerefore mace of the density of hyonae in a surface layer, figures being obtained for areas at equal increnents of distance from the centre of the colony. Although measureinents were actua $1+y$ made in respect to a volume, the hyphae included in the measurement extenaing below the surface to a depth of 0.16 min, the depth of focus of the optical system, the distribution of hyphae radially across the space rather than haphatzardiy through it gave a measurenent in respect to surface density rather than to volume density.

Density over the surface area of the colony was caicuiated from measurenents of the length of mycelium in each concentric ring diviaing the surface from the formula:-

$$
d_{1}=\frac{1_{1}}{\pi\left(r_{1}-r_{0}\right)^{2}}
$$

where $d_{1}=$ density over the ring; $l_{1}=$ total length of nycelium; $r_{1}=$ outer radius of the ring; $r_{0}=$ inner radius of the ring. Densities measured over a number of colonies are show in Graph 8. The graphs show the colony to consist of an outer zone $100-200 \mu$ wide, in which density increases very rapidly and an inner zone which is the main mass of the colony. The outer zone comprises a few hyphae which have grown out here and there in advance of the general colony margin.

Density within the colony increases with time until it reaches a maximum value. Density change is rapid at first but becomes more and more slow as the maximum value is approached. The forin of the curve is not homogeneous. When density change was plotted for a particular site (Graphs 9 and 10) a "sigmoid" curve was
obtained. This "sigmoid" comprises three regions, growth at the site going through three general phases, at first logarithmic, then constant, and finally falling off to zero when the naximun value is reached. These curves have the same form as tnose for growth of the hypha itself (Graph 1), though they are undoubtedily complicated by the presence of the secondary hyphae when they appear and by the final phase as the saturation density is approached.

Density in the very young colony (vide 18 hours 30 minutes colony, Graph 8) departs sonewhat from its form in the oloer colony and is logarithmic to the centre. In the young colony more free space is available for colonisation by the hyphae, whereas once the colony has rounded off all hyphae compete equally for the space available and in the environment generally.

When the colony is starved, the density curves have the same form as those of the normal colony. Rate of change of density is slower than in the normal colony, and the saturation density less.
4. Colony size - Because growth within and over the surface of the colony is the sane, tne amount of mycelium in the whole colony can be determined trom the measurenents of surface density by colculating the lengths of mycelium in eacn hemispherical shell projected froin the concentric rings dividing the colony surface, using the equation:-

Length of mycelium in the shell, L_{s}

$$
\begin{aligned}
& =-\quad\left(r_{l}-I_{0}\right)^{3} \dot{a}_{v}, \text { where } \dot{a}_{v} \text { is the density of } \\
& \text { mycelium in unit volume of the shell. }
\end{aligned}
$$

d_{V} may be aetermined airectly from the figure for
density per unit area at the surface of the
colony; it is $\left(d_{1}\right)^{3}$.

$$
\begin{aligned}
L_{s} & =\frac{2}{3} \pi\left(r_{1}-r_{0}\right)^{3} \cdot\left(\sqrt{\alpha_{1}}\right)^{3} \\
& =\frac{2}{3} \pi\left(r_{1}-r_{0}\right)^{3}\left[\sqrt{\frac{r_{1}}{\left(r_{1}-r_{0}\right)^{2}}}\right] \\
& =\frac{2}{3} \pi\left(r_{1}-r_{0}\right)^{3} \cdot \frac{I_{1}}{\pi\left(r_{1}-r_{0}\right)^{3}} \cdot \sqrt{\frac{r_{1}}{\pi}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{3 \sqrt{\pi}} 1_{1} \sqrt{1_{1}} \\
& =0.3761_{1} \sqrt{1_{1}} \text { approx. }
\end{aligned}
$$

Sunnation gave the totai quantity of myceliun in the colony. Volune change has the saine characteristics as the other features of colony formation (Graphs 11-13), that is:-
(a) The hyphal mass grows logarithnically at first but eventually the rate declines, presumably to a constant value.
(b) Growth in the starved colony differs from that in the normal colony by occurring at a slower rate.

DISCUSSION

In biology much attention has been given to two functions of Living things, the growth of indiviaual organisais and the increase of popuiations. Both are affected by the environment and both are closed systems in that they have limits of existence. The individual will grow to a size which will allow it to carry on its functions most efficiently. Eecause cell size is aetermined by surface-volume relations, the organism can overcone the se limitations only by obligate association (and specialisation) of celis. The frowth of an individual organism is tinerefore a stuay of the changes occurring in the organism in time, from wnatever cause. on the other nand, increase in nunbers of a population is essentially a study of the effects of the environment, physical and biological, upon the reproduction of the organism,

Because of their tubular form, fungal hyphae can grow unrestricted by surface-volume relations (Bower, 1930). Growth of the hypha, therefore, can follow the logarithmic lavindefinitely, rate of rowth being proportional to the mass of growing tissue. Logarithnic growti of a tubular ceil form has been found in certain rod-form bacteria (Schmalhausen and Bordzilowskaja, 1930) and has been reported for the hyphae of Botrytis (Smith, 1924). : on the other hand, the sporangiophore of phycomyces grows at a constant rate, being wholly degendent
for material for growth upon other hyphae (Castle, 1940). Smith's detailed study of the growth of the hyphae in Botrytis showed (a) that growth rate of a hypna was for a time proportional to its total length, that is logarithic; but that this rate declined later;
(b) that growth of a brancn hypha resemblea
that of its parent;
(c) that the growth of the hypha plus its orancres continued logarithmically for much longer than eacn of tnem alone. He explained the eventual falling off in growth rate as veing due to incomplete transfer of nutrient from the older parts of the hyphae to the tip, that is he assumed absorption to be con-
stnat. In O. globosum, however; the decline in growth rate is considered as being due to local starvation of the units of Which the colony is composea because tney are fixed in the environment.

In C. Globosum we have seen that growtn of tne colony is for a time logarithmic, tne amount of growing material beins proportional to material already formea; but that eventually growth falls off from the logarithmic and maryinal growth proceeds at constant rate (Graph 3). This change in. growth of the colony occurs in spite of potential logarithmic growth of the inaiviaual hyphae, which is seen not only in tne myceliun of the germinating spore (Graph 5) and in the hyphae (Grapn 1) but may de deduced from the fact that ${ }^{\text {growth rate renains uncnanged when aycelium is }}$ subcultured, from whatever part of tne colony it may be taken. The apparent anomaly is resolved by the density measurements which show that witnin the colony (a) growth proceeds until a. maximum density is reacned, and (b) growth at a particular site is at first logarithmic but later falis off (until tne maximum value is reached). Growth within the colony, therefore, proceeds logarithmically until prevented from doing so. Since growth of the colony is essentialiy growth of the hyphal tips ana not cell enlargement subsequent to cell aivision, ana since all hyphal tips can grow logarithnically, the restraint nust cone
${ }^{f}$ rom the enviroment, in which the tip is growing.
That environment can influence the rate of growth is shown by the slower rate on an incomplete mediun (Graphs 3, 12, 13). A parallel. example is the effect of environment on the rate of population increase in scenedesmus, the rate differing according to the environnental conditions (koacn, 1920). Korpnological evidence is in agreement: as a part of the colony ages, the mycelium formed consists of finer and finer nypnae. Loreover, it is cnaracteristic of starved frowth that the dianeters of the nyphae are less than those of tne colony grown on the conplete mediun (Table.1). Fornation of the finer hyphae is an economy wy which maximum exploration of the environment is possible for the least expenciture of growth ana is comparable with the finoing of Gould, pearl, Edwards and winer (1934) that translocation of reserve food material from the cotyledons of canteloup seedlings to the growing plant was more efficient in seedlings in which cotyledonary tissue had been removed than in the normal unoperated seeding.

The change from lozarithmic increase to a constant rate is most clearly snown by the margin (Graph 3), but it can we seen in the measurements of total nyphal length (Graphs 11, 12). warginal density increases steadily as the size of the colony increases (Grapn $\overline{8}$) and in the 37% hour colony has reached a steady state; by this time marginal growth rate ie also constant (Grapn 3): The hyphae in the maryin are evenly aistributed ana of the sane size and appearance (plate 1D).

In examining the density figures it nas been noted that some hyphae grow out in advance of the main inass of tne colony. Because they are thereby freed from the restriction of neighoouring hyohae, they will ve able to grow in all directions. In affect each such hypha will act as did the isolated hypha after section from the colony, that is, it will tend to form a rounded colony and there will ce apparent slowing of the
forwara growth rate. In this way the colony edge will keep a regular line of aavance. Any hypha wnicn, from sone advantage, has erown beyona the colony eage, will dissipate its energy in the formation of side branches. Thus it will be overtaken by the hyphee of the main colony mass winich, restricted in their growth to minimun lateral branching, now have the greater forwara growtn rate. A dynamic balance is therefore set up in the nargin which functions to keep the hypnas in line.

The argin is that region of the colony contributing to constint formard growth. It is, tnerefore, a resion in wnich growth is linear; its wiath nay ba uetermined from the density figures:

While these figures are only approximate and, moreover, for young colonies, they do show that the margin is a functional unit rather than a norphological unit, its width decreasing as the colony ages. This is in accorance with other data. In.the wery young colony all growth is logarithmic anc no true 隹要in has been established. "With increasing colony size (e.g. 26 hour colony) marginal growth Decomes linear; the argin is wide at first but is reauced as the smount of lateral space availaole for colonisation becomes smaller. This is the phase of rouncing off the colony, which is complete. when colony radus is about 0.4 mu. (0.8 mm , diameter : Grapn 4) : At the same tine logarithaic increase in colony aiameter is declining to constant rate. The maryin is finally reduced to a wiotin of about $100 \mu(42$ hour colony), by which time the steaoy state has been set un. This
stable wiath of marein corresponas to functional cell lengtn, that is, the lensth of a hy ina which will Erow logaritnaically. Such a ny pha will grow in tnis way to a lenctn of $100-120 \mu$ (Graph 1; compare also length of spical cell, Taple 1).

Two principal factors are involved therefore in the developant of a nargin growing at constant rate, firstly logarithric growth of hyphae whose functional length is limited; and secondly, restriction of branching to a minimun. Aosorntion of nutrient controls the value of tais constant rate by its effect on nyphal density and on the rate of logarithinic growth. Competition for the space available for grovith is closely associated with nutrient absorption. woreover, in the rounded colony the new space availaole for colonisation by eacn nypha is \neq sector of the expanding circuinference. This area, nowever, will remain virtually unchanged with change in colony radius because growth is dependent only on marsinal vidth.

The independent growth of the hyphae is further shown by the data on growtn in aepth. Such growth (a) takes place.at the same rate as surface growth, (b) is a.ffected by occlusion of the surface, and (c) does not seem to intluence surface growth. The myceliun within the gedium is not acting as a root system for the colony but is merely a part of the colonisation of all the nediun wnich mycelium can inhabit.

It has been shown in the foregoing discussion that the colony in C. globosum has been built up as a result of growth of its constituent hyphae, each hyphe growing independently of the otriers of the colony, yet forming a reguiar pattern because each element of the population is fixed in space in its environment. Growth of each hypna is logaritnmic but sucn a arowtn rate is effective only wile tnere is unimited freedom of growth in the environment. A colony is therefore formed in which (a) growth within the colony deciines from logarithuic to zero, so that maximum hyphal density is reached eventually and, (b) Erowth at the imargin settles down to a constant rate. This
fungal colony is a cell popuiation and in any consiazration of its functions should 0 treated as such. On the one nand, measurements of environmental effects should be based on measurements of the total population of cells, or, at any rate, on the cell pattern of the colony. On the other hand, the ?nysiology of the colony is to pe considered in terins of a cell pogulation fixed spatially in its anviroment.

LITMRATUKE CITAD

1. Adair, L. A. and Hoore, E. J. (1941). A photoelectric method and its use for determination of fungus growth rates. Phytopathology, $31 / 5$ pp. $448-452$.
2. Bower, F.O. (1930) Size and form in plants. dacmilan and Coes London.
3. Brown, F. (1923). experiments on the growth of fungi on culture media. Ann. Bot. $37 / 145$ pp. 105-129.
4. ---n------(1925). Studies in the genus Fusarium. II An analysis of factcrs which aetermine the growth form of certain strains. Ann. Bot. 39/154 po. 373-400.
5. Castle; E.S. (1940). Discontinuous yrowth of single plant cells measured at snort intervals, and the theory of intussusception. J. cell. comp. Physiol. 15 pp. 285-298.
6. Chivers, A.H. (1915). A monograph of the genera Cnaztoinium and Ascotricha: Mem. Torrey Bot. Club. 14/3 pp. 155-240.
7. Gould, S.A., Pearl, R., idwards, T.I. and Miner, J.R. (1934). On the effects of partial removal of the cotyledons upon the growth and auration of life of canteloup seedlings without exogenous food. Ann. Bot. 48/191 pp. 575-599.
8. Roach, B. It Bristol (19,28). On the influence of lignt and of glucose on the growth of a soil alga. Ann. Bot. 42/160 pp. 317-345.
9. Sonmalhausen, I. and Bordzilowskaja N. (1930). Das Wachstum viederer Organismen, 1. Das inaividuelle wacnstum der Bakterien and Hefe. Roux Archiv. entw. mech. Organ, 121 pp 726-754.
10. Smith, J. Henderson (1924). on the early growth rate of the incividual fungus hypha. New phytologist, . $23 / 2$ pp. 65-78.

A Commonwealth research grant enabled this work to be undertaken. The authors would like to express their appreciation of the interest shown by Professor A. L. MoAulay in ali stages of the work.

TABLE 1

Hyphal structure in colonies grown on (a) 1 per cent malt agar ana (D) plain agar.

Length	Length	Diameter	No:
of cells	Apical	hypnae	Nuclei
Hyphae	μ	Cell	\boldsymbol{p}

(a) 1 per cent malt agar - normal colony
liain Hyphae 12.8-48.0 46-120 2.8-4.2 3-13
Branch Hyphael9.0-28.0 48-100 0.8-2.2 3-5
(b) Plain agar - Starved Colony

Main Hyphae 11-32 60-130 1.9-3:5.3-7
Branch Hyphae - - 0.32-1.1 -
Spore dimensions were $9.2 \mu \times 7.0 \mu(8.8-10.1 \times 6.2-7.7)$ (sligntly less than Chivers (1915) measurements of $10.5 \mu \mathrm{x} 8.5 \mu$ (9.5-13.0×6.3-9.5).

All measurements are from anproximate minimun to aproxinate moximum dimensions. deasurements on the starved colony are for one or two examples only.

TAELS 11

Growth of a single hypha: increase in length of a selected hypha, including the branches arising from it.

Tine Hours rins.		Lain Hypha	Ist Eranch Hyoha.	Other Eranch Hyphae	Total Eranch Total Hyphae Hyphal Lengen
0 1 2 4 6 9 12	$\begin{array}{r} 0 \\ 15 \\ 50 \\ 30 \\ 30 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 43 \\ 67 \\ 115 \\ 168 \\ 240 \\ 341 \\ 422 \end{array}$	$\begin{array}{r} \overline{-} \\ \overline{14} \\ 34 \\ 140 \\ 250 \\ 28 \end{array}$	$\begin{gathered} - \\ - \\ \overline{105} \\ 519 \end{gathered}$	- 43 - 67 \because 115 $\because 34$ 182 $\therefore 245$ 586 797 1219

All measurements in μ
The measurements are inade on a selected:hypha in a hyphal tip onoculation (see Table 111). This hy pha is that marked 1 b in Figure 1.

TABLE MII

Growth of a hypha after section from an actively growing colony increase in total length of the (surface) mycelium. The nyceliun has been considered arbitrarily in two pieces, to left and right of 'a' (Figure 1).

Tines . Left , Right . Total Hours Mins. Hand Piece Hand Piece length Nycelium

2	30	240	163	403
3	45	240	336	576
5	20	240	518	758
7	-	259	787	1046
9	-	384	1190	1574
12	20	749	2813	3562
15	10	2563	4022	6585

gll measurements in μ

- (pan 1878) xв8̊e

- man $18: 0 \times 2 L^{\circ} 0$

$\cdot \operatorname{mom}$ I $8 \cdot 0$

T MUTId

D.

FIGURE I

Explanation

Sketches (1-7) showing growth of a hypha after section from an actively growing colony. The hypha was cut off from the parent colony at ' C ' when it was growing in the general direction shown by the arrow. It continued to grow in this direction for a time, but later the point 'a' became the growth centre, the colony radiating about it. The proximat end 'c' - 'ci' of the left hand piece, close to the point of section, gave some appearance of injury and after 9 hours it was partly cut away. The hypha (and its branches) marked ${ }^{\prime} b$ ', is that refarred to in table 11.

?

FIGURE 1.

解
保

c

APPETDIX
 2.

BECTORING IN THE ASCOMYOETOUS
FUngua chatosina glotosur
20128:
88
H.J.E. PLONLEY

ATMNDIX_2.
 Gectoriny in tne ascomycetous
 tungus Qnaetonilun 10 onsun
 \%unをe
 Dy

H. U, E.

The mechanisin of sector formation in fungi nas recently been described by Pontecorvo and Genmeम1 (1944). These authors describe tine sectors inauced (and occurring spontaneously) in colonies of penicillium notatun. Frowth in the colony was seen as growtn of competing inaividual nyphae (see also Elomley and Fora, kppenaix 1). The geometrical forid of the sectors depended on whetner growta rate in tne sector was the same as, greater or lass tnan that of the parent mycelium; complex toras coula de built up from these basic forns (Text-fis. 1). If tne variant gronth rate was the nigner, a sector of type 'a' was formed, "the bounaaries of wilich are parts of equiang llar spirals, witin cnaracteristics depenaing on tha ratio of the two grontin rates". .nen tne srowth rate in the sector was tne sane as tnat in tne parent, the sector naa straigut siaes (type lol), ana wnen the variant rate was sloner tie parent cane to anclose tne variant (type 'c'). In tnis latter case tae variant sector coula only be formed under special conoitions; nornally the variant hyphae woula soon oe surrounded by neisnoouring nyphae and evidence of its presence founa only by inoculatine from the (1).
site. Tảse special conaitions must give the slow-growing variant some initial aavantage in the colony. ponterorwo and Gemmell showea that the sector types coula de imitatea when

[^1]spore mixtures yere platea. .nen tae growtn rates of tine two spore types in the nixture reve the same, tyoe 1 di sectors were formza, the areas of sector and nornal deing provortional to the aundeds of suores of eacn ty: in tae wixture ward the spore types nad aifferent srowtn rates sectors of type 'a' or type 'c! resultea. 山any oi tae types ' D' ana 'c' sectors in irradiated material had blunt ajices. Tne type 1 bi sector witn blunt apex coula be imitated ny piatino two colonies close to弓ether: "the results are biven $u y$ the intersection of two systens of concentric circies...; the intarsections are inperoolae and the angle batwaen the asymptotes depenas only on tne ratio of the two dianeters when tne systeus first neat". It was assuinea tnat tne variant hypias in the irradiated colony hed sona positional aavantage over neignoourina normal hyphae to prociuce tais aftect.

In chaetomiun sloposum the same tnree pasic tyoes of sector nave veen founa in botn irraciated and control colonies. These sectorine colonies orisinatea in single sjores. The type
 type 'c' sector in Fie. 30. Tais occurrence of tne type 'c' sector in a colony of siHghe spore orisin, novever, reyuires some modification of Fontecorvo and Cenmell's concest of "positional auvantase". These autnors pointed out that in the sectors develouing atter irraaiation the slow growing mycelium (type 'c' sector) nad to nave some initial aqvantage over the faster growing normal myceliun for a sector to be formea. Because tyge 'bl sectors codia heve olunt apices, mnich were sinulated by sectors formed when spore mixtuxes were plated in such a way that the sjores mere faw in munoer and widely scatterad, anci also by plating colonies some aistance apart, it was concमuaed tiat tris initial aavantage was yositional. Tinis could bu the case in the irraajatea colony, out it is aifificunt to conceive how it couid have deen so in spore mixtures. IrraQiation of mycelina inhioits its grontn, so tnat it tne variant hy:ha starts growins before tne norial nycelium a positional

 fo xoques etatroexcte ure Kttetqueqoc maof of rext quetottins

 nots auq to sexocs io xeamnu tes.tet e of enn gittea se 'Kuotoo

 Teuf Ievfo) semnquṭ arocis auf moxi setuotoo euq uI

$A-D: ~ B a s i c ~ s e c t o r ~ t y p e s . ~ C o l o n i e s ~ w e r e ~ i r r a d i a t e d ~ a n d ~ v a r i a n t ~ s e c t o r s ~$ became apparent as growth continued in the colony. Blue area represents colony at time of irradiation; red sectors are variant sectors. A: type 'a' sector, variant hyphae having higher growth than normal. B: type 'bl sector, variant hyphae having same growth rate as normal; sectors may have acute (a) or blunted (b) origins. C: type 'c' sector, variant having slower growth rate than normal. D: complex sectorial form. After Pontecorvo and Gemmell (1944).
E: Imitation of sectorial form when colonies of a Chaetomium saltant developed from spores inoculated at equal spacing.
F: Abnomai growth in a young chaetomium colony grown from an irradiated spore. Note the cstraggling form which could lead to positional advantage in later growth.

6. Transmission curves for individual pollen walls, normal and after extraction for pectin and water soluble constituents. 2.5 mm objective.
7. . Transmission curves for individual walle of two distinct types of pollen; 514, corn pollen; 506A, "nojoya teosinte". 2.5 mm objective.
8. Transinission curves for 8 micron layers of pollen contents for types 509 and 514 corn. The top curve is for an aqueous plooen extract in phosphate buffer solution at pH 8.6 .0 mm objective.
9. Pollen wall transmission curves as measured with 2.5 inm and 6.0 mm focal length objectives.

Uber (1939).
 GLOEOSUA EX HONOCEROMATIC ULPRA-VIOLET IRRADIATIOR AED A GROITH ETEECT Chabacteristic of mavelengm

BY A.L. MOAULAY, R.J.B. PLOMLET, AND J.E.FORD

Reprinted, with original page numbers, from "The Australian Journal of Experimbntal Biology and Mrdical Science," Volume XXIII (1945)

SALTANTS PRODUCED IN THE FUNGUS CHAETOMIUM GLOBOSUM BY MONOCHROMATIC ULTRA-VIOLET IRRADIATION AND A GROWTH EFFECT CHARACTERISTIC OF WAVELENGTH

by A. L. Mcaulay, N. J. B. PLOMLEY, and J. M. FORD

SALTANTS PRODUCED IN THE FUNGUS CHAETOMIUM
 GLOBOSUM BY MONOCHROMATIC ULTRA-VIOLET IRRADIATION AND A GROWTH EFFECT CHARACTERISTIC OF WAVELENGTH

by A. L. McaULAY, N. J. B. PLOMLEY, and J. M. FORD¹

(From the Physics Department, University of Tasmania).
(Accepted for publication 1st November, 1944.)
Spores of Chaetomium globosum have been subjected to monochromatic ultra-violet irradiation and colonies have been grown from single spores which were irradiated dry. Special attention has been given to experiments in which the mercury lines at $265 \mathrm{~m} \mu, 313 \mathrm{~m} \mu$ and $334 \mathrm{~m} \mu$ were used. In all these cases many saltants were produced as the result of the treatment of the spores. The primary object of the investigation was to observe any selective appearance of saltants at different wavelengths. Evidence for such a selective effect has been given by one of us, McAulay (1938) and the present experiments were made with more refined methods to obtain further information on this question.

A very marked selective effect was found in which a certain easily recognized type of change was produced in large numbers of colonies grown from spores irradiated by short wavelengths, but in a very few irradiated by long wavelengths. This change is more in the nature of a growth modification than of a saltant. A part of the colony is normal but a sector appears whose vertex usually is not at the centre of the circular growing colony. The sector is nearly clear of aerial mycelium and is frequently edged with dense brown in the substratum. The aerial mycelium is often dense at the edge of the sector and may form white knots. The modification has been designated by the letter "K."

There is a particular feature of interest about the K type. The colony, grown from a single spore, comprises distinct parts each with quite different characteristics. It would appear that the mycelium growing from the single spores is unstable in the sense that a colony derived from it may have two quite distinct forms.

On several occasions the same single spore gave rise to three or more types, normal, K and a saltant (Fig. 2, No. 6).

A very large number of saltant types is produced in Chaetomium globosum by irradiation with wavelengths over the range $230 \mathrm{~m} \mu$ to $334 \mathrm{~m} \mu$. The percentage of colonies saltating is roughly constant over this range provided the energy per sq. cm. applied to the spore is a constant proportion of the lethal dose, in striking contrast to the " K " growth modification which appears selectively at short wavelengths.

EXPERIMENTAL METHOD.

The monochromator used in these experiments was constructed in the laboratory, and has been described by McAulay and Taylor (1939). A 125 watt mercury discharge lamp, a commercial unit with outer envelope removed, was used as a source of ultra-volet light.

Spores were carefully spread on a coverslip in a narrow arc within the limits of the wavelengths and separated from one another so that all would have an equal opportunity of being irradiated. The spectrum was focussed on the spores by fluorescence of an underlying uranium

[^2]glass mount; the control spores on another coverslip were placed near, but in the visible end of the spectrum. When the spores were treated at long wavelengths, short wavelengths were screened by means of glass microscope slides in order to eliminate the small amount of short wave radiation which was found to be present over the whole spectrum. One microscope slide was used for $313 \mathrm{~m} \mu$ and three for $334 \mathrm{~m} \mu$. Even when these precautions were taken a certain amount of leakage occurred, and this is the possible explanation of a few K type appearing at the longer wavelengths.

An airstream was passed over the spores during irradiation to prevent the occurrence of secondary effects due to ozone accumulation, lack of aeration, high temperature and so on.

The spores were irradiated for varying lengths of time, for a few minutes at $265 \mathrm{~m} \mu$; a few hours at $313 \mathrm{~m} \mu$; and a few days at $334 \mathrm{~m} \mu$. Intensity measurements were made by means of a sensitive galvanometer and a vacuum thermopile. The average doses to give equivalent biological effects, exclusive of the K modification, were:

$$
\begin{array}{ccc}
\text { Average dose in joules } / \mathrm{cm}^{2} & \begin{array}{c}
265 \mathrm{~m} \mu . \\
0 \cdot 1
\end{array} & \begin{array}{c}
313 \mathrm{~m} \mu .
\end{array} \\
25
\end{array}
$$

Irradiated and control spores were plated singly in separate Petrie dishes so that the numbers of saltant colonies could be determined and each saltant obtained unassociated with mycelium from other spores.

Two techniques were used, the first a strictly controlled single spore method, and the second a dilution plate method.. In the first dabs of spores were taken from the irradiated and control spore lines and placed in the centre of Petrie dishos on 1 p.c. clear malt agar. Single spores were picked up with a pointed platinum needle and placed at marked intervals on the agar. This plating was carried out under the high power of a dissecting microscope so that the spores, in their plated position, were easily visible and there was no possibility of more than one spore giving rise to the adult colony. All the leading features of mixed growth, etc., which are later to be described, were observed when this technique was used.

Spores remaining after the above plating were made into dilution plates, the amount of dilution depending on the percentage germination and visible colonies obtained from the plated single spores. When the colonies were visible to the naked eye they were cut out and placed in fresh dishes of malt agar, a single colony to a Petrie dish.

Irradiation Dosage.

In the earlier experiments 100 irradiated and 100 control spores were plated singly on 1 p.c. malt agar in Petri dishes, while in later experiments only 50 control spores were used, the larger number being considered unnecessary. The number of spores.germinating was counted in this way, and also the number germinating and continuing to grow to form adult colonies. Percentage germination did not.give a good indication of the effect of irradiation because in some experiments the control germination was very low. The percentage adult colonies from germinating spores gave a much better measure of the biological effectiveness of the dose.

ANALYSIS OF SALTANTS.

Two strains of Chaetomium globosum, one, $L j$, from Holland and the other, $K B$, from Sydney, and a globosum saltant, Fld, obtained in previous work, were used in these experiments. Fig. 1, No. 1, shows a normal colony of C. globosum Fld. A few additional experiments were performed with another saltant of Chaetomium globosum and with a strain of Chaetomium elatum, but owing to the difficulty of analysing the saltants of these two types they have not been included in the quantitative analysis (Table 1).

The changes which resulted from irradiating spores at $265 \mathrm{~m} \mu, 313 \mathrm{~m} \mu$ and $334 \mathrm{~m} \mu$ were many and varied, but can be grouped into three rather broad classes, growth modifications, mycelial changes and perithecial changes. The first class contains those saltants or changes in which rate of growth or form is markedly different from that of the normal colony. Division of the growth types can be made into four sub-classes: photographs of typical examples of three of these are shown in Fig. 1, Nos. 2-4. The second class contains saltants in which the mycelium is very different from the normal. Here again division may be made into a number of sub-classes, and an example is shown in Fig 1, No. 5. Colonies in which the perithecia show a change in distribution, colour or size, make up the third class of saltants. An example is shown in Fig. 1, No. 6.

The mycelial and perithecial changes frequently appear together, and colonies are commonly found with marked growth modifications as well as perithecial and mycelial changes.

A point of interest is that saltants from irradiated spores often approach in appearance other species of Chaetomium (McAulay, 1938). Such resemblances may, however, be superficial only, no critical examination of material having been made.

Single irradiated spores would sometimes yield colonies in which a part was normal and a part saltant (Fig. 1, No. 6) ; less frequently, mixed saltants were obtained (Fig. 1, No. 7).

Fig. 1.
No.1. Chaetomium globosum strain Fld: a normal colony grown from a single spore.
No. 2 Growth modification saltant resembling a succession of small scallops.
No. 3. Growth modification saltant with flares of mycelium growing from several central points, and with smaller flares further out giving the appearance of a red seaweed.
No.4. Saltant colony which is small and button-like in form.
No. 5. Mycelial saltant with the central mycelium white and flat at first soon changing to fluffy; no perithecia. Saltant region surrounded by normal.
No. 6. Perithecial saltant sectors where mycelium is normal but perithecia are lacking: remainder normal. Colony grown from a single spore.
No. 7. A mixed colony grown from a single spore with two saltant types: scallop and perithecial saltant sectors.

All illustrations except No. 1 in Fig. 1 represent colonies of Chaetomium globosum grown from spores irradiated with monochromatic ultra-violet light. No. 1 has not been irradiated. Colonies are approximately three-quarters natural size.

K-TYPE MODIFICATION.

Colonies from single spores showing the K type modification have characteristic areas, frequently sectors, in which growth is abnormal. Perithecia and aerial mycelium are not formed over most of the area, although they may be present at the edges. When the K-area is large the mycelium at its edge is compact and knotted, and the substratum is dense brown. A series of K-type colonies is shown in Fig. 2. Results obtained so far have shown that spore cultures from these colonies produce normal colonies while mycelium cultures produce either normal or K-type colonies. The fact that pure line spore cultures of K type cannot be made has prevented us from classing this modification as a saltant.

In Fig. 2 it will be noted that both normal and abnormal parts are present to a varying degree, indicating the instability of colonies from irradiated single spores. In Nos. 1 to 4 the normal and abnormal regions appear as sectors, the abnormal sectors arising very close to the centre of the colony and the normal originating at the centre.

It is seen from Table 1 that the K-type modification is produced commonly at $265 \mathrm{~m} \mu$, a short wavelength, but rarely at long wavelengths. When production of the K-type is compared on the basis of equal lethal effect of the irradiation,

Fig. 2.
Nos. 1-6. Series of colonies of Chaetomium globosum showing the K-type modification characteristic of short wavelengths, ranging from a slight effect (No. 1) with little brown pigment, to a total effect (No. 5) with dense brown pigment round edge of affected area, an area devoid of aerial mycelium and perithecia. Growth normal only near limits of colony. No. 6 shows a mixture of 3 distinct types, normal, " K " and slow-growing saltant. Colonies represented in Nos. 4 and 6 are of single spore origin.
about 30 p.c. of the colonies growing from spores irradiated at $265 \mathrm{~m} \mu$ show the modification, but less than 5 p.c. of the colonies when spores are irradiated at $313 \mathrm{~m} \mu$ and $334 \mathrm{~m} \mu$ (Table 1). The effect of irradiation is therefore selective in the production of K-type modification.

TABLE 1.
Table of occurrence of saltants and a special growth effect, the K type, in colonies grown from irradiated and control single spores of Chaetomium globosum Lj, Kb and Fld (total of 41. experiments).

* The figures in brackets omit an early $313 \mathrm{~m} \mu$ experiment in which a large number of '! K ' type modifications appeared in contrast to all other $313 \mathrm{~m} \mu$ and $33 \dot{4} \mathrm{~m} \mu$ experiments. It is . possible that contamination by $265 \mathrm{~m} \mu$ occurred in this case.

SUMMARY.

Further results are reported of effects produced by monochromatic ultraviolet irradiation of Chaetomium spores.

A refined technique is used enabling the effect of the irradiation on individual spores to be studied.

Saltations involving modifications of growth rate and form, mycelium and perithecia are produced, as well as a growth modification, the K-type.

Mycelium from the irradiated spore frequently shows instability, having the capacity for development into more than one type of colony. This property is particularly marked in the K type.

For equal lethal effects of the irradiation, production of K-type amounts to $31 \cdot 3$ p.c. at $265 \mathrm{~m}_{\mu}$, but less than 5 p.c. at $313 \mathrm{~m} \mu$ and $334 \mathrm{~m} \mu$, while production of saltants is independent of wavelength.

A selective effect with wavelength has been established for ultra-violet irradiation of biological material.

REFERENCES.

McAulay, A. L. (1938) : Pap. and Proc. Roy. Soc. Tasmania, p. 131.
McAulay, A. L. and Taylor, M. C. (1939) : J. exp. Biol., 16, No. 4, p. 474

[^0]: Footnote 1 : The word "chemical is used to express reaction of atomic or molecular dimension.

[^1]: Footrote i: Tnis may pe couparea wath maskea saltotion in pusarium $\underline{1}$ (Hrown, 1926), anc witn tie very cownon finains of saltants Fnen suvcuitures, botn spore anc myceliud, are arae from fansal colonies, the cinange occurring spontaneousty, or inauced by ete or sone other factor ot the environinent.

[^2]: 1 The funds required for this work came from the Commonwealth Research Grant to the University.

