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ABSTRACT 

The idea of designing a control system that can adjust its own structure and 

parameters to cope with a specified purpose, was very appealing. This thesis 

investigates the application of adaptive control using pole-zero placement method to 

control the Automatic Voltage Controller of a Synchronous generator. In this 

investigation the recursive least squares with exponential forgetting factor was used 

to identify the plant parameters. 
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CHAPTER 1 

INTRODUCTION 

Conventional analog automatic voltage regulators (A VR) were designed using 

classical control theory which employed linear transfer function models. This 

designed theory was based on linearised models which were only valid at a certain 

set of operating conditions. A synchronous generator is operate on non linear and 

time-variant systems, with a wide range of variation of system parameters and 

unmodelled disturbances. Classical control unable to respond satisfactorily over the 

whole range of system and operating conditions. In synchronous generator 

systems, the variation of set points will not change the system parameters, so that 

the same type of controller can be used. However, the variation of external 

parameters such as transmission line impedances and equivalent-load impedances 

and the other machines behaviour impose stringent requirement on self-tuning 

regulators. 

This report is structured as follows: 

Chapter 2 presents an overview of adaptive control system design methods and 

some basic techniques of adaptive controller with their problems and advantages. 

The self-tuning controller contain a parameter estimator which characterise the 

process based on its input and output. The parameter estimations using recursive 

least squares with exponential forgetting factors are investigated in Chapter 3. This 

chapter investigates the parameter estimation using some exponential forgetting 

factors and different P matrix. 

To validate whether the synchronous generator is controllable or not, a simulation 

of a nonlinear synchronous machine is solved by using fourth order Runge-Kuta. 

This simulation is discussed in Chapter 4. Based on the simulation result, the pole-
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zero adaptive controller and predictive controllers are also presented in this 

chapter. 

\he controllers that are discussed in Chapter 4 are implemented in controlling the 

exciter of a 7 .5 KV A synchronous generator in laboratory by a personal computer. 

The real time calculations are monitored from screen by using Quinn Curtis 

software and data acquisitions is obtained from Boston technology. These aspects 

are discussed in Chapter 5. 

Chapter 6 provides the conclusion of the preceeding chapters. The simulation and 

programmming are shown in appendices. 
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CHAPTER 2 

ADAPTIVE CONTROL 

2.l General 

The intended achievements of control theory in controlling a dynimical system are 

maintaining outputs of a system around prescribed constant values and ensuring 

that the overall system optimises a specified performance criterion. To achieve 

these goals, computation of suitable control input based on the observed outputs of 

the system must be conducted. The basic processes incorporated in controlling a 

system include the mathematical modelling of the system, identification of the 

system based on experimental data, developing convenient mathematical forms 

from the outputs of the system to synthesise the control inputs and apply them to 

the system to obtain the intended behaviour. 

The development of the control theory can be classified into three main categories: 

dete1minjstic control theory, stochastic control theory and adaptive control theory. 

In deterministic control theory, it was assumed that the system was linear time 

invariant with complete knowledge of the controlled systems. This theory was 

used succsessfully for feedback control systems. 

Stochastic conu·ol theory was concerned with unce1tainties that were inherent in 

the control systems. To cope with the stochastic conditions, linear deterministic 

control theory was extended. However, these theories need sufficient a priori 

knowledge of the systems and their environment. The meaning of the a priori 

knowledge is the information of all physical systems can be included in order to 

reduce the number of the model parameters to be estimated. In real operation, 

especially while dealing with complex dynamic systems operating in a complex 

environment, there are some uncertain situations where a complete a priori of the 
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systems cannot be provided. The difficulties were observed when substantial 

amounts of uncertainty were present in the systems. So, the demands of faster and 

more accurate controllers became clearly evident when the existing theory were 

inadequate to successfully handle the problems. An adaptive control theory with a 

capability to adjust its performance and environment changes was desired. 

The term "adaptive system" was introduced into control theory to represent control 

systems that monitor their own performance and adjust their control mechanism in 

the direction of improved performance. The most important feature of adaptive 

control is its ability to adjust itself to predetermined ranges of set points in various 

dynamic processes. 

2.2 Adaptive Control Designs 

In controlling a process which is nonlinear, time-varying and has unknown 

dynamics with unknown disturbances acting upon it, needs self adaptive control 

algorithms that have some learning capabilities. So far, there is no general analytical 

solution which has been found to solve such complex problems. A possible 

approach t_o the solution of these problems is to accumulate dynamically all 

information about the system response and to simultanously generate an acceptable 

control signal in an adaptive feedback manner. 

The operating quality of the adaptive control can be deduced from how efficient 

and quick the ability of the adaptive system is to generate control signals to 

optimise the performance of the dynamic process. 

There are two popular approaches to designing adaptive control systems[l] They 

are the theory of Model Reference Adaptive Systems (MRAS) and the theory of 

Self Tuning Regulator (STR). 
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2.2.l Model Reference Adaptive Systems (MRAS) 

Model Reference Adaptive Systems (figure 2.1), originally were developed by 

Whitaker, Yamron and Kezer (1958) to solve the servo problem. In MRAS, the 

adaptive controller forces the plant to perform like a reference model, where the 

model represents the performance of a desired system. MRAS have fairly high 

speed adaptation where the identification for dynamic plant performance is not 

required. 

MODEL 

y 
m 

Regulator parameters 

REGULATOR 

ADWSTMENT IE-----. 
MECHANISM 

u 
y 

PLANT 

Figure 2.1 Block diagram of Model Reference Adaptive Systems 

The task of the adjustment mechanism in the block diagram, is to minimise the 

error between the plant output y and model output Ym· The minimum error is then 

used by the adjustment mechanism to modify the regulator parameters. The 

problem is to determine the adjustment mechanism so that it not only brings the 

error to zero but also produces a stable result. This is a difficult problem to solve, 

because simple linear feedback from the error to the controller parameters is unable 

to guarantee a stable result [2]. 

There are two principle approaches of MRAS to consider the estimation of the 

unknown plant[ I] i.e. direct and indirect control. 

1. Indirect Control 

The parameter estimation of the unknown plant, is derived from its input and 

output. The estimated parameters are used to generate a feedback control function 

to adjust the parameters of the controller. 
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2. Direct Control 

OBSERVER 
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(UNKNOWN) 
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Figure 2.2 Indirect control of MRAS 

' e 

This approach does not have an explicit plant identification. The controller 

parameters are updated from the control error. 

r 

+ 

REFERENCE 
MODEL 

PLANT 
(UNKNOWN) 

Figure 2.3 Direct control of MRAS 

+ 

The main differences between direct and indirect MRAS are as follows: 

Model of the desired control is explicitly used in direct control, whereas a model of 

the plant identified on-line is used in indirect control. 
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Control error in direct control and identification error in indirect control are used to 

update the controllers. 

2.2.2 Self-tuning Regulators (STR) 

Self-tuning regulators play a significant role in adaptive controllers. They are 

relatively easy to implement in microprocessors, and are applicable to complex 

processes with dynamic characteristics and stochastic disturbances. 

The self-tuning regulator was originally introduced by Kalman in 1958, however, 

due to unavailability of sophisticated computers and the lack of theory to support 

it, it was not well developed until Astrom and Wittenmark developed the STR for 

the stochastic minimum variance control in 1973. The STR consists of three major 

parts, a parameter estimator, a controller calculation and a controller with 

adjustable parameters. The parameter estimator identifies the parameters of the 

plant from its input and output. The controller design computes the parameter of 

the controller base on plant parameters. The controller gives input signals to the 

plant from set point wand controller design. 

From the identification of the controller parameters algorithm, the STR can be 

classified in two ways: Indirect and Direct Self-tuner algorithm. 

Uc 

SET POINT 

PLANT 

y 

PLANT 
IDENTIFICATION 

CONlROLLER 
PARAMETERS 

CONlROLLER 
ACTION 

Figure 2.2 Block diagram of Indirect STR 

7 



1. Indirect Self-Tuner Algorithm 

With Indirect Self-Tuner algorithm, the controller parameters are updated after 

identification of the plant parameters and controller design. The Indirect Self-Tuner 

is achieved by an iteration at each sample interval through the following cycles: 

Step 1. Identification of the plant parameters at each sampling by Recursive 

Least Square. 

Step 2. 

Step 3. 

Calculating the design controller parameters. 

Updating the control signal parameters by control law. 

Steps 1 to 3 are repeated at each sampling period. After several iterations, 

controller parameters converge when the estimated plant parameters reach a steady 

value. 

To obtain good estimates and control, it may be noted that the input of the plant 

must be constantly excited or rich in frequencies. If there are no changes for a long 

. time, the gain of the parameter estimator may become very large, and a change in 

the command signal may produce large changes in the parameter estimates 8 and in 

the process output y[3]. This is usually the case with fixed parameter controllers in 

industrial processes. 

2. Direct Self-Tuner Algorithm 

The Direct Self-Tuner algorithm (figure 2.3) updates the controller parameters 

directly from the parameters of the model. As a result the design controller that 

calculates the solution of the Diophantine equations can be eliminated. 
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u PLANT 

CONTROL 
DESIGN 

ARA METERS 

y 

i--~~ ~~--

ESTIMATION 

Figure 2.3 Block diagram of Direct Self-Tuner 

The direct STR consists of two steps of operations: 

Step 1. 

Step 2. 

Estimation of the plant parameters. 

Calculation of the control signals. 

Step 1 and 2 are repeated each sampling period 

The operational steps in direct STR show the elimination of the second step of 

indhect STR. This elimination can be achieved by selecting proper model structure. 

Direct STR algorithm is valid only for minimum-phase plants [1]. 

2.2.3 Gain Scheduling 

Another design for parameter adaptive control is Gain scheduling (figure 2.4.) 

Auxiliary 
Regulator parameters GAIN / measurement 

SCHEDULING ' 

Command 
signal '/ Control 

' u / signal 
' 

Output 
' c REGULATOR I PLANT / 

I' 
u y 

Figure 2.4 Block diagram of Gain scheduling 
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The objective of Gain scheduling is to reduce the influence of parameter variations 

by changing the regulator parameters as a function of auxiliary variables. The 

regulator parameters are determined by using some suitable design methods at 

number of operating conditions after scheduling variables are found. The main 

problem of Gain scheduling is to obtain proper scheduling variables, which are 

usually based on the physical knowledge of a system. The advantages of Gain 

scheduling are that the regulator parameters can be changed quickly in response to 

process changes and the effects of parameter variations are minimised. These 

advantages can be attained by selection of auxiliary variables that correlate well 

with the changes in process dynamic. 

The disadvantages of this approach are : 

1. There is no feedback to compensate the error of Gain schedule. 

2. Evaluation of the performance and stability of the system must be checked by 

simulations. 

3. In some cases several operating conditions must be simulated to determine 

regulator parameters. 
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CHAPTER 3 

SYSTEM IDENTIFICATION 

3.1 General 

Identification of system parameters is one basic step in adaptive control algorithms. 

There are many parameter identification methods which can be used to identify 

system parameters. Least squares is one particular method which can be used for 

parameter identification. Section 3.2 discusses the least squares method based on 

the linear process model. 

In order to obtain on-line parameter identification, the recursive parameter 

identification method is the best suited method[4]. Section 3.3 discusses recursive 

least squares. 

The algori~m of controller procedure recommends process models in different 

equations as these equations are easy to implement in digital computers. 

3.2 Recursive Least Squares 

A discrete time process model can be written in a general Z transfer function where 

the polynomial numerator's degree is one degree less than the denominator. 

Equation 3.1 shows the general transfer function as 
-1 -2 -n 

Y(z) be +b2z + ... +bnz - = G( z) = --"'-----=-----'-'----

U(z) -1 -2 -n l+a1z +a2z + ... +anz (3.1) 

where the plant input and output are denoted by Y(z) and U(z) respectively, and the 

model parameters are b11 and a11 • 

To identify parameters in a dynamic process system, least squares needs a large 

amount of plant input and output to be provided prior to parameters identification. 
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In high order systems, provision of plant input/output is time consuming and 

inefficient. 

To cope with this problem, the recursive least squares method is applied. This 

method needs relatively less plant input/output than least square methods. 

For k times measurement, the inverse transform of equation 3.1 can be written as 

Yk =biuk-l +b2uk-2 + ... +b11uk-11 -a1Yk-l -a2Yk-2 - ... -a11Yk-11 (3.2) 

Equation 3.2 is a recursive equation that can be used to identify model parameters 

and obtain the next model's output based on the previous input and output. 

The turbo generator can be modelled as a second order difference equation 

Yk = biuk-l +b2uk-2 -aiYk-l -a2Yk-2 

and depicted in figure 3.1 

Uk Yk 
Unknown system 

b1z-1 + b,..., z -2 -1 2 at z _ a~ z -

Model 
( error signal) 

Figure 3 .1 Unknown parameter identifications 

The eITor signal ek is given by 

ek = Yk -biuk-1 -b2uk-2 +a1Yk-l +a2Yk-2 

or 

Yk =b1uk-I +bzuk-2 -a1Yk-I -a2Yk-2 +ek 

In a matrix form, equation 3.4 can be represented as 

Yk=Hkek +ek 

where known function H k can be written as 

Hk = [ u k-1 u k-2 Yk-1 Yk] 

and the unknown vector ek 

12 
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T 0 k = [ b / b2 -a / -a 2 ] 

and the error vector ek 
T e k = [ e l e2 e J e4] 

The error vector ek becomes zero when the loss function J 
N 2 

1=-!.Let 
•=I 

is minimal. This minimisation can be achieved because matrix 

(3.6) 

is non singular and the input signals are persistently excited or sufficiently rich. 

Now, the least square estimate 8 is given by 

A T -1 T 
0 k = [ H k Hk] Hk yk [6] (3.7) 

By introducing a quantity Pk= [ H[ Hk 1-I then 

A T 
0k =PkHk yk (3.8) 

For additional measurement k+ 1 then 
A A A 

0k+1= ek + kk+J(Yk+I Hk+10k) (3.9) 

and 

(3.10) 

where 

(3.11) 

3.3 RLS identification with an Exponential Forgetting Factor 

The Recursive least squares method as developed by Astrom and Wittenmark was 

designed to identify the parameters of a process model which operated in time 

invariant. In a system such as the turbogenerator, the system is time varying and 

has non linear process control. Hence, the plant parameters may never converge 

when the recursive least squares method is applied. This problem can be solved by 

introducing a weighting factor namely exponential forgetting factor (8). This factor 

discards old data to speed up the identified plant parameters convergence into a 

steady state value. 
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According to Astrom and Wittenmark[6] the equation 3.9 to 3.11 become 
I\ I\ I\ 

ek+i= ek + kk+J{yk+J -Hk+1ek) (3.12) 

Pk+l = (Pk-kk+JHk+f Pk)/6 (3.13) 

kk+l =PkH[+
1
(d + Hk+IPkH{+ 1)-

1 
(3.13) 

The value of the exponential forgetting factor (o) is defined as in the range 

between 0 to 1. If o is small, the recent data will have more weight than the old 

data. 

~ 
:::> 
~ 
> 

~ 
:::> 
...:I 
< > 

3 

2 

1 

0 

-1 

-2 

-3 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

0 

0 

100 200 

100 200 

DATA NUMBER 

G-£-£J Al 

G-e--E) A2 

G-£-£J B1 

G-e--E) B2 

Figure 3 .2 Parameter identifications with o =0.8 and Pmatrix = 10 

300 

300 

To investigate the effect of different 8 and P matrix, the following conditions are 

applied: 
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To investigate the effect of different o and P matrix, the following conditions are 

applied: 

- The initial value of 0 = [ 1 1 1 1]. 

- Number of data = 300. 

- Plant parameters change at data number 100 and 200 as shown in table 3.1 

3 

2 

w 1 
~ 

0 _J 
<t 
> -1 

-2 

-3 

0.3 

0.2 

w 0. 1 
~ 
_J 
<t 0.0 > 

-0. 1 

-0.2 

0 100 200 

0 100 20-0 

DATA NUMBER 

C3-B-£l A 1 
G-e--B A2 

C3-B-£l B 1 

0-e--B 82 

300 

300 

Figure 3.3 Parameter identification using RLS with o = 0.8 and P matrix = 100 
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Parameters Iteration Iteration Iteration 

l to l 00 10 l to 200 201 to 300 

a1 - 1.9213 -1.2348 - 1.88762 

a2 0.9607 0.4493 0.91289 

b1 0.09931 0.1215 0.02515 

b2 0.09798 0.0929 0.02254 

Table 3.1. Table of plant parameter changes at iteration 100 and 200. 

Figure 3.2 shows second order parameter identifications with 8 value 0.8, and 

elements of diagonal P matrix = 10. It can be seen the identified parameters slow 

to converge to the a steady state value and have noisy parameters but fast enough 

to track the parameter variation when the plant parameters change. 

With 8 value = 0.8 and P matrix = 100, figure 3 .3 shows the identified parameters 

converge faster than the ~xperiment result with P matrix =10, but the identified 

parameters are noisy. 

In figure 3.4, the 8 value= 0.95 and P matrix= 100 are applied. The result of these 

values shows the identified parameters are less noisy, but the response is slower 

than 8 value = 0.8. Empirically, 8 equal to 0.98 is usually used and shown in 

Figure 3.5. The result shows the parameter's noise is reduced and the response is 

faster than 8 equal to 0.99 (see Figure 3.6) to track the parameter change. This 

result uses similar starting value eT and elements of diagonal P matrix. 

If the parameters of the process model stay constant for a long time, the exponent 

forgetting factor 8 does not work well. As 8 is less than 1, the estimator will then 

discount old data even though there is no new parameter change in the recent data. 

This condition can be explained as follows. When there is no new parameter 

change then kk+JHk+JPk of equation 3.13 becomes zero [7] so 

(3.14) 
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As a result, the value of Pk+l will grow exponentially and become too large to be 

handled by computer. Since Pk is so large, any change in the plant parameters may 

then lead to large changes in the parameter identification, thus causing an 

inaccurate identification of the system or estimator wind-up. 

To control this problem, Hagglund[?] proposed algorithms which only discount 

data where there new information exists. 

3 
G-B-EJ A 1 

2 
G-e--0 A2 

w 1 
~ 

0 _J 
<I'. 
> -1 

-2 

-3 
0 100 200 300 

0.3 
G-B-EJ 81 

0.2 
G-e--0 82 

w 0. 1 
~ 
_J 
<I'. 0.0 > 

-0. 1 

-0.2 
0 100 200 300 

DATA NUMBER 

Figure 3.4 Parameter identification using RLS with 8 = 0.95 and P matrix= 100 
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3.4 U-D Covariance Factorisation 

Biermann and Thorton developed a procedure to identify plant parameters in U-D 

algorithms. This method factorised matrix P as 

(3.14) 

where U is an upper triangular matrix and D is a diagonal of the P matrix. 

The U-D method is relatively efficient in calculation. This method updates the 

square root matrix P without square root calculation. 

w 
~ 
_J 
<t 
> 

3 

2 -

J w 
~ 
_J 

] 

0 1-L--

<t 
> -1 

-2 

-3 
0 

0.3 

0.2 

0. 1 

0.0 

-0. 1 

-0.2 
0 

~-
\ :: -

I I 
1 o.o 200 

100 200 
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G-B-El A 1 
G-B-0 A2 

G-B-£] 81 
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300 
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Figure 3.5 Parameter identification using RLS with 8 = 0.98 and P matrix = 100 
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Figure 3.6 Parameter identification using RLS with o = 0.99 and P matrix = 100 
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CHAPTER4 

CONTROLLER DESIGN 

4.1 General 

This chapter presents an on-line solution to a controller design problem for a 

system with Single Input Single Output (SISO) and also with known parameters. 

Section 4.2 presents the controller structure of pole-zero placement design. The 

procedure to determine the polynomials R, Sand T for second order systems is also 

reviewed in this section. The controller with integrating property is covered in 

section 4.3. 

4.2 A.C. Turbo Generator Model 

Before a controller can be implemented into a system, it requires a model for 

validation. The model must describe the dominant dynamic properties of the 

system to be controlled. A model of the turbogenerator based on Park's equations 

as described in reference 8 was used in this experiment. 

~----------~ steam 
+5 

control valve 

-5 0 Ps 
rate limit position limit 

transformer !me 
turbine infinite 

bus 
+5 

I E 

ue J+tes 
-5 

exciter 

Figure 4.1 Schematic diagram of the open loop a.c. turbogenerator 
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Figure 4.1 shows the open loop system consisting of synchronous machine 

connected to an infinite bus through a transformer and a transmission line. Steam 

turbine as a prime mover and excitation system are also shown in this figure. The 

exciter input Ue applied to the exciter is assumed to be available for optimal 

variation and is therefore used as a control variable. The governor input Ug is 

taken as a second control variable. 

The following state vectors represent a synchronous machine of the above system, 

and the state equations are described in Appendix 1. 

x = [o,8 \If fd,E fd,P.1.,Tm]T 

u = [ue,ugr 
y = [~,Vt,8,E fd ]T 

(4.1) 

(4.2) 

(4.3) 

The four components of the output vector Y, real power output P1 , terminal 

voltage v1, rotor angle velocity 8, and field voltage Efd can be measured in a full-
. . . 

scale plant. The output vector components have been chosen by omitting 

inaccessible measurements to avoid the effect of deterioration in performance and 

loss of guarantee that the closed loop control system will no longer be stable. 

4.3 Open Loop Test 

In control system design, it is desirable to be able to predict whether or not a 

system is controllable. A state X1 of a system is controllable if it is possible for the 

input vector to transfer any state X0 at any previous time to to the state X1 in a 

finite amount of time. A mathematical model is a simplification of the real 

physical system. Thus, while most physical systems are controllable, their models 

might not be, and it is important to know when this occurs. 

Consider a first order model x =Ax + Bu. This model is controllable if B * 0. 
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The linearised form of the state and output equations m Appendix l can be 

described as 

x =Ax+Bu 

y=Cx 

where B and C :;t: o 

(4.4) 

(4.5) 

Based on these equations, the mathematical model is controllable, and the second 

order controller may be applied in this experiment. 

The open loop test was conducted to test the controllability of the synchronous 

machine by checking the step response of the initial steady state vectors. This test 

solves the six first order non linear equations as mentioned in Appendix 1 by using 

Runge-Kutta procedure in Appendix 2 instead of an analitical solution. 

The system equations of the synchronous machine based on Appendix 1 are as 

follows: 

X1 =X2 

X2 = [(X6 -1.256 * X:, * sin(X,) + 0. 922 

* sin(x;) * cos(x; )- 0. 08 * X2 ] * 29. 637 

X 3 = 0.180726* X4 - 0.561*X3 +0.422*cos(X1) 

X 4 =(-X4 + U1)*10 

x 5 =( - x 5 + KV)* 10 

X 6 =(-X6 + X5)*2 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 

(4.11) 

The terminal power and terminal voltage may be expressed in terms of the output 

state variable by 

11 = l.256X1 sinX1 -0.922sinX1 cosX1 

12 =M+v~) 
where 

vd = 0.798sinX1 

22 
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v" = 0.5905X3 +0.365cosX1 

The step input to the open loop simulation was obtained by changing the real 

power from 0.8 p.u to 0.9 p.u as the step input. 

The fourth order Runge-Kutta method as listed in the computer progamming of the 

open loop simulation in Appendix 4 was applied to solve the non linear equations. 

The time interval h = 0.05 second and the following initial steady state vectors 

were used in the fourth order Runge-Kutta method for the open loop test. 

x ss = [1, o, I.152, 2.314, o.8, o.s]T 

Y ss = (0.9, 1.109, 0, 2.495]T 

U ss = (2.314, 0.563]T 

the increasing step in the input vector was 

U ss = (2.495, 0.634]T 

The new steady state conditions of the open loop simulation were as follows: 

X ss = (1.078, 0, 1.160, 2.495, 0.9, 0.9]T 

Y ss = (0.9, 1.109, 0, 2.495]T 

Figure 4.2 exhibits the open loop test results against time in responding to the step 

input. This figure is also proof that the control law can be implemented to design a 

stable close loop design. 
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Figure 4.2 Open loop test of the mathematical model of the synchronous 

generator 
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4.4 Controller Structure 

The open loop test of the mathematical model of the synchronous generator has 

proved that the control law can be implemented. Thus, it is desired to find a 

control law such that the appropriate response to command inputs is obtained. The 

implementation of the controller in this project is the Pole-Zero placement method 

that was introduced by Astrom and Wittenmark[6]. Figure 4.3 shows a block 

diagram of the controller structure of a system using Pole-Zero placement. 

CONTROLLER 

PLANT 

s 
Uc + '-.<"'"J. 

u B 

' T ' 
_.l_ 

' Gjz) =-- ' x R A .I ") 
,, .I / / 

et point ' -

y 

y 
s / 

' 

Figure 4.3 Block diagram of controller structure 

Plant in figure 4.3, has a single input u and a single output y and it can be 

expressed by a transfer function. 

A<=>i(=> = B<=>U<=> (4.14) 

where A and B are polynomials in z, they do not have any common factors. 
A(z) =I +a1z+a2z+ ....... +a,,z 

B(z) = b1 + b2z+ ............. +b11z 

R, Sand Tare polynomials in z. 

The coefficient of the highest power in A and R is assumed to be unity or 

manic.The control law of the controller can be written in z as 
1 

u(z) = T ~=luc(z) -s<=>~z) 
(;) 

or 
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This equation consists of a feedforward with pulse transfer function 

I;=> Hlf(=1 =-
R<=l 

and a feedback with pulse transfer function 

SC=> 
HthC=> =-

Re=> 

( 4.16) 

( 4.17) 

To ensure the causality of the feedforward and the feedback transfer functions, 

deg R >deg T 

deg R >deg S 

(4.18) 

( 4.19) 

The controller specification can be expressed as a model that gives the intended 

response to command signals, and it can be written as a closed loop transfer 

function 

G ( ) = B,,,<=> 
Ill z 

A,,,c=> 
(4.20) 

where 

Am and Bm are manic and coprime, and also the zeros of Am are assumed to be 

inside unit circle z. 

Generally equation ( 4.20) requires an observer dynamic, because with output 

feedback, there will be additional dynamics that are not excited by the command 

signal. The observer dynamic is performed by specifying the characteristic 

polynomial Ao as the observer. 

The model transfer function Gm(zJ influences the sensitivity of the closed loop 

system to modelling error and to high frequently measurement noise. 

The consequences of the inequalities of equation 4.18 and 4.19 are 

deg Am - deg Bm > deg A - deg B ( 4.21) 
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deg Ao > 2 deg A - deg Am - deg B+ - I (4.22) 

Equation 4.21 implies that the delay in the model Gm(z) must be at least as large as 

the delay in the plant transfer function Gp(z). Equation 4.22 can be used to obtain 

the observer polynomial Ao, and it implies that the degree of Ao must be 

sufficiently high in order to obtain a causal control law. 

If the computation time of the computer is a small fraction of the sampling time, 

then it is common to use 

deg R = deg S = deg T (4.23) 

and if the computation time is close to sampling time, then 

deg R = 1 + deg T = 1 + deg R (4.24) 

this means that the control law has a time delay of one sampling period. 

The input and output relationship after U(z) to be eliminated can be written as 

fc=> BT 
U«=> AR+ BS 

: (4.25) 

By suitable selection of the polynomial R, Sand T, that satisfy Equation 4.25, it is 

desired to obtaine a model transfer function Gm(z) equal to Equation 4.25. Hence, 

the desired closed loop transfer function can be written as 

BT B m 

AR+BS A 
(4.26) ---= 

m 

The zeros of the closed loop system are the zeros of the polynomials B and T, and 

the poles of the closed loop system are the solution of 

AR+ BS = 0 

To satisfy the condition in Equation 4.26, there must then be cancellation of poles 

and zeros. Consider the zeros of the polynomial B that represents the zeros of the 

open loop. If any root of the denominator BA 111 of Equation 4.26 is outside the unit 

circle or if B has unstable roots or poorly damped roots near the unit circle, this 
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condition is undesirable. Because such zeros of B are unable to be cancelled, the 

polynomial B is factorised as 

B = S- B+ (4.27) 

where n+ has well damped roots located inside the specified region and B- has the 

remaining unstable or poorly damped roots outside the specified region. Equation 

4.26 shows that B must be a factor of Bm so 

Bm = B'mB- (4.28) 

To enable n+ to be cancelled, it must be a factor of R. By introducing R' that is a 

monic, hence 

In order to obtain Equation 4.16 and 4.17 causal without delay time, so 

Deg R' = deg Am + deg Ao - deg A 

Deg S = deg A - 1 

Now, equation 4.25 can be rewritten as 
T B,;, 

----=-
(AR'+B-S) A,,, 

(4.29) 

(4.30) 

( 4.31) 

(4.31) 

The degree of Am is normally less than the dominator of Equation 4.26 (AR+ BS), 

so that there are factors which cancel. This cancelling factor is the observer 

polynomial Ao. The roots of Ao a.re assumed in the unit circle. 

By comparing the nominator and the denominator of Equation 4.31, the following 

conditions are obtained: 

T=B'mAo (4.32) 

and 

AR' + s-s = A oAm (4.33) 

(4.14) 

Consider the second order plant transfer function 

G - B(z) - b1z+b2 
p(z) - A - ? 

(z) z- +a1z+a2 
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bi 
bi[z+-] 

b2 
=-----

? 
z- +aiz+a2 

(4.34) 

b 
Depending on the zero of the open loop system of Equation 4.34, the value of -1. 

bi 

can lie outside or inside the unit circle. Therefore, Equation 4.34 has two possible 

solutions. 

. b 
Case( 1 ) -1. < 1 

bi 

In this case the zero is inside the unit circle and it should be cancelled in the closed 

loop system. Due to the zero being inside the unit circle, then 

and 

By selecting observer Ao = I and from Equation 4.21, the degree of Am IS 

obtained as 

0 = 4 - deg Am - 1 - 1 

degreeAm = 2 

Referring to Equation 4.28 B~ can be written as 
, m1 m2 

B
111 
=-z+-

b1 bi 

Deriving from Equation 4.30 the degree of R' is zero, hence R'= r 0 ' =I. 

From Equation 4.31, the degree Sis equal to one, so, the polynomial Sis 

S=SoZ+S1 

The polynomials S, R and T can be obtained from Equation 4.33,4.29 and 4.32 

respectively as follows: 

(4.35) 
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From Equation 4.29 the polynomial R can be obtained as follows 

R = B+ R
1 

b2 . 
= [z + ht]ro 

b 
=[z+i] 

bi 
b2 

'i =-
b, 

Hence the polynomial R is 
b, 

R=z+--
b 

I 

The coeficient of the polynomial T can be obtained as follows 
m m 

T=-1 z+-2 

b, b, 

m1 
to=-

b1 
m2 

l1=-
b1 

The control law can be written as 

b 
Case ( ii ) i > 1 

b1 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

The zero is outside the unit circle, this zero is unstable and it cannot be cancelled. 

So, it must be included in the closed loop system. 

s+ =I 

and 

By considering Equation 4.31 

deg S = Deg A - I 
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=2-1 =I 

and Equation 4.22 

deg S = deg R = deg T 

hence 

Consider Equation 4.29 

R = B+R' 

Because B+ = 1 then 

R = R' 

Recalling Equation 4.33 

AR'+B-S=AoAm 

and substituting Equation 4.40 and 4.41 into Equation 4.33 gives 

(z2 +a1z + a2)(R0z + R1)+(b1z + b2)(S0z + S 1) = AoAm 

Let Ao = 1 and expanding Equation 4.42 gives 

(4.42) 

R0z3 +(R1 + a 1 R0 + b1S0)z2 +(a1R1 + a2R0 + b1s1 + b2s0)z + a2R1 + b2S1 

(4.43) 

Comparing the coefficients on both sides of Equation 4.43 gives the solution to be 

Ro= 0 

R1 +a1R0 +b1S0 =I 

a1R1 +a2Ro +b1S1 +b2So =n1 

a1R1 +b1S1 +b2So = n1 

a2R1 +b2S1 = n2 

Equation 4.44 and 4.46can be written as 

and 

Substituting Equation 4.47 into Equation 4.48 gives 
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n2 -b2s1 =l-b1So 
a2 

n2 +b2s1 + l 
So= - a2b1 

Substituting Equation 4.48 and 4.50 into Equation 4.45 gives 

S - n2al + b2a2 - a2n1 
I - b2 

a2b1 + a1b2 + i 
b1 

The polynomial T can be derived from the nominator of Equation 4.26, 

BT=Bm 

(b1z + b2)(T0z + IJ)= m1z + m2 

Expanding Equation 4.52 

b1T0z2 +(b11J +b2T0)z+b21J = n1z+n2 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

Comparing the coefficients on both sides of Equation 4.53 gives the solution to be 

b1To = 0 

b11J +b2To = m1 

since b1 =f:. 0, then 

To= 0 

1J =ml 
b1 

The control law is 

RU= TUc-SY 

Substituting Equation 4.48 , 4.50 and 4.54 into Equation 4.45 gives 

R 1U = 1JUc-(Soz+S1)(Y) 

The controller design can be described as 
1 

Uk =~TJUc -S0Yk-S1Yk-J) 
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4.5 Controller with Integrity Properties 

The controller must have the ability to eliminate steady state errors, which can be 

generated from calibration errors or the other disturbances. 

To cope with this problem, Astrom and Wittenmark proposed controllers with a 

forced integral action so that the plant will always have a pole at z = 1 This can be 

achieved by specifying (z-1 )f to be a factor of R. 

By considering Equation 4.29, the polynomial R can be written as 

R = B+(z-l)l R" (4.56) 

and by accommodating this equation into the Equation 4.33, so this equation is 

then replaced by 

A(z-l)l R" + B-S = AoAm (4.57) 

The polynomial T can be derived from Equation ( 4.32) 

T=B'mAo 

The advantage of this scheme is that the controllers will always have integral 

actions to impose any error in the plant to go to zero. 

Referring to equation 4.57 to 4.32, the controller polynomials for second order 

systems can be given as follows[8]: 

By selecting Ao = 1 and l = 1 

deg Ao = 2 deg A - deg Am - deg B+ - l - 1 ( 4.59) 

and 

deg R'l = deg Ao+ deg Am - deg A - l (4.60) 

and 

deg S = deg A - l - 1 ( 4.61) 
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Hence, the polynomials R. Sand T can be rewritten as follows: 

S = s0z 2 +siz+s2 

where 

ni+l-ai 
So= 

bi 

Si= 
n1 +ai -a2 

bi 

S2 = 
n3 +a2 

bi 

and 

T= ~z2 + m2 z+ m3 
bi bi b1 

The controller can be written as 

Uk= T oU k + T ]Uk-1+T2Uk-2-SoY k 

-SJ Y k-1 - RoU k-RJU k-2 

4.6 Controller Simulations 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

The implementation of the parameter identification and the design controller are 

conducted into several type of simulations. 

The general conditions of the simulation are as follows: 

- Controller specifications 

- Rising time 1 second 

- Samplling time 0.1 second 

- Data number 600 

- Parameter change at data number 125 and 375 
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Figure 4.4 Three different second order plants with initial P matrix =100 and 

0 = 0.98 

Figure 4.4 shows the behaviour of adaptive control in controlling three second 

order plants with the following equations 

Plant 1: Yk = 0.062l596uk-l + 0.0476uk-2 - l.33596Yk-l + 0.4493Yk-2 

Plant 2: Yk = 0.099313uk-l + 0.0986uk-2 - l.9213Yk-l + 0.9607Yk-2 

Plant 3: Yk = 0.1215216uk-J + 0.0929uk-2 - l.23484Yk-l + 0.4493Yk-2 
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It can be seen that the adaptive control has successfully tracked the set point. The 

change of the plants is indicated with spikes at data number 125 and 375 
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-6.o I 
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Data Number 

Figure 4.5 Plant I is reused at data number 375 instead of plant 3, with initial 

P matrix =100 and o = 0.98 

Compared to the transient period of plant 1 at the begining of the data number, the 

transient period of plant 1 after the change of the plant at data number 375 needs a 

longer time to converge to the set point. 
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Figure 4.6 Third order plant is applied at data number 125 instead of plant 2 

By using third order plant 

Yk= 0.020228uk-I + 0.0596uk-2 + 0.11 luk-3 + l.905l3Yk-1 

- 1.27704yk-2 +0.30 12Yk-3 

It can be seen that the controller unable to track the set point 
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Figure 4.7 First order plant is used instead of plant 2 at data number 125 
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CHAPTER 5 

APPLICATION OF CONTROLLERS 

5.1 System Configuration 

The controllers discussed in Chapter 4 are implemented in a laboratory model of a 

power generating system. The system consists of a 7 .5 KV A synchronous 

generator which is connected to an infinite bus by transmission lines. A DC motor 

drives the synchronous generator simulating a turbine which is used in the 

experiment. The block diagram of the adaptive controller controls the exciter of 

the synchronous generator and is shown in figure 5.1 

Set 
point 

+ 
ADAPTIVE 

CON1ROLLER 

Exciter 

voltage 

DC 
motor Alternator 

:_o,--: 

Figure 5.1 Diagram of turbogenerator system. 

Infinite 

------.i-, 

Transmission 
line 

' - ' 

The experiment was based on the synchronous machine operated at a fixed 

governor with tenninal voltage vaiied at different set points. The exciter voltage 

was adjusted adaptively by the adaptive controller to obtain the desired terminal 

voltage. 

An explicit self-tuning regulator was selected as the basis of adaptive controller 

design in this experiment. 
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5.2 Laboratory Configuration 

The control configuration schematic is shown in figure 5.2 

w Controller ADC/DAC 

/BMPC 

y 

Exciter 

voltage 
adjustment circuit 

Figure 5.2 Hardware configuration schematic 

The instrumentation and hardware used in the experiment are as follows: 

line 

Infinite 

1. An IBM personal computer with real time graphics (QUINN CURTIS) and 

PC-30 for AD/DA converter programming software. Both varieties software 

can be run by program language PASCAL, C and FORTRAN. 

2. An AD/DA converter (Boston card technology) installed in personal computer. 

3. A voltage adjustment circuit for terminal voltage measurement. 

4. Field exciter controller (Robicon) is activated by the analog signal from DIA 

converter. This controller consists of a four quadrant thyristor rectifier. 

5. A fixed voltage DC motor to drive the synchronous generator. 

6. A inductance simulating transmission line. 

7. A 7 .5 KV A synchronous three phase generator connected to an infinite bus via 

inductance. 

The digital output u of the controller is connected to the DAC inputs of the Boston 

technology card to convert its digital values into analog values. The controller 

output values are set at ±10 V to avoid field excitation over voltage. The controller 
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feedback is obtained from the terminal voltage y. This voltage is connected to a 

voltage adjustment circuit to reduce and rectify the AC voltage into DC voltage. 

Computer programming in TURBO PASCAL was written to run the PC-30 

module and QUINN CURTIS during investigation. 

PC-30 is a unit program which converts analog signals into discrete signals before 

being passed on to the PC and vice versa. The ADC/DAC used on the PC-30 board 

have 12 bit resolution. The analog input and output of the controller derived from 

the terminal voltage and passed on to the exciter were converted into discrete 

signals by PC-30. Unit PC30iol was written to set up the PC-30. This unit was 

assigned for initiating the signals conversion, limiting the analog output into ± 10 

Volt, setting the sampling time, checking the AD/DA conversions and PC-30 

installation error. 

Unit RTPLOTl was written for plotting the real time calculation result on the 

screen by using the QUINN CURTIS module. This untt split the screen into two 

windows. The plant output and set point were displayed on one window, and the 

exciter input was displayed on the other window. 

Program FLT.pas plotted the calculation result of the controllers using HGRAPH. 

HGRAPH is a series of procedures and functions which enable the production of 

two and three dimensional plots in color. The plot can be displayed on the screen or 

plotted by a pen plotter. The graph may also be incorporated into a document 

written in WORD for WINDOWS. 

5.3 Controllers Implementations 

The controller was implemented at the governor in a fixed set point, and the 

variation of the terminal voltage was set by the program. Two types of controller 
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were developed in this investigation. The first was the adaptive controller while the 

other was the fixed controller or non adaptive controller. 

The investigations were conducted with the following conditions: 

- The experiments were initiated with 0T = [ 1 1 1 1 ] . 

- The exponential forgetting factor 8 = 0.98 . 

- P matrix = 100 . 

- The sampling time = 10 ms . 

- The period of each investigation = 5 seconds . 
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Figure 5.3 Adaptive concroller tJSing inregraior 
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5.3. l Adaptive Controller Investigations 

To eliminate the steady state error, the principle of integrity properties in adaptive 

controllers was used in this experiment. The terminal voltage and the exciter input 

were minitored through real time graphic and recorded in a data file for plotting. 

The ability of the controller to track the variation of terminal voltage was 

investigated by changing the set point every second as shown in figure 5.3 and at 

every 0.5 second in figure 5.4. These figures show the ability of the controllers to 

track the given set point and converge on the set point within 0.3 second 

2.5 
Terminal Voltage 

2 · · · · ·x· .. · · Set Point 
1.5 

: · . .. --X · .. 

----·-·- · 

0.5 

0 

-0.5 

-1 

-1.5 

0 2 3 4 5 
Time (seconds) 

10 

5 
c. 
c: 

>-I 

"" 0 
~ -"(J 
;.< 
~ -5 

-10 

0 2 3 4 5 
Time (seconds) 

Figure 5.4 Adaptive controller using integrator with terminal 

voltage are randomly set every 0.5 second 
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To examine the adaptivity of the controllers, the reactance of the transmission line 

was disconnected from the machine at iteration 250th or at 2.5 second after 

starting. Figure 5.5 shows the ability of the controller to track the change of plant 

parameters after the transient occured. The terminal voltage returned to the set 

point within 0.3 second or 30 iterations. 

2.5 

2 

1.5 

QJ 1 
:I 

0.5 ~ 

> 0 

-0.5 

-1 

-1.5 

10 

.... 5 :I 
c. 
c 

1--C 

a.. 0 
QJ .... .... 
u 
>< 
~ -5 

-10 

0 

0 

--- Terminal Voltage 
· -- · -x-· · · · Set Point 

··· -- ---------X--· 

1 2 3 4 

Time (seconds) 

2 3 4 
Time (seconds) 

Figure 5.5 Adaptive controller using integrator with plant 
disconnected from the line at 2.5 seconds 
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The effect of no inherent integrator in the controller is exhibited in figure 5.6. The 

controllers are unable to converge on the tenninal set point due to steady state 

errors. However, it is shown that the terminal voltage is stable. 
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Figure 5.6 Adaptive controller without integrator 
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5.3.2 Fixed Controller 

In order to obtain the character of a fixed controller, the experiment without 

adaptive controller was conducted. This experiment used fixed parameters which 

were randomly obtained from the plant identification. The plant parameters are 

Figure 5.7 Non adaptive controller without integrator with plant 
disconnected from the line at 1.7 seconds 
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Figure 5.7 shows constant terminal voltage during the steady state condition. At 

iteration 170 or 1. 7 second after starting point, the generator was disconnected 

from the reactance. As a result of the disconnection, the plant parameters were 

changed and the controller tried to adjust the excitation to recover the transient. 

The transient period took 0.5 second to recover into the steady state condition. 

However, the transient time was relatively longer than the adaptive control. 
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CHAPTER6 

SUMMARY 

From the simulations and laboratory experiments, it can be seen that to obtain a 

good performance of an adaptive controller each step of the algorithm has to be 

considered carefully. 

Parameter identification using recursive least squares with exponential forgetting 

factors as discussed in Chapter 3 demonstrated the ability to provide online plant 

parameters identification. This ability was prooved by validating the identified 

parameters againts the real plant. The exponential forgetting factor o = 0.8 and P 

matrix = 100 with initial eT = [1 1 1 l]T were choose for computer simulation in 

Chapter 4 and laboratory investigation in Chapter 5. These values gave smooth 

identified parameters and fast response without giving high spike parameters during 

transient periods. 

The open loop test proved that the control laws could be applied to design a stable 

closed loop control system for a synchronous generator. This test was conducted 

by using fourth order Runge Kutta procedure to solve first order non linear 

equations. 

Simulations in various conditions indicated that the second order adaptive control 

had a good damping property and the application of an integrator in the control 

loop could eliminate the steady state error. 

The voltage variations in the point where the parameter changed could not be 

accepted in real operations. This was due to the limitatition of the exciter voltage. 
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In the real machine that connected to infinit bus the voltage variations do not so 

often vary with relatively high magnitude 

It was demonstrated that adaptive control with pole-zero algorithm is able to 

handle a process in time varying and also having a stable performance in the 

presence of disturbances. It does not mean that the fixed controller cannot be used. 

For a simple control, the PID type with automatic tuning as proposed by Astrom 

and Hagglund[9] can be implemented 

It was shown that the adaptive controller is sufficiently robust to handle a 

stochastic and non linear process. 
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APPENDIX l 

Mathematical Model of Synchronous Generator 

Symbols of machine variables to be used in simulating synchronous machine are 

listed as follow 

e 

Tm 

Ps 

H 

Te 

Pr,Pb 

Q,t,Qb 

= Stator volages in d- and q- axis circuits 

= Terminal voltage 

= Field flux linkage 

= Synchronous reactances in d- and q-axis circuits 

= Stator rotor mutual reactance 

= Self reactance of field winding 

= Input to exciter 

= Components of busbar voltage in d- and q-axis 

=Bus bar voltage 

= Rotor angle, radian. 

= Mechanical torque input to rotor 

= Steam power 

= Inertia constant 

=Electrical torque 

= Real power output at terminal and busbar 

=Reactive power at terminal and busbar 

= Exciter time constant 

= Governor valve time constant 

= Turbine time constant 

=Input to governor 

= Angular frequency of the rotor 

= Angular frequency of the infinite bus 

= Mechanical damping torque coefficient 
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Synchronous generator 

The following equations and assumptions are based on Park's equations for a 

synchronous generator. Beside that, there are some additional assumptions for 

simulations. 

(i) The effect of change of speed, and the rate of change flux linkage in the stator 

voltage expressions, is negligible. 

(ii) Line and stator resistances, and the effect of transients in the transmission 

lines are negligible. 

(iii) No magnetic saturations. 

(iv) The effect of damper windings can be accounted for by adjustment of the 

damping coefficient T d in the mechanical equation of motion. 

vd = 

Vq = 

vfd = 

'Pd = 

'f'q = 

'f'fd = 

Te = 
8 = 

? 
v- = I 

Transmission system 

= 

= 

-'f'q 

'f'd 

Rfd'f'q 

Xad ijd 

-Xq iq 

Xf d ijd - Xad id 

'f'd iq - id'f'q 
(I) . . 

-
0 (T -T - K 8-T 8 ) 

2H m e d d 

v2 +v1 
d q 

e.sin8-x)q 

e. cos 8 + x.iq 
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(al.1) 

(al.2) 

(al.3) 

al.4) 

(al.5) 

(al.6) 

(al.6) 

(al.8) 

(al.9) 

(al.10) 

(al.11) 



where 

Prime mover 

G. 

Ps = 

Excitation system 

Eid 

Control variables 

x 
u 
y 

= 

= 

= 

x,+x, 

1 1 
-5 :5..Gv:::; 5 -u --G g v 

"C g "Cg 

KvGv 0:5..Gv:::; 1 

1 1 
-U--E 
'T' e fd 
•e "Ce 

(6 x 1) state vector 

(2 x 1) input-control vector 

-~4 x 1) output-measu_rement vector 

System parameters represent a 37.5 MVA ge1_1erator 

MVA = 37.5 

MW = 30 

p.f = 0.8 

KV = 11.8 

r/min = 3000 

xd = 0.2 p.u 

Xq = 1.86 p.u 

Xad = 1.86 p.u 

xfd = 2.0 p.u 

Rfd = 0.00107 p.u 

H = 5.3MWs/MVA 
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(al.12) 

(al.13) 

(al.14) 

(al.15) 



Td = 0.05 

x, = 0.345 p.u 

x, = 0.125 p.u 

e = 1 p.u 

'te = O.ls 

'tq = O.ls 

'tb = 0.5s 

KV = 1.42 

Constants in a.c turbogenerator 

Defining 

x' d = 

x'dl = 

Xdl = 

xq1 = 

the constants are 

x2 
xd _ __gfl_ 

Xjd 
: . ' 

x'd + xe 

Xd + Xe 

xq +xe 

ex ad 
I 

xfdX',11 

,, (x~-xq) 
e~ I 

x,1/"xqt 
-1/Xd/(J)O 

I 

XrdX'd1 

Xad(J)Orfe 
I 

Xr"X"1 

xq.e 

xq1 
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APPENDIX2 

RUNGE-KUTTA ALGORITHM 

First order non linear equation can be solved easier by numerical method. One 

numerical method that widely be used is fourth order Runge-Kutta. For a non linear 

function x =! ( y , t ) , after a very small interval time h the value of x can be 

represented as follows 

Yk+l = Yk +i gl +1 gz +1 g3 +i g4 (a2. l) 

where 

Equation a2.1 is used to solved the six non linear equation that simulate a 

generating system as shown in chapter 4. 
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APPENDIX3 

Program listing of an open loop test of a synchronous machine using Runge-Kutta 
procedure 

program openloop; 

Uses 
crt, hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, hgrlgn; 

Const 

h = 0.05; {step of integration} 

type 
vector= array[l..6]of real; 

Var 
sO,s 1,s2,s3,sq,x,ex,pp 
Datanum 

: vector; 
: integer; 
: real; u 1,u2, vd, vq 

yl,y2 
OutFile 

: array[l..610] of real; 
: text; 

Procedure init; 
begin 
ex[l] := l;{delta- rotor angle in radians} 
ex[2] := 0; {rotor angular velocity} 
ex[3] := l.152;{field flux linkage} 
ex[ 4] := 2.314; {field voltage} 
ex[5] := 0.8; {power steam} 
ex[6] := 0.8;{mechanical torque} 
ul := 2.495;{input to exciter} 
u2 := 0.634; {input to governor} 

end; 

procedure set_eqn; 

begin 
sq[l] := x[2]; 
sq[2] := 29. 7169*(x[ 6]-1.2564*x[3] *sin(x[ 1]) 

+0.9218*sin(x[l])*cos(x[ 1])- 0.08*x[2]); 
sq[3] := 0.1812*x[ 4]-0.5623*x[3]+0.4237*cos(x[l]); 
sq[4] := 10.0*(-x[4]+ul); 
sq[5] := 10.0*(-x[5]+ l.42*u2); 
sq[6] := 2.0*(-x[6]+x[5]); 

end; 
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APPENDIX2 

RUNGE-KUTTA ALGORITHM 

First order non linear equation can be solved easier by numerical method. One 

numerical method that widely be used is fourth order Runge-Kutta. For a non linear 

function x =! ( y , t ) , after a very small interval time h the value of x can be 

represented as follows 
- l l l 1 

Yk+l -Yk +6gl +3g2 +1g3 +6g4 (a2. l) 

where 

Equation a2.1 is used to solved the six non linear equation that simulate a 

generating system as shown in chapter 4. 

55 



APPENDIX3 

Program listing of an open loop test of a synchronous machine using Runge-Kutta 
procedure 

program openloop; 

Uses 
crt, hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, hgrlgn; 

Const 

h = 0.05; {step of integration} 

type 
vector= array[l..6]of real; 

Var 
sO,s 1,s2,s3,sq,x,ex,pp 
Datanum 
ul,u2,vd,vq 

: vector; 
: integer; 
: real; 

yl,y2 
OutFile 

: array[l..610] of real; 
: text; 

Procedure init; 
begin 
ex[ 1] := 1; {delta - rotor angle in radians} 
ex[2] := 0; {rotor angular velocity} 
ex[3] := 1.152; {field flux linkage} 
ex[4] := 2.314;{field voltage} 
ex[5] := 0.8;{power steam} 
ex[ 6] := 0.8; {mechanical torque} 
ul := 2.495;{input to exciter} 
u2 := 0.634; {input to governor} 

end; 

procedure set_eqn; 

begin 
sq[l] := x[2]; 
sq[2] := 29.7169*(x[6]-l.2564*x[3]*sin(x[l]) 

+0.921 S*sin(x[l])*cos(x[l])- 0.08*x[2]); 
sq[3] := 0.1812*x[4]-0.5623*x[3]+0.4237*cos(x[l]); 
sq[4] := 10.0*(-x[4]+ul); 
sq[5] := 10.0*(-x[5]+1.42*u2); 
sq[6] := 2.0*(-x[6]+x[5]); 

end; 
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procedure Rungkut; 
var 
i :integer; 

Begin 
yl[k] := l.2564*ex[3]*sin(ex[l]) 

-0.9218*sin(ex[l])*cos(ex[l]); {terminal power} 

vd := 0.798*sin(ex[l]); {Direct axis voltage} 
vq := 0.5905*ex[3]+0.3650*cos(ex[l]); {quadrature axis voltage} 

y2[k] := sqrt(vd*vd +vq*vq); {terminal voltage} 

for i := 1 to 6 do 
x[i] := ex[i]; 
set_eqn; 
for i:=l to 6 do 
sO[i] :=h *sq[i]; 

for i:= 1 to 6 do 
x[i]:=ex[i]+0.5*sO[i]; 
set_eqn; 
for i := 1 to 6 do 
sl[i]:= h*sq[i]; 
fori :=1 to 6 do 
x[i]:=ex[i]+0.5*s l[i]; 
set_eqn; 
for i :=1 to 6 do 
s2[i] :=h*sq[i]; 
for i :=1 to 6 do 
x[i] :=ex[i]+s2[i]; 
set_eqn; 
for i := 1 to 6 do 
s3[i]:= h*sq[i]; 

writeln(OutFile,Datanum:4,' ',yl[k]:2:5,' ',y2[k]:2:5,' ',ex[1]:2:5,' ',ex[5]:2:5,' '); 
writeln(Datanum:4,' ',yl[k]:2:5,' ',y2[k]:2:5,' ',ex[1]:2:5,' ',ex[5]:2:5,' '); 

for i:=l to 6 do 
begin 
ex[i] :=ex[i]+(l/6)*(s0[i]+ 2*s 1[i]+2*s2[i]+s3[i]); 

end; 
end; 

{main program} 
begin 
init; 
Datanum:=l; 
assign(OutFile, 'openloop.dat'); 
rewrite(OutFile); 
repeat 
rungkut; 
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Datanum:=Datanum+ 1; 
until k>600; 
close(OutFile ); 
readln; 
END. 
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Appendix 4 

Turbo pascal program for adaptive controller using pole-zero method without 
integrator. 

program PZ; 
{$N+,E+} 

uses 
crt, pc30iol, rtplotl; 

const 
plots = true; 

NPoints = 500; 
npar = 4; 
noff = 6; 
n=4; 

type 
vecl = array[l..npar] of real; 
vec2 = array[ l .. noff] of real; 
Datarray = array[l..NPoints] of real; 

var 
delta, al, a2, bl, b2, m2: real; 
sO, sl, rl, tO, tl: real; 
wk, wkl, wk2, uk, ukl, uk2, yp, ypl, yp2: real; 
ym, yml, ym2: real; 
i, count: integer; 
p_out, DataNum, P _command, p_inpt, P _model: Datarray; 
theta, fi, diagn: vecl; 
off diag: vec2; 
answer: char; 
answerl: char; 
outfile: text; 
outname: string; 

procedure Initldent (ukl, uk2, ypl, yp2: real; var theta, diagn, fi: vecl; offdiag: 
vec2); 

var 

begin 

PO, thetaO: real; 
i: integer; 

for i := 1 to npar do 
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begin 
theta[i] := 1; 
diagn[i] := 100; 

end; ( i} 
(form fi} 

fi[l] := uk2; 
fi[2] := ukl; 
fi[3] := yp2; 
fi[4] := ypl; 

for i := 1 to naff do 
offdiag[i] := 0.0; 

end; {of Initldent} 

procedure ident (yp, delta: real; var theta, fi, diagn: vecl; var offdiag: vec2); 
var 

begin 

kf, ku, i, j: integer; 
perr, fj, vj, alphaj, ajlast, pj, w: real; 
k:vecl; 

perr := yp; 
for i := 1 to n do 

perr := perr - theta[i] * fi[i]; 
(*Calculate gain and covariance using U-D method*) 

fj := fi[l]; 
vj := diagn[l] * fj; 
k[l] := vj; 
alphaj := 1.0 + vj * fj; 
diagn[l] := diagn[l] I alphaj I delta; 
if n > 1 then 

begin 
kf:=O; 
ku :=0; 
for j := 2 to n do 

begin 
fj := fi[j]; 
fori := 1 to j - 1 do 

begin (*f=fi*u*) 
kf :=kf + 1; 
fj := fj + fi[i] * offdiag[kfJ; 

end;(*i*) 
vj := fj * diagn[j]; (*v = D*f*) 
k[j] := vj; 
ajlast := alphaj; 
alphaj := ajlast + vj * fj; 
diagn[j] := diagn[j] * ajlast I alphaj I delta; 
pj := -fj I ajlast; 
for i := 1 to j - 1 do 
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begin 
(*kj+ 1 ;=kj+vj*uj*) 
(*uj :=uj+pj*kj*) 

ku := ku + l; 
w := offdiag[ku] + k[i] * pj; 
k[i] := k[i] + offdiag[ku] * vj; 
offdiag[ku] := w; 

end;(*i*) 
end;(*j*) 

end;(*if n> 1 then*) 
(*update parameter estimates*) 

for i := 1 to n do 
begin 

theta[i] := theta[i] + perr * k[i] I alphaj; 
end; { i} 

end; (*LS*) 

procedure design (al, a2, bl, b2: real; var sO, sl, rl, tO, tl: real); 

if abs (b2/b 1) < 1 then 
begin 

tO := 0.0621596 I bl; 
tl := 0.0476 I bl; 
sO := (-1.33596 - al) I bl; 
sl := (0.4493289 - a2) I bl; 
rl :=b2/bl; 

end; 

else 
begin 

tl:=0.0621596/bl; 
sl :=((0.44932*al)+(b2*a2)-(-1.33596*a2))/((a2*b l)+(al *b2)+(b2*b2/b 1)); 
s0:=-(((0.4492+(b2*s 1))/(a2*b 1))+ 1; 
rl=((0.44932-(b2*sl ))/a2; 

procedure model (wkl, wk2, yml, ym2: real; var ym: real); 
begin 

ym := (0.0621596 * wkl) + (0.0476 * wk2) + (l.33596 * yml) - (0.4493289 
* ym2); 

end; 

procedure action (tO, tl, sO, sl, rl, wk, wkl, yp, ypl, ukl: real; var uk: real); 
begin 

if abs (b2/b 1) < 1 then 
uk := (tO * wk) + (tl * wkl) - (sO * yp) - (sl * ypl) - (rl * ukl); 

else 
uk:=((tl *wk)-(sO*yk)-(sl *ykl))/rl; 

end; 
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{main program} 
begin 

randomize; 
{initial value} 

count:= 50; 
wk := 1; 
wkl := 0.0; 
wk2 := 0.0; 
ukl := 0.0; 
uk2 := 0.0; 
ypl := 0.0; 
yp2 := 0.0; 
yml := 0.0; 
ym2 := 0.0; 
delta := 0.98; 

Initldent(ukl, uk2, ypl, yp2, theta, diagn, fi, offdiag); 
if plots then 

pltinit; 

for i := 1 to NPoints do 
begin 

{create wk} 
count :=count - 1; 
if count = 0 then 

begin 
wk :=-wk; 
count:= 50; 

end;{of wk} 

{calculate plant model (YM)} 
model(wkl, wk2, yml, ym2, ym); 

{calculate plant output (YP)} 
yp := rdadc(13); 

{Identification of plant parameters} 
ident(yp, delta, theta, fi, diagn, offdiag); 

bl := theta[l]; 
b2 := theta[2]; 
al := -theta[3]; 
a2 :=-theta[ 4]; 
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{calculate controller parameters} 
design(al, a2, bl, b2, sO, sl, rl, tO, tl); 

{calculate plant input} 
action(tO, tl, sO, sl, rl, wk, wkl, yp, ypl, ukl, uk); 
if (uk > 8) then 

uk := 8 +(random - 0.5) * 0.1; 
if (uk < -8) then 

uk := -8 +(random - 0.5) * 0.1; 
{write new fi} 

fi[2] := fi[l]; 
fi[ 4] := fi[3]; 
fi[l] := uk; 
fi[3] := yp; 

{read data and create array for plotting } 
p_command[i] := wk; 
p_out[i] := yp; 
P _model[i] := ym; 
p_inpt[i] := uk; 
DataNum[i] := i; 

{read new data} 
uk2 := ukl; 
ukl := uk; 
yp2 := ypl; 
ypl := yp; 
wk2 := wkl; 
wkl := wk; 
ym2 :=yml; 
yml :=ym; 
endsmpl; 
dacout(O, uk); 
if plots then 

pltupdate(wk, ym, yp, uk); 
end; {iteration} 

readln; 
dacout(O, O); 
if plots then 

pltclose; 
writeln('save? y(es) or n(o)= '); 
readln(answer); 
if (answer= 'y') or (answer= 'Y') then 

begin 
write('name for outfile = '); 
readln(outname); 
assign(outfile, outname); 
rewrite( outfile ); 
for i := 1 to Npoints do 
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writeln( outfile, i : 4, ' ', p_out[i] : 8 : 5, ' ', p_model[il : 8 : 5, ' ', 
p_command[i] : 8 : 5, ' ', p_inpt[i] : 8 : 5); 

writeln(outfile, i: 4,' ', p_out[i] : 8: 5,' ', p_model[i] : 8: 5,' ', 
p_command[i] : 8 : 5,' ', p_inpt[i] : 8 : 5); 

close( outfile ); 
end; 

end. 
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APPENDIXS 

Turbo pascal program for PC 30. 

unit pc30io l: 
{$N+,E+} 
interface 

uses 
pc30; 

procedure dacout (chan: integer; val: double); 
procedure dout (chan, val: integer); 
procedure endsmpl; 
procedure initpc30 (sampletime: integer); 
function rdadc (chan: integer): double; 
function rdcntr: integer; 

implementation 

procedure pc30error; 
begin 

halt; 
end; 

procedure dacout; 
var 

eIT: integer; 
begin 

if (val < -10.0) then 
val := -10.0; 

if (val > 10.0) then 
val := 10.0; 

val := (10.0 - val) I 20 * 4095; 
err := da_out(chan, trunc(val)); 
if (err<> ok_30) then 

begin 
writeln('Pc30-error Da_out'); 
Pc30error; 

end; 
end; 

procedure dout; 
begin 

d_out(chan, val); 
end: 
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procedure endsmpl; 
var 

old_ val, new_ val: word; 
begin 

dout(O, 0); 
old_ val := cntr_read; 
new_val := cntr_read; 
while (new_val <= old_val) do 

begin 
old_ val := new_ val; 
new_ val := cntr_read; 

end; 
dout(O, 1); 

end; 

procedure initpc30; 
const 

two_MHz_to_lOKHz = 200; 
ten_KHz_to_lKHz = 10; 
pc30_base = $700; 

var 
err: integer; 
ws: word; 

begin 
set_base(pc30_base ); 
err:= diag; 
if (err<> ok_30) then 

begin 
writeln('Pc30 board not found or bad.'); 
Pc30error; 

end; 
if (err= ok_30) then 

end; 

begin 
ad_prescaler(two_MHz_to_lOKHz); 
ad_clock(ten_KHz_to_lKHz); 
cntr_cfg(2); 
ws := word(sampletime); 
cntr_write(ws); 
d_mode(O, 0, 1); { set third digital i/o's to input } 
dacout(O, 0); 

end; 

function rdadc; 
var 

e1T, in_ val: integer; 
begin 
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err := ad_in(chan, in_ val); 
if (err <> ok_30) then 

begin 
writeln('Pc30-error rdadc.'); 
Pc30error; 

end; 
if (err= ok_30) then 

rdadc := (in_ val - 2047 .5) * 10 I 4095; 
end; 

function rdcntr; 
var 

val: word; 
begin 

val := cntr_read; 
rdcntr := integer(val); 

end; 

begin 
initpc30(1 O); 

end. 
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APPENDIX6 

Turbo pascal program for plotting. 

program plt; 

uses 
hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, screen, crt, hgrlgn, hgrr3d; 

const 
Npoints = 500; 

type 
Datarray = array[l..Npoints] of real; 

var 
Input_file: text; 
DataNum, p_out, p_model, p_command, p_inpt: datarray; 
i: integer; 
idevice: integer; 

begin 
assign(Input_file, 'a:\fixtl.dat'); 
reset(lnput_file); 
I:= 1; 
while not eof(lnput_file) do 

begin 
readln(Input_file, DataNum[I], p_out[I], p_model[I], p_command[i], 

p_inpt[i]); 
l:=l+l; 

end; 
close(Input_file ); 
writeln('enter O=screen, 2=plotter, 3=printer'); 
readln(idevice ); 

{Plotting WK, YP & YM } 
INIPLT(idevice, normal, 1.0); 

{graph 1} 
·graphboundary(2000, 9000, 4000, 6000); 
setlegend(2200, 6800, 550); 
scale(O.O, Npoints, -4.0, 3.0); 
setfont(bold, false); 
axis(lOO.O, '10.0', ", 2, 2, '10.0', 'Value', 2); 
polyline(DataNum, P _command, Npoints, 2, 0, 0, 0, 2); 
writelegend('Set point', 2, 2, 2, 0, 2); 
polyline(DataNum, p_out, Npoints, 4, 0, 0, 0, O); 
writelegend('Terminal voltage', 4, 2, 2, 0, O); 

{graph 2} 
graphboundary(2000, 9000, 1000, 3000); 
setlegend(2200, 3200, 550); 
scale(O.O, Npoints, -20.0, 20.0); 
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setfont(bold, false); 
axis(lOO.O, '10.0', 'Time', 2, 10.0, '10.l', 'Value', 2); 
polyline(DataNum, P _inpt, Npoints, 2, 0, 0, 0, 0); 
writelegend('Exciter input', 2, 0, 2, 0, 0); 
endplt; 

end. 
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APPENDIX 7 

Turbo pascal program for adaptive controller using pole-zero method with 
integrator. 

program PZ_INTEG; 
{$N+,E+} 

uses 
crt, pc30io 1, rtplot 1; 

const 
plots = true; 
Npoints = 500; 
npar = 4; 
noff = 6; 
n=4; 

type 
vecl = array[l..npar] ofreal; 
vec2 = array[l..noff] of real; 
Datarray = array[l..NPoints] of real; 

var 
delta, al, a2, bl, b2: real; 
sO, sl, s2, rO, rl, tO, tl, t2: real; 
wk, wkl, wk2, wk3, uk, ukl, uk2, ypl, yp2, yp: real; 
ym, yml, ym2, ym3: real; 
i, count: integer; 
p_out, DataNum, P _command, p_inpt, P _model: Datarray; 
theta, fi, diagn: vec 1; 
offdiag: vec2; 
answer: char; 
answerl: char; 
outfile: text; 
outname: string; 

{Initialise parameter identifications} 
procedure Initldent (ukl, uk2, ypl, yp2: real; var theta, diagn, fi: vecl; offdiag: 

vec2); 
var 

begin 

PO, thetaO: real; 
i: integer; 

for i := 1 to npar do 
begin 
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theta[i] := l; 
diagn[i] := 100; 

end; { i} 

{form fi} 
fi[l] := ukl; 
fi[2] := uk2; 
fi[3] := ypl; 
fi[ 4] := yp2; 

for i := 1 to noff do 
offdiag[i] := 0.0; 

end; {of Initident} 

{Identify parameters} 
procedure ident (yp, delta: real; var theta, fi, diagn: vec 1; var offdiag: vec2); 

var 

begin 

kf, ku, i, j: integer; 
perr, fj, vj, alphaj, ajlast, pj, w: real; 
k: vecl; 

pelT := yp; 
for i := 1 to n do 

perr := pelT - theta[i] * fi[i]; 
(*Calculate gain and covariance using U-D method*) 

fj := fi[l]; 
vj := diagn[l] * fj; 
k[l] := vj; 
alphaj := 1.0 + vj * fj; 
diagn[l] := diagn[l] I alphaj I delta; 
if n > 1 then 

begin 
kf := O; 
ku :=0; 
for j := 2 to n do 

begin 
fj := fi[j]; 
for i := 1 to j - 1 do 

begin (*f=fi*u*) 
kf :=kf + 1; 
fj := fj + fi[i] * offdiag[kf]; 

end;(*i*) 
vj := fj * diagn[j]; (*v = D*f*) 
k[j] := vj; 
ajlast := alphaj; 
alphaj := ajlast + vj * fj; 
diagnLJ] := diagn[j] * ajlast I alphaj I delta; 
pj := -fj I ajlast; 
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for i := l to j - l do 
begin 

(*kj+ 1 ;=kj+vj*uj*) 
(*uj :=uj+pj*kj*) 

ku := ku + 1; 
w := offdiag[ku] + k[iJ * pj; 
k[i] := k[i] + offdiag[ku] * vj; 
offdiag[ku] := w; 

end;(*i*) 
end;(*j*) 

end;(*if n> 1 then*) 
(*update parameter estimates*) 
for i := 1 to n do 

begin 
theta[i] := theta[i] + perr * k[i] I alphaj; 

end; {i} 

end; (*LS*) 

{Determine controller parameters} 
procedure design (al, a2, bl, b2: real; var sO, sl, s2, rO, rl, tO, tl, t2: real); 
begin 

tO := 0.00800497 I bl; 
tl := 0.0237882 I bl; 
t2 := 0.0043925736 I bl; 
sO := (-2.009887787 + 1 - al) I bl; 
sl := (1.347268086 +al - a2) I bl; 
s2 := (-0.30119422 + a2) I bl; 
rO := (b2/bl -1); 
rl :=-b2/bl; 

end; {of design} 

procedure model (wkl, wk2, wk3, yml, ym2, ym3: real; var ym: real); 
begin 

ym := (0.00800497 * wkl) + (0.0237882 * wk2) + (0.0043925736 * wk3) + 
(2.009887787 * yml) - (1.347268086 * ym2) + (0.30119422 * ym3); 

end; 

procedure action (tO, tl, t2, sO, sl, s2, rO, rl, wk, wkl, wk2, yp, ypl, yp2, ukl, 
uk2: real; var uk: real); 

begin 
uk := (tO * wk) + (tl * wkl) + (t2 * wk2) - (sO * yp) - (sl * ypl) - (s2 * yp2) 

- (rO * ukl) - (rl * uk2); 
end; 
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{main program} 
begin 

{initial value} 
randomize; 
count:= 50; 
wk := 1; 
wkl := 0; 
wk2 := O; 
wk3 := 0; 
ukl := 0; 
uk2 := O; 
ypl := O; 
yp2 := O; 
yml :=0; 
ym2 :=0; 
ym3 :=0; 
delta := 0.98; 

Initldent(ukl, uk2, ypl, yp2, theta, diagn, fi, offdiag); 
if plots then 

pltinit; 

for i := 1 to NPoints do 
begin 

{create wk} 
count:= count - 1; 
if count = 0 then 

begin 
wk := wk + random; 

{wk:=-wk;} 
count:= 50; 

end;{of wk} 
if (wk > 2) then 

wk := -1; 

{calculate plant model (YM)} 
model(wkl, wk2, wk3, yml, ym2, ym3, ym); 

{ plant output (YP)} 
yp := rdadc(13) 

{Identification of plant parameters} 
ident(yp, delta, theta, fi, diagn, offdiag); 

bl := theta[l]; 
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b2 := theta[2]; 
a 1 := -theta[3]; 
a2 := -theta[4]; 

(calculate controller parameters} 
design(al, a2, bl, b2, sO, sl, s2, rO, rl, tO, tl, t2); 

(calculate plant input} 

action(tO, tl, t2, sO, sl, s2, rO, rl, wk, wkl, wk2, yp, ypl, yp2, ukl, uk2, 
uk); 

if (uk > 8) then 
uk := 8 + (random - 0.5) * 0.1; 

if (uk < -8) then 
uk := -8 +(random - 0.5) * 0.1; 

{write new fi} 
fi[2] := fi[l]; 
fi[ 4] := fi[3]; 
fi[l] := uk; 
fi[3] := yp; 

{read data and create array for plotting } 
p_command[i] := wk; 
p_out[i] := yp; 
P _model[i] := ym; 
p_inpt[i] := uk; 
DataNum[i] := i; 

{read new data} 
uk2 := ukl; 
ukl := uk; 
yp2 := ypl; 
ypl := yp; 
wk3 :=wk2; 
wk2 := wkl; 
wkl := wk; 
ym3 :=ym2; 
ym2 :=yml; 
yml :=ym; 

endsmpl; 
dacout(O, uk); 
if plots then 

pltupdate(wk, ym, yp, uk); 
end; {iteration} 

readln; 
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dacout(O, 0); 
if plots then 

pltclose; 
writeln('save ? y(es) or n(o)= '); 
readln(answer); 
if (answer= 'y') or (answer= 'Y') then 

begin 
write('name for outfile = '); 
readln(outname); 
assign(outfile, outname); 
rewrite( outfile); 
for i := 1 to Npoints do 

writeln(outfile, i: 4,' ', p_out[i] : 8 : 5,' ', p_model[i] : 8 : 5,' ' 
p_command[i] : 8 : 5,' ', p_inpt[i] : 8 : 5); 

close( outfile ); 
end;{ of i} 

end. 
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APPENDIX 8 

Turbo pascal program for Quinn Curtis. 

unit rtplot 1; 
interface 
{$m 32000,0,655360} 
{$N+,E+} 

{***** IMPORTANT *****} 
{The default directory for BGI files & fonts is c:\dosapp\tp\bgi} 
{ie DEFAUL TBGIDIR in the file rtstdhdr.pas ='c:\dosapp\tp\bgi'} 

uses 
Graph, rtstdhdr, rtgsubs, rtgraph; 

procedure pltinit; 
procedure pltupdate (r, d, y, u: RealType); 
procedure pltclose; 

implementation 

var 
le, lf: rtintarraytype; {line colors & styles} 
tags: tagarraytype; {tag names} 
title: titletype; {scroll graph title} 
units: tagtype; {scroll graph units} 
ratchf: BOOLEAN; {staircase method} 

/ 

{These variables are described in detail in the user manual} 
timeint, sampleint, miny, rrtaxy: RealType; 
rt, lalarm, halarm, stpnt: RealType; 
nt, grid, xdecs, ydecs, updatenumber: INTEGER; 

procedure pltinit; 
var 

i: integer; 
begin 

{ INITIALIZE THE GRAPHICS ADAPTER,} 

{ SET UP 2 REAL TIME WINDOWS} 
rtinitgraphics( defaultbgidir, 2, 1 ); 

{ Size windows } 
rtsetpercentwindow(rtstat[O], 0.01, 0.01, 0.99, 0.49); 
rtsetpercentwindow(rtstat[l], 0.01, 0.50, 0.99, 0.99); 
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lc[OJ := 14; 
lf(OJ := 0; 
lc[l]:=l3; 
lf[l] :=0; 
lc[2J := 12; 
lf[lJ := O; 

{ set up individual parameters for each plot seperately } 

{graphl} 
timeint := 500; 
sampleint := 1; 
Il)iny := -3; 
maxy :=3; 
nt := 3; 
rt:= O; 
grid:= O; 
ratchf := false; 
stpnt := 0; 
lalarm := -0.0; 
halarm := 0.0; 
title := 'Input, Desired & Actual outputs'; 
units := 'voltage'; 
tags[O] := 'Input'; 
tags[l] :='Desired Response'; 
tags[2] :='Actual Response'; 
rtinitwindowcolors(rtstat[O], 7, 0, 1, 4, 15, 15, 15); 
rtsetupscrollgraph(rtstat[O], timeint, sampleint, miny, maxy, rt, nt, grid, 

lalarm, halaim, stpnt,. 2, 0, title, units, tags, le, lf, ratchf); 
rtborderwindow(rtstat[O], 15); 

{graph 2} 
timeint := 500; 
sampleint := 1; 
miny := -10; 
maxy := 10; 
nt := 1; 
rt:= O; 
giid := O; 
ratchf := true; 
stpnt := 0; 
lalarm := 0; 
halann := 0; 
title := 'Control Action'; 
units := 'units'; 
tags[O] := "; 
rtinitwindowcolors(rtstat[l], 7, 0, 1, 4, 15, 15~ 15); 
itsetupscrollgraph(rtstat[l], timeint, sampleint, miny, maxy, rt, nt, grid, 

lalarm, halarm, stpnt, 2, 0, title, units, tags, le, lf, ratchf); 
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rtborderwindow(rtstat[ l ], 15); 
end; 

procedure pltupdate; 
var 

yvalues: rtvaluearraytype; {hold current R-T value} 
upd: boolean; 

begin 
upd := (updatenumber = 100); 
yvalues[O] := r; 
yvalues[l] := d; 
yvalues[2] := y; 
rtupdatescrollgraph(rtstat[O], yvalues); 
if upd then 

rtdrawalarmlines(rtstat[O]); 

yvalues[O] := u; 
rtupdatescrollgraph(rtstat[ 1 ], yvalues); 
if upd then 

rtdra walarmlines(rtstat[ 1]); 

if upd then 
updatenumber := 0 

else 
updatenumber := updatenumber + 1; 

end; 

procedure pltclose; 
begin 

rtclosegraphics(l); 
end; 

end. 
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APPENDIX 9 

Turbo Pascal Program for simulations 

program ADP _NO_INTEGRA TION; 

Uses 

hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, 

screen, crt, hgrlgn; 

Const 

NPoints=800; 

npar=4; 

noff=fr 
: -. ' 

n=4; 

Type 

vecl = array[l..npar] of real; 

vec2 = array[l..noff] of real; 

Datarray = array[l .. NPoints] of real; 

var 

delta,al,a2,bl,b2,m2:real; 

sO,sl,rl,tO,tl :real; 

wk,wkl,wk2,uk,ukl,uk2,yp,ypl,yp2: real; 

ym,yml,ym2: real; 

change_pointl,change_point2,i,j,count,idevice: integer; 

p_out,DataNum,P _command,p_inpt,P _model :Datarray; 
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theta,fi,diagn :vec 1; 

offdiag :vec2; 

answer: char; 

answer 1 :char; 

outfile:text; 

outname:string; 

procedure Plant( ukl,uk2,ypl,yp2 :real; var yp: real); 

const 

change_pointl = 125; 

chanze_point2 = 375; 

begin 

if i < change_pointl then 

yp :=(0.0621596*ukl)+(0.0476*uk2)+(1.33596*yp 1)-(0.4493289*yp2)+ le-10 

else if (change_pointl < i) and (i <change_point2) then 

yp := (0.0993*ukl) + (0.098*uk2)+(1.9213*ypl)-(0.9607*yp2)+ le-10 

else 

yp := (0.1215*ukl) +(0.0929*uk2)+(1.2348*ypl)-(0.4493*yp2)+ le-10; 

{ change_pointl := 125; 

change_point2 := 275; 

begin 

if j < change_pointl then 

yp := (0.286165*ukl) +(0.146527*uk2)+(0.702897*ypl) 
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-(O. l 3533527*yp2)+ 1 e-1 

else if (change_pointl <j) and G <change_point2) then 

yp := (0.125192*ukl) + (0.0838624*uk2)+(1.09213972*yp 1) 

-(0.30 l 194206*yp2)+ le-1 

else 

yp := (0.0410075*ukl) +(0.0225053*uk2)+(1.4742344*ypl) 

-(0.548811 *yp2)+ le-10; } 

end; 

{ yp :=(0.0621596*ukl) + (0.0476*uk2) + (1.33596*ypl) 

- (0.4493289*yp2); 

end;} 

procedure Initldent(ukl,uk2,ypl,yp2 :real; 

.. V'!f theta,diagn,fi :vecl;offdiag: vec2); 

var 

PO,thetaO :real; 

i:integer; 

begin 

for i:= 1 to npar do 

begin 

theta[i] :=1; 

diagn[i] := 100; 

end; {i} 

{form fi} 

fi[l]:=uk2; 
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fi[2]:=ukl; 

fi[3]:=yp2; 

fi[4]:=ypl; 

for i:= 1 to noff do offdiag[i] :=0.0; 

end; {of lnitlden t} 

procedure ident(yp,delta:real; var theta,fi,diagn:vecl; var offdiag:vec2); 

var 

kf,ku,i,j : integer; 

perr,fj, vj ,alphaj ,ajlast,pj, w :real; 

k:vecl; 

begin 

pe~:=xp; 

for i:=l ton do perr:=perr-theta[i]*fi[i]; 

(*Calculate gain and covariance using_U-D method*) 

fj :=fi[l]; 

vj :=diagn[l]*fj; 

k[l] :=vj; 

alphaj:=l.O+vj*fj; 

diagn[ 1] :=diagn[l ]/alphaj/delta; 

if n>l then 

begin 

kf:=O; 

ku:=O; 

for j:=2 ton do 

begin 

fj :=fi[j]; 
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for i :=1 toj-1 do 

begin (*f=fi*u*) 

kf := kf+l; 

fj:=fj +fi[i]*offdiag[kf]; 

end;(*i*) 

vj :=fj*diagn[j]; (*v = D*f*) 

k[j] :=vj; 

ajlast := alphaj; 

alphaj :=ajlast+vj*fj; 

diagn[j] := diagn[j]*ajlast/alphaj/delta; 

pj :=-fj/ajlast; 

for i :=1 to j-1 do 

begin 

(*kj+ 1 ;=kj+vj*uj*) 

(*uj :=uj-+:pJ*kj*) . ' " . 

ku :=ku+l; 

w:=offdiag[ku]+k[i]*pj; 

k[i] :=k[i]+offdiag[ku]*vj; 

offdiag[ku] :=w; 

end;(*i*) 

end;(*j*) 

end;(*if n> 1 then*) 

(*update parameter estimates*) 

for i :=1 to n do 

begin 

theta[i] := theta[i]+perr*k[i]/alphaj; 

end; {i} 

end; (*LS*) 
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Procedure design(al,a2,bl,b2 :real; var sO,sl,rl,tO,tl :real); 

begin 

{ t0:=0.0954946/bl; 

tl:=0.073072/bl; 

s0:=(-1.2807623-al)/b 1; 

s 1 :=(0.4493289-a2)/b2; 

rl:=b2/bl; 

t0:=0.0410075/bl; 

tl:=0.0225053/bl; 

s0:=(-1.4742344-al)/bl; 

s 1 :=(0.5488116-a2)/b2; 

rl:=b2/bl;} 

t0:=0.0621596/bl; 

tl:=0.0476/bl; 

s0:=(-1.33596-al)/bl; 

s1:=(0.4493289-a2)/bl; 

rl:=b2/bl; 

end; 

Procedure model(wkl,wk2,yml,ym2: real; var ym:real); 

begin 

{ ym := (0.0954946*wkl)+(0.073072*wk2)+(1.2807623)-(0.5488116*ym2); 

ym := (0.445934*wkl)+(0.1626039*wk2)+(0.44125*yml)-(0.049787*ym2);} 

ym := (0.0621596*wkl)+(0.0476*wk2) 

+( 1.33596*ym 1 )-(0.4493289*ym2); 

end; 

Procedure action(tO,tl,sO,sl,rl,wk,wkl,yp,ypl,ukl:real; var uk :real); 
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begin 

uk:= (tO*wk) + (tl*wkl) - (sO*yp)- (sl*ypl) - (rl*ukl); 

end; 

{main program} 

begin 

{initial value} 

count:=50; 

wk:=l; 

wkl:=0.0; 

wk2:=0.0; 

ukl:=O.O; 

uk2:=0.0; 

ypl:=O.O; 

yp2:=0.0; 

yml:=O.O; 

ym2:=0.0; 

delta:=0.98; 

Initldent( ukl, uk2,yp 1,yp2,theta,diagn,fi,offdiag); 

{ if plots then pltinit; 

} 

for i:= 1 to NPoints do 

begin 

{create wk} 
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count:=count-1; 

if count=O then 

begin 

wk:=-wk; 

count:=50; 

end;{of wk} 

{calculate plant model (YM)} 

model(wkl,wk2,yml,ym2,ym); 

{calculate plant output (YP)} 

{if simulate then} plant(ukl,uk2,ypl,yp2,yp); 

{if (yp>18) then yp:=18+(random-0.5)*0.1; 

if (yp<-18) then yp:_=:-18+(ra!1~om-0.5)*0.l; } 

{ else yp:=rdadc(13);} 

{Identification of plant parameters} 

ident(yp,delta,theta,fi,diagn,offdiag); 

bl:=theta[l]; 

b2:=theta[2]; 

al:=-theta[3]; 

a2:=-theta[4]; 

{calculate controller parameters} 

design(al ,a2,b 1,b2,s0,s 1,rl ,tO,tl); 

{calculate plant input} 

action(tO,tl,sO,s 1,rl, wk, wkl,yp,yp 1,ukl ,uk); 
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if (uk>8) then uk:=8{ +(random-0.5)*0. l }; 

if (uk<-8) then uk:=-8{ +(random-0.5)*0. l }; 

{write new fi} 

fi[2J:=fi[l]; 

fi[4]:=fi[3]; 

fi[l]:= uk; 

fi[3]:=yp; 

{read data and create array for plotting } 

p_command[i] :=wk; 

p_out[i] :=yp; 

P _model[i] :=ym; 

p_inpt[i] :=uk; 

DataNum[i]:=i; 

{read new data} 

uk2:=ukl; 

ukl:=uk; 

yp2:=ypl; 

ypl:=yp; 

wk2:=wkl; 

wkl:=wk; 

ym2:=yml; 

yml:=ym; 

{ if not(simulate) then endsmpl; 

if not(simulate) then dacout(O,uk); 
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if plots then pltupdate(wk,ym,yp,uk); 

if not(plots) then 

writeln('al: ',a1:6:4,' a2: ',a2:6:4,' bl: ',bl:6:4,' b2: ',b2:6:4); 

end; {iteration} 

{ readln; 

if not(simulate) then dacout(0,0); 

if plots then pltclose; 

writeln('save? y(es) or n(o)= '); 

readln(answer); 

if (answer='y') or (answer='Y') then 

begin 

write('name for outfile = '); 

readln( outname ); 

assign( outfile,outname ); 

rewrite( outfile ); 

for i:=l to Npoints do 

writeln(outfile,i:4,' ',p_out[i]:8:5,' ',p_model[i]:8:5,' ' 

,p_command[i]:8:5,' ',p_inpt[i]:8:5); 

writeln(outfile,i:4,' ',p_out[i]:8:5,' ',p_model[i]:8:5,' ' 

,p_command[i] :8:5,' ',p_inpt[i]:8:5); 

close( outfile ); 

end;} 

{Plotting WK, YP & YM } 

writeln('enter O=screen, 2=plotter, 3=printer'); 

readln(idevice ); 

INIPL T(idevice, normal, 1.0); 
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{ iniplt(O, normal, l);} 

graphboundary(2000, 6000, 4000, 6500); 

setlegend(2200, 6950, 550); 

scale(O.O, Npoints, -3.0,3.0); 

setfont(bold,false ); 

axis(200.0,' 10.0' ," ,2,2.0, '10.0', 'Value' ,2); 

polyline(DataNum, P _command, Npoints, 2, 0, 0, 0, 2); 

writelegend('WK' , 2, 0, 2, 0, 2); 

polyline(DataNum, p_out, Npoints, 0, 0, 0, 0, 0); 

writelegend('YP' , 0,0 ,2, 0, 0); 

{ polyline(DataNum, p_model, Npoints, 5, 0, 0, 0, O); 

writelegend('YM' , 5 ,0 ,2, 0, 0); } 

graphboundary(2000, 6000, 100~! 30~0);: 

setlegend(2200,3200, 550); 

scale(O.O, Npoints, -9.0,9.0); 

setfont(bold,false ); 

axis(l00.0,'10.0','Data Number',2,3.0, '10.1', 'Value',2); 

polyline(DataNum,P _inpt, Npoints, 2, 0, 0, 0, 0); 

writelegend('uk' , 2, 0, 2, 0, O); 

endplt; 

END. 
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