
SINGLE INPUT SINGLE OUTPUT ADAPTIVE CONTROL

FOR

LABORATORY-BASED SYNCHRONOUS MACHINE

BY

IGNATIUS PRIJOWIBOWO

This report is submitted as fulfilment of the requirements

for the degree of master of technology

m

Department of Electrical and Electronic Engineering

University of Tasmania

Australia

1994

Supervisor

Mr. G. The'

.,....1-.Ui il&JQ&Si! _i NIM WWWEJ I JA ii :U:USLUAill WMW&Qt a a ze:

DECLARATION

To the best of my knowledge, this thesis contains no material previously published

or written by another person, except where due reference is made in the text of the

thesis.

IGNATIUS PRIJOWIBOWO

ACKNOWLEDGMENTS

Thank you to my supervisor Mr Gregory The' for his time, assistance and

encouragement in the development of this thesis. I would like to thank to Mr. B.

Wherrett for his assistance in power laboratory. Thank you also to Mrs. Margaret

Eldridge for proof reading.

ABSTRACT

The idea of designing a control system that can adjust its own structure and

parameters to cope with a specified purpose, was very appealing. This thesis

investigates the application of adaptive control using pole-zero placement method to

control the Automatic Voltage Controller of a Synchronous generator. In this

investigation the recursive least squares with exponential forgetting factor was used

to identify the plant parameters.

11

CONTENTS

ACKNOWLEDGMENT.

ABSTRACT

CONTENTS

Chapter 1

Chapter2

Chapter 3

Chapter 4

INTRODUCTION.

ADAPTIVE CONTROL

2.1 General.

2.2 Adaptive Control Designs

2.2.1 Model Reference Adaptive Control Systems

2.2.2 Self-tuning Regulator

2.2.3 Gain Scheduling

System Identification.

3.1 General.

3.2 Recursive Least Square.

3.3 RLS Identification with an Exponential Forgetting

Factor.

3.4 U-D Covariance Factorisation

CONTROLLER DESIGN

4.1 General.

4.2 A.C Turbo Generator Model

4.3 Open loop Test

iii

ii

1

3

3

4

5

7

9

11

11

11

13

18

20

20

20

21

4.4 Controller Structure

4.5 Controller with Integrity Properties

4.6 Controller Simulations

Chapter 5 APPLICATION OF CONTROLLERS

5.1 System Cofiguration

5.2 Laboratory Configuration

5 .3 Control Implementations

5.3.1 Adaptive Controller Investigations

5.3.2 Fixed Controllers

Chapter 6 SUMMARY

APPENDICES

A 1 Mathematical Model of Synchronous Generator

A2 Runge-Kutta Algorithm

A3 Turbo Pascal Program for Open Loop Test

A4 Turbo Pascal Program of Pole-zero Method without

Integrator

AS Turbo Pascal Program for PC 30

A6 Turbo Pascal Program for Plotting

A 7 Turbo Pascal Program of Pole-zero method with

Integrator

A8 Turbo Pascal Program for Quinn Curtis

A9 Turbo Pascal Program for Simulations

REFERENCES

BIBLIOGRAPHY

IV

25

33

34

39

39

40

41

43

46

48

50

55

56

59

65

68

70

76

79

90

91

>-a::
<
0::
DJ
..J
tn
~
1--
u.,
0

~ -~
Q:
w
> a= z
~

CHAPTER 1

INTRODUCTION

Conventional analog automatic voltage regulators (A VR) were designed using

classical control theory which employed linear transfer function models. This

designed theory was based on linearised models which were only valid at a certain

set of operating conditions. A synchronous generator is operate on non linear and

time-variant systems, with a wide range of variation of system parameters and

unmodelled disturbances. Classical control unable to respond satisfactorily over the

whole range of system and operating conditions. In synchronous generator

systems, the variation of set points will not change the system parameters, so that

the same type of controller can be used. However, the variation of external

parameters such as transmission line impedances and equivalent-load impedances

and the other machines behaviour impose stringent requirement on self-tuning

regulators.

This report is structured as follows:

Chapter 2 presents an overview of adaptive control system design methods and

some basic techniques of adaptive controller with their problems and advantages.

The self-tuning controller contain a parameter estimator which characterise the

process based on its input and output. The parameter estimations using recursive

least squares with exponential forgetting factors are investigated in Chapter 3. This

chapter investigates the parameter estimation using some exponential forgetting

factors and different P matrix.

To validate whether the synchronous generator is controllable or not, a simulation

of a nonlinear synchronous machine is solved by using fourth order Runge-Kuta.

This simulation is discussed in Chapter 4. Based on the simulation result, the pole-

1

zero adaptive controller and predictive controllers are also presented in this

chapter.

\he controllers that are discussed in Chapter 4 are implemented in controlling the

exciter of a 7 .5 KV A synchronous generator in laboratory by a personal computer.

The real time calculations are monitored from screen by using Quinn Curtis

software and data acquisitions is obtained from Boston technology. These aspects

are discussed in Chapter 5.

Chapter 6 provides the conclusion of the preceeding chapters. The simulation and

programmming are shown in appendices.

2

CHAPTER 2

ADAPTIVE CONTROL

2.l General

The intended achievements of control theory in controlling a dynimical system are

maintaining outputs of a system around prescribed constant values and ensuring

that the overall system optimises a specified performance criterion. To achieve

these goals, computation of suitable control input based on the observed outputs of

the system must be conducted. The basic processes incorporated in controlling a

system include the mathematical modelling of the system, identification of the

system based on experimental data, developing convenient mathematical forms

from the outputs of the system to synthesise the control inputs and apply them to

the system to obtain the intended behaviour.

The development of the control theory can be classified into three main categories:

dete1minjstic control theory, stochastic control theory and adaptive control theory.

In deterministic control theory, it was assumed that the system was linear time

invariant with complete knowledge of the controlled systems. This theory was

used succsessfully for feedback control systems.

Stochastic conu·ol theory was concerned with unce1tainties that were inherent in

the control systems. To cope with the stochastic conditions, linear deterministic

control theory was extended. However, these theories need sufficient a priori

knowledge of the systems and their environment. The meaning of the a priori

knowledge is the information of all physical systems can be included in order to

reduce the number of the model parameters to be estimated. In real operation,

especially while dealing with complex dynamic systems operating in a complex

environment, there are some uncertain situations where a complete a priori of the

3

systems cannot be provided. The difficulties were observed when substantial

amounts of uncertainty were present in the systems. So, the demands of faster and

more accurate controllers became clearly evident when the existing theory were

inadequate to successfully handle the problems. An adaptive control theory with a

capability to adjust its performance and environment changes was desired.

The term "adaptive system" was introduced into control theory to represent control

systems that monitor their own performance and adjust their control mechanism in

the direction of improved performance. The most important feature of adaptive

control is its ability to adjust itself to predetermined ranges of set points in various

dynamic processes.

2.2 Adaptive Control Designs

In controlling a process which is nonlinear, time-varying and has unknown

dynamics with unknown disturbances acting upon it, needs self adaptive control

algorithms that have some learning capabilities. So far, there is no general analytical

solution which has been found to solve such complex problems. A possible

approach t_o the solution of these problems is to accumulate dynamically all

information about the system response and to simultanously generate an acceptable

control signal in an adaptive feedback manner.

The operating quality of the adaptive control can be deduced from how efficient

and quick the ability of the adaptive system is to generate control signals to

optimise the performance of the dynamic process.

There are two popular approaches to designing adaptive control systems[l] They

are the theory of Model Reference Adaptive Systems (MRAS) and the theory of

Self Tuning Regulator (STR).

4

2.2.l Model Reference Adaptive Systems (MRAS)

Model Reference Adaptive Systems (figure 2.1), originally were developed by

Whitaker, Yamron and Kezer (1958) to solve the servo problem. In MRAS, the

adaptive controller forces the plant to perform like a reference model, where the

model represents the performance of a desired system. MRAS have fairly high

speed adaptation where the identification for dynamic plant performance is not

required.

MODEL

y
m

Regulator parameters

REGULATOR

ADWSTMENT IE-----.
MECHANISM

u
y

PLANT

Figure 2.1 Block diagram of Model Reference Adaptive Systems

The task of the adjustment mechanism in the block diagram, is to minimise the

error between the plant output y and model output Ym· The minimum error is then

used by the adjustment mechanism to modify the regulator parameters. The

problem is to determine the adjustment mechanism so that it not only brings the

error to zero but also produces a stable result. This is a difficult problem to solve,

because simple linear feedback from the error to the controller parameters is unable

to guarantee a stable result [2].

There are two principle approaches of MRAS to consider the estimation of the

unknown plant[I] i.e. direct and indirect control.

1. Indirect Control

The parameter estimation of the unknown plant, is derived from its input and

output. The estimated parameters are used to generate a feedback control function

to adjust the parameters of the controller.

5

r

+

2. Direct Control

OBSERVER

PLANT
(UNKNOWN)

+

s +A. 0

~ - ~

Figure 2.2 Indirect control of MRAS

' e

This approach does not have an explicit plant identification. The controller

parameters are updated from the control error.

r

+

REFERENCE
MODEL

PLANT
(UNKNOWN)

Figure 2.3 Direct control of MRAS

+

The main differences between direct and indirect MRAS are as follows:

Model of the desired control is explicitly used in direct control, whereas a model of

the plant identified on-line is used in indirect control.

6

Control error in direct control and identification error in indirect control are used to

update the controllers.

2.2.2 Self-tuning Regulators (STR)

Self-tuning regulators play a significant role in adaptive controllers. They are

relatively easy to implement in microprocessors, and are applicable to complex

processes with dynamic characteristics and stochastic disturbances.

The self-tuning regulator was originally introduced by Kalman in 1958, however,

due to unavailability of sophisticated computers and the lack of theory to support

it, it was not well developed until Astrom and Wittenmark developed the STR for

the stochastic minimum variance control in 1973. The STR consists of three major

parts, a parameter estimator, a controller calculation and a controller with

adjustable parameters. The parameter estimator identifies the parameters of the

plant from its input and output. The controller design computes the parameter of

the controller base on plant parameters. The controller gives input signals to the

plant from set point wand controller design.

From the identification of the controller parameters algorithm, the STR can be

classified in two ways: Indirect and Direct Self-tuner algorithm.

Uc

SET POINT

PLANT

y

PLANT
IDENTIFICATION

CONlROLLER
PARAMETERS

CONlROLLER
ACTION

Figure 2.2 Block diagram of Indirect STR

7

1. Indirect Self-Tuner Algorithm

With Indirect Self-Tuner algorithm, the controller parameters are updated after

identification of the plant parameters and controller design. The Indirect Self-Tuner

is achieved by an iteration at each sample interval through the following cycles:

Step 1. Identification of the plant parameters at each sampling by Recursive

Least Square.

Step 2.

Step 3.

Calculating the design controller parameters.

Updating the control signal parameters by control law.

Steps 1 to 3 are repeated at each sampling period. After several iterations,

controller parameters converge when the estimated plant parameters reach a steady

value.

To obtain good estimates and control, it may be noted that the input of the plant

must be constantly excited or rich in frequencies. If there are no changes for a long

. time, the gain of the parameter estimator may become very large, and a change in

the command signal may produce large changes in the parameter estimates 8 and in

the process output y[3]. This is usually the case with fixed parameter controllers in

industrial processes.

2. Direct Self-Tuner Algorithm

The Direct Self-Tuner algorithm (figure 2.3) updates the controller parameters

directly from the parameters of the model. As a result the design controller that

calculates the solution of the Diophantine equations can be eliminated.

8

u PLANT

CONTROL
DESIGN

ARA METERS

y

i--~~ ~~--

ESTIMATION

Figure 2.3 Block diagram of Direct Self-Tuner

The direct STR consists of two steps of operations:

Step 1.

Step 2.

Estimation of the plant parameters.

Calculation of the control signals.

Step 1 and 2 are repeated each sampling period

The operational steps in direct STR show the elimination of the second step of

indhect STR. This elimination can be achieved by selecting proper model structure.

Direct STR algorithm is valid only for minimum-phase plants [1].

2.2.3 Gain Scheduling

Another design for parameter adaptive control is Gain scheduling (figure 2.4.)

Auxiliary
Regulator parameters GAIN / measurement

SCHEDULING '

Command
signal '/ Control

' u / signal
'

Output
' c REGULATOR I PLANT /

I'
u y

Figure 2.4 Block diagram of Gain scheduling

9

The objective of Gain scheduling is to reduce the influence of parameter variations

by changing the regulator parameters as a function of auxiliary variables. The

regulator parameters are determined by using some suitable design methods at

number of operating conditions after scheduling variables are found. The main

problem of Gain scheduling is to obtain proper scheduling variables, which are

usually based on the physical knowledge of a system. The advantages of Gain

scheduling are that the regulator parameters can be changed quickly in response to

process changes and the effects of parameter variations are minimised. These

advantages can be attained by selection of auxiliary variables that correlate well

with the changes in process dynamic.

The disadvantages of this approach are :

1. There is no feedback to compensate the error of Gain schedule.

2. Evaluation of the performance and stability of the system must be checked by

simulations.

3. In some cases several operating conditions must be simulated to determine

regulator parameters.

10

CHAPTER 3

SYSTEM IDENTIFICATION

3.1 General

Identification of system parameters is one basic step in adaptive control algorithms.

There are many parameter identification methods which can be used to identify

system parameters. Least squares is one particular method which can be used for

parameter identification. Section 3.2 discusses the least squares method based on

the linear process model.

In order to obtain on-line parameter identification, the recursive parameter

identification method is the best suited method[4]. Section 3.3 discusses recursive

least squares.

The algori~m of controller procedure recommends process models in different

equations as these equations are easy to implement in digital computers.

3.2 Recursive Least Squares

A discrete time process model can be written in a general Z transfer function where

the polynomial numerator's degree is one degree less than the denominator.

Equation 3.1 shows the general transfer function as
-1 -2 -n

Y(z) be +b2z + ... +bnz - = G(z) = --"'-----=-----'-'----

U(z) -1 -2 -n l+a1z +a2z + ... +anz (3.1)

where the plant input and output are denoted by Y(z) and U(z) respectively, and the

model parameters are b11 and a11 •

To identify parameters in a dynamic process system, least squares needs a large

amount of plant input and output to be provided prior to parameters identification.

11

In high order systems, provision of plant input/output is time consuming and

inefficient.

To cope with this problem, the recursive least squares method is applied. This

method needs relatively less plant input/output than least square methods.

For k times measurement, the inverse transform of equation 3.1 can be written as

Yk =biuk-l +b2uk-2 + ... +b11uk-11 -a1Yk-l -a2Yk-2 - ... -a11Yk-11 (3.2)

Equation 3.2 is a recursive equation that can be used to identify model parameters

and obtain the next model's output based on the previous input and output.

The turbo generator can be modelled as a second order difference equation

Yk = biuk-l +b2uk-2 -aiYk-l -a2Yk-2

and depicted in figure 3.1

Uk Yk
Unknown system

b1z-1 + b,..., z -2 -1 2 at z _ a~ z -

Model
(error signal)

Figure 3 .1 Unknown parameter identifications

The eITor signal ek is given by

ek = Yk -biuk-1 -b2uk-2 +a1Yk-l +a2Yk-2

or

Yk =b1uk-I +bzuk-2 -a1Yk-I -a2Yk-2 +ek

In a matrix form, equation 3.4 can be represented as

Yk=Hkek +ek

where known function H k can be written as

Hk = [u k-1 u k-2 Yk-1 Yk]

and the unknown vector ek

12

(3.3)

(3.4)

(3.5)

T 0 k = [b / b2 -a / -a 2]

and the error vector ek
T e k = [e l e2 e J e4]

The error vector ek becomes zero when the loss function J
N 2

1=-!.Let
•=I

is minimal. This minimisation can be achieved because matrix

(3.6)

is non singular and the input signals are persistently excited or sufficiently rich.

Now, the least square estimate 8 is given by

A T -1 T
0 k = [H k Hk] Hk yk [6] (3.7)

By introducing a quantity Pk= [H[Hk 1-I then

A T
0k =PkHk yk (3.8)

For additional measurement k+ 1 then
A A A

0k+1= ek + kk+J(Yk+I Hk+10k) (3.9)

and

(3.10)

where

(3.11)

3.3 RLS identification with an Exponential Forgetting Factor

The Recursive least squares method as developed by Astrom and Wittenmark was

designed to identify the parameters of a process model which operated in time

invariant. In a system such as the turbogenerator, the system is time varying and

has non linear process control. Hence, the plant parameters may never converge

when the recursive least squares method is applied. This problem can be solved by

introducing a weighting factor namely exponential forgetting factor (8). This factor

discards old data to speed up the identified plant parameters convergence into a

steady state value.

13

According to Astrom and Wittenmark[6] the equation 3.9 to 3.11 become
I\ I\ I\

ek+i= ek + kk+J{yk+J -Hk+1ek) (3.12)

Pk+l = (Pk-kk+JHk+f Pk)/6 (3.13)

kk+l =PkH[+
1
(d + Hk+IPkH{+ 1)-

1
(3.13)

The value of the exponential forgetting factor (o) is defined as in the range

between 0 to 1. If o is small, the recent data will have more weight than the old

data.

~
:::>
~
>

~
:::>
...:I
< >

3

2

1

0

-1

-2

-3

0.3

0.2

0.1

0.0

-0.1

-0.2

0

0

100 200

100 200

DATA NUMBER

G-£-£J Al

G-e--E) A2

G-£-£J B1

G-e--E) B2

Figure 3 .2 Parameter identifications with o =0.8 and Pmatrix = 10

300

300

To investigate the effect of different 8 and P matrix, the following conditions are

applied:

14

To investigate the effect of different o and P matrix, the following conditions are

applied:

- The initial value of 0 = [1 1 1 1].

- Number of data = 300.

- Plant parameters change at data number 100 and 200 as shown in table 3.1

3

2

w 1
~

0 _J
<t
> -1

-2

-3

0.3

0.2

w 0. 1
~
_J
<t 0.0 >

-0. 1

-0.2

0 100 200

0 100 20-0

DATA NUMBER

C3-B-£l A 1
G-e--B A2

C3-B-£l B 1

0-e--B 82

300

300

Figure 3.3 Parameter identification using RLS with o = 0.8 and P matrix = 100

15

Parameters Iteration Iteration Iteration

l to l 00 10 l to 200 201 to 300

a1 - 1.9213 -1.2348 - 1.88762

a2 0.9607 0.4493 0.91289

b1 0.09931 0.1215 0.02515

b2 0.09798 0.0929 0.02254

Table 3.1. Table of plant parameter changes at iteration 100 and 200.

Figure 3.2 shows second order parameter identifications with 8 value 0.8, and

elements of diagonal P matrix = 10. It can be seen the identified parameters slow

to converge to the a steady state value and have noisy parameters but fast enough

to track the parameter variation when the plant parameters change.

With 8 value = 0.8 and P matrix = 100, figure 3 .3 shows the identified parameters

converge faster than the ~xperiment result with P matrix =10, but the identified

parameters are noisy.

In figure 3.4, the 8 value= 0.95 and P matrix= 100 are applied. The result of these

values shows the identified parameters are less noisy, but the response is slower

than 8 value = 0.8. Empirically, 8 equal to 0.98 is usually used and shown in

Figure 3.5. The result shows the parameter's noise is reduced and the response is

faster than 8 equal to 0.99 (see Figure 3.6) to track the parameter change. This

result uses similar starting value eT and elements of diagonal P matrix.

If the parameters of the process model stay constant for a long time, the exponent

forgetting factor 8 does not work well. As 8 is less than 1, the estimator will then

discount old data even though there is no new parameter change in the recent data.

This condition can be explained as follows. When there is no new parameter

change then kk+JHk+JPk of equation 3.13 becomes zero [7] so

(3.14)

16

As a result, the value of Pk+l will grow exponentially and become too large to be

handled by computer. Since Pk is so large, any change in the plant parameters may

then lead to large changes in the parameter identification, thus causing an

inaccurate identification of the system or estimator wind-up.

To control this problem, Hagglund[?] proposed algorithms which only discount

data where there new information exists.

3
G-B-EJ A 1

2
G-e--0 A2

w 1
~

0 _J
<I'.
> -1

-2

-3
0 100 200 300

0.3
G-B-EJ 81

0.2
G-e--0 82

w 0. 1
~
_J
<I'. 0.0 >

-0. 1

-0.2
0 100 200 300

DATA NUMBER

Figure 3.4 Parameter identification using RLS with 8 = 0.95 and P matrix= 100

17

3.4 U-D Covariance Factorisation

Biermann and Thorton developed a procedure to identify plant parameters in U-D

algorithms. This method factorised matrix P as

(3.14)

where U is an upper triangular matrix and D is a diagonal of the P matrix.

The U-D method is relatively efficient in calculation. This method updates the

square root matrix P without square root calculation.

w
~
_J
<t
>

3

2 -

J w
~
_J

]

0 1-L--

<t
> -1

-2

-3
0

0.3

0.2

0. 1

0.0

-0. 1

-0.2
0

~-
\ :: -

I I
1 o.o 200

100 200

DATA NUMBER

G-B-El A 1
G-B-0 A2

G-B-£] 81

G-B-0 82

300

300

Figure 3.5 Parameter identification using RLS with 8 = 0.98 and P matrix = 100

18

w
=::)
_J
<l'.
>

w

3

2

1

3 0
<l'.
> -1

-2

-3

0.3

0.2

0. 1

0.0

-0. 1

-0.2

-

J ,__,_

~
;-

\

0

0

I I
100 200

100 200

DATA NUMBER

G-B-E1A1
G-e-B A2

G-B-E1B1
G-e-£) 82

300

300

Figure 3.6 Parameter identification using RLS with o = 0.99 and P matrix = 100

19

CHAPTER4

CONTROLLER DESIGN

4.1 General

This chapter presents an on-line solution to a controller design problem for a

system with Single Input Single Output (SISO) and also with known parameters.

Section 4.2 presents the controller structure of pole-zero placement design. The

procedure to determine the polynomials R, Sand T for second order systems is also

reviewed in this section. The controller with integrating property is covered in

section 4.3.

4.2 A.C. Turbo Generator Model

Before a controller can be implemented into a system, it requires a model for

validation. The model must describe the dominant dynamic properties of the

system to be controlled. A model of the turbogenerator based on Park's equations

as described in reference 8 was used in this experiment.

~----------~ steam
+5

control valve

-5 0 Ps
rate limit position limit

transformer !me
turbine infinite

bus
+5

I E

ue J+tes
-5

exciter

Figure 4.1 Schematic diagram of the open loop a.c. turbogenerator

20

Figure 4.1 shows the open loop system consisting of synchronous machine

connected to an infinite bus through a transformer and a transmission line. Steam

turbine as a prime mover and excitation system are also shown in this figure. The

exciter input Ue applied to the exciter is assumed to be available for optimal

variation and is therefore used as a control variable. The governor input Ug is

taken as a second control variable.

The following state vectors represent a synchronous machine of the above system,

and the state equations are described in Appendix 1.

x = [o,8 \If fd,E fd,P.1.,Tm]T

u = [ue,ugr
y = [~,Vt,8,E fd]T

(4.1)

(4.2)

(4.3)

The four components of the output vector Y, real power output P1 , terminal

voltage v1, rotor angle velocity 8, and field voltage Efd can be measured in a full-
. . .

scale plant. The output vector components have been chosen by omitting

inaccessible measurements to avoid the effect of deterioration in performance and

loss of guarantee that the closed loop control system will no longer be stable.

4.3 Open Loop Test

In control system design, it is desirable to be able to predict whether or not a

system is controllable. A state X1 of a system is controllable if it is possible for the

input vector to transfer any state X0 at any previous time to to the state X1 in a

finite amount of time. A mathematical model is a simplification of the real

physical system. Thus, while most physical systems are controllable, their models

might not be, and it is important to know when this occurs.

Consider a first order model x =Ax + Bu. This model is controllable if B * 0.

21

The linearised form of the state and output equations m Appendix l can be

described as

x =Ax+Bu

y=Cx

where B and C :;t: o

(4.4)

(4.5)

Based on these equations, the mathematical model is controllable, and the second

order controller may be applied in this experiment.

The open loop test was conducted to test the controllability of the synchronous

machine by checking the step response of the initial steady state vectors. This test

solves the six first order non linear equations as mentioned in Appendix 1 by using

Runge-Kutta procedure in Appendix 2 instead of an analitical solution.

The system equations of the synchronous machine based on Appendix 1 are as

follows:

X1 =X2

X2 = [(X6 -1.256 * X:, * sin(X,) + 0. 922

* sin(x;) * cos(x;)- 0. 08 * X2] * 29. 637

X 3 = 0.180726* X4 - 0.561*X3 +0.422*cos(X1)

X 4 =(-X4 + U1)*10

x 5 =(- x 5 + KV)* 10

X 6 =(-X6 + X5)*2

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

The terminal power and terminal voltage may be expressed in terms of the output

state variable by

11 = l.256X1 sinX1 -0.922sinX1 cosX1

12 =M+v~)
where

vd = 0.798sinX1

22

(4.12)

(4.13)

v" = 0.5905X3 +0.365cosX1

The step input to the open loop simulation was obtained by changing the real

power from 0.8 p.u to 0.9 p.u as the step input.

The fourth order Runge-Kutta method as listed in the computer progamming of the

open loop simulation in Appendix 4 was applied to solve the non linear equations.

The time interval h = 0.05 second and the following initial steady state vectors

were used in the fourth order Runge-Kutta method for the open loop test.

x ss = [1, o, I.152, 2.314, o.8, o.s]T

Y ss = (0.9, 1.109, 0, 2.495]T

U ss = (2.314, 0.563]T

the increasing step in the input vector was

U ss = (2.495, 0.634]T

The new steady state conditions of the open loop simulation were as follows:

X ss = (1.078, 0, 1.160, 2.495, 0.9, 0.9]T

Y ss = (0.9, 1.109, 0, 2.495]T

Figure 4.2 exhibits the open loop test results against time in responding to the step

input. This figure is also proof that the control law can be implemented to design a

stable close loop design.

')"'' --'

0.92

... 0.9 -
Q>

~ 0.88 -

Q.c 0.86 --c: = 084-·5 .
... 0.82-
Q>

E-c 0.8 -

0.78

0 1 2 3 4

1.114

Q>

~ 1.112
~ -0
> 1.11

~
.5 1.108
s ...
~ 1.106

1.104
' ' '
0 1 2 3 4

1.1

Q> 1.08 --OJ)

~ 1.06-

= 104-0
~

.;s 1.02 -
0
~ 1-

0.98

0 1 2 3 4

0.92

0.9 -
...
~ 0.88 -

~ 0.86-

s o.84-
c:
~ 0.82-
00

0.8 -

0.78

0 1 2 3 4
Time (seconds)

Figure 4.2 Open loop test of the mathematical model of the synchronous

generator

24

4.4 Controller Structure

The open loop test of the mathematical model of the synchronous generator has

proved that the control law can be implemented. Thus, it is desired to find a

control law such that the appropriate response to command inputs is obtained. The

implementation of the controller in this project is the Pole-Zero placement method

that was introduced by Astrom and Wittenmark[6]. Figure 4.3 shows a block

diagram of the controller structure of a system using Pole-Zero placement.

CONTROLLER

PLANT

s
Uc + '-.<"'"J.

u B

' T '
.l

' Gjz) =-- ' x R A .I ")
,, .I / /

et point ' -

y

y
s /

'

Figure 4.3 Block diagram of controller structure

Plant in figure 4.3, has a single input u and a single output y and it can be

expressed by a transfer function.

A<=>i(=> = B<=>U<=> (4.14)

where A and B are polynomials in z, they do not have any common factors.
A(z) =I +a1z+a2z+ +a,,z

B(z) = b1 + b2z+ +b11z

R, Sand Tare polynomials in z.

The coefficient of the highest power in A and R is assumed to be unity or

manic.The control law of the controller can be written in z as
1

u(z) = T ~=luc(z) -s<=>~z)
(;)

or

25

(4.15)

This equation consists of a feedforward with pulse transfer function

I;=> Hlf(=1 =-
R<=l

and a feedback with pulse transfer function

SC=>
HthC=> =-

Re=>

(4.16)

(4.17)

To ensure the causality of the feedforward and the feedback transfer functions,

deg R >deg T

deg R >deg S

(4.18)

(4.19)

The controller specification can be expressed as a model that gives the intended

response to command signals, and it can be written as a closed loop transfer

function

G () = B,,,<=>
Ill z

A,,,c=>
(4.20)

where

Am and Bm are manic and coprime, and also the zeros of Am are assumed to be

inside unit circle z.

Generally equation (4.20) requires an observer dynamic, because with output

feedback, there will be additional dynamics that are not excited by the command

signal. The observer dynamic is performed by specifying the characteristic

polynomial Ao as the observer.

The model transfer function Gm(zJ influences the sensitivity of the closed loop

system to modelling error and to high frequently measurement noise.

The consequences of the inequalities of equation 4.18 and 4.19 are

deg Am - deg Bm > deg A - deg B (4.21)

26

deg Ao > 2 deg A - deg Am - deg B+ - I (4.22)

Equation 4.21 implies that the delay in the model Gm(z) must be at least as large as

the delay in the plant transfer function Gp(z). Equation 4.22 can be used to obtain

the observer polynomial Ao, and it implies that the degree of Ao must be

sufficiently high in order to obtain a causal control law.

If the computation time of the computer is a small fraction of the sampling time,

then it is common to use

deg R = deg S = deg T (4.23)

and if the computation time is close to sampling time, then

deg R = 1 + deg T = 1 + deg R (4.24)

this means that the control law has a time delay of one sampling period.

The input and output relationship after U(z) to be eliminated can be written as

fc=> BT
U«=> AR+ BS

: (4.25)

By suitable selection of the polynomial R, Sand T, that satisfy Equation 4.25, it is

desired to obtaine a model transfer function Gm(z) equal to Equation 4.25. Hence,

the desired closed loop transfer function can be written as

BT B m

AR+BS A
(4.26) ---=

m

The zeros of the closed loop system are the zeros of the polynomials B and T, and

the poles of the closed loop system are the solution of

AR+ BS = 0

To satisfy the condition in Equation 4.26, there must then be cancellation of poles

and zeros. Consider the zeros of the polynomial B that represents the zeros of the

open loop. If any root of the denominator BA 111 of Equation 4.26 is outside the unit

circle or if B has unstable roots or poorly damped roots near the unit circle, this

27

condition is undesirable. Because such zeros of B are unable to be cancelled, the

polynomial B is factorised as

B = S- B+ (4.27)

where n+ has well damped roots located inside the specified region and B- has the

remaining unstable or poorly damped roots outside the specified region. Equation

4.26 shows that B must be a factor of Bm so

Bm = B'mB- (4.28)

To enable n+ to be cancelled, it must be a factor of R. By introducing R' that is a

monic, hence

In order to obtain Equation 4.16 and 4.17 causal without delay time, so

Deg R' = deg Am + deg Ao - deg A

Deg S = deg A - 1

Now, equation 4.25 can be rewritten as
T B,;,

----=-
(AR'+B-S) A,,,

(4.29)

(4.30)

(4.31)

(4.31)

The degree of Am is normally less than the dominator of Equation 4.26 (AR+ BS),

so that there are factors which cancel. This cancelling factor is the observer

polynomial Ao. The roots of Ao a.re assumed in the unit circle.

By comparing the nominator and the denominator of Equation 4.31, the following

conditions are obtained:

T=B'mAo (4.32)

and

AR' + s-s = A oAm (4.33)

(4.14)

Consider the second order plant transfer function

G - B(z) - b1z+b2
p(z) - A - ?

(z) z- +a1z+a2

28

bi
bi[z+-]

b2
=-----

?
z- +aiz+a2

(4.34)

b
Depending on the zero of the open loop system of Equation 4.34, the value of -1.

bi

can lie outside or inside the unit circle. Therefore, Equation 4.34 has two possible

solutions.

. b
Case(1) -1. < 1

bi

In this case the zero is inside the unit circle and it should be cancelled in the closed

loop system. Due to the zero being inside the unit circle, then

and

By selecting observer Ao = I and from Equation 4.21, the degree of Am IS

obtained as

0 = 4 - deg Am - 1 - 1

degreeAm = 2

Referring to Equation 4.28 B~ can be written as
, m1 m2

B
111
=-z+-

b1 bi

Deriving from Equation 4.30 the degree of R' is zero, hence R'= r 0 ' =I.

From Equation 4.31, the degree Sis equal to one, so, the polynomial Sis

S=SoZ+S1

The polynomials S, R and T can be obtained from Equation 4.33,4.29 and 4.32

respectively as follows:

(4.35)

29

From Equation 4.29 the polynomial R can be obtained as follows

R = B+ R
1

b2 .
= [z + ht]ro

b
=[z+i]

bi
b2

'i =-
b,

Hence the polynomial R is
b,

R=z+--
b

I

The coeficient of the polynomial T can be obtained as follows
m m

T=-1 z+-2

b, b,

m1
to=-

b1
m2

l1=-
b1

The control law can be written as

b
Case (ii) i > 1

b1

(4.36)

(4.37)

(4.38)

(4.39)

The zero is outside the unit circle, this zero is unstable and it cannot be cancelled.

So, it must be included in the closed loop system.

s+ =I

and

By considering Equation 4.31

deg S = Deg A - I

30

(4.40)

(4.41)

=2-1 =I

and Equation 4.22

deg S = deg R = deg T

hence

Consider Equation 4.29

R = B+R'

Because B+ = 1 then

R = R'

Recalling Equation 4.33

AR'+B-S=AoAm

and substituting Equation 4.40 and 4.41 into Equation 4.33 gives

(z2 +a1z + a2)(R0z + R1)+(b1z + b2)(S0z + S 1) = AoAm

Let Ao = 1 and expanding Equation 4.42 gives

(4.42)

R0z3 +(R1 + a 1 R0 + b1S0)z2 +(a1R1 + a2R0 + b1s1 + b2s0)z + a2R1 + b2S1

(4.43)

Comparing the coefficients on both sides of Equation 4.43 gives the solution to be

Ro= 0

R1 +a1R0 +b1S0 =I

a1R1 +a2Ro +b1S1 +b2So =n1

a1R1 +b1S1 +b2So = n1

a2R1 +b2S1 = n2

Equation 4.44 and 4.46can be written as

and

Substituting Equation 4.47 into Equation 4.48 gives

31

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

n2 -b2s1 =l-b1So
a2

n2 +b2s1 + l
So= - a2b1

Substituting Equation 4.48 and 4.50 into Equation 4.45 gives

S - n2al + b2a2 - a2n1
I - b2

a2b1 + a1b2 + i
b1

The polynomial T can be derived from the nominator of Equation 4.26,

BT=Bm

(b1z + b2)(T0z + IJ)= m1z + m2

Expanding Equation 4.52

b1T0z2 +(b11J +b2T0)z+b21J = n1z+n2

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

Comparing the coefficients on both sides of Equation 4.53 gives the solution to be

b1To = 0

b11J +b2To = m1

since b1 =f:. 0, then

To= 0

1J =ml
b1

The control law is

RU= TUc-SY

Substituting Equation 4.48 , 4.50 and 4.54 into Equation 4.45 gives

R 1U = 1JUc-(Soz+S1)(Y)

The controller design can be described as
1

Uk =~TJUc -S0Yk-S1Yk-J)

32

(4.54)

(4.55)

4.5 Controller with Integrity Properties

The controller must have the ability to eliminate steady state errors, which can be

generated from calibration errors or the other disturbances.

To cope with this problem, Astrom and Wittenmark proposed controllers with a

forced integral action so that the plant will always have a pole at z = 1 This can be

achieved by specifying (z-1)f to be a factor of R.

By considering Equation 4.29, the polynomial R can be written as

R = B+(z-l)l R" (4.56)

and by accommodating this equation into the Equation 4.33, so this equation is

then replaced by

A(z-l)l R" + B-S = AoAm (4.57)

The polynomial T can be derived from Equation (4.32)

T=B'mAo

The advantage of this scheme is that the controllers will always have integral

actions to impose any error in the plant to go to zero.

Referring to equation 4.57 to 4.32, the controller polynomials for second order

systems can be given as follows[8]:

By selecting Ao = 1 and l = 1

deg Ao = 2 deg A - deg Am - deg B+ - l - 1 (4.59)

and

deg R'l = deg Ao+ deg Am - deg A - l (4.60)

and

deg S = deg A - l - 1 (4.61)

33

Hence, the polynomials R. Sand T can be rewritten as follows:

S = s0z 2 +siz+s2

where

ni+l-ai
So=

bi

Si=
n1 +ai -a2

bi

S2 =
n3 +a2

bi

and

T= ~z2 + m2 z+ m3
bi bi b1

The controller can be written as

Uk= T oU k + T]Uk-1+T2Uk-2-SoY k

-SJ Y k-1 - RoU k-RJU k-2

4.6 Controller Simulations

(4.62)

(4.63)

(4.64)

(4.65)

The implementation of the parameter identification and the design controller are

conducted into several type of simulations.

The general conditions of the simulation are as follows:

- Controller specifications

- Rising time 1 second

- Samplling time 0.1 second

- Data number 600

- Parameter change at data number 125 and 375

34

0
CJ
;:::l

I - --ctl
>

-2
- - - - - Set points

P1art output
-4

0 200 400 600

Plant input
9.0

6.0

3.0
CJ
;:::l

0.0 -ctl
> -3.0

-6.0

-9.0
0 100 200 300 400 500 600

Data Nun1.ber

Figure 4.4 Three different second order plants with initial P matrix =100 and

0 = 0.98

Figure 4.4 shows the behaviour of adaptive control in controlling three second

order plants with the following equations

Plant 1: Yk = 0.062l596uk-l + 0.0476uk-2 - l.33596Yk-l + 0.4493Yk-2

Plant 2: Yk = 0.099313uk-l + 0.0986uk-2 - l.9213Yk-l + 0.9607Yk-2

Plant 3: Yk = 0.1215216uk-J + 0.0929uk-2 - l.23484Yk-l + 0.4493Yk-2

35

It can be seen that the adaptive control has successfully tracked the set point. The

change of the plants is indicated with spikes at data number 125 and 375

0
(!)

;:1
I - -.-i

cO
>

-2
- - - - - Set points

Pla t output
-4

0 200 400 600

Plant input
9.0

i 6.0:
l

3.0:
Q) I
;:1

0.0 .-i

c:O
> -3.0

-6.o I

-9.0
0 100 200 300 400 500 600

Data Number

Figure 4.5 Plant I is reused at data number 375 instead of plant 3, with initial

P matrix =100 and o = 0.98

Compared to the transient period of plant 1 at the begining of the data number, the

transient period of plant 1 after the change of the plant at data number 375 needs a

longer time to converge to the set point.

36

I - - I

0
Q)

;::1
t - - I ~

ro
>

-2
- - - - - Set points

P1art output
-4

0 200 400 600

Pl :~n t input
9.0

6 .0

3 .0
C.)

;::1
0.0 ~

ro
> -3 .0

-6.0

-9 .0
0 100 2 00 300 400 500 600

Data NunJ.ber

Figure 4.6 Third order plant is applied at data number 125 instead of plant 2

By using third order plant

Yk= 0.020228uk-I + 0.0596uk-2 + 0.11 luk-3 + l.905l3Yk-1

- 1.27704yk-2 +0.30 12Yk-3

It can be seen that the controller unable to track the set point

37

0
Q.)

;::l -('.1j

>
-2

- - - - - Set points

Pla t output
-4

0 200 400 600

Plant input
9.0

6.0

3.0
Q.)

;::l
0.0 _Sl--f~il~\ -c\j

:>-
-3.0

-6.0

-9.0
0 100 200 300 400 500 600

Data Number

Figure 4.7 First order plant is used instead of plant 2 at data number 125

38

CHAPTER 5

APPLICATION OF CONTROLLERS

5.1 System Configuration

The controllers discussed in Chapter 4 are implemented in a laboratory model of a

power generating system. The system consists of a 7 .5 KV A synchronous

generator which is connected to an infinite bus by transmission lines. A DC motor

drives the synchronous generator simulating a turbine which is used in the

experiment. The block diagram of the adaptive controller controls the exciter of

the synchronous generator and is shown in figure 5.1

Set
point

+
ADAPTIVE

CON1ROLLER

Exciter

voltage

DC
motor Alternator

:_o,--:

Figure 5.1 Diagram of turbogenerator system.

Infinite

------.i-,

Transmission
line

' - '

The experiment was based on the synchronous machine operated at a fixed

governor with tenninal voltage vaiied at different set points. The exciter voltage

was adjusted adaptively by the adaptive controller to obtain the desired terminal

voltage.

An explicit self-tuning regulator was selected as the basis of adaptive controller

design in this experiment.

39

5.2 Laboratory Configuration

The control configuration schematic is shown in figure 5.2

w Controller ADC/DAC

/BMPC

y

Exciter

voltage
adjustment circuit

Figure 5.2 Hardware configuration schematic

The instrumentation and hardware used in the experiment are as follows:

line

Infinite

1. An IBM personal computer with real time graphics (QUINN CURTIS) and

PC-30 for AD/DA converter programming software. Both varieties software

can be run by program language PASCAL, C and FORTRAN.

2. An AD/DA converter (Boston card technology) installed in personal computer.

3. A voltage adjustment circuit for terminal voltage measurement.

4. Field exciter controller (Robicon) is activated by the analog signal from DIA

converter. This controller consists of a four quadrant thyristor rectifier.

5. A fixed voltage DC motor to drive the synchronous generator.

6. A inductance simulating transmission line.

7. A 7 .5 KV A synchronous three phase generator connected to an infinite bus via

inductance.

The digital output u of the controller is connected to the DAC inputs of the Boston

technology card to convert its digital values into analog values. The controller

output values are set at ±10 V to avoid field excitation over voltage. The controller

40

feedback is obtained from the terminal voltage y. This voltage is connected to a

voltage adjustment circuit to reduce and rectify the AC voltage into DC voltage.

Computer programming in TURBO PASCAL was written to run the PC-30

module and QUINN CURTIS during investigation.

PC-30 is a unit program which converts analog signals into discrete signals before

being passed on to the PC and vice versa. The ADC/DAC used on the PC-30 board

have 12 bit resolution. The analog input and output of the controller derived from

the terminal voltage and passed on to the exciter were converted into discrete

signals by PC-30. Unit PC30iol was written to set up the PC-30. This unit was

assigned for initiating the signals conversion, limiting the analog output into ± 10

Volt, setting the sampling time, checking the AD/DA conversions and PC-30

installation error.

Unit RTPLOTl was written for plotting the real time calculation result on the

screen by using the QUINN CURTIS module. This untt split the screen into two

windows. The plant output and set point were displayed on one window, and the

exciter input was displayed on the other window.

Program FLT.pas plotted the calculation result of the controllers using HGRAPH.

HGRAPH is a series of procedures and functions which enable the production of

two and three dimensional plots in color. The plot can be displayed on the screen or

plotted by a pen plotter. The graph may also be incorporated into a document

written in WORD for WINDOWS.

5.3 Controllers Implementations

The controller was implemented at the governor in a fixed set point, and the

variation of the terminal voltage was set by the program. Two types of controller

41

were developed in this investigation. The first was the adaptive controller while the

other was the fixed controller or non adaptive controller.

The investigations were conducted with the following conditions:

- The experiments were initiated with 0T = [1 1 1 1] .

- The exponential forgetting factor 8 = 0.98 .

- P matrix = 100 .

- The sampling time = 10 ms .

- The period of each investigation = 5 seconds .

2.5

2

1.5

Terminal Voltage
-····x-···· Set Point

~ 1 ···············X·· --·X·· ··;..· '""". __......,...._i

= -; 0.5
~ 0

-0.5

-1

-1.5
0 1 2 3 4 5

Time (seconds)

10

... 5 = c.
= ~

""' 0
~ ... ·-(,J
ii<

r.:i -5

-10

0 1 2 3 4 5

Time (seconds)

Figure 5.3 Adaptive concroller tJSing inregraior

42

~

= -C'l

>

-=

5.3. l Adaptive Controller Investigations

To eliminate the steady state error, the principle of integrity properties in adaptive

controllers was used in this experiment. The terminal voltage and the exciter input

were minitored through real time graphic and recorded in a data file for plotting.

The ability of the controller to track the variation of terminal voltage was

investigated by changing the set point every second as shown in figure 5.3 and at

every 0.5 second in figure 5.4. These figures show the ability of the controllers to

track the given set point and converge on the set point within 0.3 second

2.5
Terminal Voltage

2 · · · · ·x· .. · · Set Point
1.5

: · . .. --X · ..

----·-·- ·

0.5

0

-0.5

-1

-1.5

0 2 3 4 5
Time (seconds)

10

5
c.
c:

>-I

"" 0
~ -"(J
;.<
~ -5

-10

0 2 3 4 5
Time (seconds)

Figure 5.4 Adaptive controller using integrator with terminal

voltage are randomly set every 0.5 second

43

To examine the adaptivity of the controllers, the reactance of the transmission line

was disconnected from the machine at iteration 250th or at 2.5 second after

starting. Figure 5.5 shows the ability of the controller to track the change of plant

parameters after the transient occured. The terminal voltage returned to the set

point within 0.3 second or 30 iterations.

2.5

2

1.5

QJ 1
:I

0.5 ~

> 0

-0.5

-1

-1.5

10

.... 5 :I
c.
c

1--C

a.. 0
QJ
u
><
~ -5

-10

0

0

--- Terminal Voltage
· -- · -x-· · · · Set Point

··· -- ---------X--·

1 2 3 4

Time (seconds)

2 3 4
Time (seconds)

Figure 5.5 Adaptive controller using integrator with plant
disconnected from the line at 2.5 seconds

44

5

5

The effect of no inherent integrator in the controller is exhibited in figure 5.6. The

controllers are unable to converge on the tenninal set point due to steady state

errors. However, it is shown that the terminal voltage is stable.

2.5

2 Terminal Voltage

1.5
· · · · -x· · · · · Set Point

~ I ······X· ··X·····

= ~ 0.5
;>-

0

-0.5

-1 ·····X··: ··X·····-' ;i(........ : -- -- -

-1.5

0 I 2 3 4 5
Time (seconds)

10

...... 5-= 0..
c:
~

.... 0 -i.-
~
~
;.<

r.il -5 -

...
-10 I I I I

0 I 2 3 4 5
Time (seconds)

Figure 5.6 Adaptive controller without integrator

45

5.3.2 Fixed Controller

In order to obtain the character of a fixed controller, the experiment without

adaptive controller was conducted. This experiment used fixed parameters which

were randomly obtained from the plant identification. The plant parameters are

Figure 5.7 Non adaptive controller without integrator with plant
disconnected from the line at 1.7 seconds

46

Figure 5.7 shows constant terminal voltage during the steady state condition. At

iteration 170 or 1. 7 second after starting point, the generator was disconnected

from the reactance. As a result of the disconnection, the plant parameters were

changed and the controller tried to adjust the excitation to recover the transient.

The transient period took 0.5 second to recover into the steady state condition.

However, the transient time was relatively longer than the adaptive control.

47

CHAPTER6

SUMMARY

From the simulations and laboratory experiments, it can be seen that to obtain a

good performance of an adaptive controller each step of the algorithm has to be

considered carefully.

Parameter identification using recursive least squares with exponential forgetting

factors as discussed in Chapter 3 demonstrated the ability to provide online plant

parameters identification. This ability was prooved by validating the identified

parameters againts the real plant. The exponential forgetting factor o = 0.8 and P

matrix = 100 with initial eT = [1 1 1 l]T were choose for computer simulation in

Chapter 4 and laboratory investigation in Chapter 5. These values gave smooth

identified parameters and fast response without giving high spike parameters during

transient periods.

The open loop test proved that the control laws could be applied to design a stable

closed loop control system for a synchronous generator. This test was conducted

by using fourth order Runge Kutta procedure to solve first order non linear

equations.

Simulations in various conditions indicated that the second order adaptive control

had a good damping property and the application of an integrator in the control

loop could eliminate the steady state error.

The voltage variations in the point where the parameter changed could not be

accepted in real operations. This was due to the limitatition of the exciter voltage.

48

In the real machine that connected to infinit bus the voltage variations do not so

often vary with relatively high magnitude

It was demonstrated that adaptive control with pole-zero algorithm is able to

handle a process in time varying and also having a stable performance in the

presence of disturbances. It does not mean that the fixed controller cannot be used.

For a simple control, the PID type with automatic tuning as proposed by Astrom

and Hagglund[9] can be implemented

It was shown that the adaptive controller is sufficiently robust to handle a

stochastic and non linear process.

49

APPENDIX l

Mathematical Model of Synchronous Generator

Symbols of machine variables to be used in simulating synchronous machine are

listed as follow

e

Tm

Ps

H

Te

Pr,Pb

Q,t,Qb

= Stator volages in d- and q- axis circuits

= Terminal voltage

= Field flux linkage

= Synchronous reactances in d- and q-axis circuits

= Stator rotor mutual reactance

= Self reactance of field winding

= Input to exciter

= Components of busbar voltage in d- and q-axis

=Bus bar voltage

= Rotor angle, radian.

= Mechanical torque input to rotor

= Steam power

= Inertia constant

=Electrical torque

= Real power output at terminal and busbar

=Reactive power at terminal and busbar

= Exciter time constant

= Governor valve time constant

= Turbine time constant

=Input to governor

= Angular frequency of the rotor

= Angular frequency of the infinite bus

= Mechanical damping torque coefficient

50

Synchronous generator

The following equations and assumptions are based on Park's equations for a

synchronous generator. Beside that, there are some additional assumptions for

simulations.

(i) The effect of change of speed, and the rate of change flux linkage in the stator

voltage expressions, is negligible.

(ii) Line and stator resistances, and the effect of transients in the transmission

lines are negligible.

(iii) No magnetic saturations.

(iv) The effect of damper windings can be accounted for by adjustment of the

damping coefficient T d in the mechanical equation of motion.

vd =

Vq =

vfd =

'Pd =

'f'q =

'f'fd =

Te =
8 =

?
v- = I

Transmission system

=

=

-'f'q

'f'd

Rfd'f'q

Xad ijd

-Xq iq

Xf d ijd - Xad id

'f'd iq - id'f'q
(I) . .

-
0 (T -T - K 8-T 8)

2H m e d d

v2 +v1
d q

e.sin8-x)q

e. cos 8 + x.iq

51

(al.1)

(al.2)

(al.3)

al.4)

(al.5)

(al.6)

(al.6)

(al.8)

(al.9)

(al.10)

(al.11)

where

Prime mover

G.

Ps =

Excitation system

Eid

Control variables

x
u
y

=

=

=

x,+x,

1 1
-5 :5..Gv:::; 5 -u --G g v

"C g "Cg

KvGv 0:5..Gv:::; 1

1 1
-U--E
'T' e fd
•e "Ce

(6 x 1) state vector

(2 x 1) input-control vector

-~4 x 1) output-measu_rement vector

System parameters represent a 37.5 MVA ge1_1erator

MVA = 37.5

MW = 30

p.f = 0.8

KV = 11.8

r/min = 3000

xd = 0.2 p.u

Xq = 1.86 p.u

Xad = 1.86 p.u

xfd = 2.0 p.u

Rfd = 0.00107 p.u

H = 5.3MWs/MVA

52

(al.12)

(al.13)

(al.14)

(al.15)

Td = 0.05

x, = 0.345 p.u

x, = 0.125 p.u

e = 1 p.u

'te = O.ls

'tq = O.ls

'tb = 0.5s

KV = 1.42

Constants in a.c turbogenerator

Defining

x' d =

x'dl =

Xdl =

xq1 =

the constants are

x2
xd _ __gfl_

Xjd
: . '

x'd + xe

Xd + Xe

xq +xe

ex ad
I

xfdX',11

,, (x~-xq)
e~ I

x,1/"xqt
-1/Xd/(J)O

I

XrdX'd1

Xad(J)Orfe
I

Xr"X"1

xq.e

xq1

53

54

APPENDIX2

RUNGE-KUTTA ALGORITHM

First order non linear equation can be solved easier by numerical method. One

numerical method that widely be used is fourth order Runge-Kutta. For a non linear

function x =! (y , t) , after a very small interval time h the value of x can be

represented as follows

Yk+l = Yk +i gl +1 gz +1 g3 +i g4 (a2. l)

where

Equation a2.1 is used to solved the six non linear equation that simulate a

generating system as shown in chapter 4.

55

APPENDIX3

Program listing of an open loop test of a synchronous machine using Runge-Kutta
procedure

program openloop;

Uses
crt, hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, hgrlgn;

Const

h = 0.05; {step of integration}

type
vector= array[l..6]of real;

Var
sO,s 1,s2,s3,sq,x,ex,pp
Datanum

: vector;
: integer;
: real; u 1,u2, vd, vq

yl,y2
OutFile

: array[l..610] of real;
: text;

Procedure init;
begin
ex[l] := l;{delta- rotor angle in radians}
ex[2] := 0; {rotor angular velocity}
ex[3] := l.152;{field flux linkage}
ex[4] := 2.314; {field voltage}
ex[5] := 0.8; {power steam}
ex[6] := 0.8;{mechanical torque}
ul := 2.495;{input to exciter}
u2 := 0.634; {input to governor}

end;

procedure set_eqn;

begin
sq[l] := x[2];
sq[2] := 29. 7169*(x[6]-1.2564*x[3] *sin(x[1])

+0.9218*sin(x[l])*cos(x[1])- 0.08*x[2]);
sq[3] := 0.1812*x[4]-0.5623*x[3]+0.4237*cos(x[l]);
sq[4] := 10.0*(-x[4]+ul);
sq[5] := 10.0*(-x[5]+ l.42*u2);
sq[6] := 2.0*(-x[6]+x[5]);

end;

56

APPENDIX2

RUNGE-KUTTA ALGORITHM

First order non linear equation can be solved easier by numerical method. One

numerical method that widely be used is fourth order Runge-Kutta. For a non linear

function x =! (y , t) , after a very small interval time h the value of x can be

represented as follows
- l l l 1

Yk+l -Yk +6gl +3g2 +1g3 +6g4 (a2. l)

where

Equation a2.1 is used to solved the six non linear equation that simulate a

generating system as shown in chapter 4.

55

APPENDIX3

Program listing of an open loop test of a synchronous machine using Runge-Kutta
procedure

program openloop;

Uses
crt, hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, hgrlgn;

Const

h = 0.05; {step of integration}

type
vector= array[l..6]of real;

Var
sO,s 1,s2,s3,sq,x,ex,pp
Datanum
ul,u2,vd,vq

: vector;
: integer;
: real;

yl,y2
OutFile

: array[l..610] of real;
: text;

Procedure init;
begin
ex[1] := 1; {delta - rotor angle in radians}
ex[2] := 0; {rotor angular velocity}
ex[3] := 1.152; {field flux linkage}
ex[4] := 2.314;{field voltage}
ex[5] := 0.8;{power steam}
ex[6] := 0.8; {mechanical torque}
ul := 2.495;{input to exciter}
u2 := 0.634; {input to governor}

end;

procedure set_eqn;

begin
sq[l] := x[2];
sq[2] := 29.7169*(x[6]-l.2564*x[3]*sin(x[l])

+0.921 S*sin(x[l])*cos(x[l])- 0.08*x[2]);
sq[3] := 0.1812*x[4]-0.5623*x[3]+0.4237*cos(x[l]);
sq[4] := 10.0*(-x[4]+ul);
sq[5] := 10.0*(-x[5]+1.42*u2);
sq[6] := 2.0*(-x[6]+x[5]);

end;

56

procedure Rungkut;
var
i :integer;

Begin
yl[k] := l.2564*ex[3]*sin(ex[l])

-0.9218*sin(ex[l])*cos(ex[l]); {terminal power}

vd := 0.798*sin(ex[l]); {Direct axis voltage}
vq := 0.5905*ex[3]+0.3650*cos(ex[l]); {quadrature axis voltage}

y2[k] := sqrt(vd*vd +vq*vq); {terminal voltage}

for i := 1 to 6 do
x[i] := ex[i];
set_eqn;
for i:=l to 6 do
sO[i] :=h *sq[i];

for i:= 1 to 6 do
x[i]:=ex[i]+0.5*sO[i];
set_eqn;
for i := 1 to 6 do
sl[i]:= h*sq[i];
fori :=1 to 6 do
x[i]:=ex[i]+0.5*s l[i];
set_eqn;
for i :=1 to 6 do
s2[i] :=h*sq[i];
for i :=1 to 6 do
x[i] :=ex[i]+s2[i];
set_eqn;
for i := 1 to 6 do
s3[i]:= h*sq[i];

writeln(OutFile,Datanum:4,' ',yl[k]:2:5,' ',y2[k]:2:5,' ',ex[1]:2:5,' ',ex[5]:2:5,' ');
writeln(Datanum:4,' ',yl[k]:2:5,' ',y2[k]:2:5,' ',ex[1]:2:5,' ',ex[5]:2:5,' ');

for i:=l to 6 do
begin
ex[i] :=ex[i]+(l/6)*(s0[i]+ 2*s 1[i]+2*s2[i]+s3[i]);

end;
end;

{main program}
begin
init;
Datanum:=l;
assign(OutFile, 'openloop.dat');
rewrite(OutFile);
repeat
rungkut;

57

Datanum:=Datanum+ 1;
until k>600;
close(OutFile);
readln;
END.

58

Appendix 4

Turbo pascal program for adaptive controller using pole-zero method without
integrator.

program PZ;
{$N+,E+}

uses
crt, pc30iol, rtplotl;

const
plots = true;

NPoints = 500;
npar = 4;
noff = 6;
n=4;

type
vecl = array[l..npar] of real;
vec2 = array[l .. noff] of real;
Datarray = array[l..NPoints] of real;

var
delta, al, a2, bl, b2, m2: real;
sO, sl, rl, tO, tl: real;
wk, wkl, wk2, uk, ukl, uk2, yp, ypl, yp2: real;
ym, yml, ym2: real;
i, count: integer;
p_out, DataNum, P _command, p_inpt, P _model: Datarray;
theta, fi, diagn: vecl;
off diag: vec2;
answer: char;
answerl: char;
outfile: text;
outname: string;

procedure Initldent (ukl, uk2, ypl, yp2: real; var theta, diagn, fi: vecl; offdiag:
vec2);

var

begin

PO, thetaO: real;
i: integer;

for i := 1 to npar do

59

begin
theta[i] := 1;
diagn[i] := 100;

end; (i}
(form fi}

fi[l] := uk2;
fi[2] := ukl;
fi[3] := yp2;
fi[4] := ypl;

for i := 1 to naff do
offdiag[i] := 0.0;

end; {of Initldent}

procedure ident (yp, delta: real; var theta, fi, diagn: vecl; var offdiag: vec2);
var

begin

kf, ku, i, j: integer;
perr, fj, vj, alphaj, ajlast, pj, w: real;
k:vecl;

perr := yp;
for i := 1 to n do

perr := perr - theta[i] * fi[i];
(*Calculate gain and covariance using U-D method*)

fj := fi[l];
vj := diagn[l] * fj;
k[l] := vj;
alphaj := 1.0 + vj * fj;
diagn[l] := diagn[l] I alphaj I delta;
if n > 1 then

begin
kf:=O;
ku :=0;
for j := 2 to n do

begin
fj := fi[j];
fori := 1 to j - 1 do

begin (*f=fi*u*)
kf :=kf + 1;
fj := fj + fi[i] * offdiag[kfJ;

end;(*i*)
vj := fj * diagn[j]; (*v = D*f*)
k[j] := vj;
ajlast := alphaj;
alphaj := ajlast + vj * fj;
diagn[j] := diagn[j] * ajlast I alphaj I delta;
pj := -fj I ajlast;
for i := 1 to j - 1 do

60

begin
(*kj+ 1 ;=kj+vj*uj*)
(*uj :=uj+pj*kj*)

ku := ku + l;
w := offdiag[ku] + k[i] * pj;
k[i] := k[i] + offdiag[ku] * vj;
offdiag[ku] := w;

end;(*i*)
end;(*j*)

end;(*if n> 1 then*)
(*update parameter estimates*)

for i := 1 to n do
begin

theta[i] := theta[i] + perr * k[i] I alphaj;
end; { i}

end; (*LS*)

procedure design (al, a2, bl, b2: real; var sO, sl, rl, tO, tl: real);

if abs (b2/b 1) < 1 then
begin

tO := 0.0621596 I bl;
tl := 0.0476 I bl;
sO := (-1.33596 - al) I bl;
sl := (0.4493289 - a2) I bl;
rl :=b2/bl;

end;

else
begin

tl:=0.0621596/bl;
sl :=((0.44932*al)+(b2*a2)-(-1.33596*a2))/((a2*b l)+(al *b2)+(b2*b2/b 1));
s0:=-(((0.4492+(b2*s 1))/(a2*b 1))+ 1;
rl=((0.44932-(b2*sl))/a2;

procedure model (wkl, wk2, yml, ym2: real; var ym: real);
begin

ym := (0.0621596 * wkl) + (0.0476 * wk2) + (l.33596 * yml) - (0.4493289
* ym2);

end;

procedure action (tO, tl, sO, sl, rl, wk, wkl, yp, ypl, ukl: real; var uk: real);
begin

if abs (b2/b 1) < 1 then
uk := (tO * wk) + (tl * wkl) - (sO * yp) - (sl * ypl) - (rl * ukl);

else
uk:=((tl *wk)-(sO*yk)-(sl *ykl))/rl;

end;

61

{main program}
begin

randomize;
{initial value}

count:= 50;
wk := 1;
wkl := 0.0;
wk2 := 0.0;
ukl := 0.0;
uk2 := 0.0;
ypl := 0.0;
yp2 := 0.0;
yml := 0.0;
ym2 := 0.0;
delta := 0.98;

Initldent(ukl, uk2, ypl, yp2, theta, diagn, fi, offdiag);
if plots then

pltinit;

for i := 1 to NPoints do
begin

{create wk}
count :=count - 1;
if count = 0 then

begin
wk :=-wk;
count:= 50;

end;{of wk}

{calculate plant model (YM)}
model(wkl, wk2, yml, ym2, ym);

{calculate plant output (YP)}
yp := rdadc(13);

{Identification of plant parameters}
ident(yp, delta, theta, fi, diagn, offdiag);

bl := theta[l];
b2 := theta[2];
al := -theta[3];
a2 :=-theta[4];

62

{calculate controller parameters}
design(al, a2, bl, b2, sO, sl, rl, tO, tl);

{calculate plant input}
action(tO, tl, sO, sl, rl, wk, wkl, yp, ypl, ukl, uk);
if (uk > 8) then

uk := 8 +(random - 0.5) * 0.1;
if (uk < -8) then

uk := -8 +(random - 0.5) * 0.1;
{write new fi}

fi[2] := fi[l];
fi[4] := fi[3];
fi[l] := uk;
fi[3] := yp;

{read data and create array for plotting }
p_command[i] := wk;
p_out[i] := yp;
P _model[i] := ym;
p_inpt[i] := uk;
DataNum[i] := i;

{read new data}
uk2 := ukl;
ukl := uk;
yp2 := ypl;
ypl := yp;
wk2 := wkl;
wkl := wk;
ym2 :=yml;
yml :=ym;
endsmpl;
dacout(O, uk);
if plots then

pltupdate(wk, ym, yp, uk);
end; {iteration}

readln;
dacout(O, O);
if plots then

pltclose;
writeln('save? y(es) or n(o)= ');
readln(answer);
if (answer= 'y') or (answer= 'Y') then

begin
write('name for outfile = ');
readln(outname);
assign(outfile, outname);
rewrite(outfile);
for i := 1 to Npoints do

63

writeln(outfile, i : 4, ' ', p_out[i] : 8 : 5, ' ', p_model[il : 8 : 5, ' ',
p_command[i] : 8 : 5, ' ', p_inpt[i] : 8 : 5);

writeln(outfile, i: 4,' ', p_out[i] : 8: 5,' ', p_model[i] : 8: 5,' ',
p_command[i] : 8 : 5,' ', p_inpt[i] : 8 : 5);

close(outfile);
end;

end.

64

APPENDIXS

Turbo pascal program for PC 30.

unit pc30io l:
{$N+,E+}
interface

uses
pc30;

procedure dacout (chan: integer; val: double);
procedure dout (chan, val: integer);
procedure endsmpl;
procedure initpc30 (sampletime: integer);
function rdadc (chan: integer): double;
function rdcntr: integer;

implementation

procedure pc30error;
begin

halt;
end;

procedure dacout;
var

eIT: integer;
begin

if (val < -10.0) then
val := -10.0;

if (val > 10.0) then
val := 10.0;

val := (10.0 - val) I 20 * 4095;
err := da_out(chan, trunc(val));
if (err<> ok_30) then

begin
writeln('Pc30-error Da_out');
Pc30error;

end;
end;

procedure dout;
begin

d_out(chan, val);
end:

65

procedure endsmpl;
var

old_ val, new_ val: word;
begin

dout(O, 0);
old_ val := cntr_read;
new_val := cntr_read;
while (new_val <= old_val) do

begin
old_ val := new_ val;
new_ val := cntr_read;

end;
dout(O, 1);

end;

procedure initpc30;
const

two_MHz_to_lOKHz = 200;
ten_KHz_to_lKHz = 10;
pc30_base = $700;

var
err: integer;
ws: word;

begin
set_base(pc30_base);
err:= diag;
if (err<> ok_30) then

begin
writeln('Pc30 board not found or bad.');
Pc30error;

end;
if (err= ok_30) then

end;

begin
ad_prescaler(two_MHz_to_lOKHz);
ad_clock(ten_KHz_to_lKHz);
cntr_cfg(2);
ws := word(sampletime);
cntr_write(ws);
d_mode(O, 0, 1); { set third digital i/o's to input }
dacout(O, 0);

end;

function rdadc;
var

e1T, in_ val: integer;
begin

66

err := ad_in(chan, in_ val);
if (err <> ok_30) then

begin
writeln('Pc30-error rdadc.');
Pc30error;

end;
if (err= ok_30) then

rdadc := (in_ val - 2047 .5) * 10 I 4095;
end;

function rdcntr;
var

val: word;
begin

val := cntr_read;
rdcntr := integer(val);

end;

begin
initpc30(1 O);

end.

67

APPENDIX6

Turbo pascal program for plotting.

program plt;

uses
hgrglb, hgrlow, hgrlin, hgraxi, hgrstr, screen, crt, hgrlgn, hgrr3d;

const
Npoints = 500;

type
Datarray = array[l..Npoints] of real;

var
Input_file: text;
DataNum, p_out, p_model, p_command, p_inpt: datarray;
i: integer;
idevice: integer;

begin
assign(Input_file, 'a:\fixtl.dat');
reset(lnput_file);
I:= 1;
while not eof(lnput_file) do

begin
readln(Input_file, DataNum[I], p_out[I], p_model[I], p_command[i],

p_inpt[i]);
l:=l+l;

end;
close(Input_file);
writeln('enter O=screen, 2=plotter, 3=printer');
readln(idevice);

{Plotting WK, YP & YM }
INIPLT(idevice, normal, 1.0);

{graph 1}
·graphboundary(2000, 9000, 4000, 6000);
setlegend(2200, 6800, 550);
scale(O.O, Npoints, -4.0, 3.0);
setfont(bold, false);
axis(lOO.O, '10.0', ", 2, 2, '10.0', 'Value', 2);
polyline(DataNum, P _command, Npoints, 2, 0, 0, 0, 2);
writelegend('Set point', 2, 2, 2, 0, 2);
polyline(DataNum, p_out, Npoints, 4, 0, 0, 0, O);
writelegend('Terminal voltage', 4, 2, 2, 0, O);

{graph 2}
graphboundary(2000, 9000, 1000, 3000);
setlegend(2200, 3200, 550);
scale(O.O, Npoints, -20.0, 20.0);

68

setfont(bold, false);
axis(lOO.O, '10.0', 'Time', 2, 10.0, '10.l', 'Value', 2);
polyline(DataNum, P _inpt, Npoints, 2, 0, 0, 0, 0);
writelegend('Exciter input', 2, 0, 2, 0, 0);
endplt;

end.

69

APPENDIX 7

Turbo pascal program for adaptive controller using pole-zero method with
integrator.

program PZ_INTEG;
{$N+,E+}

uses
crt, pc30io 1, rtplot 1;

const
plots = true;
Npoints = 500;
npar = 4;
noff = 6;
n=4;

type
vecl = array[l..npar] ofreal;
vec2 = array[l..noff] of real;
Datarray = array[l..NPoints] of real;

var
delta, al, a2, bl, b2: real;
sO, sl, s2, rO, rl, tO, tl, t2: real;
wk, wkl, wk2, wk3, uk, ukl, uk2, ypl, yp2, yp: real;
ym, yml, ym2, ym3: real;
i, count: integer;
p_out, DataNum, P _command, p_inpt, P _model: Datarray;
theta, fi, diagn: vec 1;
offdiag: vec2;
answer: char;
answerl: char;
outfile: text;
outname: string;

{Initialise parameter identifications}
procedure Initldent (ukl, uk2, ypl, yp2: real; var theta, diagn, fi: vecl; offdiag:

vec2);
var

begin

PO, thetaO: real;
i: integer;

for i := 1 to npar do
begin

70

theta[i] := l;
diagn[i] := 100;

end; { i}

{form fi}
fi[l] := ukl;
fi[2] := uk2;
fi[3] := ypl;
fi[4] := yp2;

for i := 1 to noff do
offdiag[i] := 0.0;

end; {of Initident}

{Identify parameters}
procedure ident (yp, delta: real; var theta, fi, diagn: vec 1; var offdiag: vec2);

var

begin

kf, ku, i, j: integer;
perr, fj, vj, alphaj, ajlast, pj, w: real;
k: vecl;

pelT := yp;
for i := 1 to n do

perr := pelT - theta[i] * fi[i];
(*Calculate gain and covariance using U-D method*)

fj := fi[l];
vj := diagn[l] * fj;
k[l] := vj;
alphaj := 1.0 + vj * fj;
diagn[l] := diagn[l] I alphaj I delta;
if n > 1 then

begin
kf := O;
ku :=0;
for j := 2 to n do

begin
fj := fi[j];
for i := 1 to j - 1 do

begin (*f=fi*u*)
kf :=kf + 1;
fj := fj + fi[i] * offdiag[kf];

end;(*i*)
vj := fj * diagn[j]; (*v = D*f*)
k[j] := vj;
ajlast := alphaj;
alphaj := ajlast + vj * fj;
diagnLJ] := diagn[j] * ajlast I alphaj I delta;
pj := -fj I ajlast;

71

for i := l to j - l do
begin

(*kj+ 1 ;=kj+vj*uj*)
(*uj :=uj+pj*kj*)

ku := ku + 1;
w := offdiag[ku] + k[iJ * pj;
k[i] := k[i] + offdiag[ku] * vj;
offdiag[ku] := w;

end;(*i*)
end;(*j*)

end;(*if n> 1 then*)
(*update parameter estimates*)
for i := 1 to n do

begin
theta[i] := theta[i] + perr * k[i] I alphaj;

end; {i}

end; (*LS*)

{Determine controller parameters}
procedure design (al, a2, bl, b2: real; var sO, sl, s2, rO, rl, tO, tl, t2: real);
begin

tO := 0.00800497 I bl;
tl := 0.0237882 I bl;
t2 := 0.0043925736 I bl;
sO := (-2.009887787 + 1 - al) I bl;
sl := (1.347268086 +al - a2) I bl;
s2 := (-0.30119422 + a2) I bl;
rO := (b2/bl -1);
rl :=-b2/bl;

end; {of design}

procedure model (wkl, wk2, wk3, yml, ym2, ym3: real; var ym: real);
begin

ym := (0.00800497 * wkl) + (0.0237882 * wk2) + (0.0043925736 * wk3) +
(2.009887787 * yml) - (1.347268086 * ym2) + (0.30119422 * ym3);

end;

procedure action (tO, tl, t2, sO, sl, s2, rO, rl, wk, wkl, wk2, yp, ypl, yp2, ukl,
uk2: real; var uk: real);

begin
uk := (tO * wk) + (tl * wkl) + (t2 * wk2) - (sO * yp) - (sl * ypl) - (s2 * yp2)

- (rO * ukl) - (rl * uk2);
end;

72

{main program}
begin

{initial value}
randomize;
count:= 50;
wk := 1;
wkl := 0;
wk2 := O;
wk3 := 0;
ukl := 0;
uk2 := O;
ypl := O;
yp2 := O;
yml :=0;
ym2 :=0;
ym3 :=0;
delta := 0.98;

Initldent(ukl, uk2, ypl, yp2, theta, diagn, fi, offdiag);
if plots then

pltinit;

for i := 1 to NPoints do
begin

{create wk}
count:= count - 1;
if count = 0 then

begin
wk := wk + random;

{wk:=-wk;}
count:= 50;

end;{of wk}
if (wk > 2) then

wk := -1;

{calculate plant model (YM)}
model(wkl, wk2, wk3, yml, ym2, ym3, ym);

{ plant output (YP)}
yp := rdadc(13)

{Identification of plant parameters}
ident(yp, delta, theta, fi, diagn, offdiag);

bl := theta[l];

73

b2 := theta[2];
a 1 := -theta[3];
a2 := -theta[4];

(calculate controller parameters}
design(al, a2, bl, b2, sO, sl, s2, rO, rl, tO, tl, t2);

(calculate plant input}

action(tO, tl, t2, sO, sl, s2, rO, rl, wk, wkl, wk2, yp, ypl, yp2, ukl, uk2,
uk);

if (uk > 8) then
uk := 8 + (random - 0.5) * 0.1;

if (uk < -8) then
uk := -8 +(random - 0.5) * 0.1;

{write new fi}
fi[2] := fi[l];
fi[4] := fi[3];
fi[l] := uk;
fi[3] := yp;

{read data and create array for plotting }
p_command[i] := wk;
p_out[i] := yp;
P _model[i] := ym;
p_inpt[i] := uk;
DataNum[i] := i;

{read new data}
uk2 := ukl;
ukl := uk;
yp2 := ypl;
ypl := yp;
wk3 :=wk2;
wk2 := wkl;
wkl := wk;
ym3 :=ym2;
ym2 :=yml;
yml :=ym;

endsmpl;
dacout(O, uk);
if plots then

pltupdate(wk, ym, yp, uk);
end; {iteration}

readln;

74

dacout(O, 0);
if plots then

pltclose;
writeln('save ? y(es) or n(o)= ');
readln(answer);
if (answer= 'y') or (answer= 'Y') then

begin
write('name for outfile = ');
readln(outname);
assign(outfile, outname);
rewrite(outfile);
for i := 1 to Npoints do

writeln(outfile, i: 4,' ', p_out[i] : 8 : 5,' ', p_model[i] : 8 : 5,' '
p_command[i] : 8 : 5,' ', p_inpt[i] : 8 : 5);

close(outfile);
end;{ of i}

end.

75

APPENDIX 8

Turbo pascal program for Quinn Curtis.

unit rtplot 1;
interface
{$m 32000,0,655360}
{$N+,E+}

{***** IMPORTANT *****}
{The default directory for BGI files & fonts is c:\dosapp\tp\bgi}
{ie DEFAUL TBGIDIR in the file rtstdhdr.pas ='c:\dosapp\tp\bgi'}

uses
Graph, rtstdhdr, rtgsubs, rtgraph;

procedure pltinit;
procedure pltupdate (r, d, y, u: RealType);
procedure pltclose;

implementation

var
le, lf: rtintarraytype; {line colors & styles}
tags: tagarraytype; {tag names}
title: titletype; {scroll graph title}
units: tagtype; {scroll graph units}
ratchf: BOOLEAN; {staircase method}

/

{These variables are described in detail in the user manual}
timeint, sampleint, miny, rrtaxy: RealType;
rt, lalarm, halarm, stpnt: RealType;
nt, grid, xdecs, ydecs, updatenumber: INTEGER;

procedure pltinit;
var

i: integer;
begin

{ INITIALIZE THE GRAPHICS ADAPTER,}

{ SET UP 2 REAL TIME WINDOWS}
rtinitgraphics(defaultbgidir, 2, 1);

{ Size windows }
rtsetpercentwindow(rtstat[O], 0.01, 0.01, 0.99, 0.49);
rtsetpercentwindow(rtstat[l], 0.01, 0.50, 0.99, 0.99);

76

lc[OJ := 14;
lf(OJ := 0;
lc[l]:=l3;
lf[l] :=0;
lc[2J := 12;
lf[lJ := O;

{ set up individual parameters for each plot seperately }

{graphl}
timeint := 500;
sampleint := 1;
Il)iny := -3;
maxy :=3;
nt := 3;
rt:= O;
grid:= O;
ratchf := false;
stpnt := 0;
lalarm := -0.0;
halarm := 0.0;
title := 'Input, Desired & Actual outputs';
units := 'voltage';
tags[O] := 'Input';
tags[l] :='Desired Response';
tags[2] :='Actual Response';
rtinitwindowcolors(rtstat[O], 7, 0, 1, 4, 15, 15, 15);
rtsetupscrollgraph(rtstat[O], timeint, sampleint, miny, maxy, rt, nt, grid,

lalarm, halaim, stpnt,. 2, 0, title, units, tags, le, lf, ratchf);
rtborderwindow(rtstat[O], 15);

{graph 2}
timeint := 500;
sampleint := 1;
miny := -10;
maxy := 10;
nt := 1;
rt:= O;
giid := O;
ratchf := true;
stpnt := 0;
lalarm := 0;
halann := 0;
title := 'Control Action';
units := 'units';
tags[O] := ";
rtinitwindowcolors(rtstat[l], 7, 0, 1, 4, 15, 15~ 15);
itsetupscrollgraph(rtstat[l], timeint, sampleint, miny, maxy, rt, nt, grid,

lalarm, halarm, stpnt, 2, 0, title, units, tags, le, lf, ratchf);

77

rtborderwindow(rtstat[l], 15);
end;

procedure pltupdate;
var

yvalues: rtvaluearraytype; {hold current R-T value}
upd: boolean;

begin
upd := (updatenumber = 100);
yvalues[O] := r;
yvalues[l] := d;
yvalues[2] := y;
rtupdatescrollgraph(rtstat[O], yvalues);
if upd then

rtdrawalarmlines(rtstat[O]);

yvalues[O] := u;
rtupdatescrollgraph(rtstat[1], yvalues);
if upd then

rtdra walarmlines(rtstat[1]);

if upd then
updatenumber := 0

else
updatenumber := updatenumber + 1;

end;

procedure pltclose;
begin

rtclosegraphics(l);
end;

end.

78

APPENDIX 9

Turbo Pascal Program for simulations

program ADP _NO_INTEGRA TION;

Uses

hgrglb, hgrlow, hgrlin, hgraxi, hgrstr,

screen, crt, hgrlgn;

Const

NPoints=800;

npar=4;

noff=fr
: -. '

n=4;

Type

vecl = array[l..npar] of real;

vec2 = array[l..noff] of real;

Datarray = array[l .. NPoints] of real;

var

delta,al,a2,bl,b2,m2:real;

sO,sl,rl,tO,tl :real;

wk,wkl,wk2,uk,ukl,uk2,yp,ypl,yp2: real;

ym,yml,ym2: real;

change_pointl,change_point2,i,j,count,idevice: integer;

p_out,DataNum,P _command,p_inpt,P _model :Datarray;

79

theta,fi,diagn :vec 1;

offdiag :vec2;

answer: char;

answer 1 :char;

outfile:text;

outname:string;

procedure Plant(ukl,uk2,ypl,yp2 :real; var yp: real);

const

change_pointl = 125;

chanze_point2 = 375;

begin

if i < change_pointl then

yp :=(0.0621596*ukl)+(0.0476*uk2)+(1.33596*yp 1)-(0.4493289*yp2)+ le-10

else if (change_pointl < i) and (i <change_point2) then

yp := (0.0993*ukl) + (0.098*uk2)+(1.9213*ypl)-(0.9607*yp2)+ le-10

else

yp := (0.1215*ukl) +(0.0929*uk2)+(1.2348*ypl)-(0.4493*yp2)+ le-10;

{ change_pointl := 125;

change_point2 := 275;

begin

if j < change_pointl then

yp := (0.286165*ukl) +(0.146527*uk2)+(0.702897*ypl)

80

-(O. l 3533527*yp2)+ 1 e-1

else if (change_pointl <j) and G <change_point2) then

yp := (0.125192*ukl) + (0.0838624*uk2)+(1.09213972*yp 1)

-(0.30 l 194206*yp2)+ le-1

else

yp := (0.0410075*ukl) +(0.0225053*uk2)+(1.4742344*ypl)

-(0.548811 *yp2)+ le-10; }

end;

{ yp :=(0.0621596*ukl) + (0.0476*uk2) + (1.33596*ypl)

- (0.4493289*yp2);

end;}

procedure Initldent(ukl,uk2,ypl,yp2 :real;

.. V'!f theta,diagn,fi :vecl;offdiag: vec2);

var

PO,thetaO :real;

i:integer;

begin

for i:= 1 to npar do

begin

theta[i] :=1;

diagn[i] := 100;

end; {i}

{form fi}

fi[l]:=uk2;

81

fi[2]:=ukl;

fi[3]:=yp2;

fi[4]:=ypl;

for i:= 1 to noff do offdiag[i] :=0.0;

end; {of lnitlden t}

procedure ident(yp,delta:real; var theta,fi,diagn:vecl; var offdiag:vec2);

var

kf,ku,i,j : integer;

perr,fj, vj ,alphaj ,ajlast,pj, w :real;

k:vecl;

begin

pe~:=xp;

for i:=l ton do perr:=perr-theta[i]*fi[i];

(*Calculate gain and covariance using_U-D method*)

fj :=fi[l];

vj :=diagn[l]*fj;

k[l] :=vj;

alphaj:=l.O+vj*fj;

diagn[1] :=diagn[l]/alphaj/delta;

if n>l then

begin

kf:=O;

ku:=O;

for j:=2 ton do

begin

fj :=fi[j];

82

for i :=1 toj-1 do

begin (*f=fi*u*)

kf := kf+l;

fj:=fj +fi[i]*offdiag[kf];

end;(*i*)

vj :=fj*diagn[j]; (*v = D*f*)

k[j] :=vj;

ajlast := alphaj;

alphaj :=ajlast+vj*fj;

diagn[j] := diagn[j]*ajlast/alphaj/delta;

pj :=-fj/ajlast;

for i :=1 to j-1 do

begin

(*kj+ 1 ;=kj+vj*uj*)

(*uj :=uj-+:pJ*kj*) . ' " .

ku :=ku+l;

w:=offdiag[ku]+k[i]*pj;

k[i] :=k[i]+offdiag[ku]*vj;

offdiag[ku] :=w;

end;(*i*)

end;(*j*)

end;(*if n> 1 then*)

(*update parameter estimates*)

for i :=1 to n do

begin

theta[i] := theta[i]+perr*k[i]/alphaj;

end; {i}

end; (*LS*)

83

Procedure design(al,a2,bl,b2 :real; var sO,sl,rl,tO,tl :real);

begin

{ t0:=0.0954946/bl;

tl:=0.073072/bl;

s0:=(-1.2807623-al)/b 1;

s 1 :=(0.4493289-a2)/b2;

rl:=b2/bl;

t0:=0.0410075/bl;

tl:=0.0225053/bl;

s0:=(-1.4742344-al)/bl;

s 1 :=(0.5488116-a2)/b2;

rl:=b2/bl;}

t0:=0.0621596/bl;

tl:=0.0476/bl;

s0:=(-1.33596-al)/bl;

s1:=(0.4493289-a2)/bl;

rl:=b2/bl;

end;

Procedure model(wkl,wk2,yml,ym2: real; var ym:real);

begin

{ ym := (0.0954946*wkl)+(0.073072*wk2)+(1.2807623)-(0.5488116*ym2);

ym := (0.445934*wkl)+(0.1626039*wk2)+(0.44125*yml)-(0.049787*ym2);}

ym := (0.0621596*wkl)+(0.0476*wk2)

+(1.33596*ym 1)-(0.4493289*ym2);

end;

Procedure action(tO,tl,sO,sl,rl,wk,wkl,yp,ypl,ukl:real; var uk :real);

84

begin

uk:= (tO*wk) + (tl*wkl) - (sO*yp)- (sl*ypl) - (rl*ukl);

end;

{main program}

begin

{initial value}

count:=50;

wk:=l;

wkl:=0.0;

wk2:=0.0;

ukl:=O.O;

uk2:=0.0;

ypl:=O.O;

yp2:=0.0;

yml:=O.O;

ym2:=0.0;

delta:=0.98;

Initldent(ukl, uk2,yp 1,yp2,theta,diagn,fi,offdiag);

{ if plots then pltinit;

}

for i:= 1 to NPoints do

begin

{create wk}

85

count:=count-1;

if count=O then

begin

wk:=-wk;

count:=50;

end;{of wk}

{calculate plant model (YM)}

model(wkl,wk2,yml,ym2,ym);

{calculate plant output (YP)}

{if simulate then} plant(ukl,uk2,ypl,yp2,yp);

{if (yp>18) then yp:=18+(random-0.5)*0.1;

if (yp<-18) then yp:_=:-18+(ra!1~om-0.5)*0.l; }

{ else yp:=rdadc(13);}

{Identification of plant parameters}

ident(yp,delta,theta,fi,diagn,offdiag);

bl:=theta[l];

b2:=theta[2];

al:=-theta[3];

a2:=-theta[4];

{calculate controller parameters}

design(al ,a2,b 1,b2,s0,s 1,rl ,tO,tl);

{calculate plant input}

action(tO,tl,sO,s 1,rl, wk, wkl,yp,yp 1,ukl ,uk);

86 -

if (uk>8) then uk:=8{ +(random-0.5)*0. l };

if (uk<-8) then uk:=-8{ +(random-0.5)*0. l };

{write new fi}

fi[2J:=fi[l];

fi[4]:=fi[3];

fi[l]:= uk;

fi[3]:=yp;

{read data and create array for plotting }

p_command[i] :=wk;

p_out[i] :=yp;

P _model[i] :=ym;

p_inpt[i] :=uk;

DataNum[i]:=i;

{read new data}

uk2:=ukl;

ukl:=uk;

yp2:=ypl;

ypl:=yp;

wk2:=wkl;

wkl:=wk;

ym2:=yml;

yml:=ym;

{ if not(simulate) then endsmpl;

if not(simulate) then dacout(O,uk);

87

if plots then pltupdate(wk,ym,yp,uk);

if not(plots) then

writeln('al: ',a1:6:4,' a2: ',a2:6:4,' bl: ',bl:6:4,' b2: ',b2:6:4);

end; {iteration}

{ readln;

if not(simulate) then dacout(0,0);

if plots then pltclose;

writeln('save? y(es) or n(o)= ');

readln(answer);

if (answer='y') or (answer='Y') then

begin

write('name for outfile = ');

readln(outname);

assign(outfile,outname);

rewrite(outfile);

for i:=l to Npoints do

writeln(outfile,i:4,' ',p_out[i]:8:5,' ',p_model[i]:8:5,' '

,p_command[i]:8:5,' ',p_inpt[i]:8:5);

writeln(outfile,i:4,' ',p_out[i]:8:5,' ',p_model[i]:8:5,' '

,p_command[i] :8:5,' ',p_inpt[i]:8:5);

close(outfile);

end;}

{Plotting WK, YP & YM }

writeln('enter O=screen, 2=plotter, 3=printer');

readln(idevice);

INIPL T(idevice, normal, 1.0);

88

{ iniplt(O, normal, l);}

graphboundary(2000, 6000, 4000, 6500);

setlegend(2200, 6950, 550);

scale(O.O, Npoints, -3.0,3.0);

setfont(bold,false);

axis(200.0,' 10.0' ," ,2,2.0, '10.0', 'Value' ,2);

polyline(DataNum, P _command, Npoints, 2, 0, 0, 0, 2);

writelegend('WK' , 2, 0, 2, 0, 2);

polyline(DataNum, p_out, Npoints, 0, 0, 0, 0, 0);

writelegend('YP' , 0,0 ,2, 0, 0);

{ polyline(DataNum, p_model, Npoints, 5, 0, 0, 0, O);

writelegend('YM' , 5 ,0 ,2, 0, 0); }

graphboundary(2000, 6000, 100~! 30~0);:

setlegend(2200,3200, 550);

scale(O.O, Npoints, -9.0,9.0);

setfont(bold,false);

axis(l00.0,'10.0','Data Number',2,3.0, '10.1', 'Value',2);

polyline(DataNum,P _inpt, Npoints, 2, 0, 0, 0, 0);

writelegend('uk' , 2, 0, 2, 0, O);

endplt;

END.

89

REFERENCES

1. Chalam,V.V., Adaptive control systems techniques and applications, in

Electrical En&ineerin& and Electronics/39, Marcel Dekker Inc,(1987).

2. Egardt, B., Stability of adaptive colltrollers, Springer-Verlag, Berlin (1979).

3. Astrom, K, J., Design principles for self-tuning regulators, in Methods and

Applications of Adaptive Control, (Ubenhauen, ed), Springer-Verlag, Berlin

pp.1-20,(1980).

4. Iserman, R., Parameter adaptive control algorithms-a tutorial, Automatica,

~:pp 513-528,(1982).

5. Astrom, K. J., Wittenmark, B., Self tuning controllers based on pole-zero

placement, Proc. IEE, 127, Part D: pp 120-130,(1980).

6 Astrom, K. J., Wittenmark, B., Computer-controlled systems theory and

design, Prentice-Hall, (1990).

7 Astrom, K. J., Wittenmark, B., Practical issue in the implementation of self­

tuning control, Automatica, 2..Q: pp 595-605,(1984).

8 The',G., Advance control! lecture notes, University of Tasmania, (1993).

9 Astrom, K.,Hagglund, T., Automatic tuning of simple regulator with

specifications on pphase and amplitude margins, Automatica, 20: pp 645-

651,(1984).

90

BIBLIOGRAPHY

1 Clarke, D., W., Introduction to self-tuning controllers, in Self-tuning and

adaptive control(Harris, C., Billings, S.,A), Peter peregrinus,(1981).

2 Clarke, D., W., Implementation of self tuning controllers, in Self-tuning and

adaptive control(Harris, C., Billings, S.,A), Peter peregrinus,(1981).

3. Astrom, K. J., Wittenmark, B.,On self tuning regulators, Automatica, 2: pp

185-199,(1973).

4 Jacobs, 0., L., R., Introduction to adaptive control,in Self-tuning and

adaptive control(Hanis, C., Billings, S.,A), Peter peregrinus,(1981).

5 Clarke, D., W., Gawthrop, P., J., Self-tuning control, Proc. IEE, lli: 929-

934(1975).

6. Astrom, K. J., Wittenmark, B., Simple self tuning controllers,in Methods

and Applications of Adaptive Control, (Ubenhauen, ed), Springer-Verlag,

Berlin pp.1-20,(1980).

7 Peterka, V., Predictor-based self-tuning control, Automatica, 20: pp 39-

50,(1984).

91

