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ABSTRACT 

Insulin resistance is a disease characterised by an inability of the body to effectively respond 
to insulin in terms of increased glucose uptake. However, in most cases, the response to 
exercise to increase glucose uptake is largely unaffected in insulin resistance. This thesis 
focuses on the differences and similarities between these two stimuli with a view to further 
understanding the cause of insulin resistance and the possibility of developing new treatments 
for this disease. 

There is evidence to suggest that the ability of insulin and muscle contraction to increase 
muscle glucose uptake is due in part, to their ability to increase blood flow, in particular 
microvascular perfusion. Accordingly, the hyperinsulinaemic euglycaemic clamp technique, 
in conjunction with electrical stimulation to simulate exercise, was used in anaesthetised rats 
to examine factors which control muscle microvascular perfusion. Additionally, an 
assessment was made of how microvascular perfusion related to glucose uptake and insulin 
resistance in skeletal muscle, the main site where insulin normally acts to increase glucose 
uptake. 

This study used two techniques to measure changes in muscle microvascular perfusion. The 
first, an established method involving the capillary endothelial metabolism of infused 1-
methylxanthine; the second, a relatively new technique, contrast enhanced ultrasound (CEU), 
which has been adapted from its use in measuring microvascular perfusion in heart. 

A component of this thesis applied model systems to validate the use of CEU to measure 
microvascular perfusion and showed that this was independent of changes in bulk flow, and 
that CEU can be used to measure changes in skeletal muscle microvascular perfusion 
regardless of the microvascular architecture involved. 

In another component, again using CEU, changes in microvascular perfusion in response to 
electrical stimulation were measured. The rapid increase in femoral blood flow in response to 
muscle contraction was found to reverse quickly, however microvascular perfusion remained 
enhanced up to 60 min after contraction. In addition, it was also shown that while insulin­
mediated vasodilation was nitric oxide-dependent and thus was indicative of the main 
mechanism by which insulin causes vasodilation in muscle, a local infusion (via the epigastric 
artery) of a nitric oxide synthase inhibitor during contraction did not block microvascular 
perfusion, even though it inhibited the accompanying increase limb (femoral arterial) blood 
flow. The nitric oxide synthase inhibitor blocked-35% of the contraction-mediated increase 
in muscle glucose uptake, but by not affecting the accompanying increase in microvascular 
perfusion, the results suggested that a non-nitric oxide compensatory mechanism (such as 
adenosine, potassium ions, or neural inputs) may be involved. 

Interleukin-6 (IL-6) is released by muscle during exercise and thought to have a role in 
glucose homeostasis. Its involvement in insulin resistance is controversial and its effects on 
insulin-mediated changes were thus explored. The infusion of this cytokine during a 
hyperinsulinaemic euglycaemic clamp suppressed the insulin-mediated increase in 
microvascular perfusion. Interestingly, this inhibition did not result in insulin resistance as 
IL-6 was able to increase muscle glucose uptake through its own signalling pathway. 
However, it is possible that elevated plasma IL-6 when maintained over longer periods may 
lead to insulin resistance due to the inhibition of insulin's microvascular effects. 

Because chronically elevated levels of endothelin-1 (ET-1) may also be implicated in insulin 
resistance of muscle through actions on the microvasculature, another component of this 
thesis explored the acute effects ofET-1 in vivo. Infusion ofET-1 into anaesthetised rats in 
conjunction with insulin led to a hyperinsulinaemic state, found to be due to a decrease in 
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insulin clearance. Muscle insulin resistance also resulted and was concluded to result from an 
attenuation of insulin-mediated increase in microvascular perfusion. 

Collectively, the findings of this thesis confirm an important role for microvascular perfusion 
in mediating the stimulatory responses of both insulin and exercise on muscle glucose uptake. 
In most cases there was a close association between increases in microvascular perfusion and 
glucose uptake. However, contraction-mediated microvascular perfusion was maintained even 
when muscle glucose uptake was blocked by infusion of a nitric oxide synthase inhibitor, 
suggesting a non-vascular myocyte source of nitric oxide that is involved in contraction­
mediated glucose uptake. ET-1 was found to play an important part in opposing the insulin­
mediated increases in microvascular perfusion, thus consistent with growing evidence that 
ET-1 may be a major contributor to insulin resistance in muscle. Finally there are data to 
suggest that in the short term, the body may be able to compensate for a decrease in insulin­
or contraction-mediated microvascular perfusion, but that the compensatory mechanisms may 
unsustainable in the longer term and insulin resistance may develop because of the reduced 
microvascular perfusion. 
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Introduction 

1.1 INTRODUCTION 

In Australia, there are currently 699 600 people (3.5% of the population) medically 

diagnosed with diabetes mellitus, 83% of these having type 2 diabetes, with an annual 

health cost of one billion dollars (1). In the United States of America 7% of the 

population (20.6 million people) has medically diagnosed type 2 diabetes, with 

another 54 million people diagnosed with pre diabetes. This results in an annual 

expenditure in the United States of 92 billion dollars in diabetes treatment and care <2). 

The World Health Organisation estimates that more than 180 million people 

worldwide have diabetes, 90% of which have type 2 diabetes, and this figure is 

expected to double by 2030 (3). 

Type 2 diabetes is a chronic disease characterised by the body's inability to 

effectively utilise insulin <3). Type 2 diabetes is related to other disease states such as 

cardiovascular disease and renal diseases, and over time may cause damage to the 

eyes (diabetic retinopathy), kidney (diabetic nephropathy), nerves (diabetic 

neuropathy), heart (resulting in poor blood circulation and possible limb amputation), 

as well as increasing the risk of heart disease and stroke <3>. Although traditionally 

known as a disease which occurs in the older population (over 45 years of age), as 

rates of obesity and inactivity (major risk factors for type 2 diabetes) increase, people 

are being diagnosed with the disease as early as adolescence <4>. 

Type 2 diabetes was identified as an Australian national health priority area in 1996 

(ll. Research into the prevention and management of the disease is important in order 

to improve the quality of life and to increase life expectancy for people with type 2 

diabetes. 

1.2 THE DEVELOPMENT OF INSULIN RESISTANCE 

Discovered in the 1920's, insulin is a 5808 Da protein which has various metabolic 

effects on numerous cells in the body. Undoubtedly its most important role is that of 

glucose metabolism and homeostasis. 
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Insulin resistance is defined as the failure of insulin, at relatively physiological 

concentrations, to exert its normal effects and results from a decrease in glucose 

homeostasis, hyperinsulinaemia and elevated circulating free fatty acid levels <5>. 

Insulin resistance develops from a progressive decrease in glucose control as insulin's 

ability to increase muscle glucose uptake and suppress hepatic glucose production are 

impaired leading to an increase in fasting plasma glucose concentrations. Impaired 

insulin secretion may occur concomitantly. Even so, persistent hyperglycaemia may 

then require the ~ cells of the pancreas to function at near maximal levels to maintain 

normoglycaemia. As ~ cell function declines, glucose tolerance is also diminished 

resulting in type 2 diabetes <6>. 

Insulin resistance and type 2 diabetes is associated with hypertension (7), endothelial 

dysfunction (associated with increased plasma concentrations of endothelin-1 and 

impaired nitric oxide function) (S) and increased inflammation (associated with 

increased levels of tumour necrosis factor -a and interleukin-6) <9>. However the 

condition is improved with exercise <10>, suggesting that insulin and contraction 

regulate glucose metabolism through different pathways. 

What makes insulin resistance and type 2 diabetes such a difficult disease to 

investigate is that there are multiple causes. Insulin resistance appears to result from a 

combination of factors which differ from patient to patient and depend on their level 

of fitness, weight, genetic predisposition and diet to name only a few. However, it is 

a common feature of the disease that skeletal muscle insulin resistance is a major 

contributor to the development of type 2 diabetes <11
-
13>. There are three main areas to 

be considered when discussing insulin mediated glucose uptake. The delivery of 

insulin and glucose to the site of disposal, movement across the interstitium from the 

vasculature to the cell and the insulin signalling cascade for glucose uptake which 

occurs once insulin has bound to its receptor on the cell surface <14>. This thesis 

focuses on factors which influence the delivery of insulin and glucose to the skeletal 

muscle, and how this affects glucose uptake in that tissue. 
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1.3 STRUCTURE OF THE MICROVASCULAR VASCULAR SYSTEM/CAPILLARY 
ARCHITECTURE 

The connection between arteries and veins, the capillaries, were discovered in the 17th 

century, however their physiological behaviour had not been investigated until the 

1900's. Danish scientist August Krogh demonstrated that capillaries are 

independently controlled units, regulated by their metabolic requirements 05>. Krough 

<15
> showed that at rest, only a small percentage (-33%) of the capillaries are perfused, 

and that a small level of activity greatly increased this percentage. He demonstrated 

in the frog tongue that capillary dilation is not a passive process resulting from an 

increase in arterial pressure and that capillaries control their own level of perfusion by 

relaxation of the contractile elements of the capillary walls <15>. 

The arteries are classified according to their size and branching sequence and are 

important in the control of capillary perfusion <16
• 

1
7). The first and second order 

arterioles are larger vessels, greater than 50 µm in diameter with corresponding 

venules. These larger vessels control resistance and consequently blood flow in the 

tissue and are termed feed arterioles <16
• 

18>. From these arterioles branch 3rd order 

transverse arterioles which run across the skeletal muscle fibres, and are not paired 

with a venule. They play a primary role in the control of microvascular blood flow 

distribution, as do the 4th order arteriole <16
• 

1
7). The 4th order branch arterioles are 

approximately 25 µm in diameter, and give rise to between three and eight 5th order 

arterioles which may be as small as 10 µm in diameter. The 5th order inflow arterioles 

each control a capillary 'module' or 'unit' which are architecturally similar in nature, 

and consist of between 20-30 capillaries 06• 19
• 
20>. These capillaries run parallel to the 

muscle fibres for a distance of approximately 1 mm before entering the muscle fibres, 

each of which is perfused by at least four capillary modules <16
•
20>. When capillaries 

are recruited, the entire module becomes perfused, not just a portion, and this is 

controlled by the transverse and branch arterioles from which the capillary module 

arises (16, 20). 

The structure and number of modules can differ between muscle types and depending 

on the energy requirements of the tissue. Williams and Segal (18>, showed differences 

in the soleus, a slow twitch red fibre type muscle, and the extensor digitorum longus 
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(EDL), a fast twitch white fibre muscle in terms of capillary perfusion. They found 

that the feed artery pressure was higher and that the segment length of the 

microvascular structure was 50% greater in the EDL than the soleus. The soleus also 

had a decreased extraction of oxygen at rest and didn't exhibit the same functional 

hyperaemia as the EDL muscle. The EDL also exhibits a greater blood flow response 

to exercise which correlated with greater vascular conductance demonstrating the 

relationship between tissue structure and function. 

At rest, approximately one third of capillaries are perfused <15> and as much as 50% of 

total resistance to blood flow resides in the feed arterioles supplying the tissue <18>. 

Control of microvascular perfusion appears to be a local response, with local 

application of potassium, phenylephrine, acetylcholine, adenosine and halothane 

shown to induce vasoconstriction or vasodilation in upstream arterioles (lG, 17). 

Depending on the stimulus, increased perfusion is controlled by different signals. 

Due to its rapid nature, much research has focused on exercise induced increases in 

capillary flow and functional hyperaemia. It is thought that exercise increases 

capillary perfusion by transmitting membrane potential changes along gap junctions 

in the vessel walls to upstream arterioles <11>. Different mechanisms however, are 

responsible for insulin mediated increases in blood flow and capillary recruitment, as 

the increase in perfusion occurs over a longer period of time. The mechanisms 

leading to exercise and insulin mediated increases in capillary perfusion are discussed 

in section 1.5 and 1.6 

1.4 MEASUREMENT OF MICROVASCULAR PERFUSION 

A number of methods have been used to measure total blood flow such as venous 

occlusion plethysmography, radioactive microspheres, thermodilution, and positron 

emission topography, however measurements of capillary perfusion which are 

separate to total blood flow changes are more difficult to obtain. Outlined below are 

four methods which are used to measure microvascular blood flow. 
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1.4.1 1-methylxanthine metabolism 

A biochemical method has been developed by Rattigan et al. <21> which measures the 

metabolism of exogenously added 1-methylxanthine (1-MX), a substrate for the 

capillary bound enzyme xanthine oxidase. Xanthine oxidase is concentrated in the 

capillary endothelial cells of various tissues including the heart, kidney, intestine, 

liver, lung and skeletal muscle, with only very small amounts found in the 

endothelium oflarger vessels <22
-
24>. 1-MX is not vasoactive and is metabolised by 

xanthine oxidase to form a single product, 1-methylurate (1-MU). The extent of 1-

MX metabolism is indicative of the capillary surface area. By determining the 

arterio-venous differences across the hindlimb of 1-MX metabolism to 1-MU (by high 

performance liquid chromatography) we are able to assess any changes in the 

perfused state of the microvasculature <21>. One of the limitations of this technique is 

that it is restricted to use in animals, as the arterial concentrations of 1-MX do not 

reach high enough levels without the competitive inhibition ofxanthine oxidase by 

oxypurinol, which is not possible in humans <21
• 
25>. 

The advantage of the 1-MX method is that it measures changes in the perfusion of the 

microvasculature and is not affected by total flow changes. This was demonstrated by 

Rattigan et al. <21> when comparing a hyperinsulinemic euglycaemic clamp and 

epinephrine infusion in vivo. Insulin (10 mU.kg-1.min-1
) significantly increased 1-MX 

metabolism, with no change in 1-MX extraction, compared to saline. This increase in 

microvascular perfusion was also accompanied by a concomitant increase in total 

blood flow. To show the dissociation between total flow and microvascular flow on 

1-MX metabolism, the vasodilator epinephrine (0.125 µg.min-1.kg-1
) was infused to 

simulate the total flow increase seen by insulin. Epinephrine had no effect on hindleg 

1-MX metabolism compared to saline, and significantly decreased 1-MX extraction 

proportionate to the increase in total flow. This study demonstrated that changes in 

total flow will not necessarily lead to changes in microvascular perfusion and that 

these two parameters can be differentiated by the 1-MX method. 

6 



Introduction 

1. 4. 2 Contrast Enhanced Ultrasound 

The use of contrast enhanced ultrasound (CEU) has been adapted from its application 

in cardiovascular imaging for use in imaging the skeletal muscle microvasculature <26
• 

21>. The technique involves the infusion ofphospholipid or albumin microbubbles 

systemically into the circulation. The microbubbles are visualised by a linear array 

transducer (connected to an ultrasound system) positioned over the area of interest, 

such as the hindlimb skeletal muscle. The microbubbles are simultaneously imaged 

and destroyed with a pulse of high-frequency sound wave. The acoustic signal (pulse) 

transmitted during the destruction of these microbubbles is recorded and quantified as 

acoustic intensity. Once the microbubbles under the probe have been destroyed the 

area is replenished with microbubbles from the systemic circulation. By varying the 

amount of time between pulses a measure of microvascular volume may be 

calculated. Shorter pulsing intervals (0-1 s) are considered to be indicative of larger 

vessel (>100 µm in diameter) perfusion, with the longer pulsing intervals (10-20 s) 

allowing the greatest amount of refill, reflecting the microvascular blood volume <28>. 

The signal received from the larger vessels (shorter pulsing interval) is subtracted 

from the signal from the longer pulsing intervals to obtain a true measure of 

microvascular blood volume. The rate at which the capillary vessels fill may also be 

assessed and a measure of microvascular blood flow may be determined by 

multiplying the microvascular volume and microvascular fill rate. 

Supporting the results obtained with the 1-MX method, CEU has also confirmed 

insulin's ability to increase microvascular perfusion. Zhang et a1.<29> compared the 1-

MX and CEU techniques during hyperinsulinemic euglycaemic clamps in rats at 1.5, 

3 or 10 mU.min-1.kg-1 and showed an increase in capillary perfusion with both 

methods at each dose, regardless of changes in total blood flow. Dawson et al. <28> 

showed that insulin administration and contraction results in over a two fold increase 

in microvascular volume, with contraction accompanied by a five-fold increase in red 

blood cell velocity (insulin showed no change). Also, the calculation of 

microvascular blood flow showed that the increase in microvascular perfusion was 

greater than the changes in femoral artery blood flow <28>. These data lends support to 

the notion that microvascular perfusion and total blood flow are controlled separately 

and that this method is able to distinguish between the two <28>. This technique is 
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relatively non invasive in comparison to other methods, and allows multiple 

measurements of capillary perfusion over a time course, as opposed to the 1-MX 

method which is only used to obtain an end point measurement. 

1.4.3 Laser Doppler jlometry 

Laser Doppler flometry (LDF) has been adapted for use in skeletal muscle from its 

origins in measuring skin microvascular flow <30>. The LDF probe is made up of 

optical fibre light guides that emit low power laser light into the surrounding tissue. 

The light is scattered by reflective components with in the tissue, and by moving 

components (the red blood cells) and some of this light is reflected back to the probe. 

This received light is processed against the light that was emitted and the Doppler 

shift or volume of flow in the tissue is calculated. This method is highly sensitive to 

movement, and also very specific to its surrounding tissue, however only changes in 

movement, and not exact volume measurements can be determined using LDF <30>. 

Seme et al. <31> used LDF to show that microcirculatory blood flow increased in the 

skin during hyperinsulinaemia, and de Jongh et al. <30> showed a similar result in both 

the skin and muscle. Clark et al. <32
) showed that an increases in LDF signal 

correlated with increased metabolism (as shown by oxygen consumption) in the 

erythrocyte-perfused rat hindlimb. In this same study, the LDF signal showed 

increases in microvascular perfusion during a hyperinsulinemic euglycaemic clamp 

which preceded increases in total flow changes by 30 min <32>. However, in a separate 

study, Clark et al. <33> used a series of models made from polymer tubes, to show that 

the vessel architecture and the flow distribution within the vessels may in fact alter the 

LDF signal, showing that the LDF signal measures mainly non-vectorial cell speed, 

and not cell number. 

1.4.4 Microdialysis 

Microdialysis is a technique used to monitor the chemical components of the fluid in 

the extracellular space, and has the advantage of identifying changes in biochemical 

composition prior to changes in the systemic circulation. The microdialysis probe is a 

small, permeable thin walled tubing which is inserted in to the tissue of interest ( eg. 
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skeletal muscle). A perfusion fluid is pumped through the microdialysis probe at a 

low flow rate allowing the infused solution to equilibrate with the local environment 

of interest. Changes of substances in the tissue surrounding the probe are reflected in 

the collected perfusate. 

Newman et al. <34> used microdialysis to determine the interstitial concentrations of 

glucose and lactate during the infusion of various vasoconstrictors in the constant 

flow perfused rat hindlimb. They showed that increased capillary perfusion enhances 

the exchange of glucose and lactate by improving the supply of glucose and the 

removal of lactate from the interstitium. Gudbjomsdottir et a1.<35> used microdialysis 

to demonstrate a decreased capillary perfusion in type 2 diabetic subjects which was 

accompanied by a decreased capillary permeability for glucose during insulin 

infusion, resulting in a low level of passage for glucose and insulin across the 

interstitial space. 

1.5 THE HAEMODYNAMIC EFFECTS OF INSULIN 

1.5.1 Insulin and macrovascular blood flow 

Type 2 diabetes patients experience a number of problems related to blood flow that 

include hypertension, heart disease (stroke, angina, oedema, ischaemic heart disease), 

peripheral vascular disease and other circulatory disorders(!). It is thought that 

insulin's ability to increase blood flow is an important mediator of its ability to 

increase glucose uptake, particularly in the skeletal muscle which makes up 40% of 

the weight of man, and is responsible for over 85% of glucose disposal during 

hyperinsulinaemic euglycaemia (II). 

Insulin's haemodynamic effects were first realised in 1939 when Abramson and 

colleagues <36) found that very high doses of insulin ( 40-280 units) caused increases in 

blood flow (measured by plethysmographic method) in the human forearm, hand and 

leg in patients with schizophrenia. They found that insulin increased blood flow up to 

8 times the basal flow rate, and that the administration of glucose (without insulin) 

also leads to a transient increase in blood flow. Since this time, there have been many 

studies assessing insulin's impact on total blood flow using various techniques, 
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undertaken in animals <29
• 
3741

) and humans <42
-
50

) with mixed results. Liang and 

colleagues <37) found femoral blood flow (measured by radioactive microspheres) 

doubled after insulin (4 or 8 mU.kg-1.min-1
) administration in the canine. Baron and 

Brechtel <43
) showed a 60% increase in leg blood flow (measured by thermodilution 

method) where systemic insulin reached 212 pmol.r1
, and Tack et al. <5o) showed a 

~124 ± 51 % increase in forearm blood flow (measured by venous occlusion 

plethysmography) during local insulin infusion into the brachial artery where forearm 

insulin concentrations reached ~540 pmol.r1
• In contrast, Yki-Jarvinen and 

colleagues <48
) found that insulin at an average systemic level of 61 µU.mr 1

, with or 

without glucose infusion, had no effect on the rate of blood flow (measured by 

capacitance plethysmography) across the forearm. Using the same technique to 

measure blood flow, Ebeling et al. <46
) also found no increase in forearm blood flow 

using low dose insulin infusion (1.5 mU.kg-1.min-1
) in both trained athletes and 

sedentary subjects. 

Under the more physiological conditions of a mixed meal, Hast et al. <51
) found 

forearm blood flow increased after a high carbohydrate and protein meal while 

Fugmann and colleagues <52
) found that both a normoglycaemic hyperinsulinaemic 

clamp and a mixed meal similarly increased calf blood flow (measured by venous 

occlusion plethysmography). The vasodilatation induced by the mixed meal however, 

was greater than during hyperinsulinaemia, even though insulin levels were lower. 

The author suggested that muscle nerve sympathetic activity and haemodynamic 

changes are stimulated by insulin, however the mechanisms involved in digestion, as 

apposed to a superficial insulin infusion, may play a role in increasing blood flow <52
). 

Insulin's effect on flow is still a controversial area, with the discrepancies in data 

being attributed to insulin dose, the method of administration and the length of time 

the subject is exposed to insulin <53
\ factors which have been shown to be the main 

determinants of insulin's effect on blood low. Regardless of the controversy 

surrounding insulin and total blood flow, it was suggested by Baron <54
), and 

confirmed by subsequent studies <21
• 
28

• 
29

• 
55

• 
56

), that the effect of insulin to increase 

total blood flow and the effect of insulin to increase microvascular perfusion 

(principally in the muscle) are two separate and unrelated events. The structure of the 

arteriole and capillary network (described in section 1.3) help to demonstrate that the 
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capillary perfusion is not necessarily controlled by changes in total flow and mean 

arterial pressure. 

1. 5.2 Insulin and microvascu/ar blood flow 

Rattigan et al. <21
) demonstrated that there are alternate blood flow routes in muscle, 

and that an increase in total flow alone will not lead to an increase in glucose uptake. 

In vivo experiments were performed, using a 10 mU .min-1.kg-1 hyperinsulinemic 

euglycaemic clamp in the rat, which increased femoral blood flow (measured by a 

Transonic™ flow probe) by 80%. Insulin increased 1-MX metabolism (described in 

section 1.4.1) by 50% over basal showing an increase in capillary perfusion, which 

was also accompanied by an increase in glucose uptake. The infusion of epinephrine 

was used as a control, and the dose was matched to cause a similar increase in femoral 

blood flow to that caused by insulin. Epinephrine did not increase 1-MX metabolism 

above basal, and did not lead to an increased glucose uptake, demonstrating that 

increased microvascular perfusion and not total flow, is important for insulin 

mediated glucose uptake. This was further supported by work from Zhang et al. <29
) 

and Vincent et al. <56
) who showed insulin ability to increase microvascular perfusion 

occurred prior to its effects on glucose uptake and total flow. Using the 1-MX 

method and contrast enhanced ultrasound to measure microvascular perfusion Zhang 

and colleagues <29
) showed that increases in capillary perfusion occurred at very low 

doses of insulin (1 mu.min-1.kg-1
) in the absence ofa total blood flow increase and 

without an increase in glucose uptake. Glucose uptake increased in a dose dependent 

fashion (from 1 to 10 mU.min-1.kg-1
), however microvascular recruitment appeared to 

be maximal at 1 mU.min-1.ki1
• In this study, the microvascular recruitment was 

reversed by 30 min post-insulin infusion. Using contrast enhanced ultrasound, 

Vincent and colleagues <56
) demonstrated that insulin recruited capillaries within 5-10 

min of its infusion, preceding both activation of the insulin signalling pathways and 

increased glucose uptake. 

These data may explain the discrepancies regarding total flow changes between 

studies, as insulin may act to increase microvascular perfusion (particularly at low 

doses such as during the studies of Ebeling et al.<46
) and Yki-Jarvinen <4s» and glucose 

uptake, but may not increase total flow. 
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1.6 THE HAEMODYNAMIC EFFECTS OF EXERCISE 

1. 6.1 Exercise mechanisms to increase microvascular flow 

Exercise, even small amounts, rapidly increases blood flow and microvascular 

perfusion in the working muscles <57
-
59

>_ This appears to be a local response, as 

contraction of a just a single muscle fibre or multiple fibres, will result only in 

vasodilation of the vessel region which is overlying the active portion of muscle <60>. 

The exact mechanism of how this phenomenon occurs so rapidly (less than 2 s) is still 

largely unknown, however the speed at which the initial response occurs suggests that 

the mechanism occurs too slowly to be due to conduction in the nerve fibres and too 

rapidly to be due to a vasodilator substance (61>. This is not to say that vasodilation is 

not maintained by these factors, however the initial response is thought to be 

produced by the capillaries themselves and then propagated via gap junctions 

centrally located in the vessel wall, in to the larger arterioles resulting in vasodilation 
(16, 17, 59, 61) 

Vasodilation in response to exercise contains three components <60
• 

62>. Firstly, the 

initial lag time between the start of contraction and the initial increase in vessel 

diameter, which may be representative of the initial signal from the capillaries via the 

vessel wall. Secondly, the early (and sometimes transient) peak and increase in 

arteriolar diameter, and thirdly the slow increase in arteriolar diameter which attains 

steady state in 80-100 s <60
• 

62
). These later phases may be mediated by vasodilator 

substances such as nitric oxide, prostaglandins, acetylcholine or adenosine (63>. 

Wunsch et al. (57) assessed this issue in primary arterioles isolated from the soleus and 

gastrocnemius muscles of Sprague-Dawley rats, which were perfused with various 

concentrations of adenosine, potassium, acetylcholine or the nitric oxide donor 

sodium nitroprusside. All of these substances caused the arteriole to vasodilate, but 

this effect took over 4 s to occur. This time frame is too slow to be responsible for the 

initial hyperaemia caused by exercise, but these substances may be involved in 

maintaining microvascular perfusion throughout exercise. That particular study was 

undertaken in primary arterioles, however the vasodilitary response is propagated 

upstream from the terminal arterioles, therefore the time taken for vasodilation to 

occur in this study may be different to the time taken for the signal to arise in the 

terminal arterioles and be propagated upstream. 
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The increase in blood flow is also mediated by metabolism and it has been shown that 

the metabolic needs of the muscle, such as oxygen consumption, are tightly correlated 

with blood flow <64
• 

65>. At rest, blood flow to the muscles is directly related to the 

percentage of slow-twitch oxidative fibres in the muscle. During exercise, while 

blood flow increases to most working muscles, the increase is proportional to the 

percentage of fast twitch high oxidative fibres in the muscle (66) and is dependent on 

the exercise intensity <61>. 

1.6.J.l The muscle pump 

There is the possibility that this initial increase in blood flow during exercise is due to 

mechanical stimulation of the contracting muscle. Tschakovsky et al. <68
) showed that 

the muscle pump is responsible for 45% of the initial rise in blood flow during 

muscular contraction of the hand. Similarly, Radegran and Saltin <62> found a single 

passive leg movement increased blood flow by ~50%, however blood flow was 

further increased during voluntary contraction. These authors showed the initial 

increase in blood flow is most rapid during the first phase of exercise (0-4 s) and is 

facilitated by the muscle pump, with a more potent vasodilitary phase occurring at ~ 

s which may be substance mediated. The later phases of blood flow increased with 

greater exercise intensities <62>. These two studies show that the muscle pump is 

involved in the initial rise in blood flow initiated by exercise, however it only 

accounts for half the flow response. There are a number of mechanisms both 

metabolic and neural which may, alone or in combination, account for exercise­

induced hyperaemia. 

1.6.1.2 Potassium ions 

Potassium ions (Kl are released into the interstitium via voltage dependent K+ 

channels as the muscle cell repolarises during muscle contraction. The mechanism by 

which K+ causes vasodilation still requires further investigation, but may result from 

the increased activity of the Na+-K+ pump <69> and activation ofK+ (Km) channels <70>. 

K+ rapidly accumulates in the interstitium following contraction and decreases rapidly 

during recovery <71> with the increased concentrations proportional to the intensity of 

the exercise bout <72>. In support of K+ involvement in the exercise hyperaemia 
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response is that the time course of K+ release in to the venous blood follows changes 

in blood flow in response to exercise <73>. However, although the infusion of K+ into 

the femoral artery at rest increases leg blood flow in a dose dependent manner, the 

magnitude of the increase (0.39 ± 0.06 to 0.71±0.171.min-1
) suggests that K+ only 

accounts for a small portion, if any, of reactive hyperaemia <12>. 

1.6.1.3 Adenosine 

Adenosine is formed via AMP derived from the hydrolysis of A TP and its levels are 

increased during hypoxia or times of increased oxygen consumption and metabolism, 

such as during exercise. Adenosine may be released from both the muscle and the 

endothelial cells and readily diffuses from the intracellular compartment into the 

interstitium and leads to vasodilation by a number of mechanisms including binding 

to adenosine receptors producing vasodilation via adenylate cyclase, nitric oxide and 

cyclic GMP <57)_ 

A bolus injection of adenosine increases femoral blood flow at rest mimicking the 

hyperaemic response seen during exercise <74
• 

75>, while adenosine receptor blockade 

causes a 20% decrease in femoral blood flow and vascular conductance during knee 

extensor exercise <75>. Similarly, Ballard et al. (76), calculated that adenosine 

contributed approximately 15% to total vasodilation after 1 min of exercise in the 

canine, which rose to 40% between 5 and 20 min of contraction. This suggests that 

adenosine may play a role in maintaining perfusion but may only contribute to the 

initial blood flow response, and given the pathways involved this response may 

involve nitric oxide (the effects of nitric oxide are discussed in section 1.9). 

1.6.1.4 Acetylcholine 

Acetylcholine may play a role in the ascending vasodilation seen during exercise, and 

along with the sheer stress of muscle contraction, it may also act to stimulate the 

release of nitric oxide from the endothelial cells <77). Acetylcholine is released from 

the motor nerve terminals and binds to nicotinic receptors triggering fibre contraction. 

It is rapidly cleared from the synaptic cleft by cholinesterase and neurotransmitter 

diffusion promoting muscle fibre relaxation. Acetylcholine is also in close enough 

proximity to activate muscarinic receptors and trigger vasodilation in capillaries <64>. 
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Application of acetylcholine to isolated feed arteries results in hyperpolarisation at the 

site of application, and conduction of the signal along the endothelium contributing to 

ascending vasodilation. The same response was seen during muscle contraction <64
• 

78>, and the ascending response was blocked by causing endothelial damage. This 

response was confined to a central segment of the arteries, resulting in acetylcholine 

or contraction causing vasodilation distal to the damaged segment, however the 

propagation of the signal could pass through the damaged region. This shows that 

exercise hyperaemia is not caused by flow induced vasodilation, but conduction of the 

signal along the endothelium <78>. A cholinesterase inhibition doubles the vasodilitary 

response to exercise, while muscarinic receptor antagonism with atropine inhibits 

vasodilation by 65% in feed arteries and reduces functional hyperaemia by 50% <64>. 

Such studies suggest a role for acetylcholine in hyperaemia due to exercise via co­

activation of muscarinic receptors and increased conduction into the feed arteries. 

1.6.1.5 Prostacyclin 

The vasodilators prostaglandin and prostacyclin are produced from the conversion of 

arachidonic acid by cyclooxygenase enzymes and released from the endothelial cells. 

The concentration of arachidonic acid is increased by enhanced intracellular calcium 

levels, such as those seen during exercise and induced in shear stress. Prostaglandin 

and prostacyclin act on receptors on the nearby smooth muscle cells which lead to the 

activation of adenylate cyclase resulting in a decrease in the smooth muscle cell 

calcium levels and vasodilation <58>. 

There are mixed results concerning the role of prostaglandins in the hyperaemic 

response to exercise. Wilson and Kapoor <79> showed that inhibition of prostaglandin 

release at rest and during wrist flexion exercise decreased forearm blood flow. In 

contrast, Shoemaker et al. <80> showed that inhibition of prostagladins had no effect on 

the time course of, or the magnitude of, forearm blood flow during handgrip exercise. 

Interestingly, Schrage et al. <81> found that while nitric oxide inhibition decreased 

femoral blood flow, prostaglandin inhibition only caused a transient decrease in blood 

flow. These data suggest that while prostaglandins may be involved in the 
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vasodilitary response, their contribution is minimal and may be compensated for by 

other vasodilitary factors. 

While a number of factors have been shown to affect the initial increase in blood flow 

seen at the onset of exercise, none has been found to be solely responsible for this 

effect. Therefore it is likely that this initial effect is due to a number of different 

mechanisms involving both mechanical and neural input and this response may then 

be sustained by a separate set ofvasodilitary factors. 

1. 7 INSULIN RESISTANCE AND MICROVASCULAR FLOW IN RESPONSE TO 
EXERCISE OR INSULIN INFUSION 

The ability of insulin to increase perfusion is blunted in diabetics and models of 

insulin resistance <41
• 
44

• 
82

). The obese Zucker (fa/fa) rat is a commonly used model of 

insulin resistance, and is characterised by insulin resistant muscle (83>, 

hyperinsulinaemia <41>, dislipidaemia cs4>, elevated plasma endothelin-1 levels <85
) and 

hypertension (86). Wallis and colleagues <41
) showed the differences in response to 

exercise and insulin by performing a 2 h, 20 mU.min-1.kg-1 clamp on obese Zucker 

rats and their lean litter mates. The lean rats showed an increase in femoral blood 

flow, muscle glucose uptake, glucose infusion rate and capillary perfusion. In 

comparison, the obese Zucker rat showed only a small increase in glucose infusion 

rate (7.7 ± 1.4 versus 22.2 ± 1.1 mg.min-1.kg-1 in the lean rat), and no increase in 

femoral blood flow or muscle glucose uptake. Above all, capillary perfusion was 2.6-

fold greater in the lean rat compared to the obese rat, demonstrating the obese Zucker 

rat has an impairment in its insulin mediated haemodynamic response to insulin. In 

contrast, the contraction mediated haemodynamic response was still apparent, as the 

Zucker rat shows near normal increases in femoral blood flow, glucose uptake and 

capillary perfusion in response to electrical stimulation for one hour (87) Others 

showed an improved vascular function after a five week treadmill exercise protocol 
(84) 

The inflammatory cytokine tumour necrosis factor (TNF)-a is often increased in states 

of insulin resistance and type 2 diabetes <88
-
90

). In incubated soleus and epitrochlearis 

muscle preparations 45 min of exposure to TNF-a had no effect on insulin stimulated 
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tyrosine phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1 or 

phosphoinositide-3 kinase (PI3-Kinase) associated IRS-1 <91>, unlike preparations 

involving heptoma cells <92
), adipocytes <93

) and fibroblasts <94
) which show a decreased 

signalling response to insulin with 1NF-a incubation. TNF-a in muscle incubation 

also had no effect on insulin stimulated 2-deoxyglucose uptake <91). The infusion of 

1NF-a in vivo however abolishes insulin mediated increases in bulk flow and 

microvascular perfusion <95
) as well as decreasing glucose uptake by 50-70% <95

• 
9
6), 

suggesting TNF-a causes insulin resistance by decreasing insulin mediated 

haemodynamics in vivo. In contrast, 1NF-a infusion during contraction in vivo had no 

effect on haemodynamic parameters or glucose metabolism <97). 

The haemodynamic and glucose uptake response to insulin infusion in type 2 diabetic 

patients, as would be expected, is blunted as type 2 diabetic and obese patient have 

impaired skeletal muscle blood flow response <44
• 
98

• 
99

). In addition, translocation of 

glucose transporter type 4 (GLUT4) protein to the plasma membrane is decreased and 

this is accompanied by an attenuation of glucose transport. {lOO). During exercise 

however, type 2 diabetic patients have a normal response to exercise, with no 

difference in GLUT4 translocation when compared to control subjects (IOI)_ 

1.8 INSULIN SENSITISATION AND SIGNALLING POST EXERCISE 

Exercise training causes changes in gene and protein expression and fuel utilisation, 

in addition to its well known beneficial effects on insulin sensitivity <102
). However 

studies in both animals {I0
3
-I0

5
) and humans <106

-
108

) show an increased in insulin 

sensitivity after only a single bout of exercise. The time period of increased insulin 

sensitivity varies depending on the type and intensity of exercise, however Mikines et 

al. (I0
9

) have shown that insulin sensitivity may be improved up to 48 h after a single 

cycling exercise bout. Immediately after exercise however, insulin sensitivity may be 

impaired before a sensitisation effect is seen, possibly due to an increase in the 

circulating levels of free fatty acids, catecholamines, intracellular glucose metabolites, 

and inflammatory cytokines {llo). Furthermore, eccentric exercise, known to cause 

muscle damage, increases this time period due to an increase in the release of 

inflammatory factors known to cause insulin resistance. For example, Del Agulia et 
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al. <111> showed that an insulin resistant state persistent 24 h after downhill running 

(eccentric exercise). This decrease in insulin mediated glucose uptake was associated 

with a decrease in IRS-1 phosphorylation, decreased activation of PI3-kinase and Akt, 

as well as increased levels ofTNF-a. 

The first study to recognise this post exercise sensitisation effect were Richter et al. 

<112> who found that after 45 min of treadmill running in rats, glucose utilisation was 

increased and the concentration of insulin required to maximally stimulate glucose 

uptake was decreased. This effect lasted 4 h (but was not present at 24 h) with 

exercise also enhancing insulin's ability to incorporate glucose into glycogen. 

Increased insulin sensitisation post exercise is thought to increase in two phases. 

Firstly, by increasing non-insulin stimulated and insulin stimulated glucose uptake in 

order to replenish glycogen stores. Secondly, once glycogen levels are restored, there 

is an increased insulin sensitivity, which may account for the super-compensation of 

glycogen stores seen post exercise <113
>_ Muscle glycogen content has an effect on 

both insulin sensitivity and GLUT4 translocation post exercise and both exercise and 

insulin mediated increase in glucose transport is proportional to increases in GLUT4 

protein expression (l14-ll
6
). GLUT4 mRNA and protein levels are increased over 2-

fold 16 h post-exercise. A high carbohydrate diet results in GLUT4 mRNA and 

protein levels returning to baseline levels within 42 h, however a carbohydrate free 

diet results in elevated GLUT4 protein levels up to 66 h post exercise (ll
7
, us>. Also, 

treatment with insulin immediately after exercise results in greater glycogen 

accumulation (over a 3 h period) and GLUT4 content than exercise controls without 

insulin <115
>_ Interestingly, Chou et al. <119

> found an increase in GLUT 4 protein levels 

and a concurrent increase in muscle glycogen stores in rats 16 h post exercise. If 

insulin was injected immediately following exercise, there was a further increase in 

muscle glycogen content compared to the control rats, however the increase in 

GLUT4 protein and whole body glucose tolerance was attenuated. In a similar fashion 

to the activation of AMP activated protein kinase (AMPK) in response to a decrease 

in energy stores, there may be a negative feedback mechanism in place to help 

regulate muscle glucose uptake and glycogen storage to ensure energy stores are fully 

replenished after exercise. The attenuation ofGLUT4 may also act as a protective 

mechanism in order to inhibit the possibility of insulin resistance caused by 

hyperglycaemia or glucose toxicity due to a rapid influx of glucose in to the cell and 
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increased activation of the hexosamine pathway <120>. An inverse relationship between 

glycogen content and glucose transport has been shown and although GLUT4 protein 

may initially regulate insulin mediated glucose uptake post exercise, the glycogen 

content of the muscle will determine the degree of insulin sensitivity and glucose 

uptake (121, 122). 

Increased insulin sensitivity in response to exercise occurs mainly in the working 

muscle and independent of changes in insulin signalling. In humans, prior exercise 

had no effect on insulin induced receptor tyrosine kinase, serine phosphorylation of 

Akt, serine phosphorylation of glycogen synthase kinase (GSK) or GSK-3 activity 

<123>. Similarly in rodents, prior exercise decreases the effect of insulin on the insulin 

receptor and IRS-1 phosphorylation by-25%, as well as decreasing IRS-1 associated 

PI3-kinase activity <124>. Furthermore, muscle specific insulin receptor knockout 

mouse has normal glucose uptake at rest and during exercise, with no response to 

insulin stimulation. Yet, when insulin is administered post exercise there is a 

synergistic effect on glucose uptake which occurs without increasing insulin receptor 

tyrosine phosphorylation or PI3-kinase activity <125>. Prior exercise does however 

increase insulin stimulated IRS-2 associated PI3-kinase activity in humans <12
6), and a 

study in IRS-2 deficient mice showed that while post-exercise, insulin stimulated 

phosphotyrosine associated PI3-kinase activity was attenuated, there was still a small 

increase in phosphotyrosine associated PI3-kinase activity 004>. This presents the 

possibility that there is another tyrosine phosphoprotein which is able to activate PI3-

kinase in response to insulin post-exercise. 

In recent times, Akt substrate of 160 kDA (AS160) has emergt:tl as a signalling 

molecule phosphorylated by both insulin and exercise. AS160 is a Rab GTPase 

activating protein and is the most distal signalling event linked to GLUT4 

translocation found to date <127
• 

128>. Insulin signalling leads to the activation of Akt 

via PI3-kinase dependent mechanisms. AS160 is an Akt substrate, which contains a 

GTPase activating protein domain and its phosphorylation inhibits GAP activity, 

leading to formation of GTP or Rab proteins causing GLUT4 translocation <129>. 

Insulin stimulation has been shown to phosphorylate AS 160 in both adipocytes <130> 

and skeletal muscle (1
28

• 
131> with this affect inhibited by wortmanin treatment in vitro 

<131>, and in the Akt2 knockout mouse in vivo <128>, suggesting insulin mediated 
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phosphorylation of AS160 is dependent on Akt activation. Interestingly, type 2 

diabetic patients have a 39% decrease in AS160 phosphorylation in response to 

insulin stimulation conipared to control subject. This is accompanied by a 51 % 

decrease in Akt Thr3°8 phosphorylation, however Akt Ser473 phosphorylation is not 

affected <132
). These data suggest that GLUT4 translocation is impaired in type 2 

diabetic patients due to a defect in the phosphorylation of Akt Tur308 and AS 160. 

However, contraction stimulated phosphorylation of AS160 is still functional in the 

diabetic state as sciatic nerve stimulation in the obese Zucker rat increased glucose 

uptake without a change in the activation of IR, IRS-1 or Akt, but with an increase the 

phosphorylation of AS160 <133
)_ 

Contraction mediated phosphorylation of AS 160 is mediated through separate 

mechanisms to insulin as PI3-kinase inhibition only partially blocked AS160 

phosphorylation in skeletal muscle and was unaffected in the Akt2 knockout mouse 

<128
). AMPK has been shown to have a positive correlation with AS160 during 

exercise with both compounds phosphorylated to a greater extent in longer duration 

higher intensity exercise <134
• 

135
). AICAR and contraction phosphorylate AS160 in 

skeletal muscle, and this response is blunted in AMPK a2 knockout mice <136
). The 

combination of PI3-kinase inhibition in an AMPK a2 inactive mouse however only 

partially inhibited contraction mediated phosphorylation of AS160 <128
) suggesting 

there are additional regulatory mechanisms involved in contraction mediated control 

of this process. It is possible that AS160 may be involved in post-exercise insulin 

sensitisation as Arias et al. (lOS) showed that AS160 phosphorylation was positively 

correlated with insulin independent glucose transport immediately post-exercise, and 

the increase in AS160 phosphorylation was still evident 4 h post-exercise. Further 

research is required to confirm the involvement of this substrate and to further 

elucidate the mechanisms through which the muscle is sensitised to insulin after 

exercise. 

As discussed previously, insulin and exercise both have positive effects on 

microvascular perfusion. It may be that microvascular perfusion remains slightly 

elevated for a period of time post exercise, increasing the surface area and delivery of 

nutrients to the muscle. Alternatively, previous exercise may help to sensitise the 

vasculature to the insulin action, decreasing the time, or increasing the efficiency by 
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which insulin increases perfusion, leading to an increase in glucose metabolism. At 

the present time, the reversal of microvascular perfusion after exercise has not been 

assessed. Despite the vast amount of literature addressing post exercise sensitisation, 

the mechanisms and pathways by which insulin and exercise increase and regulate 

GLUT4 translocation and glucose uptake still require further investigation. 

Furthermore, the interactions between the two stimuli also warrant additional research 

to increase our understanding of glucose regulation and to elucidate possible 

therapeutic targets for the treatment of diabetes. 

1.9 MEDIATORS OF MICROVASCULAR PERFUSION: NITRIC OXIDE 

Nitric oxide (NO) is a small, uncharged molecule which may easily diffuse into 

tissues resulting in both autocrine and paracrine effects. Nitric oxide production from 

the conversion of L-arginine to citrulline, is stimulated by a variety of factors 

including insulin, acetylcholine, bradykinin and shear stress and results in endothelium 

dependent vasodilation. The reaction is catalysed by nitric oxide synthase (NOS), 

using molecular oxygen and NADPH as co-substrates, and eventually results in un­

reactive nitrite and nitrate accumulating in the biological system which can be used as 

a quantitative measure of nitric oxide synthesis <13
7)_ There are three separate forms of 

NOS which may be involved in nitric oxide production, inducible NOS (iNOS) which 

is located in the macrophages and induces nitric oxide fonnation in inflammatory 

cells, endothelial NOS (eNOS) found predominantly in the blood vessels and neuronal 

NOS (nNOS) found in the neural tissue <138>. 

Skeletal muscles expresses both eNOS, and nNOS (mainly in fast-twitch fibre type) 

which play a role in regulating vascular tone through continuous production of nitric 

oxide <13
7). The production and release of nitric oxide by nNOS and eNOS activation 

may be activated by a number of different mechanisms including stimulation by 

calcium release from the sarcoplasmic reticulum during exercise. Nitric oxide release 

not only leads to vasodilation but also increases skeletal muscle glucose uptake via 

calcium calmodulin-dependent protein kinase (CaMK) and/or Protein Kinase C 

(PKC), however the precise mechanisms are still to be elucidated <139>. It has been 

recently discovered that eNOS may be phosphorylated and activated by Akt <140> 
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suggesting possible stimulation by insulin via this route. Nitric oxide may also bind 

to haemoglobin as S-nitroheamoglobin which is released in response to hypoxia 

suggesting a link between nitric oxide and skeletal muscle metabolism <141
• 

142>, or 

may also act via a second messenger by activating soluble guanylate cyclase in the 

vascular tissue leading to an increase in cyclic GMP levels resulting in vasodilation 
(58, 137) 

As explained in Section 1.6.1, it is unlikely that nitric oxide is involved in the initial 

recruitment of capillaries in response to exercise, as its release and subsequent actions 

occur too slowly to account for this effect. However, nitric oxide may be involved in 

maintaining the pattern of increased microvascular perfusion during exercise and at 

rest. The recruitment of capillaries by insulin occurs over a longer time period than 

during exercise and is thought to be nitric oxide dependent. Therefore the 

mechanisms which initiate the increase in microvascular perfusion are different, 

however the maintenance of this perfusion may be similar between the two stimuli. 

1. 9.1 Nitric oxide and exercise mediated microvascular recruitment 

Exercise training results in the up-regulation of eNOS and nNOS 043
) and increased 

nitric oxide production <144
)_ It also results in the vascular smooth muscle endothelium 

becoming more responsive to nitric oxide stimulation due to contraction enhancing 

endothelial nitric oxide formation and its release into the extracellular space <58
• 

144
). 

Both acute exercise <145
) and endurance training lead to increased eNOS and nNOS 

protein and expression <146
• 

14
7). 

Pharmacological inhibition of NOS has no effect on the initial rise in femoral blood 

flow during exercise, but does affect blood flow at rest and during recovery from 

exercise <77
• 

148
). Bradley et al. 049

) showed that NOS inhibition had no effect on leg 

blood flow during cycling exercise, but did result in a 40-50% decrease in leg glucose 

uptake compared with the saline infused control subjects. Furthermore, co-infusion of 

L-arginine (resulting in increased nitric oxide) restored glucose uptake during NOS 

inhibition. A similar result was also seen by McConell et al. <150
) where L-arginine 

infusion during cycling resulted in increased glucose clearance rate. In a follow up 

study, K.ingwell et al. <151
) found the infusion ofNOS inhibitor N°-monomethyl-L-
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arginine (L-NMMA) had no effect on leg blood flow, but reduced leg glucose uptake 

by 34 ± 14% in normal controls and this effect was even greater in type 2 diabetic 

patients whose glucose uptake decreased by 75 ± 13%. This study suggests that type 

2 diabetic patients rely on nitric oxide during exercise to increase glucose uptake to a 

greater extent than control subjects and shows that nitric oxide is involved in exercise 

mediated glucose uptake. However, non of the above studies involved an assessment 

of microvascular perfusion, which may have impacted on glucose uptake 

In animal models, data relating NOS inhibition to exercise mediated perfusion and 

glucose uptake is both for and against. In rats Roberts et al.Os2
> found NOS inhibition 

resulted in complete blockade in glucose transport stimulation during treadmill 

running, which is consistent with a muscle effect of nitric oxide reported by Balon et 

al.043>. These authors found NOS inhibition reduced both basal and exercise 

stimulated (but not insulin stimulated) glucose uptake in incubated rat extensor 

digitorum longus muscles. They also reported a stimulatory effect of sodium 

nitroprusside (a nitric oxide donor) which increased glucose uptake in a dose 

dependent manner. Higaki et at.<1s3
) also found that sodium nitroprusside had an 

additive effect on glucose uptake in combination with both insulin and exercise 

stimulation in incubated muscle, but NOS inhibition however, had no effect on 

exercise stimulated glucose uptake in incubated epitrochlearis muscle (ls3
• 

1s4>. It may 

be speculated that the decreased glucose uptake seen in vivo may be due to the 

haemodynamic aspects of nitric oxide which are absent in incubated muscle, however 

a study in the conscious mouse model, where the vascular effects of NOS may be seen 

has shown that N°-nitro-L-arginine methyl ester (L-NAME) infusion had no effect on 

exercise medialed fatty acid and glucose uptake. In that study, however blood flow 

was not measured and the L-NAME, a specific inhibitor of nitric oxide synthase, was 

delivered in the drinking water which may not increase circulating levels to a high 

enough concentration to block NOS as is seen in other studies using intravenous 

infusion oss). In support of this theory are studies from Hirai et al. (ls6) and Musch et 

al. (lS7) who found NOS inhibition reduced vascular conductance (lS7) and decreased 

blood flow to the hindlimb muscles, as well as decreasing blood flow to the kidneys 

and organs of the gut during treadmill exercise in rats (lS6>. Hirai, et al. (lS6) also found 

that the inhibition of NOS and consequent reduction in blood flow which was greatest 

in the red muscle fibres. Unfortunately glucose uptake was not measured in these 
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studies and the systemic L-NAME treatment caused an increase in mean arterial 

pressure which may have affected the pattern of blood flow. Furthermore, as 

previously discussed changes in bulk flow can be independent of changes in 

microvascular perfusion, which may play a critical role in control of glucose uptake 

C53> and therefore the effects of NOS inhibition on glucose uptake and muscle 

perfusion requires further investigation. 

Some of the discrepancies in the data may be due to two factors. Firstly, the delivery 

of NOS inhibitor (systemic or local), and the inhibitor used. For example, when 

infused locally L-NAME does not affect mean arterial pressure however, 

systemically, L-NAME may affect mean arterial pressure and heart rate, which may 

disrupt blood flow resulting in effects on both macrovascular flow and microvascular 

perfusion. Secondly, the method of measuring flow may cause confusion, and result 

in inaccurate or delayed measurements. For example, venous occlusion 

plethysmography requires exercise to cease during measurement, therefore flow is 

measured during recovery from exercise and not during exercise, therefore the 

decreased flow reported may be due to the effect NOS inhibition on recovery from 

exercise. In addition, these studies assess total flow which may not be representative 

of the changes in microvascular perfusion. Discrepancies between human and animal 

data may result from the different distribution of NOS protein expression in the 

different species (l39>_ 

1.9.2 Nitric oxide and insulin mediated microvascular recruitment 

There are many studies showing that stimulations of nitric oxide release accounts for 

the vascular actions of insulin. Insulin simulated nitric oxide production in the heart, 

liver, kidney, muscle and endothelial cells in vitro increases in a rapid and dose 

dependent manner. This response is blocked by L-NAME 05s-160> and is also 

prevented by PI3-Kinase inhibitor, wortmanin (l
59

• 
160>. Furthermore, activation of 

PDGF (a growth factor that signals through the tyrosine kinase receptor) dose not 

increase nitric oxide production suggesting an insulin specific signalling cascade is 

required C159> and in particularly, IRS-1 and PDK-1 are essential in the insulin 

signalling activation of eNOS C161>. 
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In conscious humans, Steinberg et al. <162> showed that endothelium derived nitric 

oxide was responsible for 20% of basal leg blood flow and 40% of insulin mediated 

increases in leg blood flow during L-NMMA infusion into the femoral artery. Also in 

humans, Scherrer et al. <163> infused L-NMMA into the brachia! artery 60 min prior to, 

and at the end of a 2h hyperinsulinemic clamp. L-NMMA infusion prior to the clamp 

caused a prolonged effect and decreased forearm blood flow during insulin infusion, 

preventing insulin induced vasodilation in both arms throughout the clamp. This 

resulted in an increased arterial pressure, however the glucose uptake remained 

unaltered, which may be due to L-NMMA being infused prior to the clamp and not as 

a co-infusion. In animal studies, Vincent et al. <56
• 

164
) showed that the increase in both 

femoral blood flow and microvascular perfusion caused by insulin was blocked, and 

glucose uptake partially inhibited, by administering L-NAME. Roy et al. 065
) also 

found glucose uptake to be inhibited in vivo and found that L-NAME failed to affect 

basal or insulin-stimulated glucose transport in isolated muscles. Such studies 

confirm a role for nitric oxide in insulin mediated glucose uptake which is possibly 

mediated by changes in microvascular perfusion. 

I. 9. 3 Nitric Oxide and insulin resistance 

Type 2 diabetes is associated with impaired NOS activity in skeletal muscle <166
• 

16
7). 

Kashyap et al.<16
6) showed that although type 2 diabetes patients have the same NOS 

protein content (at basal and during insulin stimulation) as non-diabetic control 

subjects, their basal and insulin stimulated NOS activity is significantly decreased. 

Furthermore, the defect in insulin stimulated NOS activity closely correlated with the 

severity of the patient's insulin resistance. Similarly, eNOS content and total eNOS 

activity in skeletal muscle of obese women was significantly lower than lean women, 

and inversely related to percentage body fat and body mass index <168>. 

The Zucker obese fatty rat (a model of insulin resistance) has decreased eNOS 

expression and total NOS activity in microvessels <160>, and skeletal muscle tissue <169> 

in comparison to its lean litter mates. Incubation of the soleus muscle from these rats 

with zaprinest (a selective cGMP phosphodiesterase inhibitor) increased cGMP levels 

and glucose uptake in the lean but not the obese rat. Incubation with sodium 

nitroprusside meanwhile, increased glucose uptake in both the lean and obese rats, 
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however this response was significantly less in the obese rats <169
). Similar results were 

also found in regard to insulin stimulation of vascular endothelial growth factor which 

was further stimulated by a cGMP analogue, with a blunted response in the obese rats 

<
16

7). Incubation of endothelial cells from the obese rat had a decreased insulin 

stimulated eNOS gene expression compared to its lean counterparts. Furthermore, 

incubation with PKC inhibitors enhanced eNOS expression, while PKC activators 

inhibited both insulin stimulated PI3-kinase and eNOS mRNA <160
). Such studies 

suggest a problem with the NO/cGMP signalling pathway in the insulin resistant state 

leading to abnormal glucose utilisation. This may occur due to hyperglycaemia, 

insulin resistance, and/or the activation of PKC <170
) inducing inhibition of the PI3-

Kinase activities in the vasculature, blunting insulin stimulated eNOS expression and 

decreasing insulin's effects on vasodilation <160
). 

In other animal models, eNOS knockout mice become insulin resistant in both the 

liver (showing an inability to suppress insulin stimulated endogenous glucose output) 

and peripheral tissues, whereas nNOS knockout mice only developed insulin 

resistance in the peripheral tissues <138
). Also, eNOS deficient mice have been shown 

to develop hypertension, hyperinsulinaemia, hyperlipidaemia and they have a 40% 

decrease in insulin stimulated glucose uptake as well as a 40% decrease in hindlimb 

muscle blood flow (measured by a laser Doppler probe) <171
)_ Also, both eNOS and 

nNOS knockout mice characteristically have hypertension and altered basal vascular 

tone (!72, 
173

). To further illustrate this problem, shear stress induced and flow 

dependent vasodilation mediated by nitric oxide is significantly blunted in 

hypertensive rats <174
• 

175
) while intracerebroventricular (ICV) infusion of a NOS 

inhibitor results in hypertension and a state of insulin resistance by increasing basal 

glucose concentrations and decreasing insulin mediated glucose disposal <176
). These 

studies show the relationship of NOS in glucose and lipid metabolism as well as blood 

pressure and vascular dysfunction, which are both related to insulin resistance <17
7)_ 

Nitric oxide therefore plays a role in insulin resistance possibly by either direct affects 

on muscle glucose uptake and/or through its modification ofmicrovascular blood 

flow via a role in endothelial dysfunction, where it acts to regulate vascular tone in 

conjunction with endothelin through a balance ofvasodilation and vasoconstriction. 
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1.10 MEDIATORS OF MICROVASCULAR PERFUSION: ENDOTHELIN-1 

Endothelin-1 (ET-1) is synthesised by the endothelium and is the most potent of a 

family of three vasoactive peptides ( ET-1, ET-2, ET-3) <118>. These 21 amino acid 

long endothelins are involved in vasomotor tone, cell proliferation and hormone 

production, however ET-1 is the only isoform released from the vascular endothelial 

cells <179>. Its release is stimulated by a number of factors including insulin, shear 

stress, hypoxia, growth factors, angiotensin II and catecholamines, and it is secreted 

abluminally to act on receptors located on the vascular endothelial or smooth muscle 

cells <179>. Even though ET-1 is cleared rapidly from circulation by the pulmonary, 

splanchnic and renal systems, and has a half life of approximately 3-4 min <180>, its 

potent vasoconstrictor effects are long lasting (181>. 

Endothelial ET-1 is a paracrine signal, therefore plasma measures of ET-1 are not a 

true indication of its local concentrations. However, increased plasma concentrations 

are representative of over spill-over from increased secretion, which is the likely 

cause of elevated plasma ET-1 levels in disease states such as hypertension <7• 
182>, 

type 2 diabetes 083>, and cardiovascular disease <184>. Plasma concentrations are 

approximately 540 fmoU-1 in healthy humans, and 1 880 fmol.r1 in patients with type 

2 diabetes <183>. However, as plasma levels are only representative of the spill over 

from the local environment the reported plasma concentrations vary between studies 
(7, 182, 184) 

Endothelin-1 has a high affinity for its two different guanine-nucleotide-binding (G) 

protein receptors, termed ETA and ET B receptors. ET-1 binding to the ETA receptors, 

located on the vascular smooth muscle cells, results in a prolonged vasoconstriction 

caused by the stimulation of phospholipase C, which ultimately leads to 

vasoconstriction by increasing the intracellular Ca2+ stores <179
• 

181>. The ETa receptors 

are located primarily on the endothelial cells, and to a lesser extent on the vascular 

smooth muscle cells. ET-1 binding to the ET a receptor located on the vascular 

endothelial cells causes vasodilation by stimulating the production of prostacyclin and 

nitric oxide (1 85
• 

186
) which in turn inhibit ET -1 release <179> . ET-1 binding to the ET B 

receptor located on the vascular smooth muscle cells causes vasoconstriction by 

similar means to the ETA receptor <179>. Therefore, due to these opposing effect and 
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the distribution of the ET-1 receptors, ET-1 infusion may cause a transient 

vasodilation followed by a prolonged and dose dependent vasoconstrictor effect <18
7). 

Acute administration of ET -1 leads to an increase in mean arterial pressure in both 

humans <178
• 1

80
• 

188
) and animals <187

• 
189

• 
190>. This effect may be attributed to the strong 

vasoconstriction caused by ET-1 in the pancreas <191
• 1

92>, kidney <187
-
189

• 
193>, 

mesenteric (1
87

• 
189>, and splanchnic <188

• 1
93> regions. Some studies have also reported a 

decrease in flow to the skeletal muscle however findings are inconsistent <178
• 

189
• 

194
• 

195) 

1.10.l ET-1, nitric oxide and endothelial dysfunction 

Other than its potent vasoconstrictor effects, ET-1 also plays a role in regulating 

vascular tone, demonstrating the regulatory role of ET-1 's two receptor mediated 

effects. It may be possible that if this response becomes unbalanced over time it may 

result in endothelial dysfunction, which has a close association with cardiovascular 

disease and its associated risk factors. Endothelial dysfunction involves alterations to 

the endothelial cell's capacity to maintain normal homeostatic and vascular function 

(
8
). Therefore an imbalance between the secretion of ET-1 and nitric oxide may lead 

to pathophysiological conditions such as atherosclerosis, hypertension and/or insulin 

resistance which are disease states characterised by modified blood flow and 

increased plasma ET-1 concentrations. 

Insulin release causes secretion of both ET-1 and nitric oxide which help to maintain 

vascular tone. Potenza et al. (1
96> showed that insulin resistance in the spontaneously 

hypertensive rat was due to an impairment in PI3-kinase dependent nitric oxide 

production and enhanced mitogen activated protein kinase (MAPK) dependent ET-1 

secretion. The mechanisms or time line of how these deregulations leads to insulin 

resistance, or vice versa, are yet to be elucidated. It is possible that an over-secretion 

of ET-1 may lead to an imbalance in the regulation of the blood vessel tone, causing 

vasoconstriction leading to an insulin resistant state. Alternatively, insulin resistance 

may lead to an impairment in the insulin signalling pathway which decreases the ratio 

of nitric oxide to ET-1 decreasing blood flow and causing a further increase in insulin 

resistance <8>. 
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FIGURE 1.1 A SCHEMATIC REPRESENTATION OF THE INSULIN SIGNALLING PATHWAY. Panel A 

depicts the insulin signalling pathway related to nitric oxide and endothelin-1 production resulting in 

vasodilation or vasoconstriction. Panel B depicts the insulin signalling pathway under pathological 

conditions which may create an imbalance between insulin's vasodilator and vasoconstriction actions 

resulting in insulin resistance and hyperinsulinaemia (Diagram adapted from Muniyappa et al. (1971. 

Mather et al. <19s) showed that the ETA antagonist BQ123 produced vasodilation in 

obese and diabetic humans. Vascular resistance decreased in the obese by 34% 

compared to only a 13% in lean subjects in response to BQ123 treatment. There was 

no change in nitric oxide flux, causing the authors to conclude that there is increased 

basal ET-1 constrictor tone in obese and type 2 diabetic subjects. Also, inhibition of 

nitric oxide release by L-NMMA results in similar symptoms as ET-1 infusion, such 

as increased plasma ET-1 concentrations and mean arterial pressure, decreased 

splanchnic and renal blood flow and decreased splanchnic glucose production <199
). 

These two studies help to demonstrate how imbalances in vascular control may have a 

negative impact on the vasculature leading to endothelial dysfunction and related 

disease states such as insulin resistance. 
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1.10. 2 Endothelin-1 and insulin resistance 

The obese Zucker rat is an animal model of insulin resistance and is characterised by 

increased plasma insulin, total cholesterol, triglycerides and glucose concentrations 

relative to their lean counterparts <200>. They also have elevated ETA and ETB receptor 

mRNA which is thought to be induced by their hyperinsulinemic state <200
• 

201>. 

Berthiaume et al. <202> treated obese Zucker rats for 6 weeks with an ETA antagonist 

which lead to an increase in whole body glucose metabolism, and a normalisation of 

PI3-kinase, IRS-1 tyrosine and Akt signalling in the liver. 

Chronic infusion of ET-1 in normal rats over 5 days caused symptoms resembling 

those associated with insulin resistance and type 2 diabetes. Treated rats had a 

decreased glucose transport and 30% decrease in insulin stimulated glucose disposal. 

These effects were accompanied by a decreased IRS-1 protein content and Akt 

phosphorylation and elevated plasma insulin concentrations <203>. Insulin resistance 

has also been observed during acute infusion of ET-1. Ottosen-Seeberger et al. <193> 

found co-infusion of ET-1 with insulin in humans, leads to a 31 % decrease in whole 

body insulin mediated glucose uptake and a 26% decrease in leg glucose uptake. This 

was associated with decreased blood flow to the splanchnic and renal organs. Skeletal 

muscle blood flow in the leg and forearm remained unchanged, however 

microvascular perfusion was not assessed. Ahlborg et al. (l ?S) also found a decrease in 

insulin sensitivity and blood flow with ET-1 infusion accompanied by an increase in 

circulating plasma insulin concentrations. While antagonism of the ET B receptor did 

not prevent any of these effects, co-infusion of ETA antagonist resulted in normal 

blood flow and insulin sensitivity. 

In cell culture models, which negate ET-1 's effects on haemodynamic parameters, 

Idris et al. <204> found 24 h of ET-1 exposure had no effect on basal glucose transport, 

but did inhibit insulin stimulated glucose uptake in a time dependent manner in 3T3-

adipocytes. The L6 myoblasts, however were unaffected by the ET-1 treatment. 

Ishibashi et al. <205> found chronic treatment of3T3 Ll adipocytes with ET-1 inhibited 

insulin stimulated glucose uptake and GLUT4 translocation. It also inhibited insulin 

stimulated tyrosine phosphorylation ofIRS-1, PI3-kinase activity and Akt 

phosphorylation. Co-treatment with an ET A receptor antagonist prevented these 
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inhibitions <205>. From these data, it is unlikely that chronically elevated ET-1 has a 

direct effect on insulin signalling mechanisms as it is the muscle, and not the adipose 

tissue which is responsible for over 85% of insulin mediated glucose uptake <11>. 

Also, many of the negative responses caused by ET-I (hyperinsulinaemia, decreased 

glucose uptake and vasoconstriction) are prevented by blocking the ETA receptor <85
• 

187
• 
20

6) suggesting the main mechanism by which ET-1 causes peripheral insulin 

resistance is by interacting with vascular receptors to cause haemodynamic actions, 

and thus inhibiting the access of insulin and glucose in the muscle. 

1.10.3 Endothelin-1 and exercise 

ET-1 is released during exercise and its proposed main function is to cause 

vasoconstriction in the non working muscles and organs. Maeda et al. <195> 

demonstrated ET-1 's role in the redistribution of flow during a one leg 30 min cycle 

ergometer test. Femoral vein sampling showed an increase in ET-1 concentration and 

a larger arterio-venous difference in ET-1 in the non working leg, while 

concentrations in the working leg were unchanged. This concept is supported by 

others <201
-
210> and confirmed in a follow up study by Maeda et al. <211> in rats, where 

ETA receptor blockade decreased the vasoconstrictor action of ET-1 during treadmill 

exercise, causing the amount of constriction normally seen to the stomach, intestine, 

spleen and kidneys to decrease compared to the control animals (therefore allowing 

greater blood flow) which in turn decreased blood flow to the active muscles. 

Therefore ET-1 does play an important role in exercise mediated distribution of flow 

and this effect is mediated by the ETA receptor. 

However, when ET-1 levels are elevated such as in hypertensive and cardiac patients, 

this leads to a decrease in exercise performance and tension development. McEniery 

et al. <209> measured the forearm blood flow response to handgrip exercise in 

hypertensive subjects and found that vasodilation in response to exercise was 

inhibited compared to normotensive controls. This response was enhanced by ETA 

receptor antagonism in hypertensive controls, but had no effect on the normotensive 

subjects. Similarly, Kolka et at<212>found ET-1 infusion reduced the aerobic capacity 

of the muscle during electrical stimulation. Therefore over-secretion of ET-1 may not 
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only affect insulin mediated effects but may also be detrimental to the positive 

vasodilitary effects of exercise. 

Exercise training has also been shown to decrease circulating ET-1 levels which may 

produce beneficial effects on the cardiovascular system. However it is difficult to 

attribute the beneficial effects of exercise training to decreased ET-1 levels, given the 

vast number of physiological and metabolic changes which occur with training. 

1.11 MEDIATORS OF MICROVASCULAR PERFUSION: INTERLEUKIN-6 

Interleukin-6 (IL-6) is a pleiotropic protein well known for its effects on immune 

function and its role in the acute phase response <213
)_ In addition, it has a large scope 

of physiological effects playing a role in bone metabolism, reproduction, neural 

development, aging and haematopoiesis <214
). In recent times, the effect of this 

cytokine in the muscle and adipose tissue, and its role in glucose regulation and 

insulin signalling has also received much attention. 

IL-6 is rapidly synthesised and secreted from a variety of tissues in the body including 

the blood, cartilage, bone marrow, skin, lung and central nervous system <215
). Most 

importunately, in regards to the action of insulin and exercise, it is also released by 

the adipose tissue and skeletal muscle. There are relatively low levels (---1-2 pg.mr1
) 

ofIL-6 circulating at rest in healthy individuals, with these levels increasing in 

disease states such as type 2 diabetes <216
• 
21

7), obesity <218
-
220

) and heart disease <221
• 
222

), 

with these increases attributed to an increased fat mass, leading to increased IL-6 

secretion <218
•
219

•
223

). During exercise, the majority ofIL-6 is secreted from the 

working skeletal muscle <224
• 
225

). 

IL-6 exerts its effects through a cell surface receptor consisting of a ligand-binding 

IL-6 receptor a chain and the signal transducer glycoprotein 130, which are located 

throughout the body on immune cells, osteoblasts, bladder, brain, in serum, adipose 

tissue and liver <214
• 
226

). These receptors appear at the cell surface after synthesis in the 

endoplasmic reticulum and have half lives of two to three h regardless of the presence 

ofIL-6 <22
7). Upon binding to its receptor, IL-6 may activate many signalling 
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pathways such as Janus Kinase tyrosine kinase, STAT or MAPK signalling cascades 

<226
• 
228

\ and due to its effects on fat oxidation and its release during exercise is also 

thought to activate AMPK. 

1.11.1 Interleukin-6 and exercise 

Exercise elevates circulating cytokines in similar proportions to those seen during 

sepsis, trauma and bacterial infection <229
\ with the concentrations ofIL-6 increasing 

two fold above that of other released cytokines to -100 pg.ml-1 after strenuous 

exercise <224
•
225

•
230>. While the skeletal muscle produces very little IL-6 at rest <21

6), 

exercise results in an increase in IL-6 mRNA and IL-6 production localised in the 

working skeletal muscles <231
). This was demonstrated by Steensberg et al. <232

) among 

others <224
•
2
33), who showed a 19-fold increase in IL-6 production during leg extensor 

exercise in one leg, with no change in IL-6 concentrations of the control leg. 

It was originally proposed that IL-6 was released in response to muscle damage, 

which is generally associated with eccentric exercise and an acute phase response. 

However, both eccentric and concentric exercise increase plasma concentrations, 

regardless of the mode of exercise <233
), and the levels of creatine kinase (a marker of 

muscle damage) peak in the blood 24 to 72 h post exercise, by which time plasma IL-

6 concentrations have returned to basal <224
• 
234

). In addition low intensity, long 

duration concentric exercise which elicits only a small elevation in creatine kinase 

levels still causes an increase in plasma IL-6 <233
). Other factor which may be 

responsible for increased IL-6 concentrations during exercise are changes in calcium 

homeostasis <235>, impaired glucose availability <236
• 

237
) or increased formation of 

reactive oxygen species <238
• 
239

) which are all capable of activating the transcription 

factors which regulate IL-6 synthesis, however the exact mechanisms are still to be 

elucidated <240
). 

The level of IL-6 production increases in longer duration, higher intensity exercise 

where there is a high level of metabolism and energy stores become depleted <224
•
241

• 

242
). It is therefore expected that IL-6 release is also greater when glycogen stores are 

depleted , as shown by Keller et al. <231
) who found that low glycogen content in the 
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muscle ( 40% lower than control) during prolonged knee extensor exercise lead to a 

greater than two-fold increase in IL-6 concentration and a higher rate of IL-6 

transcription than in the control leg. Steensberg et al. <243
> found similar results with 

glycogen depletion increasing circulating IL-6 to 4.38 ± 2.8 ngS1 during knee 

extensor exercise versus 0.36 ± 0.14 ng.r1 in the control leg. McDonald et al. <244> 

showed while there was no increase in IL-6 production or AMPK activation during 

cycling exercise in the fully glycogen loaded state, there was a correlation between 

IL-6 production and AMPK activation during exercise in the glycogen depleted state. 

As IL-6 production is also dependent of carbohydrate and glucose availability <236
• 

245>, 

this data suggests a role for IL-6 in energy regulation during exercise, which may be 

mediated through activation of AMPK. 

AMPK, like IL-6, activation is sensitive to the glycogen content in the muscle <246l_ It 

is possible that both IL-6 and AMPK act independently as sensors of a low energy 

state in the muscle, however there is evidence to suggest that IL-6 is capable of acting 

directly on skeletal muscle or adipose tissue to activate AMPK <247
•

248>. Also, in vitro 

experiments show that L6 myotubes infected with a dominant negative AMPKa 

subunit, blocked the effect of IL-6 treatment on fatty acid oxidation and glucose 

uptake <248>, while siRNA mediated depletion of AMPK affected IL-6 mediated fatty 

acid oxidation and palmitate uptake in skeletal muscle cells <249>. Furthermore, AMPK 

activity is diminished at rest and its activation during exercise is also decreased in the 

skeletal muscle and adipose tissue of IL-6 knockout mice (IL6-t-) compared to control 

mice. This shows that IL-6 is able to activate AMPK, and also demonstrates 

however, that IL-6 is not solely responsible for increased AMPK phosphorylation in 

response tu t:xt:rcist: <247l. 

The release of IL-6 during prolonged or strenuous exercise may help to regulate 

energy expenditure and maintain homeostasis, by acting to increase the production of 

blood glucose and glycogen from glycerol and lactate, and helping to retain glucose 

stores by using excess fat stores for energy production. This may occur through IL-6s 

ability to increase fatty acid oxidation <250
• 
251

) (possibly through AMPK and 

phosphorylation of acetyl-CoA carboxylase ), which may lead to a state of insulin 

resistance, as is often seen for a short period of time after strenuous exercise <110
• 

111
• 

252) 
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1.11.2 lnterleukin-6 and insulin 

It is generally accepted that IL-6 administration in vivo, results in increase lipolysis 

and fat oxidation, in the absence ofhypertriglycidaemia and without changes in 

catecholamines, glucagon or insulin <250
• 
251>. This data is supported by cell culture 

experiments where IL-6 alone increases fat oxidation in L6 myotubes <253>, incubated 

muscle strips <254> and adipose tissue <255
) • More contentious issues however, are those 

surrounding the role of IL-6 in glucose uptake and insulin action, where there have 

been conflicting reports, particularly when comparing human and animal studies. 

In vitro studies show that, in addition to its well known effects on increased fatty acid 

oxidation <256>, incubation of muscle cells and L6 myotubes with IL-6 results in an 

increase in glucose uptake and insulin sensitivity at basal and during incubation with 

insulin <248
• 
257

-
259> through increased GLUT4 translocation to the plasma membrane 

<248>. IL-6 may mediate its effects on glucose and fat metabolism through different 

pathways as Ali-Khalili et ai.<256
) showed that inhibition of PI3-kinase in skeletal 

muscle cells suppressed IL-6 mediated glucose metabolism but did not affect lipid 

metabolism, while diminished AMPK (by siRNA) decreased IL-6 mediated fatty acid 

oxidation without affecting glycogen synthesis <256>. In regards to the insulin signalling 

pathway, Glund et al. <259> found IL-6 had no effect on insulin stimulated glucose 

transport or phosphorylation of Akt, AS160 or IRS-1 associated PI3-Kinase. In 

contrast Weigert et al. <260> found IL-6 induced a rapid recruitment of IRS-1 to the IL-

6 receptor complex while inducing a rapid and transient phosphorylation of Ser 318 of 

IRS-1 in the skeletal muscle (but not the liver). In addition, IL-6 induced 

phosphorylation of Ser473 of Akt and increased insulin mediated phosphorylation of 

glycogen synthase kinase-3 <25
7) resulting in an insulin sensitising effect. 

Treatment of adipocytes with IL-6 causes an increase in IL-6 and TNF-a expression 

and release. A number of studies have found IL-6 disrupts insulin signalling in 

adipocytes by decreasing transcription ofIRS-1 and GLUT4 <261>. A decrease in 

insulin stimulated tyrosine phosphorylation and insulin activation oflR-b, Akt and 

extracellular signal-regulated kinase (ERK) 112 has also been observed as well as an 

increase in suppressor of cytokine signalling (SOCS) 3 protein <262
• 
263

), suggesting IL-

6 may cause a state of insulin resistance in the adipocytes. In contrast, IL-6 has been 
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shown to increase AMPK activation <247
• 
258>, glucose transport and glucose uptake in 

3T3-Ll adipocytes, which was additive to the effect of insulin <258
•
264>, suggesting a 

insulin sensitising effect. 

IL-6 administration at rest has no effect on whole body glucose disposal, glucose 

uptake or endogenous glucose production <253
• 
265>. Acute administration of IL-6 during 

a hyperinsulinemic euglycaemic clamp in healthy humans leads to an increase in the 

glucose infusion rate, and glucose oxidation without changes in exogenous glucose 

production <248
). Alternatively in rats, IL-6 infusion during a euglycaemic 

hyperinsulinaemic clamp had no effect on insulin stimulated whole body glucose 

homeostasis or insulin signalling <26
6), while an intravenous injection ofIL-6 in the rat 

caused plasma glucagon and plasma glucose levels to increase, with a decreased 

hepatic glycogen <26
7). Experiments in the conscious mouse also showed that IL-6 

infusion blunts insulin's ability to suppress hepatic glucose production, however in 

contrast to the human and rat studies there was a decreased insulin simulated glucose 

uptake in the skeletal muscle, which was associated with defects in IRS-1 associated 

PI3-Kinase activity and increased fatty acyl-CoA levels <268>. 

1.11.3 Inter/eukin-6 and insulin resistance 

A link has been established between obesity and insulin resistance and a state of 

chronic low level inflammation <9> which may involve increased levels of circulating 

cytokines such as TNF-a and IL-6 <88
•
216

•
269>. TNF-a has been shown to causes insulin 

resistance by inhibiting insulin stimulated tyrosine kinase activity of the insulin 

receptor and down regulation of GLUT 4 expression <92
• 
93>. In addition, TNF-a 

inhibits the insulin stimulated increases in femoral blood flow and microvascular 

perfusion <95
• 
97>, and TNF-a blockade before a hyperinsulinaemic euglycaemic clamp 

improves insulin sensitivity<270>. As TNF-a increases the secretion of IL-6 from the 

adipose tissue it may be thought that IL-6, like TNF-a may be involved in insulin 

resistance. Injecting TNF-a into the adipose tissue of mice elevated serum IL-6 levels 

and reduced serum lipo-protein lipase activity by 70% <271>. As insulin stimulates 

lipo-protein lipase in order to increase fatty acid uptake into the cell, these cytokines 

may regulate the adipose tissue by stimulating lipolysis (as TNF- a also stimulates 

hormone sensitive lipase release <212» and inhibiting lipoprotein lipase and insulin 
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action causing insulin resistance. There are differences between these cytokines as 

unlike IL-6, TNF-a release is not increased during exercise <216>, and while TNF-a has 

a strong correlation with decreased insulin sensitivity, IL-6 has a stronger correlation 

with increased fat mass and body mass index <90
• 
218>, suggesting they may have 

separate actions concerning insulin action and energy metabolism. 

Whether elevated plasma IL-6 concentrations occur as a result of, or are the cause of, 

insulin resistance is still unknown, however inhibition ofIL-6 with an anti-IL-6 

receptor antibody in patients with rheumatoid arthritis, caused an increase in 

cholesterol and plasma glucose levels <273
• 
274>. Also, the IL-6 knockout mice develop 

obesity, and become glucose intolerant and dyslipidaemic <247
• 
275>, suggesting that the 

absence of IL-6, rather than an increased presence, may contribute to insulin 

resistance. This was demonstrated by Wallenius et al. <275> who reversed the insulin 

resistant effect in the knockout mice through IL-6 replacement. 

There is controversy surrounding the role which IL-6 plays in insulin resistance, 

however there are some consistencies, in that IL-6 appears to have different effects on 

the muscle, adipose tissue and liver. It appears that IL-6 induces hepatic insulin 

resistance which is demonstrated in both in vitro and in vivo experiments. Incubation 

of hepatocytes with IL-6 causes an increased glycogen degradation, and a greater than 

50% inhibition of insulin mediated glycogen synthesis <216
> as well as decreased 

tyrosine phosphorylation of IRS-1 and decreased association of the p85 subunit of 

PI3-kinase with IRS-1 <27
7). In vivo data supports these finding with five day 

subcutaneous infusion ofIL-6 (resulting in a six-fold elevation ofIL-6) in mice, 

causing an impairment of early insulin receptor signalling in the liver, including a 

60% decrease in hepatic insulin receptor autophosphorylation, and a decrease in the 

tyrosine phosphorylation ofIRS-1 and IRS-2. During this study, only hepatic insulin 

signalling, and not skeletal muscle insulin signalling, was impaired <218>. Similar 

results were seen in the conscious mouse during a euglycaemic hyperinsulinaemic 

clamp with IL-6 infusion. IL-6 blunted insulin's ability to suppress hepatic glucose 

production and insulin stimulated IRS-2 associated PI3-Kinase in the liver. This 

study however, also showed a decreased insulin stimulated glucose uptake in skeletal 

muscle <268>. IL-6 also activated suppressor of cytokine signalling proteins in the liver 

(with little effect in skeletal muscle <260>) leading to hepatic insulin resistance via 

37 



Introduction 

inhibition of hepatic insulin-dependent receptor autophosphorylation and IRS-1 

tyrosine phosphorylation <211
• 

279>. 

As described above, IL-6 has been shown to increase <248
• 
264> or decrease <261

• 
263> 

insulin signalling and glucose uptake in skeletal muscle and adipose tissue. The 

controversy surrounding IL-6 and its role in insulin resistance may be due to the 

number of different cell lines, species, and concentrations of IL-6 and insulin used in 

each study. In addition, the discrepancies in the data may be due to the time of 

incubation or administration of IL-6. It appears that chronic treatment (>5 h) <247
• 
261

• 

263>, results in insulin resistance, while shorter periods of incubation or acute 

administration <248
• 
257

-
259

• 
264>, tend to cause an increase in glucose uptake and insulin 

sensitising effect. Chronic treatment may be more representative of disease states 

such as type 2 diabetes and obesity which are characterised by chronic elevation of 

circulating IL-6. While acute treatment may be compared to the short term release of 

IL-6 during exercise causing elevated IL-6 concentrations for only a few hours. 

Therefore from the data presented, it appears that IL-6 has specific effects in the 

muscle, liver and adipose tissue, and these effects may be modified depending on the 

time period of exposure to IL-6. In the short term, IL-6 may have a positive effect on 

glucose uptake and act to maintain glucose homeostasis and energy regulation during 

exercise. However in the long term, the inflammatory effects of IL-6 may play a 

role, and the involvement ofIL-6 with TNF-a and its actions to increase plasma fatty 

acid concentrations <251> may lead to an insulin resistant state <95
• 
280>. 

1.12 SUMMARY OF STUDY AIMS 

There is evidence to suggest the ability of insulin and contraction to increase glucose 

uptake is due in part, to their ability to increase total blood flow, and more 

importantly microvascular perfusion. The work in this study aims to assess the 

mechanisms through which this increase in perfusion occurs, and the 

similarities/differences in these pathways in response to insulin or contraction. 

While it has been shown that changes in bulk flow correlate with the filling rate of the 

capillaries, research has been published using this method under the assumption that 
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the technique is able to discriminate changes between microvascular volume and total 

blood flow. Therefore the first aim of this study was to validate the technique of 

contrast enhanced ultrasound for use in detecting changes in skeletal muscle 

microvascular perfusion independent of changes in bulk flow. 

The beneficial effects of exercise in terms of insulin sensitivity are well documented, 

however the mechanism behind this phenomenon are still to be elucidated. While 

there is a large body of work assessing the signalling pathways which may be 

responsible for this sensitisation post-contraction, the role of the microvasculature and 

capillary perfusion during this post-contraction period has not been assessed. The 

second aim of this study was to assess, using the contrast enhanced ultrasound 

technique, if an acute bout of contraction results in an increase in microvascular 

perfusion post-contraction and if this is associated with an increase in skeletal muscle 

glucose uptake. 

Nitric oxide has been implicated in insulin mediated increases in microvascular 

perfusion, however its role in the hyperaemic response to exercise is still 

controversial. The effect of nitric oxide on total blood flow has been assessed with 

mixed results, however its effect on microvascular perfusion has not been assessed. 

This third aim of this study is to examine the role of nitric oxide in exercise induced 

vasodilation and its effects on microvascular perfusion and glucose uptake during 

contraction. 

In conjunction with nitric oxide, endothelin-1 is responsible for maintaining the 

vascular tone of the vessels at basal, and possibly during insulin stimulation. An 

imbalance in the secretion of these compounds may result in disruption of the 

homeostatic regulation of the vessels leading to endothelial dysfunction and insulin 

resistance. This fourth aim of this study is assess if endothelin-1 is able modulate 

insulin mediated effects on total blood flow and microvascular perfusion and to 

examine if this leads to a state of insulin resistance in the skeletal muscle. 

Another controversial area is the role of interleukin-6 during exercise and insulin 

stimulation. Due to its release in vast quantities during intense exercise, interleukin-6 

is thought to play a positive role in maintaining glucose homeostasis and fuel stores, 
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however its effects on insulin action are still unknown. This laboratory has shown 

that a similar cytokine, TNF-a, when administered acutely causes insulin resistance 

by inhibiting insulin mediated haemodynamic effects. Therefore, the fifth aim of this 

thesis is to assess the role of acute IL-6 administration on insulin mediated 

microvascular perfusion and glucose uptake in the skeletal muscle. 

In summary, the principal aim of this thesis is to assess in vivo, the mechanism 

involved in mediating microvascular perfusion and glucose uptake during stimulation 

by insulin or contraction in the rat. As these two stimuli act to increase glucose 

uptake through separate mechanisms, further insight into the metabolic and 

haemodynamic changes that occur in the microvasculature in response to these stimuli 

is important in understanding the development of disease states such as type 2 

diabetes, and opens the possibility of finding new therapeutic targets for treatment of 

these diseases. 
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Materials and Methods 

2.1 MATERIALS 

2.1.1 Infusion substances 

Allopurinol 

Sigma-Aldrich®; white powder 

8.50 mg of allopurinol was dissolved in 4.9 ml of heparinised saline and 100 µl of 1 

M NaOH and stored at -20°C as a 12.5 mM solution 

Endothelin-1 {ET-1) 

Calbiochem®; white powder, human and porcine ET-I 

1 mg ET-1 powder was dissolved in 125 µl of 80% acetic acid and then diluted with 

1.875 ml saline to give a stock solution of200 µM. The solution was stored in 200 µl 

aliquots at -20°C and diluted to the appropriate concentration with heparinised saline 

prior to each experiment. 

Fluorescein isothiocyanate (FITC)-labelled insulin 

Sigma Aldrich ®; USA 

A 200 µl solution ofFITC-labelled insulin at a concentration of I mg.mr1 was made 

before each experiment using heparinised saline. 

Insulin 

Eli Lilly®; 100U.m1"1 solution 

Humulin®R 

0.1 U of insulin was diluted in a 0.9 ml 2% bovine serum albumin (BSA) solution. 

This solution was then further diluted with heparinised saline dependent on rat weight 

and the concentration required, and infused intravenously. 

Interleukin-6 (IL-6) 
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Rand D Systems Inc.; 50 µg rrIL-6 solution 

97% purity (SDS-PAGE), recombinant rat (E-co/i-derived) IL-6 

The stock IL-6 was prepared with 14 µl of filtered 2% BSA and 669 µl of filtered 

PBS to give a fmal concentration of 50 µg.mr'. 200µ1 of the 50 µg.mr' solution was 

then combined with 800 µl filtered PBS (10ug.mr1 stock solution) and stored at-4°C. 

The stock solution was then diluted to the appropriate concentration with heparinised 

saline prior to each experiment. 

The IL-6 vehicle infusion solution consisted of 143 µl CH3CN, 3 µl TFA, 840 µl 

filtered PBS and 14 µl of2% BSA, and was diluted in the same manner as the IL-6 

solution. 

N00-Nitro-L-arginine methyl ester hydrochloride (L-NAME) 

Sigma-Aldrich®; white powder 

~98% purity (TLC) 

The stock solution consisted of 16.18 mg powder dissolved in 20 ml heparinised 

saline and was stored at -20°C. 

1-methylxanthine Cl-MX) 

Sigma-Aldrich®; white powder 

~97.0% purity (HPLC) 

100 mg of 1-Methylxanthine was dissolved in 19.4 ml of heparinised saline and 600 

µl of 1 M NaOH. This 5 mg.ml-1 stock solution was stored at -20°C. 

Microbubble contrast agents CMB) 

The phospholipid microbubble solution was prepared in the laboratory. 

Per 100 ml: 

10.35 g 1,2-Propanediol 

12.62 g Glycerol 

0.66 gNaCl 
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0.075 g Lipid Blend (consists of0.0043 g l,2-Dipalmitoyl-SN-Glycero-3-

Phospatidic acid, mono salt; 0.039 g 1,2-Dipalmitoyl-SN-glycero-3-

phosphatidylcholine (DPPC); 0.0307 g 1,2-dipalmitoyl-SN-glycero-3-

phospatidylethanolamine, monosodium salt, N-(methodxypolyethylene glycol 500 

carbomyl) (MPEG5000-DPPE)) 

In separate 200 ml beakers, the 1,2-propanediol and lipid blend were heated in a 55°C 

water bath, and combined when the 1,2-propanediol reached 55°C. The NaCl was 

dissolved in 60 ml of water and added to glycerol before being heated to 55°C in a 

water bath. When dissolved, the lipid blend/propanediol mix was added to the 

NaCl/glycerol solution and dissolved in a 75°C water bath. The pH of the solution 

was adjusted to 6.5 using NaOH or HCl and filled to volume (100 ml) with distilled 

water. The solution was filtered through a sterilising filter (0.45 µm) into sterile 

falcon tubes before being transferred into 5ml glass vials. The head space was 

exchanged for octafluoropropane gas, the vials were sealed, and stored at -4°C. 

2.1.2 Radioactive Material 

2-Deoxy-D-[l-14C] glucose (2-DG) 

Amersham Pharmacia Biotech; 

Aqueous solution, sterilised, 200 µCi.mr 1 

100 µl of2-Deoxy-D-[1-14C] glucose (2-DG) was freeze dried overnight. When 

required the 2-Deoxy-D-[1-14C] glucose was resuspended in 100 µl ofheparinised 

saline and given as a bolus injection in the jugular vein of the anaesthetised rat, as 

above. 

D-[3-3HJ glucose 

Amersham Pharmacia Biotech 

Aqueous solution, sterilised, 1 mCi.mr1 

An infusion solution ofO.l µCi.min-1 ofD-[3-3H] glucose was made with heparinised 

saline before use. 
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2.2 IN VIVO EXPERIMENTS 

2.2.1 Animals 

Male Hooded Wistar rats (230-250g) reared in the University of Tasmania animal 

house were used. Animals were kept on a 12 h light/dark cycle maintained at 22°C. 

All animals were allowed free access to standard laboratory rat chow (21.4% protein, 

4.6% lipid, 68% carbohydrate and 6% crude fibre with added vitamins and minerals) 

and water ad libitum. 

Rats used during experiments that required the determination of glucose turnover 

were fasted overnight prior to the experiment. 

2.2.2 Surgery 

Rats were anaesthetised using sodium pentobarbital (50mg/100g body weight). A 

tracheotomy tube was inserted to allow the animal to spontaneously breathe room air 

throughout the experiment. The right carotid artery and both jugular veins were 

cannulated using Polyethylene cannulas (PE-60, Intramedic®) and secured using silk 

ligatures (size 3/0 waxed braided silk). After the cannulas were surgically implanted, 

the carotid artery was attached to a pressure transducer (Transpac IV, Abbott Critical 

Systems, Morgan hill, CA USA) allowing constant mean arterial pressure 

measurements. The carotid artery was also used for arterial sampling through out the 

experiment. The right jugular vein was used for the administration of various 

intravenous infusions (eg. saline, insulin, 1-Methylxanthine etc). This surgical 

procedure generally lasted approximately 20 min, after which the animals were 

maintained under anaesthesia for the remaining surgery and the duration of the 

experiment via a constant infusion of anaesthetic (0.6 mg.min-1.kg-1 pentobarbitone 

sodium) through the left jugular vein (Fig. 2.1 ). The body temperature of the animal 

was maintained at 37°C using a water-jacketed platform and a heating lamp 

positioned above the rat. 

Once the animal was stabilised (ie. mean arterial pressure of approximately 110 

mmHg and a heart rate between 300 and 400 beats.min-1
), a small incision was made 

in the skin overlaying the femoral vessels of both legs. The femoral artery was 
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separated from the femoral vein and saphenous nerve in each leg, and an ultrasonic 

flow probe (Transonic Systems'™, VB series 0.5 mm Ithaca, NY USA) was positioned 

around each femoral artery distal to the rectus abdominis muscle (Note: some 

experiments only required blood flow measurements in one leg, as specified in the 

individual study protocols, and therefore only one flow probe was used). The cavity 

in the leg surrounding the flow probe was filled with lubricating jelly (H-R, Mohawk 

Medical Supply, Utica, NY USA) to provide acoustic coupling to the probe. The flow 

probes were then connected to a flow meter (Model T106 ultrasonic volume flow 

meter, Transonic'™ systems Ithaca, NY USA). This in turn was interfaced with an 

IBM compatible PC computer, that acquired data at a sampling frequency of 100 Hz 

for femoral blood flow, heart rate and blood pressure using WINDAQ data acquisition 

software (DATAQ instruments, Akron, OH USA) (Fig. 2.1). 

After surgery, a 45 min equilibration period was permitted to allow leg blood flow, 

mean arterial pressure and heart rate to become stable and constant before 

commencing the experiment. 

2.2.2.1 Epigastric artery cannulation 

When a local infusion in the rat hindlimb was required (ie. to prevent systemic 

effects), the epigastric artery was cannulated prior to the ultrasonic flow probe being 

positioned around the femoral artery. The cannula was made form a blunted insulin 

syringe needle attached to a small diameter polyethylene tubing (PE-20, Intramedic®). 

This in turn was connected to a larger sized polyethylene tubing (PE-50, Intramedic®) 

to allow the attachment of the infusion syringe. The skin above the epigastric artery 

and femoral artery was removed and the connective tissue overlying the vessels was 

separated. The connective tissue surrounding the epigastric artery was removed and a 

silk tie was loosely placed around the artery/vein bundle. A small incision was made 

in the artery using a shat:p insulin syringe needle and then cannulated, with the tip of 

the needle positioned in the junction between the epigastric and femoral arteries and 

without disrupting blood flow. The cannula was secured using the silk tie around the 

artery/vein bundle. A successful cannulation resulted in arterial blood pulsing into the 

tubing upon which it was flushed with saline. Saline was infused at a rate of 1 µ1. -
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1min to ensure the cannula remained clear until the infusion substance was required 

(Fig. 2.1). 

Jugular vein cannulated 

Tracheotomy-------..-'-+! 

Transonicnl 
flow probe 

Femoral 
artery 

Femoral 
vein 

Carotid artery cannulated 

Transonicn< 
flow probe 

Cannulated eplgastrlc 
(feeding into 

e femoral artery) 

FIGURE 2.1: SCHEMATIC DRAWING OF THE IN VIVO SURGERY. Surgery details are given in section 

2.2.2. This picture depicts the ventral view of the rat, showing cannulation of the jugular veins (used 

for intravenous infusions) and the carotid artery (used for arterial blood sampling and continuous 

measurement of mean arterial pressure and heart rate). A tracheotomy tube was inserted to allow 

spontaneous breathing of room air and a Transonic ™ flow probe was placed around either one, or both 

of the femoral arteries (depending on the study protocol), to measure femoral blood flow. The 

epigastric artery was only cannulated during experiments where a local infusion into the hindlimb was 

required. (Diagram adapted from Mahajan et al. <281
)) 

2.3 EXPERIMENTAL PROCEDURES AND ANALYTICAL METHODS 

2.3.1 In vivo procedure 

After a 45 min equilibration period, two arterial samples were taken to determine 

blood glucose levels. During insulin infusion blood glucose was maintained at 

euglycaemia by infusion of a 30% w/v solution of glucose. Infusion volumes of 

glucose and insulin were matched during control experiments with the equivalent 

47 



Materials and Methods 

volume of saline. Excess arterial and venous plasma samples taken throughout the 

experiment were stored at -20°C for use when required. Details of experimental 

protocols are given in individual chapters. 

2.3.2 Microvascular flow measurements 

2.3.2.1 1-methylxanthine metabolism 

The surface area of the microvasculature was measured by a previously established 

method involving the infusion of 1-methylxanthine (1-MX; Sigma Aldrich Inc) and 

its metabolism by xanthine oxidase <21
). Xanthine oxidase is an enzyme located in the 

endothelium of capillaries and small arterioles in skeletal muscle <282
). As the number 

of perfused capillaries increases, as does the endothelial surface area exposed to the 

circulating 1-MX, therefore increasing its metabolism. The disappearance of 1-MX 

from the circulation and the appearance of 1-Methylurate (its metabolite) can be used 

to indicate an increase (or decrease) in capillary perfusion. 

Xanthine oxidase rapidly metabolises 1-MX, thus it is necessary to partially inhibit 

the activity of the xanthine oxidase (particularly in non-muscle tissue) via a specific 

xanthine oxidase inhibitor, allopurinol <283
•
284

). Allopurinol (10 µmol.kg-1
) was 

administered as a bolus (via the carotid artery), five min prior to commencing 1-MX 

infusion (0.4 mg.min-1kg-1
) allowing a constant arterial concentration of 

approximately 15-25 µM of 1-MX to be maintained throughout the experiment. 

In order to measure 1-MX metabolism arterial and venous samples were collected in 

cold eppendorftubes. The blood samples were centrifuged at 13000 rpm for 10 min 

and the plasma removed and placed on ice. The 20 µl of plasma was deproteinised 

using 80 µl of 2 M perchloric acid and analysed using reverse-phase high 

performance liquid chromatography as previously described <21
). 

The metabolism of 1-MX (nmol.min-1
) was calculated by multiplying the arterial­

venous 1-MX difference by femoral blood flow, and corrected for the volume 

accessible to 1-MX (0.871) which was determined from plasma concentrations after 

the addition of 1-MX standard to whole rat blood. 
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2.3.2.2 Contrast Enhanced Ultrasound 

Contrast Enhanced Ultrasound (CEU) imaging of the muscle microvasculature is a 

recently developed technique adapted from its use in cardiovascular imaging <26). Gas 

filled phospholipid microbubbles (section 2.1.1) were infused intravenously into 

systemic circulation at a constant rate and visualised using a linear-array 

transducer/probe (L7-4) interfaced with an ultrasound system (HDI-5000; Philips 

Medical Systems, Andover, MA). 

The transducer was placed over the calf muscle region allowing imaging of the soleus, 

plantaris and the red and white gastrocnemius muscles. The tendons behind the knee 

were used as a reference point when positioning the probe (see Fig. 2.2) and a region 

of interest was selected around the muscles (Fig. 2.2) using Qlab advanced 

quantification software (Phillips Medical Systems, The Netherlands, B.V). 
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CEU image of calf 

Muscles in the region of interest 

Selected region of interest 

Soleus 

Plantaris 

Red gastrocnemius 

White gastrocnemius 

Mixed gastrocnemius 

Tendons (point of reference) 

FIGURE 2.2: CONTRAST ENHANCED ULTRASOUND IMAGE OF THE CALF MUSCLE. A) The image as 

seen by contrast enhanced ultrasound. B) During the analysis a region of interest is selected to include 

only the muscles of the calf. C) The positioning of the muscles of the calf. The tendons are used as a 

point of reference when positioning the probe. 

The microbubbles (that average 4 µm in diameter) have a similar rheology to 

erythrocytes, enabling them to stay in the microvasculature and act as a marker of 

microvascular space <55
) • The microbubbles are echogenic as they expand under 

conditions of high pressure and compress under low pressure leading to changes in 

acoustic signal. As the microbubbles pass under the ultrasound beam they can be 

simultaneously imaged and destroyed, therefore as the time between high energy 

pulses from the ultrasound increases, the number of microbubbles able to fill the 

microvasculature increases, and the greater the amount of perfusion the greater the 

signal/intensity (Fig. 2.3). 
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Image with no Microbubbles MB infusion at rest 
(at 15 s PI) 

Materials and Methods 

MB infusion during contraction 
(at 15 s PI) 

FIGURE 2.3: CONTRAST ENHANCED ULTRASOUND IMAGES OF THE CALF. Panel A shows the image 

without the infusion of microbubbles. Panel B shows the calf, with a systemic infusion of 

microbubbles at rest. Panel C shows the calf with a systemic infusion of microbubbles during 

contraction. All these images are taken at 15 s pulsing intervals (PI). 

By controlling the amount of time between pulses we are able to measure the velocity 

at which the microvasculature fills and the amount of volume perfused (Fig. 2.4). 

Continuous pulsing, or pulses set at a small time interval (0.07-0.5 s) represent the 

microbubble fill time of the larger vessels (Fig. 2.4 A and B). Longer pulsing 

intervals (15-20 s) represent the microvasculature volume (Fig. 2.4 C and D).At the 

conclusion of the experiment the data is analysed using Qlab advanced quantification 

software (Phillips Medical Systems, The Netherlands, B.V). This software gives a 

measure of the received ultrasound signal (in decibels) in the selected region of 

interest. This value is then converted to acoustic intensity (Al) by the equation: 

Acoustic intensity = 10 /\ (decibels I 10) 

Thus, using these values, we are able to subtract the signal intensity from the larger 

vessels and the background image, from the signal of the smaller vessels to gain a true 

measure of micro vascular perfusion. 
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A -1 Connective tissue, and the 
outline of the leg will be shown 
on the image. This will give a 
background value which is Intensity 

subtracted from the image. 

0 

Time(•) 

B 

-~1 
The continuous imaging (one 
pulse every 0.07 sand shorter 
pulsing intervals such as 0.5 s 
represent the macrovasculature. Intensity 

t 
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-1 
As the pulsing interval increases 
more MB refill the capillaries, 
increasing the received signal 

I 
from the ultrasound signal. The 
rate at which this signal 

Intensity 

increases represents red blood 
cell velocity. 

Time (• ) 

D 

-~, 
The longer pulsing intervals 
allow the capillary bed to be filled 
with MB until a plateau is 
reached. This plateau position is Intensity 

a measure of microvascular 
volume. 

Arteriole Capillaries Venule 
Time(•) 

FIGURE 2.4: MEASUREMENT OF MICROVASCULAR VOLUME BY CONTRAST ENHANCED ULTRASOUND. 

As the time between pulsing intervals increases, a greater number of microbubbles may fill the 

microvascular space leading to an increase in signal. By manipulating the pulsing interval time a 

pulsing interval curve may be constructed and used to indicate the microvascular filling rate and 

microvascular volume. 

The mechanical index [(peak acoustic pressure) x (frequency) -112
], a measure of 

acoustic power, was set to 0.8, and the gain settings were optimised and maintained 

through each separate experiment. The pulsing intervals were set to 0.2, 0.3, 0.5, l, 2, 

3, 5, 8, 12 and 15 s. At each pulsing interval five frames/images were captured. The 

signal/intensity (assessed using the using Qlab advanced quantification software 

(Phillips Medical Systems, The Netherlands, B.V)) from each of these five frames 

was averaged, the signal from the larger vessels and background were subtracted and 

the pulsing interval curve was constructed by plotting pulsing interval time versus 

acoustic intensity. The microvascular volume (A) and microvascular filling rate 

constant (fJ) values were determined using graphing software (Systat Software Inc. 
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California, USA) and the microvascular volume and velocity are calculated using the 

equation: 

Where: 

Y = Acoustic intensity at a given pulsing interval 

A =Acoustic intensity at the plateau position (an indicator of 

microvascular volume) (Figure 2.5) 

p =The rate constant that provides a measure of the filling rate of the 

microvasculature (Fig. 2.5) 

A measure of microvascular blood flow is achieved by multiplying the A and P 
values. 

Acoustic 
Intensity 

. . 
: . . . A 

• • • • • • • • • • • • • • • • • • • • ••• • •••••••••• ·...:· .:.· :.!" •:,!• !.!" ·~·.!!.;• 0-0.&&a ....... --~-~ . . • . . . . . 
/3 ..... . . 

Time (s) 

FIGURE 2.5: MICROVASCULAR VOLUME AND FILLING RATE CALCULATION. Once a pulsing interval 

cure has been constructed, we may measure the plateau position (A) which is a measure of 

microvascular volume, and the rate of increase (/1) which is a measure of average filling rate of the 

microvasculature. By multiplying A and fJ values we have a measure of microvascular blood flow. 

2.3.3 Muscle Glucose Uptake (R 'g) 

To asses the uptake of glucose into the individual muscles a 100 µl bolus of 2-deoxy­

D-[ 1-14C] glucose (specific activity= 56.0 mCi.mmor1, Amersham Pharmacia 

Biotech, IL, USA) was administered via the jugular vein, 45 min prior to the 
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completion of the experiment. To determine the clearance rate of2-DG from the 

blood, arterial samples were taken 5, 10, 15, 30 and 45 min after the bolus injection, 

centrifuged and the plasma removed. The plasma (25 µl) was then added to four ml of 

Biodegradable Counting Scintillant BCS (Amersham Pharmacia Biotech, IL) and 

glucose radioactivity was determined using a scintillation counter (Perkin Elmer Inc., 

Tri-Carb 2800TR, IL, USA). 

At the conclusion of the experiment, the soleus (SOL), plantaris (PLA), 

gastrocnemius red (RG), gastrocnemius white (WG), extensor digitorum longus 

(EDL) and tibialis anterior (TIB) muscles were dissected, freeze-clamped using liquid 

nitrogen-cooled tongs and stored at -80°C. 

The frozen muscles were powdered under liquid nitrogen and 100 mg of muscle tissue 

was homogenised with 1.5 ml water using a Heidolph™ silent crusher M (27000 

rpm.min-1
). Free and phosphorylated [14C] 2-DG were separated by ion exchange 

chromatography using an anion exchange resin (AG® 1-X8, Bio-Rad laboratories, 

CA). Biodegradable Counting Scintillant (16 ml; Amersham Pharmacia Biotech, IL, 

USA) was added to each sample and the radioactivity determined using a liquid­

scintillation counter (Perkin Elmer Inc., Tri-Carb 2800TR, IL, USA). R' g, which 

reflects the glucose uptake into the muscle, was calculated using these counts from the 

individual muscles and the decay rate (calculated from the arterial plasma 

radioactivity figures), as previously described by others <285
•
286

). R'g is expressed as 

µg.g-1.min-1 of muscle (wet weight). 

2.3.4 Glucose and Lactate Determination 

Whole blood and plasma glucose and lactate concentrations were measured using a 

glucose analyser (Model 2300 Stat plus, Yellow Springs Instruments, OH) during the 

experiment. A sample of 25 µl was required for each assay and concentrations were 

determined by the glucose oxidase method. 

Glucose uptake (µmol.min- 1
) and lactate release (µmol.min- 1

) were calculated by 

multiplying the arterial-venous glucose difference by femoral blood flow. 
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2. 3. 5 Hindlimb contraction by electrical stimulation 

When the protocol required contraction (ie. exercise simulation), a Nerv-Muskel­

Reizgerat stimulator (Hugo Sachs Electronics) was used to stimulate contraction of 

the lower leg muscles. The skin was removed from the knee area and an electrode 

attached, with a second electrode placed through the Achilles tendon. The foot was 

secured to minimise movement. Twitch stimulation was performed, with 0.1 ms 

pulses applied at 2 Hz. Voltage was set to 35 V. 

When force measurements were required, the leg was stabilized in a jig, with a pin 

securing the bone around the knee. A hook was inserted through the Achilles tendon 

and attached by a metal rod to isometric transducer to allow a constant measure of 

tension development via the WINDAQ software program. 

2.4 Data Analysis 

All data are expressed as means ± SEM. Mean femoral blood flow, mean heart rate 

and mean arterial pressure were calculated using five second sub-samples of 

WINDAQ data, which represented 501 flow and pressure measurements. These 

measurements were taken every 15 min during the experiment. Vascular resistance 

in the hindlimb was calculated by dividing mean arterial pressure (mmHg) by femoral 

blood flow (ml.min-1
) and was expressed as resistance units (RU). 

2.5 Statistical Analysis 

To ascertain differences between treatment groups at the conclusion of the 

experiment, a one-way ANOV A was used. Differences between initial (samples 

taken before treatment) and fmal (samples taken at the conclusion of the experiment) 

values were assessed using a paired t-test. Comparisons were made between 

treatment groups over the course of the experiment using a two-way repeated­

measures ANOV A and Student-Newman-Keuls post hoe test. Significance was 

accepted at a level of p<0.05. All tests were performed using SigmaStat software 

(Systat Software Inc. California, USA). 
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CEU of capillary models in vitro 

3.1 INTRODUCTION 

Contrast enhanced ultrasound (CEU) is a method used in cardiovascular research to 

measure myocardial blood flow <21
• 
287>. It is a relatively non invasive technique which 

requires a contrast agent, phospholipid microbubbles (MB), to be infused into the 

circulation and achieve a steady state concentration. A transducer (interfaced with an 

ultrasound system) which emits pulses of sound waves is placed over the region of 

interest, with each pulse resulting in acoustic signals produced by the microbubbles 

within the vasculature. This signal can then be visualised using the ultrasound 

system. By using a high mechanical index to destroy the microbubbles and 

manipulating the time between each pulse of ultrasound, the microvascular volume 

and the rate of fill of the microvasculature can be assessed. 

CEU has been adapted for use in skeletal muscle and its application has shown 

increased microvascular perfusion during exercise and insulin infusion in both 

humans <25
• 
288>, and rats <28

• 
38

) in vivo. As discussed in Chapter 1, it is the ability of 

insulin and exercise to increase microvascular perfusion, and not bulk flow, which is 

important for glucose uptake. This is shown by experiments using low dose insulin, 

which increase microvascular perfusion and glucose uptake without affecting total 

blood flow. <29>. It has been proposed that capillary recruitment in response to stimuli 

such as contraction and insulin may occur by one of two methods. Firstly, by flow 

sharing into capillaries of similar properties, where capillary blood flow rate may be 

expected to decrease, or secondly, by redistributing flow from short to long tortuous 

capillaries where capillary blood flow would not be expected to change. It is not 

known whether CEU is able to distinguish between these two patterns of flow 

redistribution. 

Unlike the method of 1-MX metabolism, which may only be used to measure 

microvascular perfusion at the end of an experiment (due to the large sample volume 

required), CEU has the advantage that multiple measurements may be made 

throughout the course of an experiment. In addition, CEU is able to make 

measurements of a large region of interest (such as the calf muscle), without 

disrupting the tissue (which may occur with microdialysis) or blood flow in that 

region. To date, only one modelling study using CEU has been reported and this 

57 



CEU of capillary models in vitro 

found bulk flow to correlate with measured filling rate, but capillary volume was not 

assessed <26>. 

The aim of this project was to validate the CEU technique in a capillary tube model 

and to assess the effect of bulk flow on microvascular volume. Furthermore, this 

study determines if CEU is able to discriminate between different flow patterns which 

may account for increased microvascular perfusion in vivo. 

3.2 METHOD 

3.2.1 Capillary Models 

Preliminary experiments showed that the thickness of the tubing wall could affect the 

reflected signal received from the ultrasound, thus masking the signal from the 

microbubbles. Therefore, thin-walled microdialysis tubing (BAS Bioanalytical 

Systems Inc. IN, USA) with an external diameter of 320 µm and an internal diameter 

of 280 µm was used to construct the capillary models. The capillary tubing models 

were held in position by a Perspex frame positioned under the ultrasound transducer 

(Fig. 3.1). To allow conduction of ultrasound, the capillary tubing and head of the 

transducer were immersed in a beaker of water. 
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FIGURE 3.1: CAPILLARY MODEL APPARATUS. The capillary model was made from thin walled 

microdialysis tubing, adhered to thicker PE 20 plastic tubing to allow the delivery of microbubbles. 

The ultrasound transducer and the capillary model were held in place by a Perspex cyl inder, and both 

were submersed in distilled water to allow conduction of the ultrasound signal. 

Three separate capillary tubing models were made. The first model consisted of a 

single piece of tubing to test the effects of a microbubble delivery rate on the signal 

received (Fig. 3.3A). A 60 mm length of capillary tubing was used and a 23 gauge 

stainless steel needle ( 10 mm in length, which had been removed from a hypodermic 

needle and blunted) was inserted into one end of the tubing. This in turn was joined 

to a length of non-permeable conducting tubing (PE 20, Becton Dickinson; NJ, USA) 

by a short sleeve (1.5 cm) of PE 50 (Becton Dickinson; NJ, USA) tubing. All 

junctions were sealed with water-proof glue (Araldite®). The opposite end of the 

capillary tubing was similarly attached to another length of PE 20 to allow the 

continuous perfusion ofmicrobubbles through the model (Fig. 3.2). 
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FIGURE 3.2: CAPILLARY MODEL CONSTRUCTION. Microdialysis tubing was used as the capillary 

model, and was the only portion of tubing within the field of measurement under the ultrasound probe. 

The microdialysis tubing was attached to a length of PE 20 plastic tubing at each end (in order to allow 

the flow of microbubbles through the model) via a blunted needle tip and a sleeve of PE 50 plastic 

tubing. All junctions were sealed with water-proof glue (Araldite®). 

The second model aimed to compare the characteristics of a long tortuous capillary 

with a short capillary and consisted of a long piece of tubing connected in series 

versus one straight piece of tubing (as described above). The 'in series' model 

consisted of three lengths of microdialysis tubing joined with needles and PE 20 

tubing as described above, so that each capillary doubled back under the face of the 

transducer, creating a zigzag pattern (Fig. 3.3B). 

The third model was a manifold which allowed comparisons to be made between the 

perfusion of one, two, three or four capillaries. The microdialysis tubing was 

packaged so that 6 capillary tubes arose from one larger piece of tubing (similar in 

size to PE 20). Therefore, to construct the manifold these 6 lengths of microdialysis 

tubing were attached to PE 20 as described above. Two lengths were permanently 

sealed with snug-fitting stainless steel wire and the four remaining lengths were 

closed (when required) with removable clamps (Fig. 3.3C). 
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A 

B 

Model 1: Single capillary, varied flow rate 

Varied flow rate ---+:::i:=========:i::= 
(20, 40 or 80 µ1.min"1) 

Model 2: long tortuous capillary versus a short capillary 

Constant ---+ =====:::::i=========:::i::::;iq 
flow rate VS I • 

(80 µl.min"1) • 

---+=========+======================= 
c 

Model 3: Manifold (1,2,3 or 4 perfused capillaries) 

FIGURE 3.3: CAPILLARY MODEL ARRANGEMENTS. (A) The single capillary model where delivery rate 

was varied. (B) A tubing model connected in series, where the flow through a long tortuous capillary, 

which crosses the region of interest three times is compared to a short capillary. (C) A manifold model, 

where one, two, three or four capillaries were compared at a constant flow rate. The region of interest 

is shown by the coloured box around each model. 

3.2.2 CEU measurements 

Images were collected by CEU as described in section 2.3 .2.2 with the following 

adaptations for use in a model system. 

Commercially available perfluorocarbon gas-filled albumin microbubbles (MB; 

Optison™, Amersham), diluted with isotonic saline (previously gassed with 

perfluorocarbon) were used as the contrast medium (-750MB.µr 1
). The 

microbubbles were delivered at 20, 40 or 80 µl.min"1 as specified, by a syringe pump, 

which was continuously mixed by rotation to maintain an even suspension. The 

delivery lines were also vibrated to prevent an uneven infusion of microbubbles. 

CEU measurements were made at a mechanical index of 1.0 that was capable of 

destroying all bubbles in the ultrasound beam. The capillary tubing was at a depth of 
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4.1 cm and the gain settings were held constant between all experiments. A region of 

interest was selected around all the tubing in the field of vision as shown in Figure 

3.3. Pulsing intervals of0.2, 0.3, 0.5, 1, 2, 3, 5, 8, 12 and 15 s were used, and 5 

frames were captured at each interval. The intensity value at each of these frames was 

averaged and then plotted against time resulting in a pulsing interval curve. Capillary 

tubing volume (A) and capillary filling rate constant (/J) were then calculated using the 

equation y =A (1- e-P'), where y is equal to the acoustic intensity at a given pulsing 

interval (see section 2.3.2.2). Capillary tubing volume (A) was multiplied by the 

capillary tubing filling rate constant (/J) to give a measure of flow rate. 

3.2.3 Experimental design 

Initial experiments focused on establishing a suitable concentration of microbubbles 

for use in the model system, using the single capillary tubing model. The acoustic 

intensity at a pulsing interval of 8 s was graphed as a function of microbubble 

concentration (Fig. 3.4). The concentration infused was varied by diluting the 

commercial Optison ™ suspension at 1: 1 O; 1 :20; 1 :40; 1 :60; 1 :80; 1: 100; and 1: 120 

with isotonic saline previously gassed with perflourocarbon. A 1: 10 dilution 

corresponded to -2400 microbubbles per µl. From this concentration curve an 

optimal dilution of 1 :50 was determined and used for all capillary model experiments. 

A single capillary, variable delivery rate model was used to determine if flow rate 

affected the volume (A) or filling rate constant (/3). A single length of capillary tubing 

was positioned under the longer axis of the transducer. Micro bubbles were infused at 

20 ~Ll.min-1 and an image set consisting of 5 images captured at each intermittent 

pulsing interval was collected. This process was then repeated at flow rates of 40 and 

80 ~.min-1 • The order of flow rate change was randomised in subsequent 

experiments. A pulsing interval curve was constructed for each flow rate and capillary 

tubing volume (A) and filling rate constant (/3) was determined. 

A tubing model connected in series was used to determine the flow pattern changes 

between a single short capillary and a long capillary which crossed the field of 

measurement three times. The long tortuous capillary and short capillary were under 

the same region of interest. The three lengths of tubing for the model connected in 
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series passed under the long axis of the transducer and were arranged vertically, with 

the space between each length approximately 5 mm. A single length of capillary 

tubing, with its own inflow and out flow tube, was positioned 5 mm below the tubing 

connected in series in the same region of interest allowing accurate comparisons to be 

made between the long and short capillary tubing models. The flow rate for both was 

set to 80 µl.min- 1 and an image set was captured as described above in a randomised 

manner between the two capillary tubing arrangements. Pulsing interval curves were 

constructed from each image set to determine capillary tubing volume (A) and filling 

rate constant (/3). 

A manifold arrangement was used to determine flow pattern change involving the 

sharing of flow from a single capillary to multiple capillaries. A manifold model of 

four identical lengths of capillary tubing was positioned with each length in parallel, 

and one above the other, under the long axis of the transducer. The space between 

each length of capillary tubing was approximately 5 mm. Flow was set to 80 µl.min- 1 

and initially confined to only one capillary by using removable clamps to prevent 

flow into the other three capillaries. An image set was captured as described above. 

Flow was then shared between two capillaries and a second set of images was 

captured. Flow was then allowed to pass through three and then four capillaries, with 

an image set captured at each. Subsequent image sets were captured in a randomised 

manner for each of the tubing arrangements, with flow maintained at 80 µl.min- 1 

throughout the experiment. Pulsing interval curves were constructed from each image 

set to determine capillary tubing volume (A) and the filling rate constant (/3). 

3.2.4 Statistical analysis 

A one-way repeated measures ANOV A was used to determine differences between 

groups in the single tubing and manifold models. A paired t-test was used to 

determine differences between the long versus short capillary tubing model. Data are 

presented as mean± standard error of the mean and significance was accepted at a 

level of p<0.05. All tests were performed using SigmaStat software (Systat Software 

Inc. California, USA). 
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3.3 RESULTS 

3.3.1 Microbubble concentration 

Figure 3.4 shows a graph ofmicrobubble concentration versus acoustic intensity 

during 8 s pulsing intervals measured when microbubbles were infused into a single 

capillary tubing model. The graph shows that the microbubble concentrations begin 

to plateau at a dilution of 1 in 40 (approximately 600 MB per µl). Accordingly, a 

dilution of 1 in 50 (750 MB per µl) was chosen for all model experiments as this 

concentration fell in the linear portion of the graph. A higher concentration of 

microbubbles may have attenuated the received signal, while a lower concentration 

may not provide a strong enough signal to enable differences to be measured. 
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FIGURE 3.4: MICROBUBBLE CONCENTRATION CURVE. Optison™ microbubbles were infused into a 

single capillary tubing model at various concentrations to establish a concentration curve. The 

acoustic intensity at a pulsing interval (PI) of 8 s is graphed as a function of microbubble concentration. 

A concentration of approximately 750 microbubbles per µl (MB.µr') was used for all model 

experiments. Values are means± SEM (1F5) 

3.3.2 Effect of flow rate on CEU signal 

Figure 3.5 shows the A, p and A x p data for the single tubing model, where various 

flow rates were used. A representative ultrasound image is also shown. This model 

was used to demonstrate how the ultrasound can distinguish between changes in 

volume and fill rate. The calculated capillary volume, as represented by the A value, 

was unaffected by changes in flow rate. The refill rate constant (/3) and consequently 
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the A x fJ measure of capillary flow rate, increased as the flow rate increased from 20 

to 40 and 80 µ1.min- 1
• 
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FIGURE 3.5: SINGLE CAPILLARY TUBING MODEL. Microbubbles were infused at 20, 40, or 80 µl.min·1. 

Pulsing interval curves were conducted as described in the text. A, fJ and the product fJ x A were 

interpolated from the equation y = A(l-e·P1
). Panel 1 shows representative image of the single tubing 

model captured at a 15 s pulsing interval and the region of interest is outlined in red. The effect of flow 

rate on capillary tubing volume (A), filling rate constant (ff) , and microvascular flow (fJ x A ) as 

determined by CEU are shown in panels 2, 3 and 4 respectively. Values are means± SEM (n=7). *, 

significantly different to 20 µ1.min ·1 and 40 µ1.min·1 flow rates (p<0.05). 

3.3.3 Effect of long tortuous capillary versus short capillary on CEU signal 

Figure 3.6 shows the A, fJ and A x fJ data for the model simulating a shift in flow 

pattern for a long tortuous capillary passing through the ultrasound beam three times 

versus a short capillary passing through the ultrasound beam only once. Flow rate 

was set to 80 µl.min-1 and comparisons were made between pulsing interval curves 

constructed from the tubing connected in series versus a single capillary tube model. 

Both tubing arrangements were in the same region of interest as shown in Figure 3.6 

(panel 1 ). The graph for the A value shows that the capillary volume of the long 

tortuous capillary was three times that of the short capillary. In contrast, the fJ value 

decreased, so that there was no change in the product A x fJ. 
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FIGURE 3.6: TUBING CONNECTED 'JN SERIES' MODEL. Panel 1 shows a representative image of the in 

series model captured at a 15 s pulsing interval, during perfusion of the longer tubing. The region of 

interest is outlined in red. The effect of flow pattern change from a single short capillary tube (labelled 

single tube) to a long capillary tubing crossing the field of measurement three times (labelled 'tubing in 

series') on capillary tubing volume (A), filling rate constant (ff) and microvascular flow rate (ft x A ,) as 

determined by CEU, are shown in panels 2, 3 and 4 respectively. Microbubbles were infused at a 

constant rate of 80 µ1.min-1
• Pulsing interval curves were conducted as described in the text. p, A and 

the product p x A were interpolated from the equation y = A(l -e-P'). Values are means± SEM (n=9). •, 

significantly different to ' tubing in series' arrangement (p<0.05). 

3.3.4 Effect of flow sharing on CEU signal 

Figure 3. 7 shows the A, /3 and A x /3 data and a representative ultrasound image for the 

manifold model, which was intended to simulate capillary recruitment. The flow rate 

was set at 80 µl.min- 1 and was shared between one, two, three or four capillary tubes. 

As the number of perfused capillaries increased, the capillary volume increased. This 

was accompanied by a proportional decrease in the filling rate constant resulting in an 

unaltered flow rate as measured by A x f3 value. 
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FIGURE 3.7: FLOW SHARING MANIFOLD MODEL. Panel 1 shows a representative image of the manifold 

model captured at a 15 s pulsing interval during perfusion of all four capillaries. The region of interest 

in outlined in red. The effect of flow pattern change involving the sharing of flow from a single 

capillary to capillaries on filling rate constant (/J) , capillary tubing volume (A) and flow rate (fJ x A), as 

determined by CEU, are shown in panels 2, 3 and 4 respectively. Microbubbles were infused at a 

constant rate of 80 µl.min·1• Pulsing interval curves were conducted as described in the text. p, A and 

the product p x A were interpolated from the equation y = A(l-e-P\ Values are means± SEM (n=7). • , 

significantly different to one tube (p<0.05). 

3.4 DISCUSSION 

The use of capillary tubing models has revealed a number of important findings. 

Firstly, providing thin-walled tubing is used, there is a dose dependent effect of 

microbubble concentration on acoustic intensity. Secondly, it was shown that the 

CEU technique measures changes in microvascular volume and is not influenced by 

increases (or decreases) in bulk flow. This was demonstrated by the single tubing, 

variable flow rate model, where a four-fold increase in flow gave identical measures 

of micro vascular volume. This was accompanied by an increase in the rate of fill 

constant (/3), demonstrating that the CEU recognised the increase in flow rate. This 

affect was also evident in the A x f3 value which showed an increase in microvascular 

flow as the flow rate increased. Accordingly, use of this technique in vivo is likely to 

detect a change in microvascular volume during muscle contraction or high doses 
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insulin, without being influenced by increased bulk flow. Independence between bulk 

and microvascular flow has been assumed in previous in vivo studies based on the 

knowledge that increases in bulk flow can be accommodated by increased flow in the 

non-nutritive route, however independence between bulk flow and microvascular 

perfusion has not been directly shown previously. Another assumption is that the 

acoustic signal emitted from the bursting rnicrobubbles is only proportional to the 

microbubble number and not by the motion of the microbubbles that increases as flow 

increases. This study has confirmed these preconceived ideas. The CEU technique 

contrasts with laser Doppler flowmetry where the signal predominantly reflects non­

vectorial motion rather than particle number, and may only be used as a measure of 

rnicrovascular perfusion when bulk flow remains unchanged <33>. 

The fJ value and resulting A x fJ product in this model increased in direct proportion 

between the 20 and 40 µl.min- 1 flow rates, but not at 80 µ1.min- 1
• This may be caused 

by the rapid filling of the tubing volume at this flow rate (demonstrated by the sharp 

rise in acoustic intensity during shorter pulsing intervals, Fig 3.8), which occurred to 

quickly for an accurate measure of the fJ value in this model. This higher flow rate 

was necessary however, to measure changes in the flow sharing models, where flow 

was ultimately distributed between four capillaries resulting in a flow rate of 20 

µl.rnin-1 in each capillary. 
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FIGURE 3.8: REPRESENTATIVE PULSING INTERVAL CURVES AT 20, 40 AND 80 µL.MJN-1 IN THE SINGLE 

CAPILLARY MODEL. This figure shows the acoustic intensity of each pulsing interval plotted against 

time for each flow rate (a representative plot from each) and shows the sharp increase in acoustic 

intensity during the 80 µl.min-1 flow rate(• ) in comparison to the lower flow rates of 20 (• ) and 40 

ul.min-1 
( • ). 
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The third finding from this study was that the CEU method was not able to 

discriminate between the two flow pattern changes thought most likely to occur as a 

consequence of increased microvascular perfusion in vivo. These two flow pattern 

changes were chosen to reflect the possible changes which may occur in vivo in 

response to insulin or contraction. In one model, it has been proposed that insulin acts 

on the muscle microvasculature through a combination of vasodilation and 

vasoconstriction, possibly involving nitric oxide and endothelin respectively <2s9
). 

This combination may result in blood redistribution from relatively short, low 

resistance, high capacitance vessels to longer tortuous vessels. The active 

vasoconstriction may occur by restricting flow to the shorter vessels, and 

redistributing flow to the longer more tortuous vessels where a higher degree of 

nutrient exchange occurs <53
)_ In the other model, flow may be shared from one main 

route (as only one third of capillaries are perfused at rest (15
)) to a number of different 

capillaries increasing the surface area for nutrient exchange. 

The effects of these changes were shown by the tubing model connected in series. In 

this model, microvascular volume increased, and the rate of fill constant decreased, 

when perfusion was switched from a longer capillary to a shorter capillary. There 

was however no change in the calculated microvascular flow (A x ft) between the long 

or short capillary tube. A similar result was seen in the second flow sharing model, 

where flow initially in one capillary, was shared between one, two, three or four 

capillary tubes, at the same flow rate of 80 µl.min- 1
• In this model, the microvascular 

volume increased with increased flow sharing, while the rate of fill constant 

decreased, resulting in unchanged microvascular flow (A x p). The CEU technique is 

therefore unable to deduce the type of flow pattern changes that occur in vivo, since it 

can only detect volume filling rate and not red blood cell velocity as first thought <290
). 

Ifwe had been able to measure red blood cell velocity, a decrease would have been 

expected in the flow sharing manifold model as increased perfusion occurs as a result 

of flow being distributed from one to a number of capillaries. In contrast, red cell 

velocity would not be expected to change if increased perfusion resulted from flow 

being redirected from a short to a longer capillary. 
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The use of these capillary tubing models shows the consequences of a redistribution 

of flow in the capillaries on CEU signal and how these results may be interpreted to 

show changes in capillary volume and capillary fill rate. However, there are short 

comings with these models as the results show a lack of proportionality between the 

different flow rates in each model. This may result from a number of factors. For 

example, as explained above (Fig. 3.8), the higher flow rate of 80 µ1.min- 1 results in a 

very sharp increase in intensity resulting in possible error in the calculation of the 

microvascular fill rate. Furthermore, there is a slight variation in the microbubble 

concentration between experiments as the microbubble infusion solution is prepared 

before each experiment, which may result in variations in the acoustic intensity. This 

is not problematic during in vivo experiments as the microbubble solution is further 

diluted in the systemic circulation of the animal or human, minimising any 

inaccuracies. In the model system, any slight changes are magnified as the 

microbubbles are infused without further dilution into the model system. The error is 

also increased as the capillary tubing contributes to the background image making it 

harder to distinguish changes in the microbubble signal intensity. In vivo, the 

capillaries are considerably smaller and are not seen as a background image thus 

decreasing the intensity and reducing the interference of the background image, 

resulting in a more accurate measure of capillary flow. Despite these limitations, this 

model system shows that the CEU method is able to measure changes in capillary 

perfusion regardless of changes in total flow, and demonstrates how the data should 

be interpreted in terms of fill rate and capillary volume. 

There are a number of studies which have assessed microvascular perfusion in vivo 

using the CEU technique. Dawson et al. <2S) used the CEU method to assess the 

microvascular perfusion increase in the rat hindlimb in response to both 

hyperinsulinaemia and muscle contraction. Contraction resulted in a large increase in 

femoral blood flow (300% over basal) and an increase in both microvascular volume 

and the microvascular flow rate constant (~). Hyperinsulinaemia also increased 

femoral blood flow (by 50%) and microvascular volume, however there was no 

change in the flow rate constant which is most likely the result of flow sharing or flow 

redistribution in the hindlimb vasculature. Coggins et al. <25
> confirmed insulin's 

ability to increase microvascular perfusion without influencing bulk flow in the 

forearm of normal healthy individuals. A low dose of insulin increased the capillary 
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blood volume by 54% and decreased the fill rate constant by 42%. As the data from 

the capillary model shows, the decrease in the fill rate constant is expected due to a 

redistribution of flow and an increase in the perfused surface area with insulin 

infusion. Similarly, Clerk et al. <99
) found an increase in capillary blood volume and 

brachial artery flow, and a trend towards a decreased flow rate constant in healthy 

humans during a 1 mU.min-1.kg-1 euglycaemic hyperinsulinaemic clamp:­

Interestingly this increase in capillary blood volume was not seen in obese subjects. A 

similar pattern of results was also observed during low intensity handgrip exercise 

where brachia! artery blood flow and microvascular blood volume increased and the 

flow rate constant decreased, supporting the notion of flow distribution and 

microvascular recruitment <288>. 

In summary, the CEU method measures changes in microvascular recruitment and is 

not affected by changes in bulk flow. Although changes in both microvascular 

volume (A) and the microvascular filling rate (/J) can be distinguished by the CEU, 

these two parameters are inversely related and therefore are unable to discriminate 

between increased microvascular perfusion resulting from either flow redistribution 

from short to long tortuous capillaries and/or by flow sharing from one into many 

capillaries. The CEU method is however, a valuable tool in measuring changes in 

microvascular perfusion. 

71 



CHAPTER4: 

CONTRACTION-MEDIATED 

SENSITISATION OF 

SKELETAL MUSCLE 



Contraction-mediated sensitisation of skeletal muscle 

4.1 INTRODUCTION 

Experiments using the perfused hindlimb model have shown that skeletal muscle 

contraction is capable of increasing glucose uptake without the presence of insulin <291
• 

292>. Furthermore, skeletal muscle contraction is able to increase glucose uptake in 

insulin resistance models and type 2 diabetic patients cs7
• 

101
• 
292

) and the addition of 

insulin infusion during contraction in normal subjects results in an additive effect on 

glucose uptake <293>. This implies that insulin and contraction have separate signalling 

mechanisms which result in the ability to increase glucose uptake into the cells. It has 

been suggested that there may be two pools ofGLUT4, with each pool stimulated in 

response to either insulin or exercise, which may account for the additive effect when 

the two stimuli are combined <10>. 

An acute bout of exercise results in an increase in the sensitivity of the working 

muscles to insulin stimulation post exercise <112> and occurs independently of changes 

in the initial steps of the insulin signalling cascade ( eg. the extent of insulin receptor 

tyrosine phosphorylation) <123
• 

124>. The magnitude of the sensitisation effect is related 

to the pre-existing level of glycogen present in the muscle, as glycogen depletion 

results in a greater response to insulin stimulation during recovery <117
• 

119
). This 

sensitisation may also involve the activation of AS 160, an Akt substrate which is 

phosphorylated by both stimuli and is involved in GLUT4 translocation to the plasma 

membrane <105
• 

121>. While the insulin signalling pathway acts through PI3-kinase 

dependent mechanisms, the contraction mediated signalling pathway appears to be 

regulated by a number of different mechanisms (including Ca2+-dependent kinases, 

calcium calmodulin protein kinase and/or protein kinase C, and AMPK) which are 

still to be established <129>. 

From a haemodynamic perspective, there are similarities between the actions of 

insulin and contraction, but there are also issues that have not been explored. Like 

insulin, contraction also results in an increase in microvascular perfusion. For insulin, 

the reversal in capillary perfusion after insulin stimulation (measured by 1-MX 

metabolism) occurs within 30 min after plasma insulin levels had returned to baseline 

levels from a hyperinsulinaemic euglycaemic clamp, showing that perfusion remains 

enhanced for some time after insulin stimulation <29>. This may also be true for 
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exercise, as the microvasculature may remain perfused in order to assist with the 

replenishment of nutrients and waste removal during the post exercise period. Also, 

as the microvasculature is initially recruited in response to the metabolic needs of the 

muscle during exercise <144>, it is plausible that these requirements may also regulate 

the reversal of this response post exercise. Many of the current studies assessing 

insulin sensitisation post-exercise focus on the myocyte signalling cascades involved 

in mediating this effect, however there has been very little research assessing the 

involvement of blood flow in this response. 

Honig et al. <294> found that capillaries in the gracilis muscle were recruited in 

response to twitch stimulation frequency at less than 0.5 Hz and these changes 

occurred independently of changes in total blood flow. That study highlighted the 

independence between bulk and microvascular flow, and shows that even though bulk 

flow returns to basal levels relatively quickly post exercise, it is possible that the 

microvasculature may remain perfused for some time after. However, using in vivo 

microscopic techniques, Klitzman et al. <295> found that microvascular perfusion in the 

cremaster muscle of the hamster had returned to basal levels within 120 s of the end 

of contraction. It is important to note though, that only a single muscle was examined, 

therefore these results may be only specific to that fibre type and the :function of that 

muscle, reflecting the notion that as both flow and metabolism are influenced by fibre 

type <55>. In addition, since the procedures used required exposure of the muscle 

surgically, followed by denervation, the muscle may have altered the capillary 

response resulting from disruption of the surrounding vessels and the sympathetic 

control required to maintain vascular tone at rest. Furthermore, studies in this 

laboratory at the University of Tasmania have shown that cutting the sciatic nerve 

results in a substantial increase in femoral blood flow and hyperaemia. 

Therefore, the present study aims to examine the effect of a single bout of contraction 

on metabolic and haemodynamic parameters in vivo, with a view to assessing the 

relationship between the parameters, in a relatively non-invasive manner, as well as 

the time course for the return to basal levels post-contraction. This study also used the 

erythrocyte perfused hindlimb as a means to separate the microvascular response to 

contraction (which is not seen in this fully dilated system) and the effect of 

contraction directly on the myocyte. 
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4.2 METHODS 

4.2.1 In vivo experiments 

4.2.1.1 Animals 

Male hooded Wistar rats weighing 250 ± 7g were used for these experiments. They 

were raised as described in section 2.2.1. 

4.2.1.2. In vivo surgery 

Experiments were conducted using the anaesthetised rat model, with surgery as 

described in section 2.2.2. A Transonic™ flow probe was placed around each femoral 

artery in order to monitor blood flow in both the contracted and resting hindlimb. 

4.2.1.3 In vivo experimental procedure 

After a 45 min equilibration period, the lower leg muscles of one hind limb was 

stimulated to contract by electrical pulses (0.1 ms pulses applied 2 Hz, 35 V; as 

described in section 2.3.5) for 10 minutes. Saline was then infused at 10 µl.min-1 for 

60 min (Fig. 4.1) to measure post contraction events. At the conclusion of the 

experiments the muscles of the calf(soleus, plantaris, red gastrocnemius, white 

gastrocnemius, extensor digitorum longus and tibialis anterior) of both the control and 

treatment legs were removed and freeze clamped under liquid nitrogen. The muscle 

samples were then stored at -80°C until required for determination of muscle glucose 

uptake. 

Arterial (via the carotid artery) and venous (via the epigastric vein) blood samples 

were taken at the times indicated in Figure 4.1 and analysed for blood glucose and 

lactate concentrations and used to calculate hindlimb glucose uptake (refer to section 

2.3.4). Muscle glucose uptake was determined by using 2-deoxy-D-[1-14C] glucose 

(2-DG; specific activity = 56.0 mCi.mmor1
, Amersham Pharmacia Biotech) method 

as described in section 2.3.3. 

The CEU method (refer to section 2.3.2.2) was used to determine microvascular 

perfusion. Two CEU 7 -4 MHz transducers were used to measure flow in the 

contracting and contra-lateral control legs. A transducer was placed over the calf 
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muscle region of each limb allowing imaging of the soleus, plantaris, red and white 

gastrocnemius muscles during electrical stimulation or at rest. The mechanical index 

was set to 0.8, and gain settings were standardised for all experiments. A 40-fold 

dilution of gas-filled phospholipid microbubbles (see Section 2.1.1; 'microbubble 

contrast agent' for composition) was infused at a rate of 40 µl.min- 1 into the rat, via 

the jugular vein. The infusion pump and syringe containing the microbubble solution 

was continuously mixed to ensure the microbubbles maintained an even suspension 

and the delivery line to the rat was also vibrated. Microbubbles were infused 5 min 

prior to commencing 15 s pulsing intervals to allow the microbubble concentration to 

reach steady state. As the microbubbles interfere with the Doppler flow 

measurements, femoral blood flow was assessed in a separate group of experiments. 

4.2.1.4 In vivo protocol 

The time course of changes in microvascular volume, flow and glucose uptake were 

determined during 10 min of contraction and for 60 min post-contraction. 

Microvascular volume and flow were assessed using the CEU technique in continuous 

pulsing mode at intervals of 15 s throughout the basal and 10 min contraction period 

and for 60 min post-contraction. Pulsing intervals of 15 s were chosen as the PI 

curves obtained in previous experiments showed the PI curve had reached a plateau at 

this point (ie. 15 s) and thus was indicative of full microvascular perfusion (Fig. 4.1 ). 

During the protocol (Fig. 4.1), muscle glucose uptake was assessed by using 2-DG 

method as described in section 2.3.3. At the conclusion of the experiments (60 min 

post exercise) the muscles of the calf (soleus, plantaris, red gastrocnemius, white 

gastrocnemius, extensor digitorum longus and tibialis anterior) of both the control and 

treatment legs were removed and freeze clamped under liquid nitrogen. The muscle 

samples were then stored at -80°C until required for determination of muscle glucose 

uptake. 
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FIGURE4.1 : IN VIVO PROTOCOL: Contrast enhanced ultrasound (CEU) was used to examine the time 

course of microvascular volume changes during basal, 10 min contraction with electrical stimulation 

(ES; 2Hz, 0.1 msec pulse, 35 V) and 60 min post-contraction. Phospholipid microbubbles were infused 

throughout the experiment and continuous 15 s pulsing intervals were used to gain a measure of 

microvascular volume. To determine muscle glucose uptake 2-deoxy-D-[I-14C] glucose (2-DG) was 

administered as a bolus at 15 min and the muscles of both the contracted and rested hindlimbs were 

freeze-clamped under liquid nitrogen at the conclusion of all experiments for further analysis. 

Horizontal bars represent electrical stimulation, microbubble (MB) infusion, continuous 15 s pulsing 

interval CEU measurements and venous infusions, red circles represent arterial blood samples for 

determination of blood glucose and lactate, white circles represent arterial blood samples taken to 

determine the clearance rate of2-DG, arrows indicate bolus injection of radioactive 2-DG. 

4.2.1.5 Determination of plasma insulin concentrations 

Arterial blood samples were taken prior to the start of the in vivo experiment, and at 

60 min post contraction, centrifuged and the plasma was removed and stored at -20°C 

until required. The plasma was used to determine arterial insulin concentrations using 

an insulin ELISA kit (Mercodia AB; Sweden). 

4. 2. 2 In vitro experiments 

4.2.2.1 Animals 

Male hooded Wistar rats weighing 180-190 g were used for these experiments. They 

were raised as described in section 2.2.1. 

4.2.2.2 Hindlimb perfusion surgery 

Surgery was essentially as described by Ruderman et al. <296l and is illustrated in 

figure 4.2. In brief, the surgery involved isolating the hindlimb by ligating the major 
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abdominal branches, removal of the entire gastrointestinal tract and cannulating the 

aorta and vena cava, and ligating the contra-lateral leg so that only one leg was 

perfused. In detail, male rats (180-200 g) were anaesthetised with an intraperitonal 

injection ofpentobarbitone sodium (50 mg/100 g body weight). String ligatures were 

tied around the tail and the left tarsus (of the leg being perfused). Skin covering the 

stomach was cut away and a midline abdominal incision was made from the pubic 

region to the diaphragm. The superficial epigastric vessels were ligated on the right 

and left sides to allow the abdominal wall and skin to be removed with minimal 

bleeding. In order to prevent perfusate flow to the skin during perfusion, the vessel 

supplying the skin from the knee was ligated in the leg to be perfused (left). The 

small and large intestines were excised by ligating the descending colon twice. Cuts 

were made between them to limit bleeding. The superior portion of the intestine and 

the mesenteric artery were then ligated and the gut was removed. The blood vessels 

supplying the testes were tied and the testes removed, and a common ligature was 

placed around the seminal vesicles and the neck of the bladder, and the seminal 

vesicles were removed. The bladder was emptied using a syringe. The connective 

tissue covering the body wall was teased apart using cotton buds to allow access to 

the major vessels. The iliolumbar vessels, ureters, renal vessels and internal 

spermatic vessels were tied using one ligature on both the right and left sides. To 

prevent the perfusion of the contralateral limb, the right branch of the common iliac 

vessels was tied below the bifurcation using two silk ties (size 3/0 waxed braided 

silk). The vena cava and aorta were gently separated using blunt forceps and two silk 

ligatures were placed loosely around each vessel. Heparin (0.2 ml) was then injected 

into the vena cava (through fat if possible, to prevent bleeding), and allowed to 

circulate for one minute. The upper ligature on the vena cave was tightened and the 

vena cava was cannulated (Surflo® I.V. catheter, 18 G x 11/4'', Terumo, Australia). 

The bottom ligature was tightened around the vessel and cannula, and the upper 

ligature was tightened around the cannula to keep it in place. The upper ligature on 

the aorta was then tightened and a small incision was made below the ligature, half 

way through the aorta. This opening was held open using a fine metal probe and the 

cannula (Surflo® I.V. catheter, 20 G x 11/4", Terumo, Australia), attached to a saline 

filled syringe, was inserted into the vessel. The bottom ligature was then tightened 

around the skin and vessel, and the top ligature secured around the cannula to keep it 

in place. Saline was then expelled into the vessel to determine if the catheter was 
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properly placed and to facilitate the removal of residual blood in the hindlimb (which 

may cause clots) and to minimise air bubbles entering the vasculature. The 

preparation was then transferred to the perfusion cabinet and attached to the perfusion 

apparatus connecting the aortic cannula to the tubing containing the oxygenated 

buffer medium. Once circulation was re-established through the perfusion apparatus, 

the animal was killed with a lethal dose of pentobarbitone sodium via an intracardiac 

injection. String was then used to tie off the abdomen (L3, L4 region) to prevent flow 

of perfusate into lower back muscles. Throughout surgery cotton thread was used as 

ligatures (unless otherwise specified) and surgery did not exceed 20 min. 

All anaesthetic and surgical procedures were approved by the University of Tasmania 

Animal Ethics Committee. 

&I . 
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FIG. 4.2: SURGERY FOR THE PERFUSED RAT mNDLIMB: Surgery details are given in section 4.2.2.2 

This picture depicts the ventral view of the rat, showing vessel ligation and cannulation performed to 

isolate blood flow to a single hindlimb (adapted from Ross C
297> and Greene <298». 
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4.2.2.3 Perfusion medium 

4.2.2.3.l Krebs-Henseleit buffer 

Krebs-Henseleit buffer was prepared in distilled water and consisted of: 

118 mMNaCI 

4.74mMKCI 

1.19 mM KH2P04 

1.18 mM MgS04 

25.0 mM NaHC03 

8.30 mM D-glucose 

40 g.L"1 bovine serum albumin (BSA)* 

The buffer was filtered through a 0.45µm filter. 

(*,the modified Krebs-Henseleit preparation did not include BSA). 

4.2.2.3.2 Erythrocyte preparation 

Bovine blood was collected from the abattoir, mixed with a cold anticoagulant 

solution (consisting of saline containing 5 mM glucose and 0.2% EDTA) and kept on 

ice during transportation back to the laboratory. 

The blood was then centrifuged at 1700 g for 30 min and the supernatant and white 

blood cell/platelet layer was removed. The erythrocytes were then resuspended in 

ice-cold saline (0.9% NaCl) and centrifuged again for 30 min at 1700 g. The 

supernatant and white blood cell/platelet layers were removed. The saline wash 

procedure was repeated three times. The blood was then resuspended in modified 

Krebs- Henseleit buffer which had been gassed with carbon dioxide in air (5% C02 

and 95% air) one hour prior to use, centrifuged at 1700 g for 30 min and the 

supernatant removed. This procedure was also repeated three times. The erythrocytes 

were then resuspended in modified Krebs- Henseleit buffer and stored at 4°C in an 

airtight container. 

4.2.2.3.3 Perfusion medium preparation 

To prepare the perfusion medium for use, the suspended erythrocytes were 

centrifuged at 1700 g for 15 min and the supernatant was removed. The erythrocytes 

were then filtered through 6 layers of cheesecloth which had been soaked in modified 

Krebs- Henseleit buffer, and combined with a 4% BSA Krebs-Henseleit buffer 
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medium, in a ratio of 9: 11 giving a haematocrit of -35%. Pyruvate (final 

concentration of 1.2 mM) and 228 IU/L of heparin was added. The perfusion medium 

was then gassed with C02 (5%) in air for 30 min to give a pH of7.4. Calcium 

chloride (CaCh) was then added to a final concentration of2.54 mM. The buffer was 

introduced into the perfusion apparatus and allowed to circulate for 30 min. The 

buffer was gassed with C02 in air throughout the experiment. 

4.2.2.4 Peifilsion apparatus for in vitro experiments 

The perfusion apparatus is illustrated in Figure 4.3. Experiments were conducted in a 

non-recirculating manner and polyethylene was used as the tubing between various 

components of the apparatus. The perfusion equipment was encased in a Perspex 

cabinet that was heated to and maintained at 37°C. The gassed perfusate was pumped 

from the buffer reservoir by a Cole-Parmer Masterflex® pump at a constant flow rate 

of 4 ± 0.1 ml.min-1
• The perfusate initially passed through a bubble trap and then 

through a bubble trap within a water-jacketed heat exchange coil, maintained at 37°C 

by a constant temperature water heater and pump. The perfusion medium entered a 

'lung' of silastic tubing in a closed gassed (5% C02 in air) chamber, before passing 

through an infusion port (and the third bubble trap), where perfusion pumps (WPI®, 

SP 101 i syringe pump) were used to infuse treatments at a constant rate. Pressure was 

measured by a pressure transducer attached to the third bubble trap to monitor the 

arterial blood pressure of the hindlimb throughout the experiment. Before reaching the 

rat, the perfusate passed through an A-V difference analyser (A-Vox, San Antonio, 

TX, USA) that measured arterial oxygenated haemoglobin before entering the 

hindlimb via the arterial cannula. The venous effluent flowed out the vena cava 

cannula and passed back through the A-V difference analyser (A-Vox, San Antonio, 

TX, USA) to measure venous oxygenated haemoglobin and thus the difference in 

oxygenated haemoglobin in arterial versus venous blood at 660 nm (Fig. 4.3). 

Venous samples were also collected from this point during the experiment, before 

passing into a waste container. Data for arterial pressure (PP) and arterial-venous 

oxygen difference were collected throughout the experiment via a WinDaq data 

acquisition system software (DATAQ instruments, Akron, OH USA). 
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FIG 4.3: PERFUSION APPARATUS. The cabinet was maintained at 37°C and the perfusion medium was 

heated as it passed through a heat exchange column. The perfusion medium was gassed with 5% C02 

in air, in the buffer reservoir and as it passed through the silastic tubing lung. The oxygen content of the 

perfusion medium was measured before and after it has passed through the rat hindlimb and analysed 

by an A-Vox analyser (A-Vox, San Antonio, TX, USA). Pressure was also measured via a pressure 

transducer attached to a bubble trap. Data were recorded throughout by WinDaq data acquisition 

system software (DAT AQ instruments, Akron, OH USA). 

4.2.2.5 Determination of glucose uptake and lactate release in vitro 

All samples were analysed for glucose and lactate using a glucose analyser (Yellow 

Springs Instruments, Model 2300 Stat plus). Rates of glucose uptake and lactate 

release were calculated from arterial-venous differences in perfusate glucose/lactate 

concentrations, multiplied by the perfusate flow rate and divided by the weight of the 

perfused muscle. Glucose uptake and lactate release are expressed as µmol.g- 1h-1
• 
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4.2.2.6 Hindlimb per.fusion protocol 

The erythrocyte perfused hindlimb model was used to assess changes in perfusion 

pressure, oxygen uptake, glucose uptake and lactate release in response to a 10 min 

bout of contraction and throughout a 60 min recovery period. This model was used as 

it is a fully dilated system, and therefore the effects of increased microvasculature 

perfusion in response to contraction are not present. This allows the relative 

importance of microvascular perfusion to be compared with the in viva system, and 

thus to separate the influences of micro vascular perfusion and metabolic events in the 

myocyte that may lead to the sustained increase in glucose uptake during recovery 

from contraction. A similar protocol to the in viva system was employed. 

Figure 4.4 shows a diagram of the hindlimb perfusion protocol. After a 20 min 

equilibration period, at a flow rate of 4 ml.min-1 basal samples were taken for 15 min 

before 10 min contraction of the perfused hindlimb (via electrical stimulation at 2 Hz, 

0.1 ms, 30 V) was initiated. During the contraction period, the flow rate was 

increased to 15 ml.min-1 to ensure adequate oxygen delivery to the muscle. This flow 

rate returned to 4 rnl.min-1 during the 60 min recovery. Samples were taken every 5 

min at basal and during recovery, and every 2 min during contraction for glucose and 

lactate determination. 

4 ml.mln·1 15 ml.mln·1 4ml.mln·1 

-----------------------------...,r,rfuslonflowrate 

• • • ••••• • • • • • • • • • • • • 

Basal ES Saline 

FIGURE 4.4 : ISOLATED-PUMP PERFUSED ffiNDLIMB PROTOCOL. The hindlimb was equilibrated with 

an erythrocyte containing medium at 4 ml. min·1 during the basal period. After the basal period the 

flow rate was increased to 15 ml.min·1 and the perfused hindlimb was contracted via electrical 

stimulation (2Hz, 0.1 ms, 30 V) for I 0 min at which time the flow rate was returned to 4 ml.min-1 and 

maintained at this rate during the 60 min post-contraction period. 

Horizontal bars represent electrical stimulation and saline infusion, red circles represent arterial and 

venous perfusate samples for determination of glucose and lactate, ES represents electrical stimulation 

of the perfused hindlimb. 
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4.2.3 Data analysis 

Heart rate, mean arterial pressure, femoral blood flow and vascular resistance data for 

in vivo experiments were calculated as described in section 2.4. CEU data were 

analysed using Qlab advanced quantification software (Phillips Medical Systems, The 

Netherlands, B.V). The continuous 15 s pulsing interval data was converted to 

acoustic intensity and graphed against time. 

In the perfused hindlimb experiments, changes in arterial pressure were recorded via a 

pressure transducer. Calculations were made on the principle that for any fluid 

moving though a pipe ofradius r, and length 1, then according to Poiseuille's Law: 

Where: 

Q =flow rate 

Q = nIB_-PolL 

8111 

Pi-Po =pressure difference 

11 = viscosity of the perfusate 

Therefore, assuming flow rate (Q), viscosity of the perfusate (11), length of tubing (1) 

and 1t remain constant, the pressure difference is proportional to rv., and a small 

change in radius will lead to a large change in pressure. 

Oxygen consumption in the perfused hindlimb was measured through an A-V oxygen 

difference analyser (A-Vox, San Antonio, TX, USA) that measures the spectral 

difference in arterial versus venous blood at 660 nm. V02 was then calculated from 

the arterio-venous difference in oxygen divided by the Bunsen coefficient (25.54), 

multiplied by the perfusate flow rate and divided by the weight of the perfused 

muscle. Oxygen consumption is expressed as µmol.g- 1.hr-1
• 

All data are expressed as means ± SE. 
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4.2.4 Statistical Analysis 

To ascertain differences between treatment groups at 60, a one-way repeated 

measures ANOV A was used. Comparisons were made between treatment groups 

over the course of the experiment using a two-way repeated measures ANOV A and 

Student-Newman-Keuls post hoe test. Significance was accepted at a level of p<0.05. 

All tests were performed using SigmaStat software (Systat Software Inc., USA). 

4.3 RESULTS 

4.3.l Experimental groups 

4.3.1.1 Hindlimb perfusion 

There were two experimental groups assessed in the isolated pump-perfused hindlimb 

experiments, contraction with saline infusion (n=5) and a saline control (n=5). 

4.3.1.2 In vivo 

There were two in vivo experimental groups, contraction with saline infusion (n=5) 
and a saline control (n=5). The contra-lateral leg in each in vivo experiment was used 
as an internal control. 

4.3.2 Systemic measurements during contraction and recovery in vivo 

4.3.2.1 Heart rate and mean arterial pressure 

Heart rate increased (p<0.05) in response to contraction of the hindlimb from 332 

beats.min-1 at basal to ~372 beats.min-1 and was significantly different from saline 

control at 2 and 5 min. Although this remained elevated during recovery (Fig. 4.5A) 

it was not different from the saline control at 10 min or beyond. One leg contraction 

also had a small significant (p<0.05) effect on mean arterial pressure causing an 

increase from 110 mmHg at basal to ~ 116 mmHg that was significant at 2, 5, 8, and 

10 min after the start of contraction, and 5 min into recovery. The pressure had 

returned to basal by 30 min post-contraction (Fig 4.5B). 
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FIGURE 4.5: The effect of saline ( • ) or contraction ( • ) on heart rate or mean arterial pressure during 

contraction of one hind leg and up to 60 min post-contraction. Heart rate (A) and mean arterial pressure 

(B) were measured by a catheter placed in the carotid artery. Values are means ± SEM (n=5). *, 

significantly different to saline controls (p<0.05). 

4.3.2.2 Blood glucose and lactate concentrations 

Contraction had no affect on arterial blood glucose concentrations which remained 

stable at - 3.5 rnM throughout contraction and during the post-contraction period (Fig 

4.6A). Arterial blood lactate concentrations, increased significantly during the 

contraction period, but had returned to baseline levels by l 0 min post contraction, 

where they remained at - 0.5 mM for the duration of the experiment (Fig. 4.6B). 
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FIGURE 4.6: Effect of saline ( • ) or contraction ( • ) on arterial blood glucose and lactate concentrations 

during contraction of one hind leg and up to 60 min post exercise. Values are means± SEM (n=5). * 

significantly different to saline (p<0.05). 
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4.3.2.3 Plasma insulin concentrations 

Table 4.1. shows the plasma insulin concentrations at basal and 60 min post­

contraction. There was no difference in the plasma insulin concentrations between 

the saline control and contraction groups at basal or post-contraction. 

TABLE 4.1: PLASMA CONCENTRATIONS OF INSULIN BEFORE CONTRACTION 

AND 60, 120 AND 180 MIN AFI'ER CONTRACTION OF ONE HINDLIMB. 

Saline Contraction 
Plasma insulin concentrations (pmoLr1) 

Basal 205 ±21 197 ± 17 

60 min post exercise 151 ±45 134 ±23 

Values are means± SEM (n=5). 

4.3.3 Measurements in the hindlimb during contraction and recovery in vivo 

4.3.3.J Femoral blood flow and vascular resistance 

Femoral blood flow and vascular resistance were measured in the contracting and 

non-contracting legs within the same animal. Femoral blood flow was measured in 

both the test and contra-lateral resting leg by a Transonic™ flow probe placed around 

each femoral artery (n=5). Femoral blood flow increased rapidly (within 1 min) to -

5 ml.min-1 (p<0.05) in response to contraction and returned to basal values (- 1.5 

ml.min-1
) within 5 min post-contraction (Fig. 4.7A). There was a tendency (but not 

significant) for a corresponding decrease in the femoral blood flow of the contra­

lateral resting leg during contraction. Femoral blood flow remained stable during the 

saline control experiments, and there was no difference between the two groups or the 

test and resting legs during the post exercise period (5-60 min; Fig. 4. 7 A). 

Contraction caused a significant decrease (p<0.05) in vascular resistance in the 

contracting hindlimb during exercise with a corresponding increase (p<0.05) in 

vascular resistance in the contra-lateral resting leg. Vascular resistance appeared to 

remain decreased in the contracted leg and increased in the contra-lateral leg for 

approximately 10 min post-contraction, but this was not significant. There was no 

change in vascular resistance in the saline control experiments (Fig. 4. 7B). 
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FIGURE 4.7: Effect of saline(• ) or contraction(• ) on femoral blood flow and vascular resistance 

during contraction of one hind leg and up to 60 min post exercise in the test leg (circles) and contra­

lateral control leg (squares). Femoral blood flow (A) was measured via a flow probe around each 

femoral artery. Vascular resistance (8) was calculated by dividing blood pressure by femoral blood 

flow. Values are means ± SEM (n=5). *, significantly different to saline control (p<0.05). 

4.3.3.2 Micro vascular blood flow 

Microvascular perfusion was measured in the contracting and non-contracting legs in 

separate animas. Contrast enhanced ultrasound measurements were made in the 

contracting hind.limb or during saline infusion without contraction. Continuous 15 s 

pulsing intervals were used to assess the time course of changes in microvascular 

perfusion during contraction, and for 60 min post exercise. The acoustic intensity 

from the 15 s pulsing intervals increased from an acoustic intensity of - 30 at basal to 

-100 during contraction. This response decreased in the 10 to 20 min after contraction 

and reached a plateau position of -50 for the remainder of the experiment. The 

acoustic intensity between 55-60 min post-contraction, was significantly elevated 

compared to basal levels (Fig 4.8). 
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FIGURE 4.8: The time course of microvascular volume changes during saline infusion without 

contraction (panel A, •) and at basal, during I 0 min contraction of one hind leg, and up to 60 min post 

contraction (panel B, • ). Microvascular volume was measured by contrast enhanced ultrasound using 

phospholipid microbubbles during continuous 15 s pulsing intervals. Values are means ± SEM. (n =6) . 

• , significantly different from basal (p<0.05). 

4.3.3.3 Glucose metabolism and lactate release 

Glucose uptake was measured in the contracting and non-contracting legs in the same 

animal. Hindlimb glucose uptake (measured by the arterio-venous difference 

multiplied by femoral blood flow) in the contracted hindlimb was significantly 

increased above the contra-lateral leg at 60 min (p=0.027; Fig. 4.9A). There was no 

difference however, between the lactate release (measured in the same way), when the 

two hindlimb were compared at this time (Fig. 4.9B). 
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FIGURE 4.9: Effect of contraction on hindlimb glucose uptake and lactate release 60 min post 

contraction in the contracting test leg (• ) and contra-lateral control leg (1:2a). Hindlimb glucose uptake 

and lactate release were measured by multiplying the arterio-venous difference in glucose 

concentration by femoral blood flow. Values are means ± SEM (IFS). • Significantly different to 

contra-lateral control leg (p<0.05). 

Muscle glucose uptake was measured in two ways, using arterio-venous glucose 

difference as sampled from the femoral artery and vein, and by 2-DG uptake by 

muscles of the lower leg. Figure 4.10 shows data for 2-DG uptake measured in both 

the contracted test leg and contra-lateral control leg of each rat. At 60 minutes post­

contraction, glucose uptake in all muscles (except the soleus) of the contracted test leg 

were significantly (p<0.05) increased compared to the muscles of the rested contra­

lateral control leg (Fig 4.10). The combined muscle glucose uptake of the entire 

lower leg (aggregated by proportion of weight) of the contracted limb had a 250% 

increase in glucose uptake compared to the rested contra-lateral control lower leg 

muscles. 
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FIGURE 4.10: Muscle radioactive 2-DG uptake (R'g) for individual muscles of the lower leg of the 

contracting test leg (• ) or contra-lateral control leg (~) 60 min post-contraction. 2-DG was 

administered as a bolus at 45 min (Figure 4.1) prior to the end of the experiment and individual 

muscles (SOL, soleus; PLA, plantaris; RG, red gastrocnemius; WG, white gastrocnemius; EDL, 

extensor digitorum longus; TIB, tibialis anterior; COMB, combined muscles of the lower leg 

aggregated on proportion of weight) were excised at the completion of the experiment. Values are 

means± SE (n=6). *, significantly different to contra-lateral control leg (p<0.05). 

4. 3.4 Measurements in the isolate, pump-perfused hindlimb during 
contraction and recovery 

4.3.4.1 Perfusion pressure and oxygen consumption 

Perfusion pressure significantly increased as expected, in both the saline control and 

contraction experiments when flow rate was adjusted from 4 ml.min- 1 at basal to 15 

ml.min-1 to accommodate the extra energy demand of contraction. A further 

consequence of this increase in flow was an elevated oxygen consumption in the 

saline control experiment. However oxygen consumption was further increased 

(p<0.05) in response to contraction (Fig 4.1 lB). Both perfusion pressure and oxygen 

consumption returned to basal levels immediately post-contraction and remained 

stable at basal values for the remainder of the experiment (Fig. 4.11 ). 
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FIGURE 4.11 : Effect of saline ( • ) or contraction ( • ) on perfusion pressure (panel A) and oxygen 

consumption (panel B) in the perfused hindlimb system during contraction of the perfused hind leg and 

up to 60 min post contraction. The flow rate was 4 ml.min·1 at basal and during the post-contraction 

period, and 15 ml.min·1 during contraction. Values are means± SEM (n=5). •,significantly different 

to saline (p<0.05). 

4.3.4.2 Glucose uptake and lactate release 

In perfusion, there was a trend for hindlirnb glucose uptake to increase with 

contraction, however due to great variability in this measurement statistical 

significance (p<0.05) was not reached (Fig. 4.12A). During the contraction period 

there was a spike in lactate release during the saline control experiments due to the 

increase in flow rate, however this was quickly reversed and lactate release (which 

generally accompanies increased glucose uptake) was significantly increased (p<0.05) 

during contraction compared to saline experiments (Fig. 4. l 2B). Both glucose uptake 

and lactate release returned to basal levels immediately post-contraction and remained 

stable for the remainder of the experiment. There was no significant difference in 

these parameters in the recovery period between the saline and contraction 

experiments. 
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FIGURE 4.12: Effect of saline ( • ) or contraction ( • ) on glucose uptake (panel A) and lactate release 

(panel 8) in the perfused hind limb system during contraction of the perfused hind leg and up to 60 min 

post contraction. The flow rate was 4 ml.min·1 at basal and during the post-contraction period, and 15 

ml.min·1 during contraction. Values are means ± SEM (n=5). *, significantly different to saline 

(p<0.05). 

4.4 DISCUSSION 

The main finding of this study was that microvascular perfusion increased 3.5-fold 

relevant to basal during 10 min of twitch contraction, and although having decreased 

by almost half, it remained at 2-fold over basal at 60 min post-contraction (Fig. 4.8). 

In contrast, femoral blood flow and vascular resistance (Fig. 4. 7) returned to resting 

levels within 5 min post-contraction. 

Microvascular volume, a key indicator of microvascular perfusion, measured by CEU 

with continuous 15 s pulsing intervals was still significantly (p<0.05) increased above 

basal levels at 60 min (Fig. 4.8). This shows that total blood flow and microvascular 

perfusion are unrelated and thus, possibly controlled by separate stimuli. This also 

suggests that while the increase in glucose uptake during recovery from contraction is 

not related to total blood flow, it may be tightly linked to the enhanced microvascular 

perfusion seen during this period. 

In the isolated pump-perfused hindlirnb where a microvascular response is not 

present, there was an increase in oxygen consumption, glucose uptake or lactate 
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release (Fig. 4.11 and 4.12). However, these parameters had returned to basal levels 

within 5 min post-contraction, suggesting changes in microvascular perfusion may 

play a part in the enhanced glucose uptake response seen during recovery from 

contraction. 

Zhang et al. <29>, using the 1-MX disappearance method, showed that microvascular 

perfusion had reversed between 15-30 min after a hyperinsulinaemic euglycaemic 

clamp (once plasma insulin concentrations had returned to basal). The continuous 

imaging data shows that capillary volume remains increased up to 60 min post­

contraction, which may be functionally relevant as the capillaries may remain 

perfused to aid in nutrient delivery and waste removal. This may be the result of a 

redistribution of basal blood flow, from a primarily non-nutritive route, consisting of 

short capillaries, to more nutritive long tortuous capillaries in close contact with the 

muscle <299>. With greater capillary surface area available during the post-contraction 

period, insulin-mediated glucose uptake may be more sensitive to endogenous insulin. 

Thus, relatively low doses of insulin are able to restore muscle glycogen and maintain 

blood glucose concentrations during this recovery period. This enhanced perfusion 

during recovery may be mediated by nitric oxide, as studies have shown that while 

inhibition of nitric oxide synthase has no effect on exercise hyperaemia and blood 

flow during exercise, it results in a decrease in blood flow at basal and during 

recovery from contraction <77
• 

148
•
300>. Furthermore, as nitric oxide contributes to the 

increase in glucose uptake during exercise, it may also be involved in the insulin 

sensitisation seen during recovery from exercise <139
• 

149>. 

Glucose uptake was significantly increased (p<0.05) up to 60 min (Fig. 4.9A and 

4.10) after a short 10 min bout of twitch contraction, which is in line with the findings 

of previous studies <125
• 
301

• 
302>. There was no difference in plasma insulin levels 

between control experiments with saline and those with contraction (Table 4.1 ), 

suggesting that the increase in glucose uptake may be due to an increased sensitisation 

of the muscle to endogenous insulin. The muscles which showed the greatest increase 

(over 400%) in glucose uptake at 60 min post-contraction, were the white 

gastrocnemius, extensor digitorum longus and tibialis anterior, muscle which are 

predominantly fast twitch fibre type. The more insulin sensitive plantaris and red 

gastrocnemius muscles showed a more modest -100% increase in glucose uptake, 
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while contraction had no effect in the predominantly red fibre type insulin sensitive 

soleus muscle (Fig 4.10). Blood flow during contraction has been shown to be 

specific to fibre type <303>, which may explain the different pattern of glucose uptake 

between the different calf muscles examined in this study. Laughlin et al. (66) found 

that bulk blood flow in rats that were exercised by running, increased in a direct 

relationship to the fast twitch, high oxidative fibre composition of the muscles, and as 

in the present study, found no increase in blood flow to the soleus muscle. Therefore 

it may be that these working muscle have been primed to be more sensitive to 

insulin's haemodynamic actions. Interestingly, in the perfused hindlimb there was no 

increase in glucose uptake post-contraction (Fig. 4.12), suggesting that changes in 

microvascular perfusion due to contraction seen in vivo may be involved. This 

contributes to the retained post-contraction glucose uptake and this does not occur 

when the hindlimb is surgically isolated and perfused by pump. Even though there 

may be a contribution by the microvasculature to increased post-contraction glucose 

uptake there are definite changes that take place in the myocyte. Thus the increase in 

glucose uptake may also result from a greater recruitment of white fibre type muscles 

during contraction, leading to an increase in the translocation of GLUT4 to the plasma 

membrane in these muscles. In this regard, GLUT4 total protein and mRNA levels 

have been shown increase in the post exercise period, and remain elevated up to 16 h 

post exercise <115
• 

119
• 
304>. This increase in GLUT4 protein has also been shown to be 

regulated by the glycogen state of the muscle <117
• 

119>. However, given that in this 

study only rats were only subjected to a short 10 min bout of twitch contraction, 

which is unlikely to fully deplete muscle glycogen, it would suggest that glycogen 

replenishment may not be the primary factor involved in this increased sensitisation. 

As only one third of muscle capillaries are perfused at rest (1 5>, and data in this thesis 

and other studies <28
• 
288

) have shown that microvascular perfusion can increase in 

response to insulin and exercise, it would not be expected that the capillaries would 

remain perfused for long periods of time without a stimulus. This would result in the 

microvascular remaining fully recruited at all times, negating its function, and 

contradicting the available data concerning a capillary reserve for muscle at rest <15>. 

The microvasculature is very sensitive to the metabolic needs of the muscle <16
• 

305>, 

and it is these needs which form the stimuli which cause the initial increase in reactive 

hyperaemia and increased perfusion at the start of contraction. This magnitude of this 
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initial response is dependent on the intensity, duration and type of exercise <66>, and as 

shown by Bangsbo et al. <306) the metabolic and muscle blood flow response during 

recovery from exercise is also dependent on the type and duration of exercise. 

Basal oxygen uptake may also be increased in the post-contraction period, particularly 

if the exercise is intense. Thus, a single bout of aerobic exercise also results in 

elevated oxygen consumption during recovery from exercise known as excess post 

exercise oxygen consumption (EPOC). The magnitude ofEPOC is also dependent on 

the duration, intensity and mode of exercise, but the reason behind this elevation has 

still not been elucidated, with studies showing that changes in creatine phosphate, 

ATP, lactate removal, increased body temperature and glycogen resynthesis are 

unable to account for the increased oxygen consumption <301>. Williams et al. <303> and 

Bangsbo et al. <306> have shown that EPOC remains elevated after mean arterial 

pressure, leg blood flow and leg vascular conductance had returned to pre exercise 

levels, however in these study only total blood flow was assessed. The present study 

found that using the isolated perfused hindlimb, where a contribution due to changes 

in microvascular perfusion is unlikely, perfusion pressure and oxygen consumption 

were not elevated during recovery (Fig. 4.11 ), and there was no increase in glucose 

uptake or lactate release (Fig. 4.12). In vivo however, although oxygen consumption 

was not measured, both microvascular perfusion and glucose uptake were increased, 

suggesting a link between microvascular perfusion and EPOC during recovery can not 

be overlooked. Furthermore, while hindlimb glucose uptake remained elevated 60 

min post-contraction, there was no increase in hindlimb lactate release compared to 

the saline control (Fig. 4.9), suggesting that glucose uptake had occurred primarily 

through the aerobic pathway which may theoretically should have caused cause an 

increase in oxygen consumption. 

The advantage of the current study is that the effects of contraction during the post­

contraction period were examined in vivo with the benefit of using the contra-lateral 

resting leg as an internal control for comparisons. Many studies have also examined 

the post-contraction period by undertaking contraction in vivo and then removing the 

muscle in order to examine post-exercise glucose uptake during incubation or in the 

perfused hindlimb (IOs, 
112>. Such an approach negates any haemodynamic, endocrine, 

paracrine or neural effects which may have occurred during recovery period, or 
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indeed, may have been released during contraction. Furthermore, higher 

concentrations of insulin are required in incubated muscle preparations than in vivo, 

and therefore the relevance of these results may be questioned. Also, studies which 

remove or manipulate the muscle and the nerves surrounding it in any way, may 

induce haemodynamic changes, a sympathetic response or cause damage to the 

muscle, changing its characteristics and it response to stimulation. In this study, by 

examining the post exercise response in vivo, the effects of contraction on multiple 

muscles and a range of muscle fibre types may be examined, making the results more 

physiologically relevant. 

In conclusion, this study shows that the femoral blood flow response to contraction is 

rapidly reversed, within the first 5 min of recovery. However, microvascular 

perfusion remains enhanced up to 60 min post-contraction. This may be explained by 

a shift from the perfusion of short non-nutritive capillaries at basal, to long tortuous 

nutritive capillaries during recovery as the body tries to maintain a homeostatic 

balance by increasing glucose uptake to replenish glycogen and nutrient stores, and 

regulate blood glucose levels. The vasculature, as well as the skeletal muscle, may 

also be more sensitive to insulin stimulation resulting in an increase in microvascular 

perfusion at a lower concentration than would usually be required to elicit such a 

response. This in turn may account for the increase in skeletal muscle glucose uptake 

in the post-contraction period. 
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NOS inhibition during contraction 

5.1 INTRODUCTION 

The skeletal muscle plays an important role in glucose homeostasis accounting for 

over 85% of glucose uptake during insulin stimulation (ll). Both insulin stimulation 

and exercise result in an increased level ofGLUT4 protein translocation to the plasma 

membrane resulting in increased glucose uptake into the cell, however the mechanism 

through which these stimuli act appear to be different. This can be seen in patients 

with type 2 diabetes where there is a decreased rate of GLUT4 translocation to the 

membrane in response to insulin stimulation (despite normal levels of GLUT 4 

protein), however glucose uptake and GLUT4 translocation during exercise appear 

normal <101
• 

308
). The insulin signalling pathway for GLUT4 translocation is PI3-

kinase dependent. The exercise mediated signalling pathway has not been fully 

elucidated, but may involve protein kinase C, CaMK, AMP-activated protein kinase 

(AMPK) and/or nitric oxide <308
). 

Type 2 diabetes is associated with impaired nitric oxide synthase activity (NOS) in 

skeletal muscle <166
• 

16
7). Infusion of a NOS inhibitor N°-nitro-L-arginine methyl ester 

(L-NAME) during a hyperinsulinaemic clamp decreased total blood flow, 

microvascular perfusion and reduced muscle glucose uptake by 50% <164
). Roy et al. 

(1
65

) found similar results in vivo and showed from in vitro experiments that L -NAME 

failed to affect basal or insulin-stimulated glucose transport in isolated muscles. Such 

studies suggest a role for nitric oxide in insulin mediated glucose uptake which is 

possibly mediated by changes in microvascular perfusion. There are however, great 

discrepancies in the available data concerning the role of nitric oxide during exercise, 

either in relation to blood flow or glucose uptake. 

In humans, NOS inhibition with N°-monomethyl-L-arginine (L-NMMA) during 

cycling significantly attenuated the normal increase in leg glucose uptake compared 

with saline infusion, without affecting leg blood flow or arterial glucose and insulin 

concentrations <149
)_ Co-infusion ofL-arginine restored glucose uptake during L­

NMMA infusion to levels similar to control subjects <149
• 

150
). Similar experiments 

were also performed in people with type 2 diabetes with results showing these 

patients to be more sensitive to NOS blockade during exercise, as the reduction in 

glucose uptake was significantly greater than the levels seen in normal control 
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subjects <151>. There are however, controversies surrounding the role of nitric oxide 

during exercise in humans, in particularly regarding blood flow with either a decrease 

<3oo, 309• 310> or no change <77• 148) in bulk flow reported 

Animal studies have also yielded conflicting results with many of these studies 

assessing glucose uptake post-exercise and/or in vitro which negate the important 

haemodynamic effects of nitric oxide <143
• 1

53
• 1

54>. For those studies conducted in vivo, 

blood flow and more particularly microvascular perfusion was not assessed and the 

effect of nitric oxide on glucose uptake differed <152
• 1

55>. 

There are many studies focusing on the involvement of nitric oxide in exercise (with 

some controversy), with the inconsistencies possibly resulting from a number of 

methodological issues. Firstly, in regards to blood flow, it is important the blood flow 

is measured during exercise and not immediately following exercise (as is the case 

during measurements of flow with venous occlusion plethysmography), as this gives a 

measure of flow during recovery from exercise. Furthermore, measures of glucose 

uptake should also be made during contraction of the muscle and not post-contraction, 

as the results may be further influenced by the type of exercise and recovery of the 

muscle, as well as variations in the time frame in which measures are taken. Some 

discrepancies may result from the systemic infusion of the NOS inhibitor which may 

cause heart rate and mean arterial pressure changes which may affect the local 

environment, both in terms of blood flow and metabolism. The time frame between 

contraction and the inhibition of NOS may also play a role. 

In this study, we examined whether a locally infused NOS inhibitor (L -NAME) 

attenuated the increase in glucose uptake seen during contraction. We also determined 

bulk flow and microvascular flow changes in vivo, in response to NOS inhibition 

throughout the muscle contraction period using contrast enhanced ultrasound. 

100 



NOS inhibition during contraction 

5.2 METHODS 

5.2.l Animals 

Male hooded Wistar rats weighing 247 ± 2 g were used during theses experiments. 

They were raised as described in section 2.2.1. 

5.2.2 Surgery 

Experiments were conducted using the anaesthetised rat model, with surgery as 

described in section 2.2.2 and 2.2.2.1. 

5.2.3 Experimental procedure 

After a 45 min equilibration period, the rat hindlimb was contracted via electrical 

stimulation of one calf muscle (as described in section 2.3.5) for 30 min. After 10 

min of stimulation, L-NAME (final concentration of 5 µM) was infused locally into 

the contracting hindlimb via the epigastric artery for 20 min (Figure 1). The infusion 

volume was matched by the equivalent volume of isotonic saline in control 

experiments. At the conclusion of all experiments the calf muscles (soleus, SOL; 

plantaris PLA; red gastrocnemius, RG and white gastrocnemius, WG) of both the 

control and treatment legs were freeze-clamped as a group under liquid nitrogen. This 

process took no longer than 2 min. The muscle samples were then stored at -80°C 

until required for determination of muscle glucose uptake and other signalling 

processes. 

The infusion rate of L-NAME was adjusted according to femoral blood flow in order 

to maintain a final concentration of 5 ~LM in the hindlimb. However, the infusion of 

microbubbles used to measure microvascular perfusion with contrast enhanced 

ultrasound (CEU; described in section 2.3.2.2) interferes with the Doppler signal of 

the flow probes used to measure femoral blood flow. Therefore two groups of 

experiments were required in order to measure change in both macrovascular and 

microvascular blood flow. 

The first group of experiments was designed to determine changes in femoral blood 

flow (via a Transonic™ flow probe around each femoral artery) caused by contraction 

and L-NAME infusion. These data was then used to adjust the L-NAME infusion rate 
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during the CEU group of experiments. Also, muscle glucose uptake of both the 

treatment and control legs was measured using a method adapted from Kregan et al. 

<311>. Briefly, a bolus of 2-deoxy-D-[1-14C] glucose (2-DG; specific activity 56.0 

mCi.mmor1
; Amersham Life Science, NSW, Australia) in isotonic saline was 

administered via the jugular vein at 20 min. Immediately after the administration of 

the 2-DG an arterial blood sample (0.5 ml) was withdrawn by a syringe pump at 50 

µl.min- 1 over 10 min. From this blood sample a plasma sample (25 µl) was collected 

to determine the average plasma specific radioactivity of [14C] 2-DG. At the 

conclusion of the experiment the lower leg muscles (SOL, PLA, RG and WG) from 

the test and contra-lateral legs were freeze-clamped in situ using liquid nitrogen­

cooled tongs and stored at -80°C. The muscle glucose uptake was then determined 

from the separation of free and phosphorylated 2-DG in the muscle as described in 

Section 2.3.3. 

The second group of experiments (Fig. 5.1) involved the use of CEU (refer to section 

2.3.2.2) to measure microvascular perfusion during twitch contraction and local L­

NAME infusion. The transducer was placed over the calf muscle region allowing 

imaging of the soleus, plantaris, red and white gastrocnemius muscles during 

electrical stimulation. CEU measurements were made using a 7-4 MHz transducer 

interfaced with an ultrasound system (HDI-5000; Philips Medical Systems, Andover, 

MA), in harmonic imaging mode. The mechanical index was set to 0.8, and gain 

settings were standardised for all experiments. 

A 50-fold dilution of octofluoro-propane gassed phospholipid microbubble solution 

(see Section 2.1.1; 'microbubbblc contrast agent' for composition) was infused at a 

rate of 40 µ1.min-1 into the rat, via the jugular vein. The infusion pump and syringe 

containing the microbubble solution was continuously mixed to ensure the 

microbubbles maintained an even suspension and the delivery line to the rat was also 

vibrated. Microbubbles were infused 5 min prior to commencing a pulsing interval 

curve to allow the microbubble concentration to reach steady state. Microvascular 

volume and flow rate was determined by a pulsing interval curve with intervals of0.5, 

1, 2, 3, 5, 8, 12 and 15 s. Each pulsing interval curve took approximately 5 min, and 

measurements were taken at basal, after 10 min of contraction and at 30 min during 

contraction with L-NAME (or saline) infusion (Fig. 5.1). 
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FIGURE S.l: CONTRACTION AND L-NAME EXPERIMENTAL PROTOCOLS. The rat ' s hindlimb was contracted by 

electrical stimulation (2Hz, 0.1 msec pulse, 35 V) for 30 min. Following 10 min of stimulation, saline or L-NAME 

(final concentration of 5µM) was locally infused, via the epigastric artery, for the remaining 20 min. During the 

first group of experiments, femoral blood flow was measured by flow probes around the femoral artery in the 

control and test legs. To detennine muscle glucose uptake 2-Deoxy-D-[l -14C) glucose (2-DG) was administered 

as a bolus at 20 min. Arterial blood was then continuously withdrawn (50 µl.min-1
) for l 0 min to determine the 

concentration of 2-DG in the blood during this time. During the second group of experiments, microvascular 

perfusion of the contracting calf muscle was assessed by contrast enhanced ultrasound. Pulsing interval (PI) 

curves were conducted at 0 (basal), 10 min (contraction) and 30 min (contraction with L-NAME or saline). 

Phospholipid microbubbles (MB) were infused via the jugular vein 5 min prior to each PI curve to ensure arterial 

concentrations were at steady state. The calf muscles of the control and treatment legs were freeze-clamped under 

liquid nitrogen at the conclusion of all experiments for further analysis. 

Horizontal bars represent stimulation, microbubble infusion, CEU measurements(PI curve), local infusions and 
arterial sampling as marked, arrow represents bolus injection of 2-DG. 

5.2.4 Preparation of whole muscle lysates 

For NOS activity, phosphorylation and AMPK signalling, frozen muscle was ground 

under liquid nitrogen into a powder and homogenized (10 µl of buffer per mg of 

muscle) in freshly prepared ice-cold buffer [50 mM Tris at pH 7.5 containing 1 mM 

EDTA, 10% v/v glycerol, 1 % v/v Triton X-100, 50 mM NaF, 5 rnM N<4.P20 7, 1 mM 

DTT, 1 mM PMSF, 1 µl.mr 1 trypsin inhibitor and 5 µLmr 1 Protease Inhibitor 

Cocktail (P8340, Sigma, St. Louis, MO]). Tissue lysates were incubated on ice for 20 

min and then spun at 16,000 x g for 20 min at 4°C. Protein concentration was 

determined using a bicinchoninic (BCA) protein assay (Pierce, Rockford, Il) with 

BSA as the standard. An aliquot of the whole muscle lysates was solublised in 
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Laemmli sample buffer and frozen at -20°C for later measurement of AMPK 

signalling. 

NOS was affinity purified from whole muscle lysates using 2'5'-ADP Sepharose 4B 

beads (Amersham Biosciences, Piscataway, NJ), which had been pre-equilibrated in 

lysis buffer. Following purification, an aliquot of the ADP-sepharose beads were 

solublised in Laemmli sample buffer and frozen at -20°C for later measurement of 

NOS phosphorylation. The remaining ADP-Sepharose beads were used to measure 

NOS activity. 

5.2.5 NOS activity assay 

ADP-Sepharose beads were added to 100 µl of pre-heated (37°C) assay buffer, which 

contained (in final concentrations) 50 mM Tris-HCl (pH 7.5), 1.15 mM NADPH, 4 

µM Blli, 100 nM CaM, 0.7 mM CaCli, 10 µM L-arginine, 0.63 µM FAD, and 3 µM 

L-[U-14C]-arginine (Amersham Biosciences, Piscataway, NJ). Samples were 

incubated in the presence of either H20 or lmM L-NAME for 10 min at 37°C, which 

was within the pre-determined linear range for rat skeletal muscle. The concentration 

ofL-NAME used was sufficient to fully block NOS activity (data not shown), and 

inter- and intra-assay coefficient of variations were both 9%. NOS activity represents 

the difference between samples incubated in the absence and presence ofL-NAME, 

and is expressed as pmol of L-[14C]-arginine converted to L-[14C]-citrulline per minute 

per mg of protein (pmol.min-1 .mg protein-1 
). 

5.2. 6 AMPK signalling and NOS phosphorylation 

For NOS phosphorylation, equal amounts of purified proteins and for determination 

of AMPKa. threonine172 (AMPKa. Thr172
) and ACCJ3 serine222 (ACCJ3 Ser222

) 

phosphorylation, 90 µg of total protein were all subjected to SDS-P AGE. Binding of 

purified proteins was detected by immunoblotting with either polyclonal rabbit 

antibodies raised against the phospho-peptide of rat nNOS pSer1412 antibody 

(RLRSESpIAFIE) that recognizes the predominant nNOSµ pSer1446 variant in skeletal 

muscle and the eNOS pThr1177 antibody based on the amino acid sequence of human 

eNOS (RIRTQSpFSLQER) <312>. For eNOS pThr1177
, AICAR-stimulated rat heart (0.5 

mg.g-1 body weight l.P.) was used as a positive control. Membranes were then 
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reprobed with either anti-nNOS or anti-eNOS mouse monoclonal antibodies (BD 

Transduction Laboratories, NSW, Australia), respectively. Binding of whole cell 

lysates was also detected by immunoblotting with either anti-phospho-ACCf3 Ser222 

polyclonal antibody <313> or AMPKa. Cell Signaling Technology (New England 

BioLabs, Hartsfordshire, England). Binding was detected with IRDye™ 800-

conjugated anti-rabbit IgG (Rockland, Gilbertsville, PA) or IRDye™ 680-conjugated 

anti-mouse lgG (Molecular Probes, Eugene, OR) secondary antibodies. Direct 

fluorescence was detected and quantified using the Odyssey infrared imaging system 

(Ll-COR Biosciences, Lincoln, NB, USA). For AMPK signalling, membranes were 

then stripped (2% SDS (w/v) in 1 M glycine, pH 2.0) and reprobed with IRDye™ 

800-labeled streptavidin (Ll-COR Biosciences) and affinity purified anti-phospho­

AMPK Thr172 antibody, raised against AMPK alpha peptide 

(KDGEFLRTpSCGSPNY) <314>. Phosphorylation was expressed relative to protein 

abundance. 

5.2. 7 Skeletal muscle Nitrate and Nitrite (NOx) levels 

Approximately 30 mg of frozen powdered muscle was homogenized (20 µl of buffer 

per mg of muscle) in freshly prepared ice-cold buffer ( 50 rnM Tris at pH 7.5 

containing 1mMEDTA,10% v/v glycerol, 1% v/v TritonX-100, 50 mMNaF, 5 mM 

N~207, 1 mM PMSF, 1 µ1.mr 1 trypsin inhibitor and 5 µ1.mr 1 Protease Inhibitor 

Cocktail (P8340, Sigma)). Tissue lysates were incubated on ice for 20 min and then 

spun at 16,000 x g for 20 min at 4°C. Samples were purified by spinning 450 µl of 

supernatant through pre-wetted 10 kDa molecular weight cut-off filters (Millipore, 

NSW, Australia) at 16,000 x g for 80 min at 4°C. Total nitrate and nitrite levels in the 

purified samples were determined using Nitrate/Nitrite Colorimetric Assay Kit 

(Cayman Chemical Co., Ann Arbor, Ml). Values are expressed relative to the total 

protein concentration of the purified samples via the BCA protein assay (Pierce 

Rockford, 11). 

5.2.8 Data analysis 

All data are expressed as means ± SE. Heart rate, mean arterial pressure, femoral 

blood flow and vascular resistance data were calculated as described in section 2.4. 

CEU data were analysed using Qlab advanced quantification software (Phillips 
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Medical Systems, Nederland, B.V). The signal intensity from the larger vessels at 0.5 

s was subtracted from the signal of the smaller vessels (pulsing intervals (1 to 15 s) to 

gain a true measure of microvascular perfusion. Pulsing interval curves were 

constructed, and microvascular volume (A) and microvascular flow rate (A x fJ) values 

were determined as described in section 2.3.2.2. 

5.2.9 Statistical Analysis 

To ascertain differences between treatment groups at 30 min, a one-way repeated 

measures ANOV A was used. Comparisons were made between treatment groups 

over the course of the experiment using a two-way repeated measures ANOV A and 

Student-Newman-Keuls post hoe test. Significance was accepted at a level of p< 

0.05. All tests were performed using SigmaStat software (Systat Software Inc., 

USA). 

5.3 RESULTS 

5.3. J Experimental groups 

There were two experimental groups, contraction with a local saline infusion and 

contraction with a local L-NAME infusion. Local infusion was via the epigastric 

artery in the contracted leg from 10 min. The contra-lateral leg in each experiment 

was used as an internal control. 

5.3.2 Heart rate and blood pressure 

Heart rate significantly increased (p<0.05) in response to contraction of the hindlimb 

from 332 beats.min-1 at basal to -360 beats.min-1 after 15 min of contraction. Heart 

rate remained steady for the remainder of the experiment and was not affected by the 

local infusion ofL-NAME into the contracting leg (Fig 5.2A). Contraction also had a 

small, but significant (p<0.05) effect on mean arterial pressure causing an increase 

from 110 mmHg at basal to -116 mmHg after 10 min of contraction and -120 mmHg 

after 30 min of contraction (Fig 5.2B ). Local L-NAME infusion into the contracting 

leg had no effect on mean arterial pressure suggesting that any spill-over of the NOS 

inhibitor was insufficient to cause systemic effects. 
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FIGURE 5.2: Effect of saline ( • ) or local L-NAME ( • ) on heart rate and mean arterial pressure during 

contraction of one hind leg. Heart rate (A) and mean arterial pressure (8) were measured by a catheter 

placed in the carotid artery. Values are means± SEM (n=24 and 26 for contraction and contraction plus 

L-NAME, respectively). *, significantly different to -10 min (p<0.05). 

5.3.3 Femoral blood flow and vascular resistance 

Femoral blood flow was measured in both the test and contra-lateral control legs in 

each rat, by a flow probe around each femoral artery (n = 11). As expected, 

contraction significantly (p<0.05) increased femoral blood flow by ~3.8 ml.min-1
• 

Although there was no significant effect ofL-NAME on femoral blood flow (absolute 

values) during contraction (Fig. 5.3A), the change in femoral blood flow from 10 

mins (the beginning of local L-NAME infusion) revealed that L-NAME caused a 

significant (p<0.05) decrease in bulk flow (Fig. 5.3B). Femoral blood flow remained 

stable in the contra-lateral control leg of both groups and was unaffected by 

contraction or L-NAME infusion in the test leg. 

107 



A 

-20 -10 10 20 30 
Time(min) 

NOS inhibition during contraction 

1.0 B 
~ 

~ 0.5 

10.0 ~=====•==9==:,"""'a:;===• 
~ ,g --0.5 ,, 
8 -1.0 
:0 
'! -1.5 
0 
E 
.!-2.0 l=============l 

10 15 20 25 

Time (min) 
30 

FIGURE 5.3: Effect of saline (black symbols) or local L-NAME (red symbols) on absolute femoral 

blood flow (A) and change in femoral blood flow from I 0 min (the start of the L-NAME infusion) (B) 

in the contracted test leg (circles) and contra-lateral control leg (squares). Flow probes were positioned 

around the femoral arteries of each leg. Values are means ± SEM (n=l l) . t , significantly different to -

10 min (p<0.05); *, significantly different to contraction alone and values for the contra-lateral leg 

(p<0.05). 

Contraction caused vascular resistance to significantly decrease in the contracting leg 

and to significantly increase in the control leg (p<0 .05; Fig 5.4). However neither 

was affected by L-NAME infusion in the test leg (Fig 5.4). 

250 

5' 200 

~ ., 
u 150 c .. 
iii 
o; 100 ., 
it: .... 50 .. 
"5 
u .. .. 
> 

-50 

-20 -10 

I L-NAME 

10 

Time(min) 

20 30 

FIGURE 5.4: Effect of saline (black symbols) or local L-NAME (red symbols) on vascular resistance in 

the contracted test leg (circles) and contra-lateral control leg (squares). Vascular resistance was 

calculated by dividing blood pressure by femoral blood flow. Values are means± SEM (n= l l). 
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5.3.4 Microvascular perfusion 

The ultrasound transducer was positioned over the calf muscles (SOL, PLA, RG and 

WG) of the contracting leg and thus only values for the contracting leg are shown 

(n=8). The signal intensity at the 0.5 s pulsing intervals (representative of the larger 

vessels) was subtracted from the intensity value at longer pulsing intervals to gain a 

true measure of microvascular perfusion. The pulsing interval curves from a typical 

experiment are shown in Fig. 5.5, with a curve at basal, during contraction at 10 min 

and during contraction with L-NAME at 30 min. 

40 • Baal 

~ 30 
~ 

! 
u 20 
'iii 
::I 
0 
JI. 10 

0 ContracUon (101 
Y Contraction + LNAME (30') 

0 
0 

2 4 6 8 10 12 14 16 

Pulsing interval (s) 

FIGURE S.S: PuLsING INTERVAL CURVES FROM A TYPICAL EXPERIMENT. Measurements were made 

at basal, after 10 min of contraction, and during contraction with L-NAME at 30 min. The signal 

intensity at the 0.5 s pulsing interval has been subtracted from the intensity value at longer pulsing 

intervals to give a measure of microvascular perfusion. 

Contraction significantly (p<0.05) increased the microvascular volume (A value), 

microvascular flow rate constant (fJ values) and microvascular flow rate (fJ values). 

The local infusion ofL-NAME had no effect on these parameters (Fig. 5.6). 
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FIGURE 5.6: Effect of saline(• ) or L-NAME (• )on microvascular volume (A value) and microvascular 

flow rate (A x fJ) in the contracted test leg. Microvascular volume and flow rate were measured by 

contrast enhanced ultrasound using phospholipid microbubbles before commencement of contraction 

(Basal); after I 0 min of contraction and before L-NAME infusion (Contraction); and at the end of the 

protocol during L-NAME infusion (Contraction+ L-NAME). Values are means ± SEM (n=8). * 
significantly different from basal (p<0.05) 

5.3.5 Force development 

Force development due to muscle contraction was measured by an isometric 

transducer attached to the Achilles tendon of the contracting leg (see section 2.3.5). 

Electrical stimulation resulted in a maximum tension of - 320 g that decrease to -250 

g after 10 min of contraction. This level of force development was sustained for the 

subsequent 20 min of the experimental period and was unaffected by local L-NAME 

infusion (Fig. 5.7). 
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FIGURE S.7: Effect of saline ( • ) or L-NAME ( • ) on electrical stimulation-mediated force development 

in lower leg muscles of test leg. Force was determined by an isometric force transducer attached to the 

Achilles tendon. L-NAME was only infused (locally) in the test leg. Values are means± SEM (n=5). 

5-3. 6 Muscle glucose uptake 

Muscle glucose uptake (R'g, measured by the 2-DG uptake) was measured in both the 

contracted test leg and contra-lateral control leg of each rat. Contraction resulted in a 

16-fold increase in glucose uptake relative to the contra-lateral control leg (Fig. 5.8). 

Local L-NAME infusion into the contracting hindlimb significantly decreased 

(p<0.05) muscle glucose uptake in this leg by ~35%, with no effect on the contra­

lateral control leg. There was no difference in plasma insulin concentrations 

(measured by an ELISA kit; Mercodia AB, Sweden) between the local saline (245 ± 

44 pmol.r1
) and local L-NAME (220 ± 46 pmoU-1

) infused groups. 
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FIGURE S.8: Effect of saline or L-NAME on 2-deoxyglucose uptake (R'g) in the contracted test leg 

(i,rreen bar) and contra-lateral control leg (blue bar). L-NAME was only infused (locally) in the test leg 

*, significantly different from control leg (p<0.05); #,significantly different from saline (p<0.05). R'g 

was measured over the final I 0 min and the results are expressed as means± SEM (n=6). 

111 



NOS inhibition during contraction 

5.3. 7 AMP Ka phosphorylation and ACC/3 phosphorylation 

Contraction caused a 2-3 fo ld increase in AMPKu phosphorylation and ACC~ 

phosphorylation. Local L-NAME infusion into the contracting leg had no effect on 

the extent ofthis phosphorylation (Fig. 5.9). In addition L NAME infusion into the 

contracting hindlirnb had no effect on AMPK u phosphorylation or ACC~ 

phosphorylation in the contra-lateral control (rest) leg (Fig. 5.9). 

AMPKa phosphorylation 

AMPKa pTHR172 

AMP Ka 

+L-NAME Saline 

ACCj3 phosphorylation 

ACC JJ p5er222 

Streptavidln IR800 

+L-NAME Saline 

FIGURE 5.9: Effect of L-NAME on Thr172 phosphorylation of AMPKa (A) and Ser222 of ACC~ (B) in 

the contracted test leg (green bar) and contra-lateral control leg (blue bar). Values are means ± SEM. 

(n=6) *, significantly different to contra-lateral control leg (p<0.05) . 

5.3.8 NOS activity, nitrates and nitrites (NOx), nNOS phosphorylation and 
eNOS phosphorylation. 

Contraction significantly increased skeletal muscle NOS activity and this increase was 

prevented by local L-NAME infusion during contractions (Fig. 5.10). A similar 

response was observed with skeletal muscle NOx content, although the increase with 

exercise was not significant (Fig. 5.10). 
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FIGURE 5.10: Effect of L-NAME on muscle NOS activity and NOx in the contracted test leg (green 

bar) and contra-lateral control leg (blue bar). Values are means ± SEM. (n=6) *, significantly different 

from the contra-lateral control leg (p<0.05). 

Contraction caused a 2-3 fold increase in nNOS phosphorylation and, as was the case 

for AMPKa phosphorylation, L-NAME infusion during contraction had no effect on 

the extent of nNOS phosphorylation (Fig. 5.11). 
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FIGURE 5.11: Effect of L-NAME on Ser1446 phosphorylation of nNOS in the muscle of the contracted 

test leg (green bar) and contra-lateral control leg (blue bar). Values are means ± SEM. (n=6) *, 

significantly different from the contra-lateral control leg (p<0.05). 

L-NAME infusion into the contracting test leg had no effect on NOS activity, NOx 

content or nNOS phosphorylation in the contra-lateral control (rest) leg (Fig. 10 and 

11). 
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A substantial eNOS phosphorylation in rat heart was observed following IP AICAR 

administration (as a control), but there was no detectable skeletal muscle eNOS 

phosphorylation at rest or following contractions (Fig 12). 

eNOS pSer1177 

eNOS 

rest contraction AICAR 

L hindlimb _J heart 

FIGURE 5.12: The effect of contraction on eNOS phosphorylation. IP AICAR administration was used 

as a control. 

5.4 DISCUSSION 

The major finding of this study was that local NOS inhibition attenuated the increase 

in skeletal muscle glucose uptake during in situ contractions without influencing 

muscle microvascular perfusion. In addition, AMPK activation was not altered by 

NOS inhibition suggesting the reduction in glucose uptake was specific to a reduction 

in nitric oxide and not to secondary effects on AMPK 

The results of this study are consistent with previous human studies which found a 

decreased glucose uptake with NOS inhibition <149>, and the increase in NOS due to 

contraction, although modest, is similar to results seen in treadmill run rats P45l. This 

increase is almost certainly due to production of nitric oxide in the muscle, however 

there is a possihility that the vascular endothelial cells may contribute to this 

production. Their contribution would be minimal however, as vascular endothelial 

cells comprise only 3.4% of skeletal muscle <315l. 

Local L-NAME infusion blocked the activation ofNOS and NOx in the contracted 

hindlimb, however muscle glucose uptake was only reduced by 35% (Fig 5.8). This 

suggests nitric oxide may play a role in contraction-mediated glucose uptake, however 

other factors are also involved. AMPK has been suggested to play a role in 

contraction-mediated glucose uptake, and has been shown to interact with nitric 

oxide. In human aortic endothelial cells, activation of AMPK by AICAR increases 
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NOS phosphorylation and nitric oxide production <31
6), while sodium nitroprusside 

increases the activation of AMPKal in rat skeletal muscle <153>. Furthermore 

peroxynitrite, (which is found when nitric oxide combines with superoxide) activates 

AMPK in endothelial cells <31
7). 

In this study, AMPKa and ACC~ phosphorylation increased with contraction 

however the level of activation was not affected by NOS inhibition, suggesting that 

nitric oxide is not acting upstream of AMPK. It is possible, as NOS inhibition only 

decreased glucose uptake by one third, that AMPK may be responsible for the 

remaining 65% of contraction-mediated glucose uptake. Li et al. <318> found that NOS 

or guanylate cyclase inhibition decreased AICAR stimulated glucose uptake by ~20% 

and ~25% respectively, suggesting the majority of AMPK mediated glucose uptake is 

independent ofNOS activation. Alternatively, Fryer et ai.<319> showed AICAR 

increased NOS activity and glucose transport in mouse H-2K muscle cells, an effect 

which was blocked by NOS inhibition, a finding supported by Shearer et al. in vivo. 

As AICAR has been shown to activate NOS it would be possible that NOS is acting 

downstream of AMPK, and therefore we would not expect L-NAME to affect AMPK 

phosphorylation. 

There may be inconsistencies regarding data using AICAR as a stimulus for AMPK in 

comparison to contraction. Stephens et al.<320> showed that AICAR stimulation 

increased glucose transport in rat epitrochlearis muscle 209% from basal. NOS 

inhibition caused this percentage to drop to 184%. In comparison, contraction 

mediated glucose uptake (by electrical stimulation in vitro) increased glucose 

transp01t 107% from basal while NOS inhibition caused glucose transport to drop to 

31 % above basal (similar to the values found in the present study, Fig 5.8). That 

study <320> suggests that the activation of AMPK by AICAR may be an over 

representation of the naturally occurring process of contraction mediated activation of 

AMPK. Furthermore, Jorgensen et al. <321> found that the AMPKa2 knockout mouse 

has abolished AICAR-, but not contraction-induced glucose uptake in skeletal muscle. 

Those studies show that and AICAR may stimulate AMPK through different 

mechanism to contraction and therefore may not be a useful means for comparison 

when assessing nitric oxide and AMPK activation or vice versa. There is also 

evidence to suggest that the level of AMPK activation and involvement in contraction 
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mediated glucose uptake is highly dependent on the glycogen stores in the muscle <322> 

and that contraction may increase glucose uptake without the activation of AMPK 

<323>. Therefore, while AMPK may play a role in contraction mediated glucose uptake 

it is not necessarily a key regulatory protein, and there are many possible pathways 

leading to increased glucose uptake during contraction <10
• 

13
7). 

There is in vitro evidence to suggest that nitric oxide directly regulates glucose 

transport. Incubation with the nitric oxide donor sodium nitroprusside 043
• 

154
• 
324> has 

been shown to increase glucose transport, and GLUT4 translocation (independent 

from PI3-kinase mechanisms) possibly by nitric oxide activation of cGMP <168>. The 

data from the present study suggests that nitric oxide and AMPK are acting through 

independent pathways to increase glucose uptake during contraction, however further 

research is required to clarify these mechanisms and signalling pathways involved. 

AMPK phosphorylates nNOSµ in skeletal muscle during exercise in humans <169
• 
325>. 

In the current study the increase in skeletal muscle nNOSµ phosphorylation during 

contractions was not affected by L-NAME (Fig 5.10). This is not surprising since 

AMPK activation during contractions was also unaffected by L-NAME (Fig 5.9). 

AMPK phosphorylation of nNOSµ at Ser1446 has little effect on nNOSµ activity (Lee­

Young, Wadley, Chen, Kemp and McConell et al. University of Melbourne, 

unpublished observations). However, the question then is how is it that L-NAME 

prevented the increase in NOS activity with contractions if it did not effect nNOSµ 

phosphorylation at Ser1446
• Since L-NAME is a competitive inhibitor it would have 

been diluted and lost during the extraction and purification steps employed for the 

NOS activity assay. Therefore there must have been alterations in phosphorylation of 

sites other than Ser1446 and/or other covalent events resulting from L-NAME infusion 

during contraction. Since rodent muscle expresses both nNOSµ and eNOS <32
6), and 

AMPK phosphorylates and activates eNOS <32
7), eNOS phosphorylation was also 

examined. However, no eNOS phosphorylation either at rest or following contraction 

was detected. This suggests that nNOSµ plays a more important role in exercise 

metabolism than eNOS, since downstream NOS signalling (i.e. increased cGMP 

levels) occurs during contractions in normal muscle and eNos-1
- muscle, but not in 

nNOSµ_,_ muscle <326>. It is also possible that L-NAME affected other covalent events 
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on nNOSµ. Irrespective of the mechanism, this study has shown that NOS inhibition 

reduces NOS activity during contractions and attenuates increases in skeletal muscle 

glucose uptake which is an important finding. 

This study also shows that contraction increases femoral blood flow four-fold and 

microvascular perfusion, adding weight to the hypothesis that only a third of the 

capillary bed is perfused at rest, creating a capillary reserve for times of stress and 

increased nutrient requirements such as during contraction (l5
• 
328

). NOS inhibition 

decreased femoral blood flow, but had no effect on microvascular perfusion (Fig. 5.3 

and Fig. 6.6). This is in contrast to the effects ofNOS inhibition on insulin action. 

Similar to contraction, insulin has been shown to increase femoral blood flow (at 

higher doses) and micro vascular perfusion (25
• 

29
• 

31 >. NOS inhibition during insulin 

infusion attenuates the increase in both femoral blood flow and microvascular 

perfusion and results in a decreased glucose uptake (162
-
164>. Importantly, the degree of 

glucose uptake is correlated with the degree of microvascular perfusion and not total 

blood flow C21
• 
40> and it is the increase in microvascular perfusion that accounts for 

-50% of insulin-mediated glucose uptake (29
• 
56

• 
95

>_ Thus, the decrease in flow during 

contraction with L-NAME is unlikely to be the cause of the decreased glucose uptake, 

especially as the extraction of glucose across the leg was only 15%, indicating the 

delivery of glucose was not limited by the total flow. Such data supports the notion 

that insulin and contraction act through different signalling pathways (87). 

These data also demonstrate the redundancy that exists in the control of contraction­

mediated glucose uptake and perfusion. Although femoral blood flow is decreased 

during NOS inhibition, microvascular perfusion, unlike that during insulin infusion, is 

unaffected. This difference may be due to the nature of the stimulus, as contraction 

changes the state of the muscle rapidly, increasing the energy requirements and the 

level of energy production required in the cell. From an evolutionary perspective 

contraction is an important mechanism and therefore may be mediated by a number of 

different pathways building a level of redundancy into the system. If one aspect of 

the contraction mediated pathway is inhibited there is a compensatory response to 

ensure the muscle is able to function efficiently. This was demonstrated by Schrage 

et al. (81> who showed that combined inhibition ofprostaglandins and nitric oxide 

inhibited forearm blood flow during handgrip exercises, however prostaglandin 
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inhibition alone had a transient influence on blood flow, suggesting other vasodilitary 

mechanisms can compensate for its loss of function. A chronic inhibition is found in 

type 2 diabetes where a state of endothelial dysfunction is often present. These 

patients have a greater reliance on nitric oxide to mediate a vasodilitary response 

during exercise than healthy humans (ISI), demonstrating how the body can adapt to 

allow the muscle to function effectively during exercise. 

The present study is novel as L -NAME is infused locally into the muscle during 

contraction, so that the effects of NOS inhibition are localised to the stimulated 

hindlimb. Other studies have used systemic infusion ofNOS inhibitors which can 

increase mean arterial pressure triggering compensatory responses such as the 

withdrawal of sympathetic efferent activity, decreasing heart rate, and vasoconstrictor 

tone in the muscle and possibly inducing insulin resistance (148
• 
329

). Furthermore, 

systemic infusion ofNOS inhibition increases entry of the inhibitor into the brain, 

which has been shown during ICV administration to induce a state of insulin 

resistance by increasing basal glucose concentrations and decreasing insulin mediated 

glucose disposal (176
). The present study also has the advantage of the unstimulated 

contra-lateral leg acting as an internal control, as any spill over of NOS inhibitor 

could be detected, firstly by changes in mean arterial pressure and heart rate (Fig 5.2), 

but also by changes in vascular resistance (Fig 5.4) and femoral blood flow (Fig 5.3) 

in the contra-lateral control leg. These parameters did not change in the contra-lateral 

leg showing the inhibition was limited to the contracting hindlimb. 

In conclusion, this study demonstrated that local L -NAME infusion prevents 

contraction-induced increases in skeletal muscle NOS activity and NOx content and 

attenuates the increase in skeletal muscle glucose uptake during contractions without 

influencing skeletal muscle microvascular perfusion. These effects were independent 

of skeletal muscle AMPK activation during contraction and suggest that nitric oxide is 

critical for part of the normal increase in skeletal muscle glucose uptake during 

contraction. 
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ET-1 and ins/in action 

6.1 INTRODUCTION 

Endothelin-1 (ET-1) is a vasoactive peptide released from the vascular endothelial 

cells. It has a role in maintaining vasomotor tone and regulates blood flow by 

binding to its receptors located on the endothelial or smooth muscle cells. This leads 

to an increase in intracellular calcium stores resulting in vasoconstriction or the 

release of prostaglandins and nitric oxide resulting in vasodilation (181
• 

185
• 

186>. 

ET-1 has strong vasoconstrictor actions, and elevated plasma levels of this peptide 

have been implicated in disease states such as type 2 diabetes, hypertension, coronary 

artery disease and peripheral vascular disease (7, 
182

• 
198

• 
330>. Over secretion of ET-1 

may also contribute to endothelial dysfunction by disrupting the homeostatic 

regulation of the vasculature. There are many studies demonstrating ET-1 's strong 

vasoconstrictor actions (and associated decrease in glucose uptake) in the gut, 

splanchnic and kidney regions (178
• 

187
-
189

• 
193>. Data concerning ET-1 's affects on 

blood flow and glucose uptake in the skeletal muscle have also been examined, with 

some studies showing that ET-1 may cause a decrease in insulin mediated glucose 

uptake without showing a decrease in total flow to the muscle C178
• 

189
• 

193>. The 

microvascular effect of ET-1 in the skeletal muscle in vivo however, has not been 

explored. 

Experiments utilising the perfused hindlimb technique in this laboratory, have shown 

that ET-1 modulates microvascular flow distribution, causing a stimulation of 

metabolism at low concentrations and inhibition at high concentrations. Insulin was 

found to block these inhibitory effects C190>. Therefore, the aim of this study was to 

test the hypothesis that elevated plasma levels of ET-1, through its vasoconstrictor 

effects, may prevent full perfusion of muscle, limiting the delivery of insulin and 

glucose. This study also assessed if high levels of insulin would reverse this 

inhibitory effect. We examined the effects of ET-1 in vivo, alone and in combination 

with insulin, on femoral blood flow, microvascular perfusion and glucose metabolism. 

120 



ET-1 and ins/in action 

6.2 METHODS 

6.2.1 Animals 

Male hooded Wistar rats weighing 247 ± 2 g were used during theses experiments. 

They were raised as described in section 2.2.1. 

6.2.2 Surgery 

Experiments were conducted using the anaesthetised rat model, with surgery as 

described in section 2.2.2. 

6.2. 3 Experimental procedure 

After a 45 min equilibration period, a hyperinsulinaemic-euglycaemic clamp was 

performed in which insulin (Humulin R, Eli Lilly®; USA) was infused into the rat 

intravenously at a dose of 10or15 mU.min-1.kg-1 for2 h (Fig 6.1; protocol 2). To test 

the effect ofET-1 on insulin action, ET-1 (50 pmol.min-1.kg-1
) was infused into the rat 

30 min prior to insulin infusion (10 mU.min-1.kg-1
) and continued during the 2 h 

insulin clamp (Fig. 6.1; protocol 3). The infusion rate ofET-1 (50 pmol.min-1.kg-1
) 

was chosen as preliminary experiments showed this rate was capable of increasing 

mean arterial pressure without affecting heart rate or femoral blood flow. 

During experiments involving insulin infusion, a glucose solution (30% w/v) was also 

infused at variable rates to maintain blood glucose levels at 4.8 mmol.r1
, and this 

infusion rate was plotted as GIR expressed in mg.min-1.kg-1
• When ET-1 (50 

pmol.min-1.kg-1
; Calbiochem ®,USA) was infused alone (Fig 6.1; protocol l), 

glucose was not infused and blood glucose levels were allowed to self-regulate. 

Infusion volumes of insulin, glucose and ET-1 were matched by the equivalent 

volume of vehicle (isotonic saline) in control experiments (Fig. 6.1). 

Blood samples were taken at the times indicated in Figure 6.1 and analysed for blood 

glucose and lactate (refer to section 2.3.4). 

The 1-MX method (refer to section 2.3.2.1) was used to determine microvascular 

perfusion and muscle glucose uptake was determined by using 2-deoxy-D-[1-14C] 
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glucose (2-DG; specific activity= 56.0 mCi.mmor1
, Amersham Pharmacia Biotech) 

as described in section 2.3.3. 

Protocol 1 ALP 2-0G 

l l 
0 0 0 0 0 

• • • • • • • • • • • • -Time 

-30 0 30 60 90 120 (mln) 

ET-1 (50 pmol.min·1.kg-1) 

I Saline 

I Saline (variable rate) 

I 1-MX (0.4 mg.mtn·1.kg-1) 

Protocol 2 ALP 2-0G 

l lo 0 0 0 0 

• • • • • • • • • • • • -Time 
-30 0 30 60 90 120 (mln) 

I Saline 

I Insulin (10or15 mU.mln·1.kg·1) 

I Variable glucose (30% w/v) 

I 1-MX (0.4 mg.mtn·1.kg-1) 

Protocol 3 ALP 2-0G 

l l 
0 0 0 0 0 

• • • • • • • • • • • • -
Time 

-30 0 30 60 90 120 {min) 

ET-1 (50 pmol.mln-1.kg-1) 

I Insulin (10 mU.mtn·1.kg-1) 

I Variable glucose (30% w/v) 

I 1-MX (0.4 mg.mtn·1.kg-1) 

FIGURE 6.1. ET-1 EXPERIMENTAL PROTOCOLS. Experiments included an ET-I control experiment 

where ET-I (50 pmol.min·1.kg"1
) was infused alone for 150 min (Protocol I), a 2 h hyperinsulinaemic­

euglycaemic clamp (10 or 15 mU.min·1.kg-1
) (Protocol 2), and experiments designed to show the effect 

of ET-I infusion on insulin action where ET-1 (50 pmol.min·1.kg·1
) was infused 30 min prior to a 

IOmU .min·1.kg·1 hyperinsul inaemic euglycaemic clamp (Protocol 3). During all protocols, a bolus 

injection of 2-deoxy-D-[J-14C] glucose (2-DG) was administered at 75 min to determine muscle 

glucose uptake and 1-MX was continuously infused for the last hour of the experiment to determine 

microvascular perfusion. 

Horizontal bars represent venous infusions, • represent arterial blood samples for determination of 

blood glucose and lactate, • represents venous blood sample to determine arterio-venous differences, o 

represent arterial blood samples taken to determine the clearance rate of 2-DG, arrows indicate bolus 

injections of allopurinol (ALP) or radioactive 2-DG. 
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6.2.4 Insulin clearance 

A separate set of experiments was conducted in order to determine the insulin 

clearance rate (Fig. 6.2). A bolus of fluorescein isothiocyanate (FITC)-labelled 

insulin (200 µl, 1 mg.mr1, Sigma Aldrich®; USA) was administered 45 min prior to 

the completion of a 2.5 h saline or ET-1 (50 pmol.min-1.kg-1
) infusion. Blood samples 

were taken at 2, 5, 10, 15, 30 and 45 min after the bolus, centrifuged and the plasma 

removed. Fluorescence of the plasma samples (50 µl) were measured at an excitation 

wavelength of 480 nm and an emission wavelength of 530 nm, and plotted against 

time. From this graph, the clearance rate was determined by multiplying the k value 

obtained from the graph and the distribution volume (calculated by multiplying the 

concentration of insulin used by the number of µg per ml injected into the rat). 

FITC labelled 
lnsulln 

i .... • • 
-30 0 30 60 90 120 

ET-1 (50 pmol.min-1.kg-1) or Saline 

Figure 6.2: INSULIN CLEARANCE PROTOCOL. The insulin clearance experiments involved a l 50min 

ET- I or saline infusion. A bolus of FITC-labelled insulin was administered at 75 min, and blood 

samples were taken at 77, 80, 85, 95, 105 and 120 min to determine the insulin clearance rate. 

Horizontal bar, represent venous infusions, Arrow, represents bolus injection via jugular vein, • 

represent arterial blood samples for determination insulin clearance. 

6. 2. 5 Determination of insulin, C-peptide and endothelin 

Arterial blood samples were taken prior to the start of the experiment and at 120 min, 

centrifuged and the plasma was removed and stored at -20°C until required. The 

plasma was used to determine arterial insulin (Mercodia AB; Sweden), endothelin 

(Biomedica; Austria) and C-peptide (rat C-peptide; Japan) levels using ELISA kits as 

indicated in parentheses. Plasma from femoral vein samples taken at 120 min was 

also used for the determination of venous plasma insulin (Mercodia AB; Sweden) 

levels by ELISA. 
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6.2.6 Data analysis 

All data are expressed as means ± SEM. Data were calculated as described in section 

2.4. 

6.2. 7 Statistical Analysis 

To ascertain differences between treatment groups at the 120 min time point, a one­

way ANOVA was used. Differences between initial (-30 min) and final (120 min) 

values were assessed using a paired t-test. Comparisons were made between 

treatment groups over the course of the experiment using a two-way repeated 

measures ANOVA and Student-Newman-Keuls post hoe test. Significance was 

accepted at a level of p< 0.05. All tests were performed using SigmaStat software 

(Systat Software Inc., USA). 

6.3 RESULTS 

6.3.1 Experimental Groups 

There were four experimental groups: ET-1 (ETl; n=5), 10 mU.min-1.kg-1 insulin 

(INSlO; n=8), ET-1 infusion 30 min prior to 10 mU.min-1.kg-1 insulin (ETINSlO; 

n=?) and 15 mU.min-1.kg-1 insulin (INS15; n=6). 

6.3.2 Plasma endothelin, insulin and C-peptide concentrations 

Table 6.1 shows the initial (-30 min) and final (120 min) arterial plasma endothelin, 

insulin and C-peptide concentrations. There was no significant difference between 

the initial (-30 min) arterial plasma endothelin levels between the four groups (~6 

pmoU-1
). ET-1 infusion (with or without insulin) significantly (p<0.05) increased 

plasma endothelin levels to approximately 130 pmoU-1 by120 min. Intermittent 

concentrations following the commencement of endothelin-1 infusion at -30 min were 

48 ± 16 (0 min), 104 ± 28 (30 min), 92 ± 27 (60 min), and 89 ± 28 pmol.r1 (90 min). 

The increase was gradual and was reflected in the time course of other measurements 

such as mean arterial pressure and femoral blood flow. Insulin (INSlO and INS15) 

infusion (without ET-1 infusion) also caused a small but significant (p<0.05) increase 

in plasma endothelin concentrations reaching approximately 20 pmol.r1 by 120 min. 
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As with endothelin, there was no significant difference in the initial (-30 min) plasma 

insulin concentrations between the four experimental groups (-250 pmol.r1
). Insulin 

(INSlO) infusion significantly (p<0.05) increased plasma insulin concentrations to 2 

120 ± 188 pmol.r'. When this same dose of insulin was infused with ET-1 

(ETINS 10), plasma concentrations reached 4 740 ± 908 pmol.r1
, significantly 

(p<0.05) greater than INSlO alone. This increased plasma insulin concentration with 

ET-1 infusion (ETINSlO) is comparable to insulin at the higher dose of 15 mU.min-

1.kg-1 (INS15), which resulted in final plasma insulin concentrations of 4 920 ± 193 

pmoU-1
• While there were differences between the arterial plasma insulin 

concentrations, venous plasma insulin levels (taken from the femoral vein) when 

multiplied by femoral blood flow to reflect the local concentrations, showed no 

significant differences between INSlO (1190 ± 287 fmol.min-1
) and ETINSlO (1410 

± 777 fmol.min-1
). The higher dose of insulin (INS15) had a significantly higher local 

concentration (3140 ± 979 fmol.min-1
) than the other three groups, and ET-1 alone 

had significantly lower concentrations of 45 ± 10 fmol.min-1
• 

C-peptide levels showed a trend to decrease throughout the course of the experiments 

but there was no statistical differences between initial (-30 min) and final (120 min) 

concentrations. 

6.3.3 Insulin clearance 

Whole body rate of insulin clearance was investigated to determine if the plasma 

insulin concentrations increased during ET-1 infusion due to a decrease in insulin 

clearance. There was no significant difference in the calculated distribution volume 

of a FITC insulin bolus when administered during saline (3.3 ± 0.2 ml) or ET-1 (3.3 ± 

0.1 ml) infusions. However, the whole body insulin clearance rate was significantly 

decreased (p=0.002) during ET-1 infusion (0.19 ± 0.02 ml.min-1
) when compared 

with saline infusion (0.35 ± 0.6 ml.min-1
). 
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TABLE 6.1: PLAsMA ENDOTHELIN, INSULIN AND C-PEPTIDE VALUES BEFORE (-30 MIN) AND AFI'ER 
TREATMENT !120 MINl 

ET-1+ 
ET-1 1 OmU.min"1.kg"1 10mU.min·1.kg·1 15mU.min"1.kg-1 

insulin insulin insulin 
Plasma ET (pmol.r ) 

Initial (-30 min) 10±8 2±0.4 3±0.6 9±3 

Final (120 min) 130± 7*# 20±3. 140± 6"# 20±2" 

Plasma insulin (pmoU-1
) 

Initial arterial (-30 min) 195±13 260±91 230±22 3560± 75 

Final arterial(120 min) 210±34t 2 120± 188. 4 740±9o8·t 4 920± 193"t 

Final venous (120 min) 
(fmol.min"1

) 

45± 11 1190±287 1410± 777 3 140±979 

Plasma C-peptide (pmoU-1
) 

Initial (-30 min) 1320±469 790 ± 0.1 1170±271 1880±254 

Final (120 min) 1035±348 530±48 960±278 950± 198 

Values are means± SEM. *,significantly different from initial values (p<0.05); #,significantly 

different to 10 and 15 mu.min-1.kg-1 insulin (p<0.05); t, significantly different to 10 mU.min-1.kg"1 

insulin (p<0.05). 

6.3.4 Mean arterial pressure and heart rate 

ET-1 infusion {ETl and ETINSlO groups), significantly (p<0.05) increased mean 

arterial pressure in a time dependent manner reaching approximately 130 mmHg at 

120 rnin (Fig. 6.3). This increase in mean arterial pressure corresponded with 

increases in plasma endothelin concentrations, and was unaffected by co-infusion 

with insulin. Insulin alone (INSlO and INS15) had no effect on mean arterial 

pressure, which was significantly (p<0.05) lower than the ET-1 groups {ETl and 

ETINSlO) from the 60 min time point (Fig.5.3A). 

The infusion ofET-1 with insulin (ETINSlO) caused a progressive decrease in heart 

rate resulting in a 10% decrease by the end of the experiment (Fig. 5.3B). This 

decrease became significantly (p<0.05) different to the INS 10, INS 15 and ET-1 

groups from 75 min. Heart rate remained stable throughout the experiment for all 

other groups (Fig. 5.3B). Data for Figure 5.3B have been normalised relative to HR 

at 0 min; absolute values at 0 min were: 359 ± 14 (ET-1 alone), 377 ± 7 (10 mU.min· 
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1.kg-1 insulin), 392 ± 14 (15 mU.min-1.kg-1 insulin), and 385 ± 11(ET-1 + 10 mU.min-

1.kg-1 insulin) beats.min-1. 
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FIGURE 6.3: Time course for mean arterial pressure (A) and the change in hear rate (normalised at t=O 

min; B) as a result of ET- I and/or insulin infusion. Values are means ± SEM. •, significantly different 

from I 0 and I 5mU.min"1.kg"1 (p<0.05). #, significantly different from all other groups (p<0.05). o 

15mU.min·1.kg"1 insulin; • IOmU.min"1.kg"1 insulin; • ET-I ; • ET-I prior to IOmU.rnin·1.kg·1 insulin. 

6.3.5 Femoral blood flow and vascular resistance 

There was no change in femoral blood flow when ET-1 was infused alone (Fig. 6.4A). 

Insulin infusion resulted in a significant increase in femoral blood flow (p<0.05), 

however the infusion ofET-1 with insulin opposed this stimulatory effect ((p<0.05; 

Fig. 5.4A). Data for Figure 6.4A has been normalised relative to the femoral blood 

flow at 0 min; absolute values were 1.6 ± 0.2 (ET-1 ), 1.1 ± 0.1 (INS 10), 1.2 ± 0.1 

(INS 15) and 1.2 ± 0.1 (ETINS 10) ml.min·1. A similar pattern was observed for 

vascular resistance involving infusion of ET-1 before and during insulin infusion (Fig. 

6.4B). In this case ET-1 attenuated the decrease in vascular resistance caused by 

insulin infusion. Figure 6.4B also shows that ET-1 infusion alone caused a small but 

significant increase in vascular resistance (p<0.05) between 20 to 60 min, however this 

increase was no longer significant by 120 min. Again, data for Figure 6.4B has been 

normalised relative to the vascular resistance at 0 min; absolute values were 76 ± 13 

(ET-1), 108 ± 8 (INSlO), 91±6 (INS15), and 101±11 (ETINSlO) RU. 
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FIGURE 6.4: Time course for the change in femoral blood flow (A) and vascular resistance (B) as a 

result of ET-I and/or insulin infusion. Values are normalised at t=O min, and values are means± SEM. 

*, significantly different from 10 and 15mU.min-1.kg-1 (p<0.05). o 15mU.min-1.kg-1 insulin; • 

IOmU.min-1.kg-1 insulin; • ET-I; • ET-I priorto !OmU.min-1.kg-1 insulin. 

6.3.6 Microvascular Perfusion 

No significant difference in arterial plasma concentrations of 1-MX oroxypurinol (the 

metabolite of allopurinol and inhibitor of xanthine oxidase) were found between the 

four experimental groups (Table 6.2). The infusion of insulin significantly (p < 0.05) 

increased the rate of 1-MX metabolism from 4.9 ± 0.6 nmol.min-1 with ET-1 alone to 

8.4 ± 0.8 nmol.min-1 with 10 mU·min-1·kg-1 insulin and to 8.3 ± 0.6 nmol.min-1 with 

15 mU·min-1 ·kg-1 insulin. However the infusion of ET-1 prior to insulin attenuated this 

stimulatory effect (ETINSlO: 5.7 ± 0.8 nmol.min-1
) (p < 0.05). 

TABLE 6.2: 1-METHYLXANTJDNE METABOLISM AFTER ET AND/OR INSULIN INFUSION 

Oxypurinol (µM) 

Arterial 1-MX (µM) 

1-MX disappearance 

(nmol.min-1
) 

ET-I 

6.7 ± I.I 

24.5 ± 5.2 

4.9 ± 0.6 

IOmU.min-1.kg-1 

insulin 
6.3 ± 0.8 

21.4 ± 1.7 

8.4 ± 0.8· 

ET-I + 
!OmU.min-1.kg-1 

insulin 
7.6±0.4 

30.2 ± 3.8 

5.7 ± 0.8 

15mU.min-1.kg"1 

insulin 
7.4 ± 0.4 

17.9 ± 1.3 

8.3 ± 0.6* 

Values are means± SEM. · , significantly different from ET-1 and ET-1+10 mU.min-1.kg-1 insulin (p<0.05) 
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6.3. 7 Glucose metabolism 

Blood glucose was clamped at 4.8 mmol.r1 throughout insulin infusions. The time 

course for the glucose infusion rate (GIR) to maintain euglycaemia during INS 15 

experiments reached a plateau at 31.3 ± 1.6 mg.min-1.kg-1 and was significantly higher 

(p<0.05) than either INSlO (23.0 ± 0.7 mg.min-1.kg-1) or ETINS (22.5 ± 1.2 mg.min-

1.ki1). There was no difference between INSIO and ETINSlO (Fig 6.5). 
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FIGURE 6.5: Time course for the change in glucose infusion rate (GIR) as a result of insulin alone, or 

insulin and ET-I infusion. Values are means ± SEM. • , significantly different from ET-I + 10 

mU.min-1.kg·1 and 10mU.min·1.kg-1 (p<0.05). o 15mU.min·1.kg·1 insulin; • IOmU.min·1.kg·1 insulin; • 

ET- I prior to lOmU.min·1.kg·1 insulin. 

During infusion ofET-1 alone there was a small decrease in blood glucose which 

became significantly different from other groups at 75 min (p < 0.05) and remained 

significantly different for the remainder of the experiment (Fig. 6.6A). Blood lactate 

levels significantly increased from their initial values in all four groups (p < 0.05), 

however the blood lactate concentrations of the ETINS 10 group increased 

significantly over all other groups at 90, 105 and 120 min (p < 0.05; Fig. 6.6B ). 
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FIGURE 6.6: Time course for the change in blood glucose (A) and blood lactate (B) concentrations as a 

result of ET- I and/or insulin infusion. Values are means± SEM . *,significantly different from I 0 and 

ISmU.min·1.kg·1 (p<0.05). o ISmU.min-1.kg·' insulin; • !OmU.min·1.kg·1 insulin; • ET-I; • ET-I 

prior to I OmU.min-1.kg·' insulin. 

Figure 6.7A shows 2-DG uptake (R'g) for individual muscles of the lower leg (SOL, 

PLA, RG, WG, EDL, TIB) excised at the completion of the experiment. As expected 

the infusion of insulin significantly increased muscle glucose uptake in all muscles 

compared to the infusion ofET-1 alone (p<0.05). The infusion of INS15 had a 

significantly higher R'g than INSlO and ETINS15 in all individual muscles (except 

the soleus) and the combined value which is aggregated on proportion of weight 

(p<0.05; Figure 5.7B). There was no difference between the R'g for INSlO and 

ETINS l 0 in the individual muscle or when combined. 
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FIGURE 6.7: Muscle radioactive 2-DG uptake (R'g) for individual muscles of the lower leg (A) and the 

combined calf muscle (aggregated on proportional weight) (B) due to ET-I and/or insulin infusion. 2-

DG was administered at as a bolus at 75 min (Figure 6.1) and individual muscles (SOL, soleus; PLA, 

plantaris; RG, red gastrocnemius; WG, white gastrocnemius; EDL, extensor digitorum longus; TIB, 

tibialis anterior) were excised at the completion of the experiment. Values are means± SEM. • , 

significantly different to all other groups (p<0.05), +, significantly different to ET- l+ IOmU.min·1.kg·1 

insulin (p<0.05). o 15mU.min·1.kg·1 insulin; • IOmU.min·1.kg·1 insulin; • ET-I; • ET-I prior to 

IOmU.min·1.kg·1 insulin. 

6.4 DISCUSSION 

The main finding of this study was that ET-1 infusion in viva, severely blunted 

insulin 's stimulatory effects on rnicrovascular perfusion and femoral blood flow. In 

conjunction with this inhibition, ET-1 also caused an increase in mean arterial 

pressure and a decrease in glucose infusion rate and muscle glucose uptake. However, 

these effects on glucose uptake are not obvious unless plasma insulin concentrations 

are assessed, as ET-1 (through its vasoconstrictor actions) caused a significant 

decrease insulin clearance rate leading to an increase in plasma insulin concentrations 

(p<0.05). 

ET-1 infusion prior to a 10 mU.min·1.kg"1 insulin clamp resulted in a - 2 fold increase 

in plasma insulin concentrations from 2 120 ± 190 pmol.r1 to 4 740 ± 910 pmol.r1
, 

levels equivalent to a higher insulin dose of 15 mU.min·1.kg·1 where plasma insulin 

concentrations reached 4 920 ± 193 pmol.r1
• De Carlo et al. <33 1

> have shown that ET-
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1 stimulates insulin secretion from rat pancreatic islets, however incubated cell 

preparations do not take into account ET-1 's vascular actions, which have been shown 

to cause strong vasoconstriction to the pancreas <191
• 

192
) and a decreased secretory 

response in vivo <332>. In the present study C-peptide levels in all groups remained 

unchanged during the experiment and ET-1 infusion alone did not affect basal plasma 

insulin levels (Table 6.1 ). These data suggest that ET-1 had increased plasma insulin 

concentrations by decreasing insulin clearance and not by increasing insulin secretion. 

This was confirmed by experiments using FTIC labelled insulin, which revealed that 

ET-1causeda50% decrease in the rate of insulin clearance (p<0.002), a new finding 

for studies in vivo. 

The finding that insulin clearance is decreased with ET -1 infusion allows us to 

uncover the negative effect ofET-1 infusion on glucose uptake. If the data are 

assessed on the basis of plasma insulin concentrations, where ET-1 infusion prior to a 

10 mU.min-1.ki1 insulin clamp is compared to a 15 mU.min-1.kg-1 insulin clamp, ET-

1 caused a 49% decrease in muscle glucose uptake (Fig. 6.7) and a 29% decrease in 

GIR (representative of whole body glucose uptake) (Fig. 6.6). However, there was no 

difference in glucose uptake measures between ET-1 infusion prior to 10 mU.min-

1.kg-1 insulin clamp and 10 mu.min-1.kg-1 insulin clamp alone. This suggests that the 

vasculature is more sensitive to ET-1 than the muscle tissue and demonstrates that in 

the short term, increased plasma insulin concentrations may compensate for under­

perfused tissues (particularly in muscle), and allow insulin to maintain its actions on 

glucose uptake. Over time however, hyperinsulinaemia has been shown to cause an 

increase in ETA receptor expression <200
• 
201>, leading to an increased vasoconstriction. 

Chronic hyperinsulinaemia is not a desirable trait and in conjunction with increased 

mean arterial pressure caused by ET-1, can lead to hypertension, insulin resistance, 

endothelial dysfunction and cardiovascular disease. 

Another important finding in this study was that the infusion of ET-1 in conjunction 

with insulin, augmented insulin's haemodynamic actions. Insulin alone increased 

femoral blood flow and decreased vascular resistance in the hindlimb. More 

importantly, insulin increased microvascular perfusion, increasing its own access and 

that of glucose to the muscle. ET-1 suppressed insulin's haemodynamic effects by 

suppressing increases in femoral blood flow and microvascular perfusion, and 
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prevented the decrease in vascular resistance seen by insulin alone. These alterations 

in perfusion are the most likely cause of the decrease in insulin stimulated glucose 

uptake seen with ET-1 infusion. 

It may be speculated that ET-1 caused muscle insulin resistance by suppressing the 

increase in femoral blood flow seen with insulin alone. However, Ottosson-Seeberger 

et al. <193> showed ET-1 infusion decreased muscle glucose uptake with no changes in 

total blood flow to the muscle, supporting the notion that total blood flow changes 

have little influence on glucose uptake. For example, a 3 mU.min-1.kg-1 

hyperinsulinaemic-euglycaemic clamp increases muscle glucose uptake and 

microvascular perfusion without an increase in femoral blood flow <29> and previous 

studies using models of insulin resistance (such as the obese Zucker rat) have shown 

that an impairment in muscle glucose uptake may be attributed to inhibition of insulin 

mediated microvascular perfusion <41
• 
97

• 
196

• 
333>. Therefore, the extent of 

microvascular perfusion, which accounts for approximately 50% of muscle glucose 

uptake <29
• 
5

6) is an important determinant of glucose uptake in the muscle. Thus, by 

decreasing the surface area available for insulin and glucose to interact with the 

muscle, ET-1 infusion has resulted in a 49% decrease in insulin stimulated muscle 

glucose uptake (Fig. 6. 7). 

It appears that the decreased insulin clearance rate may also be attributed to ET -1 's 

haemodynamic effects. It is well documented that ET-1 causes decreased blood flow 

to the kidneys and liver, two organs which account for approximately 65% of insulin 

clearance <334>. This study also shows that blood flow (and microvascular perfusion) 

to the hindlimb muscle, which has been shown to play a significant role in insulin 

clearance in spontaneously hypertensive rats, was also decreased. Therefore by 

decreasing blood flow to these organs, ET-1 has decreased the opportunity for insulin 

clearance resulting in elevated plasma concentrations. However, it is important to 

note that this phenomenon was only evident when exogenous insulin was infused, as 

there was no increase in plasma insulin concentration when ET-1 was infused alone. 

This may be due to the low circulating levels of insulin, where its clearance is 

concentration dependent unless other factors interfere. Alternatively, the change in 

concentration of~ 100 pmol.r1 may be too small to be detected by ELISA with a small 

sample group of five rats. 
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A high dose ofET-1 was employed in this study and plasma levels at 120 min exceed 

plasma levels reported under pathological conditions. This dose of ET-1 was used as 

it was found to induce physiological hypertension without affecting heart rate during 

preliminary experiments. Also, plasma concentrations slowly increased throughout 

the experiment and it took over 60 min of ET-1 infusion for blood pressure to rise 

above resting levels. The results may have been even more dramatic if ET-1 had been 

infused at a higher rate, or was given as a bolus prior to insulin infusion. Therefore, 

as the secretion of ET-1 in the body is abluminal, and not directly in to the blood 

stream, this model may be considered representative of a disease state, such as 

diabetes or hypertension, where there is an over-secretion of ET-1. 

Many studies have identified ET-1 concentrations to be elevated in diseases such as 

hypertension, type 2 diabetes and endothelial dysfunction, all of which are implicated 

in cardiovascular disease <7• 
182

-
184>. The cause ofET-1 over secretion and increased 

plasma concentrations is yet to be determined and requires further investigation due to 

the severity of its actions. It is possible that hyperinsulinaemia seen in the diabetic 

state may up-regulate ET-1 secretion and receptor expression <200
• 
201> causing further 

vasoconstriction and potentate the hyperinsulinaemic state. Alternatively, increased 

ET-1 secretion (stimulated by other means) may lead to hyperinsulinaemia, as 

demonstrated in this study, which will in tum lead to a further over secretion ofET-1. 

ET-1 's detrimental effects appear to be mediated through its vasoconstrictor actions 

induced by its binding to the ETA receptor <85
• 

178
• 

18
7). Blockade of this receptor may 

prove to be a beneficial therapy for patients suffering from cardiovascular disease and 

type 2 diabetes, however further research is required <335>. 

In summary, this study shows ET-1 infusion blocks insulin's haemodynamic actions, 

resulting in a decreased insulin clearance rate, muscle glucose uptake and whole body 

GIR. Based on previous work, this decreased glucose uptake may be attributed to a 

decrease in microvascular perfusion resulting in insulin resistance. This study implies 

that elevated plasma levels of ET-1 may contribute to insulin resistance and 

hypertension through its vascular effects. 
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IL-6 and insulin action 

7 .1 INTRODUCTION 

Interleukin-6 (IL-6) is an inflammatory cytokine which is also thought to be involved 

in glucose homeostasis. At rest, IL-6 is secreted from a number of tissues including 

adipose tissue, which is believed to be the tissue responsible for the increased 

concentrations of plasma IL-6 in type 2 diabetic and obese patients <9o. 219
• 

33
6). While 

the skeletal muscle contributes little to plasma IL-6 at rest, during exercise the muscle 

is responsible for a rise in plasma levels of IL-6 which increase from 1 pg.mr1 at rest 

up to 100 pg.mr1 after strenuous exercise <224
•
225

). It is thought that IL-6 acts to 

regulate energy stores and maintain glucose homeostasis during exercise as its release 

is related to the level of stored glycogen in muscle, and is associated with an increase 

in AMPK activation <244
• 

24
7). 

Studies in vivo, show that acute IL-6 administration causes an increase in lipolysis and 

fatty acid oxidation in adipose tissue <250
• 

253
), without having an effect on basal 

glucose disposal, glucose uptake or hepatic glucose production. The available data 

concerning IL-6 infusion during insulin administration however, is ambiguous with 

studies finding an increase in glucose uptake <248
), no change <26

6) or a decrease in 

insulin action <268
). In skeletal muscle a recent study has suggested that only 

supraphysiological doses of IL-6 (> 10ng.mr1
), up to ten times higher than those 

which occur during exercise, will cause glucose uptake <258
). Alternatively, a study by 

Carey et al. <248
) found glucose uptake increased in a dose dependent manner from 1 to 

10 ng.mr1 in L6 myotubes, with no further increases at doses of 100or1000 ng.mr1 

IL-6. They also found that only higher concentrations of 10 to 1000 ng.mr1 IL-6 

increased insulin stimulated glucose uptake, with no effect at the lower doses. 

However, both these studies were conducted with incubated muscle and cell culture, 

which do not take into account the possible haemodynamic effects ofIL-6. 

Furthermore, when compared to the in vivo system, incubated muscles or cells 

generally require greater amounts ofhormone/cytokine to cause an increase in 

glucose uptake <33
7)_ While the involvement ofIL-6 in glucose metabolism and insulin 

resistance in the adipose tissue and skeletal muscle is controversial, it has been 

consistently found that IL-6 causes a state of insulin resistance in the liver, through 

the activation of suppressor of cytokine signalling (SOCS) -3 proteins, interference of 

insulin receptor signalling, and decreased glycogen synthesis <276
• 
278

• 
279

). 
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Previous work from this laboratory at the University of Tasmania has shown that 

infusion ofTNF-a (at a dose of 0.5 µg.kg-1.h-1
), another inflammatory cytokine, 

inhibits insulin mediated increases in femoral blood flow and microvascular perfusion 

in the rat. Furthermore, this inhibition also caused a 50% reduction in muscle glucose 

uptake causing a state of acute insulin resistance in the muscle. 

The present study investigates if IL-6 inhibits insulin action in the same manner as 

TNF-a in vivo. Two doses ofIL-6 are employed, one equivalent to the inhibitory 

dose ofTNF-a used in previous studies, and a dose 10 times higher, corresponding to 

the increased concentrations seen during exercise. The effect of these two doses of 

IL-6 infusion on basal and insulin mediated haemodynamic and metabolic actions are 

assessed. 

7.2 METHODS 

7.2.1 Animals 

Male hooded Wistar rats weighing 240 ± 2 g were used during theses experiments. 

They were raised as described in section 2.2.1. 

7.2.2 Surgery 

Experiments were conducted using the anaesthetised rat model, with surgery as 

described in section 2.2.2. 

7.2.3 Experimental procedure 

After a 45 min equilibration period rats were infused intravenously with IL-6 

(recombinant rat IL-6; R & D Systems, USA) at 0.5 µg.kg-1.h-1 (low dose) or 5 µg.kg-

1.h-1 (high dose) for 3 hours (Fig. 7.1). To test the effect ofIL-6 on insulin action, a 

hyperinsulinaemic-euglycaemic clamp, in which insulin (Humulin R, Eli Lilly®; 

USA) was infused into the rat at 3 mu.min-1.kg-1 for2 h, was started after 1 h ofIL-6 

infusion (Fig. 7.1). The muscles of the lower leg (soleus, SOL; plantaris, PLA; red 

gastrocnemius, RG; white gastrocnemius, WG; extensor digitorum longus, EDL and 
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tibialis anterior, TIB) and the epididymal fat pads were excised, freeze-clamped in 

liquid nitrogen and stored at -80°C until required for analysis. 

ALP 2.0G 

+ + 0 0 0 0 0 

• • • • • • • • • • • • • • -. Time I I I I I 

~o -30 0 30 60 90 120 (min) 

I IL-6 (0.5µg.kg·1.h·1or5µg.kg·1.h-1) + 3-PHJ·D-glucose (0.1µCl.min·1) 

I Insulin (3mU.mln·1.kg-1) 

Variable glucose (30% w/v) 

1-MX (0.4mg.mln·1.kg-1) 

FIG. 7.1: IL-6 AND INSULIN EXPERIMENTAL PROTOCOL. Experiments consisted of a 3 h intravenous 

infusion of IL-6 at either 0.5 or 5 µg.kg·1.h·1 alone or during a hyperinsulinaemic euglycaemic clamp (3 

mU.min·1.kg-1). Infusion volumes of insulin and glucose were matched by the equivalent volume of 

isotonic saline. IL-6 was replaced with a vehicle solution during control experiments. 3-[3H]-D­

glucose was infused throughout the experiment to determine glucose turnover. A bolus injection of 2-

deoxy-D-[ l-14C] glucose (2-DG) was administered at 75 min for determination of muscle glucose 

uptake and 1-MX was continuously infused for the last hour of the experiment to determine 

microvascular perfusion. The muscles of the calf were excised and freeze-clamped with liquid nitrogen 

at the conclusion of the experiment. 

Horizontal bars represent venous infusions, red circles represent arterial blood samples for 

determination of blood glucose and lactate, blue circle represents venous blood sample to determine 

arterio-venous differences, white circles represent arterial blood samples taken to determine the 

clearance rate of 2-DG, and arrows indicate bolus injections of allopurinol (ALP) or radioactive 2-DG 

as indicated. 

During all experiments a glucose solution (30% w/v) was infused at variable rates to 

maintain blood glucose levels at 4.8 mmoU- 1
• This infusion rate was plotted as GIR 

expressed in mg.min·1 .kg"1
• Infusion volumes of insulin and glucose were matched by 

the equivalent volume of isotonic saline, and a solution ( 45% CH3CN, 0.1 % 

triflouroacetic acid in phosphate-buffered saline) was used as a vehicle substitute for 

IL-6 during control experiments (Fig 7. l ). 

Blood samples were taken at the times indicated in Fig. 7.1 and 7.2 and analysed for 

blood glucose and lactate (refer to section 2.3.4). 
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The 1-MX method (refer to section 2.3.2.1) was used to determine microvascular 

perfusion and muscle glucose uptake was determined by using 2-deoxy-D-[1-14C] 

glucose (specific activity= 56.0 mCi.mmor1
, Amersham Pharmacia Biotech) as 

described in section 2.3.3. 

During IL-6 and insulin experiments, a primed (2 µCi), continuous infusion of 3-[3H]­

D-glucose (0.1 µCi.min- 1
, specific activity of 16.6 Ci.mmor1

, Amersham Pharmacia 

Biotech) was administered throughout the experiment in order to determine the 

glucose turnover (the rate of appearance and disappearance of glucose). Arterial 

samples were taken 15 min prior to, and on completion of the experiment, centrifuged 

and the plasma removed. The plasma was then deproteinised using 2 M perchloric 

acid, evaporated to dryness to remove 3H20 and re-suspended in distilled water. 

Biodegradable Counting Scintillant (Amersham, Arlington Heights, IL) was added to 

each sample and [3H] glucose radioactivity was determined using a scintillation 

counter. The rates of appearance (Ra) and disappearance (Rd) of glucose were 

calculated using the isotope dilution equation: 

Where: 

Ra=Rd=F /SA 

F = the rate of tracer infusion 

SA = the specific activity of glucose (calculated by dividing the plasma 

radioactivity by the glucose concentration) 

The hepatic glucose production (Ra) was then calculated by subtracting the glucose 

infusion rate (GIR) from the Rd as described by Burnol and colleagues <33s>. 

7.2.4 Determination of insulin and IL-6 

Arterial blood samples were taken prior to the start of the experiment and at 120 min, 

centrifuged and the plasma was removed and stored at-20°C until required. The 

plasma was used to determine arterial insulin (Mercodia AB; Sweden) and IL-6 

(Pierce; Rockford, USA) concentrations using ELISA kits as indicated in parentheses. 
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7.2.5 Western blot analyses of Akt 

For Western blot analyses muscles from the animals were homogenized in ice-cold 

lysis buffer consisting of 50 mM HEPES, 150 mM NaCl, 10 mM NaF, 1 mM 

Na3V04, 5 mM EDTA, 0.5% Triton X-100, 10% glycerol (v/v), 2 µg.mr1 leupeptin, 

100 µg.mr1 phenylmethylsulfonyl fluoride, and 2 µg.mr1 aprotinin. Homogenates 

were spun at 16,000 g for 60 min at 4 °C, and the supernatant was removed and 

rapidly frozen in liquid nitrogen. Protein concentration of the muscle lysates was 

subsequently determined (Pierce). Lysates were solubilised in Laemmli sample buffer 

and boiled for 5 min, resolved by SDS-PAGE on 6% polyacrylamide gels, transferred 

to a nitrocellulose membrane, blocked with 5% milk, and immunoblotted overnight 

with phospho (Ser473
) and total Akt antibodies (1:1000, Cell Signaling, Beverley, 

MA). After incubation with horseradish peroxidase-conjugated secondary antibody 

(1 :2000, Amersham Biosciences), the immunoreactive proteins were detected with 

enhanced chemiluminescence (PerkinElmer Life Sciences) and quantified by 

densitometry. 

7.2.6 Data analysis 

All data are expressed as means ± SEM. Data were calculated as described in section 

2.4. 

7. 2. 7 Statistical Analysis 

To ascertain differences between treatment groups at the 120 min time point, a one­

way ANOVA was used. Differences between initial (-60 min) and final (120 min) 

values were assessed using a paired t-test. Comparisons were made between 

treatment groups over the course of the experiment using a two-way repeated 

measures ANOVA and Student-Newman-Keuls post hoe test. Significance was 

accepted at a level ofp< 0.05. All tests were performed using SigmaStat software 

(Systat Software Inc., USA). 
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7.3 RESULTS 

7.3. l Experimental groups 

The experimental groups and the number of experiments in each (n value) are shown 

in the table below: 

TABLE 7.1: IL-6 AND INSULIN EXPERIMENTAL GROUPS 

Treatment grouo nvalue 
Vehicle 7 
3 mU.min-• .kg-• insulin 7 

Low dose IL-6 (0.5 µg.h"' .kg-1
) 5 

Low dose IL-6 (0.5 µg.h"' .kg-1
) + 3 mU.min"' .kg-• insulin 5 

High dose IL-6 (5 µg.h- 1 .kg-') 8 

High dose IL-6 (5 µg.h- 1.kg-1
) + 3 mU.min-1.kg-• insulin 8 

7.3.2 Plasma IL-6 and insulin concentrations 

Table 7.2 shows the initial (-60 min) and final (120 min) arterial plasma IL-6 and 

insulin concentrations. There was no significant difference between the initial (-60 

min) arterial plasma IL-6 levels between the experimental groups (- 200 pg.ml-1
). 

Low dose IL-6 infusion (with or without insulin) had no effect on the levels of IL-6 in 

the plasma. High dose IL-6 infusion at 5 µg.kg- 1.h-1
, with or without insulin infusion, 

caused a significant increase in circulating levels to between 2500 and 3000 pg.mr1
• 

There was no significant difference between the initial (-60 min) arterial plasma 

insulin concentration between the experimental groups. Insulin infusion significantly 

increased circulating concentrations, with levels tending to be higher during IL-6 

infusion, however this was not statistically significant. 
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TABLE 7.2: PLASMA CONCENTRATIONS OF IL-6 AND INSULIN BEFORE (-60 MIN) AND AFTER (120 
MlN) lL-6 AND/OR INSULIN INFUSION 

Vehicle 3 mU-min- ·kg­
insulin 

Plasma IL-6 concentrations (pg.mr ) 

Initial (-60 min) 225 ± 10 164 ± 33 

Final (120 min) 281 ± 31 281 ± 48 

Plasma insulin concentrations (pmol.r1
) 

Initial (-60 min) 316 ± 44 346 ± 86 

Final (120 min) 380± 89 774± 135* 

5 µg.kg-I .h-I IL-6 

IL-6 IL-6 + insulin IL-6 IL-6 + insulin 

126 ± 32 165 ± 36 195 ± 7 225 ± 15 

265 ± 31 608 ± 164 2519 ± 678* 3040 ± 726* 

213 ± 62 445 ± 73 198 ± 14 342 ± 93 

460 ± 72 1231±286* 284 ± 22 920± 192* 

Values are means ± SEM. , significantly different all other groups (p<0.05) 

7.3.3 Heart rate and mean arterial pressure 

Heart rate remained constant throughout the experiment for all groups, with neither 

IL-6 nor insulin alone, or in combination, having an effect on this parameter. Heart 

rate ranged from - 360 to 410 beats.min-1 for the duration of the experiment (Fig. 7.3). 

500 A 500 B 

~- 450 .;-- 450 

c 

~t+fit=I 
'c rntrn ~ 400 ~ 400 Hi1-M "' J!l 10 "' QI QI e 350 e 350 

~ ~ 
300 a: 300 

t: t: 

"' "' QI QI 

::c 250 IL~ (0.5 or 5 pg.g·'.h-1) ::c 250 IL~ (0.5 or 5 pg.g-1.h-1) 

saline Insulin (3 mU.mln-'.kg-1) 

200 200 

.ao .ao -40 -20 0 20 40 60 80 100 120 .ao .ao -40 ·20 0 20 40 60 80 100 120 

Time (mln) Time(min) 

Figure 7.3: Time course for heart rate as a result of IL-6 infusion (panel A) or IL-6 infusion with 

3mU.min-1.kg-1 insulin infusion (panel 8). Heart rate is measured by a catheter placed in the carotid 

artery. Values are means ± SEM. •vehicle; • 0.5 µg.kg-1.h-1 IL-6; • 5 µg.kg-1.h-1 IL-6; • 3 mU.min-

1.kg-1 insulin; • 0.5 µg .kg-1.h-1 IL-6 + insulin; • 5 µg.kg-1.h-1 IL-6 + insulin. 

Like heart rate, mean arterial pressure remained constant throughout the experiment 

for all groups, with neither IL-6 nor insulin alone, or in combination, having an effect 
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on this parameter. Mean arterial pressure ranged from ~ l 00 to 120 mmHg for the 

duration of the experiment (Fig. 7.4). 

140 A 140 B Ci Ci 
~ 120 

l=t- 1 ~ 
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40 Oil 
~ ~ 40 
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20 
IL~ (0.5 or 5 ~g .g·1 .h·1 1 c IL~ (0.5 or 5 ~g.g·1 . h· 1 ) 

CU CU 20 
Oil sallne Oil lnsulln (3 mU.mln·1.kg·1) :::E :::E 

0 
-80 ~o -40 -20 0 20 40 60 80 100 120 -80 ~o -40 -20 0 20 40 60 80 100 
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Figure 7.4: Time course for mean arterial pressure as a result of IL-6 infusion (panel A) or IL-6 

infusion with 3mU.min"1.kg"1 insulin infusion (panel 8). Mean arterial pressure was measured by a 

catheter placed in the carotid artery. Values are means± SEM. • vehicle; • 0.5 µg.kg·1.h·1 IL-6; • 5 

µg.kg.1.h"1 IL-6; • 3 mU.min·1.kg·1 insulin; • 0.5 µg .kg·1.h·1 IL-6 + insulin; • 5 µg.kg"1.h"1 IL-6 + 

insulin. 

7. 3.4 Femoral blood flow and vascular resistance 

Femoral blood flow remained steady for the duration of the experiment and was 

unaffected by the vehicle infusion, or insulin infusion alone or in combination with 

either dose of IL-6. The low dose of IL-6 had no effect on femoral blood flow 

however the high dose of 5 µg.kg·1.h·1 IL-6 caused a small decrease in femoral blood 

flow throughout the experiment. Femoral blood flow was ~ l.2 rnl.min·' before IL-6 

infusion commenced, and was significantly decreased (p<0.05) by 15 min (compared 

to it initial starting value at -60 rnin and the vehicle infused group) reaching ~.9 

rnl.min·1 by the end of the experiment (Fig. 7.5). 
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FIGURE 7.5: Time course for femoral blood flow as a result ot IL-tJ mtus1on uianel AJ or IL-tJ mtus1on 

~ 
c 

with 3mU.min-1.kg-1 insulin infusion (panel B). Flow probes were positioned around the femoral 

arteries of each leg. Values are means ± SEM. • , significantly different from vehicle infusion. • 

vehicle; • 0.5 µg.ki 1 .h-1 lL-6; • 5 µg.kg-1.h-1 IL-6; • 3 mU.min-1.kg-1 insulin; • 0.5 µg.ki1 .h-1 lL-6 + 

insulin; • 5 µg.kg-1.h-1 IL-6 + insulin. 

The time course for vascular resistance follows a similar pattern to femoral blood 

flow. While vehicle infusion and insulin infusion alone or in conjunction with IL-6 

had no effect on vascular resistance, the high dose IL-6 (5 µg .kg·1.h-1
) caused vascular 

resistance to increase (p<0.05) from - 95 at basal to - 125 at 120 min (Fig. 7.6). 
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FIGURE 7.6: Time course for vascular resistance as a result of IL-6 infusion (panel A) or IL-6 infusion 

with 3mU.min-1.kg-1 insulin infusion (panel 8). Vascular resistance was calculated by dividing mean 

arterial pressure by femoral blood flow at a given time point Values are means ± SEM. • 

significantly difference to vehicle infusion (p<0.05)• vehicle; • 0.5 µg.kg-1.h-1 IL-6; • 5 µg .kg-1.h-1 IL-

6; • 3 mU.min-1.kg-1 insulin; • 0.5 µg.kg-1.h-1 IL-6 +insulin; • 5 µg.kg-1.h-1 IL-6 +insulin. 
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7.3.5 Microvascular perfusion 

No significant difference in arterial plasma concentrations of 1-MX or oxypurinol (the 

metabolite of allopurinol and inhibitor of xanthine oxidase) were found between the 

experimental groups (Table 7.3). The infusion of insulin significantly (p < 0.05) 

increased the rate of 1-MX metabolism from 5.16 ± 0.95 nmol.min-1 with the vehicle 

solution to 8.12 ± 0.85 nmol.min-1 with 3 mU-min-1·kg-1 insulin. IL-6 alone had no 

effect on 1-MX metabolism when compared to vehicle infusion however, infusion of 

both the low dose ofIL-6(6.10±1.03 nmol.min-1
) and the high dose ofIL-6 (6.77 ± 

0.32 nmol.min-1
) significantly (p < 0.05) attenuated insulin's stimulatory on 1-MX 

metabolism and microvascular perfusion (Table 7.3). 

TABLE 7.3: 1-METHYLXANTHINE METABOLISM AFI'ER IL-6 AND/OR INSULIN INFUSION 

Oxypurinol 
(JIM) 

Arterial 1-MX 
(JIM) 

1-MX 
disappearance 
(nmol.min-1

) 

Vehicle 

5.38± 0.52 

16.94± 1.14 

5.16 ± 0.95 

; 

0.5 Jlg.kg-1.h-1 IL-6 

3 mU.min-1.kg-1 IL-6 IL-6 + insulin 
insulin 

6.16±0.71 5.81 ±0.28 6.17±0.34 

23.42±3.07 17.33 ± 1.94 16.72± 0.91 

8.12±0.85* 5.56±0.46 6.10± 1.03 

Values are means± SEM. , significantly different all other groups (p<0.05) 

7.3.6 Glucose metabolism 

5 Jlg.kg-1.h-1 IL-6 

IL-6 IL-6+ 
insulin 

7.30±0.45 6.77 ± 0.32 

23.36 ± 3.72 21.08 ± 1.7 

5.63 ±0.91 6.77 ± 0.32 

Blood glucose was clamped at 4.8 mmol.r1 throughout the experiment. There was no 

difference in blood glucose between the experimental groups containing insulin, 

however it appears that the blood glucose concentration is higher in the high dose IL-

6 treatment group. During treatment with high dose IL-6, glucose infusion was 

required to maintain euglycaemia during the middle portion of the experiment (0-60 

min; see Fig 7.8), after which time, blood glucose concentrations were rising without 

the need for glucose infusion. There was no statistical difference between the blood 

glucose concentrations at basal compared to 120 min between any of the treatment 

groups (Fig. 7. 7). 
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FIGURE 7.7: Time course for blood glucose concentrations as a result of!L-6 infusion (panel A) or IL-

6 infusion with 3mU.min·1.kg·1 insulin infusion (panel B).Values are means± SEM. • vehicle; • 0.5 

µg.kg·1.hr·1 IL-6; • 5 µg.kg·1.hr·1 IL-6; • 3 mU.min·1.kg·1 insulin; • 0.5 µg.kg·1.hr·1 IL-6 + insulin; • 5 

µg.kg·1.hr·1 IL-6 +insulin. 

The glucose infusion rate (GIR.) required to maintain euglycaemia during insulin 

infusion reached a plateau of 15.19 ± 0.91 mg.min·1.kg·1
• Neither the low dose (GIR; 

14.18 ± 1.53 mg.min-1.kg-1
) nor high dose (GIR.; 15.36 ± 1.45 mg.min-1.kg-1

) ofIL-6 

had an affect on insulin stimulated glucose infusion rate, above that of insulin alone 

(Fig. 7. 7). Preliminary experiments showed that if glucose was not infused during 

high dose IL-6 (5 µg.kg·1.h-1
) infusion, blood glucose concentrations fell by -1 mM 

throughout the 180 min experiment. Therefore a small amount of glucose (-1-2 

mg.min-1.kg"1
) was required during high dose of IL-6 infusion, generally between 0 

and 60 min. Glucose was not infused during vehicle or low dose IL-6 (0.5 µg.kg- 1.h-1
) 

infusion (Fig. 7. 7). 
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FIGURE 7.8: Time course for glucose infusion rate as a result of lL-6 infusion (panel A) or IL-6 

infusion with 3mU.min-1.kg·1 insulin infusion (panel 8). Blood glucose levels were maintained at 4.8 

mM. Values are means ± SEM. *, significantly different from vehicle infusion (p<0.05). • vehicle; • 

0.5 µg.kg-1.h-1 IL-6; • 5 µg .kg·1.h·1 IL-6; • 3 mU.min-1.kg-1 insulin; • 0.5 µg.kg-1.h·1 IL-6 + insulin; • 5 

µg.kg-1.h-1 IL-6 + insulin. 

Figure 7.9 shows 2-DG uptake (R'g) for individual muscles of the lower leg (SOL, 

PLA, RG, WG, EDL, TIB) and the epididymal fat pads (FAT) excised and freeze­

clamped at the completion of the experiment. As expected the infusion of insulin 

significantly (p<0.05) increased glucose uptake in all muscles compared to the 

infusion of vehicle and IL-6 alone. Low dose IL-6 (0.5 µg.kg·1 .h-1
) alone did not 

increase glucose uptake above basal and had no affect on insulin stimulated glucose 

uptake in the muscle. High dose IL-6 (5 µg.kg-1.h-1
) alone however, increased 

glucose uptake compared to vehicle infusion in the red gastrocnemius muscle 

(p=0.035) and epididymal fat pad (p=0.021). Similarly, high dose IL-6 infused with 

insulin tended to further increase glucose uptake in the red gastrocnemius muscle and 

fat pads above insulin infusion alone, however this was not statistically significant 

(Fig 7.9). 

147 



A 
50 - Vehicle 

- 40 
'c ·e 
~. 30 
'ci 

cii 
::s 

- 20 
Cl 

it:: 
10 

0 

- 0.5 µg.kg·1.h·1 IL-6 
- 51J11.kg·1.h·1 IL-6 

SOL PLA RG WG EDL TIB FAT 

IL-6 and insulin action 

B 
50 111!21 3 mU.mln-'.kg·• 

-';" 40 
c 

~ 
.... 30 

'C!I 
Cl 

2. 20 
Cl 

it:: 
10 

0 

- 0.5 µg.kg·1.h·1 IL-6 +Insulin 
- 5 IJll.kg-1 .h·1 IL-6 + Insulin 

SOL PLA RG WG EDL TIB FAT 

FIGURE 7.9: Muscle and adipose tissue radioactive 2-DG uptake (R'g) for individual muscles of the 

lower leg as a result of IL-6 infusion (panel A) or IL-6 infusion with 3mU.min· 1.kg·1 insulin infusion 

(panel B). 2-DG was administered at as a bolus at 75 min (Figure 6. I) and individual muscles (SOL, 

soleus; PLA, plantaris; RG, red gastrocnemius; WG, white gastrocnemius; EDL, extensor digitorum 

longus; TIB, tibialis anterior) and the epididymal fat pads (FA T)were excised at the completion of the 

experiment. Values are means± SEM. *,significantly different to vehicle (p<0.05). 

The combined calf muscle glucose uptake (aggregated on proportional weight) 

showed that insulin infusion increased muscle glucose uptake above values obtained 

with a vehicle infusion. Low dose IL-6 infusion (0.5 µg.kg- 1.h-1
) had no significant 

(p<0.05) effect on basal or insulin stimulated glucose infusion. High dose IL-6 

infusion (5 µg.kg-1.h-1
) alone tended to increase glucose uptake, however this was not 

statistically significant (p = 0.057). High dose IL-6 had no effect on insulin 

stimulated glucose uptake (Fig. 7. l 0). 
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FIGURE 7.10: Muscle radioactive 2-DG uptake (R' g) for the combined calf muscle (aggregated on 

proportional weight) due to low dose IL-6 or high dose IL-6 and/or insulin infusion. 2-DG was 

administered at as a bolus at 75 min (Figure 6.1) and individual muscles (SOL, soleus; PLA, plantaris; 

RG, red gastrocnemius; WG, white gastrocnemius; EDL, extensor digitorum longus; TIB, tibialis 

anterior) were excised at the completion of the experiment. Values are means± SEM. *,significantly 

different to vehicle (p<0.05). 

7.3. 7 Blood lactate concentrations 

Blood lactate concentrations remained unchanged in response to vehicle and IL-6 

infusion. Insulin infusion tended to increase blood lactate concentrations above basal 

(1.16 ± 0.10 mM versus 0.84 ± 0.19 mM at 120 rnin) although this was not 

significant. Co-infusion of insulin with high dose IL-6 caused a further increase in 

blood lactate concentration and the difference became significant (p<0.05) to insulin 

alone at 60 min with concentrations reaching 1.43 ± 0.10 mM at 120 min (Fig. 7 .11 ). 
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FIGURE 7.11: Time course for blood lactate concentrations as a result of IL-6 infusion (panel A) or IL-

6 infusion with 3mU.min·1.kg·1 insulin infusion (panel 8). Values are means± SEM. • , significantly 

different to 3 mU.min·1.kg·1 (p<0.05). • vehicle; • 0.5 µg.kg·1.h·1 IL-6; • 5 µg.kg·1.h·1 IL-6; • 3 

mU.min·1.kg'1 insulin; • 0.5 µg .kg·1.h·1 IL-6 + insulin; • 5 µg.kg' 1.h·' IL-6 + insulin. 

7. 3. 8 Glucose turnover 

Hepatic glucose production (measured via the metabolism of 3-[3H]-D-glucose) was 

suppressed by insulin infusion. This suppression persisted during infusion with low 

dose IL-6, however high dose IL-6 (5 µg.kg.1.h.1
) resulted in a significant increase in 

hepatic glucose production compared to insulin alone. Interestingly, the co-infusion 

of high dose IL-6 and insulin resulted in a significant increase (p<0.05) in glucose 

disappearance compared insulin alone (Fig 7.12). 
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FIGURE 7.12: The rate of glucose appearance (hepatic glucose production; panel A) and glucose 

disappearance (glucose uptake; panel 8) as a result of low dose or high dose IL-6 and/or insulin 

infusion. Values are means ± SEM. •, significantly different to vehicle (p<0.05); #, significantly 

different to insulin (p<0.05). 

7.3.9 Akt phosphorylation 

Total Akt and Akt phosphorylation (Ser473
) was measured in the combined calf 

muscle (SOL, PLA, RG, WG) which were excised and freeze clamped as one sample 

on completion of the experiment. Vehicle infusion had little effect on Akt 

phosphorylation (Ser473
). Both IL-6 and insulin infusion alone and in combination 

significantly (p<0.05) increased Akt phosphorylation (Ser473
) above that seen in the 

vehicle infused treatment group (Fig. 7.13). 
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FIGURE 7.13: The ratio of Akt phosphorylation (Ser 473
) to total Akt protein as a result of low dose or 

high dose IL-6 and/or insulin infusion. A representative western blot of total and phosphorylated Akt 

for each treatment group is shown. Values are means ± SEM (n=6). *, significantly different to 

vehicle (p<0.05). 

7 .4 DISCUSSION 

The main finding of this study is that IL-6 has a number of haemodynamic effects 

being able to decrease femoral blood flow, increase vascular resistance and attenuate 

insulin's ability to increase microvascular perfusion. While IL-6 opposes insulin 's 

stimulatory effect on microvascular perfusion, it is able to compensate for any loss in 

glucose metabolism in the short term by its ability to increase glucose uptake. 

Plasma concentrations of IL-6 reached - 300 pg.r 1 during 0.5 µg .kg-1.h-1 IL-6 infusion 

and -2700 pg.r1 during 5 µg.kg" 1.h"1 IL-6 infusion (Table 7.2). Circulating plasma 

concentrations in humans have been reported to be between -1-2 pg.r1 
<
22 1

•
224

> in 

healthy subjects, and -2-3 pgS1 in type 2 diabetic <220
• 

339l and obese patients <218
• 

219l_ 

Studies using microdialysis have also shown that interstitial concentrations are - 100 

greater than those in the plasma <340
•

341 l. In the present study, circulating IL-6 

concentrations at basal were - 250 pg.r 1 suggesting that plasma concentrations are 

not directly comparable between humans and animal models and that the 
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concentrations required to elicit a response in humans may be different to those used 

in animal models. The infusion of high dose IL-6 in this study lead to a 100 fold 

increase in circulating levels (as is seen during exercise in humans), therefore 

assuming the clearance rate of the cytokine is similar between species, this 

concentration may be likened to that seen during exercise in humans. 

IL-6 infusion at the high dose (5 µg.kg- 1.h-1
), but not the low dose (0.5 µg.kg- 1.h-1

), 

caused femoral blood flow to decrease resulting in an increase in vascular resistance. 

These were only small changes over the course of the experiment (femoral blood flow 

decreased by- 0.3 ml.min-1 over three hours) however this did reach statistical 

significance (p<0.05). This effect on total blood flow was not apparent during co­

infusion with insulin, as insulin's well known vasodilatory actions may have been 

strong enough to compensate from such a small decrease in blood flow. In these 

experiments however, co-infusion with either dose ofIL-6 significantly (p<0.05) 

attenuated insulin mediated increase in microvascular perfusion, suggesting that the 

microvasculature is more sensitive to inhibition by IL-6 than the larger vessels. While 

the haemodynamic effects ofIL-6 have not been studied in depth, a similar 

inflammatory cytokine in 1NF-a, which stimulates IL-6 release from adipose tissue, 

has been shown to inhibit insulin mediated haemodynamic actions (both total flow 

and microvascular perfusion) <95
• 

97
• 

342>. Studies have also shown that 1NF-a. 

stimulated the release of the vasoconstrictor endothlein-1 <343
• 
344>, which may result in 

an insulin resistant state through a decrease in insulin stimulated microvascular 

perfusion (Chapter 7). Furthermore, as shown in Chapter 7 of this thesis, ET-1 release 

may decrease insulin clearance, and given that the plasma insulin concentrations of 

both doses of IL-6 are slightly higher (but not statistically significant) than insulin 

alone, a small increase in ET-1 may be possible. An Endothelin ELISA (Biomedica; 

Austria) performed on the plasma samples from these experiments was unable to 

detect any increase in endothelin above basal, however as ET-1 is released 

abluminally, and it is possible that small increase in secretion will not be detected in 

the circulating plasma. 

Insulin induced vasodilation results from the an increase in nitric oxide synthase 

activity and nitric oxide production in the endothelium <162>. It is therefore possible 

that IL-6 may decrease insulin stimulated microvascular perfusion by inhibiting nitric 
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oxide production. A recent study by Andreozzi et al. <345> showed that IL-6 interferes 

with insulin's ability to phosphorylate eNOS by regulating its phosphorylation at 

Ser117 and Th495
• This study <345> also showed through chemical inhibition and siRNA 

that IL-6 activation of the JNK and ERK.112 pathways was responsible for the 

inhibitory effect of IL-6 on insulin stimulation ofNOS activity and production. More 

research is required to investigate ifIL-6, like TNF-a, modifies blood flow through 

the stimulation of ET-1 secretion, or if this occurs through a separate mechanism 

involving inhibition of nitric oxide production. 

In contrast to it's inhibitory effects on blood flow, IL-6 at a dose of 5 µg.kg- 1.h-1 (but 

not the low dose of 0.5 µg.kg-1.h-1
) resulted in a trend to stimulate muscle glucose 

uptake (measured by 2-DG uptake) in the individual muscles of the calf, with a 

significant increase (p=0.035) in the red gastrocnemius muscle. There was also a 

significant increase (p=0.021) in 2-DG uptake in the epididymal fat pads compared 

with a vehicle infusion (Fig. 7.9). The effect ofIL-6 to increase glucose metabolism is 

further supported as a glucose infusion was required during these experiments to 

maintain euglycaemia. Preliminary studies showed that failure to infused glucose 

during IL-6 treatment resulted in blood glucose decreasing by ~ lmM over the course 

of the experiment. Similarly, during~ 3 mU.min-1.kg-1 insulin clamp, there is a trend 

for co-infusion ofIL-6 to further increase glucose uptake of the combined calf muscle 

(p=0.057; Fig 7.10) and in the individual muscles of the calf and the epididymal fat 

pads (Fig. 7.9) above that achieved by insulin infusion alone,. The rate of glucose 

disappearance measured by 3-[3H] glucose, an indicator of the whole body glucose 

disappearance, was also significantly increased (p<0.02) with co-infusion ofIL-6 and 

insulin above that of insulin alone (Fig. 12). In addition the blood lactate 

concentrations (p>0.05; Fig. 11) were increased over the course of the experiment, 

which together suggested an increase in glucose metabolism. Incubated muscle and 

cell culture experiments support the view that IL-6 is able to exert a positive effect on 

glucose uptake in the muscle and adipose tissue, and that it further enhances insulin 

mediated glucose uptake <248
• 
259

' 
264>. 

Interestingly, there was no difference between the glucose infusion rate of insulin 

alone and during co-infusion of high dose IL-6 (Fig. 7.8). This may be attributed to 

the inhibition of insulin's action to suppress hepatic glucose production (Fig. 12), 
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causing a higher blood glucose concentration, and consequently requiring less infused 

glucose to maintain euglycaemia. A number of studies in vitro <216
• 
27

7) and in vivo <268
• 

278> have shown that IL-6 increases glycogenolysis during insulin stimulation and 

causes hepatic insulin resistance, through the induction of SOCS3 protein and 

inhibition of insulin receptor signal transduction <279>. However, as shown by Klover 

et al. <218> while IL-6 caused hepatic insulin receptor autophosphorylation and tyrosine 

phosphorylation ofIRS-1 to decrease by 60%, insulin signal transduction in the 

skeletal muscle remained unaffected. 

The present study shows that IL-6 is able to phosphorylate Akt at Ser473
, to a similar 

extent as insulin, and may help to elucidate the signalling pathway IL-6 activates to 

increase glucose uptake (Fig. 7.13). The same phosphorylation in response to IL-6 

was also found by Weigert et al. <25
7) in incubated human myotubes, and it was 

discussed that while it is the phosphorylation of the Thr3°8 residue of Akt which 

activates the protein, the phosphorylation of Ser473 only increases the susceptibility of 

Thr3°8 to phosphorylation by PI3-kinase, leading to an increase in insulin sensitivity. 

In that study, this effect was inhibited by incubation with wortmanin. Similarly, Al­

kahalili et al. <25
6) found that IL-6 increased glucose metabolism and glycogen 

synthesis by Pl3-kinase dependent mechanisms in human skeletal muscle cell culture. 

That study <25
6) also showed that the increased lipid oxidation in response to IL-6 

incubation was regulated by an AMPK dependent mechanisms, separate to glucose 

metabolism. In contrast, Glund et al. <259> found that incubation of skeletal muscle 

strips from the vastus lateralis muscle in humans with IL-6 lead to an increase in 

resting glucose uptake through activation of the AMPK and MAPK signalling 

pathways without affecting PI3-kinase, Akt or AS160 phosphorylation. Similarly, 

Carey et al. <248> found that L6 myotubes infected with a dominant-negative AMPK 

alpha-subunit decreased glucose uptake, GLUT4 translocation and fatty acid 

oxidation. 

The activation of signalling proteins by IL-6 appears to be a transient effect and may 

explain why in this study, there was no detectable increase in IRS-I or AMPK 

phosphorylation in the skeletal muscle (data not shown), as samples were collected 

after 3 hour of IL-6 infusion. Other studies have shown that treatment of cultured 

skeletal muscle cells and human umbilical vein endothelial cells with IL-6 results in a 
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modification ofIRS-1 through a rapid phosphorylation of Ser3 18 which begins to 

decrease 30 min after stimulation <260
• 
345>. 

In humans, IL-6 is only released during strenuous or long duration exercise <242
• 

34
6) 

which require prolonged periods of increased fuel utilisation. Furthermore, IL-6 

release is particularly sensitive to a decrease in muscle glycogen <243> suggesting that 

IL-6 may act as an additional mechanism to regulate glucose uptake during times of 

increased fuel metabolism. IL-6 and contraction have been shown to activate AMPK 

<248
• 

258>, a kinase involved in fuel regulation known to increase lipid metabolism and 

to conserve glycogen and glucose stores. IL-6 may be released as a mechanism to 

assist in energy mobilisation during exercise, by increasing the release of glucose by 

the liver (Fig. 12), and by increasing glucose uptake in the muscle through an 

alternative pathway (Fig. 10). The mechanism through which IL-6 signalling occurs 

however still requires on going research to elucidate the tissue specific pathways 

involved in glucose and lipid metabolism at rest, during insulin stimulation and 

contraction. 

The increase in plasma concentrations of IL-6 during exercise is transient and appears 

to be mediated by a need for fuel redistribution to the working muscles during 

exercise allowing an increase in muscle glucose uptake. However the effect of 

chronically elevated IL-6 at basal may be problematic. The data in the present study 

suggests that a chronic increase in circulating IL-6 concentrations may result in 

insulin resistance through inhibition of insulin mediated microvascular perfusion, a 

process which appears to be more sensitive to IL-6 than the signalling mechanism 

which leads to an increase in glucose uptake (demonstrated by the differences in low 

and high dose IL-6 infusion). In the short term, the ability of IL-6 to increase glucose 

uptake is able to compensate for an increased vascular resistance at basal and for a 

loss in insulin mediated microvascular perfusion. In the long term however, the 

inhibition of insulin's suppression of hepatic glucose uptake may result in chronic 

hyperglycaemia The ability of the body to dispose of this increase in glucose 

concentrations will result in an increase in insulin secretion, however due to IL-6 

suppression of insulin's haemodynamic actions, may cause a form of acute insulin 

resistance as insulin is not able to efficiently dispose of the excess glucose. If this 

cycle persists, hyperinsulinaemia and insulin resistance may develop. This is also 
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confounded by the fact that IL-6 is an inflammatory cytokine involved in the acute 

phase response which may also lead to complications involving the vasculature 

through increased blood viscosity and atherosclerosis, as well as an increase in central 

obesity and hypertension (through association with the hypothalamic-pituitary-adrenal 

axis), risk factors for both cardiovascular disease and insulin resistance <34
7). 

In conclusion, IL-6 causes an increase in vascular resistance under basal conditions 

and an inhibition of increased microvascular perfusion during insulin stimulation. 

Glucose uptake however is not inhibited, as IL-6 is able to compensate for any loss in 

vascular function by directly increasing glucose uptake in the skeletal muscle and 

adipose tissue through signalling mechanism which may involve phosphorylation of 

Akt. This may also be an alternative pathway used by contraction to assist in glucose 

regulation and increasing the availability of glucose for the working muscle during 

prolonged exercise. In the long term however, an increase in circulating IL-6 may 

lead to insulin resistance due to its ability to not only inhibit insulin mediated increase 

in microvascular perfusion, but also by attenuating insulin's action to suppress 

glucose production. 
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Discussion 

8.1 DISCUSSION 

This thesis has examined the role of insulin and contraction mediated increases in 

microvascular perfusion on glucose uptake and insulin resistance. Focus has been on 

skeletal muscle as it contributes to 85% of glucose disposal during hyperinsulinaemic 

euglycaemia, and is the main site of insulin resistance (II)_ The techniques of CEU and 

1-MX metabolism have been used to measure changes in microvascular perfusion 

during contraction and insulin stimulation, as they are able to measure flow changes 

in the microvasculature without being influenced by changes in bulk flow which may 

occur with either or both of these stimuli. 

Circulating concentrations of IL-6 and ET-1 are both elevated in obese and insulin 

resistant subjects <182
•
219

' 
336

) and studies in this thesis have revealed that both IL-6 and 

ET-1 inhibit insulin-meditated increases in skeletal muscle microvascular perfusion. 

Both these substances may act by inhibiting insulin-stimulated nitric oxide production 

to cause a decrease in perfusion, and they may also cause hyperinsulinaemia through 

vasoconstriction and hepatic effects. Nitric oxide may also be involved in the 

increases in microvascular perfusion (compared to basal) and muscle glucose uptake 

seen during recovery from contraction. However, it seems that while nitric oxide may 

play a role in vascular tone at basal, and be involved in both the increase in glucose 

uptake and microvascular perfusion in response to insulin, only glucose uptake is 

affected by nitric oxide synthase inhibition during contraction. This suggests that 

contraction has separate and distinct pathways for increasing microvascular perfusion 

and glucose uptake and may stimulate the vasculature and myocyte through different 

signalling mechanisms. Elucidating these mechanisms may be important for the 

development of new therapeutic target for the treatment of insulin resistance and type 

2 diabetes. 
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8.2 SUMMARY OF KEY FINDINGS 

8.2. 1 Contrast enhanced ultrasound technique for measuring microvascu/ar 
perfusion 

The use of capillary models was used to show that contrast enhanced ultrasound 

(CEU) imaging technique may distinguish between changes in microvascular 

perfusion independently of changes in bulk flow. Furthermore, while the technique 

can also detect changes in microvascular volume and the filling rate of the capillaries, 

this technique can not be used to determine changes in flow pattern. Thus, flow 

redistribution from short to long tortuous capillaries, or flow pattern changes 

involving sharing of flow from one to a number of capillaries can not be distinguished 

using CEU. Most importantly, this study shows that CEU may be used to measure 

changes in microvascular perfusion in response to contraction or insulin stimulation 

and not be affected by the concomitant changes in total blood flow. 

8.2.2 Microvascular perfusion post-contraction 

This study found that a short 10 min bout of contraction (by electrical stimulation of 

one hindlimb) in vivo increased microvascular perfusion during contraction, but led to 

a sustained increase for some time after. Thus while femoral blood flow returned to 

basal levels immediately after the bout of contraction, perfusion of the 

microvasculature remained enhanced (compared to basal levels) for up to 60 min 

post-contraction. Muscle glucose uptake also remained significantly increased in the 

contracted leg at this time, without the stimulus of exogenously added insulin, or an 

increase in circulating plasma insulin concentrations. Similar experiments, in the 

perfused hindlimb model, however had no effect on glucose uptake (or lactate release) 

after 60 min of recovery from contraction, and all parameters returned to basal levels 

within 5 minutes of the end of exercise. Taken together these data would suggest that 

enhanced glucose uptake is not the result of an increase in bulk blood flow, or plasma 

insulin concentrations, but is most likely the result, at least in part, of increased 

microvascular perfusion. Although changes in the myocyte may occur, the data 

suggest that the enhance microvascular perfusion during this post-contraction period 

may play a key role in the increase in glucose uptake and insulin sensitivity seen 

during recovery from contraction. 
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8.2.3 The effect of nitric oxide synthase inhibition during contraction 

Insulin mediated increases in microvascular perfusion and glucose uptake have 

recently been shown to be mediated by nitric oxide. This study found that local 

infusion of a nitric oxide synthase inhibitor (via the epigastric artery of one leg) 

during contraction had no effect on the contraction mediated increase in 

microvascular perfusion. NOS inhibition did however decrease muscle glucose 

uptake by ~30%. The inhibition of nitric oxide release during contraction may have 

been compensated for by the release of other vasodilitary factors which are secreted 

during contraction <58
). Glucose uptake however was partially dependent on nitric 

oxide release, and the decrease in muscle glucose uptake was independent of AMPK 

or nNOSµ phosphorylation. Therefore nitric oxide is critical for the muscle glucose 

uptake, but not the increase in microvascular perfusion response to contraction. This 

study reiterates that the signalling pathways controlling microvascular perfusion at 

rest, during insulin stimulation and during exercise are controlled by separate 

mechanisms. Furthermore, the mechanisms which act to increase microvascular 

perfusion and those which affect glucose uptake also appear to be mediated by 

separate stimuli. 

8.2.4 Enodothelin-1 and insulin action 

The intravenous infusion of the vasoconstrictor ET-1 with insulin in vivo, resulted in 

elevated mean arterial pressure and an attenuation of insulin mediated femoral blood 

flow and microvascular perfusion. ET-1 infusion also caused a 50% decrease in the 

rate of insulin clearance to compensate for a decrease in microvascular perfusion and 

to maintain an increase muscle glucose uptake due to insulin stimulation. When 

circulating plasma insulin concentrations were compared between experiments (as 

opposed to comparing the infusion rate of insulin), it was found that ET-1 also caused 

a decrease in whole body (as measured by glucose infusion rate) and muscle glucose 

uptake (measured by 2-DG uptake). The hyperinsulinaemia resulting from a decrease 

in insulin clearance rate, could be attributed to the vasoconstrictor actions of ET-1 to 

decrease blood flow to the kidney and liver <181
• 

188>, the major sites of insulin 

clearance <334
). This vasoconstrictor action also resulted in a decreased delivery of 

insulin to the skeletal muscle by inhibiting insulin mediated increases in 

microvascular perfusion. This denied the access of insulin to the muscle cells, 
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resulting in a decrease in muscle glucose uptake, and again showing an association 

between these two actions. 

8.2.5 Interleukin 6: Effects on insulin action and contraction 

Co-infusion of the inflammatory cytokine IL-6 (5 µg.kg-1.h.1
) with insulin caused a 

decrease in insulin mediated microvascular perfusion, but resulted in a small increase 

in insulin mediated glucose uptake. IL-6 infusion also resulted in the attenuation of 

insulin's suppression of hepatic glucose production. This latter affect accounts for the 

similar glucose infusions rates between insulin infusion alone and in conjunction with 

IL-6, even though the glucose disappearance rate was increased during IL-6 infusion. 

The increase in muscle and adipose tissue glucose uptake in response to IL-6 infusion 

could be attributed to the phosphorylation of Akt at Ser473
, leading to an increase in 

insulin sensitivity by enhancing the susceptibility of the Thr3°8 residue to be 

phosphorylated by PI3-K.inase <251>. Co-infusion of a low dose (0.5 µg.kg· 1.li1
) of IL-

6 suppressed insulin mediated microvascular perfusion, but had no significant affect 

on glucose metabolism. The difference in results between these two doses ofIL-6 

suggests that microvascular perfusion is more sensitive than glucose uptake to the 

effects of this inflammatory cytokine, and while IL-6 is able to sustain an increase 

glucose metabolism in the short term, its haemodynamic effects and attenuation of 

insulin's suppression of hepatic glucose output may result in insulin resistance if 

circulating concentrations remain chronically elevated. 

8.3 MEASUREMENT OF MICROVASCULAR PERFUSION: ADVANTAGES AND 

DISADVANTAGES 

Due to the size of the capillaries, and the dynamic nature of blood flow measurements 

of microvascular perfusion can be difficult. A number of techniques are available, 

such as microdialysis <35> ,laser Doppler flowmetry <30> and intra vital microscopy <34s) 

and while these are valuable methods, they only enable assessment of blood flow in 

one small region of the muscle. Measurements may be inconsistent between 

experiments due to the subjective nature of the placement of the probes. These 

methods also require blood flow to be at a steady state, and may be influenced by 

changes in bulk flow. Furthermore, microdialysis also requires the insertion of a large 

needle when placing the probe in the muscle which may cause damage to the 
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surrounding tissue and possibly invoke an inflammatory response. Measurement by 

positron emission tomography (PET) is also possible, but resolution is not sufficiently 

fine enough to determine microvascular perfusion as a separate component of nutrient 

delivery (eg. see Bertoldo et al. <349». Other methods including lymph sampling <35
0) 

are only suitable for larger animals such as the dog. 

This study has used two methods to measure microvascular perfusion, 1-MX 

metabolism and CEU, as these techniques enables data to be collected for a large 

percentage of muscle tissue, minimising any variability which may be seen when only 

assessing one muscle or a specific fibre type, and allow relatively sensitive measures 

of change in microvascular perfusion. The 1-MX metabolism technique only requires 

an intravenous infusion of 1-MX throughout the experiment, and therefore does not 

disrupt the muscle tissue. This method is not influenced by changes in bulk flow, 

however it may only be used as an end point measure due to the volume of plasma 

required for sampling (which may otherwise disrupt blood flow iftaken during the 

experiment). The advantage of the CEU technique is that the microbubble contrast 

agents are infused intravenously, and an entire region of muscle ( eg. the muscles of 

the calf) may be examined simultaneously, without disrupting the muscle tissue. 

Furthermore, as shown in chapter 3, the method may distinguish between changes in 

bulk flow and changes in microvascular perfusion, as well as obtaining information 

about the filling rate of the capillaries. In addition, multiple measurements can be 

made throughout an experiment using CEU allowing a time course study of changes 

in capillary volume may be assessed with this technique, making it a very effective 

technique for measuring changes in microvascular perfusion. 

8.4 MECHANISMS OF VASCULAR AND METABOLIC CONTROL 

8.4.1 Mechanisms of insulin mediated microvascular peifusion and glucose 
uptake 

This thesis has further helped to confirm the relationship between insulin mediated 

microvascular perfusion and insulin mediated glucose metabolism. The insulin 

signalling pathway acts to control microvascular perfusion by stimulating the 

production of the vasodilator nitric oxide, and the vasoconstrictor ET-1 from the 

vascular endothelium <351 
• 
352

). Insulin stimulates the release of these two substances 
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through separate pathways (described below). The secretion of nitric oxide acts to 

inhibit ET-1 production and increase vasodilation <199> with the interactions between 

these two substances helping to regulate vascular tone. An imbalance in their 

secretion contributes to endothelial dysfunction, often associated with insulin 

resistance, and may result in hypertension and atherosclerosis due to a decrease in 

nitric oxide dependent vascular activity <197
•
347>. 

Inhibition of PI3-kinase reduces insulin stimulated nitric oxide production by up to 

50% <159> suggesting that stimulation of nitric oxide production by insulin is 

predominantly via the PI3-kinase pathway. This signalling pathway is initiate by 

insulin receptor tyrosine phosphorylation, the phosphorylation ofIRS-1, PDK-1 <161> 

and Akt. eNOS Ser1179 is phosphorylated by Akt and is independent of Ca2+ 04
0). 

Interestingly, this is the same signalling pathway which leads to an increase in 

GLUT4 translocation to the plasma membrane in response to insulin suggesting a 

possible link between insulin mediated control of nitric oxide production and glucose 

uptake in the muscle cell. Insulin does not regulate glucose uptake in the endothelial 

cells, so the signalling pathway in these cells is directed towards nitric oxide 

production, vasodilation and microvascular perfusion. Increased microvascular 

perfusion can clearly lead to an increased glucose uptake by the myocytes. Inhibition 

of PI3-Kinase and NOS in endothelial cells also results in an increase in insulin 

mediated ET-1 release and vasoconstriction (196
• 
351> via MAPK activation <197>. Both 

basal and insulin stimulated muscle NOS activity is impaired in type 2 diabetic 

patients <16
6), which may result in an increase in insulin stimulated ET-1 release, as 

nitric oxide is not present in large enough quantities to inhibit ET-1 production and 

counteract the vasoconstrictor actions. Chronically, an imbalance in these insulin 

stimulated vasoactive substance will result in endothelial dysfunction <197
• 

198>, and as 

shown in this thesis, an increase in circulating ET-1 will also block insulin mediated 

microvascular perfusion, and decrease insulin clearance. The resulting 

hyperinsulinaemia and decrease in muscle glucose uptake perpetuates the cycle of an 

imbalance in the insulin haemodynarnic response and insulin resistance. 

Endothelial dysfunction and insulin resistance is also associated with an increase in 

inflammatory markers such as TNF-a and IL-6 <347
•
353>. Previous studies have shown 

that TNF-a leads to a decrease in muscle glucose uptake by inhibiting insulin 
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signalling <93
• 
354>, and insulin mediated haemodynamic effects <95

• 
9

7). This thesis 

shows that although IL-6 does not inhibit muscle glucose uptake and is able to 

compensate for any loss in insulin action, it attenuates insulin mediated increases in 

microvascular perfusion. The vascular effects of both these cytokines can be 

attributed to their inhibition of insulin mediated eNOS phosphorylation and decreased 

nitric oxide production. In human umbilical vein endothelial cells, Andreozzi et al. 

<345> found that incubation with IL-6 decreases the phosphorylation of IRS-1 at Tyr612
, 

which is essential for Pl3-kinase activation, through its activation of the JNK. and 

ERK.112 pathway. This resulted in a decrease in Akt associated phosphorylation of 

eNOS Ser1177
, and consequent inhibition of nitric oxide production. Inhibition of the 

JNK. and ERK.1/2 pathway (by JNK inhibitor I or PD98059) restored insulin 

signalling and nitric oxide production <345>. Similarly, TNF-a inhibits IRS-1 

associated PI3-kinase activity and eNOS phosphorylation <355>, with this pathway 

restored by inhibition ofp38 MAPK <356>. 

In addition to the direct interference of IL-6 and TNF-a on the insulin signalling 

pathway, these cytokines also inhibit lipoprotein lipase activity, and TNF-a also 

stimulated hormone sensitive lipase in the adipose tissue leading to an increase in 

lipolysis <251
•
271

•
272>. An increase in circulating fatty acid levels in vivo is also 

associated with a decrease in endothelial function and vasodilation <357
• 
358> and at high 

levels inhibits insulin meditated microvascular perfusion and glucose uptake <280>. 

This inhibition is thought to be caused by an inhibition of insulin signalling and Akt 

mediated eNOS activation <359>_ Interestingly, TNF-a has been shown to stimulate 

ET-1 release <343
•
344>, and like TNF-a, ET-1 also stimulates IL-6 synthesis <360>. In 

vivo, the interaction between IL-6 and ET-1 may result in hyperinsulinaemia and 

insulin resistance, due IL-6 attenuating insulin's ability to suppress hepatic glucose 

production. This leads to an increase in circulating glucose concentrations and insulin 

secretion, which is problematic, as ET-1 decreases the clearance rate of circulating 

insulin through its vasoconstrictor actions, causing hyperinsulinaemia. Figure 8.1 

shows the insulin signalling pathway and the involvement of ET-1 and cytokines 

(TNF-a and IL-6) in insulin resistance. 
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Figure 8.1: The insulin signalling pathway in vascular and metabolic tissues under normal healthy 

conditions (left) and during metabolic and cardiovascular diseases (right) involving increased 

circulating free fatty acids (FFA) and inflammation due to elevated cytokine concentrations. (Diagram 

from Kim et al. <80. 

8. 4. 2 Mechanisms of contraction mediated microvascular perfusion 

While nitric oxide appears to play an important role in insulin mediated vasodilation 

and insulin resistance, its function during exercise hyperaemia and contraction 

mediated microvascular perfusion is less significant. The nature of exercise and its 

historical relevance as a survival mechanism has lead to a robust signalling process 

which mediates the haemodynamic response to contraction. As discussed in Chapter 

1, a number of vasodilitary mechanisms are involved in inducing hyperaemia in 

response to contraction, including the propagation of signal by gap junctions, the 

muscle pump, neural mechanisms, acetylcholine, adenosine, potassium ions, nitric 

oxide and prostaglandins to name a few. The maintenance of perfusion during 

contraction appears to be mediated by separate mechanisms to the initial hyperaemia, 

and has a degree of redundancy built in to the signalling process. This is 

demonstrated by the multiple cellular sources which may release vaodilators in 

response to contraction and the ability of the body to compensate for an inhibition of 

one vasodilator by the increased secretion of another (ss, 309
). 
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8. 4.3 Mechanisms of contraction mediated glucose uptake 

As is the case for contraction mediated vasodilation, contraction mediated glucose 

uptake also appears to have a number of signalling pathways, which aim to increase 

GLUT4 translocation to the plasma membrane and fuel availability for the muscle. 

These pathways are independent of P13-kinase, which may explain why contraction is 

able to stimulate glucose uptake in insulin resistant subjects <s7• 
101

). Contraction 

causes the release of Ca2+ from the sacroplasmic reticulum due to the depolarisation 

of the plasma membrane and transverse-tubules, therefore it would seem likely that 

calcium would be involved as a contraction mediated signalling mechanism. The 

signalling pathway down stream from Ca2+ is still not clear, but may involve 

activation of calmodulin, a Ca2+ receptor protein that binds to a number of 

downstream targets such as calmodulin regulated protein kinase II <361
). Ca2+ 

dependent protein kinase C (PKC) isoforms may also be activated, which have a 

range of effects involving metabolism, cell differentiation and growth. Inhibition of 

PKC by calphostin C has been shown to specifically inhibit contraction mediated 

glucose uptake, suggesting a role for PKC in the contraction mediated response <362
). 

AMPK activation however was unaffected demonstrating the range of different 

pathways activated by contraction to increase glucose uptake. AMPK is an energy 

sensing kinase which is also activated during contraction in response to an increased 

ratio of AMP to ATP and creatine to phosphocreatine ratio signifying the low energy 

state of the muscle. AMPK acts to inhibit energy consuming processes and stimulate 

alternate pathways for A TP generation such as increased fatty acid oxidation through 

the phosphorylation of acetyl-CoA carboxylase and increasing glucose uptake into the 

cell by increasing GLUT 4 translocation <363
). Contraction also activates MAPK 

pathways increasing the transcriptional activity during exercise and recovery, 

however it is not known if this pathway is able to increase GLUT4 translocation <363
). 

The precise signalling pathways involved in contraction mediated glucose uptake are 

still unclear (Fig. 8.2) and more research is required to unravel the individual 

pathways which are involved in both contraction mediated glucose uptake and 

microvascular perfusion. 
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Figure 8.2: A schematic representation of the contraction mediated signalling pathways involved in 

increasing glucose metabolism via GLUT4 translocation to the sarcolemma and transverse tubules (T­

tubules). The precise mechanism and signalling intermediates are sti ll to be elucidated but are thought 

to involve signalling through increased Ca2+ release and AMPK. Question marks refer to unidentified 

signalling and structural molecules involved in GLUT4 translocation. G6P, glucose-6-phosphate; 

ASl60, Akt substrate 160; AMPK, S'AMP activated protein kinase; CaM, calmodulin; CaMK, 

calmodulin dependent protein kinase; PKB, protein kinase 8 (Akt); PKC, protein kinase C; NOS, nitric 

oxide synthase. (Diagram from Rose et al. <
3611 

Studies represented in this thesis show that inhibition of nitric oxide had no effect on 

microvascular perfusion during contraction, however glucose uptake was decreased 

by 30%. This suggests that unlike the insulin signalling pathway, the mechanism 

though which contraction increases and maintains blood flow may be separate to the 

signalling pathway activating glucose uptake. Insulin acts through PI3-kinase to 

stimulate nitric oxide release. Contraction mediated nitric oxide production however 

is mediated by Ca2+/calmodulin dependent mechanisms. This is demonstrated by the 

contraction induced increases in Ca2+ causing a dose dependent increase in nitric 

oxide production, an affect which is blocked by inhibition of the Ca2+/calmodulin 

pathway <364
• 
365>. In addition, nitric oxide release also appears to be stimulated by an 

AMPK (via Akt) dependent pathway. AMPK activates Akt (via small GTPase Rael) 

in order to stimulate eNOS phosphorylation <365
). This is shown by the siRNA 

knockdown of AMPK al which led to an impairment in Akt phosphorylation. siRNA 

knockdown of Akt, however had no effect on AMPK activation <365l. Furthermore, 
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transfection of endothelial cells with a dominant negative AMPKa subunit abolished 

nitric oxide production <36
6). This suggests that Akt (which activates eNOS) lies 

upstream of AMPK in the signalling pathway and may explain why in chapter 5 of 

this thesis, glucose uptake was decreased during contraction without affecting AMPK 

or ACC phosphorylation. There are two aspects to this argument. Firstly, contraction 

mediated microvascular perfusion may not involve nitric oxide (Chapter 5 of this 

thesis) or may compensate for any inhibition through the release of other vasodilatory 

substances. Secondly, contraction increases nitric oxide through a number of 

different mechanisms, which unlike insulin, is not dependent on the PI3-kinase 

signalling pathway, and is therefore less susceptible, or able to compensate for any 

inhibition due to IL-6. 

Interestingly, even though overregulation/secretion of ET-1 and IL-6 may result in 

insulin resistance, both are released in high quantities during contraction which has a 

positive effect on glucose metabolism. ET-1 aids in the redistribution ofblood flow 

by causing increase in blood flow to the working muscles and constriction to the non 

working muscles and the gut <201
• 

21
1), while IL-6 is released in response to a depletion 

of energy, and aids in mobilizing glycogen from the liver by stimulating hepatic 

glucose production and increasing glucose uptake in the muscle tissue <231
). 

Circulating ET-1 concentrations have returned to basal by 30 min post-contraction, 

however circulating IL-6 concentrations may remain elevated for 24 h after an 

exercise bout <224
•
234

). Insulin sensitivity however is increased during this period post 

exercise, suggesting that this increase in glucose uptake during recovery from exercise 

may occur through a mixture of the contraction mediated and insulin mediated 

pathways. 

8.4.4 Mechanisms of post-contraction microvascular perfasion and glucose 
uptake 

While the increase in glucose uptake is important during contraction, and the 

mechanism appears to be intact in insulin resistant subjects, it is the post exercise 

period which may also be of importance in the benefits of exercise to type 2 diabetic 

patients. The post exercise glucose uptake and microvascular perfusion appear to be 

mediated by yet another set of signalling mechanisms. Very little is known about the 

signalling events which occur during the post-contraction period, as the response to an 
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exercise bout may range from a period of acute insulin resistance <111> to an increase 

in insulin sensitivity 48 h after a bout of exercise <109> and is heavily influenced by the 

intensity, duration and mode of exercise. Interestingly, post-contraction glucose 

uptake is enhanced regardless of a decrease in IRS-I phosphorylation and IRS-I 

associated PI3-kinase activity in rodents <124> and is still present in the muscle specific 

insulin receptor knockout mouse, which only responds to insulin during recovery 

from contraction <125>. 

This thesis has shown that in addition to the increase in insulin sensitivity post 

contraction, microvascular perfusion also remains increased, compared to basal, for 

up to 60 min post contraction. This may explain the enhanced glucose uptake post 

contraction as the nutritive capillaries of the skeletal muscle remained recruited 

during recovery potentially allowing increased delivery of both glucose and insulin 

through the muscle. This may involve nitric oxide production (activated by a Pl3-

kinase independent mechanism), and may also result in insulin further stimulating 

microvascular perfusion (through PI3-kinase dependent mechanisms), to partly 

explain the additive effects of insulin and contraction together). Thorell et al. <36
7) 

found that a 2 hour hyperinsulinaemic euglycaemic clamp resulted in a 32% increase 

in GLUT4 translocation and 640% increase in Akt phosphorylation above basal (note, 

these assays were conducted in white muscle and although containing vascular 

elements, the data would largely reflect changes occurring in the myocytes ). 

Similarly, a 60 min exercise bout performed before the insulin clamp resulted in an 

increase in insulin sensitivity up to 90 min post exercise and a 44% increase in 

GLUT4 translocation accompanied by a 1000% increase in Akt phosphorylation <36
7). 

A increase in Akt phosphorylation and glucose uptake was also seen post-contraction 

by Wojtaszewski et al. <125> in the muscle-specific insulin receptor knock out mouse 

suggesting that Akt activation (assumed to be predominantly myocyte Akt) may be 

involved in the post-contraction signalling pathways. Furthermore, while the data 

surrounding nitric oxide involvement (both myocyte and endothelial) during 

contraction is varied, it is generally found that NOS inhibition during the post­

exercise period results in a decrease in blood flow <77
• 
300>. Therefore it is possible that 

both the increase in glucose uptake and microvascular perfusion during recovery may 

be due to Akt phosphorylation in both myocytes and endothelial cells and nitric oxide 
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release by endothelium. In addition, myocyte Akt may also stimulate AS 160 

phosphorylation resulting in an increase in GLUT4 translocation <105
• 

131>. 

Insulin sensitivity during recovery is affected by the glycogen content of the muscle, 

with a decrease in muscle glycogen resulting in a prolonged elevation ofGLUT4 

protein content at the plasma membrane and longer period of insulin sensitivity <117
• 

368>. A small period of contraction such as that used in this thesis (10 min twitch 

contraction) would not be expected to deplete muscle glycogen stores, however 

glucose uptake was still significantly elevated after 60 min ofrecovery. This may 

suggest that glycogen content may influence the time frame of the increased 

sensitivity but may not be the only mechanism involved in this enhanced response. 

Future experiments are required to examine the time course between microvascular 

perfusion and glucose uptake over a longer period of recovery and to assess the effect 

of glycogen depletion on microvascular perfusion in the post contraction period. 

8.5 IMPLICATIONS FOR DISEASE 

The circulating plasma concentrations of ET-1, IL-6 and TNF-a are increased in 

insulin resistant and obese patients <88
• 

183
•
219

•
269

•
369>. The interaction of these three 

substances may lead to insulin resistance through a number of different pathways with 

the result of decreasing insulin mediated nitric oxide release and thus vasodilation. 

Studies which have inhibited nitric oxide synthase during insulin stimulation have 

found a decrease in total blood flow <162>, microvascular perfusion <164>, as well as a 

decrease in glucose uptake in both the skeletal muscle and adipose tissue <165>. 

Fmthem1ore, eNOS knockout mice developed hyperinsulinaemia, hypertension, 

hyperlipidaemia, had a 40% decrease in insulin mediated glucose uptake and were 

unable to suppress hepatic glucose output during insulin stimulation compared to 

control mice <138
• 

171>. Those studies help to demonstrate the importance of nitric 

oxide in mediating insulin's vasodilitary response, and show that over secretion of 

ET-1, TNF-a or IL-6 alone or in combination, through their signalling cascades may 

greatly inhibit the amount of nitric oxide produced, resulting in insulin resistance 

This thesis has shown that although ET-1 and IL-6 may decrease insulin mediated 

microvascular perfusion, they do not have inhibitory affects on perfusion and glucose 
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uptake in the basal state, a phenomenon which has also been seen in other studies <95
• 

204>. At basal, only ~30% of the microvasculature is perfused at any one time <15> and 

nitric oxide synthase inhibition has been shown to decrease blood flow at rest <77
• 

300>. 

Generally, the level ofmicrovascular perfusion is matched to the metabolic 

requirements of the cells. Therefore in the basal state, the energy needs of the muscle 

are not high, and blood flow is thought to be predominantly through the short shunt 

like capillaries which principally feed the connective and adipose tissues (possibly as 

a greater proportion of the bodies energy needs at rest are met by the metabolism of 

fats <370>). Once insulin or contraction stimulate metabolism, blood flows through the 

more 'nutritive', long tortuous capillaries of the muscle where energy needs are high 

<299>. The results from this study would suggest that the stimulus of ET-1 and IL-6 at 

basal may not have been great enough to cause a change in the metabolic needs of the 

cells, and therefore a change in the state of perfusion may not have been required. 

Another explanation may be that the signalling pathway regulating vascular tone at 

basal is different to that during insulin stimulation, thus as ET-1 and IL-6 inhibit the 

insulin signalling pathway, they would not have an effect on the basal mechanism of 

nitric oxide production. Furthermore, the changes in nitric oxide production and ET-1 

release are relatively low, and therefore an inhibition may not have had a great effect 

over a short time period Chronically however, the basal state of perfusion may 

change in response to these factors. For example, Mather et al. <198> found that obese 

and type 2 diabetic patients have an increase in the basal endothelin mediated 

constrictor tone compared to lean subjects. Treatment of these patients with an ETA 

antagonist resulted in a significant vasodilation, however lean subjects were 

unaffected. Therefore, as lean rodents were used in this thesis, they may not have 

been affected, or were able to compensate for a small change in vascular tone. 

Previous studies and the data presented in this thesis suggest that ET-1 could be a 

mediator of insulin resistance and hypertension, and could be a target for therapeutic 

intervention. Endothelin-1 appears to mediate its potentially harmful vasoconstrictor 

effects through the ETA receptor located on the vascular smooth muscle cells 081>. 

Acute inhibition of this receptor through the use of an ETA receptor antagonist (but 

not an ETB receptor agonist) normalised glucose metabolism and blocked the ET-1 

induced reduction in insulin sensitivity and vasoconstriction in the liver, kidney and 

gut <118
• 

187>, and has also been shown to regulate the increase in vascular tone seen in 
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type 2 diabetic and obese patients at basal 09
B>. Long term treatment (six weeks) of 

the Zucker fatty rat with the ETA receptor selective antagonist atrasentan, improved 

whole body glucose metabolism during a hyperinsulinaemic clamp, by improving 

insulin signalling in the liver <202>. Furthermore, the stimulation ofIL-6 by ET-1 is 

inhibited by an ETA receptor agonist <360
• 

371>. These studies help to demonstrate that 

an elevation in ET -1 may cause significant modifications to the vasculature through 

its potent vasoconstrictor actions, and would suggest that inhibition of the ET A 

receptor mediated events may help to decrease the harmful effects mediated by ET-1 

and could possibly be a beneficial therapy for the treatment of insulin resistance. 

Over 70% of type 2 diabetic patients are obese <372>, and recent studies have suggested 

that obesity and type 2 diabetes may be associated with a state of low-grade 

inflammation <369>. The adipose tissue is a major site of cytokine secretion at rest <272>, 

with IL-6 and TNF-a acting to decrease lipid accumulation within the adipose tissue 

and regulate cell size by stimulating lipolysis. TNF-a is also involved in apoptosis 

and IL-6 also acts on the hypothalamus in conjunction leptin to regulate satiety. 

Therefore, in healthy subject IL-6 and TNF- have a regulatory role, and act to regulate 

energy metabolism and fuel storage. A similar effect occurs in the IL-6 knockout 

mouse which develops mature onset obesity <275>. An increase in adipose tissue will 

lead to an increase in the secretion of inflammatory cytokines, and as shown in this 

thesis and eluded to above, a chronic increase in circulating cytokines will result in an 

increase in hepatic glucose production, and interference in insulin signalling. 

IL-6 secretion is associated with an increase in adipose tissue mass and the body mass 

index <90
• 

219> and while obese patients have an increase in subcutaneous adipose tissue, 

they also have an increase in visceral fat and fat deposits surrounding the blood 

vessels, and more importantly the arterioles. Yudkin et al. <373> proposed that in a 

calorie rich environment these fat deposits may protect the muscle from an oversupply 

of substrates, by secreting factors such as TNF-a and IL-6 which interfere with 

insulin's ability to increase perfusion and nutrient delivery, preventing the 

accumulation of fat stores in the muscle which causes insulin resistance. Ironically 

however, it is the increase in circulating TNF-a and IL-6 which will contribute to 

insulin resistance and possible result in atherosclerosis and heart disease <222
• 
347>. The 

signalling pathways and regulatory function of TNF-a and IL-6 still requires further 
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investigation, however due to their important immune functions and actions during 

exercise, as well as their protective effect on muscle insulin resistance, it is unlikely 

that the antagonism or suppression of these cytokines will result in a sustainable 

pharmacological intervention for the treatment of type 2 diabetes. 

Exercise is still the most important means of both prevention and treatment of a 

number of diseases such as type 2 diabetes, obesity and heart disease, with the 

benefits seen not only during the exercise bout but also during recovery. Insulin 

resistant subjects have a relatively normal response during contraction, and also 

maintain the same insulin sensitivity in the post-contraction period as do lean 

subjects. Whether this increase in sensitivity is due to a vascular response involving 

increased microvascular perfusion, in conjunction with a myocyte response involving 

glycogen synthesis, signalling through Akt or other pathways is not known. However 

it is important that further studies on the mechanisms of this positive effect are made 

so that a treatment option for these patients may be developed. This treatment may be 

in the form of a new pharmaceutical therapy or through a better understanding of the 

most effective exercise programmes to benefit these patients and maximise their 

insulin sensitivity during recovery. 

The use of hormones, cytokines and vasoactive peptides in in vivo studies as reported 

herein, allows us to assess the relationships between vascular function and glucose 

metabolism. This does not however enable us to determine the cause of the increase 

in circulating agents, nor whether their increased stimulation is due to the up­

regulation of other factors, the release of these substances as a protective mechanism, 

or if they are the cause of insulin resistance. Further research is thus required to fully 

understand the signalling processes which contribute to the beneficial effects of 

insulin and contraction, and the regulatory process which govern them. 

8.6 CONCLUSION 

In conclusion, studies in this thesis confirm that changes in bulk flow and 

microvascular perfusion are two separate and largely unrelated events. Furthermore, 

it is the change in the microvascular perfusion of the muscle, and not bulk flow, 

which is associated with change in glucose uptake. These two points are clearly 
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demonstrated in the study examining the role of microvascular perfusion during 

recovery from contraction. Thus, using contrast enhanced ultrasound, which is able to 

discriminate between changes in bulk flow and microvascular volume, it was shown 

that while femoral blood flow returned to basal levels rapidly after contraction, 

microvascular perfusion and glucose uptake remained elevated for 60 min post­

contraction. Such data suggests that the increase in glucose uptake and the 

sensitisation of the muscle to insulin seen during recovery may involve a vascular 

component 

This thesis has also shown that the microvascular perfusion and muscle glucose 

uptake may be controlled by separate stimuli, as nitric oxide synthase inhibition 

during contraction, had no effect on the contraction mediated increase in 

microvascular perfusion, but caused a 30% decrease in glucose uptake. This result 

was unexpected, and suggests a non-vascular myocyte source of nitric oxide that is 

involved contraction-mediated glucose uptake. 

In additional studies, both IL-6 and ET-1 inhibited insulin mediated microvascular 

perfusion, but, in the short term, changed insulin clearance (ET-1) or hepatic glucose 

output (IL-6) in order to maintain euglycaemia and insulin mediated glucose uptake. 

Chronically however, there is evidence to suggest that both ET-1 and IL-6 may lead 

to hyperinsulinaemia and insulin resistance by causing an imbalance in the vasoactive 

substances controlling vascular tone and microvascular perfusion. 

Collectively these studies show that the vasculature is an important component of 

both contraction- and insulin-mediated actions, and that while microvascular 

perfusion and glucose uptake appear to be associated, the pathways activated in order 

to mediate these effects appear to be different. Therefore, the mechanisms through 

which contraction and insulin increase microvascular perfusion and glucose uptake 

need to be closely examined and further research is required to separate the effects of 

these stimuli on the myocyte and the endothelial cells of the vasculature. 
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