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CHAPTER I  

SUMMARY  

The thesis begins with a short review of tensor analysis and 

general relativity. Only those equations which have direct 

application to cosmology are considered in any detail. The analyses 

throughout this thesis are based on the metric for homogeneous and 

isotropic space-times, defined by the Robertson-Ilalker line element. 

The classification of relativistic world-models containing 

both matter and radiation is considered in some detail. The 

properties of some model parameters are determined as a function of 

the temperature of the radiation field which is assumed to be 

Planckian. Some attention is also given to the problems of event 

and particle horizons in uniform world-models. 

Data derived from radio source observations are used extensively 

in an attempt to solve the cosmological problem. The distribution of 

source angular diameters with redshift and the variation of source 

average spectral index with redshift (or luminosity) both provide 

useful information on the evolutionary properties of the universe. 

The radio source counts of the recent 5C survey are examined for their 

cosmological implications. The analysis provides important evidence 

on the epoch corresponding to galaxy formation and the variation with 

time (or more directly with expansion parameter) of source luminosity 

or density in co-ordinate volume. Arguments are given supporting a 



2 

rapidly expanding evolutionary universe in which the matter density 

is somewhat greater than usually accepted values. 

The effect of free-free absorption by intergalactic ionized 

hydrogen on the low frequency spectra of radio galaxies is examined 

for the steady-state, adiabatic and constant temperature universes. 

Using thermodynamic principles, a differential equation is 

derived which determines the temperature path of the intergalactic 

gas in evolutionary universes. The gas is assumed to be heated by 

cosmic rays and plasma waves, and cooled by radiative losses and 

expansion of co-ordinates. 

An integral equation is obtained for the extragalactic back-

ground intensity when intergalactic absorption is present. The 

radio background spectrum is determined for the steady-state, 

"adiabatic" and constant temperature models of the universe. In 

each case the theoretical spectrum is compared with the observed 

background spectrum. 

The extragalactic component of the sky brightness is calculated 

by using the differential equation describing the thermal history of 

the intergalactic gas and the cosmological parameters derived from 

the source counts. The calculations include the separate cases of 

source luminosity evolution and source density evolution. 
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The diffuse X-ray flux is described in terms of Compton 

radiation from cosmic ray electrons in intergalactic space. The 

electrons are assumed to be ejected from radio galaxies in a time 

which is small compared with the characteristic time of evolution 

of the universe. Normalisation of the derived X-ray spectra yield 

estimates for the intergalactic cosmic ray energy density. 

Finally a mathematical treatment is given which describes the 

consequences of the introduction of a general vector field into 

Einstein's field equations. The theory is applicable to universes 

of arbitrary intrinsic curvature. Some tentative conclusions are 

drawn concerning possible annihilation of matter. 



CHAPTER II  

A THEORETICAL UASIS FUR CUSkOLOGY  

2.1 	Introduction 

The concepts which form the fundamental basis of cosmology are 

those of general relativity. 	The redshift of spectral lines of 

remote cosmic objects 

the-uft-i-ve-Fee find an-emp-1-aoa-t-i-laff-and description in terms of Einstein's 

general theory of relativity. 	A brief review of the constructs of 

this theory is provided here for completeness and for future reference. 

The theory has been well documented by several authors (e.g. Einstein, 

1916, 1917; Weyl, 1913 ;  Tolman, 1934; Fock, 1359; Synge, 1960; 11cVittie, 

191)5), but, in this thesis, only features of the theory important for 

the elucidation of the cosmological problem will be described in any 

detail. 

2.2  The Principles of General Relativity  

The theory of relativity as proposed by Einstein may be regarded 

as based on the fundamental idea of the relativity of motion. 	In 

accordance with this idea, only the motions of bodies relative to one 

another have an objective meaning. 	The special theory of relativity 

is based on the Lorentz transformations in Galilean spaces. 	Of 

course, universal gravitation does not fit into the framework of these 

inertial frames, and it proved possible to provide a theory of 

gravitation only by abandoning the concept of uniformity of space-time 



as a whole. 	This meant the introduction of Riemann geometry in 

place of the Euclidean geometry applicable to the special theory. 

The ideas of general relativity require that physical laws be 

independent of the particular space-time coordinates. 	This is a 

general statement of the principle of covariance. 	If equations 

involving functions of independent variables are of the same form 

(subject to suitable transformations) in different coordinate systems, 

then the equations are said to be covariant. 	A satisfactory way of 

ensuring covariant relations is to use tensors and tensor analysis. 

The important functions in Riemannian geometry are the coefficients 

of the quadratic form for the squared infinitessimal "distance". 

The introduction of these functions allows the formation of equations 

that are covariant with respect to arbitrary coordinate transformations. 

In Riemannian geometry, transformations of coordinates are accompanied 

by a transformation of the g pv  , but, as pointed out/WfOck (1959), 

neither such a combined transformation nor covariance with respect to 

it has any relation to the uniformity or otherwise of space-time. 

It follows that "general relativity" has in fact nothing to-do 

with - relativity" as such. 	Einstein's theory is essentially a theory 

of space-time and (consequently) gravitation. 

2.3  Riemannian Spaces and 6eodesics  

The general theory of relativity is based on the properties of 

n-dimensional manifoads of points or Riemannian spaces. 	In such 



spaces, the interval between two events whose coordinates are x P  and 

xP  + dxP  respectively is an invariant quantity ds, defined by the 

Riemannian metric 

ds 2  = g l.1\)dxPdxv 
 

(2.1) 

The functions  are the components of a covariant tensor of rank 
pv 

two called the metrical tensor which can be assumed, without loss of 

generality, to be symmetrical in their indices. The corresponding 

cantro.vmvq(k.A 
metrical tensor is simply defined by 

gP  = (co-factor of g 
 

in g)/g 
 

(2. 2) 

where g is the determinant of the metric assumed to be not identically 

equal to zero.  It follows immediately from the law of multiplication 

of determinants that 

A , p, _ 6v 
'Av  v 

(2 .3) 

where SP  is the Kronecker delta. 

Applications of Riemannian spaces to general relativity and 

cosmology are usually restricted to orthogonal spaces in which 

pv = 0 for p v.  In particular, the solution to the cosmological 

problem involves the use of orthogonal space-times,and this will be 

considered in detail in the next chapter. 



The fundamental paths of Riemannian spaces are called geodesics. 

As the interval ds is defined independently of the system of 

co-ordinates, the line drawn between two points P and P' of the 

n-dimensional manifold in such a way that the Ids is stationary - a 

geodetic line - has a meaning which is also independent of the choice 

of co-ordinates. Its equation is 

P b  
6 I ds = 0 
 

(2.4) 

which states that the total interval along a geodesic shall be an 

extremum for small variations which vanish at the two limits of 

integration. Substitution for ds from equation (2.1) yields (e.g. 

Einstein, 1916) a set of n differential equations for the geodesic 

3g  dxP  dxv  
dxv  uv 

gav — 0 a =  
ds (  ds )  i  a 

ax  ds  ds 
(2.5) 

It is convenient to introduce here the three-index Christoffel symbols 

of the first and second kind. These are defined respectively as follows: 

.  , aglia  agva  agyv 
(2.6) 

aolv 
=r 

a,vp 2  a 
3x  ax  ax 

a 
= 

a 
= 1  ( 

aguA  agvA  3g  cr liv  - 
r  r  

X 
)9 vp 2 

ax  ax  3x 
(2.7) 

These symbols are symmetrical with respect to the two indices that are 

written together, but neither quantities are components of tensors. 

It should be noted that the two kinds of Christoffel symbols are related 



by the equations 

r = gatr 	, 	= g T 

pv  T,pv  
r
0,py  OT pv 

Equation (2.5) may now be written in terms of the new notation, 

and the resulting equations are 

d
2
x  ,a dxP  dxv  

+  — = 
ds 2  Pv ds ds 

0  (a = 1,2,...n) (2.9) 

which are the standard forms of the equations to the geodesics in 

Riemannian spaces provided, of course, that the interval ds along the 

curve is not identically equal to zero. 

The null-geodesic is obtained by assuming that the interval 

between any two points on the curve is zero.  If n(x) is a non-zero 

scalar which is a function of position along the null-geodesic, then a 

curve of this kind will be characterised by possessing an integral of 

its defining equations expressed by 

dx
p 
 dx

v  
E 	— 

gpvdi
— = 0 
di 

(2.10) 

It follows that if P and P' are two points on the null-geodesic, 

then 

(2.11) 

along the curve.  The calculus of variations then yields the set of 



n differential equations 

d 2xcr 	a dxP  dxv  + r — — = o 
dn2  pv dn dn 

(2.12) 

which define a null-geodesic in a Riemannian space. 

2.4 	Formation of Tensors by Differentiation  

The geodesics as defined by the equations (2.9) constitute a 

set of paths, in Riemannian spaces, which are invariant under 

coordinate transformations. 	This is simply due to the stationary 

property of the scalar interval as measured along any one of them. 

Geodesics are therefore useful in descripiny the way in which vectors 

or tensors vary from one point of the space to another. 	With the aid 

of the equation for the geodetic line and the rules of tensor analysis, 

it is easy to deduce the laws by which new tensors can be formed from 

old by differentiation. 

P  The covariant derivative of the contravariant vector A 	is 

	

A1' _ p 	ON 	p T 
V A = A = 	+ r A 

	

V 	V  VT 
ax 

(2.13) 

Alternatively, an extension of this analysis yields a definition for 

the covariant derivative of the covariant vector B p . 	The result is 

aB 
V B E B = 	rT B 
V 1 	pvV  VT 

DX 

(2. 14) 
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which is a covariant tensor of the second rank. 

It is possible to extend the analysis further and obtain for the 

covariant derivative of the tensor T : 
pv 

aT 
=  rt 

a pv  pv,a axa  ap TV 	OV 
(2.15) 

which are components of a covariant tensor of rank three.  Similarly, 

i-t-may-be--iagoved-that 

_ 	v  
V T  T  

3141 	rp TTv rV TAT 
TO a 	ya 	TO ax1I  

(2.16) 

is the covariant derivative of the contravariant tensor T. 

Contraction with respect to p and v in equation (2.13) gives a 

unique scalar: 

3Av  
(I)= V

v
A
v 
 =  + T

V 
A
T 

axv  
VT 

(2.17) 

which is the divergence of the contravariant vector AP .  This 

equation can be easily simplified by application of the definitions 

(2.6) and (2.7) for the Christoffel symbols and the rules of 

differentiation of determinants to yield 

1 	a {/Fir AV} 	 (2.18) 
axv 

1 	al(-g),  Av 	aAv  

V17 •  axv  ax 
(2.19) 
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It is therefore apparent that the divergence 4) is analogous to the 

ordinary scalar divergence in Euclidean space when the determinant of 

the metrical tensor is independent of position. 

2.5 	The Riemann-Christoffel Tensor  

In this section, we turn to the problem of deriving a new tensor 

from the metrical tensor alone. 	If the tensor difference 

(VV - V V )A 	is formed with the aid of equation (2.15), then some 
T 	T 	].1 

terms cancel and the end result is 

(VV - V V )A = G
A 

A, 
CT 	Tap  p,aT A (2.20) 

where 
A a = 	rA -  rX + rK rK 	rK rA 
p,oT  pT  T pa 	pr OK 	pa KT a x 	x 

(2.21) 

The important feature of the result (2.20) is that, on the 

righthandsideatheecluationA x  occurs:-alone withoutany derivatives. ,  

Since (VC  VT - V T
V )A 	is a tensor and AA is an arbitrary vector, 
 a P 

it follows immediately that the G must be components of a mixed 
p,oT 

tensor of rank four. 	This tensor is usually referred to as the 

Riemann-Christoffel tensor and is constructed entirely out of 

components of the metrical tensor go  and their first and second 

derivatives. 	The vanishing of the Riemann-Christoffel tensor is a 

necessary condition for the existence of at least one coordinate 

system in which the go  are constants. 	For suppose that, when 

referred to a particular coordinate system, the g o  are indeed 
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constants with all the G A vanishing as a consequence of equation p,at 

(2.21). 	If a new coordinate system is set up relative to which the 

9 

	

	are not constants, then it follows from the laws of transformations pv 

of tensors that the components of G are identically zero. p,aT 

The covariant form of the Riemann-Christoffel tensor is derived 

easily from the inner product 

= g, G GKp,aT 	AK p,aT 

a 	a 
+ 

ax 	
g ira410r fit,KT a rK,pt 	

ax
T 

rK,pa 

- r 	r, 
ct,pT po,OK; 

(2.22) 

In the theory of space-time and gravitation, a very important 

role is played by a symmetrical tensor of rank two which is derived by 

a contraction of the Riemann-Christoffel tensor. 	Contracting in 

(2.21) with respect to the indices A and T, we obtain the quantities 

a 
G =r°  - 	+ rT  - ra  rT ra 
p 	ax" pa 	a pv 	pa VT  pv TO 

ax 
(2.23) 

which are components of a covariant tensor of the second rank. 

Clearly, the mixed form of this tensor is 	= gvaGall' from which a 

scalar called the scalar curvature may be obtained by contraction: 

,v 	va 
G = uv = 	G aV (2.24) 
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Consideration of spherical surfaces shows how the Riemann-

Christoffel tensor measures a property in Riemannian spaces which is 

analogous to the curvature of a two-dimensional surface.  When the 

space is of more than three dimensions, toe concept of curvature is 

rather remote, but it is apparent from the preceeding remarks that the 

Riemann-Christoffel tensor is a measure of the flatness or otherwise 

of a particular space.  The problems associated with space curvature 

will be examined more fully in a later section and it is sufficient 

to remark here that a space is flat if the Riemann-Christoffel tensor 

eywy 
vanishes at aoy- point of a Riemannian space.  If the components 

GA  
somesetc4 

0 at a.1-1- points of the space, then the space is said to be 
11,07 

curved. 

The expression (2.22) yields the following symmetry properties: 

= - G
Pan Kum  

= - 	=  G
KIITCY 	CYTKU 

+ G  + G  = 
Kum  Kipa  KGT 

(2.25) 

(2.26) 

Using these relations and equation (2.24), the scalar 

curvature is found to ue defined by one component only of the Riemann- 

5Lx 
Christoffel tensor, in two-dimensional space, by tIgwae components in 

twenty 
three dimensions and by flottP4eeft independent components in four- 

dimensional space. 

Introducing a locally geodesic coordinate system in which 

covariant derivatives reduce to ordinary partial derivatives, it is 



possible to prove that tne Riemann-Christoffel tensor satisfies the 

set of differential equations 

VGA 	+ V GA 	+ V GA 
 

=0 V 11,t 	a 11,TV  T p,va (2.27) 

called the Bianchi identities. 	Contracting this equation with 

respect to the indices A and T, multiplying by gP  and using the 

symmetry rules of (2.20 and (2.20, we find 

v uP v 
CI
Gp  v  (9TI<Gp ) = 0  

VO  VT  Kav 

Contracting with respect to p and v, and changing the summation 

index T in the last term to p, the last equation becomes 

2V GP  V G = 0 
p 0' (2. 20 ) 

and if A is an arbitrary constant, then this equation may be written 

in the form 

X 	1 A V
A 
 LG - 	(G - 2A)j = 0 a 2 a 

Hence the divergence of the tensor 

P- 11 	1 p E = G 	A ( 
V  V I -v .G - 2A) 

(2.29) 

(2.30) 

vanishes identically. 	Raising and lowering indices in (2.30), we 

obtain the following contravariant and covariant tensors 
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pv ,pv 1 pv 
E = u - — g (G 2A) 2 

1 
E
pv 

=
pv 

- yg
pv

(G - 2A) 

(2.31) 

(2.32) 

which are obviously symmetric. 	These tensors will be found to have 

fundamental application in the subsequent work. 

2.6 	The Energy-Momentum Tensor  

The non-relativistic equations of motion in the mechanics of 

continuous media have the form 

ay. 	3 	ay. 	3 aP. 

	

I 	1 	ik 1  F. + + E v ---- = 	-- E at 	k ax
k  

1 	p . 	ax 

	

k=1 	;=1 	k 
(i=1,2,3) (2.33) 

and 
3 a(pv i ) 
E   —o at 	.  = 	axi 11 

(2.34) 

where the symbols have their usual meanings with p ik  being the stress 

tensor, and F i  the components of the external force acting on unit 

mass. 	Using the equation (2.34) of continuity in the equation (1•33) 

of motion, we find 

	

apv i 	3 	a  
+ E•(pv i vk- p ik) = pF. 

	

at 	 1 
k=1 xk 

(2. 3 5) 

which expresses the law of conservation of momentum. The 

generalisation of equations (2.34) and (2.35) to covariant tensor 

equations is more easily solved if the only force acting on the fluid 

is its pressure-gradient (F i  = 0, p ik  = -po ik). 	In this case, and in 



geoe*e4, we write for the energy-momentum tensor: 

TPv = (p + p/c 2 )uPuy - g Pv 112 
	

(2.3G) 

where uP  is the velocity 4-vector of the fluid which satisfies the 

relation 

1 = glivu/l uv 	 (2.37) 

Equation (2.36) must also satisfy 

Vv
141  = 0 
	

(2. 30 

so that the vectorial divergence of the energy tensor vanishes 

identically. 

2.7 	Einstein's Equations  

In the general theory of relativity, Riemannian spaces of four 

dimensions are employed. The metrics of these spaces are therefore 

written 

ds 2  = gpvdx/Idxv 
	

p,v = 1,2,3,4 	(2.39) 

The fact that line elements of the second order are sufficient 

to describe the space-time metric, only indicates a property of 

reality. 	Equation (2.39) also implies that measuring instruments 

16 
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obey the laws of Euclidean geometry in infinitessimal regions of the 

space-time. 

Guided by the analogy of Poisson's equations for the 

gravitational potential, 

V 2 4) = -47rGp 

to the problem of gravitation and space-times, Einstein (1916) asserted 

that the vectorial divergence of the energy-momentum tensor and the 

tensors defined in equations (2.30 to (2.32) were directly 

proportional to each other (both divergences being equal to zero). 

Hence from (2.31) and (2.36) 

Vv ( - KC 2TPV) = V EPV  V 

where -Kc 2  is a constant of proportionality.  Integrating the last 

equation, we obtain the ten basic equations 

2.01v _ Gpv _  pv tG  
- -Kc  2h) 

-  2 g  
(2.40) 

which are known as Einstein's equations. Also consideration of the 

Newtonian approximation to (2.40) yields 

einG K = zr- (2.41) 

where G is the gravitational constant. 
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Einstein's equations relate the metrical tensor (geometry) 

which represents the distribution of mass-energy to the energy-

momentum tensor of the distribution.  The constant A was 

introduced by Einstein when considering the cosmological problem and 

is therefore referred to as the cosmological constant. 

It should be noted that the equations (2.40) may be derived in 

a straightforward manner (Landau and Lifshitz, 1961) by the applica-

tion of the action principle to the gravitational field and matter. 

The principle of least action requires that 

6(6m +.6g) = OLEmfds Ki C fG 	d4X]  

= 
f1

ilV6e, 	d tix  + 1 
2 

A GIN_ 	g lIVG ) 6gpviz--6- dx  
3.1v 	Kc 

(2.42) 

must vanish identically.  Equations (2.40) follow immediately because 

of the arbitrary nature of the 6gpv . 

2.8 Spherical Symmetry  

The investigations in this thesis will all be restricted to 

situations involving spherical distributions of matter.  In these 

cases, if the distribution is symmetrical about a particular point in 

space then the metric (2.33) must also exhibit symmetry about that 

point. 
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The most general centrally symmetric expression for the interval 

ds in terms of space coordinates (r,04) must be 

ds 2  = a(r,t)dr 2  + 0(r,t)(0 2+sin 200 2 ) + y(r,t)dt 2  

+ c(r,t)drdt  (2.43) 

However, by an arbitrary transformation of the coordinates 

/ oxim be r^ade to 
r = r(rs,t'), t =t(r 1 ,t 1 ), the coefficient e(r,t) Avanishes while the 

coefficient 0(ri,t) is simply equal to -1)2/c 2 .  Also it will be 

found convenient to write a and y in exponential form as e h/c2  

and e  respectively.  Thus the metric of an orthogonal space-time 

symmetric about the point r = 0 is 

C) 	1  r T.1 
dS 2  = e dt

2 
 - --2Le dr

2  + r 2 (0 2+sin 260 2 )] (2.44) 

wherek"),17 are arbitrary functions of r and t.  The isotropic form 

of the metric will be 

eP 
ds 2  = e

v
dt 2  -  (dr 2  + r 2 (0 2+sin 20d0 2 )] 

c 2  
(2.45) 

It has been proved by Kustaanheimo (1953) that the metrics (2.44) and 

(2.45) are convertible into one another. Because of the particular 

importance of the isotropic form of the metric, a variety of formulae 

are developed here. Firstly, from equation (2.45) we may write for 

the components of the metrical tensor 
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eP 	-P -P 	2 

	

2 	2 
911 = 	P 	922 = 	r 	g33 = - —2- r sin e, 

g44 = e
V 	 (2.46) 

and using the formula (2.2), we obtain for the contravariant components 

of the metrical tensor 

-p -2 
g 11 = -c 2e, 	g22 = -c 2e r , 33 	2 -P g 	= -c e r sin a 

(2.47) 

The surviving non-zero Christoffel symbols are according to (2.7) 

rl 	1 	n4 1  . p -v 
= — P' 	= 	pe e 

2 	2c2  

1 	1 	 4 	1 	11.-v 2* 
r22 = - (r + ..r 2  pa) 	r22 = --I- e 	r p 

' 2 	2c 

,2 	n3 	„2 	1 	1 	a 
112 = 113 = 121 = r-  + 	0 -  2 

r :2 	113  = r4 =(tan'EP)F 1  

2 	1 	2 	n 3 	1  r 2= 1 14 = 1 24 	1 34 = 

(2.49) 

	

' 	2 
r 33 	-r sin 0(-

p---r  + 1), 	r33 = -sin 0 cos 0 
2 

,4 	1 p-v 
i 33 = -2- e 	Or2 c-2sin 20 

,1 	1 v-p 	2 	,4 	1 , 
144 = 	e V - C 	114 = Iv 	144 = 	v 

In these equations, the prime denotes differentiation with respect to 

r, while a dot denotes differentiation with respect to t. 	The 
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Christoffel symbols of the first kind, r  can be easily 

derived from equations (2.44) and (2.8). 

Direct calculation from equation (2.22) yields, for the surviving 

components of the Riemann-Christoffel tensor, 

P  
e 	5 1 2 2 	

1 fl 2 r 2 
G1212 = 	rP

, 
 + — r 1.1

1  + rh— 
c 2  2  4 c 2  

eP-v  + 1] 

G2323 = 
er

2 sin 2 8 -  r1.0. 2 	1 4 2  U-V r 2 
L (1 + 	e 

C2 	
tan-26 

G3I31 = sin 2 0 G1212 

G1224 

63134 

G1414 

G2424 

63434 

= 

= 

= 

= 

= 

P 2 	1 	- 	_ 11 e r  14_  - 	1 	0) + 

''[r 

	

I 	I -,  • 	- 1 	4. — 	 (2.50) p(r  •  2 

- 2v" - v' 2 ] 

+  r2 1.0] 

r 
2c 2 	2  2 " 

sin 20 61224 

V 
eP  

[4i.1 +  - 4V - 4 2j+  --- 	34 2  
c2 
	 4 

_11_2 	 V 
NI 	t -2 _ 	-e- 1.1)] c2 	4  2 

sin2 e 62424 

The non-vanisbigg components of the curvature tensor are from 

equation (2.23) 
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e try  - 	 1 - 	, 	 1 G I . = 	 3 .42 	2 11 ) 	1.7  Lv i 2 	1.1  ,v ,  + 12 2:i 4. pit 4. r -1 1.0 + 	vs 
11C 2  

2e P- v  
G22 - EV) - 311 2  - 	+ 	+ •rpsvi +rpl + rp' + 2sin-20 2 

G33 = sin 2 0 G22 

2 V1 
ce 3 

G44 = 	1.11 1 v I  - 2v" - v' 2  - Levir 11  - 	- 	-4-3  11 2  + 

G 	= G4 = ' - 	 v 	 (2.51) 

It is now possible to write down the set of Einstein's equations 

for the case of isotropic space-times. 	Inspection of equations 

(2.40),(2.50) and (2.51) indicate that the components Tij of the 

energy-momentum tensor are identically zero for i 	j. 	The velocity 

4-vector in view of (2.37) must therefore satisfy 

-11 t 112 
1 =e - ` 	‘ 11  c 2 (2.52) 

Hence, by equations (2.36), (2.48),(2.50),(2.51) and (2.52), 

the set of Einstein's equations (2.40) become 

KLO + !74(u9 2  + e-Ppjell = c 2 e-P12-04u1+v9 + 11 12  .1- I to v t] 
r r 

_e-vui  347 02 - 110)+ A 

(2.53) 

12]  _e_vui 	- 	+ A 
c ze-P c(p" 	v") 	117w 	vi)  

KP — 2 
(2.54) 
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K (p 	pic2) u k u  I = 	( 11+V) ( 17.1  I 	 (2.55) 

141(p + p/c 2 )(u 4 ) 2  + e-v  = -e-P [p." + 1 7 11 12  -1. 1. p oli..42 _ Ai  
4 c 2  

(2.56) 

2.9 	Summary  

The general theory of relativity is developed by employing 

tensor calculus to describe the properties of Riemannian spaces. 

The metric of a Riemannian space is defined by the functions g pv  

which are components of the metrical tensor. Differentiation of the 

metric coefficients yields further fundamental tensors including the 

Riemann-Christoffel tensor, which measures a quantity analogous to 

curvature, and another tensor which has zero vectorial divergence. 

Einstein's equations may be obtained either by equating this latter 

tensor to the energy-momentum tensor of a 4-dimensional space-time 

or by the application of the action principle to the gravitational 

field and matter. 

The set of Einstein's field equations are of basic importance 

to the development of cosmological theories and will be used throughout 

the following work. In the next chapter the equations will be used to 

derive a space-time metric for universes which have a uniform mass-

energy distribution. 
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CHAPTER III  

THEORY OF ISOTROPIC ANu HOMOGENEOUS WORLD -MODELS  

3.1 	The Roberston-Walker Metric  

The universe may be regarded as a collection of discrete masses 

(galaxies) together with a more or less uniform distribution of matter 

and radiation.  In order to obtain a simplified mathematical 

description, this mass-energy distribution is idealised as a perfect 

fluid.  In this situation, the most convenient coordinate system is 

one which is moving at each point of space, along with the matter 

located at that point.  This is an intrinsic or co-moving coordinate 

system and by definition the velocity of matter is everywhere zero. 

The velocity 4 -vector of the fluid therefore reduces to 

U 4  0 0,  ui = 0,  i =1,2,3 

If co-moving coordinates are present, then the left-hand side of 

equation (2.55) is zero and then—equa—blie—r4944mbef441-84-ele—te—eefe 

we obtain the partial differential equation 

1 
0' = 2- 0v (3.1) 

Selecting the time coordinate so that gift, = 1 (v = 0) in the 

metric (2.45) and integrating (3.1) with respect to t and r, it is 

found (McVittie,1965) that 
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p = F(r) + log R2 (t) 
	

(3. 2) 

where F(r) is an arbitrary function of r and R(t) is an arbitrary 

function of t. 

Introducing the condition u l  = 0 into equations (2.53) and 

(2.54), two expressions for P are derived which are identical only if 

_ 	_ 
r 	2 

2 

(3.3) 

Solving (3.2) and (3.3), we find 

F(r) = - log (1+ kr 2 /4) -2  

where the factor k is of the nature of a scale factor. 	Substituting 

the last equation together with (2.2) into the equation (2.45), the 

metric for isotropic space times may be written in the form 

us = dt 2 	R2(t)  
dr 2  + r 2d0 2  + sin 26d0 2  ) 

( 14. kf 2op 
(3.4) 

This equation is of fundamental importance to cosmology and will be 

used extensively in the following work. 	The expression (3.4) was 

first derived by Robertson (1935) and derived independently by Walker 

(1936). 	Equations for the density and pressure of the mass-energy 

distribution are obtained from equations (2.54) and (2.56) by putting 

v = 0, 	p = log[112 (1+ kr2/4)'2), 	u 4 	1 = 
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and the results are 

3 
8nGp 7  (kc 2 	k2 ) - A 

87rGP 	g k2  kc 2   
72 	

4.  A  
- 	R 	11-2-  

(3.5 ) 

(3.6 ) 

since K = 8nG/c 2 .  Clearly, the density and pressure are independent 

of any spatial coordinates and are functions of the time (epoch) t 

alone. 

3.2  Properties of the Metric  

It easily follows from equations (3.5) and (3.6) that 

dpe P de  
dt 2 dt = (3.7) 

which is seen to be analogous to the first law of thermodynamics for 

an adiabatic expansion. 

A suitable adjustment of the unit in which the radial coordinate 

is measured can produce values of the space-curvature constant k 

equal to +1, 0, -1 depending on whether the space is closed, flat or 

open. 	From the set of equations (2.50), we see that the components 

of the Riemann-Christoffel tensor,G 	for the 3-geometry (a hyper- 

surface in space-time with t = const) all vanish for k = O. 	Of 

course, in this case the curvature of the 4-geometry is non-zero 

since some of the G 	0 0 for values of the indices equal to four 
KlIaT 

and non-constant R(t). 
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Some useful equations are obtained by introducing in place of 

the coordinate r the "angle" w defined by 

dr  
w = f  kr2 

1 + 
4 

Furthermore we define a quantity 

Tk(w) = 	r  
1 + kr 2 /4 

so that the metric (3.4) becomes 

ds 2  = dt 2  - R
2 (t) (6,2 	Tk2d02 )  

where 	do2  = de 2  + sin 2ede. 

According to (3.8) and (3.9), 

r = 2 tan(w/2) 	T.1. 1 (w) = sin(w) 

(3.8) 

(3.9) 

(3.10) 

for k = +1 

r = W 	TO(W) = W 	k = 0 

r = 2 tanh4w/2) 	T..1(w) = sinh(w) 	k = -1 

(3.11) 

The equation to the null-geodesic (light path) in the space-time 

defined by the metric (3.4) is obtained by simply putting ds = 0, 

and the result is 

dr _ 	c 	(1 + kr 214) 
dt 	ItTir 

(3.12) 

for signals travelling towards the origin of coordinates. 	The 
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formula for the redshift of radiation emitted at time t and received 

at time to  follows easily (e.g. McVittie,1965) from (3.12). 	The 

redshift, z, written in terms of the scale factor R(t) is 

_dA 	R(to ) 	. 	 (3.13) 

or alternatively we write 

z = y• 1  - 1 
	

(3.14) 

where 	y = R/Ro  

At the epoch t = to , equations (3.5) and (3.6) may be written 

in the form 

07Gp0 = 002 4. 3ke 	A 
R0  

81rGP 	kc2  (2q - 1)H^2 	+ A 
- Re C 2  

where the Hubble parameter is 

Ho  = ko/R0  

and the deceleration parameter is 

go = Ko/RoHo2  

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Introducing the density parameter, 00 , and pressure parameter, 

co, by 

	

41TGI3 	 P0/c 2  2 

	

Po = 3H0 2 	Co - 
Po 

then we obtain two fundamental equations 

(3.13) 



R02H02 
(3.21) 

kc2  
- 3(1  co ) ao - go - 1  
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A 
X = - ( 1 	3c0)a0 - go 

3H02   
(3.20) 

which determine the cosmological constant and the curvature constant, 

respectively. 

3.3 Summary  

Einstein's equations may be solved for a homogeneous and 

isotropic mass-energy distribution. In this case the metrical 

tensor is given by the coefficients in the Robertson-Walker metric. 

The density and pressure of the mass-energy distribution are found 

to be functions of the cosmic time only. Other equations, which 

will have constant application throughout this thesis, are derived 

from the expression for the Robertson-Walker line element. 
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CHAPTER IV  

GEOMETRICAL PROPERTIES OF WORLD-MODELS  

In this chapter the theory of homogeneous and isotropic 

universes is further advanced by elucidation of the geometrical 

properties of world-models. These are the properties of model 

universes which are directly dependent on the equations derived from 

the space-time metric (3.4). 

4.1 	Model Classification  

Some preliminary work has been done on the subject of model 

classification by Robertson (1933) and Bondi (1961). More recently 

Stabell and Refsdal (1966) have examined this problem on the basis of 

diagrams in which the cosmological constant, X, is plotted against 

R (the radius of curvature) for A = O. However, this analysis is 

somewhat misleading since the (X, 11) plots imply that, for a particular 

x, A = 0 at the present epoch and this is clearly impossible for finite 

non-zero values of the Hubble constant Ho . The mistake lies in the 

fact that the curve A = 0, in the (X, R) plane, is a function not only 

of R, but also of X. 

Previous analyses of model classification have been restricted 

to universes filled with ordinary matter only. In this analysis, 

relativistic world-models containing both matter and radiation are 

classified by means of the cosmological constant, X, and the density 

parameter cri,. 



The existence of a universal black-body radiation would introduce 

special conditions into the Einstein field equations. Some analytical 

solutions to these equations have been obtained for a universe 

containing non-interacting matter and radiation. Alpher and 

Herman (1949) have integrated Einstein's equations for the special 

case when the cosmological constant A = 0, while a solution has been 

derived by Jacobs (1967) for space-times of zero intrinsic curvature. 

Conversion of radiation into matter has been considered by McIntosh 

(1967) and Davidson (1962), and for this purpose they define, ad hoc, 

particular functions of the radius of curvature R(t). In this 

analysis, we consider the universe to be filled with non-interacting 

matter and radiation, and a world-model is defined in a most general 

way by its density parameter a o  and the constant A(=A/3H ci). Earlier 

measurements (e.g. Penzias and Wilson, 1965) have indicated a black-

body temperature close to 3 ° K but more recent measurements 

(e.g. Shivanandan et. al., 1968) imply a dilute spectrum with a 

temperature of 3n° K, where the dilution factor n > 3. It therefore 

seems appropriate, in view of this possibility of a relatively high 

temperature, To , for the universal radiation field, to examine the 

properties of relativistic world-models for general To  > 0. The 

thermal radiation spectrum is assumed to be Planckian throughout this 

analysis. It should be mentioned here that the consequences of cosmic 

black-body radiation will be discussed more fully in subsequent 

chapters. 
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Observational evidence indicates that the contribution to the 

Isotropic pressure, po , from the random motions of galaxies and 

interstellar matter is negligibly small. Therefore, in accordance 

with the radiation laws we may write 

4 
a'To 

Po = 3 
(4.1) 

where To  is the radiation temperature at the present time, and at  is 

the Stefan-Boltzmann constant. Furthermore, Tolman (1934) has shown 

that as the universe expands the cosmological redshift serves to 

adiabatically cool the radiation while preserving its thermal character. 

The radiation temperature, T, will therefore vary inversely as the 

expansion parameter,y,and consequently 

4 - 
E
r 

= crIT
4 = &Ioy

4 
 (4. 2) 

where E
r 

is the radiation energy density. 

Thus, if radiation and matter are both conserved then 

-3 	-4 
P =P+P = PY +PY m  r  mo  ro 

(4.3) 

where pmo  is the present value of the matter density and P ro = E rok2 • 

We now define a function of the expansion parameter by 



f(Y) 

(b) 

f(Y) 

(c)  

o • 

Figure 4.1 - Classification of relativistic world-models 
based on the form of the expansion function f(0... 
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f(Y) a  ( Itt  dt )2  
H2  

(4.4) 

Now solving equation (3.5) with the aid of (3.6), (3.19), (3.20) and 

(4.3) it is found that 

f(y) = 2amy-1 (1 + ay -1 ) + qo  + 1 - 3(1 + co)00  

[(I 	3c0 )°0 	c10 ]Y2  

- 
= 2a

m
y

1 
 (1 + ay ) + 1 - 2a

0 
- A(1 - y2 ) 

where a =  /p and the density parameter for matter is 

kirG 
a = a - a =  - 
m  0 	

3N? r°  

(4.9) 

(4.6) 

Consider the expression (4.5) for the function f(y) or indeed 

any arbitrary continuous function f(y) of the expansion parameter y. 

as 
It is apparent that f(y) can never become negative oke otherwise the 

time derivative of y will be unreal. Several possible cases present 

themselves for the minimum (or minima) of the function f(y) and these 

are examined in turn: 

(1)  if f(y) > 0 for all df(Y)/dy a f 1 (y) = 0 then the universe 

must be in a state of continuous expansion since the first 

Integral (with respect to 0 of f(y) will be a continuously 

increasing function. This situation is indicated schematically 

In figure 4.1(a). 
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(2)  if, for some value of y = ym , f . (y) = 0 when f(y) < 0 then 

there are two alternative cases: 

(a) if fl(y) = 0 at ym  > 1 (the value of y at the present 

epoch) then the universe expands from a singular state 

(f(y) =  to a value of y = ymax 
< y

m 
when contraction 

follows. 

(b) if fl(y) = 0 at ym  < 1 then the universe must contract 

from arbitrarily large values of y to ymin  > ym  after 

which the universe rebounds into an expansive stage. 

Both of these cases are presented schematically in 

figure 4.1(b). 

(3) 
	

if fs(y) = 0 when f(y) = 0 and y = ym  then three possible 

situations arise. These are: 

(a) ym  = 1: the universe is stationary corresponding to 

the Einstein world-model. 

(b) ym  < 1: the universe can be considered as expanding 

from the static Einstein condition in the infinite 

past. 

(c) ym  > 1: this corresponds to the universe expanding 

from a singular state with a value of y < 1 and 

approaching the Einstein universe asymptotically. 

The last three models are illustrated in figure 4.1(c). 

The properties of relativistic world-models with black-body 

radiation may now be represented by a diagram in which the constant 
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Figure 4.2 - Possible world-models having density parameter 
(Jo = 1.0 and black-body radiation temperature T o  = 3°K. 
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El 

K=O  

Figure 4.3.- Possible world-models with a  0.5, T0  3°K. 
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Figure 4•4 - Possible world-models with a o  ... 0. 
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A is plotted against the expansion parameter y for the special 

condition f(y) = 0. It follows from equation (4.5) that the curve 

f(y) = 0 in the (A, y) plane has the equation 

A = (1 - y2 ) -1  Pamy-1 (1 + ay-1 ) + 1 - 2a0] 
 

(4. 7) 

and differentiating, this curve has extremmm values when 

(1 - 2a0 )y3  + 30
m
y2  + 4a

may - am
(1 + 2ay -1 ) = 0  (4.8) 

There are three separate classes of solutions to equations (4.7) and 

(4.8) according as ao  > 0.5, 0 < ao  < 0.5 or ao  = 0. Each of these 

cases is considered separately. 

ao  > 0.5 This case is typified by the world-model with 

  

defining parameters ao  = 1.0, To  = 3. The curve f(y) = 0 for this 

model is shown in figure 4.2. A minimum value occurs at (Amin, 'min) 

whereAmin >0and0<ymin <1, while a maximum value exists at the 

point 
(Amax 

 , y ) where Amax > 0 and y  > 1. Recalling that A is 
MaX 	 max 

a constant of integration, it follows that the evolution of the 

universe may be represented in the (A, y) plane by a straight line 

parallel to the y-axis. In order that (dy/dt) 2  does not attain 

negative values, the regions above the curve in the interval 0 < y < 1, 

and below the curve for y > 1 must be inaccessible. Further, the 

definition y = R/Ro  implies that the universe must evolve up to or 
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through the value of y = 1 at the present epoch. Thus all the areas 

in figure 4.2 covered by hatched lines are inaccessible to any 

relativistic world-model. The line k = 0 in the diagram is given by 

A = 1 - 2o, which is independent of c
o 

(or T
o
). This line separates 

the possible models into two classes - those which have a 3-geometry 

of positive curvature and those with negative intrinsic curvature. 

For the particular case To  = 0 (am  = ad, the solution to equation (4.8) 

is, for positive ym , 

cio  -  (1 - 2a ) 2  

Ym = 1 -2a0  7(23  
{2 cos(- cos (-  

o _  1) 4.  2nn 
3  2 —7—  "1"— 

(4.9) 

where n = -1 provides a minimum value for A and n = +1 provides a 

maximum value. The corresponding extremum values of A are given by 

A = 
m  m 

However for general To  it is not possible to obtain analytical 

solutions to equations (4.8) and the general properties of this class 

of solution can be described by the following permissible world-models. 

(1)  A
max 

< A < A
min

: the universe must expand continuously from a 

singular state at y = 0 (infinite curvature) to an infinitely 

rarefied state in the infinite future. These models are 

denoted as type El. 
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(2) X = Amax : as before, the universe has a singularity at y = 0, 

but expands monotonically into the static Einstein model (y = 0) 

at an infinite time in the future. These models are denoted 

as type Ul. 

(3) X = Amin : the universe expands continuously from the condition 

of an Einstein universe at y
min 

< 1 in the infinite past to an 

empty state at y =  These models are denoted as type U2. 

(4) X > Am i n :   universes of this type contract from an empty state 

in the infinite past until the expansion parameter y satisfies 

the equation f(y) = 0. The universe then reverses its motion 

and expands at an increasing speed into an empty state in the 

infinite future. These universes are type E2. 

(5) A < X
max

: the universe is in a state of continuous oscillation 

- expanding and contracting between the two extreme values of 

y = 0 and the value of y > 1 corresponding to f(y) = 0. These 

models are denoted as type 0. 

0 < G < 0.5 
0 - 

This type of solution is shown in figure 4.3, 

  

where a = 0.5, T
o 

= 3. In this case, there is only one extremum 

value of the curve f(y) = 0, and this occurs at (A min , ymin) where 

''min< 1. The different possible world-models are labelled according 

to the classification described above. Universes of type Ul are not 
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obtainable for this range of the density, parameter. If T
o 

= 0 then 

the extremum value occurs at 

a  a. 

y
m 
= u +   1]  (4.10) 

1 - 2a0 	- 2a0)u 

provided 00  0.5 and u is the positive real root of 

u 3  = -b ± /1)2  - 1 

with b = (1 - 2430 ) 3 (2q, - 4a0  + l)/2ag 

a0  0 In this case, both the matter and radiation energy 

  

densities are zero and the equation of the curve f(y) = 0 reduces to 

A = (1 - y2 ) . This curve clearly has only one real minimum at 

y
min 

= 0, Xmin = 1, which corresponds to the static Einstein model. 

The radiation temperature must be zero for these empty models. This 

class of solution is shown in figure 4.4. 

The results of these three separate classes of solution to 

equation (4.8) may now be combined in one single diagram in which the 

extrema values of X = m are plotted against ao
. A particular type of 

world-model is now specified by the co-ordinates (A, ad in figure 4.5. 

On the basis of the previous discussion, the different regions in 

figure 4.5 may be labelled as shown. Relatively large values of T o  

have been assumed in order to clearly indicate, in the (A, ao) plane, 



Figure 4•5 - Classification of relativistic world-models in the (x, (3) plane. 

The full lines correspond to models containing matter only. 



0.0 0.5 1 •0 1.5 2.0 2.5 3•0 

3.5 

3.0 

• 2-5 

2•0 

1•5 

• ,— iR1  

1. 0 

Figure 4.6 - Maximum and minimum values of the expansion 
parameter when the universe enters (ymax) and leaves(y . ) min 
the static Einstein condition. 
The curves RI and R2 correspond to universes containing 
radiation only. 
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the effects of a radiation field on model classification. The effect 

is seen to be an expansion of the regions for model types El and 0 

and a restriction of the area available to type E2 models. Since, in 

any real situation, am  > 0, there must be a region in the (X, ao ) plane 

inaccessible to all models and the boundary of this region will have 

the equation a
o 

= a
r

. 

The values of the expansion parameter ym  on the curves Ul and U2 

in figure 4.5, are plotted as a function of ao  in figure 4.6. At 

a
o 

= co(H
o 

= 0), the universe is, for all time, in the equilibrium 

configuration of an Einstein universe with ym  = 1. The consequences of 

an increment in the radiation temperature T o  are (a) a decrease in the 

value of ymax  at which the universe enters the Einstein state, and 

(b) an increase in the value of y min  at which the universe leaves the 

Einstein state. 

It should be noted that, for the universes containing radiation 

only, equation (4.5) becomes 

f(y) = 2a0y-2  + qo  + 1 - 4a0  + (2a0  - g6)y2 	(4.11) 

= 2a y
-2 
+ - 20

o 
+ x(1 - y2 ) 

where eQ  = 1/3 and ao  = a s.. It follows immediately that the curve 

f(y) = 0 in the (A, y) plane must have the equation 
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A  = ( 1  _ y2) -1 (2a0y-2  + 1 - 2a 0)  (4.12) 

with extremum values occurring when 

(1 - 2a)y 3  + 4aoy - 20 0y-I  = 0  (4.13) 

The solutions to the last two equations are represented by the lines 

labelled RI and R2 in figures 4.5 and 4.6. 

4.2  Variation of q and a  

In this section, the variation of the deceleration parameter q 

and the density parameter a is examined for universes filled with 

isotropic black-body radiation. 

It follows from equation (4.4) and the general definition of the 

Hubble parameter at an arbitrary epoch that 

H = Y 	H Iff(y)/y 
	 (4.14) 

where H
0 
 is the present value of H. The general density parameter is 

0 = 41
-Gp 
 a

m
(1 + ay-1 )  

(4.15) 
j14 2  Yf(Y) 

while the deceleration parameter is 
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v 2 
q = 	= -1--- [a y-3 (1 + 2ay-1 ) - A] 

yH 2  f(y)  m  
(4.16) 

Clearly, from the last two equations 

a + 0.5 and q + 1.0 as y + 0 

for all models apart from the type E2 models which do not admit 

indefinitely small values of y. This result should be compared with 

the analogous equations (e.g. Stabell and Refsdal, 1966) derived for 

universes containing matter only, i.e. a = 0. The significantly 

different result here is that q approaches unity near the 

singularity at y = 0, whereas q tends to 0.5 in the radiation free 

case. Curves of q versus a are drawn in figure 4.7 for a = 0 and 

are similar to the curves given by Stabell and Refsdal. The diagram 

is self-explanatory and does not require further explanation. 

Except for the type 0 world-models, equations (4.15) and (4.16) 

yield 

a + 0 and q + -1 as y + = 

independent of any finite value for a. This is, of course, as 

expected, since according to the equations derived above all the 

terms containing a become insignificant at large y. 
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Figure 4.7 - The variation of deceleration parameter q with the 
density parameter a for universes containing matter only. 
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In the radiation-free universe, it is possible to define 

(Stabell and Refsdal) two unique lines k = 0 and X = 0 in the (a, q) 

plane. However, when a non-zero pressure term is introduced, the 

equations for these lines become respectively 

3(1 + c)a - q - 1 = 0 

(1 + 3c)a - q = 0 

and these equations are not unique since E E c(y, ao) for a particular 

T0 . Solving the last two equations, we find that the intersection of 

the lines k = 0, X = 0 in the (a, q) plane has the equation a = 0.5. 

The functional relationship between a and qls shown in figure 

4.8. The diagram does not indicate the complete curves for types El 

and 0, but is restricted to relatively small values of y where the 

effects of a radiation field are greatest. For large y, the curves 

are the same as those given by Stabell and Refsdal for a = 0. 

Differentiating equation (4.15)  and using (4.3), we obtain 

.  OW/ 
a =  [2(1 + ay -1 )q - 2ay -1  - 1]  (4.17) 

y2f(y) 

from which it follows immediately that a = 0 when 
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1 + 2ay 
(4.18) -1 

2(1+ay ) 

Hence for small a, the density parameter a attains an extremum 

value when q 	0.5. 

Plots of q versus a in the neighbourhood of the point (0.5, 0.5) 

for T
o = 15 are shown in figure 4.9. The numbers attached to the 

curves define the particle horizon for the world model defined by 

(a0,  q0). Clearly, if T
o 

> 0, a point in the (a, q) plane cannot 

uniquely define a world-model as is the case for T o  = O. Of particular 

interest is the Einstein-de Sitter model which is radiation-free and 

defined by the parameters ao  = 0.5, qo  = 0.5. The model is represented 

by a single point in the (a, q) plane, but the introduction of a 

non-zero pressure term due to a Planckian radiation field produces an 

evolutionary curve of the type shown in figure 4.9. 

4.3 Expansion Parameter as a Function of Epoch  

According to equations (4.4) and (4.5) 

dv 
' = H

o 
 Vf(y) 

dt  
(4.19) 

where 

f(y) = 2a0/y + go  + 1 - 3a0  + ((Jo  g0)Y2 
	

(4.20) 
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for zero-pressure world-models. Equation (4.19) can therefore be 

numerically integrated for a series of values of 0 0  and go . The 

results are shown in figures 4.10-4.14 in which the expansion 

parameter y = R/Ro  is plotted against the epoch t as a fraction of 

- 
the characteristic time of evolution of the universe H 1 . The values 

of qo  which separate the different model regions are marked as broken 

lines in the diagrams. The line separating the type El and type E2 

regions corresponds to the curve Ul of figure 4.6 while the line 

separating the type 0 and type El regions corresponds to the curve U2. 

The expansion parameter for type 0 models varies continuously 

between y = 0 and some upper limit v= 
'max  

1 but the curves in 

figures 4.10-4.14 are drawn for only one cycle of the oscillation. 

Other features of model evolution are evident from these diagrams 

and will not be commented on. 

The effects of an isotropic radiation field on model evolutions 

may be accounted for by substituting in equation (4.19) the expression 

for f(y) derived in equation (4.5). The changes are not great for 

small values of T
o 

and the effect will be measured in terms of the 

changes in the age of the universe. 
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t H„ 

figure 4.12 - Variation of the expansion parameter y 	R/Ro  
with epoch for CO ■ 1.0. 
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4.4 Age of Model Universes  

Integrating equation (4.5), it follows that the age of the 

- universe (in units of H0 1 ) ) s given by 

t  1 1 dy 
 

(4.21) 
0 A(i) 

for model types El and 0. The models oscillating between singular 

states are considered as existing for a finite time (the time of one 

oscillation). The results of the numerical integration of equation 

( 1e.21) are shown in figure 4.15 where curves of t versus% are drawn 

for T
o 

= 0 and for different values of qo . It is apparent that, for 

a particular 00 , the age of a model increases as q 0  decreases. The 

curves in figure 4.15 in effect summarise the information in figures 

4.10-4.14. For values of qo  < 0 the age of the universe goes to 

infinity where the value of ao  corresponds to the model type Ul. 

The results of the integration of (4.21) for T o  > 0 are shown 

in figure 4.16 where curves of constant t are drawn for different T o . 

The general effect of increasing T o  is seen to be a decrease in the 

age of the universe. The results are also presented in Table I, 

where t is listed for a range of temperatures and density parameters 

with cosmological constant equal to zero. 
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Figure 4.16 - The ages of universes containing matter and radiation 
Illustrated by curves of t x H o  equal to a constant. The full lines 
correspond to To 	0°K, the dotted lines to To 	15'K, and the broken 
lines to To  P.20°K. 
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TABLE I  

Age of the universe (in units of H -1 ) for X = 0 

0 
0 	0 r 

0.05 0.8981 0.8961 0.8782 0.8417 0.7818 0.7594 

0.1 0.8465 0.8455 0.8343 0.8046 0.7582 0.6910 

0.5 0.6667 0.6665 0.6641 0.6553 0.6371 0.5000 

1.0 0.5708 0.5707 0.5694 0.5654 0.5557 0.4142 

2.0 0.4728 0.4728 0.4723 0.4704 0.4658 0.3333 

5.0 0.3515 0.3515 0.3513 0.3508 0.3492 0.2403 

The effects of a radiation field are obviously greatest for 

small values of a
o 
when p

r 
» p

m 
and a » 1. For T

o 
= 20°K, the 

radiation density parameter is a
r 
= 3.5 x to

-2
, so that the ages 

listed in Table 1 correspond to universes in which the matter density 

is a positive quantity. 

The age of universes containing radiation only may be obtained 

by substituting for f(y) from equation (4.11) into (4.20. The 

5  10  15  20  t 

results are 

t
r 
= 1  log 

2fi+ 2 + C  

2,6  2i/2a0X + C 

t =  (sin -1 -2A 	C  
r 

for X > 0, 

. -1 
sin   for X .< 0, 

i/C2  - 8aA 



where C = 1 - 2a
0 

- A for both equations and 
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t
r 

for A = 0 

  

The values for t
r 
are listed in Table I for each a

o
. The change in 

the age of the universe is greatest for large positive values of A 

(large negative go) and this situation is shown in figure 4.17. The 

full lines refer to universes containing matter only and the dotted 

curves correspond to universes filled with radiation only. At a 

value of ao = 
2.0, the ratio t

r
/t is approximately 0.4 for A = 5.0 

while the ratio is about 0.8 for A = -5.0. 

Now according to equation (4.3) the mass density of radiation, 

p
r
, exceeds the matter density, p

m
, for y < a. It is of some interest 

to determine the epoch at which pm  = p r . This occurs when y = y o  = a 

and using this value of y as the upper limit of integration in 

equation (4.21) the epoch t may be computed for different a o . In 

figure 4.17 curves of log t (in seconds) are plotted against a o  for 

A = 0 and a series of temperatures for the radiation field. The epoch 

corresponding to p m  = p r  is seen to be a fairly strong function of To  

but is practically independent of 0 0  for ao  > 1. Deviations from the 

curves in figure 4.17 are found to be small for IX' < 5• 
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4.5 	Light Travel Time  

Suppose a light quantum is emitted from a source at an epoch t 

corresponding to an expansion parameter y. If this quantum is 

received by the origin observer at time t o  and y = 1, then the light 

travel time will be 

1 -1  1  

 

r = f dt = f = H
o 

I  dy 

Y ji(Y) 

(4.22) 

The lower limit for this integral may be determined from the measured 

redshift of the source since y = (1 + z) 1 . The results of the 

integration of (4.22) are shown in figure 4.18 for To  = 0. The light 

travel time in type El and type 0 models converges to a limit equal 

to the age of the particular model. The curves in figure 4.16 which 

are limited to a maximum value of z are the type E2 models. The 

properties of these models are indicated most clearly in figures 

4.10-4.14. A source which emits a light quantum in the infinite past 

will have a redshift of z = -1 and the light travel time will be T = 00 . 

The subject of light travel time suggests an investigation into 

the special conditions which might apply before a source can be "seen" 

by an origin observer. Furthermore the question arises as to when 

a source will be "seen". These problems are examined in the next 

section. 
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4.6  Horizons  

The problem of horizons in relativistic world-models has been 

treated in some detail by Rindler (1957) but mainly in qualitative 

terms. 

If we consider a source (fundamental particle) at epoch t and 

with co-moving radial co-ordinate, r , then the proper distance, U , 

between the origin and the source is 

U = R(t ) I  
dr  

P  1 + kr 2/4 

= R(t)w(r)  (4.23) 
P  P 

Now, integrating equation (3.12), it is clear that a photon emitted 

at the source will, at epoch t, have a co-ordinate 

w(r) = w(r )  J 

r t  cdt  
(4.24) 

Using equations(4.4) and (4.23) the proper distance of the light 

quantum is therefore 

U(y) = Roy[w(rp) - 
' 

R
o
H
o y 	y'(y 1 ) 

(4.25) 
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at the epoch corresponding to an expansion parameter of y. 
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Equations (3.11) indicate quite clearly that w(r) can take all 

positive values if k = 0 or -1. However when k = +1 it appears that 

w is restricted to values less than it and there is an apparent boundary 

at U = R
o
n for fundamental particles. Rindler (1957) asserts that this 

situation is due only to the peculiarities of the definition of the 

radial co-ordinate, r, which in this case makes r = 0. correspond to the 

antipole of the origin of the spherical 3-space at epoch to . It 

follows from the definition of proper distance that the co-ordinate 

w must be additive and the definition of w is extended beyond the 

antipole by construction of an auxiliary origin of co-ordinates at the 

pole and computing w relative to this new origin and adding n. Hence, 

for each fundamental particle, there are an infinity of w co-ordinates 

all differing by multiples of 2n. The properties of the two different 

visual horizons are now examined. 

4.7  Event Horizons  

The necessary and sufficient condition for an event horizon to 

exist (Rindler, 1957) is the convergence of the integral 

cdt 
I = I 

t R ( t )  
0 

(4.26) 

From equation (4.25), a photon emitted at time to  with a radial 

co-ordinate 
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co 
dy'  w = 

wEH 

- 

R
0
H
o 1  y'

;7)-1 (4.27) 

will arrive at the origin in the infinite future. Replacing the 

lower limit of integration in (4.27) by y and multiplying by R(t) 

we have the equation of motion for a point on the event horizon 

U (y) =Y.I 
y  y 1 .4(y 1-) 

(4.28) 

Suppose a photon is emitted at time t
o' 

corresponding to y = 1, 

from a particle at the event horizon. Rewriting equation (4.25), the 

equation of motion of this photon is 

U* (y) = R y[w -  fY  
o EH R H 

o o 1  Y I bii.(Y I ) 

co  1 
= c_y_ rf  

H 
o 1  y 

=U(y) 

Hence the event horizon is associated with a particular set of photons 

travelling towards the origin at a proper distance given by equation 

(4.28). It is now evident that all events which lie beyond the event 

horizon (w > w
EH

) remain forever undetectable by an origin observer 

attached to a fundamental particle. Also, the relative velocity, v, 

between a particle with radial co-ordinate r o  and the event horizon 

will be 
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Ivl = 	ut(t)(1(0(1-0) — fc° 
icdt tt : 

 

=  
aR(t) [W(r) ) - 

c°  cdt' I Kri7- 
'  at  0

t  

and with the aid of equation (4.27), the term in brackets must be 

zero when the particle crosses the horizon. The local relative 

velocity of the particle will be equal to the speed of light. 

An event horizon exists only for the type El and type E2 models 

since the integral (4.27) must diverge for the type 0 models. In 

figure 4.19," the proper distance, divided by R o , of the observer's 

event horizon in a type El is plotted against both the expansion 

parameter y and the epoch, tHo . Curves for two fundamental particles 

A and B, together with A's event horizon, are also shown. The 

particle A has an angle co-ordinate WA = 0.5 while w B  = 1.0. The 

broken lines correspond to light quanta which have been emitted by 

the particle A and are travelling towards the origin observer. Events 

occurring at the particle A once it has crossed the observer's horizon 

are completely undetectable. It is also apparent that once the 

particle B has crossed A's event horizon light quanta emitted at B 

(represented by dotted lines) cannot reach A or the origin of 

co-ordinates within the infinite future. 

Similar curves are drawn in figure 4.20 for a type E2 model 

which has defining parameters oo  = 0.5, qo  = -5.0. The model has a 
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minimum value of y = 0.89. In this case it is possible for a 

fundamental particle to cross the observer's event horizon twice 

and this is indicated for the particle B which crosses the horizon 

at the present epoch. 

The event horizons for different world-models are summarised 

in figure 4.21 where curves of constant 
'EH 

 are drawn in the (A, a ce) 

plane. The value of w
EH 

tends to infinity for models near to the 

curve Ul. 

4.8  Particle Horizons  

Rindler defines the necessary and sufficient condition for the 

existence of a particle horizon to be the convergence of the integral 

to  
cdt 

I = I 
0 R(t) 

if the universe expands from a singular state at t = 0 or 

to  
c 

I = I 	
dt 

 
R(t) 

(4.29) 

(4.30) 

if the definition of t extends to negatively unbounded values (as in 

type E2 models). Substituting equation (4.4) into the first integral, 

It is clear that the surface (called the particle horizon) defined by 



75 

1 

f 	c--11—r- w - 
PH RoHo  

(4.31) 

divides all fundamental particles into two classes: those that have 

been observed by the origin observer at or before the present epoch 

and those that have not. In the case of type E2 models we must have 

1 
r rYmin  f 

WPHR  H  ' 
o o  co  ywif-GT 	

'm in 
 

(4.32) 

Also, consider the replacement of the upper limit of integration 

(unity) in the last two integrations by a variable yo . If, as the 

epoch advances (yo  co) the new integrals tend to a finite limit then 

all those particles having angular co-ordinate 

W > 
dy  

R0  H0 0 p/im (4.33) 

in type El models can never be "seen" by an origin observer. A 

similar situation applies to type E2 models when the upper limit of 

the second integral in (4.32) in set equal to infinity. 

Mow, consider light quanta emitted from a fundamental particle 

in type El and type 0 models at time t=0. Then the equation 

Y  A 
U(y) = R

o
y[w(r ) ±  f 

p 	R
o
H
o 0 y'i(y9 

(4. 34) 

represents either a light front travelling away from the origin 

(positive sign) or a light front travelling towards the origin 
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(negative sign). Of course this is dependent on the integral being 

convergent. 

Also, the equation to the observer's particle horizon follows 

from (4.31) and we have 

cy 
U (y) = — 
PH  H

o 0 	y'lif(y9 
(4.35) 

This equation also describes a light front emitted from the 

origin of co-ordinates at the singular creation event y = 0 so that 

the observer's particle horizon is evidently the boundary of his 

creation light cone. A fundamental particle is first "seen" when it 

crosses the observer's particle horizon which is (according to (4.34)) 

coincident with the observer crossing the particle's creation light 

cone. The fundamental particle first comes into view with a redshift 

of infinity since y = O. The situation is illustrated in figure 4.22 

where as before proper distances divided by R o  are plotted against y 

and epoch. The model is type El with ao  = 0.5, qo  = 0.75. The 

fundamental particle A has an angular co-ordinate w = 0.5. The broken 

lines refer to A's creation light cone. The fundamental particle 

crosses the observer's particle horizon at the same epoch as the 

boundary of A's creation light cone reaches the origin. 

The particle horizon is shown in figure 4.23 for the Einstein -

de Sitter model (ao  = 0.5, qo  = 0.5). The shape of the PH curve is 
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changed quite considerably for even a small change in go . Curves of 

U(y)/R0  versus y are drawn for different fundamental particles having 

particular values of redshift as measured at the present epoch. The 

intersections of these lines with the curve representing the particle 

horizon indicate the epoch at which the particles are first "seen" by 

the origin observer. 

The properties of particle horizons in type E2 models are 

illustrated in figure 4.24 for the model defined by 
0c 

 0.5, qo  = -5.0. 

As before the particle A has angular co-ordinate w = 0.5. The 

fundamental particle is seen to cross the observer's particle horizon 

twice. This corresponds to a dual appearance of the particle with 

both events occurring with a redshift of z = -1 as measured by the 

origin observer. After the particle crosses the particle horizon its 

masuredredshiftincreasestoavalueaz ilmc =1/yrnin -1 which in 

this case is equal to 0.12 and then decreases to zero in the infinite 

future. 

The particle B has an angular co-ordinate of w = 2.383 which is 

identical to the value of w
PH 

at the present epoch. This particle 

comes into view only once and fundamental particles with w > wPH can 

never be detected. 

The results of the numerical integration of equations (4.31) end 

(4.32) are shown in figure 4.25 where curves of constant w pH  are 
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Figure 4.25 - The particle horizons in world-models illustrated 

by curves of wpwequal to a constant. The dotted lines correspond 
to To  = 15 ° K, and the broken lines to To  = 20°K. 
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drawn, for different values of T o , in the (A, ao) plane. The 

co-ordinate w
PH 

tends to infinity for points near to the curve U2 

defined by the radiation temperature. For a specific world-model, 

the effect of increasing the radiation intensity is a marked decrease 

in w
PH' 

indicating a more rapidly evolving universe. The greatest 

departures from the value of wpH  at To  = 0 occur at relatively large 

values of wpH . A radiation field produces very little change in 

w
PH 

for type E2 models, since the definition of y in these models 

does not extend to small values when the first term in equation (4.5) 

becomes important. The effects of the model parameters on particle 

horizons are evident from figure 4.25. For a particular radiation 

temperature, the equation to the line relating A to a ()  is 

A  = (1 	3c0)a0 - go 
 (4.36) 

where c
o 

is given by equations (3.19) and (4.1). Applying this 

equation to figure 4.25 it is clear that, for a particular ao  the 

result of increasing qo  is to decrease wpH  in type El and type 0 

models for which k > 0 while w pH  is increased in type E2 and types 

El and 0 models with k < 0. The particle horizon is undefined on the 

line k = 0 and w
PH 

must be calculated for each point (A, a0) on this 

line. 



4.9 	The Small Redshift Approximation  

It is possible to approximate the radial co-ordinate, r, by 

a power series provided the redshift z is much less than unity. The 

series is obtained here for universes containing black-body radiation 

and matter. 

From (3.8) the angular co-ordinate of an event having expansion 

parameter y is 

w . c 	elT.  

Ro  y yy 

Differentiating and using dy/dz = -y 2  it follows that 

dw _ cy  

dz 	Roc, 

and 

d 2w 	ri  _ 

dz2 = Ro 	
i2 

and 

(4. 3 7) 

(4. 38) 

(4. 39) 

5 3w _  ,2  '3y2Y2  4q  y21 1  
dz 3  Roif  y4 ç,2 	ç 3 

(4.40) 
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2  R2y2 

	

Y  o 

2y y  kc'  
kp = -  

A (4.41 ) 

Now from equation (3.6) 

84 

where K = EIRG/C2  

If the universe is filled with black-body radiation then 

-4 •  - S- 
P = PoY  P = -PoY Y 

and using these relations in equation (4.41) 

(1+) kc2  

y3  2y2  • R2
' 

(4.42) 

Employing equations (3.19), (3.21), (4.14) and (4.16), the equations 

(4.38)-(4.40) become, at the present epoch 

dw
o 

dz  R H 
00 

-  (2 + 5q
o 

+ 3q 2  - 3c
o 

- 6c a ) 00 
dz2  R H 

00 

d2w
o = -c (1  + 

40) 
dz 2  R H 

00 

d 3w
o 

( 4.43) 

(4.44) 

(4.45 ) 
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Now the set of equations (3.11) for the radial co-ordinate may 

be written as 

kw 3  k2w 5  k 3w 7  

3!  5!  7! 

Using Taylor's theorem to expand w(z) around z = 0 we have 

Do)  z2 92w  z 3  9 3w 
w ( z) = z  0  o  o  ... 

az  2! az2  3! az 3  

(4.46) 

(4.47) 

and 
kw 3 (z)  k  Dwo 3 

TE—  ) (4.48) 

since w
o 

= 0. 

Combining equations (4.43) to (4.48) we have finally 

CZ 
r =  Ei

H  
(1+q

o
)z + (1+2q 

o
+q 2 -2,3 o- 9c 

o
a
o2  
).+ •..] 

R  o 
o o 

(4.49) 

The radiation field is therefore a third order effect in z. For 

T
o 

= 3°K the pressure term is 3c 
o 
 a 
o 

= 2 x 10
-5 

which is completely 

Insignificant. Even for T
o 

= 30°K the term is only about 0.2 and 

obviously all quantities describing the radiation field can be 

neglected for small values of z. Equation (4.49) is useful, however, 

since with the aid of equations (3.11) it is possible to quickly 

calculate such quantities as distance, velocity of recession and 

angular diameter of an object with a measured (small) redshift. 



4.10 	Conclusions  

Relativistic world-models containing both matter and radiation 

are most easily classified by co-ordinates in the (x, ao) plane. 

The boundaries of the different regions in this plane are determined 

by the temperature To  of the Planckian radiation field. Depending 

on the values of A, ao  and To  a relativistic world-model is specified 

as type El, type E2 or type 0. 

The analysis has shown that the deceleration parameter q 

approaches unity near the singularity at y = 0 independently of the 

radiation temperature. This result should be compared with the 

radiation free case in which q + 0.5 as y 0. The age of the universe 

is decreased with increasing To  and the effect is least for large 

values of the density parameter a o . 

The properties of horizons in relativistic cosmologies can be 

described quite generally in terms of the expansion parameter and 

proper distance. The angular co-ordinate wpH defining the position 

of the particle horizon is markedly decreased with an increase in T o  

for types El and 0 models while the radiation field has little effect 

in type E2 models. It is found that a fundamental particle may cross 

the observer's event and particle horizons twice in the course of 

evolution of the type E2 universe. 
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CHAPTER V  

RADIO SOURCE PARAMETERS  

In this chapter the properties of radio sources which require 

a description in cosmological terms are examined in some detail. The 

effects of different cosmological models on radio source parameters 

and observations are determined. Defore any analysis is carried out 

which depends on the source population in the universe it is necessary 

to examine such matters as possible anisotropies in the spatial 

distribution of radio objects and the "spread" in source luminosities. 

5.1 	The Angular Distribution of Radio Sources  

A number of radio source surveys have been examined statistically 

for any evidence of non-randomness of source positions. These 

analyses, apart from the recent 4C survey, were restricted by the 

limited resolution and sensitivity of the instruments to angular 

separations of greater than a few degrees. 

Shakeshaft (1955), in an investigation based on the 2C survey 

at 81.5 MHz, found little evidence for clustering. Edge (1958), in 

an analysis of the 3C survey, concluded that for different ranges of 

flux densities (limiting flux 8 
x 10-26w m

-2
Hz-1, 

) the source positions 

were randomly distributed in sample areas of 42.5 and 900 sq deg. 

Mills, Slee, and Hill (1960) concluded that for sources having 

S > 6 x 10-26w m-2Hz-1 , for -90 0  < 6 < +10°, there is no significant 
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departure from a random distribution, although small-scale clustering 

may occur in regions of the order of i ° . Results obtained with the 

178 MHz Cambridge interferometer, operating as both an interferometer 

and a total power system, were used by Leslie (1961) in two methods 

of analysis, and these gave no evidence for clustering on a scale down 

to 2'.5 arc. Leslie also derived values for the maximum percentage of 

double or multiple systems that could occur without producing a 

detectable effect. Holden (1966), in an analysis based on the 4C 

survey, found the distribution of source positions for areas from 25 

to 3600 sq deg to be uniform within the limits of statistical 

fluctuations. Further, Holden found no evidence of clustering for 

angular separations of i° to 4
0 , although there was some evidence to 

suggest associations of sources having angular separations in the 

range 15' to 30'. 

The Parkes 210 ft telescope has been used to complete two 

surveys in the declination zones 0° to +20° (Day et al. 1966)r and 

0° to -20° (Shimmins et al. 1966) at frequencies of 408, 1410, and 

2650 MHz. The present investigation is based on these surveys at 

1410 MHz. The sensitivity of the instrument at this frequency is 

0.3 x 10
-26 

W m
-2 

Hz
-1

, while the beamwidth is 13'.9 arc. Source 

surveys have also been made in the regions -20° to -60° (Bolton, 

Gardner, and Mackey, 1964) and -60° to -90° (Price and Milne, 1965) 

with an instrument sensitivity of approximately 0.8 flux units at 

1410 MHz. These surveys were restricted to sources with flux densities 
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densities greater than 4 f. u. at 408 MHz that did not noticeably 

broaden the 48' beam of the telescope. 

(i)  The Probable Scale of Clustering 

(1) Several authors (Mills 1960; van den Bergh 1961; Wills 1966) 

have shown that there is a significant correlation between the 

positions of radio sources and rich clusters of galaxies. The 

probability of collisions between galaxies will be greatly increased, 

and we might expect radio source associations with a scale of a few 

degrees. It can easily be shown, however, that even in clusters of 

galaxies the probability of encounters between galaxies is small, and 

the contribution of this process to the degree of clustering should 

be negligible. 

(2) It is now well established that a radio source is generally 

larger than the associated optical galaxy and is often double, with 

the components situated on either side of the visible object. The 

most extensive investigations of the brightness distributions of radio 

sources are the long-baseline interferometer observations made at the 

California Institute of Technology (Moffet and Maltby 1962), using 

spacings out to 1557 wavelengths, and at Jodrell Bank (Allen et al. 

1962), where by means of radio links spacings out to 61100 wavelengths 

were obtained. It was found that about 70 per cent of the sources are 

apparently double with an angular separation of about l' arc. On 
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the basis of these observations we should expect association of 

extragalactic radio sources with a scale of a few minutes of arc. 

Table 2 

Results for 5 0  by 5 0  Zones 

Number of 
sources in zone 0  1  2  3 	4 	5 	6 	7 8 	9 

Number of times 
observed  56  98  122  100  70  30  10  4 	1 	0 

Number of times 
expected  45.5 108.2 128.7 102.1 60.7 28.9 11.4 3.9 1.16 0.31 

(ii) Large-Scale Clustering 

The distribution of source positions was investigated by 

dividing the sky into square areas and counting the number of squares 

containing 0, 1, 2, 3, etc. sources. The scales of clustering 

considered were for areas of 25, 100, 400, and 1600 sq deg. The sky 

was divided into regions 5 0 , 10°, 20 0 , and 40° wide in ó and the 

appropriate extent in a to produce the required areas. For areas of 

400 and 1600 sq deg, where the number of zones was too small for a 

statistical investigation, the analysis was extended to a = -800. 



(a) 25 Sq Deg 

There is no evidence for a non-random distribution of sources 

having S > 0.3. The results are shown in Table 2. 

The mean of the distribution is 2.38, while the variance is 

2.44. The observed results were compared with the theoretical Poisson 

distribution predicted for a random sky. A chi-square test gave a 

probability of 0.65 that the distribution is Poisson. The distribution 

of sources per zone as a function of a was also investigated, and a 

plot of the number of sources per zone against a showed a general 

tendency for the number of sources to decrease between 0800 and 1700 hr. 

It was found that the number of sources in the equal areas between 0800 

and 1700 hr, and between 2000 and 0500 hr, was 485 and 587 respectively, 

i.e. an increase of approximately 25 per cent in the latter region. 

(b) 100 Sq Deg 

In this case there is a greater number of sources per zone, and 

three different flux ranges, S > 0.3, S > 1.0, and S > 2.0, were 

considered. The results are summarized in Table 3, which gives the 

calculated mean and variance and the probability P that the distribution 

is Poisson. It can be seen that there is no significant evidence for 

clustering on this scale. 

9 1 



Table 3 

Results for 10° by 10° Zones 

S  0.3 

Flux Range 

S >  1.0 S > 2.0 

Mean 9.3 4.5 1.5 

Variance 11.6 5.6 1.4 

0.35 0.72 0.3 

(c)  400 Sq Deg 

The analysis for sources having S > 0.3 was restricted to 

declinations +20° >6 > -20°, while for sources having S > 1.0 and _  _ 

S > 2.0 the analysis was extended to 6 = -80°. The results of the 

analysis are shown in Table 4. 

It can be seen from this table that for zone areas of 400 sq deg 

there is no evidence for a non-random distribution of sources having 

S > 0.3 and S > 2.0. There is, however, significant evidence for 

clustering of sources having S > 1.0 in the region +20° > 6> -80°. 

An analysis was made of sources having S > 1.0 in the region 

+20 0  > 6 > -20° and the distribution was found to have a mean and 

variance of 17.8 and 30.7 respectively, while the probability that 
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Table 4 

Results for 20° by 20 0  Zones 

Mean 

Variance 

Flux Range 

S > 0. 3 	 S >  1.0  S > 2.0 

-80 0  

37.5 

67.6 

0.35 

15.2 

25.1 

0.01 

6.3 

9.0 

0.25 

the distribution  is Poisson was 0.60. In the region -20 0  >,6 > 

the distribution of sources was found to have a mean of 15.7, a 

variance of 37.2, and a probability of 0.20 that the distribution is 

random. The surveys in the declination zones -20° ! 6 ! -60° and 

-60 0  > 6> -90° did not include sources that broadened the 48' beam of _ 

the telescope, whereas the surveys between +20° and -20° included a 

large number of extended sources, so that the apparent clustering on 

this scale can be explained in terms of source=selection effects in 

the separate surveys. 

(d)  1600 Sq Deg 

For sources having S ! 1.0 and S > 2.0 the analysis has been 

extended to 6 = -80°. The number of zones of this size was 
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insufficient for a complete analysis to be made, but to allow for 

possible clustering on the boundaries of a zone each zone was shifted 

half a zone length in a. In both cases there were no obvious trends 

in the numbers of sources per zone to suggest any departure from a 

non-random distribution. 

Table 5 

Numbers of Pairs of Sources in Real and Random Skies 

Flux Range 

Type of 

Sky 15'-30' 

Angular Separation 

30 1 -1 0  1°-2°  2°-3° 3 0 -4° 

S > 0.3 Real 71 130 654 1103 1440 

Random 66.7 126 636 1077 1445 

S 1 0.6 Real 42 75 402 726 892 

Random 39.4 65.1 388 734 872 

S >  1.0 Real 18 32 163 290 342 

Random 16.3 29.1 149 291 336 

S >  1.5 _ Real 6 11 47 74 101 

Random 3.1 8.4 42.2 70.9 98.2 

S > 2.0 Real 5 6 22 29 43 

Random 2.3 5.1 18.0 29.3 38.8 



(iii) Small-Scale Clustering 

An investigation of small-scale clustering was made for sources 

having flux densities greater than 0:3, 0.6, 1.0, 1.5, and 2.0 f.u., 

the total number of sources in each range being 1184, 949, 576, 305, 

and 191 respectively. The analysis did not include the regions of the 

galactic plane that were not covered in the Parkes surveys. The half-

power beamwidth of the Parkes telescope at 1410 MHz is 13'.9 arc, so 

that the investigation of small-scale clustering is limited to a scale 

of 15' arc. The analysis of small-scale clustering is similar to that 

described by Holden (1966). The analysis uses a method of comparison 

between the distribution of its neighbours for each source in the 

real sky and the distribution obtained from a series of random skies. 

The positions of sources having S > 0.3 were compiled in an Elliott 503 

computer, and for each source the number of sources falling within a 

specified angular separation, in a and d, was calculated. Each pair 

of sources was included only once in the analysis, and the ranges of 

angular separation considered were 15' to 30', 30' to 1°, 1° to 2°, 

2 °  to 3°, and 3° to 4° in a and (5. The analysis was then repeated for 

sources having S > 0.6, S > 1.0, S > 1.5, and S > 2.0. 

A total of 60 random skies was compiled in the same computer. 

The number of sources within each flux range was made identical to 

that of the real sky. Any other parameters, such as those required 

for the exclusion of the galactic plane, simulated those of the real 
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sky. The effects of the finite resolution of the telescope were 

accounted for in the generation of the random skies. The results are 

summarized in Table 5. It can be seen from the values listed that 

there is, overall, no evidence for clustering of sources with angular 

separations 15' to 4 0 . Except for sources having S > 1.5 and S > 2.0 

with an angular separation of 15' to 30', all departures from the 

random values can be accounted for by statistical fluctuations. 

The minimum number of double sources occurring at the 10 per cent 

significance level was calculated from each random sky distribution 

and subtracted from the observed number of double sources in the real 

sky. This number was then expressed as a percentage of the total 

number of sources, giving the maximum percentage of clustering that 

could be present but undetected at the 10 per cent significance level. 

The maximum percentage of clustering for each flux range and for each 

angular separation is shown in Table 6. 

The results given in Tables 5 and 6 show that there is no 

evidence for clustering of sources with angular separations 15' to 4°. 

Although there is a number of small-scale associations with intense 

sources, they represent only a small percentage of the total number of 

sources with the appropriate flux density. Thus, it is found that 

4.5 per cent of sources having S > 1.5, and 5.5 per cent of sources 

having S > 2.0, lie within 15' to 30' of another such source. 



Angular Separation 
Flux Range 

15'-30'  30'-1° 
 

2°-3°  3*-4° 

S > 0.3 

S > 0.6 

S > 1.0 

S > 1.5 

S > 2.0 

3%  3%  4%  6%  8% 

2  6  5  2  9 

9  4  12  7  10 

4  4  8  7  8 

5  2 	3  2 	11 

Table 6 

Maximum Percentage of Double Sources that could 

Occur at the 10% Significance Level 

5.2 	The Luminosity Distribution  

A determination of the luminosity distribution of radio galaxies 

is of crucial importance to the understanding of the physical processes 

involved in the evolution of these objects. A knowledge of this 

distribution is also necessary for the interpretation of radio source 

counts and related problems. The luminosity distribution will 

therefore provide some useful data for application in cosmological 

problems. 

The distribution may be defined in terms of the spatial density 

P(P) of sources of luminosity P in a given volume of space at a 
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particular epoch or, alternatively, the luminosity of all radio sources 

in a given range of flux density may be considered giving the 

luminosity distribution per unit flux density range, n(P). The 

luminosity of an individual source can only be derived once its 

luminosity distance is known and accurate determinations of radio 

luminosity are thus restricted to sources which have measured 

redshifts. However, using a relation between radio and optical 

magnitudes of galaxies, Longair and Scott (1965) have derived the 

luminosity distribution, n(P), of sources at 178 MHz. Their results 

are represented by the curve labelled n(P) in figure 5.1. The mean 

-  -1 
luminosity of sources is Po  = 8 x 1025  watts Hz

1 
 sr  at 178 MHz. 

The main problem associated with the derivation of the 

distribution n(P) is to obtain a complete sample of radio sources. 

For a particular limiting flux density, S, it is clear that the sources 

having a large luminosity will in general be situated at greater 

distances and therefore be optically fainter than the less powerful 

sources. Hence, for sufficiently powerful sources, the radio galaxy 

will be too distant to be detected photographically and there will 

therefore be a limiting photographic magnitude beyond which 

identifications will not be possible. Obviously then, the analysis 

must be restricted to sources with flux densities greater than a 

certain minimum value depending on the maximum luminosity necessary 

to determine the n(P) distribution. It follows that it is not 

possible to determine with any accuracy the form of the distribution 
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n(p) 
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99 
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LOG .  P 
Figure 5.1 - The luminosity distribution n(P) and the derived 
distribution p 0 (P) for the spatial density of sources with 
luminosity Pat 178 MHz. 
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at high luminosities. Longair and Scott have limited their analysis 

to sources having flux densities S > 10 x 10
-26 

f.u. at 178 MHz and 

this will lead to inaccuracies in the distribution for P greater than 

about 15 x 1026  W Hz-1  sr-1 . 

The Parkes surveys provide a more complete sample of radio 

sources but, although a large number of identifications have been 

made, a large percentage of sources with relatively large flux 

densities remain unidentified. The derivation of luminosity 

distribution for the Parkes sources is therefore not feasible at 

present. 

The n(P) distribution has only limited application and the 

distribution of p(P) is of greater cosmological significance. We now 

assume that the distribution n(P) is Gaussian in log e 0/P0) with 

standard deviation a. That is, the dispersion in n(P) may be 

represented by the equation 

n(P/P0) = 
 x2/202 
 

(5. 1) 

Where x = log (P/P0). 

Now, Davidson (1962) has shown that when S is large, 

to a first approximation, the number of sources of flux density 

exceeding S in any homogeneous isotropic universe is 



1 
No(S) =  

—1/2 
f

cr. 
po(m)P

3/2 
d log m 3 S 

0 

1 
= - n P 

3/2
S
-3/2 

3 o o (5 .2) 

where m = P/Po  and p0 (m) is the spatial density of sources at the 

present epoch and no  is the weighted mean density of sources at the 

present epoch. 

The complete log N/log S curve at 178 MHz has been derived by 

Gower (1966) using revised 3C data together with results from the 4C 

and North Polar surveys (Ryle and Neville, 1962). According to 

3/2 
equation (5.2) the value of the product n oPo  may be estimated from 

the value of N at large flux densities where the effects of redshift 

are small and the statistical fluctuations also reasonably small. 

This method yields a value of 

3/2 
noPo  = 3.06 10

-36 
(5.3) 

where no  is expressed in sources m 	Po  = 8 x 1025  W Hz-1  sr-1 . 

It should be mentioned here that the log N/log S relation will be 

examined in greater detail in a later section. 

Now by anology with the undispersed luminosity function the 

spatial distribution p0 (P) at the present epoch may be written as 
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_1 . 5 _x2/202 
Po (m) = Po(l)m 	e (5.4) 

where as before m = P/Po . Integrating this equation and using 

(5.2) we find 

S
-3/2 co 

po(m)P
3/2

d(log = M0 (S) 
3  

0 

3/2 -3/2 
3 7Po (1)  Po  S (5. 5) 

so that 

no  = b/  (5.6) 

which is similar to the equation derived by Davidson and Davies (1964). 

Furthermore it is possible to estimate p 0 (m) for a particular m. 

A list of identified sources from the Parkes and 3C catalogues has 

been prepared and is presented in Table 7. This will be described in 

a later section. However, for our present purposes, there are found 

to be a total of 18 sources having luminosities between 10 23  and 1024  

W Hz
-1 

sr
-1 

at 178 MHz and which apparently lie within a distance 

corresponding to a redshift of 0.03. The mean luminosity of these 

sources is 8.2 x 1023  W Hz -1  sr-1  and their spatial density is 

1.6 x 10
-74 

M
-3

. This estimate agrees fairly well with the value of 

4 x 10
-74 m-3 given by Ginzburg and Syrovatskii (1964) for the sources 
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Cent. A, Virgo A and Fornax A which have an average luminosity of 

8.1 x 10 23  W Hz -1  sr-1  at 178 MHz. The sources probably all lie 

within the Local Group and their spatial density will be somewhat 

higher than the density on a larger cosmic scale. Using these values 

for p c)  and P by substitution in equations (5.4) and (5.6) yields 

a = 2.05 

and 
 

P0 (1) = 1 . 8510-" M-3 
	

(5.7) 

The value derived for a is in close agreement for the value of 

a = 2.1 obtained by fitting a Gaussian curve to the n(P) curve in 

figure 5.1. The values derived above for a and p 0 (1) will be used in 

future for any theoretical model which requires a knowledge of the 

spatial distribution of sources. 

The distribution p0 (m) given by equation (5.4) is presented in 

figure 5.1. Also, since the luminosity distribution is assumed 

Gaussian in log m we note that according to (5.4) 

dno  = p0 (m) d(log m) 

-2.5 -x2/2a2  
= P0 (1) m  e  dm (5.8) 

is the number of sources per unit proper volume at the present epoch 

in the interval m, m  dm. 



Table 7 

Properties of Identified Radio Sources 

Source Type S1410 

(f.u.) 

Alpha Redshift 
Mpc.) 

 

Distance 
( 

Log L 

0035-02 E 6.0 0.55 0.220 659.8 36.78 
0051-0 E 2.1 0.75 0.210 629.9 36.15 
0106+13 so 14.2 0.85 0.063 189.6 35.91 
0106+01 QS0 1.4 0.65 2.107 6319.5 37.89 
0115+02 00 1.0 0.90 0.230 689.8 35.86 
0122-00 Qs° 1.0 -0.10 1.070 3209.3 37.89 
0123-01 DB 4.5 0.90 0.019 57.0 34.36 
0128+06 DB 1.4 1.00 0.022 66.0 33.98 
0155-10 oso 2.0 0.70 0.616 1847.6 37.05 
0159-11 oso 2.9 0.50 0.669 2006.5 37.40 
0213-13 E 4.9 0.60 0.031 93.0 34.98 
0214+10 clso 1.3 0.70 0.408 1223.7 36.52 
0237-23 oso 7.2 -0.50 2.211 6631.5 39.57 
0240 -00 S 5.1 0.60 0.0038 11.4 33.17 
0255+05 DB 5.9 0.75 0.023 69.0 34.69 
0305+03 so 7.1 0.45 0.030 90.0 35.25 
0307+16 s 4.9 0.85 0.256 767.8 36.65 
0320-37 FORN A 80.0 0.80 0.0056 16.8 34.57 
0325+02 E 4.4 0.65 0.030 90.6 34.87 
0349-14 QS0 2.8 1.00 0.546 1637.6 37.07 
0349-27 E 4.1 0.80 0.066 198.0 35.42 
0350-07 QS0 3.1 0.90 0.962 2885.3 37.57 
0356+10 E 10.0 0.70 0.032 96.0 35.24 
0403 - 13 QS0 3.3 0.85 0.571 1712.6 37.16 
0405-12 QSO 2.7 0.90 0.574 1721.6 37.07 
0518-45 PICT A 52.1 0.70 0.033 99.0 35.98 
0521 -36 N 14.7 0.50 0.055 165.0 36.04 
0634 -20 E 7.0 0.80 0.056 168.0 35.51 
0736+01 0.50 2.7 0.40 0.191 572.9 36.46 
0806-10 E 3.3 0.80 0.112 335.9 35.78 
0812+02 QS0 1.9 0.70 0.402 1205.7 36.67 

0819+06 E 2.3 1.10 0.081 244.4 35.36 
0837-12 QS0 1.7 0.75 0.200 599.9 36.01 
0838+13 QS0 2.6 0.70 0.684 2051.5 37.25 
0850+14 QS0 2.4 1.20 1.109 3326.2 37.77 
0855+14 N 2.4 0.70 0.053 159.0 35.05 
0903+16 QS0 1.3 0.85 0.411 1232.7 36.48 
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Table 7 Continued  

Source Type S1410 

(f.u.) 

Alpha Redshift 
Mpc.) 

 

Distance 
( 

Log L 

0915-11 HYD A 36.3 0.75 0.055 165.0 36.23 
0922+14 QSO 0.7 1.20 0.896 2687.4 37.04 
0932+02 QS0 0.7 4.65 0.659 1976.5 36.67 
0947+07 E 7.3 0.85 0.103 308.9 36.04 
0957+00 QS0 0.9 0.90 3.907 2720.4 36.99 
1004+13 050 1.2 0.70 0.240 719.8 36.04 
1116+12 Qso 1.8 0.80 2.118 6352.5 37.98 
1131+21 E 0.7 0.90 0.066 198.0 34.63 
1138+01 D 2.0 0.70 0.056 168.0 35.02 
1142+19 NGC 3862 5.1 0.90 0.022 66.0 34.54 
1216+06 E 15.3 0.60 0.0038 11.4 33.65 
1217+02 QS° 0.7 0.60 0.240 719.8 35.88 

1222+13 E 6.1 0.60 0.0038 11.4 33.25 
1229 - 02 00 1.6 0.50 0.388 1163.7 36.71 
1228+12 v1RG A 197.2 0.65 0.0038 11.4 34.72 
1241+16 Qso 2.7 0.85 0.545 1634.6 37.03 
1252+11 QS0 1.1 0.10 0.871 2612.4 37.57 
1252 - 12 DR 6.6 0.55 0.014 42.0 34.46 
1317-00 QS0 1.7 0.80 0.890 2669.4 37.25 
1322 - 42 CENT A 300.0 0.80 0.0016 4.8 34.06 
1358-11 E 1.9 0.60 0.025 75.0 34.38 
1416+06 Qs° 5.3 1.15 1.439 4316.0 38.34 
1514+07 D 5.2 1.20 0.034 102.0 35.02 
1559+02 DE 6.9 0.80 0.170 509.9 36.46 
1648+05 HERC A 42.8 1.00 0.162 485.9 37.20 
1717-00 D 48.7 0.75 0.031 93.0 35.87 
1836+17 D 7.1 0.50 0.0034 10.2 33.32 
2115- 30 00 1.9 0.55 0.980 2939.3 37.48 

2128- 12 QS0 1.7 -0.20 0.501 1502.7 37.74 
2134+004 00 3.1 - 1.00 1.940 5818.7 39.71 
2135-14 qs0 2.9 0.65 0.200 599.9 36.30 
2146-13 QS0 1.5 0.90 1.800 5398.8 37.79 
2212+03 DB 3.4 0.90 0.027 81.0 34.54 
2221 -02 N 5.1 0.80 0.058 174.0 35.40 
2251+15 050 11.9 0.20 0.853 2576.4 38.49 
2251+11 QSO 1.6 0.80 0.323 968.8 36.37 
2300-18 N 1.5 0.50 0.129 386.9 35.77 

2313+03 QS0 4.3 0.85 0.220 659.8 36.46 
2322-12 E 1.9 1.20 0.084 251.9 35.37 
2349-01 il 1.6 0.70 0.174 521.9 35.90 
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Table 7 Continued  

Source Type 5400 

(f.u.) 

Alpha Redshift Distance 
(Mpc.) 

Log L 

303 D 31.3 0.75 0.100 299.9 36.29 3C40 D 18.1 0.82 0.017 51.0 34.44 3C48 QS° 38.0 0.52 0.367 1100.7 37.81 3C47 QS° 12.9 0.89 0.425 1274.7 37.03 3c66 E 24.0 0.71 0.021 63.0 34.86 3c71 s 10.4 0.60 0.0039 11.7 33.18 3C78 D 12.9 0.45 0.029 87.0 35.24 3C83.1 E 11.3 0.57 0.018 54.0 34.59 3C84 E 29.2 0.62 0.018 54.0 34.93 3c196 s 38.3 0.73 0.018 54.0 34.91 3c195 D 10.4 0.71 0.107 320.9 35.91 
3C219 D 24.4 0.80 0.053 159.0 35.57 
3C261 U 3.7 0.93 0.614 1841.6 36.78 3c227 N 20.2 0.82 0.100 299.9 36.02 3C231 I 12.0 0.29 0.0010 3.0 32.56 3C218 o 137.0 0.93 0.053 159.0 36.22 3034 QS0 6.4 0.78 0.550 1649.6 37.04 3C245 QS° 7.2 0.61 1.029 3086.3 37.85 3C254 QS0 10.6 0.93 0.734 2201.5 37.39 3C275 u 6.8 0.77 0.557 1670.6 37.09 3C234 N 16.6 0.85 0.187 560.9 36.46 3C264 D 15.7 0.78 0.021 63.0 34.60 3C270 S 38.2 0.50 0.0020 6.0 33.31 3017 D 22.2 1.20 0.033 99.0 34.96 3C327 , D 25.0 0.85 0.103 308.9 36.12 3C338 D 17.9 1.17 0.030 90.0 34.78 
3053 D 135.0 0.70 0.030 90.0 35.93 3086 D 16.3 0.67 0.0030 9.0 33.05 3083 D 14.8 0.40 0.090 269.9 36.37 3c405 D 4,600.0 0.80 0.057 171.0 37.91 3030 E 19.0 0.76 0.017 51.0 34.52 3C442 DB 10.8 0.94 0.100 299.9 35.66 3c433 D 31.3 0.75 0.100 299.9 36.29 3c446 QS0 12.2 0.54 1.400 4199.0 38.45 3C445 N 15.7 0.74 0.057 171.0 35.51 3c465 0 22.7 0.81 0.029 87.0 35.01 
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5.3 	Luminosity Distance and Flux Density  

There is a problem associated with the concept of "distance" 

in space-times defined by the metric (3.4) since there is no unique 

definition for the distance of a source. It is possible to define a 

proper distance which was applied to the discussion of horizons in 

section 4.6, or distance by apparent angular size or the luminosity 

distance of a source of radiation. The latter quantity is the one 

usually employed to establish a distance between galaxies. 

The luminosity distance, D, is defined in such a way that the 

intensity of a light source falls off inversely as the square of D. 

Consideration of emission and reception of light quanta (McVittie, 1965) 

leads to 

R2 (to) 

  

(5.9) 

   

R(t)  1 + kr 2/4 

Now from equation (3.9) and using R/Ro  = y equation (5.9) yields 

- 
D = Roy

1 
 Tk (w) (5.10) 

The chosen world-model determines the form of the function 

T (w) since from equations (3.8), (3.12) and (4.4) 

1 	1 ,  w  = --c- f 
H -  o o y yifiTY1) R  

(5.11) 

107 



-1 

 

for a source of redshift z = y  - 1. 

The luminosity distance (in megaparsecs) is plotted against z 

for various cosmological models in figure 5.2. The radiation 

temperature To  was taken equal to 3°K. The luminosity distance goes 

to zero at the antipole of co-ordinates in closed models and this is 

indicated in the diagram. Type E2 models which are also closed have 

a somewhat peculiar curve for log D versus log z and this is 

exemplified by the model ao  = 5.0, qo  = -5.0. 

Consider a source which has a luminosity P(v 1 )(VI Hz -1  sr-1 ) at 

frequency v' in the interval dvi. This radiation will be detected 

at a frequency v in an interval dv and the flux density at the origin 

of co-ordinates will be given by 

 

S(v)dv = 
P(v9dv 1 	

(5.12) 
02 

Substituting for D from equation (5.10) and using v = v'y then 

S(v) -  ""-1)  
11 1:2:1y-1T12‘ (w) 

(5. 13) 

The flux density from a certain type of source will depend 

primarily on the form of the luminosity distance curve. Obvious 

features are a minimum for the flux density in type E2 models and an 

infinite value of S for sources at the antipole of the origin of 

co-ordinates. 
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5.4 	Angular Diameters  

Apart from the work of Ekers (1969), as far as the author is 

aware, there have been no systematic attempts at the measurement of 

angular diameters of large numbers of radio sources. Ekers observed 

123 southern radio sources with a variable spacing interferometer and 

derived angular diameters for 57 of these. Of the latter sources 

only 2 have measured redshifts. Angular diameter measurements involve 

extreme difficulties. Interferometer techniques at large base lines 

are complex and interpretation of results from these instruments is 

made almost impossible due to the complex nature of the radio sources 

themselves. Very few radio galaxies have a simple brightness 

distribution and many consist of two or more separate components. 

There is also the problem as to whether or not radio sources form a 

single class of objects. The existence of quasars, as distinct from 

ordinary radio galaxies, infers that this situation is unlikely. 

Here, however, all extraneous effects are neglected and the analysis 

is restricted to the effects of the space-time geometry only on the 

angular diameters of radio sources. 

A formula for the distance n of a source, according to its 

apparent angular size, has been derived by McVittie (1965) and may 

be written as 
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RO 
= 

1 + z 
T
k 

= RoyTk (w) 
	

(5.14) 

If the linear dimension of a source is ft, then the apparent angular

diameter will be 

(5.15) 

The distance n has an interesting property, namely that it can attain 

a maximum value before the particle horizon is reached. Thereafter, 

n decreases monotonically for flat or open universes and has a zero 

value only at z = =. However, for closed universes n = 0 at the 

antipole (w = ir) of the space-time and any source at this point will 

cover the whole horizon (provided wp H  > it and gravitational defocussing 

of light rays is neglected). 

Mow from equation (5.14) 

dTE(w) 
dn  51122.x. .  r 	 
dz dy az 	 dy 

y + Tk(0] (5.16) 

But according to equation (5.11) 

aw 
ay = R H Ylitc) o o 

(5.17) 



and using this in (5.16) 

dTow) 
Lt. _ y2 Rof    	 + Tk (w)] dz 

dw 	Ro  Ho  IFTY5-  
(5.1 8) 

Also from equation (3.11) it is clear that 

	 - 	 (5.19) 
dTk(w) 

dw 

and substituting this in (5.18) 

. 	[ -E- 	- kTZ(w) - RoVi-(Y--)Tk(w)) dz 	Ho  

Hence the apparent angular diameter of a source attains a minimum 

value when 

dn 0  
dz 

That is, when 

RgHs 
+ kTZ(w) - 1 = 0 

: 2  

(5.20) 

The last equation has been solved by numerical methods and the 

results are shown in figure 5.3 where the redshift z m  at which n 

attains its maximum value is plotted against a o  for various go. The 

effect is one which is evidently manifest at fairly low values of z 
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and could therefore provide a valuable test for a cosmological model. 

The actual variation of apparent angular diameter with redshift 

requires a knowledge of the source average linear diameter and 

unfortunately this is quite uncertain. The dimension R. in equation 

(5.15) has been assigned the value of 20 Kpc. which seems reasonable 

if ordinary galaxies are considered. Numerical computations for 

equation (5.15) have yielded the results illustrated in figure 5.4. 

The apparent angular diameter is well behaved for type El and type 0 

models with curvature k = 0 or -1. If k = +1 then O p  goes to infinity 

at the redshift corresponding to the antipole of the co-ordinate 

system. The variation of apparent angular diameter is even more 

complicated for type E2 models when z has a maximum value. 

As mentioned earlier very little data is available on angular 

diameters of identified sources. However, Heeschen (1966) has 

published a list of about 50 sources with measured angular diameters. 

These angular diameters (in seconds of arc) have been plotted against 

redshift in figure 5.5. Although the number of sources is relatively 

small the distribution in figure 5.5 infers that there is no minimum 

in angular diameter for a redshift less than unity. Quasi-stellar 

sources are represented in the diagram by open circles. These objects 

appear to provide a natural extension of the angular diameter 

distribution at higher redshifts. When the observations represented 

in figure 5.5 are related to the theoretical results in figure 5.3 then 
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it can be asserted that the required cosmological model must have 

qo  > -1 for ao  > 0.3 or qo  > 1 for ao  > 1. The restrictions on qo  

become quite stringent as 0 0  increases. Thus at ao  = 2 we must have 

go > 4.  

The predictions of the steady-state model should be included 

in this analysis. The geometry in the steady-state model is the 

same as the de Sitter model in which 00  = 0 and qo  = -I. The radiation-

matter density is a constant (independent of epoch) non-zero quantity. 

Using these values for ao  and go , equation (5.15) yields 

op P 

 

(5.21) 
c(I - y) 

This equation clearly has no stationary value and consequently there 

will be no minimum in the angular diameter distribution. The 

observations are therefore consistent with a steady-state universe or 

an evolutionary universe in which the deceleration parameter will be 

positive for a reasonable value of the density parameter. 

Before more precise conclusions can be drawn from the angular 

diameter distribution it is necessary to devise some method for the 

extension of measurements to greater redshifts. Williams (1963) and 

Slish (1963) have suggested that Op  may be calculated from the 

frequency, Urn,  at which the radio source intensity spectrum has a 

maximum value. This method assumes that the low frequency turnover 
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in source spectra is due to synchrotron self-absorption. The spectra 

of radio sources will be described more fully in section 5.5. 

The equations provided by Le Roux (1982) yield 

P = 9.2  g (1 - 
* 

(5.22) 

for the synchrotron power output at frequency v for an object of linear 

dimension L. The emission per unit volume for electrons having an 

energy distribution spectrum N(E) = KE -Y  is 

_ pa2.
2c  (y+1)/2  (1 -y)/2 

— 	2  vo  
E(y)v  i  [1 + 1/T(Y)] (5 .23 ) 

and the optical thickness is 

2  t 	%, lox  _ yak c 
 vo

vy+2,f2 (  + 2)  (y + 1) ?1 [1 + 1/T(y + 1)] 
16ffmo  

(5.24) 

where vo = 2,B/21Tm0 , T(y) = (3Y + 5)12 and 

n .  
0 

1  .  (y+9/2do,  
=  fIrsin 0 (Y+3)/2d0 A  ,  sin  

0  2o 

If the source becomes optically thick at a frequency v = vm , 

then according to equation (5.22) 
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P(v ) = £2  E 
	

(5.25) 

- 
Also, for a typical value of y = 3, X = 0.62 and 1; = 2/3 with 

the values of R and cf being fairly insensitive to changes in y. Hence 
the last equation becomes, with aid of (5.23) and (5.24) 

(vrd 
- 1/ 25/ 2 2,R3Trm v 	vm 0 0 

(5.26) y + 2 

Now using the redshift relations, the flux density measured at 

a frequency v  vmy by the origin observer will be 

S(vMO )dv - M0 

-1/2 •5/2 
2.28vmovo vm dvm 

(y + 2)4nD 2  

where D is the luminosity distance defined in equation (5.10). 

Employing equation (5.15), the last equation yields for the maximum 

flux density 

2 
2m

0 - 1/2 5/2 1/2 S Gmo) = Op 71,- .7y Vo  Vmo  y 

and re-arranging this equation the apparent angular diameter is 

1%- 	a 1/ 2  et 	% 5/2 -1/2 _ 02 	/ 	% -1, 
p - t2m0) t2a + J/vo 	tvmolvmo  y (5.27) 

where a = (y -1)12 is the source spectral index (measured at 

frequencies greater than vmo). This equation differs by a factor of 
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two from that given by Williams. Also, both Slish and Williams suggest 

the high frequency spectrum be extrapolated to v = v mo  and so, knowing 

a, determine S(vm0). However, this procedure is open to the objection 

that for steep spectra the error introduced could be of the order of 

100 per cent. Also, the source does not become optically thick at the 

frequency corresponding to maximum flux density. When the source is 

optically thick to synchrotron radiation the spectrum is of the form 

S4Xv
5/2

. Hence the only accurate method of determining the apparent 

angular diameter is to measure the flux density at a frequency low 

enough to ensure a 2.5 power law spectrum. 

According to equation (5.27), Op is a very Weak function of 

redshift since 0p ,.(1 + z)
1/4

. It may therefore be Possible With this 

method and sufficient accumulation of data to ascertain the value of 

z at which Op is a minimum providing of course ihkSuCh''.a- Minimum 

does exist. Data of this type would provide valuable information for 

a cosmological model. 

The main problem is the paucity of data 'On source spectra below 

100 MHz. There are also other phenomena which may lead to a cut-off 

in source spectra at low frequencies. These include 

(i)  free-free absorption in ionized hydrogen either in the source 

itself or in the intervening medium. The relevant formulae are well 

known and in both cases the optical depth is greater than unity 
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below a frequency vm  given by (e.g. Ginzburg and Syrovatskii, 

1964) 

n2 dk 
v2  = 0.16  /2 (c/s)2 T3 (5.28) 

where ne is the electron density, 2. the thickness of the 

absorbing medium, T is the kinetic temperature of the gas and 

all quantities are measured in c.g.s. units. If emission regions 

are uniformly mixed with absorption regions the low frequency 

spectrum is Sav 2-a . 

(ii) a cut-off at the low-energy end of the electron energy 

distribution responsible for the synchrotron radiation. The 

low energy cut-off is due to ionization and collision effects. 

In this case the low frequency spectrum is approximately Sav -1/4 

so that although the effect can produce a change, it can hardly 

result in a maximum for the source spectrum. 

(iii) the effect of a dispersive medium. The radio emission from 

ultra-relativistic electrons in dispersive media has been 

discussed by Razin (1960). If the medium refractive index is 

less than unity,then the power radiation spectrum from a single 

electron has two cut-off frequencies, one in accordance with 

ordinary synchrot.:on theory and another at a lower frequency 
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15% 

 

vm  = H  MHz  (5.29) 

where H is the magnetic field strength in units of 10 -6  gauss. 

The low frequency spectrum in this case is quite a complicated 

function of frequency and energy. 

Substitution of typical values for the quantities involved in 

the first two cut-off mechanisms indicates that the frequency at which 

the flux density is near its maximum value must be - less than about 

20 MHz. However the Rozin effect could produce a cut-off at frequencies 

greater than 100 MHz and so throw doubt on the validity of the 

interpretation of a high frequency turnover in the source spectrum as 

due to synchrotron self-absorption only. A large number of spectral 

observations would be necessary to determine the mechanism responsible 

for the spectrum cut-off. However, if a number of sources are found to 

have turnovers in their spectra due to synchrotron self-absorption then 

this data, combined with the direct measurements of angular diameter, 

could provide enough evidence for a definite conclusion on possible 

cosmological models. 

5.5 	Radio Source Spectra  

The special physical conditions which pertain to radio galaxies 

have been the subject of extensive investigations. Radio sources are 

characterised by a non-thermal spectrum with intensity proportional 
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to v
-a 

where a is the spectral index. Any theory of radio sources 

must explain this basic power law and it is generally accepted that 

the radio emission is produced by "clouds" of relativistic electrons 

spiralling in magnetic fields. 

One of the fundamental problems of radio galaxies is the 

mechanism of release of their vase energy. If the source of their 

radio emission is assumed to be the synchrotron process then the 

minimum total energy released by a radio galaxy is calculated to be 

of the 10" ergs (e.g. Burbidge et al., 1963). A variety of processcs 

have been suggested to explain energy releases of such magnitude. It 

now appears likely that in all cases the end result is an explosion 

ocurring in the nucleus of a galaxy. This produces an outward 

expansion of gas and magnetic fields along the axes of rotation. This 

situation is clearly evident in such objects as Centaurus A and 3C273. 

It is also illustrated (Lynds and Sandage, 1963) in the case of the 

irregular galaxy M82 which has a system of filaments directed in a 

cone about the minor axis. This effect is also seen in some Seyfert 

galaxies and finally there is also evidence for these types of 

explosions in our own Galaxy (Oort, 1964). 

The energy source for strong radio sources and quasi-stellar 

sources is apparently gravitational in nature (e.g. Hoyle and Fowler, 

1963; Hoyle et al., 1964; Piddington, 1966). A critical problem arises 

as to the process that gets gravitational energy out of an object. 
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Fragmentation, followed by multiple collisions between fragments might 

be invoked at small dimensions of the radio galaxy. However, the 

release of energy in many comparatively small-scale events does not 

fit the observational evidence well, since a typical radio source seems 

to be associated with the violent emission of one or more well 

directed jets. 

Hoyle considers that angular-momentum transfer to an outer region 

may allow an inner region of an imploding object to condense to a radius 

close to the Schwarzschild limit. Unless the inner mass is spherically 

symmetric, radiation of gravitational waves occurs. This event may 

induce ordinary fissional instability as shown by Lyttleton (1953). 

The system breaks into two unequal pieces that recede from each other 

at a speed comparable to the original orbital speed. 

Piddington considers the conversion of rotational kinetic energy 

into magnetic energy. The balance between gravitational and 

centrifugal forces is destroyed and contraction is found to continue 

to nuclear dimensions. A spherical stage is reached when explosions 

occur along the rotational axis and electrons up to cosmic ray energies 

are released. Piddington concludes that "ordinary" radio galaxies are 

formed if stars contract out of the plasma cloud while quasi-stellar 

sources result when star formation is inhibited with the whole galaxy 

shrinking to a nucleus. It is interesting to note that on the basis 

of these theories the difference between "ordinary" radio sources and 



quasi-stellar sources is mainly in scale. 

The average life-time of the radio emission stage may be 

estimated from total energy considerations and by the size and velocity 

of the expanding radio region. Maltby et al. (1963) have calculated an 

upper limit of 10 9  years as the lift-time for radio sources whereas 

Aizu et al. (1964) consider that the typical source lift-time is in the 

range 106  to 10 7  years. It is also probable that an explosion of a 

galaxy is not limited once during the life-time, but may recur. 

Burbidge et al. have concluded that this indeed is the case for all 

galaxies. They suggest a radio source life-time of about 10 6  years or 

less. Explosions in each galaxy produce a radio source 1-10 times within 

the characteristic life-time of the universe (10" years). In strong 

radio sources the process is considered to occur some 20-200 times. 

The electron energy distribution in discrete radio sources is 

assumed to be of the form 

N(E)dE = K( 1.1 ) -Yd( 1-)  for El < E < E 2  (5.30) 
Eo  Eo  

Such a distribution can be produced by the statistical Fermi-

acceleration process and is observed directly in extra-terrestial 

cosmic ray particles. The power radiated per unit frequency interval 

at a frequency v by a single electron moving in a uniform magnetic 

field can be written (e.g. Oort and Igalraven, 1956; Kellermann, 1964) as 
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CO 

P(v, E, e) = CHiv/vc  I  4/ 3 ()dn  (5.31) 
v/vc  

where  = H sin 0, C = 2.34 10-22 c.g.s. units, K5/3 is a modified 

Bessel function of the second kind and 

vc  = L H J E 2  = 1 .61 103 H.LE eli  (c/s) 
 

(5.32) 

The total power radiated by each electron is (e.g. Kellermann, 1964) 

dE  -6 22 
dt = 3. 8 10  HE  GeV/sec (5.33) 

The total power emitted by an assembly of electrons of the form (5.30) 

having the same pitch angles will be 

viv2 

P(v, 0) = 	CKL (Y-1)/2H
(y+1)/2v(i-y)/2 

I  (V/Vc)
(y-1)/2 

v/v1 

CO 

x f 	1(5/3 (n ) dnd (v/vc) 	 (5,34) 
v/vc  

For most values of y, the major contribution to this integral 

occurs when v/v c  = 1. Thus, when v/vi >> 1 and v/v2 << 1 the integral 

is essentially constant and the limits of integration can be extended 

from zero to infinity. The result is 

P(v) 	v -a 	 (5.35) 
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where a = (y-1)/2 is called the spectral index. The radiation spectra 

for an electron distribution of the form (5.30) are shown in figure 

5.6. 

Now reference to equations (5.34) and (5.35) show that the flux 

density measured at the origin will obviously be of the form 

S = C v 

where C is a slowly varying function of a. Alternatively we have 

log S = A - a log v  (5.37) 

where A is a constant. When the logarithm of the flux density is 

plotted against the logarithm of the frequency it is found that the 

spectra of most radio sources do, in fact, conform to the simple 

law (5.37). It is of some interest to examine the "spread" in the 

index a for effect which may have a cosmological significance. 

Several authors have studied the distribution of spectral indices 

with somewhat varying results. Whitfield (1958), in a study of 85 

radio sources, concluded that the mean spectral index of identified 

extragalactic sources is about 0.9 while that of unidentified sources 

that are further than 10°  from the galactic plane is about 1.2. 

Whitfield also points out that there appears to be a gradual 
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diminution of the mean spectral index from about 0.8 for the strongest 

sources to 1.3 for the weakest sources. A similar trend was found by 

Kellermann and Harris (1960) for a total of 739 sources listed both in 

the two catalogues of Mills, Slee and Hill (1958, 1960) and in the 

California Institute of Technology 960 MHz data. Taking the spectral 

index of Hydra A to be 0.96 they found a mean spectral index of 0.89 

with 50 per cent of the sources lying within 0.2 of the median value. 

Using data obtained from a series of surveys at different 

frequencies Conway et al. (1963) reported a medium value of 0.71 for 

a with 50 per cent of the sources having spectral indices between 0.61 

and 0.81. 

In an investigation based on data of greater accuracy Kellermann 

(1964) refuted the conclusions of Whitfield and his own earlier results 

when he found the spectral index to be independent of the flux density 

for sources having S > 14 f.u. at 178 MHz. Kellermann derived a 

distribution of spectral indices which was approximately Gaussian with 

a median value of 0.76 and a standard deviation of 0.14. 

Most of these analyses for the spectral index distribution have 

relied upon data obtained from surveys made with different instruments 

and different observational techniques. The series of surveys made 

with the Parkes radio telescope have the important advantage that the 

same instrument has been used to observe sources at three frequencies. 
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A finding survey was carried out at 408 MHz and flux densities were 

measured at 408, 1410 and 2650 MHz. Here, for the purposes of deriving 

an average spectral index the surveys of Mills et al. (1958, 1960, 

1961) at 85.5 MHz have been used in conjunction with the Parkes results. 

All sources having a flux density greater than 4 f.u. at 408 MHz were 

considered and any source fulfilling this requirement and also having 

a measured flux for at least three frequencies was included in the 

analysis. This method provides a complete sample of sources and gives 

an average value for a over a wide frequency range. Errors in the flux 

density measurements were due to variation in calibration signal, 

unknown polarization, noise fluctuations and confusion effects. The 

total r.m.s. error was (Day et al., 1966): 5% ± 0.86 f.u. at 408, 

52 ± 0.14 f.u. at 1410, 6% ± 0.06 f.u. at 2650,and, 10% t 2.5 f.u. at 

85.5 MHz. Each flux was weighted according to the inverse square of 

its r.m.s. error. A total of 980 sources were analysed using an 

Elliott 503 computer and the final result was the value of 

a = 0.84  (5.38) 

for the mean spectral index. The variance of this result was 0.063. 

Now radio sources in an evolutionary universe must undergo 

aging processes which could produce changes in spectral index. For 

example, high energy electrons responsible for the radio emission 

should lose energy by the synchrotron mechanism. This would lead to 
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a steepening of a source spectrum as the epoch advances. On the basis 

of this type of argument several authors (Ko, 1966; Long et al., 1966) 

have suggested that a dependence of the mean spectral index on flux 

density would provide useful information concerning the way in which 

the intrinsic nature of a radio source varies with epoch. It has been 

inferred that if there is any correlation between spectral index and 

flux density then it will strongly support the case for an evolutionary 

universe. The average spectral index is expected to be independent of 

flux density in a steady-state universe. 

Many processes can produce a time varying spectrum and these 

have been discussed by Kellermann (1964, 1966) and Kardashev (1962). 

It is thought that electron losses in radio galaxies are due mainly to 

synchrotron radiation. If this is the case, then the electron energy 

distribution and consequently the radio spectrum will be non-

stationary. Integrating equation (5.33) we find that the time taken 

for an electron with initial energy ,E0  to decay to half its original 

value is 

8.89 tX 10 -3 
years 1/ 2 	

H 
2
E o 

(5.39) 

where as before E
o 

is measured in GeV. These energy losses are 

responsible for a "break" in the radiation spectrum at a frequency vc  

given by 
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10 3  
 

3 	
MHz 

•- 
H t2 years 

(5.40) 

At frequencies greater than vc  the spectral index changes to a value 

of a + 0.5. Electron losses by the inverse Compton effect, like the 

synchrotron losses, are proportional to E 2  and will therefore influence 

the radiation spectrum in the same way. These processes can only lead 

to a steepening in the source spectrum and, after sufficient time has 

elapsed, the critical frequency, vc , will fall below the observable 

frequency range and the spectral index will have a constant value equal 

to a + 0.5. 

The stronger radio sources are expected to have relatively 

intense magnetic fields and an electron population will lose energy 

primarily by synchrotron radiation whereas, in the weaker sources the 

electrons will probably lose energy by some other process. These 

general arguments are supported by figure 5.7 in which the spectral 

indices of identified sources are plotted as a function of their total 

radiated power. The data for figure 5.7 have been derived from flux 

densities and spectral indices of optically identified sources listed 

in the 3C and Parkes catalogues. Now according to equation (5.12) the 

flux density is related to the emitted power by 

S(v)dv = 
P(ve)dve  

(5.40 
47rD 2  

where D is the luminosity distance. Integrating between a lower cut- 
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off frequency vi and upper cut-off frequency v2 of the emission 

spectrum and employing equation (5.36) we have 

1 
V
2 	v2 

4nD2  I cv-a dv = I P(ve)dve  
V 1 

1 
vl 

(5.42) 

where vl = (1 + z)v;, v2  = (1 + z)v;. It follows that the total 

emitted power is 

Pe  = 4nD2 (1 + z) a-i S t 
 

(5.43) 

where 

V2 
1-a 	1-a S t  = I cv

-a
dv = 1  _ a  [v2  

v 1 
1 

(5.44) 

In this analysis the critical emission frequencies were chosen 

to be vl = 10 7  c/s and v2  = 10" c/s. Also, a Taylor expansion for 

the luminosity distance defined in (5.10) yields 

c  1 
D =  z( 1 + - z) 

Ho 	2 (5.45) 

for q0  = 0 and values of redshift z <‹ I. This formula for distance 

will of course be inaccurate at large redshifts but it serves to give 

an approximation to the problem. Using equations (5.43)-(5.45) the 

radio luminosities of 3C and Parkes sources were calculated and the 

results are listed in Table 7. Matthews et al. (1964) have also 

calculated some source luminosities but they did not include in their 

equations the bracketed term of equation (5.43). This would lead to 
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an error in their quoted luminosities depending on the spectral index. 

However, the uncertainty in the cut-off frequencies vl and v2 would 

probably mask any errors due to redshift effects. 

Inspection of figure 5.7 indicates that there is only a very 

weak correlation between power radiated and spectral index. In fact 

the correlation coefficient is only 0.017 with a standard error of 

0.03 implying that the two quantities are practically independent. 

These results are different to those of Kellermann (1964) who finds 

a (fairly weak) relation in the sense that weaker sources have flat 

spectra. 

Any analysis of spectral index and flux density will contain an 

obvious selection effect. This is the progressive increase in the 

percentage of detectable sources of large absolute power with 

decreasing flux density. Now, from equation (5.10) and (5.43) the 

total emitted power for sources in a steady-state universe will be 

4nc2  z20  zw-ast  Pm  - 
2 

Ho 
(5.46) 

while for evolutionary universes 

Pm  = 4nq:. T 12( (w)(1 + z) 1+aSt 
 (5.47) 
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The average spectral index for Parkes radio sources has been 

calculated to be a = 0.84, and assuming the sensitivity of the telescope 

to be 3 f.u. at 408 MHz, equations (5.46) and (5.47) may be used to 

plot the average minimum luminosity of detectable sources as a function 

of redshift. This has been done in figure 5.8 for the steady-state 

universe and evolutionary universes with defining parameter a o  = 0.5 

and a series of values for g o . The average minimum luminosity, P m , 

increases rapidly in the steady-state model for redshifts greater than 

one while Pm  also increases but at a slower rate for open and flat 

evolutionary universes. In closed world-models P m  attains a maximum 

value. The ratio of the average minimum of source luminosity detectable 

in a steady-state model to that detectable in evolutionary cosmologies 

is derived directly from equations (5.46) and (5.47). The result is 

R = (POOPOE = z2 
 2 
0 

2 2 Tk(w)R0H0  

and using equation (3.21) this becomes 

2 
R = z /T(w) 	 (5.48) 

= 1 q0  + 1 - 3(1 + co)a0 lz2 /I12( (w) 	k 0 0 

Plots of R versus z are presented in figure 5.9 for qo  = 0, To  = 3°K 

and a series of values for ac,.  The properties of this ratio are 

evident from the diagram and do not require further cement. 
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We now examine in some detail the effect of decreasing the flux 

density S(v) on the number of observable sources which have a 

luminosity P(v). Suppose initially, that in evolutionary universes 

radio sources do not have luminosities that are functions of epoch 

and further there is no spatial evolution in source density, i.e. the 

number of sources per unit co-ordinate volume remains constant. Then 

the luminosity distribution at an epoch corresponding to an expansion 

parameter y will be 

P(P) = y-3 p0(P) 
 

(5.49) 

where p c)  is the number of sources with power P in unit proper volume 

at the present epoch. Employing equation (5.4), the total number of 

sources with power P in proper volume dV will therefore be 

dN(P) = p(P)dV 

= po(po)(po/p) 3/2e-x2/2a 2 1,73 
- dV (5.50 ) 

Now it is obvious from the metric (3.4) that the volume element is 

dV = R3(t) r 2  sinOded0dr  

(1 + kr 2/4) 3  

Integrating over 4.rr steradians and using equations (3.8) and (3.9) 

we have 
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dV = 47r114;y 31(w)dw 
	

(5.51) 

and substituting in (5.50), we have for evolutionary universes • 

dN(P) = R(ITiMpo(po) (poip)3/2e -x2/2a2dw 	(5.52) 

as the number of sources per steradian in the angular co-ordinate 

interval du. 

The flux density as measured by the origin observer is related 

to the emitted power by 

P(v9dvi  
S(vddv r - 

where as before D is the luminosity distance and P has units 

- 	-1 	- 
w (c/s)

1  sr . Substituting v' = v_y 1  and using equation (5.35) we 

obtain 

p (v)(v/vday'" 
S(v d -  	 (5.53) 

R 211(w) 
0 

- = GPy (i+a)  T 2k  (w) (5.54) 

D 2  

where G = (v/vd a/q)  and P is the luminosity at frequency v. Now 

differentiating the last equation 
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dS 
2T(w) 

k  aw 
c-w= Sr- 1. 1---(70--  (1 + ct) iy] (5.55 ) 

where T I (w) - 
k  Dto 

Substituting this last equation into (5.52) we have for the 

number of sources per steradian of luminosity P observed in the flux 

interval dS at S 

dN(P) 
- Ropo (P0)(Po/P)

3/2e
-x2/2a2T

12(
(w)

-1
[(1 ay 

3 

211( (w) 3w 

C171.--1/  

 

dS 

(5.56) 

9w 
and as before  - 

ay 

 

RoHopT(7) 

The solutions to equation (5.56) are shown in figures 5.10 and 

5.11 for ao  = 0.5 and a series of values of g o . The observational 

frequency was chosen to be v r  = 408 MHz while the luminosity 

distribution was identical to that derived in section 5.2. The 

distribution is defined for a frequency v = 178 MHz. Curves of 

log (dM/dS) versus log (P/P o) are given for three different values of 

the flux density S. Although the maxima in these curves move to lower 

luminosity as S decreases the result is still a progressive increase 

in the percentage of sources of high luminosity. In a particular 

flux density range, the number of sources is greatest in a closed 

world model and for a particular cro  the number decreases with 

aTk (w) 
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In the steady-state model the source luminosity distribution 

must be independent of epoch. Hence the number of sources in an 

element of proper volume will be 

dN(P) = p0 (120)(P0/12) 31'2 e
-x2/

2°2dV 

and using (5.51) with a o  = 0, qo  = -1 for the steady-state we have 

_ 
d19(P) = -po(P0)(Po/P)3/2 e

x2/2a2 
 (  ) 4 (1 - y) 2y-idy 

Ho  

(5.57) 

is the number of sources per steradian in interval dy. 

Also, for the steady-state universe, the flux density is related 

to the emitted power by 

H2  
S(v r) = P(v) (v/vd ct  —2' ( I  - 1)-2 y  +a ) 

c2 Y 
(5.58) 

from which it follows that 

ds  2 
.a-17= s[ 	4- (1 + a)/y1  (5.59) 

Hence from the last two equations, we have for the steady-state 
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models 
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I dM(P) I 

dS  
I = 130(P0)(Po/P)3/2e-x2/2a2( c 

1-1; )30  Y) 3 S -1  

x [2 + (1 + a)(1 - Y)) -1  (5.60) 

is the number of sources with power P observed in the interval dS at S. 

The plots of log IdM/dS1 against log (P/Po) Ile just below the curves 

for cio  = 5 in figure 5.10. 

We return now to the problem of a possible correlation between 

spectral index and flux density. The source spectra should evolve 

with epoch due to electron energy losses by synchrotron radiation. 

This effect is expected to be greatest for the more powerful sources 

in which the magnetic field strengths should exceed average values. 

Furthermore, the percentage number of high luminosity sources in any 

sample increases as observations proceed to lower flux densities. 

On the basis of this evidence a dependence of average spectral index 

on flux density would not be unexpected. Ko (1966) has made a limited 

investigation of the spectral index distribution for sources listed 

in the Parkes catalogues between declinations -20 °  to -90 0  (Bolton 

et a)., 1964; Price and Milne, 1965). He considered three different 

flux ranges and found the median spectral index to be essentially 

independent of flux density. 

Sources listed in the complete Parkes catalogue (Ekers, 1969) 

were examined for any evidence indicating a relation between spectral 
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index and flux density. The catalogue comprises a total of 1780 

sources in a declination zone +20 0  to -90° and the source data are 

somewhat improved over that presented in the previous catalogues. 

Six different flux ranges were considered at 408 MHz; S >, 10, 

5 < S< 10, 4 < S< 5, 3 < S < 4, 2< S< 3, S < 2. The number of 

sources and their mean spectral index was calculated for each flux 

density range. Also as described earlier, the source spectral index 

may increase (by synchrotron losses) by a value of 0.5 for frequencies 

greater than the critical frequency v r  defined in equation (5.40). 

In order to investigate this effect the change in a over the frequency 

range 408-2650 MHz was examined for each source. The total number of 

sources with spectral indices increasing by a value between 0.4 and 

0.6 was determined for each flux range. The results are presented 

in Table 8. 

Table 8 

Spectral Index Distribution for Radio Sources 

Flux Range 
No. of 

Sources a 
No. with 
a+a+0.5 Percentage 

10 < S 83 0.84 3 3.5 

5 < s < 10 232 0.78 8 3.4 

4 < s < 5 178 0.83 10 5.6 

3 < s < 4 342 0.89 21 6.2 

2 < S < 3 426 0.84 32 7.5 

S< 2 363 0.70 7 2.0 



147 

A total of 1624 sources were included in the analysis for 

Table 8 and the sample is obviously large enough for reliable 

statistical conclusions. There is clearly no correlation between 

and flux density for S > 2. The result for S < 2 lies well outside 

a 95% confidence limit and appears significant. However, the low 

value obtained for 5 in this case is almost certainly due to 

observational selection effects. The finding survey at 408 MHz was 

made with an instrument sensitivity of only 4 f.u. in the declination 

zone -20° to -60° and 2.5 f.u. in the other zones. It may therefore 

be concluded that there is no correlation between flux density and 

spectral index. This result is not surprising since we have no 

indication of a correlation between source luminosity and spectral 

index. 

Furthermore, there is no evidence for a functional dependence 

of spectral index on redshift for the identified sources for which 

redshifts have been determined. This is illustrated in figure 5.12 

for radio sources listed in Table 7. The spectral index is seen to 

be independent of redshift for both ordinary radio galaxies and quasars. 

The remaining results in Table 8 reveal that the percentage 

number of curved spectra (of the type a + a + 0.5) increases with 

decreasing flux density. This effect may be explained in terms of 

electron energy losses for radio sources in either a steady-state or 

an evolutionary universe. 
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The shape of a source emission spectrum depends on the rate of 

Injection of relativistic electrons. According to equation (5.40), 

the entire emission spectrum for frequencies greater than 

- 	 1000 
vc =  (5.61) 

H 3T2  

has a spectral index i + 0.5 provided t >> T where T is the average 

period in years between bursts. The quantities defined in equation 

(5.61) relate to the average source spectrum. We have already seen 

that the typical lifetime of a radio galaxy is in the range 10 6  to 10 7  

years. The period T may be expected to be of the same order of 

magnitude. 

The average value of T must be constant independent of epoch in 

the steady-state models. The corresponding average cut-off frequency 

will be redshifted by expansion of co-ordinates. The analysis in 

Table 8 has assumed a cut-off frequency :i co  close to 1410 MHz. In 

this case the source emission spectrum will have an average cut-off 

frequency 

	

= co( 	1 	z) 
	

(5.62) 

Hence in a steady-state universe the number of sources with curved 

spectra will reach a maximum at the flux density corresponding to 

= Nlc . There is no evidence for such a maximum in Table 8 but this 



150: 

certainly does not provide an argument against the steady-state. model. 

Substituting in equation-(5.61) a tYPical,field strength H = 5 x 10w6  

oersted it follows that the.source cut7off frequency lies in the 

range 8 x 104  to 8 x 106  MHz for 106  < 1< 10 7 . These values for Zi c  

would imply a very low value of flux density before a large percentage 

of sources with curved spectra could be detected in the frequency 

range of interest here. On , the other hand a value for T much greater 

than 107  years would produce a very marked increase in this percentage 

as the flux density is decreased. The results in Table 8 are therefore 

consistent with a period of electron injection of the order. of 10 6  

years. 

In evolutionary universes the rate of occurrence of the 

disruptive events responsible for radio emission is expected to 

decrease with advancing epoch, that is the period T decreases with 

increasing redshift. This would modulate the effect described above 

for steady-state models. The net result is a weakening of the 

functional dependence of the number of curved spectra with flux 

density. The amount of weakening will depend on the relation between 

T and redshift. As in the case of the steady-state the results in 

Table 8 are not inconsistent with the predictions of the evolutionary 

model. 

In conclusion, we may assert that the spectral index-flux 

density results given in Table 8 do not provide evidence for steady- 
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state or evolutionary cosmologies. The average spectral index may 

be considered to be practically independent of epoch. The results 

indicate that the period of electron injection in radio galaxies is 

probably less than 10 7  years. An analysis of the spectral index-flux 

density relation could produce useful results if a higher frequency 

range was considered. 

5.6  Number-Flux Relations  

In this section equations are derived which relate numbers of 

observable radio sources to flux densities. These equations will 

provide valuable information for selection of a cosmological model. 

First, the total number of sources observable in a flux interval 

dS at S may be derived. If luminosity and source density evolution 

are assumed to be absent, then from equation (5.54) 

dm  
= 

T2 -(i+a)
S[ 

2T' 
dy  Y  

aw  - (1 + a)/y]/GP0  (5.63) 
ay 

for evolutionary universes with m = P/P o  as before. Using this result 

and equations (5.8) and (5.56) it follows that the total number of 

sources observed in the interval dS and in unit solid angle is 
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dN(m) 	dN(m) 
1  = 	 A 

	

dS 	dS - d(log m) = I - um m 0 

v 3a/2 3/2 -5/2  
= -Po (P0)(TJT)  Po S 

	

1 	2/ 2  -1 ) 3(1.1.a)/2dy  
(5.64) 

-x 2a w T (w  I e ay  k 0 

or writing the last equation in a simplified form 

d1 	I 1 

LI = -K(v r , S) I F(y)dy 
dS 0 

(5.65) 

Suppose, now, that the number of sources per unit co-ordinate 

volume varies smoothly with epoch. The number of sources per unit 

proper volume at the epoch corresponding to an expansion parameter y 

may be written as 

0(P, 19) = po(P0)(po/p)3/2e-x2/2a2 -(3+n) 
	

(5.66 ) 

In this case equation (5.65) becomes 

 

 

dN t  I 	 1 

	

= -K(v r , S) I 	F(y)y-ndy 
dS 

Yo 

 

 

(5.67) 

  

where yo  is, as yet, an undetermined lower limit of integration. 

If the average source luminosity is a function of epoch then 

the luminosity of a particular radio galaxy may be written as 

dN t  

dS 



153 

- P = P'y a  (5.68) 

where P' is the luminosity at the present epoch and a is a constant 

expected to be positive. The spatial luminosity distribution at the 

epoch corresponding to y will then be 

P(P ' Y )  = 
P0(120)(P0/15)3/2e-X2/ (12  -30 / 2 

Y (5.69) 

The equation for the number of sources in flux interval dS then 

becomes 

- -K(v r , S) f F%Y/Y 3a/ 2dy 

Yo 

dN t 

dS (5.70) 

for evolutionary universes in which source luminosities vary smoothly 

with epoch. 

The steady-state universe does not allow spatial or luminosity 

variations for radio sources. According to equation (5.59) 

dm  S  v  c2  
r % a  , 1  -(i+a)  2  

dy =  ---) -IF t 	1)2 Y 
o  v  Ho  Y  - y) 

+ (1 + (1)/y]  (5.71) 

Hence substituting in equation (5.60) we have 
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t  = 
= 1 

-co 
I 

I 	dN(m) 

d(log m) dS dS 

= K(v r , s) f
1 e-x2/2a

2y ( 5+a)/2
dy 
 

(5.72) 
0 

where K(v r , S) is defined in equation (5.65). 

The theoretical models should now be compared with the 

observational results. In figure 5.13 the ratio IdN t /dSI is plotted 

against flux density for all radio sources listed in the Parkes 

catalogues at a frequency of 408 MHz. The theoretical prediction for 

models without source luminosity and density evolution are examined 

first. The appropriate equations are (5.65) for evolutionary models 

and (5.72) for the steady-state models. The luminosity distribution 

for sources at the present epoch is defined as usual through equations 

(5.4) and (5.7). The theoretical curves are superimposed on figure 

5.13. The evolutionary models are defined by a o  = 0.5 and a series of 

values for qo  while the black-body radiation temperature is given the 

value of 3°K as usual. The average spectral index is assumed to be 

independent of epoch as implied by the results in Table 8. 

Inspection of figure 5.13 shows that neither a steady-state nor 

an ordinary evolutionary model can account for the observed curve of 

IdNt/dSI versus S. Consequently we are forced to consider spatial 

and luminosity evolution for radio galaxies. 
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First, suppose that the number of sources in unit co-ordinate 

volume is proportional to y" where n > O. The quantity ItiN t/dSI as 

a function of S is now given by equation (5.67). Once the cosmological 

model has been chosen there remain two parameters, y o  and n, which may 

be determined by fitting the theoretical curve to the observational 

points. A computer program was evolved to calculate the parameters y o  

and n for a least squares fit condition. The program minimised the 

function 

F(00 , go , yo , n) = E [R(Si) - R0 (Si)] 2  

where R is the theoretical value and R o  the observed value of the ratio 

IdN t /dSI at flux density Si. The parameters ao  and qo  were chosen and 

the function F(yo , n) minimised with respect to yo  and n. The results 

are summarised in Table 9. The values for F n  are the minimum values of 

F for each model which have been normalised to the minimum value of F 

for the model ao  = 5, qo  = 2. That is Fn  provides a measure of the 

relative goodness of fit. The best fit theoretical curves require 

values for yo  and n which in general increase with decreasing (1 0. There 

is a tendency also for F n  to increase with decreasing ao  but the effect 

is very weak. A stronger relationship between F n  and the parameters 

defining the cosmological model may be expected if the limiting flux 

density of the survey could be reduced. The limiting flux of the 

recent 5C surveys (Ryle, 1968) is close to 0.01 f.u. at 408 MHz. It is 

probable therefore that greater information on cosmological models may 

be derived from an examination of the SC source counts. This is done 
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4.006 2.672 1.2 
3.815 2.545 1.1 
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4.556 3.039 2.3 

4.571 3.049 1.3 
4.579 3.054 1.2 
4.512 3.009 1.2 
4.521 3.016 3.3 

yo 

0.141 
0.103 
0.167 
0.254 

0.243 
0.199 
0.219 
0.488 

0.267 
0.312 
0.367 
0.537 

in the following section. 

If radio source luminosity varies according to the law 

P(y) = P(1)y-8  then the ratio IdN t /dS1 is given by equation (5.70). 

It is evident that minimisation with respect to yo  and 0 will yield 

the same value of yo  and a value for 0 equal to two-thirds of the 

value of n derived for the case of spatial evolution. The results 

for a are listed in Table 9. 

Table 9 

Cosmological Parameters from Parkes Source Counts 

5.7 The Log N - Log S Relation  

15 7 

It is well known that in Euclidean universes 
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) 	3/23/2 = - pP S 3 (5. 73) 

where N is the number of radio sources per steradian with flux 

densities exceeding S, P is the mean luminosity and p is the number 

of sources per unit proper volume. According to equation (5.73) the 

log N - log S relation for sources of the same intrinsic power in a 

Euclidean universe will be a straight line of slope equal to - 1.5. 

The precise form of the log N - log S curve depends on the assumed 

cosmology and on the dispersion in radio source luminosity. A 

theoretical analysis will therefore provide useful evidence for a 

cosmological model. 

The form of the number-flux relation has been investigated in 

some detail by many authors (e.g. Ryle and Clarke, 1961; Dort, r961, 

1964; Sciama, 1963; Scott, 1963; Davidson and Davies, 1964; Gower, 

1966; Longair, 1966). All these analyses have assumed a functional 

dependence between source luminosity or spatial density with epoch 

and none have allowed for the possible effects of the space-time 

geometry on the log N - log S curve. 

Here, we assume initially that the number of sources per unit 

co-ordinate volume is constant and that all sources have the same 

luminosity Po  independent of epoch. In this way it is possible to 

separate out the geometrical effects and to establish a log N - log S 

curve for a particular cosmological model. As a further simplification 
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the radiation density and pressure terms are assumed to be negligible. 

Under these conditions the number of sources in unit solid angle (as 
• 

measured by the origin observer) out to an angular co-ordinate w is 

w  _ 
N = I pdV = f p0y

3 
 dV 

0 

3  w  2 
= p0R0  I Tk(w)dw 

0 
(5.74) 

where po  is the present spatial density of radio galaxies. Recalling 

that Tk(w) = sin w for k = 1 and Tk(w) = sinh(w) for k = -1 the last 

equation may be written in a more simplified form 

3 
Peo 

N(w) = 2  k[ - 0.5Tk(20]  for k 0 

and 
 

N(w) = p o 
 Rgw 3 	

for k = 0  (5.75) 
3 

The received flux density as a function of y (or 0 is easily 

derived from equation (5.13) and N(w) will be the number of sources 

detected with flux densities exceeding S. If the source luminosity 

- 
is taken as the weighted mean value of 8 x 1025  watts (c/s) -1  str

1 
 

at 178 MHz then from equation (5.3) the number of sources per unit 

-75 - 
proper volume at the present epoch is p 0  = 4.2.11 0  m 3 . Substituting 

these values in equation (5.75), the log N - log S curve may be 

computed for different world models defined through the parameters 

ao  and go . The results are presented in figure 5.14. The form of 
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the log N - log S curve is seen to be a strong function of the 

cosmological model at relatively low values of flux density. The 

theoretical curves should be compared with the observed log N - 

log S curve presented in figure 5.15 for radio sources at 178 MHz. 

The experimental results used to derive this curve have already been 

described in section 5.2. The comparison indicates that it is rather 

difficult to reconcile the theoretical and experimental results for 

this particular model for radio source luminosities and spatial 

density. It is obvious, however, that the choice of a world-model 

will strongly modulate any theoretical curve, particularly at low 

•flux densities. Gower (1966) considers that the variation of source. 

spatial density could be determined from the source counts if all 

radio sources were of a single power. But this apparently is not 

the case since, according to figure 5.14, large deviations from the 

expected straight line relation of slope equal to -1.5 in steady-state 

• and Euchlidean universes may be produced by an appropriate cosmological 

model. 

The problem is now to derive some equations for the log N - log S 

curve which allow for the geometry of space-time. The observational 

curve has a slope of about -1.8 and a cut-off at a flux density near 

to one flux unit. Both these features must be accounted for by any 

theoretical model. Gower (1966) has considered density evolution in 

Einstein-de Sitter world models in order to account (approximately) 

for the observed log N - log S curve. Similarly, Longair (1966) has 

• 
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investigated the radio source counts by allowing for both luminosity 

and density evolution in an Einstein-de Sitter universe. He also 

used the log N - log S curve to derive a more precise luminosity 

distribution for local radio sources. 

Here, we first of all examine the effects of introducing a 

luminosity dispersion of the form (5.4). Consider a three-dimensional 

volume element dV at the epoch corresponding to expansion parameter y. 

The number of sources in this volume which are measured by the origin 

observer to have flux densities greater than S is determined by 

equation (5.54). All those sources in dV with luminosities greater 

than 

P' = S x T4(w)y -cg/G 
 

(5.76) 

will have detected flux densities greater than S. Hence the number 

of observed sources (in dV) per steradian with flux densities exceeding 

S will be 

CO 

dM(S, y) = I  dn(m) dV 
m I 

(5.77) 

where n(m) is defined from equation (5.8), m' = Pi/Po  and m = P/Po . 

Substituting for dV and integrating between the two extreme values 

for y we have 
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,4 	7 
N(S) = -p0 (P0)Rg 	m-5/' 2e

2/„2
--' dm Ti(w) 	dy 

0 m' 
(5.78) 

where according to equations (4.3) and (5.8) 

d(m) = p0(P0)m
-5/2

e-x2/202dm y.3 
 

(5.79) 

Equation (5.78) provides an equation for the log N - log S curve for 

evolutionary universes in which radio sources have a luminosity 

dispersion defined by equation (5.4). 

In steady-state models n(m) is independent of epoch and hence 

d(m) = p0 (P0)m
-5/2

e
-x2

dm (5.80) 

Using the expression for dV defined in equation (5.57) the equation 

to the log N - log S curve in a steady-state universe is 

1 	co 
N(S) = -P0(P0)(  ) 3 j  I m

.5/2
e
.)(2/202

dm(1 - y) 2y l dy 

0 	0 m' 
(5.81) 

where according to equation (5.58) 

V  2 
me  = 	( r ) a 	( 1 _  

Po 	V Y 
(5.82) 



165 

The degree of dispersion in the source luminosity function is 

determined by the standard deviation a and its effect on the log N - 

log S curve may be determined through equations (5.78) and (5.82). 

For purposes of illustration an Einstein-de Sitter universe has been 

assumed in the evolutionary case. Clearly, for a chosen world-model, 

the slope of the log N - log S curve will be modulated by the term 

f (m/ )  f m-5/2e -x2/2a2  
dm 

1 
(5.83) 

and, for finite values of a the magnitude of the slope will be less 

than that in the undispersed case. This situation is illustrated in 

figure 5.16 where the log N - log S curve (at 178 MHz) is provided 

for the Einstein-de Sitter universe in which the radio source 

luminosity has a standard deviation of three. The curve is normalised 

to fit the observations at S = 30 f.u. and obviously the slope of this 

line is considerably less than required. The same general conclusions 

apply to the log N - log S curve in steady-state models as indicated 

by the broken line in figure 5.16. The inability of these models to 

account for the observed log N - log S curve forces us to consider those 

models which admit radio source luminosity and density evolution. 

Using the same arguments described in section 5.6 the number 

of sources with flux densities exceeding S will be 
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( 	
1 

	

PO‘PwRg f 	m 	e 	dm T y -5/2-x2/202 	9 	n 
-(w) 	y -n  N(S) 	- . 

Yo ms 	
k 	ay 	d 

for models in which the number of sources in unit co-ordinate volume 

is proportional to y-n • Similarly, 

1 	03  3 	-5/2 -x2/2a2  
N(S) = -p0 (P0)Ro ffme 

yo m'  

m T2 (w) •1). y-3°2  dy k 	ay 

(5.85) 

- 0 for models in which source luminosity is proportional to y. 

Recent work has extended the number-flux density relation to very 

small flux densities (Pooley and Ryle, 1968; Ryle, 1968). The new 

observations were made with the Cambridge One-Mile Telescope at a higher 

frequency (408 MHz) than that of the 4C survey. - The improved log N - 

log S relation is shown in figure 5.17. The slope of the line drawn is 

approximately constant at -1.85 for S 408  > 4 f.u., and at lower flux 

densities changes progressively to about -0.8 in a range of 10 3  in S. 

A computer program was developed to fit the theoretical curves 

given by equations (5.84) and (5.85) to the experimental points of 

figure 5.17. The program implemented a revised version of the function 

minimisation procedure described by Nelder and Mead (1965). Although 

this procedure has no strong theoretical basis, it provides the most 

useful general method that does not require the partial derivatives as 

well as the function values. Here a minimum value must be obtained 

(5.84) 
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for the function 

F(00 , go , yo , n) = E [N(S i ) - 110(S)]2  wi 

where N(Si) is the theoretical source count given by equation (5.84) 

and No (Si) is the observed source count for sources having flux densities 

greater than Si. Each source count was given a weight wi according to 

the inverse square of its r.m.s. uncertainty. The results of the 

analysis are listed in Table 10 for different cosmological models 

defined by 00  and qo  with To  = 3°K. For each ao , the value of qo  is 

listed which provides the best fit condition. The values Fn  are the 

normalised values of the minima of F(yo, n) and provide a measure of 

the relative goodness of fit. The minima of F are found to be quite 

unique and well defined. There is a general increase in the values of 

yo  and the indices n and 0 with decreasing 00 . Moreover Fn  increases 

with decreasing 00  indicating that the best fit condition occurs for 

large values of 00  and relatively large positive values for the 

deceleration parameter g o. Reference to the discussion in section 4.3 

shows that the best fit condition is provided by those models which are 

closed and in a state of rapid expansion. Furthermore, these models do 

not require extremely strong evolutionary functions for source luminosity 

and density. If the value of yo  corresponds to the epoch of galaxy 

formation then the evidence from the source counts indicates that this 

event must occur at a very late stage of cosmic evolution for models 

having small values of a o . The restriction on yo  (and therefore on the 

maximum redshift at galaxy formation) is much less severe in models 

169 
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The derived results expressed as a plot of N/N o  against S408 where No  is the number 
of sources expected in a static Euclidean universe. The best fit condition to the 

source counts yields the full curve for the world model defined by Go  = 5, (1 0  = 2.5 

and the broken line for the world model defined by ao = 0.5. go = - O- 47 - • 
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The quality of the fit to the experimental results is shown 

in figure 5.18. The expected number of sources, N o , with flux 

densities greater than S has been calculated for a homogeneous 

isotropic universe and after normalisation to N o  = 6.2 per steradian 

at S
408 

= 15 f.u. Plots of log (N/N 0) against log S are provided 

for two world models defined by the parameters 00  = 5, qo  = 2.53 and 

00  = 0.5, qo  = -0.47. Clearly a very good fit is obtained by the 

first model whereas the second gives an excessive number at high flux 

densities and a number which is tow, at small values of S. 

Table 10 

Cosmological Parameters from 5C Source Counts 

go go Yo z
max 

0 Fn  

5 2.53 0.112 7.9 3.21 2.14 1.0 

3 1.38 0.215 3.7 3.73 2.49 1.1 

2 0.93 0.249 3.0 4 . 26  2 . 84  1 . 5  
0.36 0.364 1.8 4.59 3.06 2.1 

0.5 -0.47 0.397 1.5 4.97 3.31 2.8 

It is worthwhile to recapitulate here the arguments which have 

led to lhe results just described. First the luminosity distribution, 

n(P), has taken to be Gaussian in log P/P0  and this is apparently 

171 
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close approximation to the real situation. Next, the local spatial 

distribution p 0(P) was derived from the observations. The average 

spectral index was assumed to be independent of epoch as suggested 

by the observations while luminosity and spatial evolution were 

assumed to vary smoothly with the expansion parameter y. All radio 

sources were considered to evolve as a single class of objects and 

the parameters yo , n and 0 were determined for the best fit condition 

for a series of values for ao . 

These results are in some disagreement with the conclusions of 

Longair (1966) who states that a large number of cosmological models 

may be fitted if all sources are allowed to evolve. However the 

luminosities of the sources which contribute most significantly to 

the source counts at a particular flux density are determined by the 

lower-limit of integration, m', in equation (5.89).. We recall that 

m' = S x T()k  w y
a 
 /G Po  

2  - 

and inspection of this equation in relation to equations (5.84) and 

(5.85) shows that the greatest contribution to the source counts at 

lower flux densities is provided by the relatively powerful sources 

with m > m' > 1. Thus it is irrelevant whether or not radio sources 

evolve as a single class of objects. The same general results will 

be obtained as those described above if only powerful sources evolve. 
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There may be some evidence for an excessive number of quasars 

at cosmological distances (Sandage, 1968) and this will produce 

appropriate changes in the source counts at low flux densities. It 

is therefore tempting to explain the source counts in terms of the 

evolution of quasi-stellar sources as suggested by Longair (1966). 

Some mention should be given here of the implications of the 

source counts to the steady-state cosmology. Hoyle (1967) considers 

that the slope of the log N - log S curve may be accounted for by 

quasi-stellar sources which have a particular luminosity distribution. 

In this analysis the luminosity distribution has been derived for all 

radio sources and the observed log N - log S relation is accounted for 

by subsequent theory. Moreover, we have found that the introduction 

of a finite dispersion for source luminosities decreases the 

magnitude of the slope of the •curve log N versus log S instead of 

increasing it as required by the observations. There is some 

evidence that the log N - log S curve for quasars has a slope of 

about -2.2 (Veron, 1966). This could account for the source counts 

in a steady-state cosmology only if the average spectral index of 

quasars is considerably greater than that of ordinary radio galaxies. 

However, there is no evidence at all for such a result. It is 

possible to retain the steady-state theory by invoking irregularities 

in the distribution of sources on the scale of the observable universe 

itself. This requires a special position for the Galaxy in order to 

account for the isotropy and, as pointed out by Ryle (1968), the 
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probability of such a situation is =10 -6 . The easiest and most 

satisfactory explanation of the source counts is that radio galaxies 

evolve with advancing epoch as should be expected to some extent in 

an evolutionary cosmology. 

The calculated upper limits of the redshift for each model is 

listed in Table 10. It is interesting to note that the observed 

distribution of quasi-stellar sources appears to exhibit an abrupt 

cut-off at z = 2.2 (Longair and Scheuer, 1967). Other authors 

(e.g. Eggen et al., 1962; Ueymann, 1967) have suggested that galaxy 

formation occurs at epochs corresponding to z = 4.8. The results in 

Table 10 do not disagree with any of these estimates but indicate that 

the best fit to the source counts is secured by models having 

relatively large values of zmax• On the basis of present available 

evidence it is not possible to determine whether z max 
corresponds to 

a cut-off in source emission or to the epoch of galaxy formation. 

This point will be discussed further in subsequent analyses. 

5.8 	Conclusions  

The analyses in this chapter have been concerned with observable 

quantities associated with radio sources. Special attention has been 

given to the application of source data to the solution of the 

cosmylogical problem. The investigation into possible clustering of 

radio sources has indicated that source positions are random down to 
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a scale of 15' of arc. An analysis of the spectral indices for 

sources listed in the Parkes catalogues yielded a mean index of 

a = 0.84 which was found to be practically independent of source 

redshift or luminosity. A luminosity distribution has been derived 

for local radio galaxies. The distribution at 178 MHz is found to be 

almost Gaussian in log e (P/P0) with a standard deviation a = 2.05. 

Assuming that source luminosity or density in co-ordinate volume 

varies smoothly with the expansion parameter, it is possible to 

analyse the source counts for different cosmological models. The best 

fit condition is attained by those models having large values for the 

density parameter co  and deceleration parameter go . Reference to 

section 4.3 shows that these models are closed and oscillating. The 

evolution in source luminosity or density becomes less severe with 

increasing co. Large positive values for g o  are in good agreement 

with the value of go  = 1.65 t 0.3 proposed by Sandage (1968). The 

source count results are also supported by the results of the analysis 

of the distribution of source angular diameter with redshift. Hence 

the evidence presented in this chapter points to a dense and rapidly 

oscillating universe. 
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CHAPTER VI  

RADIO WAVES IN THE INTERGALACTIC MEDIUM  

6.1 	The Universal Plasma  

Various cosmological theories predict a mean density for the 

universe which, according to Oort (1958), is about two orders of 

magnitude greater than the mean density of matter in galaxies 

averaged over all space. Similar results have been found by other 

workers (Sandage,1961; Hoyle and Narlikar, 1962; Sciama, 1964) from 

analyses based on steady-state and evolutionary cosmologies. They 

find a mean value for the density of matter in the universe of 

approximately 2 x 10
-29 

g cm
-3 , whereas the mean density of matter 

in the galaxies is about 5 x 10
-31 

g cm
-3 . If it is assumed that 

there are no aggregations of matter in the universe other than the 

types of galaxies already known, then there is a problem of the 

specification of the intergalactic material. For the lack of any 

other evidence, the bulk of the matter density is attributed to 

uncondensed -intergalactic hydrogen. There are several experimental 

results that support the argument for an intergalactic medium of 

ionized hydrogen, although it should be noted that there is no 

direct evidence for an ionized medium and the only information 

obtained so far concerns atomic hydrogen. Goldstein (1963) made 

measurements of the 21 cm line emission in the direction of the north 

celestial pole, and concluded that the intergalactic atomic hydrogen 

density is nH < 2.1 x 10
-25 cm-3 . According to the measurements by 
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Davies (1964), on the absorption spectrum of Cygnus A, n H  is less 

than 9 x 10
-8 

cm-3 for an Einstein-de Sitter universe. Gunn and 

Peterson (1965) examined the redshifted Lyman a-line of the quasi-

stellar source 3C 9 for any evidence of photon scattering by 

intergalactic hydrogen. They found the spatial density of atomic 

hydrogen to be almost negligible for several cosmological models. 

On the basis of these results, it will be assumed in the following 

work that all the matter in the universe exists as ionized hydrogen. 

The thermal history of the universal plasma is of fundamental 

Importance to any analysis of the background radiation. Several 

authors have considered the question of the temperature of the 

intergalactic gas, and a brief account will be given summarizing 

these investigations. A useful upper limit to the temperature at 

the present epoch can be calculated from the requirement that the 

background intensity cannot exceed the observed flux in the X-ray 

region of the spectrum. This method was employed by Field and Henry 

(1964) to derive an upper limit of 4 x 106  °K in the steady-state 

model and 3 x 106 °K in evolutionary models. These results proved 

the hot (109 °K) universe proposed by Gold and Hoyle (1959) to be 

Invalid. Kahn and Woltjer (1959) obtained a temperature of 5 x 106  °K 

for the ionized hydrogen in the local group by assuming that the 

gravitational self-attraction was balanced by the kinetic pressure 

nkT. The temperature of the intergalactic gas was estimated by 

Field (1965) to be 5 x 104  °K on the basis of theoretical investigation 
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of thermal instabilities leading to the formation of galactic clusters. 

Sciama (1964) proposed that the temperature of the intergalactic gas 

would be about 105  °K if an equilibrium state exists in which heating 

of the gas by cosmic ray ionization is balanced by cooling due to 

bremsstrahlung and recombination radiation. 

Gould and Ramsay (1966) have examined the question of the 

temperature of the intergalactic gas in terms of a quasi-equilibrium 

state in which a thermal balance is attained in a time less than the 

characteristic time of expansion of the universe. They consider that 

heating of the gas is a result of ionization by a universal cosmic ray 

flux and the dissipation of hydrodynamic turbulence while cooling is 

_ 
due to inelastic electron collisions with H, H e , and He  and by free-free 

emission and recombination radiation. Gould and Ramsay adopt a universal 

flux mainly because of the simplicity that this assumption introduces 

into the equations. They assume the same cosmic ray spectrum 

calculated by Pollack and Fazio (1963) and they find a probable 

equilibrium temperature in the range 10 4  to 5 x 104 °K, depending on 

the density and a possible non-equilibrium temperature greater than 

2 x 10 5  °K. 

On the basis of these investigations, we shall take, as a very 

reasonable assumption, a temperature at the present epoch in the range 

104  to 106  °K, regardless of the density of the intergalactic material. 



6.2  Low Frequency Absorption in Isotropic World Models  

It is well known that discrete radio sources can have low 

frequency turnovers in their spectra owing to a combination of thermal 

absorption, synchrot-on self-absorption, and/or absorption in the HII 

region. There is a further possible cause of a low frequency turnover 

and this is free-free absorption in intergalactic space, which is 

described in the last section as filled with ionized hydrogen. The 

aim of this present section is to show the effects of intergalactic 

free-free absorption on the spectra of radio sources as a function of 

their redshift. 

When free-free absorption by ionized hydrogen occurs in the 

intergalactic medium, the received flux can be written as 

Si(v0) = S(vo
)e -T(vo )  

(6.1) 

where S is the unattenuated value and 'r(v 0) is the optical depth for 

the radiation received at frequency vo . We require to calculate the 

-t(v) 
absorption factor e  as a function of redshift for various world 

models. 

Now the ordinary absorption coefficient in ionized hydrogen is 

K(v) = A g{I 	e'llakTyr1/2m2v.3 	
(6.2) 
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where N is the electron density, T is the kinetic temperature, A is 

a constant and g is the Gaunt factor which is a slowly varying function 

of frequency and temperature. In the following work, the function g 

will be approximated by use of the numerical results of Karzas and 

Latter (1961), which indicate that g is between 0.8 and 1.0 for a 

temperature range of 10 4  to 10" °K. 

The absorption coefficient in evolutionary models at the epoch 

defined by the parameter y follows from equation (6.2) and it may be 

written in the form 

-hvo/kTy -3 -1/2 ,  2 -3 
K(v, y) = Ag(y){i - e 	}j,  T 	N v o o (6.3) 

where the subscripts correspond to values at the present epoch and 

T E T(y) is he gas temperature. 

Hence by analogy with the ordinary equation for free-free 

absorption 

6r(vo) = K(v, y)6U 	 (6.4) 

where 6U is the element of proper distance. But according to 

equations (3.8) and (4.23) 

6U = R(t)6w = 
	

(6.5) 



Therefore 

T(v0) = c I K(v, y)dt 
to 

and using equation (4.4) this becomes 

T(vo) =  fY   
Ho  1  

dy 
7fT7).  

(6.6) 

According to equation (.3) the absorption properties of the 

intergalactic medium will be fairly strong functions of the thermal 

history of the universe. The variation of the kinetic temperature 

with epoch will be examined in closer detail in the next chapter. 

Here, we shall consider only some simple models for the thermal 

history of the intergalactic material and compare the low-frequency 

absorption effects in different world-models. 

As a very close approximation, all the matter in the universe 

may be considered to exist as ionized hydrogen. In this case 

equation (3.19) gives the number of electrons per unit proper volume 

at the present epoch as 

2 
3H0a0  

No  - 47571,7  (6.7) 
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where m
H 

is the mass of a hydrogen atom. Hence No  is essentially 

determined by the density parameter a o . For typical values of ao, 



No  is of the order of 10
-5 

cm
-3

. Two thermal histories are 

considered for evolutionary universes. 

(a) 	Adiabatic Expansion 

If, as suggested by equation (3.7), the expansion of the 

universe is adiabatic then the temperature of the intergalactic 

plasma can be written as 

T =  
0  0 

Since M = N0y
-3 and y = 513 for ionized hydrogen we have 

T = Toy-2 
	

(6.8) 

for evolutionary universes which expand adiabatically. Substituting 

for T in equations (6.3) and (5.6) the optical depth for frequencies 

vo  « kT/h is 

2 
BM0  C  1 g(y)y-idy 

	

r(v0) = 3/2 2  — I   

	

To  vo  Ho  y 	iT6-01 
(6 .9) 

where B = Ah/k = 0•4 c.g.s. units and Y = (1 + z) -1  is determined by 

the source redshift. 
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2 
BM0  

T(V0) -  ,   dy 
3/2 2 

To  vo  Ho  y  
(6.10) 

(b)  Constant Temperature Expansion 

Layzer (1963, 1966) has advanced the concept of a constant 

temperature universe in which local non-uniformities in the 

distribution of matter give rise to a negative gravitational 

contribution to the internal energy density. The expansion of the 

metagalaxy tends to decrease the kinetic contribution to the internal 

energy, and to increase the gravitational contribution. Layzer 

suggests that when account is taken of energy losses by radiation, 

the temperature of the gas remains approximately constant with time. 

If this is the case then according to equations (6.3) and (6.6) the 

optical depth is 

1 83 

for constant temperature universes. 

 
The absorption factor e  is plotted against frequency in 

figure 6.1 for cosmological models having ao  = 0.5 and sources with 

a rer'shift of one. Low frequency absorption of radio waves is 

apparently not a strong function of the deceleration parameter, g o , 

either in an adiabatic or constant temperature expansion. The 

absorption factor in the Einstein-de Sitter world model is shown as 

a function of redshift in figure 6.2. In this case free-free 

absorption of radio waves is only a weak function of redshift for an 
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BN2 
0 c 

f g(y)y dy 
3/2 2 TvHo  y 0 o  

(6.11) 
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adiabatic expansion while it is a much stronger function of redshift 

in the constant temperature model. The last diagram is repeated in 

figure 6.3 for ao  = 2.0. The absorption factor is now seen to decrease 

substantially for frequencies less than 20 MHz. Absorption is strongly 

2 
dependent on ao  and this is simply due to the Mo  term in equations 

(6.9) and (6.10). The variation of the absorption factor with 00  

is shown in figure 6.4 for world models having q0 = 0.5 and for 

sources with redshifts of unity. 

(c) 	Steady-State Models 

In steady-state universes the density and temperature of the 

universal plasma must be independent of epoch. Substituting 0 0  = 0, 

qo  = -1 in equation (6.6) we have 

and since in this case g is constant then 

Bgq)  
i(vo) -  3/2  , 

' 
x 0.5[1 - (1 + z) -2 ] 

T ' v o o 

(6.1 2 ) 

Hence in a steady-state universe the optical depth does not go 

to infinity with redshift but reaches a maximum value. The electron 

density in the steady-state universe as originally proposed by Hoyle 

(1948) will be given by 
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No  = 3H0
2
/87rGmH  = 1 - 1 10

-5 
CM

-3 
	

(6.13) 

It follows that the absorption factor in steady-state models will be 

insignificant for frequencies greater than about 1 MHz. The same 

situation applies even if the electron density is twice the value 

given in equation (6.13) as suggested by a later version of the 

steady-state theory (Hoyle and Narlikar, 1962). 

An exercise which could provide some useful information on 

cosmological parameters would be a search for a correlation between 

the cut-off frequency in source spectra and their redshift. 

Unfortunately the available low frequency data is very limited. 

Surveys of discrete radio sources have been made at 26.3 MHz 

(Erikson and Cronyn, 1965), 38 MHz (Williams et a)., 1966), and in 

the range 20-40 MHz (Bazelean et al., 1965). Only a few flux 

measurements of radio galaxies have been made at frequencies less 

than 20 MHz (e.g. Ellis and Hamilton, 1966). 

Erikson and Cronyn have plotted the ratio of measured flux at 

26.3 MHz to the extrapolated high frequency spectrum against distance. 

Data was available for a total of only 23 sources which had distance 

determinations out to approximately 1000 Mpc (z = 1). Some of these 

data were unreliable but there was some slight evidence for a decrease 

in the ratio for increasing distance. However, the analysis of free-

free absorption given in this chapter indicates that a correlation 
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analysis between cut-off frequency and redshift should be carried 

out at frequencies less than about 10 MHz, if any useful results are 

to be obtained. 

6.3 	Conclusions  

The results obtained in this chapter are rather tentative since 

they depend rather critically on uncertain parameters such as the 

density and temperature of the intergalactic ionized hydrogen. The 

source count analyses of Chapter V have indicated the possibility of 

relatively large electron densities. The electron temperature and 

its variation with epoch will be considered in some detail in the 

following chapter. 

In this chapter, adiabatic and constant temperature universes 

have been considered and it has been shown that a significant amount 

of intergalactic free-free absorption may occur in radio spectra 

below about 20 MHz. The effect on the low frequency spectra of 

discrete radio sources depends on the particular cosmological model 

and the source redshift as well as the parameters mentioned above. 

It is apparent from the calculations that the low frequency cut-off 

in source spectra is not necessarily due solely to synchrotron self-

absorption or thermal absorption in the source itself. 



CHAPTER VII 

THE BACKGROUND RADIATION IN ISOTROPIC WORLD MODELS  

In this chapter, a general equation for the extragalactic 

background intensity is derived for the general case of an isotropic 

homogeneous universe. The extragalactic radio background depends 

fairly critically on the thermal history of the universe and numerical 

results will be obtained for different possible models. 

The radio background is considered here to be the sum of 

contributions from two sources: (1) emission by ordinary radio 

galaxies and (2) free-free emission from intergalactic ionized 

hydrogen. Account will also be taken of the free-free absorption that 

must occur at low frequencies if significant amounts of ionized 

hydrogen actually exist in the space between galaxies. 

7.1 	Equation for the Background Radiation  

Consider the 3-space specified by the co-ordinate (r, 0, .). 

According to equation (3.4), these three mutually perpendicular 

co-ordinates define a volume element 

dv = 	
R3(t)r2 	

dr dfd 
 

(7. 1) 
(1 + kr2 /4) 3  
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where dil is the solid angle subtended by the element, as measured by 

the origin observer. 

Further, let us suppose that the emission coefficient (watts 

(c/s) -i sr-1  per unit proper volume) is j(v, t). The total flux 

received at the origin at time t o  will be dS(vo)dvo  (watts m-2 ) given 

by 

dS(vo)dvo  = j1112—II-dv
, 

 dv  (7.2) 

D2  (t) 

where as usual D is the luminosity distance defined by equation (5.9). 

Using dv = dvoRo/R we obtain for the received flux density at frequency 

vo 

, 	„icy, 0114(t)  
ds(vo, — 	dr cID 

Rg(1 + kr2A) 
 

Now the equation to the null-geodesic is 

dr_ cdt 

1 + kr2/4  R(t) 

(7.3) 

(7.4) 

and substituting in (7.3) we have 

t 
s(v0) = - c ( f j(v, t)(R/R0 ) 3dt) dn 

to  
(7.5) 
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If the absorption coefficient of ionized hydrogen in inter-

galactic space is denoted by k(v, t), then the last equation must be 

modified appropriately. Hence changing equation (7.5) from an 

integration over epoch to an integration over expansion parameter y 

the intensity of the background radiation in evolving world models 

must be 

1 	1 -1 at - 	d- I(v0) = c I J(voy,  y)y 3  exp( - c I K(voy 	, ) 	rd y') ay  y 

yo 

(7.6) 

where the exponential term is analogous to optical depth. The 

partial derivative, at/ay, is given as a function of y (and the 

particular cosmological model) through equation (4.4). Hence, if the 

parameters go , ac  and To  are specified then the world model is defined, 

and together with an estimate of the function j(v, y) the expected 

extragalactic background intensity may be calculated by the numerical 

integration of equation (7.6). 

It should be noted that in the steady-state model the emission 

and absorption coefficients should be independent of epoch and the 

equation to the background intensity becomes 
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I(vo) =  j(v0y-1 )y2  exp(-  it(voy' 1)y' dy9dy 
H0 0  Ho y 

(7.7) 

since in this case ay/at = H oy. 

The lower limit yo  of equation (7.6) will depend on the y 

corresponding to the observer's particle horizon. In evolutionary 

cosmologies the limit is usually zero and the geometry of the model 

assists the convergence of the integral. In oscillating models the 

limit is undefined, unless the universe is treated as existing for a 

finite time (the time for one oscillation). The type E2 models which 

have large negative values for q o  collapse from an infinitely rarefied 

state to a state of finite density corresponding to an expansion 

parameter value of y = ymin  > 0. At this stage, the universe reverses 

its motion and expands monotonically into an empty de Sitter model. 

The limit of integration in this case will be yo  = co and (7.6) must be 

integrated through a singularity at y
min 

 where dy/dt = 0. In this 

case the derived background intensity will diverge to infinity unless 

a cutoff is introduced for the emission coefficient at a particular 

value of y. The integral of equation (7.7) for the background 

radiation in steady-state cosmologies has a lower limit y o  = 0 and 

the geometry of the metric aids the convergence of the integral, 

although not as strongly as in most of the evolutionary models. We 

shall find later however that the emission coefficient will increase 

with redshift at a much faster rate in evolutionary cosmologies than 

in the steady-state model. 



7.2 	The Emission Coefficient  

(a) Radio Sources 

The contribution from radio galaxies to the background intensity 

will depend on their luminosity distribution and the variation of their 

spatial density and luminosity with epoch. All these quantities have 

been discussed in earlier chapters. As far as the background 

radiation is concerned these properties of radio galaxies are assumed 

to be defined by equation (5.4) and the values of yo , n and B  which 

were derived from the radio source counts in Chapter V. 

Now, it is well known that radio sources may exhibit low 

frequency turnovers in their spectra due to a variety of possible 

causes including thermal absorption, synchrotron, self-absorption in 

the source itself, and a cut-off in the electron energy distribution. 

These effects have been described briefly in section 5.4. Here, the 

low frequency spectral behaviour of radio galaxies is approximated by 

assuming that the power emitted is of the form 

P(v) = C(v -a+2/v)[1 - exp{- (vo/v) 2 }]  (7.8) 

where vo  is the critical frequency corresponding to unit optical depth 

in the source. Obviously for frequencies v >> v o  the source 

-1 
luminosity is of the form given in equation (5.35). Using v = v oy,  , 
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the emitted power at the epoch corresponding to y is 

vo  vo  vcy 
-1
) = 	

-a  .2 a-2 
- expf- ( — ) 2 1] P(voY 	PI78( T7F ) (  ) Y  [1  vc 

(7-9) 

with the radiation being detected at frequency vo . The last equation 

applies only to those sources whose luminosity is not a function of 

epoch. Hence we first consider the emission coefficient for radio 

sources having spatial densities which evolve smoothly with epoch. 

The contribution to j(v, y) will be 

dj r  = n(m9 P(v0y-1 ) dm'  (7.10) 

where n is the number of sources in the range m', m' + dm' and 

- 
m' = P(v0Y

1 
 )/Po . But, clearly n(m9 E n(M) where now m = P178/P0 a' 

before. Hence integrating (7.10) and using (5.8) we have 

jr(v, y)  = popo Ic°  m-2.5e-x2/2a2 P(v0Y-1)  -(3+n) dm  

0 	Po 
(7.11) 

where as before n determines the variation of the number of sources 

in unit co-ordinate volume. Now using equation (7.9) the last equation 

becomes 
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°  
Voy 2  

j r (v, Y) = o0P0( my  ) -ct ( -v1;2-) 2Ya- 5 -n I1 - exP{ - ( vo  ) 11 

 

x f 
M-1.5e-x21202 

dm  (7.12) 
0 

for universes in which the spatial density of sources evolves with 

epoch. Rewriting this equation in a simplified form 

j r (v, y) 0 F(v0)ya-5-n p - 	( vvcY  )21) 	(7.13) 

If the luminosity of radio galaxies varies according to the 

law P(y) 0 P(1)y -8  as described in section 5.6,then it is clear that 

the contribution to the emission coefficient from these sources will 

be 

a  
-5- 	

Vcy 
Jr'' Y) = F(vo)y  ap - exp{- ( —) 2 }] 

vo 
(7.14) 

(b) Free-Free Emission 

According to Allen (1965), the free-free emission per unit 

volume and unit frequency range for ionized hydrogen of density M 

and temperature T is 

c(v) = B g N 2T
1/2exp ,_-  NAT) 
 

(7. 1 5 ) 

where B = 6.8 x 10-39  MKS units and g is the Gaunt factor. 
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Substituting N = M0y
-3 

we obtain for evolutionary universes 

c(v, y) = B g(y) exp(-hvo/kTy)y-64T
-1/2 	

(7.16) 

where as before T E T(y) is as yet an unknown function of the 

expansion parameter y. 

Similarly, for the steady-state models 

e(v) = B g(y) exp( -hvoheroy)q)T0- 1/2 	(7.17) 

The last two equations indicate that the background radiation 

due to free-free emission will be considerably greater in evolutionary 

cosmologies than in steady-state models unless the temperature T is 

a steep function of y. 

The total emission coefficient may now be written in the 

general form 

j(v, Y) = Jr" Y) + c(v, y) 	(7.18) 

7.3 The Observed Background Intensity  

It is the purpose of this chapter to examine the predicted 

background spectrum as a function of possible thermal histories of 
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the universe. Account will be taken of the results obtained in 

Chapter V for radio source luminosity and spatial evolution. As far 

as the author is aware, only one account has been given of the back-

ground radiation in the low frequency region of the radio spectrum. 

Kaufman (1965), who restricted her analysis to the Einstein-de Sitter 

universe, derived theoretical background spectra with the assumption 

that the ionized gas behaved isothermally back to infinite densities. 

Kaufman assumed that the observed background spectrum was due entirely 

to extragalactic sources of radiation, and by fitting theoretical 

curves to the experimental spectrum in the frequency range 5-100 MHz, 

and to the spectral point at 4080 MHz (Penzias and Wilson, 1965), 

she was able to determine limits for intergalactic hydrogen density. 

However, we shall find that, on the basis of the available evidence 

it is unlikely that the extragalactic component could contribute much 

more than 10 per cent, to the observed background intensity. Here, a 

more systematic approach will be made to the problem of the extra-

galactic background intensity. Some models will be considered only 

briefly while more attention will be given to those models which are 

consistent with the results derived from the source counts. 

The experimental background spectrum has been plotted in 

figure 7.1. The spectral points are taken from the measurements of 

many observers and are plotted for directions near to the galactic 

poles, corresponding to minimum disk effects such as non-thermal 

emission or low frequency absorption. The experimental points at 
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frequencies greater than 1000 MHz, which approximate closely to a 

3°K black-body spectrum, are also included. The spectral points in 

figure 7.1 have been obtained from the following measurements: 

Observer Frequency 
(MHz) 

Ellis  (1957) 0.9,  1.43, 2.13, 3.8, 
4.4,  5.65, 9.13,  10.05 

Walshe, Haddock, and Schulte (1963) 1.225,  2.0 
Ellis  (1964) 1.65, 2.4, 4.8, 4.6 
Yates and Wielebinski  (1965) 14.1 
Yates and Wielebinski  (1966) 14.1, 20, 30, 48.5, 85 
Shain and Higgins (1954) 18.3 
Turtle et al.  (1962) 26.3, 38, 178, 400 
Mathewson, Broten,and Cole (1965) 30 
Yates (personal communication) 85 
Mills  (1959) 85.5 
Howell and Shakeshaft (1967) 408, 610 
Penzias and Wilson (1966) 1430 
Howell and Shakeshaft (1966) 1450 
Penzias and Wilson  (1965) 4080 
Roll and Wilkinson  (1966) 9380 
Welch et al.  (1967) 2 x 104  
Thaddens and Clauser (1966) 1.15 x  10 5  

7.4 Steady-State Models  

Although the radio source counts have thrown considerable doubt 

on the validity of the steady-state theory the expected background 

Intensity in these models is briefly discussed in this section. In 

steady-state cosmologies, the density and temperature of the universal 

plasma must remain constant, independent of epoch. Assuming 100 per 

cent ionization, the electron density for the model originally 

proposed by Hoyle (1948) will be given by 
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2 No  = 3H0/84mH =1.110
-5 cm-3 (7.19) 

In another version of the steady-state theory, Hoyle and 

Narlikar (1962) suggested that, as a consequence of the existence of 

the creation field Cu, the observed homogeneity and isotropic state is 

an asymptotic state for all initial conditions. It follows from the 

theory that a perturbation C: 	0, introduced into the C field, will 

cause the expansion factor y(t) to converge to an exponential form while 

2 
the matter density, p, approaches 3l1 0/44. Hence we have an alternative 

electron density in a steady-state model which is twice the value 

predicted by ordinary theory. The free-free emission and optical 

depth for a particular y will be correspondingly four times the 

values calculated on the basis of equation (7.19). The expected 

background intensity may be derived for both cases with the aid of 

equations (7.7), (7.9), (7.17) and (7.18). The numerical results are 

shown in figures 7.2 and 7.3 for electron densities of 1.110 -5  and 

2.210
-5 

cm
-3 

respectively and various kinetic temperatures for the 

intergalactic gas. Comparing figures 7.2 and 7.3 with figure 7.1 we 

see that the expected background intensity in steady-state universes 

Is approximately 9 per cent of the observed intensity at 10 MHz and 

this value is reduced to almost 1 per cent at 1000 MHz. At even 

higher frequencies the contribution to the background intensity in 

the steady-state models is insignificant and if it is shown 

conclusively that the 3 °K black-body radiation is indeed extragalactic 

in origin, then it is difficult to imagine how any modification of the 
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steady-state theory can fit the observed data. 

7.5 Constant Temperature Model  

The cosmological energy equation, which can be written as 

dey 3  pdy3  _ 0  
dt  dt 

(7.20) 

where e is the mean energy density, is easily derived from the 

Einstein field equations for a homogeneous, unbounded, isotropic medium. 

Equation (7.20) is usually accepted as the form of the first law of 

thermodynamics which describes a universe undergoing adiabatic expansion. 

However, certain conceptual difficulties arise in the interpretation 

of this equation since it is implied that an expanding volume element 

does work on the surrounding gas, although symmetry considerations 

show that there cannot be a net flow of energy across a co-moving 

surface. Layzer (1963, 1966) believes equation (7.20) to be of a 

completely kinematical origin. Briefly, Layzer argues from the theory 

of particle dynamics in a homogeneous unbounded system and he finds two 

coupled equations for the mean kinetic energy per unit mass and the 

mean potential energy per unit mass. One equation is analogous to 

equation (7.20), while the other is the cosmogDnic virial theorem. 

The total energy is negative, and if the effects of radiation are 

small then the kinetic and potential energies are approximately 

constant and as a consequence the kinetic temperature of the 



distribution must also remain constant. 

The theory for a constant temperature universe as described by 

Layzer is valid only in the absence of heat sources, and in the 

numerical calculations for the background intensity it was assumed 

that the gas temperature remained constant throughout the entire 

history of the universe. This assumption will not si§nificantly affect 

the high frequency spectrum, but the intensity at low frequencies may 

be under-estimated. The numerical results in figure 7.4 are based on 

an Einstein-de Sitter universe in which the electron density is 

1.110 
-5 

cm
-3 

for 100 per cent ionization. In this model the free-

free emission was calculated with the use of equation (7.16) after 

substituting T = To  = constant. Comparison with figure 7.1 shows 

that the predicted intensity of the constant temperature model will 

exceed the total background intensity up to frequencies of 10 4  MHz, 

while at frequencies higher than this but less than about 105  MHz it 

Is considerably less than the observed intensity. We also note that 

radiation in the microwave region has a spectral index of about 1.2 

which is almost independent of either temperature or the degree of 

ionization. The value differs significantly from the spectral index 

of 2 for a Planck function, and we must conclude that the constant 

temperature model in its present form does not produce a satisfactory 

representation of the observations. 
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7.6 	The Thermal History of the Intergalactic Gas  

Before consideration is given to the evaluation of the background 

Intensity in further models it is proposed to examine in closer detail 

the possible thermal histories of the intergalactic gas. In evolving 

world models the thermal behaviour of the gas can be strongly 

influenced by heating and cooling mechanisms that destroy the 

adiabatic nature of the expansion. 

Ginzburg and Ozernoi (1966) have considered the kinetic 

temperature of the intergalactic gas in the Einstein-de Sitter model. 

They include in their analysis heating effects due to plasma 

oscillations excited by anisotropic cosmic rays and heat generation 

from ionization by "sub-cosmic rays". They also account for cooling 

due to free-free transitions, recombination radiation, and the 

expansion of the metagalaxy. In this analysis each of these processes 

shall be considered in a more general way and a differential equation 

describing the temperature of the intergalactic gas shall be derived. 

(a) Radiation Cooling 

The rate of energy loss per unit volume through free-free 

emissions will be given by integrating equation (7.16) over all 

frequencies. The result is 
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f f 
-  I c(v)dv 

0 

= -1.410
-27

T
1/2

M
2 
= -aT

1/2
M
2
erg cm sec sec

-1 

(7.21) 

The energy losses due to recombination radiation may be written 

(Kaplan and Pikelner, 1963) as 

Oft -3 	-1 
= -5.410

-22
T
-1/2 2 = -OT-1/2N 2 

erg cm  sec 
latt 

(7.22) 

(b) Heating by Ionization Losses 

It seems reasonable that metagatactic space should be filled 

with a flux of cosmic rays. As described earlier, radio galaxies are 

the sources of highly disruptive events which must inject streams of 

hot gas and a large number of relativistic and sub-cosmic particles 

Into metagalactic space. Thus the galactic explosions responsible for 

radio emission will be also indirectly responsible for heating of the 

intergalactic gas. Now the spatial density of strong radio sources is 

about 10
-78 

CM
-3 
 wh i le their energy content in cosmic rays is close to 

10 59  ergs. It has been shown that the duration of the radio emitting 

phase is about 3 x 10 6  years. Hence the cosmic ray injection power is 

1046  ergs/sec and, if this injection power is available for the 

-1 
characteristic time of evolution of the universe, H0 , then the cosmic 
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ray energy density will be 

n = 3 x 10-16  erg cm-3  

This value must be regarded as rather tentative. Ginzburg and 

Syrovatskii (1964) suggest a cosmic ray energy density of about 

10-15 erg cm  Burbidge (1962) obtains a value of n = 3 x 10 -14  

erg cm
-3

. 

The energy released per unit time by a non-relativistic particle 

as it moves through ionized hydrogen is (Ginzburg and Syrovatskii, 1964) 

2m c2  
= 7.6210-9( 	)1/2{1n Ek 

E2  mpc2 
in N

1/2 
+ 38.7)N 

Hence the heating due to sub-cosmic rays becomes 

lei 	dE  n'N  Ek 

= (- -- )Np = 6 -710
-22 

3/2 (2.n2 
dt  Ek  MpC 

- in N
1/2

+ 38.7) 

(7.23) 

where Mp is the concentration of fast non-relativistic protons of 

energy Ek and n' is their energy density. It would hardly be 

reasonable for n' to exceed n and as a rough estimate we take n' 	Ti. 

To a first approximation the last equation can then be written 

VEI 
= 8.010

-14  -3 	-1 
n M erg cm sec 

 
(7.24) 



(c) Heating by Cosmic Rays 

Ginzburg and Ozernoi (1966) suggest that the injection of 

relativistic particles is followed by an efficient build-up of plasma 

and other waves in the intergalactic plasma. The energy density of 

these waves will be no  = n + n'. These oscillations are subsequently 

converted into heat and the time required for the thermalising process 

is extremely short =10 4  years. The heat generated by exploding 

galaxies at the present epoch is therefore 

- 
where po  is the spatial density of sources and P is the power of 

the high energy particles expelled into the surrounding space. This 

may then be rewi- itten as 
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biEp 
= 3 x 10 18 n (7.25) tit 

The effect of these heating and cooling mechanisms on the 

temperature of the intergalactic gas may now be calculated from the 

equation for the first law of thermodynamics. Consider unit mass of 

gas, then we may write 

Ig t  _ 1  dQ dU pdV 

Itt ip.  = dt = dt  dt 
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dl pdp 
( 	)13 	= 	dt 
	(7.26) 

But from the usual laws of thermodynamics 

p pRT (7.27) 

where y = cp/cv = 5/3, R is the universal gas constant and M is the 

molecular weight. All these equations are applicable to co-moving 

co-ordinate systems and hence substituting (7.27) in (7.26) we get 

dl 	dpT 4E t   
+ bp 2  tit = ap dt (7.28) 

where E t  = Eff + Ef b  + Ep + Ei, a = R/(M(y - i)), b = R/M. 

Changing to differentiation with respect to expansion parameter y 

we have 

at 4Et 	- 	dT 	dp-1  3 
- poy , 
 

+ bpoy
-3
T  - )

dy 

	

Y 	. 

or using equation (4.4) this becomes 

- 

dl 	p
1

o y
3 
	4Et 	-1 

- 3T(Y - 1 )Y 
dy aHo/r(71) 4 

(7.29) 

In equations (7.21) and (7.22) we must substitute N = M0y -3 . 

The ionization losses are proportional to nE -Vitand the energy of 

V 

- 
high energy particles varies as y

1  in expanding cosmologies. 
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Furthermore, the results of Chapter V indicate evolution in source 

spatial density or luminosity so that the cosmic ray density is 

proportional to y
-(3+n) or y 	 . Hence at the epoch corresponding 

toy 

1 
OX = 8.010

-14
nfloy

-(3/2+n) 
(7.30) 

Similarly, heating by plasma oscillations and shock waves is 

IdEp 	-18 -(3+n) 
= 3. 0 10 	nY 

Using these relations, the differential equation defining the gas 

temperature is given by 

di 	I 	-14 	-(3/24n) 	-18 -n 

	

[ 3 . 0 10 	nNoY 	4' 3- 0 10 	nY 

2 1/2 -3 -1/2 	-1 
alloT 	°Mg T 	1  - 3T(Y - 11 Y 

(7.31) 

This differential equation may now be solved by numerical 

methods in different situations. 

dy p0aH0lf13-0) 



7.7  "Adiabatic" Cooling  

If it is assumed that the universe has cooled adiabatically 

throughout its history, then according to the laws of thermodynamics 

T = T0y
-2

. In an Einstein-de Sitter universe it follows, with the 

aid of equations (4.4) and (6.3), that the limit of the optical depth 

is 

lim (I
1 
K(vo,y)dy) = 2; K(vo, 1) 

Dy 
Y4'0  Y 

where g is some suitable mean of the Gaunt factor. Hence the optical 

depth converges to a finite limit while, according to equations (7.7) 

and (7.16), the free-free emission diverges to infinity. It follows 

that equation (7.7) cannot be integrated back to the infinite past, 

and a cut-off in emission must be introduced at a particular y if the 

background intensity is to remain finite. 

Now the differential equation controlling the thermal properties 

of the gas has been derived in the last section. Heating and cooling 

processes will destroy the adiabatic nature of the expansion. Also, 

the average source luminosity and density in co-ordinate volume are 

assumed to be constant so that n = 0 in equation (7.31). In this 

case, cooling by free-free and free-bound transitions dominate other 

heating or cooling mechanisms. Inspection of equation (7.31) shows 

that T 	const. x y
-3 

as y C. The differential equation has been 
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solved by numerical methods.for a series of values To  in the range 

104  to 10 7  °K and for cosmic ray energy densities in the range 10 -14  

to 10
-16 

erg cm
-3

. The possible solutions are illustrated in figure 

7.5 where T is plotted as a function of y. 

Unless a cut-off in emission is introduced for some arbitrary y, 

these thermal histories will lead to background intensities far in 

excess of the observed brightnesses. Indeed the free-free emission 

must diverge to infinity but at a slower rate than for a simple 

adiabatic expansion. There are further difficulties associated with 

adiabatic expansions which will be mentioned briefly in section 7.8 

below. An "adiabatic" expansion of this type cannot at any epoch 

attain a state of thermal equilibrium and this condition restricts 

the age of the universe. 

In the derivation of the background radiation for the adiabatic 

model a cosmic ray energy density of 10
-15 

erg cm
-3 

was assumed and 

equation (7.7) was integrated back to the epoch corresponding to a gas 

temperature of 10 9  °K. At temperatures much greater than this pair 

creation and annihilation processes would produce a thermal equilibrium 

distribution between particles and radiation. The type of expansion 

considered here is impossible under these initial conditions. The 

results are shown in figure 7.6 and comparison with figure 7.1 

indicates that the same general conclusions apply for this model as 

for the two models of the steady-state theory. 
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Figure 7:5 - Plots of the temperature, I as a function of 
the expa:Ision parameter y .  showing possible thermar.histories' 
in an -adiabatically.cooling:universe. 
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7.8  Black-Body Radiation  

The apparent detection of "relic" black-body radiation at 

3.5°K by Penzias and Wilson (1965) has some important consequences, 

for it not only deals a severe blow to the steady-state theory, but 

it also implies that the universal plasma could not be as hot as a 

result of initial conditions. In evolutionary universes at early 

epochs, when the temperature was presumably high and the Thomson 

scattering depth large, energy exchanges between electrons and 

photons would ensure a Planck function. We would therefore find, at 

the present epoch, a gas which is cooler than the black-body radiation 

and this, of course, is a direct contradiction to the observations. 

According to Dicke et al. (1965), the gas remains in thermal 

equilibrium with the radiation until the onset of hydrogen recombination 

at approximately 4000°K, when the matter consequently cools faster 

than the radiation. Peebles (1965) believes that this stage of the 

expansion corresponds to the formation of galaxies. The subsequent 

release of nuclear energy with the conversion of gravitational energy 

into heat could be sufficient to increase the temperature of the 

remaining intergalactic gas as the epoch advances. 

According to the calculations: of Peebles (1966) on the primeval 

element abundances issuing from. the "big bang", the mass abundance 

of helium is a function of the mean mass density in the universe and 

218 

the present temperature of the fireball. For a density range 7 x 10
-31 
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to 2 x 10
- 29 

g cm
- 3

, the computed helium abundance is 27-30 per cent 

by mass. The helium content of the universe is not known exactly, but 

earlier abundance observations have indicated an upper limit of about 

25 per cent. However, very recent measurements by Palmer at the 

United States National Radio Astronomy Observatory have shown that 

this value is probably an under-estimate. If the 3°K fireball radiation 

and a low helium abundance is confirmed by future measurements, then 

the evolutionary universes based on general relativity must have an 

extremely low density or the fundamental concepts of general 

relativity theory itself must be invalid. In this work, for the lack 

of any further evidence, the implications of the helium abundance shall 

be ignored and the expected background intensity will be derived on the 

basis of ordinary relativistic cosmology. 

Yeymann (1966) has examined the possible distortion of the Planck 

function due to inverse Compton scattering and free-free emission. He 

did not consider in detail the thermal history of the universal plasma 

after galaxy formation, but assumed an isothermal expansion at a 

temperature of 3 x 10 6  °K. In view of recent evidence presented in 

Chapter VI, it appears that this estimate for the gas temperature is 

too high and the consequences of a lower temperature will be an increase 

in free-free emission and a decrease in emissivity due to electron 

scattering. It should be noted that 'teymann's analysis neglects the 

contribution of radio sources to the background intensity - a 

contribution that is certainly significant at frequencies less than 
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10 3  MHz. In the present analysis, an estimation is made of the 

temperature path of the gas, so enabling a more accurate calculation 

for the distortion of the black-body curve, and further the analysis 

is restricted to relatively low frequencies where the effects of 

Compton scattering are negligible. 

If the microwave spectrum is interpreted as due to fireball 

radiation, then we can draw some tentative conclusions concerning 

the temperature of the plasma. Since the gas is tied to the 

radiation field, it must cool according to the law T = Toy -1 , at 

least until recombination commences. The gas will dissociate from 

the radiation field at a temperature close to 10 4  °K (y = 3 x 10-4 ). 

Formation of gravitationally bound gas clouds follows and thereafter 

galaxies condense out through gravitational contraction. The time 

scale for collapse under self gravitation is of the order of (pG)
-1/2 

where p is the initial matter density and G is the gravitational 

constant, unless collapse is prevented by non-gravitational forces. 

If the present matter density is about in-29 gm cm
-3 

then the 

expansion parameter at the onset of galaxy formation is y = 3 x 10-4  

and p = 3 x 10
-19 

gm cm
-3 . This then implies a time scale of about 

5 x 10 4  years for galaxy formation. After consideration of rotation 

and internal pressures Hoyle et al. (1565) suggest a time scale of 

about 10 5  years. The expansion parameter at completion of galaxy 

formation would then be of the order of 10
-3 

in the more slowly 

evolving models and 10 -2  in the rapidly evolving world models. 
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The analysis of the source counts has placed lower limits on 

the value of y corresponding to the onset of radio emission. This 

limit varies from about 0.1 in the rapidly expanding models to about 

0.35 in models which expand more slowly. There is a clear discrepancy 

between the epoch at which galaxy formation is expected to reach 

completion and the epoch at the initiation of radio emission. These 

events will occur at commensurate epochs in rapidly evolving 

cosmologies if the time scale for the formation of radio sources out 

of the universal plasma is of the order of 10 7  years. This figure 

does not seem unreasonable in view of the accepted lifetime of 10 6  to 

10 7  years for radio sources. On thn other hand models which are slowly 

expanding require a time of about 3 x 10 8  years before the commencement 

of radio emission. This condition is unlikely to be met under the 

present theories for radio sources. However, according to Peebles 

(1965), the condensation of galaxies may be retarded by the radiation 

drag on the electrons. The amount of retardation will depend on the 

magnitude of the plasma density fluctuations. The results derived 

from the source counts indicate that the condensation process did 

not take place until quite late when 4 was less than about 10
-2 

cm
-3

. 

Heating of the intergalactic gas is considered to commence at 

the epoch defined by the values of yo  in Table 10. If the heating 

Is due to cosmic rays and exploding galaxies an estimate can be made 

for the temperature path of the gas. The cosmic ray energy density 

is assumed to vary with source concentration as given by n, or source 
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luminosity as given by O. The temperature of the gas is again 

controlled by the differential equation (7.31). The boundary 

conditions are defined by the value of yo  and the initial temperature 

- 
T i  = Toy'. The exact value for T i  may be in some doubt but the 

temperature path of the gas will depend most critically on y o  while 

being practically independent of Ti, provided Ti < 10 4  ° K. 

The temperature path of the gas has been calculated for two 

models taken from Table 10: (a) ao  = 5, qo  = 2.5 and (b) ao  = 1, 

qo  = 0.36. The derived values for y o  were 0.11 and 0.36 respectively. 

The results are presented in figure 7.7 where n = 10-15  and figure 7.8 

where n = 10
-16 

erg cm
-3

. Initially the temperature increases until 

the radiative losses by free-free emission are equal to the rate of 

heating by cosmic rays and plasma oscillation. The maximum temperature 

attained depends quite critically on the cosmic ray energy density and 

this is a quantity which is open to considerable conjecture. If we 

accept that n = 10-15 erg cm-3 as proposed by Ginzburg and Ozernoi, 

then the present temperature of the plasma is 4 x 10 5  °K in model (a) 

and 2 x 10 6  °K in model (b) for source density evolution. Luminosity 

evolution implies temperatures at the present epoch of 10 5  °K and 

7 x 10 5  °K respectively. Clearly models with small values of yo  will 

provide temperatures which are in general agreement with those derived 

by other methods as discussed in section 6.1. The conclusions here 

must be regarded as very tentative since they depend so critically on 

the cosmic ray energy density and its variation with epoch. 
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7.9 The Background Spectrum  

In this section the extragalactic radio background spectrum is 

derived by using the values for the required parameters which have 

been calculated in the earlier work. The postulates involved in 

this derivation are listed as follows: 

1. The universe is described by evolutionary cosmologies. 

2. A 3°K black-body radiation field exists at the present epoch. 

3. The background intensity is due to ordinary emission from 

radio galaxies, free-free emission and .fireball radiation. 

4. The values of yo, n and B required in equation (7.6) are 

given by the results of the source counts. 

5. The temperature of the intergalactic gas is governed by 

equation (7.31). 

As before, two extreme models are considered: (a) co  = 5. 

qo  = 2.5, and (b) ac = 1.0, q o  = 0.36. The parameters yo , n and B 

are respectively 0.11, 3.21, 2.14 in the first case and 0.36, 4.59, 

3.06 in the second. The integrated spectrum is shown in figure 7.9 

and the shaded area represents the range in background intensities 

consistent with all the results derived so far. The theoretical low 

frequency spectra are omitted from the diagram for clarity. The 

proposed range of background intensities finds confirmation in the 

spectral points given by Howell and Shakeshaft (1967) at 408 and 610 
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MHz. The small deviations from the black-body curve at these 

frequencies is seen to be due to emission from radio galaxies. The 

contribution to the background intensity from free-free emission is 

insignificant at these frequencies and is in fact less than about 

- 
10
-23 

f.u. sr
1 

 for frequencies below 10 6  MHz. 

The extragalactic component contributes between 4.1 and 12.9 

per cent of the total observed background intensity at 100 MHz. Also 

the analysis of the variation of sky brightness with frequency and 

galactic co-ordinates has yielded an estimate for the extragalactic 

component of about 10 per cent (Hamilton, 1969). Although there is 

some doubt as to the precise value for the extragalactic intensity the 

value of 10 per cent must be regarded as a close lower limit while an 

extreme upper limit would be about 20 per cent. If the extragalactic 

component is, in fact, greater than or near 10 per cent of the total 

sky brightness, then the theoretical results indicate that spatial 

evolution must be the dominant process producing change in the radio 

source population. Absorption measurements on the Magellanic Clouds 

by Shain (1958) yielded an estimate of 10 per cent for the extra-

galactic component. Again this result agrees fairly well with the 

theoretically derived intensities. 

The variation of the background intensity with cosmological 

model is shown in Table 11 where the ratio of calculated to observed 

brightness at 100 MHz is listed for both spatial and luminosity 

evolution. 



Table 11 

Radio Background Parameters in Relativistic World-Models 

ao q0  

Inloo 

vc (MHz) 

n a 

5 2.53 ln.5 4.1 0.35 

3 1.98 11.1 4.2 0.23 

2 0.93 11.8 4.4 0.006 

1 0.36 12.9 4,8 0.003 

0.5 -0.47 14.9 5.8 0.001 

Clearly the extragalactic intensity is least in those models 

which are most rapidly expanding and which also provide the best fit 

to the radio source counts. The precise value of the background 

intensity is not however a strong function of cosmological model. 

Also included in Table 11 are the frequencies vc  at which the low 

frequency background intensity attains a maximum value for source 

density evolution. Inspection of the values for v c  indicate that at 

frequencies less than 1 MHz, we could expect an increase in the 

observed background intensity, if galactic absorption is small and 

there is no low frequency cut-off in source spectra. The latter 

condition is unlikely to be met in view of the well-known mechanisms 

which lead to a decrease in source flux density at long wavelengths. 
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However, if an increase in observed background intensity is evident 

at a frequency less than 1 MHz, then absorption in the plane of the 

Galaxy must be considerably less than previous estimates, which have 

been based on the assumption of linear spectra in the halo and disk 

regions (Ellis and Hamilton, 1966). 

7.10 The Soft X-ray Background Flux  

Two groups (Bowyer et al., 1968; Henry et al., 1968) have 

recently obtained measurements of the diffuse X-radiation at photon 

energies near 0.27 keV. The flux is considered to originate outside 

the galaxy. Further measurements between 0.2 and 4 keV have been 

made by Baxter et al. (1969). Although the observational data is 

so far very limited it is of some interest to calculate the expected 

soft X-ray flux based on our postulated cosmological models. Here we 

use the same two extreme models employed to calculate the radio 

frequency background. The models are defined by (a) ao  = 5. 0 , 

qo  = 2.5, (b) cro  = 1, qc, = 0.36. Integrating equation (7.6) with the 

aid of (7.16) and (7.31) yields the two sets of theoretical curves 

drawn in figure 7.10. The observed fluxes may easily be accounted for 

by some model defined within the postulated range. Intergalactic 

free-free emission is the predominate radiation mechanism at these 

photon emergies. Quantum effects become important at high energies 

(by > kT) and the exponential term in equation (7.16) produces a cut-

off in the spectrum at a photon energy which depends on the particular 
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model. 

There is some argument as to the validity of the high intensity 

flux measurements (Bowyer and Field, 1969). However, in this analysis 

a high flux value is suggested by the results for the preferred models 

(that is, those models which are rapidly evolving with the occurrence 

of source density evolution). The apparent disagreements in the 

measurements of the soft X-ray intensities could well be due to the 

existence of a very steep spectrum as shown in figure 7.10. The 

present data is obviously insufficient to fit a precise theoretical 

model. Furthermore, it is not possible to place any great reliance 

on derived spectra since the intensity due to free-free emission at 

these energies is such a strong function of kinetic temperature and 

electron density. The temperature path of the gas depends, in turn, 

on the cosmic-ray energy density and this is another quantity which is 

subject to considerable speculation. More definitive measurements of 

the soft X-ray flux would provide useful information about these 

astrophysical quantities. It is quite impossible, however, to give an 

estimate for the gas temperature from the measurements at one photon 

energy as suggested by some authors. 
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7.11 	Conclusions  

The background intensity for evolutionary universes in which 

intergalactic free-free absorption exists is given by the integral 

equation (7.6). This equation requires a knowledge of the temperature 

path of the intergalactic gas for its solution and several "thermal" 

models have been considered. Using the derived luminosity distribution 

from section 5.2, the expected extragalactic background spectrum was 

calculated for the steady-state, "adiabatic", and constant 

temperature universes. It is found that the theoretical spectra for 

these models do not explain any feature of the observed spectrum. 

The radio background was calculated for two extreme world-

models defined in Table 10. In these models the expansion parameter 

at galaxy formation is given by y o , which is also the lower limit of 

integration in equation (7.6). Furthermore the background intensity 

depends on the derived parameters n and 0, which determine the 

evolution in source density and luminosity respectively. All these 

parameters are used in equation :7.31) which governs the thermal 

history of the universe. Results for the two extreme world-models 

show that, for any model specified in Table 10, the extragalactic 

component contributes between 10.5 and 12.9 per cent of the observed 

background intensity at 100 MHz for source density evolution and 

between 4.1 and 5.8 per cent for source luminosity evolution. The 

former estimates are in good agreement with the observational evidence 
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and independent estimates for the extragalactic component. 

Integrating the free-free emission from intergalactic ionized 

hydrogen, for the world-models considered above, yields soft X-ray 

intensities which are near to the observed fluxes. 
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CHAPTER VIII 

THE X-RAY BACKGROUND IN ISOTROPIC WORLD-MODELS  

In this chapter an attempt is made to describe the diffuse 

X-ray background in terms of Compton radiation from cosmic ray 

electrons in intergalactic space. Similarities between the X-ray 

and radio source spectra suggest that fast electrons escape more or 

less freely from radio galaxies. It is assumed that the time scale 

of electron injection is small when compared with the characteristic 

time of evolution of the universe. The electrons are considered to 

lose energy through Compton scattering (due to the presence of the 

universal black-body radiation at 3°K) and by expansion of the 

co-ordinate system. 

8.1 	Introduction  

The diffuse X-ray background depends for its explanation on an 

efficient mechanism for the conversion of cosmic ray electron energies 

into X-ray quanta. It is generally believed that inverse Compton 

scattering (i.e. the production of high energy photons from the 

collisions of fast electrons with thermal photons) is responsible for 

the X-ray radiation. The question of the origin of these scattering 

processes has been investigated in some detail by different authors. 

Gould (1965) and Felten and Morrison (1966) have examined the 
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possibility that the Compton interaction of relativistic electrons in 

the halo with black-body photons or the stellar radiation field could 

produce the observed isotropic background. However, the halo model 

predicts a flux which is two orders of magnitude less than that 

required by the observations and the shape of the derived spectrum 

does not provide a good match to the experimental spectrum. Further, 

there is no evidence of strong anisotropy in the X-ray background and 

there are therefore convincing reasons why we must exclude the halo 

model as a possible explanation of the observed flux. 

Difficulties are also encountered if it is assumed that the 

X-ray background is the sum of contributions from the halos of all 

external galaxies. Felton and Morrison have shown that, unless the 

X-ray or gamma-ray emission in the average galaxy is much greater than 

our own, the integrated radiation from external galaxies will be 

several orders of magnitude less than the observed X-ray background. 

Gould and Burbidge (1966) have suggested that the diffuse flux 

is the result of radiation from discrete X-ray sources in external 

galaxies but, if our galaxy is typical, it appears (Oda, 1966) that 

the expected flux will be only one per cent of the observed value. 

Bergamini et al. (1967) have proposed that the X-ray background is due 

to the inverse Compton interaction of fast electrons with the universal 

black-body radiation in strong radio galaxies. They find an equation 

for the ratio of the expected radio and X-ray background intensities 
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and allow for an evolution in radio source population. Further, they 

assume that the radio background at 178 MHz is about 25 per cent of 

the observed intensity, and with a few other reasonable assumptions 

they conclude that the X-ray background can be interpreted as due to 

emission from strong extended galaxies if the magnetic field strength 

Is of the order of 1 pG. However, their assumption of the extra-

galactic radio background intensity appears to be excessive if we 

accept the results of Chapter VII. Consequently the required field 

strength is less than is acceptable from radio frequency observations 

and equipartition arguments. 

We are led finally to consideration of the possible origin of 

the diffuse X-ray flux in intergalactic space through the interaction 

of cosmic ray electrons with the 3°K black-body radiation. The 

difficulty in this model is the provision of a reliable estimate for 

the rate of injection of relativistic electrons from galaxies. The 

problem has been dealt with briefly by Felten and Morrison, and they 

consider a model in which electrons are supplied by explosive events 

in strong radio sources. If the total energy content of relativistic 

particles in these objects is about 10 58  ergs and 1 per cent of this 

figure is in fast electrons which are lost to intergalactic space in 

a time of approximately 10 6  years, then the calculated X-ray intensity 

is two orders of magnitude less than required by the observations. 

However, Burbidge (1962) suggests that the usual assumption of 

equipartition between particle and magnetic field energies is hardly 
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tenable for sources subject to frequent disruptive events. This 

argument is used by Felten and Morrison who point out that electrons, 

sufficient to produce the observed X-ray background, can be injected 

into space by galaxies in which a non-equipartition condition exists. 

The analysis provided by Felten and Morrison does not include 

the effects of the space-time geometry, and they also assume an 

electron energy spectrum which is constant independent of epoch. In 

this work, allowance will be made for a non-Euclidean geometry and the 

electron spectrum will be essentially dynamic through its dependence 

on epoch. 

The experimental X-ray background which must be compared with 

theoretical models is plotted in figure 8.1 from results supplied by 

Gould (1967) and recent measurements by Henry et al. (1968) at low 

energies. The spectrum of the diffuse flux in the range 1 keV to 

1 MeV has been derived from data furnished by balloon, rocket, 

satellite and space-probe experiments. The evidence so far indicates 

that the X-ray background is isotropic, at least to the limits of 

accuracy Of 10 per cent ) of the observations. Here, we do not enter 

into a detailed description of each set of data; the experimental 

results are presented in figure 1 without further comment. The data 

may be fitted by a power law of the form 

(8.1) 
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where c is the photon energy and m is the index for the energy-

intensity spectrum obtained by multiplying the photon numbers by c. 

A least squares fit over the whole observational range (1 keV to 

1 MeV) yields a value of m = 1.25 t 0.18, while fitting over the 

steeper part of the spectrum yields m = 1.42 t 0.12. The value 

obtained for m is important, not only for the definition of the energy 

distribution of the cosmic ray electrons responsible for the X-ray 

flux, but in providing a clue as to the possible origin of these fast 

electrons. 

8.2 	Electron Energy Losses in Metagalactic Space  

In this section, the actual injection processes of the 

relativistic electrons are ignored and our attention is confined to 

the problem of electron energy losses in intergalactic and metagalactic 

space. The cosmic ray electrons may dissipate their energy by the 

inverse Compton effect, synchrotron and bremsstrahlung radiation, 

expansion of the co-ordinate system, and by the ionization of atomic 

hydrogen. The spatial density of intergalactic atomic hydrogen is 

extremely small and measurements indicate (Goldstein, 1963; Davies, 

1964) a maximum value of about 10 -7  cm-3 , while some evidence (Gunn 

and Peterson, 1965) suggests a value as low as 10
-9 

cm
-3

. Therefore 

we may immediately dispense with ionization losses since they are 

approximately proportional to the concentration of atomic hydrogen and 

are accordingly exceedingly small. The density of intergalactic 
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ionized hydrogen, at the present epoch, may be taken to be about 

10
-5 cm-3 and, when compression of the plasma is allowed for, this 

implies that the characteristic time for energy losses by bremsstrahlung 

- 
radiation is much greater than the characteristic time, H 0 1 , of 

evolution of the universe. Also, this analysis is concerned with the 

latter stages of the expansion of the universe when galaxy formation 

has been completed and the plasma density is fairly small. In this 

case, bremsstrahlung losses will be insignificant and can be neglected 

in the following calculations. 

Wow before we can progress to a discussion of the remaining 

types of energy losses, it is necessary to define the space-time 

metric. The interval ds between two events in the 4-dimensional 

continuum is defined as usual by the Robertson-Walker metric: 

ds 2  = dt 2 
 

R2 (t)  dr2  + r2 (d 2  + sin 2042 )  }  (8.2) 

c2 	(1 + kr2/4) 2  

where (r, 0, (p) are 3-dimensional co-moving radial co-ordinates, t is 

the universal time, R is the radius of curvature which is a function 

of t only, and k is the curvature constant having values +1, 0, -1 

depending on whether the space-time is closed, flat or open. It is 

now possible to consider the electron energy losses in more detail. 



(a) Energy Losses by Expansion 

The problem of propagation of cosmic rays through intergalactic 

space has been examined in some detail by Ginzburg and Syrovatskii 

43964). They find that these fast electrons essentially pervade the 

whole of metagalactic space in a time which is short compared with 

the characteqistic time of evolution of the universe. In these 

circumstances "redshift" losses by expansion will be relevant and the 

loss may be written as 

dE _ 	V 	 (8.3) 

and using y = R/Ro  this becomes 

dE 
= - Y:E dt 	y 

Substituting dt = (at/ay)dy, this may be rewritten in the 

simple form 

dE _ E 
dy y 

(8.4) 

which defines the energy of an electron as a function of the expansion 

parameter y only. 
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(b) Inverse Compton Losses 

The inverse Compton process involves the production of a high 

energy photon from the collision of a relativistic electron with a 

low energy photon. The properties of the generated power depend on 

the energy and velocity distributions of electrons and photons. The 

problem has been treated in some detail by Feenberg and Primakoff 

(1948), and they derive a rather complicated formula for the total 

power dissipated by a single fast electron. However, for an isotropic 

distribution of relativistic electrons interacting with thermal 

photons, the formula reduces to the simple equation 

dE _ _ 4  E  2 
dt  a t c" 

moc
2 

(8.5) 

where at is the total Thomson cross-section and p is the photon energy 

density. The temperature of the universal black-body radiation at the 

present epoch is close to 3°K, and this corresponds to an energy 

density p = 0.38 eV cm
-3

. Also, as the universe expands, the 

cosmological redshift serves to adiabatically cool the black-body 

radiation while preserving a Planck function. In the absence of 

- 
interaction with matter, the temperature is proportional to y

1 
 and 

the photon energy density at an epoch defined by y may be written as 

p = 01'4  = p0y-4 	 (8.6) 
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where a is the Boltzmann constant. Therefore, from equation (8.5), 

the energy loss by photon scattering is 

dE _  BE 2  at  ( 8. 7 ) 
dy  y4 a y  

(moc2)2 

It is clear from equation (8.7) that the inverse Compton loss is a 

strong function of the expansion parameter and will be most important 

at early epochs. 

(c) Synchrotron Losses 

Arguments based on energy equipartition between magnetic field 

and matter (Ginzburg and Syrovatskii,1961) yield a value -  of H  0.5 

pgauss for the intergalactic magnetic field strength. It is natural 

to assume that the energy density H 2/8n varies in the same way as the 

gas energy density. In evolutionary cosmologies, p = p py
-3 

and if the 

relative velocities of galaxies are approximately constant then 

H = H y
-3/2 

where H and p are the present values for the magnetic 

field strength and matter density. Now the synchrotron loss of a 

single electron moving in a magnetic field with perpendicular component 

H.,. can be written (Oort and Walraven, 1956) as 

dE  2 	ekc  

dt  3 (m0c2)4 
(8.8) 

4  Po 
where B = - ca   and atiay is obtained from equation (4.4). 3 	t 
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Converting the energy loss to a function of the expansion parameter 

y and assuming that the magnetic field is isotropic on the average 

2 2 2 (HA  = H) we have .  3 

dE  at 	2 	E  3 t 
= -  cH -  (  

)- y-_ 

dy  67r 	m0c2  ay 
(8.9) 

The ratio of the total power generated by photon scattering to 

that generated by synchrotron emission is, by equations (8.7) and 

(8.9), 

Pc  
= p p (Hp2/80 -1  y -1  = 60y-1  

Ps 

(8.10) 

If the magnetic field strength H p  = 0.5 ugauss. Synchrotron emission 

in metagalactic space is therefore seen to be small compared with the 

emission by inverse Compton scattering and will be neglected in this 

analysis. 

8.3 The Electron Energy Spectrum  

It is the purpose of this section to obtain an equation for the 

quasi-equilibrium electron energy spectrum at any epoch. There are 

only two remaining energy losses which must be considered in the 

following analysis and these are the losses by Compton scattering and 

expansion of co-ordinates. Under these conditions, the differential 

equation describing the electron energy as a function of the expansion 



parameter will be 

dE 	_ ( E 	BE2  at ) 

dy 	y y4 ay  
(8.11) 

The solution to this equation with boundary conditions at 

injection of E = E0  and y = yo  is 

E(y) — 
oYo 	 1  

(1 + BE0y0 
 at. 

dy'l
-1 

Yo Y
t5 
 ay

o 
 

(8.12) 

which again demonstrates the dependence of electron energy on the 

chosen world-model. 

We now turn our attention to the problem of the electron energy 

spectrum in metagalactic space. An assembly of electrons with a number 

density N(E,y)dEdy will have an energy distribution determined by 

the equation 

aN(E, Y)  4. a r dE WE
' 
 y)] = 0 

3E L  dy  (8. 13) 

which is the continuity equation for electrons in (E, y) space without 

a source function and N is the number of electrons in an arbitrary 

region of the ordinary 3-space. Equation (8.13) has been solved for 

initial conditions N(E, yo)dE = KE -YdE corresponding to an 

instantaneous injection spectrum at y = y o . The solution is 

2 45 
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N(E, y) = KEY( .Y-2-) 1-1 [1 - BEY I
1 	at' dy , l y-2 

Yo Y' 5  aY' 

(8.14) 

Suppose now that from suitable galaxies electrons are injected 

at a constant rate qE -Y . The number of electrons, with energy E, 

escaping from a single galaxy in time dto  will be qE -Ydto , and it 

follows from equation (8.14) that the energy spectrum is 

Yo Y 1 
N(E, y) = V(y)qE -Y  I p(y0)( --- ) 1  [1 - BEy I ---- 

tom 	Y 	Yo y' 5  

8t 1  
x 	dysfY-2 dt0  

9y 1  
(8.15) 

where V is the volume of the region under consideration and p is the 

spatial density of sources. It is assumed here that the galaxies 

emitting fast electrons form a single class of objects with the 

quantity p representing their weighted mean density. In this way the 

difficulties involved in accounting for source luminosity dispersion 

will be circumvented. As before the source population is assumed to 

- 
vary smoothly with epoch so that u = u oy

x  where x = 3 + n. Hence, 

converting equation (8.15) to a function of the expansion parameter y 

and defining N* as the number of electrons per unit proper volume, we 

have, finally 
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y Y 	x  YO v -1  Y 1 
N * (E, y) = u ocIE -V Y-0- ( --). [1 - BEy I — 

Yom  Y  Yo y' 5  

at' , atn  
— dy'] r ` ---::- dy x  ay ,  o 

9Y0 

(8.16) 

The minimum value of yom  for the lower limit of integration is 

determined not only by E and y but also by the properties of the 

injection spectrum. This will be discussed in more detail in the 

next section. It is sufficient here to point out that Yom  must 

satisfy the relation 

Y  1  at' 

BEy I — —dy' < 1 
 

(8.17) 
Yom Y' S  ay' 

It is also clear from equation (8.16) that the exponent x may be 

replaced by x = 3 + (3 in the case of source luminosity evolution. 

8.4  Equation for the X-ray Background Intensity  

In this section an expression is derived for the X-ray emission 

per unit proper volume which will lead to the equation for the X-ray 

background intensity through the general equation for the background 

radiation in isotropic world-models. The total power generated by a 

single electron by photon scattering can be written, for the epoch y, 

as 

P(E, y) = ii c 	- 4  E 
3 atPoY ( 	

)2 

moc2 
(8.18) 
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which follows immediately from equations (8.5) and (8.6). The spectral 

distribution of the radiation involves difficult integrations over 

electron energies, photon energies and the scattering angles of the 

Compton interactions. However, the spectral power must possess the 

property 

CO 

P(E, y) = f P(E, y, v)dv 
 

(8.19) 
0 

and since we are concerned here with a continuum of cosmic ray electron 

energies ranging over several orders of magnitude, the problem may be 

simplified by collapsing the emission spectrum into a 6-function at 

its peak or characteristic frequency. Thus, we may write 

P(E, y, v) = P(E, y)6(v - v c) (8.20) 

where vc  is the characteristic emission frequency for electrons of 

energy E at an epoch corresponding to y. 

Now it is easily verifiable (e.g. Ginzburg and Syrovatskii,1964) 

that, in a local inertial frame and for an isotropic distribution of 

electron velocities, the average energy of a recoil photon following 

a Compton interaction with a relativistic electron is 

(8.21) 
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where  is the mean photon energy. The properties of black-body 

radiation produce E = 2.7 kT and therefore equation (8.21) yields 

E  0 
 )2k1 

oc 2  

(8.22) 

Then, allowing for the adiabatic expansion of the photon gas, 

the characteristic frequency is 

kTo  
vc  = 3.6 (  ) 2  y 

moc
2 

(8.23) 

where T
o 

is the temperature of the black-body radiation at the present 

epoch. Furthermore, the received frequency, v oo , is independent of 

the epoch of emission and depends solely on the electron energy. This 

-1  
follows from the redshift vc = vce which exactly compensates the 

- 
relation T = T0y

1 
 for the photon temperature. The X-ray emission per 

unit proper volume may now be written in the form 

j(v, y) = I 	P(E, y, v)e(E, y)dE 

moc
2 

= IP(E, y)6(v - vc)N* (E, y) 2E--dv 
avc c  

(8.24) 

and from equation (8.23) and the properties of the 6-function the 

emission coefficient is 

j(v, y) = P(E v , y)N* (Ev , y)  
1  

(8.25) 
- 

7.2EvkToy 

h(moc2 ) 2  



3 
2 
 atcPa

-3,  h  
)
3/2 m

oc2vo
1/2*(E

y ,  Y )  

(8.27 ) 

i( vo , y 
3•6kTo  
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where the emission frequency, v, is equal to the frequency, v o , 

measured by the origin observer and equation (8.22) yields 

hv o  
Ev  = moc2

—JT6kf;  
(8.26) 

i  

Combining equations (8.18), (8.25) and (8.26), we find 

Recalling that N(E, y) is the number of electrons, with energy E, 

per unit proper volume, per unit energy, we replace in equation (8.16) 

q = qs(m0c2 ) Y-1 , and from equation (8.27) the formula for the emission 

coefficient is 

2 	-3   h  
= 	atcPoY 

/  ) (3_Y)/2 ( 1-0/2 
 vo 

3.6kTo  

where q' has units sec -1  and 

ato  
x I f(yo) — dy0  

Yoin 	Yo 

(8.28) 

% 	-X YO y 	
y I 	at ,  

f (yo, = yo  ( 	)
-1

.  [1 - BEvy I — — dy'] 2  

Yo Y'5 ay' 
(8.29) 

with the electron energy, E v , being determined through equation (8.26). 

The general equation for the extragalactic background intensity follows 



from (7.6) and may be written as 

C  1 	at 
,1 	3 j t 

	

Iv  = — I 	vy , yiy — dy 
4n ymin 	Dy 

(8.3o) 

where absorption in the intergalactic medium is negligible. So, 

finally, equations (8.28) and (8.30) yield the rather complicated 

equation for the X-ray background intensity 

	

1 	at 	y 	at 3-y (1-y)/2  0 
I(v 0) = A1A2 Vo  Vog l  I 	--- I f(yo )  dy 

Ymin a y Yom 

(8.31) 

where A l  - 
atc2Po 

and A2 - (   )
12 

are constants determined by 
3.6kTo  6 7r 

the properties of the black-body radiation. Equation (8.31) involves 

an integration over three variables and it is necessary to introduce 

some simplifying assumptions before this can be accomplished by 

numerical techniques. If, as must be the case, there is a maximum 

electron energy Em  for the injection spectrum, then the lower limit, 

Yom' of the inner integral of equation (8.31) will depend not only on 

y and E but also on the value of E m . This introduces severe 

complications into the equations since Yom  is then the solution to 

the equation 

E  Yom  y  1 	at' 	-1 = 	El + now  I 	— dy'] 
Em

15  

 

Yom Y  aY 
(8.32) 
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In order to avoid these extra difficulties, we have assumed a 

linear injection spectrum defined over all energies, and in the 

ensuing computations the maximum initial energy will be infinite. 

The value of Yom  will then be determined by substituting E m  equal to 

infinity in equation (8.32) which then yields 

y 	I 	at' 
—dy' = 
	

(8.33) 
Yom Y I5  ay' 
	

ByE 

It follows from equations (8.32) and (8.33) that, for Em  >> E, 

the errors introduced into the calculations by assuming an infinite 

energy range will not be significant. At high photon energies, the 

X-ray intensity may be over-estimated, but at relatively low energies 

the calculations should approximate to the real situation. The lower 

cut-off frequency of the X-ray background will correspond with the low 

energy cut-off for the electron spectrum which, in the absence of 

ionization losses, is close to the electron rest mass energy. The 

actual energy at which this cut-off occurs does not concern us here 

since we can arbitrarily limit our derived spectrum by the low 

frequency limit of the observations and this will not affect the 

equations. 

The experimental radio and X-ray background spectra are drawn 

schematically in figure 8.2. The solid lines indicate measured regions 

of spectrum, while the broken lines are extrapolations oe theoretical 

predictions. The positions of the high and low frequency cut-offs for 
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both spectra will depend on the exact form of the appropriate electron 

energy spectrum and are sketched only roughly in the diagram. 

The spectral index analysis of the sources listed in the Parkes 

catalogues implies a mean spectral index of a = 0.84 with a variance 

on this value of approximately 0.06. Therefore according to the 

relation y = 2a + 1, the differential energy spectrum for the 

electrons responsible for the radio emissions must have an index 

y r  = 2.68. On the other hand, the X-ray spectrum (figure 8.1) implies 

an electron population having y x  = 3.8, which differs from y r  by a 

value close to unity. Furthermore, the numerical computations in 

the following section show that inverse Compton and expansive energy 

lossescan account for a change of unity in y. 

It is therefore asserted that X-ray photons are produced in 

intergalactic space by the interaction of fast electrons with thermal 

photons and that the electron population has an original energy 

spectrum close to the average spectrum in radio sources. It is 

unlikely, of course, that the energy spectrum would remain completely 

unaltered with the escape of electrons from the radio source into 

intergalactic space. In all probability, there will be a tendency 

for an excess of high energy electrons to be produced by the injection 

process which will lead to a flattening of the initial electron 

spectrum. Comparison of the radio and X-ray background spectra 

indicate that the change in index produced by this effect is less than 
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the uncertainties involved in defining the slope of the X-ray 

spectrum. Hence we propose a model in which explosive and disruptive 

events in radio galaxies are the source of relativistic electrons 

which escape more or less unimpeded into the surrounding space. The 

initial electron energy distribution may therefore be assumed, for 

present purposes, to have a spectral index of y x  = 2.68. 

Also included in figure 8.2 is the possible effect on the 

background intensity of free-free emission from intergalactic ionized 

hydrogen. This has been discussed in section 7.6 and the exact form 

of the spectrum is open to considerable conjecture. If the soft 

X-ray flux is indeed of the order of that reported by Henry et al. 

(1968), then the contribution to the background intensity due to 

bremsstrahlung emission will dominate the contributions from other 

processes, and it follows that the predictions of the present 

analysis can only find di-rect application at photon energies greater 

than about 100 eV. 

8.5 	Theoretical X-ray Spectra  

(a) Model Definition 

The numerical integration of equation (8.31) will prove too 

difficult if we revert to the usual differential equation (4.4) for 

the expansion factor. It is possible to analyse several world-models 
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which have simple expansion functions. These may be listed as follows 

Model  R/Ro  dy/(Hodt) 

y-2 
Dirac  (t/t0) 1/3  

Einstein-de Sitter  (t/t0)2/3  
y- 0.5 

Milne  t/to  1 

(t/t0)2  
0.5 

Page  y 

de Sitter  eHo(t-to) 

So, in the interests of a fast calculation procedure, the 

conditions defining models have been simplified by assuming that, 

in general, 

dy 
= Hoy

n  (8.34) 
dt 

where the value of n now determines the evolutionary path of the 

model. If n > 1, then the universe is in a state of continuous 

contraction which is hardly permissible since all available evidence 

indicates an expanding model. The analysis is therefore restricted 

to values of n less than unity. This means that models examined by 

this method will always be in a state of expansion and other models 

such as those of the oscillating type cannot have definition. The 

method is still instructive, howevar, and by suitable choice of the 

parameter n, equation (8.34) can closely simulate the expansive 

period of an oscillating universe. 



n' 
-n' -lin' 

Yom = [  Y  ] 
BEy 

(8.36) 
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It is now a simple matter to transform equation (8.29) into the 

function 

-x Yo  - 1 	
BEVY  -n'  -n' y-2 f(yo) = yo  ( ---) Y  -  (Y0  - Y  )]  (8.35) 

1 

where n' = n + 4. The equation (8.31) now degenerates into an 

integration over two variables which may be evaluated by numerical 

methods. The lower limit for the inner integral (corresponding to 

infinite initial electron energy) is, by equation (8.33), 

The three equations (8.31), (8.35) and (8.36) are sufficient 

for the derivation of theoretical spectra as functions of n and y min . 

(b) Derived Spectra 

As before, we examine the X-ray intensity in terms of the 

cosmological models defined in Table 10. The values of ymin  

corresponding to the epoch at which the electron injection phase 

begins are the same as the listed values of yo  in Table 10. Now, as 

described above, equation (8.31) can be numerically integrated 

provided the expansion parameter is redefined through equation (8.34). 

This requires fitting the curve given by (8.34) to the points in the 

(y, 0 plane appropriate to each world-model. In other words, for 
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each pair of values (a., q0) the value of n must be calculated which 

provides the best fit to the true expansion curve over the range of 

integration 'min < y < I. This can be carried out quite easily. 

For reasons described earlier, we take y = 2.68 for the index 

of the initial electron energy spectrum. The theoretical spectra 

have been normalised to fit the observed intensity at a photon energy 

of 1 MeV and for each model this procedure gives a value for the 

product po  x q'. The net result of electron energy losses by Compton 

scattering is a steepening of the X-ray spectrum at high photon 

energies. A "break" occurs at a photon energy Eb which depends on 

''minand the rate of expansion of the universe (Payne, 1969). 

However, for the models considered here we find that Eb < 100 eV since 

the Compton losses dominate the loss due to expansion of co-ordinates. 

At energies much greater than Eb, the spectral index increases by 0.5 

implying a change of unity in y  for the energy distribution of the 

electrons responsible for the X-radiation. 

The results are summarised in Table 12 which includes, for both 

extreme models, the normalisation constant p o  x q' equal to the total 

number of high energy electrons injected per unit time and per unit 

proper volume. In the third column, "d" denotes density evolution 

and "t" luminosity evolution. 



Table 12 

Derived Quantities for the X-ray Background 

in Two Extreme World-Models 

oo go Evolution p0xqs(x10-26m-3 ) nex10-17erg cm
- 3 

5 2.53 d 7.36 4.1 

5 2.53 2, 16.4 9.2 

1 0.36 d 3.39 2.66 

1 0.36 2, 8.54 6.7 

We consider, first, the predictions and consequences of the 

normalisation constants listed in Table 12. Recalling that q' is 

the number of electrons injected per unit time, the total power, P, 

output in the form of cosmic ray electrons will be 

E2 

P  = f  g l (moc2 ) Y-1  E 1-Y  dE 
El 

(8.37) 

where El and E2 are the minimum and maximum energies of the injected 

electrons. As a close approximation we may take E2 = =. The value of 

El is somewhat uncertain so let us suppose that El corresponds to the 

"break" in the X-ray spectrum. The exact position of this break will 

be discussed later but it apparently lies in the range 10-60 keV. 

Equation (8.37) becomes 
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MO 2  El 	2_ 
p = o l  ( 

 
) 2 •Y 

y-2 	m0C2 

(8.38) 

Also the cosmic ray energy density is given by 

ne  = P x uo  x T 

where T is the elapsed time after commencement of electron injection. 

Substituting for P in this equation yields 

= uo  x q' x 1.2 x 10 x( — 
-0.68

)  x T 

moc
2 

for a = 0.84. The time T may be calculated for each model by 

employing equation (4.21) with the lower limit of integration equal 

to ymin . Using (8.26) this equation can be written 

Eb 

ne  = uo  x q' x 1.2 x 10 -6  x (   
)-0.34 

x T (8.39) 
3.6kTo  

where E b  is photon energy at the break in the spectrum. The 

calculated values for ne  are listed in the last column of Table 12 

for Eb = 10 keV. The energy density of the electron components of 

cosmic rays is seen to be of the order of 10
-17 

erg cm
'3 . Mow, in 

galaxies (both normal and radio galaxies) the energy density of the 

electron component is generally taken to be 0.01 in order of 

magnitude of the density of the energy of all the cosmic rays 

(e.g. Burbidge, 1959). The same ratio can therefore be expected in 
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the cosmic rays ejected into metagalactic space from the galaxies. 

This means the total cosmic ray energy density, n, is of the order of 

10
-15 

erg cm
-3 

at the present epoch. This estimate is the same as 

the preferred value given by Ginzburg and Ozernoi (1966). It should 

be pointed out that estimates for n range from about 10
-14 

to 10
-17 

erg cm
-3 

(e.g. Ginzburg and Syrovatskii, 1967; Schmidt, 1967) but a 

value of 10
-15 

erg cm
-3 

appears to be most commonly accepted. If the 

break in the spectrum occurs as high as Eb = 60 keV,then the derived 

cosmic ray energy densities will be approximately half the derived 

values for E b  = 10 keV. According to equation (8.26) the metagalactic 

electron spectrum must have a low energy cut-off between 1.65 and 4 GeV. 

This is not at all unreasonable since in all probability only the 

highly energetic electrons will escape into intergalactic space. 

The theoretical spectra will have a spectral index of a = 1.34 

at photon energies greater than Eb and provides an excellent fit to 

the observed hard X-ray spectrum. As far as the observations are 

concerned there seems little doubt that a break in the spectrum does 

actually exist but there is some argument about its exact position. 

The data given in figure 8.1 indicates a cut-off at about 10 keV; 

however other observations have not confirmed this. Gorenstein et al. 

(1968) have measured the cosmic X-ray flux in the range 1-13 keV. 

They report that there is little, if any, change in the degree of 

spectral hardness between 1 and 60 keV and propose a spectral index 

in this range of 0.7 ± 0.2. Contradictory evidence is given by 
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Boldt et al. (1969). They find a break in the spectrum near 20 keV 

with an apparent change of unity in the spectral index. 

Hamilton and Francey (1969) have attempted to explain these 

differences in terms of different electron distributions in directions 

towards the north and south galactic poles. There is some evidence 

that, in north galactic regions, the electron spectrum is flatter 

and the synchrotron emissivity greater than in the southern regions. 

It is suggested by these authors that there are analogous differences 

in the soft X-ray flux and a galactic origin is proposed which can 

account for 20-50 per cent of the soft (less than 10 keV) X-ray 

flux. However, the model should account for at least 90 per cent of 

the X-ray intensity otherwise the spectral indices cannot be 

correlated in the manner suggested. Furthermore, if the flux is 

almost entirely of galactic origin then a fairly large anisotropy 

must be expected. The degree of the anistropy will of course depend 

on the size of the halo and the electron distribution within it but 

the X-ray is apparently isotropic within 10 per cent. The ratio of 

synchrotron intensity to Compton intensity may be written (Felten 

and Morrison, 1966) as 

I  H 2/8n 2 x 10 4  x T
° )0-0/2 s 

IC  P  H 

where H is the average galactic field strength, To  is the black-body 

temperature and all quantities are in c.g.s. units. The analysis of 
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Hamilton and Francey requires H = 1 pgauss with a corresponding 

increase in the number of high energy electrons to account for the 

low frequency radio intensities. They also take a = 0.61 which 

implies an electron distribution with y = 2.32. Now according to 

the last equation, the derived Compton intensity is quite sensitive 

to field strength and if the X-ray flux is entirely galactic in 

origin then H = 0.4 pgauss. 

The precise value for the galactic magnetic field strength 

remains in some doubt. Earlier estimates based on cosmic ray 

confinement and other energy considerations have yielded (e.g. Woltjer, 

1965; Ginzburg and Syrovatskii, 1964) values of about 5 x 10-6  pgauss 

for the field in the halo. However more recent measurements 

(Radhakrishnan, 1969) based on the dispersion of pulsar radiation and 

Faraday rotation have given H < 1 pgauss in the disk, implying a very 

weak field in the halo. This in turn means that cosmic rays with 

energy density of the order of 10
-12 

erg cm
-3 

cannot be contained 

within the halo. Clearly, the problem of the magnetic field intensity 

must be clarified before a galactic origin for the soft X-ray flux can 

be accepted. 



8.6  Conclusions  

The analysis has shown that inverse Compton radiation in 

intergalactic space may account for the diffuse X-ray flux provided 

- the cosmic ray energy density is of the order of 10 15  erg cm
-3 

at the present epoch. Compton losses lead to a spectral index of 

a = 1.34 for the theoretical X-ray background and this provides 

a very good fit to the observed spectrum. The analysis applies 

only to flux measurements at photon energies greater than the 

energy Eb  which corresponds to the break in the X-ray spectrum. 

Unfortunately, due to the acute shortage of data, the exact position 

of this break remains unconfirmed. However the break apparently 

lies in the range 10-60 keV and this corresponds to a low energy 

cut-off in the metagalactic electron distribution of 1.6-4 GeV. 
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CHAPTER IX  

A GENERAL VECTOR-FIELD COSMOLOGY  

9.1 	Introduction  

In the original steady-state theory Hoyle (1948) introduced into 

Einstein's field equations a vector 

C 11  = 3H0 (0,0,0,1) 	 (9.1) 

This led to a metric for space-time which was identical to the 

de Sitter metric obtained by defining co = 0, q o  = -1. If R = Ro  at 

t = to, then the steady-state theory yields 

R = Ro  exp[ -Ho(t - t0)], 	p = 3H/4.4 	(9.2) 

so that the matter density is a constant, non-zero quantity. The 

steady-state theory is the basis of the perfect cosmological principle 

which states that apart from local irregularities, the universe 

presents the same aspect from any place at any time. 

The steady-state universe admits a particular creation field 

and this produces a unique and exact description of the nature of the 

universe. In view of the mounting evidence against this theory, it 

is of some interest to examine the general case of a C-field cosmology. 
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9.2  Theory for Universes of Arbitrary Curvature  

As the mathematical basis of the analysis we take the Roberston-

Walker line element, 

R2 (t) rdx2  + dy 2  + dz 2  ds 2  = dt - 	 (9.3) C 2 	
(1 + kr 2/4) 2  

where x,y,z are three-dimensional comoving coordinates with 

r 2 = X2 + y 2 + 2 2 . 

We now introduce at each point, P, of the space-time continuum 

a vector A 	directed along the unique geodesic connecting the origin 

observer 0 to P. 	The vector is therefore a function of the cosmic 

time, t, only,and accordingly we define 

A = 4)(t)(0,0,0,1) 	 (9.4) 

where the general point of the space-time continuum is 

xP = (x,y,z,t) 	 (9.5) 

It should be noted here that Hoyle has examined the case of 0(t) 

equal to a positive constant in flat spaces. 

The tensor field corresponding to Ap is given by the covariant 

derivative of this vector and according to equation (2.13) this may be 

written in the form 
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21L -i 	
r" 
a  Aa  Apv E VvAt  = - 

axV   
(9.6) 

where I' denotes the Christoffel symbol of the second kind. 	As pv 

usual, the contravariant tensor will be related to the covariant 

tensor, Apv, through the equation 

At" = gPa gv8 Acta 	 (9.7) 

Where the functions glia are contravariant components of the metrical 

tensor. 

Equations (9.3),(9.6) and (9.7) now yield 

Au i = -c 2 (1 + kr 2/4) (k/R 3)0(t) du 	i,j = 1,2,3 	(9.8) 

A44  = $(t) 

where as before 15ij is the Kronecker delta. 

Following Hoyle, we now introduce the tensor APv into 

Einstein's field equations and from (2.40) it follows that 

-Kc 2YI!" = GPv - gPve + Ally 
2 (9.9) 

the cosmological constant being incorporated into the tensor AP. 

Using equations (2.51) and (9.7), the set of ten equations (9.9) 

yield the solutions 
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2R k2  kc 2 	k 	,2 
-KC2Tii = E- + -2 + - (1)(03 	kr 2 /4)6ii  (9.10) 

RRRR 

. 2 
R  kc • 

- KC 2 1•44  = - 3( FT2- + F72-) + (9.11) 

Considering only the smoothed out problem in which matter is 

assumed to behave as a perfect fluid, the energy tensor may be written 

in the form 

= (p  uPuv- gPv 
 

(9.12) 

where the symbols have their usual meanings.  In the cosmological case, 

introduction of comoving coordinates imply 
u l  u2 = u 3  = 0, and 

u = 1.  Hence equations (9.10) and (9.11) reduce to 

2R h 2  kc 2 	k 
-Kp = 	+ 	+ 	 (9,13) 

kc 2 ,  1, 
KC 2 p = 5 	+ 	vktl 

R 2 	R2  
(9. 14) 

These equations should be compared with the ordinary equations (3.5) 

and (3.6).  It should be noted that (9.13) and (9.14) could be derived 

directly from the equations (2.51). 

Now taking the vectorial divergence of (9.12), we obtain 

- 1<c 2 VvT1Iv = VNAPv  (9.15) 

1 
since the divergence of the tensor alv - --glive is identically equal 

2  p 
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to zero. 	Using equations (9.8) and (2.16) for the vectorial 

divergence, it follows that 

VvA iv = 0 	. 	 (9.16) 

vA 4  v = 3 [ - 	4)( 	+ 	(I) ( t ) j + .4 ( t ) 

Calculating VT " from equation (9.12), and employing 

equations (9.15) and (9.16), we finally derive 

kcql (I) 	=(1)(t) - 	- (t) 
	

(9.17) 

Since VvA" 0 0, it follows from equations (9.12) and (9.15) 

that matter is either being created or annihilated, depending on the 

sign of 0(t). 	Also the matter after creation or before annihilation 

must possess zero-momentum in the system of coordinates, since 

VA iv = 0 for i = 1,2,3. 

Equations (9.13), (9.14) and (9.17) are sufficient to solve the 

expansion properties of the universe, provided, of course, that 

initial or boundary conditions are determined. 	A solution to these 

equations also requires a knowledge of the function 0(t). 

If the contribution to the cosmic pressure from ordinary matter 

is negligible, then equation (9.17) yields 

= K le  A 	0(t) - i(t)) - t)] - 	0 

	

R -m 	(9.18) 
a pm  
at 
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for the rate of change of matter density with epoch. 	Now, apaat 

will be the sum of the rate of change of pm  due to expansion of 

coordinates and the 	field. 	Hence we may write 

OEN . 21k 0.2m9 
at  at  at 0  exp 

and since instantaneously pm  = pmo (R/R0 ) -3  , then 

(22t) 	- 	pm  
at 

exp 

Substituting equations (9.18) and (9.20) into (9.191, we have 

Oa) -4 [Lk 01  - 3(t))- at 	KC -  R 	R 

(9.19) 

(9.20) 

(9.21) 

for the rate of change of matter density due to the 0 field. 

9.3 A Conjectural Model  

Suppose we assume that 0(t) is constant and of the form 

0(t) = mHo 	 (9.22) 

where m is a dimensionless constant. 	At the present epoch, 

equations (9.13) and (9.14) yield the equations 

m = 2[a0 (1 + co) - go] 

(9.23) 
kc 2  

Ro2H02
- 2a0 - 1 
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which should be compared with equations (3.20) and (3.21).  We note 

that the first of equations (9.23) implies that the possibility of a 

large positive qo  is enhanced by a negative value for m, corresponding 

to matter annihilation.  The steady-state model may be defined by 

specifying  k = 0, qo  = -1 and co  = 0.  The equations (9.23) then 

yield oo  = 0.5, m = 3, and consequently from equation (9.21) 

(Dpm/30 0  = 9H0 (A/R) 2/8nG.  Then using equations (9.19) and (9.14) in 

turn we find that the matter density and the ratio je/y are both 

constant.  The steady-state universe may be defined more generally by 

assuming 0(t) = 3k/R. 

Substituting (9.22) in (9.21), we have 

Dp 	it 
(e4 = 

	

t 0  R K C - 

Hence, at the present epoch, 

(112mA _ 

 

%at 'o 	airc 

(9.2'L) 

(9.25) 

= 5.910 -47  gm cm-3 sec-1 

Also, the source count analysis has shown that the number of 

radio sources per unit coordinate volume must vary as y -n where n 

is in the range 3.5 to 4.5.  The most obvious and most acceptable 

explanation of this result is that a proportion of radio galaxies 

become extinct radio emitters in a time short compared with H 0-1 . 

Now the same result is obtained if some galaxies actually disappear 
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out of existence. 	It is well known (e.g. Harrison et al, 1965) that a 

spherically symmetric distribution of matter can collapse under 

gravitational forces to a stage where its radius is less than the 

critical Schwarzschild radius r = 2 GM/c 2 . 	After this event, collapse 

can no longer be halted and no radiant energy can flow in or out. 	The 

dynamical history of such a configuration - despite its own constant 

energy - contains all the 3-geometries with mass-energy less than the 

total mass-energy as sensed externally. 	Here, then, is a mechanism 

suggestive of the annihilation of matter. 	However, the phenomenon of 

gravitational collapse cannot affect the cosmological equations since 

the extrinsic 3-geometry is constant independent of time. 	But, if 

the matter present in galaxies does actually (by some as yet unknown 

process) disappear out of existence - as determined by the absence of a 

gravitational field - then it is possible to derive a rough estimate 

for the rate of annihilation of matter from the source count results. 

The number of sources per unit proper volume at the epoch defined by y 

Is 

n = n0y
-(3+n) 

where no  is the galactic density at the present time. 	Differentiating 

and converting to the equivalent mass density, the rate of 

disappearance of matter is given by 

(5.12E0 	- flomy- n-1 	 (9.26) 

= -npm0H0  

at the present epoch. 	Taking n = 4 and pmo  = 5 x 10-31 gm cm-3  for 

the local mass density of galaxies, the rate of annihilation of matter 

is about 6.410 -48gm cm-3 sec-1 . 	If m is of the order of unity as 
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indicated by the first of equations (9.23), then this estimate is 

surprisingly close to the estimate given in equation (9.25).  These 

calculations are quite sketchy and if 45(t) is not identically zero 

then it is not possible to reach any sort of conclusion until the 

function 4.(t) is somehow determined.  In view of the present 

difficulties in specifying world-model parameters, it seems likely that 

OW will be derived from basic physical theory rather than from 

cosmological considerations. 

9.4 	Conclusions  

If, at every point of the space-time continuum, a vector field 

exists of the form A = 0(t)(0,0,0,1), then the evolution of the 

universe is described completely by equations (9.13), (9.14) and 

(9.18). The steady-state theory deals with a particular case of 

matter creation. It is suggested here that the possibility of large 

scale annihilation of matter should not be disregarded. The proposal 

that source counts (indicating possible source density evolution) and 

a large positive value for cio  lend support to the theory ofmmatter 

annihilation is speculative. The analysis has only provided an outline 

of the problems involved with the introduction of a vector field into 

Einstein's equations. Obviously a complete analysis of metagalactic 

evolution is required for different functions OW. However, there are 

difficulties inherent to the basic cosmological theory and further data 

is required before an absolutely convincing case can be made for a 

particular world-model. Thus, there seems little point, at this stage, 
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of extending the analyses to include vector fields of the form 

AP' but the implications of such a field should be kept in mind. 



CHAPTER X  

CONCLUSIONS  

The development of world-models suitable for the large scale 

description of the evolutionary properties of the universe begins 

with an analysis of the observable quantities associated with 

radio sources. The distribution of source angular diameters with 

redshift and the variation of source average spectral index with 

redshift or luminosity both contribute to a solution of the 

cosmological problem. 

Assuming that source luminosity or density in co-ordinate 

volume varies smoothly with expansion parameter it is possible to 

analyse the source counts as a function of cosmological model... 

This has been done for the source counts of the recent SC surveys. 

Function minimisation techniques indicate that the best fit 

condition is attained by those models having relatively large 

values for the density parameter ao  and the deceleration parameter 

go. Reference for section 4.3 shows that these models are closed 

and oscillating. The analysis also provides important information 

on the variation of source luminosity or density with epoch and 

the redshift (or epoch) corresponding to galaxy formation. 
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The low frequency spectra of discrete radio sources will be • 

affected by intergalactic absorption to an extent depending on the 

temperature path of the gas, the source redshift and the particular 

cosmological model which may apply. If ao  is somewhat greater 

than unity as suggested by the source counts then a significant 

amount of intergalactic absorption will be exhibited in source 

spectra at frequencies less than about 20 MHz. 

The radio background has been calculated for two extreme 

cosmological models consistent with the source counts. It is 

found that, at 100 MHz, the extragalactic component amounts to 

approximately 11 per cent of the total background intensity for 

source density evolution and 5 per cent for source luminosity 

evolution. Taking account of other independent evidence it seems 

that the smooth variation of source density (in co-ordinate volume) 

with epoch is the dominant evolutionary process. The integrated 

free-free emission from intergalactic ionized hydrogen yields, 

for the world-models derived from the source counts, soft X-ray 

spectra which are reasonably consistent with the measured fluxes. 

The diffuse X-ray background can be described in terms of 

inverse Compton interactions of metagalactic cosmic ray electrons 

with 3°K black-body photons. Initially the electron energy spectrum 

has an index y = 2.68 which is identical to the proposed average 

Index for cosmic rays in radio galaxies. As usual the analysis was 
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restricted to the cosmological models derived from the source 

counts. The theoretical background spectrum has a spectral 

index of a = 1.34 (corresponding to a change of unity in y) and 

this is close to the spectral index obtained from a least squares 

fit to the measured intensities. Normalisation requires a cosmic 

- 	 - 

ray energy density of the order of 10
15 
 erg cm

3 
 at the present 

epoch and again this value is consistent with other estimates. 

Finally, a brief analysis has been given of the consequences 

of the existence of a vector field in universes of arbitrary 

curvature. The results suggest that the possibility of large 

scale annihilation of matter should not be disregarded. 
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