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Abstract 

In 1992, a marine Synechococcus was discovered in a meromictic lake in the 

Vestfold Hills, Antarctica. This thesis describes the ecology and taxonomy of 

this organism. 

IV 

Ace Lake is a saltwater, meromictic that was isolated from the marine 

environment approximately 6000 years ago. In 1992, The lake was 25 m deep, 

the top 12 m was oxygenated and the lake had a salinity range of 16 to 40 g kg-1 

salt. The recent discovery of Synechococcus in Ace Lake was aided by flow 

cytometric methods. In Ace Lake, Synechococcus occured in the highest 

densities below the pycnocline with maximum numbers occurring just above the 

oxic/anoxic interface. Synechococcus bloomed in spring with numbers declining 

again in early January. At the peak of the bloom in 1992, a density of 8 x 106 

cells mr1 was recorded at 11 m in the lake. 'No diel periodicity in the growth of 

Synechococcus was detected. 

Synechococcus was also present in two of ten other meromictic lakes and basins. 

The organism occured throughout the aerobic zone in Pendant Lake, in densities 

of approximately 10 7 cells m1-1
, and below the pycnocline in Lake Abraxas in 

densities of 1.4 x 10 7 cells m1-1
• It is possible that salinity restricts the 

distribution of Synechococcus in the meromictic lakes of the Vestfold Hills. 

Synechococcus strains were isolated from Ace Lake, Pendant Lake and Lake 

Abraxas for further characterisation. The three strains were similar in size and 

had the same lipid soluble pigment signature, with two unknown carotenoid 
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pigments present in addition to the chlorophyll a, zeaxanthin and ~~- carotene. 

The three strains had phycoerythrin as their principle accessory light harvesting 

pigment. They were genetically similar (99. 7 % similarity in the 16S rRNA 

sequence) and had a G + C content of between 57 and 58 mol %. They were also 

genetically similar (95. 7 % similarity in the 16S rRNA sequence) to another 

marine picocyano bacteria, Prochlorococcus marinus. Based on the square root 

temperature dependence model, the minimum and maximum theoretical growth 

temperatures of the Ace Lake Synechococcus strain was -8° C, and 29.8° C. The 

optimal theoretical growth temperature was 19.7° C. 

ln-situ growth rates of the Ace Lake Synechococcus strain at 6 m, 8 m and 10 m 

in Ace Lake were determined. These rates were -0.118 d-1
, 0.072 d-1 and 

0.341 d-1 respectively. An increase in water temperature and a re~~on in light 

intensity increased the in-situ growth rate of the Ace Lake Synechococcus 

population. The grazing pressure on Synechococcus in Ace Lake was not 

determined. It is probable, however, that the distribution and abundance of 

Synechococcus in Ace Lake, Pendant Lake and Lake Abraxas is controlled by 

grazing. 

Chapter 1 summarises and reviews the current ecological and taxonomic research 

that has been undertaken on Ace Lake. Chapter 2 describes the flow cytometric 

techniques that were developed to study Synechococcus in Antarctic Lakes. 

Chapter 3 discusses the ecology of Synechococcus in Ace Lake and chapter 4 the 

distribution of Synechococcus in meromictic lakes in the Vestfold Hills. Chapter 

5 describes the taxonomic characteristics of three Antarctic Synechococcus 

strains and chapter 6 discusses controls of Synechococcus growth in Ace Lake. 
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Chapter 1 

The Chemical Stratification and Microbial 
Communities of Ace Lake, Antarctica 

A review of chemical and microbial characteristics of a marine 
derived meromictic lake. 
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1.1 Abstract 

Ace Lake is one of many, marine derived, meromictic lakes in the Vestfold Hills, 

Antarctica. The lake was isolated from the ocean over 6000 years ago through a process 

of isostatic uplift. Since that time the lake has undergone substantial change to reach its 

current stratified state. The physical structure of the lake is dependent on the local 

climatic conditions and the chemical structure is being maintained in part by the wide 

variety of microbial communities .that inhabit the lake. The lake is 25 m deep with the 

mixolimnion separated from the monimolimnion by a sharp pycnocline. The lake is 

anoxic below 12 m. The euphotic zone supports a plankton community of low diversity 

relative to temperate and tropical lakes with only one reported metazoan zooplankton 

species. There are five dominant phytoplankton species, including high numbers of a 

picocyanobacterium, in Ace Lake. A population of photosynthetic sulfur bacteria exists 

at the top of the anoxic zone and forms part of the sulfur cycle in the lake. Active 

methanogenic archaea have been isolated from the bottom of the monimolimnion. The 

research on communities in Ace Lake has contributed significantly to the current 

knowledge of Antarctic microbial diversity. However, a number of questions remain 

especially in relation to the ecology and taxonomy of the heterotrophic bacteria, the 

microbial loop and technological applications of microorganisms issolated from Ace 

Lake. 
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1.2 Introduction 

The Vestfold Hills is an ice-free area of approximately 500 km2 on the coast of Princess 

Elizabeth Land, East Antarctica. There are close to 300 lakes and ponds in the Vestfold 

Hills, ranging from glacier fed freshwater lakes (Lake Druzhby, conductivity of 

12 µS cm-1
) to hypersaline lakes (Deep Lake, conductivity of 192000 µS cm-1

). About 

ten percent of the lakes are meromictic. There has been extensive scientific interest in 

the lakes of the Vestfold Hills because of the broad diversity in chemistry and hence 

biology of the lakes. Ace lake has attracted particular attention since research began on 

the lakes of the Vestfold Hills in 1973 (Johnstone et al. 1973). This is primarily because 

of its marine origin and its biogeochemistry. It was one of the first known meromictic 

lakes of the region. 

Ace Lake (68°24'S, 78°11 'E) is a saline, meromictic lake on Long Peninsula in the 

Vestfold Hills (Figure 1.1 ). It is thought that Ace Lake was isolated from the sea some 

6100 years ago through the process of isostatic uplift (Bird et al. 1991). Since that time 

the lake has undergone substantial change to reach the current physical and chemical 

stratification. The lake has a maximum depth of25 m, is approximately cone shaped 

(Figure 1.2) and has a volume of 1.5 x 106 m3 (Table 1.1 ). 

Ace Lake lies in a flat low valley with a small catchment (Table 1.1 ). The geological 

setting of the catchment consists of Archean Gneiss cut by younger dolerite dykes 

(Burton 1981 ). There is very little soil in the catchment and what is present is 

mineralogenic rather than organic. 
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During winter, small snow banks develop in the catchment. These banks melt during 

summer leading to some meltwater input. The catchment is devoid of any significant 

plant growth or permanent bird colonies. hrllow of organic material and nutrients from 

the catchment would, therefore, be minimal. The contribution of melt water algae to 

organic input to the lake has not been determined but it is expected to be small. 

Table 1.1: Morphometric characteristics of Ace Lake 

Maximum depth (Zmax) 
Volume 
Area 
Mean depth 
Shore line (SL) 
Development of SL 
Total salt 
Average salinity 
Centre of mass 
ZmearlZmax 
Lake catchment 

25m 
l.45 x 106 m3 

l.79 x 105 m2 

8.14m 
2.32 x 103 m 
l.55 
3.020x 104 tonnes 
20. 33 gkg"1 

8.7 m (approx) 
0.33 
35.5 ha 

The stability of the meromictic lakes in the Vestfold Hills is partially determined by the 

local climate through its effect on water budget. Compared with other areas in East · 

Antarctica, the weather in the Vestfold Hills is relatively mild by Antarctic standards. 

This is due to the moderating influence of the ice free land. The area is dry with a 
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relatively low annual wind speed (5.16 m s-1 in1992). The mean annual precipitation is . 

relatively low (7.3 mm in 1992) and the mean annual temperature is mild (-10.4 °C). 

Unlike an open ocean Ace Lake provides a stable environment for the study of 

biological communities and biogeochemical cycles. The ice cover on Ace Lake and the 

sharp density gradient at the bottom ofth mixlimnion increase the stability of the lake, 

making investigations simpler. A range ofbiogeochemical cycles, including a sulfur 
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cycle, occur in Ace Lake and the lake supports large populations of novel bacteria 

including an active population ofmethanogenic archaea (Franzmann et al. 1991b). 

Since isolation, the diversity of phytoplankton in Ace Lake has simplified relative to the 

marine environment, making it easier to study biological processes. Finally, Ace Lake 

is relatively easy to reach at most times of the year making it more convenient for 

scientific study. Because of low phytoplankton diversity, the stability and the physical, 

chemical and biological stratification, Ace Lake provides an ideal field laboratory for 

understanding limnological processes that can then be related to the vastly more 

complex and less stable open ocean systems. 

1.3 Isolation and Evolution of Ace Lake 

Estimates of the time of separation of the lake from the ocean have been made using a 

number of methods including sulfur isotope measurement, 14C and fossil dating and 

sediment core analysis (Bird et al. 1991; Burton and Barker 1979; Fulford-Smith and 

Sikes 1996). Most of the marine derived lakes of the Vestfoki Hills from which 

sediment cores have been obtained show a marked change from marine conditions to 

lacustrine within the core. Such a boundary has not been observed in Ace Lake, though 

this probably means that the sediment cores have not been collected from sufficient 

depth. Nearby saline lakes, including Highway Lake and Organic Lake show this 

interface clearly (Bird et al. 1991 ). Like these lakes, Ace Lake is ringed by relict marine 

terraces, indicating that it is of marine origin. Further evidence for the marine origin of 

the lake comes from the observation that major ions are present in similar ratios to those 

in seawater (Masuda et al. 1988). Bird et al. (1991) used carbon dating of organic 

material from a sediment core to suggest an age of isolation of 6100 years for Ace Lake. 
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However because definite marine sediments were not sampled, this might be an 

underestimation of the lake age. Based on a record of diatom frustules, Fulford-Smith 

and Sikes (1996), proposed an initial time of isolation of Ace Lake from the sea at 

approximately 9000 years ago. Nearby Organic and Highway Lakes are thought to have 

been isolated circa 5820 and 6890 years before present respectively (Bird et al. 1991). 

The evolution of Ace Lake since isolation is complex. Fulford-Smith and Sikes (1996). 

suggested that the lake was subject to two main influences during its time of formation, 

a freshwater influence from the retreating ice cap and a marine influence. Following the 

initial isolation of the lake there was a period of partial flushing with :freshwater. A 

second period of sea water inundation occurred some 5000-6000 years ago. The 

reisolation of the lake from the sea was estimated to have occurred approximately 5500 

years ago. According to Fulford-Smith and Sikes (1996), the lake has remained isolated 

from the sea since this time but has gone through a second period of partial freshwater 

flushing. The chemical stratification of the lake (Figure 1.3) is consistent with the 

hypothesis that the lake has undergone periods when evaporation may have lowered the 

water level considerably, resulting in formation of the hypersaline water that now occurs 

near the bottom of the lake. The processes that led to the periods of :freshwater invasion 

are not certain. The reduced salt content could have been the result of partial flushing 

by meltwater from the current lake catchment. 
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Considering that the catchment is small and that the local area has low precipitation, this 

is unlikely. It is more likely that flushing occurred during a period when the polar 

plateau abutted the lake or when flow from the plateau entered the catchment as 

suggested by Fulford-Smith and Sikes (1996). Similar processes have resulted in the 

flushing of most of the salt from other lakes in the Vestfold Hills, including Watts and 

Nicholson Lakes (Pickard et al. 1986), as well as the nearby Highway Lake (which has a 

salinity of only 5 g kg"1
). These lakes do not appear to have been reinvaded by salt 

water. Clear Lake, on Mule Peninsula, probably had a similar isolation process, 

including a reinvasion of salt water, to that of Ace Lake (Adamson and Pickard 1986). 

Of four meromictic lakes extensively studied in the Dry Valleys (Joyce, Hoare, Vanda 

and Fryxell) only Lake Joyce has an ionic composition similar to that of seawater 

(Green et al. 1988). It is thought that other meromictic lakes in this region were formed 

from glacial retreat and that the salinity of the lakes has increased during periods when 

evaporation was greater than freshwater input into the lakes (Green et al. 1988; Green et 

al. 1989). Addition of ions, from erosion of rock surfaces in the Dry Valleys, is also 

thought to be an important contributor to the salinity increase in the lakes seawater 

(Green et al. 1988). Matsumoto et al. (1989) argued, however, that the salt composition 

in Lake Fryxell was similar to seawater but is only one-fifth the salinity of seawater at 

the lake's highest concentration. Lake Fryxell may therefore have had a marine origin 

and gone through a flushing process similar to the meromictic lakes in the Vestfold 

Hills. 
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The formation of stratification in the meromictic lakes of the Vestfold Hills is thought to 

be a result of increasing and decreasing water levels in these closed basins, which act as 

sensitive indicators of local precipitation (Gibson and Burton 1996). As water levels 

decrease, salinity increases, and the lake becomes totally mixed. Conversely, when 

levels rise, a layer of fresh water is formed over the surface of the lake. The 

implications of these processes are discussed below. The salinity profile indicates that 

at some stage the lake level dropped to such a degree that the lake mixed completely and 

had a salinity of 41 g kg-1 (Gibson and Burton 1996). These authors calculated that this 

represented a drop in water level of approximately 6 m compared to that at present. 

Studies of the distribution of sulfur concentrations and sulfur isotopes suggested that, 

through this process, approximately 78% of the total Sin the lake has been lost since it 

was isolated. The mechanisms that effected this loss are uncertain, but it was possibly 

due to loss of volatile sulfides during the process of lake mixing. If so, this implies an 

earlier period of complete mixing. 

Between 1974 and 1994 the lake depth has increased from 22.8 m to 25 m. The depth 

of the oxic/anoxic interface has not changed with respect to the lake bottom, indicating 

that freshwater inflow on top of the lake. However, recent measurements of lake height 

above sea level (E. Bell, personal communications) indicated that the water budget in 

Ace Lake is no longer positive. In the 1970's and 1980's the lake increased in its height 

above sea level. In 1986 the lake surface was 8.91 m above sea level, in 1989 the lake 

was 9.15 m above sea level hence the lower salinity in the surface waters in 1992 

compared to 1974 (Figure 1.3). By 1996 the surface of the lake had dropped to 8.67 m 

above sea level. Like other lakes in the Vestfold Hills, for example Deep Lake and ' 
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Organic Lake (Gibson and Burton 1996), it appears that the water balance of Ace Lake 

has recently changed from positive to negative. 

1.4 Chemical stratification and maintenance of meromixis 

Ace Lake remains permanently stratified because of a strong density gradient and 

extended ice cover which reduces wind induced mixing (Ace Lake is covered by up to 

1.8 m of ice for up to 11 months of the year and in cold years may remain ice covered all 

year round). The physical stratification provides some insight into the history of, and 

the processes occurring in, the lake. 

1.4.1 Salinity 

A summer salinity profile is shown in Figure 1.3. During most of the year, the lake is 

isohaline from under the ice to a depth of 7 m. Beneath this depth salinity increases, 

initiated by a sharp pycnocline between 7 m and 8 m, in a number of distinct steps, to 

the bottom of the lake. The lake is less saline than seawater from the surface to a depth 

of 18 m, and greater below. Salinity remains essentially constant throughout an annual 

cycle at all depths except the top 7 m. A lens of fresher water forms during summer at 

the surface due to the melting of the ice. The top waters also undergo some wind 

mixing at this time. When ice begins to form again at the end of summer, the salinity of 

the water under the ice increases again as brine is excluded from newly formed ice. 
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1.4.2 Temperature 

Temperature profiles of Ace Lake also indicate strong stratification (Figure 1.3). Water 

temperature is a balance of heat transfer from solar heating and loss of heat by 

conduction, through the ice, to the atmosphere and to the sediment (Wetzel 1983). In 

Ace Lake, solar heating of the water occurs to a depth of approximately 14 m. During 

winter, the isohaline layer under the ice is at its :freezing point. As the ice cover thickens 

and the water i.pcreases in salinity this layer becomes colder. In spring and summer, 

when solar radiation increases, this layer is warmer, reaching temperatures of 

approximately 5° C. Between 7 m and 8 m the temperature rises sharply and the 

temperature below 10 m is warmer during the winter months than over summer. A mid­

water maximum of approximately 10°C occurs in February. The temperature of this 

region then begins to ~all reaching a minimum of approximately 5° C in December. 

Below 14 m the temperature decreases to the bottom of the lake. Temperature at the 

bottom of the lake has increased by approximately 1.5~C over the past 20 years, but 

shows minimal seasonal variation. 

1.4.3 Stratification 

Stratification of Ace Lake is maintained by the strong salinity gradient and the absence 

of wind induced mixhing throughout the year. The lake can be divided into three zones 

(Figure 1.3). At the top of the lake, the mixolimnion, mixes freely and contains oxygen. 

Convective mixing would occur in the mixolimnion during winter due to exclusion of 

brine from the forming ice. A convective current of 1 cm s·1 has been recorded in the 

mixed layer of Lake Vanda (Ragotzkie and Likens 1964). The depth of the 
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mixolimnion can change from year to year depending on local climatic conditions. The 

mixolimnion is separated from the monimolimnion by a sharp pycnocline. Due to the 

strong density gradient, transport of heat energy and salt in the monimnolimnion would 

occur by mostly by molecular diffusion (Canfield and Green 1985). This process 

explains the midwater temperature maximum, where solar heat is trapped. Beneath the 

pycnocline is the monimolimnion. The top 5.2 m of the monimolimnion contains 

oxygen possibly due to the deep mixing of the mixolimnion in the past (Gibson and 

Burton 1996). Below 12.2 m the monimolimnion is anoxic. Advection in the lake 

probably occurs quite freely. 

Gibson and Burton (1996) have suggested that the steps in the salinity profile (Figure 

1.3) reflect depths to which the lake mixed at some stage in the past. If lake levels were 

to decrease, the salinity of the surface waters would increase, and deeper epilimnetic 

mixing would be expected. In Figure 1.3, a small salinity step occurs at 12 m coincident 

with the depth of the interface between oxic and anoxic water (Gibson and Burton 

1996). It appears that mixing of oxygenated water to this depth has occurred at some 

time in the past. Deep mixing of oxygenated water currently occurs in nearby Pendant 

Lake (L. Rankin, unpublished data). Even though mixing does not occur to this depth at 

present, it appears that heterotrophic processes have been unable to remove oxygen 

produced by photosynthesis in the stagnant water between 7 m to 12.2 m. The salinity 

at the bottom of Ace Lake suggests that the maximum salinity during extended periods 

of negative water balance was at least 41 g kg-1
• 

Other meromictic lakes in the Vestfold Hills and in the Dry Valleys are similarly 

stratified although each lake has individual physical and chemical characteristics 
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(Gibson and Burton 1996; Simmons et al. 1993). Lake Fryxell in the Dry Valleys, for 

example, is 19 m deep, has a salinity range of approximately 1 - 4 g kg-1
, has a midwater 

temperature maximum of3.6° C and an oxic/anoxic interface at approximately 10 m 

(Vincent 1981). Lake Vanda in the Dry Valleys, is 68 m deep and has a temperature 

maximum of23.5° Cat the bottom of the lake where the salinity is three times that of 

seawater (Vincent and Vincent 1982). Ekho Lake in the Vestfold Hills is 40 m deep, 

has an oxic/anoxic interface at 23 m, a salinity range of 30 - 160 g lcg-1 and a 

temperature maximum of 18° C at 18 m (L. Rankin, unpublished). 

1.4.4 Light 

Like all high-latitude locations, the climate of the Vestfold Hills is dominated by the 

extreme contrasts in the seasonal inputs of solar radiation (Campbell and Aarup 1989). 

For approximately six weeks during winter (June-July) there is no light in the Vestfold 

Hills and for six weeks during summer (Dec-Jan) there is continuous light. Optical 

properties of Ace Lake are described in detail by Burch (1988). Phytoplankon in 

Antarctic lakes need to adapt to dramatic seasonal changes in solar radiation. In the 

surface waters of ice free lakes phytoplankton may be affected by photoinhibition due to 

the intense summer light (Wright and Burton 1981). During the winter months and also 

at the bottom of the euphotic zone in ice covered lakes, phytoplankton must be adapted 

to survive at very low light intensities. Further, the incident light reaching the water 

column of ice covered lakes is altered by the opaqueness of ice, ice depth and ice age 

(Kirk 1994). Snow cover on ice affects total light penetration and penetration of certain 

wavelengths (Burch 1988). Due to the differences in ice thickness, there was only 1 % 
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penetration of incident light through the ice in Lake Fryx:ell as compared to 15 % in 

Lake Vanda (Vincent 1981; Vincent and Vincent 1982). Phytoplankters at the deep 

chlorophyll maximum (DCM) in these lakes conduct photosynthesis with less than 1 % 

of the surface light intensity. During 1992, in Ace Lake, light measured as 

photosynthetically active radiation (PAR), was detected to a depth of2 rn in August 

(detection limit of 1 µrnol photons rn·2 s-1), due to low levels of incident radiation. Light 

was detected to a depth of 12 rn in December. Lake is thikness ranged from 50 cm in 

April to 180 cm in October. In December, the vertical attenuation coefficient (K-0) 

changed from 0.2 rn-1 in the top 10.5 rn to 4.4 rn·1 between 10.5 rn and 11.5 rn (Chapter 

3, Figure 3.7). This was probably due to absorption oflight by a dense band of 

picocyano bacteria at the DCM. 

1.4.5 Dissolved gases 

Figure 1.4 shows a vertical profile of dissolved gases in Ace Lake in 1987. These 

concentration of dissolved gasses are consistent with those published by Hand and 

Burton (1981). Oxygen concentration in the rnixolirnnion was high (0.4 rnmol r 1
) 

(Franzmann et al. 199lb). In the ice covered, rnerornictic, lakes of Antarctica the 

rnixolirnnion generally has supersaturated oxygen concentrations, because the ice cover 

prevents oxygen and other dissolved gases from reaching equilibrium with the 

atmosphere (Hand and Burton 1981; Vincent et al. 1981; Wharton et al. 1987). 

Merornictic lakes in the Dry Valleys have ice cover almost twice as thick as that on Ace 

Lake and as a consequence dissolved oxygen concentrations as great as 40 mg r1 have 

been measured in Lake Hoare (Vincent 1988). 
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During the late 1970's and the 1980's, Burton and Barker (1979); Burch (1988); and 

Franzmann et al. (1988) recorded a distinct oxycline between the bottom of the 

mixolimnion and the top of the anaerobic interface in Ace Lake (Figure 1.4). Just above 

the anaerobic interface oxygen was present in concentrations of less than 0.19 mmol r1
• 

This reduction in oxygen below the mixolimnion is characteristic of meromictic lakes in 

Antarctica (Simmons et al. 1993) and throughout the world (Ouellet et al. 1989; 

Venkateswaran et al. 1993). In recent years high oxygen concentrations (0.7 mmol r1
) 

have been measured in the top of the monimolimnion of Ace Lake (J. Gibson, 

unpublished data). Based on this recent information it is proposed that the top of the 

monimolimnion was oxygenated during a period of deep mixing in the past and that the 

oxygen is now maintained in this zone through the photosynthetic activity of algae and 

cyanobacteria. During summer the rates of photosynthesis are probably higher than the 

rates of respiration by heterotrophs. In Lake Hoare, Dry Valleys, 58 % of the net 

oxygen production could be accounted for by freeze- concentration of the inflowing 

meltwater, while 42 % was attributed to net photosynthetic production (Vincent 1988). 

Respiration rates in Ace Lake have not been measured but this argument is substantiated 

by measurements of oxygen concentrations taken over a one year period in 1994. 

Oxygen concentrations at 10 m were higher during the spring and summer months than 

during the winter months, corresponding to the algal blooms that occur at the D.C.M. 

during this period (Figure 1.5). 

Like oxygen, molecular nitrogen is also supersaturated in the mixolimnion (Figure 1.6). 

Below 18 m nitrogen falls to undetectable concentrations. It was postulated that below 

18 m nitrogen is stripped from the water column by the high methane levels (Hand and 

Burton 1981). 

Hydrogen sulfide and methane in Ace Lake, (Figure 1.4), result from the activity of 

sulfate reducing bacteria and ~ethanogens in the monimolimnion (Burton and Barker 

1979; Franzmann et al. 1988). Along with reduced organic compounds and low valency 
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metal, the high concentration of hydrogen sulfide below 12 m maintains the reducing 

conditions in the bottom waters. 

1.5 Biota of Ace Lake 

The number of eukaryotic and bacterial species recorded in, or newly described from, 

Ace Lake has increased significantly over the last twenty years. This has resulted from 

greater taxonomic effort due to increased interest in the lake communities over this time. 

Community structure is greatly influenced by the physiochemical gradients in stratified 

ecosystems. Species composition will therefore be discussed according to position in 

the water column. 
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1.5.1 Oxic Zone 

1.5.1.1 Benthic communities 

Benthic mats have been reported in the litoral zone of Ace Lake to a depth of 

approximately 10 m (Wright and Burton 1981). At times, portions of the mats detach 

and become part of the planktonic community in the lake. These types of algal mats, 

known as lift-off mats, have been reported in other lakes in the Vestfold Hills (Heath 

1988) as well as in the meromictic lakes of the Dry Valleys (Parker and Wharton 1985; 

Simmons et al. 1993 and references within). The pinnacle mats and prostrate mats that 

occur in most of the Dry Valley Lakes (Parker and Wharton 1985) have not been 

reported in Ace Lake but this is probably due to the lack of research effort in this area. 

The algal mats have a high species diversity. Some of the organisms in the benthic 

communities from the edges of Ace Lake include mats of brown alga Ectocarpus sp., as 

well as Urospora penicilliformis, cf Rhizoclonium implexium and many small diatoms 

have been described (Dartnall 1992). The fauna was similarly rich for there was a small 

harpacticoid copepod, many ciliates, a large tube dwelling member of the Folliculinidae 

family, an eyed platyhelminyth, nematodes and three species of rotifer (Dartnall 1992; 

Gibson and Swadling, unpublished data). Twenty three species of diatoms were 

recorded in the surface sediments of Ace Lake. Many of these undoubtedly live in the 

thick algal mats (Cragg 1993). Like most benthic algal mats, (Lynch and Hobbie 1988), 

algal mats in Antarctic Lakes are composed primarily of cyanobacteria, diatoms and 

heterotrophic bacteria (Parker and Wharton 1985). Nitrogen fixation within the algal 

mats could provide an important source of organic nitrogen for organisms in the 
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mixolimnion. Nitrogen fixation occurs in other Antarctic lakes and melt streams 

(Vincent 1988) and the heterocysts of nitrogen fixing cyanobacteria have been observed 

in algal mats in Ace Lake (J. Gibson, unpublished data). 

1.5.1.2 Zooplankton 

The calanoid copepod Paralabidocera antarctica (J.C. Thompson), usually associated 

with sea ice in the marine environment, is the only metazoan zooplanktonic species that 

inhabits Ace Lake (Bayly 1978). Bayly (1978) also reported a small number of Acartia 

sp. but this organism has not been detected since that time and was possibly the result of 

sample contamination. A significant difference between the meromictic lakes of the 

Vestfold Hills and the meromictic lakes of the Dry Valleys is that crustaceous 

zooplankton are not present in the latter (Parker and Simmons 1985) although Vincent 

and Howard-Williams (1985) reported the presence of rotifers at the oxic/anoxic 

interface in Lake Fryxell. 

Paralabidocera antarctica exhibits a single generation per year in the lake. Nauplii 

appeared in autumn and developed to adults in early summer when eggs were produced 

(K. Swadling, unpublished data). From a detailed study of the distribution of P. 

antarctica, undertaken in January 1982, it was found that there were two density 

maxima of P. antarctica: one just beneath the ice in the depth range of 1. 7 5 m - 3. 0 m, 

and the other near the bottom of the euphotic zone at 10.0 m - 10.5 m (Bayly and Burton 

1987). The bottom of the euphotic zone is now at approximately 12 m and the second 

peak of P. antarctica would currently be expected to occur just above this depth. This 

second peak in numbers of P. antarctica occurs at the same depth as a high density of 
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algal (DCM) and bacteria. High P. antarctica numbers just above the anoxic/oxic 

interface could be sustained by the high numbers ofpicocyanobacteria and/or the alga 

Pyramimonas gelidicola which also have their maximum cell number in this region 

(Burch 1988; Rankin et al. 1997). It is considered that the adult stage of Copepods do 

not feed on picocyanobacteria because the bacteria are too small for the copepod' s 

feeding parts (Johnson et al. 1982). Paralabidocera antarctica is however a small 

copepod (Bayly 1978) and the adult form may be able to feed on small cells as may 

other copepodic life stages. 

1.5.1.3 Eukaryotic phytoplankton 

Ace Lake has been subjected to three annual surveys (Burch 1988; Gibson et al. 1997); 

T. Pitman, unpublished data) and several summer surveys (Laybourn-Parry and Perriss 

1995; Mancliso et al. 1990; Perriss et al. 1995; Volkman et al. 1988; Wright and Burton 

1981) of phytoplankton ecology using techniques including microscopy, flow cytometry, 
' 

lipid and pigment chemistry. The general conclusions from these investigations were 

that the phytoplankton of Ace Lake show-low species diversity, strong vertical zonations 

of species and vertical migration of flagellated forms according to light intensity. 

Flagellated phytoplankton have also been found to dominate other Antarctic meromictic 

lakes (Vincent 1988). It has been suggested (Burch 1988; Gibson et al. 1997) that 

phytoplankton use mechanisms including low carbohydrate metabolism as a survival 

strategy over winter when light is limiting. Two comprehensive reviews on plankton 

diversity in Antarctic lakes and streams have recently been written (Ellis-Evans 1996; 

Vincent and James 1996) and although in Ace Lake, species diversity is low, throughout 

Antarctica as a whole, each of the major phytoplankton classes are well represented. 
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Phytoplankton identified in Ace Lake include four dominant species. In 1979 

P. gelidicola reached a maximum density (3.5 x HY cells m1-1 in1979) in January, just 

above the oxic/anoxic interface. It is thought that the nutrient rich conditions in this 

zone support the growth of the shade adapted P. gelidicola (Burch 1988). A 

cryptophyte of the genus Cryptomonas began to bloom in September, when low but 

sufficient light returned. Initially the species was at its highest density just below the ice 

but migrated downwards with increasing light intensity. It reached its maximum density 

(700 cells m1-1) in November at 6 m (Burch 1988; Gibson et al. 1997). Recently the 

autotrophic ciliate, Mesodinium rubrum (Lohmann), was identified in Ace Lake (Perriss 

et al. 1995). Earlier studies (Burch 1988) probably observed M rubrum but did not 

positively identify the organism. Mesodinium rubrum is commonly found in marine 

phytoplankton assemblages, including Antarctic waters and probably has occurred in 

Ace Lake since its isolation from the sea (Layboum-Parry and Perriss 1995). Like other 

phytoplanktonic species M rubrum was found to survive in low numbers over winter 

but bloomed in spring and summer (Gibson et al. 1997) and it was suggested that 

summer concentrations of M rubrum may have been regulated by grazing by P. 

antarctica but this is yet to be confirmed. In 1994, M rubrum cell numbers started to 

increase in November, reached their maximum (3 x 102 cells mr1
) in December at 5 m 

and then fell dramatically (Gibson et al. 1997). Perriss et al. (1995) indicated that 

nutrient levels did not appear to be an important factor controlling M rubrum 

distribution in saline lakes of the Vestfold Hills as no significant relationship was 

detected between the abundance of M rubrum and phosphorus and nitrogen levels in a 

range of meromictic lakes. Phospholipid fatty acid profiles confirm that 

microeukaryotes are the major microbial group in the aerobic zone of the lake (Mancuso 
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et al. 1990). Pigment and lipid signatures determined by Volkman et al. (1988) 

confirmed the major planktonic assemblage of Ace lake. The recent identification of M 

rubrum is also confirmed by previous lipid and pigment chemistry. Phototrophic 

nanoflagellates (PNAN) have been observed but not positively identified in Ace Lake. 

In December 1993, Laybourn-Parry and Perriss (1995), found PNAN distributed 

throughout the euphotic zone, with a peak at just above the pycnocline, in densities of 3 

- 5 X 105 cells r 1
. 

Heterotrophic, unarmoured dinoflagellates have been observed in low numbers in the 

mixolimnion (S. Perriss, personal communication). Laybourn-Parry and Perriss (1995), 

recorded densities of between less than 1 cell m1-1 and2 x 103 cells r 1 in December 

1993. At this time the greatest densities occurred just below the ice and the smallest 

densities at the bottom of the euphotic zone. In the preceding month, maximum 

densities were recorded near the bottom of the euphotic zone. This highlights the 

dynamic nature of plankton communities in the lake and the need for detailed seasonal 

information on distribution and abundance in the lake. Heterotrophic nanoflagellates 

(HNAN) have also been reported to occur in the lake and once again remain to be 

identified (Laybourn-Parry and Perriss 1995). Heterotrophic nanoflagellate densities of 

between 1 x 105 cells r1 and 2 x 105 cells r1
, again with a peak at 6 m, were recorded in 

euphotic zone of the lake in December 1993. The significance of the HNAN in 

regulating bacterial cell numbers is yet to be determined but it is anticipated that they 

form an important link in the predator/prey relationship between bacteria and the larger 

zooplankton in the lake. Nanoflagellate grazing in freshwater lakes of the Vestfold Hills 

only removed between 0.1and9.7 % of bacterial production per day (Laybourn-Parry et 

al. 1995) and bacterial abundance in these lakes have been predicted to be controlled by 
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bottom up processes. However, as the plankton community structure, chemical and 

physical conditions in the saltwater meromictic lakes is very different, direct 

comparisons between the two systems are not truly valid. 

1.5.1.4 Prokaryotic plankton 

A population of picocyanobacteria was located in Ace Lake in 1992, using flow 

cytometric techniques (Rankin et al. 1997). Based on phylogenetic and 

chemotaxonomic evidence the cyanobacterium was characterised as a member of the 

Synechococcus group (Chapter 5). It occurred in low numbers (103 to 104 cells m1-1
) 

throughout euphotic zone over winter. Synechococcus cell numbers increased over 

spring and cell numbers peaked at 11 m in early December (a density of 8 x I 06 cells mr 

1 was measured in December 1992). Cell numbers started to fall again in January. The 

occurrence of picocyanobacteria had not been previously reported in Ace Lake even 

though during November and December it occurs in high numbers just above the. anoxic 
I 

interface. In 1974 when the anoxic interface was at 10 m it was reported that there was 

a high concentration of bacterial cells (bacillus and coccoid shaped) between 7 m and I 0 

m (Burton and Barker 1979). It was assumed that these cells were associated with the 

sulfur cycle. It is likely that Barker and Burton had seen Synechococcus cells in 1974 

but had not identified it as a photosynthetic bacterium. The 'bacillus shaped' bacteria 

were likely to have been Chlorobium sp. which occur in high numbers at the top of the' 

anoxic zone. Other studies since 1974, including lipid analysis (Mancuso et al. 1990; 

Volkman et al. 1986; Volkman et al. 1988) and direct microscopic observations of 

phytoplankton (Burch 1988) did not detect these small but abundant cyanobacteria. 

This may have been due to the time at which samples were taken (Synechococcus may 
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only be detected by lipid chemistry when it bloomed in December), the depths from 

which samples were taken, filter sizes used for filtration or the microscopic techniques 

employed. Synechococcus, could easily be identified as a heterotrophic bacterium if not 

observed by fluorescence microscopy or flow cytometry. The other possibility is that 

Synechococcus is a relatively new inhabitant of Ace Lake. Changes in species 

composition have been reported in other Antarctic meromictic lakes (Spaulding et al. 

1994). Synechococcus is not common in the Southern Ocean (Letelier and Karl 1989; 

Marchant et al. 1987), nor in Antarctic coastal waters (Walker and Marchant 1989) and 

has been reported to occur in low numbers (less than 10 m1-1) in some Antarctic 

freshwater lakes (Andreoli et al. 1992; Laybourn-Parry and Marchant 1992). 

1.5.1.5 Marine Synechococcus distrihunon 

Detailed ecological and taxonomic discussions of Synechococcus have been made in 

chapters three to six. This review concentrates on the distribution and abundance of the 

marine Synechococcus in the oceans of the world. The distribution and abundance of 

Synechococcus in lake environments has been discussed in chapter four. Several 

reviews on the ecology and physiology of Synechococcus were published.in 1986 (Fogg 

1986; Glover 1985; Joint 1986; Stockner and Antia 1986; Waterbury et al. 1986). The 

information provided in these reviews is still current. Since 1986 research has added 

further to the knowledge of the distribution, abundance and contribution to primary 

productivity of Synechococcus.in the oceans of the world. 

Cyanobacteria belonging to the group Synechoco,ccus were first described in samples 

from the ocean in 1979 (Johnson and Sieburth 1979 242; Waterbury et al. 1979). 



28 

Waterbury et al. (1979) reported Synechococcus from the Arabian Sea (24° N), the coast 

of Peru (13 ° S), north of the Gulf Stream ( 40° N) and periodically in Woods Hole 

Harbor (40° N). The Arabian Sea and the waters off the coast of Peru were relatively 

nutrient rich and Synechococcus occurred in densities between 104 and 105 cells m1"1 

throughout the euphotic zone. The greatest numbers were observed in the surface 20 m. 

In comparison, Synechococcus densities from the slope water north of the Gulf Stream 

were an order of magnitude lower. There was also two orders of magnitude variation in 

cell densities in Woods Hole Harbor, where numbers ranged from 103 to 105 cells mr1
. 

Reported cell sizes were 0.9 - 1.3 x 1.8 - 2.2 µm. Johnson and Sieburth (1979) made 

their initial observations of Synechococcus in the Sargasso Sea (12° - 40° N). Cell 

densities were between 103 and 104 cells m1·1• Reported cell sizes were 0.5 - 1. 0 x 1.0 

µm. Further, (Johnson and Sieburth 1979) found Synechococcus densities of 105 cells 

m1"1 in the productive waters over Georges Bank (40° N) and 104 cells m1"1 in the upper 

50 m of offshore waters off the coast oflceland (64° N). It was estimated that 

Synechococcus contributed approximately 6 % to the total biomass of plankton in open 

ocean waters and 15 % in eutrophic waters such as Georges Bank. 

Since the initial discovery of marine Synechococcus, ecological studies have focused on 

the distribution and abundance of the picocyanobacteria throughout the oceans of the 

world. An understanding of the environmental controls of the organism in these regions 

has also been sought. The latitudinal distribution of marine Synechococcus in oceanic, 

coastal and an eustarine habitat is summarised in Table 1.2. Generally speaking 

Synechococcus densities are lower in the southern polar seas(< 100 cells mr1
) than the 

northern polar seas (Gradinger and Lenz 1995; Marchant et al. 1987; Smith et al. 1985) 
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although both Gradinger and Lenz (1995) and Marchant et al. (1987) only sampled 

surface waters. Densities found in northern polar waters are no lower than some of the 

Synechococcus cell densities found in tropical and temperate oligotrophic waters 

(lshizaka et al. 1994; Shimada et al. 1993). Letelier and Karl (1989) and Marchant et al. 

(1987) found probable correlations between Synechococcus cell numbers and 

temperature in the southern oceans as did Murphy and Haugen (1985) in the northern 

polar seas. Neuer (1992) and Smith et al. (1985), however, found no correlation 

between temperature and Synechococcus densities. Although there might be 

correlations between temperature and Synechococcus density in some polar regions 

Vincent (1998) indicated that factors other than temperature are actually controlling the 

abundance of Synechococcus in these regions. 

Marine Synechococcus abundance appears to be consistently higher, often by an order of 

magnitude or more, in coastal areas than in oceanic regions at equivalent latitudes 

(Burkill et al. 1993; El Hag and Fogg 1986; Gradinger et al. 1992; Murphy and Haugen 

1985). Even in Antarctica, Synechococcus cell densities at a coastal site were higher 

than those in the Southern Ocean (Marchant et al. 1987; Walker and Marchant 1989). In 

artificially fertilised lake studies, Synechococcus occurs in higher densities in 

mesotrophic and eutrophic lakes than it does in oligotrophic lakes (Shortbreed and 

Stockner 1990; Stockner and Shortbreed 1988). This could also be true for coastal 

marine waters compared to the oligotrophic oceans although El Hag and Fogg (1986) 

indicated that exposure to higher light intensities, due to shallow mixing depths, may 

actually be a significant controlling factor in these regions. 
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The vertical distribution of Synechococcus, as summarised in Table 1.2, indicates that 

the greatest abundance of this picocyanobacteria is in the mixed, surface waters, of the 

oceans (J ochem 1988; Waterbury et al. 1979). However, in regions that are strongly 

stratified subsurface maxima in Synechococcus cell densities are common at the level of 

the DCM (lturriaga and Marra 1988; J ochem 1995). The DCM in oceanic environments 

forms during stratification of the water column (Anderson 1969). In the permanently 

stratified tropical waters, the DCM is expected to occur all year round whilst in 

temperate and polar waters it is only expected to occur during summer with the warming 

of surface waters (Takahashi and Hori 1984). With the onset of stratification, nutrients 

are quickly depleted from the surface mixed zone. The DCM usually forms at the 

bottom of the thermocline where a nitracline occurs because of stratification (Takahashi 

and Hori 1984). The success of Synechococcus at the DCM is thought to be related to 

its ability to photosynthesis at low light levels (less than I % surface irradiance) whilst 

taking advantage of the higher nitrogen concentrations (Li et al. 1983; Murphy and 

Haugen 1985). 

In temperate oceanic and coastal regions, marine Synechococcus densities have been 

reported to be lower during winter than in summer (Gradinger and Lenz 1995; Krempin 

and Sullivan 1981; Shapiro and Haugen 1988; Waterbury et al. 1986). Waterbury et al. 

(1986) found winter minima of 102 cells m1-1 and summer maxima of 105 cells ml-1 in 

the Woods Hole Harbor. El Hag and Fogg (1986) also found winter minimums of 4 x 

104 cells m1-1 and summer maximums of 16 x 104 cells mr1 in the Menai Straits, Irish 

Sea. The one exception to this winter minimum summer maximum cycle in 

Synechococcus abundance was at an Antarctic coastal site (Walker and Marchant 1989). 

They found that Synechococcus densities were at a maximum (140 cells mr1
) in August 
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and were low in summer (less than 10 cells mr1
). The winter maximum, at 5 m ,was 

thought to have occurred due to the accumulation of cells lost from surface waters 

during ice formation. Waterbury et al. (1986) found there to be little seasonal variation 

in Synechococcus numbers in tropical regions. 

In some temperate regions, the summer peak in Synechococcus cell numbers occurs as a 

short term bloom (El Hag and Fogg 1986; Glover 1985; Shapiro and Haugen 1988). In 

other regions the density of Synechococcus cells remains high, relative to winter 

densities, throughout summer (Krempin and Sullivan 1981; Waterbury et al. 1986). El 

Hag and Fogg (1986) reported that the seasonal cycle of Synechococcus was different 

from the net plankton in the Irish Sea in that the net plallkton increased in numbers over 

spring and summer but their numbers remained constant over summer. The summer 

increase in Synechococcus numbers have been correlated to temperature (Murphy and 

Haugen 1985; Waterbury et al. 1986), light (El Hag and Fogg 1986) and a change in 

grazing pressure (Shapiro and Haugen 1988). 



Table 1.2: Abundance of Synechococcus, during spring or summer, in various geographical regions. *This Synechococcus density occurred 
during winter. 

Location Latitude Habitat Depth sampled (m) Temp.(0 C) Cells ml"1 Highest Densities Reference 

78-89°N Oceanic 0 <O 541 (Gradinger and Lenz 1995) 
Foxe Basin, Arctic 68°N Coastal 5 - 55 -1 - 0 2 x 103 15 (Smith et al. 1985) 

Norwegian Sea, Iceland 64°N Oceanic 0-50 104 Throughout this zone (Johnson and Sieburth 1979) 
North Atlantic 60°N Oceanic N.G. 5.4 - 6.1 2 x 103 25m (Murphy and Haugen 1985) 

North Sea 56°N Oceanic 0 - 80 10 - 15 (0.2 - 25) x 104 Surface (Howard and Joint 1989) 
North Pacific 45°N Oceanic 0- 150 15 - 5 (5- 10) x 102 Surface (lshizaka et al. 1994) 
North Atlantic 40°N Oceanic N.G. 16.5 - 17.2 7.5 x 103 lOm (Murphy and Haugen 1985) 
Gulf of Maine 40°N Coastal N.G. 11.6 - 20.9 9 x 104 25m (Murphy and Haugen 1985) 

Southern California 34.5° N Coastal 0-40 0-100 (0.1 - 7) x 104 Surface (Johnson and Sieburth 1979) 
Yangtze River, China 32°N Eustarine 0-40 33 (5 - 30) x 103 Surface mixed zone (Vaulot and Xiuren 1988) 

Kiel Bight 27°N Coastal 0 - 16 22 -0.7 (1.3 - 15) x 104 Surface (Jochem 1988) 
West Pacific 20°N Oceanic 0 - 150 20-28 (1 - 10) x 102 Surface (Shimada et al. 1993) 
Arabian Sea 18°N Oceanic 0 - 80 (1 - 6) x 104 Upper mixed layer (Jochem 1995) 

Central Pacific oo Oceanic 0 - 150 31 - 13 1x103 0 - 50 (lshizaka et al. 1994) 
Central Pacific go S Oceanic 0 - 150 30- 12 (0.5 - 10) xl03 Surface (lshizaka et al. 1994) 
Southern Ocean 44° 58 s Oceanic 0 13.9 3.4 xl04 (Marchant et al. 1987) 
Drake Channel 56° s Coastal 0 7.5 2.2 x 103 (Letelier and Karl 1989) 
Southern Ocean 56 Oceanic 0 0.1 10 (Marchant et al. 1987) 
Southern Ocean 61° s Oceanic 0 -1 2.4 (Marchant et al. 1987) 

Antarctica 68° s Coastal 5 -2 140* (Walker and Marchant 1989) 

32 
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Little research has been carried out on the interactions between species in the aerobic 

zone of Ace Lake, especially with regard to grazing pressure by ciliates, nanoflagellates 

and copepods. Unlike the nearby oceanic environment, the highest consumer in Ace 

Lake is P. antarctica. Further, the abundance of viruses and the control exerted by 

viruses on community structure in any Antarctic lakes has not been investigated. 

Preliminary experiments showed that light and temperature significantly increased the 

growth of Synechococcus in Ace Lake (Chapter 6). Due to the slow in-situ growth rates 

of Synechococcus, grazing rates by heterotrophic plankton and zooplankton could not be 

determined. It is probable that a combination of factors including grazing, nutrient 

limitation, light and temperature are controlling the concentration of plankton in the 

lake. 

Apart from viruses, which remain unstudied, the heterotrophic bacteria are the least 

studied group of organisms in the euphotic zone of Ace Lake. To date very few bacteria 

from Ace Lake have been fully characterised and their ecological significance 

determined. This is due to two factors: the difficulty in culturing bacteria, especially 

those from the anoxic waters; and the lengthy and costly process required to describe 

organisms. Population density and seasonal variation in cell numbers are known but 

little is known about species composition, organic carbon cycling by the heterotrophic 

bacteria or the effect of grazing pressure on the bacterial population. In the euphotic 

zone of Ace Lake heterotrophic bacteria cell numbers were approximately 5 x 105 cells 

m1·1 over winter (L. Rankin, unpublished data). Over spring and summer, heterotrophic 
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bacterial cell numbers increased. At 2 m there were peaks in abundance in early spring 

and again in late summer where cell numbers increased approximately two fold 

(J. Gibson, unpublished data; L. Rankin, unpublished data). At 10 m there was a ten 

fold increase in cell numbers over summer. Bacterial cell numbers were highest at the 

anoxic interface where numbers reached more than 10 7 cells mr1
• High densities of the 

sulfur bacterium Chlorobium sp. have been identified at this depth (see below). 

Numbers remained high in the anoxic zone of Ace Lake ranging between 5 x 106 and 10 

x 106 cells ml-1
• These densities and distribution are consistent with heterotrophic 

bacterial densities in other meromictic lakes in the Vestfold Hills and the Dry Valleys 

(Smith and Howes 1990; Vincent 1988) but are higher than densities recorded in 

Crooked Lake a freshwater lake in the Vestfold Hills (Laybourn-Parry et al. 1992) and 

freshwater lakes of Schirmacher Oasis, Antarctica (Ramaiah 1995). 

Polyclonal antibody staining (James et al. 1994) and flow cytometric techniques have 

been developed to observe changes in heterotrophic bacteria corrimunity structure in a 

range of meromictic lakes in the Vestfold Hills, including Ace Lake, but to date results 

have not been conclusive. 

1.5.2 Anoxic zone 

1.6.2.1 Photosynthetic bacteria 

A layer of photosynthetic sulfur bacteria occurs at the top of the anoxic zone, between 

approximately 12.2 m and 12.8 m (Burke and Burton 1988b). The major species are the 

green sulfur bacteria Chlorobium vibrioforme and Chlorobium /imnicola (Burke and 
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Burton 1988a). These anaerobic bacteria use bacteriochlorophylls for photosynthesis, 

and reduced sulfur compounds such as H2S or simple organic compounds as electron 

donors. Species of photosynthetic purple bacteria (Rhodospirillaceae) and Chromatium 

sp. have also been reported from Ace Lake (Hand 1980) but it is thought that the 

Chlorobium spp. dominate because of their fast growth at low temperature and light, 

and their ability to survive long periods oflow light levels (Burke and Burton 1988b ). 

In 1992 the population was at its lowest between May and July, it increased from 

August and reached a maximum of 6 x 107 cells mr1 in December/January (L. Rankin, 

unpublished data). 

1.5.2.2 Anaerobic Heterotrophs, Su/fate Reducing Bacteria and Methanogens 

To date four anaerobic bacteria and one Archaeon have been characterised from the 

bottom waters (24 m) of Ace Lake (Franzmann and Dobson 1992; Franzmann and 

Rohde 1992). These include two psychrotrophic species belonging to the genus 

Carnobacterium, an anaerobic wall-less spirochete an obligate anaerobic, coiled 

bacterium and a methanogen. It is thought that these bacteria are important for 

anaerobic organic carbon degradation. 

Due to their ability to grow, albeit suboptimally, in aerobic conditions it is thought that 

Carnobacterium funditum and Carnobacterium alterfunditum may have played a role in 

the initial establishment of a reduced environment in the lake and the supply electron 

donors for the sulfate-reducing bacteria that co-exist in the monimolimnion (Franzmann 

et al. 1991a). These two species produce lactic acid as an end product of carbon 

metabolism and have a generation time of between 17 h to 19 hat 1 °C, the temperature 



of the water column from where they were isolated. They have an optimal growth 

temperature significantly higher (23° C). 
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Unlike the carnobacteria, conclusive statements regarding the taxonomy of the Ace Lake 

coiled bacterium await phylogenetic analysis (Franzmann and Rohde 1991). It is 

presumed that this bacterium has an intermediate role in the breakdown of biomass, 

fermenting peptides and a limited number of sugars and producing hydrogen, formic, 

acetic and butyric acids, the precursors for methanogenesis and acetogenesis. 

The wall-less spirochete was initially considered a mycoplasma-like organism 

(Franzmann and Rohde 1992) until phylogenic analysis placed the organism within the 

Spirochaetales (Franzmann and Dobson 1992). The organism is a psychrophile, with a 

optimal growth temperature of between 12° C and 13° C. 

Lipid analysis of water column particulates suggests that large populations of 

methanogenic Archaea are present in the monimolimnion (Mancuso et al. 1990). 

Phospholipid-derived ether lipids (PLEL), cell membrane lipids that are unique to 

Archaea (Langworthy et al. 1982; Tornabene and Langworthy 1979), were used to 

determine the biomass and activity of methanogens in the monimolimnion of Ace Lake. 

In the water column, methanogenic archaea were present below 17 m in depth at 

concentrations of between 1 - 7 x 105 cells m1-1
• Methanogen biomass was higher in the 

sediment (Mancuso et al. 1990). A new species of methanogen, Methanococcoides 

burtonii, was characterised from the bottom waters of lake. The organism utilised 

methylamines and methanol as precursors to methanogenesis (Franzmann et al. 1992). 

In addition, a H2:C02 utilizing methanogen was obtained in an enrichment culture, 
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prepared with anoxic Ace Lake water. This organism remains to be characterised. It is 

not known which methanogen type is predominant in Ace Lake, but given that 

methanogenesis is largely limited to the region of the lake that is depleted in sulfate, it is 

probable that the H2:C02 methanogen is the major contributor to methanogenesis. 

Although limited taxonomic data is available on bacterial species capable of sulfate 

reduction in Ace Lake, biomass of sulfate reducing bacteria (SRB) in the water column 

of Ace Lake has been estimated by lipid analysis (Mancuso et al. 1990). It has been 

estimated that SRB comprised 25% of the microbial population at 23m even though at 

this depth sulfate reduction is rate limited by low sulfate concentrations (see below). 

Phospholipid-derived fatty acid profiles (PLF A) indicated that bacteria belonging to the 

genera Desulfobacter and Desulfovibrio were present in the monimolimnion and in the 

sediments of Ace Lake. 

The characterisation of other bacteria from the monimolimnion continues. No doubt the 

metabolic requirements and products of new species from Ace Lake will shed more light 

on the complex interactions between bacterial species and chemical cycles. 
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1.6 Nutrient cycles in Ace Lake 

The cycling of organic carbon and nutrients in Ace Lake has received little attention. 

The information available on nutrient concentrations in Ace Lake is not detailed and it is 

difficult to predict the fate of nutrients in the lake from this information especially in 

light of the changed oxygen conditions below the pycnocline. Most nutrient studies 

have only looked at a few depths in the euphotic zone of the lake (Burch 1988; Perriss et 

al. 1995) and only recently has an annual survey of nutrients in this zone been 

completed (J. Gibson, unpublished data). It is acknowledged that sulfur in the anoxic 

zone of the lake can interfere with nutrient analysis (Alpkem Corp 1992) and that the 

variation in salinity may make analysis more time consuming. However, it would be of 

great benefit if a detailed study of the distribution of organic carbon and nitrogen and 

phosphorus species over space and time in Ace Lake was conducted. Sulfur, nitrogen 

and phosphorus cycling in Lake Vanda have been studied using nutrient concentration 

gradients (Canfield and Green 1985). This proved to be an effective method for 

determining rates of nutrient cycling in Lake Vanda and it could form the basis of a 

similar study on Ace Lake. The information that is available on carbon production and 

consumption and on nutrient cycling in Ace Lake is presented below. 

1.6.1 Aerobic carbon production and decomposition 

Ace Lake has a catchment of about 35.5 ha consisting oflow hills devoid of life except 

for a few mosses, lichens and nesting sea birds. Ace Lake is also visited by the 

occasional Adelie Penguin that uses the lake as a corridor between Prydz Bay and Long 
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Fjord, but the closest rookery is approximately 5 km to the southwest of the lake. 

Unlike lakes that are close to penguin rookeries (eg: Rookery Lake, Long Peninsula) 

there is no evidence that organic matter from birds has a significant input into the 

carbon cycle of Ace Lake. The input of organic carbon and nutrients, into Ace Lake, 

from higher plants is also insignificant as the density of mosses and lichens in the area is 

very low (Hand and Burton 1981 ). Matsumoto et al. 1984 found no identifiable organic 

compounds derived from plants but many derived from microbial material in Lake 

Vanda. 

Due to the meromixis in Ace Lake organic carbon is decomposed both aerobically and 

anoxically. In the euphotic zone, where oxygen is present in the water, carbon would be 

decomposed through aerobic processes. Dissolved organic carbon (DOC) 

concentrations in the oxygenated waters ranges from approximately 0.50 mM in the 

mixolimnion to 0.95 mM at the bottom of the euphotic zone. These concentrations are 

high compared to the DOC concentration (0.10 mM) at a marine site off the coast of the 

Vestfold Hills (L. Rankin, unpublished data). The concentrations are, consistent with 

those of the bottom waters of Dry Valley. In Lake Fryxell microbial activity in the 

euphotic zone, especially in the DCM results in a downward flux of organic carbon and 

a accumulation of DOC in the sediment pore water (McKnight et al. 1993). Dissolved 

organic carbon can be produced by grazing animals, from cell damage and death, and by 

the production of extracellular carbon by phytoplankton (Lynch and Hobbie 1988). 

Parker et al. (1977) found that in Lake Hoare, 75 % of the total photosynthetically fixed 

organic matter appeared as extracellular products. The thick algal mats probably make a 

significant contribution to the DOC in Ace lake as occurs in other meromictic lakes in 

Antarctica, (Parker et al. 1977). 
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Due to the stability of the water column in Ace Lake, dissolved organic carbon (DOC) 

produced by primary productivity in the euphotic zone would probably be cycled in this 

region. It is thought that the rate of molecular diffusion is too slow to be of any 

significance as a mechanism of carbon transportation to the monimolimnion (Yusa 

1979). Periods of deep entrainment and mixing ( eg: intermittent convection) will also 

move substances into the monimnolimnion (J. Gibson., personal communications). 

Particulate organic carbon (POC) in the form of fecal pellets from P. antarctica and 

from sinking bacteria, heterotrophic and phototrophic plankton provides the substrate 

for carbon cycling in the anoxic zone (Hand 1980). Lipid, pigment and flow cytometric 

data confirm the presence of cells from the euphotic zone in the anoxic zone of Ace 

Lake (Mancuso et al. 1990; Vollanan et al. 1988; L. Rankin, unpublished data). 

Wright and Burton (1981) reported primary productivity rates in Ace Lake of 

0.163 mg C m-3 h-1 at 5 m and 0.472 mg C m-3 h-1 at10 m, indicating that the water 

above the oxic/anoxic interface is more productive than the surface waters. This is 

probably due to a combination of physical (higher temperature) and chemical factors, for 

example the availability of ammonium, phosphorus and trace metals, favouring the 

growth of some phytoplankton species. In November 1993 total primary production 

rates at 2 m and 8 m were 0.68 mg C m-3 h-1 and0.47 mg C m-3 h-1 respectively 

(Laybourn-Parry and Perriss 1995). These rates of primary production in Ace Lake are 

similar to rates measured in other Antarctic meromictic lakes (Parker et al. 1982; 

Spaulding et al. 1994; Vincent 1981; Vincent and Vincent 1982), in the Southern Ocean 

(Weber and El-Sayed 1987) but are low in comparison to rates measured in tropical and 

temperate lakes (Wetzel 1983). They differ from the rates measured by Wright and 
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Burton (1981) in that they indicate that productivity is higher in the upper, oligotrophic, 

waters although the latter did not measure rates at 10 m where there is known to be 

greater numbers of photosynthetic organisms. In Antarctica, primary productivity is 

seasonal, occurring at detectable rates only through the spring and summer months. 

Primary productivity may also vary from year to year depending on the physical 

dynamics of the mixolimnion. Except for M rubrum, the contribution of individual 

species to primary production in the aerobic zone of the lake is not known, and even 

with M rubrum, the contribution is only an estimate. Primary productivity 

measurements in Ace Lake indicate that M rubrum may contribute between 15% and 

40% of carbon fixation in the phytoplankton during the bloom period (Laybourn-Parry 

and Perriss 1995). Due to its small size (1.8 µm x 0.5µm) Synechococcus may not 

contribute significantly to primary productivity although because of the high cell 

numbers the total surface area estimates indicate otherwise (Chapter 3). Like 

Synechococcus all algal species bloom at specific depths at different times over summer 

and hence the contribution of each species to primary productivity would be temporarily 

and spatially variable. 

1.6.2. Marine Synechococcus and primary production 

The contribution of Synechococcus to biomass and primary productivity in the oceans 

varies with vertical distribution, with trophic status and with seasonal abundance of the 

picocyanobacterium (Fogg 1995; Glover 1985; Waterbury et al. 1986). Although 

Synechococcus is generally more abundant in coastal waters than it is in the oligotrophic 

oceans, its contribution to biomass and productivity is usually higher in the oligotrophic 

waters than in coastal waters where larger phytoplankton species are more abundant 
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(Jochem 1988). Nutrient concentrations in the tropical oceans are usually low, with 

nitrogen and phosphorus concentrations of< 0.2 µMand< 0.1 µM respectively (Joint 

1986; Joint and Pomroy 1986). Due to its small size, Synechococcus, along with other 

picoplankton, is thought to be more competitive than larger phytoplankton species in 

oligotrophic regions (Fogg 1986). This pattern also applies to tP.e contribution of 

Synechococcus to biomass in freshwater lakes (Burns and Stockner 1991; Shortbreed 

and Stockner 1990). In vertical stratified waters, the contribution of Synechococcus to 

primary productivity generally increases with depth (Waterbury et al. 1986). It is 

usually highest in the vicinity of the DCM. 

Joint (1986) summarised the contribution of the less than 1 µm picoplankton 

(principally Synechococcus) to primary productivity based on latitudinal distribution. 

He suggested that in the Arctic during stimmer there was between a 10 % and 25 % 

contribution, in the temperate oceans during summer they contributed between 20 % and 

30 % and in the tropical oceans they contributed more than 50 % to primary production. 

However, although the contribution of Synechococcus to primary production is high in 

the tropical, oligotrophic oceans, total biomass estimates, based on chlorophyll a 

concentrations, are usually low. Chlorophyll a concentrations of between 0.25 µg r 1 

and 2 µg r 1 are typical in tropical oligotrophic oceans (Iturriaga and Mitchell 1986; 

Jochem 1995). In arctic waters, Gradinger and Lenz (1995) found the contribution of 

Synechococcus to overall picoplankton abundance increased from less than 1 % in 

summer to 70 -80 % in late autumn. This was, however, due to a decrease in the 

abundance of eukaryotic picoalgae. In this region, the contribution of Synechococcus to 

biomass and primary productivity is of minor importance. In subarctic seas, the 
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contribution of Synechococcus to primary production in the summer surface waters was 

estimated to ~e 8 %. In early autumn, when Synechococcus was more abundant deeper 

in the euphotic zone (I % surface irradiance ), its contribution to primary production at 

this depth was estimated to be 68 % (Neuer 1992). During summer, in the temperate 

waters of Wilkinson's Basin, Northwest Atlantic Ocean (42° N) Synechococcus 

contributed 46 % to the in-situ photosynthesis integrated over the water-column (Glover 

et al. 1986). In the oligotrophic subtropical north Pacific Ocean (35° N), Synechococcus 

contributed approximately 64 % to primary productivity during spring when the mixed 

layer was between 60 and 80 m and a DCM occurred between 95 m and I 05 m 

(Iturriaga and Mitchell 1986). Synechococcus growth rates and loss rates were greatest 

at the DCM. This pattern holds for the meromictic lakes in the Vestfold Hills (Chapter 

3, 4 and 6). 

1.6.3 Anoxic carbon production and consumption 

The Chlorobium spp. that occur at the top of the anoxic zone use H1S as an electron 

donor for anoxic bacterial photosynthesis (Burke and Burton I 988b ). However, Hand 

and Burton (1981) suggest atmospheric C02 would not contribute significantly to this 

process as molecular diffusion would be too slow to replenish fixed C02. Instead, the 

Chlorobium spp. fix C02 and small organic molecules released by sulfate reducers and 

other heterotrophs occurring in the immediate vicinity. Chlorobium spp. are therefore 

important in the cycling of sulfur and carbon in the anoxic zone of the lake. Hand and 

Burton (1981) estimated that anoxic photosynthetic bacteria could account for 45% of 

photosynthetic activity in Ace Lake assuming the band of activity was a metre wide. 

When Chlorobium spp. peaked in Ace Lake during December and January of 1992/93 
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they were concentrated in a band approximately 50 cm thick. As is the case for aerobic 

photosynthetic bacteria and algae, the contribution of Chlorobium spp. to carbon 

productivity is expected to vary throughout the year. 

The carbon source for anoxic decomposition in Ace Lake presumably comes from the 

aerobic zone as POC and also from decaying bacteria in the anoxic zone (POC and 

DOC). Between 12.2 m and 24 m in Ace Lake carbon is decomposed anoxically by 

sulfate reducing bacteria, (Burton and Barker 1979; Franzmann et al. 1988; Mancuso et 

al. 1990) fermentative heterotrophic bacteria (Franzmann and Dobson 1992) and by 

methanogens that utilise short chain organic acids, hydrogen and carbon dioxide, the 

products of fermentation, to produce methane (Burton 1980; Franzmann et al. 1991b). 

1.6.4 Sulfur cycling 

The photosynthetic sulfur bacteria (PSB) and sulfate reducing bacteria (SRB) contribute 

significantly to the sulfur cycle in Ace Lake. The PSB at the anoxic interface use H2S as 

an electron donor and oxidise it to sulfate and elemental sulfur. The SRB use sulfate as 

an electron acceptor reducing it back to sulfide. Carbon dioxide which is used by the 

PSB and also by methanogens in the anoxic zone is produced during sulfate reduction 

and fermentation. Dissolved and particulate organic carbon produced during this 

cycling supports the populations ofheterotrophs in the near vicinity of the oxic/anoxic 

interface (Hand and Burton 1981). SRB and methanogens may also be co-metabolising 

small chain organic acids in the bottom waters of the monimolimnion where sulfate is 

limiting (Franzmann et al. 1991b). 
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1.6.5 Methanogenesis 

Below 19 m sulfate reduction is limited by low sulfate concentrations (Figure 1.6) and 

hence methanogenesis becomes the major terminal mineralisation process. Where 

sulfate is not limiting the sulfate reducing bacteria may out compete the methanogens 

for substrates (Franzmann et al. 1991b). It is presumed that sulfate reducing bacteria 

and other anoxic heterotrophic bacteria such as the C-shaped bacteria (Franzmann and 

Dobson 1992) break down particulate and high molecular weight dissolved forms of 

carbon to low molecular weight forms for methanogenesis (Hand and Burton 1981 ). 

Burton and Qiang (1988) showed that in Ace Lake concentrations of butyric acid 

decreased at depths where methane producers were active. 

There appears, therefore, to be a strong interaction between photosynthetic sulfur 

bacteria, sulfate reducing bacteria, anoxic heterotrophic bacteria and methanogenic 

archaea in the anoxic zone that eventually reduce complex organic compounds to ' 

methan~. Bryant et al. (1977) indicated that normally methanogens are not known to 

utilize lactic acid but a symbiotic consortia of sulfate reducing bacteria and 

methanogens can co-metabolise lactic acid in the absence of sulfate through hydrogen 

transfer (Franzmann et al. 1991b). A number of organic intermediates have been 

detected in Ace Lake that would be formed as part of this interaction (Roberts and 

Burton 1994). 

Methanogenesis occurs in the water column and sediments of Ace lake at very slow 

rates. In the water column, maximum rates ofmethanogenesis of2.5 µmol kg-1 day-1 



46 

from NaH14C03 were measured at 20 m (Franzmann et al. 1991b). The recorded rates 

were at the limit of detection for the experimental method used. As substrate (short 

chain organic acids) was not limiting (Franzmann et al. 1991b) the low rates of 

methanogenisis from C02 reduction were probably caused the low temperatures at these 

depths. Methanogenic bacteria usually have a optimal growth temperature between 

30°C and 40°C (Franzmann et al. 1991 b ). Recently a psychrophilic methanogen was 

isolated from the bottom waters of Ace Lake (David Boone, personal communication). 

However, this organism still has a very slow growth rate. It is probable, from the age of 

Ace Lake and from culturing experiments, that the methanogens in the lake have not yet 

evolved to grow maximally at the low temperatures experienced at these depths. 

Further to this evidence, bacterial biomass estimates of methanogens (Mancuso et al. 

1990) implies that current microbial degradation of organic carbon in Ace Lake may be 

occurring at extremely slow rates. 

Despite the fact that methanogenesis occurs at a very slow rate, the bottom waters of 

Ace Lake (below 19m) are saturated with methane and the ebullition of methane gas has 

stripped the N2 from the water in this region (Figure 6). H1S does not appear to be 

stripped in the same way and remains at high concentrations in the bottom waters of the 

lake (Burton 1980). The high concentrations ofH2S in the bottom waters of Ace Lake 

does not appear to be inhibiting methanogenesis at this depth. However, due to their 

very slow growth rates in culture the exact controls of growth of the methanogens in the 

bottom waters of Ace Lake are yet to be determined. 

Methanogenesis has not been reported to occur in any other meromictic lakes in the 

Vestfold Hills (Franzmann et al. 1991 b ). Methane has been detected in low 
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concentrations at the bottom of Lake Vanda in the Dry Valleys (Vincent 1988) but no 

rates have been reported. Rates of methanogenis have been reported for some of the 

:freshwater lakes of Signy Island in maritime Antarctica (Ellis-Evans 1984). 

1.6.6 Cycling of other ionic species 

Nutrient data and trace metal analysis has allowed biological mechanisms responsible 

for the distribution of iodine (Butler et al. 1988) and other ions to be postulated (Hand 

and Burton 1981; Masuda et al. 1988). Butler et al. (1988) noted a close correlation 

between bacterial numbers and total iodine. They proposed that the distribution of 

iodine might be the result of a long term interaction with micro-organisms, where the 

element is assimilated by phytoplankton, which are grazed by zooplankton ( copepods ). 

Iodine then sinks in fecal pellets, and other detritus, to be remineralized by anoxic 

heterotroph.ic bacteria at the top of the anoxic zone or in near-bottom and sediment pore 

waters. Reductive dehalogenation of organic compounds has been observed in cultures 

of methanogenic archaea and sulfate-reducing bacteria (Tandoi et al. 1994). 

Masuda et al. (1988) measured high concentrations of trace elements, including iron, 

magnesium and aluminium, in Ace Lake compared to open ocean water and suggested 

that aerosol particles and weathering from nearby rocks were probably an important 

-
source of trace elements in the lake. It is therefore unlikely that trace elements are 

limiting microbial growth in the lake. 

A similar scheme could also be postulated for the distribution of nitrogen species in Ace 

Lake. Oxidised nitrogen in summer melt water (not a rich source), nitrogen fixation by 
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cyanobacteria in algal mats and rapid recycling by heterotrophic bacteria may be the 

only oxidised nitrogen source in the oligotrophic sti.rface waters of the lake. Total 

oxidised nitrogen (measured as nitrogen+ nitrite-N) concentrations are low(< 0.35 

µM) throughout the aerobic waters (Burch 1988; Burton 1980; Perriss et al. 1995). 

When measured in 1979 reduced nitrogen (NH/ plus amino acids) was not detected 

(<0.001 mM in the mixolimnion of Ace Lake (Figure 1.7), but concentrations increased 
r 

below the pycnocline and reached a maximuni concentration of 0.06 mM at 15 m 

(Burton 1980). Reduced nitrogen concentrations have not been measured in Ace Lake 

since this time. The increase ofNH/ and amino acid concentrations is probably due to 

the deamination of proteins which accumulate due to the slow rates of organic matter 

mineralization. These reduced forms of nitrogen may also diffuse up from the top of the 

anoxic zone. 

Phosphate-P in the mixolimnion of Ace Lake is at a concentration of approximately 0.65 

µM (Burton 1980, J. Gibson, unpublished data; L. Rankin, unpublished data). 

Phosphate-P concentrations increase below the pycnocline reaching a concentration of 

approximately 9.7 µMat the bottom of the euphotic zone (Figure 1.7). 
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There is a reduction in the phosphate-P concentration at the anoxic interface but 

according to Burton (1980) the phosphate-P concentration then continues to increase to 

the bottom of the lake where a, concentration of 0.32 mM was measured. 

Like in other meromictic lakes in Antarctica, (Canfield and Green 1985; Lawrence and 

Hedry 1985), it is probable that diffusion from the nutrient rich anoxic waters 

contributes to the increased phosphorus and ammonia concentrations below the 

pycnocline in Ace Lake. Further, it is proposed that the nitrogen and phosphorus 

concentrations in the mixolimnion are low because the stratification prevents nutrients 

from the more nutrient rich bottom water from mixing with mixolimnic water. Because 

the catchment is virtually devoid of plant and animal material and because there are no 

significant melt streams in the catchment, allochthonous input of nutrients into Ace 

Lake would not contribute significantly to the nutrient concentrations in the 

mixolimnion. It is possible that some nitrogen fixation occurs in the thick algal mats in 

the litoral zone of the lake but, to date, nitrogen fixing species have not been detected in 

the planktonic community. 

It is unlikely that phosphorus limits primary production in Ace Lake (Table 1.3). Hand 

and Burton (1981) indicated that nitrogen was the limiting nutrient in Ace Lake as it is 

in Lake Hoare and Lake Fryxell (Simmons et al. 1993; Vincent 1981). The very low 

phosphorus concentrations above the anoxic interface in Lake Vanda (Table 1.3) are 

thought to be caused by the formation of an insoluble phosphorus compound in the 

anoxic zone of the lake (Canfield and Green 1985). In this lake, phosphorus is thought 

to be limiting phytoplankton productivity (Vincent and Vincent 1982). 
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Table 1.3: A comparison between nutrient and chlorophyll a concentrations in two 
meromictic lakes in the Vestfold Hills and two in the Dry Valleys. The two depths from 
each lake represent the epilimnetic concentrations and concentrations at the DCM in 
each lake. aJ. Gibson, unpublished data, the ranges given were for a one year period in 
1994; bl. Rankin, (unpublished data), sampled in November 1993; c(Perriss et al. 1995), 
sampled in November 1993; d(Vincent and Vincent 1982), sampled in December 1980; 
e(Vincent et al.1981), sampled in December 1980; '(Vincent 1981), sampled in December 
1979. 

Lake Depth(m) Phosphate-P (µM) N03 -N(µM) Chlorophyll a (µg r1
) 

Ace 2a 0.1 - 0.3 0.07 - 0.45 0.75 - 5.29 
Ace 10a 2 - 11 0.03 - 0.20 0.9 - 4.1 

Abraxas IOb 0.07 <0.02 O.lc 
Abraxas 19b 0.20 <0.02 N.D. 
Vanda 35d 6 x 104 0.3 < O.ld 
Vanda 57d 3 x 10·3 15 0.9d 
Fryxell 6{ 0.05 0.04 4 
Fryxell 9f 0.19 0.44 28 

1. 7 Future Outlook 

Like other meromictic lakes in the Vestfold Hills, Ace Lake has a dynamic physical and 

chemical stratification which is dependent on the water budget and local climatic 

conditions. Within the last two years it appears that the water budget of Ace Lake has 

shifted from positive to negative, hence the recent fall in lake height above sea level. If 

this trend continues then it is possible that the mixolimnion will become more saline 

and the meromictic system less stable. The lake may start mixing to a greater depth and 

the aerobic section of the monimlimnion may be incorporated into the mixolimnion. 

Nearby Organic Lake and Highway Lake have also recently had a shift in the water 

balance from positive to negative and the depth of these lakes is decreasing. It remains 

to be seen if microbial communities, such as the picocyanobacteria that live just above 

the anoxic interface, will adapt to these c~anges in lake structure and become distributed 

throughout the mixolimnion or whether future physico-chemical conditions of the 

mixolimnion will not support these communities. 
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Lake Fryxell in the Dry Valleys, Antarctica, is the only other Antarctic, meromictic, lake 

reported to have similar biogeochemical cycles to Ace Lake (Green et al. 1989). Both 

lakes have stable water columns due to strong density gradients. It is not, however, the 

same as Ace Lake in every way. Lake Fryxell has a perennial ice cover of 

approximately 4 m and the lake is less saline (Vincent 1988). Further, unlike Ace Lake, 

Lake Fryxell is fed by many summer melt streams (Green et al. 1988). The two lakes 

have similar phytoplankton community structures with flagellates and cyanobacteria 

dominating. The dominant cyanobacterial population in Lake Fryxell is the fillamentous 

Oscillatoria rather than a picocyanobacteria (Spaulding et al. 1994). It is highly 

probable that all meromictic lakes in Antarctic differ significantly in structure and 

microbial composition because of their dependency on ancient evolutionary processes 

and local climatic conditions. There are many other limnologically diverse meromictic 

lakes in the Vestfold Hills and in other areas of Antarctica most of which have not been 

studied in any detail. Like Ace Lake these lakes have interesting, dynamic, geochemical 

cycles and support a wide diversity of bacterial and algal species. The continued study 

of Ace Lake, as well as other meromictic lakes in the Vestfold Hills will reveal many 

more biogeochemical mechanisms and possibly provide an insight into ancient climatic 

conditions. Organisms isolated from unique Antarctic ecosystems, including the 

meromictic lakes, may have important biotechnological applications in water and 

wastewater treatment, and in medicine (Ashbolt 1990). No doubt the biodiversity of 

Ace lake will continue to be unraveled through the continued use of DNA, lipid, and 

possibly antibody technology. 



Chapter 2 

Flow Cytometry and Antarctic Aquatic 
Microbiology 
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2.1 Abstract 

Flow cytometry has become a useful tool in the analysis of aquatic microbial 

communities. During the 1992 winter at Davis Station, flow cytometric methods 

were developed for the analysis of bacterial and algal communities in the meromictic 

lakes of the Vestfold Hills. As the flow cytometer used in these investigations 

(Becton Dickinson F ACScan) can not directly count particles, methods were 

developed to count bacterial and phytoplankton cells. Due to the density gradients 

within the meromictic lakes, the effect of salinity on flow cytometric analyses was 

also determined. In the analysis of cell abundance, the flow cytometer compared 

well with the microscope. The error in counting obtained using flow cytometric (3 

%) was less than the error obtained using microscopic techniques (6 %). Sample 

salinity had an effect on the forward angle light scatter (FSC) signal. Following the 

development of methods, the flow cytometer was routinely used for the analysis of 

lake plankton communities. A population of picocyanobacteria belonging to the 

genus Synechococcus was discovered in three meromictic lakes using flow 

cytometric methods. With the aid of the flow cytometer, physiological and 

taxonomic characteristics of these Synechococcus populations have now been made. 

1bis chapter details the principles of flow cytometry, describes the methods 

developed for analysis of plankton communities in the meromictic lakes of the 

Vestfold Hills and discusses the advantages and disadvantages of using flow 

cytometry for this purpose. 
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2.2 Introduction 

Flow cytometry has been used to study phytoplankton populations since the late 

1970's (Legendre and Yentsch 1989; Olson et al. 1983; Pauu et al. 1978; Trask et al. 

1982). Initially, flow cytometry was only used to study phytoplankton in culture but 

since the early 1980's flow cytometry has been used to study phytoplankton 

community structure in the oceanic environment. Flow cytometers are now 

commonly employed on marine science cruises (Hofstraat et al. 1991; Hofstraat et al. 

1994; Hofstraat et al. 1990; Yentsch et al. 1986). 

Although flow cytometers were originally designed for biomedical research 

(Muirhead et al. 1985; Ryan et al. 1988), the principles of flow cytometry make it an 

ideal technology for the analysis of bacteria and algae. A flow cytometer uses one or 

more lasers to emit light at specific wavelengths. When a cell passes through the 

path of the laser beam, the laser light is scattered producing a signal that corresponds 

to the relative size and complexity of the cell. Furthermore, if a cell carries a 

fluorescent tag or if photosynthetic pigments cause the cell to autofluoresce, the 

emitted fluorescent signal passes through a series of optical filters and is detected by 

photomultiplier tubes (Burkill 1987). A flow cytometer could almost be described as 

an automated fluorescence microscope with the photomultiplier tubes acting as an 

eye. 

Commercially available flow cytometers have been designed and optimised for the 

analysis of human blood cells. The sample stream is optimal for cells between 10 

µm and 25 µm in diameter and the filter configuration is optimal for the detection of 
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FITC and phycoerythrin, fluorescent stains that are commonly used in medical 

pathology (Hofstraat et al. 1994; Shapiro 1988). There are however many other 

fluorescent stains, as well as the natural fluorescence from phytoplankton cells, that 

can be detected by this filter configuration (Burkill 1987; Sosik et al. 1989). 

In recent years, flow cytometers have been specifically designed for the analysis of 

phytoplankton (Balfoort et al. 1992; Frankel et al. 1990; Peeters et al. 1989). 

Features that have changed include an option of two or three lasers that allows 

excitation of phytoplankton pigments at wavelengths other than 488 nm. For 

example a system with three lasers with excitation wavelengths of 442 nm, 529 nm 

and 633 nm has been successfully used to optically separate phytoplankton 

populations (Hofstraat et al. 1994). Furthermore, wider sample streams have been 

designed to account for phytoplankton colonies and fillamentous cells. Larger 

sample volumes, which allow for the analysis of oceanic samples that contain low 

numbers of phytoplankton, can also be used (Hofstraat et al. 1994). However, the 

more optical features that are built into a flow cytometer the greater the chance that 

the optical system may not be robust. Presumably due to their stability and 

robustness, the single laser flow cytometers such as the F ACScan (Beckton 

Dickinson) remain popular choices for shipboard flow cytometry (Chisholm et al. 

1988a; Li 1989). 

There are several reasons as to why flow cytometry has now become a valuable tool 

in phytoplankton community analysis. The individual fluorescent signatures and the 

variability in phytoplankton cell size allows for the optical separation of populations 

based on intrinsic cellular properties (Hofstraat et al. 1991; Olson et al. 1989). This 
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makes the analysis of phytoplankton communities by flow cytometry a quick and 

efficient process, allowing for many more samples to be processed than could be 

achieved by traditional methods. Also, each cell is analysed individually providing 

accurate information on community structure (Chisholm et al. 1986; Yentsch et al. 

1986). A large number of cells can be analysed in a short period of time allowing for 

more objective analysis and statistical accuracy (Chisholm et al. 1988a; Hofstraat et 

al. 1994). A flow cytometer can be used to monitor relative changes in 

phytoplankton community structure and physiological status (Cucci et al. 1985; 

Demers et al. 1989). Without calibration, however, flow cytometers can not provide 

quantitative information on the fluorescence or morphological characteristics of 

· phytoplankton cells nor do they have the facility to directly count phytoplankton 

cells. The machines can, however, be calibrated to obtain this information (Hofstraat 

et al. 1994). 

Prior to this study the flow cytometer had not been used for studies in aquatic 

microbiology in Australia. This meant that there was no expertise that could be 

easily accessed in Australia. Flow cytometric methods used in this Antarctic study 

were therefore based on literature that was available at the time but were primarily 

developed at Davis Station, Antarctica. The flow cytometer was routinely used for: 

the determination of bacterial cell numbers (Chapter 3 and 4); for the analysis of 

Synechococcus distribution and abundance (Chapter 3 and 4 and 6) and for the 

analysis of other phytoplankton communities in the meromictic lakes of the Vestfold 

Hills (Chapter 4). The flow cytometer was useful in the characterisation of the 

Antarctic Synechococcus (Chapter 5), and for monitoring of Synechococcus 

enrichment cultures. 
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2.3 Methods 

Methods that were developed for the use of flow cytometry included: the production 

and filtration of sheath fluid; the calibration of the instrument using fluorescent 

beads; the staining and counting of bacteria by flow cytometry; the counting of 

Synechococcus and other phytoplankton populations by flow cytometry; and 

determining the effect of salinity on relative cell size. 

2.3.1 The flow cytometer 

A F ACScan flow cytometer (Beckton Dickinson) equipped with a 488 nm air cooled 

argon laser and the filter configuration outlined in Figure 2.1 was used for the 

analysis of water samples. The optical filter configuration included: a 530/30 nm 

band pass filter; a 585/42 nm band pass filter and; a 650 nm long pass filter. This 

allowed detection of fluorescence emission in three wave length ranges. The high 

flow rate setting allowed samples to pass through the flow cell at approximately 60 

µl s-1 where as the low flow rate allowed the sample to pass through the flow cell at 

approximately 12 µl s-1
• The ejection tube was 180 µm and the sample stream was 

approximately 12 µm in diameter on low flow rate and 28 µm in diameter on high 

flow rate 

(G. Bauchop, personal communications). The alignment of the optical bench was 

checked before and after transportation of the flow cytometer to Antarctica, using 

'Autocomp' software provided by Becton Dickinson. 
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Figure 2.1: The optical configuration of the FACScan flow cytometer. DM = dichroic 
mirror; BP = band pass filter; LP = long pass filter; PE = phycoerythrin; PI = 
propidium iodide and FITC = fluoresceinisothiocyanate. (Figure modified from 
'Introduction to the FACScan - Flow Cytometry made easy' Becton Dickinson 
Training Manual - 1991) 
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Fluorescent beads (1.98 µm diameter) were added to all samples as an internal 

standard and to assess the alignment of the optical bench. Data were collected in list 

mode and analysed using the 'Lysis II' software. 

2.3.2 Sheath fIItration 

Initially sheath fluid was prepared using the following protocol. Phosphate buffered 

saline was prepared, in 20 1 volumes, according to the method of (Brayton and 

Colwell 1987). To 800 ml of deionised water was added: 8.5 g NaCl, 9.1 g Na2HP04 

and 1.5 g KH2P04. The solution was then adjusted to pH 7 .2-7.3 and filtered through 

a filter bank series ranging from 0.8 µm, 0.45 µm, 0.2 µm and 0.1 µm. The 0.45 µm 

filter needed to be changed routinely. The final filtrate passed through a 0.45 µm 

filter, attached to a filter bell, into a 20 1 pre-cleaned plastic drum. Davis Station was 

dusty and it was important to reduce the risk of contamination of the sheath fluid by 

dust particles. Once available, commercially prepared sheath fluid was used and 

filtered through a 0.05 µm filter using a pressure bomb (Millipore). 

2.3.3 Bead Calibration 

Calibration grade 'Fluoresbrite' 1.98 µm microspheres (Polysciences Inc.) were used 

in the determination of bacteria and phytoplankton cell numbers. They were also 

used to check laser alignment and instrument settings. 
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One drop of the concentrated bead suspension was added to 10 ml of 0.1 µm filtered 

PBS. The diluted bead suspension was stored in a 10 ml polyethylene falcon tube 

with 0.1 % sodium azide solution added to inhibit bacterial growth. The beads were 

kept in the dark and stored below 4° C. 

The bead density was determined after 48 h of storage. The beads were sonicated for 

five minutes before the density was determined. A known volume of the bead 

suspension (0.1 ml) was added to PBS and filtered onto a prestained irgalan black 

0.25 µm, 25 mm filter, at low pressure. The filter was then mounted for microscopic 

observation at 1 OOO x magnification. This procedure was repeated in triplicate, 10 

fields of view were counted on each slide and the final bead density determined. The 

tube was sonicated for five minutes before use. This was to dislodge beads that had 

become stuck to the side of the 'Falcon' tube routinely before use. Beads were then 

further diluted in PBS or added to a sample, as required. 

2.3.4 Propidium iodide staining for bacterial cell counts 

Lake water samples previously preserved with 0.2 µm filtered formalin (1 % final 

concentration) and stored at 4°C in the dark were used to determine the bacterial cell 

numbers. 

A propidium iodide staining method previously described by Wallen et al., (1980) 

was modified according to the following protocol. Samples (1 ml) were centrifuged 

at 6000 rpm, with no break, at 4° C, in a Beckman 12-21 centrifuge for 30 minutes. 
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The supernatant was discarded and the sample washed once in phosphate buffered 

saline (PBS). The sample was then resuspended in 90 µl PBS. 10 µl of 70 µg ml-1 

propidium iodide (Sigma Chemicals) was added and the samples incubated at 4° C 

overnight. The samples were then washed twice with PBS and resuspended in a 

known volume (1 ml) of PBS. A known volume of the 1.98 µm calibration bead 

suspension (usually 10 µl) was added to each sample. Bacterial cell numbers ~ere 

calculated from the ratio of cells to beads as detennined by the flow cytometer. 

On the F ACScan, PI was detected in FL3 where fluorescence emissions greater than 

650 nm were measured. The instrument settings used to determine bacteria cell 

numbers are given in Table 2.1. No compensation was used. These instrument 

settings were optimised using PI stained, cultured bacterial cells. 

Table 2.1: Flow cytometric instrument settings 
used in the determination of bacterial cell 
numbers. 

Parameter Settings 

FSC EOI 
SSC 407 
FLl 437 
FL2 514 
FL3 563 

Threshold 80 

The bacterial populations and bead suspensions were gated on a FL3/SSC dot plot 

and cell numbers were determined as follows: Cells mr1 
= Number of cells x 

(Bead density)/(Number of beads). To gate a population in the analysis of flow 

cytometric data means to set a region around a specific population(s). Data which 



falls outside the analysis gate remains in memory but is not included in the analysis 

(Flow Cytometry, Glossary of Terms, Becton Dickinson 1992). 

2.3.5 Analysis of bacteria by fluorescence microscopy 
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An epifluorescence microscope (Leitz Laborlux: -12) equipped with a 100 W mercury 

vapor lamp and filters to accommodate excitation and emission wavelengths for 

DAPI (4', 6-diamidino-2-phenylindol) was used to measure the numbers of bacteria 

in cultures and lake water samples. A 100 µl volume of 1 % formalin (0.2 µm 

filtered) fixed bacterial culture was added to 10 ml of0.2 µm filtered phosphate 

buffered saline. Pre-filtered (0.2 µm) DAPI (Sigma Chemicals) was added to give a 

final concentration of 2.5 µg m1-1
• Samples were stained overnight at 4 °C in the 

d~k. Samples were then filtered, at low pressure, onto 0.2 µm, 25 mm, prestained 

membrane filters (Millipore) and mounted for microscopic observation at 1 OOO x 

magnification (Porter and Feig 1980). Lake water samples were prepared and cells 

were counted in the same way as described for cultured bacteria samples. Flow 

cytometric and microscopic counts were then compared (Sigmastat 1992). 

2.3.6 Analysis of fresh lake water samples by flow cytometry. 

The flow cytometer was used routinely to monitor changes in autofluorescent cell 

populations, primarily in Ace Lake but also in a selection of other meromictic lakes 

in the Vestfold Hills. Lake water samples, which had been kept in the dark at 4 ° C, 

were analysed within four hours of collection. A known number (usually 10 µl) of 
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calibration beads was added to 1 ml of lake water and the sample was then analysed 

directly. 

Populations were detected on the flow cytometer according to their fluorescent 

characteristics. Forward angle light scatter (relative cell size), side angle light scatter 

(cell complexity), FLl (Green fluorescence), FL 2 (Orange fluorescence) and FL 3 

(Red Fluorescence) were used to identify populations. Populations were gated on 

two parameter dot plots using the Becton Dickinson Lysis software. Individual 

populations were analysed to determine cell numbers. Due to the spectral properties 

and size differences of autofluorescent populations, samples were analysed using 

several groups of instrument settings. Some populations were not evident when the 

instrument was set to a threshold on red fluorescence (FL3) but were distinct ifthe 

instrument was set to a threshold on green fluorescence (FL 1 ). The side angle light 

scatter (SSC) also varied according to the populations that were analysed. If small 

cells were being analysed the SSC setting was higher than if large cells were being 

analysed. Two commonly used sets of instrument settings are given in Table 2.2. No 

compensation was used. These instrument settings were optimised using lake water 

samples. 

The analysis of Synechococcus cell numbers was compared to microscopic analysis 

in the same way that bacterial numbers were checked. A known volume of 

Synechococcus cells were filtered, at low pressure, onto a 0.1 µm membrane filter. 

An epifluorescence microscope (Leitz Laborlux -12) equipped with a 100 W mercury 

vapor lamp and green filter set (M2) was used to count the Synechococcus cells. For 

flow cytometric analysis, a known volume of fluorescent calibration beads was added 



to I ml of sample and the low sample rate was used for counting. The first set of 

flow cytometric instrument settings in Table 2.2 was routinely used for the analysis 

of Synechococcus populations. Microscopic and flow cytometric data were 

compared (Sigmastat 1992). 

Table 2.2: Flow cytometric instrument settings used 
in the analysis of phytoplankton communities. 

Parameter Set 1 Set2 

FSC EOO EOl 
SSC 323 250 
FLI 437 437 
FL2 514 514 
FL3 459 459 

Threshold FL3 -80 FLI -64 

2.4 Results 

2.4.1 Sheath Fluid Preparation 

The sheath fluid was used to carry the sample through the flow cell pass the laser 
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beam. Traditionally, sheath fluid used in flow cytometers has been a buffered saline 

solution that had a salinity and pH equivalent to human blood. Phosphate buffered 

saline (PBS) is the standard sheath fluid used and has a salinity of 0.9 %. PBS was 

originally used for the flow cytometric analysis of Antarctic Lake water samples. 

PBS (0.9 % ) was chosen for two reasons. Firstly, because it was required for work , 

with anti-bacterial polyclonal antibodies that had been made in rabbits, the effect of 

high salt solu1ions (for instance seawater) on antibody stability was not known. 

Secondly, PBS was the recommended standard sheath fluid for flow cytometry. 
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Traditionally 0.2 µm filtered sheath fluid is used in flow cytometry but this has been 

to study human cells that are approximately 5 µm or larger. In the current 

applications, the cell sizes were up to ten fold smaller than this. It was therefore 

decided to use 

0.1 µm filtered sheath. Also, due to the isolation in Antarctica, it was decided to 

prepare the PBS according to the method outlined above rather than using 

commercially available sheath fluid. 

From the end of the winter season, when the first supplies arrived, commercially 

produced PBS (OSMISOL) was used. OSMISOL 0.2 µm filtered by the supplier. 

The OSMISOL was further filtered using a 20 1 pressure bomb (Millipore) through a 

0.2 µm and a 0.05 µm filter. For analysis of phytoplankton cells from the meromictic 

lakes and the marine site, as an alternative to using OSMISOL, 0.05 µm filtered sea 

water was also used. 

2.4.2 Calibration of fluorescent beads 

1.98 µm microspheres, were used routinely in flow cytometric analysis. Bead 

numbers per ml were determined using the fluorescent microscope as outlined in the 

methodology. Immediately before use, the beads were sonicated for five minutes. 

This step was crucial because the beads would adhere to the side of the storage tube 

and they would also clump. Although the flow cytometer was effective at breaking 



67 

up weakly clumped beads or cells the number of beads added to each sample would 

not be accurate if the beads clumped or adhered to the side of the storage tube. 

2.4.3 The effect of salinity on the flow cytometric image 

When fresh lake water samples were analysed on the flow cytometer there was 

sometimes a large salinity difference between the sample and the sheath fluid. 

Sample salinity ranged from about I % in Clear Lake up to about 20 % at the bottom 

of Organic Lake. The high salinity gradients caused distortion of the forward angle 

light scatter (FSC) signal. 

A calibration using a variety of salt concentrations in the sample tube was performed. 

This calibration was carried out using latex beads (Coulter Electronics), a Dunaliella 

sp. culture and a heterotrophic bacterial culture. Data were collected over three 

forward scatter settings E0-1, EOO and EOI, on low and high sample rate. The low 

flow rate caused the sample stream to narrow. This restricted the position of the cells 

to a smaller area, and increased resolution because the illumination was more 

uniform (FACScan users manual): 

The three fluorescent signals (FLI, FL2 and FL3) as well as the 90° (SSC) signals 

were not effected by the salinity gradient, but FSC was altered when there was a large 

salinity gradient (Chapter 4, Figure 4.10, Burton Lake). Figure 2.2 is a histogram 

plot that shows the effect of salinity on the forward scatter (FSC) signal from a bead 

suspension. The primary effect of the high salinity samples on the FSC signal was to 

increase the spread of the signal from the beads around the mean and also to shift the 

( 
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signal to the right on the FSC axis (an apparent increase in cell volume). Salinity had 

the greatest effect on the small beads and the effect was greater when the flow 

cytometer was run on high sample rate. 

Bacteria were effected by salinity in the same way as the beads. There was a shift to 

the right, on the axis, in the FSC signal with an increase in sample salinity (Figure 

2.3). The mean FSC channel number and the standard deviations of the signal from 

the bacterial population in three samples of different salinity is given in Table 2.3. 

The Dunaliella cells were not effected to the same extent as the bacteria (Figure 2.4 ). 

There was a small shift in the signal, to the left on the FSC axis, when there was a 

large salinity gradient between the sample and the sheath. This was probably due to 

the large size of the Dunaliella cells (approximately 10 µm). The large beads were 

not effected by the salinity gradients to the same extent as the small beads. 

Table 2.3: The effect of sample salinity on the forward 
angle light scatter signal of bacterial cells. 

Parameter 

Mean channel 
S.D. 

1 %NaCl 3 %NaCl 5 %NaCl 

7.74 28.81 84.58 
4.28 15.68 75.63 

As indicated, forward angle light scatter is a measure of the relative difference in cell 

volume. In the analysis oflake water samples, 90° light scatter and fluorescence 

were routinely used for the determination of population density. Data was acquired 

with the sample rate on low. This reduced the effect of the salinity gradient on the 

FSC signal. If detailed information is required about cell size, sheath fluid of a 

similar salinity to the sample should be used. 
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Figure 2.2: Flow cytometric histogram showing the effect of salinity on the relative cell 
size (FSC) of calibration beads. FSC (X axis) was set on EOO, the Y axis represents 
relative abundance. The black line represents a bead mix in a 1 % NaCl solution; the 
gray line represents a bead mix in a 3 % NaCl solution and the green line represents a 
bead mix in a 5 % NaCl solution. The bead mix was composed of a) 0.5 µm beads; b) 
1.98 µm beads; c) 5 µm beads and d) 10 µm beads. The sheath fluid was a 0.9 % PBS 
solution and the acquisition rate was low. 

1% 

Figure 2.3: The effect of salinity on the relative size of bacteria. The X axis is FSC and 
was set on E01 . In microscopic observations, the bacteria were approximately 0.5 µm 
in diameter. The Y axis represents relative abundance. The black line represents 
bacteria in a 1 % NaCl solution, the gray line represents bacteria in a 3 % NaCl solution 
and the green line represents bacteria in a 5 % NaCl solution. The red line represents 
1.98 µm beads in a 1 % NaCl solution. 
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Figure 2.4: The effect of salinity on the relative size of Dunaliella. FSC (X axis) was set 
on E0-1. The black line represents Dunaliel/a in a 1 % NaCl solution, the gray line 
represents Dunaliel/a in a 3 % NaCl solution and the green line represents Duna/iel/a in 
a 5 % NaCl solution. The red line was 1.98 µm beads. 

R2 

Rl 

Figure 2.5: Forward ang le light scatter (FSC) histogram of a bead mix. FSC was set on 
E01. R1 represents 1.98 µm beads; R2 represents Sµm beads and R3 represents 10 µm 
beads. 
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This was difficult to achieve in the analysis of lake water from the meromictic lakes 

as these lakes had large salinity gradients. It was therefore not practical to use a 

sheath fluid with a salinity that exactly matched the salinity of the sample. Filtered 

seawater was used as the sheath fluid for the analysis of phytoplankton populations in 

the meromictic lakes of the Vestfold Hills (Chapter 4). FSC was the only flow 

cytometric parameter effected by salinity, and the effect on FSC was reduced when 

data was acquired at a slow sample rate compared to a fast sample rate. It was 

therefore assumed that the change in cell volume and the broad spread in the FSC 

signal, caused by a difference in salinity between the sheath fluid and the sample, 

were optical effects rather than a morphological change of the cells. 

When 10 % salt was used as sheath fluid for the analysis of Organic Lake samples, it 

caused a high background noise level for several days after it had been run through 

the machine. This effect remained even after distilled water had been run through for 

several hours to clear the lines. Warm water was run through the lines as this was 

more effective at dissolving salt crystals that may have been lodged in the line. Due 

to the residual background noise caused by high salt solutions it was decided that salt 

solutions of salinity greater than seawater salinity would not be used as sheath fluid. 

The forward angle light scatter reading (FSC) is a relative measure of cell size. In 

Figure 2.5, peaks labelled Rl, R2 and R3 represent beads of2, 5 and 10 µm diameter 

respectively. The photodiode that detects FSC signals and the photomultiplier tubes 

that detect SSC and the three fluorescence signals can be adjusted to detect signals of 

different intensities (F ACScan users manual). The peaks in Figure 2.5 represented 
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the relative cell sizes when the photo diode that detects FSC signals was set on the 

EOO setting. The photodiode can be set at one of four logarithmic settings. On EOl, 

the apparent sizes moved a log unit to the right of the EOO setting and on E0-1 they 

moved a log unit to the left of the EOO . A setting of E0-1 is therefore designed for 

the analysis of large particles. FSC is more accurately a measure of cell volume 

(Olson et al. 1989). In Figure 2.5, the three spherical bead populations had volumes 

of 2.03 µm3
, 32.7 µm3 and 261.8 µm3 respectively. 

2.4.4 Propidium iodide staining for total bacterial cell counts 

Bacteria stained with propidium iodide fluoresced in FL3 (red fluorescence). The 

threshold setting of FL3 - 80 helped to eliminate background fluorescence caused by 

small particles in the sample. Figure 2.6 is a FL3 histogram of a PI stained bacteria 

culture. The population, was better delineated in a two parameter dot plot (Figure 

2. 7). SSC and FL3 were used to gate the bacterial populations so that cell numbers 

could be determined. This was especially important in the analysis oflake samples. 

In a culture, the cells have a uniform size and the flow cytometric image is therefore 

more uniform. In a natural bacterial population, however, cell sizes and shapes are 

variable and hence the dot plot population was not as uniform as a population of 

cultured cells. 
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Figure 2.6: Flow cytometric histogram of propidium iodide (PI) stained bacteria. The X 
axis represents relative red (FL3) fluorescence. The Y axis represents relative cell 
numbers. A) unstained cells; B) PI stained cells and C) fluorescent beads. 
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Figure 2.7: Flow cytometric two dimensional dot plots of propidium iodide stained 
bacteria. A) unstained cells; B) stained cells. 
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A comparison of counting methods using the flow cytometer and the fluorescent 

microscope, showed that the two methods did not produce a significant difference in 

celi numbers, using a bacterial culture CM;ann-Whitney Rank Sum Test, p = 0.496, n 

= 10). A similar result was obtained when the two methods were compared using 

lake water samples. There was not a significant difference in cell numbers between 

the two methods at 8 m (t-test, p = 0.6555, n = 5) nor at 12 m (t-test, p = 0.9728, n = 

5). In both cases 10000 cells per sample were counted by flow cytometry and 2000 

cells per sample by microscopy. 

2.4.5 Analysis of fresh lake water samples 

The flow cytometer was routinely used for the analysis of lake phytoplankton 

populations and also for the analysis of Synechococcus cultures. As with the analysis 

of total bacterial numbers, the method of analysis for Synechococcus numbers was 

compared to the traditional method of fluorescence microscopy. There was no 

significant difference in the numbers of Synechococcus using the two different 

methods of analysis (t-test, p = 0. 7112, n = 10). Furthermore, the counting error on 

using flow cytometric techniques was 3 % as compared to 6 % using microscopic 

counting techniques. No comparison was done between the two methods using lake 

water samples. However, because Synechococcus formed discrete populations, that 

could be easily gated on the flow cytometer, there was no obvious reason why the 

results would be different to those obtained from cultures. It is probable that the 

main source of error in the flow cytometric method of counting cells came from the 

uneven distribution of fluorescent beads in the sample tube. The sample tube has no 

mixing facility and there is a possibility that the beads were not evenly mixed. 
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The cultured Synechococcus population exhibited the same morphological 

characteristics on the flow cytometer as did the population obtained from the Ace 

Lake sample. Figure 2.8 shows a flow cytometric image of a Synechococcus culture 

relative to 1.98 µm microspheres. The relative fluorescent intensity of a 

Synechococcus culture depends on the culture conditions (Chapter 5). A water 

sample from 10 m in Ace Lake showed the fluorescence characteristics of 

Synechococcus relative to 1.98 µm beads and relative to another population of 

photosynthetic cells that were between 2 and 3 µm in diameter and that had higher 

relative red fluorescence (FL3) but lower relative orange fluorescence (FL2) than 

Synechococcus (Figure 2.9). As with all phytoplankton populations, the 

Synechococcus image was more tightly clustered on a two parameter dot plot than in 

a single parameter histogram. This was because the population had to conform to 

two morphological or fluorescence characteristics rather than just one. The FSC 

versus SSC plot gave a relative indication of cell size and complexity. FL 1 showed 

any green fluorescence emitted from a population when excited by the 488 nm laser 

light. FL2 showed the orange fluorescence emitted and FL3 showed the red 

fluorescence emitted. 

A depth profile of the phytoplankton communities in a meromictic lake is shown in 

Figure 2.10. A combination of cell size and fluorescent characteristics were used to 

gate specific populations. At Davis Station, the flow cytometer was primarily used to 

detect changes in cell numbers in each phytoplankton population. Without 

microscopic confirmation, phytoplankton populations could not be identified by flow 

cytometric analysis. 
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Figure 2.8: Flow cytometric dot plots of a Synechococcus culture. All axes are in 
relative log units. A. The relative cell size and complexity of Synechococcus cells. B. 
Relative cell complexity and orange fluorescence. C. Relative cell complexity and red 
fluorescence. 
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Figure 2.9: A natural Synechococcus population relative to 2 µm calibration beads 
and to a population of photosynthetic eukaryotic phytoplankton. 
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Figure 2.10: Flow cytometric images from three depths (6, 8 and 10 m) in a 
meromictic lake in the Vestfold Hills, Antarctica. Regions' R1, R2, R3 and 
R5 represent phytoplankton populations. R4 is the 1.98 µm beads. All axes 
are in relative log units. FSC is forward angle light scatter; SSC is side 
angle light scatter; FL2 is orange fluorescence and FL3 is red fluorescence. 
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In Figure 2.10, population Rl was identified on a dot plot of SSC and FL3. The cells 

within this population were approximately 3 µm in diameter. The population had low 

orange fluorescence and the cells increased in number with depth (Table 2.4). 

Population R2 was also identified on a SSC/FL3 dot plot. The cells within this 

population had a diameter of approximately 5 µm and had low orange fluorescence. 

Cell nwnbers were highest at the middle depth (8 m) in the lake (Table 2.4). 

Population R3 was identified on a FSC versus SSC dot plot. The cells were 

approximately I 0 µm in diameter and cell nwnbers were greatest at the middle depth 

in the lake (Table 2.4). This is an example of the use of the flow cytometer for the 

study of phytoplankton community structure in the lakes. With Synechococcus, the 

flow cytometer was also used to detect relative changes in cell fluorescence over 

depth and time (Chapter 3). 

Table 2.4: Phytoplankton cell numbers (x103 cells mr1
) in each of the regions 

identified on the flow cytometric image of lake water samples taken from a 
meromictic lake in the Vestfold Hills. 

Depth 

A 
B 
c 

Rl 

1.82 
6.47 
9.15 

R2 

3.46 
4.03 
3.04 

R3 

0.62 
1.06 
0.70 

R5 

3.25 
11.2 
68.l 

A, B and C are three depths 6, 8 and 10 m in the lake. R1, R2, R3 and R5 represent four different 
phytoplankton populations at the three depths 
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2.5 Discussion 

Flow cytometry has proven to be an effective method for the analysis of bacterial and 

phytoplankton populations (Boye and Lobner-Olesen 1990; Legendre and Yentsch 

1989). Extensive calibration of individual machines is, however, needed for 

quantitative data (Hofstraat et al. 1994). 

In the analysis of meromictic lake bacterial communities the flow cytometer gave 

comparable results to the fluorescent microscope. Monfort and Baleux, (1992) found 

no significant difference between the two methods when comparing counts of 

bacteria from aquatic environments using DAPI stained cells. Robertson and Button, 

(1989) also found that there was no difference between results obtained from the use 

of the microscope and flow cytometer when aquatic bacteria were DAPI stained. 

Monger and Landry, (1993), however, found that when cells were DAPI stained, the 

flow cytometer measured 12 % greater numbers of bacteria than did the microscope. 

When the cells were stained with Hoechst 33342 there was a 2 % difference in cell 

numbers between determinations from the flow cytometer and microscope. In the 

current comparison, cells analysed by microscopy were DAPI stained. DAPI was 

used as this was the stain routinely used in other studies of meromictic lakes (James 

et al. 1994; Laybourn-Parry and Perriss 1995) and is also routinely used for the 

analysis of marine bacterial populations (Porter and Feig 1980). This stain, could not 

however be used on the F ACScan because the excitation wavelength for DAPI is 

below the emission wavelength (488 nm) of the Argon Laser. DAPI, with an 

excitation wavelength between 300 nm and 400 nm fluoresces after excitation with 



UV light (Monfort and Baleux 1992). Propidium Iodide (PI) was used to stain 

bacterial cells for analysis by flow cytometry. Both DAPI and PI are DNA stains 

(Shapiro 1988) but PI has excitation wavelengths between 450 nm and 580 nm 

(Waggoner 1990) which is compatible with the FACScan. The emission 

wavelengths of PI are between 580 run and 690 run (Waggoner 1990) and it was 

detected in the FL3 channel (> 650 nm) on the flow cytometer. Propidium iodide 

could not be used in the microscopic analysis of bacterial cells as the fluorescence 

faded too quickly for accurate cell counting. Although two different DNA stains 

were used there was no significant difference (P > 0.001) between the microscopic 

analyses of bacterial cell numbers and those obtained by flow cytometric analyses. 
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The commercially built flow cytometers were designed to analyse cells with 

diameters between 10 µm and 25 µm (Burkill 1987). The analysis of bacterial cells 

is, therefore, at the lower limit of detection for these machines. Using the current 

method, stained bacterial cells were easily detected by flow cytometry. It was, 

however, important to remove as many particles as possible from the sheath fluid. 

The pressure bomb method was the most effective method for the filtration of sheath 

fluid. As the preparation of bacteria for the analysis by flow cytometry is time 

consuming, the method is probably most useful for large numbers of samples. 

Samples could be stored, preserved, for short periods of time and analysed in bulk. 

Microscopic techniques are probably more appropriate for the analysis of small 

numbers of samples. In this way, morphological characteristics of the bacterial 

population can also be observed. 
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A further consideration when analysing bacterial cell numbers by flow cytometry was 

the ratio of cells to beads added as an internal standard. For accurate analysis 

Phinney and Cucci, (1989) recommended a ratio of approximately 10 to 1, cells to 

beads. If the density of beads was too high, the population of bacteria was swamped 

and did not form a discrete population. If bacterial numbers were uniform 

throughout the water column this requirement would not be difficult to achieve. In 

the meromictic lakes of the Vestfold Hills, where bacterial numbers changed 

dramatically with depth and between lakes (Chapter 4), the requirement was more 

difficult to fulfill. 

The analysis of bacteria by flow cytometry is now used for a variety of reasons. 

Analysis of bacterial cell viability has been achieved using fluorescent stains such as 

Rhodamine 123 (Kaprelyants and Kelt 1992), bis-(1,3-dibutylbarbituric 

acid)trimethine oxonol (Jepras et al. 1995) and carboxyfluorescein diacetate (Porter 

et al. 1995). Bacterial cell cycle analysis and growth studies have been conducted 

based on the DNA content of cells (Boye and Lobner-Olesen 1991). Fluorescent 

labelled monoclonal or polyclonal antibodies have been used to detect specific 

bacteria in natural populations (Boye and Lobner-Olesen 1990; Pinder and 

McClelland 1993) as have 16S rRNA -targeted oligonucleotide probes (Amann et al. 

1990). Flow cytometry is therefore well suited for: monitoring pathogenic bacteria in 

receiving waters (Edwards et al. 1993); for monitoring the growth of bacteria in 

bioreactors (Bankes and Richard 1993; Boye and Lobner-Olesen 1991) and; for the 

characterisation of natural bacterial populations (Button and Robertson 1989). 
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In flow cytometry, the scatter of the laser light when the beam comes in contact with 

a particle (FSC) gives a relative measure of cell size (Shapiro 1988). Demers et al., 

(1989) found that FSC correlated well with cell volume as measured by a Coulter 

counter. Phinney and Cucci, (1989) derived a linear relationship for cell volume 

versus FSC using spherical calibration beads. For calibration beads, which are 

uniform in size and shape, any flow cytometer could be calibrated to give 

quantitative information on cell volume and hence cell size. Further, except for 

pennate diatoms, Olson et al., (1989), obtained a good relationship between FSC and 

coulter volume for cultures of phytoplankton. In a sample of water from a lake or 

from the ocean, however, where phytoplankton cells are not uniform in size or shape 

the relationship between FSC and cell volume is not as straightforward (Burkill 

1987; Hofstraat et al. 1994). At best, cell volume can only be a relative measure 

when compared with standard beads. Further, due to the laminar flow of the sheath 

fluid (Phinney and Cucci 1989), it could be assumed that a particle will pass through 

the flow cell along its most fluid dynamic axis. In this case, the FSC parameter 

would be an estimate of length (Hofstraat et al. 1994) for a cylindrical or a conical 

shaped cell and a measure of diameter for a spherical shaped cell. Due to the width 

of the sample stream (12 to 28 µm), small rod shaped cells such as heterotrophic 

bacteria and Synechococcus may pass through the flow cell at a variety of angles, 

hence the broad spread in FSC (Figure 2.8 and 2.10). When the flow cytometer is 

run on low sample rate (12 µl s-1
), cells pass through the flow cell in a more uniform 

manner and hence the FSC signal produces a tighter image (F AC Scan users manual 

1992). A calibration of size using uniform spherical calibration beads can therefore 

provide relative information on length of cells but accurate information on cell size 

and shape is best obtained using a microscope. 
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A difference in salinity between the sample and the sheath fluid effected the flow 

cytometric analysis ofmeromictic lake water samples. Phinney and Cucci, (1989) 

indicated that the sample salinity should differ from the salinity of the sheath fluid by 

no more than 0.5 %. In the analysis of seawater or freshwater samples this was easy 

to achieve. In meromictic lakes, where there were large salinity changes with depth, 

this requirement was more difficult to achieve. The fluorescent parameters and the 

side angle light scatter were not effected by the salinity differences between the 

sample and the sheath fluid. Forward angle light scatter was however effected and 

the greatest effect was observed with the bacterial sized cells. The reason for this is 

not clear but it probably resulted from an interaction between the sheath fluid and the 

sample core. 

For use in microbial ecology, the greatest value in flow cytometric technology is in 

the analysis of phytoplankton communities (Hofstraat et al. 1994; Platt 1989; 

Yentsch et al. 1986). Due to the natural fluorescence of phytoplankton cells, no 

manipulation was required for sample ~ysis. However, unless the species 

composition of the phytoplankton community is known, microscopic analysis of 

samples is still needed. Once a species list was established, flow cytometry provided 

an accurate and efficient mechanism to monitor changes in phytoplankton 

population. 

When a phytoplankton population is easily distinguished by flow cytometry, as was 

the case with Synechococcus, changes in distribution, abundance and physiological 

status can be monitored with relative ease. Synechococcus can be separated from 
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other phytoplankton populations by its small cell size and orange fluorescence 

emitted by pycoerythrin (Yentsch et al. 1983). Other phytoplankton that emit orange 

fluorescence when exited at 488 nm are the Cryptomonads and Mesodinium rubrum 

(Yentsch and Phinney 1985). Although these organisms exist in some of the 

meromictic lakes (Burch 1988; Perriss et al. 1995), the cells are much larger than 

Synechococcus cells. The difficulty in distinguishing phytoplankton populations by 

flow cytometry arises when there is a large species diversity and no one species 

dominates. This situation occurred in Taynaya Bay (Figure 4.5, Chapter 4) where 

there was a continuous spectrum in relative cell size and cell fluorescence. In the 

meromictic lakes, for example Ace Lake (Figure 2.10), flow cytometric monitoring 

of phytoplankton populations was ideal because of the low species diversity (Burch 

1988). No difference in Synechococcus cell abundance was found when cultured 

samples were analysed using the flow cytometer or using the fluorescent microscope. 

Hofstraat et al., (1994) also found that when the two methods were compared, they 

gave consistent measures of phytoplankton cell numbers. 

Difficulties that arose during the analysis of phytoplankton populations were caused 

by the low density of cells in some samples. This has been a common problem 

especially when using the commercially designed flow cytometers (Hofstraat et al. 

1994; Yentsch et al. 1986). These instruments operate optimally at 105 
- 106 

cells mr1 (Burkill 1987) and can only analyse two to three millilitres of sample. The 

Optical Plankton Analyser (Hofstraat et al. 1990) has been designed to analyse larger 

volumes and the sample is continuously stirred throughout the analysis. Because 

phytoplankton community structure varied with depth and between lakes, it was 

difficult to achieve an ideal cell to bead ratio. When the bead density was too high, 
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or when one phytoplankton population occurred in high densities, other populations 

were masked. This occurred in Pendant Lake because of the high densities of 

Synechococcus (Figure 4.3b, Chapter 4). When a phytoplankton population occurred 

in low densities, problems with its detection when it was associated with populations 

that occurred in high densities, could usually be overcome by manipulation of the 

flow cytometer instrurµent settings. The limit of detection for the flow cytometer 

was therefore dependent on sample dilution and on the instrument settings of the 

machine. The capacity to manipulate instrumental settings and to gate particular 

regions makes flow cytometric analysis' a powerful tool. To do this, however, it is 

best ifthe analyst has a prior knowledge of the populations to expect. It also means 

that analyses is more time consuming because the process is an investigative one 

rather than one of routine monitoring. 

In the meromictic lakes of the Vestfold Hills, flow cytometry was predominantly 

used for the analysis of Synechococcus communities. With regard to Synechococcus, · 

flow cytometry has been used for pigment characterisation (Wood et al. 1985) and to 

monitor changes in distribution and abundance in several oceanic regions 

(Desenberry and Frankel 1994; Olson et al. 1988; Vaulot and Xiuren 1988). 

Andreoli et al., (1992) analysed water samples from Antarctic Lakes of Northern 

Victoria Land using flow cytometry. In this instance, however, samples were not 

analysed in Antarctica. Based on the excitation spectra (Chapter 5) the 488 nm 

wavelength of the Argon laser in the F ACScan is not ideal for the detection of 

phytoplankton cells such as Synechococcus. A laser combination that gave, for 

example, excitation wavelengths of 529 nm, 442 nm and 633 nm (Hofstraat et al. 

1994) would provide a stronger fluorescence signal for Synechococcus and would 



also allow for the clearer separation of other phytoplankton groups based on 

chlorophyll, phycobiliprotein and size differences. The 488 run excitation 

wavelength did, however, give a good separation of phytoplankton communities in 

the meromictic lakes. 
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Flow cytometry has provided ecologists with a powerful tool to study microbial 

systems. With little effort, flow cytometry can give a qualitative view of 

phytoplankton community structure based on the autofluorescence of phytoplankton 

cells. Further, with the aid of fluorescent stains, heterotrophic plankton can also be 

analysed. Much information can be gained and many samples can be processed in a 

short space of time. With more careful calibration of an instrument, quantitative 

information, on cell abundance and physiological status, can be gained. The value of 

flow cytometry is further increased if it is used in combination with fluorescence 

microscopy. The microscope provides valuable information on species identity and 

cell sizes where as the flow cytometer provides an objective view of community 

structure in aquatic systems. 



Chapter 3 

Seasonal distribution and abundance of 
Synechococcus in Ace Lake, a marine derived 

Antarctic lake 
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3.1 Abstract 

Recently a picocyanobacterium belonging to the group Synechococcus was identified in 

Ace Lake, a marine derived meromictic lake in the Vestfold Hills, Antarctica. At one 

depth in the lake, it occurred in numbers forty thousand times greater than reported for 

southern polar oceans. Ace Lake is 24 m deep and is usually ice covered for 11 months 

of the year. In 1992, the top seven metres of Ace Lake was mixed and contained very 

low concentrations of oxidised nitrogen and dissolved phosphorus. The mixed zone 

was separated from the rest of the water column by a sharp pycnocline between 7 and 8 

m. Between 8 m and 12 m there were high concentrations of phosphorus 

(5 - 9 µM PO/- - P) and enough light, over summer, for phytoplankton growth (> 5 

µmol photons m-2 s-1
). Over summer, light was not detected below 12 m. The greatest 

number of Synechococcus cells occured at 11 m in December when numbers reached 

8 x 106 m1-1
• This population density is higher than any previously reported for marine 

Synechococcus. At this depth the salinity (30 g kg-1
) remained constant throughout the 

year and the temperature ranged from 4.5° C in October to 10.5° C in February. The 

Synechococcus bloom at 10 m began in September when the water temperature was at 

its minimum. Diel periodicity in Synechococcus growth in Ace Lake was not detected. 

Synechococcus numbers and fluorescence were monitored by flow cytometry. The 

distinct orange fluorescence emitted from phycoerythrin and the small cell size 

(0.8 µm x 1.5 µm) distinguished the Synechococcus population from populations of 

other photosynthetic cells. As temperature is considered to be an important control on 

Synechococcus numbers in this region, the existence of a population of Synechococcus 

in a marine derived Antarctic lake may now provide an insight into controls on cell 

numbers in the Southern Ocean. 



3.2 Introduction 

Synechococcus is a small unicellular cyanobacteriwn that occurs abundantly in 

temperate and tropical marine and freshwater environments (Chapter I). The 

contribution of Synechococcus to primary production in these regions is variable but 

often high (Fogg 1986; Stockner and Antia 1986; Waterbury et al. 1986). The 

measured contribution of Synechococcus to primary productivity in the oceans ranges 

from 5 % to 65 % depending on location and techniques used (Waterbury et al. 1986). 

Cell numbers range between 102 cells m1"1 to almost 106 cells m1·1 in tropical and 

temperate oceans and coastal regions. Synechococcus is not confined to the marine 

environment, it can also be a dominant phytoplankter in freshwater lakes (Caron et al. 

1985; Venkateswaran et al. 1993; Voros et al. 1991) and its contribution to primary 

productivity can be high (Caron et al. 1985; Voros et al. 1991). 
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Unlike temperate and tropical waters, it has been reported that Synechococcus occur in 

low numbers in polar oceans (Letelier and Karl 1989; Marchant et al. 1987; Murphy and 

Haugen 1985). There is an apparent direct relationship between temperature and the 

abundance of Synechococcus in polar oceans (Gradinger and Lenz 1989; Murphy and 

Haugen 1985; Walker and Marchant 1989). It may, however, be some other factor or 

factors other than temperature that limits the development of an appreciable biomass of 

the picocyanobacteria in these regions. In coastal Antarctic waters Synechococcus 

nwnbers have been reported to be less than 200 cell ml"1 (Walker and Marchant 1989). 

Although several lakes in Antarctica have deep chlorophyll maxima that may be 

dominated by cyanobacteria (Spaulding et al. 1994; Vincent 1988) the nwnbers of 
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Synechococcus measured in Ace lake, Vestfold Hills, Antarctica during the 1992/93 

summer, to my knowledge, are greater than any previously reported for marine 

Synechococcus. Ace Lake was isolated from the marine system less than 7000 years 

ago (Burton and Barker 1979). The ratio of major cations to chloride is typical for 

marine waters (Masuda et al. 1988) and the copepods and eukaryotic phytoplankton in 

Ace Lake are of marine origin (Bayly and Burton 1987; Burch 1988). The discovery of 

Synechococcus in Ace Lake provides a unique opportunity to characterise an Antarctic 

population of marine Synechococcus and to investigate, in a stable water body, 

environmental constraints that may limit their abundance in polar regions. 

3.3 Materials and Methods 

3.3.1 Sample collection and storage 

The location, and characteristics of Ace Lake have been described in Chapter 1. Water 

samples were collected from Ace Lake using a Kemmerer Bottle and water sampling 

was always carried out at the deepest spot in the lake. Samples were collected monthly 

between February 1992 and August 1992 and fortnightly between September 1992 and 

January 1993. Samples were not collected in June due to low light and bad weather. 

Samples were collected at two metre intervals between 2 m and 12 m with an additional 

sample taken at l lm. Samples were refrigerated at 4° C in the dark and flow cytometric 

analysis (Chapter 2) was conducted within 4 hours of sampling. Sub-samples were 

stored in 0.2 µm filtered, pH adjusted, formalin (1.5% final concentration) for future 

analysis by epifluorescence microscopy. A submersible data logger (Platypus 
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Engineering) was used for the collection of temperature and conductivity data. 

Conductivity data was converted to estimates of salinity using the formula of (Fofonoff 

and Millard 1983; Gibson et al. 1990). 

Light readings were collected with a Digital Scalar Irradiance Meter and an underwater 

quantum sensor. Light readings were taken as close to solar noon as possible. Vertical 

attenuation coefficients,~ (loge units m"1
) were calculated as the linear regression 

coefficient of the plot ofloge (PAR) versus depth (Kirk 1994). Inspection of the plot 

determined whether the light penetration characteristics could be represented by a single 

value of:Ki, or whether separate~ values were required for different portions of the 

water column (Burch 1988). The euphotic depth (Zeu) was calculated as 1 % of the 

incident light because of the ice cover on the lake. 

A laboratory pH meter (Corning Scientific) was used to measure the pH of water 

samples within two hours of collection. 

Samples used for dissolved organic carbon analysis were filtered twice, through a 

prewashed 0.2 µm polypropylene membrane filter (Millipore), within four hours of 

collection. Milli- Q blanks were filtered in the same way to ensure that the membrane 

filters did not comtaminate samples. Filtered samples were stored frozen in glass 

bottles, that had been heat treated to remove extraneous carbon, until analysis. A 

dissolved organic carbon analyser SK12 (Skalar) was used to measure the DOC content 

in the filtered lake water samples. In this process, the sample was pumped through a 

series of chemical reactions (as described in the Skalar users manual) in which the 
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carbon dioxide was blown off. Any remaining carbon in the sample was then converted 

to C02 and then methane which was detected by a flame ionisation detector. 

Samples for dissolved phosphate-P and oxidised nitrogen analysis were filtered through 

prewashed glass fiber GF/F filters (Whatman) within four hours of collection. Filtered 

samples were stored frozen in acid washed, sample rinsed, polyethylene bottles and 

analysed on return to Australia. Samples were analysed on an Alpkem 'Flow Solution' 

Autoanalyser. Phosphate-P analysis was based on the formation of a 

phosphoantimonylmolybdenum blue species (Alpkem Corp 1992). The limit of 

detection for phosphate analysis was 0.04 µM. Nitrate plus nitrite-N was analysed 

using an Imidazole buffer chemistry, (Grasshof 1976), with an 12" Open Tubular 

Cadmium Reductor for quantitative reduction of nitrate to nitrite. The limit of detection 

for nitrate plus nitrite-N analysis was 0.02 µM. 

3.3.2 Analysis of bacteria in water samples 

Lake water samples were analysed using a Becton Dickinson F ACScan fitted with an 

argon laser emitting light of 488 nm. Forward light scatter (FSC), side angle light 

scatter (SSC) and fluorescence emission from phycoerythrin (FL2, BP 585/42) and 

from chlorophyll a (FL3, LP650) were used to detect Synechococcus populations 

(Chapter 2). The instrument was set with a FL3 threshold and a low acquisition rate. A 

known number of 1.98 µm fluoresbrite calibration grade micro-spheres (Polysciences, 

Inc) was added to each sample to act as an internal calibration standard. Relative 

changes in Synechococcus fluorescence were measured over time by comparing 



Synechococcus populations to the constant fluorescence of the calibration beads. 

Heterotrophic bacteria were stained with propidium iodide and counted by flow 

cytometric methods according to the method outlined in Chapter 2. 

3.3.3 Epifluorescence Microscopy 
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Slides were prepared by filtering 5-10 ml (1.5%) formalin preserved lake water samples 

onto 0.2 µm membranes that had been prestained with Irgalan Black (Millipore). 

Samples were analysed using a Zeiss Axioscope epifluorescence microscope with green 

light (filter block 12, excitation filter G546, dichromatic beam splitter FT 580, barrier 

filter LP 590). Cells were also examined with blue light (filter block 9, excitation filter 

BP 450-490, dichromatic beam splitter FT 510, barrier filter LP 520). 

3.3.4 Diel Periodicity of Synechococcus 

Samples were collected from three depths (8 m, 10 m and 11 m), at the deepest spot in 

Ace Lake. Samples were collected every four hours over a forty eight hour period. 

Aliquots (I ml) were preserved with gluteraldehyde (I % final concentration), super 

cooled in the vapor phase of liquid nitrogen for four hours and then stored in liquid 

nitrogen until analysis one week later. Samples were analysed for Synechococcus cell 

numbers using flow cytometric techniques (Chapter 2). Light profiles were measured at 

the same time as sample collection. 
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3.3.5 Data analysis 

Flow cytometric data was analysed using the 'Lysis II' software on the F ACScan. Cell 

volumes and surface areas were estimated from standard geometric equations. Data was 

presented using Sigmaplot software (1994). 

3.4 Results 

3.4.1 Physical characteristics of Ace Lake 

Ace Lake can be divided into three zones: the top mixed zone; a zone that is 

supersaturated with oxygen, but is isolated from the mixed zone by a sharp pycnocline; 

and an anaerobic zone. The depth of the mixed zone can change slightly from year to 

year as can the depth of the ice cover. During 1992 - 1993 the top seven metres of the 

lake was mixed, with a summer temperature range of2° C to 5.5° C and a winter 

temperature of approximately -1 ° C (Figure 3 .1 ). Below 7 m the water did not mix 

because of a sharp pycnocline between 7 m and 8 m (Figure 3 .2). At 10 m there was a 

temperature range of 6° C. The minimum temperature of 4.5° C occurred between 

August and November. Between November and February the temperature slowly 

increased. A maximum of 10.5° C was reached in February before the temperature 

started to fall again. Below 15 m in Ace Lake the temperature did not vary throughout 

the year. 

The stratification in Ace Lake results from the stable density gradient. The salinity of 

the top 7 m varied between 13 and 16 g kg-1 depending on the thickness of the ice cover. 
' 
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Below 7 m the salinity remained relatively constant throughout the year (Figure 3 .2). 

Between 7 m and 9 m there was an increase in salinity from approximately 16 g kg-1 to 

28 g kg-1
• At 10 m the salinity was 29 g kg-1

• Salinity continued to increase with depth 

and reached a maximum of 40 g kg-1 at 24 m. 

The pH in the top 12 m of Ace Lake was between 8 and 8.5 (Figure 3.3). The pH was 

slightly higher in the summer than the winter. At 10 m the pH range was between 8.1 

(November) and 8.5 (May). 

Light measurements (PAR) were taken in Ace Lake as close to solar noon as possible. 

Light measurements could not be collected in some months due to instrument failure in 

the cold weather. In all months, except February, light readings were taken under the 

ice. A maximum ice thickness of 180 cm was recorded in September (Table 3.1). The 

thickness of the snow cover on the ice was variable and depended on the frequency of 

snow storms and the strength of the wind. Over winter, light was only detected in the 

top two or three metres of the water column (Figure 3.4). Over summer, when the ice 

thickness decreased, and incident radiation increased, light penetrated deeper into the 

water column. The greatest light intensity recorded at 10 m was 35 µmol photons m·2 s-

1 at the end of January 1993 (Figure 3.5). Between April and October, the light 

intensity at 10 m was below the limit of detection. 
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The euphotic depth (Zeu) was less than 3 mover winter (Figure 3.6, Table 3.1) but 

increased to between 10 m and 11 m over summer. From October onwards, over the 

summer months, there was greater than 0.1 % incident light at 10 m. A plot ofloge 

(PAR) versus depth gave two distinct gradients (Figure 3. 7). Two vertical attenuation 

coefficients (Kd - PAR) could be calculated from the plot. ~,which is an indication of 

the light absorption characteristics of the water (Kirk 1994 ), was higher in the lower 

part of the euphotic zone than it was in the upper part of the euphotic zone (Table 3 .1 ). 

Table 3.1: Underwater light (PAR) in Ace Lake during 1992. Vertical attenuation 
coefficients (kct) were calculated for two depths. The value for Kd was higher for the 
lower part of the water column than the upper. The 1 % and 0.1 % euphotic depths 
were calculated from incident light readings rather than surface light readings. 

Date K,iPAR(m) K.i PAR (m"1
) Zeu (m) Zeu (m) Ice Snow 

Upper Lower 1% 0.1 % (cm) (cm) 

16 Apr 92 0.32 (2-10 m) 1.25 8 50 8 
17 Aug 92 0.12 (3-7 m) 0.35 (8-10 m) 1.25 7 160 13 
20 Sep 92 0.10 (4-6 m) 0.70 (6-8 m) 1.5 3 180 0 
170ct92 0.06 (3-9 m) 2.30 (10.5-11.5 m) 2 11.75 156 2 
22 Oct92 0.07 (3-9 m) 2.74 (10.5-11.5 m) 3 11 155 2 
2 Nov92 0.16 (3-9 m) 1.50 (10-11 m) 1.5 10.5 155 2 
20Nov92 0.20 (6-9 Iil) 1.70 (10-11 m) 10.25 11.5 151 16 
17 Dec 92 0.20 (2-10.5 m) 4.90 (10.5-12 m) 10.5 11.5 140 2 
12 Jan 93 0.18 (1.5-10 m) 3.00 (10-12 m) 11 11.75 115 3 
26 Jan 93 0.17 (1.5-10 m) 4.26 (10-12 m) 11.25 11.75 90 2 

Dissolved organic carbon (DOC-C) concentrations were less than 0.83 mM in the 

aerobic zone of Ace Lake, (Figure 3.8), and increased to over 1.67 mM at 24 m. 

Based on a profile taken in August (winter) and one taken in November (summer), 

between 7 m and 12 m, there was a 0.16 - 0.25 mM difference in DOC-C, with a 

higher concentration recorded in winter. Between 2 m and 7 m there was not a 

detectable difference in DOC-C concentration. Below 12 m a higher DOC 

concentration was recorded in summer. 
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At 10 m there was a 0.5 mM range in DOC concentration. The highest concentration 

(0.83 mM) was recorded in August and October and the lowest concentration 

(0.33 mM) was recorded at the end of summer in April. 

Nutrient concentrations in Ace Lake were not measured during 1992. However, 

phosphate and nitrate plus nitrite -N were measured in lake water samples collected in 

November 1993. Oxidised nitrogen concentrations were below the limit of detection 

(0.02 µM) to a depth of 8 m (Figure 3.9). The concentration slightly increased between 

10 and 11 m and there was a sharp increase to a concentration 0.25 µMat 12 m. 

The phosphate-P concentration in the mixed zone was 0.25 µMand increased to 5.1 µM 

at 8 m (Figure 3.9). The phosphate-P concentration continued to increase and reached a 

maximum of8.8 µMat 11 m. The concentration then fell to 4.2 µMat 12 m .. 

3.4.2 Synechococcus distribution and abundance in Ace Lake 

During winter (August) Synechococcus cell numbers were less than 104 cells m1-1 

throughout the aerobic zone of Ace Lake (Figure 3.10). During summer (December) 

cell numbers increased from 5 x 103 m1-1 to2x104 m1-1 in the mixed zone of the lake. 

Cell numbers increased from between one and two orders of magnitude below the 

pycnocline and the maximum cell density (8 x 106 cells m1-1
) was recorded at 11 m in 

December 1992. In figure 3 .10, summer and winter Synechococcus densities have been 

plotted with the corresponding summer and winter temperature profiles in the lake. 
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In 1992, there was a distinct bloom in Synechococcus numbers, at each of the depths 

that were routinely monitored, below the pycnocline (Figure 3 .11 ). The bloom below 

the pycnocline occurred during December and numbers quickly fell again in January. 

The Synechococcus bloom at 11 m was larger than the 8 m and 10 m blooms. 

Synechococcus cell numbers at 10 m have been plotted against several physical and 

biological parameters in order to gain an understanding of the controls on the 

population density at this depth. 

The temporal distribution of Synechococcus at 10 m did not correspond to that of 

heterotrophic bacteria. Over winter the density ofheterotrophic bacteria was an order of 

magnitude greater than the Synechococcus density (Figure 3.12). There was an increase 

in the density of heterotrophic bacteria in August and cell numbers remained high over 

summer, where as, Synechococcus numbers started to increase in August, peaked in 

early December and fell again in January. The DOC concentration at 10 m was highest 

at the time that the heterotrophic bacteria cell numbers started to increase. 

The water temperature started to rise in November and continued to rise over summer, 

while the Synechococcus cell numbers fell (Figure 3.13). It appeared that the initiation 

of the Synechococcus spring bloom in October could be related to the light intensity 

increase (Figure 3.14). The light intensity at 10 m started to increase in September and 

at that time there was a small rise in the density of Synechococcus cells. 
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In October, when there was a large increase in the PAR at 10 m the bloom in 

Synechococcus occurred. The PAR continued to increase and reached a maximum in 

December and January, but by this time, the Synechococcus cell numbers had declined. 

Changes in Synechococcus numbers corresponded to changes in dissolved oxygen at 10 

m (Figure 3.15). In 1994, at this depth, the winter dissolved oxygen concentration was 

approximately 13 mg r1
• The oxygen concentration increased over spring as did the 

number of Synechococcus cells. 

The contribution of Synechococcus to primary productivity in Ace Lake was not 

measured. There was, however, an increase in total phytoplankton cell surface area 

through the euphotic zone of Ace Lake (Figure 3.16). The estimated contribution made 

by Synechococcus to total phytoplankton cell number, biovolume and cell surface area 

in November 1992 is presented in Table 3.2. Synechococcus was one of five 

phytoplankton species identified in the euphotic zone of Ace Lake at this time. 

Mesodinium rubrum, Pyramimonas gelidicola, Cryptomonas sp, and a phototrophic 

nanoplankton also contributed to the total phytoplankton cell surface area and 

biovolume. Although Synechococcus constituted a high percentage of the 

phytoplankton cell numbers, the contribution of the picocyanobacteria to phytoplankton 

biovolume was small except for at 10 m. At 10 m Synechococcus contributed to 

approximately 44 % of the total phytoplankton biovolume. When measured in terms of 

cell surface area, Synechococcus contributed to 27 % of the phytoplankton surface area 

at 8 m and 79%at10 m (Figure 3.17). 
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Table 3.2: Percentage contribution of Synechococcus to total phytoplankton 
cell number, biovolume and cell surface area at 5 depths in the euphotic zone 
of Ace Lake on 20 November 1992. Synechococcus cells and the phototrophic 
nanoplankton were analysed by flow cytometry. Other protists were analysed 
from Lugol's iodine preserved samples, by inverted microscopy (T. Pitman). 

Depth % of cell number % of total biovolume % of total surface area 

2 29.10 0.31 2.08 
4 35.37 0.24 2.01 
6 42.53 0.41 3.09 
8 78.83 7.34 27.17 
10 97.04 45.38 78.51 

As with Synechococcus, the phototrophic nanoplankton was analysed by flow 

cytometric methods (Chapter 2). The nanoplankton, was approximately 2-3 µm in 

diameter and had a strong chlorophyll fluorescent signal on the flow cytometer. The 
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population occurred in numbers of between 103 and 104 cells m1-1 throughout the photic 

zone (Figure 3.18). 

There was a distinct population bloom at 8 m in December and at 10 m in early January 

when numbers were greater than I 05 m1-1
• At 2 m the majority of the total 

phytoplankton surface area was accounted for by Cryptomonas sp., M rubrum and the 

nanoflagellate (Table 3.3). At 4 m and 6 m, M. rubrum, P. gelidicola and the 

nano flagellate dominated and at 8 m and I 0 m Synechococcus and the nano flagellate 

dominated. 

Table 3.3: Percentage contribution of phytoplankton species to total phytoplankton cell 
surface area at 5 depths in Ace Lake on 19November1992. 

Depth Synechococcus M rubrum Cryptomonas P. gelidicola N anoflagellate 

2 2.1 29 38 0.3 31 
4 2.0 46 11 24 17 
6 3.1 41 13 23 20 
8 27 13 9.0 1.3 49 
10 79 3.7 0.6 1.0 16 
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The physiological response of Synechococcus in field samples, to the increased light 

intensity over summer, was monitored using flow cytometric techniques (Chapter 2). 

Following the period of winter darkness, the increase in light intensity over summer 

resulted in a decrease m the relative fluorescence of individual Synechococcus cells 

(Figure 3.19). At 10 m in Ace Lake, there was a reduction in both the orange (FL2), 

phycoerythrin, fluorescence and in the red (FL3), chlorophyll, fluorescence (Table 3.4). 

The reduction in FL2 was greater than the reduction in FL3 with a decrease in the 

FL2/FL3 ratio from 1.31 in October to 0. 71 in December. An increase in fluorescence 

intensity was observed in cells taken from deeper in the euphotic zone (10 m) relative to 

those taken from the surface waters (2-6 m). 

Table 3.4: Percentage reduction in orange (FL2) and red (FL3) 
fluorescence relative to the fluorescence intensity measured on 23 
October 1992 of Synechococcus at 10 m in Ace Lake. FL2/FL3 is 
the ratio of orange fluorescence to red fluorescence. 

Date %FL2 %FL3 FL2/FL3 

23 Oct 1992 1.31 
4Nov1992 40 42 1.35 
20Nov 1992 76 70 1.02 
4Dec 1992 97 94 0.71 

In December 1993 the diel periodicity of Synechococcus was investigated. Although 

there was twenty four hours of daylight over summer in Antarctica, the intensity of the 

light varied. During December, the highest light intensity occurred at solar noon (13:00 

hours) and the light intensity was lowest between 00:00 and 03:00 hours (Figure 3.20). 

Although there were slight fluctuations in cell numbers, a distinct diel periodicity in 

Synechococcus cell numbers was not detected at any of the measured depths in Ace 

Lake (Figure 3 .21 ). 
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3.5 Discussion 

Although Ace Lake has been studied since 1979, (Chapter 1), single celled 

cyanobacteria have not been reported in the lake until now. It was through the 

application of flow cytometric methods that the organism was located. The naturally 

fluorescing Synechococcus cells were identified by the distinctive orange fluorescence 

emitted by the phycobiliproteins. As other organisms of this size do not emit light at 

this wavelength, Synechococcus was clearly distinguished from other photosynthetic 

organisms by flow cytometry. Phase contrast and epifluorescence photomicrographs 

confirmed the presence of cells of Synechococcus morphology in Ace Lake. The cells 

were typically 1.5 µm in length and 0.9 µm wide. The photosynthetic pigments in 

Synechococcus caused it to fluoresce orange/red under a green (BP 546 run) light and 

yellow/orange under blue (BP 450-490 nm) light. 

The physical envirorunent of Ace Lake has been discussed in detail in chapter 1. 

Throughout most of the year the water temperature below 7 m is warmer than the 

temperature of the water above 7 m, (Figure 3.1). The stability of Ace Lake and the 

permanent stratification below 7 m is therefore not based on thermal stratification but is 

based on salinity (Figure 3.2). Since the ecological studies undertaken in the late 

1970's and the 1980's, (Burch 1988; Burton and Barker 1979), the pycnocline between 

7 m and 8 m has intensified and the stratification in Ace Lake has become more stable 

(Figure 3.2). The water below the pycnocline has become more isolated from the water 

in the mixed layer. 
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In Ace Lake, the distribution of Synechococcus was similar to that seen in other 

meromictic lakes in the Vestfold Hills (Chapter 4) and in temperate and tropical 

meromictic lakes (Craig 1987; Maeda et al. 1992; Venkateswaran et al. 1993). The 

Synechococcus density observed in Ace Lake at 11 m during the peak of the spring 

bloom, (Figure 3 .11 ), was greater than has previously been reported. Due to the 

negligible sinking rate of Synechococcus (Craig 1987; Takahashi and Bienfang 1983), 

the observation of actively dividing cells at depths below the pycnocline and given that 

the Synechococcus cells at these depths maintained their fluorescent characteristics 

(Craig 1987) it would indicate that the Synechococcus formed an active population 

rather than a population that had settled from the mixed layer of the lake. 

Over winter, when the water temperature in the mixed zone of Ace Lake was 

approximately -1° C, the density of Synechococcus was between 2 x 103and 5 x 103 

cells mr1 (Figure 3.10). In summer, when the temperature in the mixed zone increased 

to approximately 1.5° C, the Synechococcus density had increased ten fold. A 

temperature of -1 ° C is comparable to temperatures experienced south of the Antarctic 

convergence (Marchant et al. 1987) where Synechococcus has been reported to occur in 

very low numbers (2 to 20 cells mr1
) (Letelier and Karl 1989; Marchant et al. 1987). 

The Synechococcus cell numbers measured in the mixed zone of Ace Lake were 

comparable to Synechococcus cell numbers observed in temperate and tropical oceans 

where the temperature ranges from 10° C and 30° C (Glover 1985; Joint 1986; Stockner 

and Antia 1986). Below the pycnocline in Ace Lake, where temperatures were still low 

relative to tropical and temperate waters, Synechococcus reached densities of more than 

106 cells m1-1
• In Ace Lake, temperature does not appear to be the only factor 



115 

controlling Synechococcus abundance and distribution (Chapter 6). In the Southern 

Ocean, Synechococcus abundance has been correlated to water temperature (Letelier 

~d Karl 1989; Marchant et al. 1987). Temperature would certainly influence the 

growth and hence the development of biomass of Synechococcus in the Southern Ocean 

but factors including grazing, light intensity and nutrient availability would probably 

influence the final abundance of Synechococcus in this region. 

At 10 m, over the winter, (May to August) cell numbers were less than 104 cells mr1 

(Figure 3 .11 ). Cell numbers increased through SeptembeF, peaked in December and 

then started to fall again in January. From this data an estimate of growth rate could be 

made for the population of Synechococcus in the lake. A plot of lo~( cell number) 

versus time over October, November and December, gave a regression line with an i2' 

value of0.999. A generation time of 14.85 days was determined. This is comparable to 

growth rates obtained with laboratory cultures of the Ace Lake Synechococcus (Chapter 

5) and to estimated growth rates of Synechococcus in northern polar oceans (Neuer 

1992). It is, however, low in comparison to growth rates obtained with natural Ace 

Lake populations in the spring of 1993 (Chapter 6) and in comparison to growth rates 

obtained for Synechococcus from most temperate and tropical environments. Maximum 

generation times for Synechococcus in tropical and temperate marine environments 

have been estimated as less than a day (Campbell and Carpenter 1986; Landry et al. 

1984; Waterbury et al. 1986); thus this long generation time in Ace Lake is likely to be 

due, at least partially, by low temperature. However, the spring bloom of 

Synechococcus occurred when the water temperature was at a minimum, (Figure 3 .13). 

Further, the Synechococcus population did not continue to increase over summer when 

the water temperature started to rise. Other factors, such as light, grazing or nutrient 
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availability, were also controlling the population growth of Synechococcus in Ace Lake. 

The rapid loss of 20% of the total population, which was in an exponential growth 

phase, between December and January, would suggest grazing had an important 

controlling influence on cell numbers until May. Potential grazers such as ciliates, 

heterotrophic nanoflagellates and small copepods occur in Ace Lake and both ciliates 

(Laybourn-Parry and Perriss 1995) and copepods (Bayly and Burton 1987) have 

population' peaks at approximately 11 m where the Synechococcus population also 

peaked at 8 X 106 cells mr1
• This density of biota indicates that the microbial loop is 

active in Ace Lake. 

A consequence of the increased stability of the water below the pycnocline in Ace Lake 

is the high concentrations of oxygen that have built up in the zone (Figure 3 .15). 

Between the bottom of the mixed layer and the oxic/anoxic interface in Ace Lake 

Burch, (1988), Burton and Barker, (1979) and Franzmann et al., (1991) measured a 

decrease in the concentration of oxygen. Burton and Barker, (1979) referred to this as 

an oxycline. In ice covered lakes, the concentrations of gasses such as oxygen and 

nitrogen reach supersaturated concentrations (Wharton et al. 1987). In Ace Lake 

oxygen appears to be trapped in the zone below the pycnocline. It is probable that 

oxygen from primary production in this zone has accumulated because overall 

production is greater than consumption. In Lake Hoare, Dry Valleys, 42 % of the 

oxygen production was attributed to net photosynthetic production as opposed to the 

outflow of oxygen into the water column during ice formation (Vincent 1988). The 

high concentrations of Synechococcus in this region could be responsible for the 

accumulation of oxygen. At 10 m, the oxygen concentration throughout the year 

appeared to be related to the numbers of Synechococcus (Figure 3 .15). Synechococcus 
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has been reported to have a light dependent sensitivity to oxygen, preferring a low 

oxygen environment especially under high light conditions (Glover and Morris 1981; 

Morris and Glover 1981). The carboxyzomes (or polyhedral bodies) observed in the 

ultrastructure,of Synechococcus (Chapter 5) are thought to be used in the protection of 

the photosynthetic enzymes from oxidative damage (Joint 1986). Synechococcus 

growing below the pycnocline in Ace Lake do not appear to be inhibited by the high 

oxygen concentrations experienced at these depths (140 % - 170 % saturation at 10 m). 

It is also thought that at high oxygen concentrations, photosynthesis might be inhibited 

by low carbon dioxide concentrations. Based on the pH in the euphotic zone of Ace 

Lake (Figure 3.3) the majority of inorganic carbon would probably be in the form of the 

bicarbonate ion (Goldman and Home 1983). Dissolved inorganic carbon (DIC) 

concentrations in the euphotic zone of Ace Lake (> 2000 mmol) are higher than 

concentrations in the sea (J. Gibson, personal communication; Burton 1980). It is 

unlikely that DIC concentrations would limit photosynthesis in Synechococcus or in 

other phytoplankton in Ace Lake (J. Gibson, personal communication). 

The high numbers of Synechococcus below the pycnocline are depicted in the vertical 

attenuation coefficient,~ (PAR), at these depths (Table 3 .1 ). The vertical attenuation 

coefficient is a measure of the absorption qualities of a water body (Kirk 1994; Wetzel 

1983). Low productivity water bodies, for example oligotrophic oceans, are expected to 

have low~ values. Kirk, (1994) reported a~ (PAR) of 0.03 m-1 for the Sargasso Sea. 

On the other hand, water bodies that are highly productive, coloured by organic acids, or 

turbid, are expected to have high~ values. Lake Pedder in Tasmania had a reported 

~ (PAR) of 2.39 m-1 because of the high concentration of organic acids in the lake and 

the highly turbid, tropical Georgetown Billabong had a reported ~ (PAR) of 8.5 m-1 
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(Kirk 1994). In Ace Lake the absorption characteristics of the euphotic zone could be 

described using two values for ~ (Figure 3. 7). In the upper mixed zone of Ace Lake, 

~ (PAR) values of between 0.06 m·1 and 0.2 m·1 were obtained, indicating that there 

was relatively little absorption of light by suspended inorganic matter or by 

phytoplankton. Between 10 m and 12 m, however, where there were high numbers of 

Synechococcus, values of between 1.5 m·1 and 4.9 m·1 were obtained. 

There is uncertainty as to whether Synechococcus is adapted to growth under low light 

conditions (Stockner and Antia 1986). Its vertical distribution in the oceans of the 

world is variable with most reports of peak numbers in surface waters (Chapter 1; 

Murphy and Haugen 1985; Venkateswaran et al. 1993) and other reports of peak 

numbers at the bottom of the euphotic zone (Cai:on et al. 1985; Waterbury et al. 1979). 

Joint, (1986) indicated that Synechococcus is capable qf growth throughout a wide 

range of light intensities, but due to its small size, its shape and its combination of light 

harvesting pigments, it has a competitive advantage at the bottom of the euphotic zone 

where light is limited. An alternative explanation for the broad vertical distribution of 

Synechococcus is that different strains are adapted to different light conditions (Li and 

Wood 1988). The Ace Lake Synechococcus occurs in the greatest abundance at the 

bottom of the euphotic zone where there is a light intensity range of less than 1 µmol 

photons m·2 s·1 in winter to 35 µmol photons m·2 s·1 at the end of summer (Figure 3.4 

and 3.5). In Antarctica, light intensity in aquatic environments is dependent on the time 

of year (Campbell and Aarup 1989), the meteorological conditions, the thickness and 

quality of ice and the thickness of snow cover on the lake ice (Burch 1988; Wharton et 

al. 1993). Over winter, when solar radiation was negligible, the depth of 1 % incident 

radiation in Ace Lake was less than 2 m (Figure 3.6). This increased to between 10 and 
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11 m over summer. At I 0 m in Ace Lake Synechococcus numbers started to increase in 

September when the light intensity at this depth was less than 5 µmol photons m-2 s-1
• It 

has been reported that in the class Cyanophyceae, the minimum light intensity for 

growth is 5 µmol photons m-2 s-1 (Richardson et al. 1983). In most aquatic 

environments low in organic acids and suspended sediment (Herring et al. 1990; Kirk 

1994), such as occurs in Ace Lake, green light (500 nm) is the dominant wavelength at 

the bottom of the euphotic zone (Burch 1988). When grown at low light intensities, the 

Ace Lake Synechococcus contained high concentrations of phycoerythrin (Chapter 5), a 

phycobiliproteins that absorbs light at 550 nm (Rowan 1989). Further, the Ace Lake 

Synechococcus had a faster growth rate at low light intensities (Chapter 6), and after a 

period of winter darkness, it appeared that Synechococcus growth was initiated by a 

light intensity of between I and 5 µmol photons m-2 s-1 (Figure 3.14). This light 

induced spring bloom has also been seen in other phytoplankton species in Ace Lake 

(Burch 1988), and other Antarctic and subantarctic lakes (Hawes 1985; Vincent 1981; 

Vincent and Vincent 1982). In 1992, the Synechococcus bloom at I 0 m in Ace Lake 

commenced in September when the light intensity started to increase (Figure 3.14). At 

this time, the temperature at this depth was at a minimum (Figure 3.13). The maximum 

temperature at 10 m in Ace Lake occurred in February, when Synechococcus cell 

numbers were low. In some temperate waters, the Synechococcus spring bloom has 

been correlated with an increase in water temperature rather than light (Caron et al. 

1985; Glover 1985; Shapiro and Haugen 1988). 

At 8 m, I 0 m and 11 m, the Synechococcus bloom peaked in late December (Figure 

3.11). At all three depths Synechococcus cell numbers decreased in January. The exact 
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cause of this decline is not known but it is possible that grazing by nanoflagelles may be 

responsible. Laybourn-Parry and Perriss, (1995) found higher numbers ofheterotrophic 

and autotrophic nanoflagellates in December in Ace Lake than in November. Further, 

between 8 m and 11 m, the population of suspected autotrophic nanoflagellates, 

monitored in Ace Lake by flow cytometry (Figure 3 .18), bloomed at approximately the 

same time as the population of Synechococcus. The heterotrophic nanoflagellates could 

not be monitored by flow cytometry because of the lack of fluorescent pigments. 

However, (Hall et al. 1993), has shown that autotrophic nanoflagellates are capable of 

feeding heterotrophically, and the autotrophic population in Ace Lake could be grazing 

on Synechococcus. 

The identity of the nanoflagellate monitored by flow cytometry was not confirmed by 

microscopy. However, the size (Burch 1988) and fluorescence characteristics of the 

population is consistent with that of the autotrophic nanoflagellates (S. Perriss, personal 

communication), and Laybourn-Parry and Perriss, (1995) has observed both 

heterotrophic and autotrophic nanoflagellates in the lake. Further, no other 

photosynthetic organism of this size (3 µm diameter) has been observed in Ace Lake. It 

is therefore reasonable to assume that the population observed by flow cytometery was 

the autotrophic nanoflagellate observed by others (T. Pitman, unpublished data) and 

(Laybourn-Parry and Perriss 1995). 

The nutrient concentrations in Ace Lake in December 1993 were consistent with those 

measured by Burch, (1988) and Burton, (1980). They are also similar to those 

measured in 1994 (J. Gibson, personal communications). It is probable that the water 

below the pycnocline has higher nutrient concentrations because of nutrient diffusion 
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from the anaerobic zone as commonly occurs in meromictic lakes (Canfield and Green 

1985). Ammonia concentrations in the lake have not been measured in recent years but 

Burton, (1980) found concentrations of between 0.007 and 0.29 mM below the 

pycnocline. Ammonia that diffuses up from the anaerobic zone in Ace Lake would be 

rapidly used by phytoplankton and heterotrophic bacteria, possibly accounting for the 

deep chlorophyll maxima that occurs just above the anaerobic interface (Burch 1988; 

Vincent 1988). In November 1992, total phytoplankton cell surface area increased with 

depth indicating an increase in productivity just above the anaerobic interface (Figure 

3.16). 

The mixed zone of the lake is low in oxidised nitrogen (below the limit of detection) 

and phosphate-P (0.25 µM). This is probably because it is isolated from the more 

nutrient rich waters by a sharp pycnocline. Further, unlike the meromictic lakes studied 

in the Dry Valleys (Canfield and Green 1985), there are no melt streams contributing 

nutrients to Ace Lake during the summer thaw period. There is also very little 

vegetation in the catchment of Ace Lake. The erosion of rock, caused by the strong 

catabatic winds, is thought to contribute to lacastrine phosphorus concentrations in 

Antarctica (Canfield and Green 1985; Masuda et al. 1988) but nitrogen concentrations 

in Ace Lake are probably controlled by internal recycling both within the aerobic zone 

and between the anaerobic and aerobic zone. 

In the mixed zone of Ace Lake, Synechococcus occurred in numbers comparable to the 

numbers in oligotrophic oceans (Hagstrom et al. 1988; Platt et al. 1983; Waterbury et al. 

1986). It is probable that in the mixed zone of the lake, a rapid recycling of nutrients 

occurs and because of its small cell size, Synechococcus survives and competes (Fogg 
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1986). Despite its capacity to survive in nutrient poor conditions, Synechococcus is 

known to proliferate when nutrient concentrations are increased (Stockner and 

Shortbreed 1988). Under these conditions, however, Synechococcus does not dominate 

in terms of algal biomass. Larger phytoplankton species are more competitive when 

nutrient concentrations are higher, for example in coastal waters (Jochem 1988; 

Krempin and Sullivan 1981). In terms ofbiovolume and cell surface area, 

Synechococcus dominates the phytoplankton population at 8 m and 10 m in Ace Lake, 

despite the increase in phosphorus and ammonia. 

Estimates of primary productivity in Ace Lake over summer indicated that productivity 

is low relative to Antarctic coastal waters. Over a three year period, Moline and 

Prezelin, (1996), obtained integrated primary production rates between 1.08 and 6.58 

g C m-2 d-1 in coastal waters near Palmer Station, Antarctica. In November 1993 

Layboum-Parry and Perriss, (1995) obtained a primary productivity measure of between 

0.47 and 0.68 µg C r 1 h-1 and predicted that M rubrum contributed up to 26 % of 

productivity at 2 m and 15 % at 8 m in Ace Lake. This is consistent with the percentage 

contribution of M rubrum to total phytoplankton surface area in November 1992 (Table 

3.3). According to Voros et al., (1991), surface area estimates are a more accurate 

indicator of contribution to primary productivity by individual phytoplankton species 

than are cell numbers or biovolume estimates. In the case of Synechococcus, cell 

number over estimates the contribution of the picocyanobacteria to primary productivity 

and biovolume underestimates the contribution (Voros et al. 1991). Based on surface 

area estimates, Synechococcus contributes significantly to primary productivity below 

the pycnocline in Ace Lake especially during the time of the spring bloom (Table 3.2, 

Figure 3.17). At this time, 20 November 1992, M rubrum contributed between 29 % 
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and 46 % of the total phytoplankton surface area in the mixed zone of the lake but only 

between 3 % and 12 % below the pycnocline (Table 3.3). Synechococcus contributed to 

2 % to total phytoplankton surface area in the mixed zone but between 26 % and 78 % 

below the pycnocline. The phototrophic nano flagellate contributed 16 % and 4 7 % to 

surface area throughout the euphotic zone. The relationship between biovolume, 

surface area and primary productivity should be clarified in Ace Lake and a more 

detailed study of size :fractionated primary productivity over space and time is needed. 

Apart from Synechococcus and Chlorobium spp., no other autotrophic eukaryotic or 

prokaryotic picoplankton have been observed in Ace Lake. There has been a suspected 

reporting of a Prochlorophyte in an Antarctic :freshwater lake (Andreoli et al. 1992) but 

apart from this Procholorococcus has not been observed in Antarctic Lakes or in the 

southern ocean (Ellis-Evans 1996; Vincent and James 1996; Weber and El-Sayed 

1987). Eukaryotic picoplankton occur in the southern oceans (Weber and El-Sayed 

1987) and have been identified in other continental Antarctic lakes (Simmons et al. 

1993) as have other picocyanobacteria (Simmons et al. 1993; Vincent 1988). It is 

possible that other autotrophic picoplankton occur in Ace Lake but in numbers too low 

and with fluorescent characteristic that are unable to be detected by flow cytometry 

(Chapter 2). 

At 10 m in Ace Lake over winter, heterotrophic bacterial numbers were an order of 

magnitude greater than Synechococcus numbers (Figure 3 .12). Synechococcus 

generally occurs in lower densities than heterotrophic bacteria (Caron et al. 1985; Fogg 

1986; Li et al. 1983). In Ace Lake, heterotrophic bacterial numbers started to increase 

at approximately the same time as the increase in Synechococcus numbers. Only at the 
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peak of the Synechococcus spring bloom where the numbers ofheterotrophic bacteria 

the same as the numbers of Synechococcus. Bums and Stockner, (1991) found greater 

Synechococcus numbers than heterotrophic bacterial numbers over summer in 

:freshwater lakes in New Zealand. It is probable that at this time, the conditions of 

growth were better for Synechococcus than for the heterotrophic bacteria. At the end of 

December, however, heterotrophic bacterial numbers stayed high (2 x 106 mr1
) whereas 

the Synechococcus numbers fell dramatically. The reason for this fall in Synechococcus 

numbers, but not in heterotrophic bacterial numbers, is unclear except that it was 

possibly either due to self shading of the Synechococcus population at the peak of the 

bloom (1x106 mr1
) or selective grazing of Synechococcus. 

Dissolved organic carbon (DOC) concentrations in Ace Lake were consistent with 

concentrations found in other Antarctic meromictic lakes (Matsumoto et al. 1989; 

McKnight et al. 1993) and were higher than concentrations measured at a coastal 

Antarctic site (Chapter 4). The dissolved organic carbon concentrations were lowest in 

the mixed zone of the lake, increased with depth and reached a maximum (25 mg r1
) at 

the bottom of the lake (Figure 3.8). The high DOC concentration in the bottom waters 

result from either the degradation of particulate organic carbon sinking from the 

euphotic zone or from the diffusion of organic carbon from the sediment and algal mats 

(Matsumoto et al. 1989). At 10 m, the highest DOC concentrations were observed in 

August and October, approximately the same time that heterotrophic bacterial numbers 

started to increase (Figure 3.12). In the euphotic zone of Antarctic meromictic lakes, it 

is thought that the majority of DOC available to heterotrophic bacteria comes from 

extracellular carbon produced from phytoplankton (Fogg 1986; Parker et al. 1977) 

rather than from sloppy feeding by zooplankton. It is possible that the spring increase in 
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heterotrophic bacteria at 10 m in Ace Lake may have been stimulated by an increase in 

Synechococcus activity. 

Like many other phytoplankton species (Rowan 1989), Synechococcus is capable of 

changing its content of photosynthetic pigments to suit the light intensity (Barlow and 

Albert 1985; Vernet et al. 1990). Under high light intensities, such as in the surface 

water of oceans, Synechococcus cells usually contain a lower concentration of 

photosynthetic pigments than cells that are grown at a low light intensity near the 

bottom of the euphotic zone (Li and Wood 1988; Shimada et al. 1993; Vaulot and 

Xiuren 1988). Over the summer, photoadaptation of Synechococcus cells was observed 

at 10 m in Ace Lake. In early spring, when the light intensity at 10 m was less than 5 

µmol photons m-2 s-1
, Synechococcus had a higher concentration of orange, 

phycoerythrin, fluorescence (FL2, Figure 3.19) and red, chlorophyll fluorescence, FL3, 

relative to cells at the same depth in early summer. At this time, the light intensity had 

increased to approximately 15 µmol photons m-2 s-1
• In phytoplankton, photoadaptation 

can be achieved either through a change in the number of photosynthetic units per cell 

or by altering the concentration of accessory pigments but not photosynthetic units 

(Barlow and Albert 1985; Rowan 1989). In this case it appears that there has been a 

decrease in the number of photosynthetic units (Table 3.4) but there has also been a 

decrease in the concentration of accessory pigments (phycoerythrin) relative to 

photosynthetic units, hence the reduction in the ratio ofFL2/FL3. Photoadaptation by 

Synechococcus was also observed with depth in Ace Lake. 

Diel periodicity in both growth and photosynthesis has been observed in many 

Synechococcus populations in temperate and tropical environments (Campbell and 
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Carpenter 1986; Carpenter and Campbell 1988; Glover et al. 1985). In environments 

where Synechococcus generation times of approximately one day have been observed, 

diel periodicity in growth was easily detected (Fahnenstiel et al. 1991; Waterbury et al. 

1986). However, Fahnenstiel et al., (1991b) found that at low growth rates (less than 

0.3 d-1
) diel periodicity in growth was difficult to detect. Synechococcus in Ace Lake 

did not show a distinct diel periodicity in growth. Due to the fluctuation in light 
/ 

intensity (Figure 3.20), it is probable that the Ace Lake Synechococcus would show a 

diel periodicity in photosynthetic rate (P). Rivkin and Putt, (1987) detected diel 

periodicity in photosynthesis of marine phytoplankton communities near McMurdo 

Sound, Antarctica. They found that during spring, when there was a distinct day/night 

cycle in incident radiation, diel periodicity in photosynthesis was similar to that in 

, temperate and tropical environments. During December and January, when the nwnber 

of day light hours was distinctly longer than the number of hours of darkness, the P max 

shifted to midnight and Pmin shifted to mid-day. Maximwn growth rates and 

photosynthetic rates of Synechococcus in the Sargasso Sea, the Northwest Atlantic 

Ocean and Long Island Sound, New York occurred in the late afternoon, and minimwn 

growth rates generally occurd in the early morning (Campbell and Carpenter 1986; 

Carpenter and Campbell 1988; Waterbury et al. 1986). Due to the long in-situ 

generation time of Synechococcus at 10 m in Ace Lake, it was not surprising that a diel 

periodicity in growth was not observed. 

Diel periodicity in growth has been measured by changes in cell numbers (Waterbury et 

al. 1986), as was the case in this instance, or by a measurement of the frequency in 

dividing cells (Campbell and Carpenter 1986; Carpenter and Campbell 1988; Glover et 

al. 1985). Measurement of the :frequency of dividing cells was not compatible with 
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flow cytometric techniques but this method appears to be more accurate in determining 

diel periodicity in growth (Waterbury et al. 1986). The periodicity in 14C uptake by 

Synechococcus in Ace Lake should be investigated. The fluctuations in Synechococcus 

cell numbers observed (Figure 3.21) were possibly from experimental error. Samples 

were collected using a Kemmerer Bottle which has a sampling chamber of 

approximately 50 cm. As Synechococcus has an uneven distribution in the lake a 

change in the sampling interval of only a few centimetres could introduce a significant 

error. This situation holds not only for the diel periodicity sampling but for all samples 

taken throughout the year. A fine interval sampler is required to obtain a more accurate 

understanding of the vertical and temporal distribution of Synechococcus in Ace Lake. 

The discovery of Synechococcus, in a marine derived Antarctic lake, provided a unique 

opportunity to investigate factors that control the abundance and distribution of a 

natural population of the picocyanobacterium in southern polar regions. One of the 

advantages of doing ecological studies in lake environments is that the population is 

captive, and thus not removed by currents. It is generally considered that temperature 

limits the abundance of Synechococcus in southern polar waters (Gradinger and Lenz 

1989). In Ace Lake, between 8 m and 11 m, where Synechococcus was abundant and 

temperature remained between 5° C and 11° C, it was not temperature alone which 

controlled the population's abundance. It is probable that Synechococcus has evolved 

to survive under the low light conditions at the bottom of the euphotic zone in Ace Lake 

where the nutrient conditions are more favourable for growth. Throughout the euphotic 

zone a combination of factors such as light, temperature, nutrient availability and 

grazing pressures probably controlled the abundance of Synechococcus in the lake. 

Understanding what controls the abundance of Synechococcus in Ace Lake will give 



more insight into the factors that are limiting the abundance of the organism in the 

Southern Ocean. 
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Chapter4 

A survey of meromictic lakes, in the Vestfold 
Hills, for the occurrence of Synechococcus 
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4. 1 Abstract 

Flow cytometric methods were ~ed to survey the phytoplankton populations in 

meromictic lakes and a marine site in the Vestfold Hills. Synechococcus occured in 

high numbers in three meromictic lakes including Ace Lake. Synechococcus also 

occured in Lake Abraxas and Pendant Lake both of which are in close proximity to 

Ace Lake on Long Peninsula. Synechococcus was distributed throughout the 

euphotic zone in Pendant Lake with densities of 107 cells mr1 recorded in November 

1993 and 105 cells m1-1 recorded in January 1993. In Lake Abraxas, Synechococcus 

occured in low numbers in the mixolimnion but below the pycnocline a density of 

107 cells m1-1 was recorded in November 1993. Synechococcus was not found at the 

marine sites but this was probably because it occured in numbers too low to be 

detected using flow cytometric techniques. It is probable that Synechococcus became 

part of the lake phytoplankton community at the time the three lakes were isolated 

from the fjord environment. There was a weak negative correlation between 

Synechococcus abundance and salinity and it is probable that salinity limits the 

growth of Synechococcus in the hypersaline lakes. Ace Lake, Pendant Lake and Lake 

Abraxas had water of similar salinity (16 to 30 g kg-1
) but water temperature was 

lower in Pendant Lake and Lake Abraxas than it was in Ace Lake. There was no 

correlation between water temperature and Synechococcus cell numbers. Further, 

there was no correlation between nutrient concentrations and Synechococcus 

abundance. In Ace Lake and Lake Abraxas the highest density of Synechococcus 

occured just above the anoxic/oxic interface where nutrient diffusion from the 

anoxic/oxic interface might favoured their growth. Synechococcus strains were 

isolated from the three lakes for taxanomic comparison. 
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4.2 Introduction 

There are approximately thirty meromictic lakes in the Vestfold Hills. They 

represent approximately fifteen percent of the total number of lakes in the 400 square 

kilometre ice free area. There are also several known meromictic basins in the fjords 

around the Vestfold Hills (Gallagher et al. 1989). Apart from measurement of 

temperature and salinity profiles, the majority of these lakes and meromictic basins 

have not been studied in detail. Ace Lake is the most extensively studied meromictic 

lake in the Vestfold Hills (Chapter 1) although Burton Lake, Fletcher Lake, Organic 

Lake and Lake Abraxas have received some attention (Bayly and Eslake 1989; Burke 

and Burton 1988a; Eslake et al. 1991; Franzmann ~t al. 1990; Franzmann et al. 1987; 

van den Hoff and Franzmann 1986). Information on the phytoplankton communities 

in the other meromictic lakes is starting to emerge. Perriss et al., (1995) recently 

surveyed a selection of the meromictic lakes for the presence of Mesodinium rubrum. 

Meromictic Lakes are not common around the world and the majority are located in 

polar regions where wind induced mixing is reduced by lake ice cover (Walker and 
, 

Likens 1975). Apart from the Vestfold Hills, a concentration of meromictic lakes 

occurs in The Dry Valleys, South Victoria Land, Antarctica. These lakes are thought 

to have been formed from either entrapment of seawater and or from glacial retreat 

(Green et al. 1988; Green et al. 1989; Matsumoto et al. 1989). Some of the lakes in 

the Dry Valleys have a permanent cover of ice, and wind driven mixing occurs only 
-, 

in a small moat that forms around the edges of the lakes in summer. Lake Vanda, 

Lake Bonney and Lake Fryxell are amictic because the entire water column remains 
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unmixed (Goldman and Home 1983; Wetzel 1983). Like Ace lake, it is probable that 

the other saltwater meromictic lakes in the Vestfold Hills have formed from the 

isostatic uplift of the Antarctic continent and the trapping of seawater in pockets 

(Adamson and Pickard 1986; Gallagher et al. 1989). 

In temperate regions, lake meromixis has formed from mechanisms other than an 

increase in stability due to ice cover. This has occurred through the intrusion of 

saline water under freshwater lakes (Croome and Tyler 1988), or in lakes that are 

deep enough to prevent wind driven mixing in the bottom waters (Goldman and 

Home 1983). Many lakes on the Gordon River in Tasmania were meromictic up 

until the time of the construction of the Gordon River Dam. Intrusion of saline 

waters from Macquarie Harbour was thought to be responsible for the meromixis 

(Croome and Tyler 1988). The changed hydrological conditions resulted in the 

meromixis in some of the lakes being replaced by holomixis, although when saline 

water was allowed back in, meromixis was restored (Tyler and Bowling 1990). 

Meromictic lakes from tropical, temperate and polar regions appear to have many 

planktonic community characteristics in common. The phytoplankton are often 

dominated by flagellates and picoplankton (Burch 1988; Croome and Tyler 1985; 

Spaulding et al. 1994; Vincent 1988). Diatoms are not a dominant part of the 

plankton community (Vincent 1988) and there is often a deep chlorophyll maxima 

(DCM) just above the anoxic/oxic interface in these lakes (Parker et al. 1982; 

Vincent 1988). Many of the lakes have a band of photosynthetic sulfur bacteria at 

the interface of oxic and anoxic zones. Meromictic lakes also have active 

populations of sulfur reducing bacteria that produce hydrogen sulfide in the anoxic 
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zone of the monimnolimnion (Baker et al. 1985; Craig 1987; Howes and Smith 1990; 

Venkateswaran et al. 1993). 

In this study, a selection of meromictic lakes in the Vestfold Hills were surveyed for 

the presence of Synechococcus. The aim of the survey was to determine the 

distribution and abundance of Synechococcus in these lakes and to investigate the 

factors that might be controlling the distribution of Synechococcus in the meromictic 

lakes. 

4.3 Materials and methods 

4.3.1 Sample collection and analysis 

Nine meromictic lakes in the Vestfold Hills, a fjord site and one coastal site in Davis 

Bay were sampled (Figure 4.1, Table 4.1). The lakes sampled were chosen because 

of the broad salinity and temperature range between the lakes. The depths sampled 

within each lake and the two marine sites were selected from salinity and temperature 

profiles that had been taken prior to the survey (J. Gibson, unpublished data; L. 

Rankin, unpublished data). Each lake was sampled at its deepest known site and 

raynaya Bay was sampled in a site where there was a known meromictic basin. Each 

lake was sampled once, at sol~ noon. A 12 inch hole was drilled through the lake 

ice using a Jiffy ice drill (Feldmann Engineering, Wisconsin). 



134 

Table 4.1: Description of lakes and marine sites that were surveyed for the presence of 
Synechococcus during 1992 and 1993. 

Lake Latitude Longitude Max Depth Anoxic/oxic Ice Date 
(m) Interface (m) Thickness (cm) Sampled 

Ace L. 68°28' 78°10' 25 12 184 14-Nov-93 
L. Abraxas 68°29' 78°18' 21 20 166 23-Nov-93 
PendantL. 68°27.5' 78°15' 20 12.8 193 24-Nov-93 

Ekho L. 68°31' 78°15' 40 23 0 25-Jan-93 
Organic L. 68°27' 78°12' 7 5.2 0 29-Dec-92 
Fletcher L. 68°26.75' 78°16' 11 7 1.5 10-Dec-92 

L. Mccallum 68°37.5' 78°01' 27 20 165 18-Nov-93 
Clear L. 68°38.5' 77°59' 62 33 165 8-Dec-92 

Burton L. 68°38' 78°06' 16 ? 150 22-Nov-93 
TanayaBay 68°27' 78°15' 23 16 205 16-Nov-93 
Davis Bay 68°34.5' 77°15' 20 192 17-Nov-93 

Samples were collected using a Kemmerer Bottle and stored in acid washed 

polyethylene bottles, at 4°C in the dark, for up to four hours before analysis. 

Conductivity, temperature and light readings were taken as described in Chapter 3. 

In this instance, due to the ice cover on the lakes, the euphotic depth was defined as 

the depth to which 1 % of the incident light penetrated, rather than 1 % of the surface 

light. Conductivity readings were converted to salinity using the formulas of 

(F ofonoff and Millard 1983; Gibson et al. 1990). 

All samples were analysed for the presence of Synechococcus using flow cytometric 

techniques (Chapter 2). Flow cytometric instrument settings used in the detection of 

Synechococcus are given in Table 4.2. Heterotrophic, bacterial concentrations were 

also determined using flow cytometric methods (Chapter 2). 
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Figure 4.1: Map of the Vestfold Hills showing the meromictic lakes 
(bold) that were sampled for the presence of Synechococcus. 
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Table 4.2: Flow cytometric settings used in the identification 
of Synechococcus in water samples from meromictic lakes 
and m'!lrine sites in the Vestfold Hills. 

Parameter Setting 

FSC EOO 
SSC 326 
FLI 437 
FL2 514 
FL3 459 

Threshold FL3 - 80 

Samples for DOC analysis were filtered twice through prewashed 0.2 µm 

polycarbonate membrane filters (Millipore). The filters were washed three times 

with deionised water and twice with lake water prior to sample filtration. A new 
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filter was used for each sample. Samples were stored in premuffed glass bottles at -

20° C in the dark for analysis up to four months later. Samples were analysed using a 

TOC-5000 total organic carbon analyser (Shimadzu). 

Samples were analysed for nutrient concentrations as described in Chapter 3. A 

series of standards were prepared to determine the effect of the salinity on the 

nutrient analysis. The standard nutrient series, recommended by (Alpkem Corp 

1992), was prepared in a 3.5 % NaCl solution. Nutrient standards were also prepared 

in 1 %, 2.5 % and 5 % NaCl solutions. The concentration of the nutrient standards 

are given in Table 4.3. Data was analysed using 'Sigmastat' statistical software 

(1992). The effect of salinity on the analytical methods was determined prior to 

sample analysis. 
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Table 4.3: Standard nutrient series used in the determination of 
the effect of salinity on nutrient concentrations and in the 
determination of nutrient concentrations in the meromictic lake 
and marine water samples. 

0.6 
0.7 

2 

1.2 
1.4 

4.3.2 Lipid soluble pigment analysis 

3 

1.8 
2.1 

4 

2.4 
2.8 

5 

3.0 
3.5 

Lipid soluble pigment analysis was performed on the lake water samples. A known 

volume oflake water was filtered through 25 mm diameter, GF/F filters (Millipore) 

under low pressure(< 15 Kpa) in subdued light. Filters were stored in liquid 

nitrogen until analysis in Australia five months later. Lipid soluble pigments were 

extracted according to (Wright et al. 1991). Before analysis the filters were cut into 

small pieces. Buffered methanol (98:2 methanol: ammonium acetate 0.5M pH 7.1) 

was added (3 ml) and the filter was sonicated for 30 seconds using a Braun Labsonic 

1510 equipped with a 4 mm diameter probe, operated at 50 W. The samples were 

then centrifuged (2000 rpm) at 4°C to remove filter debris and immediately before 

HPLC analysis the extracts were filtered (Millex - SR 0.5 µm). Samples were 

analysed on a Spectraphysics HPLC, comprising: a SP8800 ternary pump; Spectra 

FOCUS detector; and a Gilson 231 autosampler (with samples refrigerated at -10°C), 

using a Spherisorb OD52 column 250 x 4.6 mm and the ternary gradient system of 

(Wright et al. 1991). Chromatograms were analysed using Specta Physics software. 

Scientific Committee for Oceanic Research (SCOR) cultures from (Wright et al. 

1991) were extracted and analysed at the same time as the lake water samples to aid 

in the identification of pigments (Chapter 5). 
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4.3.4 Isolation of Synechococcus from meromictic lakes 

The isolation of Synechococcus from all lake water samples, from the fjord site and 

from the site in Davis Bay, was attempted. An aliquot (5 ml) of each sample was 

added to 45 ml ofSNAX media and F/2 media (Appendix 5) and incubated at 6° C 

under continuous light (35 µmol photons m-2 s-1
). Cultures were checked by flow 

cytometry at two weekly intervals for three months. 

4.3.5 Data Analysis 

Physical and chemical characteristics at each of the sample sites were correlated with 

Synechococcus cell numbers, using stepwise linear regression and backward 

elimination (SAS Institute 1989), to determine the controls on Synechococcus 

distribution in the meromictic lakes of the Vestfold Hills. 

4.4 Results 

4.4.1 Flow cytometric analysis 

The flow cytometric instrument settings used to detect Synechococcus at all of the 

sample sites were not optimal for the detection of other phytoplankton species (Table 

4.2). Phytoplankton cells greater than approximately 20 µm in diameter were not 

detected using these instrument settings. 
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Three distinct phytoplankton populations were detected in the euphotic zone of Ace 

Lake (Table 4.4). The highest density of Synechococcus cells (R4) occurred at 11 m. 

A population of cells approximately 3 µm in diameter which had a FL3 fluorescence 

intensity five times greater than that of Synechococcus was detected throughout the 

euphoic zone (Figure 4.2). The highest density occurred at 6 m. Although no 

microscopic observations were made at the time, it is predicted that this population 

(R3) was the phototrophic nanoflagellate (PNAN) that Laybourn-Parry and Perriss, 

(1995) and T. Pitman (personal communication) described from Ace Lake (Chapter 

3). The third population (Rl) also occurred throughout the euphotic zone, with the 

greatest density recorded at 6 m. Based on flow cytometric analysis, cells in this 

population were approximately 5-7 µm in diameter. They had a FL3 fluorescence 

intensity fifty times that of the Syrzechococcus population (Figure 4.2). It is probable 

that this was a population of Pyramimonas geledicola (Burch 1988). The 

Cryptomonas sp. population known to occur in Ace Lake (Burch 1988) was not 

clearly detected using the described instrument settings. The cells in R7 (Figure 4.2) 

may have been cryptomonads as they were slightly larger than the cells in Rl and 

they had a more intense FL2 fluorescence. Mesodinium rubrum (Perriss et al. 1995) 

was not detected using the described instrument settings. 



Table 4.4: Phytoplankton populations (cells ml"1
) in Ace Lake on 

14November1993, detected using flow cytometric tec~niques. 
R1 was possibly P. ge/edicola, R2 was possibly a PNAN and R4 
wasSynechococcus. 

Depth (m) Rl (x 103
) R3 (x 103

) R4 (x 103
) 

4 3.88 6.34 0.25 
5 3.90 6.36 1.30 
6 11.9 16.0 1.61 
7 3.02 6.10 1.51 
8 0.87 1.29 28.3 
10 0.27 0.46 231 
11 0.26 0.72 807 

Synechococcus was also detected in Pendant Lake. In November 1993, only two 
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phytoplankton populations were detected by flow cytometry (Figure 4.3b ). This was 

because in November, Synechococcus occurred in high densities (Rl, Table 4.5). In 

the flow cytometric analysis, phytoplankton species that occurred in low densities 

were masked by the high concentrations of Synechococcus. The phytoplankton 

community in Pendant Lake has not been previously described. Population R3 was 

probably the same as the PNAN described in Ace Lake. 

Table 4.5: Phytoplankton populations (cells ml"1
) in Pendant Lake on 

24November1993, detected using flow cytometric techniques. R1 
was Synechococcus and R3 was probably a PNAN 

Depth(m) Rl (x 106
) R3 (x 104

) 

5 8.71 8.96 
10 9.63 9.9 
11 15.0 1.53 

11.8 10.2 1.22 

In the previous January, five phytoplankton populations were detected (Table 4.6). 

The density of Synechococcus cells (R4) was between one and two orders of 

magnitude lower in January 1993 than it was at the end of November 1993. Other 

phytoplankton populations detected in Pendant Lake in January 1993 included one 
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that had flow cytometric characteristics similar to those of the suspected P. 

geledicola that occurs in Ace Lake (Rl), an unidentified population (R3) that was 

slightly larger than the Rl population, and two populations (RS and R6) that were 

approximately 10 µm in diameter and had relatively more intense FL2 fluorescence 

than population Rl. Population RS had a FL2 fluorescence intensity approximately 

10 times that of population Rl and population R6 had a FL2 fluorescence intensity 

approximately 10 OOO times that or Rl (Figure 4.3a). One of these populations was 

probably a cryptomonad. The population of PNAN was not detected in the Pendant 

Lake sample collected in January 

Table 4.6: Phytoplankton populations (cells ml"1
) in Pendant Lake on 5 

January 1993, as detected using flow cytometric techniques. R1 was 
probably P. geledicola, R3, RS and R6 were unidentified phytoplankton 
populations and R4 was Synechococcus. 

Depth(m) Rl (x 103
) R3 (x 103

) R4 (x 105
) R5 (x 103

) R6 (x 103
) 

2 30.2 1.51 0.122 
4 3.15 1.18 1.66 
6 3.17 1.78 1.76 1.10 
8 6.83 2.34 1.41 1.85 1.07 
9 3.86 1.83 1.45 4.77 
10 5.08 2.09 1.39 1.64 0.13 

11.5 1.11 2.11 1.77 9.15 0.31 
12.5 3.19 0.90 1.37 9.22 0.14 

The third lake in which Synechococcus was detected was Lake Abraxas (Figure 4.4). 

Synechococcus (R.5) occurred in low numbers in the mixed zone of the lake but was 

detected at high densities at 19 m (Table 4.7). It was also detected at 21 m, where the 

dominant population was a photosynthetic sulfur bacterium. The proposed PNAN 

was detected in Lake Abraxas (Rl ), as was a population that was suspected to be 

P. geledicola (R3). A fourth population (R.4) was of a similar size to that ofR3 but 

had a greater SSC and a ten times greater FL2 fluorescence intensity. 



Table 4.7: Phytoplankton populations (cells ml"1
) in Lake Abraxas on 

23January1993, detected using flow cytometric techniques. R1 was 
probably be a PNAN, R3 was probably a P. geledico/a, R4 was 
unidentified and RS was Synechococcus. 

Depth(m) Rl (x 104
) R3 (x 103

) R4 (x 103
) R5 

3 0.59 0.36 0.20 52 
10 0.65 0.51 0.25 .104 
19 81.3 69.1 10.9 1.48 x 107 

21 N.D. N.D. N.D. 2x105 

Synechococcus was not detected at any of the other sites using flow cytometric 

techniques. In Taynaya Bay the phytoplankton density was generally low. Unlike 

the lake samples, the phytoplankton community appeared as a broad non discrete 

population possibly indicating that there is a greater diversity of phytoplankton 

species each occurring in low densities. Three discrete populations were detected 

(Figure 4.5) each occurring in densities of approximately 102 
- 103 cells mr1

• The 
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coastal marine site had low densities of eukaryotic phytoplankton. Three populations 

were detected in densities of 103 cells mr1
• 

Lake McCall um, Clear Lake and Ekho Lake all had low densities of phytoplankton 

(101 to 103 cells m1-1
). Three populations were detected in Lake McCallum all 

having a cell diameter of between 5 and 10 µm (Figure 4.6). Population Rl was 

potentially a cryptomonad. A population of photosynthetic sulfur bacteria (R4) was 

detected between 19 and 20 m. Two phytoplankton populations were detected in 

Clear Lake (Figure 4. 7) and Ekho Lake (Figure 4.8). These populations were 

between 

5 and 10 µm in size. The photosynthetic sulfur bacterium, Chlorobium spp. was 

detected in Clear Lake but not in Ekho Lake. 
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Fletcher Lake had three phytoplankton populations (Figure 4.9). Population R4 had 

characteristics similar to the proposed PNAN population detected in Ace Lake, 

Pendant Lake and Lake Abraxas. It occurred at densities of 103 
- 104 cells mr1 

throughout the euphotic zone of Fletcher Lake. The other two populations were 

composed of cells with diameters between 5 and 15 µm, and occurred in densities of 

I 03 to I 04 cells m1-1
• High densities of a photosynthetic sulfur bacterium occurred 

below 6.8 m in Fletecher Lake (9.81 x 107 cells m1-1 at 6.8 m). No eukaryotic 

phytoplankton were detected in Burton Lake probably because their presence was 

masked by the high densities of photosynthetic sulfur bacteria (2.17 x 106 cells m1-1 at 

4 m, Figure 4.10). 

Organic Lake had three distinct phytoplankton populations at I m (Figure 4.11) but 

only one population at the other ·depths in the lake. The populations occurred in 

densities of between I 04 and I 05 cells mr1
• It was difficult to determine the size of 

the cells due to the effect of the high salinity water on the flow cytometer (Chapter 

2). 
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Figure 4.2: Flow cytometric image of a water sample from 7 m in Ace Lake on the 29th 
November 1993. Axis are in relative log units. R1 (RS + R6) was possibly P. geledicola; 
R3 was possibly a phototrophic nanoflagellate (PNAN); R4 was the Synechococcus 
population and R7 was possibly a Cryptomonad. 
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Figure 4.3a: Flow cytometric image of a water sample from 8 m in Pendant Lake on the 
5th January 1993. Axis are in relative log units. R1 was possibly P. ge/edico/a (PNAN); 
R4 was the Synechococcus population and R6 was possibly a Cryptomonad. 

,fui · f ' ) ·-- ·"' 



145 

Figure 4.3b: Flow cytometric image of a water sample from 10 m in Pendant Lake on 
the 241

h November 1993. Axis are in relative log units. R1 was the Synechococcus 
population. 

Figure 4.4: Flow cytometric image of a water sample from 3 m in Lake Abraxas on the 
23rd November 1993. Axis are in relative log units. R1 was a proposed PNAN 
population and R3 was a proposed P. geledicola. 

--·-· .:· 

Figure 4.5: Flow cytometric image of a water sample from 5 m in the meromictic basin 
in Taynaya Bay on the 261

h November 1993. Axis are in relative log units. Population 
R4 differed from R1 in that population R4 had an approximately 1000 X more intense 
relative orange fluorescence. The identity of these two phytoplankton populations is 
not known. 
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Figure 4.6: Flow cytometric image of a water sample from 19 m in Lake McCallum on 
the 201

h November 1993. Axis are in relative log units. Population R4 was a 
photosynthetic sulfur bacterium. 
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Figure 4.7: Flow cytometric image of a water sample from 30 m in Clear Lake on the 81
h 

December 1992. Axis are in relative log units. 
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Figure 4.8: Flow cytometric image of a water sample from 6 m in Ekho Lake on the 251
h 

January 1993. Axis are in relative log units. 
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Fi~ure 4.9: Flow cytometric image of a water sample from 6 m in Fletcher Lake on the 
10hDecember1992. Axis are in relative log units. Population R1 was possibly a 
Cryptomonad and population R4 was possibly a PNAN. 

Figure 4.10: Flow cytometric image of a water sample from 12 m in Burton Lake on the 
22"d November 1993. Axis are in relative log units. Population R1 was Ch/orobium 
spp., a photosynthetic sulfur bacterium (Burke and Burton 1988). 

T 

Figure 4.11 : Flow cytometric image of a water sample from 1 m in Organic Lake on the 
23'd November 1993. Axis are in relative log units. Population R1 was probably the 
alga Dunaliel/a sp. 
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4.4.2 Pigment analysis 

Samples from Ace Lake, Lake Abraxas, Pendant Lake, Taynaya Bay, Lake 

McCallum, Burton Lake and the coastal marine site were analysed for the lipid 

soluble pigment signature of Synechococcus (Chapter 5). The Synechococcus 

signature, which is composed of~~ - carotene, chlorophyll - a, zeaxanthin and two 

unknown carotenoids, was detected in Ace Lake, Lake Abraxas and Pendant Lake 

(Figure 4.12). In Ace Lake the signature was detected in the 8 m, the 10 m and the 

11.8 m samples. The signature was not detected in the 4 m sample. The signature 

was detected in the 5 m, the 10 m and the 11 m samples from Pendant Lake and in 

the 19 m Lake Abraxas sample. The signature was not detected in the 3 m or the 10 

m Lake Abraxas samples nor in any of the other lake, fjord or coastal marine sites 

that were sampled (Appendix 4). 

4.4.3 Isolation of Synechococcus from lake water samples 

Synechococcus was successfully enriched from Ace Lake, Pendant Lake and Lake 

Abraxas (Chapter 5). Synechococcus was not enriched from any of the other lakes, 

the fjord site or the coastal marine site. 
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Figure 4.12: Lipid soluble pigment profile of particulates filtered from Ace 
Lake (10 m), Pendant Lake (11m) and Lake Abraxas (19 m). a= unknown 
carotenoid; b = unknown carotenoid; c = zeaxanthin; d =chlorophyll a; e = 
1313 - carotene. 
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4.4.5 Physical characteristics of lakes 

There was a broad range of water salinity, temperature and light attenuation with 

depth amongst the nine meromictic lakes and two marine sites that were surveyed for 

the presence of Synechococcus. Organic lake had the highest salinity, with a range of 

105 to 207 g kg-1 (Figure 4.13). The temperatures in Organic Lake at the time of 

sampling were also the lowest of the surveyed sites ranging from -11.5 to -7° C. 

Light was rapidly attenuated with depth in Organic Lake (Table 4.8). The depth to 

which 1 % of incident light penetrated ( euphotic depth) was less than a metre at a 

time when there was no ice cover on the lake. 

Ekho Lake had the next highest salinity (Figure 4.14). The salinity range in Ekho 

Lake was between 40 and 150 g kg-1
• Although the salinity ofEkho Lake was high, 

the low temperatures experienced in Organic Lake were not experienced in Ekho 

Lake. A temperature range of 8° C in the surface water to 18° C at 23 m, at the 

anoxic/oxic interface, was recorded in January 1993. This was the highest 

temperature recorded during the survey. At this time the lake was ice free, due to the 

high salinity and euphotic depth extended to approximately 20 m. 

Fletcher Lake had a salinity range of 56 to 102 g kg-1 and a temperature range of -2.5 

to 4° C (Figure 4.15). The highest temperature and salinity were recorded at the 

bottom of the lake (8 m). The depth of 1 % I in Fletcher Lake was between 6.5 and 

7m (Table 4.8). There was a dense band of photosynthetic sulfur bacteria at the 



151 

anoxic/oxic interface in Fletcher Lake as there was throughout Burton Lake. Both 

Fletcher Lake and Burton Lake still have an occasional connection to the sea. Burton 

Lake had a salinity of between 43.2 and 43.9 g kg"1 and a temperature range of 

between -2.3 and-I ° C (Figure 4.16). The lake was slightly wanner in the surface 

waters (-1° C) and in the bottom waters (-1.8° C, 16 m). Light attenuated rapidly 

with depth in Burton Lake (Table 4.8). The euphotic depth was between 2 and 2.5 m. 

This was probably due to the high densities of photosynthetic sulfur bacteria 

observed in the lake. 

The meromictic basin in Taynaya Bay, had a salinity range of 35 and 53 g kg-1 

(Figure 4.17). There was a slight salinity gradient between 2 m and 6 m, the salinity 

was then constant to a depth of 14.8 m. Below this depth there was a sharp increase 

in salinity to the bottom of the basin at 23 m. There was a temperature range of -

1.85° C in the surface waters to -1.35° Cat the bottom of the basin. The euphotic 

depth in Taynaya Bay was at 16 m. There was a band of photosynthetic sulfur 

bacteria at this depth. The coastal marine site in Davis Bay had a salinity of 34.5 g 

kg"1 and a temperature of -2° C (Figure 4.18). The salinity was slightly less just 

below the ice, probably due to ice melt. At the time of sampling, light was quickly 

attenuated at this site. There was a thick cover of compacted snow on the ice and 

less than 0.5 % of the incident radiation penetrated the snow and ice cover. 
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Figure 4.13: Physical characteristics of Organic Lake on the 
23ro November 1992. 
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Figure 4.14: Physical characteristics of Ekho Lake on the 25th 
January 1993. 
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Figure 4.15: Physical characteristics of Fletcher Lake on the 1 Oth December 
1992. 
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Figure 4.16: Physical characteristics of Burton Lake on the 22nd November 
1993. 
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Figure 4.17: Physical characteristics of the meromictic basin 
in Taynaya Bay on the 26th November 1993. 
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Figure 4.19: Physical characteristics of Ace Lake on the 29th November 1993. 
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Figure 4.20: Physical characteristics of Lake Abraxas on the 23rd November 1993. 
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Ace Lake, Pendant Lake and Lake Abraxas contained water of similar salinity. Ace 

Lake had a salinity range of 18 to 40 g kg-I (Figure 4.19), Lake Abraxas had a salinity 

range of 16.6 to 22 g kg-I (Figure 4.20) and Pendant Lake had a salinity range of 16 

to 48 g kg-I (Figure 4.21). The mixed zone in Pendant Lake (11 m) and Lake 

Abraxas (17 m) was deeper than it was in Ace Lake (7 m). In Lake Abraxas there 

was a sharp salinity gradient between 17 m and the bottom of the of the lake at 21 m. 

The temperature maximum in Lake Abraxas (8° C) was at 19 m. The temperature 

maximum in Ace Lake (7° C) was at 11 m and in Pendant Lake the temperature 

maximum (1.6° C) occurred at the bottom of the lake. Each of these lakes had a 

band of photosynthetic sulfur bacteria at the interface between the anoxic and oxic 

stratified waters. This was the region in which 1 % euphotic depth was recorded 

(Table 4.8). 

Lake McCall um and Clear Lake had the lowest salinity of the meromictic lakes in the 

survey, although the salinity of Lake McCallum was similar to that of the mixed 

zones in Ace Lake, Pendant Lake and Lake Abraxas. Lake McCallum had a salinity 

range of 14.8 to 24 g kg-I (Figure 4.22). There were two distinct pycnoclines in the 

lake one at 5 m and the other at 10 m. Below 19 m, there was a gradual increase in 

salinity. The temperature also increased in discrete steps, reaching a maximum of 7° 

C at 20 m and then decreasing to 4° C at the bottom of the lake. The euphotic depth 

in Lake McCallum was at approximately 19 m where there was a band of 

photosynthetic sulfur bacteria. Clear Lake had a band of photosynthetic sulfur 

bacteria at a depth of 33 mjust below the 1 % euphotic depth (Table 4.8). The 

temperature range in the lake was 0 to 7 .2 ° C with the maximum temperature 
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occurring at 30 m (Figure 4.23). The salinity range in the lake was 10.32 to 13.6 g 

k -1 g. 

Table 4.8: lrradiance (PAR) characteristics of the nine meromictic lakes and 
two marine sites that were surveyed for the presence of Synechococcus. Kd, the 
extinction coefficient, was calculated from a plot of ln(PAR) versus depth (Kirk 1994); 
1 % I is the depth (m) to which 1 % of the incident radiation penetrated. 

Lake Date K.i PAR (m) 1% ofl (m) Ice (cm) Snow (cm) 

Lake Abraxas 23 Nov93 0.068/1.18 19-20 166 
Ace Lake 29 Nov 93 0.114/0.355 12 179 

Burton Lake 22 Nov93 1.43 2-2.5 150 
Clear Lake 08 Dec 92 0.092/? 24-30 165 
Ekho Lake 25 Jan 93 0.192/2.10 10-15 

Lake McCallum 20Nov93 0.149/1.5 17 165 
Pendant Lake 24 Nov93 0.554/0.061 >13 193 
Organic Lake 23 Nov92 2.92 <I 
Fletcher Lake 10-Dec-92 0.19/1.73 6.5-7 150 
TaynayaBay 26Nov93 0.349/0.048 >16 195 2 
Marine Site 07Nov93 0.991/0.023 3 179 19 

There was no correlation between log (Synechococcus cell number + 1) and 

temperature (r = 0.0814, p = 0.6082, n = 42), nor between% incident radiation (r = -

0.1421, p = 0.3693, n = 42). The correlation between log (Synechococcus cell 

number+ 1) and salinity was negative but not significant (r = -0.2800, p = 0.0704, n = 

42). A plot oflog (Synechococcus cell number +1) versus salinity showed that once 

the salinity exceeded 31.01 g kg-1 Synechococcus was not present (Figure 4.24). 

Synechococcus was not present in the low salinity samples of Clear Lake and Lake 

McCallum and preliminary investigations of the salt tolerance of the Ace Lake 

Synechococcus strain indicated that it did not grow as well at low salinity (Chapter 

5). Salinities greater than that of seawater were not tested. 
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4.4.6 Nutrient Analysis 

A series of nitrate standards were prepared using water of different salinities. This 

was to determine the effect of salinity on the analytical method of nutrient 

determination. There was no significant difference in nitrate concentration due to 

salinity at 2 % NaCl and 5 % NaCl (ANOVA, p > 0.01). There was, however, a 

significant difference in the measured nitrate concentrations at salinities of 3 .5 % 

NaCl and 5 % NaCl (t-test, p = 0.0002). The measured concentrations of the 

standards prepared in 5 % NaCl were 17 % greater than the concentrations prepared 

in 3.5 % NaCL As there was not a sigllificant difference between nitrate 

concentrations prepared in 1 % NaCl and those prepared in 5 % NaCl standard 

(Mann-Whitney Rank Sum Test, P = 0.1333), nor between those prepared in 1 % 

NaCl and those prepared in 3.5 % NaCl (t-test, P = 0.7294), it appears that the 

difference in nitrate concentrations between the 3.5 % NaCl solution and the 5 % 

NaCl solution may have been an anomaly and that salinity, in the range 1 % and 5 % 

does not significantly effect the analysis of nitrate. 

The effect of salinity on phosphate determination was more varied. There was a 

significant effect of salinity on measured phosphate concentration for each of the 

standards (ANOVA, p < 0.01). For the 0.6 µM phosphate standard the two low 

salinities (1 % and 2.5 %) were 7 % higher than the 3.5 % and the 5 % salinity. 

There was no significant difference in measured phosphate concentrations between 

the 1 % and the 2.5 % salinity (t-test, p = 0.6828) nor between the 3 .5 % and the 5 % 

salinity (Mann- Whitney Rank Sum Test, p = 0.2695). At phosphate concentrations 

of 1.4 µM, 2.1 µM and 2.8 µM the two low salinities had slightly higher phosphate 
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concentrations than the two high salinities (5 % at 1.4 µM Po/·, 3 % at 2.1 µM 

Po/· and 4 % at 2.8 µM Po/·. At 3.5 µM Po/· there was no significant difference 

between the two low salinities (Mann-Whitney Rank Sum test, P = 0.05542) nor 

between the 1 % and the 3.5 % salinity (P = 0.0993). The was a small (1 %) but 

significant (P = 0.0034) difference between the 2.5 % and the 3.5 % NaCl solutions 

and a 21 % decrease in the Po/· concentration at 5 % NaCl. It therefore appears that 

phosphate measurements are affected to a larger degree at higher phosphate 

concentrations (3.5 µM) and at high salinities (5 % and probably greater). 

The samples measured for phosphate and nitrate concentrations all had salinities 

below 5 % and above 1 % and the effect of salinity on the measurement would, 

therefore, not have been significant. Nitrate concentrations were variable (Table 4.9). 

In the euphotic zones of the meromictic lakes the nitrate concentrations were usually 

below the limit of detection (0.02 µM). The marine site and the fjord site had high 

nitrate concentrations relative to the meromictic lakes. There was a wide range of 

phosphate concentrations, both within the meromictic lakes and between the 

meromictic lakes and the marine sites. The highest concentrations were recorded at 

the bottom of the euphotic zone in Ace Lake (8.77 µM) and in Taynaya Bay (14.36 

µM) and also throughout the water column in Burton Lake (10 - 27 µM). There was 

no correlation between phosphate concentration and Synechococcus cell numbers (r = 

-0.1776, p = 0.3659, n = 28), nor between nitrate concentration and Synechococcus 

cell numbers (r = - 0.3698, p = 0.0527, n = 28). 
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Dissolved organic carbon (DOC) concentrations were measured in seven of the 

eleven sites that were surveyed for the presence of Synechococcus. These seven sites 

had a broad range of physical characteristics. Dissolved organic carbon ranged in 

concentration froin 0.58 mM in Ace Lake and McCallum Lake down to 

approximately 0.17 mM in the marine sit~s and Burton Lake (Table 4.9). There was 

no correlation between Synechococcus cell numbers and DOC in these lakes. 

Heterotrophic bacterial numbers ranged froIIJ: 104 cells mr1 to 107 cells ml-1 (Table 

4.9). There was a positive correlation (r = 0.4951, p = 0.001, n = 41) between 

log(Synechococcus cell number + 1) and log(heterotrophic bacteria cell number). 

4.5 Discussion 

The advantages and disadvantages of using flow cytometric methods for the analysis 

of phytoplankton communities has been discussed in Chapter 2. In this instance the 

flow cytometer was effective in locating Synechococcus populations in three out of 

eleven sites sampled. The presence of Synechococcus in Lake Abraxas, Pendant 

Lake and Ace Lake was confirmed by lipid soluble pigment analyses of the lake 

water samples and by presence of Synechococcus in enrichment cultures from these 

three lakes. The morphological and fluorescence characteristics of the Ace lake 

Synechococcus had been confirmed by microscopy (Chapter 3). The flow cytometric 

image of Synechococcus from Pendant Lake and Lake Abraxas was the same as the 

image of the population in Ace Lake. Unlike Synechococcus and also the 

photosynthetic bacterium Chlorobium spp., other phytoplankton populations that 

appeared on the flow cytometric images could not be easily identified. The 

phytoplankton community in Ace Lake and Organic Lake have been studied (Burch, 
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Table 4.9: Synechococcus and heterotrophic bacteria cell numbers, temperature, salinity, light and nutrient characteristics at 
selected depths in nine meromictic lakes, a fjord site and a coastal marine site in the Vestfold Hills, Antarctica. '-' = not 
determined, 'N.D.' = not detected and 'B.L.D.' = below the limit of detection. 

Lake Depth (m) Cell Number Temperature Salinity % of incident Phosphate Nitrate DOC Heterotrophs 
(cells ml"1

) (°C) (g kg"1
) radiation (µM) (µM) (mM) cells ml"1 

Ace Lake 4 1300 1.38 18.07 6.45 0.263 B.L.D. 0.45 6.31E+05 
6 1610 1.39 18.09 5.27 0.243 B.L.D 0.54 8.30E+05 
8 2.83E+04 5.28 28.15 3.95 5.05 B.L.D. 0.60 1.27E+06 
10 2.31E+05 6.28 29.85 2.9 5.73 B.L.D 0.61 5.37E+06 
11 8.07E+05 6.58 30.35 2.37 8.773 B.L.D . 0.64 5.32E+06 

Lake Abraxas 3 5.26E+01 0.49 16.78 7.23 0.065 B.L.D 0.26 1.21E+05 
10 1.04E+02 0.46 16.82 4.39 0.064 B.L.D 0.30 1.03E+05 
15 - 0.72 16.79 3.16 0.07 B.L.D 0.34 1.05E+05 
19 1.48E+07 8.03 20.35 0.99 0.204 0.209 0.27 2.40E+05 

Lake Mccallum 5 N.D. 1.37 14.84 3.6 0.089 B.L.D 0.54 4.25E+04 
10 N.D. 5.75 16.75 1.8 0.089 B.L.D 0.57 3.48E+04 
12 N.D. 5.94 16.97 1.26 0.111 B.L.D 0.62 5.10E+04 
15 N.D. 6.16 17.08 0.71 0.089 B.L.D 0.56 7.31E+04 
19 N.D. 6.85 17.57 0.14 0.096 B.L.D 0.62 4.86E+04 
20 N.D. 6.61 18.16 0.12 0.134 B.L.D 0.60 8.58E+04 

Pendant Lake 5 8.71E+06 0.24 16.5 1.06 0.8 B.L.D 0.43 6.44E+06 
10 9.63E+06 0.26 16.5 0.76 0.815 B.L.D 0.33 6.26E+06 
11 1.50E+07 0.15 16.55 0.73 0.858 B.L.D 0.39 6.67E+06 

12.8 1.02E+07 0.76 31.01 0.68 1.3445 0.364 0.44 4.80E+06 
Taynaya Bay 3 N.D. -1.85 35.15 3.13 0.927 5.105 0.20 6.90E+05 

5 N.D. -1.83 35.46 1.9 0.88 8.565 0.17 5.19E+05 
10 N.D. -1.86 36.05 1.39 1.962 21.9 0.17 5.03E+05 
15 N.D. -1.57 36.66 1.06 3.147 21.7 0.15 4.62E+05 
16 N.D. -1.56 44.17 0.99 14.355 17.725 0.17 8.06E+05 
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Table 4.9 continued: 

Lake Depth (m) Cell Number Temperature Salinity % of incident Phosphate Nitrate DOC Heterotrophs 
(cells mr1

) (°C) (g kg-1
) radiation (µM) (µM) (mM) cells mr1 

Coastal Marine 5 N.D. -1.91 34.61 0.09 2.04 14.88 0.14 8.58E+04 
Burton Lake 4 N.D. -2.26 43.47 0.04 17.358 0.945 0.20 

8 N.D. -2.3~ 43.36 0.01 27.28 1.089 0.22 1.15E+06 
12 N.D. -2.33 43.35 0.01 10.48 0.591 0.21 1.58E+06 

Clear Lake 5 N.D. 1.42 10.32 16.96 - - - 9.43E+04 
15 N.D. 5.77 12.04 6.8 - - - 1.17E+05 
25 N.D. 6.17 12.31 1.8 - - - 1.00E+05 
30 N.D. 7.04 12.7 0.35 - - - 1.13E+05 

Ekho Lake 4 N.D. 8.23 59.84 44 - - - 7.06E+04 
10 N.D. 9.48 71.94 17.1 - - - 3.55E+05 
15 N.D. 12.09 79.62 7.6 - - - 3.2BE+05 
20 N.D. 17.587 124.65 1.7 - - - 5.85E+06 

Organic Lake 2 N.D. -10.7 179.6 2.3 - - - 5.30E+06 
4 N.D. -11.5 180.85 0.02 - - - 5.10E+06 
6 N.D. -7.8 206.11 0.02 - - - 1.36E+07 

Fletcher Lake 2 N.D'. -2.45 56.44 6 - - - 1.97E+05 
6 N.D. 1.62 74.57 2 - - - 4.51E+05 

6.5 N.D. 2.77 81.81 1.4 - - - 2.33E+06 
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1988; Franzmann et al. 1987; van den Hoff and Franzmann 1986) and the flow 

cytometric populations could therefore be identified. The phytoplankton 

' 
communities of the other lakes and marine sites are poorly characterised. 

Morphological and fluorescence characteristics of other populations could be 

described, but in order for the populations that appeared on the flow cytometric 

images to be positively identified, a thorough microscopic investigation of these 

lakes and marine sites is needed. 

Synechococcus occurred in high densities in the three lakes in which it was 

identified. It is possible that Synechococcus occurred at some of the other sites but in 

numbers too low to be detected by flow cytometry. Walker and Marchant, (1989) 

observed Synechococcus in coastal marine samples from Davis Bay. The greatest 

densities of Synechococcus occurred at this site in August (140 cells m1-1
). Over 

summer, numbers were less than 10 cells m1-1 (Walker and Marchant 1989). Only 

one millilitre of water was used in flow cytometric analysis. It is possible that if 

large volumes of water were filtered for fluorescent microscopic observation, 

Synechococcus may have been detected in samples from sites such as Taynaya Bay, 

Lake McCallum and Clear Lake. The absence of Synechococcus in enrichment 

cultures from these sites and the absence of the Synechococcus lipid soluble pigment 

signature in samples from these lakes confirmed that Synechococcus were not a 

dominant part of the phytoplankton community in these lakes and marine sites. 

Synechococcus has been reported in a small number of Antarctic saline lakes but 

never at densities that occurred in Ace Lake, Pendant Lake and Lake Abraxas. 

Goldman et al., (1967) reported that Synechococcus occurred between 36 and 40 m in 

Lakey anda, Dry Valleys. Synechocystis rather than Synechococcus was reported to 
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occur at the DCM (50 m) in Lake Vanda (Vincent and Vincent 1982). 

Synechococcus was also reported to occur in Moss Lake, Alexander Island (Heywood 

1977). Spaulding et al., (1994) reported Synechococcus to occur in Lake Fryxell in 

1991 and 1992 but not in the three preceding years. Synechococcus cell densities 

were not reported but "at least one cell was observed in the counting chamber". 

Synechococcus does not dominate the phytoplankton in Lake Fryxell but instead the 

filamentous cyanobacterium Oscillatoria dominates at the DCM (McKnight et al. 

1993; Spaulding et al. 1994). Finally, Parker and Wharton, (1985) reported that 

Synechococcus occurred in the algal mat community of Lake Hoare, Dry Valleys. 

These lakes have salinity ranges similar to Ace Lake, Pendant Lake and Lake 

Abraxas. Based on the formula ofFofonoff and Millard, (1983), that converts 

conductivity to salinity, and using the data of Vincent et al., (1981) Lake Vanda has a 

salinity range of approximately 0.5 g kg-1 to 60 g kg-1
• Between 36 m and 40 m the 

salinity is approximately 1.8 g kg-1
• Using the same formula and based on 

conductivity data from Matsumoto et al., (1989), Lake Fryxell has a salinity range of 

approximately I.I to 4 g kg-1
• Moss Lake has a salinity of approximately 3.3 g kg-1 

which makes it less saline than Ace Lake. Nutrient availability and light intensity are 

thought to control phytoplankton production in Lake Vanda and Lake Fryxell 

(Vincent 1981; Vincent and Vincent 1982). It is possible that, in the saline 

meromictic lakes Synechococcus has a competitive advantage in a salinity range of 

15 to 35 g kg-1
• 

Marine Synechococcus spp. are phylogenetically distinct from strains of 

Synechococcus isolated from freshwater environments (Mullins et al. 1995; Urbach 

et al. 1992) and the strains isolated from the meromictic lakes in Antarctica were 

closely related to other marine strains (Chapter 5). Synechococcus has been detected, 
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in low densities, in some freshwater Antarctic Lakes. Andreoli et al., (1992) found 

Synechococcus in low numbers ( 40 cells mr1
) in lakes in northern Victoria Land. 

They predicted that nutrients or temperature might limit the growth and cell density 

ofpicoplankton in these lakes. Tell et al., (1995) reported that Synechococcus 

occurred in four lakes in Hope Bay. Cell densities were not given but the lakes 

ranged in trophic status from oligotrophic to eutrophic. The main focus ofTell's 

research was to determine the origin of phytoplankton in the freshwater lakes of the 

Hope Bay region. It was thought that the most likely origin of phytoplankton in these 

lakes was freshwater temperate lakes and that aerosol dispersion was the main 

mechanism for colonisation. Laybourn-Parry and Marchant, (1992), in a survey of 

freshwater lakes in the Vestfold Hills found chroococcalean cyanobacteria in 

numbers of less than 50 m1-1
• These organisms were not identified but it was 

proposed that they belong to the genus Synechocystis. It is however, possible that the 

picocyanobacteria were Synechococcus cells. Observation of cells undergoing cell 

division would clarify the identification. Synechococcus divide in one plain only 

where as Synechocystis divide in two plains (Waterbury and Rippka 1989). It was 

also proposed that phytoplankton cell growth in the :freshwater lakes of the Vestfold 

Hills was nutrient limited (Laybourn-Parry and Marchant 1992) and that the grazing 

pressure was low (Laybourn-Parry et al. 1995). It would be of interest to isolate 

Synechococcus from nearby freshwater environments and to determine the 

phylogenetic relatedness of the meromictic lake Synechococcus strains to freshwater 

strains. 

High Synechococcus cell densities have been reported from the maritime Antarctic 

lakes of Signy Island (Hawes 1990). The number detected in 'The Wallows' (1.4 x 

108 cells m1-1
) was 10 fold higher than the densities of marine Synechococcus found 
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in the meromictic lakes in the Vestfold Hills. This lake is eutrophic (13.7 mg r1 total 

nitrogen and 0.8 mg r1 total phosphorus) and extremely turbid. Other freshwater 

lakes in the area had Synechococcus cell numbers ranging from 4 x 104 to 

1.5 x 106 cells m1-1
• Trophic status was thought to be a controlling factor in 

Synechococcus cell densities in these lakes. Synechococcus also dominated 

freshwater lakes in the Arctic (Vezina and Vincent 1997). In these systems, nutrient 

concentrations were consistently low. 

Stockner, (1991) has summarised the distribution and abundance of autotrophic 

picoplankton, (APP), dominated by Synechococcus, in arange of freshwater lakes in 

New Zealand, Canada and throughout Europe. Cell densities of between 104 and 105 

cells mr1 were common. Cell densities were correlated with trophic status, the 

highest densities occurred in mesotrophic systems. The contribution of 

Synechococcus to production and biomass was, however, greatest in the 

ultraoligotrophic lakes. This was primarily due to the absence of larger 

phytoplankton species (Stockner 1991 ). It was predicted that in the freshwater lakes, 

the role of grazing in controlling APP densities was not as important as the role of 

nutrient concentrations. Peak densities of 7 x 105 cells m1-1 were detected in Lake 

Ontario, Canada with the greatest densities occurring in the surface waters (Caron et 

al. 1985). Synechococcus contributed to approximately 38 % of the total primary 

productivity during times of peak abundance. Synechococcus cell numbers were 

correlated with water temperature (r = 0.89). Temperature may not, however, have 

been the controlling factor in determining abundance. Although the grazing pressure 

was not determined, Synechococcus cells were observed in the food vacuoles of 

heterotrophic microflagellates. The control on Synechococcus distribution an~ 

abundance by grazing needs greater attention in both freshwater and saltwater lakes. 
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In Lake Constance, the growth rate of autotrophic picoplankton and the grazing rate 

on the organisms were relatively equal (Weisse 1988). Growth rates of between 

0.006 and 0.051 h-I and grazing rates of between 0.002 and 0.053 h-I were recorded. 

Cilliates, heterotrophic nanoflagellates and rotifers were identifie<;l as the dominant 

grazers in Lake Constance (Weisse 1988). Voros et al., (1991) reported that nitrogen 

availability and grazing by zooplankton significantly effect the abundance of 

Synechococcus in freshwater lakes in Hungary. 

The distribution of Synechococcus within the meromictic lakes of the V estfold Hills 

was consistent with the distribution of this organism in meromictic lakes in other 

regions of the world. As occurs in the three meromictic lakes in the Vestfold Hills, 

Synechococcus occurred in the highest density at the DCM of temperate and tropical 

meromictic lakes. Jellyfish Lake is a tropical marine meromictic lake in Palau, 

Pacific Ocean. The lake had a salinity range of26 to 31 g kg-I <venkateswaran et al. 

1993), was 30 m deep and the anoxic/oxic interface was at 14 m. Below this depth 

there were high concentrations of hydrogen sulfide. Synechococcus densities of 

between 104 and 106 cells m1-I were detected in this lake and the peak occurred just 

above the anoxic/oxic interface as occurred in the Antarctic meromictic lakes. The 

most striking difference between the Antarctic lakes and Jellyfish Lake was in the 

water temperature. Jellyfish Lake had a water temperahu-e between 27° C and 31° C. 

It is less surprising that Synechococcus cell numbers are high in this lake as growth 

rate would be higher (Chapter 5). 

Little Round Lake in southeastem Ontario, Canada was a 16 m deep meromictic lake 

with a salinity of approximately 0.14 to 0.53 g kg-I (Craig 1987). The lake was 

mesotrophic with respect to phosphate concentration and oligotrophic to mesotrophic 
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with respect to phytoplankton and zooplankton densities. The lake had a temperature 

of approximately 24 ° C in the surface waters over summer but could be ice covered 

in the winter. Below 12 m the temperature was between 4° C and 5° C. There was a 

band of purple sulfur bacteria at the anoxic/oxic interface. This differs from the 

meromictic lakes in the Vestfold Hills that were studied in this survey. Seven of the 

nine lakes had a band of green photosynthetic sulfur bacteria at the anoxic/oxic 

interface. Watts Lake, a freshwater lake in the Vestfold Hills, is known for its purple 

sulfur bacteria (Heath 1988). At 10 m in Little Round Lake, the light intensity was 1 

% of surface irradiance but below this there was almost complete light extinction 

(Craig 1987). Synechococcus occurred in high numbers below 9 m in Little Round 

Lake. The greatest densities occurred in Autumn just above the chemocline when 

densities of2.5 x 106 cells mr1 were measured. Oscillatoria, the fillamentous 

cyanobacterium that has been observed in Lake Fryxell, Dry Valleys (Spaulding et al. 

1994), was observed in Little Round Lake. Its seasonal distribution differed from 

Synechococcus in that the greatest densities of Oscilatoria seemed to occur when the 

densities of Synechococcus were low (Craig 1987). 

Two out of four saline meromictic lakes in A land, Finland, had populations of 

Synechococcus at the bottom of the euphotic zone (1 % surface irradiance). In Inre 

Verkviken, Synechococcus-Iike cells were found in densities of0.8 x 106 cells m1-1
• 

The two lakes in which Synechococcus was not present were eutrophic shallow lakes 

that had high densities oflarger phytoplankton species (Craig 1987). It was proposed 

that algal competition and nutrient concentration controlled the distribution of 

Synechococcus in these meromictic lakes. From these accounts of Synechococcus 

abundance and distribution in both fresh and saltwater environments, it appears that 

Synechococcus is adapted to a wide range of physical and chemical conditions. 
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The correlation between Synechococcus densities, in the meromictic lakes of the 

Vestfold Hills, and a munber of physical, chemical and biological factors was tested. 

The correlation between Synechococcus numbers and heterotrophic bacterial 

numbers was the strongest. This possibly reflects a tight coupling between 

production and consumption in these lakes. It could however mean that the 

conditions that favour the growth of Synechococcus, for example reduced grazing 

pressure, also favour the growth ofheterotrophic bacteria. 

The weak negative correlation between Synechococcus numbers and salinity helps to 

explain why Synechococcus may not occur in the more saline meromictic lakes. It 

does not, however, explain why Synechococcus was not observed in the coastal 

marine or fjord sites. The Ace Lake Synechococcus is capable of growth in open 

ocean sea water (Chapter 5). The nitrate concentration at the marine sites was higher 

than it was in Ace Lake, Lake Abraxas and Pendant Lake. It is possible that 

competition with other phytoplankton species restricted the growth of Synechococcus 

at the sea water sites. Nanoplankton are more dominant than picoplankton in the 

Southern Ocean (Weber and El-Sayed 1987) and it is possible that the same holds for 

coastal marine sites. 

No correlation was found between Synechococcus numbers, temperature, light 

intensity or nutrient concentrations. Unfortunately, the density and distribution of 

potential grazers was not measured in this survey so no comment can be made on a 

correlation between Synechococcus distribution and grazing pressure. Heterotrophic 

nanoflagellates (HNAN), the grazers that are thought to be the greatest consumers of 

Synechococcus (Estep et al. 1986; Hall et al. 1993; Johnson et al. 1982), occurred in 
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both Ace Lake and Lake Abraxas (Laybourn-Parry and Perriss 1995). It is probable 

that HNAN also occur in Pendant Lake and that Synechococcus is grazed by the 

HNAN in all of these lakes. In a survey of M rubrum in brackish and saline lakes of 

the Vestfold Hills (Perriss et al. 1995) indicated that salinity and water column 

temperature appeared to be the most important factors controlling the distribution and 

abundance of this organism. They found that M rubrum was not present in the 

hypersaline lakes (salinity greater than 3 .5 % ) and that the greatest densities occurred 

in the brackish lakes. This holds for the distribution of Synechococcus. (Perriss et al. 

1995) found that there was no correlation betweenM rubrum numbers and numbers 

of potential grazers. This may.not be true for Synechococcus. M rubrum is a large 

organism (approximately 20 µm diameter) and may not be under the same grazing 

pressure as the 0.5 µm diameter Synechococcus cells. 

Perriss et al., (1995) also found no correlation between M rubrum numbers and 

nutrient concentrations. In Ace Lake and Lake Abraxas, M rubrum occurred in 

greatest densities in the mixolimnion where nitrate concentrations were low. In 

contrast, Synechococcus occurred in greatest numbers below the pycnocline, just 

above the layer of Chlorobium spp.. Nutrients diffusing from the anoxic zone in the 

meromictic lakes are thought to be responsible for the occurrence of the DCM in 

these lakes (Vincent 1988; Vincent and Vincent 1982). Nutrient diffusion from the 

anoxic zone may promote the growth of Synechococcus in this region. In Pendant 

Lake, there was a fairly even distribution of Synechococcus throughout the euphotic 

zone. This is probably because, in Pendant Lake, the mixolimnion extended almost 

to the interface with the anoxic zone and water from the mixed zone comes into 

contact with the nutrient rich anoxic waters. In Lake Abraxas, there was deep mixing 

but there was a sharp pycnocline between 17 m and 18 m that isolated the 
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mixolimnion from the nutrient rich anoxic waters. The nitrate concentration in the 

mixed zone of Pendant Lake was less than 0.02 µM. It is probable that, in this 

region, nutrients are rapidly recycled. 

Ace Lake, Pendant Lake and Lake Abraxas are all in close proximity on Long 

Peninsula. Pendant Lake and Lake Abraxas would have become isolated from the 

marine environment in the same way that Ace Lake was isolated (Bird et al. 1991 ). 

Ace Lake and Lake Abraxas would have become isolated from Long Fjord where as 

Pendant Lake would have been isolated from Taynaya Bay. It is probable that 

Synechococcus was part of the phytoplankton community of the fjords at the time of 

isolation and that stability of the lake environments has favoured the proliferation of 

Synechococcus. It is thought that M rubrum became part of the lake phytoplankton 

community in the same way (Laybourn-Parry and Perriss 1995). It would be of value 

to isolate Synechococcus from the nearby marine environment and compare its 

phylogeny to that of the three lake isolates. 

The distribution and abundance of Synechococcus in meromictic, monomictic, 

saltwater and freshwater lakes is probably controlled by number of physical, 

chemical and biological factors. In Ace Lake, Lake Abraxas and Pendant Lake the 

densities of marine Synechococcus are greater than has previously been reported. In 

Lake Abraxas, ~sin Ace Lake (Chapter 3) Synechococcus would contribute 

significantly to primary production below the pycnocline. In Pendant Lake, 

Synechococcus would probably contribute significantly to primary production 

throughout the euphotic zone. As Vincent, (1998) indicated for cyanobacteria in 

polar regions, the distribution and abundance of Synechococcus would be controlled 

by a balance between rates of gain, for example faster growth rates at warmer 
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temperatures, and loss rates, for example grazing by heterotrophs or nutrient 

limitations. In the meromictic lakes of Finland, trophic status and competition with 

other phytoplankton species appeared to control which lakes Synechococcus 

dominated. In the meromictic lakes of the Vestfold Hills, it appears that salinity may 

limit the distribution of Synechococcus. This is a probable explanation for the 

absence of Synechococcus in Burton Lake, Fletcher Lake, Ekho Lake and Organic 

Lake. This could be verified in the laboratory using Synechococcus isolated from 

Ace Lake, Pendant Lake and Lake Abraxas (Chapter 5). In meromictic lakes of 

Antarctica, northern polar regions and in the tropics, the vertical distribution of 

Synechococcus is similar with the maximum cell density at the DCM just above the 

anoxic/oxic interface (Craig 1987; Venkateswaran et al. 1993). In the oligotrophic 

lakes, it is probably nutrient availability that controls this distribution however the 

reduced light intensity and warmer temperatures experienced at the DCM may also 

influence the distribution and abundance. The importance of grazing in the control 

of Synechococcus densities in the meromictic lakes in the Vestfold Hills remains to 

be determined. 



Chapter 5 

Phenotypic and phylogenetic characterisation of 
picocyanobacteria strains from moderately saline 

lakes of the Vestfold Hills. 
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5. 1 Abstract 

Cultures of Synechococcus were enriched from Ace Lake in December 1992, from 

Pendant Lake in January 1993 and a from Lake Abraxas in November 1993. The 

cultures contained no other photosynthetic organisms but were not axenic. Throughout 

this chapter these unicyanobacterial cultures are referred to as strains. The three 

Antarctic strains of Synechococcus are now in the algal culture collection of the CSIRO 

Marine Laboratories, and await strain number designation. 

Morphologically, the Synechococcus cells from Ace Lake, Pendant Lake and Lake 

Abraxas were similar to one another, and to other strains in this group. Cells were 

similar in size (0.91-1.08 µm wide), fluorescence characteristics, in-vivo absorption and 

emission spectra and lipid soluble pigment content. Cells of the three strains had two 

unknown zeaxanthin like pigments that were present in high concentrations. The Ace 

Lake strain had an ultrastructure and lipid signature consistent with other strains of 

Synechococcus group. The cells contained phycoerythrin (c-PE) as their main light 

harvesting pigment, had a G + C content between 57 and 58.2 mol % of their DNA, and 

required saltwater in culture. These characteristics were consistent with strains 

accommodated within "Marine Cluster A" (Burgey's Manual of Systematic 

Bacteriology). The 16S rDNA sequences from the Ace Lake and Pendant Lake strains 

had 99.8% similarity. Except for Synechococcus strain NIV A-CYA 328, which was 

isolated from Oslofjord, Norway, the three Antarctic strains were more closely related to 

Prochlorococcus marinus than to other marine Synechococcus strains sequenced. The 

Synechococcus group appears to be polyphyletic, with one of the branches clustering 
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with P. marinus. 168 rDNA sequences of further strains from this group of organisms 

are required to determine their taxonomy more clearly. 

Based on the square root temperature dependence model, the Ace Lake strain of 

Synechococcus had a theoretical tmm of-8° C, a 'topt of 19.7° C and a tmax of29.8° C. In 

culture, the Ace Lake strain could not sustain growth at a light intensity of 5 µmol 

photons m-2 s-1 white light, and growth did not appear to be inhibited at high light 

intensities (200 µmol photons m-2 s-1
). All three strains were incapable of growth in 

freshwater .. 

Morphological and physiological characteristics of the Antarctic Synechococcus strains 

are discussed and compared with other marine strains previously assigned to the genus 

Synechococcus and the species P. marinus. 
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5.2 Introduction 

Traditionally cyanobacteria have been classified according to morphological and 

physiological characteristics (Bourrelly 1985; Drouet 1981; Geitler 1932). This was 

largely true for all prokaryotes until the advent of molecular biological techniques (Fox 

et al. 1980). Unlike other prokaryotes, the cyanobacteria have a wide variety of 

morphological characteristics that has made their classification simpler than the 

classification of the heterotrophic bacteria. Even so, the taxonomy of the group has 

been plagued with problems and is now undergoing considerable change based on 

phylogenetic characteristics (Castenholz 1992). 

Classification within the Synechococcus group has not escaped taXonomic revision 

(Stanier et al. 1971 ). Due to their morphological similarity, species distinction within 

this group have probably been more difficult than species distinction in other genera of 

cyanobacteria. This is illustrated by the name changes of strains over time, and the 

assignment of different names or strain numbers (depending on the culture collection) to 

the one Synechococcus strain. As an example, the wrongly characterised Anacyctis 

nidu/ans is now known as PCC6301 or ATCC27144 (Waterbury and Rippka 1989) but 

has also been known as Synechococcus /eopo/iensis (Rigby et al. 1980), Synechococcus 

6301 (McK.ie et al. 1981) or simply as Synechococcus (Lawry and Jensen 1979). 

Taxonomic problems have been exacerbated by the assignment of species names based 

on limited taxonomic evidence. This is highlighted by the sixty species names, once 

used in the classification of the genus (Drouet and Daily 1956; Komarek 1976). 
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The taxonomic system described by Waterbury and Rippka, (1989) which is the one 

currently being used for the genus Synechococcus is based on a combination of 

morphological (cell size), biochemical (pigment content), physiological (salinity 

tolerance) and limited genetic (G + C ratio) characteristics. In addition, new strains are 

not given species names, they simply retain a strain designation. This system is a 

modification of the 'Stanier system' (Stanier et al. 1971) and classifies the genus 

Synechococcus into one of six clusters, each having a reference strain. It is anticipated 

that, with the collection of more phylogenetic information, each of these clusters will 

represent a genus. The clusters are currently named Cyanobacterium, Synechococcus, 

Marine Cluster C, Marine Cluster A, Marine Cluster B and Cyanobium. It appears, 

however, that this is not a universally accepted taxonomic system for the Synechococcus 

group. Organisms from this group are still being given species names based on 

morphological and physiological characteristics (Bailey-Watts 1991 ). 

It is estimated that only about 5% of Synechococcus strains have been described 

(Castenholz 1992). The above classification system will grow, and probably be 

modified based on l 6S rRNA information, as more organisms from within this group 

and from within other genera of single celled cyanobacteria, such as Prochlorococcus, 

are characterised. 

Synechococcus are classified as picoplankton according to the size classification system 

of Sieburth et al. (1978). Picoplankton are between 0.2 and 2 µm wide, nanoplankton 

between 2 and 20 µm and microplankton are greater than 20 µm. Since the discovery of 

marine picoplankton in the late 1970's (Johnson and Sieburth 1979; Waterbury et al. 
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1979), Synechococcus has been shown to be widel~ distributed and important for 

primary productivity in most oceans of the world. The isolation of strains of the 

Synechococcus group from Antarctic saltwater lake environments has provided a unique 

opportunity to investigate the taxonomic similarities between these polar Synechococcus 

strains to their tropical and temperate counterparts. 

In this chapter, the culture history and the morphological, biochemical, phylogenetic and 

physiological characteristics of three Synechococcus strains isolated from marine 

derived, meromictic, lakes in the Vestfold Hills, Antarctica is described. These 

I 

taxonomic characteristics are discussed in relation to other strains of Synechococcus and 

to the closely related P. marinus. 

5.3 Materials and Methods 

5.3.1 Isolation of Synechococcus sp. from Antarctic meromictic lakes 

The series of steps used to obtain the unicyanobacterial culture of the Ace Lake 

Synechococcus strain is given below. 

5.3.1.1 Initial isolation of SynechococcusfromAce Lake 

SNAX, SOX, F/2 and FE media prepared in filtered lake water were used for the initial 

isolation of Synechococcus from Ace Lake (Appendix 5 for media). One millilitre of 

fresh inoculum taken from each of several depths in Ace Lake was cultured in 25 ml of 

media (Falcon 50 ml culture flasks) at 4° Con a 12h dark/light cycle using cool white 
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light (20 µmol photons m·2 s"1
). At this stage, it was important to make the media in 

water taken from the same depth from which the inoculum came. This is because the 

lake is meromictic and the chemistry, in particularly the salinity, changes with depth. 

Cultures were left for one month before being checked for growth. The flow cytometer 

and fluorescent microscope were used to examine cultures for the growth of 

Synechococcus cells. 

Following the initial isolation, Synechococcus cells from 11 m grown in SNAX media 

made with 11 m Ace Lake water were used for manipulation of the culture. Unless 

stated otherwise, cultures were grown at 10° C, 30 µmol photons m·2 s·1 ona12 h 

day/night cycle. 

5.3.1.2 Purification by serial dilution 

As Synechococcus was dominant in the cultures taken from 11 m, serial dilutions were 

prepared to try to obtain axenic cultures of the cyanobacteria. An initial serial dilution 

was set up as follows: 

The serial dilution was prepared in a series of ten flasks. Twenty-five millilitres of 

culture media (SNAX) was added to each flask. Flask one was inoculated with 100 µl 

of the original culture. The flask was mixed thoroughly and used as the inoculant for 

the next flask in the series. One millilitre was used as the inoculant for subsequent 

culture flasks. Between each inoculation the flask containing the inoculant was mixed 

thoroughly. Inoculant transfer was done using sterile 1 ml syringes. A new syringe was 
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used for each inoculation. Cultures were monitored for growth by both flow cytometry 

and visual observations. 

5.3.1.3 Purification by cycloheximide treatment 

In parallel to a repeat serial dilution, cycloheximide was used to remove the 

Cryptomonas sp. and any other eukaryotes that contaminated the Synechococcus 

cultures. Cycloheximide is a specific inhibitor of protein synthesis in eukaryotes but 

does not effect prokaryotes (Newell et al. 1983). Cycloheximide (Sigma Chemicals) 

was prepared as an aqueous solution at a concentration of I 0 mg m1-1 (Xiuren and 

Vaulot 1992). The solution was filter sterilised through a 0.2 µm filter (Millipore). 

This was used as a I 00 X stock solution and was stored at 2° C in the dark. 

Cycloheximide was added, at a final concentration ofO.I mg m1-1
, to a subculture of the 

originally enriched Ace Lake 11 m culture. The culture was incubated, as above, until 

growth occurred. Following evaluation of the culture by microscopy and flow 

cytometry, the culture was used in a third serial dilution. The last culture to show 

growth in the dilution series was used as an eukaryote free, unicyanobacterial culture. 

This culture was further manipulated to remove heterotrophic bacteria. 
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5.3.1.4 Culturing on AGAR plates 

While cultures were being put through serial dilution and antibiotic treatment, an 

attempt was made to grow the organism on solid media so as to allow physical 

separation of the cyanobacterial cells. Agar plates using SNAX medium and Ace Lake 

11 m water were prepared (Appendix 5) and cells from the originally enriched culture 

were streaked over five plates. Two pour plates were also prepared. Plates were 

incubated as above. 

5.3.1.5 Removal of heterotrophic bacteria 

By this stage, Synechococcus cultures were free of eukaryotic organisms but were 

contaminated with a heterotrophic bacterium. The removal of heterotrophic bacteria 

from the Ace Lake Synechococcus culture was attempted using two antibiotic 

treatments. 

Synechococcus cultures that were in stationary phase of growth were incubated in 

SNAX, containing either 200 mg rt, 300 mg rt, or 400 mg rt imipenem, for 40 hours in 

the dark at 10°C. Imipenem (Merck), 100 mg, was dissolved in 20 ml SNAX media and 

filter sterilized using a 0.2 µm filter (Millipore). This 100 X stock solution was used in 

the antibiotic treatments and was stored in small aliquots at -70° C. lmipenem is a 

broad spectrum J3-lactam antibiotic that inhibits bacterial peptidoglycan biosynthesis 

(Kropp et al. 1985). 
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Synechococcus is an autotrophic organism and therefore will not grow and divide during 

dark incubation. Heterotrophic bacteria will grow independent of the light intensity. If 

a Synechococcus culture is incubated in the dark with a carbon source such as glycerol, 

then the heterotrophic bacteria, if present, will grow and divide where as the 

Synechococcus cells will remain in stationary phase. As imipenem inhibits bacterial 

peptidoglycan biosynthesis the heterotroph should be killed where as the Synechococcus 

cells should survive (Ferris and Hirsch 1991). 

Following a 40 h incubation in media containing imipenem the cultures were 

centrifuged at 11,000 rpm, 4° C for 30 minutes, washed twice with sterile SNAX 

medium and resuspended in 25 ml of SNAX medium. The cultures were then 

incubated, as above, to allow the Synechococcus cells to recover from the imipenem 

treatment. A small volume of the washed culture was used as an inoculant for a 

glycerol-containing culture. This was to determine ifthe heterotrophic bacteria had 

been killed by the imipenem. The antibiotic treatment was repeated twice. 

Alternatively, an antibiotic cocktail (1, 1.5 or 2 ml) was added to 25 ml of 

Synechococcus cultures. The antibiotic cocktail consisted of 100 mg penicillin and 100 

mg streptomycin dissolved in 10 ml water along with 10 mg chloramphenicol dissolved 

in 1 ml 95% ethanol. The cocktail was filter sterilized and stored at 4° C. These 

cultures were incubated at 10° C in the dark. 
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After either a 24 h or 36 h period, cultures were centrifuged twice at 11 OOO rpm, 4° C 

for 30 minutes and the cells were resuspended in SNAX medium to allow the 

Synechococcus cells to recover. Alternatively a 11100 dilution was taken from the 

antibiotic treatment and incubated in SNAX media. This alternative procedure was 

performed in case the centrifugation step introduced further contamination. 

5.3.1.6 Culturing in seawater 

For long term maintenance of the Ace Lake Synechococcus strain, cells needed to be 

grown in sea water rather than lake water. At 11 m in Ace Lake the salinity is close to 

that of sea water. Cultures were grown in SNAX medium using open ocean sea water. 

Other growth conditions remained constant. 

5.3.2 Isolation of Synechococcus strains from Pendant Lake and Lake Abraxas 

Strains of Synechococcus were isolated from Pendant Lake (6 m) and Lake Abraxas (19 

m) using cycloheximide containing SNAX media based on Ace Lake 11 m water. The 

cultures were incubated at 10° C, 30 µmol photons m-2 s-1
, with a 12 h day-night cycle. 

Following treatment with cycloheximide, both strains were serially diluted and the last 

cultures to show growth were used as the unicyanobacterial cultures. 
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5.3.3 Taxonomic characteristics of Antarctic Synechococcus. 

5.3.3.1 Epifluorescence microscopy 

A Leitz DMRBE epifluorescence microscope with filter block M2 (excitation filter BP 

546/14, dichromatic mirror RKP 580, suppression filter LP 580) was used for cell 

counts, morphological characterisation and photography. Slides of cultures or lake 

water samples were prepared by filtering cells onto 0.2 µm polycarbonate filters, pre­

stained with lrgalan Black (Millipore). Cell sizes were calculated using a pre-calibrated 

eyepiece micrometer. Twenty cells of each strain were measured and the average cell 

size of each strain calculated. For photomicroscopy cells were applied to glass slides 

pre-coated with agar (Noble Agar, Difeo) and photographed under oil immersion, 

1 OOO X magnification, using green fluorescence. 

5.3.3.2 Electron microscopy 

The Ace Lake strain of Synechococcus was examined by transmission electron 

microscopy (TEM). Cultures grown in SNAX medium based on Ace Lake 11 m water, 

were grown at 30 µmol photons m-2 s-1 continuous light (dark red/brown culture). Cells 

were harvested in late exponential phase and prepared for TEM analysis according to 

the following method. Cells were fixed at 4 ° C in the dark for 1 hr with 4 % 

gluteraldehyde and then centrifuged at 3000 r.p.m. for 10 min, at 4° C. Cells were 

transferred to Eppendorf tubes and post-fixed in 2 % Os04 at room temperature for 1 hr 

in growth medium. Cells were centrifuged, as above, and dehydrated for 15 min in 10 
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%, 30 %, and 50 % acetone. Cells were left overnight at 4° C in 70 % acetone. The 

following day the dehydration series continued (70 %, 80 %, 90 %, 95 %, 3 x 100 %). 

Cells were then suspended in 50:50 dry acetone: Spurr's resin for 1 hr. Cells were spun 

at 10 OOO r.p.m. 5 minutes and the pellet suspended in 100 % Spurr's resin overnight at 

70° C. After cooling, serial sections were cut with a diamond knife and stained with 

uranyl acetate and lead citrate. Sections were examined using a JOEL 1200 EX 

transmission electron microscope. 

5.3.3.3 In-vivo absorption, emission and excitation spectra 

Cultures used in the analysis of in-vivo absorption and emission spectra were grown at 

4° Cat a constant light intensity of 10 µmol photons m-2 s-1
, which resulted in dark 

red/brown cultures due to the low light conditions. Dense culture of each of the three 

strains was used for the scans. A GBC UVNIS 916 spectrophotometer with an 

integrating sphere and disposable cuvettes (Biorad) were used for in-vivo absorption 

spectra over the range 400 nm to 750 nm (5 nm intervals, 2 nm slit width). The 

integrating sphere eliminated the effects of scattering and gave scans with well-defined 

peaks. A baseline scan was performed on filtered seawater. The in-vivo emission and 

excitation spectra were obtained on a Perkin Elmer Luminescence Spectrometer using 

disposable cuvettes (Biorad). The emission spectra were collected over a wavelength 

range of 500 - 700 nm with an excitation wavelength of 450 nm (Ex bp 15 nm, Em bp 

10 nm). The excitation spectra were collected over a wavelength range of 400-665 nm 

with an emission wavelength of680 nm (Ex bp 10 nm, Em bp 10 nm). Baseline scans 

were performed with filtered seawater. 



5.3.3.4 Extraction and analysis of lipid soluble pigments 

Pigment analysis was performed on the Ace Lake and Pendant Lake Synechococcus 

strains. Cultures were grown in SNAX medium based on 11 m Ace Lake water, at 

10° C, under continuous cool white light, at 20 µmol photons m-2 s-1
• The "high light 

cultures" were grown at 100 µmol photons m·2 s·1
• 
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Lipid soluble pigments were extracted according to Wright et al., (1991 ). Cells in late 

exponential phase, were filtered onto GF/F filters (Millipore) under low pressure 

(< 15 Kpa) in subdued light. The filters were frozen in liquid nitrogen, and before 

analysis, were cut into small pieces. Buffered methanol (98:2 methanol: ammonium 

acetate 0.5M pH 7.1) was added (3 ml) and the filter was sonicated for 30 seconds using 

a Braun Labsonic 1510 equipped with a 4 mm diameter probe, operated at 50 W. The 

samples were then centrifuged (2000 rpm) at 4°C to remove filter debris and 

immediately before HPLC analysis the extracts were filtered (Millex - SR 0.5 µm). 

Samples were analysed on a Spectraphysics HPLC, comprising: a SP8800 ternary pump; 

Spectra Focus detector; and a Gilson 231 autosampler (with samples refrigerated at-

100C), using a Spherisorb OD52 column 250 x 4.6 mm and the ternary gradient system 

of Wright et al., (1991). Chromatograms were analysed using Specta Physics software. 

Scientific Committee for Oceanic Research (SCOR) cultures from Wright et al., (1991) 

were extracted and analysed at the same time as the Antarctic Synechococcus culture to 

aid in the identification of pigments. SCOR cultures included: Amphidinium carterae 
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(CS 212); Chroomonas salina (CS 174); Dunaliella tertiolecta (CS 175); Micromonas 

pusilla (CS 86); Pav/ova lutheri (CS 182); Porphyridium cruentum (CS 25); 

Pycnococcus provasolii (CS 185) and Synechococcus strain (DC-2, CS 197). 

5.3.3.5 Extraction and analysis of lipids 

Lipid analysis was performed on the Ace Lake Synechococcus strain. Cultures were 

grown as for lipid soluble pigment analysis. Culture A was harvested at the beginning 

of exponential phase and culture B at the end of exponential phase for lipid analysis. 

Cultures were filtered onto GF fF glass fibre filters and extracted by the modified one­

phase CHC13-MeOH-H20 Bligh Dyer method (Bligh and Dyer 1959; White et al. 1979). 

Two filters were analysed for each culture. Filters were shredded before addition of 

solvents. After phase separation, lipids were recovered from the lower CHCl3 layer, 

concentrated and stored at -20° C under N2• 

A portion of the total lipid extract was analysed with an Iatrascan Mk. ill TH-10 thin 

layer chromatography-flame ionization detector (TLC-FID) analyser (Volkman and 

Nichols 1991). The solvent system used was C6H14-(C2H5)0-CH3C02H (60:17:0.5 

v/v/v). Peak areas of the individual lipid classes were quantified with chromatography 

software. 

A subunit of the total lipid extract (30%) was saponified (Nichols et al. 1991). The 

saponified fatty acid fraction was treated with MeOH-HCl-CHCh (10:1:1v/v/v3 ml) to 

produce the corresponding fatty acid' methyl esters (F AMEs) which were then extracted 

with C6H14-CHCh (4:1 v/v). Gas chromatographic analyses were performed using a 
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Hewlett Packard 5890 gas chromatograph (GC) fitted with a 50 m x 0.32 mm i.d. HPI 

(0.17 µm film thickness) cross-linked methyl silicone fused-silica capillary column with 

H2 as the carrier gas. The .Ge was fitted with a flame ionisation detector (310° C) and a 

purged split/splitless injector (290° C). Samples were injected using an Hewlett 

Packard 7673A autosampler. Oven temperature was programmed from 50°C to 150°C 

at 30° C min -1
, then at 2° C to 250° C at 5° C min-1 to 300° C. Identification of 

compounds was performed by gas chromatography-mass spectrometry (FISONS 

MD800 GC-MS) using conditions as described by Barrett et al., (1995) for the 

hydrogenated samples and by comparison of retention time and the mass spectral data 

with data obtained from authentic and laboratory standards. Double bond positions 

were determined by the method described by Skerratt et al., (1991). 

5.3.3.6 Phylogenetic analysis 

5.3.3.6.1 165 rDNA Analysis 

DNA was extracted from the strains of Synechococcus from Ace Lake and the Pendant 

Lake and Lake Abraxas according to a method modified from Marmur and Doty, 

(1962); Fang et al., (1992) and C. Bolch, (personal communications). Cells were grown 

until they formed a dense culture. Cells were allowed to settle from 5 ml of culture. 

Cells were mixed with saline-EDTA (0.1 M NaCl and 0.1 M EDTA, pH 8.1) to make a 

final volume of 80 µI. One-hundred microlitres of Lysozyme (100 mg 

mr1
) was added and the cells incubated at 60° C for 30 minutes Then 20 µl SDS (0.2 % 

w/v) and 20 µl Proteinase K (25 mg mr1
) were added, followed by a second incubation 

at 60° C for 30 minutes. A further 60 µl of0.2 % SDS was added and a 30 minute 



incubation at 60° C followed. A chloroform: IAA (isoamylalcohol) extraction was 

performed followed by and ethanol precipitation of DNA. 
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The majority of cells were not lysed using this method and a more rigorous method 

used. Unlysed cells, taken from the interface between the aqueous layer and the 

chloroform layer in the above procedure, were mixed with saline EDT A to a final 

volume of 200 µl and 20 µl Lysozyme, incubated at 60° C for 5 hours, followed by an 

overnight incubation with 20 µL 0.2% SDS. Proteinase K (60 µl) was then added and 

incubated at 3 7° C for 3 hours. Another 60 µl 0.2% SDS was added and incubated at 

37°C for 30 minutes. Sodium perchlorate 60 µl (5 M) was added and a chloroform: 

IAA extraction was performed. An ethanol precipitation (2 volumes of absolute 

ethanol, -20° C for 2 hours, centrifuged at 14000 rpm for 30 minutes), a salt 

precipitation (1 volume of 4 M NaCl followed by 2 volumes of absolute ethanol, -20° C 

for 10 minutes, centrifuged at 14000 r.p.m. for 30 minutes, pellet washed with 70 % 

EtOH ) and a PEG (13 % PEG (6000) in 1.6 M NaCl) precipitation followed (1 volume 

of PEG, centrifuged at 14000 for 30 minutes). Measurement on the absorption 

spectrophotometer indicated a successful extraction of DNA although genomic DNA 

was not detected by gel electrophoresis. This genomic DNA was used successfully in 

the following PCR reactions. 

The 16S rDNA from the two strains were amplified by PCR using primers A and H 

(Lane 1991). The sequences for these two primers is given in Table 5.1. Each PCR 

mixture (100 µl) contained each deoxynucleotide at a concentration of 50 µM, 2.5 µM 

magnesium chloride, PCR buffer N (25mM ammonium sulfate, 75 mM Tris- HCl, (pH 

9.0), 0.01 % Tween 20), 50 pmol of each primer, 5 % (v/v) dimethyl sulfoxide, 80 or 
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560 ng genomic DNA, and 2.5 U of thermostable DNA polymerase (Advanced 

Biotechnologies, Surrey, UK). The PCR were performed in a Corbett Research model 

FTS-960 thermocycler. The reaction parameters included an initial 5 minute incubation 

at 94° C, followed by 30 cycles consisting of 94° C for 1 minute, 50° C for 1 minute and 

72° C for 5 minutes PCR products were purified using a QIA quick gel extraction kit 

(Qaigen, Inc., Chatsworth, Cal). The PCR products were sequenced directly to obtain 

the 168 rDNA sequence. An Applied Biosystems model 3 73 8A automated sequencer 

using a fluorescent -dye terminator cycle sequencing kit (Perkin Elmer) and primers A, 

H, 20, 785r, 23 and 19 (Lane 1991) were used for the sequencing (Table 5.1). 

Table 5.1: Primer sequences used in the PCR amplification of the 
16S rDNA from the Ace Lake strain and Pendant Lake strain of 
Synechococcus. Sequences from (Lane 1991). 

Primer 
A 
20 
785r 
H 
23 
19 

Sequence 
5'AGAGTTTGATCCTGGCTCAG 
5'GTAGCGGTGAAATGCGTAGA 
5'TCTACGCATTTCACCGCTAC 
5'AAGGAGGTGATCCAGCCGCA 
5'AAACTCAAAGGAATTGACGG 
5'CAGCAGCCGCGGTAATAC 

Position 
8-28 
684-704 
785-765 
1542-1522 
908-928 
518-536 

The 168 rDNA sequences were aligned with other sequences downloaded from the 

GeneBank internet site. PHYLIP (v3.5) (Felsenstein 1993) was then utilized for 

phylogenetic analysis, and evolutionary distances were determined with the 

maximum likelihood algorithm by using the DNADIST program. Rooted 

phylogenetic trees were obtained using the Neighbor program. Phylogenetic trees 

were generated using DRA WGRAM. The strain numbers and GenBank accession 

numbers for the 168 rDNA sequences utilized for comparison in this study are given 

in Table 5.2 



Table 5.2: Names, strain numbers, GenBank accession numbers and environment, from which strain was isolated, for the strains 
used for comparison in the phylogenetic tree produced for the Ace Lake and Pendant Lake strains of Synechococcus . 

Strain Strain No. GenBankNo. Isolated from: Reference 

Prochlorococcus marinus SSW5 X63140 Temperate marine, Sargasso Sea (Urbach et al. 1992) 
Synechococcus elongatus no data D83715 Freshwater, thermophilic (Kobayashi et al. 1996) 
Synechococcus lividus Y-7b7c-S X67091-X67093 Thermal springs, U.S.A. (Ward et al. 1990) 
Unknown marine SAR6 X52169 Temperate marine, Sargasso Sea (Giovannoni et al. 1990) 
bacterioplankton 
Unknown marine SAR7 X52171 Temperate Marine, Sargasso Sea (Giovannoni et al. 1990) 
bacterioplankton 
Synechococcus /eopoliensis PCC6301 or Z82780 Freshwater, Texas (Rudi et al. 1997) 

NIVA-CYA20 
Synechococcus sp. PCC6301 X03538, X01296, Freshwater, Tesas (Kumano et al. 1986) 

K01982 
Synechococcus sp. NIV A-CY A 328 Z82779 Marine, Oslo Fjord, Norway (Rudi et al. 1997) 
Synechococcus sp. PCC7002 D88289 Marine Sediment, Perto Rico (Tronsmo et al. 1996) 
Synechococcussp. PCC7942 D88288 Freshwater (Tronsmo et al. 1996) 
Prochloron sp. no data X63141 Tropical, marine (Urbach et al. 1992) 
Proch/orothrix hollandica NIVA 5/89 Z82782 Freshwater, The Netherlands (Rudi et al. 1997) 
Phormidium ectocarpi CCAP 1462/5 X62080-X62082 Marine (Wilmotte et al. 1993) 
Phormidium minutum D5 X62685, X62686 Marine (Wilmotte et al. 1993) 
Microcystis ho/statica U40336 Freshwater (Neilan et al. 1997) 
Microcystis e/abens U40335 Freshwater (Neilan et al. 1997) 
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5.3.3.6.2 DNA Base Composition (mol % G+C) analysis using the thermal 
denaturation procedure: 

DNA was extracted from the three Antarctic strains of Synechococcus, using a method 

adapted from (Marmur and Doty 1962). Cells were centrifuged at 10 OOO x g for 10 

minutes at 4° C and pellets were resuspended in 5 ml 1MNaCl-0.1 M sodium EDTA 

buffer (pH 8.1) in 15 ml polypropylene tubes. Lysozyme was added to the cell 

suspensions to a concentration of 1 mg ml-1 and incubated at 60° C for 1 hour. The cell 

suspension was then treated with pronase E (Sigma) added at 10 mg mr1 and incubated 

at 37° C for 30 minutes. Sodium dodecyl sulfate (20% solution) was added to obtain a 

concentration of 2 % and the suspensions were incubated at 60° C for 10 minutes. 

Sodium perchlorate (5 M solution) was added to a concentration of 1 Mand the 

suspensions were vigorously shaken. An equal volume of isoamylalcohol:chloroform 

(1 :24) was then added (approximately 7 ml) and the suspensions were vigorously 

shaken. The emulsion was then centrifuged at 4000 X g in a bench centrifuge for 5 

minutes. The aqueous layer was then transferred to a clean glass beaker. DNA was 

precipitated by addition of 1to2 volumes of chilled absolute ethanol. Precipitated 

DNA was spooled onto a pasteur pipette and air dried. The air dried DNA was then 

redissolved into 2 ml 0.1 x SSC (SSC, saline-sodium citrate buffer, 0.15 M NaCl-0.015 

M trisodium citrate, pH 7.0). Ribonuclease A was then added at 1 mg ml-1 and the 

solution was incubated at 37° C for 1 hour. An equal volume of 

isoamylalcohol:chloroform (1 :24) was then added (2 ml) and the suspensions were 

vigorously shaken. The emulsion was then centrifuged at 4000 x g in a bench centrifuge 

for 5 minutes. The aqueous layer was then transferred to a clean glass beaker. DNA 

was precipitated by addition of 1-2 volumes of chilled isopropanol and 0.1 volume of 3 
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M sodium acetate-10 mM sodium EDTA (pH 7.0). Precipitated DNA was spooled onto 

a pasteur pipette washed with briefly with isopropanol and air dried. The air dried DNA 

was then redissolved into 1-2 ml 0.1 X SSC (SSC, saline-sodium citrate buffer, 0.15 M 

NaCl-0.015 M trisodium citrate, pH 7.0). 

The DNA base composition was determined by a method adapted from Sly et al., 

(1986). DNA solutions were adjusted to a concentration of approximately 30 µg mr1 in 

0.1 SSC. Quartz cuvettes containing 1 ml of the DNA solution were then placed in a 

GBC 916 spectrophotometer (GBC Scientific, Adelaide, SA) and held at 50 C. The 

temperature was then ramped at 2.5° C min-1 (up to 95° C) using-water circulating 

through a water-jacketed cuvette holder via a controlled temperature waterbath. 

Absorbance readings at 260 nm were taken automatically at 0.5 min. intervals for each 

sample using a linear module. DNA from strain Pseudo/ateromonas haloplanktis 

ACAM 547 (mol % G+C 41.0 mol %) was used as a reference strain. Triplicate melting 

curves of the test strains and reference strain were plotted ( absorbance versus 

temperature) and the Tm (DNA melting temperature) was determined. The mol % G+C 

of the test strains were then determined from the following equation adapted from 

(Meinkoth and Wahl, (1984 and Sly et al., (1986): Tm(reference) - Tm(test) = 53.1 -

0.41 (G+C% (reference) - G+C% (test)). 
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5.3.4 Physiological characteristics of Antarctic Synechococcus strains. 

5.3.4.J Determination of cardinal growth temper,ature 

Cultures were grown in SNAX medium, based on Ace Lake 11 m water, in 15 ml 

culture tubes (Falcon), under cool white light at 20 µmol photons m·2 s ·1, on a 12 hour 

day/night cycle. A gradient incubator was used with constant slow agitation, with a 

temperature range of -1° C to 30° C, and with the light source at the back was used. A 

electronic temperature data logger was kept in one of the ports of the incubator 

throughout the experiment to ensure that temperatures remained constant. Cultures 

were incubated at each temperature in duplicate or triplicate over a seven week period. 

Samples (0.25 µl) were taken from the cultures, aseptically, and analysed for changes in 

cell number by flow cytometry at intervals which varied depending on the growth 

temperature. 

Growth rate (GR) at each temperature was determined during exponential phase of 

growth, according to the equation GR= k = (log10 C2 - log C1)/ (ti - t1), where C1 was 

the cell concentration (cells m1"1) at time (t1) and C2 was the cell concentration at ti. 

Theoretical minimum, optimal and maximum growth rates for the Ace Lake 

Synechococcus strain were determined over the entire biokinetic temperature range 

using the square root model (Ratkowsky et al. 1983; Ratkowsky et al. 1982). The 

equation for the square root model was --/ k = b(T-T min)(l-exp( c(T-T max)) ), where k = 

bacterial growth rate, b = a parameter to be fitted, T = growth temperature in Kelvin, 

T min = theoretical temperature at which k is zero, T max = upper theoretical temperature at 
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and which no growth is possible and c = parameter to be fitted. Data was also fitted to 

Rosso's model (Rosso et al. 1993) in order to confirm the cardianal temperatures of the 

I 

Ace Lake Synechococcus. The equation for Rosso's model was k ~ flopt(T-T ...,)(T\ 

T min)2 /(T opr T min) { (T opr T min)(T-T opt)-(T opr T max)(T opt+ T min - 2T). The SAS statistical' 

program (SAS Institute 1989) was used to fit data to the model. 

5.3.4.2 Effect of light intensity on growth 

Cultures of the Ace Lake Synechococcus strain were grown in SNAX medium based on 

Ace lake 11 m water at 15 (± 2)° C under the light regimes outlined in Table 5.3. 

Table 5.3: Light regime to which Synechococcus cells were 
exposed. The light source was cool white light. Light 
measurements are in µmol photons m·2 s·1• Numbers in 
brackets indicate hours per day tha~ cells were exposed. 

Treatment 
Control 

A 
B 
c 

Light 
20 (12) 
20 (24) 
5 (24) 

300 (24) 

Light was measured with a Li-Cor Quantum/Ratiometer/Photometer Li -185. The light 

intensity in the gradient incubator was measured by inserting a perspex rod into a slot 

where a culture tube would normally-sit. This was used to carry the light from the 

source to the light meter at the front of the incubator. The cultures were monitored over 

time, for changes in fluorescence intensity and cell numbers, by flow cytometry. 
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5.3.4.3 Effect of salinity on the' growth of Synechococcus cells. 

Strains of Synechococcus from Ace Lake, Pendant Lake and Lake Abraxas were grown 

in SNAX medium, based on Ace Lake 11mwater,in50 ml culture flasks (Falcon). 

Cells in exponential growth were used in the salinity tolerance experiment. Cells were 

grown at 10°C, with 30 µmol photons m-2 s-1 continuous cool white light. Cells from 

each of the three lakes were subjected to four treatments: 

• SNAX mineral medium made with 100 % 11 m Ace Lake water (Salinity~ 30 ppt). 

• SNAX mineral medium made with two thirds Ace Lake water and one third Milli-Q 
water (Salinity ~ 20 ppt). 

• SNAX mineral medium made with one third Ace Lake water and two thirds Milli-Q 
water (Salinity~ 10 ppt). 

• SNAX mineral medium made with 100% Milli-Q water (Salinity~ 0 ppt). 

Flow cytometric methods (Chapter 2) were used to monitor changes in cell numbers 

over time and data was subjected to ANOV A (Sigmastat 1992) and pairwise multiple 

comparison procedures (Student-Newman-Keuls (SNK) Test) to determine the effect of 

salinity on the growth of the organism. 
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5.5 Results 

5.5.1 Isolation of Synechococcus from Antarctic meromictic lakes 

5.5.1.1 Initial isolation from Ace Lake 

When Synechococcus cells were initially enriched from Ace Lake, waters from four 

depths were used to inoculate four types of media. The microbiota that developed in the 

initial enrichments are summarised in Table 5.4. 

Table 5.4: Organisms that dominated cultures from the initial isolation of 
Synechococcus from Ace Lake in December 1992. The numbers in 
brackets indicate the depth from which water was collected for 
preparation of the medium. 

Medium 
F/2 (2m) 
FE(2m) 
F/2 (2m) 
FE(2m) 
F/2 (8m) 
FE(8m) 

F/2 (llm) 
SNAX(llm) 
SOX (llm) 

Inoculum 
2m 
2m 
6m 
6m 
Sm 
Sm 
llm 
llm 
llm 

Dominant Phototroph 
Predominantly Cryptomonas sp but mixed 
Predominantly Cryptomonas sp but mixed 
Synechococcus (low numbers), Cryptomonas sp. 
Synechococcus (low numbers), Cryptomonas sp. 
Synechococcus but mixed culture 
Synechococcus but mixed culture 
Synechococcus dominant but mixed culture 
Synechococcus dominant but mixed culture 
No growth obvious 

Synechococcus cells were not observed in cultures inoculated with water from 2 m in 

Ace Lake. Cultures predominantly consisted of Cryptomonas sp. The cultures were 

pink which is consistent for enrichments containing Cryptomonas sp. cells. The orange 

fluorescence emitted from the cryptomonad phycoerythrins was also evident with flow 

cytometric analysis. 
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It was possible to use media made up in water collected from 2 m for the 6 m 

inoculation, as the lake was mixed between 2 m and 7 m and the water chemistry was 

the same (Chapter 3): Synechococcus cells were observed in cultures from 6 m but they 

were not dominant. The dominant species was Cryptomonas sp.. In Ace Lake 

Synechococcus has been observed at 6 m but other organisms dominate at this depth 

(Chapter 3). 

At 8 m Synechococcus was dominant in most cultures but the cultures contained a high 

number of eukaryotic organisms. 

In Ace Lake, Synechococcus cells were in the greatest numbers at 11 m, (Chapter 3 ), 

and growth of the organism in cultures from this depth was the most successful. 

Synechococcus did not grow in SOX medium, even when actively growing cells were 

transferred to SOX medium. At 11 m growth of Synechococcus cells was greatest in the 

SNAX medium, although the F /2 medium also supported the growth of the 

picocyanobacteria. When cells were transferred between the two types of media 

Synechococcus cells grew equally as well in both types of media. The cultures initially 

inoculated with water from 11 m in Ace Lake contained Synechococcus cells in high 

numbers but they also contained other organisms. The cultures were light orange-brown 

in colour. Diatoms, that adhered firmly to the bottom and sides of culture flasks, were 

the first organism to appear in the cultures. The diatoms appeared after five weeks 

incubation at 4 ° C. The diatoms produced small brown colonies and were bright red 

(under a green light), elongated cells approximately 10 µm in length, when observed by 

fluorescence microscopy. Synechococcus cells were often associated with the diatom 

colonies A coccoid shaped unidentified microflagellate (also about 10 µm in diameter) 



was observed. Pyramamonas gelidicola and Cryptomonas sp. were also observed in 

some cultures. 
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Synechococcus was always more abundant than the eukaryotic organisms in enrichments 

inoculated with water from 11 m. For this reason enrichments inoculated with water 

from 11 m were used for the production an axenic culture of Synechococcus. SNAX 

medium, based on 11 m Ace Lake water, was used as a standard medium for growing 

the Ace Lake Synechococcus strain. 

5.5.1.2 Serial dilutions and cycloheximide treatment 

A dilution series was performed using the enrichment culture that had been inoculated 

with 11 m Ace Lake water. After five weeks, growth was evident in the 104 dilution 

flask of the first dilution series. No growth was observed in the 10-5 dilution flask. 

Although Synechococcus was dominant in the inoculum the Cryptomonas sp. dominated 

the 104 dilution flask. When each of the flasks in the series was examined by flow 

cytometry, the change in ratio of Synechococcus cells to the Cryptomonas sp. cells over 

the series was evident. The serial dilution, was repeated and the same result was 

obtained. 

When a sample of the enrichment culture inoculated with 11 m Ace Lake water was 

exposed to cycloheximide the growth of Synechococcus cells was not inhibited but 

neither the Cryptomonas sp., nor the diatom, grew. The final culture from a further 

dilution series was used for biochemical analysis and physiological characterisation of 

the Ace Lake Synechococcus strain. This culture was orange-brown in colour. 
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5.5.1.3 Culturing on agar media 

Growth of Synechococcus cells on agar media was not consistent. Growth was obtained 

on 2 of the 5 streak plates and one of the pour plates. Isolated colonies were not visible 

on any plates. The colonies merged together. The cells growing on the plates were dark 

red-brown in colour and were slimy. Cells from agar media were restreaked, but 

colonies did not develop. 

There may have been too many impurities in the agar used and Synechococcus may have 

grown more successfully on molecular grade agarose plates (A. Davidson, personal 

communications). Agarose medium (0.5%), made from SNAX medium based on water 

collected from 11 m in Ace Lake, was prepared. Two· plates were inoculated with 

Synechococcus cells from the original enriched culture and two plates were inoculated 

with cells from the agar plates. Synechococcus cells did not grow on any of the agarose 

media. 

5.5.1.4 Removal ofheterotrophic bacteriafrom cultures 

Glycerol was initially added to cultures to determine if cells could be preserved under 

liquid nitrogen. Heterotrophic bacteria always grew instead of Synechococcus upon 

retrieval of stored stocks. SNAX medium has no added carbon source. A heterotrophic 

bacteria were surviving in the Synechococcus stored stocks and was using glycerol as an 

energy and carbon source. The heterotroph only grew when a carbon source was added 



to the medium. In order to continue characterisation of the Ace Lake Synechococcus 

strain attempts were made to eliminate the heterotroph. 
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The antibiotic, imipenem, and an antibiotic cocktail were used to try to eliminate the 

heterotroph. After exposure to imipenem, followed by an incubation period of 72 hours 

in antibiotic free medium, the heterotrophic bacterium was not observed by phase 

c~ntrast microscopy. Heterotrophic bacteria appeared in the cultures after two weeks. 

Following antibiotic treatment, it may have taken a longer time period for the 

heterotroph to recover. The imipenem treatment was not successful and the antibiotic 

cocktail was tested. 

Following exposure to the antibiotic cocktail, the heterotrophic bacterium had grown in 

all treatments except the 36 h (2 ml) antibiotic treatment. Heterotrophic bacteria were 

observed in this treatment after three weeks. 

Neither antibiotic treatment was successful in removing the heterotrophic bacterium 

from Synechococcus cultures. In medium to which a carbon source had not been added, 

Synechococcus cells dominated and heterotrophic bacteria were present in background 

levels (<1 %). 
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5.5.1.5 Growth of Synechococcus in seawater 

The Ace Lake Synechococcus strains did not grow in SNAX medium based on coastal 

seawater collected at a pristine site on the Tasman Peninsula, Tasmania. When open 

ocean seawater, collected during marine science cruises, was used the Ace Lake 

Synechococcus strain grew well. 

5.5.2 Synechococcus from other locations 

In January 1993 a second strain of Synechococcus was isolated from Pendant Lake and, 

in November 1993, a third strain was isolated from Lake Abraxas. Both strains grew 

well in the presence of cycloheximide producing cultures free from other phototrophs. 

The cultures were the same colour as the culture of the Ace Lake strain. They ranged 

from light brown to dark brown-red depending on the light intensity under which they 

were grown. Like the Ace Lake strain the cultures were not axenic but without an 

external carbon source heterotrophic bacteria occurred in low numbers(< 1%). 

5.5.3 Taxonomic characteristics of Antarctic Synechococcus strains 

5.5.3.1 Epifluorescent microscopy. 

Cells of all three strains appeared as orange-red fluorescent coccoid cells under green 

light (Figure 5.1). Cells were uniform in shape and size (Table 5.5). The Ace Lake 

strain and the Lake Abraxas strain were the same size and cells were distributed evenly 
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on the filter. The Pendant Lake strain was slightly larger and cells were clump loosely 

together on the filter. Synechococcus cells in Pendant Lake water samples also clumped 

loosely on the filter. 

Table 5.5: Cell size of the three strains of Synechococcus 
isolated from meromictic lakes in the Vestfold Hills. Numbers 
in brackets are standard deviations based on ten replicates. 

Strain 
Ace Lake 

Pendant Lake 
Lake Abraxas 

Width (µm) 
0.91 (0.13) 
1.1 (0.14) 

0.91 (0.13) 

5.5.3.2 Electron Microscopy 

Length (µm) 
1.50 (0.11) 
1.81 (0.11) 
1.51 (0.11) 

Cells of the Ace Lake Synechococcus strain contained a cell wall, cell membrane, 

thylakoid membranes, ribosomes, phycobilisomes and polyhedral bodies (Figure 5.2). 

The polyhedral bodies were approximately 85 nm in diameter and the phycobilisomes 

were 20.3 ± 5.7 nm in diameter. 



Figure 5.1: a) Photomicrograph of the Ace Lake Synechococcus strain. b) 
Photomicrograph of the Ace Lake Synechococcus strain subjected to green 
light fluorescence. Bar= 10 µm. 
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Figure 5.2: Electron micrograph of Ace Lake Synechococcus strain . Cells 
were grown under low light conditions (30 µmol photons m-2 s-1) at 10° C. 
CW= cells wall ; CM = cell membrane; Thyl = thylakoid membrane; Pbs = 
phycobilisomes ; Cbs = carboxysomes. Bar= 540 nm. 
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Figure 5.3: ln-vivo A) Excitation spectra; B) Emission spectra and C) 
Absorption spectra from the three Antarctic Synechococcus strains. a) 
chlorophyll a; b) 1313-carotene; c) c- phycoerythrin; d) phycocyanin; e) 
allophycocyanin and f) chlorophyll a. 
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5.5.3.3 Jn-vivo excitation, emission and absorption spectra 

The in-vivo spectra (excitation, emission and absorption) were the same for the three 

Antarctic strains of Synechococcus (Figure 5.3). The excitation spectra contained peaks 

from chlorophyll a ( 460 nm and 670 nm), phycoerythrin (570 nm), a shoulder, possibly 

from~~ - carotene or phycoeurobilin (500 nm), and a plateau from phycocyanin and 

allophycocyanin (615-635 nm). 

The emission spectra contained a phycoerythrin peak at 575nm. The absorption spectra 

contained peaks from chlorophyll a ( 440 nm and 680 nm), possibly ~~- carotene ( 495 

nm), a phycoerythrin peak (565 nm), a phycocyanin peak (620 nm) and an 

allophycocyanin peak (650 nm). 

5.5.3.4 Lipid soluble pigment composition. 

The Antarctic Synechococcus strains contained chlorophyll a (absorption maximum 431 

nm),~~- carotene and zeaxanthin as well as two unidentified, zeaxanthin like, 

carotenoids (Figure 5.4). The absorption spectra of the two unknown were similar. The 

retention time of the two pigments differed by 0.75 minutes. Unknown 'B' had 

absorption maxima at 454 nm and 483 nm and Unknown 'A' had absorption maxima at 

455 nm and 485 nm (Figure 5.5). 
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Figure 5.4: HPLC trace of lipid soluble pigments separated from the Ace 
Lake Synechococcus strain grown under A) high light intensity and B) low 
light intensity. a) me-chlorophyllide a; b) =unknown a; c =unknown a; d = 
zeaxanthin; e= chlorophyll a and f = ~~ - carotene. 
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Figure 5.5: Absorption spectra from the unknown lipid soluble pigments 
isolated from the Ace Lake Synechococcus strain. A) Unknown a had a 
retention time of 13.435 minutes and an absorbance maximum of 454 nm; B) 
Unknown b had a retention time of 14.184 minutes and an absorbance 
maximum of 455 nm. 
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When grown under high light conditions ( 100 µmol photons m-2 s-1), cells from the Ace 

Lake Synechococcus strain expressed a different lipid soluble pigment ratios to those 

expressed when cells were grown under low light (20 µmol photons m-2 s-1), (Figure 

5.4). In cells grown at the high light intensity, the zeaxanthin:chlorophyll a ratio was 

4.5 where as in the low light grown cells the ratio was 0.34 (Table 5.6). In contrast the 

ratio of~~- carotene:chlorophyll a was 0.4 in the high light grown cells and 0.23 in the 

low light grown cells. Zeaxanthin, unknown 'A' and unknown 'B' represented 36, 35 

and 21 % respectively of the total carotenoids in the high light grown cells and 37, 27 

and 11 % in the low light grown cells. 

Table 5.6: Lipid soluble pigment composition (percent of total) 
in Ace Lake Synechococcus strain grown under high (100 
µmol photons m-2 s"1

) and low light (20 µmol photons m-2 s"1
) 

intensities. 

Pigment High Light Low Light 
Intensity Intensity 

Chlorophyllide a 11 2 
UnknownB 19 5 
Unknown A 29 13 
Zeaxanthin 30 17 
Chlorophyll a 7 51 
1313 - carotene 6 '• 20 

The Pendant Lake strain of Synechococcus, when grown under a low light intensity (20 

µmol photons m-2 s-1), had the same lipid soluble pigments as the Ace Lake strain, albeit 

in different ratios (Figure 5.6). It contained a chlorophyll a derivative (abs. max. 429 

nm) but no obvious chlorophyll a, and it also had a high ratio of a chlorophyll a epimer 

(abs. max. 432 nm). Cis-~~- carotene, a chlorophyll a allomere (abs. max. 423 nm) and 

a second chlorophyll a derivative (abs. max. 417 nm) were present in low 

concentrations. 



Figure 5.6: HPLC trace of the lipid soluble pigments extracted and separated 
from the Pendant Lake Synechococcus strain grown under a low light 
intensity. a} chlorophyllide a; b} me - chlorophyllide a; c} Unknown a; d} 
Unknown b; e} zeaxanthin; f} chlorophyll a derivative; g} chlorophyll a 
allomere; h} chlorophyll a derivative; i} chlorophyll a epimere; j} 1313- carptene 
and k} cis -1313 - carotene. 
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5.5.3.5 Lipid composition 

Polar lipids comprised 99% (± 1 %) of the total lipids in the two cultures of the Antarctic 

strain of Synechococcus. The fatty acid classes of the Ace Lake Synechococcus strain 

are presented in Table 5.7. 

Table 5.7. Fatty acid composition of the Ace Lake strain of 
Synechococcus. Culture A was harvested during early 
exponential growth and culture B during late exponential 
growth. Fatty acids are designated x:yroz where x is the 
number of carbon atoms, y is the number of double bonds 
and z is the position of the last double bond from the 
terminal methyl group. 

Fatty acid Culture A Culture B 
14:1 4.7 (1.3) 7.1 (0.3) 

14:0 18.1 (4.5) 28.0 (3.5) 

15:1 0.2 (0.2) 

15:0 0.4 (0.4) 0.6 (0.6) 

16:1w7c 49.5 (2.4) 42.9 (0.5) 

16:0 11.8 (1.0) 10.0 (2.0) 

17:1 1.2 (0.1) 0.9 (0.9) 

17:0 0.7 (0.7) 0.2 (0.2) 

18:1w9c 1.4 (0.4) 0.5 (0.3) 

18:1w7c 3.1 (0.9) 1.3 (0.1) 

18:0 5.5 (3.0) 1.9 (1.2) 

Unknown 1 1.0 (1.0) 0.3 (0.3) 

Unknown 2 0.6 (0.6) 0.3 (0.3) 

Unknown 3 Tr 

tr = trace (< 0.1 %). Each data series is the average (SO in 
parentheses) of duplicate cultured strains of Synechococcus. 

16:1ro7 was the dominant fatty acid (49.5% in culture A and 42.9% in culture B) 

followed by 14:0 (18.1 % in culture A and 28% in culture B). Polyunsaturated fatty 

acids (PUFA's) were not detected in the cultures. There were minor differences in fatty 

acid composition between culture A, harvested during early log growth and culture B, 

harvested during late log growth. The percentage of 14:0 was higher and that of 16:1ro7 
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was lower in cells from culture B. 18:1ro9, 18:1ro7 and 18:0 comprised 10% of fatty 

acids in culture A and only 3.5% in culture B. The ratio of 14:1 to 14:0 and 16:1ro7 to 

16:0 did not change with culture age. Two novel lipids were detected at low 

concentration in the Antarctic strain of Synechococcus (Figure 5.7a). These compounds 

were analysed by GC-MS. The two novel compounds had similar ring structures. 

Unknown 1 was tentatively identified as 2,4,6,-tri( dimethyl(benzyl)phenol and unknown 

3 as 2,4-bis(dimethylbenzyl)-6-t-butylphenol (Figure 5.7b). Unknown '2' was not 

identified. 

5.5.3.6 Phylogenetic analysis 

The Ace Lake, Pendant Lake and Lake Abraxas strains of Synechococcus had DNA G + 

C contents of57.0 ± 0.6 %, 58.2 ± 0.5 % and 57.7 ± 0.3% respectively. 

The 16S rDNA genes of the Ace Lake and Pendant Lake strains were partially 

sequenced (Table 5.8). The sequences were 1456 base pairs long and were aligned from 

nucleotide position 17 to nucleotide position 14 73 (Escherichia coli numbering). The 

phylogenetic tree (Figure 5.8) shows the evolutionary relationship between these three 

Antarctic strains of Synechococcus, other Synechococcus strains, Proch/orococcus spp., 

Prochlorophytes, Phormidium spp. and two strains from the Sargasso Sea. The Ace 

\ 

Lake strain and Pendant Lake strain were 99.7 % similar (Table 5.9). These two strains 

were 97 % similar to Synechococcus strain NIV A-CY A 328 and 96 % similar to P. 

marinus. 
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There was no evidence ofheterozygosity in the sequences, meaning that there was only 

one strain per culture and that there was no contamination of the DNA by heterotrophic 

bacteria. The Pendant Lake strain was sequenced twice for confirmation. The 168 

rRNA from the Lake Abraxas Synechococcus strain has been partially sequenced and it 

was closely related to the Ace Lake and Pendant Lake Synechococcus strains (Figure 

5.8). 
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Figure 5.7a: Partial gas chromatogram of fatty acids from the Ace Lake 
Synechococcus strain. lnt Std denotes internal standard. Abbreviations, fatty 
acid nomenclature is as defined in Table 5.7. 

3 7 

(unknown2) 

73 
11 4 2 

3 1 

(Unknown 1) 

2 3 
3 6 

91 11 

7 

294 
6577 39 39355 

250 300 350 400 450 550 

Figure 5.7b: Mass spectra of Unknown 1 and Unknown 2 in a fatty acid fraction 
isolated from the Ace Lake Synechococcus strain. Unknown 1 was tentatively 
identified as 2,4 -bis (dimethylbenzy) - 6 - butylphenol. 
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Table 5.8: Nucleotide sequence for 165 rDNA from the Ace Lake and Pendant Lake strains 
of Synechococcus. The Pendant Lake strain was sequenced twice (hence Pendant2). 

Ace 
Pendant ATGAACGCTGGCGGCGTGCTrA 
Pendant2 NNNNNNNNNNAGTTrGATCCTGGCTCAGGA TGAACGCTGGCGGCGTGCTrA 

ACACATGCAAGTCGAAGCGGC--TrCG--GCTAGTGGCGGAAGGGTGAGTAACG 
ACACATGCAAGTCGAAGCGGC-TrCG-GCTAGTGGCGGAAGGGTGAGTAACG 
ACACATGCAAGTCGAAGCGGC-TrCG-GCTAGTGGCGGAAGGGTGAGTAACG 

CGTGAGAATCTGCCCTCAGGAGGGGGATAACAGCTGGAAACGGCTGCTAATACCCCATAT 
CGTGAGAATCTGCCCTCAGGAGGGGGATAACGGCTGGAAACGGCTGCTAATACCCCATAT 
CGTGAGAATCTGCCCTCAGGAGGGGGATAACAGCTGGAAACGGCTGCTAATACCCCA1NT 

GCCGAGAGGTGAAA-CAATr-TCGCCTGAGGATGAGCTCGCGTCTGATr AGCTAGTrGGT 
GCCGAGAGGTGAAA-CAATr-TCGCCTGAGGATGAGCTCGCGTCTGATr AGCT AGTrGGT 
GCCGAGAGGTGAAA-CAATr-TCGCCTGAGGATGAGCTCGCGTCTGATrAGCTAGTrGGT 

GAGGTAAGGGCTCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACA 
GAGGTAAGGGCTCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACA 
GAGGTAAGGGCTCACCAAGGCATCGATCAGTAGCTGGTCTGAGAGGATGATCAGCCACA 

CTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATrTrCCGCAAT 
CTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATrTrCCGCAAT 
CTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATrTrCCGCAAT 

GGGCGCAAGCCTGACGGAGCAACGCCGCGTGAGGGACGAAGGCCTCTGGGCTGTAAACCT 
GGGCGCAAGCCTGACGGAGCAACGCCGCGTGAGGGACAAAGGCCTCTGGGCTGTAAACCT 
GGGCGCAAGCCTGACGGAGCAACGCCGCGTGAGGGACAAAGGCCTCTGGGCTGTAAACCT 

CTTTrGTCAAGGAAGAAGACA-TGACGGTACTrGAGGAATAAGCCACGGCTAATrCCG 
CTrTrGTCAAGGAAGAAGACA-TGACGGTACTrGAGGAATAAGCCACGGCTAATrCCG 
CTrTrGTCAAGGAAGAAGACA-TGACGGTACTrGAGGAATAAGCCACGGCTAATrCCG 

TGCCAGCAGCCGCGGTAATACGGGAGTGGCAAGCGTrATCCGGAATrATrGGGCGTAAAGCG 
TGCCAGCAGCCGCGGTAATACGGGAGTGGCAAGCGTrATCCGGAATrATrGGGCGTAAAGCG 
TGCCAGCAGCCGCGGTAATACGGGAGTGGCAAGCGTrATCCGGAATrATrGGGCGTAAAGCG 

TCCGCAGGCGGCCCAGAAAGTCTGTrGTrAAAAAGTGGAGCTCAACTCCATCCAGGCAAT 
TCCGCAGGCGGCCCAGAAAGTCTGTrGTrAAAAAGTGGAGCTCAACTCCATCCAGGCAAT 
TCCGCAGGCGGCCCAGAAAGTCTGTrGTrAAAAAGTGGAGCTCAACTCCATCCAGGCAAT 

GGAAACTACTGGGCTAGAGTGTGGTAGGGGCAGAGGGAATrCCCGGTGTAGCGGTGAAAT 
GGAAACTACTGGGCTAGAGTGTGGTAGGGGCAGAGGGAATrCCCGGTGTAGCGGTGAAAT 
GGAAACTACTGGGCTAGAGTGTGGTAGGGGCAGAGGGAATrCCCGGTGTAGCGGTGAAAT 

GCGTAGATATCGGGAAGAACACCAGTGGCGAAGGCGCTCTGCTGGGCCATAACTGACGCT 
GCGTAGATATCGGGAAGAACACCAGTGGCGAATGCGCTCTGCTGGGCCATAACTGACGCT 
GCGTAGATATCGGGAAGAACACCAGTGGCGAATGCGCTCTGCTGGGCCATAACTGACGCT 

CATGGACGAAAGCTAGGGGAGCGAAAGGGATrAGATACCCCTGTAGTCCTAGCCGTAAAC 
CATGGACGAAAGCTAGGGGAGCGAAAGGGATrAGATACCCCTGTAGTCCTAGCCGTAAAC 
CATGGACGAAAGCTAGGGGAGCGAAAGGGATf AGATACCCCTGTAGTCCTAGCCGTAAAC 

GATGAACACTAGGTGTCGGGAGAATrATCCCTCTCGGTGTCGTAGCCAACGCGTrAAGTG 
GATGAACACTAGGTGTCGGGAGAATrATCCCTCTCGGTGTCGTAGCCAACGCGTrAAGTG 
GATGAACACTAGGTGTCGGGAGAATrATCCCTCTCGGTGTCGTAGCCAACGCGTrAAGTG 

TrCCGCCTGGGGAGTACGCNCGCAAGTGTGAAACTCAAAGGAATrGACGGGGGCCCGCAC 
TrCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAAGGAATrGACGGGGGCCCGCAC 
TrCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAAGGAATrGACGGGGGCCCGCAC 

AAGCGGTGGAGTATGTGGTTrAATrCGATGCAACGCGAAGAACCTf ACCAGGGCTrGACA 
AAGCGGTGGAGTATGTGGTTrAATrCGATGCAACGCGAAGAACCTrACCAGGGCTrGACA 
AAGCGGTGGAGTATGTGGTTrAATrCGATGCAACGCGAAGAACCTrACCAGGGCTrGACA 

TCCTGCGAACCCCTGAGAAATCGGGGGGTGCCTrCGGGAACGCAGTGACAGGTGGTGCAT 
TCCTGCGAACCTCTGAGAAATCGGAGGGTGCCTrCGGGAACGCAGTGACAGGTGGTGCAT 
TCCTGCGAACCTCTGAGAAATCGGAGGGTGCCTrCGGGAACGCAGTGACAGGTGGTGCAT 



Table 5.8 continued: Nucleotide sequence for 168 rDNA from the 
Ace Lake and Pendant Lake strains of Synechococcus. 

GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCAC 
GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCAC 
GGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCAC 

GTCT1TAGTTGCCAGCAT1TAGTTGGGCACTCTAAAAAGACCGCCGGTGA 
GTCT1TAGTTGCCAGCAT1TAGTTGGGCACTCTAAAAAGACCGCCGGTGA 
GTCT1TAGTTGCCAGCAT1TAGTTGGGCACTCTAAAAAGACCGCCGGTGA 

TAAACCGGAGGAAGGTGTGGATGACGTCAAGTCATCATGCCCCTTACGTCCTGGGCTACA 
TAAACCGGAGGAAGGTGTGGATGACGTCAAGTCATCATGCCCCTTACGTCCTGGGCTACA 
TAAACCGGAGGAAGGTGTGGATGACGTCAAGTCATCATGCCCCTTACGTCCTGGGCTACA 

CACGTACTACAATGCTACGGACAAAGGGCAGCAAACTCGCGAGAGCTAGCAAATCCCAT 
CACGTACTACAATGCTACGGACAAAGGGCAGCAAACTCGCGAGAGCTAGCAAATCCCAT 
CACGTACTACAATGCTACGGACAAAGGGCAGCAAACTCGCGAGAGCTAGCAAATCCCAT 

-AAACCGTGGCTCAGTTCAGATCGTAGGCTGCAACTCGCCTGCATGAAGGAGGAATCGCT 
-AAACCGTGGCTCAGTTCAGATCGTAGGCTGCAACTCGCCTGCATGAAGGAGGAATCGCT 
-AAACCGTGGCTCAGTTCAGATCGTAGGCTGCAACTCGCCTGCATGAAGGAGGAATCGCT 

AGTAATCGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCG 
AGTAATCGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCG 
AGTAATCGCAGGTCAGCATACTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCG 

TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 
TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 
TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 

TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 
TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 
TCACACCATGGAAGTTGGCCATGCCCGAAGTCGTTACTCCAACCC-GCAAGGGAGGGGC 

("-"=alignment gaps) 
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-------------Prochloron sp. 

------- Phormidium minutum 

11.----------Phormidium ectocarpi 

--------- Prochlorothrix hollandica 

Synechococcus sp. PCC 7942 

Synechococcus sp. PCC 6301 

Ace Lake strain 

Pendant Lake strain 

Pendant Lake strain (2) 

Lake Abraxas strain 

Prochlorococcus marinus 

---clone SAR6 

.._---clone SAR7 

--Synechococcus sp. NIVA-328 

Microcytsis holstatica 

---Synechococcus elongatus 
----------~ Synechococcus Jividus 

----------Synechococcus sp. PCC 7002 

5% 

Figure 5.8 Phylogenetic tree showing the evolutionary relationship between the three 
Antarctic Synechococcus strains and other closely related cyanobacteria. The 16S 
rDNA sequences were aligned with other sequences downloaded from the GeneBank 
internet site. PHYLIP (v3.5) (Felsenstein, 1993) was utilized for phylogenetic analysis, 
and evolutionary distances were determined with the maximum likelihood algorithm by 
using the DNADIST program. Rooted phylogenetic trees were obtained using the 
Neighbor. 
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Table 5.9: 16S rDNA sequence similarity between Synec/wcoccus strains and Proc/1lorop/1ytes 

Strain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Sequence Similarity(%): 

1. Ace Lake strain 100 
2. Pendant Lake strain 99.6 100 
3. Pendant Lake strain (2) 99.7 99.9 100 
4. Synechococcus sp. NIV A-CYA 328 97.0 96.6 96.6 100 
5. Prochlorococcus marinus 95.6 95.7 95.6 95.4 100 
6. Clone SAR7 94.7 94.6 94.7 94.5 97.0 100 
7. Clone SAR6 93.9 94.0 93.9 95.4 98.2 96.9 100 
8. Synechococcus leopoliensis 91.0 90.7 90.7 90.0 89.4 88.4 90.0 100 
9. Synechococcus sp. PCC6301 89.0 88.9 89.2 88.8 88.6 89.3 89.4 99.3 100 
10. Synechococcus sp. PCC7942 89.9 89:9 90.0 89.2 88.9 89.2 89.2 99.8 99.6 100 
11. Synechococcus lividus 89.1 89.0 89.0 87.5 88.2 88.5 89.1 90.5 91.1 91.5 100 
12. Proch/orothrix hollandica 88.5 88.4 88.8 86.4 87.9 88.2 88.4 92.2 91.0 90.8 90.3 100 
13. Synechococcus elongatus 87.6 87.4 87.4 85.0 87.4 87.7 87.7 86.9 89.1 88.9 98.8 89.1 100 
14. Phormidium minutum 86.7 86.3 86.6 83.0 85.7 87.2 86.8 88.2 89.0 88.9 88.5 89.5 87.4 100 
15. Phormidium ectocarpi 86.6 86.2 86.2 82.6 84.3 84.9 84.8 86.4 87.5 87.6 87.9 89.0 84.3 92.4 100 
16. Synechococcus sp. PCC7002 84.9 84.9 84.9 82.9 86.5 86.9 86.8 84.9 88.1 88.7 89.2 89.2 88.1 89.8 86.8 100 
17. Prochloron sp. 84.8 84.8 84.9 82.1 83.0 85.1 84.8 95.9 86.7 86.9 88.8 88.1 88.3 87.9 85.5 90.1 100 
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5.5.4 Physiological characteristics of Antarctic Synechococcus strains. 

5.5.4.J Optimal growth temperature 

Growth rates for the Ace Lake strain of Synechococcus were determined over the range -

I ° C to 30° C. Growth was detected between I. 7° C and 28° C. The growth rates were 

slow, even at the optimal growth temperatures. Growth rates and generation times for 

the Ace Lake Synechococcus strain grown between I. 7° C and 28° C are given in Table 

5.10. 

Table 5.10: Predicted growth rates and generation times based on the 
square root model for the Ace Lake strain of Synechococcus grown 
between 1° C and 28° C • Actual growth rates and generation times 
were close to those predicted. 

Temperature {° C) 
1.7 
3.3 
5.3 
7.9 
9.6 
11 

12.1 
13.7 
15.1 
16.2 
19.8 
22.3 
24.6 
25.6 
27.4 

Growth Rate (k) days·1 

0.038 
0.040 
0.049 
0.068 
0.088 
0.091 
0.092 
0.097 
0.089 
0.094 
0.113 
0.132 
0.077 
0.068 
0.033 

Generation Time (Days) 
18.0 
17.3 
14.2 
10.2 
7.9 
7.6 
7.5 
7.1 
7.8 
7.3 
6.1 
5.3 
8.9 
10.1 
20.9 

Actual growth rates fitted well to the square root model for predicting theoretical 

minimum and maximum growth temperatures (Figure 5.9). 
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Figure 5.9: Theoretical growth curve, obtained from the square root model 
(Ratkowsky et al. 1983), for the Ace Lake Synechococcus strain. Actual data 
points obtained in the temperature gradient experiments are shown. 
lrradiance was 20 µmol photoms m·2 s·1• 
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The equation for the square root model (Ratkowsky et al. 1983) based on growth rates 

between 1.7° C and 28° C was: °'1k= 0.001484(T-256.1)(1-exp(0.22994(T-302.71))). 

The theoretical minimum, optimum and maximum growth temperatures and their 

confidence limits are given in Table 5.11. 

Table 5.11: Predicted minimum, optimum and maximum growth 
temperatures for the Ace Lake Synechococcus strain, based on the 
'square root model' (Ratkowsky et al.1983). 

T(min) 
T (opt) 
T (max) 

Theoretical Temp. {° C) 
-17.1 . 
19.7 

29.55 

Confidence Limits (0 C) 
-25.6 to -8.6 

28.3 to 30.8 
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Cardinal growth temperatures, based on Rosso's model (Rosso et al. 1993) are given in 

Table 5.12. Predicted minimum and maximum growth temperatures were similar to 

those predicted by the 'square root model'. 

Table 5.12: Predicted minimum, optimum and maximum growth 
temperatures for the Ace Lake Synechococcus strain, based Rosso's 
model (Rosso et al. 1993). 

Theoretical Temp. (° C) Confidence Limits (0 C) 
T (min) 
T (opt) 
T (max) 

-13.7 
19.7 
28.2 

-23.2 to -4.1 
18.0 to 21.5 
27.2 to 29.3 

5.5.4.2 Effect of Light Intensity on fluorescence emission 

Exposure of the Ace Lake Synechococcus strain to 'high' and 'low' light intensities 

altered both the orange and red fluorescence flow cytometric relative to the control 

(Figure 5.10). Exposure of cells to light of a lower intensity (5 µmol photons m-2 s-1
) 

than the control (20 1-1mol photons m-2 s-1
) increased both the orange and red 

fluorescence signals relative to the control (Table 5.13). 

Table 5.13: Relative changes (as a percent of the control) in orange (FL2) and 
red (FL3) fluorescence, and in the ratio of FL2/FL3, in the Ace Lake strain of 
Synechococcus when exposed to 'high' and 'low' light intensities. Arrows 
indicate an increase (t) or a decrease(..!..) in fluorescence intensity. 

*µmol photons m·2 s·1 FL2 signal FL3 signal FL2/FL3 
20 (12h) - Control 11 

5 (24 h) 409%t 326%t 13 
20 (24 h) 20%..1.. 54%t 6 

300 (24 h) 90%..1.. 45%..I.. 2 

* numbers in brackets are hours per day that cells were exposed to the lightintensity 
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Exposure of cells to a high light intensity (300 µmol photons m·2 s"1
) relative to the 

control resulted in decreased fluorescence signals. There was no apparent change in cell 

volume (FSC). Cell numbers in cultures exposed to low (5 µmol photons m·2 s"1
) light 

intensity decreased relative to the control (Figure 5.11) (t-test, P < 0.0001, n = 4). 

5.5.4.3 Effect of salinity on growtli 

Salinity affected the growth of the Ace Lake Synechococcus strain (ANOVA, p<0.0001, 

n = 3). There was not a significant difference in the growth of cells grown in medium 

based on water collected from 11 m in Ace Lake (30 g kg-1
) water and medium that was 

2/3 (20 g kg-1
) the salinity of Ace Lake water collected from 11 m (SNT test, p> 0.05, n 

= 3). There was however a significant reduction in growth between other treatments 

(Table 5.14). 

Table 5.14: Pairwise multiple comparisons (SNT 
test, P < 0.05, n = 3) of changes in cell number, of 
Ace Lake Synechococcus strain, grown at 
different salinities 

Salinity (g kg"1
) 

30 v's 20 
30 v's 10 
30 v's 0 

20 v's 10 
20 v's 0 
10 v's 0 

Reduction in growth 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

Based on flow cytometric forward angle light scatter (FSC) and fluorescence emission 

signals, there was no observed change in relative cell volume or fluorescence emission 

intensity in FL2 (orange) or FL3 (red) due to the salinity changes. 
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Figure 5.1 O: Flow cytometric histograms showing the relative change in orange 
fluorescence (x-axis) between of the Ace Lake Synechococcus strain grown under low 
li~ht intensity, 5 µmol photons m·2 s·1, (A) and high light intensity, 300 µmol photons m·2 

s· , (B). The X axis is on a log scale and represents FL2. The Y-axis represents the 
relative number of individual events. 1 = treatment, 2 = control (20µmol photons m·2 s"1 

for 12 h per day) and 3 = calibration beads. 
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Figure 5.11: Effect of light intensity of the growth, in culture, of the Ace Lake 
Synechococcus strain. Cultures grown at a low light intensity (5 µmol photons 
m·2 s"1

) had significantly less cells than cultures grown at 20 µmol photons m·2 

s"1 and 300 µmol photons m·2 s·1 after thirteen days exposure. Error bars 
represent 95 % confidence limits. Numbers in brackets indicate the time 
(hours) per day that cells were exposed to the light intensity indi~ated. 
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5.6 Discussion 

It was a relatively easy process to obtain the enrichment cultures of the three Antarctic 

Synechococcus strain as they occurred in high numbers in the lakes and cycloheximide 

treatment was successfully used to eliminate eukaryotic organisms. Eliminating 

heterotrophic bacteria from cultures was a more difficult process and was in fact only 

attempted with the Ace Lake strain. Unless an external carbon source was added to the 

culture, the heterotroph remained at back ground levels (<1 %). It is known (Stanier et 

al. 1971) that heterotrophic bacteria are harbored in the extracellular slime of many 

cyanobacteria, which makes purification by serial dilution difficult. The Ace lake strain 

grew on solid media but growth was inconsistent and it was difficult to isolate single 

colonies. With further modification and optimisation of this method, it should be 

possible to obtain axenic cultures of these three strains as has been achieved with other 

Synechococcus strains (Castenholz 1969; El Hag 1986; Stanier et al. 1971; Waterbury et 

al. 1986). 

Not one of the three Antarctic strains would grow in seawater collected from a rocky 

coastal site, yet all grew well in seawater collected from a deep oceanic site. The reason 

for this is not known but it could have been due to impurities in the water at the coastal 

site that may have entered from the local catchment. No attempt was made to analyses 

the quality of the coastal seawater, but it was routinely used for growing krill which are 

known to be sensitive to water quality (P. Cramp, personal communications). 
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The three strains of Synechococcus are now stored with the phototroph culture 

collection at CSIRO marine laboratories, Hobart, Australia. They are growing in G.P. 

media based on seawater (Appendix E), at 4° C, under 10 µmol photons m-1 s-1
• They 

are subcultured at three monthly intervals. At this stage the three strains are referred to 

as the Ace Lake strain, the Pendant Lake strain and the Lake Abraxas strain. They are 

awaiting culture collection strain numbers. 

Isolation of Synechococcus were attempted from the other meromictic sites and the 

coastal marine site, as Synechococcus may have been present in numbers too low for 

detection by flow cytometry. No cultures were obtained using undiluted lake water 

samples as the inoculum. It is possible that cultures could be obtained, especially from 

the marine site where Synechococcus has been previously reported (Walker and 

Marchant 1989), by concentrating the inoculum by filtration or centrifugation. 

5.6.1 Taxonomic characterisation 

The cell sizes of the three Antarctic strains was consistent with other members of the 

group Synechococcus. Marine cluster A has a size range of 0.6 to 1.7 µm (Waterbury 

and Rippka 1989). 

Fluorescence characteristics indicated the cells contained phycoerythrin. The cells were 

orange-red under green light and yellow-orange under blue light. As the cultures were 

not obtained from single celled isolates it was possible that there was some genetic 

variability in the cultures. Cells from each strain, however, had uniform fluorescence 

under green light, indicating that the ratio ofphycoerythrin to other phycobiliproteins 
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was consistent (Alberte et al. 1984; Wood et al. 1985). The ratio of phycoerythrin to 

other phycobilliproteins is supposedly an intrinsic characteristic of a strain that is not 

affected by culture age or by the light intensity to which cells are exposed (Wood et al. 

1985). 

The difference in uniformity of size between those cells measured and the cells in Figure 

5.1 is probably due to the technique by which the cells were prepared for microscopy. 

The cells were photographed on agarose coated slides whereas the cells that were used 

for size measurements were filtered onto irgulan black stained filters. 

The Ace Lake strain had ultrustructural features consistent with other strains of the 

Synechococcus group (Edwards et al. 1968; Fogg et al. 1973; Gantt and Conti 1969; 

Golecki 1979). The thylakoid membranes were loosely arranged around the outside of 

the cells and the phycobilisoms lined the edges of the thyakoids (Figure 5.2). The 

phycobilisoms, which are the light harvesting complexes in these organisms, were 20.3 

± 5.7 nm in diameter. This is consistent with the size range (20 - 70 run) given by 

Allen, (1984) and Glazer, (1982) for cyanobacteria. 

The polyhedral bodies, named because of their polygon shape, were slightly smaller in 

size than the size reported by others (0.1 - 0.7 µm; Allen 1984). Little is known of the 

function of these structures but they have also been called carboxysomes and are 

thought to store the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase 

RUBPase (Allen 1984). One hypothesis for their existence is that they protect the 

enzyme from oxygen radical damage when cells grow in a high oxygen environment 

(Joint 1986). If this is the case it is not surprising that they would be present in cells 
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isolated from Ace Lake where the oxygen concentration can be greater than 150 percent 

saturation. 

Like all other cyanobacteria, Synechococcus cells contain chlorophyll a as their primary 

photosynthetic pigment and phycobiliproteins as accessory light harvesting pigments 

(Waterbury and Rippka 1989). The abundance of the phycobiliproteins is responsible 

for the colour of cyanobacterial cells. Cyanobacteria which contain no phycoerythrin, 

for example many of the freshwater strains (Stockner and Antia 1986; Vezina and 

Vincent 1997) and some marine strains of Synechococcus (Stockner and Antia 1986; 

Waterbury et al. 1986), appear blue-green. Cyano~acteria such as the Antarctic strains 

of Synechococcus, which contain relatively high concentrations ofphycoerythrin, appear 

reddish-orange (Kana et al. 1988). Prochlorococcus marinus does not contain 

phycobiliproteins (Goericke and Repeta 1992). 

The absorption peak at 500 nm (Figure 5.3) was probably from~~- carotene (Guillard et 

al. 1985). (~-carotene, unlike the xanthophyll pigments, is involved in light harvesting 

and occurs in all strains of Synechococcus thus far studied (Kana et al. 1988). 

Identical phycobiliprotein absorption, excitation and emission peaks were obtained for 

the three Antarctic Synechococcus strains. In these strains, the phycoerythrin absorbed 

at 565 nm and emitted at 575 nm. This is typical of c-PE; c standing for cyanobacteria 

(Cohen-Bazire and Bryant 1982). Many marine Synechococcus strains posses 

phycobiliproteins composed of both phycoerythrobilin (PEB) and phycourobilin (PUB) 

(Alberte et al. 1984; Olson et al. 1990b). This gives them a wider absorption range in 

the blue-green range of the speetrum, possibly resulting in a competitive advantage for 
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photosynthesis at greater depths in the water column (Wood 1985; Yentsch and Phinney 

1985) or under the ice in Antarctic lakes (Burch 1988). Even without phycourobilin, 

cyanobacteria that possess phycoerythrin have an advantage over organisms that only 

possess chlorophylls and even over those organisms that use phycocyanins as their 

major light harvesting pigments. 

The expression of the phycobiliproteins in marine Synechococcus seems to be 

independent of culture age and light intensity, indicating that it is constitutively 

expressed. The concentration of phycoerythrin, as well as chlorophyll a and 1313-

carotene in a cell is, however, dependent on light intensity (Wood et al. 1985). A 

change in the concentration of phycoerythrin and chlorophyll a was observed, through 

an increase or decrease in fluorescence intensity, in the Ace Lake Synechococcus strain 

when it was grown at different light intensities. 

Zeaxanthin is a common pigment found in the Synechococcus group and has been used 

as a chemical signature to identify the picocyanobacteria in environmental samples 

(Guillard et al. 1985). 1313- carotene and zeaxanthin were the only two carotenoids found 

in the Scientific Committee for Scientific Researc1?. (SCOR) reference strain of 

Synechococcus (DC-2) (Wright et al. 1991). The unknown carotenoid compounds in the 

Antarctic strains were not found in the SCOR strain or in other Synechococcus strains 

reported in literature. The role of the two unknown carotenoids is not known but they 

occurred in significant quantities (approximately 30% of total carotenoid for Unknown 

A and 16 % of total carotenoid for Unknown B). 
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Zeaxanthin is considered to play a role in protecting cells from photooxidative damage 

at high light intensities (Siefermann-Harms 1987). The unknown pigments had 

absorption spectra similar to that of zeaxanthin and could also play a role in protecting 

cells from damage at high light intensities. pp - carotene, the chlorophyll molecules and 

the phycobiliproteins are all part of the light harvesting complex and the concentration 

of these pigments in the cells is dependent on light intensity and light quality (Kana et 

al. 1988; Moore et al. 1995). Unlike pp -carotene, the proportion of zeaxanthin in cells 

is not dependent on light intensity (Kana et al. 1988). When the Ace Lake 

Synechococcus strain was grown under high light conditions, there was a substantial 

decrease in the proportion of the light harvesting pigments compared to cells grown at 

low light intensities. There were small differences in the ratio of zeaxanthin and the 

unknown carotenoids to total lipid soluble pigments, between the high light and low 

light grown cells, but they did not appear to be affected by light intensity to the same 

degree as the light harvesting pigments. 

It is not known why the Pendant Lake strain had more chlorophyll a derivatives than the 

Ace Lake strain. The cells were slightly bigger and appeared to produce more mucus, 

even when grown under the same conditions, which indicates that the strain is 

physiologically different. It is possible that some of these derivatives are present in the 

Ace Lake strain of Synechococcus and would be detected if the pigments had been 

extracted from a greater number of cells. 

Lipid soluble pigments from the Lake Abraxas strain have not been analysed but it is 

anticipated that they would be the same as the Ace Lake strain. The lipid soluble 

pigment signature from Lake Abraxas is similar to that from Ace Lake (Chapter 4). 
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The Ace Lake strain of Synechococcus possessed a fatty acid profile similar to other 

strains of Synechococcus (Kenyon 1972; Merritt et al. 1991). The lack of free fatty 

acids indicated that lipid degradation had not occurred and the absence of triglyceride 

reflected that the cyanobacteria were viable and were not storing lipid. Cyanobacteria 

do not store large amounts oftriacylglycerides (Merritt et al. 1991). The fatty acids 16:1 

and 14:0 are the dominant fatty acids in other marine and freshwater strains of 

Synechococcus although the ratio of 14:0 to 16:lro7 varied between strains (Kenyon 

1972; Merritt et al. 1991). In one study 14:0 occurred in higher concentrations than 

16:lro7 (Merritt et al. 1991) and in another 16:lro7 occurred in higher concentrations 

than 14:0 (Kenyon 1972). Only trace levels of PUFA's (16:2, 18:2, 18:3a. and 18:3A.) 

have been found in some marine and freshwater strains (Kenyon 1972; Merritt et al. 

1991). 

Culture age did not significantly affect the fatty acid composition in the Ace Lake strain 

(fable 5.7) which is a finding consistent with other members of the group 

Synechococcus (Merritt et al. ·1991). Culture conditions including light, temperature and 

salinity changed the percentages of fatty acids in photosynthetic eukaryotes (Barrett et 

al. 1995; Nichols et al. 1991; Volkman and Nichols 1991) and would probably do so in 

Synechococcus. 

Three unique phenol containing compounds were detected in low quantities. It is 

possible that these compounds were artifacts but as they were detected in a field sample 

from Ace Lake (Chapter 3) and their structural derivatives have been observed in the 

lake (Skerratt et al. 1991) it is probable that they are not artifacts. The unknowns were 
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found in higher concentrations in culture A than culture B indicating that they are 

present in more metabolically active cells. The role of these phenol based compounds 

remains to be determined. 

The DNA base compositions of the Ace Lake, Pendant Lake and Lake Abraxas strains 

of Synechococcus were 57.0, 58.2 arid 57.7 mol % respectively. DNA base 

composition, which is constant for a given organism, has become a fundamental 

character for classification of bacteria. Waterbury et al., (1986) has determined the base 

ratios of27 strains from Marine Cluster A and the base ratios have fallen between 54.9 

and 62.4 mol % G +C. According to Bergey's Manual of Systematic Bacteriology, the 

mol % G + C of the DNA ranges from 55 to 62 for this cluster (Waterbury and Rippka 

1989). Therefore, according to characterisation based on G + C ratio, the three 

Antarctic strains fit into Marine Cluster A. Prochlorococcus marinus, has a DNA base 

composition ranging from 33- 40 mol % (Palenik 1994). 

The phylogenetic similarity between marine Synechococcus strains and P. marinus has 

, been previously reported (Mullins et al. 1995; Palenik 1994; Urbach et al. 1992; Wood 

and Townsend 1990). The Ace Lake and Pendant Lake strains are most closely related 

to Synechococcus strain NIV A-CYA 328, which was isolated from Oslofjord (60° N), 

(Rudi et al. 1997). This Synechococcus cluster has a 16S rDNA similarity of 95 % with 

P. marinus. The ecological implications of this are not known except that Ace Lake 

was isolated from a polar fjord more than 2000 years ago (Burton and Barker 1979) and 

that one isolate came from a region close to the northern polar sea and the others from 

southern polar marine derived lakes. Based on phylogenetic information (Mullins et al. 
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1995), the similarity between the Antarctic strains of Synechococcus and the reference 
I 

strain of Marine Cluster A (WH 8103), is approximately 93%. 

5.6.2 Physiological characterisation. 

Cyanobacteria occupy a wide range of thermal environments and also show a high 

degree of adaptation to their environments (Fogg et al. 1973). Many of the freshwater 

strains of Synechococcus have 1:opt of approximately 35° C and a tmax greater than 40° C 

(Kruger and Eloff 1978). Strains of Synechococcus from Marine cluster A, which are 

the organisms that are probably the most closely related to the Antarctic strains of 

Synechococcus had Topt between 20-28° C and Tmax at 30-35° C (Moore et al. 1995; 

Waterbury et al. 1986). These organisms were isolated from tropical and temperate 

oceans and their optimum and maximum growth temperatures are close to that of the 

Ace Lake strain (Table 5.11). The P. marinus strains, SS120 (Sargasso Sea) and l\1ED4 

(Mediterranian Sea), had a tmin of 12°C,1:opt of24° C and tmax'Of28° C (Moore et al. 

1995). 

The maximum growth rate obtained for the Ace Lake Synechococcus was 0.12 d"1 

(generation time= 6.1 days) at 19.7° C and 20 µmol photons m·2 s·1• This rate was slow 

when compared to rates obtained for other strains of marine Synechococcus (Stockner 

and Antia 1986). El Hag, (1986,) obtained a growth rate of 1.4 d"1 at20° C and 30 µmol 

photons m·2 s·1. Campbell and Carpenter, (1986) obtained growth rates of between 0.42 

and 0.86 d"1 at 25° C and 55 µmol photons m·2 s·1• This growth rate was, however, 

comparable to in-situ growth rates of0.04 to 0.50 d"1 found for P. marinus (Goericke 

and Welschmeyer 1993). It is also comparable to growth rates obtained for freshwater 



238 

Synechococcus strains, (Fahnenstiel et al. 1991a; Fahnenstiel et al. 1991b, Weisse 19gg; 

Stockner and Antia 19g6) and for other polar cyanobacteria. Recently, Tang et al., 

(1997), determined the growth rate for several cyanobacteria species, none of which 

belonged to the group Synechococcus, isolated from polar freshwater environments. 

Growth rates were be between 0.12 and 0.14 d-1 at a iopt of 19.9 (S.E. 4.g5). These 

growth rates are consistent with that obtained for the Ace Lake Synechococcus strain 

but, they too, are low compared to those predicted by (Eppley 1972) for marine alg8.J. 

growth between 5° and 35° C. Freshwater phytoplankton are known to have lower 

growth rates than their marine counterparts (Fahnenstiel et al. 19g6; Weisse 19gg), the 

physiological reason for this is unclear. 

T min is the theoretical minimum temperature at which growth could occur if there were 

no other physical, chemical or biological constraints (eg: membrane failure) placed on 

the organism (McMeekin et al. 1993). It is estimated by extrapolation of the regression 

line from the plot of "'k versus temperature (Figure 5.9) to the temperature axis 

(Ratkowsky et al. 19g2). T min for the Ace Lake strain of Synechococcus was estimated 

to be within the range -25° C to _go C. The range for T min is large because the 

theoretical tmin is much lower than the lowest temperature used to measure growth. In 

addition, a minimum growth temperature was not observed and the extrapolation was 

greater than would otherwise be expected if a minimum growth temperature was 

observed. It is probable that theoretical minimum growth temperature, predicted by the 

square root model, is closer to _go C which is at the top end of the range. The square 

root model has been applied to other Antarctic bacteria, albeit heterotrophic organisms, 

(McMeekin 19gg; McMeekin and Franzmann 19gg), and theoretical growth minima for 
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these strains fit into the range predicted for the Ace Lake Synechococcus strain (Table 

5.15). Assuming that tmin for the Ace Lake strain of Synechococcus is approximately -8° 

C, it would be classed as a psychrotroph according to (Ratkowsky et al. 1982). 

T opt and T max for the Ace Lake Synechococcus strain are a few degrees below those for 

other bacteria classed as psychrotrophs. This possibly reflects selection pressure on 

organisms living in constantly cold environments. However, because of their slow 

growth rate the optimal growth temperature (20° C) is still above those temperatures 

experienced in the lake environment. 

Table 5.15: Predicted minimum, optimum and maximum growth temperatures for 
bacterial strains isolated from lakes in the Vestfold Hills, Antarctica. 

Organism Strain Tm in Tmin Topt Tmax Origin 
(Ohs} 

Flavobacterium sp. a ACAM755 N.O. -22 15 20 Ellis Fjord 
Halomonas ACAM 11 -5.2 -9.2 20 32 Organic Lake 
subglaciescolab (2m) 
Halomonas ACAM 15 -5.4 -9.2 22 30 Organic Lake 
subglaciescolab (6m) 
Halobacterium sp.b ACAM32 4.1 2.5 31 Deep Lake 
Synechococcus sp. N.O. -25 to -8 20 29 Ace Lake 

Water 
Tern~. 
-2 to 2c 

-14 to 2d 

-8 to _7d 

-19 to 8 
4 to 10 

Strain numbers are from the Australian Collection of Antarctic Microorganisms (ACAM). N.O. indicates that minimum 
~rowth temperaturs were not observed, all temperature readings are in degrees celcius (°C), a (McMeekin 1988), 

(McMeekin and Franzmann 1988), c (Gallagher and Burton 1988), d (Rankin and Pitman 1993). 

Although the growth rate of the Ace Lake Synechococcus strain was low it is probable 

that, because of the stable lake environment, with the low diversity of grazers (Burch 

1988; Layboum-Parry and Perriss 1995), the organism can be sustained in the high 

numbers measured in the lake. Vincent, (1998) proposed this hypothesis to explain why 

cyanobacteria are more successful in polar lake environments than they are in the polar 

oceans. Joint, (1986) also indicated that factors, other than temperature, were 

controlling the distribution and abundance of Synechococcus in the marine environment. 
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In the lakes, over the growing season, the loss rates were probably lower than the 

production rates and with Synechococcus, even over winter, there were high numbers 

relative to temperate environments, to act as an inoculum for the following summer 

(Chapter 3). The Tmin for the Ace Lake Synechococcus strain, which is probably of 

marine origin (Chapter 1 and Chapter 3), indicates that it is capable of growing at 

temperatures experienced in the southern polar oceans and should therefore be present 

in this region if there were no other environmental constraints. 

The most striking effect of altering the intensity of light to which cultures were exposed 

was in the change in fluorescence emission of individual cells. The ability of the flow 

cytometer to monitor quantitative changes in physiological characteristics of individual 

cells, provides a powerful tool for phytoplankton ecologists (Olson et al. 1990b) At a 

low light intensity, (5 µmol photons m-2 s-1
), there was over a 400 % increase in the 

relative intensity ofphycoerythrin (FL2) fluorescence per cell and over 300 % increase 

in the chlorophyll (FL3) fluorescence per cell in the Ace Lake Synechococcus strain. 

This was relative to cells grown at 20 µmol photons m-2 s-1
. There was only a small 

increase in the FL2/FL3 ratio. At the higher light intensities the FL2/FL3 ratio 

decreased indicating that there was a decrease in phycoerythrin relative to chlorophyll a. 

This seems to imply that at low intensities the organism alters the number of 

photosynthetic units per cell rather than altering the concentration of accessory pigments 

(Barlow and Albert 1985). At the very low light intensities the organism is probably 

putting more energy into producing pigment than it is into other cellular activities such 

as cell division. Under high light intensities, it is possible that either the cells are 

producing less photosynthetic units, hence the lower fluorescence or photosynthetic 

pigments were photo-oxidised (Barlow and Albert 1985) and the phycoerthrin pigment 



is affected to a greater extent than chlorophyll a. The effect of light intensity on the 

photosynthetic pigments warrants further investigation because it wi,11 provide useful 

information on photosynthetic strategies in different photic environments. 
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It is recognised that these are only preliminary investigations and that more detailed 

growth irradiance experiments are needed for all three strains of Synechococcus isolated 

from the Antarctic meromictic lakes. Growth irradiance curves have been produced for 

Synechococcus strains isolated from a wide variety of habitats (El Hag 1986; 

Fahnenstiel et al. 199la; Stockner and Antia 1986; Waterbury et al. 1986), over a light 

intensity range of 0 - 500 µmol photons m-2 s-1
• It appears that Synechococcus is 

adapted to low light intensities as maximum growth rates and photosynthetic rates, in 

cultured or environmental samples, were obtained at light intensities between 45 and 

100 µmol photons m-2 s-1
• At higher light intensities the growth rate plateaued, 

indicating that high light intensities do not necessarily inhibit growth (Howard and Joint 

1989; Joint and Pomroy 1986; Waterbury et al. 1986). 

These preliminary investigations indicate that, although the Antarctic strains are 

probably adapted to growth at the low light intensities, high light intensities may not 

inhibit their growth. The significant reduction in growth rate of Synechococcus at very 

low light intensities highlights its inability to grow over the winter months. The 

maximum growth rate obtained at 'topt was low compared to other strains of marine 

Synechococcus. It will be imp~rtant to determine ifthe growth rate increases when the 

organism is grown at the optimal temperature and the optimal light. 
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In Antarctica, lake ice significantly reduces the intensity of light that penetrates the 

water column, especially in the saline lakes where lake ice is opaque (Burch 1988). 

Even over summer, during the phytoplankton growth period, in lakes that have year 

round ice cover, light intensity is low compared to ice free lakes. The light intensity in 

Ace Lake, where Synechococcus grew optimally, ranged from less than 2 µmol photons 

m-2 s-1 over the winter to a maximum of 30 µmol photons m-2 s-1 in February when the 

lake was ice free (Chapter 3). 

By exposing the Ace Lake Synechococcus to a salinity range (0 to 30 g kg-1
) it has been 

shown that the organism prefers to grow at a salinity close to seawater (Table 5.14). 

The upper salinity tolerance of the organism was not obtained and it would be useful to 

know the entire range of salinity tolerance shown by this organism. Part of the reason 

for investigating the salinity tolerance of the Ace Lake Synechococcus strain was to 

determine if the organism was of marine or freshwater origin. Although there is not 

definitive proof, there. is mounting evidence that Ace Lake is of marine origin (Burton 

and Barker 1979). It has an ionic composition close to that of sea water and its 

eukaryotic algal assemblage, although simplified, resembles that of seawater (Burch 

1988; Masuda et al. 1988). It is possible, however, that Ace Lake was seeded by a 

freshwater strain of Synechococcus from one of the nearby freshwater lakes which are 

also known to have picocyanobacteria (Laybourn-Parry and Marchant 1992). Because 

the Ace Lake strain appears to be intolerant of low salinities, it is unlikely that it came 

from freshwater but rather was part of the phytoplankton assemblage when the lake was 

isolated from the nearby marine environment. 
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It is possible that the reduction in cell numbers in the lower salinity treatments was 

caused by the dilution of another chemical species in Ace Lake water, that was needed 

for the growth of Synechococcus, rather than an intolerance to low salinity water. If the 

Ace Lake Synechococcus strain could be successfully grown in artificial sea water where 

nutrient concentrations could be manipulated, the experiment could be repeated to 

determine if the Ace Lake Synechococcus strain was really intolerant to low salinity 

water. Further, in this experiment Synechococcus cells were not conditioned to the 

lower salinity water. If over time cells were conditioned to the lower salinity water, it is 

possible that cells may tolerate the low salinity. Synechococcus is distributed widely 

through out the world in environments ranging from glacial fed freshwater lakes (Burns 

and Stockner 1991; Laybourn-Parry and Marchant 1992; Vezina and Vincent 1997), 

river estuaries (Bertrand and Vincent 1994; Jochem 1988; Xiuren et al. 1988), to coastal 

and marine waters (Iturriaga and Mitchell 1986; Joint 1986; Waterbury et al. 1979). It is 

possible that there is substantial niche overlap between these environments. 

Phylogenetically, however, the :freshwater species and the saltwater species appear to be 

quite different (Figure 5.8) although more 16s rDNA sequences are needed for this 

difference to be clearly defmed. Bergey's manual differentiates groups of 

Synechococcus partly based on salinity tolerance. Marine cluster A (reference strain 

WH8103), for example, is of marine origin and is not tolerant of freshwater (Waterbury 

and Rippka 1989) 

One unique feature of meromictic lakes, especially those in Antarctica, is the salinity 

ranges found within individual lakes and between lakes. The three meromictic lakes in 

the V estfold Hills, from which Synechococcus strains were isolated, had salinity ranges 

of 17-40 g kg"1(Ace Lake), 15-60 g kg"1 (Pendant Lake) and 17-23 g kg"1 (Lake 
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Abraxas ). Many other meromictic lakes with salinity ranges both higher and lower than 

these were surveyed for the presence of Synechococcus cells (Chapter 4) but none were 

detected. This is possibly due to factors other than salinity, but it is possible that salinity 

may play a role in limiting Synechococcus to specific lakes. 

Characterisation of the three strains of Synechococcus isolated from the marine derived 

meromictic lakes in the Vestfold Hills, Antarctica has provided an opportunity to further 

understand the taxonomy of this group. It would be useful to isolate picocyanobacteria 

from other Antarctic lakes, both freshwater and saline, and compare there phylogeny to 

picocyanobacteria from northern polar regions as well as from temperate and tropical 

regions. The phylogenetic relationship between Synechococcus and Prochlorococcus 

needs clarification. The taxonomic classification of the oxygenic-phototrophic bacteria 

has recently been questioned (Pinevich et al. 1997). If more strains were isolated from 

either group, a clearer understanding of the divergence and the ecological implications 

could be determined. 

The close phylogenetic relationship between the marine Synechococcus and P. marinus 

has been observed either through 168 rDNA sequencing or through RNA Polymerase 

gene sequencing (Kane et al. 1997; Mullins et al. 1995; Palenik 1994; Urbach et al. 

1992; Wood and Townsend 1990). Phenotypically, however, the two groups are quite 

different and distribution surveys to date highlight their possible ecological difference 

(Charpy and Blanchot 1996; Chisholm et al. 1988; Olson et al. 1990a; Partensky et al. 

1993). 
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Prochlorococcus marinus is smaller than Synechococcus (0.6-0.8 µm diameter), 

(Chisholm et al. 1992; Olson et al. I 990a), possibly because it does not have 

phycobilisomes. Prochlorococcus marinus lacks phycobilisomes (Goericke and Repeta 

1992). Inste_ad it has divinyl chlorophyll b. It also has divinyl chlorophyll a instead of 

chlorophyll a and a. -carotene instead of~~ - carotene (Goericke and Repeta 1992). It 

does have zeaxanthin as does Synechococcus. Prochlorococcus marinus therefore, 

:fluoresces red under green light instead of the orange or orange/red produced by 

phycoerythrin in Synechococcus. The stacking of the thylakoid membranes, used as an 

identifying characteristic in P. marinus (Chisholm et al. 1988), is thought to result from 

the loss of phycobilisomes (Palenik and Swift 1996). It appears that P. marinus and 

marine Synechococcus have evolved slightly different physiological strategies for 

occupying a similar niche in the marine environment. Gene sequences, responsible for 

the expression of photosynthetic pigments have, however, been shown to be transferable 

in bacteria (Pemberton and Harding 1987). The expression of photosynthetic pigments 

is therefore not a good taxonomic marker on which to describe a new genus. 

The taxonomic organisation of the Synechococcus group is still incomplete (Castenholz 

1992) and some strains within the group are still classified according to morphological 

and physiological characteristics. The use of phylogenetic tools in taxonomy will help 

to better understand the taxonomy of the group. It appears, however, that it will be 

important to use a combination of phylogentetic, physiological and morphological 

characteristics to classify organism within the group. Synechococcus is a polyphyletic 

group and some strains cluster closely with the P. marinus. It was suggested by 

(Seewaldt and Stackebrandt 1982), that Prochloron, another phototrophic prokaryote, is 

an offshoot of cyanobacteria that has re-invented chlorophyll b rather than being a direct 
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descendent of chloroplasts. If P. marinus did in fact recently diverge from strains of 

Synechococcus (Chisholm et al. 1992), by acquiring the ability to produce chlorophyll b 

and loosing the ability to produce the phycobiliproteins, it is possible that the divergence 

was from the Synechococcus cluster which has strain NIV-CY A 328 and the Antarctic 

strains. 



Chapter 6 

Controls on the abundance and distribution of 
Synechococcus in Ace Lake. 



248 

6.1 ABSTRACT 

Two in-situ experiments were undertaken to investigate factors controlling the 

distribution and abundance of Synechococcus in Ace. The effect of light intensity, 

nutrient concentration, salinity and temperature on the growth rate of and grazing rate on 

Synechococcus in Ace Lake was investigated. The metabolic inhibitor technique was 

used to calculate growth rates and grazing rates. Unfortunately, although the metabolic 

inhibitor method worked successfully in laboratory experiments, there was no 

significant difference (p > 0.05) between treatments in the field experiments. This may 

have been due to an inability to detect differences between growth and grazing, at slow 

in-situ growth rates and low grazing pressure. However, specific growth rates of 

Synechococcus (growth - grazing) could be calculated for all treatments. The specific 

growth rate of Synechococcus at 6 m, 8 m and 10 m in Ace Lake was -0.1176 d-1
, 0.072 

d-1 and 0.3408 d-1 respectively. The negative growth rate at 6 m may have resulted from 

over grazing in the sample. An increase in water temperature significantly increased 

growth rate (p < 0.0001) and there was a significant increase in growth rate (p < 0.001) 

from an interaction between higher water temperature and lower light intensity. There 

were significant increases (p < 0.05) in growth rates at lower light intensities. In one 

instance the growth rate of Synechococcus increased from 0.072 d-1 to 0.2808 d-1 when 

incubated at the same temperature but with a reduced light intensity (from 12.5 µmol 

photons m-2 s-1 to 7.3 µmol photons m-2 s-1
). The addition of nutrients and an increase 

in salinity did not increase growth rates (p > 0.05) of the Ace Lake Synechococcus. At 

the time when these experiments were conducted, it is probable that between depths 7 m 

to 11 m, growth rate was greater than loss rates. At other times however, for instance at 
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the end of the spring bloom, this balance could change. As occured in the top 7 m of 

Ace Lake, where Synechococcus growth rates were low due to low temperatures, it is 

probable that in the Southern Ocean the loss rates are high and the population density is 

therefore low. 

c 
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6.2 INTRODUCTION 

Picocyanobacteria, belonging to the Synechococcus group, are important contributors to 

primary productivity in many of the tropical and temperate oceans and lakes of the 

I 

world (Caron et al. 1985; Craig 1987; Fahnenstiel et al. 1991a; Glover et al. 1986; 

lturriaga and Mitchell 1986; Joint et al. 1986; Maeda et al. 1992). In Antarctic waters, 

however, Synechococcus occurs in low numbers (Letelier and Karl 1989; Marchant et al. 

1987). It has been assumed that temperature primarily limits numbers in this region, 

because of a correlation found between temperature and Synechococcus cell abundance 

in north to south transects of the Southern Ocean (Marchant et al. 1987). There is, 

however, little experimental evidence to substantiate this conclusion and for microbial 

populations under no other constraints, low temperatures will limit growth rates but will 

not significantly affect final biomass yields. 

Obvious factors that have been shown to control the growth of Synechococcus in 

tropical and temperate regions could also be exerting pressure in polar regions. These 

factors include combinations of temperature (El Hag and Fogg 1986; Murphy and 

Haugen 1985; Waterbury et al. 1986), light (El Hag 1986; Morris and Glover 1981; Platt 

et al. 1983), nutrients (Lignell et al. 1992; Stockner and Shortbreed 1988; Walsh et al. 

1994), salinity (Bertrand and Vincent 1994) and grazing pressure by eukaryotic 

organisms and viruses (Caron et al. 1991; Hagstrom et al. 1988; Hall et al. 1993; 

Waterbury and Valois 1993). It is probable that a combination of factors is responsible 

for the distribution and abundance of Synechococcus in these regions. 
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Unlike the open ocean environment, where there is constant movement of water and 

phytoplankton populations can be patchy (Harris 1986; Weber and El-Sayed 1987), the 

ice covered, marine derived, meromictic lakes of the Vestfold Hills provide a stable 

environment for phytoplankton communities. Experimental manipulation of the 

parameters, outlined above, in a stable lake environment could provide a greater 

understanding of the controls on Synechococcus abundance and distribution in Antarctic 

lakes, polar and temperate oceans. 

The aim of this investigation was to use a factorially designed experiment that 

manipulated light, temperature, salinity and nutrients, in combination with the specific 

metabolic inhibitor technique, to gain an understanding of controls of Synechococcus 

abundance and distribution in Ace Lake. 

In the specific metabolic inhibitor technique, first used by Fuhrman and McManus, 

(1984), ampicillin (an inhibitor ofprokaryotic cell division) is used to hold the 

prokaryotic population at a constant level so that the grazing rate (g) can be determined. 

This inhibitor does not affect eukaryotic grazers. A second treatment uses 

cycloheximide to inhibit grazing by eukaryotes so that the absolute growth rate (k) can 

be determined. Cycloheximide is a specific inhibitor of protein synthesis in eukaryotes 

but does not affect prokaryotes (Sherr et al. 1986; Watanabe 1972). During the 

experimental period the change in prokaryotic cell numbers is monitored. As a control, 

both ampicillin and cycloheximide are used to confirm that prokaryote number remains 

constant in the absence of grazing by eukaryotes. This technique has been used 

successfully to determine growth and grazing rates of Synechococcus in many temperate 

and tropical oceans (Campbell and Carpenter 1986; Liu et al. 1995; Xiuren and Vaulot 



1992). In the calculation of growth rate and grazing rate the technique assumes 

exponential growth of the prokaryote population (Fuhrman and McManus 1984). 
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It is proposed that temperature alone is not controlling the distribution and abundance of 

Synechococcus in Ace Lake but that light intensity and grazing pressure by eukaryotes 

are also significant contributors. 

6.3 MATERIALS AND METHODS 

Before the field experiment could be carried out, a preservation method for 

Synechococcus and optimal antibiotic concentrations for the metabolic inhibitor 

technique were required. These experiments were carried out with Synechococcus 

cultures, enriched from Ace Lake in the previous year. 

6.3.1 Sample preservation 

Due to logistical constraints during the 1993/94 summer at Davis Station, it was 

necessary to preserve and store all samples collected during the experimental period. A 

number of preservation protocols were tested to determine the most effective method of 

preservation and storage of samples. Preservation protocols were modified from 

Lepesteur et al. (1993) and Vaulot et al. (1989). These protocols are outlined in Table 

6.1. 



Table 6.1: Protocols used to determine the most effective method of 
preservation of Synechococcus cells for analysis by flow cytometry. 
Percentages represent final concentrations 

Protocol 

1 
2 
3 
4 
5 
6 
7 

Preservation method 

No preserving agent 
1 % Gluteraldehyde 
1% Gluteraldehyde, 10 % DMSO as a cryoprotectant 
1 % Gluteraldehyde, 10 % DMSO and glycerol as cryoprotectants 
1 % Formalin 
1 % Formalin and 10 % DMSO as a cryoprotectant 
1%Formalin,10 % DMSO and glycerol as cryoprotectants 

An actively growing Synechococcus culture (approximately 1x106 cells mr1
) was 

aliquoted, (500µ1), into 'Nunc' cryoproteculn.t tubes. The exact cell density of the 

culture was determined by flow cytometric methods (Chapter 2). 

Cryoprotectants were used according to the method ofLepesteur et al., (1993). They 

were added before the fixatives, drop by drop, at 4° C, with constant agitation. the 

253 

following sterile cryoprotectants were used: dimethylsulfoxide (DMSO) 10%, glycerol 

20%, and a mixture ofDMSO 10% and'glycerol 10% v/v (Sigma Chemicals). 

Fixatives were added fifteen minutes after the addition of the cryoprotectants. Electron 

microscope grade gluteraldehyde (pH 7.51) and formalin were added to a final 

concentration of 1 %. Samples were then incubated at room temperature for ten minutes. 

Following preservation, all samples were super-cooled in the vapour phase of the liquid 

nitrogen for four hours before being plunged into the liquid nitrogen. 

Samples were retrieved from the liquid nitrogen at intervals of between one and six 

weeks. As recommended by Lepesteur et al., (1993), samples were rapidly thawed 



(37°C) and the cell densities detennined by flow cytometric techniques (Chapter 2). 

Data were subjected to statistical analysis (Sigmastat 1992). 

6.3.2 Optimal antibiotic concentrations 
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A Synechococcus strain and Cryptomonas sp. isolated from Ace Lake were used to 

determine the optimal concentrations of ampicillin and cycloheximide for use in the 

field experiments. Although no trials with lake samples could be performed prior to the 

experiment, it was anticipated that analysis of these two organisms would be adequate 

as the experiment was to be carried out in Ace Lake. 

Synechococcus and Cryptomonas sp. were grown in batch culture at 6° C under white 

light (PAR= 30 µmol photons m-2 s-1
) on a 12 h day/night cycle. These growth 

conditions are similar to those experienced by the cells at 10 m in Ace Lake. Cells were 

harvested for the antibiotic trail when they were in exponential growth. 

Synechococcus cells were diluted to approximately 105 cell m1-1 and 50 ml aliquots were 

dispensed aseptically into 'Whirl Pacs'. The exact cell density in the aliquots was 

determined by flow cytometry. Initial ampicillin concentrations (Table 6.2) were used 

according to Xiuren and Vaulot, (1992). The appropriate volume of ampicillin was 

added to the 'Whirl Pacs'. Each concentration ofampicillin was replicated 5 times. The 

'Whirl Pacs' were incubated as described above. Cell densities from all treatments were 

measured after 24, 48, 72, 120 and 216 h using flow cytometric techniques and 

subjected to statistical analysis (Sigmastat 1992). A second set of cultures were 



255 

incubated and analysed according to the same protocol, except that all the cultures had 

100 mg r1 cycloheximide added. This was to determine if cycloheximide inhibited the 

growth of Synechococcus or if it affected the response of Synechococcus to the 

ampicillin (Table 6.3). 

The Cryptomonas sp. culture was harvested in exponential growth, diluted to 104 cells 

m1-1 and aliquoted, (50 ml), aseptically into 'Whirl Pacs'. These subcultures were 

treated according to the protocol in Table 6.2 and as recommended by Xiuren and 

Vaulot, (1992). This was to determine if 100 mg r1 cycloheximide would inhibit the 

growth of Cryptomonas sp. without causing cell lysis, and also to see if ampicillin 

inhibited the growth of the Cryptomonas sp. 

Table 6.2: Ampicillin and cycloheximide concentrations used in 
Synechococcus and Cryptomonas sp. cultures to determine optimal 
antibiotic concentration. 

Phytoplankton Species Ampicillin (mg 1"1} Cyclobeximide (mg 1"1} 

Synechococcus 0 0 
Synechococcus 0.1 0 
Synechococcus 0.25 0 
Synechococcus 0.5 0 
Synechococcus 1 0 
Synechococcus 2.5 0 
Synechococcus 5 0 

Synechococcus 0 100 
Synechococcus 0.1 100 
Synechococcus 0.25 100 
Synechoqoccus 0.5 100 
Synechococcus 1 100 
Synechococcus 2.5 100 
Synechococcus 5 100 

Cryptomonas sp. 0 0 
Cryptomonas sp. 0 100 
Cryptomonas sp. 5 0 



Table 6.3: Concentrations of ampicillin and cycloheximide used in 
Synechococcus cultures to determine optimal antibiotic concentration for 
use in the Ace Lake experiment. 

Phytoplankton Species 

Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 

Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 
Synechococcus 

Ampicillin (mg 1"1) 

0 
0.005 
0.01 
0.05 
0.1 

0 
0.005 
0.01 
0.05 
0.1 

Cycloheximide (mg f 1
) 

0 
0 
0 
0 
0 

100 
100 
100 
100 
100 

6.3.3 Controls on Synechococcus growth Ace Lake. 
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Four experiments were undertaken over a two week period in December 1993, in Ace 

Lake. The first three experiments were replicates of the same experimental design. The 

experiment was replicated in this way, instead ofreplicates of each treatment within the 

single experiment, because of the large sample number. The fourth experiment had a 

separate design. The experimental designs of both experiments are outlined below. 

6.3.4 The effect of nutrients, salinity, light and temperature on the growth of the 
Ace Lake Synechococcus 

The first experiment was designed to determine the effect of nutrients, salinity, 

temperature and light on the growth rate of, and grazing pressure on, Synechococcus in 

Ace Lake. The metabolic inhibitor technique was used to determine growth rates .and 

grazing pressures (Campbell and Carpenter 1986; Fuhrman and McManus 1984). The 

experimental design used is shown in Table 6.4, which has the form of a 24 factorial 

design (i.e.: a design with four factors, each with two levels). 
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Table 6.4: Tested effects of temperature (depth), light, salinity and nutrients, under field 
conditions, on the growth of Synechococcus in Ace Lake. The implementation of these 
test conditions is discussed in the text below. 

Depth 1 2 3 4 5 6 7 8 

6m lOm light I Orn light lOm light lOmhght llmlight l lm light llm light l lm light 
6m 6msal 6m sal lOm sal I Orn sal 6msal 6msal lOm sal lOm Sal 
6m low nut high nut low nut high nut low nut high nut low nut high nut 

9 10 11 12 13 14 15 16 

lOm lOmlight lOm light lOm light I Orn light llmlight l lm light l lm light llm light 
lOm 6msal 6m sal I Orn sal lOm sal 6msal 6msal I Orn sal I Orn sal 
I Orn low nut high nut low nut high nut low nut high nut low nut high nut 

sal = salinity; nut = nutrients 

Lake water from 6 m was collected using a Kemmerer Bottle and aliquoted into 

polyethylene 'Whirl Pacs' according to the protocol in Table 6.5. The final volume in 

each 'Whirl Pac' was 50 ml. 

6.3.4.1 ExjJerimental temperatures 

The effect of a 4 ° C difference in water temperature on the growth of Synechococcus 

was tested. The temperature treatments were obtained by suspending the 'Whirl Pacs' 

at two depths in Ace Lake, 6 m (3° C) and 10 m (7° C). 

6.3.4.2 Experimental light intensities 

In accordance with the factorial design interpretation of this experiment, light intensities 

equivalent to 10 m and 11 m in Ace Lake were compared. The light intensities used 

were obtained by measuring the PAR at 10 m (14 % of the under ice light intensity) and 

11 m (I% of the under ice light intensity) and then using combinations of gray (neutral 

density) plastic bags and shade cloth tied around the samples to replicate these light 
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intensities at 6 m and 10 m respectively. Light intensity was measured according to the 

method described in Chapter 3. 

6.3.4.3 Experimental salinities 

In order to test the effect of salinity on the growth of Synechococcus, the salinity at 6 m 

in Ace Lake was compared to a salinity that was equivalent to 10 m in Ace lake. On the 

\ 

day prior to the experiment, the salinity in Ace Lake at 6 m and 10 m was determined 

using a submersible data logger (Chapter 3). The salinity at 6 m was 18.1 ppt. The 

salinity at 10 m was29.9 ppt. To increase the salinity of the 6 m water by 1.2 %, to give 

a salinity equivalent to water from 10 m, sodium chloride was added. A 12 % stock 

NaCl solution was used. 

6.3.4.4 Experimental nutrient concentrations 

The effect of nutrient concentration on the growth of Synechococcus was tested by 

comparing growth of cells exposed to the nutrient levels in 6 m Ace Lake water (low 

nutrient conditions - Chapter 3) to that of cells when additional nutrients were added to 

the 6 m Ace Lake water (high nutrient conditions). Ten percent v/v SNAX medium 

(Appendix 5) was added to the 'Whirl Pacs' for the high nutrient treatment. 



Table 6.5: Treatment protocol used for samples • Sample numbers correspond 
to numbers in table 5.4. 

Sample Number 

1, 5, 9, 13 
2, 6, 10, 14 
3, 7, 11, 15 
4, 8, 12, 16 

Treatment 

50 ml lake water 
45 ml lake water plus 5 ml 1 OX SNAX 
45 ml lake water plus 5 ml NaCl (12 g 100 ml-1

) 

40 ml lake water plus 5 ml 1 OX SNAX plus 5 ml 
NaCl 

6.3.4.5 Antibiotic treatments 
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Within each of the above treatments antibiotics were added according to the following 

protocol: 1) No antibiotics; 2) Ampicillin (15 µl of a 0.1 mg ml-1 stock solution in 50 ml 

sample= 0.01 mg r 1
); 3) Cycloheximide (500 µl of a 10 mg mr1 stock solution in 50 ml 

sample= 100 mg r 1
); 4) Cycloheximide (100 mg r 1

) and ampicillin (10 mg r 1
) -

Control. 

6.3.4.6 Incubation of samples in Ace Lake and sample collection. 

Once all the additions had been made, initial samples, t = 0, (1 ml aliquot) were taken. 

The 'Whirl Pacs' were sealed and tied randomly around six armed sample holders 

(Figure 6.1) Where needed, the neutral density filters were tied around the samples and 

each sample holder was lowered into the lake, to the desired depth, through 1 of 6 holes 

drilled through the ice (Figure 6.2). All treatments were re-sampled every 12 h for 48 

hours and all procedures was performed in low light conditions. When samples were 

collected, a thick canvas tent was erected over the holes in the ice. This was to reduce 

the possibility of photo inhibition, when bringing samples to the surface. The tent was 
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dismantled at the end of each sampling procedure and moved away from the 

experimental area. This was to eliminate the possibility of shading during the in-situ 

incubation periods. All 1 ml aliquots were preserved with gluteraldehyde and stored in 

liquid nitrogen, as outlined above. 

Temperature and salinity (Chapter 3) was measured through the top 13 m of the lake at 

the beginning of each replicate experiment. Light (Chapter 3), was measured every 12 h 

throughout the experimental period. This was to monitor changes in the physical 

conditions during the experiment. 

The experiment outlined above was replicated three times over a period of two weeks. 

6.3.5 The effect of light on the growth rate of the Ace Lake Synechococcus. 

A second experiment was designed to investigate the effect of light intensity on the 

growth rate of and grazing pressure on the Ace Lake Synechococcus strain. 

In this experiment five treatments were incubated in-situ for a 48 h period. Each 

treatment was performed in triplicate. The treatments were as follows: 1) lake water 

from 6 m in Ace Lake incubated at 6 m with a 6 m light intensity; 2) lake water from 6 

m in Ace Lake incubated at 6 m with a 10 m light intensity 3) lake water from 8 m in 

Ace Lake incubated at 8 m with a 8_ m light intensity; 4) lake water from 8 m in Ace 

Lake incubated at 8 m with a 10 m light intensity; 5) lake water from 10 m in Ace Lake 

incubated at 10 m with a 10 m light intensity. The required light intensities were 



determined using a Digital Scalar Irradiance Meter (Biospherics) and neutral density 

filters, as outlined above. 
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All treatments were prepared, incubated and sampled according to the protocol outlined 

in the experiment above. Samples were preserved with gluteraldehyde and stored in 

liquid nitrogen until analysis. Stored samples were analysed between two and six weeks 

after collection using flow cytometric methods. 

6.3.6 Data analysis 

Cell numbers were determined using the 'Lysis 11' software on the flow cytometer 

(Becton Dickinson). Growth rates (k) and grazing rates (g) were determined according 

to the equation: 

r = k-g = ln(Nt!No)/t 

where No= cell abundance at time zero; Nt = cell abundance at time t and r = net growth 

rate. Specific growth rate (k) was calculated from the rate of increased cell density in 

the cycloheximide treatment, while specific grazing rate (g) was calculated from the 

disappearance rate of cells in the ampicillin treatment minus control. Data were 

subjected to analysis of variance. In the factorial designed experiment first order 

interactions were also tested (SAS Institute 1989). 



Figure 6.1: Device used to suspend samples in Ace Lake. 'Whirl 
Pacs' were placed randomly around the device before it was lowered 
into the lake and suspended at the desired depth. 

Figure 6.2: Sample treatments were suspended in one of six holes drilled 
through the ice. 
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6.4 RESULTS 

6.4.1 Optimal preservation method 

Seven preservation techniques were tested to determine the method that gave the least 

cell loss. The cell numbers in the preserved cultures were compared to that of the 

original fresh culture (control) by determining the ratio of numbers of preserved over 

numbers of fresh (Figure 6.3). Although sample numbers were small, no preservation 

protocol gave significantly different numbers of cells in the treatments to the number of 

cells in the control (Kruskal-Wallis One Way Analysis of Ranks, DF = 6, p = 0.4475). 

Similar results were also obtained by others (Lepesteur et al. 1993; Vaulot et al. 1989). 

Although quantitative changes in fluorescence were not recorded, some general 

observations were made about the effect of sample preservation on changes in cell 

fluorescence and morphology. There was an increase in the orange fluorescence (FL2), 

of cells stored without a preserving agent (protocol 1) and with cryoprotectants and 

formalin as a preservative (protocols 7, 8 and 9), relative to the fluorescence of the 

original fresh cells. There was no change in the orange fluorescence of cells preserved 

in gluteraldehyde or formalin without cryoprotectants (protocols 2 and 6) nor in 

protocols 3, 4 and 5 where gluteraldehyde was the preservative. Cells that had been 

stored with a cryoprotectant all increased in size relative to the fresh cells stored without 

cryoprotectants. 
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Figure 6.3: Effect of preservation on Synechococcus cell 
numbers. Results are expressed as a ratio of the numbers in the 
preserved sample divided by the numbers in the fresh sample; a 
ratio of 1 indicates perfect preservation. Error bars correspond 
to one standard deviation. 
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There was a greater spread in cell size and fluorescence in the populations of cells when 

cryoprotectants were used. There was no change in red fluorescence intensity with 

increasing storage time. These observations were made on cells that had been stored in 

liquid nitrogen over a one month period. Significant increases in orange fluorescence 

were observed by Vaulot et al., (1989) who suggested that the changes in fluorescence 

could have been caused by an uncoupling of the photosynthetic pigments. Changes in 
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cell size were also observed by Vaulot et al., (1989) although they observed greater 

changes in right angle light scatter (refractive index) than in forward angle light scatter 

(cell size). 

Table 6.6: Percentage number of cells preserved compared to 
that of unpreserved cells using the various protocols. 

Protocol 

1 
2 
3 
4 
5 
6 
7 

% of cells preserved 

109 (7.4) 

99 (3.4) 
107 (7.6) 
82 (12.6) 

99 (2.6) 

99 (3.5) 

97 (6.0) 

Numbers in brackets are standard errors. 

From the above results and from Vaulot et al., (1989) a standard preservation protocol, 

for samples collected from Ace Lake during the experiment, was developed. Samples (1 

ml) were preserved in cryoprotectant tubes with 1 % gluteraldehyde (pH 7 .5), followed 

by incubation at approximately 5° C for 30 minutes. Samples were then suspended in 

the vapour phase of liquid nitrogen for 8 h before immersion in liquid nitrogen for 

storage for up to one month prior to analysis. 

For analysis, the samples were rapidly thawed (but not left) at 37°C. Calibration beads 

were added to the cryotubes and mixed thoroughly on a vortex mixer before an aliquot 

(500 µ1) was taken for analysis by flow cytometry (Chapter 2). 
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6.4.2 Optimal antibiotic concentrations 

In order for the metabolic inhibitor technique to be used in-situ, in Ace Lake, optimal 

concentrations of ampicillin and cycloheximide, that would inhibit the growth of 

prokaryotes and eukaryotes respectively, were needed. 

From the analysis of growth response, it was determined that a cycloheximide 

concentration of 100 mg r 1 was sufficient to inhibit the groWth of ~e Cryptomonas sp. 

without causing cell loss (t-test, n = 4, p = 0.0011, Figure 6.4). In addition, the 

concentration of ampicillin used in the Cryptomonas sp cwtures (5 mg r1
) did not 

ignificantly-inhibit-the-growth-ofthe-organism-EMann-whitney-Rank-&un4'est,--n-=-4~, --­

p = 0.0357, Figure 6.4). 

The initial concentrations of ampicillin that were used to inhibit the growth of 

Synechococcus significantly reduced the number of cells (t test, Table 6.7, Figure 6.5). 

This implied that cell lysis may have occurred (Xiuren and Vaulot 1992). 

Cycloheximide did not significantly alter the effect of ampicillin on Synechococcus 

(t-test, n = 5, p > 0.05). A second experiment was performed with lower concentrations 

of ampicillin (Table 6.8). 
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Table 6.7: Probability that Synechococcus cell numbers at t = 
120 h were the same as Synechococcus cell numbers at t= O 
h for six ampicillin concentrations. In all cases, there were 
significantly less cells. 

Ampicillin (mg 1"1) 

0.1 
0.25 
0.5 
1.0 
2.5 
5.0 

Cell numbers at 
t=120 h 

3.2 x 105 

2.9 x 105 

3.6 x 105 

3.2 x 105 

3.0 x 195 

3.2 x 105 

(n, P value) 

4, p =0.001 
4, p=0.001 
5,p= 0.02 

5, p=0.0093 
5, p=0.0076 
5,p=0.0093 

Cell number at t = O h was 5.2 x 105 cells mr 1 

---4-- Control 
- - Cyclohex1mlcle('fO~OmgJI} 
--&- Ampicillin (5mg/I) 

i---------I 

0 50 100 150 200 

Time (h) 

250 

Figure 6.4: Effect of ampicillin and cycloheximide on the growth of an 
Ace Lake Cryptomonas sp. (Error bars correspond to 1 S.D. and 1e+4 
= x 104

) 
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Figure 6.5: Effect of ampicillin (Amp) in the a) absence and b) presence of 
cycloheximide (Cy) on the growth of the Ace Lake Synechococcus. (Error bars 
correspond to 1 S.D. and 1 e+4 = x 104

) 
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Figure 6.6: Effect of ampicillin (Amp 0.005 - 0.01 mg 1"1) in the a) absence 
and b) presence of cycloheximide (Cy 100 mg 1"1) on the growth of the Ace 
Lake Synechococcus. (Error bars correspond to 1 S.D. and 1e+4=x104

) 
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Following incubaton for 24 hours, Synechococcus cell numbers in cultures that 

contained 0.005 mg r 1 and 0.01 mg r 1 ampicillin increased marginally but significantly 

(p > 0.01) compared to the control culture at t = 0 (t-test, Table 6.8). After 120 h, cell 

numbers in cultures containing 0.05 mg r1 and 0.1 mg r1 ampicillin decreased 

significantly (p ~ 0.002) compared to the control indicating that cell lysis occurred in 

these cultures (Figure 6.6). Cycloheximide did not significantly alter the effect of 

ampicillin on Synechococcus (t-test, n = 5, p > 0.05) 

Table 6.8: Probability that Synechococcus cell numbers at t = 120 
h were the same as Synechococcus cell numbers at t = O h for 
four ampicillin concentrations. For the two lower ampicillin 
concentrations there were significantly more cells and for the two 
higher ampicillin concentrations there were significantly less 
cells. 

Ampicillin (mg 1"1) 

0.005 
0.01 
0.05 
0.1 

Cell numbers at 
t=l20 h 

2.1 x 106 

1.3 x 106 

4.4 x 105 

2.0 x 105 

Cell number at t =Oh was 8.3x105 cells mr 

(n, p value) 

4, 0.0231 
3, 0.0125 
4, 0.002 

4, <0.001 

From these results it was decided to use an ampicillin concentration of 0.03 mg r1 and a 

cycloheximide concentration of 100 mg r1
• Due to time constraints, the effectiveness of 

this ampicillin concentration in inhibiting the growth of Synechococcus, without causing 

cell lysis, could not be measured. 
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6.4.3 Controls of growth in Ace Lake 

Experiments were performed in Ace Lake using lake water samples in order to 

determine the effect of grazing, temperature, light intensity, nutrient concentration and 

salinity on the growth of Synechococcus. Light (PAR), salinity and temperature were 

measured throughout the experiments. There was a 0.39° C increase in water 

temperature at 6 m and a 0.14° C increase in water temperature at 10 m during the 

experimental period. Light intensity changed depending on cloud cover and the time of 

day. The ice conditions did not change and no fresh snow fell throughout the 

experimental period. The water temperature of the epilimnion (between 2.5 m and 7 m) 

was 2. 70-C:-Between 7 m ancl-S m there was a sharp rise in temperature t063o-c:---At 

10 m the temperature was 7° C. The maximum temperature (7.8° C) occurred at 11.5 m 

(Figure 6.7). The salinity at 6 m was 18.l g kg-1 and at 10 m the salinity was 29 g kg-1
• 

Over the experimental period (12 days) there was a large variation in the amount of 

cloud cove,r ranging from a clear sunny sky, to heavy low cloud which greatly reduced 

the light intensity. Light intensity also depended on the tiine of day (Chapter 3) and the 

maximum light intensity occurred at solar noon (approximately 13:00, Davis time). The 

light measurements given in Figure 6. 7 were made at solar noon on a day when there 

was approximately 10 % high cloud cover. On this occassion light intensity below the 

ice was low(< 50 µmol photons m-2 s-1
) and decreased to 8 µmol photons m-2 s-1 at 10 m 

. Light was not detected below 12 m. 
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Figure 6.7: Light, temperature and salinity profile of Ace 
Lake on the 22"d December 1993. 
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6.4.4 Effect of antibiotic treatment on Synechococcus growth rate. 

Unfortunately, the metabolic inhibitor method was not sensitive enough for the 

detection of the difference between Synechococcus growth rates and grazing pressure in 

Ace Lake. There was no significant difference between any of the antibiotic treatments 

in the factorial experiment {Table 6.9). The mean growth rates for each of the four 

antibiotic treatments were between 0.10 d-l and 0.17 d-l {Figure 6.8a). 

Table 6.9: Interactions between the antibiotic treatments in the factorial field experiment 
that was designed to determine the effect of light, temperature, salinity and nutrients on 
growth rate of and grazing rate on Synechococcus. Least square means = LSM of growth 
rate (d"1

), standard errors = S.E. of LSM, n= sample number; A= ampicillin; C = 
cycloheximide; CA = cycloheximide and ampicillin and WA = without antibiotics. The nul 
hypothesis was that there was no significant difference in growth rate between 
treatments. Probabilities greater than 0.05 are not deemed to be significant. 

Probability of a difference between treatments 
Treatment n LSM S.E. (LSM) Treatment A c CA WA 

A 48 0.1682 0.0353 A 
c 48 0.1098 0.0348 c 0.2502 

CA 48 0.1375 0.0352 CA 0.5392 0.5933 
WA 48 0.1349 0.0348 WA 0.5032 0.6278 0.9584 

A similar result was obtained for the antibiotic interactions in the experiment designed 

to determine the effect of light on the growth rate and grazing rate of Synechococcus 

{Table 6.10). Mean growth rates obtained for the antibiotic treatments were between 

0.06 and 0.19 d-l {Figure 6.8b ). 
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Figure 6.8: Mean growth rates obtained from the four antibiotic 
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Table 6.10: Interactions between the antibiotic treatments in the experiment that was 
designed to determine the effect of light on the growth rate of and grazing rate on 
Synechococcus. Least square means = LSM of growth rate (d"1

), standard errors = S.E. of 
LSM, n= sample number; A= ampicillin; C = cycloheximide; CA= cycloheximide and 
ampicillin and WA =without antibiotics. The nul hypothesis was that there was no 
significant difference in growth rate between treatments. Probabilities greater than 0.05 
were deemed to be not significant. 

Probability of a difference between treatments 
Treatment n LSM S.E. (LSM) Treatment A c CA WA 

A 15 0.1065 0.0532 A 
c 15 0.0580 0.0507 c 0.5222 

CA 15 0.1234 0.0524 CA 0.8266 0.3717 
WA 15 0.1893 0.0622 WA 0.3317 0.1278 0.4361 

6.4.5 Effect of temperature, light, nutrients and salinity on Synechococcus growth 

rate 

As the antibiotic interactions were not significantly different from one another, the 

grazing rate on Synechococcus could not be detennined. The antibiotic treatments were 

pooled in the analysis of depth, light, salinity and nutrient effects on the specific growth 

rate (r) of Synechococcus. 

An increase in temperature from 3 ° C to 7° C (depth increase) increased significantly 

the growth rate of Synechococcus (Table 6.11 ). The mean growth rate increased from 

0.023 d"1 at 3° c to 0.2976 d"1 at 7° c. There was no significant difference in the growth 

rate of Synechococcus with an increase in the salinity, nor with an increase in nutrient 

concentration. At 10 m, a 13 % decrease in the light intensity resulted in a higher 

growth rate (from 0.0.221 d"1 to 0.353 d"1
) but the difference was not significant (p = 

0.181). From these results, it was decided to analyse first order interactions but not 

higher order interactions. If there were significant differences in growth rates from the 
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effect of salinity, nutrients and light, it would have been worthwhile investigating higher 

order interactions. 

Table 6.11: ANOVA of first order interactions using type Ill sum of squares. 

Treatment 

Depth 
Nutrients 
Salinity 
Light 

n 

96 
96 
96 
96 

Mean Square 

0.00737 
0.00002 
0.00001 
0.00018 

fValue 

72.87 
0.19 
0.06 
1.81 

p 

0.0001 
0.6611 
0.7994 
0.1808 

The only first order interaction that produced a significantly greater growth rate (p < 

0.05) was the interaction between depth and light (p = 0.0159). The probability of 

differences between depth and light combinations are given in Table 6.12. The growth 

rate of cells grown at 6 m with a 10 m light intensity was lower than the growth rate of 

cells grown at 6 m with 11 m light intensity (Figure 6.9), although the difference was 

not significant (p = 0.4442). There was a significantly higher growth rate for 

Synechococcus cells grown at 10 m than for those grown at 6 m. The growth rate of 

Synechococcus cells grown at 10 m with a 11 m light intensity (0.35 d-1
) was 

significantly greater (p = 0.0079) than cells grown at 10 m with a 10 m light intensity 

(0.22 d-1
, Figure 6.9). 

Table 6.12: Least square means (LSM) of growth rate (d-1
), standard errors S.E. of LSM, 

and probabilities of first order interactions between light and temperature. Interaction: 1) 
6 m depth, 10 m light; 2) 6 m depth, 11 m light; 3) 10 m depth, 10 m light; 4) 10 m depth, 
11 m light. The null hypothesis was that there was no significant difference in growth rate 
between treatments. Probabilities greater than 0.05 are deemed to be not significant. 

Probability of a difference between treatments 
Treatment n LSM S.E. (LSM) Treatment 1 2 3 4 

1 48 0.0074 0.0348 1 
2 48 -0.0309 0.0357 2 0.4442 
3 48 0.2213 0.0348 3 0.0001 0.0001 
4 48 0.3538 0.0348 4 0.0001 0.0001 0.0079 
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6.4.6 The effect of light and temperature on Synechococcus growth rate: 

As there were no significant differences between antibiotic interactions and 

Synechococcus growth rate (Table 6.10), antibiotic treatments· were pooled to analyse 

the effect of depth and light on the growth rate of Synechococcus. A change in depth 

from 6 m to 10 m was equivalent to a 4 ° C temperature increase. Field samples of 

Synechococcus, exposed to 6 m light intensity at 6 m depth (Figure 6.10) had a growth 

rate that was not significantly different from that of Synechococcus at 6 m with a 10 m 

light intensity (Table 6.13). There were also no significant differences in population 

numbers of cells grown at 6 m with a 10 m light intensity and those grown at 8 m with a 

8 m light intensity. There was, however, a marginally significant difference between 

growth rate of cells grown at 6 m with a 6 m light intensity and those grown at 8 m with 

a 8 m light intensity (p = 0.0351). 

Table 6.13: Least square means (LSM) of growth rate (d"1
), standard errors S.E. of LSM, 

and probabilities of interactions between the following treatments: 1) 6 m depth, 6 m 
light; 2) 6 m depth, 10 m light; 3) 8 m depth, 8 m light; 4) 8mdepth,10 m light; 5) 10 m 
depth, 10 m light. The null hypothesis was that there was no significant difference in 
growth rate between treatments. Probabilities greater than 0.05 are deemed to be not 
significant. 

Probability of a difference between treatments 
Treatment n LSM S.E.(LSM) Treatment 1 2 3 4 

1 12 -0.1176 0.0576 1 
2 12 0.0408 0.0576 2 0.0876 
3 12 0.072 0.0576 3 0.0351 0.7108 
4 12 0.2808 0.0576 4 0.0003 0.0152 0.0233 
5 12 0.3408 0.06 5 0.0001 0.0051 0.0072 0.4929 
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Figure 6.9: Growth rates of Synechococcus from first order interactions 
between depth and light in the 24 factorially designed experiment. 1) 6 m depth, 
10 m light; 2) 6 m depth, 11 m light; 3) 10 m depth, 10 m light; 4) 10 m depth, 11 
m light. Error bars are S.E. 
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Figure 6.10: Mean growth rate of Synechococcus cells grown at three depths and at two 
light intensities in Ace Lake. 1) 6 m depth, 6 m light; 2) 6mdepth,10 m light; 3) 8 m 
depth, 8 m light; 4) 8 m depth, 10 m light; 5) 10 m depth. Error bars are S.E. 
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Cells grown at 10 m grew significantly faster (p < 0.05) than those at 6 m with a 6 m or 

a 10 m light intensity or at 8 m with an S- m light intensity. Further, there were no 

significant differences between cells grown a 8 m with 10 m light, and those grown at 

10 m (p = 0.4929). The specific growth rate observed for Synechococcus grown at 6 m , 

8 m and 10 m, without any manipulation of light intensity, was -0.1176 d-1
, 0.072 d-1 

and 0.341 d-1 respectively. 

6.5 DISCUSSION 

The distribution and abundance of Synechococcus in the marine and :freshwater 

environment is equivalent to rate of growth (k) minus the loss rate in that environment. 

In Ace Lake, there is little physical mixing to remove cells. The sinking rate of 

Synechococcus is negligible (Craig 1987; Takahashi and Bienfang 1983) and because of 

the density gradient in the lake the sinking rate would be lower than that predicted. Low 

temperatures, nutrient limitations and light intensity limitations may reduce the growth 

rate of Synechococcus. Synechococcus is capable of growth in a wide range of nutrient 

concentrations (Bums and Stockner 1991; Voros et al. 1991), and light intensities 

(Waterbury et al. 1986). Significant Synechococcus cell losses, in Ace Lake, could be 

from grazing by heterotrophic eukaryotes or possibly by viral attack. Waterbury and 

Valois, (1993) indicated that Synechococcus is more resistant to viral attack than are 

other picoplankton although this claim needs to be tested in Ace Lake. Heterotrophic 

microflagellates that are capable of grazing Synechococcus (Hagstrom et al. 1988; 

Waterbury and Valois 1993) have been observed in Ace Lake (Layboum-Parry and 

Perriss 1995) and grazing by these organisms is probably the major cause of 

Synechococcus loss in Ace Lake. 
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Ace Lake has a relatively simple phytoplankton assemblage (Burch 1988). The 

potential grazing populating on Synechococcus in the lake consists of nano flagellates, 

both heterotrophic (Laybourn-Parry and Perriss 1995), and possibly autotrophic (Hall et 

al. 1993) ciliates (Laybourn-Parry and Perriss 1995) and one copepod species (Bayly 

and Burton 1987). Copepods are considered to have minimal direct impact on 

picocyanobacteria abundance as they usually graze on particles of sizes larger than 

Synechococcus cells (Johnson et al. 1982) although nauplii and early copepodite stages 

may have a significant impact. 

The metabolic inhibitor method has been used extensively to determine the growth rate 

of, and grazing rate on, Synechococcus cells (Campbell and Carpenter 1986; Liu et al. 

1995; Xiuren and Vaulot 1992). This method relies on specific metabolic inhibitors 

(ampicillin and cycloheximide) to keep either prey or predator populations constant. 

When ampicillin is added to a sample, the grazing rate (g) of Synechococcus can be 

determined via measurement of the decrease in population size of the non-replicating 

Synechococcus cells. When cycloheximide is added the absolute growth rate (k) can be 

determined as grazing by eukaryotes is inhibited. The specific growth rate (r) is 

equivalent to k - g (Xiuren and Vaulot 1992). The primary assumptions of the method 

is that organisms, in-situ, grow exponentially and that this is not changed by 

manipulation of samples (Campbell and Carpenter 1986). Another assumption is that 

all eukaryotic growth is inhibited by cycloheximide and that all prokaryote growth is 

inhibited by ampicillin (Xiuren and Vaulot 1992). Unfortunately, there was no 

significant difference in the growth of Synechococcus between any of the antibiotic 

treatments. This was unexpected as the antibiotic specificity and optimal concentrations 
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had been determined on Ace Lake Synechococcus cells (Figure 6.6), and an Ace Lake 

cryptomonad (Figure 6.4) in laboratory experiments prior to the field experiments. 

Also, these antibiotics had been used by others to predict successfully the growth rates 

of, and grazing rates on, Synechococcus in tropical and temperate environments 

(Campbell and Carpenter 1986; Xiuren and Vaulot 1992). 

There are several possible reasons as to why differences in growth rates were not 

detected between antibiotic treatments. It may be that the antibiotics were not specific 

in their action after all, in the laboratory experiments, cycloheximide was only tested 

against one eukaryote from Ace Lake. However, other studies had achieved general 

inhibition of a diverse group of grazing eukaryotes by using cycloheximide (Campbell 

and Carpenter 1986; Xiuren and Vaulot 1992). It is possible that grazing on 

Synechococcus was not great enough to be detected using this experimental design. It is 

also possible that the effect of cycloheximide on the eukaryotic grazers was too slow to 

show an effect. Another problem in the experiment may have resulted from logistical 

constraints. Samples had to be preserved and frozen and although under laboratory 

conditions these preservation techniques did not result in a significant cell loss (Figure 

6.3) the situation may have been different under the field conditions. Ideally, the 

samples would have been analysed immediately after collection without preservation. 

The effectiveness of the individual metabolic inhibitors may have affected the 

experimental outcomes. A final possibility involves the assumption that manipulation 

of samples did not perturb growth characteristics. In the laboratory, when a 

Synechococcus culture was diluted and antibiotics added, there was a lag phase of 

appro~imately two days (Figure 6.5, 6.6). The same lag period occurred in the 

Cryptomonas sp. cultures (Figure 6.4). It is possible that manipulation and dilution of 



samples in the field resulted in a perturbation of growth of the microorganisms in the 

samples. 
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The metabolic inhibitor technique is one of four methods available to determine the 

growth rates and grazing loss of Synechococcus. The serial dilution technique relies on 

a reduction in predator concentration and hence grazing pressure (Landry et al. 1984). 

The assumptions of this technique include the exponential growth of Synechococcus, 

that dilution of samples does not cause a lag phase in exponential growth, and that the 

predator grazing rates are not affected by Synechococcus densities (Campbell and 

Carpenter 1986; Xiuren and Vaulot 1992). The frequency of dividing cells technique 

calculates growth rate based on the number of dividing cells in a population (Campbell 

and Carpenter 1986). The main assumption of this technique is that the duration of cell 

division is constant with respect to environmental conditions. The last technique, used 

by Iturriaga and Mitchell, (1986), determines growth rate and grazing loss using cellular 

carbon incorporation and 14C- labelled sample addition. Assumptions associated with 

this technique include an estimation of cellular carbon content, determination of a mean 

cellular volume and no discrimination of labeled cells by grazers. According to 

Campbell and Carpenter, (1986) and Xiuren and Vaulot, (1992) the metabolic inhibitor 

technique gives the most reliable and sensitive results especially when Synechococcus 

densities are low. Flow cytometric techniques were also more suited to this technique 

than the others described. 

Even though absolute growth rates (k) and grazing rates (g) could not be calculated, the 

specific growth rate (r) which incorporates grazing loss, was determined. The effect of 



salinity, nutrient addition, temperature and light intensity on the growth of 

Synechococcus could still be ascertained. 
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At the time of the experiment, the population density of Synechococcus cells was low 

(104 m1-1
) in.the top 7 m of the lake and it increased between 7 m and 11 m. In 1992, 

when a bloom population was monitored, numbers peaked at 11 m with a maximum 

density of 8 x 106 m1-1 (Chapter 3). It should be considered that absolute cell densities 

and growth rates obtained at any particular time are only relevant to that time. Cell 

numbers and growth rates will vary from day to day and year to year depending on past 

and present physical, chemical and biological conditions (Harris 1986) and depending 

on the balance between population gains and losses at that time (Vincent 1998). 

Seasonal trends in distribution and abundance of Synechococcus in Ace Lake should, 

however, be relatively constant. 

Over the course of the experiments, salinity and temperature in Ace Lake remained 

relatively constant. The temperature in the lake at 6 m was approximately 3 ° C and at 

10 m the temperature was 7° C. Light intensity varied because of variation in the cloud 

cover. Waterbury et al., (1986) found that changes in light intensity throughout an 

experimental period altered the growth rate of Synechococcus. With a 50 % increase in 

cloud cover there was between a 9 % and 20 % decrease in the number of dividing cells 

in surface water samples collected from Woods Hole Harbour. It is probable, however, 

that if the light intensity variation between sunny and cloudy condition were averaged, 

the difference in mean light intensity between each experiment would be small. 
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Synechococcus growing at 6 m in Ace Lake at a temperature of 3° C had a negative 

specific growth rate (Figure 6.10). The predicted absolute growth rate for the Ace Lake 

Synechococcus at this temperature, based on laboratory measurements and square root 

model prediction, was 0.04 d.1 (generation time, g.t., 17 .5 days, Chapter 5). It is 

probable that the negative growth rate resulted from grazing during containment. The 

specific growth rate of Synechococcus at 8 m, at which the temperature was 6.3° C, was 

0.072 d-1 (g.t. 9.6 days). This compares to k = 0.058 d-1 (generation time of 11.95 days) 

as predicted from the square root model (Chapter 5). At 10 m in Ace Lake, 7° C, the 

specific growth rate was 0.341 d-1 (g.t. 2.03 days). This growth rate was much higher 

than that obtained under laboratory conditions. At 7° C the predicted absolute growth 

rate was 0.061 d-1 (g.t. 11.29 days, Chapter 5). The growth rates obtained under 

laboratory conditions were from an experiment designed to determine optimal growth 

temperatures. It is probable that during these experiments, other physical (eg: light 

intensity), chemical and biological conditions were not optimal for the growth of 

Synechococcus cells. Year long measurement of Synechococcus cell numbers at 10 m, 

taken in 1992, showed that a Synechococcus bloom occurred between late October and 

December (Chapter 3). The growth rate of Synechococcus calculated over this bloom 

period was 0.060 d-1 (g.t. 11.6 days) which was very close to that predicted for the 

temperature experienced at 10 m based on laboratory data fitted to the square root model 

(µ = 0.061 d-1
). It is possible that during a bloom, the increase in abundance of 

Synechococcus could alter the local physical, chemical or biological conditions, thereby 

altering the growth rate of the population. S~lf shading, for example, could reduce the 

light intensity. The other possibility is that the containment of the population produced 

an artificially high growth rate. 
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During the 1993/94 summer, the Synechococcus bloom at 10 m was not monitored. If it 

is assumed that the bloom occurred at approximately the same time as it did in 1992 

(Chapter 3) then these experiments were carried out when the Synechococcus population 

was almost at its peak and just about to decline. It is probable that during this time the 

impact of grazing was low and that specific growth rate obtained at 10 m would be close 

to the absolute growth rate (k) for the population. 

The specific growth rates for the 6 m, 8 m and 10 m populations were calculated on 

populations taken from these three depths respectively. Although the differences in 

growth rate at the three depths can probably be attributed largely to temperature, other 

causes, such as nutrient concentration and light intensity, can not be eliminated. 

The growth rates of and grazing rates on Synechococcus in a variety of marine and 

freshwater habitats are summarised in Table 6.14. Using the metabolic inhibitor 

-
technique, Xiuren and Vaulot, (1992) obtained absolute growth rates ranging between 

0.25 and 0.72 d-1 and grazing rates ranging between 0.21 and 0.64 d-1 for Synechococcus 

in the English Channel. A growth rate of0.77 ± 0.19 d-1 and grazing rate ofO - 0.35 d-1 

was obtained by Campbell and Carpenter, (1986) in the Northwest Atlantic Ocean. Liu 

et al., (1995) found that the growth rate of Synechococcus in coastal waters off Hawaii 

decreased with depth and grazing pressure was variable. The specific growth rates 

obtained for the Ace Lake Synechococcus at the three depths in Ace Lake were 

consistent with those summarised in table 6.14. 
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The factorially designed experiment tested the effect of four factors on the growth of the 

Synechococcus population from 6 m in Ace Lake. The growth of Synechococcus 

significantly increased with an increase in water temperature from 3 ° C at 6 m to 7° C at 

10 m (P = 0.0001, Table 6.11). Li and Dickie, (1991) found that growth rate and cell 

abundance were correlated. This holds for the distribution of Synechococcus in Ace 

Lake. The highest growth rates and cell concentrations were obtained at 10 m where the 

water was warmer. At 6 m in Ace Lake where Synechococcus growth rate was slow, net 

losses, probably due to grazing, could have easily outweighed net gains. At higher 

temperatures where the net gains are higher, greater loss rates are required to reduce the 

population density. Populations grown at 6 m did not respond well to any manipulation. 

This is probably because growth rate was suppressed by the low temperature at this 

depth. 

Table 6.14: Growth rates (k) of and grazing rates (g) on Synechococcus in some coastal, 
oceanic and lake environments. k = absolute growth rate, g = grazing rate, r = (k - g) = 
specific growth rate. Ml = metabolic inhibitor technique, FDC = frequency of dividing 
cells technique, 14C = grazing was determined by addition of 14C labelled Synechococcus 
cells, growth rate was determined by changes in Synechococcus cell numbers in natural 
population, OT = dilution technique 

Location Habitat (k) d-1 (g) d-1 r (d-1) Method Reference 

English Channel Coastal 0.51 0.44 0.07 MI (Xiuren and Vaulot 1992) 
Celtic Sea Ocean 0.32 0.41 -0.09 MI (Xiuren and Vaulot 1992) 

NW Atlantic Ocean 0.77 0.350 0.42 MI (Campbell and Carpenter 1986) 
Hawaii Coastal 0.64 0.31 0.33 MI (Liu et al. 1995) 
Hawaii Oceanic 0.42 0.28 0.14 MI (Liu et al. 1995) 
Hawaii Coastal 1.7 0.23 1.47 DT (Lancby et al. 1984) 

North Pacific Oceanic 1.8 0.3 1.50 14c (lturriaga and Mitchell 1986) 
Lake Huron Freshwater 0.34 FDC (Fahnenstiel et al. 1991b) 

Lake Michigan Freshwater 0.35 FDC (Fahnenstiel et al. 1991b) 
Lake Constance Freshwater 0.14-1.22 0.05-1.27 0.66 DT (Weisse 1988) 

There are conflicting reports as to the sensitivity of Synechococcus to light intensity. In 

laboratory experiments, El Hag, (1986) and Morris and Glover, (1981) indicated that 

Synechococcus was adapted to growth under low light intensities. Further, the presence 
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of the phycobiliproteins make it efficient at harvesting light deeper in the water column 

(Barlow and Albert 1985). Kruger and Eloff, (1978) found that the activation energy of 

Synechococcus PCC6301 was higher at lower low light intensities (25 µmol photons m-2 

s-1
) and (Platt et al. 1983) found that photosynthesis was inhibited at high light 

intensities. Also, in some ocean and lake environments Synechococcus was more 

abundant deeper in the euphoric zone than in the surface waters (Murphy and Haugen 

1985; Takahashi and Hori 1984; Venkateswaran et al. 1993). In other regions, however, 

Synechococcus was more abundant in surface waters than deeper in the water column 

(Caron et al. 1985; Jochem 1995; Waterbury et al. 1979). Further, in photosynthetic 

irradiance curves for several cultured strains, although photosynthesis was saturated at 

low light intensities, a reduction in photosynthesis was not detected at high light 

intensities (Alberte et al. 1984; Glover and Morris 1981 ). This investigation has 

determined that the Ace Lake Synechococcus has .a higher growth rate at lower light 

intensities (Figure 6.9 and 6.10). Synechococcus populations grown at 8 m but with a 10 

m light intensity had a growth rate that was not significantly different from the 

population grown at 10 m. Phylogenetic analysis of Synechococcus strains is now 

showing a substantial degree of genetic variation within this group of picocyanobacteria 

(Chapter 5; Palenik 1994; Schmidt et al. 1991). It is probable that there are strains that 

are adapted to low light conditions and others that are adapted to life in the mixed zone 

of oceanic surface waters where they are exposed to periods of high light intensity. 

Most of the reports describing the abundance and distribution of Synechococcus in the 

Southern Ocean have been from surface water samples (Letelier and Karl 1989; 

Marchant et al. 1987). The possibility that, at certain times throughout the year, 

Synechococcus cells could be more abundant at the bottom of the euphotic zone, should 



not be discounted. A detailed understanding of the vertical distribution of 

Synechococcus in the Southern Ocean warrants investigation. 
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The addition of nutrients and the increase in salinity failed to alter significantly the 

growth rate of Synechococcus (Table 6.11 ). It was anticipated that increasing the 

nutrient concentration would increase the growth rate of Synechococcus. Although 

Synechococcus is competitive in oligotrophic waters (Cuhel and Waterbury 1984; 

Iturriaga and Mitchell 1986; Platt et al. 1983), there is ample evidence of an increase in 

Synechococcus abundance in nutrient rich lakes as compared to oligotrophic lakes 

(Bums and Stockner 1991; Voros et al. 1991) and in coastal waters as compared to the 

oligotrophic open ocean (Jochem 1995; Li et al. 1983). In Canada, lakes are artificially 

fertilized .to encourage phytoplankton growth. Studies of Synechococcus abundance, 

before and after fertilization, indicate a preference for higher nutrient conditions by 

Synechococcus (Hardy et al. 1986; Shortbreed and Stockner 1990; Stockner and 

Shortbreed 1988). The top 7 m of Ace Lake had nitrogen and phosphorus 

concentrations that were below the limit of detection of the analytical techniques used 

(Chapter 3). Addition of SNAX mineral media to the contained samples resulted in. a 

phosphorus (HPOl) increase of 1.5 mg rt and a nitrogen (N03- and NH/) increase of 

75 mg rt and 5.3 mg rt. Based on experimental evidence (Shortbreed and Stockner 

1990; Stockner and Shortbreed 1988), Synechococcus should have responded with an 

increased growth rate. It is possible that incubation for 48 h was not long enough to 

detect this response. It can take more than one generation for phytoplankton to 

equilibrate to new conditions (Harris 1986). It is also known that some Synechococcus 

strains store nitrogen as phycobiliproteins (Wyman et al. 1985) and that when nutrients 
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are added to an oligotrophic system, Synechococcus may take up nutrients for storage 

rather than for growth (Glibert et al. 1986). 

The Ace Lake Synechococcus strain could tolerate a broad salinity range (Chapter 5), 

although a salinity equivalent to freshwater was not tolerated. Further, Synechococcus 

has been observed in several estuarine and coastal environments where the environment 

is affected by tidal movement and freshwater inflow (Bertrand and Vincent 1994; 

Vaulot and Xiuren 1988). Within Ace Lake and within the other meromictic lakes in 

the Vestfold Hills where Synechococcus occurs, salinity is probably not a strong 

controlling factor in the distribution of Synechococcus cells. 

It is acknowledged that when carrying out experiments in confined containers over long 

periods, there is the possibility that effects caused simply by containment could be 

observed (Harris 1986). These effects could result from nutrient deficiencies, over 

grazing by organisms trapped in the containers (Prezelin et al. 1986) or simply by the 

manipulation of the contained planktonic populations. In the current experiments, 

incubation of the containers 'in-situ and manipulation of samples under subdued light 

may have mimimised the artificial effects of containment. Containment of samples in 

small (50 ml) aliquots and addition of nutrients and salt water dilution the ~ell numbers 

may have altered the growth of Synechococcus. Due to the large number of treatments 

small sample volumes were necessary. Incubation over 48 h was necessary because of 

the slow in-situ growth rates of Antarctic organisms (Franzmann et al. 1988; McMeekin 

and Franzmann 1988), including Synechococcus, and it is possible that because of the 

slow growth rates nutrient depletion may not have been a concern. 
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Of the four factors measured, water temperature had the greatest effect on 

Synechococcus growth rate in Ace Lake. There was almost a one hundred times 

increase in growth rate between the population grown at 6 m and the population grown 

at I 0 m, with the same light intensity (Table 6.12). However, according to laboratory 

experiments, Ace Lake Synechococcus is capable of growth at 3° C (0.058 d"1
) and the 

low (almost negligible) specific growth rate at 6 m in Ace Lake, (Table 6.13), probably 

resulted from grazing pressure at this depth. At this low growth rate, an intense grazing 

pressure would not have been required to keep the abundance of Synechococcus cells 

low. Light intensity also had a significant impact on Synechococcus growth rate. 

Synechococcus grew faster at the light intensities experienced deeper in the euphotic 

zone of the lake than in the surface waters. Cells growing at I 0 m in the lake were 

therefore advantaged by the warmer temperatures and the lower light intensity relative 

to those growing at 6 m. The pigment complex of the Ace Lake Synechococcus 

(Chapter 5) is optimal for harvesting energy at the wavelengths that penetrate to the 

bottom of the euphotic zone (Burch 1988). 

These experiments were carried out during the spring bloom of Synechococcus, 

(Chapter 3), and it is possible that the grazing population was still responding to the 

Synechococcus bloom. It is probable that, at this time, the grazing pressure on 

Synechococcus was relatively low. The grazing population in Ace Lake requires further 

characterisation. Currently a mixotrophic ciliate (Mesodinium rubrum) (Perriss et al. 

1995) and the copepod Paralabidocera antarctica (Bayly 1978) have been 

characterised. Heterotrophic and autotrophic microflagellates have been identified 

(Laybourn-Parry et al. 1996) but not characterised. The possibility of the autotrophic 
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nanoflagellates being mesotrophic is yet to be determined and the grazing potential of 

all of these organisms on Synechococcus remains unknown. 

In the polar oceans (Gradinger and Lenz 1989; Ishizaka et al. 1994; Letelier and Karl 

1989; Marchant et al. 1987; Murphy and Haugen 1985) and :freshwater lakes (Caron et 

al. 1985) Synechococcus population densities have been found to be correlated with 

temperature. The temporal distribution of Synechococcus has also been correlated to 

temperature (El Hag and Fogg 1986; Waterbury et al. 1986). At the low temperatures 

experienced in the southern and northern polar oceans, the growth rate of 

Synechococcus would probably be low, (0.038 d"1at1.7° C for the Ace Lake 

Synechococcus). However, if no other factor was controlling the abundance of 

Synechococcus the organism could still reach high densities, it would just take longer. 

Vincent, (1998) proposed that the abundance of cyanobacteria in polar regions is 

dependent on a balance between gain and loss rates. If, as is probably occurring in the 

Southern Ocean, the loss rates (grazing, turbulence) are high, and the gain rates are low 

(temperature), Synechococcus cell abundance will be low. 
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Conclusion 

Ace Lake is one of approximately thirty meromictic lakes and marine basins in the Vestfold 

Hills Antarctica. The lake was isolated from the sea some 6000 years ago and has 

undergone substantial change to reach its current stratified state. The discovery and 

characterisation of the Ace Lake Synechococcus strain, has increased the knowledge of 

biodiversity in this intensively studied lake. 

The discovery of Synechococcus in Ace Lake and the subsequent ecological and taxonomic 

investigations were aided by the use of flow cytornetric methods. In aquatic microbiology, 

flow cytometry relies upon the detection of autofluorescence produced by phytoplankton 

when cells are exposed to specific wavelengths oflight. Flow cytometry has become a 

valuable tool for microbial ecologists and is now routinely used for the rapid detection and 

analysis of individual phytoplankton cells. The use of flow cytometry to monitor 

phytoplankton populations in the meromictic lakes of the Vestfold Hills was the first time 

this technology had been applied' in Antarctica. 

In Ace Lake, Synechococcus occurred in highest numbers just above the anaerobic 

interface. At the peak of the spring bloom, in 1992, a density of 8 x 106 cells m1-1 was 

measured at 11 m in Ace Lake. The spring bloom of Synechococcus, at 10 m in Ace Lake, 

began in September when the water temperature was at a minimum. It is probable that the 

spring bloom was induced by an increase in light intensity. At 10 m there was a rapid 
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decline in Synechococcus cell numbers at the end of December. The cause of this decline in 

cell numbers is not known but it is possible that it resulted from grazing, nutrient 

limitations or self-shading. No diel periodicity was detected in the Ace Lake 

Synechococcus population. 

In a survey of eleven other meromictic lakes and marine basins in the Vestfold Hills, 

Synechococcus was detected in Lake Abraxas and in Pendant Lake. These two lakes are in 

close proximity to Ace Lake, on Long Peninsula. The organism occurred throughout the 

aerobic zone in Pendant Lake, in densities of approximately 10 7 cells m1-1
, and below the 

pycnocline in Lake Abraxas in densities of 1.4 x 107 cells m1-1
• It is possible that the 

distribution of Synechococcus in the meromictic lakes of the Vestfold Hills is controlled by 

salinity. 

Synechococcus strains were isolated from Ace Lake, Pendant Lake and Lake Abraxas for 

taxonomic characterisation. The three strains were similar in size and had the same lipid 

soluble pigment signature, with two unknown carotenoid pigments present in addition to 

the chlorophyll a, zeaxanthin and~~- carotene. The three strains had phycoerythrin as their 

principle accessory light harvesting pigment. They were genetically similar (99. 7 % 

similarity in the 168 rRNA sequence) and had a G + C content of between 57 and 58 mol 

%. They were also genetically similar (95.7 % similarity in the 168 rRNA sequence) to 

other marine Synechococcus strains and to another marine picocyanobacteria, 

Prochlorococcus marinus. The relationship between marine Synechococcus and P. marinus 

was investigated and the use of photosynthetic pigments, as a taxonomic characteristic in 



which to separate genera of photosynthetic bacteria, was questioned. The minimum, 

optimal and maximum theoretical growth temperatures of the Ace Lake Synechococcus 

strain, based on the square root model, were -8° C, 19.7° C, and 29.8° C respectively. 
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In-situ experiments were carried out in Ace Lake to determine growth rates and to 

determine the factors that controlled the distribution of Synechococcus in the lake. Jn-situ 

growth rates of the Ace Lake Synechococcus strain at 6 m, 8 m and 10 m in Ace Lake were 

determined. These rates were -0.118 d-1
, 0.072 d-l and 0.341 d-l respectively. An increase 

in water temperature and a reduction in light intensity increased the in-situ growth rate of 

the Ace Lake Synechococcus population. The grazing pressure on Synechococcus in Ace 

Lake was not determined. However, eukaryotic organisms, known to graze on 

Synechococcus, occur in Ace Lake and it is probable that the distribution and abundance of 

Synechococcus in Ace Lake, Pendant Lake and Lake Abraxas is partially controlled by 

grazmg. 
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Table A 1.1: Summer and winter temperature (° C) 
profiles in Ace Lake during 1992. 

Depth August February 

2 -0.9 0.45 
4 -0.8 0.42 
6 -0.8 0.42 
7 0.76 
8 4.1 
9 10.57 
10 4.9 11.42 
12 6.3 
13 7.17 
14 6.7 
15 6.33 
16 6.2 
17 5.42 
18 5.2 
19 4.38 
20 4.1 
21 3.5 
22 3.3 
24 2.7 

Table A1.2: Salinity readings (g kg"1)in Ace 
Lake in December 1992 and 1974. 

Depth Salinity (1992) Salinity (197 4) 

1 15.44997 
2 16.57482 
3 16.62506 
4 16.65458 27.70295 
5 16.6736 
6 16.68836 
7 16.79381 27.82449 
8 27.65842 
9 29.1057 31.11545 
10 29.57036 
11 30.16604 
12 30.70317 31.90984 
13 30.92374 
14 31.13651 32.37568 
15 31.32659 
16 31.64487 
17 32.23695 32.96186 
18 33.27002 
19 35.03938 
20 36.89861 
21 38.8994 
22 39.97319 41.11661 
23 40.33538 
24 40.47211 41.72948 

24.5 33.62832 



Table A13: Dissloved gases and sulfate concentrations 
(mmol 1"1) in Ace Lake (from Franzmann et al., 1991). 

Depth Oxygen Sulfate Methane H2S 

1 0.96 
2 3.464 2.79 
3 3 
4 4.02 
5 3.683 4.43 
6 6.67 
7 6.06 
8 7.38 
9 7.69 
10 0.804 9.02 
11 0.585 7.28 0.0158 0 
12 0 8.61 0.064 0.018 
13 7.99 0.0999 0.797 
14 7.29 0.125 0.888 
15 4.93 1.571 
16 5.14 0.2158 2.132 
17 3.71 3.962 
18 1.37 0.747 4.794 
19 0.75 5.891 
20 0.65 1.8408 6.747 
21 0.55 2.1429 7.412 
22 0.77 4.2946 7.394 
23 0.65 4.2679 7.932 
24 0.5 4.9252 8.062 

Table A1.4: Measured nitrogen concentration and 
calculated saturated nitrogen concentration in Ace 
Lake (from Burton, 1980). 

Depth Equilibrium Measured 

7 13.5 16 
10 12.3 15 
11 12.4 15 
12 12.5 15 
13 12.6 15.2 
17 13.5 14 
20 13.3 0 
22 13.5 
24 13.5 
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Table A1 .5: Vertical distribution of nutrients in Ace Lake (from Burton, 
1980) 

Depth(m) Po/· 

2 0.10 
5 0.10 
7 0.20 
10 0.50 
12 0.60 
15 1.95 
20 9.35 
22 10.00 

TotalN 

1.0 
1.0 
1.0 
2.0 
6.0 

24.0 
121.0 
123.0 

NRr N+ Amino acids 

0.050 
0.465 
0.730 
0.780 

0.695 
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Appendix 2 

Raw data from Chapter 2 



1" 

1 3 

V3:BACV01,FSC-H,FSC-Height 
--- Arithmetic Histogram Statistics for V3:BACV01 
Selected Preferences: Arithmetic/Linear 
Parameter FSC-H FSC-Height Ungated 

A 

1 'I 

M Left,Right Events " Peak PkChl Mean Median SD CV " 

0 1.00, 9910 
1 1.41,45.32 

9995 100.00 
9951 99.56 

78 8.28 
78 8.28 

7.71 
7.74 

1 3 

V3:BACV03,FSC-H,FSC-Height 
--- Arithmetic Histogram Statistics for V3:BACV03 
Selected Preferences: Arithmetic/Linear 
Parameter FSC-H FSC-Height Ungated 

6.98 4.29 55.71 
6.98 4.28 55.32 

B 

1 'I 

M Left,Right Events " Peak PkChl Mean Median SD CV " 
- ----------- -------- ------ ------ ------ ------- -------
0 1.00, 9910 
1 4.74, 152 

9972 100.00 
9881 99.09 

71 26.90 28.57 
71 26.90 28.81 

25.48 15.80 55.29 
25.48 15.68 54.43 



U3:BACY05,FSC-H,FSC-Height 
--- Arithmetic Histogram Statistics for U3:BACY05 --­
Selected Preferences: Arithmetic/Linear 
Parameter FSC-H FSC-Height Ungated 
M Left,Right Events % Peak PkChl Mean Median 

c 

SD CU % 

0 1.00, 9910 
1 5.52, 643 

9996 100.00 
9248 92.52 

123 1.00 78.49 58.29 76.27 97.18 
46 60.43 84.58 63.21 75.63 89.43 

Figure A2.1: Flow cytometric histograms and histogram 
statistics showing the effect of salinity on the forward angle 
light scatter (FSC) image of bacteria. A) bacteria in a 1 % NaCl 
solution; B) bacteria in a 3 % NaCl solution; C) bacteria in a 5 
% NaCl solution. 



Table A2.1: Comparison between the flow cytometer and the 
microscope for the counting of cultured bacterial cells (cells 
mr1

). 

Flow Cytometer 

3.6 x 108 

6.4 x 108 

6.4 x 108 

4.8 x 108 

4.6 x 108 

3.9 x 108 

4.7x 108 

3.4 x 108 

4.7x 108 

3.2 x 108 

Microscope 

4.1x108 

4.5 x 108 

4.2 x 108 

3.9 x 108 

4.2 x 108 

4.6 x 108 

4.3 x 108 

4.1x108 

4.5 x 108 

4.3 x 108 

Table A2.2: Comparison between the flow cytometer and 
the microscope for the counting of bacterial cells in lake 
water samples (cells ml"1

). 

Sample Flow Cytometer 

Ace Lake 12 m 8.3 x 106 

8.5 x 106 

8.3 x 106 

8.5 x 106 

8.4 x 106 

Ace Lake 8 m 2.1x106 

2.2 x 106 

2.1 x 106 

2.1 x 106 

1.9 x 106 

Microscope 

8.7 x 106 

8.5 x 106 

8.1 x 106 

8.3 x 106 

8.4 x 106 

1.7 x106 

2.5 x 106 

1.9 x 106 

1.9 x106 

2.1x106 

Table A2.3: Comparison between the flow cytometer and the 
microscope for the counting of cultured Synechococcus cells 
(cells ml"1

) 

Flow Cytometer 

3.02E+07 
2.16E+07 
2.61E+07 
2.46E+07 
2.60E+07 
2.41E+o7 
2.55E+07 
2.97E+07 
2.47E+07 
2.43E+07 

Microscope 

2.52E+07 
2.45E+07 
2.63E+07 
2.76E+07 
2.59E+07 
2.57E+07 
2.77E+07 
2.55E+07 
2.69E+07 
2.82E+07 
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Table A2.4 Counting error in flow cytometer (cells ml"1

) 

A B c D E 

1.48E+08 1.48E+08 1.53E+o8 1.21E+08 1.04E+08 
l,59E+08 1.26E+08 1.52E+08 1.18E+08 1.05E+08 
l.58E+08 1.25E+08 1.48E+08 1.18E+08 8.97E+07 

Table A2.5: Flow cytometric data used to calculate cell numbers in Table 2.4 of 
Chapter 2. The bead concentration used was 1.76x107 beads mr1. 

Depth Events Volume Bead Bead Rl R2 R3 R5 
(ml) Volwne(ml) count 

A 10000 1 0.01 6775 70 133 24 125 
B 10000 1 0.01 6288 231 144 38 401 
c 10000 1 0.01 4811 250 83 19 1861 
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Table A3.1: Temperature data (°C) in Ace Lake during 1992 

Depth 26-Feb-92 16-Apr-92 17-May-92 14-Jul-92 17-Aug-92 20-Sep-92 23-0ct-92 04-Nov-92 20-Nov-92 02-Dec-92 17-Dec-92 30-Dec-92 13-Jan-93 26-Jan-93 

2 0.5 -0.5 -1.0 -1.3 -0.9 -0.9 -0.8 -0.7 -0.4 0.9 1.9 3.5 4.4 5.6 
3 0.5 -0.5 -0.9 -1.1 -0.9 -0.9 -0.8 -0.7 -0.1 0.9 2.1 3.6 4.8 6.5 
4 0.4 -0.5 -0.8 -0.9 -0.8 -0.9 -0.8 -0.7 -0.2 0.8 1.9 3.3 4.5 5.8 
5 0.4 -0.3 -0.8 -0.9 -0.8 -0.9 -0.8 -0.7 -0.1 0.9 1.8 3.0 4.1 5.4 
6 0.4 0.0 -0.6 -0.9 -0.8 -0.9 -0.8 -0.7 -0.1 0.9 1.8 2.6 3.6 4.6 
7 0.8 0.8 0.8 0.7 0.5 0.0 -0.8 -0.1 1.4 1.7 2.3 2.9 3.8 4.6 
8 5.7 7.1 4.7 4.3 4.1 3.6 3.3 3.5 4.0 4.2 4.6 5.2 5.3 6.3 
9 10.6 7.7 5.5 5.1 4.5 4.2 4.1 4.1 4.4 4.7 5.2 5.8 6.4 6.7 

10 11.4 8.2 6.5 5.9 4.9 4.8 4.5 4.5 4.8 5.0 5.7 6.2 6.6 7.0 
11 11.0 8.3 7.0 6.6 5.6 5.3 5.1 4.9 5.3 5.5 6.1 6.6 7.0 7.4 
12 9.1 8.4 7.6 7.0 6.3 5.7 5.4 5.4 5.5 5.5 5.7 5.9 6.2 6.4 
13 7.2 7.2 7.4 7.5 6.5 5.9 5.6 5.6 5.7 5.6 5.7 5.8 5.8 6.2 
14 6.8 7.0 7.2 7.8 6.7 6.2 6.0 5.8 5.9 5.8 5.8 5.9 5.9 5.9 
15 6.3 6.5 6.6 7.3 6.5 5.9 6.1 6.0 6.0 6.0 5.9 5.9 5.9 5.9 
16 5.9 6.1 6.2 6.9 6.2 5.8 5.9 5.8 5.7 5.8 5.7 5.8 5.7 5.7 
17 5.4 5.5 5.6 6.3 5.7 5.4 5.4 5.4 5.3 5.4 5.4 5.4 5.4 5.4 
18 4.9 5.1 5.2 5.5 5.2 4.9 4.9 4.9 4.8 4.9 4.9 4.9 5.0 4.9 
19 4.4 4.5 4.6 4.7 4.6 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 
20 3.9 4.1 4.3 4.2 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.1 4.1 4.1 
21 3.5 3.6 3.7 3.7 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.7 3.6 3.6 
22 3.3 3.3 3.5 3.4 3.3 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.3 3.3 
23 2.9 2.9 3.2 3.1 2.9 2.9 2.9 2.9 2.9 2.9 3.0 3.0 2.9 3.0 
24 2.7 2.7 3.0 3.0 2.7 2.6 2.7 2.6 2.6 2.6 2.7 2.7 2.7 2.7 
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Table A3.2: Salinity data (g kg'1) for Ace Lake during 1992 

Depth 26-Feb-92 17-May-92 20-Sep-92 23..0ct-92 04-Nov-92 20-Nov-92 02-Dec-92 17-Dec-92 30-Dec-92 13..Jan-93 26..Jan-93 

2 12.6 15.9 12.1 16.8 16.7 16.7 16.6 16.2 16.2 15.8 14.2 
3 12.6 15.9 16.3 16.7 16.7 16.6 16.6 16.6 16.6 16.5 16.4 
4 12.6 15.8 16.3 16.7 16.6 16.6 16.6 16.7 16.7 16.6 16.6 
5 12.6 15.8 16.3 16.6 16.6 16.6 16.7 16.8 16.7 16.7 16.7 
6 12.6 14.6 16.3 16.6 16.6 16.7 16.7 16.8 16.7 16.8 16.8 
7 13.2 16.6 17.0 16.6 16.6 17.1 16.8 16.9 16.9 16.8 16.8 
8 21.3 26.7 27.4 27.4 27.5 28.5 27.7 27.8 27.7 24.7 27.8 
9 29.3 28.7 28.3 28.9 28.8 29.2 29.1 29.2 29.0 29.1 29.1 

10 30.0 29.6 29.2 29.4 29.4 29.7 29.6 29.7 29.6 29.6 29.7 
11 30.6 30.3 30.0 30.0 29.9 29.5 30.2 30.3 30.2 30.1 30.1 
12 31.0 31.1 30.4 30.5 30.6 30.2 30.7 30.8 30.8 30.7 30.8 
13 31.3 31.0 30.6 30.6 30.8 31.0 30.9 31.1 31.0 31.1 31.0 
14 31.4 32.3 30.8 31.2 31.1 31.2 31.1 31.3 31.2 31.2 31.2 
15 31.6 31.4 31.3 31.3 31.3 31.4 31.3 31.5 31.4 31.4 31.3 
16 32.0 32.2 31.9 31.6 31.7 31.8 31.6 31.8 31.7 31.7 31.6 
17 32.4 32.3 32.2 32.2 32.2 32.3 32.2 32.3 32.2 32.1 32.1 
18 33.9 34.6 33.4 33.3 33.2 33.5 33.3 33.4 33.3 33.1 33.2 
19 35.4 35.4 35.1 35.0 35.0 35.2 35.0 35.1 34.9 34.9 34.6 
20 36.7 38.3 37.1 37.1 37.0 37.1 36.9 37.1 36.8 36.8 36.7 
21 38.8 38.9 39.1 39.0 38.9 38.9 38.9 39.0 38.5 38.7 38.8 
22 39.9 40.1 40.0 40.0 39.9 40.0 40.0 40.0 39.9 39.9 39.9 
23 40.2 39.9 40.3 40.3 40.4 40.3 40.3 40.5 40.2 40.3 40.2 
24 40.3 40.3 40.5 40.4 40.5 40.4 40.5 40.4 40.3 40.4 40.3 
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Table A3.3: pH data for Ace Lake in 1992 

25-Feb-92 16-Apr-92 17-May-92 14-Jul-92 17-Aug-92 20-Sep-92 23-0ct-92 20-Nov-92 17-Dec-92 30-Dec-92 

2 8.55 8.60 8.53 8.39 8.61 8.37 8.36 7.94 8.23 8.35 
4 8.52 8.62 8.47 8.49 8.60 8.35 8.36 8.11 8.23 8.46 
6 8.53 8.62 8.48 8.44 8.60 8.36 8.36 8.18 8.23 8.32 
8 8.54 8.62 8.47 8.48 8.66 8.44 8.45 8.20 8.25 8.39 
10 8.43 8.63 8.53 8.42 8.54 8.36 8.41 8.19 8.24 8.29 
12 8.24 8.45 8.43 8.28 8.22 8.23 8.19 7.96 7.95 8.00 
14 7.94 8.33 8.28 7.80 8.24 7.99 8.21 7.89 7.80 7.76 
16 7.79 8.17 8.12 7.91 7.81 7.83 8.11 7.83 7.65 7.50 
18 7.58 7.96 7.89 7.63 7.54 - 7.52 7.68 7.32 7.56 7.23 
20 7.15 7.60 7.27 7.38 7.15 7.52 7.57 7.13 7.25 7.10 
22 7.13 7.26 7.18 -7.10 7.13 7.15 7.25 6.96 7.10 6.95 
24 7.08 7.12 7.00 6.96 7.08 7.16 7.20 6.90 7.00 6.84 
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Table A3.4: Light readings (PAR - µmol photons m·2 s"1) in Ace Lake during 1992. lo is the incident 
radiation on that that date. 

Depth 16-Apr-92 17-Aug-92 20-Sep-92 17-0ct-92 220ct92 02-Nov-92 20-Nov-92 02-Dec-92 17-Dec-92 12-Jan-93 26-Jan-93 

lo 1197 164 568 759 818 988 745 511 611 632.4 906 

1.5 9.5 0.6 5.5 11.7 11.9 9.9 24.4 27.8 74.4 89.1 196.7 
1.75 7.6 0.5 3.6 8.1 10.7 8.7 20.9 25.6 71.3 88.9 181.5 

2 6.0 0.4 2.4 7.1 9.4 7.7 20.5 25.0 70.4 80.1 169.7 
3 4.5 0.3 0.8 5.2 7.8 5.4 24.7 30.1 66.3 68.0 145.4 
4 3.3 0.2 0.4 5.1 6.9 4.5 26.9 33.7 45.0 59.3 124.8 
5 2.5 0.2 0.4 4.7 6.4 3.9 28.2 30.6 39.6 50.2 106.6 
6 2.0 0.2 0.3 4.6 6.2 3.8 25.9 29.9 36.1 43.9 90.6 
7 1.7 0.2 0.2 4.4 5.8 3.2 22.3 25.8 27.5 37.8 76.7 
8 1.0 0.1 0.0 4.2 5.4 2.5 18.2 20.6 22.8 31.7 60.5 
9 0.7 0.0 0.0 4.0 5.3 1.9 14.3 17.9 18.9 25.2 47.3 
10 0.5 0.0 0.0 3.4 4.4 1.5 9.6 12.4 15.1 19.2 36.1 

10.5 0.0 0.0 0.0 2.6 3.2 1.1 7.0 7.3 13.5 15.8 30.3 
11 0.0 0.0 0.0 1.6 1.1 0.3 1.8 2.5 2.8 8.4 16.7 

11.5 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.6 0.0 1.3 0.4 
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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330 
Table A3.5: Dissolved organic carbon concentrations in Ace Lake (mg 1"1) during 1992. 

Depth 03-Mar-92 16-Apr-92 17-May-92 14'1ul-92 17-Aug-92 23-0ct-92 04-Nov-92 

2 7.5 6.6 7.07 
4 6.5 6.7 
6 6.4 6.9 6.86 
8 10.4 10.2 6.95 
10 6.7 4.1 7.9 8.1 9.1 10 7.47 
12 9.5 9.7 9.66 
14 7.1 11.4 9.64 
16 5.9 13.3 10.16 
18 7.1 18 13.14 
20 23.7 17.73 
22 21.9 30.64 
24 20.1 23.9 38.04 

Table A3.6: Nutrient concentrations in Ace Lake on November 17 1993. All 
concentrations are measured in µM 

Depth(m) po42- OxidisedN Silicate 

4 0.263 N.D. 21.410 
6 0.243 N.D. 22.342 
8 5.050 N.D. 58.153 
10 5.810 N.D. 59.503 
11 8.773 N.D. 97.438 
12 4.174 0.253 63.252 

N.D. = below the limit of detection. Silicate was 
determined on filtered samples that were not frozen. 

Table A3.7: Dissolved oxygen concentrations in Ace Lake during 1994. 

Date 2m 2m 2m Sm Sm Sm 10m 10m 10m 
mmol 

mmol mg 1-1 %Sat mmo mg/I %sat mmol mmol %sat 

20-Apr-94 0.483 15.456 110.1 0.487 15.584 139.7 0.51 16.32 170.9 
22-May-94 0.527 16.864 120.8 0.478 15.296 136.1 0.462 14.784 154.5 
28-Jun-94 0.522 16.704 122.1 0.493 15.776 137.9 0.417 13.344 139.3 
22-Jul-94 0.486 15.552 116.2 0.426 13.632 117.9 0.437 13.984 144.9 
23-Aug-94 0.506 16.192 120.5 0.432 13.824 116.9 0.389 12.448 127.4 
21-Sep-94 0.497 15.904 120.7 0.393 12.576 105.5 0.456 14.592 149.1 
12-0ct-94 0.471 15.072 114.8 0.412 13.184 110.6 0.452 14.464 147.9 
26-0ct-94 0.453 14.496 113 0.424 13.568 114.7 0.444 14.208 145 
10-Nov-94 0.46 14.72 116.3 0.438 14.016 120.1 0.446 14.272 145.9 
22-Nov-94 0.442 14.144 115 0.353 11.296 98.5 0.489 15.648 160.5 
10-Dec-94 0.405 12.96 107.9 0.425 13.6 121.5 0.503 16.096 166.7 
23-Dec-94 0.407 13.024 111.8 0.424 13.568 124.4 0.528 16.896 176 
10-Feb-95 0.378 12.096 89.7 0.399 12.768 123.2 0.499 15.968 171.4 

*(Measurements were performed by J. Gibson.) 



Table A3.8: Prokaryote cell numbers (cells ml"1
) in Ace Lake during 1992. This includes numbers of 

heterotrophic bacteria, Synechococcus and Ch/orobium sp. 

Depth 25-Feb-92 3-Mar-92 17-May-92 14-Jul-92 17-Aug-92 20-Sep-92 17-0ct-92 23-0ct-92 4-Nov-92 20-Nov-92 2-Dec-92 4-Dec-92 17-Dec-92 30-Dec-92 

0 3.76E+OS 3.08E+OS ' 

2 9.52E+OS 3.39E+OS 3.39E+OS 4.20E+OS 3.0lE+OS 7.91E+OS l.63E+OS 6.26E+05 5.26E+OS 2.49E+OS 2.99E+OS 2.21E+OS 3.79E+OS 6.32E+OS 

4 3.33E+OS 3.0SE+OS 5.17E+OS 1.54E+OS 2.89E+OS 2.66E+OS 2.43E+OS 2.29E+OS 2.SOE+OS 2.00E+OS 1.89E+OS 2.83E+OS 3.93E+OS 

6 2.36E+OS 2.lSE+OS 1.44E+OS 1.24E+OS 2.43E+OS 1.79E+OS 2.42E+OS 2.17E+OS 5.48E+04 l.83E+OS 2.49E+OS 4.82E+OS 3.58E+05 

8 3.24E+OS 3.30E+OS 2.70E+OS 8.66E+OS 4.91E+OS 2.30E+OS 2.30E+OS 6.75E+OS 3.07E+OS 2.SlE+OS 7.0SE+OS 1.0SE+06 9.19E+OS 1.11E+06 

10 4.06E+06 5.77E+OS 4.74E+OS 2.44E+OS 4.56E+OS 3.13E+OS 1.11E+06 l.57E+06 2.33E+06 3.96E+06 3.31E+06 1.71E+06 2.61E+06 

11 3.03E+OS 1.39E+06 1.21 E+06 2.51E+06 1.55E+07 6.81E+06 8.75E+06 l.93E+06 

12 3.86E+07 2.15E+06 7.78E+06 3.81E+07 4.18E+07 3.SOE+07 4.79E+07 5.36E+07 2.87E+07 4.70E+o7 3.22E+o7 5.25E+07 1.06E+07 

13 7.51E+06 1.10E+07 1.19E+07 8.41E+06 2.56E+07 8.70E+06 6.04E+06 

14 l.29E+07 4.95E+06 l.30E+07 5.75E+06 9.92E+06 4.80E+06 8.97E+06 9.80E+06 l .41E+07 8.72E+06 8.73E+06 

16 7.46E+06 2.49E+06 7.81E+06 9.18E+06 1.09E+07 1.56E+07 5.81E+06 8.41E+06 

18 1.72E+07 8.84E+06 1.26E+07 2.57E+06 6.11E+06 l.30E+07 7.48E+06 7.0SE+06 1.98E+07 1.04E+07 l.03E+07 

20 5.34E+06 2.69E+06 8.39E+06 6.06E+06 2.SOE+07 1.SOE+07 2.29E+07 8.67E+06 

22 4.97E+06 2.53E+07 5.27E+06 3.25E+07 1.72E+07 2.18E+07 8.33E+06 

24 1.0SE+07 4.63E+07 4.22E+07 3.0SE+07 9.60E+06 1.26E+07 

331 



Table A3.9: Synechococcus cell numbers (cells ml"1
) in Ace Lake during 1992. 

Depth 25-Feb-92 17-May-92 14-Jul-92 17-Aug-92 20-Sep-92 17-0ct-92 23-0ct-92 4-Nov-92 20-Nov-92 4-Dec-92 17-Dec-92 30-Dec-92 

2 9.15E+02 l.68E+03 l.56E+03 

4 l.60E+03 l.67E+03 2.66E+03 

6 5.49E+03 4.82E+03 3.25E+03 

8 4.20E+03 l.01E+05 4.00E+04 1.12E+04 5.6E+04 2.67E+05 

10 3.15E+05 3.71E+04 l.04E+04 2.40E+04 2.69E+04 1.00E+Cl5 5.67e+04 6.81E+04 5.12E+05 9.36E+05 l .51E+06 
11 5.73E+04 5.77E+04 l.65E+05 1.3E+06 6.08E+06 7.98E+06 

Table A3.10: Cell numbers (cells 1"1) of phytoplankton in Ace Lake on 20November1992. PNAN = phototrophic 
nanoflagellate. 

20-Nov-92 Synechococcus M.rubrum 

2 1.56E+06 7.00E+04 
4 2.66E+06 2.00E+05 
6 3.25E+06 1.40E+05 
8 5.60E+07 9.00E+04 
10 5.12E+08 8.00E+04 

Total 5.75E+08 5.80E+05 

Cell counts of microplankton were perfonned by T. Pitman 

Cryptomonas sp. 

3.60E+05 
1.90E+05 
1.70E+05 
2.40E+05 
5.20E+04 
1.01E+06 

P. ge/ldlcola 

1.00E+04 
1.27E+06 
9.80E+05 
1.10E+05 
2.70E+05 
2.64E+06 

PNAN 

3.36E+06 
3.20E+06 
3.10E+06 
1.46E+07 
1.52E+07 
3.95E+07 

1.05E+05 

8.21E+05 

2.96E+06 

12-Jan-93 25-Jan-93 

5.28E+03 l.10E+04 

5.74E+04 9.14E+04 

8.88E+05 1.20E+06 
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Table A3.11: Biovolume (µm3
) of phytoplankton in Ace Lake on 20 November 1992. 

20-Nov-92 Synechococcus M.rubrum Cryptomonas sp. P. gelldlcola PNAN 

2 1.49E+06 2.93E+08 1.41E+08 6.55E+05 4.75E+07 
4 2.54E+06 8.38E+08 7.46E+07 8.31E+07 4.52E+07 
6 3.10E+06 5.87E+08 6.68E+07 6.41E+07 4.38E+07 
8 5.34E+07 3.77E+08 9.43E+07 7.20E+06 2.06E+08 
10 4.89E+08 3.35E+08 2.04E+07 1.77E+07 2.15E+08 

Total 5.49E+08 2.43E+09 3.97E+08 1.73E+08 5.58E+08 

Dimentions of phytoplankton were as follows: Synechococcus (Cyclindrial, 1.5 X 0.9); M. rubrum (spherical, diameter 20 µm) 
Cryptomonas sp. (conical 10µmX15 µm), P. gelidico/a (conical, 5µmX10 µm); Dinoflagellate (spherical, diameter 20 µm); 
PNAN (spherical, diameter 3µm) 

Table A3.12: Cell surface are (µm2
) of phytoplankton in Ace Lake on 20November1992 

20-Nov-92 Synechococcus M.rubrum Cryptomonas sp. P. gelldlcola PNAN 

2 6.40E+06 8.80E+07 1.18E+08 1.01E+06 9.50E+07 
4 1.09E+07 2.51E+08 6.21E+07 1.28E+08 9.05E+07 
6 1.33E+07 1.76E+08 5.56E+07 9.86E+07 8.77E+07 
8 2.30E+08 1.13E+08 7.85E+07 1.11E+07 4.13E+08 
10 2.10E+09 1.01E+08 1.70E+07 2.72E+07 4.30E+08 

Total 2.36E+09 7.29E+08 3.31E+08 2.66E+08 4.46E+09 
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Table A3.13 Autotrophic nanoflagellate numbers 
(cells ml"1

) in Ace Lake during the 1992/1$93 summer 

Date 2m 6m Sm 10m 

17-0ct-92 2.60E+03 3.97E+03 2.46E+03 
23-0ct-92 6.55E+02 6.55E+02 3.44E+03 8.55E+02 
04-Nov-92 1.70E+03 1.82E+03 6.47E+03 9.15E+03 
20-Nov-92 3.36E+03 3.10E+03 1.46E+04 1.52E+04 
04-Dec-92 4.33E+03 3.31E+03 1.62E+04 1.44E+04 
17-Dec-92 1.66E+04 9.05E+03 3.92E+05 1.54E+04 
30-Dec-92 4.03E+04 1.95E+04 1.51E+04 1.99E+05 
13-Jan-93 3.12E+04 9.28E+03 1.68E+04 6.34E+03 
26-Jan-93 1.62E+04 2.84E+04 3.42E+04 4.67E+04 

Table A3.14: Arithithmetic Hstogram statistics for FRESHA8B.10M01 (23-0ctober-1992). 
Selected preferences: Arithmetic/Linear. Parameter FL2 (Height) and FL3 (Height), Ungated. 

Parameter M Left Right Events % Peak PkChl Mean Median SD CV% 

Fl2 1 18.11 83.54 2103 21.03 36 37.52 41.38 39.6 13.99 33.81 
Fl2 3 1333 2226 6409 64.09 524 1685 1710.42 1700.08 90.47 5.29 
Fl3 2 13.46 60.98 2260 22.60 31 27.88 31.59 30.23 10.82 34.27 
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Table A3.15: Arithmetic Histogram statistics for FRESHA9B.10M02 (20-November-1992). 
Selected preferences: Arithmetic/Linear. Parameter FL2 (Height) and FL3 (Height), Ungated. 

Parameter M Left Right Events % Peak PkChl Mean Median SD CV% 

Fl2 I 1.73 44.11 7547 75.47 69 8.13 9.76 8.28 6.14 62.98 
Fl2 3 1333 2226 1629 16.29 208 1685 1684.04 1684.85 79.16 4.70 
Fl3 2 2.74 28.64 7578 75.78 74 10.09 9.59 8.58 4.79 49.96 

Table A3.16: Arithmetic Histogram statistics for FRESHA10A2.10M01 (4-December-1992). 
Selected preferences: Arithmetic/Linear. Parameter FL2 (Height) and FL3 (Height), Ungated. 

Parameter M Left Right Events % Peak Pk Chi Mean Median SD CV 
% 

Fl2 1 1 5 9831 98.31 4357 1 1.34 1.07 0.55 41.43 
Fl2 3 1333 2226 11 0.11 3 1499 1587.05 1512.47 207.93 13.10 
Fl3 2 7.50 9631 96.31 992 1 1.93 1.64 1.03 53.35 
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Table A3.17: Light intensities - PAR (µmol photons m·2 s"1
) in Ace Lake over a forty eight hour period 

during December 1993. Light intensities were taken to 'investigate the diel distribution 
of Synechococcus in Ace Lake. 

Depth (m) 27-Nov-93 27-Nov-93 28-Nov-93 28-Nov-93 28-Nov-93 28-Nov-93 28-Nov-93 28-Nov-93 29-Nov-93 29-Nov-93 29-Nov-93 29-Nov-93 
16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 

1.79 20.58 7.30 0.05 0.08 7.47 13.61 10.46 4.81 0.33 8.30 4.81 10.62 
2 19.09 6.97 0.05 0.08 5.81 10.13 9.96 4.65 0.17 0.83 4.48 9.63 

2.5 18.43 6.31 0.04 0.07 5.31 9.96 9.63 4.32 0.17 0.66 4.32 9.30 
3 17.60 5.81 0.04 0.07 4.98 9.63 9.13 3.98 0.17 0.50 4.15 8.96 

3.5 16.43 5.48 0.04 0.07 4.65 9.13 8.63 3.65 0.17 0.50 3.82 8.47 
4 15.44 4.98 0.04 0.06 4.32 8.63 8.13 3.32 0.17 0.33 3.65 8.13 

4.5 14.44 4.48 0.03 0.06 3.98 8.13 7.64 2.99 0.00 0.33 3.32 7.30 
5 13.28 4.15 0.03 0.06 3.65 7.64 7.14 2.82 0.00' 0.33 3.15 6.81 
6 11.79 3.49 0.03 0.05 2.99 5.81 5.98 2.49 0.00 0.17 2.66 6.64 
7 10.46 2.82 0.02 0.04 2.49 4.65 4.98 1.99 0.00 0.17 2.16 5.98 
8 8.47 2.16 0.02 0.03 1.83 3.98 3.65 1.49 0.00 0.00 1.49 4.98 
9 6.97 1.49 0.01 0.02 1.33 3.32 2.66 1.16 0.00 0.00 1.16 4.32 
10 5.98 1.16 0.01 0.01 0.83 2.32 1.66 0.83 0.00 0.00 0.66 3.65 
11 2.99 0.17 0.00 0.01 0.33 1.83 0.66 0.33 0.00 0.00 0.00 2.99 
12 1.99 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.83 
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Table A3.18: Synechococcus cell numbers (cells mr1
) in Ace Lake 

over a forty eight hour period in November 1993. 

Date Time am 10 m 11 m 

27-Nov-93 16:00 2.0E+OS 1.5E+06 4.8E+06 
27-Nov-93 20:00 1.2E+05 2.0E+06 3.3E+06 
28-Nov-93 00:00 7.4E+04 2.4E+06 1.2E+06 
28-Nov-93 04:00 1.3E+05 1.7E+06 3.2E+06 
28-Nov-93 08:00 2.0E+OS 1.5E+06 1.1 E+06 
28-Nov-93 12:00 2.6E+05 2.0E+06 2.1E+06 
28-Nov-93 16:00 1.6E+05 1.5E+06 7.8E+05 
28-Nov-93 20:00 7.8E+04 1.7E+06 3.6E+06 
29-Nov-93 00:00 6.6E+04 2.2E+06 1.5E+06 
29-Nov-93 04:00 1.0E+OS 1.2E+06 1.7E+06 
29-Nov-93 08:00 5.1E+04 1.4E+06 1.3E+06 
29-Nov-93 12:00 7.6E+04 1.6E+06 2.0E+06 
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Appendix 4 

Raw data from Chapter 4 



Table A4.1: Phytoplankton populations (represented by regions - R) in nine meromictic lakes, a fjord site and a coastal marine site in the Vestfold Hills. 
Measurements were made by flow cytometry. 

Pendant Lake 24-Nov-93 
Bead concentration 9.5E+06 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 R3 Cells mr1 

5 10000 1000 10 106 9721 8.71E+06 33 8.96E+03 
10 10000 1000 10 96 9729 9.63E+06 36 9.90E+03 
11 10000 1000 10 62 9765 1.50E+07 34 1.53E+04 

12.8 10000 1000 10 78 8342 1.02E+07 41 1.22E+04 

Pendant Lake 5-Jan-93 
Bead concentration 1. 76E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R4 Cells mr1 R1 Cells mr1 R3 Cells mr1 R5 Cells mr1 R6 Cells mr1 

2 5022 1000 0.5 222 307 1.22E+04 761 3.02E+04 38 1.51E+03 
4 5031 1000 0.5 201 3785 1.66E+05 72 3.15E+03 27 1.18E+03 
6 5685 1000 0.5 208 4159 1.76E+05 75 3.17E+03 42 1.78E+03 26 1.10E+03 
8 5274 1000 0.5 214 3417 1.41E+05 166 6.83E+03 57 2.34E+03 45 1.85E+03 26 1.07E+03 
9 5160 1000 0.5 212 3484 1.45E+05 93 3.86E+03 44 1.83E+03 115 4.77E+03 

10 6030 1000 0.5 206 3259 1.39E+05 119 5.08E+03 49 2.09E+03 383 1.64E+04 3 1.28E+02 
11.5 7140 1000 0.5 254 5105 1.77E+05 32 1.11E+03 61 2.11E+03 264 9.15E+03 9 3.12E+02 
12.5 5040 1000 0.5 127 1983 1.37E+05 46 3.19E+03 13 9.01E+02 133 9.22E+03 2 1.39E+02 
12.8 10000 1000 25 909 81 3.92E+05 
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Ace Lake 14-Nov-93 
Bead concentration 2.0E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R4 Cells ml"1 R3 Cells ml"1 R1 Cells mr1 

4 3009 1000 0.1 250 31 2.48E+02 792 6.34E+03 485 3.88E+03 
5 6680 1000 0.1 250 163 1.30E+03 792 6.34E+03 487 3.90E+03 
6 3009 1000 0.1 558 450 1.61 E+03 2004 1.60E+04 1487 1.19E+04 
7 2060 1000 0.1 232 175 1.51E+03 762 6.10E+03 378 3.02E+03 
8 1500 1000 0.1 59 836 2.83E+04 161 1.29E+03 109 8.72E+02 
10 2718 1000 10 981 1132 2.31E+05 58 4.64E+02 34 2.72E+02 
11 5040 1000 10 878 3542 8.07E+05 89 7.12E+02 33 2.64E+02 

Lake Abraxas 
Bead concentration 2.0E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R5 Cells mr1 R1 Cells mr1 R3 Cells mr1 R4 Cells mr1 

3 2300 1000 0.1 418 11 5.26E+01 1231 5.89E+03 75 3.59E+02 42 2.01E+02 
10 1600 1000 0.1 231 12 1.04E+02 745 6.45E+03 59 5.11E+02 26 2.25E+02 
19 10000 1000 10 110 8145 1.48E+07 447 8.13E+05 38 6.91E+04 6 1.09E+04 
21 10000 1000 10 110 110 2.00E+05 ND ND ND 

Taynaya Bay 16-Nov-93 
Bead concentration 2.0E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells ml"1 R3 Cells ml"1 R4 Cells mr1 R5 Cells mr1 

3 3546 1000 0.01 78 213 5.46E+02 459 1.18E+03 8 2.05E+01 
5 2556 1000 0.01 44 149 6.77E+02 323 1.47E+03 173 7.86E+02 

10 2000 1000 0.01 58 95 3.28E+02 143 4.93E+02 32 1.10E+02 
15 2260 1000 0.01 101 148 2.93E+02 107 2.12E+02 42 8.32E+01 
16 10000 1000 10 1739 32 3.68E+03 24 2.76E+03 7 8.05E+02 6685 7.69E+05 
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Lake Mccallum 18-Nov-93 
Bead concentration 2.0E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R4 Cells mr1 R1 Cells mr1 R3 Cells mr1 R5 Cells mr1 

5 1960 1000 0.01 441 209 9.48E+01 591 2.68E+02 200 9.07E+01 
6 1240 1000 0.01 253 112 8.85E+01 437 3.45E+02 71 5.61E+01 
10 1200 1000 0.01 183 217 2.37E+02 341 3.73E+02 105 1.15E+02 
15 1020 1000 0.01 153 332 3.82E+02 240 3.14E+02 244 3.19E+02 65 8.50E+01 
19 1580 1000 0.01 174 8218 9.67E+04 432 4.97E+02 150 1.72E+02 118 1.36E+02 

19.8 10000 1000 0.01 17 30 3.53E+02 75 8.82E+02 18 2.12E+02 

Burton Lake 22-Nov-93 
Bead concentration 2.0E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 

4 10000 1000 10 665 7226 2.17E+06 
8 10000 1000 10 489 8034 3.29E+06 

12 10000 1000 10 521 7952 3.05E+06 

Ekho Lake 25-Jan-93 
Bead concentration 1. 76E+07 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 R3 Cells mr1 

2 2520 1000 0.05 28 30 9.43E+02 41 1.29E+03 
6 1000 1000 0.05 41 97 2.08E+03 8 1.72E+02 
10 520 1000 0.05 34 64 1.66E+03 6 1.55E+02 
15 520 1000 0.05 34 104 2.69E+03 9 2.33E+02 
20 1000 1000 0.05 23 26 9.95E+02 236 9.03E+03 
23 520 
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Clear Lake 8-Dec-92 
Bead concentration 1.76E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 R3 Cells mr1 R4 Cells mr1 

2 1000 1000 0.1 90 18 3.52E+02 218 4.26E+03 
5 1000 1000 0.1 57 11 3.40E+02 136 4.20E+03 
15 1000 1000 0.1 71 69 1.71E+03 101 2.50E+03 
25 1000 1000 0.1 75 320 7.51E+03 84 1.97E+03 
30 1000 1000 0.1 54 320 1.04E+04 76 2.48E+03 
33 10000 1000 5 219 3206 1.29E+06 

Organic Lake 29-Dec-92 
Bead concentration 1.76E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 R3 Cells mr1 R4 Cells mr1 

0 3000 1000 0.1 21 2616 2.19E+05 
1 2000 1000 0.1 13 1172 1.59E+05 243 3.29E+04 410 5.55E+04 
2 1000 1000 0.1 18 532 5.20E+04 
3 1000 1000 0.1 12 523 7.67E+04 
4 1000 1000 0.1 19 586 5.43E+04 

Fletcher Lake 10-Dec-92 
Bead concentration 1. 76E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R4 Cells mr1 R3 Cells mr1 R1 Cells mr1 R5 Cells mr1 

2 1000 1000 0.1 22 170 1.36E+04 216 1.73E+04 
4 1000 1000 0.1 28 75 4.71E+03 314 1.97E+04 
6 2000 1000 0.1 39 227 1.02E+04 386 1.74E+04 165 7.45E+03 

6.8 2000 1000 5 435 31 6.27E+03 26 5.26E+03 37 7.49E+03 5263 9.81E+07 

Coastal Marine 17-Nov-93 
Bead concentration 1.76E+07 mr1 

Depth (m) Events Sample (µI) Beads (µI) Beads R1 Cells mr1 R2 Cells mr1 R3 Cells mr1 

5 2628 1000 0.1 81 40 8.69E+02 67 1.46E+03 40 8.69E+02 
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Figure A4.1 : Lipid soluble pigment profile of particulates filtered from 
4 m and 6 m in Ace Lake on the 14th November 1993 
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Figure A4.2: Lipid soluble pigment profile of filtered particulates from 
8 m and 12 m in Ace Lake on 14November1993 
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Figure A4.3: Lipid soluble pigment profiles of filtered particulates from 
Lake Abraxas on 23 November 1993. 
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Figure A4.4: Lipid soluble pigment profiles of filtered particulates from 
5 m, 10 m and 13 m in Pendant Lake on 24November1993 
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Figure A4.5: Lipid soluble pigment profiles of filtered particulates from 
6 m and 1 O m in Lake McCallum on 18 November 1993 
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Figure A4.6: Lipid soluble pigment profiles of filtered particulates from 
19 m and 20 m in Lake McCallum on 18 November 1993 
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Figure A4.7: Lipid soluble pigment profiles of filtered particulates from 
Burton Lake on 22 November 1993 and from the marine site 
in Davis Bay on 17November1993 
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Figure A4.8: Lipid soluble pigment profiles of filtered particulates from 
3 m, 5 m and 10 m in Taynaya Bay on 16November1993 
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Figure A4.9: Lipid soluble pigment profiles of filtered particulates from 
15 m and 16 m in Taynaya Bay on 16November1993 



Table A4.2: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m"2 s"1) in Lake Abraxas on 23November1993 

Depth Temp Salinity Light Depth Temp Salinity Light Depth Temp Salinity Light 

2 0.43 16.85 63.71 8 0.48 16.81 43.13 14 0.60 16.77 28.52 
2.25 0.49 16.83 8.25 0.48 16.81 14.25 0.62 16.78 
2.5 0.50 16.83 62.71 8.5 0.48 16.82 14.5 0.64 16.78 
2.75 0.50 16.82 8.75 0.48 16.81 14.75 0.69 16.79 

3 0.50 16.78 61.05 9 0.48 16.82 39.81 15 0.72 16.79 26.69 
3.25 0.50 16.78 9.25 0.48 16.81 15.25 0.74 16.81 
3.5 0.49 16.77 59.06 9.5 0.47 16.81 15.5 0.75 16.81 

3.75 0.50 16.81 9.75 0.47 16.81 15.75 0.75 16.80 
4 0.50 16.81 57.07 10 0.47 16.82 37.15 16 0.81 16.78 25.20 

4.25 0.48 16.79 10.25 0.47 16.81 16.25 0.90 16.77 
4.5 0.49 16.80 55.08 10.5 0.47 16.81 16.5 0.97 16.78 
4.75 0.48 16.80 10.75 0.47 16.79 16.75 0.99 16.77 

5 0.49 16.78 52.75 11 0.47 16.81 34.16 17 1.08 16.75 23.70 
5.25 0.48 16.81 11.25 0.48 16.81 17.25 1.50 16.79 
5.5 0.48 16.81 11.5 0.49 16.81 17.5 4.01 17.96 

5.75 0.49 16.81 11.75 0.49 16.80 17.75 5.25 18.51 
6 0.49 16.81 50.10 12 0.51 16.80 32.17 18 6.39 18.99 21.88 

6.25 0.49 16.80 12.25 0.54 16.79 18.5 7.27 19.57 
6.5 0.48 16.82 12.5 0.54 16.80 19 8.03 20.35 8.43 

6.75 0.49 16.81 12.75 0.54 16.79 19.5 7.31 21.10 0.00 
7 0.48 16.81 44.95 13 0.54 16.79 30.18 20 7.05 21.70 

7.25 0.48 16.80 13.25 0.54 16.79 20.5 7.02 22.02 
7.5 0.48 16.82 13.5 0.55 16.78 21 6.94 22.15 

7.75 0.48 16.82 13.75 0.57 16.77 
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Table A4.3: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m·2 s"1

) in 
Ace Lake on 14 November 1993 

Depth Temp Salinity Light Depth Temp Salinity 

2 9.63 13 6.62 31.27 
2.5 0.64 18.14 9.30 13.5 6.50 31.36 

3 1.32 18.09 8.96 14 6.34 31.44 
3.5 1.38 18.06 8.47 14.5 6.16 31.54 

4 1.38 18.07 8.13 15 6.01 31.63 
4.5 1.38 18.06 7.30 15.5 5.66 31.90 

5 1.38 18.08 6.81 16 5.43 32.17 
5.5 1.38 18.10 16.5 5.24 32.51 

6 1.39 18.09 6.64 17 5.06 32.92 
6.5 1.40 18.10 17.5 4.86 33.58 

7 1.41 18.10 5.98 18 4.65 34.45 
7.5 3.03 20.85 18.5 4.44 35.48 

8 5.28 28.15 4.98 19 4.27 36.48 
8.5 5.86 29.30 19.5 4.08 37.55 

9 5.94 29.39 4.32 20 3.90 38.48 
9.5 6.12 29.72 20.5 3.72 39.41 
10 6.28 29.85 3.65 21 3.58 39.85 

10.5 6.43 30.05 3.32 21.5 3.41 40.34 
11 6.58 30.35 2.99 22 3.22 40.58 

11.5 6.91 30.77 22.5 3.09 40.67 
12 6.91 31.00 1.83 23 2.92 40.75 

12.5 6.77 31.13 23.5 2.80 40.74 
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Table A4.4: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m·2 s"1) in Pendant 

Lake on 24November1993 and in Ekho Lake of 25January1993. 

Pendant Lake Ekho Lake 
Depth Temp Salinity Light Depth Temp Salinity PAR 

2 1.08 16.58 21.25 2 7.75 43.95 462 
2.5 1.01 16.54 15.27 3 6.95 44.64 407 
3 0.48 16.58 11.45 4 8.23 59.85 339 

3.5 0.30 16.56 9.30 5 283 
4 0.30 16.49 7.64 6 9.67 71.75 

4.5 0.25 16.50 8 9.61 71.75 
5 0.24 16.50 6.47 9 9.54 71.87 

5.5 0.23 16.51 10 9.48 71.94 132 
6 0.22 16.52 5.81 11 9.42 71.93 

6.5 0.22 16.52 12 9.36 71.89 
7 0.22 16.52 5.31 13 9.71 73.07 

7.5 0.23 16.52 14 10.32 75.38 
8 0.24 16.52 4.98 15 12.09 79.62 58 

8.5 0.25 16.52 16 14.99 87.52 
9 0.26 16.50 4.81 17 16.74 99.60 

9.5 0.25 16.52 18 17.54 109.39 
10 0.26 16.50 4.65 19 17.78 117.30 

10.5 0.20 16.50 20 17.59 124.65 13 
11 0.15 16.55 4.48 21 17.28 128.65 

11.5 0.12 21.65 22 16.92 133.69 
12 0.42 27.41 4.32 23 16.61 136.82 1.5 

12.5 0.76 31.01 24 16.14 138.91 
13 1.07 35.30 4.15 26 15.72 140.59 0.11 

13.5 1.34 41.26 30 14.57 145.36 0.1 
14 1.55 47.99 35 14.14 147.24 

14.5 1.71 54.66 42 13.94 147.45 
15 1.84 59.88 
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Table A4.5: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m"2 s"1

) in Organic 
Lake on 29 December 1992 and at the marine site in Davis Bay on 7 November 1993. 

Organic Lake Marine Site 
Depth Temp Salinity Light Depth Temp Salinity Light 

0.75 33.88 1 -1.90 34.81 
1 -7.4 175.99 15.46 1.5 -1.91 34.63 

1.5 -9.5 179.63 3.76 1.75 3.11 
2 -10.7 179.63 1.08 2 -1.91 34.56 1.18 

2.5 -11.2 180.85 0.3 2.5 -1.91 34.52 0.72 
3 -11.5 180.85 0.04 3 -1.91 34.55 0.3 

3.5 -11.6 180.85 0 3.5 -1.91 34.56 0.18 
4 -11.5 180.85 0 4 -1.91 34.59 0.12 

4.5 -11.1 180.85 0 4.5 -1.91 34.61 0.04 
5 -9.8 201.33 0 5 -1.91 34.62 0.02 

5.5 -8.1 204.91 0 5.5 -1.91 34.62 
6 -7.8 206.11 0 6 -1.91 34.62 0 

6.5 -7.9 207.3 0 6.5 -1.91 34.63 
7 -7.9 207.3 0 7 -1.91 34.63 

7.5 -1.91 34.62 
8 -1.92 34.63 
9 -1.92 34.63 

10 -1.92 34.63 
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Table A4.6: Temperature (° C), salinity (g kg-1) and PAR (µmol photons m·2 s"1
) in Organic 

Lake on 10December1992 

Depth Temp Salinity Light Depth Temp Salinity Light 

1.5 85 5.4 0.11 64.21 
1.6 5.5 0.39 65.81 
1.7 -2.43 56.35 80 5.6 0.68 67.58 
1.8 -2.43 56.44 5.7 0.92 69.28 
1.9 -2.44 56.46 5.8 1.19 71.23 
2 -2.45 56.44 75.1 5.9 1.4 72.93 

2.1 -2.45 56.43 6 1.62 74.57 25.2 
2.2 -2.45 56.46 6.1 1.85 76.22 
2.3 -2.46 56.43 6.2 2.13 77.81 
2.4 -2.46 56.42 6.3 2.35 79.33 
2.5 -2.46 56.47 6.5 2.77 81.81 17.7 
2.6 -2.46 56.5 6.6 3.04 83.21 
2.8 -2.47 56.5 6.7 3.17 84.3 
2.9 -2.47 56.45 6.8 3.23 85.34 
3 -2.48 56.46 60.1 6.9 3.3 86.5 
3 -2.47 56.5 7 3.36 87.43 5.2 

3.1 -2.48 56.52 7.1 3.44 88.33 
3.2 -2.47 56.5 7.2 3.5 89.21 
3.3 -2.48 56.5 7.3 3.57 90.04 
3.4 -2.5 56.48 7.4 3.65 90.66 
3.5 -2.51 56.51 7.5 3.71 91.42 
3.6 -2.5 56.54 7.6 3.77 91.97 
3.7 -2.5 56.53 7.8 3.87 92.9 
3.8 -2.51 56.51 8 3.95 93.78 
3.9 -2.5 56.49 8.2 4.01 94.51 
4 -2.51 56.53 52.6 8.4 4.04 95.3 

4.1 -2.51 56.55 8.6 4.06 96.23 
4.2 -2.5 56.49 8.8 4.04 96.84 
4.3 -2.31 56.3 9 4.03 97.29 
4.4 -2.04 56.28 9.2 3.98 97.67 
4.5 -1.93 56.52 9.4 3.95 97.97 
4.6 -1.68 56.9 9.6 3.87 98.32 
4.7 -1.52 57.27 9.8 3.82 98.57 
4.8 -1.38 57.45 10 3.7 98.94 
4.9 -1.33 57.8 10.2 3.63 99.18 
5 -1.06 58.88 42.6 10.4 3.49 99.49 

5.1 -0.8 59.96 10.6 3.41 99.7 
5.2 -0.5 61.26 10.8 3.29 
5.3 -0.18 62.76 



Table A4.7: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m·2 s"1) in Lake McCallum on 18November1993. 

Depth Temp Salinity Light Depth Temp Salinity Light Depth Temp Salinity Light 

2 1.41 14.95 38.68 10.5 5.91 16.93 19 6.85 17.57 1.16 
2.5 1.47 14.87 38.18 11 5.94 16.96 12.62 19.5 6.75 17.83 
3 1.47 14.84 36.69 11.5 5.94 16.96 20 6.61 18.16 0.17 

3.5 1.47 14.79 35.03 12 5.94 16.97 10.62 20.5 6.43 18.72 
4 1.45 14.83 33.37 12.5 5.94 16.97 21 6.21 19.36 

4.5 1.41 14.84 31.87 13 5.94 16.96 8.96 21.5 6.01 20.19 
5 1.37 14.84 30.54 13.5 5.94 16.97 22 5.80 20.85 

5.5 1.37 14.83 14 5.94 16.97 7.47 22.5 5.67 21.23 
6 4.17 15.59 27.89 14.5 5.94 16.95 23 5.48 21.75 

6.5 4.37 15.78 15 6.16 17.08 5.98 23.5 5.24 22.25 
7 4.50 15.81 24.07 15.5 6.28 17.15 24 5.05 22.63 

7.5 4.51 15.83 16 6.39 17.21 5.15 24.5 4.86 23.01 
8 4.51 15.84 20.42 16.5 6.48 17.24 25 4.67 23.28 

8.5 4.52 15.83 17 6.51 17.26 4.15 25.5 4.49 23.47 
9 4.52 15.83 17.60 17.5 6.57 17.28 26 4.30 23.61 

9.5 4.52 15.84 18 6.66 17.31 3.34 26.5 4.12 
10 5.75 16.75 15.11 18.5 6.73 17.36 
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Table A4.8: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m·2 s"1) in 

Clear Lake on 8December1992. 

Depth Temp Salinity Light Depth Temp Salinity Light 

1.5 0.10 10.23 182.17 29 6.67 12.53 
2 0.77 10.24 148.62 30 7.05 12.70 2.41 

2.5 1.22 10.26 31 6.93 13.02 
3 1.32 10.30 139.74 32 6.81 13.23 

3.5 1.36 10.30 33 6.57 13.33 
4 1.39 10.30 125.37 34 6.26 13.44 

4.5 1.41 10.31 35 5.83 13.53 1.16 
5 1.42 10.32 116.99 36 5.49 13.60 

5.5 1.43 10.34 37 5.15 13.62 
6 1.39 10.34 105.94 38 4.87 13.64 
7 1.30 10.35 96.06 39 4.56 13.68 

7.5 1.90 10.26 40 4.44 13.66 1.25 
8 2.09 10.30 88.26 41 4.23 13.68 
9 2.27 10.34 81.45 42 4.13 13.67 
10 4.72 11.27 75.31 43 3.95 13.69 
11 4.88 11.43 44 3.80 13.72 
12 5.64 11.94 62.60 45 3.72 13.74 
13 5.76 12.00 46 3.61 13.71 
14 5.78 12.04 50.98 47 3.54 13.71 
15 5.77 12.04 48 3.48 13.74 
16 5.77 12.07 42.93 49 3.42 13.74 
17 5.78 12.07 50 3.37 13.72 0.50 
20 6.19 12.30 29.39 51 3.31 13.74 
21 6.18 12.30 52 3.27 13.75 
22 6.17 12.31 23.58 53 3.23 13.75 
23 6.18 12.31 54 3.19 13.75 
24 6.17 12.32 19.51 55 3.15 13.75 
25 6.17 12.31 56 3.14 13.74 
26 6.17 12.32 57 3.10 13.77 
27 6.17 12.31 59 3.08 13.74 
28 6.29 12.33 60 '3.04 13.76 
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Table A4.9: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m·2 s"1) in 

Burton Lake on 22November1993. 

Depth Temp Salinity Light Depth Temp Salinity Light 

1.5 14.91 9.5 -2.38 43.35 
2 -1.30 43.17 2.62 10 -2.36 43.35 

2.5 -1.61 43.42 0.96 10.5 -2.37 43.35 
3 -1.99 43.40 0.46 11 -2.36 43.36 

3.5 -2.20 43.54 0.30 11.5 -2.35 43.35 
4 -2.26 43.47 0.13 12 -2.34 43.35 

4.5 -2.30 43.32 0.00 12.5 -2.33 43.37 
5 -2.34 43.33 13 -2.32 43.38 

5.5 -2.35 43.33 13.5 -2.31 43.36 
6 -2.37 43.32 14 -2.31 43.35 

6.5 -2.38 43.35 14.5 -2.30 43.35 
7 -2.38 15 -2.25 43.36 

7.5 -2.39 43.35 15.5 -2.23 43.35 
8 -2.39 43.36 16 -2.20 43.37 

8.5 -2.39 43.36 16.5 -1.84 43.94 
9 -2.38 43.35 



360 

Table A4.10: Temperature (° C), salinity (g kg"1
) and PAR (µmol photons m"2 s"1

) in 
Taynaya Bay on 16November1993. 

Depth Temp Salinity Light Depth Temp Salinity Light 

2 13.08 12.5 -1.85 36.06 
2.5 -1.81 35.00 11.59 13 -1.85 36.08 3.62 
3 -1.83 35.15 9.26 13.5 -1.83 36.06 

3.5 -1.85 35.22 7.93 14 -1.80 36.09 3.45 
4 -1.83 35.30 6.44 14.5 -1.74 36.08 

4.5 -1.83 35.39 5.94 15 -1.57 36.66 3.12 
5 -1.83 35.46 5.61 15.5 -1.54 41.86 

5.5 -1.83 35.56 16 -1.56 44.17 2.95 
6 -1.83 35.63 4.95 16.5 -1.54 45.41 

6.5 -1.85 35.76 17 -1.52 46.47 
7 -1.85 35.92 4.61 17.5 ,.1_49 47.34 

7.5 -1.85 35.98 18 -1.47 48.13 
8 -1.84 35.99 4.45 18.5 -1.44 48.87 

8.5 -1.83 36.01 19 -1.42 49.44 
9 -1.83 36.02 4.28 19.5 -1.41 50.05 

9.5 -1.86 36.06 20 -1.40 50.59 
10 -1.86 36.05 4.21 20.5 -1.39 51.12 

10.5 -1.87 36.06 21 -1.37 51.46 
11 -1.87 36.07 3.95 21.5 -1.37 51.81 

11.5 -1.87 36.06 22 -1.37 52.22 
12 -1.86 36.06 3.78 22.5 -1.35 52.54 



Table A4.11 : Nitrate concentrations (µM) in a range of salinity standards from 1 % NaCl to 5 % NaCl. 

1%b 1% 1 1%2 1%3 1%4 1%5 2.5%b 2.5% 1 -2.5% 2 2.5% 3 2.5% 4 2.5% 5 3.5%b 3.5% 1 3.5% 2 3;5% 3 3.5% 4 3.5% 5 5%b 5%1 5%2 5%3 5%4 5%5 

0.023 0.008 1.465 2.256 2.776 3.576 0 0.689 1.369 2.101 2.893 3.482 0.013 0.7 1.392 2.179 2.757 3.504 0.077 0.916 1.666 2.464 2.604 3.725 
0.023 0.008 1.465 2.256 2.776 4.356 0 0.732 1.428 2.192 3.026 3.701 0 0.661 1.388 2.154 2.777 3.464 0.206 0.774 1.434 2.18 2.927 3.474 
0.062 0.784 1.453 2.08 2.721 4.364 0 0.72 1.441 2.23 3.004 3.781 O.Q16 0.7C5 1.'397 2.123 2.7C5 3.461 O.Tl3 1.469 2.229 2.986 3.497 

0 0.71 1.442 2.287 3.08 4.364 3.831 0.061 0.706 1.'396 2.115 2.709 3.Em 3.478 
0 0.575 1.305 2.043 2.813 4.364 0.061 0.69 1.363 1.881 2.756 4.431 3.497 
0 0.59 1.3 2.1 2.86 3.576 0.076 0.69 1.363 1.881 2.756 4.446 3.801 
0 0.621 1.344 2.118 2.886 3.542 0 0.633 1.317 2.049 2.828 3.09 3.769 
0 0.888 1.842 2.845 3.159 3.464 0.13 0.664 1.278 1.941 2.607 3.036 4.085 

3.4'39 0 0.644 1.345 2.073 2.837 3.524 
3.434 0 0.727 1.44 2.188 2.947 3.'397 
3.462 0.64 1.308 2.056 2.838 3.400 
3.914 0.627 1.308 2.C52 2.821 3.378 
3.637 0.671 1.347 2.09 2.883 3.'396 
3.71 0.733 1.448 2.192 2.966 3.415 
3.742 0.651 1.299 2JJ37 2.829 3.417 
3.956 0.697 1.395 2.179 2.945 3.545 

0.782 1.524 2.335 3.132 3.381 
3.'397 3.6% 6 cont 
3.34 3.702 
3.352 3.537 
3.33 3.763 
3.333 3.717 
3.445 3.612 
3.7 3.612 
3.56 3.634 
3.445 3.736 
3.623 3.626 
3.299 3.747 
3.585 3.97 
3.834 3.966 
3.702 3.971 
3.622 3.947 
3.683 3.971 
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Table A4.12: Phosphate concentrations (µM) in a range of salinity standards from 1 % NaCl to 5 % NaCl. 

1%b 1% 1 1%2 1%3 1%4 1%5 2.5%b 2.5% 1 2.5% 2 2.5% 3 2.5% 4 2.5% 5 3.5%b 3.5% 1 3.5% 2 3.5% 3 3.5% 4 3.5% 5 5%b 5% 1 5%2 5%3 5%4 5%5 

0.084 0.62 1.234 1.854 2.511 2.99 0.114 0.622 1.216 1.843 2.438 3.039 0.016 0.589 1.21 1.829 2.39 2.967 0.079 0.579 1.182 1.804 2.402 2.952 
0.172 0.624 1.244 1.875 2.469 3.02 0.087 0.626 1.221 1.846 2.452 3.041 0013 0.575 1.206 1.825 2.406 2.97 0 0.581 1.184 1.808 2.383 2.991 
0.162 0.633 1.246 1.862 2.46 2.989 0.056 o.a:s 1.216 1.822 2.436 3.049 0.017 0.575 1.188 1.803 2.388 3.02 2.954 
0.134 0.584 1.237 1.844 2.47 3.02 3.028 0 0.554 1.168 1.96 2.375 3.02 2.988 
0.043 0.6 1.226 1.851 2.513 2.993 3.033 0 0.579 1.219 1.796 2.375 2.977 3.021 

3.015 0.004 0.581 1.206 1.802 2.286 2.995 3.037 
2.99 0.033 0.577 1.197 1.81 2.402 3.035 2.978 
3.029 0 0.582 1.192 1.798 2409 3.09 
3.078 0.569 1.21 1.794 2.397 2.993 
3.081 0.578 1.217 1.791 2.403 3.021 

3.1 0.578 1.194 1.804 2.42 3.022 
3084 0.574 1.184 1.78 2.395 3.02 
3.074 0.551 1.158 1.931 2.397 3.02 

2.355 2.994 
2.995 
2.984 
3.007 
2.956 
3.004 
3.012 
3.004 
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Appendix 5 

Raw data from Chapter 5 



Media for culturing Spnechococcus 

2X SNAX (From Waterbury et al.,1986) 
-made as a lOX concen~ted stock solution (see quantities in brackets) 

Mineral Medium 

NaN03 (mg) 
NlliCl (mg) 
K2HP04(mg) 
Na2C03 (g) 
Na2EDTA.2H20 (mg) 

Micronutrients (ml) 

Micronutrients 

Deionized water (ml) 

MnC12.4H20 (g) 
ZnS04.7H20 (g) 
NaMo04.2H20 (g) 
Co(N03)2.6H20 (g) 
Citric acid.H20 (g) 
Ferric ammonium citrate (g) 

(brown crystals) 

75 
5.3 
1.5 
0.001 
0.5 

0.1 

1000 

1.4 
0.22 
0.39 
0.025 
6.25 
6.00 

(750) 
(53) 
(15) 
(0.01) 
(5) 

(1) 

To make 1 1 of culture medium 100 ml of SNAX 1 OX stock solution was added to: 

Deionized water 
Lake water 

2X SOX (From Waterbury et al., 1986) 

250ml 
750ml 

-made as a lOX concentrated stock solution (see quantities in brackets) 

Mineral Media 

NaN03 (mg) 
NlliCl (mg) 
K2HP04(mg) 
Na2C03 (g) 
Na2EDTA.2H20 (mg) 
Micronutrients (ml) 
(see SNAX medium) 

Nil 
Nil 
1.5 
0.001 
0.5 
0.1 

(15) 
(0.01) 
(5) 
(1) 

To make 11 of culture media 1 OOml of SOX mineral medium was added to: 

Deionized water 
Lake water 

250ml 
750ml 

Water (60 L) was collected from l lm in Ace Lake, filtered through a 0.2µm filter using 
a millipore pressure bomb apparatus and stored at 4°C in the dark. This lake water was 
used as a base for culture media and agar plates when growing Synechococcus sp. 
After the initial culturing of Synechococcus sp. SNAX media was routinely used for all 
further culturing of the cyanobacteria. 
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F/2 (CSIR.O modification) 
From Guillard, R.R.L. and Ryther J.H. (1962) Can. J. Microbiol 8: 229-239 

Stock solns NaN03 (g r1
) 

NaH2P04.2H20 (g r1
) 

NaSi03 (g r 1
) 

Citric Acid (g r1
) 

Ferric Citrate (g r1
) 

Trace Metals CuS04.5H20 (mg r1
) 

ZnS04.7H20 (mg r1
) 

CoC}z.6H20 (mg r1
) 

MnC}z.4H20 (mg r1
) 

Na2Mo04.2H20 (mg r1
) 

Vitamins Thiamine.HCl (g r1
) 

Biotin (mg r1
) 

B12 (mg r1
) 

150 
10 
5 (Omitted) 

9 
9 

19.6 
44 
20 
360 
12.6 

0.4 
2 
2 

Stock solutions were prepared and stored seperately. All stock solutions except 
vitamines were heat sterilized. Vitamines were filter sterilized. Stock solutions were 
stored at 4°C in the dark. Vitamines were not kept for longer than one month. 

0.1 ml of all nutrient stocks and 0.05 ml ofvitamines were added to 1 1 of Ace Lake 
(2m, Sm or 1 lm) water and filter sterilized through a 0.05 µm filter (Millipore). F/2 
media was stored for short periods of time at 4° C in the dark. 

To prepare FE media lml of(Na)2EDTA.2H20 was added to the media at a 
concentration of30g r 1

• 

O.lml of each stock solution was added to 11 of Ace Lake Water. 

Preparation of agar and agarose plates 

Difeo Nobel (unwashed) was used to make 1 % agar plates. 100 ml SNAX mineral 
medium and 750ml Ace Lake water was 0.05 µm filter sterilized. 150 ml water was 
used to prepare the agar. The agar was added to the water and pH balenced to 7.2. 
The agar was then heat sterilized. The liquid media was warmed to 50°C and the agar 
was coled to 50°C. The two were combined, gently mixed and agar plates were 
poured. The plates were allowed to set and dry in the laminar flow cabinet and were 
then stored at 4 °C in the dark. 

Agarose plates (0.5%) were made with water collected from 11 m in Ace Lake and 
SNAX mineral medium according to the above method. 
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Table AS.1: Size of cultured cells (µm) from Ace Lake, Pendant Lake 
and Lake Abraxas. 

Ace Lake Pendant Lake Lake Abraxas 
Length Width Length Width Length Width 

1.4 0.8 1.7 1.1 1.4 0.9 
1.5 0.9 1.9 1.1 1.3 0.8 
1.5 0.9 1.9 1.3 1.5 0.8 
1.6 1 1.8 1.2 1.5 0.9 
1.4 0.8 2 1 1.4 1 
1.3 0.7 1.8 1 1.6 0.9 

1.65 0.9 1.8 0.9 1.5 0.9 
1.5 1.2 1.7 1 1.7 0.7 
1.6 0.9 1.9 0.9 1.5 1 
1.5 1 1.8 1.1 1.5 1.2 
1.4 0.8 1.8 1.3 1.5 0.9 
1.3 1.1 2 0.9 1.4 0.8 
1.6 0.9 1.7 1.3 1.6 0.9 
1.5 0.8 1.8 1.2 1.4 1 
1.4 0.9 1.6 0.9 1.3 1 
1.5 0.9 1.7 0.9 1.5 0.8 
1.6 0.9 1.7 1.1 1.5 0.9 
1.7 0.7 2 1.2 1.6 0.9 
1.6 1.1 1.8 1.1 1.5 1.2 
1.4 1 1.8 1.1 1.7 0.7 



Table A5.2: Cell numbers from gradient incubator experiment to determine the cardinal temperatures for the Ace Lake Synechococcus strain. 

lime (h) -1.1° c 0.4° c 1.7° c 3.3° C 5.3° C 6.3° C 
a b c d a b a b a b a b a b 

0 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 
24 2.20E+05 3.00E+05 3.10E+05 2.90E+05 3.20E+05 3.50E+05 3.80E+05 3.20E+05 4.60E+05 3.40E+05 4.30E+05 4.30E+05 3.80E+05 4.60E+05 
48 4.70E+05 4.40E+05 4.80E+05 4.40E+05 4.70E+05 5.00E+05 4.70E+05 4.00E+05 4.40E+05 4.20E+05 4.40E+05 4 OOE+05 4.50E+05 4.30E+05 
96 4.20E+05 3.80E+05 3.70E+05 3.80E+05 4.00E+05 3.40E+05 4.30E+05 4.00E+05 3.70E+05 3.50E+05 3.70E+05 3.80E+05 4.00E+05 3.50E+05 
144 2.60E+05 2.60E+05 2.70E+05 2.80E+05 2.50E+05 2.50E+05 2.50E+05 2.70E+05 2.50E+05 2.50E+05 2.60E+05 2.40E+05 2.70E+05 2.30E+05 
160 3.70E+05 3.80E+05 3.60E+05 3.30E+05 4.50E+05 3.50E+05 3.70E+05 3.50E+05 3.60E+05 3.60E+05 3.70E+05 3.50E+05 4.lOE+OS 4.10E+05 
184 6.30E+OS 6.40E+05 7.10E+05 6.10E+05 6.00E+05 5.70E+05 6.20E+05 5.60E+05 5.40E+05 6.00E+05 6.90E+05 8.40E+05 6.10E+05 7.70E+05 
208 7.20E+05 5.80E+05 6.40E+05 7.10E+05 6.10E+05 6.50E+05 6.40E+05 7.00E+05 6.20E+05 6.50E+05 8.20E+05 7.60E+05 7.30E+05 7.30E+05 
256 9.lOE+OS 7.60E+05 8.50E+05 7.60E+05 9.30E+05 8.40E+05 9.00E+05 8.90E+05 l.OOE+06 8.50E+05 l.10E+06 l.30E+06 8.70E+05 1.30E+06 
304 
352 5.57E+05 5.10E+05 6.25E+05 5.77E+05 5.22E+05 5.56E+05 6.43E+05 6.28E+05 4.77E+05 7.32E+05 1.51E+06 l.06E+06 8.60E+05 l.38E+06 
426 
496 
570 l.58E+06 1.52E+06 1.77E+06 3.29E+06 
690 2.38E+06 
858 2.09E+06 3.55E+06 2.43E+06 1.62E+06 
1002 1.54E+05 3.65E+05 2.73E+05 2.45E+05 4.30E+05 5.84E+05 9.78E+05 1.51E+06 l.30E+06 1.22E+06 5.70E+06 7.78E+06 2.73E+06 5.37E+06 
1194 6.88E+04 l.94E+05 1.99E+05 3.71E+05 6.83E+05 6.72E+05 2.82E+06 1.68E+06 l.04E+06 1.77E+06 
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Table A5.2 continued: Cell numbers from gradient incubator experiment to determine the cardinal temperatures for the 
Ace Lake Synechococcus strain. 

llme (h) 7.9° c 9.6° c 11° c 12.1° c 13.7° c 
a b c d a b a b a b lla llb 

0 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 
24 5.30E+05 5.40E+05 4.60E+05 5.20E+05 6.00E+05 5.50E+05 7.10E+05 6.50E+05 5.90E+05 6.10E+05 7.60E+05 5.90E+05 
48 5.00E+05 4.40E+05 4.80E+05 5.00E+05 5.70E+05 4.30E+05 4.80E+05 4.90E+05 5.10E+05 5.10E+05 4.70E+05 5.00E+05 
96 3.60E+05 4.10E+05 4.20E+05 3.60E+05 3.60E+05 3.80E+05 3.90E+05 4.20E+05 4.10E+05 4.10E+05 4.00E+05 3.70E+05 
144 2.20E+05 2.60E+05 2.50E+05 2.90E+05 3.20E+05 3.20E+05 2.70E+05 3.90E+05 3.30E+05 3.40E+05 3.40E+05 3.90E+05 
160 4.50E+05 4.10E+05 3.70E+05 3.70E+05 5.20E+05 5.10E+05 5.00E+05 5.60E+05 4.20E+05 5.20E+05 4.30E+05 4.50E+05 
184 6.70E+05 8.20E+05 6 70E+05 7.50E+05 9.10E+05 9.70E+05 7.70E+05 1.10E+06 9.70E+05 l.20E+06 8.20E+05 9.50E+05 
208 6.40E+05 l.OOE+06 9.30E+05 6.90E+05 1.30E+06 l.20E+06 l.40E+06 l.30E+06 l.30E+06 2.30E+06 9.20E+05 1.50E+06 
256 9.90E+05 l.20E+06 1.40E+06 9.00E+05 1.60E+06 1.90E+06 1.20E+06 l .80E+06 1.80E+06 2.00E+06 1.40E+06 l.60E+06 
304 1.10E+06 1.50E+06 l.50E+06 1.00E+06 1.30E+06 1.70E+06 1.20E+06. 1.90E+06 1.90E+06 2.80E+06 1.50E+06 1.90E+06 
352 1.47E+06 2.07E+06 l.81E+06 1.21E+06 2.34E+06 2.40E+06 1.85E+06 2.99E+06 2.78E+06 3.80E+06 2.18E+06 2.83E+06 
426 1.99E+06 5.47E+06 3.05E+06 1.77E+06 3.17E+06 3.52E+06 2.70E+06 4.85E+06 4.08E+06 4.89E+06 3.25E+06 5.99E+06 
496 2.20E+06 3.00E+06 2.70E+06 l.30E+06 3.40E+06 3.70E+06 2.70E+06 5.50E+06 5.00E+06 7.50E+06 3.20E+06 5.00E+06 
570 2.20E+06 3.20E+06 4.21E+06 1.62E+06 6.21E+06 5.65E+06 3.10E+06 5.89E+06 8.35E+06 1.13E+07 3.93E+06 6.71 E+06 
690 1.11 E+07 5.38E+06 8.01E+06 2.99E+06 2.30E+06 6.57E+06 l.30E+07 2.83E+06 5.55E+06 
858 5.92E+06 5.31E+06 1.55E+06 5.09E+06 1.33E+07 4.38E+06 2.49E+07 2.55E+07 3.42E+07 l.20E+07 3.83E+07 
1002 2.64E+06 2.47E+07 l.44E+07 4.67E+06 3.03E+07 3.29E+07 8.19E+06 7.22E+07 4.20E+07 5.65E+07 1.43E+07 4.62E+07 
1194 6.90E+06 6.17E+06 3.95E+06 1.49E+06 1.04E+07 l.13E+07 6.35E+06 1.27E+07 l.64E+07 1.38E+07 5.86E+06 1.10E+07 
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Table AS.2 continued: Cell numbers from gradient incubator experiment to determine the cardinal temperatures for the 
Ace Lake Synechococcus strain. 

nme (h) 15.l°C 16.'2° c 19.8° c 21.1° c 22.3° c 
a b c d a b a b a b a b 

0 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 
24 6.30E+05 6.10E+05 6.70E+05 5.50E+05 5.80E+05 5.80E+05 6.00E+05 5.70E+05 6.70E+05 6.40E+05 6.00E+05 6.40E+05 
48 4.30E+05 5.30E+05 4.80E+05 4.30E+05 4.40E+05 5.30E+05 4.40E+05 5.30E+05 4.60E+05 4.30E+05 4.90E+05 4.60E+05 
96 3.60E+05 4.00E+05 4.00E+05 4.50E+05 3.70E+05 4.00E+05 4.80E+05 3.80E+05 3.90E+05 3.90E+05 3.70E+05 4.20E+05 
144 2.80E+05 3.40E+05 3.70E+05 2.60E+05 3.20E+05 3.20E+05 3.30E+05 2.40E+05 5.10E+05 3.80E+05 3.00E+05 2.30E+05 
160 4.30E+05 390E+05 4.60E+05 3.70E+05 4.70E+05 4.60E+05 4.10E+05 3.80E+05 5.20E+05 4.70E+05 4.70E+05 4 40E+05 
184 6.90E+05 8.30E+05 9.80E+05 6.40E+05 9.30E+05 9.80E+05 8.00E+05 5.80E+05 8.70E+05 8.80E+05 6.60E+05 6.00E+05 
208 8.00E+05 1.30E+06 1.20E+06 8.00E+05 1.70E+06 1.50E+06 1.10E+06 9.80E+05 1.70E+06 l.20E+06 l.OOE+06 9.80E+05 
256 l .10E+06 l.30E+06 l.30E+06 7.80E+05 l .40E+06 1.90E+06 l.30E+06 l.20E+06 1.90E+06 l .40E+06 1.40E+06 1.20E+06 
304 1.50E+06 1.80E+06 1.80E+06 9.70E+05 
352 l.96E+06 2.94E+06 3.08E+06 1.35E+06 2.96E+06 3.45E+06 3.06E+06 2.07E+06 4.13E+06 2.50E+06 2.99E+06 2.19E+06 
426 2.04E+06 3.08E+06 3.59E+06 l.44E+06 3.57E+06 5.43E+06 3.88E+06 2.88E+06 6.09E+06 4.30E+06 4.59E+06 2.86E+06 
496 2.50E+06 5.00E+06 4.50E+06 2.00E+06 5.10E+06 7.20E+06 5.40E+06 3.80E+06 9.80E+06 6.90E+06 6.30E+06 3.80E+06 
570 2.39E+06 6.29E+06 4.31 E+06 2.07E+06 5.01E+06 9.28E+06 5.51E+06 4.40E+06 9.73E+06 5.97E+06 7.71 E+06 2.28E+06 
690 l .60E+06 2.10E+06 2.68E+06 8.77E+06 7.43E+06 3.96E+06 6.28E+06 3.86E+06 1.05E+07 3.80E+06 4.77E+06 2.08E+06 
858 7.19E+07 l .66E+07 l.72E+07 8.60E+06 2.90E+07 3.24E+07 2.43E+07 l .72E+07 1.25E+07 2.26E+07 
1002 3.14E+07 2.24E+07 4.09E+07 4.56E+06 2.37E+07 ' 3.47E+07 1.95E+07 8.00E+06 1.93E+07 2.20E+07 
1194 l.69E+06 6.75E+06 5.64E+06 1.50E+06 l.05E+07 1.23E+07 4.73E+06 2.40E+06 7.15E+06 3.86E+06 
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Table A5.2 continued: Cell numbers from gradient incubator experiment to determine the cardinal temperatures for the 
Ace Lake Synechococcus strain. 

Time (h) 24.6° c 25.8° c 27.4° c 29.3° c 31.1°C 
a b c d a b a b a b a b c d 

0 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 5.30E+05 
24 5.30E+05 6.00E+05 5.50E+05 5.70E+05 5.30E+05 5.90E+05 6.80E+05 5.70E+05 5.80E+05 6.20E+05 9.20E+05 6.50E+05 7.10E+05 7.40E+05 
48 4.10E+05 4.20E+05 4.30E+05 4.00E+05 4.30E+05 3.90E+05 4.00E+05 4.70E+05 5.00E+05 4.80E+05 4.20E+05 4.30E+05 4.40E+05 3.80E+05 
96 3.20E+05 4.00E+05 4.10E+05 3.80E+05 3.30E+05 3.20E+05 3.20E+05 3.40E+05 2.80E+05 2.70E+05 3.40E+05 2.80E+05 2.90E+05 2.70E+05 
144 2.10E+05 3.30E+05 2.40E+05 3.50E+05 2.00E+05 2.10E+05 2.00E+05 2.30E+05 l.80E+05 2.00E+05 2.10E+05 2.10E+05 2.00E+05 2.30E+05 
160 3.20E+05 3.50E+05 3.80E+05 3.50E+05 3.20E+05 2.90E+05 3.60E+05 3.00E+05 3.60E+05 3.00E+05 3.00E+05 5.20E+05 3.10E+05 3.90E+05 
184 4.50E+05 4.90E+05 4.70E+05 4.10E+05 3.90E+05 4.10E+05 4.10E+05 4.10E+05 4.70E+05 3.80E+05 4.40E+05 3.80E+05 3.90E+05 5.70E+05 
208 7.40E+05 7.20E+05 6.80E+05 7.20E+05 6.70E+05 7.90E+05 7.90E+05 7.60E+05 5.00E+05 6.00E+05 5.30E+05 5.40E+05 5.10E+05 7.80E+05 
256 6.00E+05 6.70E+05 6.70E+05 6.80E+05 6.30E+05 6.20E+05 5.70E+05 6.10E+05 4.70E+05 4.20E+05 l.80E+05 l.60E+05 l.30E+05 l.90E+05 
304 
352 l .07E+06 7.96E+05 9.20E+05 9.29E+05 9.88E+05 7.81E+05 7.01E+05 7.78E+05 1.38E+05 6. l 2E+04 4.97E+04 4.30E+04 3.52E+04 5.10E+04 
426 
496 
570 l.07E+06 1.21E+06 1.39E+06 l .42E+06 7.62E+05 8.62E+05 3.53E+05 4.88E+05 
690 
858 
1002 2.09E+05 4.20E+05 2.05E+05 l.13E+05 l.85E+04 1.22E+05 l.29E+03 2.26E+03 2.34E+02 4.13E+03 9.14E+02 2.88E+03 4.13E+03 3.50E+03 
1194 1.56E+05 3.20E+05 1.02E+05 2.97E+04 
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Table A5.3: Final cell numbers following 312 h exposure to different light 
intensities. Treatments are light intensity (µmol photons m·2 s"1

); numbers 
brackets are the hours per day that cells were exposed to the light intensity. 

Replicate 20 (12) 20 (24) 200 (24) 5 (24) 

A 5.48E+07 1.21E+08 4.20E+07 2.45E+06 
B 4.50E+07 1.04E+08 3.80E+07 1.94E+06 
c 1.48E+06 
D 1.71E+06 

Table A5.4: Histogram statistics from flow cytometric readings for the 
relative change in FL2 fluorescence produced by Synechococcus cells 
exposed to different light intensities. 

Treatment* Events Peak Mean Median SD CV% 
Channel 

20 (12) 10000 79.15 114.l l 93.06 71.77 62.89 
20 (24) 10000 8.06 8.00 7.04 5.01 62.71 
300 (12) 10000 403.15 558.55 474.00 326.35 58.43 

5 (12) 10000 63.21 97.85 79.86 57.09 58.34 

* Numbers in this column are light intensity (µrnol photons m·2 s"1). Numbers in brackets 
are number of hours per day that cells were exposed to the light intensity. 

Table A5.5: Histogram statistics for flow cytometric readings for the 
relative change in FL3 fluorescence produced by Synechococcus 
cells exposed to different light intensities. 

Treatment* Events Peak Mean Median SD CV% 
Channel 

20 (12) 10000 7.23 7.24 5.94 6.45 89.04 
20 (24) 10000 4.00 4.99 4.18 3.07 61.42 
300 (12) 10000 30.78 27.20 26.66 8.71 32.03 

5 (12) 10000 11.14 13.16 10.09 9.26 70.41 

* Numbers in this column are light intensity (µrnol photons m·2 s·1). Numbers in brackets 
are number of hours per day that cells were exposed to the light intensity. 
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Table AS.6: Salinity tolerence of the Ace Lake, Pendant Lake and Lake Abraxas Synechococcus strains. 

Lake 

Ace Lake 
Time (h) 

a 
b 
c 

Undiluted Lake Water 2/3 Lake Water 1 /3 Lake Water No Lake Water 

Ace Neat Ace 2/3 Ace 1 /3 Ac MQ 
0 7 28 0 7 28 0 7 28 0 7 28 

1.68E+06 3.85E+06 1.08E+07 2.01 E+06 3. 78E+06 1.19E+07 1.23E+06 2.80E+06 2.56E+06 1.69E+06 2.02E+06 9.11 E+04 
1.49E+06 3.75E+06 1.18E+07 1.49E+06 2.81E+06 8.57E+06 1.29E+06 2.58E+06 5.41E+06 1.86E+06 1.78E+06 4.15E+04 
1.53E+06 3.56E+06 1.07E+07 1.68E+06 3.62E+06 8.62E+06 1.16E+06 2.58E+06 4.64E+06 2.03E+06 2.06E+06 1.03E+05 

Pendant Lake Pd Neat Pd 2/3 Pd 1 /3 Pd MQ 
Time (h) o 7 28 o 7 28 o 7 28 o 7 28 

a 3.23E+06 2.69E+07 1.54E+08 3.02E+06 4.31 E+07 9.25E+07 1.70E+06 1.92E+07 4.50E+07 2.03E+06 3.30E+06 5.12E+06 
b 3.56E+06 4.98E+07 1.24E+08 2.94E+06 2.56E+07 7.75E+07 2.21E+06 2.36E+07 4.04E+07 1.72E+06 4.69E+06 4.33E+06 
c 3.38E+06 5.29E+07 1.47E+08 3.48E+06 3.16E+07 7.70E+07 2.48E+06 1.96E+07 3.72E+07 1.61E+06 3.58E+06 4.50E+06 

Lake Abraxas Ab Neat Ab 1 /3 Ab 2/3 Ab MQ 
Time (h) o 7 28 o 7 28 o 7 28 o 7 28 

a 6.59E+06 4.11 E+07 1.20E+08 4.01 E+06 2.1 OE+07 9.48E+07 4.60E+06 3.38E+07 2.30E+07 4.26E+06 3.00E+06 3.12E+06 
b 6.45E+06 2.86E+07 1.17E+08 3.89E+06 1. 78E+07 8.97E+07 3. 79E+06 3.39E+07 3.39E+07 3.88E+06 4.16E+06 8.07E+06 
c 8.30E+06 2.96E+07 1.17E+08 4.44E+06 2.1 OE+07 9.26E+07 4.39E+06 2.49E+07 2.86E+07 3. 77E+06 4.24E+06 3.50E+06 
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Appendix 6 

Raw data from Chapter 6 



Table A6.1 Synechococcus cell numbers in samples from the nine preservation protocols. Numbers 
correspond to those in Table 6.1 

Control 1 2 3 4 5 6 7 

2.20E+06 l.89E+06 l.73E+06 2.70E+06 8.02E+05 l.59E+06 2.00E+06 l.60E+06 
2.00E+06 l.80E+06 l.53E+06 2.22E+06 l.04E+06 2.16E+06 2. l3E+o6 2.04E+06 
l.90E+06 2.70E+06 l.86E+o6 l.92E+06 l.74E+06 l.96E+o6 2.20E+06 2.30E+06 
l.80E+06 2.25E+o6 l.93E+06 l.80E+06 l.96E+06 l.79E+o6 2.00E+06 l.97E+06 
2.lOE+06 2.02E+06 l.82E+06 l.98E+06 l.85E+06 l.78E+06 l.75E+06 l.69E+06 
l.94E+06 2.05E+06 l.84E+o6 l.92E+06 2.18E+06 l.92E+06 l.78E+06 l.75E+06 
l.60E+06 2.10E+06 2.18E+06 l.75E+06 
2.00E+06 2.50E+06 l.99E+06 l.78E+06 
2.00E+06 2.lOE+06 l.89E+o6 
l.97E+06 l.95E+06 l.93E+06 

l.91E+06 l.95E+o6 
l.88E+06 2.30E+06 
2.03E+06 l.83E+06 

l.79E+06 

1 = No preserving ageent; 2 = 1 % gluteraldehyde; 3 = 1 % gluteraldehyde, 1 O % DMSO; 
4 = 1 % gluteraldehyde, 1 O % DMSO; and 1 O % glycerol; 5 = 1 % formalin; 6 = 1 % formalin, 
10 % DMSO; 7 = 1 % formalin, 10 o/o DMSO, 10 % glycerol. 
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TableA&.2: Cryptomonas sp. numbers in cycloheximide and ampicillin treatments. 

Control a b c d e Mean SD 

0 3.96E+04 4.16E+o4 S.70E+o4 2.90E+o4 4.30E+04 4.20E+04 l.OOE+04 

24 3.90E+04 3.70E+04 3.76E+04 3.29E+03 

48 3.89E+04 4.0IE+o4 3.9SE+o4 8.49E+o2 

72 S.86E+04 S.20E+04 S.53E+04 4.67E+03 

216 2.41E+OS 2.03E+o5 2.22E+OS 2.69E+04 

Cy. a b c d e 

0 3.96E+o4 4.16E+o4 S.70E+o4 2.90E+o4 4.30E+04 4.20E+o4 1.00E+04 

24 3.IOE+o4 4.30E+o4 4.SOE+04 3.90E+o4 3.9SE+o4 6.19E+03 

48 2.87E+04 3.58E+04 S.69E+o4 2.7SE+o4 3.72E+o4 l.36E+04 

72 3.SOE+o4 3.20E+04 3.40E+04 3.03E+o4 2.SOE+04 3.13E+o4 3.94E+o3 

216 3.40E+04 3.30E+o4 'I.94E+o4 2.88E+o4 8.16E+03 

Cy.+Amp. a b c d e 

0 3.96E+04 4.16E+04 S.70E+o4 2.90E+04 4.30E+04 4.20E+04 1.00E+04 

24 3.70E+04 3.30E+o4 4.20E+o4 3.73E+04 4.SIE+03 

48 4.12E+o4 4.02E+o4 4.21E+o4 4.12E+o4 9.SOE+02 

72 S.40E+o4 S.IOE+04 6.40E+o4 S.63E+04 6.81E+03 

216 3.13E+o5 1.98E+OS 2.56E+o5 2.56E+o5 S.7SE+04 

Table A&.3: Synechococcus numbers in cycloheximide and ampicillin (0.1 - 5 mg 1"1
) 

treatments. 

Control a b c d e Mean SD 

0 S.70E+OS S.30E+OS 4.70E+OS S.20E+OS S.20E+o5 S.22E+OS 3.19E+04 

24 S.20E+oS 4.60E+OS S.OOE+OS 6.30E+OS S.SOE+OS S.32E+OS S.71E+o4 

48 7.20E+o5 3.04E+OS 6.80E+OS S.61E+o5 S.60E+OS S.6SE+OS l.4SE+o5 

72 7.89E+o5 l.06E+o6 7.30E+OS 7.40E+OS 8.48E+OS 8.33E+OS 1.21E+OS 

120 l.80E+06 2.30E+o6 l.70E+o6 l.60E+06 l.8SE+o6 2.69E+oS 

216 S.38E+06 4.28E+06 S.14E+o6 S.08E+o6 3.60E+o6 4.70E+06 6.61E+oS 

AmpO.l a b c d e Mean SD 
0 S.70E+OS S.30E+oS 4.70E+oS S.20E+o5 S.20E+OS S.22E+o5 3.19E+04 

24 S.OSE+oS 4.83E+OS S.39E+o5 4.84E+o5 S.IOE+oS S.04E+OS 2.0SE+o4 

48 S.20E+o5 S 46E+OS S.62E+OS 8.IOE+oS 4.40E+o5 S.76E+OS 1.24E+oS 

72 4.3SE+OS 3.64E+OS 3.66E+OS S.60E+oS 6.ISE+OS 4.68E+OS l.02E+OS 

120 3.30E+o5 3.20E+OS 3.20E+OS 3.0SE+oS 3.19E+o5 8.93E+03 

216 6.7SE+o4 6.28E+04 3.60E+04 4.24E+o4 2.76E+04 4.73E+o4 1.54E+o4 

Amp0.25 a b c d e Mean SD 
0 S.70E+OS S.30E+OS 4.70E+OS S.20E+o5 S.20E+o5 S.22E+o5 3.19E+o4 

24 4.69E+OS 3.59E+OS 3.91E+o5 S.73E+OS 4.2SE+OS 4.43E+o5 7.44E+04 

48 S.40E+o5 3.03E+OS 4 07E+OS 4.SOE+oS 6.80E+o5 4.76E+o5 l.27E+OS 

72 3.36E+OS 3.07E+OS 3.IOE+oS S.IOE+oS 4.IOE+oS 3.7SE+o5 7.72E+04 

120 3.IOE+oS 4.0SE+OS 2.20E+OS 2.30E+o5 2.91E+OS 7.44E+04 

216 S.SSE+04 6.37E+o4 7.60E+o4 3.83E+04 S.84E+o4 l.37E+04 



Table A&.3 cont: Synechococcus numbers in Cy and Amp (0.1 - 5 mg 1"1) treatments. 

Amp0.5 

0 

24 

48 

72 

120 

216 

Amp 1.0 

0 

24 

48 

72 

120 

216 

Amp2.5 

0 

24 

48 

72 

120 

216 

Amps 

0 

24 

48 

72 

120 

216 

Cy 

0 

24 

48 

72 

120 

216 

Cy+Amp0.1 

0 

24 

48 

72 

120 

216 

Cy+Amp0.25 

0 

24 
48 

72 

120 

216 

a 

S.70E+OS 

4.40E+oS 

3.30E+oS 

7.70E+oS 

2.00E+oS 

a 
S.70E+OS 

S.48E+oS 

3.48E+OS 

3.20E+oS 

3.SOE+OS 

S.90E+04 

a 
S.70E+OS -

3.8SE+OS 

S.17E+OS 

4.40E+oS 

2.96E+oS 

7.IOE+04 

a 
S.70E+oS 

S.09E+oS 

4.99E+oS 

3.46E+OS 

3.2SE+oS 

S.79E+o4 

a 
S.70E+oS 

7.00E+oS 

S.OOE+oS 

6.90E+oS 

2.40E+o6 

S.18E+06 

a 
S.70E+OS 

S.80E+OS 

4.36E+OS 

4.IOE+OS 

3.SOE+oS 

7.SOE+04 

a 

S.70E+oS 

S.20E+OS 

4.20E+oS 

4.20E+oS 

l.08E+OS 

2.99E+04 

b 

S.30E+OS 

S.34E+oS 

4.47E+oS 

3.90E+oS 

4.80E+oS 

l.02E+oS 

b 

S.30E+OS 

S.31E+oS 

S.69E+OS 

3.66E+OS 

4.80E+oS 

8.79E+04 

b 

S.30E+OS 

4.40E+OS 

S.SOE+OS 

3.30E+OS 

2.60E+OS 

S.60E+o4 

b 

S.30E+oS 

S.03E+oS 

3.lSE+oS 

3.03E+oS 

3.90E+oS 

6.60E+o4 

b 

S.30E+OS 

S.60E+OS 

6.60E+OS 

8.SOE+oS 

2.30E+o6 

4.66E+06 

b 

S.30E+oS 

6.02E+OS 

4.61E+oS 

3.60E+OS 

3.40E+OS 

9.30E+04 

b 

S.30E+oS 

4.98E+OS 

4.02E+oS 

3.IOE+OS 

2.92E+oS 

6.22E+o4 

c 

4.70E+OS 

4.84E+oS 

4.90E+oS 

2.96E+oS 

2.90E+OS 

S.17E+OS 

c 

4.70E+OS 

4.74E+OS 

4.86E+oS 

4.IOE+oS 

3.70E+oS 

6.13E+04 

c 
4.70E+oS 

4.IOE+OS 

S.OOE+OS 

4.60E+OS 

3.30E+oS 

c 

4.70E+OS 

4.08E+OS 

6.40E+oS 

3.98E+OS 

3.37E+oS 

7.70E+04 

c 
4.70E+oS 

S.06E+OS 

6.7SE+oS 

l.OOE+o6 

2.40E+o6 

S.70E+o6 

c 

4.70E+OS 

6.37E+OS 

4.41E+oS 

3.70E+OS 

2.20E+OS 

3.89E+04 

c 

4.70E+OS 

S.66E+OS 

4.0SE+OS 

3.IOE+OS 

l.93E+OS 

3.71E+04 

d 

S.20E+OS 

4.08E+OS 

3.80E+oS 

4.20E+oS 

3.40E+OS 

4.89E+04 

d 

S.20E+OS 

4.IIE+OS 

S.4SE+OS 

3.60E+oS 

l.40E+oS 

3.56E+o4 

d 

S.20E+OS 

4.92E+OS 

S.40E+OS 

S.OOE+oS 

S.OOE+oS 

l.96E+oS 

d 

S.20E+OS 

S.36E+OS 

4.IOE+oS 

S.80E+OS 

4.20E+OS 

l.06E+OS 

d 

S.20E+OS 

9.80E+oS 

7.42E+OS 

l.03E+06 

2.99E+o6 

7.67E+06 

d 

S.20E+OS 

3.81E+OS 

3.40E+OS 

3.40E+OS 

l.40E+OS 

d 

S.20E+OS 

S.SSE+OS 

S.SOE+oS 

3.90E+OS 

2.57E+OS 

4.40E+04 

e 

S.20E+oS 

4.34E+oS 

3.40E+oS 

4.27E+oS 

4.80E+oS 

4.87E+04 

e 
S.20E+oS 

4.31E+oS 

3.74E+OS 

6.70E+OS 

2.70E+oS 

4.46E+04 

e 

S.20E+oS 

6.62E+oS 

4.lSE+OS 

4.22E+oS 

l.30E+oS 

3.6SE+o4 

e 

S.20E+oS 

S.60E+oS 

4.37E+oS 

S.96E+oS 

l.20E+oS 

e 
S.20E+oS 

8.40E+OS 

7.57E+OS 

l.20E+06 

l.98E+o6 

3.09E+06 

e 

S.20E+oS 

4.88E+oS 

3.66E+OS 

3.99E+OS 

l.8SE+oS 

e 
S.20E+OS 

3.70E+OS 

3.3SE+oS 

7.80E+OS 

4.37E+04 

Mean 

S.22E+oS 

4.60E+OS 

3.97E+OS 

4.61E+oS 

3.58E+OS 

l.79E+OS 

Mean 
S.22E+oS 

4.79E+oS 

4.64E+OS 

4.2SE+oS 

3.22E+OS 

S.77E+o4 

Mean 
S.22E+OS 

4.78E+OS 

S.04E+oS 

4.30E+OS 

3.03E+OS 

8.99E+o4 

Mean 
S.22E+oS 

S.03E+OS 

4.60E+oS 

4.4SE+oS 

3.18E+oS 

7.67E+04 

Mean 
S.22E+oS 

7.17E+oS 

6.67E+oS 

9.54E+OS 

2.41E+06 

S.26E+o6 

Mean 
S.22E+OS 

6.06E+OS 

4.41E+OS 

3.69E+OS 

3.30E+oS 

l.06E+OS 

Mean 
S.22E+oS 

S.02E+OS 

4.22E+oS 

4.42E+oS 

2.13E+oS 

4.34E+04 

SD 

3.19E+04 

4.43E+04 

6.19E+o4 

l.62E+OS 

l.22E+OS 

2.27E+OS 

SD 
3.19E+04 

S.37E+04 

8.90E+04 

l.26E+oS 

l.13E+OS 

l.78E+o4 

SD 
3.19E+04 

9.88E+o4 

4.80E+04 

S.6SE+04 

1.19E+OS 

6.2SE+o4 

SD 
3.19E+o4 

S.18E+o4 

l.08E+oS 

l.21E+oS 

l.OSE+oS 

l.82E+o4 

SD 
3.19E+o4 

l.7SE+oS 

9.14E+o4 

l.73E+OS 

3.27E+oS 

l.49E+06 

SD 
3.19E+o4 

2.3SE+04 

3.53E+04 

2.29E+04 

S.91E+04 

S.10E+04 

SD 

3.19E+04 

7.02E+04 

7.02E+o4 

l.7SE+OS 

7.00E+o4 

l.07E+04 
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Table A6.3 cont: Synechococcus numbers in Cy and Amp (0.1 - 5 mg 1"1) treatments. 

Cy+Amp0.5 a 

0 S.70E+OS 

24 6.lOE+oS 

48 4.87E+oS 

72 3.40E+OS 

120 l.lOE+oS 

216 3.87E+oS 

Cy+Ampl.0 a 

0 S.70E+oS 

24 6.98E+OS 

48 3.69E+oS 

72 4.02E+oS 

120 l.20E+oS 

216 3.60E+o4 

Cy+Amp2.5 a 

0 S.70E+OS 

24 S.18E+OS 

48 S.77E+OS 

72 4.SOE+oS 

120 2.19E+OS 

216 3.44E+o4 

Cy+AmpS a 

0 S.70E+oS 

24 6.60E+oS 

48 S.SOE+oS 

72 4.30E+OS 

120 2.96E+OS 

216 S.79E+04 

b 

S.30E+oS 

6.90E+oS 

S.OlE+oS 

3.87E+OS 

2.90E+OS 

S.60E+OS 

b 

S.30E+OS 

7.30E+oS 

4.6SE+oS 

3.66E+OS 

3.70E+oS 

4.80E+o4 

b 

S.30E+OS 

S.40E+oS 

3.96E+OS 

3.30E+OS 

3.90E+oS 

6.40E+o4 

b 

S.30E+OS 

S.60E+OS 

3.llE+oS 

3.04E+oS 

4.20E+OS 

9.20E+o4 

c 

4.70E+oS 

S.91E+oS 

4.3SE+oS 

2.96E+oS 

2.SOE+OS 

7.62E+oS 

c 

4.70E+oS 

S.80E+oS 

4.24E+oS 

4.IOE+OS 

3.90E+oS 

S.60E+04 

c 

4.70E+oS 

4.66E+OS 

7.36E+OS 

4.60E+OS 

6.2SE+OS 

l.03E+OS 

c 

4.70E+OS 

S.40E+oS 

4.20E+oS 

3.98E+OS 

3.89E+04 

d 

S.20E+OS 

S.07E+oS 

S.38E+oS 

3.SOE+oS 

3.40E+oS 

3.S3E+04 

d 

S.20E+oS 

4.lSE+oS 

4.98E+oS 

3.60E+oS 

2.00E+oS 

3.10E+o4 

d 

S.20E+oS 

4.70E+oS 

3.69E+oS 

4.90E+oS 

4.70E+oS 

3.67E+04 

d 

S.20E+oS 

6.80E+oS 

4.28E+oS 

4.81E+oS 

2.70E+oS 

4.68E+o4 

e 

S.20E+OS 

6.SOE+OS 

4.99E+OS 

4.40E+oS 

l.60E+OS 

e 
S.20E+OS 

4.82E+OS 

3.S8E+oS 

3.40E+oS 

4.SOE+o4 

e 

S.20E+OS 

S.42E+oS 

4.06E+OS 

3.IOE+OS 

3.61E+04 

e 

S.20E+OS 

S.90E+OS 

S.40E+oS 

l.70E+oS 

3.69E+o4 

Mean 

S.22E+oS 

6.lOE+OS 

4.92E+oS 

3.63E+oS 

2.30E+oS 

4.36E+OS 

Mean 
S.22E+oS 

S.81E+oS 

4.39E+oS 

3.79E+oS 

2.84E+oS 

4.32E+o4 

Mean 
S.22E+OS 

S.07E+oS 

4.97E+OS 

4.08E+oS 

4.26E+oS 

S.48E+04 

Mean 
S.22E+oS 

6.06E+oS 

4.27E+oS 

4.31E+OS 

2.89E+oS 

S.4SE+o4 

SD 

3.19E+o4 

6.16E+04 

3.32E+04 

4.84E+04 

8.41E+04 

2.67E+OS 

SD 
3.19E+o4 

l.21E+OS 

4.82E+04 

2.22E+o4 

l.06E+oS 

8.84E+o3 

SD 
3.19E+o4 

3.31E+o4 

l.40E+OS 

7.33E+04 

l.46E+oS 

2.6SE+o4 

SD 
3.19E+04 

S.SOE+o4 

8.46E+o4 

7.9SE+04 

8.91E+04 

2.02E+04 
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Table A6.4: Synechococcus numbers in cycloheximide and ampicillin (0.005 - 0.1 mg 1"1) 

treatments. 

Control 

0 

24 

48 

72 

120 

192 

AmpOOS 

0 

24 

48 

72 

120 

192 

a 

940E+OS 

l.30E+o6 

8.80E+OS 

l.30E+o6 

3.00E+06 

2.90E+06 

a 
9.40E+oS 

6.90E+OS 

8.SOE+OS 

l.03E+06 

l.18E+06 

l.60E+06 

b 

9.00E+OS 

6.SOE+OS 

9.80E+OS 

l.20E+o6 

3.60E+o6 

2.70E+06 

b 

9.00E+oS 

6.70E+OS 

7.60E+OS 

l.20E+06 

9.80E+OS 

l.40E+o6 

c 

6.60E+OS 

6.80E+oS 

8.8SE+OS 

l.30E+06 

4.20E+o6 

2.70E+06 

c 

6.60E+OS 

6.30E+OS 

7.70E+OS 

1.10E+06 

l.SOE+06 

l.30E+06 

d 

8.SOE+oS 

d 

8.SOE+OS 

e 

8.lOE+oS 

e 
8.IOE+OS 

Mean 

8.32E+oS 

8.77E+OS 

9.lSE+OS 

l.27E+o6 

3.60E+o6 

2.77E+06 

Mean 
8.32E+OS 

6.63E+OS 

7.93E+OS 

1.11E+06 

l.22E+06 

l.43E+06 

SD 

l.08E+oS 

3.67E+OS 

S.63E+04 

S.77E+04 

6.00E+OS 

l.lSE+oS 

SD 
l.08E+OS 

3.06E+04 

4.93E+04 

8.S4E+04 

2.62E+oS 

l.S3E+OS 
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Table A6.4 continued: Synechococcus numbers in cycloheximide and ampicillin (0.005 -
0.1 mg 1"1) treatments. 

Amp01 a b c d e Mean SD 

0 9.40E+05 9.00E+o5 6.60E+05 8.50E+o5 8.10E+05 8.32E+05 l.08E+05 

24 6.75E+o5 6.68E+o5 6.87E+05 6.77E+o5 9.61E+o3 

48 6.90E+05 7.60E+05 7.40E+o5 7.30E+05 3.61E+04 

72 l.10E+06 9.60E+o5 9.80E+o5 l.01E+o6 7.57E+o4 

120 l.25E+06 l.10E+o6 1.18E+06 l.06E+05 

192 9.10E+05 l.10E+06 8.10E+05 9.40E+05 l.47E+o5 

Amp OS a b c d e Mean SD 
0 9.40E+o5 9.00E+o5 6.60E+o5 8.50E+o5 8.10E+o5 8.32E+o5 l.08E+o5 

24 7.20E+o5 6.05E+o5 6.57E+05 6.61E+05 5.76E+04 

48 5.47E+05 5.46E+o5 5.40E+o5 5.44E+o5 3.79E+o3 

72 6.80E+o5 5.90E+o5 5.90E+o5 6.20E+05 5.20E+04 

120 2.80E+05 3.10E+o5 3.40E+05 3.10E+05 3.00E+o4 

192 l.10E+05 l.20E+05 l.10E+o5 l.13E+o5 5.77E+o3 

Ampl a b c d e Mean SD 

0 9.40E+05 9.00E+o5 6.60E+05 8.50E+o5 8.10E+o5 8.32E+05 l.08E+o5 

24 6.50E+o5 5.40E+05 6.03E+o5 5.98E+o5 5.52E+o4 

48 4.90E+o5 4.60E+05 5.05E+o5 4.85E+05 2.29E+o4 

72 4.80E+o5 5.10E+o5 4.10E+o5 4.67E+o5 5.13E+o4 

120 l.70E+o5 l.03E+o5 l.30E+05 l.34E+o5 3.37E+04 

192 7.80E+o4 7.00E+o4 5.30E+o4 6.70E+o4 1.28E+o4 

CyControl a b c d e Mean SD 

0 9.40E+o5 9.00E+o5 6.60E+o5 8.50E+o5 8.10E+o5 8.32E+o5 l.08E+o5 

24 9.60E+o5 9.20E+o5 9.40E+05 2.83E+o4 

48 7.90E+o5 9.50E+o5 8.35E+o5 8.58E+o5 8.25E+04 

72 l.33E+06 l.20E+o6 l.60E+06 l.38E+o6 2.04E+05 

120 3.15E+06 3.89E+o6 3.40E+o6 3.48E+o6 3.76E+o5 

192 4.20E+06 2.70E+o6 3.90E+06 3.60E+06 7.94E+o5 

CyAmpOOS a b c d e Mean SD 

0 9.40E+05 9.00E+o5 6.60E+o5 8.50E+o5 8.10E+05 8.32E+05 1.08E+o5 

24 7.60E+o5 7.50E+o5 7.40E+o5 7.50E+o5 l.OOE+o4 

48 8.50E+05 7.60E+05 7.70E+05 7.93E+05 4.93E+04 

72 1.20E+o6 1.10E+o6 l.30E+o6 l.20E+o6 1.00E+o5 

120 l.70E+06 l.50E+06 3.10E+o6 2.10E+06 8.72E+o5 

192 1.70E+o6 l.70E+o6 l.60E+o6 l.67E+o6 5.77E+o4 

CyAmp01 a b c d e Mean SD 
0 9.40E+o5 9.00E+o5 6.60E+o5 8.50E+o5 8.10E+o5 8.32E+o5 l.08E+o5 

24 7.76E+o5 8.50E+o5 7.80E+05 8.02E+05 4.16E+04 

48 7.10E+o5 8.50E+o5 7.80E+05 9.90E+o4 

72 9.10E+05 l.OOE+06 7.50E+05 8.87E+05 l.27E+05 

120 l.53E+06 l.30E+o6 l.10E+06 l.31E+06 2.15E+05 

192 1.20E+o6 l.OOE+o6 9.20E+05 1.04E+o6 l.44E+o5 



Table A6.4 continued: Synechococcus numbers in cycloheximide and ampicillin 
(0.005 - 0.1 mg f 1

) treatments. 

CyAmp05 

0 

24 

48 

72 

120 

192 

CyAmpl 

0 

24 

48 

72 

120 

192 

a 

9.40E+05 

6.95E+05 

5.40E+05 

8.60E+05 

4.50E+05 

l.90E+05 

a 

9.40E+05 

6.50E+05 

4.90E+05 

l.50E+05 

8.60E+04 

b 

9.00E+o5 

9.10E+o5 

5.SOE+o5 

9.90E+o5 

3.60E+05 

l.90E+o5 

b 

9.00E+o5 

4.80E+o5 

7.30E+o5 

2.40E+o5 

5.80E+o4 

c 

6.60E+o5 

7.60E+o5 

5.40E+o5 

8.40E+o5 

5.00E+05 

2.10E+05 

c 

6.60E+o5 

6.60E+o5 

7.00E+o5 

2.00E+o5 

8.00E+o4 

d 

8.50E+o5 

d 

8.50E+o5 

e 

8.10E+05 

e 

8.10E+05 

Mean 

8.32E+o5 

7.88E+05 

5.43E+05 

8.97E+05 

4.37E+05 

l.97E+o5 

Mean 

8.32E+05 

5.97E+05 

6.40E+o5 

l.97E+05 

7.47E+04 

SD 

l.08E+05 

l.10E+05 

5.77E+o3 

8.14E+04 

7.09E+04 

1.15E+04 

SD 
l.08E+o5 

l.01E+05 

l.31E+05 

4.51E+04 

l.47E+o4 
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Table A6.5: Treatments, cell numbers at t =Oh and t = 48 hand growth rate (h-1
) of 

Synechococcus in in-situ experiments to determine controls of distribution and 
abundance in Ace Lake. OBS = observation number, Depth = depth (m) at which the 
treatment was suspended in Ace Lake, Antibiot = antibiotic treatment, Nuts = nutrient 
treatment (WN = without nutrients, N = nutrient addition), Salt= salinity treatment (WS = 
without salt addition). 

OBS DEPTH REP ANTIBIOT NUTS SALT NUTSALT LIGHT CELLNo.Oh CELLNo.48h RATE48_0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 

WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 

CA 

CA 

WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 
CA 

CA 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

WN 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

ws 
ws 
ws 
ws 
ws 
WS 

ws 
WS 

ws 
ws 
ws 
WS 

WS 

ws 
ws 
WS 

ws 
WS 
WS 

WS 
WS 

WS 
WS 

ws 

WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 
WNS 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

3.70E+o3 

4.09E+03 

4.87E+03 

6.00E+03 

4.21E+03 

3.97E+03 

4.03E+03 

5.30E+03 

5.13E+03 

3.70E+03 

5.30E+03 

4.53E+o3 

5.17E+03 

5.01E+03 

4.79E+o3 

4.03E+o3 

4.98E+03 

5.21E+o3 

3.80E+03 

4.57E+03 

4.92E+03 

3.52E+03 

6.19E+03 

5.22E+03 

8.17E+o3 

3.94E+03 

3.98E+03 

3.70E+03 

3.84E+03 

4.27E+03 

7.33E+03 

3.91E+03 

4.52£+03 

5.97E+03 

5.51E+03 

3.78£+03 

S.82E+03 

7.03E+03 

4.77E+03 

5.33E+03 

3.70£+03 

3.98E+o3 

6.28E+03 

3.62£+03 

3.57E+03 

6.17E+03 

3.81E+03 

4.SSE+03 

l.65E-02 

-7.94E-04 

-4.23E-03 

-1.0lE-02 

-1.92£-03 

l.53E-03 

1.25£-02 

-<i.33£-03 

-2.64E-03 

9.95E-03 

8.12E-04 

-3.79E-03 

2.47£-03 

7.08E-03 

-1.0SE-04 

5.82E-03 

-<i.18E-03 

-S.63E-03 

l.OSE-02 

-4.88E-03 

-<i.68E-03 

l.17E-02 

-1.0lE-02 

-2.88E-03 
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Table A6.5 continued: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ experiments to determine controls of distribution and 
abundance in Ace Lake. 

OBS DEPTH REP ANTIBIOT NUTS SALT NUTSALT LIGHT CELL No. Oh CELL No. 48h RATE 48_0 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 
A 

B 

c 

WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 
CA 
CA 
WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 
CA 
CA 
WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 
CA 
CA 
WA 
WA 
WA 
c 
c 
c 
A 

A 

A 

CA 
CA 
CA 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

WN S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N S 

N ·s 
N S 

N S 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

WN WS 

N WS 

N WS 

N WS 

N WS 

N WS 

N WS 

N WS 

N WS 

N ~ WS 

N WS 

N WS 

N WS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

NS 

NS 
NS 

NS 
NS 

NS 
NS 
NS 
NS 
NS 
NS 
NS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

WNS 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

u 
11 

11 

11 

11 

11 

11 

11 

4.80E+03 

6.69E+o3 

6.34E+o3 

5.26E+o3 

6.20E+03 

6.29E+o3 

6.04E+o3 

7.45E+03 

5.54E+o3 

6.71E+o3 

4.63E+o3 

6.04E+o3 

5.24E+o3 

8.35E+o3 

5.51E+o3 

5.85E+03 

6.16E+o3 

6.59E+o3 

4.06E+o3 

8.17E+o3 

3.22E+o3 

7.50E+03 

7.78E+o3 

6.98E+o3 

3.26E+o3 

5.13E+o3 

4.87E+o3 

3.22E+o3 

7.94E+o3 

3.97E+o3 

3.33E+o3 

4.99E+o3 

5.13E+o3 

3.04E+o3 

5.52E+o3 

4.53E+03 

3.00E+o3 

6.32E+03 

4.79E+o3 

3.06E+03 

5.50E+o3 

5.21E+o3 

3.99E+o3 

6.29E+03 

4.92E+o3 

2.98E+o3 

5.92E+o3 

5.22E+03 

8.69E+03 

4.79E+o3 

4.17E+03 

4.32E+o3 

4.30E+03 

5.78E+o3 

8.56E+o3 

4.19E+03 

5.52E+o3 

8.84E+o3 

3.60E+o3 

6.10E+o3 

7.82E+o3 

5.28E+o3 

4.51E+o3 

1.53E+04 

1.40E+o4 

4.81E+o3 

9.98E+o3 

3.84E+03 

4.64E+o3 

8.09E+03 

5.63E+o3 

4.85E+03 

4.96E+o3 

3.19E+o3 

3.98E+o3 

5.74E+03 

2.93E+o3 

4.27E+o3 

3.80E+o3 

2.99E+03 

4.52E+o3 

7.80E+o3 

3.15E+o3 

3.78E+03 

4.40E+o3 

3.46E+o3 

4.77E+o3 

3.58E+o3 

3.62E+03 

3.98E+03 

3.82E+o3 

4.09E+03 

3.57E+o3 

4.35E+o3 

3.56E+o3 

4.55E+03 

1.24E-02 

-6.96E-03 

-8.75E-03 

-4.08E-03 

-7.62E-03 

-1.75E-03 

7.27E-03 

-l.20E-02 

-8.60E-05 

5.73E-03 

-5.27E-03 

2.05E-04 

8.33E-03 

-9.55E-03 

-4.17E-03 

2.0lE-02 

1.71E-02 

-6.57E-03 

1.88E-02 

-1.57E-02 

7.61E-03 

1.57E-03 

-6.72E-03 

-7.59E-03 

8.73E-03 

-9.91E-03 

-4.23E-03 

1.21E-02 

-2.08E-02 

l.53E-03 

2.73E-03 

-1.07E-02 

-2.64E-03 

1.96E-02 

-1.17E-02 

-3.79E-03 

7.96E-03 

-1.25E-02 

-1.05E-04 

3.26E-03 

-8.71E-03 

-5.63E-03 

-9.03E-04 

-8.99E-03 

-6.68E-03 

7.91E-03 

-1.06E-02 

-2.88E-03 
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Table A6.5 continued: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ experiments to determine controls of distribution and 
abundance in Ace Lake. 
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Table A6.5 continued: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ experiments to determine controls of distribution and 
abundance in Ace Lake. 

OBS DEPTH REP ANTIBIOT NUTS SALT NUTSALT LIGHT CELLNo.Oh CELLNo.48h RATE48_0 
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Table A6.5 continued: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ experiments to determine controls of distribution and 
abundance in Ace Lake. 

ODS DEPTH REP ANTIBIOT NUTS SALT NUTSALT LIGHT CELL No. Oh CELL No. 48h RATE 48_0 
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Table A6.6: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ second experiments to determine controls of 
distribution and abundance in Ace Lake. OBS = Observation number; Depth = depth at 
which treatment was suspended (t1 = 6 m, t2 = 8 m and t3 = 10 m); ANTIBIOT =antibiotic 
treatment (NA = no antibiotics, C = cycloheximide, A= ampicillin, CA = cycloheximide 
and ampicillin); Cell numbers (cells ml"1

); Rate 48_0 = growth rate (h"1
). 
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Table A6.6: Treatments, cell numbers at t =O h and t = 48 h and growth rate 
(h"1

) of Synechococcus in in-situ second experiments to determine controls of 
distribution and abundance in Ace Lake. 
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3.41E+oS 

2.74E+oS 

3.43E+oS 

3.37E+oS 

3.S6E+oS 

S.3SE+oS 

S.lOE+oS 

2.19E+oS 

4.91E+os 

438E+oS 

2.29E+oS 

4.09E+oS 

4.96E+oS 

4.37E+oS 

4.36E+oS 

2.4lE+oS 

3.34E+oS 

7.73E+oS 

1.S1E+oS 

6.87E+oS 

7.70E+oS 

1.64E+oS 

S.9SE+oS 

6.12E+oS 

8.14E+oS 

8.23E+oS 

8.16E+oS 

1.S4E+oS 

6.80E+oS 

S.9SE+o3 

8.97E+o3 

8.60E+o3 

S.lOE+oS 

4.30E+oS 

S.13E+oS 

3.29E+oS 

3.44E+oS 

4.lSE+oS 

4.2SE+oS 

4.S9E+oS 

3.49E+oS 

3.24E+oS 

3.40E+oS 

3.27E+oS 

l.19E+o6 

8.9lE+oS 

8.89E+oS 

4.73E+oS 

S.1lE+oS 

S.SOE+oS 

1.02E+o6 

3.78E+oS 

7.39E+oS 

6.2SE+oS 

6.12E+oS 

S.26E+oS 

l.66E+o6 

l.6SE+o6 

l.27E+o6 

9.19E+oS 

l.29E+o6 

l.68E+o6 

2.19E+o6 

1.99E+o6 

l.63E+o6 

8.24E+oS 

l.1SE+o6 

0.00166S 

0.0026S3 

0.001238 

0.00131S 

0.004483 

0.004829 

-0.00024 

-0.00123 

0.003243 

-0.0002S 

0.002689 

0.002189 

-O.OOOS2 

8.02E-OS 

-0.00077 

0.007233 

O.OOS048 

0.012676 

-0.0004S 

0.002399 

0.007928 

0.008268 

-0.00246 

0.0047S3 

0.0032S8 

0.008432 

0.004109 

0.00691S 

0.007928 

0.004S21 

0.002244 

0.007002 

0.009137 

0.0089SS 

0.007989 

0.00626 

0.000803 

0.0041S4 
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Table A6.7: Physcal characteristics of Ace Lake between the 131
h December 1993 and the 22nd Cecember 1993. 

Depth (m) Salinity Temp Depth (m) Salinity Temp Depth (m) Salinity Temp Depth (m) Salinity Temp 
(g kg-I) (OC) (g kg-I) (OC) (g kg-I) coq (gkg-1) (OC) 

1.5 11.22 -0.47 1.5 

2 17.85 1.19 2 10.91 -0.48 2 10.99 -0.46 2 

2.5 17.93 2.05 2.5 17.85 1.91 2.5 17.94 2.41 2.5 18.04 2.55 

3 18.07 2.43 3 18.09 2.56 3 18.06 2.67 3 17.96 3.09 

3.5 18.07 2.48 3.5 18.12 2.59 3.5 18.06 2.79 3.5 18.04 3.15 

4 18.06 2.49 4 18.13 2.59 4 18.07 2.80 4 18.08 3.14 

4.5 18.08 2.47 4.5 18.14 2.59 4.5 18.09 2.81 4.5 18.08 3.14 

5 18.08 2.47 5 18.14 2.60 5 18.09 2.81 5 18.10 3.1 

5.5 18.08 2.45 5.5 18.17 2.59 5.5 18.09 2.81 5.5 18.09 3.05 

6 18.08 2.43 6 18.17 2.58 6 18.12 2.82 6 18.11 3.06 

6.5 18.08 2.42 6.5 18.15 2.58 6.5 18.11 2.83 6.5 18.11 3.05 

7 18.10 2.42 7 18.20 2.59 7 18.11 2.83 7 18.11 3.05 

7.5 21.41 3.85 7.5 20.96 3.87 7.5 21.00 4.13 7.5 21.18 4.38 

9 28.40 5.94 9 28.36 5.98 9 28.23 6.09 9 28.24 6.34 

8.5 29.03 6.30 8.5 29.32 6.45 8.5 29.20 6.51 8.5 29.17 6.76 

9 29.45 6.50 9 29.52 6.54 9 29.44 6.63 9 29.38 6.81 

9.5 29.66 6.61 9.5 29.75 6.65 9.5 29.69 6.82 9.5 29.68 6.98 

10 29.83 6.78 10 29.91 6.84 10 29.85 6.92 10 29.82 7.08 

10.5 30.05 6.95 10.5 30.11 6.99 10.5 30.09 7.08 10.5 30.06 7.21 

11 30.37 7.22 11 30.52 7.26 11 30.37 7.28 11 30.37 7.42 

11.50 30.67 7.50 11.50 30.79 7.46 11.50 30.72 7.58 11.50 30.73 7.69 

12 30.98 7.14 12 31.04 7.20 12 31.00 7.19 12 31.00 7.23 

12.5 31.20 6.76 12.5 31.23 6.88 12.5 31.17 6.89 12.5 31.18 6.89 

13 31.29 6.60 13 31.32 6.65 13 31.28 6.66 13 31.26 6.67 
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Table A6.8: Light intensities (PAR. µm m·2 s"1
) measured in Ace Lake between the 11th and 19th December 1993 

Depth 11-Dec-93 12-Dec-93 12-Dec-93 13-Dec-93 13-Dec-93 14-Dec-93 15-Dec-93 15-Dec-93 16-Dec-93 16-Dec-93 17-Dec-93 18-Dec-93 18-Dec-93 19-Dec-93 19-Dec-93 

20:00 08:00 20:00 08:00 14:30 20:00 08:00 20:00 08:00 14:00 20:00 08:00 20:00 08:00 13:40 

2 15.08 11.16 14.86 15.06 33.53 6.33 7.31 5.76 7.21 19.94 15.60 8.76 9.70 8.37 26.42 

2.5 14.38 9.72 14.26 14.08 32.75 5.44 6.61 5.36 6.43 18.61 15.66 8.05 9.10 7.61 24.54 

3 13.33 8.71 13.41 13.03 30.44 4.94 6.06 5.00 5.70 16.97 14.50 7.19 8.51 6.99 22.95 

3.5 12.35 7.97 12.49 11.69 28.07 4.50 5.50 4.56 5.20 15.44 13.41 6.41 7.89 6.41 20.68 

4 11.35 7.09 11.49 10.72 25.32 4.06 4.96 4.14 4.70 13.82 12.21 5.76 7.21 5.82 18.98 

4.5 10.48 6.53 10.52 9.74 23.41 3.67 4.52 3.73 4.30 12.65 11.21 5.20 6.53 5.20 16.19 

5 9.48 5.88 9.50 8.96 21.19 3.39 4.12 3.37 3.90 11.73 10.28 4.68 6.00 4.80 14.97 

6 8.09 5.20 8.09 7.53 17.85 2.93 3.61 2.85 3.29 9.80 8.57 3.88 5.56 4.38 12.73 

7 6.65 4.32 6.81 6.25 14.70 2.41 3.07 2.33 2.77 8.17 7.23 3.25 4.72 4.26 10.68 

8 4.88 3.33 5.04 4.54 10.68 1.87 2.33 1.73 2.11 5.98 5.40 2.35 3.90 3.59 7.89 

9 3.39 2.55 3.82 3.45 7.83 1.35 1.77 1.29 1.59 4.56 4.10 1.77 2.87 2.67 6.10 

10 2.31 1.93 2.77 2.35 5.56 1.02 1.27 0.94 1.20 3.41 2.93 1.25 2.17 2.01 4.21 

11 1.10 1.10 1.41 0.98 1.27 0.38 0.74 0.40 0.66 1.87 1.47 0.58 1.55 1.45 2.05 

12 -0.08 0.24 0.16 -0.04 -0.30 0.06 0.30 -0.04 0.10 0.26 0.28 -0.12 0.84 0.88 0.16 
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