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ABSTRACT 

To maximise effectiveness, towed underwater sonar bodies generally require 

perturbations from the steady state motion to be minimised. The instantaneous 

position of the towed body is influenced by the unsteady, wave-induced motion of the 

surface vessel, transmitted via the tow cable. This can render the trajectory of the 

underwater body beyond acceptable limits for sonar operations. 

In an effort to decouple this motion, a two-part tow configuration has been employed. 

This thesis describes a three-dimensional dynamic computer model developed to 

investigate two-part tows by modelling the individual cabl~s separately and coupling 

them dynamically. This approach also enables the modelling of series and parallel 

multiple tow configurations. The cable system, modelled using a three degree-of­

freedom finite difference approach, is then coupled to the ·six degree-of-freedom 

underwater towed bodies at the appropriate locations of the cable system. The 

modelling of the cable as a continuous medium and the derivation of the stress wave 

speeds are also presented, followed by the validity and.effects of representing it as a 

discretised model. 

The solution to the dynamic equations describing the motion of the discretised tow 

configuration is carried out using an implicit multi-step numerical technique, subject 

to specific boundary conditions. This allows the values to be improved through an 

iterative procedure, until sufficient convergence is achieved. 

An introduction into the use of such numerical techniques in engineering and an 

analysis of the numerical procedure used in the solution are also presented. The 

requirements for accuracy and numerical stability of the integration technique are 

investigated and a guide to the time interval for the time ·stepping algorithm is 

deduced. 

The computer model is successfully validated using experimental results from scaled 

model tests in a circulating water channel. These results together with those obtained 

from full scale sonar trials utilising small coastal craft are used to further investigate 

the behaviour of the two-part tow configuration to varying parameters. The 

experimental results and the computer model enables the user to identify the optimum 

tow configuration for the prevailing conditions. 



The thesis also presents a detailed review of the various methods available to 

investigate underwater cables and vehicles, together with prediction methods for their 

hydrodynamic coefficients. The latter coefficients for the scaled models used in the 

project are obtained via experimental procedures. 

Although a number of investigations have been carried out dealing with aspects of 

underwater towing operations, the strength of this investigation lies in that it combines 

these aspects, i.e._ mathematical modelling, computer simulation, prediction of the 

hydrodynamic coefficients, scaled model experiments, full scale trials, and the 

analysis of the numerical technique, into one study. 
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NOMENCLATURE 

The following defines the major symbols used in this thesis. Since the work m this 

thesis encompasses the fluid mechanics and solid mechanics disciplines, some 

symbols traditionally have more than one meaning. In order to maintain consistency 

throughout the thesis, the symbols selected reflect those used by other authors in this 

field. Some variables and constants are defined at the relevant locations in the text. 

General Convention 

SI units are implicit. 

For a dummy variable "A": 

A 
A 

[A] 

A 

A 
,... 

A 

vector A 
matrix A 

matrix A 

derivative of A with respect to time 

second derivative of A with respect to time 

unit vector A 

Variables and Constants 

A 

A,A,A 

Ai 

Amm 

Amu 

Amrx· ,y' ,z' 

Am 

Alx',y',z' 

Aab 

Afab 

Afl, Bfl 

cross sectional area 

vectors representing the body rotational angles and their derivatives 

cross sectional area of cable segment "i" 

normal added mass coefficient of cable segment "i" 

tangential added mass coefficient of cable segment "i" 

added mass of the towed fish in the X', Y', and Z' directions 
hydrodynamic inertia (added mass) matrix of cable element 

added inertia of the towed fish about the X', Y', and Z' axes 

where a = 1, 2, 3 and b = 1, 2, 3 

mass matrix terms of the manipulated equation of motion of the fish 

as defined in equations (3.97) 

where a = 1 to 6 and b = 1 to 6 

mass matrix terms of the equation of motion of the fish as defined in 

equations (3.89) to (3.94), [refer also to equations (3.85) and (2.93)] 

variables defined in equations (3.95) 
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Ap 

Au,Bu 

[A]T 

[Ar' 

B21, B23 

Ca 

cd 
CdE 

Ce 

CH 

CL 

Cm 
en 
Ct 

Cw 
CTx,y,zi 

Cb andDb 

c 

D 

D1 
DEN 

E 

cross sectional area of the fish perpendicular to the X axis 

geometrical area of the body, (usually the cross-sectional area to the 

flow or the surface area) 

projected area of cylinder in the plane perpendicular to the direction 

of flow 
amplification matrix 

matrices defined in equations (2.9), (2.17), and (5.46) 

transpose of matrix [A] 

inverse of matrix [A] 

variables defined in equations (3.96) 

added mass coefficient 

drag coefficient 

equivalent drag coefficient 

linearised equivalent damping coefficient in equation (2.77) 

hydrodynamic coefficient 

lift coefficient 

inertia coefficient 

cable drag coefficient in the normal direction 

cable drag coefficient in the tangential direction 

wave speed 

trigonometric terms defined in equations (3.29) 

where b = 1, 2, 3, 4, ....... 

extra terms of the constraint equation for the junction in comparison 

to the standard constraint equ~tion (4.18), defined in equations (4.31) 

and (4.47) 

where t = 0, 1, 2, 3, 4, ....... 

constants defined in equations (5.11) and (5.20) 
damping matrix 

diameter 

diameter of cable segment "i" 

variable defined in equation (3.23) 

modulus of elasticity 

partial differential terms as defined in equations (4.19) to (4.21) 
error in the cable segment length "i", between the span of the nodal 

positions and the stretched length of the segment due to the tension 

matrix connecting the tension correction terms with the error terms, as 

defined in equations (4.32) and (4.33) 
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F, f 

F1x,y,z 

Fct1x,y,z 

Fct1x',y',z' 

Fe1x,y,z 

p. IOX,y,z 

Fr 

Ff,x' ,y' ,z' 

p' fx' ,y' ,z' 

Fftx',y'z' 

f 

f n 

G 

Gu, Hu 
G(U) 

g 

I, J, K1,K2 

lax',y',z' 

lx',y',z' 

A A A 

i, j, k 

J 

k 

k 
=E 

k 
=G 

[E1F1G1CD] converted to a true tri-diagonal matrix, as defined in 

equation (4.35) 

force vectors 

forces on node "i" in the X,Y, and Z directions 

drag forces (global) on segment "i" in the X, Y, and Z directions 

drag forces (local) on segment "i" in the X', Y', and Z' directions 

mean drag force in equation (2. 77) 

any additional forces on node "i" in the X, Y, and Z directions 

represents all forces except tension forces, acting on node "i" 

force vector acting on the fish 

components of Fr along the X', Y', and Z' (local) axes 

summed forces in the equation of motion of the fish, defined in 

equations (3.84) and (3.85) 

summed forces in the manipulated equations of motion of the fish, 

defined in equations (3.98) 

hydrodynamic force, i.e. drag, lift, or side force 

measured force 

tension vector along element "i" as defined in equation (2.49) and 

(2.52) 

frequency 

natural frequency 

centre of gravity of towed fish 

variables defined in equations (2.21) 

vectors defined in equations (2.23) 

acceleration due to gravity (9.81 m/s2
) 

variables defined in equations (3.18) 

moments of inertia of the towed fish at the centre of gravity about the 

X', Y', and Z' axes, respectively 

moments of inertia of the towed fish at the tow point about the X', Y', 

and Z' axes, respectively 

unit vectors along u, v, and w (local) axes system 

Jordan form of Ap, with eigenvalues O"pi) of Ap along its leading 

diagonal. 
stiffness matrix 

cable element elastic stiffness matrix 

cable element geometric stiffness matrix 

normal stiffness of a single lumped mass 

height of roughness of cylinder 
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kt 

kw 
KC 

L,M,N1,N2 
Lllt(R N ~t) 

Lp 

mab 

m· e1x,y,z 

MrGx' ,y' ,z' 

Mfx',y',z' 

M' fx' ,y' ,z' 

Pnx,y,z 

p, q, r 

p,q, t 

p 

p 
=I 

Pab 

tangential stiffness of a single lumped mass 

wave number 

Keulegan-Carpenter number 

variables defined in equations (3.25) 
local truncation error of the integration scheme 

load operator 

length of cable segment "i" 

length of fish 

length of the smallest element in the lumped mass model 

wavelength 

mass terms 
mass matrix 

mass of node "i", ie. the addition of half the mass of each adjacent 

segments 

where a = 1, 2, 3 and b = 1, 2, 3 

mass matrix terms 

mass and added mass of any additional weight attached to node "i" 

mass of towed fish 

cable mass per unit length 

moment vector 
moment vector acting on the fish, about its centre of gravity 

components of Mta about the X', Y', and Z' (local) axes 

moment vector acting on the fish, about its tow point 

components of Mn about the X', Y', and Z' (local) axes 

summed moments in the equation of motion of the fish, defined in 

equations (3.84) and (3.85) 

where a= x, y, z 

variables defined in equations (3.29a) 

variables defined in equations (3.32) 

angular velocity components (roll, pitch, and yaw) of the fish about 

the X', Y', and Z' axes 
angular acceleration components of the fish about the X', Y', and Z' 

axes 
matrix of eigenvectors of Ap 

tensor defined in equations (2.39) and (2.40) 

where a = 1, 2, 3 ... ,n and b = 1, 2, 3 ... ,n 

eigenvector terms of Ap 
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p(Ap) spectral radius of the amplification matrix ( Ap) 

distance from the tow point (1) to the centre of gravity (G) 

R, R, R displacement, velocity, and acceleration vectors 

Re Reynolds number 

Rm, Rm, Rm modal displacement, velocity, and acceleration vectors 

ri cable element mass ratio defined in equations (2.~9) and (2.40) 

s arc length of any point along the cable 

Str Strauhal number 

T tension of cable 

Ti tension of cable segme~t "i" 

T
1 

tentative tension of cable segment "i" 

Tr tension of cable segment attached to towed fish 

Trx,y,z component of the cable tension in the X, Y, and Z (global) directions 

Trx',y',z' component of the cable tension in the X', Y', and Z' (local) directions 
A 

t unit vector in cable element direction from bottom to top 

t time 

tn,mm minimum natural period of the cable mesh 

tn,a natural period of "a" mode 

tp period of the cycle 

U vector defined in equations (2.9), (2.17), and (5.46) 

U 0 velocity vector of the towc;d fish at its centre of gravity (G) 

u, v, w 

u, v, w 
v 
v 
Ycx,y,z 

Ynx,y,z 

acceleration vector of the towed fish at its centre of gravity (G) 

velocity vector of the towed fish at its tow point 

acceleration vector of the towed fish at its tow point 

local velocity components along the local (X', Y', and Z') axes 

system 

local acceleration components along the local axes .system 

velocity 

velocity vector 

water current velocities along the X,Y, and Z directions 

maximum velocity 

reduced velocity 

relative velocity between the body and the surrounding fluid 
relative velocity vector 

time dependent relative velocity 

velocities (global) of node "i" relative to the water in the X, Y, and Z 

directions 
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VSrix,y,z 

VSnx' ,y' ,z' 

WR 

X,Y,Z 

x,y,z 
x,y,z 
x,y,z 

X',Y',Z' 

x', y', z' 

Xa, Ya,Za 

Ym 
YRMS 

velocities (global) of cable segment "i" relative to the water in the X, 

Y, and Z directions 

velocities (local) of cable segment "i" relative to the water in the X', 

Y', and Z' directions 

net weight of node "i" in water, i.e. the addition of half the net weight 

of each adjacent segments 

wake response parameter 

global axis system as defined in sub-section 3.2 

displacement along the X, Y and Z directions 
velocities in the X, Y, and Z directions 

acceleration in the X, Y, and Z directions 

local axes system as defined in sub-section 3.2 

displacement of node along the X', Y' and Z' directions 

components of the distance (RG) from the tow point (1) to the centre 

of gravity (G), measured from the tow point and positive in the 

directions of the local axes system 

cross flow displacement amplitude 

root mean square anti-nodal displacement 

Greek Symbols 

a, ~.y 

~f 

<I> 

\jf 

p 

Pc 
O' 

E 

/.., 

/.., 

Awi 

AwL 

AwT 

! 

right hand rotation of the fish about the Y (pitch), X (roll), and Z 

(yaw) axes 

where i = 0,1,2,3,. .. 

parameters of multi-step integration algorithm, (see equation (5.4)) 

frequency parameter defined by equation (2.86) 

horizontal angle of the cable with the X axis 

vertical angle of the cable with the X-Y plane 

density of the water in which the towing occurs 

density of cable 

stress in cable or cable element when stretched 

local strain in cable or cable element when stretched 

eigenvalues 
matrix that_ stores the eigenvalues along its main diagonal 

where i = 1,2,3,4,5,6 

wave propagation speed along a continuous cable system 

longitudinal wave speed along a continuous cable system 

transverse wave speed along a continuous cable system 
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K 

u 
(l) 

Q 

<pa 

where i = 1,2,3, ... ,n 
eigenvalues of Ap 

visco-elastic damping coefficient 

coefficient to allow for hysteresis 

angular velocity vector of cable element 

natural frequency 

angular velocity vector of the towed fish having components a, J3, and 

y 
mass per unit length of the cable 

mass of the displaced water per unit length of the element 

variable to solve the tri-diagonal matrix [EiF,Gi] recursively, as 

defined in equations (4.38) and (4.39) 

where a= 1, 2 

characteristic lines associated with Aa, defined in' equations (2.13), 

shape function of cable element 

variable length along the element divided by the element length, (s/li) 

damping ratio 

Cos-1 ~ 

C0
0 

(-Cosv ±iSinv) 

r+o 
cable system transformation matrix 

tow fish transformation matrix 

modal transformation matrix defined in equation (5.88) 

time step (increment) 

represents the change in a parameter 

error 

or 

amplitude error, which increases the damping by a small quantity 8a 

phase error, which increases the frequency of oscillation by a small 

quantity 8a/2n. 
Kronecker delta, 

tension correction term of cable segment "i" 

variables defined in equation (2.80) 

eigenvectors 
matrix that stores the eigenvectors along its columns 

asymptotic notation of the error having an order of "a". 
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Subscripts 

D 

e 

f 

G 

i+l/2 

i-112 

j 

n 

u, v, w 

x,y,z 

t 

0 

1 

Supercripts 

k 

m 

t 

0 

(1) 

(2) 

depressor 

additional forces or weights 

towed fish 

centre of gravity of tow fish 

ith cable node, (or i1h cable segment located between nodes "i" and 

"i+ 1 ") 

cable element just after node "i" 

cable element just prior to node "i" 

cable node representing the junction 

cable node representing the surface towing vessel 

direction along axes of local coordinate system 

direction along X, Y and Z axes 

time 

centroid of tow fish 

tow point on tow fish 

iteration index 

convergence correction superscript in equation (4.7) 

time 

equilibrium position (configuration) 

top of cable rod element 

bottom of cable rod element 
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ABBREVIATIONS 

2D 

3D 

AMC 

AMECRC 

DOF 

DSTO 

FDM 

FEM 

HPMM 

LMM 

RAN 

ROV 

two dimensional 

three dimensional 

Australian Maritime College 

Australian Maritime Engineering Cooperative Research Centre 

degree of freedom 

Defence, Science and Technology Organisation 

finite difference method 

finite element method 

horizontal planar-motion-mechanism 

lumped mass method 

Royal Australian Navy 

Remotely Operated Vehicle 

EQUATION NUMBERING SCHEME 

All equations are numbered aligned to the relevant chapter and in ascending order 

through that chapter. For example equations in Chapter 3 will commence from (3.1) 

and continue as (3.2), (3.3) and onwards. 

When an equation number represents a set of equations, the number is usually sub­

divided, e.g. equations (3.8a), (3.8b), and (3.8c). When referring to such a set of 

equations, if all of the equations in that set are being addressed, then they will be 

referred to as equations (3.8). However, if only some of the equations from the set 

are addressed, then those being addressed will be specified, i.e. equation (3.8b). 

xxii 



CHAPTERl 

INTRODUCTION 

1.1 Definition of Problem 

A sonar platform is an example of a submerged body that is towed behind a surface 

vessel. Such platforms are used extensively in offshore, military, hydrography, and 

oceanography activities, (see Figure 1.1). They generally require that perturbations 

from the steady state motion are minimised in order to ensure clear sonar imaging. 

The instantaneous position of the submerged towed object (referred to as the "fish" in 

this text), is influenced by the relative motion between the cable and the water, the 

hydrodynamic characteristics of the fish, and the unsteady wave induced motion of the 

surface vessel.. Depending on the sea state and the towing vessel's response to it, the 

wave induced motion can be sufficiently large to render the trajectory of the tow fish 

beyond acceptable limits for sonar operations. This motion is transmitted to the fish 

along the tow cable. 

The Royal Australian Navy (RAN) uses towed sonar vehicles for a variety of 

operations. One task is the deployment of side scan sonar from small vessels to detect 

mines in coastal waters. As the operation is in coastal (shallow) waters, the length of 

the tow cable can be relatively short, e.g. 25 metres. In addition, the relatively small 

size of the surface vessel can lead to large wave induced motions. These conditions 

can adversely affect the motion of the sonar vehicle, resulting in imperfect sonar 

operations. 

The wave induced motion of a towed body attached to a conventional tow system used 

by the RAN, exceeds the acceptable motion rates in the six-degrees of freedom by 

more than 60%, (see Tables 6.2 and 6.3 in Chapter 6). In order to reduce this motion, 

and thus improve the efficiency of sonar operations, the Defence, Science and 

Technology Organisation (DSTO) of Australia was tasked with optimising the tow 

configuration. The investigation was carried out by the Australian Maritime College 

(AMC), DSTO, and the University of Tasmania with assistance form the Australian 

Maritime Engineering Cooperative Research Centre (AMECRC). 
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Since the surface vessel's motion is usually beyond the control of the operator, the 

transmission of the wave induced motion of the surface vessel to the towed fish can be 

reduced by: 

• designing the fish to be more hydrodynamically stable; 

• incorporating adaptive control surfaces on the fish; and/or 

• decoupling the surface vessel motion from the fish. 

This investigation centres around the third option, since it is an effective, cost efficient 

method of achieving the required objective. 

Various methods have been employed in tow configurations to increase decoupling of · 

the motions. One such method is the two-part tow shown in Figure 1.2. It consists of 

a primary cable attached at its top end to the surface vessel (i.e. the vessel towing the 

sonar), while the bottom end is attached to a depressor. The latter ensures that the tow 

configuration maintains the required depth. The fish is attached to the lower end of 

the primary cable by a secondary cable. The point of attachment (referred to as the 

"junction") can be varied along the cable length, thus influencing the behaviour of the 

towed fish. The two-part tow configuration and its behaviour are explained in Asplin 

and Christensson (1988), Preston (1989) and Hopkin et al. (1990). 
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In order to investigate and optimise the tow configuration, the project was carried out 

in three stages: 

1. the development of a three-dimensional (3D) dynamic computer model 

incorporating the decoupling effect, to predict the motion of the fish due to the 

excitation at the surface; 

2. scaled model tests of the tow configuration; and 

3. full scale trials. 

TRAIL 

PRIMARY GABL' 

SECONDARY CABLE 

I 

TOWED FISH 

JUNCTION 

DEPRESSOR 

Two-Part Tow 

Figure 1.2 

DEPTH 

The computer model of the two-part tow incorporates tow line and fish dynamics as 

well as the decoupling effect of the two separate lines. The response envelop of the 

configuration can be determined by varying the parameters of the model. This allows 

the configuration to be optimised to give an acceptable trajectory for the tow fish. 

Since the attachment point between the two cables can be varied along the length of 

the primary cable, it is inadequate to model the tow configuration as a single cable 

system, with an "extra" lumped mass representing the depressor. One must model the 

two cables separately and then dynamically couple them at the junction. Following a 

comprehensive review of the literature, the author was unable to find any 

contributions dealing with the required tow configuration. 

4 



This concept allows the investigation of not only varying points of attachment, but 

also multiple towed bodies, i.e. more than one secondary cable attached at various 

points along the primary cable, (see Figure 1.l(i)) 

The results from the computer model were validated and supplemented using: 

• experimental data from scaled model tests of the two-part tow configuration 

conducted in the circulating water channel at the Australian Maritime College in 

Launceston; and 

• full scale trials at Jervis Bay and Port Phillip Bay. 

1.2 Outline of Thesis 

The remainder of this chapter outlines the tow configurations investigated and reviews 

the literature relevant to the modelling of such systems. This review includes static, 

quasi-static and dynamic cable modelling techniques, current underwater tow models, 

numencal procedures employed to solve cable I tow models, and the modelling of 

underwater vehicle. Finally the experimental investigation is introduced. The rest of 

the chapters are structured as follows. 

Chapter 2 looks at the methods available to investigate cable and underwater bodies. 

It first looks at the more popular mathematical representations of dynamic cable 

modelling and the time domain solution techniques utilised. The selected method for 

this study is justified based on the ability and suitability of the various methods. The 

prediction of drag and inertia coefficients of cables is yet a highly researched area. 

Chapter 2 details some of the investigations, analyses the behaviour of the fluid flow 

around the cable, and presents current methods used to predict the relevant 

coefficients. Finally the modelling techniques available for underwater vehicles and 

the prediction of the relevant coefficients are discussed. 

In Chapter 3, the mathematical modelling of the quasi-static and dynamic two-part 

and multi tow configurations is detailed. This includes the modelling approach used 

for the cable junction, series and parallel multiple tows, and the integration of the tow 

I depressor fish into the cable model. This is followed by the numerical solution 

procedure in Chapter 4, where the numerical integration scheme and the required 

iteration procedure are introduced. The incorporation of the discontinuity due to the 

cable junction into the solution technique is also detailed, as are the variations 
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required to deal with the two types of multiple tow configurations. Typical results for 

the various configurations are also presented. 

Chapter 5 analyses the numerical procedure used in the solution, and includes an 

introduction into such numerical techniques in engineering. The modelling of the 

cable as a continuous medium and the derivation of the stress wave speeds are 

presented, followed by the validity and effects of representing it as a discretised 

model. The stability and accuracy of the numerical procedure utilised is analysed and 

the prediction of a suitable time step to meet these criteria is discussed. 

Chapter 6 details the scaled model experiments and the full scale trials, and analyses 

the results in order to investigate the behaviour of the two-part tow. The scaled model 

test results are also used to validate the computer model, which includes the 

experimental calculation of the hydrodynamic coefficients of the scaled models. 

Finally Chapter 7 presents the conclusions and recommendations. 

Appendix A gives the results from the scaled model tests and the full scale trials, 

while Appendix B presents detailed flowcharts of the computer model. 

1.3 Tow Configuration 

Conventional towing arrangements consist of a tow cable attached at its upper end to 

the surface towing vessel and its lower end to the fish, (Figure 1.3). This 

configuration leads to large coupling effects, thus giving unacceptable fish motion due 

to the transmission of the excitation at the cable's upper end down to the fish. The 

two-part tow, shown in Figure 1.2, consists of a primary cable towed from the surface 

vessel in a similar manner to the conventional tow, except that the fish is replaced by a 

depressor to maintain the required depth of the cable's configuration. The fish is then 

attached to the depressor (Figure l.l(c)) or to the lower end of the primary cable 

(Figure 1.l(d)) by a secondary cable. 

Usually the primary cable is negatively buoyant, while the towed fish and the 

secondary cable are neutrally buoyant. However, these conditions could differ 

depending on the operator's requirements. The fish can be modified to be neutrally 

buoyant by simply adding ballast or buoyancy at the appropriate locations within the 

fish. 
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The computer model was developed to simulate both conventional and two-part tow 

configurations. In the latter case, it can consist of a two-part tow without a junction 

(Figure l.l(b)) or a two-part tow with ajunction (Figure l.l(d)). This enables the use 

of one computer model to simulate and compare various tow configurations. 

In order to expand the scope of the investigation, it was decided to incorporate multi­

tow configurations in the computer model. These included: 

• Series Multiple Tow (Figures l.l(e) to l.l(h)), where a number of towed fish 

are attached in series. Each towed fish is attached via its tow (secondary) cable 

to the fish preceding it. 

• Parallel Multiple Tow (Figure l.l(i)), where a number of towed fish are 

attached in ·parallel. Each towed fish is attached via its tow (secondary) cable to 

the primary cable, thus creatmg a number of junctions along the length of the 

primary cable. 

Following an extensive literature survey into various underwater tow investigations, it 

was noted that most tow models dealt with conventional tow configurations, while 

some were able to deal with multiple tow configurations similar to that shown in 

Figure l.l(g), (these will be discussed later in this chapter). However, none were 

found that could deal with the discontinuity created by having a "junction" at a point 

along the primary cable, (i.e. as in Figure l.l(d)). 
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The tow configtJration consists of two major components, i.e. the cable(s) and the tow 

I depressor fish. Therefore the investigation looked into the modelling of underwater 

cables, underwater bodies, and the coupling of the two. In Chapter 2 the various 

methods available for the modelling of underwater cables, including the governing 

equations and the recommended solution techniques, are described. This is followed 

by a description of the modelling techniques (again including the equations) 

commonly utilised for underwater vehicles. 

In this Chapter, an overview of the various methods used in modelling underwater 

towed systems will be discussed, which includes a review of the cable models and 

solution techniques as well as the modelling of underwater vehicles. 

1.4 Static and Quasi-Static Cable Models 

Early work with 'cable systems dates back to the Greek civilisation, when eminent 

figures such as .Pythagoras and Aristotle investigated cable tensions and frequencies. 

In the more recent past well known mathematicians and researchers ,such as Leonardo 

da Vinci, Mersenne, and Galileo continued the investigation. Early analytical work in 

the eighteenth century is attributed to Taylor who published the first dynamic solution 

of transverse cable dynamics, and Bernoulli, who published theories of oscillation for 

hanging chains and the superposition principle of several harmonics for taut string. 

The latter was illustrated by Fourier in the nineteenth century. 

D' Alembert was the first to derive the partial di~ferential equations for · smal,l 

transverse dynamics of taut wire, which were then solved by Lagrange. Euler derived 

the equation for a hanging chain and then obtained a series solution for the first three 

natural frequencies. Poisson derived and solved equations of a cable. element 

subjected to a general force. 

The above description can easily be taken to represent a who is who in the mechanical 

I structural engineering arena. This highlights the importance placed upon cable 

structures from the beginning of known civilisation. 

Up till the early part of the 201
h century, the analytical work was based on the 

prediction of the shape of a hanging uniform static cable using the so called classical 

theory. Here the longitudinal extension is neglected as are the dynamic effects. The 
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cable is assumed to achieve its stiffness through a change in its shape as the tension 

forces change at the ends. The equations describing the configuration are readily 

available from most structural mechanics text books dealing with compliant 

structures, e.g. Berteaux (1976), Wilson (1984) and Patel (1989). 

The solution to these equations are obtained by approximate solutions or an iterative 

process. These models can be classified as "static" and have in the past been used to 

investigate underwater cable structures. Around World War I, analytical models were 

developed to predict the height of barrage balloons in varying wind conditions and to 

analyse aircraft towed cable configurations I systems. Between the wars, 

investigations primarily dealt with steady state towing of gliders, targets, and 

rninesweeping equipment as well as steady state mooring of buoys and ships. 

When considering the ocean environment, the effects of the surrounding water and the 

nature of the excitations encountered requires a more thorough investigation, 

especially if the flexible structure is long. Thus, the inclusion of the non-linear drag, 

forces into the mathematical model results in a quasi-static model. 

Quasi-static models ignore the affects of inertia and added mass in the calculations, 

taking into consideration only the forces such as mass, buoyancy, cable tensions, lift, 

and drag due to the cable I fluid interface. Equations for static equilibrium are then 

developed for the system and solved subject to given boundary conditions. (The 

inclusion of drag forces is important when considering an underwater catenary due to 

the magnitude of such forces that are experienced). The quasi-static models are able 

to incorporate non-linearities that are present in the cable model, which include: 

• changes in geometry due to tl}e change in the cable shape; and 

• fluid loading, which is usually proportional to the square of the relative velocity 

between the cable and the surrounding fluid. 

Modelling techniques for quasi-static cables can be broadly divided into the 

continuous, lumped mass, finite element, and hinged rod methods. The above 

classification is dependent on the method utilised to represent the cable system. 

A number of researchers have developed quasi-static models and only a selected 

number are given in this review. The reference list at the end of the thesis gives a 

number of papers I text describing quasi-static models, and the paper by Casarella and 
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Parsons (1970) is an excellent review of the work carried out in this area. Berteaux 

(1976) gives a concise hierarchical chart outlining the various quasi-static and static 

model approaches. 

Possibly the first quasi-static model was developed by McLoed in 1918 (Casarella and 

Parsons (1970)), based on the experimental work by Relf and Powell. This was then 

extended by Glauert in 1934. Landweber and Protter in 1944 included a constant 

tangential hydrodynamic force, and the former modelled an anchor chain in 1947. 

O'Hara in 1945 was the first to include the effect of cable stretching on cable density, 

cable length, and drag forces. Eames in 1956 and Whicker in 1957 developed two­

dimensional (2D) steady state models including the use of faired section cables. 

Pode (1951) investigated quasi-static inelastic continuous cables under constant 

tangential drag, and published a set of tables to be used in conjunction with a set of 

pre-determined equations to give the tension, length, scope, and/or depth of the 

configuration. The tables produced covered, among others, mooring, underwater 

towing, and surface towing configurations. To overcome the constant tangential drag 

limitation in Pode's data, Wilson (1960) produced a set of tables and graphs that 

included variable tangential cable drag forces. 

Patton (1972) and Berteaux (1976) give detailed descriptions on the modelling and 

solution techniques of the quasi-static inelastic continuous cable configuration used 

for mooring of buoy systems. Similar models are also presented by a number of other 

researchers including Eames (1967), Ferriss (1980), and Huang and Vassalos (1993), 

with the former dealing with faired sectioned cables. 

The quasi static lumped mass and hinged rod models have also been used by a number 

of researchers, especially as a starting configuration for the respective dynamic 

models. Dryer and Murray (1984) describe the two quasi static models in both two 

and three-dimensional configurations, and identify their merits and demerits through a 

series of numerical examples. Finite element models can also be used to model quasi 

static configurations by neglecting the inertia terms. 

The above three discrete models offer simple straightforward modelling, although the 

iteration process to achieve the required equilibrium configuration may be tedious, 

with possible convergence problems, (Thomas and Hearn (1994)). One method of 

determining the equilibrium configuration of redundant cable arrays was introduced 

by Skop and O'Hara (1972) and was termed the method of imaginary reactions. 
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Peyrot and Goulois (1979) use the procedure suggested by O'Brien (1967) to develop 

a three-dimensional quasi-static cable model from basic catenary equations to analyse 

the equilibrium configuration of cable structures. The use of the catenary equation is 

claimed by Connaire and McNamara (1997) to give very little difficulty in 

convergence, as opposed to the problems encountered by finite element and finite 

difference quasi static models. This is attributed to the model being based on the 

catenary equations, thus providing an exact solution for the quasi static configuration 

of a curved cable. By contrast, the straight cable segments used in finite element and 

finite difference methods, introduce errors due to the approximated' configuration. 

Some researchers use the quasi-static model to carry out time stepping algorithms in 

an attempt to represent the "dynamic" motion of systems. This is usually carried out 

by the use of cable derivatives obtained by differentiating the steady state solµtion. 

An example is the method proposed by Ivers and Mudie (1973), in which the inertial 

forces are ignored and the cable configuration for a towed system is obtained using a 

force balance that is influenced by the surface vessel motion. Another, proposed by 

Peyrot and Goulois (1979), uses a three-dimensional quasi-static cable model to 

analyse the equilibrium configuration of structures with a number of cables, such as 

multi-leg mooring systems. Polderdijk (1985) uses modified quasi-static models to 

predict the anchor line response in preliminary studies. 

Although quasi-static models are still used for certain applications, it is clear from a 

number of experimental validations (e.g. Bergdahl and Rask (1987)), that the dynamic 

effects, such as inertia and added mass, cannot be neglected as they have a significant 

influence on the cable tension and motion. From Kuwan and Bruen (1991) it is seen 

that quasi-static models tend to under-predict the cable tension. The ratio between the 

dynamic tension and the quasi-static tension, approaches 20, although when 

considering the total tension the under-prediction reduces to around 40%. Thus, the 

under-prediction in quasi-static models is significant, especially at the higher: 

frequencies of excitation, e.g. wave induced surface vessel motion. 

The discrepancy between the dynamic and quasi-static tensions can be explained by 

considering Figure 1.4, which shows the transfer function between the cable tension 

and the tangential motion of the upper end of a mooring line. At very low frequencies 

of m.otion, the dynamic tension transfer function is approximately equal to that for the 

quasi-static model. 
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However, as the frequency of the motion increases, the dynamic tension increases 

until it reaches the upper bound value defined by pure elastic stretching of the cable. 

This increase in tension is due to the higher hydro-dynamic damping on the cable 

from the surrounding fluid, thus restraining the change in shape of the cable. This 

results in the cable stretching to accommodate -the motion. Although this effect 

reduces in shallow water (due to the lower static stiffness), it has a significant effect 

on the amplitude at higher frequencies of motion. 

This under-prediction will lead to errors in the prediction of the cable behaviour, and 

thus the behaviour of the towed body. This is especially significant at the higher 

frequencies of excitation, e.g. excitation due to wave induced surface vessel motion. 

In addition, if cable specifications are based on computer model predictions, then the 

strength of the cable selected may be insufficient, leading to possible failure during 

operation. Further, by neglecting the dynamic influence, the effect (and possible 

damage) on the cable due to fatigue may be seriously under-predicted. 

For these reasons, the simulation of underwater of towed bodies is now almost 

exclusively carried out using dynamic models. However, as shown in Chapter 3, the. 

quasi-static model is used as a starting point in a number of dynamic models. It also 

has a limited use in preliminary investigations and in simulation models where the 
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cable influence is marginal, for example as tether models of Remotely Operated 

Vehicles (ROV). Some examples of the use of quasi static models are given by de 

Wit (1982), Cordelle (1983), Ishii et al. (1986), Hopkin et al. (1990), and Brook 

(1992). 

1.5 Dynamic Cable Models 

The dynamic models are based on Newton's equation of motion. Therefore, the effect 

of mass and added mass is incorporated into the equations, which are "driven" by an 

exciting displacement or force, and solved to defined boundary conditions. 

Although the solution is usually carried out in time domain, some investigations (e.g. 

Koterayama (1977), Triantafyllou and Bilek (1983), Leonard and Tuah (1986), Suhara 

et al. (1987), and Larsen et al. (1992)), use a frequency domain, approach. In the time 

domain solution, the non-linearities can be modelled, and solved at each time step. 

However, as the terms such as mass, added mass, damping, stiffness, etc. have to be 

calculated at each time step, the computation can become complex and time 

consuming. 

On the other hand, the ,frequency domain method is always linear, as linear principles 

of superposition are used. Therefore, all non-linearities are eliminated either by direct 

linearisation or by iterative linearisation procedures. Triantafyllou et al. (1986), Chen 

and Lin (1989), Chakrabarti (1990), Teng and Li (1991), Kwan and Bruen (1991), and 

Clauss· et al. (1992) give such procedures relevant to cable models and drag terms. An 

example of the linearising procedure is given in sub-section 2.3.4 in Chapter 2, 

dealing with the cable I fluid drag force. 

In carrying out linearisation, the motion of the system is assumed to be a set of small 

deviations from an equilibrium position. The modelling for a frequency domain 

solution is usually carried out by a linear spring-mass-damper system. This model can 

have a number of degrees of freedom, depending on the modelling technique used, 

thus yielding a set of equations of motion. Early linear modelling of cable systems 

was carried out by a number of researchers including Kerney, Reid, Schram, Phillips, 

Whicker, Nath, etc., (see Choo and Casarella (1973)). 

Triantafyllou and Bilek (1983) give an example of the use of the linear frequency 

domain method to solve non-linear taut cable systems. In order to solve the set of 
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coupled linear equations of motion derived for the cable system, most researchers use 

modal analysis, from which the modal frequency response is obtained. Examples of 

this method are given in Jeffery and Patel (1982) and Leonard and Tuah (1986). 

Nakamura (1990) utilises the frequency domain solution in a time domam simulation 

of a moored semi-submersible. However, Yilmaz and Incecik (1996) claim that the 

time domain solution must be used to deal with the strong non-linearities. 

Leira and Olufsen (1987) use the frequency domain approach to estimate the fatigue 

damage to an underwater riser, and conclude that it is ideally suited for this task. 

However, they also identify that there are discrepancies between the results obtained 

for this solution technique and that from an equivalent time domain solution. 

Jeffery and Patel (1982) compare the modal solution of a linearised model against a 

non-linear finite element model for a taut mooring system, concluding that the former 

offers a relatively poor performance for the computational effort required. 

It is therefore concluded that although the frequency domain approach has its uses for 

specific situations, the time domain solution is preferred for most cable systems with 

strong non-linearities. 

Possibly the first time domain dynamic model was by Phillip in 1949 (Casarella and 

Parsons (1970)), for airborne towing configurations. In 1957 Whicker indicated a 

solution for a two-dimensional dynamic towing model, and in 1958 solved the one 

dimensional (axial) motion of a deep mooring cable for the dynamic tension, (without 

including the effects of drag and weight). 

Modelling the dynamic cable as a continuous elastic medium and solving it using 

either the method of characteristics (e.g. Reid (1968) and Patton (1972)) or finite 

difference approximation (e.g. Brooks (1990)) is a method utilised by a number of 

researchers to investigate various configurations of cable systems. This method 

develops a set of coupled partial differential equations to represent the continuous 

cable system. 

The solution by the method of characteristics put forward by Reid (1968) is a direct 

integration solution of the equations of motion. It uses the stress wave fronts to 

replace the partial differential equations by ordinary differential equations, and then 

integrates them along the characteristic lines in the space-time domain. This method 
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gives an exact solution to the cable system, although some approximation is usually 

required within the numerical solution. 

Syck (1981) highlights the difficulties with this method, including the slow execution 

due to use very small time steps required by the high longitudinal stress wave speeds 

along the cable. In order to speed up the calculation, Patton (1972) developed a 

lumped mass method (LMM) to solve the cable system using a low order integration 

scheme. Patton shows that the simulation using the lumped mass model is faster, 

although the high frequency response is truncated. 

Brooks (1990) solves the partial differential equations by representing them using a 

finite difference scheme. However, the solution technique uses a large amount of 

computer space and time. 

Many consider the paper by Walton and Polachek (1959) to be the foundation for the 

lumped mass solution to underwater cable models. The paper presents a two­

dimensional dynamic model to represent a mooring cable. The cable system is 

represented by inelastic segments, (although they did include elasticity in a subsequent 

paper in J963), with all external forces on the segments distributed to the adjacent 

nodes. The added rnass and drag forces in the tangential directions are considered 

small in comparison with those acting in the normal direction, and thus neglected. 

The equations of motion obtained for the nodes are solved using an explicit finite 

difference integration technique, i.e. the central difference technique. Since the 

equations of motion are non-linear, an explicit solution is impractical and an iterative 

process based on the Newton-Raphson method of successive approximations is 

employed. The tentative tension values for a time step are corrected through the 

iteration process to conform to the segment length constraint equation. 

Walton and Polachek also carry out a stability analysis of the equations and solution 

technique by employing the von Neumann (Fourier) stability method, thus providing a 

limiting time step to be used in the solution process. 

Nakajima et al. (1982) refined the mooring cable model developed by Walton and 

Polachek. Their model (in two-dimensions), includes tangential added mass, drag 

forces, and cable elasticity. The explicit central difference integration technique is 

replaced by an implicit algorithm, which should give unconditional numerical 

stability. However, as shown in Chapter 5, the modified Newton-Raphson iteration 
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process required for the non-linear system, introduces errors that result in numerical 

instability if large time steps are used. The time stepping process of the dynamic 

model commences from a quasi-static configuration. 

Nakajima et al. validate the model successfully against scaled model experiments of a 

number of mooring cable I chain configurations. Results show that the dynamic 

tension can be much larger than the quasi-static tension and is dependent on the 

frequency of motion. It also increases as the drag forces on the cable increases. 

Tsinipi:z;oglou, (1984) expands the model developed by Nakajima et al. (1982) into 

three-dimensions and incorporates wave I current interaction with the cable. 

However, Tsinipizoglou reverts back to the central difference integration technique 

and ignores elasticity and tangential drag forces. 

Van den Boom (1985) developed a two-dimensional model using the technique 

presented by Nakajima et al. The paper also briefly gives a comparison between the 

lumped mass model and an equivalent finite element model, concluding that the latter 

is less computer time efficient. Van den Boom also briefly dwells on the 

discretisation effect, developing approximate equations for the parasitical motion of 

the lumped masses. The method suggested to reduce this affect is tc;> increase the 

number of segments used in the discrete representation. However, the effect of this on 

the stability of the numerical technique is not investigated. 

Validation is carried out by comparing against results from scale model experiments, 

including those obtained from excitations in irregular waves. In the resulting 

discussion, the effect of "flying" and associated slackness is identified, even at low 

frequencies. 

In van den Boom et al. (1987), the above model was expanded into three-dimensions. 

The inclusion of bending moments and shear forces enabled the modelling of risers 

and pipelines, in addition to mooring systems. Further model experiments were 

carried out to validate the three-dimensional cable, riser, and pipe models. 

Peuker et al. (1987) also carry out the modelling of underwater flexible structures 

along the line described by van den Boom et al. (1987), however, the implicit time 

integration method used is different, thus demonstrating the versatility of the lumped 

mass method. The use of implicit, unconditionally stable algorithms in preference to 

the conditionally stable explicit algorithms is also briefly discussed, highlighting the 

16 



requirement for a time step smaller than the period of the highest natural frequency of 

the system for the latter case. It is claimed that by using the implicit algorithm it is 

possible to use a much larger time step to accurately predict the lower modes. 

Although this is true, in Chapter 5 it will be shown that the time step is limited by the 

propagation of the error introduced by the iteration process. The paper however, 

makes no mention of this, implying that the time step is purely limited by the accuracy 

of the results. 

Two co-authors from Peuker et al. further discuss the model in Kokkinowrachos and 

Giese (1987), and include an explanation of the calculation of the system natural 

frequencies as an eigenvalue problem. These are then used to produce a simplified 

model that is used to carry out preliminary design work of underwater flexible 

structures, as the non-linear time domain model is claimed to be far too complex for 

such work. However, the advent of faster computers with larger memory capacities, 

especially in the last decade, has substantially reduced this problem. 

Huang (1994) dynamically modelled underwater cable systems for mooring and 

towing using the lumped mass method in three-dimensions, and includes an 

investigation on the suitability and limits of the method. The modelling is similar to 

that given by van den Boom et al. (1987), however, the solution technique employs an 

implicit difference scheme introduced by O'Brian et al. (1950-51). This scheme is 

investigated utilising von Neumann (Fourier) stability meth9d, showing it to be 

unconditionally stable. The paper also investigates the discretisation effect, especially 

on the dissipation or otherwise of high frequency waves along the lumped mass 

model, with its possible influence on numerical stability. Huang also briefly outlines 

the merits of the lumped mass method over other compatible methods available for -

cable modelling. 

In Huang and Vassalos (1995) a slightly modified version of the above model is 

integrated using an explicit method, i.e. a modified Euler method, in order to reduce 

computational effort by eliminating the iteration process. Therefore, the time step has 

to be smaller than a critical value for stability. 

Winget and Huston (1976) present a finite segment cable model that consist of ball 

and socket connected rigid links (segments). Cable stiffness is modelled as spring­

dampers between the segments. Along the same lines, Chapman (1987) developed a 

three-dimensional dynamic hinged rod underwater tow model by dividing the cable 

into a number of rigid, non-extensible rods, with their mass uniformly distributed 
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along them. Equations of motion are then developed for each rod, yielding 

relationships between the forces and accelerations at the bottom of the rod to those at 

the top. 

With the rapid development in computers and their increasing use in the solution of 

engineering structures, it was inevitable that the finite element method (FEM) would 

be used to model and solve cable structures. In fact most researchers today model 

cable systems either using the lumped mass method or the finite element method, each 

school being keen to emphasise the respective merits of its approach. 

There are a number of ways of carrying out the modelling using finite elements. 

However, the basic concept is the representation of a cable by a series of segments 

(elements) joined together at nodes. The model calculates the motion from a known 

equilibrium system due to forces acting on the cable elements. The equations for the 

elements are developed by a Lagrangian approach or by Hamilton's principle. Forces 

distributed along the element are transformed to equivalent nodal forces through the 

principle of virtual work. 

The shape and configuration of the element will depend on the modelling meth.od 

used. Johansson (1976) and Webster- (1975) introduced the modelling of cable 

systems using straight line elements, solving the non-linear matrix based equation 

using an iterative process. The former decoupled the force terms over a short period 

of time and used a trial and error process to obta!n the final state at each time interval, 

while the latter used an implicit integration scheme fo iterate towards the solution. In 

order to obtain accurate results, the finite element method requires the cable model to 

consist of a large number of elements. This effectively reduces the time step, thereby 

increasing the required computer space and run time. 

Leonard and Recker (1972) use a solution technique based on the theory of 

incremental deformation, where the non-linear equations are reduced to a system of 

quasi-linear equations dependent of the prior history of the system. In Leonard 

(1973), the model was extended to have internal curvature and slope continuity at the 

nodes. This reduced the number of elements required to represent the cable 

accurately, thus reducing the computer requirements. Haritos and He (1989) modelled 

the cable configuration using three and four node parabolic isoparametric elements, 

allowing a further reduction in the number of elements. However, the time step used 

in Haritos and He (1992) is similar to that required by a lumped mass model, the only 
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advantage coming from the reduced computational effort due to the reduced number 

of cable elements. 

Peyrot (1980) used the basic catenary equations to develop the finite element model to 

deal with dynamic cable structures, enabling the element to be longer than the 

traditional straight or curved cable element. Lindahl and Sjoberg (1983) transformed 

the equations of motion to ordinary differential equations by using the principle of 

virtual work, and an explicit numerical method is utilised to solve the equations 

without iteration. 

McNamara and O'Brien (1986) developed a hybrid finite element model to deal with 

a variety of underwater flexible structures such as mooring cables, pipes, and risers. 

The hybrid element treats the axial forces and the bending shear forces as independent 

unknowns. It is claimed that the hybrid element gives greater stability and accuracy in 

the solution over a range of bending stiffness, i.e. from zero for a mooring cable to 

rigid pipelines. 

Marichal and Jacquot (1988) developed a simplified Lagrangian model with a reduced 

number of variables (hence equations) and an explicit integration scheme, thus 

eliminating the need to carry out an iteration procedure within the finite difference 

solution. The model assumes an inelastic cable and is not validated in the paper. 

Tuah and Leonard (1990) modified the finite element model with straight elements to 

deal with synthetic cables, i.e. modelled with viscoelastic cable elements. 

Other researchers involved in modelling underwater cable systems include: Bemitsas 

(1982), Jeffery and Patel (1982), Kokkinowrachos et al. (1987), Pedersen and Junqi 

(1987), and Triantafyllou (1994). More information can be obtained from the 

reference list in this thesis. 

From the discussion in this sub-section, it is seen that the dynamic modelling of cable 

systems can be divided into two broad groups: 

• defining the cable elements primarily in physical terms, e.g. lumped mass and 

hinged rod models; or 

• defining the cable elements primarily in mathematical terms, e.g. continuous 

cable and finite element models. 
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1.6 Tow Cable I Fish Models 

Having reviewed the various cable models available, it is now appropriate to look at 

underwater tow models. Between the wars, a number of researchers investigated the 

towing of gliders and targets by aircraft, using static and quasi-static models. In 1936 

Thews and Landweber (Casarella and Parsons (1970)), investigated cable tensions in 

towing surface targets using Glauert's cable model, with the inclusion of a constant 

tangential hydrodynamic force for the first time. During World War II, Richtmyer in 

1941 and Reber in 1942 investigated the towing of minesweeping equipment using 

this analysis. In 1945 O'Hara included the effect of cable stretching on other cable 

parameters for an aircraft towed glider configuration. Whicker in 1957 and Eames in 

1967 developed two-dimensional steady state towing models, including the use of 

faired-section cables, with the latter paper presenting valuable experimental data and 

formulae for drag coefficients of such cables. 

The first dynamic cable model was by Phillip m 1949 for an airborne towing 

configuration. In 1957 Whicker indicated a solution for a two-dimensional dynamic 

towing model with a faired section cable. Strandhagen and Thomas in 1963 presented 

a three-dimensional underwater dynamic towing model based on the cable model of 

Walton and Polachek (1959), but failed to present a solution. The Boeing Company 

in 1966 modified this model and solved it using an analogue computer. In the same 

year Lagasse presented a two-dimensional model of a faired-section cable in a tethered 

towing system, with translation and rotational motion. 

Schram and Reyle (1968) modelled a three-dimensional dynamic model of a towed 

body, with inextensible cables having faired-sections. Although the model is 

dynamic, it neglects the added mass. The partial differential equations are developed 

and solved in a similar manner to that introduced by Reid (1968) and Patton (1972) 

i.e. by the method of characteristics. The modelling of the tow body is basic, with its 

centre of gravity assumed to coincide with the tow point, thus eliminating the effect of 

the three rotational degrees of freedom of the body on the motion of the cable. 

Ablow and Schechter (1983) modelled a three-dimensional dynamic towed cable in a 

slightly different manner to Schram and Reyle, by using an implicit finite difference 

numerical scheme with a Newton iteration method to solve the set of equations in 

matrix form. The cable is approximated by a sub-divided cable length. The model is 

claimed to be acceptable for a number of unsteady-state towed cable problems, with a 

fast and stable solution algonthm. As the model deals with free end cables (e.g. 

20 



arrays), it is unable in its current form to deal with towed bodies. Milinazzo et al. 

(1987) improved the model, especially the finite difference solution technique, 

(making it stable, faster, and more computationally efficient). 

Paul and Soler (1972) modelled a two-dimensional towed underwater cable I vehicle 

configuration using a technique that lies "in between" a quasi-static and a dynamic 

model. The surface vessel is assumed to move along a straight line, while the 

submerged vehicle is assumed to travel in a vertical plane through this line. The 

discretisation of the cable is achi~ved by divi.Oing the cable into a number of equal 

length straight line" inelastic segments, with their masses "lumped" at the junctions, 

i.e. a lumped mass model. The drag force on the cable is assumed to act only in a 

direction normal to the cable. Inertia forces are neglected as it is assumed that these 

forces are small in comparison to weight and drag forces when considering slow 

motions. 

The underwater vehicle is approximated as either a spherical or cylindrical clump, 

each giving drag forces in the two directions. Although the vehicle model is 

extremely rudimentary, it is able to incorporate a propulsion force to deal with 

vehicles having propulsive units. 

Equations are developed by considering the force balance at each node and 

considering the geometric and kinematic relationship. The solution technique consists 

of first obtaining a quasi-static solution using the lumped mass model, which also 

yields the angular velocities of the cable segments. The "dynamic" solution is carried 

out starting with the quasi-static model and then employing a Runge-Kutta method 

over the time steps. 

Sanders (1982) extended the modelling technique introduced by Paul and Soler (1972) 

to a three-dimensional towed cable system. This model also assumes that elasticity, 

added mass, and inertia effects are small and can be ignored, thus retaining only the 

weight and drag as external forces. The latter is considered in three-dimensions. The 

towed body considered is a long, slender neutrally buoyant body, i.e. a towed array, 

which is modelled in a similar manner to a cable segment. This restricts the model to 

towed arrays or similarly shaped bodies, thus reducing the versatility of the model. 

It is interesting to note that Sanders did encounter stability problems with a predictor­

corrector method, and a Runge-Kutta algorithm was successfully utilised with a 

sufficiently small time step. The requirement for the small time step is identified, but 

21 



the impression is that it was deduced by trial an error. Although an error analysis was 

carried out, details are not given in the paper. 

Ivers and Mudie (1973) developed a three-dimensional model for extremely long tow 

cable systems, which was claimed to be dynamic, but as in the previous model ignores 

inertia (and the tangential drag force). The drag coefficient was obtamed by 

minimising the root mean square error between the observed and calculated position 

of the towed fish. The towed fish model consisted of only the drag forces and its 

weight in water. The authors acknowledge that the model is a crude representation, 

but useful in simulating long tow lines using early ship-based computers. 

Miller (1963) modelled a towed underwater system using a finite element model that 

used linear and rotational displacements of the elements. The model consisted of a six 

degree of freedom dynamic fish model with a varying attachment point and 

hydrodynamic fin forces. Webster (1975) used a straight segment finite element 

technique to model a three-dimensional dynamic towed cable I fish system. The 

solution is via an implicit integration scheme to iterate towards the solution. The 

towed body described in the paper is a sphere towed from its centre of gravity. 

Delmer et al. (1983) used a "simplified finite element model" to dynamically simulate 

a towed cable suited for fishing purposes. The cable is modelled by coupled ordinary 

differential equations that describe the motion of discrete reference points along the 

cable. The computer model has four distinct types of reference points, that can be 

assemble to represent the cable. The elements that join the nodes are assumed to h:ive 

constant properties along their length, i.e. the "simplified finite element model". The 

equations are assembled into a matrix in a similar manner to the finite element 

method, and solved using an explicit integration scheme having flexible error control. 

Kato (1987) carried out a vibration analysis of an underwater towed system by 

modelling the cable as an inextensible continuous system, and the towed fish in six 

degrees of freedom connected to the cable via gimbals. The equations are solved by 

first linearising and then taking an eigenvalue problem approach. The computational 

results are analysed in conjunction with compatible experimental results. A lumped 

mass quasi-static model is also used to compute the equilibrium state of the model. 

Three-dimensional static and dynamic lumped mass tow models were developed by 

Koterayama et al. (1988), to investigate the motion of a depth controllable towed 

vehicle having six degrees of freedom, although the latter is simplified during the 
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modelling process. The required hydrodynamic coefficients for the simplified tow 

fish are obtained by scaled model experiments. The dynamic stability of the towed 

body is obtained by solving the equations of motions in frequency domain. 

Kamman et al. (1989) also modelled a towed underwater system using a lumped mass 

method, solving the equations under both static and dynamic conditions. The three­

dimensional towed body has six degrees of freedom with non-coinciding tow point 

and centre of gravity. The tension equations are linearised and used to obtain the 

acceleration terms, which are then used in numericaLintegration schemes to calculate 

the positions and velocities. No information is given on the integration technique and 

it is implied that no iteration is used in the solution. The paper also briefly discusses 

the use of the hinged rod cable model developed by Winget and Huston (1976) for 

towed systems, with a comparison of the results from the two models presented. The 

main draw back of the latter model is stated as the long execution time. 

Among the configurations modelled by Huang (1992) is a three-dimensional dynamic 

lumped mass towed model solved using an implicit integration scheme. However, the 

sub-sea unit, (i.e. the towed fish or equivalent), is modelled with only its three linear 

degrees of freedom. 

A three-dimensional dynamic hinged rod underwater tow model was developed by 

Chapman (1987) by dividing the cable into a number of rigid, non-extensible rods, 

with their mass uniformly distributed along the rod. Each rod is connected to the 

adjacent rods by frictionless ball joints that allows it to rotate in any direction, except 

spin along its axis. Equations of motion are then developed for each rod, which yield 

relationships between the forces and accelerations at the bottom of the rod to those at 

the top. Since the model does not support longitudinal wave propagation, it cannot 

represent the dynamic effects due to rapid cable top motion. 

The use of an iterative "shooting" method, working from the top to meet the dynamic 

constraints of the fish at the bottom, proved to be numerically unstable for a system 

represented by 5 rods or more due to the propagation of errors down the cable. In 

order to overcome this, a direct functional relationship using tensors was developed 

between the forces and accelerations at the top of each rod as well as for the tow fish. 

The tow fish is modelled in 6 degrees of freedom with a variable tow point. 

Henderson and Wright (1991) extended Chapman's model to deal with two-part tows 

similar to that given in Figure l.l(c). 
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Interestingly, quasi-static models are still used in the analysis of towed systems, 

depending on their application. For example, Hopkin et al. (1990) models a two­

dimensional two-part tow (similar to Figure 1.l(c)), using a quasi-static cable model 

coupled to a dynamic tow fish model, in order to study the controlled behaviour of the 

tow fish. However, by and large such models are reserved for preliminary work and 

as a starting configuration for dynamic models. 

It was decided early in the programme to use a time domain three-dimensional 

dynamic simulation for the following reasons: 

• the errors encountered in quasi-static models were unacceptably high; and 

• frequency domam models did not allow easy and accurate representation of non­

linearities envisaged in tow cable I fish modelling. 

The popular cable modelling methods and the respective solution procedures are 

described in Chapter 2. The selection of the lumped mass method to use in the current 

problem is also justified in that chapter. 

1.7 Solution Techniques 

In engineering, the use of numerical techniques is widespread. The integration of 

ordinary differential equations can be classified as implicit or explicit. If during the 

integration, the values are obtained only from known values, the integration is said to 

be explicit. Thus, the value at a given step depends only upon the values up to that 

step. The most popular explicit integration scheme used in engineering is the Central 

Difference (CD) method, with Walton and Polachek (1959) probably being the first to 

use this explicit finite difference integration technique in the solution of cable 

systems. 

However, if the values are obtained from those including the ones being calculated, 

then the integration is said to be implicit. In this case, the values at a given step 

depends upon the values up to and inclusive of that step. Therefore, these generally 

require an iteration process in the solution technique. A number of implicit schemes 

are used in engineering, including the Newmark, Houbolt, and Wilson-8 methods, 

(see Bathe (1982)). 
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The integration schemes for ordinary differential equations can be further divided into 

a number of groups depending on the number of steps and stages used in the scheme. 

In cable models the common algorithms used are multiple evaluation, single-step, and 

multi-step schemes. The first group reduces the error by calculating the values at a 

number of intermediate positions within the given step. An example is the Runge­

Kutta method, used by Winget and Huston (1976), Sanders (1982), and Ractliffe 

(1984), with the second author dealing with underwater towed systems. 

The single-step method uses simple low-order formulae based on a truncated Taylor 

series, (e.g. an Euler type integrator). Only one function is evaluated at each step, 

resulting in low accuracy. However, the accuracy can be improved, if the derivatives 

can be explicitly calculated. The hinged rod cable model of Chapman (1987) and the 

lumped mass model of Huang and Vassalos (1995) use such explicit methods in order 

to reduce computational effort by eliminating the iteration process. 

The multi-step method uses a number of values obtained in previous iteration steps to 

recalculate their values. This allows their values to be improved through an iterative 

procedure, until sufficient convergence is achieved. Increasing the number of 

previous values in the iteration process enables schemes involving higher order terms 

to be incorporated, thus increasing accuracy. Common methods consist of predictor­

corrector schemes, where an explicit formulae gives a prediction of the required 

solution of an implicit corrector. This type of scheme is extremely popular with cable 

model solution techniques, and is used in this project. 

In quasi-static models, an iteration process is usually required to calculate the 

equilibrium configuration, as the equations are usually implicit. One method used is a 

Newton iteration process as described in Wilson (1975). However, as shown by 

Thomas and Heam (1994 ), the procedure can be tedious and difficult to converge. 

Wilson (1975), Berteaux (1976), and Leonard and Tuah (1986) describe some 

techniques that can be employed to force a convergence in such situations. 

The dynamic equations describing the motion of the cable and the fish are second 

order coupled non-linear partial differential equations, which are converted to ordinary 

differential equations. These are solved using a numerical integration scheme that 

gives the change in configuration of the cable I fish system with time. Since the 

equations are non-linear, an iteration process is required at each time step. Thus, the 

solution obtained from the numerical integration scheme is checked for accuracy with 

the aid of a constraint relationship. This relationship will enable the results to be 
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improved through the iteration process, until an acceptable level of accuracy is 

achieved. In addition to being accurate, the numerical technique must be stable. 

The selection of the numerical solution procedure depends on the balance between 

accuracy I stability of the schemes versus the computational effort required. In 

dynamic cable I body models, modes of motion occur within the system and oscillate 

in scales of milliseconds. The ratio of the fastest to the slowest normal mode of 

motion is referred to as the "stiffness ratio". A system having a large ratio (usually 

above a ratio of 10000), is deemed to be stiff. 

Although these high frequency modes do not greatly influence the motion of the 

system, they affect the stability of the numerical scheme used in the solution process. 

Therefore, the step size used in explicit integration solution schemes should be 

sufficiently small to follow these rapid variations. Implicit integration schemes are 

usually stable for all time steps. However, the time step is limited due to two 

conditions, i.e. the loss of accuracy due to the size of the time step and the instability 

due to the propagation of errors introduced by the iteration scheme required for non­

linear systems. 

As stated previously, Walton and Polachek (1959) are probably the first to use the 

explicit finite difference integration technique, i.e. the central difference technique, in 

the solution of cable systems. Since the equations of motion are non-linear, an 

explicit solution is impractical and an iterative process based on the Newton-Raphson 

method is utilised. Since the central difference algorithm requires special starting 

procedures, (Bathe (1982), a Taylor series expansion is used to obtain the initial 

tentative tension values to start the iteration. These values are then corrected through 

a modified Newton-Raphson iteration to conform to the segment length constraint 

equation. However, as shown later in Chapter 5, the special starting procedure can be 

omitted from the solution procedure, and a quasi-static or an approximate 

configuration used as an initial configuration to start the process, (Thomas (1993)). 

Walton and Polachek also carry out a stability analysis of the equations and solution 

technique by employing the von Neumann (Fourier) stability method, described in 

Chapter 5. This provides a limiting time step to be used in the solution process in line 

with the explicit integration scheme. Although the limiting criteria are based on the 

equations being linear, they provides a good "guide" in choosing an appropriate time 

step. This will be discussed later in Chapter 5. 
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This predictor-corrector scheme is arguably the most popular method with solution 

techniques of discrete element cable models. For lumped mass models, finite 

difference schemes are used to approximate the cable equations, that are then solved 

by an appropriate procedure. Typical examples are given by Nakajima et al. (1982), 

van den Boom et al. (1987), Peuker et al. (1987), and Huang (1994). 

In the finite element method, a number of the integration techniques are utilised to 

solve the matrix-based assembled equations of motion. For example, Johansson 

(1976) decoupled the force terms over a short period of time and used a trail and error 

process to obtain the final state at each time interval. Webster (1975) used an implicit 

integration scheme to iterate towards the solution, where the time step length was 

variable. Lindahl and Sjoberg (1983) used an explicit numerical integration scheme to 

solve the equations without iteration. Haritos and He (1989) used an implicit 

integration scheme to reduce the differential equations to a set of non-linear algebraic 

equations, that was solved using a modified Newton-Raphson iteration method. 

McNamara and O'Brien (1986) used an implicit multi-step integration scheme, due to 

high intrinsic numerical damping and allowed large time increments. However, they 

later replaced this with an one-step scheme that allowed varying time steps. The latter 

was determined using a parameter referred to as the "current period" (Chaudhuri et al. 

(1987)). The two papers by Park and Underwood in 1980 present detailed information 

on the variable step central difference method, while Bergan and Mollestad (1985) 

present the method used by McNamara and O'Brien. 

Although Walton and Polachek (1959) carried out a numerical stability analysis for 

their mathematical model, very little work has been carried out in analysing the 

stability and accuracy requirements for the numerical techniques utilised for 

underwater cable models. Some researchers (e.g. Peyrot (1980), Ractliffe (1984), 

Peuker et al. (1987)) have suggested limits for the time step, however, do not present 

analytical explanations for these limits. Huang (1992) carried out a stability analysis 

on the implicit scheme used in his model, while Thomas (1993) possibly offers the 

best investigation into the numerical solution of underwater cable systems by looking 

at one explicit and three implicit integration schemes. However, this area requires 

more investigation in order to fully understand the limitations imposed on the 

numerical schemes used in context of underwater catenary systems. 

Considering numerical techniques in general, Bathe (1982) provides "engineers" with 

a brief but concise account of the stability and accuracy requirements of the popular 
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numerical schemes. Wood (1990) offers a more mathematical treatise, which is aimed 

more at mathematicians, rather than engineers. Other texts such as Ames (1969) and 

Gear (1971), also provide good analyses of such numerical methods. In addition, a 

number of publications offer information about, and analysis of these techniques. 

One of the earliest analyses of numerical solution techniques is given O'Brien et al. 

(1950-51), which explains the von-Neumann (Fourier) stability method applied to the 

numerical solution of differential equations. Lax and Richtmyer (1956) expand on 

this work and looks at the requirement for stability for a number of finite difference 

equations. 

Belytschko et al. (1975) investigated the spurious oscillation and stability of explicit 

integration schemes. It is claimed that in general, wave propagation problems are best 

solved by explicit techniques, while implicit techniques are best suited for inertial 

problems. The paper also develops limiting time steps to ensure stability with explicit 

integration schemes. 

Hilber et al. 0977) developed an one-step unconditionally stable algorithm, which is 

compared with other popular integration methods. The development and investigation 

is detailed in Hilber (1976). Zienkiewicz (1977) provides the derivation of popular 

numerical schemes by applying a finite element weighted residual approach to the 

general linear equations of motion, using shape function descriptions of the 

displacements. 

In Belytschko and Schoeberle (1975) and Hughes (1977), non-linear methods m 

structures are investigated for stability using an energy stability technique, i.e. the 

boundedness of the energy in the discrete system relative to its initial energy is 

postulated to imply stability. 

1.8 Underwater Vehicle Models 

It is not intended in this study to investigate the modelling of underwater vehicles in 

detail, as that is left respectfully to the naval architect. However, the underwater 

towed body (fish) model should be sufficiently detailed to predict accurately its 

dynamic motion along the three linear and three rotational degrees of freedom, i.e. six 

degrees of freedom. In addition, the fish model has to be dynamically interfaced with 
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the cable model at the appropriate location and lend itself to the solution procedure 

adapted for it. 

In sub-section 1.5, a number of towed cable I fish models were reviewed, which 

included brief descriptions of the towed underwater vehicles. Some were rudimentary 

fish models, consisting of two or three-dimensional lumped mass models, with a 

coinciding tow point and centre of gravity, (e.g. Schram and Reyle (1968), Paul and 

Soler (1972), Ivers and Mudie (1973), Webster (1975), and Huang (1992)). A number 

of models consisted of only a towed cable mod~l without a sub-sea unit, while others 

dealt onl;y with towed arrays, (e.g. Sanders (1982), Ablow and Schechter (1983), 

Delmer et al. (1983), and Milinazzo et al. (1987)). 

Hopkin et al. (1990) presents a two-dimensional dynamic model with fins, while 

models such as Miller (1963), Kato (1987), Chapman (1987), Koterayama et al. 

(1988), and Kamman et al. (1989) offer three-dimensional dynamic models of the tow 

fish, with 6 degrees of freedom, a variable tow point, and hydrodynamic fins. In 

addition, a number of authors have presented mathematical models for underwater 

vehicles, e.g. Abkowitz (1969), Humphreys (1976), Bhattacharyya (1978), and 

Papoulias (1992). 

The modelling of underwater vehicles encompasses three areas, i.e. kinematics, 

dynamics, and hydrodynamics. The kinematics deals with the representation of the 

orientation and rotational rates of the fish. The dynamics develop the relationships 

between the forces I moments on the body to its motion. The hydrodynamic concepts 

produce the fluid induced forces and moments acting on the body at the given fish 

orientation and rotational rates. 

The equation of motion will consist of coefficients that can be broadly divided into 

inertia (i.e. mass, moment of inertia, added mass and added moment of inertia), 

hydrodynamic (drag, lift and side force), gravity I buoyancy, and external forces (e.g. 

tow cable tension). The added mass terms will introduce coupling terms in the 

equations describing the motion of the body. This effect is compounded if the tow 

point(s) on the fish are located at points other than its centre of gravity. The 

prediction of the added mass I inertia coefficients is carried out by analytical (Clauss 

et al. (1992), Humphreys and Watkinson, (1978) and Imlay (1961)) or experimental 

procedures. 
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The forces and moments on the underwater body can be expressed as a function of its 

motion and orientation parameters, (i.e. displacements and velocities). Expressions 

for the forces and moments of an underwater body in six degrees of freedom are given 

in Gertler and Hagen (1967). The main hydrodynamic coefficients are the drag, lift, 

and side force coefficients in the linear and rotary directions. 

Very little information is available to predict these coefficients using analytical 

methods. Some examples of such analytical predictions are given in Fidler (1978) and 

selected publications form the US Naval Sea Systems Command Hydromechanics 

Committee (SEAHAC). The preferred method is to obtain these Coefficients using 

experimental data as explained in Abkowitz (1969) and Wingham and Henderson 

(1988). 

1.9 Experimental Investigation and Validation 

The experimental stage of this work was used for two purposes: 

• to validate the computer model; and 

• to further investigate the two-part tow. 

The tests were was carried out in two stages: 

• scaled model trials in the circulating water channel at the Australian Maritime 

College; and 

• full scale trials using RAN and DSTO side scan sonar vehicles. 

The scaled model experimental stage of the two-part tow consisted of a number of tow 

configurations, obtained by varying the parameters of the configuration.. The tow was 

excited by an elliptical exciter located at the water surface, ensuring that the cable 

model remained submerged throughout the run. The tension values at the surface tow 

point was recorded via a load cell. The motion of the towed fish was obtained on 

video and digitised using reference points on the towed body. By locating the video 

camera at different positions, it was possible to record the surge, sway, heave, pitch, 

and yaw motions. 
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The drag and lift coefficients for the scaled models were obtained experimentally 

using a horizontal planar-motion-mechanism (HPMM), fitted with a six degree of 

freedom load cell and located at the circulating water channel. The coefficients and 

the testing procedure are described in Chapters 2 and 6 respectively. 

The full scale trials consisted of towing the actual side scan sonar through a number of 

runs under varying conditions. The sonar gear in the sonar vehicle was replaced with 

accelerometers to record its motion, which was then fed back to the surface via the 

tow cable. The surface tow point cable tension was also recorded via a load cell. A 

number of experiments were carried out in Jervis Bay and Port Phillp Bay. 

Chapter 6 and Appendix A describe the experiments in detail and evaluates the results 

obtained. 
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CHAPTER2 

MODELLING TECHNIQUES 

2.1 Introduction 

In this chapter, the various modelli~g techniques available to model underwater towed 

systems are investigated. The modelling requirements for such systems can be 

divided into two distinct areas: 

• cable model; and 

• towed body (fish) model. 

The various three-dimensional' dynamic models available to predict the behaviour of 

underwater cable systems are investigated in sub-section 2.2, thus enabling the 

selection of the most suitable cable model to simulate the behaviour of two-part and 

multi-tow configurations. The selected cable model should be sufficiently flexible to 

deal with cable junctions and to integrate the towed fish model. 

Sub-section 2.4 deals with various methods available for the modelling of six degrees 

of freedom dynamic underwater- bodies, (i.e. the towed fish). The fish model should 

be compatible with the selected cable model, enabling it to be incorporated into the 

cable model solution technique. Thus, the two models should allow for coupling of 

motions and forces between them. 

The behaviour of underwater cables and bodies are influenced by the hydrodynamic 

loading on them from the surrounding fluid. This loading can be divided into two 

broad groups: 

• hydrodynamic (drag, lift, side) forces; and 

• inertia forces (mass, moment of inertia, added mass, and added moment of 

inertia). 
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In sub-section 2.3, the various methods available to predict the hydrodynamic loading 

on underwater cables are discussed. The effects of rough surfaces and vortex 

shedding are discussed and their influence on the relevant coefficients are identified. 

Sub-section 2.5 deals with the hydrodynamic coefficients of underwater bodies. 

2.2 Dynamic Cable Models 

There are a number of methods used to model underwater cables dynamically. A brief 

description of some of the more popular methods is given below. 

2.2.1 The Method of Characteristics 

The method of characteristics is commonly used for the solution of hyperbolic partial 

differential equations. It employs a set of characteristic curves along which the total 

differential equations are valid._ A brief explanation of the method is given below, 

with a detailed description obtainable from Patton (1972) and Schram and Reyle 

(1968), which explain the modelling and solution technique for mooring and towed 

cable systems, respectively. 

Figures 2.1 and 2.2 shows the Cartesian coordinate system and the tensile force for a 

cable segment (element) of length 8s. By resolving the tension into the Cartesian 

coordinate directions, X, Y, and Z, the equations of motion are given by: 

a1 a 
µc ---f = -(T Sin <j> Cos ljl) + FY at as 

where 

(2. la) 

(2.lb) 

(2.lc) 

Fx,y,z : hydrodynamic, mass, and buoyancy forces per unit stretched length of cable 

in the X, Y, and Z directions 

s : the arc length of any unstretched point along the cable 

T : cable tension 
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µc : cable mass per unit length 

cj> : horizontal angle of the cable with the X axis 

'JI : vertical angle of the cable with the X-Y plane 

x, y, z : displacement along the X, Y, and Z directions 

z 

Cable 

y 

Cartesian Coordinates of Cable 

Figure 2.1 

z 

T+5T 

Continuous Cable Element 

Figure 2.2 
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Also considering the geometric relationships, we have, 

ax - = (l+E)Cos<j>Cos\jf 
as 

ay = (l+E)Sin <j>Cos \jf 
as 

az =(l+E)Sin\jf 
as 

where E is the local strain in a cable element when stretched. 

(2.2a) 

(2.2b) 

(2.2c) 

From Figures 2.1 and 2.2, the transformation matrix [A] between the Cartesian or 

global coordinate system (X, Y, Z) and the local coordinate system (X', Y', Z') along 

the cable is given by, 

l 
Cos<j> Cos\jf Sin<j> Cos\jf 

[A]= -Sin<j> Cos<j> 

- Cos<j>Sin\jf - Sin<j>Sinljf 

(2.3) 

It can be easily shown that the inverse of the above transformation matrix is equal to 

the transpose of the matrix, i.e., 

(2.4) 

Thus, the hydrodynamic forces (Fx, Fy, Fz) and the cable velocities (Vx, Vy, Vz) in the 

Cartesian coordinates, can be transformed to the respective forces CFx·, Fy', Fz') and 

velocities (V x', Vy', V z') in the directions tangential and normal to the cable as, 

(2.5) 

(2.6) 

In addition to the above equations, the relationship between the tension and strain in 

the cable is given by , 
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aT aT ac. 
at-~·-at 

Assuming a linear variation of.tension, equation (2. 7) reduces to, 

oT 
T=~.E 

(2.7) 

(2.8) 

As shown in Patton (1972), by using equations (2.5), (2.6), and (2.8) in equations (2.1) 

and (2.2), the following set of equations describing the motion of the cable in the 

directions tangential and normal to the cable are obtained, 

au au 
-+Au-+Bu=O at =as 

where 

U : vector consisting of [Vx., Vy" Vz" E, cp, \j/]T 

Au : 6x6 matrix, (see Chapter 5 for the coefficients) 

Bu : 6xl matrix, (see Chapter 5 for the coefficients) 

For the six equations in (2.9), the determinant is, 

(2.9) 

(2.10) 

where ! is a unity matrix and Aw represents the eigenvalues. The six characteristics 

are then derived as, 

-+ Aw12 - -
' 

A -+ 1 c. dT 
w3,4 - - µc . (1 +c).de 

A -+ 1 c. dT 
w5,6 - - µc . (1 +E).de 

(2.lla) 

(2.llb) 

(2.llc) 
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The characteristic roots are real, which indicates that equations (2.9) are hyperbolic 

partial differential equations. The characteristic values obtained in (2.lla) represent 

the speeds at which the tensile disturbance (wave) travels along the line, with the 

positive travelling down the line and the negative up the line. The characteristic 

values obtained in (2.11 b) and (2. llc) represent the speeds at which the transverse 

disturbance (wave) travels along the line, again with the positive travelling down the 

line and the negative up the line. These are dealt at depth in Chapter 5. 

Now by manipulating the six equations given in (2.9), the equivalent ordinary 

differential equations are developed for the motion of the disturbance along the cable. 

Thus, as shown in Patton (1972) we get, 

dVY. - Gu y'w .d\lf - Gu y'<I> .d~ - Huy' .dt = 0 

(2.12) 

where 

Gu,·,=~ 

Gux·w = Vy· 

Gux'<I> = V z'. Cos \jf 

= (l + E) 1 1 dT _ V 
µc (l+E) de x' 

Guy'<!> = Vz·. Sin \jf 

Huy· 
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1 1 dT . 
(l+E)Cos\jf ---- -(Vx.Cos\jf-V .Sm\jf) 

µc (1 + E) dE y 

The characteristic equations representing the motions along the cable are given by, 

(2.13a) 

where cp = cp1 , cp 2 are the characteristic lines associated with Aw1, Aw2, (i.e. the tensile 

disturbance down and up the cable), and the second term is - or+ respectively. 

dVY. G d\jf G d<j> -Huy'·~= 0 --± uy·w·-- uy'cJ>·· 
dcp dcp dcp dcp 

(2.13b) 

where cp = cp1 , cp 2 are the char;;icteristic lines associated with Aw3, Aw4, (i.e. the 

transverse disturbance in the X' -Y' plane, down and up the cable), and the second 

term is - or+ respectively. 

dVz. d<j> dt 
--+Gu --Hu --0 - z'cJ>" z'• -

dcp dcp dcp 
(2.13c) 

where cp = cp1 , cp 2 are the characteristic lines associated with Aws, Aw6, (i.e. the 

transverse disturbance in the X' -Z' plane, down and up the cable), and the second 

term is - or+ respectively. 

By using the above characteristic equations, the six partial differential equations have 

been transformed into six ordinary differential equations. These can be solved using a 

numerical procedure as described below. 

The cable is divided into a number of nodal points along its length. The resulting 

computational mesh or rectangular grid in the time-space (t-s) plane is shown in 

Figure 2.3. The initial values for the system is obtained from a quasi-static model. 

Assuming the values of the six independent parameters are known at the nodal points 

on the "t" time line, the solution is advance to the "t+l" time line. 
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Time (t) 

ds 
... 

t+l 

t-1 

! ~· 

i-1 

.... 

B 

c 

Pl P2 

t-s Solution Mesh 

Figure 2.3 

I+l 

R 

D 

Q2 Ql 

E F 

Dist. Along Cable (s) 

Note: A computation mesh is a grid with the variables of the partial differential 

equations represented along its axes. In the case of Figure 2.3, the variables are the 

spatial coordmates "s" along the cable on the X axis, and the time "t" on the Y axis. 

The grid spacing is the intervals used in the numerical scheme for each variable, i.e. 

~s and ~t respectively. The mesh points represents the vanous time versus length 

points of the scheme. 

Using the six parameters at B, A, and D, (see Figure 2.3), it is possible to linearly 

interpolate to find the values at points P1, P2, Q1, and Q2. Now using the characteristic 

curves from equations (2.13), the solution can be advanced to point R. Writing the 

characteristic equations in difference notation gives, 

Vx'(R) - Vx'(Pl) -Qux'e(A)"(cR -Ep1)-Qux'1j1(A)"(\j/R -\Jfp1) 

- Gux'<l>(A)"(<j>R -<j>p1)-Hux'(A)"dt = 0 

vx'(R) - vx'(Ql) + Gux'E(A)"(cR - CQl)-Gux'ljl(A)"(\j/R -wQI) 

- Gux'<l>(A)"(<j>R - <j>Q1)-Hux'(A)"dt = 0 
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(2.14) 

From the above difference equations, it is possible to calculate the parameters at R, 

i.e., 

(2.15) 

and equation (2.8) is used to calculate the tension T of the cable. 

Thus, the numerical procedure can be summarised as: 

Step 1: Compute all the coefficients for the six simultaneous equations (2.14) of all 

nodes using the values obtained for the previous two time steps. 

Step 2: Solve the simultaneous equations to obtain the parameters for point R. 

Step 3: Go back to steps 1 and 2 until sufficient convergence is achieved. 

Step 4: Go to the next node and repeat steps 1 to 3 until end of cable. 

Step 5: Go to the next time step and repeat steps 1to4 until end of simulation. 

In this technique, the discontinuity due to the junction is difficult to model and would 

require complex calculation processes to solve. The modelling of multiple towed 

bodies would require substantial modification resulting in a complex and cumbersome 

solution procedure. In addition, the model fails under slack cable conditions, since the 

equations are ultra-hyperbolic and has an infinite.number of equally valid solutions. 

Therefore, this technique was not pursued further for the use of the defined two-part 

and multi-tow systems. 

2.2.2 Finite Difference Method 

The partial differential equations obtained in (2.9) have been solved by various 

authors using a number of finite difference techniques. These methods are explained 

in detail in Ablow and Schechter (1983), Milinazzo et al. (1987), and Brook (1990), 
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with the first two dealing with underwater towed systems. A brief explanation of the 

method outlined in Brook (1990) is given below. 

In this method the cable is divided into a number of segments (say n), and equations 

describing the motion of each of these segments are developed as explained in sub­

section 2.2.1. Then a finite difference technique is used to force a solution to the 

known boundary conditions. 

In sub-section 2.2.1, the set of partial differential equations explaining the motion of 

the cable was given by equation (2.9). Therefore, for each node along the cable there 

will be a set of six equations. 

In order to control the numerical stability of the solution, visco-elastic damping (K) is 

included in equation (2.8) as shown in Brook (1990) to give, 

aT ( ac) u.-+T=AE E+K.-
at at 

(2.16) 

where 

A : cross sectional area of cable 

E : modulus of elasticity 

K : visco-elastic damping coefficient 

u : coefficient to allow for hysteresis 

Using equations (2.9) and equation (2.16), a system of coupled non-linear first order 

partial differential equations are obtained, which are presented in matrix form as, 

au au 
-+Au-+Bu=O 
at =as 

where 

U : vector consisting of [V x" Vy., V z" T, E, <j>, 'IJJi 
Au : 7x7 matrix 

Bu : 7xl matrix 
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A ·finite difference technique is now developed to solve the above set of equations 

subject to the known boundary conditions. The method shown here is based on a 

Taylor series expansion and solved iteratively using Newton's method. 

Since the matrices in equation (2.17) are dependent on time (t) and space (s), they can 

be defined as, 

(2.18a) 

(2.18b) 

(2.18c) 

where Si and tt denote a position and time give by i~s and t~t respectively. ~s and ~t 

are the space and time increments. 

Therefore, the matrix equation (2.17) can be expressed as a finite difference 

approximation by, 

aut+l aut aut+l aut 
__ 1_+ __ 1 +Aut+1 __ 1_+Aut __ 1 +But+1 +But =0 

at at =I as =I as =I =I 

(2.19) 

Now using Taylor's theorem to expand u: with respect to time "t", 

U t+l _ ut A au: ~t 2 
a

2
u: ocA 3 ) - + L.lt-- + ---+ Llt 1 ' at 2 at2 

aut A 2 a2ut 
U t-J_ut A I L.lt I Q(A 3) - - L.it-- + ---+ Llt 

' 1 at 2 at 2 
(2.20) 

Rearranging the above equations to express the partial derivatives with respect to 

time, substituting them into equation (2.19), and neglecting the higher order terms 

gives, 

U t+l ut ~t (A t+l au:+! A t au,t B t+l B tJ- 0 - +- u --+ u --+ u + u -
I I 2 =I as =I as =I =I 

(2.21) 

Now by using Taylor's theorem to expand u: with respect to "s", 
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::1u1 A 2 ::12u1 

U t+l -ut A O 1 US O 1 Q(A 3) . - + uS-- + ----- + uS 
I I as 2 as 2 

::1u1 A 2 ::12u1 

U t-1 -ut A 0 i uS 0 I Q(A 3) - - uS-- +-----+ uS 
I I as 2 as 2 

(2.22) 

The spartial derivatives can be approximated by rearranging the above equations. 

Substituting these into equation (2.21) gives the finite difference scheme as, 

G(U) = u1+1 +~Au t+i (u1+1 + u1+1) + lit Bu 1+1 - ui 
I 41is=I !+I I 2 =I I 

lit t(-t -t) lit t +--Au U,+1 + U, +-Bu =0 
41is-' 2 - 1 

(2.23) 

The terms in equation (2.23) include the boundary conditions, (e.g. the values-at the 
cable ends). In addition, the parameters at time "t", i.e. U

1

1
, are known from the 

previous time step. For the first iteration this is taken from the quasi-static 

configuration. 

The equations are solved iteratively using Newton's method, i.e., 

(2.24) 

where 

U : vector consisting of [Vx., Vy., Vz., T, E, <j>, \Jf]T 

liU : correction value of vector U 

k : iteration index 

The correction value liU can be obtained by solving the finite difference linear 

system. Thus, 

ocu) + ao(u)_1iu = o 
au 

(2.25) 

This produces a system of linear equations in the form of a block tri-diagonal system. 

The solution can be achieved by alternate column and row pivoting strategy or any 

other compatible technique. 
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Note: the term ao(u) is the Jacobian of the system of equations in (2.25), and can be 
au 

expressed as, 

ao(u) 

au 

A =0,1 
A =1,0 

A =0,2 
A =l,l A =1,2 

A A A 
=m,m-1 =m,m =m,m+l (2.26) 

A A A =n-l,n-2 =n-1,n-l =n-1,n 
A A 
=n.n-1 =n,n 

where each term in the matrix is a block consisting of the partial differential of G(u) 

with respect to each of the relevant parameters. 

For example, A is a 7x7 block and will be in the form, =1,2 

aocuul) aocuul) aocuul) aocuul) 
etc etc 

aocuul) 

auu2 auv2 auw2 aun aulj/2 
aocuvl) aocuvl) aocuvl) 

auu2 auv2 auw2 
aocuwl) 

etc 
auu2 A (2.27) =1,2 aG(Un) 

etc 
auu2 
etc etc 

etc etc 
aG(Ulj/1) aG(Ulj/1) 

auu2 aulj/2 

However, a large number of the terms will be zero. Thus, although the number of 

equations are (7xn-1), the calculation and computer memory I time required will be 

lower. Once the angles of the cable segments are known, their positions can be 

calculated from equations (2.2). 

The numerical procedure can be summarised as: 
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Step 1: Compute G(U) from equation (2.23) and the coefficients for the system of 

block matrices (2.26), for all nodes using the values obtained for the previous 

time step. 

Step 2: Solve the system of equations (2.25) to give the correction values for the 

required parameters. 

Step 3: Update the parameters, (using equation (2.24)). 

Step 4: Go back to steps 1 to 3 until sufficient convergence is achieved. 

Step 5: Go to the next time step and repeat steps 1 to 4 until end of simulation. 

As the mathematical modelling follows the explanation in sub-section 2.2.1, the 

mathematical representation of the discontinuity due to the cable junction and the 

inclusion of parallel multi-tows will significantly increase the complexity. As seen 

from equations (2.26) and (2.27), the number of equations required to be solved is 

large, especially if a large number of cable segments are used. Thus, the inclusion of 

cable junctions or multiple tow configurations will substantially increase the number 

of equations and the complexity involved in the solution. Therefore, this technique 

was not pursued further for the use of the defined two-part and multi-tow systems. 

2.2.3 Hinged Rod Method 

Chapmen (1987) employed a hinged rod method to solve underwater towed body 

systems. A similar method was previously proposed by Winget and Huston (1976), 

with differences, especially in the solution technique, where the multiple evaluation 

Runge-Kutta scheme is utilised. In this sub-section a brief description of the former 

model, including its development and solution technique is given. For a detailed 

explanation the reader is referred to Chapmen (1987). 

The hinged rod cable model is developed by dividing the cable· into a number of rigid, 

non-extensible rods, with their mass uniformly distributed along the rod. Each rod is 

connected to the adjacent rods by frictionless ball joints that allows it to rotate in any 

direction, except spin along its axis. Figure 2.4 shows an element of a hinged rod 

cable, for which equations of motion are then developed. 
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Vectors and tensor are used in the equations to simplify their manipulation, i.e. they 

will be devoid of coordinates. The resulting final equations can then be solved using 

the components of the vectors. 

End(2) 

End(l) 

p(2) 
I 

Hinged Rod Segment 

Figure 2.4 

Applying Newton's equation of motion to the centre of gravity of rod element "i" in 

the linear and angular directions (see Figure.2.4), gives, 

µc 1 V = pCl) + p<2) + F 

where 

F : force acting on the rod element 

M : moment acting on rod element 

~ : mass per unit length of the cable 

: length of the rod element 

(2.28) 

(2.29) 
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V : linear velocity vector of rod element 

ffi : angular velocity vector of rod element 
,.. 
t : unit vector in rod direction from bottom to top 

and the superscripts are 

(1) : top of rod 

(2) : bottom of rod 

Note: the subscript "i" has been dropped for the sake of clarity. From Newton's third 

law and kinematic considerations, it is seen that, 

poi = _ p<2i 
1 1-l 

(2.30) 

y<'l =V<2> 
1 1-l (2.31) 

(2.32) 

1 00 X t = V (I) - V (2) + 1 00 2 t (2.33) 

Note: l~(l) I is the tension of the ith rod. 

Now using equations (2.30) to (2.33), to manipulate equations (2.28) and (2.29), it is 

possible to eliminate V and ffi , and to express F <2l and V <2l as functions of p(ll and 

\r<1
l. Thus, 

v <2i = { -2(1 - t t) + tt}. v (I) + ~ (1- tt). ( _!_ F + p(ll + ! M x t) + 1 (I) t 
= m = 2 1 

(2.34) 

(2.35) 

where m = µc 1. 

The forces and accelerations at the bottom of the rod are related to those at the top via 

equations (2.34) and (2.35). Therefore, by using equations (2.30) and (2.31), it is 

possible to obtain the forces and accelerations at the top of the next rod, (i.e. rod i+l). 
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At the bottom of the cable, the towed fish is modelled as a lumped mass to give, 

F _pc2> =m yc2> 
n+l n f n (2.36) 

where "n" is the number of rod elements used in the modelling and mf is the mass of 

the fish. 

However, as shown in Chapmen (1987), the use of an iterative "shooting" method, 

working from the top to meet the dynamic constraints of the fish at the bottom, proved 

to be numerically unstable for a system represented by 5 rods or more. In this method, 
a value for the force at the top (1;0>) is chosen and the forces and accelerations of all 

the rods are calculated using equations (2.34) and (2.35). The acceleration of the last 
link, thus obtained should satisfy equation (2.36). If not, the value for l1_C1

> is 

modified and the procedure repeated until equation (2.36) is satisfied. 

The resulting instability is explained as being due to the solution method not being 

correctly relating to the physics of the rod system. There is only one force at the top 

that will induce a given acceleration at the fish, and the use of arbitrary values create 

large errors that propagate down the cable. 

In order to overcome this, a direct functional relationship b~tween the forces and 

accelerations at the top of each" rod and the tow fish was developed. This was 

achieved by a "tensor" to connect the forces and accelerations. This concept can be 

understood by considering the application of an additional force to a joint of the rod 

element. The resulting acceleration of the rod will not necessarily be in a direction 

parallel to that force. 

This relationship can be represented for element "i" as, 

F,Cl) = m . V.(1) + f 
I =I I I 

(2.37) 

"where 

f
1 

: "residual force" vector representing the force required to prevent the 

acceleration of the top of the rod 
m : second rank mass tensor describing the anisotropic mass properties of each rod 
=i 

and from equation (2.36) for the fish, the element at the bottom of the cable gives, 
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m =ml =n+l f = (2.38a) 

f n+l = Fn+l (2.38b) 

which are known. 

Using equations (2.30), (2.31), (2.34), (2.35), and (2.37), it is possible to develop a 
- -

recursive relationship to express m1 and f1 in terms of m1+1 and fi+1. Thus, 

- -I 1 - M x t - 1 -2 A 1 - M x t 
f.= A .{-F----f --mlffi [(1 + r )1-r P ].t}--F--- (2.40) 1 2 1 l+l 2 = 1 = 1 =1+! 2 1 

where 

A -i = 3{ (1 + r1) ! - r1 E1+1}. (! - t t) - ! 

2m. 
p = 1 - _____..!... 
=I 

mi+1 r =--
1 

m1 

From equations (2.38) the values for m
1 

and f
1 

are known for i = n, (i.e. the tow fish). 

Therefore, it is possible to start from the bottom, calculate m
1 

and f1 for all rods, and 

store them. Since the acceleration at the top ( V/1l) is known as a boundary condition, 

using equation (2.37) and (2.31) alternately down the cable will yield the force J;0 l 

for each rod. At the same time it is possible to calculate the angular acceleration ( c0
1

) 

of each rod and the linear acceleration ( v1<
2l) at the bottom of each rod. These two 

values are obtained by manipulating equations (2.33) and (2.34) to give, 

• A AA ~(I) 2 - 1 - M x t 
lffixt=3(1-tt).{P .V --(f

1 
+-F+--)} 

=l m 2 1 
(2.41) 

v<2l =v<1l -lc02 t-lc0xt (2.42) 
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If the angular accelerations ( w) calculated above are integrated with respect to time, 

the angular velocities (co) and the new orientation of the rods (1) are obtained. An 

Euler type integrator, modified for second order equations is the integration method 

used in Chapmen (1987). This is briefly described below. 

A Taylor series expansion about time "t" yields, 

. 1 .. 1 ... 
t(t + ~t) = t(t) + ~t.t(t) +-~t2 .i(t) +-~t3 • t (t + a~t) + ..... 

2 6 

. . .. 1 ... 
t(t + ~t) = t(t) + ~t.t(t) +-~t 2 • t (t + ~~t) + ..... 

2 

(2.43a) 

(2.43b) 

where t is the time, ~t is the time increment, and t is the unit vector in the direction of 

the rod. Using, 

,.. ,.. 
t =coxt 

and normalising at each step gives. the increments at t+~t as, 

"I ,.. t 
t(t + ~t) = lt'I 

(cox t).(t + ~t) = C!-lt'l-
2 

t't').(cox t + ~t wx t) 

where 

,.. ,.. " 1 2 . ,.. 
t' = t + ~t ( (J) x t) '+ - ~t cox t 

2 

The truncation error is given by, 

E 
~t 2 

{ ( w x t) ( t + ~t) - ( w x t)(t)} 
rror=~~~~~~~~~~~ 

6 

The numerical procedure can be summarised as: 
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(2.45) 

(2.46) 

(2.47) 



Step 1: Obtain all initial values (say from quasi-static model) and the boundary 

conditions (at the surface vessel). 

Step 2: Calculate the acceleration of the fish, (which is also equal to v;2
) ), using 

(2.38) and (2.37). 

Step 3: Calculate and store P and f
1

, starting from the bottom and recursively 
=1 

using (2.39) and (2.40). 

Step 4: Calculate V
1
°), !1°l, and the rod tension (I~(!) I), starting from the top (i = 

1) and using (2.31) and (2.37). 

Step 5: Use (2.41) and (2.42) to calculate the linear and angular accelerations v
1
<
2

) 

and (00
1 
xtJ 

Step 6: Go to the next rod (i+ 1) and repeat steps 4 and 5, until the bottom is 

reached. 

Step 7: Use (2.45) and (2.46) to integrate acceleration by ~t to give the new 

orientation of cable. 

Step 8: Calculate truncation error from (2.47). 

Step 9: If the error is greater than a predetermined value, restore to original 

configuration, reduce size of ~t and repeat steps 7 and 8 until the error is 

acceptable. 

Step 10: Go to the next time step and repeat steps 1 to 9 until end of simulation. 

In Henderson and Wright (1991), the hinged rod cable model was modified to 

represent a two-part tow. However, it is limited to deal with the situation shown in 

Figures 1.l(b, c, e, and g), i.e. where the secondary cables are connected to or adjacent 

to the preceding depressor I tow fish. It is not possible to successfully model 

configurations that have a "junction" located midway along the primary cable, i.e. as 

shown in Figures l.l(d, f, h, and i). 
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The incorporation of the junction in the hinged rod model would be tedious. It would 

also complicate the representation of the parallel multi-tow configuration shown in 

Figure 1.l(i). In addition, as the model does not support longitudinal wave 

propagation, it cannot represent the dynamic effect due to rapid cable top motion. 

Thus, it is more suited to investigate the behaviour due to slowly changing conditions 

such as ship manoeuvring. Due to these shortcon:lings, this technique· was not 

developed to model the defined two-part and multi-tow systems. 

2.2.4 Finite Element Method 

This method is used extensively in the modelling of mooring cables and flexible risers 

and is considered by many to be sufficiently flexible to meet a variety of conditions 

and configurations. Examples of finite element cable models include Leonard (1973), 

Johansson (1977), Peyrot (1980), Leonard and Nath (1981), Lindahl and Sjoberg 

(1983), McNamara et al. (1986), Kokkinowrachos et al. (1987), and Haritos and He 

(1989). It is also used in the modelling of towed cables as shown in Webster (1975) 

and Delmer et al. (1983). 

There are a number of approaches to modelling cable systems using finite elements 

and it is not intended to explain all of these methods in detail here. However, a brief 

description of the general approach is given below for the sake of completeness. For 
' more information, the readers are referred to the above references. 

The basic concept of the finite element method is the representation of a cable by a 

series of elements (segments) joined together at nodes. The shape and configuration 

of the element used will depend on the modelling method employed. These include 

straight segments as in Johansson (1977) and curved segments as explained in Haritos 

and He (1989). In addition, Peyrot (1980) uses the basic catenary equation to develop 

the finite element configuration. In this section we will look at a finite element model 

based on straight elements. A curved element will only require slight modification to 

the equations, (e.g. the shape functions), and is described in detail by Leonard (1973) 

and Haritos and He (1989). 

The finite element method is based upon a known equilibrium system. The model 

then calculates the motion from this equilibrium position due the forces acting on the 

cable elements. 
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The cable is considered to be a long slender structure with negligible moments and 

shear forces. It is divided into a number of straight elements connected at nodes as 

shown in Figure 2.5. As the modelling is carried out in three-dimensions, each node 

will have three degrees of freedom. The motion of the cable is described by the 

motion of the nodes. 

Finite Element Model 

Figure 2.5 

F. E. Segment 

The equations for the elements are developed through a Lagrangian approach. Forces 

distributed along the element are transformed to equivalent nodal forces through the 

principle of virtual work. Considering Figure 2.6, a distributed force on the element is 

represented by the shape function (j)(s). The equivalent nodal forces can then be 

obtained as, 

I 

F. = 1, f Cl-~) cp(~) d~ (2.48a) 
0 

I 

11+1 = 1, f ~ <p(~) d~ (2.48b) 
0 

where 

F; : equivalent nodal force on node "i" 
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cp(s) : shape function of the distributed force 

: length of element 
s = 
1 

, where "s" is the variable length along the element 
I 

Equivalent Nodal Forces on Finite Element 

Figure 2.6 

The forces acting on the cable element will consist of the following: 

Tension Forces: Consider Figure 2.7. The element shown by the unit vector "t 0
" is 

in equilibrium state and has a length of l~. The tension along the element at this 

configuration is given as T,0 
, and will act at the two nodes as, 

(2.49a) 

(2.49b) 

where 'F;, is the tension vector acting on node "i". 
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(x\, Y'1) 

i+l 

(Xu Y1) 

Tension Forces in Finite Element 

Figure 2.7 

During motion, the element is displaced and undergoes changes in length and 

orientation to a position described by the unit vector "t ". The new length and tension 

of the element are respectively, 

(2.50) 

(2.51) 

where "kE" is the elastic stiffness of the element. Thus, the nodal forces can be 

written as, 

(2.52a) 

FT t+l = - TI . t (2.52b) 

Therefore, the deviation of the nodal forces are, 

(2.53a) 

(2.53b) 
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For a small deviation from the equilibrium position, the nodal forces (dropping the 

subscript "i" for clarity) are, 

(2.54) 

where 

k : elastic stiffness matrix 
=E 

k : geometric stiffness matrix 
=G 

R : displacement vector away from the equilibrium. 

Thus, the tension forces for an arbitrary displacement "R " from the equilibrium are, 

(2.55) 

The elastic and geometric stiffness matrices for an axial element with three linear 

degrees of freedom at each end are obtained from, 

k =[Ar .k .[A] 
=E =EL 

(2.56) 

k =[Ar .k .[A] 
=G =GL 

(2.57) 

where 

[A] : transformation matrix, given in equa,tion (2.3) 

[A]T : transpose of [A] 

Ai : cross-sectional area of the cable 

E : modulus of elasticity of the cable material. 

and 
1 0 0 -1 0 0 

0 0 0 0 0 0 

= local elastic stiffness matrix = A, E 
0 0 0 0 0 0 

k 
=EL lo -1 0 0 1 0 0 

I 

0 0 0 0 0 0 

0 0 0 0 0 0 
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0 0 0 0 0 ,0 

0 1 0 0 -1 0 

= local geometric stiffness matrix = T
10 0 0 1 0 0 -1 

k =GL lo 0 0 0 0 0 0 
I 

0 -1 0 0 1 0 

0 0 -1 0 0 1 

Other Forces: The other forces included are the weight, buoyancy force, transverse 

and tangential drag forces, axial viscous force, and point loads. The equivalent nodal 

forces for any force that is distributed along the cable, e.g. transverse drag force, are 

obtained as explained in equations (2.48). 

The inertia mL and hydrodynamic inertia (added mass, Am) matrices are described 

as, 

2 0 0 1 0 0 

0 2 0 0 1 0 

m = local mass matrix = µc 11 0 0 2 0 0 1 
=L , 6 1 0 0 2 0 0 

(2.58) 

0 1 0 0 2 0 

0 0 1 0 0 2 

Am= [Ar .Am .[A] = =L 
(2.59) 

where 

µc : mass per unit length of the element 

µw : mass of the displaced water per unit length of the element 

Cm : hydrodynamic inertia coefficient. 

and 
0 0 0 0 0 0 

0 2 0 0 1 0 

Am = local added mass matrix = Cm µw 11 0 0 2 0 0 1 
=L 6 0 0 0 0 0 0 

0 1 0 0 2 0 

0 0 1 0 0 2 
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The element mass and added mass matrices are merged to give the element total mass 
matrix ( m ). Similarly the element elastic and geometric stiffness matrices are merged 

to give the element total stiffness matrix (~). Thus, the equation of motion for the 

element can be written as, 

(2.60) 

where 

m : element mass matrix including added mass 

c : element damping matrix 

k : element stiffness matrix, including elastic and geometrical stiffness 

F : external forces on the element, including: ~FT = tension force deviation, ~F0 
= drag force deviation, and ~F1 = inertia force deviation 

R : nodal incremental displacement vector, (i.e. displacement from the equilibrium 

state). 

The above set of equations obtained for each element can be assembled to give a set of 

global equations for the complete system. 

This set of non-linear differential equations can be solved either as a general 

eigenvalue problem or by using a predictor-corrector process such as a modified 

Newton-Raphson method. Either technique employs numerical integration 

techniques. The Newmark-~ integration scheme (Newmark (1959)), that offers 

relationships between the nodal displacements, velocities, and accelerations is one of 

the most common numerical integration techniques used in cable solutions. It is 

described as, 

(2.61) 

(2.62) 

Using the above to· obtain the nodal incremental velocity and acceleration vectors 

( R t+1 andR t+1 ), and substituting into equation (2.60), the set of non-linear differential 

equations reduces to a set of non-linear algebraic equations in the form, 
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K R=F'+K R+K R 
=I =2 =3 

(2.63) 

where 

K
1

, K
2

, K
3 

: global matrices formed through a combination of the matrices m 

equation (2.60) 

F' : global equivalent node force vector. 

Hence, the matrices for each element given in (2.60) have been superimposed to give 

the global incremental equation of motion. 

The solution procedure uses a modified Newton-Raphson approach. During an 

iteration process, the residual or "out-of-balance" force for equation (2.63) can be 

expressed as, 

ER(R) = -K R + (F' + K R + K R) 
=I =2 =3 

(2.64) 

Thus, the correction to the nodal incremental displacement vector "R" is obtained by, 

8(R) = -K -i .ER(R) 
=I 

(2.65) 

The iteration process is summarised as follows: 

Step 1: Obtain the initial equilibrium configuration, usually by solving the equation 

of motion (minus the inertia terms) and the boundary conditions. 

Step 2: Calculate the nodal external force vectors, and the mass, damping and 

stiffness matrices. 

Step 3: Obtain the tentative nodal incremental displacement vector "R ", usmg 

equation (2.63). 

Step 4: Recalculate the forces and system matrices for the "new" nodal incremental 

displacement vector. 

59 



Step 5: Calculate the "residual" force acting on the cable structure, using equation 

(2.64). 

Step 6: Correct the nodal incremental displacement vector "R" by the correction 

factor obtained from equation (2.65). 

Step 7: Stop the iteration when the solution has converged, i.e. when the residual 

forces for all elements have reached an acceptably low level. 

Step 8: Proceed to the next time step, "t+~t'', and repeat steps 2 to 7 using the "R" 

vector obtained at "t", until end of simulation. 

The finite element method would need to be modified to represent two-part tow 

configurations (with the junction located on the primary cable) and parallel multi-tow 

configurations. Although the nature of the model allows for such modifications, it 

offers no advantages over the lumped-mass method explained in sub-section 2.2.5. 

However, the set of equations for the finite element model were deemed to be more 

complex than that of the lumped mass system, and the solution process slower due to 

the use of matrix algebra. For these reasons and the advantages stipulated in sub­

section 2.2.5, it was decided not to use the finite element technique to model the 

required tow configurations. However, it would be beneficial at a later date to 

compare the lumped-mass model against an equivalent finite element model dealing 

with two-part and multi-tow configurations. 

2.2.5 Lumped-Mass Method 

Together with the finite element method, this method is the most frequently used 

modelling technique for mooring cables and flexible risers. Examples of such lumped 

mass models are given by Walton and Polachek (1959), Nakajima et al. (1982), van 

den Boom (1985), and Kokkinowrachos et al. (1987)). It is also used in the modelling 

of conventional towed systems as shown in Koterayama et al. (1988) and Kamman et 

al. (1989). However, various researchers have resorted to different solution 

techniques for their models. 

In a similar manner to the finite element method, the lumped-mass method divides the 

cable into a number of segments as shown in Figure 2.8. However, the distributions 

of the mass and forces are different. The lumped mass model represents the 

distributed mass of the cable by a series of discrete masses separated by weightless 
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elastic straight-line segments. The cable segments are assumed incapable of carrying 

compressive loads or bending moments. However, as shown in Kokkinowrachos et 

al. (1987), it is possible to include the effect of bending moments and shear forces to 

the overall model, thus enabling the modelling of flexible risers and underwater 

pipelines. As this method is explained in detail in Chapters 3 and 4, only a short 

description is given here. 

Lumped Mass Model 

Figure 2.8 

All forces that act on the cable segment are redistributed to the adjacent nodes. Thus, 

by applying Newton's law of motion for each node, a set of equations of motion for 

each node is developed. This can be represented as, 

m.R=F (2.66) 

where 

m : mass matrix including added mass 

F : external forces on the node, including gravitational force, damping forces, 

cable tension, distributed loads, and concentrated loads 

R : nodal displacement vector. 

This approach replaces· the non-linear partial differential equations describing the 

continuous cable system by a set of non-linear ordinary differential equations 

obtained by superimposing the contributions from all nodes in the cable structure. 
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The solution of this set of equations is achieved by numerical integration techniques, 

such as the Newmark-~ scheme (equations (2.61) and (2.62)), central difference 

technique, or the Houbolt scheme (see Bathe (1982)). These schemes offer 

relationships between the nodal displacements, velocities, and accelerations. 

Using tentative tension values, the accelerations of the nodes are obtained from the set 

of equations given by (2.66). These in tum are used in an appropriate numerical 
I 

integration technique to predict the displacements and velocities of the nodes. The 

tentative tension values can then be corrected using a Newton-Raphson iteration 

process, to meet the constraint placed by the length of each segment. The iteration is 

continued until acceptable convergence is achieved. 

Comparing the solution techniques employed for the lumped mass model and the 

finite element model, the former requires the solution of a set of simultaneous 

differential equations while the latter uses matrix algebra. 

Due to the redistribution of forces from the segments to the adjacent nodes, the 

representation of the junction in the towed cable system is simplified. This provides 

an elegant method of modelling series and parallel multi-tow systems. In addition, the 

lumping of the forces at the nodes facilitates the integration of the towed fish model(s) 

with that of the cable(s). 

For these reasons, it was decided to select the lumped mass model to represent the 

towed cable system. As shown in Leonard and Nath (1981) and Kokkinowrachos et 

al. (1987), there is little evidence of any advantage of the finite element method over 

the lumped-mass method. In fact Heam and Thomas (1991) and Huang (1992) state 

that the lumped mass system is the most widely used method for cable modelling, and 

van den Boom (1985) concludes that the finite element method is less efficient with 

regard to computer time when compared against an equivalent lumped mass model. 

2.3 Cable Drag and Inertia Forces 

The relative motion between the cable and the surrounding fluid will result in 

hydrodynamic drag forces on the cable. In addition, if the cable motion is not steady, 

then the acceleration of the surrounding fluid will exert inertia or added mass forces 

on the cable. 
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To investigate the hydrodynamic drag forces on a cable, it is first required to 

understand how such forces are created on a body within a fluid stream. The 

hydrodynamic forces are primarily due to shear and pressure effects on the body. 

Forces are also generated when the body is at an angle of incidence to the flow, i.e. 

when the body undergoes angular displacement from its steady state configuration. 

Although some analytical methods are available to predict these forces (publications 

from the US Naval Sea Systems Command Hydromechanics Committee (SEAHAC)), 

the preferred option is to obtain them using experimental data. 

The hydrodynamic forces acting on a body due to the surrounding fluid, will be a 

function of the density of the surrounding liquid, the relative velocity between the 

body and the surrounding liquid, the shape and size of the body, and the fluid 

viscosity. The usual method of expressing these forces is as a function of the 
"dynamic force", (i.e. Yzp V 2 x geometrical area). Thus, the hydrodynamic forces on 

the body are expressed as, 

(2.67) 

where 

FH : hydrodynamic force vector 

p : density of the surrounding fluid 

Ag : characteristic area of the body, (usually the cross-sectional area to the flow or 

the surface area) 

Ctt : hydrodynamic coefficient 
Vr : relative velocity vector between the body and the surrounding fluid 

The hydrodynamic coefficients are non-dimensional and represent the combined 

effects due to the pressure, viscosity, surface condition, shape, etc. In many cases they 

are functions of the geometric shape, Reynolds number, Froude number, Weber 

number, and relative surface roughness. A general explanation of the calculation 

procedure of these coefficients is given in Abkowitz (1969), while the coefficients for 

standard shapes are given in Gerhart and Gross (1985). 

2.3.1 Flow Past a Smooth Long Rigid Cylinder 

A cable is a long, flexible cylinder. Therefore, before we consider the drag on the 

cable, let us revise the drag on a rigid cylinder. The flow past a cylinder, and 
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consequently the drag force, is a highly researched area in fluid dynamics. Thus, only 

a brief description of the work in this area is given. 

Flow past a solid body can be considered in two regimes. The first is immediately 

adjacent to the surface of the body, where viscosity is predominant, hence generating 

frictional forces. The other is outside the boundary layer, where viscosity can be 

neglected. However, velocities and pressures are affected by the physical presence of 

the body, together with the associated boundary layer. 

When a body is immersed in a flowing fluid (i.e. there is relative motion between the 

body and the fluid), a force will act on the body. The component of this force in the 

direction of relative motion is called the drag force. The component perpendicular to 

the drag force is called the lift force. 

The drag force (also called the profile drag) is made up of two components, one 

which is due to the friction on the surface of the body, i.e. skin friction or friction 

drag, and the other which is due to the pressure distribution, i.e. the pressure drag or 

form drag. The latter depends on the pressure differences across the body, which in 

turn depend on its shape. Since both pressure and friction drag are dependent on the 

shape of the body, the total (profile) drag is a function of the shape of the body and its 

orientation to the flow. 

Lift forces are not always present. They usually occur only if there is asymmetry, 

(which may be due to asymmetry of the body or misalignment between the body and 

the approaching flow). The angle of misalignment is called the "angle of attack". In 

cables, a cyclic lift force may occur due to the effects of vortex shedding, which is 

explained later in this sub-section and in sub-section 2.3.6. 

If the flow is completely asymmetrical, either due to the three-dimensional body 

having no symmetrical planes or the flow not being parallel to the symmetrical planes, 

then the resultant force will have three components. These three components will be 

perpendicular to each other, and are usually referred to as the drag, lift, and side 

forces. The latter force will be dealt with in sub-section 2.3.3. 

The theoretical approach of calculating the drag and lift forces is difficult as it requires 

a knowledge of the pressure distribution and the shear stresses around the body. In 

practice, it is common to obtain drag and lift force components experimentally, i.e. in 

wind tunnels, circulating water channels, or flow tanks. It is usual to express these 
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forces as related to the fluid density, relative fluid stream velocity, and a characteristic 

of the body (e.g. the projected ar:ea of the body in the plane perpendicular to the 

direction of flow or the surface area). 

Therefore, from equation (2.67), the drag and lift forces are given as, 

(2.68) 

(2.69) 

where 

Fct, FL : drag and lift forces, respectively 

Cct, CL : drag and lift coefficients, respectively 

p : density of the surrounding fluid 

A : characteristic (usually area) of the body 

Vr : relative velocity between the body and the fluid stream. 

Since the drag and lift coefficients are non-dimensional, once they have been 

obtained, they can be used to calculate the drag and lift for geometrically similar 

bodies, over an equivalent speed range. These coefficients are not constant and will 

depend on the Reynolds Number (Re), Froude Number (Fr), and the Mach Number 

(Ma). Usually: 

• Re will dominate when viscous forces are dominant; 

• Fr will dominate when significant gravity waves are present (wave making 

drag); and 

• Ma will dominate at high compressibility rates associated with flow near the 

speed of sound. 

Other factors (such as surface condition and vibration frequency) may also influence 

the coefficients. 

Consider an infinitely long circular cylinder placed transversely in a fluid stream. Due 

to the length of the cylinder, end flow can be neglected, giving rise to a two­

dimensional flow regime. For a homogeneous fluid flowing past a given cylinder (i.e. 

a constant diameter), Re will be directly proportional to the velocity. Therefore, a 

change of Re can be imagined as a change in velocity. 
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In ideal flow, complete pressure recovery will occur across the cylinder placed in the 

flow. However, in real flow, complete pressure recovery will not occur. 

From equation (2.68), the drag on the cylinder can be given as, 

(2.70) 

where 

Fct : drag force 

Cct : drag coefficient 

p : density of the surrounding fluid 

D : diameter of cylinder 

1 : length of cylinder 

V 0 : fluid free stream velocity 

The drag coefficient (Cd) will depend on Re, the surface condition, and the shape of 

the body. Although various researchers have developed analytical and empirical 

formulae to predict Cct, (e.g. Soylemez (1996)), the usual method of prediction 

employed in practice is based on experimental data. 

Figure 2.9 (Douglas et al. (1985)), gives the change of flow pattern and the pressure 

variation with the change in Re. Figures 2.10 (Gerhart and Gross (1985)) and 2.11 

(Miller (1976)) show the change in the drag coefficient with Re. The former is across 

the full range of Re, while the latter looks at it across the practical range encountered 

in marine structures. Note: in Figure 2.11, the separated regimes are described in 

terms of the boundary layer behaviour near separation. 

At low flow velocity (Re < 0.5), the inertia effect is negligible, thus allowing for near 

complete pressure recovery. This gives a near ideal flow-pressure distribution. 

Hence, the pressure (form) drag is negligible, and the profile drag is nearly all due to 

friction, (Figure 2.9(a)). 

As Re increases to between 2 and 30, separation of the boundary layer will occur, 

(Figure 2.9(b)). At the points of separation, two symmetrical eddies will be formed 

rotating in an opposite direction to each other. These remain fixed and the flow will 

close beyond it. 
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A further increase in Re will elongate the fixed eddies, which will begin to oscillate, 

and at Re > 90, the oscillating eddies will break away from the cylinder (Figure 

2.9(c)). These "breakaway's" occur alternately from side to side and are transported 

downstream by the flow. As Re increases, the process is intensified, giving two 

discrete rows of alternating eddies in the wake. This is known as a "vortex street" or 

a "von Karman vortex street". At this stage the pressure drag is about 75% of the 

total drag. The shedding of each vortex produces a circulation and hence a lateral 

force on the cylinder. 

From Figure 2.11, it is seen that this region is called the sub critical range, and the 

drag coefficient is given as approximately 1.2. This is a result of the relatively low 

pressure region behind the cylinder due to the wide wake created by the early 

separation of the laminar boundary layer from the cylinder surface, i.e. approximately 

80 degrees from the front stagnation point. The separated boundary layer becomes 

turbulent some distance downstream. The value of 1.2 is generally used as the drag 

coefficient of cables in a number of investigations, as the Re of this region covers the 

common velocities encountered. However, under dynamic conditions, the drag 

coefficient of marine cables (and similar structures) will substantially increase due to 

the vortex shedding effect. Therefore, investigators should take into consideration the 

possible changes in the drag coefficient and their consequences, (see sub-section 

2.3.6). 

As Re approaches 105
, a highly turbulent wake replaces the laminar boundary layer 

some distance downstream of the separation point, (Figure 2.9(d)). Pressure drag will 

now be responsible for nearly all the drag. As the Re increases further, the turbulent 

flow will cause the separation to move further back and the vortices will disappear. 

At Re> 2x105
, (Figure 2.9(e)), the transition from laminar to turbulent flow, occurs 

nearer to the separation point. It is seen from the critical region in Figure 2.11, 

(2x105 < Re < 4x10\ that the turbulent shear layer then reattaches as a turbulent 

boundary layer, and commences to move the previously stagnant fluid at the wall. 

The relatively short region of separated flow between the laminar and turbulent 

boundary layers is called a separation bubble. Since the wake is now much smaller, 

the drag coefficient falls close to 0.2. Up to these Re levels, the flow though 

oscillatory, remains two-dimensional. 

Miller (1976) states that in the supercritical region (4x105 <Re< 4x106
), the details 

of the flow are uncertain, and the behaviour depends on the surface condition of the 

cylinder. It is believed that in this region the flow is three-dimensional, originating 
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either by flow caused by end constraints or by turbulent wedges streaming from local 

spanwise flow ahead of the average separation line. 

In the postcritical region, the laminar boundary layer gets progressively more 

turbulent and less stable. Roshko (1961), found that at Re > 4x106
, the drag 

coefficient will appear to be independent of Re and remains around 0.6 to 0.7. In 

addition, it was also noted that the flow returns to a two-dimensional flow regime and 

wake vortex shedding becomes regular again. 

2.3.2 Effects on Drag Coefficient due to Surface Roughness and Turbulence 

The description given in the previous sub-section applies to smooth cylinders. 

However, most offshore structures will become roughened by corrosion and fouling. 

The surface condition of the cylinder and the free stream turbulence will effect the 

response of the boundary layer _and its stability. Therefore, they will also effect the 

separation point, wake size, and the pressure distribution across the cylinder. These, 

as shown in the previous sub-section, influence the drag force on the cylinder. 

A number of researchers, (Fage and Warsap (1930), Achenbach (1971), Miller (1976), 

and Sarpkaya (1977, 91)), have carried out experiments to determine the drag effects 

on roughened cylinders. Page and W arsap found from their experiments that the 

increased level of free stream turbulence moved the drag curve towards lower Re, 

without altering the value of the drag coefficient. Similar experiments by other 

researchers found that the rate of fall of Cd with Re in the critical region reduced with 

increase turbulence. 

Page and W arsap also examined the influence of the surface roughness by attaching 

various grades of abrasive paper to cylinders tested in a wind tunnel. The roughness 

of the cylinders was given as the relative roughness, defined by, 

relative roughness (2.71) 

where kr is the height of the physical roughness on the cylinder and D is its diameter. 

Page and Warsap (1930) found that a_n increase in the relative roughness shifted the 

critical region towards a lower Re. In addition, the minimum drag coefficient 
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increased in this region. Figure 2.12 reproduced from Miller (1976), shows the effect 

of surface roughness of a cylinder on its drag coefficient. 
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From similar experiments, Achenbach (1971) showed that beyond the critical region, 

the transition from laminar to turbulent flow occurred closer to the forward stagnation 

point, resulting in a constant drag coefficient, base pressure, and separation points. 

This constant drag coefficient at high Re, will increase as the relative roughness of the 

cylinder surface increases. However, after a certain relative roughness, the drag 

coefficient became virtually independent of the relative roughness. 

Sarpkaya (1977) summarises the effects of roughness as follows. In the supercritical 

and postcritical regions, the drag coefficient is considerably larger than for a smooth 

cylinder. This is primarily due to the larger wake brought about by the earlier 

separation, which in tum is due to the retardation of the boundary layer. It was also 

noted by Sarpkaya that a higher turbulence level caused the critical range to be wider. 

2.3.3 Drag on a Rigid Cylinder Inclined to the Flow 

If the cylinder is at an angle to the uniform flow, then dra&_ forces will be present in 

the tangential and normal directions to the cylinder. In a three-dimensional flow field 
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(Figure 2.13), there will be three drag forces perpendicular to each other, and are 

referred to as tangential, normal, and side drag forces. (note: in non-cable bodies, 

these forces may be referred to as the drag, lift, and side forces). 

Side Drag 

y 

Relative 
Flow Velocity, V 

Normal 
Drag 

Direction of Drag Forces on a Cable in a 3D Flow Field 

Figure 2.13 

In addition to the factors specified in equation (2.70), these drag forces will depend on 

the angle of incidence to the flow. The usual practice of calculating these forces is to· 

first resolve the relative velocity in the three directions. If the relative velocities along 

the tangential, normal, and side directions are found as V rt. V m and Vrs. then the 

respective drag forces can be obtained by using equation (2.70) in each direction as, 

(2.72a) 

(2.72b) 

(2.72c) 

where 

V rt,n,s : velocities of the cable relative to the fluid in the tangential, normal, and side 

directions respectively 

Fctt,n,s : drag forces in the tangential, normal, and side directions respectively 

Ct,n : drag coefficient in the tangential and normal directions respectively 
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1. In the above equations, it is assumed that the cable is of a non-faired section, thus 

Cn is used in both equations (2.72b) and (2.72c). However, if it is of a faired 

section, then the normal and side drag coefficients will be different. fu such 

situations, the usual practice is to use the lift coefficient (CL) for the side force, i.e. 

in equation (2.72c). 

2. The dimension of the body used in all three equations is the projected area, (D x 1). 

However, it is also possible to use other dimensions, a common one being the 

surface area, (n x D x 1). The drag coefficient is selected to suit the appropriate 

dimension used. 
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3. The square of the velocity is expressed in the given form to include the direction 

of the force. 

Figure 2.14 reproduced from Miller (1976), shows the variation of the normal drag 

coefficient (C0 ) for a smooth cylinder with the change of Re and cylinder inclination. 

Choo and Casarella (1971) give semi-empirical formulae for the calculation of the 

tangential and normal drag forces of cables in towed systems. 

2.3.4 Morison's Equation 

As stated previously, in addition to the hydrodynamic drag forces due to the relative 

motion between the cylmder (or cable) and the surrounding fluid, unsteady cable 

motion and hence the acceleration of the surrounding fluid will exert inertia (added 

mass) forces on the cable. Morison et al. (1950) suggested that the two flow regimes 

that generate drag and inertia forces be superimposed to give an equation to predict 

the horizontal force on a vertical pile. This equation has since been modified to deal 

with cylinders in various configurations and flow regimes. Chakrabati and Cotter 

(1983) and Shafiee-far et al. (1996), present some of the modifications to deal with 

stationary and moving structures in waves and currents. 

The modified Morison's equation for cylinders and cables is given by, 

(2.73) 

where 

Vr : relative velocity 

Cct : drag coefficient 

Cm : inertia coefficient. 

The inertia coefficient can also be given as, 

(2.74) 

where Ca is added mass coefficient. 

Since the drag component of Morison's equation (2.73) is non-linear, a number of 

methods have been proposed to linearise the terms, enabling its use in frequency 
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domain investigations, which employ the principle of superposition that requires 

linear functions. The numerical modelling carried out in this thesis uses the 

Morison's equation in its non-linear form. For those requiring an insight into the 

linearisation of the drag terms Triantafyllou et al. (1986), Chen and Lin (1989), 

Chakrabarti (1990), Teng and Li (1991), Kwan and Bruen (1991), and Clauss et al. 

(1992) are recommended. However for completeness, the linearisation technique for 

Morison's equation presented by Triantafyllou et al. is briefly described here. Note 

the linearisation presented is only for the drag force, i.e. the first term in Morison's 

equation (2.73). 

Consider a cable in a steady current, with the cable velocity given by a random 

function of time. Thus, the relative fluid velocity (Vr) i's assumed to be a Gaussian 

stationary random process of variance "cr" and mean relative velocity "Vro"· Then the 

relative velocity "Vr'' is given by, 

(2.75) 

where Vro is the mean relative velocity and Vr(t) 1s the time dependent relative 

velocity. 

The drag force per unit length of the cable from Morison' s equation is, 

(2.76) 

where Ccto = Y2 Cct p D. 

Now an equivalent force can be expressed as, 

(2.77) 

where the second term is proportionate to the time dependent relative velocity, and 

F do : mean drag force 

Ce : linearised equivalent damping coefficient. 

The latter term is obtained by first expressing the residual, which is the difference 

between equation (2.76) and (2.77), and then minimising the mean square of the error. 

This is carried out by differentiating the square of the residual with respect to the 
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linearised equivalent damping coefficient (Ce) and then equating it to zero. This 

results in the coefficient being expressed as, 

where 

2 = 

erf(R) = r= Jexp(-R 2 )dR, 
-vn o 

with "R" being a "dummy variable" 

cr = variance of the Gaussian stationary random process. 

(2.78) 

Note: the variables µ and cr defined here are not relevant to any other equations using 

the same symbols in this thesis. 

2.3.5 Hydrodynamic Cylinder Coefficients in Harmonic Flow 

Sarpkaya (1977), investigated the hydrodynamics of a roughened cylinder in 

fluctuating flow, producing graphs to predict the drag, lift, and inertia coefficients 

under these conditions. 

For harmonic flow, Fourier averaged drag and inertia coefficients can be obtained 

from experimental results. These will vary with the Re, surf ace roughness, and the 

Keulegan-Carpenter number (KC). The latter is defined as, 

v t 
KC=~ 

D 

where 

V m : maximum fluid velocity 

tp : period of the cycle 

D : diameter 

(2.79) 

At KC < 6, the flow is dominated by inertia effects as there is little or no separated 

flow. When KC > 25, the flow is dominated by drag effects as the fluid velocity 
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varies little over a few cycles of vortex shedding. The region given by 6 $KC$ 25 

consists of inertia and drag effects, with vortex shedding taking place on either side of 

the cylinder. 

The governing parameters for the investigation carried out by Sarpkaya (1977) were 

obtained as follows. Consider an oscillating flow acting on a rough cylinder. The 

velocity of the flow is represented by, 

v =-Vm Cos~ 

where 

: instantaneous velocity 

: maximum fluid velocity 
2nt 

= 
tp 

tp : period of the cycle 

t : time 

(2.80) 

As shown by Keulegan arid Carpenter (1958), the values for Cct and Cm for equation 

(2.73) are obtained by using Fourier averages of a measured force Fm, i.e., 

(2.81a) 

2V t 2nF s· .Cl 
C = ( m p ) J m 1Il u d~ 

m n 3D pV 2 lD 
0 m 

(2.81b) 

where 1 and Dare the length and diameter of the cylinder, respectively. 

For the transverse force, the maximum lift coefficient (CL) is obtained as, 

C _ maximum lift force in a cycle 
L- 0.5pDlV~ 

(2.82) 

Due to the cyclic nature of the forces, the coefficients given above are not constant 

throughout the cycle. They are either time-invariant averages or peak values at a 

particular moment of the cycle. 
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Dimensional analysis shows that the time-dependent coefficients can be expressed as, 

(2.83) 

where v is the fluid kinematic viscosity. 

By considering time-invariant coefficients, and representing the first two terms by the 

relevant numbers, equation (2.83) reduces to, 

[Cct, Cm, CL] = f (KC, Re, k/D) (2.84) 

At low Re (i.e. Re< 20,000), it is not suitable to use Re in the above equation due to 

the low viscosity effect. Since the maximum velocity (V m) is present in both KC and 

Re, equation (2.84) is rewritten as, 

[Cct, Cm, CL] = f (KC, Bf, k/D) (2.85) 

where 

Re D 2 

Bf = frequency parameter = - - --
KC vtP 

(2.86) 

Thus, it is possible to use Bf or Re as an independent variable for dimensional analysis 

of the coefficients. Therefore, at a constant Bf, it is possible to create a series of 

curves for the coefficients for varying values of KC. 

Note: the ratio Bf represents the ratio between the rate of diffusion of vorticity through· 

the boundary layer thickness and the rate of diffusion to a distance equal to the 

diameter. It is therefore, equal to the square of the ratio: diameter I boundary layer 

thickness. 

From the experiments carried out by Sarpkaya (1977), curves were produced for the 

three coefficients, (Cct, Cm, and CL) for a number of cylinders of varying relative 

roughness krlD at constant Bf and different KC. It was then possible to present the 

curves for each relative roughness as function of the Re, krlD, and KC, with the 

former obtained by multiplying Bf by the relevant KC. Samples of these curves are 

reproduced in Figures 2.15 to 2.20, and show the variations of the coefficients within 

the critical and supercritical regions. 
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Figures 2.15 and ~.16 show the change of the drag coefficient (Cct) with Re and k/D at 

KC = 20 and 40. At lower Re values, Cct does not alter significantly as k/D changes. 

As Re increases to the critical region, the increase in k/D will cause the rapid drop in 

Cct to occur earlier. However, the actual drop will reduce as k/D increases, i.e. the 

minimum Cct will be higher. Further increase in Re to the supercritical region will 

result in the Cct increasing to a near-constant value closer to the postcritical region. 

This near constant Cct will be sigmficantly higher for cylinders with higher k/D. 

It was also noted that Cct for rough cylinders in oscillating flow is considerably higher 

than those for a similar cylinder in a steady flow. This emphasises the need to 

increase the drag coefficient when dealing with oscillatory motion. 

Figures 2.17 and 2.18 show the change of the inertia coefficient (Cm) with Re and k/D 

at KC = 20 and 40. At lower Re values, Cm is higher for cylinders with higher k/D. 

In the critical region where the drag coefficient (Cct) falls rapidly, Cm undergoes a 

steep increase. The Re for the maximum Cm, corresponds to that which yields the 

minimum Cct value. This maximum Cm value decreases as k/D increases. As Re 

passes the critical region, Cm falls marginally to reach a near constant value closer to 

the postcritical region. This near constant Cm value decreases as k/D increases. 

It should be emphasised that the effect on the drag and lift coefficients is influenced 

by the relative roughness (k/D) and not only by the physical roughness (kr). 

Figure 2.19 shows the variation in lift coefficient (CL) for a smooth cylinder with the 

change of Re and KC. As the Re approaches the critical region, CL decreases rapidly 

to a value of around 0.25. Figure 2.20 shows the change of CL for a rough cylinder 

(k/D = 1/200) as a function of KC at various ~r· It is seen that CL does not 

significantly vary with the change in ~r or Re. It was also noted by Sarpkaya (1977) 

that the change in k/D did not significantly affect CL. It was further noted that due to 

the random nature of the shedding of vortices, a variation up to 25% was encountered 

in the CL values obtained experimentally. 

From Figure 2.20 it is seen that CL reduces for rougher cylinders than those for 

smooth cylinders at lower Re, (i.e. lower ~r). In Kuhtz et al. (1997), values for the 

drag and inertia coefficients at very low ~r were obtained experimentally. 
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Due to the experiments being conducted with two-dimensional harmonic flow, the 

coefficients obtained represent the maximum values that may result in a three­

dimensional wave induced flow that may actually be encountered. 

Attempts have also been made by various researchers to develop formulae to predict 

the drag and lift coefficient of vibrating cylinders. For example, Kato et al. (1983) 

isolated the drag force at the oscillating frequency using a Fourier series, which was 

then used to calculate the drag and lift forces. However, for our needs the curves 

produced by Sarpkaya (1977) will be sufficient to predict the required coefficients. 

2.3.6 Vortex Induced Hydrodynamic Forces 

When a flow occurs across a cylinder at Re around 90 to 105
, oscillating eddies will 

occur and break away from the cylinder, i.e. von-Karman vortices shown in Figure 

2.9(c). The shedding of these vortices produces a circulation and hence a lateral force 

on the cylinder. Due to the periodic alternating nature of the vortex shedding and its 

associated lateral force, the cylinder will be subjected to a lateral vibration, called 

strumming. If the vibration frequency coincides with a natural frequency, then 

resonance will occur leading to large vibration amplitudes and stresses, which in tum 

can lead to failure, e.g. collapsing of suspension bridges and damage to underwater 

petroleum riser. The vortex shedding effectively increases the drag force on the 

structure. Therefore, in practice to take into consideration the von-Karman vortices, 

the Cd values of cable I pipe structures are increased, and in some cases this can be to 

around three to four times the normal Cd value (Triantafyllou (1994)). The effect on 

the drag coefficient is considered later in this sub-section. 

In addition, since the vibration accelerates the surrounding fluid, it will influence the 

inertia (or added mass) effect on the cable. This effect on Cm is usually obtained from 

experimental data such as those presented by Sarpkaya (1977) and Chakrabarti and 

Cotter (1983), (see sub-section 2.3.5). 

The study of vortex induced vibration and its effects on the relevant hydrodynamic 

coefficients is complex and is beyond the scope of this thesis. Therefore, only a brief 

description of the work in this area is presented here. 

Due to the flow past a cylinder, the frequency (f) of the forced vibration, also called 

"self-induced vibration", is obtained as shown in Douglas et al. (1985) by, 
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Str = 0.198(1-
19

·
7

) 
Re 

where "Str" is the Strouhal number, given by, 

f D 
Str=­

V 

where 

f : frequency of vibration 

D : diameter of cylinder 

V : flow velocity , 

(2.87) 

(2.88) 

Note: other researchers have proposed similar equations to (2.87) to predict the 

frequency of vibration. 

Equation (2.87) is valid for the range 250 < Re < 2x105
. For circular cylinders, the 

Strouhal number has been empirically determined for a range of Re. Within the above 

Re range, the Strouhal number is approximately 0.2. 

During cable strumming, the wake shedding frequency is influenced by the natural 

frequencies of the cable. For free cables, if the wake shedding frequency is within 

25% of a natural frequency of the cable, it will lock-on to that natural frequency, (this 

phenomenon is also referred to as wake capture). Thus, the cable will vibrate at or 

near the locked-on natural frequency. 

The maximum amplitude of the strumming cable is typically two to three cable 

diameters. It also increases the cable drag coefficient from around 1.2 to a value 

between 3 to 4. The effect on the drag coefficient of a cable is clearly demonstrated in 

the experiments carried out by Bourget and Marichal (1986 and 1990). When a cable 

was towed at a constant speed by one end, the shape of the cable was seen to be 

parabolic, as opposed to the straight line predicted by classical theories f9rwarded by 

Pode (1951). It was believed that the curvature was due to the change in the drag 

coefficient along the length of the cable, which in tum was attributed to the lateral 

vibration of the cable. 

As shown in Horton et al. (1987), when a stranded cable (wire rope) is towed, mean 

steady drag and lift forces are created. Superimposed on these steady drag and lift 
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forces are fluctuating forces that cause the cable to vibrate, or "strum". The normal 

drag on a cable is dominated by profile drag, while the tangential drag is dominated by 

friction drag. 

Griffin (1985) collated the work of various researchers and plotted (Figure 2.21) the 

effective lift coefficient (CLE) during vortex shedding (obtained by measuring the 

excitation force), against the effective displacement amplitude "YEFF"· (Note: YEFF is 

defined as the ratio between the displacement amplitude and the diameter). It is seen 

from Figure 2.21 that the maximum CLE occurs around an amplitude of 0.6 to 1.0 

cylinder diameters, and reaches a value of around 0.5 to 0.6. It then tends to fall off 

towards zero as Y EFF increases. 

Figure 2.22 (also collated by Griffin), shows a similar plot for the drag coefficient. 

This gives the amplification of the drag coefficient due to vortex shedding against the 

wake response parameter, which is defined as, 

(2.89) 

where 

WR : wake response parameter 

Y m : cross flow displacement amplitude 

VR : reduced velocity 

f n : natural frequency of the cylinder (or cable) 

with the reduced velocity "VR" defined as, 

(2.90) 

The variation of the drag coefficient with the velocity is shown in Figure 2.23, 

(reproduced from Griffin (1985)). It shows that the drag undergoes a resonance-like 

behaviour, which is similar to that exhibited by the cross flow displacement 

amplitude. This magnification can result in major damage to offshore structures 

designed using standard drag coefficient data. 
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Table 
The Excitation Force Coefficients on Vibrating Bluff Cylinders 

Description of the Data in Figure 2.21 
Svmbol Tvue of Cylinder Medium Cylinder Material Investigator(s) 

..... Flexible Water PVC King (1977) 
Cantilever 

• PVC 
Aluminium 
Stainless Steel 

0 Pivoted Rigid Water and Air Brass Vickery and Watkins 
Cylinder (1964) 

+ Spring Mounted Rigid Air 
Cylinder-

0 Rigid Cylinder Forced Water Aluminium Tubing Sarpkaya (1978) 
Oscillations 

6. Flexible Cantilever Air Alumimum Hartlen, Baines and 
Currie (1968) 

• Flexible Cylmder Air - Farquharson and 
McHugh (1956) 

() Rigid Cylinder Air Brass Simmons and Cleary 
(1979) 

(Griffin (1985)) 

Effective Lift Coefficient during Vortex Shedding against Effective 

Displacement Amplitude 

Figure 2.21 
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The drag coefficient amplification,, CctlCcto, plotted as a function of the wake response 

parameter, wR =(1+2Y/D)(Str.VR)-1
, for the cross flow vibrations of a circular 

cylinder. The legend for the data points is given in the table below. 

Table 
Drag Force Amplification on Vibrating Circular Cylinders; 

Description of the Data in Fie:ure 2.22 
Symbol Medium Type of Vibration Investigator/s 

0 Water Cross flow, Forced Sarpkaya (1977) 

D Water Cross flow, Forced Schargel (1980) 

x Water Cross flow, Free Overik (1982) 

~e Water Cross flow, Free Moe (1982) 

(Griffin (1985)) 

Drag Coefficient Amplification during Vortex Shedding against Wake 

Response Parameter 

Figure 2.22 
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(Griffin (1985)) 

Drag Coefficient during Vortex Shedding against Reduced Velocity 

Figure 2.23 

From Figure 2.22 it is seen that the amplification of the drag coefficient due to vortex 

shedding reaches a factor of three. Using a least-squares fit to the data in the figure, 

an equation is derived for the drag coefficient amplification as, 

Cct amplification = 0.124 + 0.933.wR (2.91) 

For a cylinder in a uniform flow, vortex shedding and the resulting vibration and 

forces are coherent over the length of the cylinder. However, when a long flexible 

cylinder, (e.g. marine cable), is in sheared flow, only some parts of the cable may 

exhibit vortex shedding. This will cause fluctuating transverse (lift) and in-line (drag) 

forces, resulting in transverse or in-line vibration of that portion of the cable. It is also 

possible that the vibration may lock-in to within 25% of the closest natural frequency 

of the cable, thus causing the whole cable to vibrate. However, since the rest of the 
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cable is not excited by vortex shedding, this vibration will result in a damping effect 

throughout the rest of the cable length. Thus, it can be summarised as: the part of the 

cable shedding vortices will excite the cable, while the rest of the cable will act as a 

damper. 

At resonance, the frequency of the external excitation is equal to one of the natural 

frequencies of the system. If the corresponding modal damping ratio is small, then the 

response of this mode will dominate the response of all other non-resonance modes. 

Very long cylinders with closely spaced natural frequencies, rarely exhibit lock-in and 

frequently behave as infinite strings. However, shorter cylinders with well separated 

natural frequencies, tend to lock-in with one mode. If two or more modes of vibration 

occurs, the response may be a multi-mode non-locking response, i.e. beating between 

modes may occur. Since it is difficult to predict which mode, if any, will dominate 

the response, it is difficult to predict the coefficients for the vibrating cable. It is 

interesting to note from Grosenbaugh et al. (1989) that the drag coefficient in a cable 

exhibiting beating was lower than that predicted for those in a locked-in condition. 

The distinction between "long" and "short" cables is presented by Vandiver and 

Chung (1987) as follows. Given that "n" is the mode number of the highest 

resonantly excited mode in the system and thaL"s" is the damping coefficient of the 

system, then if, 

ns < 0.2 the cable is "short" in the dynamic sense and single-mode resonant 

response will dominate the total response. 

0.2 < ns < 3 significant attenuation occurs over the length of the cable, but an 

infinite cable response is not adequate. However normal superposition 

maybe used. 

3 <ns the cable may be expected to behave dynamically as if it was infinitely 

long, and superposition models are not very useful, due to the large 

number of modes required. (Note: when excited near an end, a semi­

infinite model may be used). 

Many researchers have developed analytical or empirical formulae to predict the 

equivalent drag and lift coefficients in long flexible cylinders (cables) undergoing 

vortex-induced vibrations. One such empirical formula is that developed by Griffin 
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and Vandiver (1983) from full scale experiments to predict the equivalent drag 

coefficient during lock-in of a cylinder in shear flow as, 

(2.92) 

where 

CdE : equivalent drag coefficient 

cd : drag coefficient of rigid cylinder, (usually 1.2) 

Y RMS : root mean square anti-nodal displacement 

D : diameter of cylinder 

' 
Sarpkaya (1979), Vandiver (1983), and Boom & Walree (1990) among others present 

similar equations. In addition, various equations have been developed to predict the 

vibration amplitudes of cables I cylinders due to vortex shedc;ling, and a selection of 

such equa~ions are given in Sarpkaya (1979). 

In addition to these formulae, a number of researchers have used various models and 

methods to calculate the equivalent drag and lift coefficient due to vortex shedding. 

Kim et al. (1985) used the non-linear static equations of the cable to calculate the 

average drag coefficients. Horton et al. (1987) predicted the .increased drag and lift 

coefficients using the maximum drag and lift forces obtained from experiments and a 

loading function expressed in a Fourier series. Bourget and Marichal (1990) used the 

dissipated power from a towed cable to calculate the same. Slaouti and Bao (1997) 

~lso developed an amplification factor for the drag coefficient based on the transverse 

motion of the cylinder. 

In order to investigate underwater cables, risers, and pipes influenced by vortex 

shedding in sheared flow, many researchers have developed numerical models, e.g. 

Whitney and Nikkel (1983) and Vandiver (1985). In most models, the energy input at 

the part of the cable being excited due to the fluctuating vortex induced force is 

balanced against the energy dissipation via the hydrodynamic damping due to the 

vibration of the rest of the cable. 

A number of devices are fitted to underwater cables, pipes, and risers in order to 

reduce the shedding of vortices and thus, reduce the related adverse effects. Although 

this study does not venture into this area, a number of publications are available on 
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this topic. For example, Rogers (1983) and Jacobsen et al. (1996) present 

comprehensive assessments on such devices. 

2.3.7 Hydrodynamic Coefficients Selected 

The above sub-sections gave a brief insight into the calculation and prediction of the 

drag, lift, and inertia forces of underwater cables under varying conditions, such as 

fluctuating and sheared flow. For the work carried out in this thesis, the coefficients 

were selected from the data given by Sarpkaya (1977), with due regard to the findings 

by Shafiee-far et al. (1996) on the use of coefficients for Morison's equation. 

However, the selection of the coefficients can be changed to suit the conditions 

experienced by the towed system, as the computer model allows the input of the 

relevant coefficients to deal with these variations. 

2.4 Towed Fish Model 

A number of authors have presented models for underwater vehicles, e.g. Miller 

(1963), Abkowitz (1969), Humphreys (1976), Bhattacharyya (1978), Chapman 

(1984), and Papoulias (1992). This investigation uses a modified version of the 

existing models to simulate the behaviour of towed and depressor fish. 

Since the purpose of this investigation is to minimise all perturbations of the towed 

fish from its steady state trajectory, the underwater bodies need to be dynamically 

modelled in six degrees of freedom, i.e. surge, sway, heave, roll, pitch, and yaw. 

However, each node of the cable in the lumped-mass method is modelled in three 

degrees of freedom. Therefore, it is required to dynamically integrate the six degrees 

of freedom fish model with the three degrees of freedom cable model. This task is 

further complicated in multi-tow configurations, where the number of towed fish 

increases. 

The towed and depressor fish models require the following features: 

• three-dimensional model; 

• six degrees of freedom; 

• inertia and added masses; 

• drag and lift forces; 

• lifting surfaces (wings and tail sections); 
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• tow cable forces; 

• a second tow cable to attach other tow fish in series; and 

• centre of gravity, centroid, and tow point at different locations within the fish. 

The modelling consists of three areas: kinematics, dynamics, and hydrodynamics. The 

kinematics deals with the representation of the orientation and rotational rates of the 

fish. The dynamics develop the relationships between the forces I moments on the 

body to its motion. The hydrodynamic concepts produce the fluid-induced forces and 

moments acting on the body at the given fish orientation and rotational rates. 

The hydrodynamic forces and moments are obtained from established fluid dynamic 

theories and practices. The required coeffidents are obtained from experimental 

testing in wind tunnels or circulating water channels, supplemented by theoretical 

approximations. 

The added mass terms of the towed I depressor fish will introduce coupling terms in 

the equations describing the motion of the body. This effect is compounded if the tow 

point(s) on the fish is located at points other than its centre of gravity. Therefore, the 

solution technique has to be sufficiently flexible to solve the.se coupled equations of 

motion together with the cable equations, i.e. the solution procedure has to incorporate 

the influence of the cable on the fish and vice versa. 

As will be shown in sub-section 2.5.2, the equations of motion for an underwater body 

can be extremely long and cumbersome. Therefore, it is usual to linearise the 

equations about the initial equilibrium condition of motion. This reduc_es the higher 

order terms, yielding much simpler equations, thus simplifying the solution technique 

required. 

For a dynamically stable vehicle, linear theory is acceptable for moderate manoeuvres, 

with the higher-order-terms required only for tight manoeuvres, (Abkowitz (1969)). 

Due to the nature of the operational conditions of the towed systems investigated, it is 

unlikely that the configuration will experience tight manoeuvres. The investigation is 

aimed at ascertaining the response of the vehicle after some infinitesimal disturbance 

from the equilibrium condition, and its ability to return to the original equilibrium 

position. Therefore, linearised equations for the underwater towed bodies are 

acceptable. 
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If all six degrees of freedom are included in all equations, even the linearised 

equations will be complex. Therefore, for most marine vehicles it is possible to 

separate the motion into the vertical and horizontal planes, (unless strong coupling 

exists between these motions). This approach is used in the modelling of all the­

towed and depressor fish in this study. 

The vertical motion consists of surge, heave, and pitch. Roll motion is neglected as 

the underwater vehicles considered in the investigation have port-starboard symmetry, 

and the centre of gravity of the vehicle is located on the vertical plane through its 

longitudinal centreline. The horizontal motion covers surge, sway, yaw, and roll, 

since· all vehicles do not have top and bottom symmetry, and the centre of gravity is 

usually below the centreline. 

2.5 Towed Fish Hydrodynamic and Acceleration Coefficients 

The equations describing the motion of an underwater ~ody in six degrees of freedom 

are given by a number of researchers, including Miller (1963), Abkowitz (1969), 

Humphreys (1976), Bhattacharyya (1978), Chapman (1984), and Papoulias (1992). 

The derivation of the six degrees of freedom equations of motion used in this 

investigation and their incorporation into the cable model are considered in Chapter 3. 

Therefore, in this sub-section only a general representation of the equations will be 

used to explain the various terms. 

The equation of motion will consist of coefficients that can be broadly divided into 

inertia (i.e. mass, moment of inertia, added mass, and added moment of inertia), 

hydrodynamic (drag, lift and side force), gravity I buoyancy, and external forces (e.g. 

tow cable tension). At low relative speeds the forces and moments due to the 

accelerated flow, (i.e. added mass and added moment of inertia), dominate. However, 

at higher relative speeds the steady hydrodynamic terms are dominant. 

2.5.1 Towed Fish Acceleration Coefficients 

The six-degree-of-freedom equations of motion of an underwater body in its local 

coordinate system (see Figure 2.24), are expressed as, 
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Af11 Af12 Af13 Af14 Af1s Af16 u Frx' 

Af21 Af22 Af23 Af24 Af 25 Af26 v Fry· 

Af31 Af32 Af33 Af34 Af3s Af36 w Frz• = (2.93) 
Af41 Af42 Af43 Af 44 Af4s Af46 p Mrx· 

Afs1 Afs2 Afs3 Afs4 Afss Afs6 q Mry· 

Af61 Af62 Af63 Af64 Af6s Af66 r Mn' 

where 

Afab : where a= 1, 2, 3 and b = 1, 2, 3 

mass matrix terms of the equation of motion of the underwater body, 

incorporating the mass, added mass, inertia, and added inertia terms 

u, v, w : local acceleration components of the body along the local axes system 

p, q, t : angular acceleration components of the body about the three axes, i.e. in 

the roll, pitch, and yaw directions 

Ff,x' ,y' ,z' : forces acting on body along the local axes system 

Mfx',y',z' : moments acting on body about the local axes system 

X', Y', Z' : local axes system 
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Depending on the shape and motion of the body, some of the mass matrix terms given 

by Afab in equation (2.93) will be zero, while in most cases the matrix will be 

symmetrical about its leading diagonal. 

The mass and moment of inertia terms can be obtained by employing usual techniques 

of solid mechanics. The moment of inertia of a towed vehicle can be obtained by 

suspending the body vertically and measuring the period of oscillation. If it is not 

possible to suspend the body from its tow point, then the parallel axis theorem can be 

utilised to transfer the moment of inertia from about the point of suspension to that 

about the tow point. 

The prediction of the added mass I inertia coefficients is much more complex. 

Although the hydrodynamic forces on a body due to steady motion (i.e. drag and lift 

forces) are easily understood, the fluid forces created due to the acceleration of the 

body are less well understood. The fact that these forces are referred to by a range of 

names, added mass, virtual mass, apparent mass, hydrodynamic mass, etc. does little 

to clarify the issue. These added mass I inertia terms are briefly described below. 

Any motion of the body through a fluid, causes the fluid surrounding it to move aside 

and then close in behind the body. This results in the fluid acquiring kinetic energy 

that would not be present if the body were stationary. Thus, the body has to impart 

that kinetic energy to the fluid by doing work on it. 

When the motion of the body is steady, the corresponding fluid motion is steady, and 

the kinetic energy in the fluid is constant. Thus, no added mass I inertia terms are 

present in steady motion. However, when a body is accelerating through the fluid, it 

will result in a change in the kinetic energy within the fluid. Thus, the added mass is 

summarised as: 

"The added mass effect is due to the work done on the fluid by a body as it 

accelerates". 

Note: steady speed of a body does not always result in steady motion. A common 

example of this is a body undergoing a steady tum. To achieve this motion, the body 

has to be accelerated "towards" the centre, thus changing the kinetic energy in the 

fluid. Therefore, under these conditions the added mass I inertia terms have to be 

included in the equations of motion. 
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These coefficients can be predicted by analytical or experimental procedures. The 

analytical method yields general expressions for the added mass I inertia coefficients 

for a number of bodies. Therefore, any changes to the shape of the body or its motion 

can be reflected by manipulating the terms in the expressions. This allows the 

investigation of the body without carrying out expensive experiments to determine the 

relevant coefficients for each of the conditions. 

For simple shapes, the added mass I inertia coefficients can be obtained from fluid 

mechanics text, such as Clauss et al. (1992). For more complex shapes, the 

expressions for the coefficients are obtained by utilising the potential flow patterns 

and the kinetic energy in the fluid. Examples of such methods are presented in 

Humphreys and Watkinson (1978) and Imlay (1961). 

Due to the complexities involved in analytically calculating these coefficients, the 

usual practice is to obtain them from experiments. However, each of the experimental 

outcomes represents a given configuration, e.g. irt motion and shape. Thus, a range of 

experiments is needed to obtain the coefficients to deal with all the configurations that 

are to be investigated, since the data obtained for one configuration, in most cases will 

not "fit" other configurations. Therefore, the prediction of these terms using 

experimental data is time consuming and expensive. However, for most towed bodies 

(and underwater bodies), the coefficients are obtained using experimental data. 

The experimental methods of obtaining the inertia coefficients usually employ a. 

planar-motion-mechanism. Abkowitz (1969) gives an explanation on the planar­

motion-mechanism and its use to calculate the.relevant coefficients. 

2.5.2 Towed Fish Static and Dynamic Hydrodynamic Coefficients 

In the absence of external excitation forces (including tow cable forces) and assuming 

that no control surfaces can be deflected, the forces and moments on the underwater 

body can be expressed as, 

F and M = f (x, y,z,a,~, y, u, v, w,p,q,r, ti, v, w,p,q,r) (2.94) 

where 

F : force vector acting on the body 

M : moment vector acting on the body 
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x, y, z : displacement of the body along the X, Y, Z axes 

u, v, w : velocities of the body along the X, Y, Z axes 
13, a, y : angular displacement of the body about the X, Y, Z axes, (i.e. roll, pitch, 

and yaw) 

p, q, r : angular velocities of the body about the X, Y, Z axes 

The above function depends on the motion and orientation parameters. This function 

can be represented in a mathematical form with the use of a Taylor expansion. To 

explain this expansion, consider the function of one variable, say "x". Thus, 

F = f (x) (2.95) 

If the function is required at a certain value of "x", it can be described in terms of the 

value of the function and its derivatives at some other nearby value of x, say x0 • Thus, 

where f(x0 ) is the value of the function at x0 • Substituting, 

Dn =~ and ~x = (x - X
0

) 
x dxn 

we get, 

Using an exponential series expansion, i.e., 

a 2 a 3 

ea =l+a+-+-+ ... 
2! 3! 

the Taylor expansion in (2.97) can be expressed as, 

(2.96) 

(2.97) 

(2.98) 

(2.99) 

If two variables were considered, say x and y, then equation (2.99) can be written as, 
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f( ) _ 6.xD, +6.yDy f( ) x,y -e . xo,Yo (2.100) 

which can be expanded to give, 

(2.101) 

Similarly, the Taylor expansion for expression (2.94) is given by, 

(2.103) 

Inspecting equations (2.102) and (2.103), it is noted that the partial differential terms 

will span from first order upwards, inclusive of cross products. This would yield a 

extremely long and cumbersome expression. However, a number of these terms will 

be zero, and the higher order terms are usually neglected. In the latter case, most 

simplification procedures neglect the terms above the third order. 

Expressions for the forces and moments on an underwater body in six degrees of 

freedom are given in Gertler and Hagen (1967). These expressions, modified to deal 

with an underwater towed body, can be expressed as, 

Note: the notations used for these equations are not strictly in line with those used in 

the rest of the thesis. For a more detailed explanation on the coefficients, refer to 

Gertler and Hagen ( 1967) and Abkowitz ( 1969). 

Fx = £.14 [xqq q 2 + XIT r 2 + xrp rp]+ p 13 [xu li + xvr vr + xwq wq]+ 
2 2 

+E.1 2 [Xuu u 2 +Xvv v2 +Xww w 2 ]+(W-B)Sina+Tx 
2 
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FY = ~ 14 [Yr f + YP p + YPIPI pjpj + Ypq pq + Ypr qr]+ 

p 13 [Yv v + Yvq vq + Y wp wp + Y wr wr] + 
2 

~ 1' [ Y, ur + Y, up+ Y+
11

:
1
1(v' +w')'"llrlp] + 

P1 2[y u 2 +Y uv+Y vl(v 2+w 2)112 l+Y vw]-2 uu v vJvJ vw 

(W - B)CosaSin~ +TY 

Fz =£.1 4 [zq q + ZPP p2 + zrr r2 + zrp rp]+ 
2 

~I' [ z. W + Z,, vr + z,, vp + z, uq + z.1,1 
1

:

1 

i(v' + w')'"jlql] + 

P1 2[z u 2 +Z uw+Z wl(v2+w 2)112 I]+ 
2 uu w wJwJ 

~ 12 
[zJwJ ujwj + zww lw(v

2 
+w

2
)

112
I + zvv V

2 
]­

(W -B)CosaCos ~ + T
2 

Mx = ~ 15 [Kp p + Kr t + Kqr qr+ Kpq pq + KpjpJ pjpj]+ 

p 14 [Kp up+ Kr ur +KV v + Kvq vq + Kwp wp + Kwr wr] + 
2 

pl 3 rK u2 +K uv+K vl(v 2+w 2)112 j+K vw]-2 l uu v vlvl vw 

(Y0 W - YB B)CosaCos~ + (Z0 W - Z8 B)CosaSin~ + MTx 

MY = ~ 15 [Mq q + MPP p
2 

+ Mrr r
2 

+ Mrp rp + Mqlql qjqj] + 

~ 14 [Mw w + Mvr vr + Mvp vp + Mq uq + MwlqJ l(v 2 +w
2
)

112
lq]+ 

£.13 rM u2 +M uw+M wj(v2+w 2)112 j]+ 
2 l uu. w wJwJ 

~ 13 [MJwJ ujwj + Mww lw(v2 +w2)1121 + Mvv v2 ]+ 

(X0 W - XB B)CosaCos~ + (Z0 W - Z8 B)Sin a+ MTy 
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Mz = i 15 
[N r r + NP p + N pq pq + N qr qr + N rlrl rJrJ] + 

£.14 [ N v v + N wr wr + N wp wp + N vq vq] + 
2 ' 

il4 [NP up+ Nr ur + Nlvlr l(v2 +w2)1'2lr]+ 

p 13 [N u 2 + N uv + N vl(v 2 +w 2)1' 2I + N vw]-2 uu v vlvl vw 

(XG W - XB B)CosaSin~ - (YG W - YB B)Sin a+ MTz 

where, (refer also to equation (2.94)), 

Fx,y,z 

Mx,y,z 

p 

w 
B 

: forces on the underwater body along the X, Y, Z axes 

: moments on the underwater body about the X, Y, Z axes 

: density of the surrounding fluid 

: length of the underwater body 

: weight of the underwater body 

: buoyancy force on the underwater body 

(2.104f) 

Tx,y,z : forces on the underwater body due to the tow cable tension along the X, 

Y, Z axes 

MTx,y,z : moments due to tow cable tension on the underwater body about the X, 

Y, Z axes 

X0 ,Y a,Za : distance from the tow point to the centre of gravity of the body. 

and where the coefficients are as follows, 

X : force coefficient in direction along the X axis 

Y : force coefficient in direction along the Y axis 

Z : force coefficient in direction along the Z axis 

K : moment coefficient about X axis 

M : moment coefficient about Y axis 

N : moment coefficient about Z axis 

For example, 

Xqq : second order hydrodynamic coefficient representing the side force as a 

function of q 
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It should also be noted that some first order terms will be zero, e.g. "Xq" - the first 

order hydrodynamic coefficient representing the side force as a function of q. 

These hydrodynamic coefficients are primarily due to shear and pressure effects on the 

body. The main components are the drag, lift, and side force coefficients in the linear 

and rotary directions. In addition, moments will be produced about the tow point. 

These moments are usually due to an angle of incidence to the flow, i.e. when the 

towed body undergoes angular displacement from the steady state configuration. 

Very little information is available for predicting these coefficients using analytical 

methods. Some examples of such analytical predictions based on semi-empirical 

slender body methods are given in Fidler (1978), Summey and Smith (1981), and 

selected publications from the US Naval Sea Systems Command Hydromechanics 

Committee (SEAHAC). 

The Reynolds number encountered for most underwater vehicles is in the region of 

106 to 107
, which is similar to those encountered by sub-sonic aircraft. This is the 

reason that hydrodynamic coefficients and their prediction methods developed for 

wing and tail surfaces of subsonic aircraft are applicable to most underwater vehicles. 

However, even in the aircraft industry, very little data exist for the analytical 

prediction of the coefficients of the body, possibly because these vehicles are wing 

dominated as opposed to underwater vehicles. 

Therefore, the preferred method to obtain the coefficients for underwater vehicles 

remains the use of experimental data. These experiments are conducted using either a 

planar-motion-mechanism, rotating arm facility, wind tunnel, or water channel. The 

forces obtained from the above experiments are then used to calculate the relevant 

coefficients. The procedure can be summarised as follows. 

The forces and moments acting on the body due to the fluid will be a function of the 

density of the surrounding liquid (p), velocity of the body relative to the surrounding 

liquid ( V ), shape I size of the body, and the fluid viscosity. Consider the forces first. 

Using dimensional analysis the forces can be expressed as a function of the "dynamic 
force", (i.e. ,Yip V 2 x geometrical area). Thus, the drag, lift, and side forces on the 

body are expressed as, 

(2.105a) 
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(2.105b) 

(2.105c) 

where 

F : drag, lift, and side forces respectively d,L,S 

p : density of surrounding fluid 

Ag : characteristic area of the body, (usually the cross-sectional area to the flow or 

the surface area) 

Cct,L,s : drag, lift, and side force coefficients respectively 
Vr : relative velocity between the body and the surrounding fluid 

The drag, lift, and side force coefficients are non-dimensional coefficients that 

represent the combined effects due to the pressure, viscosity, surface condition, and 

shape. In many cases they are functions of the geometric shape, Reynolds number, 

Froude number, Weber number, relative surface roughness, etc. 

Similarly the moments acting on the body can be expressed as, 

(2.106) 

where 

M : moments acting on the body 

p : density of surrounding fluid 

Ag : characteristic area of the body 

1 : length of the body, (in some cases the effective diameter "D" is used) 

Cr,p.y : roll, pitch, and yaw moment coefficients respectively 
Vr : relative velocity between the body and the surrounding fluid 

A general explanation of the calculation method of these coefficients is given in 

Abkowitz (1969), while a detailed explanation on the prediction of the coefficients for 

a towed sonar vehicle, including wind tunnel experiments, is given in Wingham and 

Henderson (1988). Similar tests were carried out by the author on the scaled models 

in the Circulating Water Channel using a horizontal planar-motion-mechanism 
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(HPMM). The various coefficients were obtained over a range of angles of incidence 

and plotted as shown in Figures 6.61, 6.62, and 6.63. 

As stated earlier the Reynolds numbers encountered for most underwater towed 

vehicles in practice is in the region of 106 to 107
. Over this region the hydrodynamic 

coefficients tend to remain reasonably constant. Therefore, the curves obtained for the 

coefficients can be used for all practical speeds of the simulation. The digitisation of 

the curves is carried out by producing third order polynomials to represent the curves, 

with the tangent of the angle of incidence being the independent variable and the 

required coefficient the dependent variable. This allows the computer model to 

calculate the required coefficients for each time step, and thus calculate the relevant 

forces and moments. 

If the towed fish or the towing envelop is such that the coefficients tend to change 

substantially with speed (or Re), it is a simple matter to incorporate this into the 

existing computer model. This however, would require the calculation of the 

coefficients at the required speeds and angles of incidence. The coefficients can then 

be digitised using curve fitting techniques or look-up tables to enable the calculation 

of the required coefficients. 

The product coefficients (e.g. Xvr) and the rotary velocity coefficients (e.g. Xqq) are 

usually obtained from planar-motion-mechanism or rotary arm facility experiments. 

For simple models, these values can be obtained by approximation and fluid dynamic 

theory, as shown in Gerhart and Gross (1985) and Clauss et al. (1992). 
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CHAPTER3 

CABLE AND FISH MODEL 

3.1 Modelling of the System 

In Chapters 1 and 2, the techniques employed to model conventional towing 

arrangements were discussed, (e.g. Schram and Reyle (1968), Webster (1975), Ablow 

and Schechter (1983), Milinazzo et al. (1987), Chapmen (1987), Koterayama et al. 

(1988), Kamman et al. (1989), and Huang (1992)). From the various methods 

available to model cable systems, the lumped mass method was selected as it enables 

easy representation of the cable junction and readily integrates the towed fish model, 

(see sub-section 2.2 for detailed justification of the selection). 

In the lumped mass method, the cable is modelled by dividing it into a number of 

discrete segments, which then yield a set of second order differential equations to 

describe the motion of each segment. The number of equations will depend on the 

degrees of freedom considered. Due to the large changes in the cable geometry and 

the cable I fluid interaction, these equations are non-linear. In Chapter 5, it will be 

shown that the lumped mass model equations are representative of the continuous 

cable system. 

If the secondary cable is attached directly to the depressor (Figure 1.l(b)), then it is 

possible to model the system as a single cable with the depressor represented by an 

extra mass. This approach has been successfully modelled previously (Henderson and 

Wright (1991)). If however, the attachment point between the cables is relatively high 

above the depressor (Figure 1.l(d)), the above method is inadequate. To represent 

such configurations, the author models the two cables separately and dynamically 

couples them at the junction. 

The coupling of the cables at the junction is essential when modelling multiple tows in 

parallel as shown in Figure 1.l(i). In systems consisting of multiple tows in series, 

(see Figures 1.l(f) and 1.l(g), the cables are separated by the tow fish, thus requiring 

each cable to be modelled separately and interfaced at the respective tow fish. Thus, 

the solution procedure has to be flexible to enable the investigation of multiple tow 

systems. 
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In order to represent fully the position and attitude of the tow fish, the system is 

modelled in three-dimensions. Although the fish is modelled to yield six degrees of 

freedom, i.e. surge, sway, heave, roll, pitch, and yaw, the cable model disregards the 

three angular displacements, as the linear displacements of the discrete cable segments 

are able to explain completely the position of the cable. Hence, the cable system is 

modelled and solved in the global coordinate system, although certain forces may 

need to be calculated in the local coordinate system. 

However, when modelling the towed fish, one must develop and solve the differential 

equations describing the six degrees of freedom of the fish in the local coordinate 

system. This has to be integrated with the cable solution algorithm to ensure coupling 

between the fish and the cable systems. The model should also be versatile to deal 

with multiple fish, which again require integration with the cable system at the 

appropriate locations. 

3.2 Axes System 

As the cable system is modelled as a discrete number of elements, and the tow fish is 

modelled as a separate entity to be integrated with the cable system, it is required to 

utilise the global and local coordinate systems to develop, solve, and describe the 

motions of the various components of the system. 

3.2.1 Cable System Transformation Matrix 

The cable model is developed and solved in the global coordinate system. However, 

terms such as cable drag forces and hydrodynamic added mass, need to be developed 

in the local coordinate system and transformed to the global coordinate system. 

Figure 3.1 shows the global and local coordinate system as applied to the cable. The 

global coordinate system defined by X, Y, and Z represents the original axes of the 

surface tow point, i.e. the surface tow vessel. The positive directions of the global 

axes system are: 

• X axis - the original direction of motion of the surface tow vessel; 

• Y axis - to the left of the X axis; and 

• Z axis - vertically upwards. 
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The local coordinate system is obtained by rotating the cable segment horizontally in 

the right hand direction about the Z axis, and vertically in the left hand direction about 

the Y axis respectively. The end result is shown in Figure 3.1. The cable element is 

assumed to remain untwisted, i.e. allowing no rotation about the X axis. T.his is 

common among cable modelling techniques, with no. significant difference to the 

r results due to its omission (Chapmen (1987) and Sun and Leonard (1998)). If the 

local coordinates are defined as X', Y' and Z', and if the horizontal (<!>)and vertical (\JI 

) rotational angles are defined as: 

• horizontal angle(<!>) - angle of the cable with the X axis; and 

• vertical angle (\JI) -··angle. of the cable with the X-Y plane 

then the cable transformation matrix. [A] from the global coordinate system to the 

local coordinate system is given by, 

l 
Cos<j> Co~\Jf 

[A]= -Sin<!> 

- C6s<j>Sin\Jf 

Sin<j>Cos\Jf 

Cos<!> 

.- Sin<!> Sin\Jf 

Si~\Jf l 
COS\Jf 

(3.1) 

It can be shown that the inverse of the above transfo~ation matrix is equal' to the 

transpose of the matrix, i. e., 

(3.2) 

3.2.2 Tow Fish Transformation M~trix 

The local coordinate system used to define the linear and angular position of the fish 

shown in Figure 3.2, is based on the right-hand coordinate system. Figure .3:3 shows 

the global and local coordinate system, with X, Y, and Z representing the former axes 

system and X', Y' and Z' representing the latter. The global axes system is identical 

to the global coordinate system described for the cable system. The local coordinate 

system is obtained by rotating the global system using the right hand rotation about 

each axis in turn. Thus, 

• yaw motion (y) -. right' hand rotation about the Z axis; 

• pitch motion (a) - right hand rotation about the Y axis; and 

• roll motion (13) - right hand rotation about the X axis. 
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It is seen from Figure 3.3 that the towed fish transformation matrix [Af] from the 

global coordinate system to the local coordinate system is given by, 

CosyCosa SinyCosa -Sina 

-SinyCos~ + CosyCos~ + 
CosaSin~ 

[At]= Cosy Cosa Sin~ Siny Sina Sin~ (3.3) 

Cosy Sina Cos~ Siny Sina Cos~ 
CosaCos~ 

+ SinySin~ -CosySin~ 

Just as for the cable transformation matrix, the inverse of the fish transformation 

matrix is equal to its transpose, i.e., 

(3.4) 
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3.3 Cable Model 

The modelling of the cable assumes the distributed mass of the tow cable to be 

represented by a series of discrete masses separated by weightless elastic straight-line 

segments, (i.e. the so called lumped mass approach). The cable segments are assumed 

incapable of carrying compressive loads or bending moments as is the practice with 

lumped mass models. The selection of this method over the others used in similar 

models, was due' to the ease in representing the junction by defining the relevant 

boundary conditions for that node. 

The lumped mass model is shown in Figure 3.4, with the nodes being numbered from 

the point of attachment of the cable to the tow fish, culminating at the upper end of the 

cable at the surface. The cable is assumed to be totally submerged throughout the 

simulation. 

z 

x 

4 

Lumped Mass Model of the Two-Part Tow 

Figure 3.4 

n 

The motion of the cable can be described by applying Newton's law of motion to each 

node in tum. Figure 3.5 represents the "i" th node of the cable (excluding the junction 

and boundary nodes), from which the following equations of motion are obtained, 

m.R=F (3.5) 

where 
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m : element mass matrix 

R : nodal acceleration vector 

F : nodal force vector. 

x 

Cable Node "i" 
Figure 3.5 

The node mass matrix ( m) will include, half the mass of each segment adjacent to 

that node, any extra masses fitted to the node, and the added mass due to the 

acceleration of the surrounding fluid particles. 

In obtaining the added mass, the cable acceleration is resolved in the tangential and 

normal directions to the cable axis and the resulting added mass effect is then resolved 

in the horizontal and vertical directions to ensure compatibility with the global axes 

system. These components plus the physical mass of the cable segments can be 

distributed to each node to yield a 3 x 3 mass matrix. Thus, the equations of motion 

for node "i" in matrix form are, 

(3.6) 
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where 

miab : where a= 1,2,3 and b = 1,2,3 

the mass matrix terms of node "i" 
x,, y, ,i, : acceleration of node "i" in the X,Y, and Z directions respectively 

F1x,y,z : forces on node "i" in the X, Y, and Z directions respectively 

The mass matrix terms consisting of the mass, added mass and coupling terms are 

given by: 

m111 mi + me1x + 0.5 { Am1i-1 Cos2 <!>1-1 Cos2 W1-1 + Am11 Cos2 <!>1 Cos2 
\jfi + 

Amni-1 [1 - Cos2 <l>r-1 Cos2 \jli-1 ] + Amm [1 - Cos2 
<)>1 Cos2 \j/1 ] } 

mil2 0.5 { [Am1i-1 - Amni-1] Sin <l>i-1 Cos <!>1-1 Cos2 \j/1-1 + 

[Amu - AmniJ Sin <)>1 Cos <)>1 Cos2\jf1 } 

mi13 0.5 { [Am1i-1 - Amm-d Cos <!>1-1 Sin \j/1-1 Cos \jli-1 + 

[Amti - Amm] Cos <!>1 Sin \j/1 Cos \j/1 } 

m122 m1 + meiy + 0.5 { Amu-1 Sin2 <!>1-1 Cos2 W1-1 + Am11 Sin2 <!>1 Cos2 \j/1 + 

Amm-1 [1 - Sin2 <!>1-1 Cos2 \j/1-1] + Am01 [1 - Sin2 
<)>1 Cos2 \j/1] } 

m123 0.5 { [Amu-1 - Amni-d Sin <!>1-I Sin \jfi-1 Cos \j/1-1 + 

[Amti - Amm] Sin <)>1 Sin \j/1 Cos \j/1 } 

mi33 mi+ me1z + 0.5 { Amu-1 Sin2 \j/1-1 + Am11 Sin2 \j/1 + 

Amm-1 [1 - Cos2 \j/1-1 ] + Amm [1 - Cos2 \j/1] } 

where 
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m1 : mass of node "i", i.e. the addition of half the mass of each adjacent 

segments 

me1x,y,z : mass and added mass of any additional weight attached to node "i" 

Am11 : tangential added mass coefficient of cable segment "i" 

Amm : normal added mass coefficient of cable segment "i". 

The forces Fix. F1y, and F1z will include the tensions in the adjacent segments, net 

weights of the cable segments in water, and the drag forces on the cables due to the 

cable - water interface. Hence, from Figure 3.5 these forces are given as, 

FIX = T1 Cos <!>1 Cos \lf1 - Ti-I Cos <1>1-I Cos \jf 1-I + Y2 Fctix + Y2 Fct1-Ix - Fe1x (3.8a) 

Fiz = Ti Sin \lfi - T 1-1 Sin \lf 1-1 + Y2 Fct1z + Y2 Fcti-Iz - Feiz - W1 (3.8c) 

where 

T1 : tension of segment "i" 

Fctix,y,z : drag forces on segment "i" in the X, Y, and Z directions 

Feix,y,z : any additional forces on node "i" in the X, Y, and Z directions 

W1 : net weight of node "i" in water, i.e. the addition of half the net weight of 

each adjacent segment 

3.3.1 Drag Forces 

The relative motion between the cable and the fluid will lead to a drag force resulting 

in a damping effect on the cable. In Chapter 2, the calculation of the drag forces on an 

underwater cable was dealt in detail. The method recommended to calculate these 

forces is the use of the modified Morison's equation, i.e. equatio~ (2.73), with the 

appropriate drag coefficients. Since the added mass of the cable is included in the 

cable's mass matrix defined in equation (3.6), the inertia term in Morison's equation 

(2.73) is ignored. 

These drag forces will have components in the tangential and normal directions to the 

cable axis as shown in Figure 3.5, and will be proportional to the square of the relative 

cable velocity. These drag forces are first calculated in the local coordinate system 
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(see equations (2.72)) and transformed. to the global coordinate system to be 

incorporated in equations (3.8). 

In order to obtain the drag forces! it is first required to calculate the local relative 

velocities of the cable. The global relative nod_al velocities (V nx. V ny. and V nz) can be 

obtained by deducting the water current velocities (Vex. Vey. and Vcz) from the nodal 
global absolute velocities ( x,, y,, and z,) as, 

(3.9a) 

(3.9b) 

(3.9c) 

Segment "i" ·is located between nodes "i" and "i+ 1 ". T_herefore, the global relative 

velocities of cable segment "i" (VSnx,y,z) can be obtained as the mean of the relative 

velocities of the two adjacent nodes, i.e., nodes "i". and "i+l". Thus, 

· VSnx = (Vrix + Vn+lx) / 2 (3.lOa) 

VSny = (Vny + Vn+ly) I 2 (3.lOb) 

·VSnz = (Vnz+Vn+lz)/2 (3.lOc) 

The local relative velocities (VSnx',y',z') of cable segment "i" are 'then obtained 'by 

multiplying the global relative velocities (VSrix,y,z) by the transformation matrix [A] 

for the cable element. Thus, 

[VSrix',y',z'] = [A] . [VSrix,y,z] (3.11) 

The local drag forces of cable segment "i" are then obtained from the reduced 

Morison's equation, (i.e. minus the inertia term) as, 

Fdix' . = 0.5 · Ct · P · D1 · 11 · VSrix' . I VSnx' I (3.12a) 

(3.12b) 

Fd1z' = 0.5. en•, p. DI. Ii. VSnz' .1 vsriz' I (3.12c) 
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The drag forces thus obtained are then transformed back to the global coordinate 

system using the inverse of the transformation matrix. Since [Ar1 = [A]T, 

T [Fd1x,y,z] = [A] · [Fd1x',y',z'] (3.13) 

Since the drag forces calculated above will influence the behaviour of the adjacent 

nodes, the former is distributed evenly between these nodes. Thus, the drag forces 

Fdix,y,z for cable segment "i" is distributed evenly between nodes "i" and "i+ 1" 

respectively. Similarly the drag force on segment "i-1" is distributed evenly between 

nodes "i-1" and "i", and so on. The distribution of the segment drag forces to the 

adjacent nodes is shown in equations (3.8). 

3.4 Equations of Motion for Cable Nodes 

Equation (3.6) describes the equations of motion for node "i", (i.e. any node along the 

cable except the junction and boundary nodes), in matrix form. In this sub-section, 

this set of equations will be further developed. Expanding equation (3.6) gives, 

m!11. x1 + mi12 · Y1 + m,13. zl = F,x (3.14a) 

m121. xl + m,22. Y1 + mi23. z1 = Fiy (3.14b) 

mm . x1 + m,32. Y, + mm. zi = F,z (3.14c) 

From equation (3.14b), the acceleration in the Y-direction is obtained as, 

(3.15) 

Substituting equation (3.15) into equation (3.14a) gives, 

(3.16) 

Further, substituting (3.15) into equation (3.14c) gives, 
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Now defining: 

and substituting equation (3.18) into equations (3.16) and (3.17) gives, 

(K2) . x, + (J) . z, = (m122) . F1z - (mm) . F1y 

Solving equations (3.19) and (3.20) to give the accelerations x, and z1 yields, 

where 

DEN = (1. J) - (K1. Kz) 

Substituting (3.21) and (3.22) in (3.15) yields y, as, 

y, = { Fix.[Kz.m123 - J.mi2J] + F1z.[K1.m121 - I.mm]+ 

(Fiy I m122).[DEN - K1.m121.mm - Kz.mm.m112 - J.m121.m112 -

I.mm.mm] } I DEN 

Now defining: 

L = (~t)2 . I/DEN 
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(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25a) 



M = (~t)2 . JI DEN (3.25b) 

Ni = (~t)2 . K1 I DEN (3.25c) 

(3.25d) 

where "~t" is the time step (increment). Substituting equations (3.25) into equations 

(3.21), (3.22), and (3.24) yields the accelerations as, 

y
1 

= { Fix-[mi23.N2 - m121.M] + F1z.[m121.N1 - mm.L] + 

(F1y I m122).[ (~t)2- mm.mm.Ni - m123.m112.N2 - m121.m112.M -

mm.mi2~.L] } I (~t)2 

(3.26a) 

(3.26b) 

(3.26c) 

Now considering the forces on node "i" given by equations (3.8). It is possible to 

separate the tension terms and express them as, 

(3.27a) 

(3.27b) 

F1z = T, Sin \111 - T 1-1 Sin \If i-1 + F10z (3.27c) 

where Fiox,y,z represents all forces acting on the node, except for the tension forces, i.e. 

drag forces, weight, buoyancy etc. Now substituting equations (3.27) into equations 

(3.26) gives the global accelerations X.
1

, y 
1

, and z
1 

of the node as, 

x.l = (- Px1 T1-l + Rx1 T, + Sx1) I (~t)2 (3.28a) 

:YI = (- Pyi T1-1 + Ry1 T, + Sy1) I (~t)2 (3.28b) 

i, = (- Pz1 T1-l + Rzi T1 + Sz1) I (~t)2 (3.28c) 

where 
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Pxi mi22. M. CTxi-1 - m122. Nl . CTzi-1 + (mm. Nl - mi12. M). CTy1-1 

Py1 (mi23. N2 - mi21 . M). CTxi-1 + (m121 . Nl - m,23. L). CTzi-1 + Pyie 

Pz1 mi22. L. CTzi-1 - m122. N2. CTx1-1 + (m112. N2 - mm. L). CTy1-1 

Rxi m122. M. CTx1 - m122. Nl . CTz, + (mm. Nl - m12. M). CTy1 

Syi (mm. N2 - mi21 . M). F10x + (m121 . Nl - m123. L). F10z + Sy1e 

and where 

Pyie 

Syie 

CTxi-1 

CTyi-1 

CTxi 

{ (L\t/- (m121 . mm .N1 + m112. mm. N2 - m112. m121 . M -

mm. mm. L) I m122 } . CTy1-1 

2 . 
{ (L\t) - (m121 . mm .N1 + m112 . mm . N2 - m,12 . m121 . M -

mi23 . mm . L) I mm } . CT y1 

2 
{ (L\t) - (m121 . mm .N1 + m112. mi23. N2 - m112. m121 . M -

mm . mm. L) I m122 } . F10y 

Cos <!>1-1 . Cos \jli-1 

Sin \j/1-1 

117 

(3.29a) 



CTy1 = Sin <!>1 . Cos 'lfi 

CTz1 = Sin 'lf1 
(3.29b) 

3.4.1 Junction 

Equations (3.6), (3.8) and hence (3.28) obtained from Figure 3.5 are not valid for the 

node representing the junction (j), shown in Figure 3.6. This node includes in 

addition to the segments adjacent to the node, the final segment of the secondary cable 

represented by segment number "D-1", where "D" is the node representing the 

depressor (see Figure 3.4 for the numbering of the nodes). The addition of this extra 
cable segment will result in the mass matrix (m) in equation (3.5) being modified to 

include the physical mass and the added mass of this extra cable segment. In addition, 

the extra forces at the node due to the additional cable segment will change equation 

(3.8). If subscript "j" represents the junction, then the equation of motion for node "j" 

is, 

where 

IDjll 

IDjl2 

m 112 

m 122 

m 132 

(3.30) 

= ID111 + 0.5 { AmtD Cos2 <l>o-1 Cos2 'lfo-1 + Arnao [1 - Cos2 <l>o-1 Cos2 'lfo-1 ] } 

= m112 + 0.5 { [AmtD - Arnao] Sin <l>o-1 Cos <l>o-1 Cos2 'lf 0-1 } 

= rn1!3 + 0.5 { [ArntD - Arnao] Cos <l>o-1 Sin 'lfo-1 Cos 'lfo-1 } 

= 

= m122 + 0.5 { Amro Sin2 <l>o-1 Cos2 'lfo-1 +Arnao [1 - Sin2 <l>o-1 Cos2 'lfo-1 ] } 

= mm + 0.5 { [AmtD - Arnao] Sin <l>o-1 Sin 'lf 0-1 Cos 'lfo-1 } 

= 
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mj32 = mj23 

= mm + 0.5 { Amm Sin2 '!fn-1 + Amnn [1 - Cos2 '!fn-1 ] } 

where mi! 1 to m,33 are as defined in equations (3. 7), however applied to the node 

representing the junction (i.e. node "j"). Amtn and Amnn are the tangential and 

normal added mass coefficients of the final cables segment of the secondary cable, i.e. 

segment number "D-1". 

x 

z 

w. 
I 

Cable Junction Node "j" 

Figure 3.6 

y 

The forces acting at the junction will include the terms in equation (3.8) applied to 

node "j", plus- the tension and drag forces of the secondary cable segment (D-1 ). 

Thus, the forces at node "j" are, 

F1x = Tj Cos <l>j Cos 'l'J - Tj-1 Cos <l>J-1 Cos 'l'j-1 

T D-1 Cos <l>n-1 Cos 'l'D-1 + Y2 Fctjx + Y2 FdJ-lx - Y2 FctD-lx - Fejx (3.3la) 

F1y TJ Sin <!>J Cos 'l'J - TJ-1 Sin <!>J-1 Cos 'l'J-l -

Tn-1 Sin <!>n-1 Cos '!fn-1 + Y2 FctJY + Y2 FctJ-ly + Y2 Fctn-1y - FeJy (3.31b) 
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F1z = TJ Sin \j/j - TJ-1 Sin \j/J-1 - T 0-1 Sin \j/0-1 + 

Y2 FctJz + Yz FctJ-lz + Yz Fct0-1z - Fejz - Wj (3.3lc) 

The net weight WJ, will include the contribution by segment "D-1" in mass and 

buoyancy. Following the sequence described from equation (3.15) to (3.29), the 

equations of motion for the junction (i.e. equations (3.30)), will reduce to, 

= 

= 

= 

where 

Pox = mJ22. M. Cos <l>o-1. Cos \j/0-1 - mJ22. Ni . Sin \j/0-1 + 

(mj32 . N 1 - mJ 12 . M) . Sin <l>o-1 . Cos \j/0-1 

Poy = (mj23 . Nz - mj21 . M). Cos <l>o-1 . Cos \j/0-1 + 

Poz 

Poye 

(mJ21 . N 1 - mJ23 . L) . Sin \j/0-1 + Poye 

= mJ22 . L . Sin \j/0-1 - mJ22 . Nz . Cos <l>o-1 . Cos \j/0-1 + 
(mJ12 . Nz - mJ32 . L) . Sin <l>o-1 . Cos \j/0-1 

2 = { (~t) - (mJ23. mJ32. Ni + mJ12. mJ23. Nz - mJ12. mj2i .M -

mJ23 . mJ32 .L) . Sin <l>o-1 . Cos \j/0-1 } I mj22 

(3.32a) 

(3.32b) 

(3.32c) 

Comparing equations (3.28) and (3.32), it is seen that the latter set of equations has an 

additional term due to the tension of the secondary cable acting on the node 

representing the junction (j). 

3.4.2 Boundary Nodes 

When considering boundary nodes, (e.g. the surface, towed fish, and depressor node), 

only one cable segment is attached to the node, (see Figure 3.7). Therefore, equations 

(3.28) for node "i", will need to be modified to reflect these changes. 
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Consider the nodes representing a towed or a depressor fish, with only one attached 

cable as shown in Figures 3.7(a) and 3.7(b), respectively. Therefore, the tension Ti-I 

in the set of equations in (3.28) will disappear, reducing them to, 

(3.33a) 

(3.33b) 

(3.33c) 

Similarly for the surface node (Figure 3.7(c)), the tension T1 will disappear and the set 

of equations in (3.28) reduces to, 

x, = (- Pxi Ti-I+ Sx,) I (~t)2 (3.34a) 

Y, = (- Pyi T,_I +Sy,) I (~t)2 (3.34b) 

zi = (- Pz1 T,_J + Sz,) I (~t)2 (3.34c) 

3.5 Tow Fish Model 

Since the model should be able to incorporate more than one fish, (see Figure 1.1), 

and the depressor used in the two-part tow configuration is in most cases a tow fish 

with negative lift, it is essential that the cable system be able to integrate the fish 

model into the solution algorithm. The modelling technique applied should be able to 

represent each tow fish at the appropriate node, thus enabling their integration into the 

cable solution, without affecting accuracy. 

Unlike the cable system, which is modelled and solved in the global coordinate 

system, the fish needs to be modelled in a local coordinate system, thus enabling a 

true and easy representation of the six degrees of freedom necessary to describe the 

position and attitude of the body. However, in order to integrate the fish model into 

the solution algorithm of the cable system, the results from the local fish model has to 

be transformed to the global coordinate system. The appropriate transformation was 

explained in sub-section 3.2, resulting in the transformation matrix [Ad given by 

equation (3.3). 
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The modelling of the fish is based on the method described in Abkowitz (1969), 

modified by the author to suit the requirements of the tow configuration. Figure 3.8 

shows the tow fish to be modelled in accordance with Newton's laws of motion. In 

order to apply the equations of motion, an origin for the tow fish has to be identified. 

The usual practice when applying equations of motion to submerged bodies, is to take 

the origin as its centre of gravity (G) or its geometric centre (0). However, since the 

fish model has to be solved as part of the cable system, the appropriate point to be 

selected as the origin would be the tow point, as it will be an integral part of the cable 

configuration. 

In order to separate the force and moment equations, they will be considered as acting 

at the centre of gravity, however, they will be expressed in terms of components 

measured relative to the tow point. The latter point will be designated as "1", as the 

tow fish is usually fitted to the lower end of the cable system, and is therefore the first 

node in the system. 

This notation will not be valid if the system consists of more than one tow fish or 

incorporate a depressor fish, as these additional fish will be attached to node numbers 

other than node 1, (see Figure 1.1). However, the notation described will be used to 

explain the modelling technique for tow fish, and may be modified as required for any 

additional fish in the system. 

From hereon the subscripts used in this chapter are as follows: 

F : tow (or depressor) fish 

G : centre of gravity 

0 : geometric centre (centroid) 

1 : tow point 

From Figures 3.8 and 3.9, by applying linear and angular equations of motion to the 

centre of gravity (G), within the local coordinate system, we have, 

".' ~ A d(Angular Momentum)G 
MfG = 1.MfGx' + J.McGy' + k.MfGz' = --------~ 

dt 

where 
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Fr : force vector acting on the fish 

MrG : moment vector acting on the fish about its centre of gravity 

mr : mass of fish 
U G : velocity vector at the centre of gravity (G) 
A A A 
i, j, k : unit vectors along X', Y', and Z' (local) axes system. 

It is now necessary to develop the equations expressed with the forces, moments, and 

velocities of the tow point (1). From Figure 3.9, the distance from the tow point (1) to 

the centre of gravity (G) is given by RG, which has components Xa, Y 0 , and Z0 , 

measured from the tow point and is positive in the directions of the local axes system. 

3.5.1 Force Equations for Tow Fish 

Let us first consider the force equation of motion given in (3.35). 

(3.35) 

The velocity vector U G at the centre of gravity G, will be equal to the velocity vector 

U 1 at the tow point (1), plus the velocity of "G" relative to "1", i.e., 

(3.37) 

Since RG is a vector fixed within the fish, there will be no change in the length of 

R G , as the fish is considered rigid. So the only change in R G will be in direction. 

Thus, 

(3.38) 

where .Q is the angular velocity vector of the body, and will be the same at any point 

within the body. This angular velocity vector .Q is defined as, 

- -:" d~ "; da Ady 
.Q = I.- + J.- + k.-

dt dt dt 
(3.39) 

where a,~' and y are the rotational motion of the fish defined in sub-section 3.2. 

Substituting equation (3.38) into equation (3.37) gives, 
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Now substituting into equation (3.35) yields, 

Fr = mr. d(U' + .Q x R G) 
dt 

which expands to give, 

(3.40) 

(3.41) 

(3.42) 

In order to solve equation (3.42), it is necessary to obtain expressions for the terms on 

the right hand side. Considering first the term U1 • The velocity vector U1 will have 
,... ,... 

three components u, v, and w along the local axes system, having unit vectors i , j, 
,... 

and k respectively. Thus, 

,... ,... ,... 

U 1 =i.u+ j.v+k.w (3.43) 

Differentiating with respect to time "t" gives, 

U = dU 1 = d(i.u + }.v + k.w) 
I dt dt 

(3.44) 

which expands to give, 

,... ,... ,... 

U 
-=- • di "°; • dj kA • dk 

1 =1.u+u.-+J.v+v.-+ .w+w.-
dt dt dt 

(3.45) 

In order to simplify the above equation, it is necessary to obtain expressions for the 

di d} d dk h' h . h h . h . . h' h 1 1 . terms -, -, an - , w 1c give t e c ange m t e umt vectors wit m t e oca axis 
dt dt dt 

system. These unit vectors i, }, and k will not change in length over time. However, 

the same is not true for their directions, as they will change as the attitude of the body 

changes with body rotation. In order to develop expressions for this change, consider 

Figures 3.lO(a, b, and c), which shows the rotation of the axes system about each axis 

separately, i.e. roll, pitch, and yaw. The changes to the vectors are given by 
,... ,... ,... 

di, dj, and dk, which is the product of the unit vector and the respective differential 

angle of rotation measured as a small angle in radians. 
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From Figures 3.lO(a, b, and c) respectively, the following can be deduced: 

Rotation about the X axis - Roll - 13 

A 

di= 0 

d} = k.d!) 

dk=-}.dl3 

Rotation about the Y axis - Pitch - a 

A A 

di =-k.da 
A 

dj =0 
A A 

dk = i.da 

Rotation about the Z axis - Yaw - y 

di= j.dy 
A A 

dj = -i .dy 
A 

dk=O 

(3.46a) 

(3.46b) 

(3.46c) 

(3.47a) 

(3.47b) 

(3.47c) 

(3.48a) 

(3.48b) 

(3.48c) 

As the rotational angles are small, the contributions of the three rotat10ns can be added 

to yield, 

"' "' "' "' 
di= i.O + j.dy - k.da 

d} = -i.dy + ].o + k.d~ 

dk = f.da - J.d~ + k.O 

Differentiating the above with respect to time "t" gives, 

A 

di ';' 
0 

': dy kA da 
-=1. + J.-- .-
dt dt dt 

d} =-i.dy + ].o+f_dl3 
dt dt dt 
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elk = i. da _ J. dJ3 + k. 0 
dt dt dt 

Using the angular velocity vector Q defined in equation (3.39) gives, 

- A A A 

Q=i.p+ j.q +k.r 

where 

dy 
r=-

dt 

Substituting into equations (3.50) yields, 

A 

di ~ ~ " 
-=1.0+ J.r-k.q 
dt 

A 

dj ':" ~ A 

-=-1.r+ J.O+k.p 
dt 

A 

dk " " " -=i.q- j.p+k.O 
dt 

Substituting into equation (3.45) gives U1 as, 

u1 = i.(u + q. w - r. v) + }.(v + r.u - p. w) + k.(w + p.v -q. v) 

(3.50c) 

(3.51) 

(3.52a) 

(3.52b) 

(3.52c) 

(3.53) 

Having obtained U1 , it is now needed to define Q and Q in equation (3.42). Using 

the definition in equation (3.51), i.e., 

Q =i.p+ }.q +k.r (3.51) 

Q is obtained by differentiating equation (3.51) with respect to time "t" as, 
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;.. = d(i.p+ }.q +k.r) -~ 0 di ': 0 d} kA 0 dk 
~~ _ _.;:_-----"____::_ __ - I. p + p. + J. q + q. + . r + r. 

dt dt dt dt 
(3.54) 

Substituting from equations (3.52) into the above and simplifying gives, 

_.:__ A ,.._ I'\. 

.Q=i.p+j.q+k.r (3.55) 

Now to obtain the term RG (see equation (3.42)), since, 

A A A 
RG = i.XG + j.YG + k.ZG (3.56) 

By differentiating equation (3.56) with respect to time "t" gives R G as, 

A A A 
--=-- dRG ~ . di ': . dj A . dk 
RG =--=1.XG +XG.-+J.YG +YG.-+k.ZG +ZG.-

dt dt dt dt 

(3.57) 

Now XG = YG = ZG = 0, as RG is fixed within the body, (see equation (3.38)). 

Substituting from equations (3.52) and simplifying gives, 

• - - A A A 

RG = .Q x RG = i .(q.ZG - r. YG) + j.(r.XG - p.ZG) + k.(p. YG - q.XG) (3.58) 

The right hand terms of equation (3.42) have now been obtained. Substituting 

equations (3.51), (3.53), (3.55), (3.56), and (3.58) into equation (3.42) and separating 

the respective local coordinate directions (i.e. X', Y', and Z') gives, 

Frx. = mr .[u + q.w -r.v -XG (q 2 + r 2
) + YG (p.q -r) + ZG (p.r + q)] (3.59) 

Fry.= mf .[v + r.u - p. w - YG (r 2 + p 2
) + ZG (q.r-p) + XG (q.p + r)] (3.60) 

(3.61) 

where 

u, v, w : linear velocities of the body along X', Y', and Z' (local) directions 

u, v, w : linear accelerations of the body along X', Y', and Z' (local) directions 

p, q, r : angular velocities (roll, pitch, and yaw) defined in equation (3.51) 

p, q, r : angular accelerations of the body about X', Y', and Z' axes 
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3.5.2 Moment Equations for Tow Fish 

Now let us consider the moment equation given by equation (~.36), i.e., 

M = -:-M ~M kA M = d(Angular Momentum) 0 
fG 1. fGx' + J. fGy' + · fGz' 

dt 
(3.36) 

Using Figure 3:11, the moment about the tow point (1), i.e. Mc1 , can be expressed as: 

The moment about the tow point (1 ), (Mn ) = 
the moment at the centre of gravity (G), (Meo) + 

the moment caused by the force Fe acting at the centre of gravity 

(G) at a distance R 0 from the tow point (1). 

...... 
....... , '' ...... 

' ' ...... 
...... R 

'-.., G 
......... 

...... 
......... ...... 

......... 

F 

Forces and Moments at Tow Point (1).and Centre of Gravity (G) of Towed Fisb 

Figure 3.11 

Thus, 

or (3.62) 

(3.63) 

Since the axes system considered at the centre of gravity (G), coincides with the 

principal axes of inertia, then the products of inertia are zero. Thus, 

(3.64) 
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where Iax',y',z' are the moments of inertia of the towed fish at the centre of gravity 

around the X', Y', and Z' axes respectively. 

The axes system at the origin, i.e. tow point (1), is parallel to the axes system at the 

centre of gravity (G) and have identical unit vectors, i.e. i,], and k. Thus, using the 

parallel axes theorem to express the moments of inertia (lox· ,y' ,z') at the centre of 

gravity (G), in terms of the moments of inertia Cix',y',z') at the tow point (1), we get, 

( 
2 2 

lax· = Ix· - mr Y G + Za ) (3.65a) 

(3.65b) 

(3.65c) 

Substituting into equation (3.64) and using equation (3.58) gives, 

(3.66) 

A A 

- mf [i (XG. YG .q + XG .ZG .r) + j(XG. YG .p + YG .ZG .r) (3.67) 
A 

+ k(XG .ZG .p + YG .ZG .q)])} 

where p, q, and r are as defined in equation (3.51). Substituting equation (3.42) into 

(3.63), followed by its substitution into the left hand side of the above equation and 

expanding yields, 

A A A 

M = d[i .Ix .. p + j.IY .. q + k.Iz .. r] 
fl dt 

d[RG x(QxRG)] d[Ul +(QxRG)] 
-mf. + mf .Ra.--=-----"'--

dt dt 
d A A 

- mf .-[i (XG. YG .q + XG .ZG .r) + j(XG. YG .p + YG .ZG .r) 
dt 

+ k(XG .ZG .p + YG .ZG .q)] 
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Using equation (3.38) in the above and simplifying gives, 

(3.69) 

A A 

+ j(XG. YG .p + YG .ZG .r) + k(XG .ZG .p + YG .ZG .q)] 

A A A 

Consider the term d[i.Ix .. p + j.IY, .q + k.Iz .. r] I dt, in the above equation, it can be 

expanded to yield, 

A A A 

d[i.lx .. p + j.ly' .q + k.lz' .r] 

dt 

~ d(lx' .p) di ~ d(ly' .q) dJ A d(lz' .r) dk 
= 1. +Ix' .p.- + J. + Iy .. q.- + k. + Iz .. r.-

dt dt dt dt dt dt 

(3.70) 

Since the inertia terms will remain constant over time, substituting equations (3.52) 

gives, 

A A A 

d[i.lx' .p + j.ly' .q + k.lz' .r] ~ . ~ A 

-------'--------=I.Ix' .p +Ix' .p.(J.r-k.q) 
dt 

Separating the terms along the respective local axes gives, 

A A A 

(3.71) 

d[i.lx' .p + j.ly' .q + k.lz' .r] ~ . ~ . 
-----dt ____ = l[lx' .p + (lz' - ly.).q.r] + J[ly' .q +(Ix' - lz,).r.p] 

+ k[Iz' .r + (ly' - lx.).p.q] 

(3.72) 

Substituting equations (3.53), (3.56), and (3.72) into equation (3.69) and separating 

into the local (X', Y', and Z') axes system yields, 

Mfx. = Ix .. p + (lz. - IY.).q.r + mr [YG (w + p.v - q.u) - ZG (v + r.u -p.w) 

+ XG .YG (p.r - q) - XG.ZG (p.q + r) + YG.ZG (r 2 
- q 2

)] 
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Mfy' = IY .. q +(Ix. - Iz.).r.p + mf [ZG (ti + q.w - r.v) - XG (w + p.v - q.u) 

+ YG.ZG(q.p-r)-YG.XG(q.r + p) + XG.ZG(p 2 - r2)] 

Mfz. = Iz .. r + (IY. - Ix.).p.q + mf [XG (v + r.u - p.w) - YG (ti + q.w - r.v) 

+ ZG .XG (r.q - p) - ZG.YG (r.p + q) + YG.XG (q 2 - p2)] 

3.5.3 Linearisation of Equations 

(3.74) 

(3.75) 

Equations (3.59), (3.60), (3.61), (3.73), (3.74), and (3.75) describe the motion of the 

tow fish, with the tow point (1) considered as the origin. In order to simplify the 

above set of equations, it is possible to separate the vertical and horizontal motions 

and then linearise the equations. 

In separating the vertical and horizontal motions, we decouple the following degrees 

of freedom: 

• Vertical Motion surge, heave, and pitch (x', z', and a) 

• Horizontal Motion - surge, sway, roll~ and yaw (x', y', ~.and y). 

In order to linearise the equations, let us consider the vertical motion first. In this 

case, any term having sway, roll, yaw, or their derivatives are neglected. In addition, 

equations (3.60), (3.73), and (3.75) can be neglected as they describe horizontal 

motion~. 

For the towed bodies considered, the term Ya, i.e. the distance from the tow point (1) 

to the centre of gravity (G), along the Y axis is considered zero. This term can be 

incorporated into the model with little modification, however, it is rarely non-zero due 

to symmetry. Thus, equations (3.59), (3.61), and (3.74) will reduce to, 

(3.76a) 

F [ . . z . 2 x ""] fz' = mf w - a..u - G.a. - G·a. (3.76b) 

(3.76c) 

When linearising the above equations, all variables will be measured from an initial 

value. For example, heave velocity (w) is expanded as, 
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w = wo+!iw (3.77) 

where w0 is the initial (or equilibrium) value and /iw is the change from the initial 

value. Now for all variables except surge velocity (u0), the initial value will be zero. 

Thus, equation (3.77) reduces to, 

w = !iw (3.78) 

However, since the body may have initial forward speed, the surge velocity value will 

be, 

u = uo + !iu (3.79) 

Thus, all terms in equations (3.76) can be replaced by linearised terms to give, 

(3.80a) 

(3.80b) 

(3.80c) 

Neglecting the higher order terms and dropping the /1 prefix, equations (3.80) reduce 

to, 

(3.81a) 

(3.81 b) 

(3.8lc) 

Now considering the horizontal motion, any terms having heave, pitch, or their 

derivatives are neglected, together with equations (3.61) and (3.74) as they describe 

vertical motions. Again the term Y 0 is considered to be zero. Thus, equations (3.59), 

(3.60), (3.73), and (3.75) will reduce to, 

(3.82a) 
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(3.82b) 

(3.82c) 

(3.82d) 

Following a similar linearisation exercise as described for the vertical motions, we 

obtain, 

(3.83a) 

(3.83b) 

(3.83c) 

(3.83d) 

Now using equations (3.81) and (3.83), collecting the acceleration terms on one side 

and placing the equations in matrix form, gives the following set of equations in the 

local coordinate system, 

Frx· 

Fry. - mr .u0 :y 
Frz. +mr.u 0 .a 
Mrx. + mr .Za .uo·Y 

Mry· +mr.Xa.u 0 .a 
Mrz. + mr .Xa .uo ·Y 

mr 0 

0 mr 

0 0 

= 

0 -mr.Za 

mr.Za 0 

0 mr.Xa 

0 

0 

mr 

0 

-mf.XG 

0 

0 mr.Za 0 u 
-mr.Za 0 mf.XG v 

0 -mf.XG 0 w 
• a Ix. 0 -mf.XG.ZG 

0 IY. 0 a 
-mf.XG.ZG 0 Iz. y 

(3.84) 
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In the force and moment terms of the matrix, there will be terms representing the 

added mass and added inertia of the tow fish, which can be transposed into the mass 

matrix. Further, by representing all the left hand side terms within a row in equation 

(3.84) by the single terms F'fx',y',z' and M'fx',y',z' gives, 

F;x. u 
F~. v 
F;z. 

=[Fish Matrix]• 
w 

M~. 
Mass 

~ 
(3.85) 

M~. a 
M~z· y 

where [Fish Mass Matrix]= 

mr +Amrx· 0 0 0 mf.ZG 0 

0 mf +Amfy. 0 -mf.ZG 0 mf.XG 

0 0 mf +Amfz. 0 -mf.XG 0 

0 -mf.ZG 0 Ix'+ Alx' 0 -mf.XG.ZG 

mr.Zo 0 -mf.XG 0 IY. +Aly. 0 

0 mf.XG 0 -mf.XG.ZG 0 lz' + Alz' 

3.5.4 Equations of Motion for Tow Fish 

In order to solve the above set of equations, it is needed to find the forces and 

moments acting on the fish. Although it is possible to calculate these values using 

theoretical methods, in practice it is much simpler to obtain these values using 

experimental data. Either way, the values obtained are converted to a non­

dimensional coefficient and plotted against the various vertical and horizontal angles 

of attack. The conversion to non-dimensional form is obtained using the relationships 

presented in sub-section 2.5 of Chapter 2, i.e. equations (2.105) and (2.106), 

Force coefficient = Force I ( 0.5 . p . Afx . V f/ ) (3.86) 

Moment coefficient = Moment I ( 0.5 . p . Afx . lr . V fr2 
) (3.87) 

where 

137 



p : density of liquid 

Afx : cross sectional area of the fish perpendicular to the x axis 

lf : length of fish 

Vfr : relative velocity between the fish and the surrounding liquid 

The force or moment coefficient at any given angle of attack can then be obtained by a 

curve fitting method utilised to develop an appropriate equation. The coefficient is 

then multiplied by the appropriate equation defined in (3.86) and (3.87) to give the 

force or moment under the prevailing conditions. The experimental procedure to 

obtain the force and moment coefficients and the curve fitting technique are described 

in Chapter 6. 

Since the origin of the fish is taken as the tow point (1) to enable its integration into 

the cable solution algorithm, the cable tension will not have any effect on the 

moments. However, the force equation will include the tension terms. If the fish has 

more than one cable segment attached to it (see Figure 1.1), then the second cable 

neec;ls to be considered with due respect to the location of its attachment point, (see 

Chapter 4 for further discussion on this topic). Weight and buoyancy forces and their 

respective moments are simply calculated along the local coordinate system and added 

to the respective equations. The complete force and moment equations will be 

obtained along the local coordinate system and will include the following terms, 

Ffx',y',z' = cable tension(s) +cable drag forces+ fish lift & drag forces+ weight+ 

buoyancy. 

(3.88a) 

Mfx',y',z' = moments due to weight and buoyancy + moments due to fish attitude + 

moments due to hydrodynamic damping + moments due to second 

cable tension (if present). 

(3.88b) 

Returning to the equations defined in (3.85), one needs to solve these in the local 

coordinate system before transforming the results to the global coordinate system. 

However, to include the equations in the cable solution algorithm, the six degree of 

freedom system has to be represented by a three degree of freedom system. Although 

this will yield a slight error in the solution, it will disappear during the iteration 
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process explained in Chapter 4. Writing the equations given in (3.85), with the mass 

matrix terms represented by Af11 to Af66, 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

Now using equations (3.92), (3.93), and (3.94) to eliminate a, ~, and y as, 

.. M~. -Af51 .u - Af53 .w 
a=--------

Afss 
(3.95.a) 

(3.95c) 

where 

Af44 An =--------
Af 66 .Af 44 - Af 64 .Af 46 

B = Af - Af64.Af42 
n 62 Af 

44 

and substituting into equations (3.89), (3.90), and (3.91) yields, 
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FI Af 35 M' A . A . A . 
fz' - --. fy' = 31 ·U + 32.V + 33·W 

Af55 

where 

A = Af - Af15·Af51 
II II Af 

55 

A = Af - Afl5"Af53 
13 13 Af 

55 

A = Af - Af35·Af51 
31 31 Af 

55 

A = Af - Af35 .Af53 
33 33 Af 

55 

B21 = Af24 [1+Af46.Afl .Af64]-[Af26.Afl"Af64] 
Af ~ Af~ Af ~ 

B = Af .A -[Af24.Afl.Af46] 
23 26fl Af 

44 
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The values for the moments Mfx',y',z' are obtained from the previous iteration during 

the solution process outlined in Chapter 4. Any errors that enter due to this is 

dissipated during the iteration process. If all the left-hand-side forces and moments in 

equations (3.96) are represented by single variables Fnx',y',z" then the equations reduce 

to, 

(3.98a) 

(3.98b) 

(3.98c) 

These equations are similar to the equations derived for the cable segment "i", given 

by equations (3.14). The terms Fnx',y',z' include the tension terms of the cable 

segments attached to the fish. However, these terms are now included in the local 

coordinate system. The local tensions are obtained from the cable tension by 

transforming via the cable and fish transformation matrices [A] and [Af] as follows: 

[Tfx,y,z] = [A]T. [Tf] (3.99a) 

[Tfx',y',z'] = [Af] · [Tfx,y,z] (3.99b) 

where subscript "f' in the tension terms indicates the cable segment attached to the 

fish. Following the steps described by equations (3.15) to (3.29), equations (3.98) can 

be solved in the local coordinate system to yield the local accelerations as, 

(3.lOOa) 

v = (- Py·1 Tf-1 + Ry·1 Tf + Sy·1) I (~t)2 (3.lOOb) 

(3.lOOc) 

By multiplying equations (3.100) by the inverse transformation matrix [Afr1 for the 
fish, the local accelerations ( u, v, and w ) are converted to global accelerations ( x , y , 
and z ). However, since [Afr1 = [Ar]T, pre-multiplying equations (3.100) by [Af]T 

gives, 
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X = (-Px1Tr-1+RxiTr+Sx1)/(~t)2 (3.lOla) 

(3.lOlb) 

(3.lOlc) 

where Px,y,x1> Rx,y,xi. and Sx,y,xi are obtained by the multiplication of Px',y',x'1> Rx',y',x'1> 

and Sx',y',x'i by the relevant terms in the transpose of the towed fish transformation 

matrix, i.e. [Ar]T. 

Comparing equations (3.101) with the equations obtained for the cable system, i.e. 

equations (3.28), it is seen that the format is similar. Hence, the fish equations are 

now in a suitable format to be integrated into the solution algorithm of the cable 

system. The actual solution procedure is explained in Chapter 4. 
I 

If the fish has o!11Y one cable segment attached to it, i.e. a boundary node, then the 

terms Pxi,yi,zi will disappear, since Tr_1 will be zero. Thus, equations (3.101) will 

reduce to, 

x = (Rx1 Tf + Sx1) I (~t)2 (3.102a) 

y = (Ryi Tf + Syi) I (~t)2 (3.102b) 

z = (Rzi Tf + .SzD I (~t)2 (3.102c) 

For situations where a second cable is connected to a point other than the main tow 

point, the solution algorithm is slightly modified. This is explained in Chapter 4. 
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CHAPTER4 

SOLUTION ALGORITHM AND PROGRAM OUTPUTS 

4.1 Overview 

In Chapter 3, the dynamic equations describing the motions of the nodes and fish of 

the lumped mass model were derived. The technique employed to solve these 

equations consists of a time stepping method, where at each time step the model is 

iterated against a constraint equation until values within the tow configuration 

converge. In order to commence this solution technique, an initial configuration is 

required, with initial values for forces within the system. The ideal initial 

configuration for this problem was deemed to be the quasi-static configuration. 

Although the quasi-static model does have short comings as evidenced in sub-section 

1.3 in Chapter 1, and in the next sub-section, the errors introduced by this model will 

dissipate when the dynamic model is run for a sufficient length of time. 

Since the dynamic solution is time consuming and requires a range of input data, it 

was decided to separate the quasi-static and dynamic model within the program 

structure, thus enabling the user to solve either the quasi-static model or to carry out a 

full dynamic solution. The results from the former, although insufficient for detailed 

investigation of the tow configuration, are sufficient for preliminary investigations, 

while offers the advantage of relatively low data input and shorter run time. This 

enables the user to rapidly obtain approximate tow configurations for a range of 

conditions. Once the number of configurations to be investigated has been finalised, 

the full dynamic solution can commence. 

Although the computer model was originally developed to investigate the two-part 

tow, it was decided to expand it to investigate a range of other tow configurations as 

shown in Figure 1.1. In order to solve the respective models representing these 

configurations, it was required to include a range of modifications to the solution 

algorithm. For example, the solution techniques for the two configurations of the 

two-part tow as shown in Figures 4.1 and 4.2, (i.e. with the cable junction either at the 

bottom or midway along the primary cable respectively), will be different. 
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Fish 

Fish 

Depressor 

Two-Part Tow Modelled with a Single Cable 

Figure 4.1 

Depressor 

Two-Part Tow Modelled with Two Cables 

Figure 4.2 

Further, multiple tows represented by Figures 4.3 and 4.4 will again require different 

solution algorithms, as the former can be described by one cable system, while the 

latter has the secondary cable separated by the tow fish resulting in separate cable sub 

systems. 

In addition to the various two-part and multi tow configurations, the computer model 

is also required to simulate conventional tow systems, thus enabling comparisons 

between the various configurations. 
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Multiple Tow in Series Modelled with a Single Cable 

Figure 4.3 

Multiple Tow in Series Modelled with Separate Cable Systems 

Figure 4.4 

4.2 Quasi-Static Model 

The quasi-static model assumes the system to be in static equilibrium, neglecting the 

effects due to inertia (including added mass) of the system. Although this simplified 

approach allows for a faster solution to the problem, the exclusion of the dynamics, 

affects its accuracy, limiting its value. If the quasi-static model is solved repeatedly 

for a surface excitation, the solution obtained will merely be a "snap shot" of the 

equilibrium configuration at the given instant. The instantaneous configuration 

predicted by the quasi-static model differs from the equilibrium configuration due to 

dynamic effects, and is unable to realistically predict the response of the system due to 

dynamic excitations. In addition, the resulting dynamic tension values can be more 

than three times the static value, which can lead to disastrous results when deploying 

tow fish in practice, if only a quasi-static model is used to predict the tensions for 

cable selection, (see sub-section 1.4 and Figure 1.4 in Chapter 1). Thus it is obvious 

that the solution technique has to include the dynamic effect, in order to yield realistic 

predictions. 
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However, since the quasi-static solution represents the steady state or equilibrium 

configuration of the system, it is an ideal starting point for the dynamic analysis. A 

quasi-static model, which requires to be solved in order to supply the dynamic model 

with an initial configuration and corresponding values was therefore incorporated 

within the overall model. 

If the dynamic model is rurt for a sufficiently long time, the model will "re-configure" 

to represent the true configuration of the tow system. Therefore, the quasi-static 

model does not require to represent the static equilibrium position to a high degree of 

accuracy, as its primary task is to offer the dynamic model an initial configuration, 

thus enabling the latter to commence s.imulation without instability. This is essential, 

since large variations in the surface excitation can cause the dynamic model to diverge 

during its iterative solution procedure. 

Due to the non-linear behaviour of the tow cable, the quasi-static model uses the same 

lumped mass approach, however with the equations derived for the statical 

equilibrium of each node. In order to simplify the solution technique (albeit at the 

expense of accuracy), the modelling is done in two-dimensions and then converted to 

a three-dimensional domain, thus preparing it for input into the dynamic model. The 

resulting lo,ss of accuracy will dissipate as explained earlier, if the dynamic model is 

run for a sufficient length of time. 

To develop the generic quasi-static equations, consider node "i" shown in Figure 3.5. 

Setting the sum of all tension, drag, weight, and buoyancy forces at the node to zero 

and neglecting all forces in the Y-direction, i.e. two-dimensions, it is possible to 

rewrite equations (3.8) as, 

0 (4.la) 

(4.lb) 

where the drag forces (Fctix,z) are obtained by the relevant equations from equations 

(3.12). 

The junction (i.e. node "j" in Figure 3.6), as explained in sub-section 3.4.l in Chapter 

3 will have the additional segment "D-1" of the secondary cable attached to it. Thus, 

from equation (4.1), the statical equilibrium equations become, 
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FJx = Tj Cos \JfJ - TJ-1 Cos \JfJ-1 - T 0-1 Cos \jf 0-1 + 
Yi FdJx + Y2 FdJ-lx + Yi Fcto-lx - Fejx 

Fjz = TJ Sin \JfJ - TJ-1 Sin \JfJ-1 - T 0-1 Sin \Jf 0-1 + 
Y2 Fctjz + Y2 FctJ-1; + Yi Fcto-1z - FeJz - Wj 

= 0 

= 0 

(4.2a) 

(4.2b) 

In order to simplify the quasi-static model, the fish model incorporated is much 

simpler than its equivalent in the dynamic model. The fish model is obtained by 

simply considering the tension, weight, buoyancy, lift, and drag forces on the body 

under statical equilibrium. The lift and drag forces are calculated in two-dimensions 

in the vertical plane using the appropriate equations from equations (2.105) as, 

-2 
Lift Force = FIL = 0.5. ctL. p. Afx. vfr 

-2 
Drag Force= Fro = 0.5. Cm. p. Afx. Vfr 

(4.3a) 

(4.3b) 

where CtL and Cm are the lift and drag coefficients of the fish, and all other variables 

are as defined in equations (3.86) and (3.87). 

T,_1 

Fa. 

0 
---+--+----------t----- ----- - - - --

G 

Wr 

Quasi-Static Fish Model 
Figure 4.5 

T, 

\jf, 

Thus, referring to Figure 4.5, the statical equilibrium forces for the fish can be given 

as, 
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Fix = T, Cos 'Jf 1 - Ti-1 Cos 'JI i-1 + lh Fct1x + lh Fct1-lx + Fro = 0 

F,z = T, Sin 'Jli - T 1-1 Sin 'JI 1-1 + lh Fctiz + lh Fct1-1z + FfL -

W, - W1-1 - Wf = 0 

(4.4a) 

(4.4b) 

where node "i" represents the tow point. Note: the terms with subscript "i-1" will 

disappear, if a second cable is not fitted to the fish, (see Figure 4.5). 

Once the statical equilibrium equations are obtained for all nodes of the system, they 

are solved subject to the required static boundary conditions. These will be the 

position of the upper end of the primary cable at the surface and the forces exerted at 

the lower end of the cables by the tow fish and the depressor, (if present). 

Inspection of equations (4.1), (4.2), (4.3), and (4.4) show that the nodal point forces 

are non-linearly dependent on the nodal displacements. Therefore, it is necessary to 

utilise an iteration process to obtain the solution. 

Prior to commencing the solution, approximate values are assigned to all cable 

segment angles and tensions. These can be specified by simply making each cable 

segment angle as 45 degrees and calculating the tensions as a function of the fish 

weight. The solution technique described below will then solve "along" the cable 

length, using an iterative procedure to meet the defined boundary conditions. 

Referring to Figure 3.4, the static model for the secondary cable is solved beginning at 

the fish, i.e. node "1", up to the node immediately prior to the junction, i.e. node "D-

1" of the secondary cable. This yields the tension and angle of cable segment "D-1 ". 

A similar approach is then adapted to the primary cable, starting at depressor "D" and 

working up the cable to the node immediately prior to the junction, i.e. node "j-1", 

yielding the tension and the angle of cable segment "j-1". Using the tensions and 

segment angles obtained in the above two cases, i.e. for segments "D-1" and "j-1", the 

equilibrium equations for the junction node "j" are solved, and the solution then 

proceeds to the upper end of the primary cable, i.e. up to node "n". 

In the above solution process, the cable angle and tension can be obtained at each 

cable segment, by utilising the statical equilibrium equations and iterating until 

convergence is achieved. Thus, by rearranging equations (4.1) for node "i" yields the 

cable angle (ljli) and tension (T1) of segment "i" as, 
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(4.5) 

T = TI-I .Cos\jf i-1 - Yz Fd1x - Yz Fdi-!x + Feix 
I Coswi 

(4.6) 

The angle and forces for the previous segment defined by subscript "i-1", would have 

been calculated during the solution procedure for the previous node, i.e. utilising the 

equations for the previous node (i-1). Since the drag forces for cable segment "i" are 

non-linear functions of that segment angle, the values obtained in the previous 

iteration are used in the calculations. The iteration process then checks for 

convergence of the cable segment angle \If" and adjusts the angle utilising the error 

between the iterations as, 

llf ~+l = llf k + [ 0.5 x (11rk -11rk-l )] 
'1'1 '1'1 

2
m '1'1 '1'1 

(4.7) 

where superscript "k" defines the iteration and superscript "m" is equal to 1 in the first 

instance. 

As the error reduces, it is possible that the error correction term can "swamp" the 

angle, which could result in a loss of convergence. In order to avoid this, the 

convergence is checked and the superscript "m" incremented to reduce the magnitude 

of the correction term, thus forcing the angle to convergence. Once the angle and 

tension of cable segment "i" have been obtained, the process is repeated for the next 

cable segment and so on, until the surface node "n" is reached. The nodes 

representing the junction and fish are solved in a similar manner, using the equations 

given by (4.2) and (4.4) respectively. 

The two-dimensional configuration of the quasi-static cable system is then obtained 

by commencing from the surface node "n", and calculating the nodal positions using 

the stretched length and orientation of each cable segment as, 

(4.8a) 

(4.8b) 
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If the tow was taking place in a three-dimensional velocity field, i.e. with a cross 

current, then the solution is first carried out in two-dimensions by converting the 

three-dimensional velocity field into two-dimensions. This is done by vectorially 

combining the horizontal velocities Vxw and Vyw, to give a resultant horizontal velocity. 

Once the two-dimensional tow configuration has been obtained, it is returned to the 

three-dimensional field by adjusting the horizontal coordinates in equation (4.8a), i.e. 

by resolving x1 into X and Y directions. The horizontal angle <J>i, is obtained as the 

vector angle of the resultant horizontal velocity with the X axis in the three­

dimensional field. 

4.3 Dynamic Model Solution Algorithm 

Using the values obtained from the quasi-static model as initial values at time "t", the 

dynamic model can now be solved subject to the dynamic boundary conditions during 

each time interval "~t". The dynamic boundary conditions for the given tow 

configuration will be the path of motion of the primary cable's upper end at the 

surface and the equations of motion of the tow fish and depressor at the lower ends. 

The following solution process is based on that described in van den Boom (1985), 

and modified to suit the discontinuity of the cable junction and multiple tow systems. 

A numerical integration scheme is used to solve in the time domain the non-linear 

differential equations describing the motion of the system. Assuming that the nodal 

forces are functions of the node positions, velocities, and accelerations, a finite 

difference technique is employed to describe approximately the motions of the nodes 

at each time step. Although a number of numerical schemes were used during the 

computer modelling phase, only the one used extensively is discussed in this chapter. 

The integration algorithm selected was the implicit multi-step integration scheme 

known as the Houbolt scheme (Bathe (1982)), where the tentative positions and 

velocities at the next time step are obtained as, 

R t+l = 11.iP+l -18 .lP + 9 jp-l - 2.lP-2 

6.~t 

R t+l = 2.5.R 1 -2.R t-l + 0.5.R t-2 + 0.5.(~t) 2 i t+1 
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where R, R, and R are the nodal displacement, velocity, and acceleration vectors 

respectively. (Note: the above numerical scheme and other equivalent schemes are 

analysed in Chapter 5). 

The tentative acceleration (R t+i) for equation (4.10), can be obtained from the nodal 

equations of motion presented in (3.28), (3.32), (3.33), (3.34), (3.101), and (3.102) for 

the respective nodes, by utilising the quasi-static cable configuration and its tension 

values as initial tentative values. The tentative segment tensions so used, can then be 

corrected by using a Newton-Raphson iteration process, based on the constraint 

equation for the constitutive stress-strain relationship. Since the distance between two 

adjacent nodes "i" and "i+l", should represent the stretched length of the cable 

segment "i", and assuming that the cable follows Hook's law of elasticity, it is 

possible to express the relationship, (i.e. the constraint equation of each segment 

length) as, 

Tt+1 
ER t+1 = (x 1+1 _ x 1+1 )2 + (yt+1 _ yt+1 )2 + (z t+1 _ t+1 )2 _ [l~ (l +-1 -)2] 

I 1+! I 1+! I 1+! zl I • A, .E (4.11) 

where 

Ai : cross sectional area of cable segment "i" 

E : modulus of elasticity of the cable material 

h : length of cable segment "i" 
T1t+1 : tension in cable segment "i" at time "t+l", (i.e. "t+~t") 

ER:+' : error in the cable segment length "i", between the span of the nodal positions 

and the stretched length of the segment due to the tentative tension. 

It is now necessary to correct the tentative tension values T,t+i in order to reduce the 

error term ER:+' to zero. Let us consider node "i" shown in Figure 3.5. The 

coordinates of node "i" can be obtained by substituting equations (3.28) into (4.10). 

Thus, it can be deduced that the coordinates of node "i" will be a function of the 

tensions of the adjacent cable segments "i" and "i-1", and can be expressed as, 

R t+1 = f (T1+1 Tt+1) 
1 1-l ' 1 

(4.12) 

Referring to equation (4.11) for cable segment "i", it can be seen that the segment 
error term ER:+' will be a function of nodes "i" and "i+l". Therefore, from equations 
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(4.11) and (4.12) it is evident that ER:+1 will be a function of the tensions of cable 

segments "i-1", "i", and "i+l". Thus, 

ER t+1 = f (Tt+1 Tt+l Tt+i) = 0 
I 1-I ' I ' 1+) 

(4.13) 

since ER:+1 will be equal to zero when the length constraint is met. Now if the 

tension term T
1 
t+1 of cable segment "i" consists of two components, i. e., 

(4.14) 

where the tildes (-) represents the tentative values, i.e. T
1
t+i is the tentative value of 

the tension and 8T
1
t+i is the tension correction term of cable segment "i". Then, by 

expanding ER:+1 (equation (4.13)) in a Taylor series about point {TL+;1, T
1
t+

1, T1~~1 }, we 

obtain, 

(4.15) 

+ higher order terms = 0 

Since the tentative tension values are sufficiently close to the correct values, (i.e. due 

to the initial configuration obtained under statical equilibrium being sufficiently close 

to the dynamic solution and the time interval "~t" being small), the higher order terms 

in equation (4.15) can be neglected. Thus, 

(4.16) 

It is now necessary to obtain the partial differential terms given above. Substituting 
the accelerations x.:+1, y:+1, and z:+1 for node "i", obtained from equations (3.28), 

into equation (4.10) gives, 

(4.l 7a) 

(4.17b) 

(4.l 7c) 
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Note: in the above equations, the nodal positions at "t", "t-1", and "t-2" (or "t", "t-~t", 

and "t-2~t"), will not depend on the tentative tensions, as they would have been 

calculated in previous time steps. 

Similar equations can be written for the positions x:::, y:::, and z:::. Thus, by 

substituting these six equations into the length constraint equation (4.11), carrying out 
the partial differentiation with respect to T1~1

1 , T1t+l and T1t_;1
1 , and dropping the tildes 

(-)for clarity, yields, 

E 8Tt+l -F 8Tt+l + G 8Tt+l =-ER t+1 I' t-1 I' I I' t+l I (4.18) 

where E,, - Fi, and G, are the partial differential terms in equation (4.16), with - Fi the 
coefficient of the tension error term ( 8T1t+1) of the segment considered (i.e. segment 

"i"), while E, and Gi are the coefficients of the tension error terms ( 8Ti~1 and 8T1'.:i1) 

of the adjacent segments, i.e. "i-1" and "i+l" respectively. These three coefficients 

are, 

P ( t+l t+l) p ( t+l t+l) p ( t+l t+l) x1 x.+1-Xi + Y• Y1+1-Y. + z1 z.+1-z1 (4.19) 

(4.20) 

R ( t+1 t+1) R ( t+1 t+1) R ( t+1 t+1) Xt+i X t+l - XI + yt+l y t+l - y j + zt+l Zt+l - ZI (4.21) 

Since ER :+1 is a function of the nodes "i" and "i + 1 ", and the nodes in tum are 

functions of the adjacent tensions (see equations (4.13) and (4.12)), E,, Fi, and Gi can 

be obtained for all the relevant nodes. 

For the segments adjacent to the nodes representing the boundaries and the junction, 

equation (4.18) will be slightly different, as the number of cables attached to these 

nodes are different. These nodes are shown in Figures 3.6 and 3.7, which include the 

junction, tow fish, depressor, and the surface node. The equivalent equations for these 

segments will now be developed. 
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4.3.1 Boundary Nodes 

Consider Figure 3.7(a), which shows the first segment (i.e. segment "l"), attached to 

the towed fish, thus qualifymg as a lower boundary node. It is noted that length (1 1) of 
the first segment, and hence its length error term (ER;+i ), is a function of the positions 

of nodes "1" and "2". 

Although the position of node "2" is a function of tensions Tt1 and Tt1 , the position 

of node "1" being a lower boundary node, will be a function of only tension T1
1+1. 

Therefore, the error term ER;+i will be a function of only two tensions, namely Tt1 

and Tt1. Thus, 

(4.22) 

Following a similar sequence of steps to those described from equations (4.15) to 

(4.18), yields, 

(4.23) 

Comparing equation (4.23) for the towed fish (i.e. a lower boundary node), with 

equation (4.18) derived for any node "i", it is seen that the term E1 in equation (4.23) 

is zero. This is because the position of node "1" is affected by only one tension (i.e. 

that of segment "1"), as opposed to the two adjacent segment tensions in normal 

nodes, (i.e. node "i"). In other words, there is no segment "O". 

A similar situation occurs for the depressor shown in Figure 3.7(b). Again, as this is a 

lower boundary node, with only one segment attached to the depressor, (i.e. segment 

"D"), we obtain, 

(4.24) 

again with the term E0 equal to zero. 

Considering cable segment "n-1" attached to the surface node "n" (see Figure 3.7(c)), 

a similar process will yield, 

E ~T1+1 F ~T1+1 ER1+1 n-1 · U n-2 - n-1 · U n-1 = - n-1 
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However, when compared with equation (4.18), it is noted that the term Gn-I is zero. 

This is because segment "n-1" is the last segment in the cable system, and the position 

of node "n" is only influenced by the tension of this segment. 

4.3.2 Junction 

From Figure 3.6, it is seen that the coordinates of the node representing the junction 

G) will be a function of three tensions instead of the usual two. This is due to the 

additional cable segment "D-1" of the secondary cable also being attached to the 

junction node. Thus, 

R ~+1 = f (T1+1 T.1+1 T1+1) 
J D-1> J-1' J (4:26) 

Therefore, the length error term ER:+1 of the cable segments adjacent to the junction, 

i.e. segments "D-1", "j-1", and "j", will have an extra term, as they are functions of 

four tensions. Thus, 

BR 1+1 = f (T1+1 T1+1 T.1+1 T1+1) 
DA D-2 ' D-1 ' J-1 ' J (4.27a) 

- ER 1+1 = f (T1+1 T.1+1 T1;1-1 T1+1) 
J-1 D-1 ' J-2 ' J-1 ' J (4.27b) 

ER 1+1 = f (T1+1 T1+1 T1+1 T1+1) 
J D-1' J-1' J ' J+l (4.27c) 

Following a similar sequence of steps to those described from equations (4.15) to 

(4.18), the above equations can be reduced to a form similar to that given by equation 

(4.18), i.e., 

E s::T1+1 F s::T1+1 C s::T1+1 C s::T1+1 ER1+1 D-1 · U D-2 - D-1 · U D-1 + 1 · U J-1 + 2 • U J = - D-1 

D s::T1+1 E s::T1+1 F s::T1+1 G s::T1+1 ER1+1 1 • U D-1 + J-1 · U J-2 ~ J-1 · U J-1 + J-1 • U J = - J-1 

D s::T1+1 E s::T1+1 F s::T1+1 G s::T1+1 ER1+1 2 .u D-1 + J .U j-1 - j .u J + J .U J+l = - J 

(4.28) 

(4.29) 

(4.30) 

where the terms C1, C2, Dr, and D 2 are the "extra" terms in comparison to the standard 

constraint equation obtained for segment "i" in equation (4.18). These extra terms are 

due to the additional secondary cable element "D-1", and are expressed as, 
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C1 = _ p (x 1+1 _ x 1+1 )- p (y1+1 _ y1+1 )- p ( 1+1 _ 1+1 ) 
XJ J D-1 YJ J D-1 ZJ ZJ ZD-1 (4.31a) 

C2 = R (x1+1 -x1+1 )+R (y1+1 -y1+1 )+R ( 1+1 _ 1+1) XJ J D-1 YJ J D-1 ZJ ZJ ZD-1 (4.31b) 

D1 = -P (x1+1 _x1+1)-P (y1+1 _y1+1)-P ( 1+1 _z1+1) Dx J J-1 Dy J J-1 Dz z J J-1 (4.31c) 

D2 = p ( t+I t+I) p ( t+I t+I) p ( t+I t+I) Dx X J+I - X J + Dy Y J+l - Y J + Dz z J+I - z J (4.3ld) 

where the terms Pox,y,z were defined in equations (3.32). 

It can also be seen from equation (4.28) representing the last segment on the 

secondary cable, i.e. segment "D-1", that the term G0 _1 is missing since no cable 

segment will be present beyond segment "D-1" on the secondary cable. This is 

similar to the equation developed for cable segment "n-1", i.e. equation (4.25), which 

is adjacent to the surface node "n", thus missing the term Gn_1, as there is no cable 

segment beyond node "n". 

The system of equations thus obtained in (4.18), (4.23), (4.24), (4.25), (4.28), (4.29), 

and (4.30) can now be expressed in matrix form to give, 

-Fi G1 
E2 -F2 

(row j-1) 
(row j) 

and 

G2 

En.1 

(col 
D-1) 

-Fn.1 0 
0 -Fn Gn 

En+1 -Fn+I 

(4.32) 

(col (col J) 
j-1) 

C1 C2 (row D-1) 

Gn+1 

GJ-1 
-FJ GJ 
EJ+l -FJ+l 

En-2 -Fn-2 Gn-2 
En-I -Fn-1 

(4.33) 
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8T1 -ER1 
8T2 -ER2 

8To-1 -ERo-1 

8T0 -ER0 

8To+1 -ER0+1 

(8T,] = and [ER,]= 

8TJ_1 -ERi_1 

8TJ -ER J 

8TJ+l -ERi+l 

8Tn-2 -ERn-2 

8Tn-1 -ERn-1 

(4.34) 

4.3.3 Matrix Solution 

Solving the set of equations given by (4.32) will yield the tension error terms 8Ti, 

which can then be used to correct the tentative tensions. If the cable system consisted 

of a single cable, then matrix [EiF1G1CD] would be a true tri-diagonal matrix of the 

order (n-1 x n-1), where "n" is the number of nodes. Such matrices can be solved 

efficiently by a standard matrix inversion routine, i.e. the so called Thomas algorithm. 

However, due to the discontinuity of the junction and the separate modelling of the 

two cables, the non-zero terms C1, C2, Di. and D2 given in equations (4.31) lie outside 

the tri-diagonal band. The solution of such a matrix can be carried out either by 

conventional matrix theory, or by first transforming it into a true tri-diagonal form and 

then utilising the Thomas algorithm. In order to save computational time and memory 

space, it was decided to follow the latter approach, especially as the matrix can be 

large if the modelling utilises a large number of nodes. (Note: during the conversion, 

the zero terms on the outer diagonal of the tri-diagonal band have to be converted into 

non-zero terms, or they will cause divisions by zero during the Thomas algorithm). 

The above transformation is carried out in a few elimination steps, since the positions 

of C1, C2, D1, and D2 are known as a function of the depressor and junction node 

numbers "D" and "j" respectively, (see the row and column markings in matrix 
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[EiFiGiCD] in equation (4.33)). The elimination is carried out in two phases, 

summarised below. 

Phase One 

This phase consist of the elimination of terms D1 and D2. The positions of these terms 

can be given as, 

Position of D1 : 

Position of D2 : 

row ')-1" and column "D-1" 

row ''j'' and column "D-1" 

These terms are now eliminated by starting at row "2" and successively eliminating 

terms E1 until row "D-1" is reached. The elimination process is carried out for each 

row by utilising the row immediately above it. For example, E2 is eliminated by 

multiplying row 1 by E 2 
, and subtracting it from row "2". Once row "D-1" is 

-F1 

reached, this row can be used to eliminate terms D1 and D2. This is achieved by 

multiplying row "D-1" in tum by ~ and~' and subtracting it from rows "j-
-Fo-1 -Fo-1 

1" and "j" respectively. During these elimination steps, since terms C1 and C2 are on 

row "D-1", the terms -FJ_1, GJ-1' ERJ_1, EJ, -FJ, and ERj will be modified. 

Phase Two 

The second phase of the elimination process deals with terms C1 and C2. Their 

positions within the matnx are given by, 

Position of C1 : 

Position of C2 : 

row "D-1" and column "j-1" 

row "D-1" and column "j" 

Their elimination commences with term C2, which can be eliminated by multiplying 

row "j-1" by ~ and subtracting it from row "D-1". This elimination step will 
G1-1 

result in an additional term at row "D-1" and column "j-2". C1 can then be eliminated 

by multiplying row ')-2" with ~ and subtracting it from row "D-1". Again this 
G1-2 

will create a new term at row "D-1" and column "j-3". To eliminate the additional 

terms created on row "D-1 ", the process is continued in a similar manner until column 

"D+ 1" is reached. In other words, the successive elimination is carried out from 

column 'T' using row ')-1", to column "D+l" using row "D". The last elimination 

step will also convert the zero term at row "D-1" and column "D", i.e. GD-J, to a non-
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zero term. This is essential for the solution technique outlined below, in order to 

prevent a division by zero. At the completion of the process all G1 terms will be non­

zero. 

The two elimination phases described above converts the matrix [EiFiG1CD] to the 

true tri-diagonal matrix [EiF1G1] shown below. 

(row J-l) 
(row J) 

G2 

0 

(col 
D-1) 

-Fn-1 
0 

Gn-1 
-Fn Gn 
En+1 -Fn+1 Gn+1 

EJ-1 

(col (col j) 
j-1) 

(row D-1) 

-FJ-1 GJ-1 
EJ -FJ GJ 

EJ+t -FJ+l 

En-2 -Fn-2 Gu-2 
En-I -Fn-1 

(4.35) 

Note: if conventional or single cable tow configurations, (i.e_ Figures l.l(a, b, ore), 

are used, then the matrix in equation (4.33) will be a true tri-diagonal matrix of the 

form shown above, except that all the terms along the tri-diagonal will be non-zero. 

Following the transformation, equation (4.32) becomes, 

(4.36) 

where matrix [ER:+i] above will differ from that in equation (4.32) due to the 

elimination process carried out. The solution process of the above equation consisting 

of a true tri-diagonal matrix is well known (i.e_ the Thomas algorithm), and is 

explained in Walton and Polachek, (1959). The system of equations represented by 

the true tri-diagonal matrix can be solved by reducing them to a single linear equation 

via elimination. Considering equation (4.18) for segment "i", it can be rewritten as, 

8T1+1 = F, .8T.1+1 - E, .8T1+1 - ER;+1 
!+I G I G. i-1 G 

1 1 1 

(4.37) 
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Once all equations in matrix [El1G1] are expressed in the above form, it is possible to 

carry out an elimination process commencing from row "1" and working down the 
rows within the matrix. This results in each tension correction term, 8Tt1 , being 

expressed as a linear function of the first t~nsion correction term 8T1t+l , i.e., 

8T1+1 = µ 8T1+1 +,., 
I 1· I 'h (4.38) 

where µi and f1
1 

cari be obtained recursively from (4.37) as, 

(4.39a) 

(4.39b) 

The first tension-correction term, 8Tt1 
, can then be obtained from the last equation of 

the system of equations as, 

8Ttl = Fn-1 ·fln-l - En-1 ·fln-2 ,- ERn-1 

En-l "µn-2 - Fn-l "µn-1 
(4.40) 

The tension correction values 8T
1
t+i , obtained for all segments of the cable system_ 

from ~quation (4.38), can now be used to update the tentative tension values Tit+i for 

each iteration process. Thus, 

(4.41) 

where "k" is the iteration index. The corrected tensions can then be used to obtain the 

corrected accelerations from the respective equations of motion, i.e. equations (3.28); 

(3.32), (3.33), (3.34), (3.101), and (3.102), and hence the corrected coordinates and 

velocitie_s from _equations- (4.9) and (4.10}. The process 'is then repeated until 
acceptable convergence of the cable segment tension terms T

1
t+i, is achieved. The 

convergence is measured by comparing the largest tension correction term ( 8Tt1
) for 

that iteration against a pre-set tension error limit. The user can set this error liinit, 

which can be established as a percentage (e.g. less than 10%) of the maximum static 

tension of the cable, (usually at the surface node). In the _authors experience a tension 

error limit of 1 Newton produces satisfactory results. 
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4.3.4 Angular Displacement of Tow Fish 

During the solution process, the linear displacements and velocities of the nodes are 

obtained at each iteration by equations (4.9) and (4.10). In order to obtain the attitude 

of the fish and the angular damping created by its motion, it is also required to 

calculate the angular displacements and velocities of the fish. This also influences the 

forces and moments acting on the fish, and hence those acting on the cable node it is 

attached to. 

If the angular accelerations of the fish are known, the angular displacements and 

velocities of the fish can be obtained by utilising the Houbolt numerical integration 

scheme described in equation (4.9) and (4.10). The angular accelerations can be 

obtained by equations (3.95) in Chapter 3, reproduced below. 

.. M~. -Af51 .u-Af53 .w 
a=--------

Afss 
(4.42a) 

.. A [M' Af 64 M' B . ] y= f1 rz·---. rx·- fl.v 
Af44 

(4.42c) 

Inspecting the above equations reveal that the local linear accelerations of the node 
attached to the fish, (i.e. u, v, and w ), are required. These accelerations are obtained 

by pre-multiplying the global acceleration terms, (i.e. x, y, and z ), by the fish 

transformation matrix [Ar], given in equation (3.3). Thus, 

(4.43) 

The global acceleration terms are obtained from equations (3.101). The forces and 

moments for the angular acceleration equations (4.42) are obtained from the previous 

iteration step. Substituting these equations into equations (4.9) and (4.10) will yield 

the angular displacements and angular velocities as, 
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A t+l = 11.At+l -18.At + 9.At-1 - 2.A:t-2 

6.8t 

-- -

(4.44) 

(4.45) 

where A, A, and A represent the fish rotational angular displacement vector and its 

derivatives, i.e., 

A = a,~' and y (4.46a) 

-
a,~' and y A = (4.46b) 

-
a,~' and y A = (4.46c) , 

Thus, the angular displacements and angular velocities can be calculated at each 

iteration, which in tum will enable the calculation of the fish forces and moments for 

the next iteration to be carried out. 

4.3.5 Solution Procedure 

The dynamic model is initialised from the quasi-static conf~guration using the results 

from the latter model as initial tentative values. It is then driven by feeding in at 

appropriate time intervals the coordinates of the surface node representing the motion 

of the surface vessel. This is achieved by either a combination of sinusoidal X, Y, and 

Z excitations at the surface node, or through a data file representing its path of motion. 

If the surface node motion is relatively large, it is advisable to reduce the transient 

response by gradually introducing this motion via an exponential decay term. If not, 

the sudden introduction of large excitations can result in numerical instability. It is 

also advisable to use small time steps to ensure accuracy and convergence. The , 

accuracy I stability criteria for the numerical integration scheme and the selection of 

an appropriate time step are discussed at length in Chapter 5. The calculation 

procedure can be summarised as follows: 

1. Obtain the quasi-static configuration of the towed system. 

2. Introduce the surface motion for the given time step. 
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3. Calculate the cable segment transformation matrix and terms such as the drag 

forces and added mass for each node, using the current nodal displacements, 

velocities, and accelerations as tentative val~es for the next time step, 

4. Obtain the transformation matrix for the towed and depressor fish. Then calculate 

the forces and moments on the fish in the local coordinate system and represent 

them within the appropriate cable node equations. 

5. Obtain the accelerations of the cable nodes for the next time step, using the 

appropriate equations from (3.28), (3.32), (3.33), (3.34), (3.101), and (3.102), with 

the current tensions as the tentative tensions for the next time step. 

6. Calculate the angular accelerations of the fish using equations (4.42), and the 

linear accelerations obtained for the nodes attached to the fish. 

7. Obtain the nodal positions (i.ncluding the segment angles), anq the velocities for 

the next time step using equations (4.9) and (4.10) respectively. 

8. Calculate the angular displacements and velocities of the fish from equations 

(4.44) and (4.45) using the angular accelerations o~tained for the fish in step 6. 

9. Obtain the segment length error terms ER:+i using the' cable length constraint 

equation (4.11). 

10. Obtain the coefficients Ei. F1, Gi, C1, C2, Di, and D2 from equations (4.18), (4.23), 

(4.24), (4.25), (4.28), (4.29), and (4.30), thus giving equation (4.32). The terms 

C1, C2, D 1, and D2 will not be present for a single cable tow. 

11. Convert the matrix (4.33) into a true tri-diagonal matrix, if it has non-zero terms 

for C1, C2, D1, and D2, i.e. due to a cable junction. 

12. Solve equation (4.38) for the tension correction values 8T/+1
• The tentative 

tensions are then updated using equation (4.41). 

13. Repeat the iteration from step 3 to 12, until acceptable convergence is obtained for 
the tension terms Tt1

• This is achieved by comparing the largest tension 

correction term ( 8T
1

1+1
) for that iteration against a pre-set tension error limit. 
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14. Increment the time step and using the calculated values for time "t+l", as tentative 

values for the next time step, i.e. time "t+2", repeat the procedure from step 2 to 

13, until the required simulation time is reached. 

A flowchart outlining the solution procedure described above is given as the "Overall 

Computer Program Flowchart for the Two-Part Tow" in Appendix B. The program 

enables various parameters to be saved to disc at selected time intervals. This 

information can then be viewed via a word processor or a spread sheet, and be plotted 

as required. 

4.4 Program Outputs 

Although the computer model was developed to simulate two-part tow configurations, 

it is also capable of simulating conventional tow systems. The input data identifies if 

the cable configuration is a conventional tow (Figure l.l(a)), a two-part tow without a 

junction (Figure 1.l(b)), or a two-part tow with a junction (Figure l.l(d)), and carries 

out the solution accordingly. The matrix conversion is required only in the latter case. 

Figures 4.6 to 4.11 compare the response of equivalent conventional (Figure 1.l(a)) 

and two-part tow (Figure 1.l(d)) configurations in response to sinusoidal excitation at 

the surface node. The information on the tow configurations are given in Table 4.1, 

with the two-part tow represented as "Two-Part Tow J". 

Conventional Two-Part Two-Part 
Tow Towl Tow2 

Primary Cable 85m 85m 65m 
Secondary Cable N/a 20m 20m 
Depressor N/a 300kg 300kg 
Fish 300kg 41.2 kg 41.2 kg 
Number of Segments 6 8 (6 + 2) 6 (4 + 2) 
Distance from Depressor to N/a 20m 20m 
Junction 

Conventional and Two-Part Tow Configuration Information 

Table 4.1 

The surface excitation is sinusoidal in the X and Z directions, having an excitation 

period of 6 seconds and amplitudes of 1 meter and 2 metres in the X and Z directions 

respectively. The relative velocity of the tow to the surrounding water is 3 metres per 

second. 
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Interestingly, the heave and pitch angles reduce significantly with the use of the two­

part tow, however the surge tends to marginally increase. This effect is confirmed in 

the experimental testing described later in Chapter 6. 
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Figure 4.12 compares the pitch angle response of two different two-part tow 

configurations under the same surface excitation. The configurations are described in 

Table 4.1 as "Two-Part Tow 1 and 2" respectively. The difference in the 

configurations is the attachment point Uunction) of the secondary cable. The former 

has the junction located on the primary cable (Figure 1.l(d)), while the latter has the 

secondary cable attached adjacent to the depressor (Figure l.l(b)). From Figure 4.12 

it is seen that Two-Part Tow 1 has a lower response amplitude. Again this effect is 

confirmed and discussed further in the experimental stage in Chapter 6. 

Key to Graphs 
• Two-Part Tow 1 
• Two-Part Tow 2 
X-axis time (seconds) 
pitch angle - degrees, ( +) down 

Change in Pitch Angle with Location 
of Junction 
Figure 4.12 

Figures 4.13 to 4.15 show the response of Two-Part Tow 1 during a 180 degree 

manoeuvre (tum) of the surface vessel. The vessel is travelling at 3 metres per second 

and carries out the manoeuvre at a radius of 25 metres. From Figure 4.13 it is seen 

that both the depressor and fish turn inside the turning circle of the surface vessel. In 

addition, from Figure 4.14 the depth of the depressor and fish is seen to increase 

during the tum , due to the reduction in their speeds as they travel along the shorter 

paths. Both outcomes must be considered when carrying out such manoeuvres, as the 

towed fish and depressor may strike the sea bed or underwater objects. This 

highlights one of the advantages of simulation before carrying out the actual 

operation. Note: when considering the pitch angle in Figure 4.15 , positive is 

downwards, (i.e. Right Hand Coordinate System - see Figure 3.2). 

The solution procedure outlined above is for conventional or two-part tow 

configurations. However, the computer model is also able to solve multiple tow 

configurations, by modifying the solution procedure to deal with the additional tows. 

The multiple tow configurations investigated are divided into two distinct types, 

shown in Figures 4 .16 and 4.28. The first consists of multiple tow fish in series, while 

the second consists of them in parallel. In the latter case each fish is connected to a 

secondary cable, which in turn is coupled to the primary tow cable, resulting in a 

series of junctions (i. e. j 1, j2, j3, etc, as shown in Figure 4.28). 
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Considering Figure 4.16, it is seen that the fish in the towed system separate the 

secondary cable. Thus, each fish has two nodes, i.e. the tow cable node (usually 

forward) and the aft node to which the second cable is attached. Figure 4.17 shows 

the tow fish with the tow (forward) and aft cables at the respective nodes. Thus, when 

the forces and moments are calculated, it is essential to include the tension terms of 

the second cable, with due consideration to its location and transformation matrix. 

The node representing the fish and hence the node solved for the fish equations of 

motion, will be the forward tow point node for each fish considered. 

The solution technique follows a similar routine to that explained in sub-section 4.3.5 , 

however incorporating the additional tow fish equations and the secondary cable 

separations. The solution procedure explained below uses the lumped mass model 

shown in Figure 4.16. 
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The solution commences by carrying out steps 3 to 12 in the solution procedure 

described in sub-section 4.3.5, from node 1, representing the first fish in the system, 

and continuing along the secondary cable until node 3, i.e. the aft node on the second 

fish, is reached. The equations for the second fish are then solved by solving the 

equations for the node representing it, i.e. node 4, including the tension of cable 

segment 2, previously calculated. The solution again continues through steps 3 to 12 

along the cable until node 6, which is the aft node of fish three, is reached. Following 

a similar process to that for fish two, the solution again commences from node 7 and 

continues to the surface node "n". The latter part of the solution has to take into 

consideration the discontinuity of the junction and the depressor (if present), as 

explained for the two-part tow in sub-section 4.3. 

Then, steps 9 and 10 are carried out in line with the surface excitation, and the 

tentative tensions are updated using the tension correction terms as described in sub­

section 12. The tension terms are then checked for convergence as in step 13, with the 
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loop consisting of steps 3 to 13 repeated until convergence is achieved. The 

simulation is then incremented as explained in step 14. 

This method of solution yields accurate results, but if the number of cables separated 

by the fish exceeds three, the time step required for convergence is extremely small, 

resulting in unacceptably slow simulation run times. The reason for this can be 

explained by considering nodes 4, 5, and 6. Since both ends of this cable will be 

subjected to errors during the iteration period, large time steps will introduce large 

errors, which will effect the convergence, resulting in instability. In order to allow for 

larger time steps and hence a faster solution time, the solution procedure was modified 

as explained below. 

Referring again to Figure 4.16, the solution technique adapted is to individually solve 

the cables separated by the tow fish for each time step, and then to couple these cables 

via the respective tow fish. This procedure can be summarised as follows. 

The solution technique divides the cable configuration into a number of cable sub­

systems, with the divisions carried out at the tow fish separating the cables. In Figure 

4.16 for example, this would consist of three cable sub-systems, i.e., 

cable sub-system 1 : node 1 to node 3 

cable sub-system 2: node 4 to node 6 

cable sub-system 3 : node 7 to node "n" 

The solution commences by completing steps 2 to 13 in sub-section 4.3.5 for cable 

sub-system 3. This begins by first solving for fish three via the solution of the 

equations of motion for its representative node, i.e. node 7. The solution then 

continues along cable sub-system 3, until node "n" is reached, which enables the 

surface node motion to be entered via step 2. (Note: this cable sub-system may 

incorporate the junction and depressor, and thus will be required to be solved as 

described in sub-section 4.3.3). The loop-consisting of steps 3 to 13 is repeated until 

acceptable convergence is achieved for this cable sub-system, i.e. until cable sub­

system 3 is solved subject to its boundary conditions. 

Once this is achieved, the position of node 6 at the aft end of the third fish, is 

calculated by adding the angular displacement vector of fish three to the linear 

position of node 7, i.e. the tow point of fish three. The position of node 6 will be the 

driving function for cable sub-system 2, (i.e. nodes 4 to 6). The solution for this cable 
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sub-system is then effected by solving fish two via the solution of the equations of 

motion of its representative node, i.e. node 4, and progressing along the cable up to 

node 6, i.e. the end of cable sub-system 2. This process will consist of completing 

steps 3 to 13 in sub-section 4.3.5, until convergence is achieved, thus solving cable 

system 2 to its boundary conditions. 

This is followed by obtaining node 3 on fish two in a similar manner to that explained 

for node 6, which will act as the driving function for cable sub-system 1. The latter 

can then be solved in a similar manner to cable sub-system 2. On completing these 

solutions, step 14 in sub-section 4.3.5 is carried out by incrementing the time and 

repeating the_process until the simulation end time is reached. 

When a node representing a fish is solved during the solution of a cable sub-system, 

for example, when solving node 4 representing fish 2 during the solution of cable sub­

system 2 (see Figure 4.17), the tension of the cable fitted to its aft end, i.e. cable 

segment 2, is unknown. This is due to the aft end cable segment tension not been 

calculated for the current time step, since segment 2 is solved during the solution of 

cable sub-system 1, which only commences after the completion of the solution of 

cable sub-system 2. In order to overcome this problem, the cable tension of segment 

2, obtained in the previous time step is used for the solution of the equations of 

motion of node 4 representing fish 2. 

Fish 1 41.2 kg 
Cable Sub-System 1 30m 3 segments 
Fish 2 30kg 
Cable Sub-System 2 30m 3 segments 
Depressor 300 kg 
Primary Cable 55 m 5 segments 

Series Multi-Tow Configuration Information 

Table 4.2 

The error thus introduced will be acceptably small, if a relatively small time step is 

used in the solution procedure. This can be seen by comparing the results of the same 

tow configuration solved using the more accurate but slower method and the modified 

faster solution. A typical multi-tow configuration consisting of two towed fish and a 

depressor in series, (similar to Figure 1.l(g)), was solved using both solution 

techniques. The information on the tow is given in Table 4.2, while the surface 

excitation was the 180 degree manoeuvre at 3 metres per second described previously. 
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The path of the vehicles, the depth of the tows, and the two fish pitch angles obtained 

using the fast and slow methods are given in Figures 4.18, 4.20, 4.22 and Figures 

4.19, 4.21 , 4.23 respectively. Figures 4.24 to 4.27 give the difference curves between 
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the results obtained from the two methods. It is clear from these figures that the errors 

introduced by separately solving each sub-system are small. However it allows the 

use of a time step more than 15 times larger than that for the more accurate method, 

resulting in it being more than 15 times faster. Thus , given the increase in speed and 

the marginal loss in accuracy, the selected method is acceptable for the simulation of 

multiple tows in series . 
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The results also highlight the sensitivity of the results to the size of the time step. 

Although the method solving each sub-system separately uses a time step around 15 

times larger than that for the more accurate method, there are no significant 

differences in the results. This is due to the iterative process removing any errors 

introduced by the larger time step. Therefore, the operator can select the largest time 

step that ensures numerical stability, as it will have very little effect on the accuracy. 

These aspects will be discussed later in Chapter 5. 
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4.6 Multiple Tows in Parallel 

1 

Fish 1 

4 

Fish 2 

2 3 

5 6 

9 

8 

Depressor 

Multiple Tow Fish in Parallel 

Figure 4.28 -

n 

Figure 4.28 shows a multiple tow system, where two fish are towed in parallel, i.e. 

where each fish is attached to its own secondary cable, which in tum is connected to 

the primary tow cal?le. The required depth is maintained via a depressor fitted to the 
' 

lower end of the primary cable. Although the example shown in Figure 4.28 has only 

two parallel tow fish, the computer model is capable of solving up to five parallel tow 

fish and can be easily modified to solve configurations having more parallel tow fish. 

-The modelling of the system is similar to that for a two-part tow, however, with due 

regard shown to the multiple junctions in the system. Each junction, i.e. nodes 10 and 

13 in Figure 4.28, is modelled as described in sub-section 3.4.1, resulting in a set of 

equations similar to that given by equation (3.32). 

In addition, the tow fish represented by nodes 1 and 4, will have only one cable 

segment attached to them, i.e. cable segments 1 and 4 respectively. Thus, the 

modelling will be as described in sub-section 3.5, resulting in equations similar to 

equations (3.102). The resulting set of equations can be presented in a matrix form as 

described in equation (4.32). However, the matrix [E1F1G1CD] will have a greater 

number of non-zero terms outside the tri-diagonal band, as well as a number of zero 

terms on the outer diagonal of the tri-diagonal band. For example, for the system 

shown in Figure 4.28 having two parallel tow fish, the matrix will be, 
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[E1FiGiCD] = 

C1 C2 C3 C4 Cs c6 C1 Cs C9 C10 C11 C12 C13 C14 --- Cn-2 Cn-1 

R1 -Fi G1 (row f1) 
R2 E2 -F2 G2 
R3 E3 -F3 0 C1 C2 (row frl) 
R4 0 -F4 G4· (row f2) 
Rs Es -Fs Gs 
R6 E6 -F6 0 C3 C4 (row D-1) 
R1 0 -F1 G1 (row D) 
Rs Es -Fs Gs 
R9 D3 E9 -F9 G9 
R10 D4 E10 -F10 G10 (row j2) 
R11 E11 -F11. G11 
R12 D1 E12 -F12 G12 
R13 D2 E13 -F13 G13 (row j1) 

Rn-2 (Col (Col (Col (Col (Col (Col En-2 -Fn-2 Gn-2 
Rn-I frl) f2) D-1) D) Jz) j1) En-I -Fn-1 

(4.47) 

This matrix has to be converted to a true tri-diagonal matrix [E1FiGi], to be solved in 

the manner described by equations (4.37) to (4.40). The conversion process is adapted 

from that described for the conversion of matrix (4.33) to (1.35), since the terms lying 

outside the tri-diagonal band can be ·described with reference to the positions of the 

tow fish, junctions, and depressor. The process described below should be considered 

in conjunction with the conversion explained in suh:-section 4.3.3. 

The first phase, consists of eliminating all Di terms. Th~s c~mmence~ at row "2" by 

eliminating term E2 with the aid of row "l". The elimination process is then 

continued from rows "2" to "f2-l" by successively eliminating all E1 terms with the aid 
- . 

of the row immediately above the row being manipulated. The resulting row "f 2-1 ", 

which is now devoid of term En-1, can be used to eliminate terms D1 and D2. 

Skipping row "fi'', the elimination process of E1 from rows· "f 2+ 1" to "D-1" is carried 

out in a similar fashion to that explained above. As in the previous case, the resulting 

row "D-1", can then be used to eliminate terms D3 and D4. In the example shown (i.e. 

equation (4.47)), this should result in all Di terms being eliminated. At the end of this 

elimination process, in addition to the- elimination of all the Di terms, the E1 terms 

from rows "2" to "D", would have converted to zero. 

The second phase of the elimination process is the elimination of the Ci terms. Using 

row "j2- l ", the term C4 in row "D-1" is eliminated. This is then followed by row "h-
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2'', which is used to eliminate the term C3 also in row "D-1". This elimination 

process will introduce new terms along row "D-1", between columns "j2-2" and 

"D+l". These additional terms can be eliminated by continuing the process of 

elimination using row "j2-3", followed by row "j2-4" and so on, until row "D" is 

reached. This will also ensure that the zero term 0 0 _1, will convert to a non-zero term. 

A similar elimination process is then carried out for terms C1 and C2, located on row 

"f2-1", by commencing the elimination process with row "j 1-1" to eliminate the term 

C2, followed by row "j 1-2" to eliminate the_ term C1 and so on, until row "f2" is 

reached. This process will ensure that any additional terms introduced on to row "f2-

1" between columns "j 1-2" to "f2+1" will be eliminated. In addition, the elimination 

process will also convert the term Gf2-l to a non-zero term. The conversion of all the 

Gi terms that are zero to non-zero values is essential to ensure that the solution process 

for a true tri-diagonal matrix as explained from equations (4.37) to (4.40), has no 

divisions by zero. 

The resulting matrix will be a true tri-diagonal matrix [E1FiGi], which will be as 

shown in equations (4.35) and (4.36) and solved using the Thomas algorithm as 
explained in sub-section 4.3.3 to yield the tension correction terms 8T1

1
+

1
• The 

solution process for the multiple tow system will be as explained for the two-part tow, 

i.e. steps 1 to 14 in sub-section 4.3.5, with the only difference being the modification 

in converting the matrix to a true tri-diagonal matrix in step 11. 

The conversion explained above would be similar for a tow configuration consisting 

of more parallel tows and hence more Ci and D1 terms, as their positions will be 

known as a function of the positions of the tow fish, junctions, and depressor. This 

allows the elimination process explained above to be applied. 

Fish 1 26kg 
Secondary Cable 1 20m 4 segments 
Fish 2 26kg 
Secondary Cable 2 20m 4 segments 
Fish 3 26kg 
Secondary Cable 3 20m 4 segments 
Depressor 85 kg 
Primary Cable 125 m 10 segments 

Parallel Multi-Tow Configuration Information 

Table 4.3 
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Figures 4.29 to 4.31 give the results of a multi-tow having three fish plus the 

depressor in parallel. Information on the tow is given in Table 4.3 . The surface 

excitation again is the 180 degree manoeuvre at 3 metres per second. 

From Figure 4.29, as expected the tow fish tum inside the turning circle of the surface 

vessel. The inevitable slowing down of the fish results in an increase in their depth 

and pitch angles, as shown in Figures 4.30 and 4.31. With a parallel multi-tow, it is 

important to consider the change in depth of the parallel tows as they may make 

contact with each other and get "entangled". Although Figure 4.30 only shows the 

depth of the towed fish , it is prudent to look at the positions of the secondary cables in 

full, to prevent contact between them . The program is able to supply the positions of 

the cable nodes to enable this investigation. 

The computer flowcharts for the modelling techniques explained in Chapter 3 and the 

solution procedure described in this chapter are given in Appendix B. 
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CHAPTERS 

ANALYSIS OF THE NUMERICAL METHOD 

5.1 Introduction 

In Chapter 2, the modelling of a continuous cable system was briefly described, and 

the equations of motion were derived as second order coupled non-linear partial 

differential equations, (see equations (2.9)). In order to solve these equations, they 

first have to be converted into second order coupled non-linear ordinary differential 

equations. 

One method of achieving this is to model the cable structure using the lumped mass 

method as explained in Chapter 3. The resulting ordinary differential equations are 

then solved using a numerical integration scheme that gives the change in the cable 

configuration over time, i.e. a time domain simulation. In Chapter 4, the solution 

procedure employed in this project was detailed. 

Since the equations are non-linear, an iterative process, such as the Newton-Raphson 

iteration process, is required at each time step. Thus, the solution obtained from the 

numerical integration scheme is checked for accuracy with the aid of a constraint 

relationship. This relationship will enable the results to be improved through the 

iteration process, until an acceptable level of accuracy is achieved. In addition to 

being accurate, the selected numerical technique must be stable, i.e. it should 

converge to a solution. 

In engineering, the use of numerical techniques is widespread. Although, most 

engineers are conversant with the use of numerical techniques, and are aware that the 

procedure should be stable and accurate, many are unsure of the mechanics involved 

in satisfying these criteria, a point not lost on mathematicians. Therefore, this section 

looks briefly at the numerical techniques, and analyses the stability and accuracy of 

these methods, with an emphasis on the technique used in this project. It is not 

intended to carry out a detailed study, as that is left respectfully in the "domain" of the 

mathematician. Text such as Ames (1969), Gear (1971), and Wood (1990) provide a 

good mathematical analysis of such numerical methods, while Bathe (1982) gives 
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engineers a brief but concise description on the accuracy and stability requirements of 

popular numerical schemes in engineering. 

The integration of ordinary differential equations can be classified as implicit or 

explicit. Consider the equation, 

~~ =f(u,t) (5.1) 

where 

u : arbitrary vector varying with time "t" 

f : vector, which is a function of both "u" and "t". 

If during the integration, "f" is obtained only for known values of "u", the 

integration is said to be explicit. However, if "f" must be obtained for values of "u" 
that are calculated from "f ", then the integration is said to be implicit. 

The general form of an explicit time integration scheme is given by, 

R .. t = f(Rt+I Rt Rt-I Rt-2 ) ' ' ' , ..... . (5.2) 

where "R " is the displacement and "t" is the time. 

From equation (5.2) it is seen that the displacement at "t+l" (i.e. Rt+1
), depends only 

upon the values up to time "t". The most popular explicit integration scheme is the 

Central Difference (CD) method, (Walton and Polachek (1959) and Bathe (1982)). 

Implicit schemes can be represented by, 

R .. t+1 = f(Rt+1 Rt Rt-1 Rt-2 ) ' ' ' , ..... . (5.3) 

In this case, the displacement at "t+l" (i.e. Rt+1
), depends upon the values up to and 

inclusive of those at time "t+l". Therefore, these generally require an iteration 

process in the solution technique. A number of implicit schemes are used in 

engineering, including the Newmark, Houbolt, and Wilson-8 methods, (Bathe (1982) 

and Thomas (1993) give details of these methods in engineering applications). 
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The integration schemes for ordinary differential equations can be further divided into 

a number of groups, and the more popular ones are discussed here. 

p-Step Algorithms 

These numerical algorithms are given by, 

p L {(at ~t-2 m + yt ~t-1,S + ~1 ,!s)R N+t -W f"N+t }= 0 (5.4) 
t=O 

where 

a\ ~ 1, yt : parameters of the multi-step integration algorithm 
m, c, k : system mass, damping, and stiffness matrices respectively 
= = = 

RN : displacement vector at time "N" 

f : external load vector 

Thus, to obtain RP it is required to use the values corresponding to times 0 to p-1. For 

example, if the algorithm was a two-step algorithm, then RP will depend on times p-2 

and p-1. 

One-Stepp-Stage Algorithms 

These are of the form, 

R 1
+

1 =Ap.R 1 +Lp.f 1
+1 

where 

-tT t "t ""t """t t 

[ 
p~]T 

R = R ,R ,R ,R , ..... ,R 

f : external load vector 
Ap : amplification matrix 

Lp : p x p load operator 

t : time 

(5.5) 

Note: Ap and Lp will be dealt with in detail later in sub-section 5.5.2 of this chapter. 
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To obtain R t+i, the values at time "t" are used, (i.e. one-step). However, "p-1" 

derivatives of R1 are used, (i.e. p-stage). For example, if the algorithm is a one-step 
two-stage algorithm, then R i+i will depend on R 1 and R 1 • 

In cable models the common algorithms used are single-step, multi-step, and multiple 

evaluation schemes. The first uses simple low-order formulae based on a truncated 

Taylor series. Only one function is evaluated at every step, thus resulting in low 

accuracy. However the accuracy can be improved if the derivatives can be explicitly 

calculated. The hinged rod cable method explained in Chapter 2 uses a single-step 

integration scheme. 

The multi-step method uses a number of values obtained in previous iteration steps to 

recalculate their values. This allows their values to be improved through an iterative 

procedure until sufficient convergence is achieved. Increasing the number of previous 

values in the iteration process enables schemes involving higher order terms to be 

incorporated, thus increasing accuracy. Common methods consist of predictor­

corrector schemes, where explicit formulae give a prediction of the required solution 

of an implicit corrector. The solution described in Chapter 4 follows this method. 

The final group, multiple evaluation schemes, reduces the error by calculating the 

values at a number of intermediate positions within the given step. An example is the 

Runge-Kutta method, used by Ractliffe (1984) and Sanders (1982) to solve 

underwater cable I riser and towed systems, respectively. 

The selection of the numerical solution procedure depends on the balance between 

accuracy I stability of the schemes and the computational effort required. In dynamic 

cable I body models, modes of motion occur within the system, and oscillate at a rate 

on the scale of milliseconds. The ratio of the fastest to the slowest normal mode of 

motion is referred to as the "stiffness ratio". A system having a large ratio (usually 

above a ratio of 10000), is deemed to be stiff. 

Although these high frequency modes do not greatly influence the motion of the 

system, they affect the stability of the numerical scheme used in the solution process. 

Therefore, the step size used in explicit integration solution schemes should be 

sufficiently small to follow these rapid variations. Implicit integration schemes are 

usually stable for all time steps. However, the time step is limited due to two 

conditions: 
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• the loss of accuracy due to the size of the time step; and 

• instability due to the propagation of the errors introduced by the iteration 

scheme required for non-linear systems. 

Usually numerical methods utilising higher order schemes are more accurate, but they 

require greater computational effort. However, these methods do not always increase 

in stability. In some cases, the increase can be marginal, while in others it may even 

reduce in comparison with a related lower-order scheme. 

When selecting more accurate higher-order schemes for systems with very high 

frequency modes, the schemes must have sufficiently large stability regions to enable 

a practical step length to be used. A number of quasi-Newton iteration schemes can 

achieve this, although they require a high computational load. Therefore, the scheme 

selected should balance the accuracy, stability, and computational load. 

The Houbolt method used in this project is a higher-order scheme with a sufficiently 

large stability region, (Hilber et al. (1977)). Although the computational time is 

greater than that of a lower order system (e.g. an Euler type integrator), it proved to be 

sufficiently competitive against models using such lower order schemes. Note: 

although a number of numerical methods were used during the computer modelling 

phase, the Houbolt scheme was ultimately selected for the project. 

5.1.1 Derivation of the Houbolt Scheme 

Since the numerical scheme used here is the Houbolt scheme, it is prudent at this 

juncture to djscuss its derivation. The Houbolt method is a three step (p = 3) method. 

(Note: some texts refer to the Houbolt scheme as a four-step method. However, in 

this thesis the notation given by Wood (1990) will be used, i.e. p = 0 'to 3). 

Multi-step numerical algorithms are generally described by equation (5.4). If the 

second order differential equation is of the form, 

R=F (5.6) 

then equation (5.4) will reduce to, 
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p ' 
L:{at R N+t -M2131 pN+t }= 0 (5.7) 
t=O 

where RN is the displacement at time "N". Since p = 3, equation (5.7) becomes, 

(5.8) 

Note: f3° = f3 1 = f32 = 0 and f33 = 1, since the method is implicit and the number 

of functional evaluations are to be minimised. 

The associated local truncation error (L~1 (RN ~t)) is estimated by using the exact 

solution of equation (5.6) in the integration scheme given by equation (5.7). Thus, 

3 

L~1 (R N~t) = L:{at R N+t - ~t2131 pN+t} (5.9) 
t=O 

Expanding equation (5.9) in a Taylor series about RN yields, 

(5.10) 

where C1 are constants obtained by the expansion of the terms in (5.9) and collating 

the coefficients of terms having the same power. Therefore, from equations (5.8) and 

(5.10) we obtain, 

co = ao + a1 + az + a3 (5.lla) 

C1 = a 1 + 2 a 2 + 3 a3 (5.llb) 

C2 = 1/2 (a1 + 4 a 2 + 9 a3) - 1 (5.llc) 

C3 = 1/6 ( a 1 + 8 a 2 + 27 a3) - 3 (5.lld) 

It is required that the error in the scheme is at least of the second order. Inspection of 

equation (5.9) indicates that the difference equation has an order of accuracy of q if, 

C0 =C1 =C2 = ...... =Cq =Cq+l = 0 and (5.12a) 

(5.12b) 
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Thus, for accuracy of the second order, 

c0 = c 1 = c 2 = C3 = o (5.13) 

which reduces equations (5.11) to, 

ao = -(a 1 + a2 + a3) (5.14a) 

(5.14b) 

a 1 = 2 - ( 4 a2 + 9 a3) (5.14c) 

a 1 = 18-(8a2 + 27a3) (5.14d) 

Solving the above simultaneous equations yields, 

ao -- -1, a 1 
-- 4, a2 5 d = - , an a 3 = 2 (5.15) 

Now substituting into equation (5.8) and using equation (5.6) we'have, 

(5.16) 

which is the acceleration for the Houbolt scheme. 

Let us now consider a first order differential equation of the form, 

R=F (5.17) 

In a similar process~ to the second order differential equation explained above, 

equation (5.17) can be expressed in the finite difference scheme as, 

(5.18) ' 

Again, the associated local truncation error ( L 61 (RN ~t)) is estimated as, 

3 

L
61 

(RN ~t) = L{a 1 R N+t - ~tW pN+t} (5.19) 
t=O 
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Now expanding equation (5.19) in a Taylor series and collating the coefficients of 

terms having the same power gives, 

co = ao + a1 + az + a3 (5.20a) 

Cl a 1 + 2 a 2 + 3 a 3 1 (5.20b) 

C2 = 1/2 (a1 + 4 a 2 + 9 a 3) - 3 (5.20c) 

C3 = 1/6 ( a 1 + 8 a 2 + 27 a 3) - 912 (5.20d) 

Inspection of equation (5.19) indicates that the difference equation has an order of 

accuracy of q if, 

c0 = c 1 = c2 = . . . . . . = cq = o and (5.21a) 

(5.21b) 

Therefore, for accuracy of the second order, 

c0 = c 1 = c2 = o (5.22) 

Thus, using equations (5.17a), (5.17b) and (5.17c) we have, 

a0 = 312 - a 3 (5.23a) 

a1 = 3 a3 
- 4 (5.23b) 

a 2 = 512 - 3 a 3 (5.23c) 

These three relationships do not facilitate the complete solution of the coefficients, i.e. 

the relationships will depend on the value selected for a 3
. However, it is possible to 

obtain a solution if the accuracy is increased to the third order. This will result in, 

C3 = o (5.24) 

Thus, we obtain, 
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a 0 = -2/6, a 1 = 3/2, a 2 = -6/2, and a 3 = 11/6 (5.25) 

Now substituting into equation (5.18) and using equation (5.17) gives, 

(5.26) 

which is, the velocity for the Houbolt scheme. 

5.2 Comparison between the Lumped Mass Model and the Continuous Cable 

Model 

5.2.1 Continuous Cable Model 

In Chapter 3, the cable was modelled by dividing it into a number of segments. The 

cable system will now be modelled and investigated as a continuous system, (see 

Schram and Reyle (1968), Patton (1972), and Brook (1990) for a detailed explanation 

of this modelling technique). The derivation of these equations was considered 

briefly in Chapter 2, and will be expanded in this sub-section. 

Figure 2.1 shows the Cartesian coordinate system and the cable orientation, which 

yields the transformation matrices [A] between the Cartesian coordinates (X, Y, Z) 

and the local coordinates (X', Y', Z') located along the cable. This was derived as 

equation (2.3) in Chapter 2 and is reproduced below. 

[ 

Cos<!> Cosl!f Sin<!> Cosl!f 

[A]= -Sin<!> Cos<!> 

- CoscpSinl!f -Sin<!>Sinl!f 

Si~\!f] 
COS\!f 

(5.27) 

Note: the inverse of the above transformation matrix is equal to the transpose of the 

matrix or, 

(5.28) 

The spatial coordinates of the cable is defined as follows. The length along the cable 

is represented by "s", the length of an unstretched segment of the cable is represented 
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by "8s", and the stretched length by "8s1". Then from Figure 2.1, considering the 

geometric relationships between the angles and the spatial derivatives gives a set of 

constitutive relationships as, 

ax - = Cos<)>Cosw 
as! 

ay = Sin<)> Cos W 
as! 

az s· -= lil\jJ 
as! 

where x, y, and z are the displacements in the X, Y, and Z directions. 

(5.29a) 

(5.29b) 

(5.29c) 

The relationship between the stretched length "8s1" and the unstretched length "8s" is 

given by the local strain of the element as, 

as 
-

1 = 1 + E (5.30) 
as 

where "e" is the local strain in the cable element when stretched. Thus, the 

constitutive relationships given in equations (5.29) become, 

ax - = (1 + E) Cos<)> Cos \jf 
as 

ay = (1 + E)Sin <)>Cos \jf 
as 

az = (l+E)Sin\jf 
as 

(5.31a) 

(5.31b) 

(5.31c) 

Figure 2.2 shows the tensile force and the external forces on the cable segment. By 

resolving these forces into the Cartesian coordinate directions, X, Y, and Z, we obtain 

the equations of motion as, 

a2x 
µc - 2 8s = (T + 8T)Cos (<)> + 8<j>)Cos (W + b\jf) -TCos<)> Cos \jf) + F

0
x 8s 

at 
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µc a
2

; 8s = (T + 8T)Sin (<!> + 8<j>)Cos (\jf + 8\jf) -TSin <!>Cos \jf + F
0
Y 8s at 

µc a 
2

: 8s = (T + 8T) Sin (\jf + 8\jf) - T Sin \jf + F
0
z 8s at 

where 

(5.32b) 

(5.32c) 

Fox,y,z : external forces except the tension forces per unit stretched length of cable, 

(i.e. hydrodynamic, mass, and buoyancy forces) 

s : the arc length of any unstretched point along the cable 

T : cable tension 

µc : cable mass per unit length 

<!> : horizontal angle of the cable with the X axis 

\jf : vertical angle of the cable with the X-Y plane 

8 : represents the change in the parameter 

If we expand the trigonometric terms and take limits for the changes in the parameters 

s, T, \jf, and <j>, we get, 

8s --) 0, 8T --) 0, 8\jf --) 0, and 8<!> --) 0 

Equation (5.32) then reduces to, 

(5.33a) 

a a1 

-(TSin <!>Cos \jf) + F0 y = µc -f as at (5.33b) 

(5.33c) 

Thus, equations (5.31) and (5.33) describe the motion of the cable system. 

Before the solution of these equations is attempted, manipulating the above­

mentioned sets of equations reduces them to typical wave equations. Substituting the 

constitutive relationships of equations (5.31) into the appropriate equations in (5.33) 

gives, 
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(5.34a) 

azy = ~(__!___ ayJ + F 
µc • at 2 as 1 + E . as oy 

(5.34b) 

a
1

z = ~(__!___ azJ + F 
µc. at 2 as 1 + E. as oz 

(5.34c) 

These are the wave equations (Kreyszig (1993)) of the continuous cable system. 

Equations (5.31) and (5.33) describe the motion of the continuous three-dimensional 

dynamic cable system. Therefore, these equations have to be solved to obtain the 

configuration of the cable system. The solution procedure for these equations is much 

simpler if they are first transformed into the local coordinate system (X', Y', Z') by 

multiplying by the transformation matrix [A]. 

First consider equations (5.33), they can be transformed into the local coordinates and 

expressed in matrix form as, 

[A]. 

a 
-(T Cos<!> Cos \j/) 
as 

j_ (T Sin<!> Cos \j/) 
as 

j_ (T Sin \j/) 
as 

where 

avx 
at 

avy 
at 

avz 
at 

(5.35) 

First considering the left hand side tension terms, the multiplication can be expanded 

and simplified to give, 
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a aT 
-(TCos<j> Cos \j/) 

as as 

(A]. :s (T Sin <j> Cos \j/) = TCos\j/ a<j> (5.36) 
as 

1_(TSin \Jf) 
as 

T a\Jf 
as 

Now considering the global external forces on the cable (Fox, Foy, F0 z), th~ "local" 

external forces CFox', Fay', Foz·) are defmed as, 

[Fox', Foy', Foz•] T = [A] . [Fox, Foy, Foz] T (5.37) 

Similarly, the global cable velocities (Vx, Vy, Vz), can be expressed· as a function of the 

local velocities (Vx', Vy', Vz·) as, 

(5.38) 

To obtain expressions for the global acceleration in terms of the local acceleration, 

differentiating equation (5.38) with respect to time gives, 

[
aVx ,aVY 'avz]T = a[AY [v .,V .,V .]T +(Af [aVx. ,avy., avz·]T (5.39) 
at at at at x y z at at at 

Multiplying equation (5.39) by the transformation matrix, expanding, and simplifying 

gives, 

[A]. 

avx 

at 
avy 

at 
avz 

at 

av x' d\jl d<j> 
--- V. --V. Cos\j/-at z at y at 

avy. d<J> d<J> = --+ V . Cos \jl - - V . Sin \jl-at x at z at 
av. ;:},,, ;.),!,. 
_z_ + V . _u'l'_ + V . Sin \jl _U'J' at xat y at 

(5.40) 

Now substituting equations (5.36), (5.37), and (5.40) into equation (5.35) and 

simplifying gives, 

aT ( av x· d\jl d<j>) - - µ -- - V . - - V . Cos \j/- + F . = 0 
as c at z at y . at ox 

(5.41a) 
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~ (a~. ~ ~J TCos\jf- - µc --+ Vx. Cos\jf-- Vz. Sin 'If- + F
0

Y. = 0 
as at at at 

(5.41b) 

(5.41c) 

The constitutive relationships given in equations (5.31) can also be expressed in terms 

of the local velocities. Differentiating equations (5.31) with respect to time gives, 

av [ . aw . a<1> J aE _x =(l+E) -Cos<)>Sm\jf--Sm<)>Cos\jf- +Cos<)>Cos\jf-
as at at at 

avy = (1 +E) [-Sin <)>Sin \jf a\jf + Cos<)>Cos\jf acp] +Sin <)>Cos\jf aE 
as at at at 

av a"' . aE _z = (l+E)Cos\jf- + Sm\jf-
as at at 

(5.42a) 

(5.42b) 

(5.42c) 

By expressing the global velocities in terms of the local velocities, and simplifying 

gives, 

avx. - aE - Vz. a\jf - V, Cos\jf acp = 0 
as at as y as 

(5.43a) 

av y· aw a"' a<1> ---(l+E)-+ V .-+ V .Sin\jf-=0 
as at x as y as 

(5.43b) 

av. a<1> a<1> . a<1> __ z - (l+E)Cos\jf- + Vx. Cos\jf- - Vz. Sm \jf- = 0 
as at as as 

(5.43c) 

In addition to the above equations, the relationship between the tension and the strain 

in the cable is defined as, 

aT aT aE 
--at=a;·ai (5.44) 

Assuming a linear variation of tension, equation (5.44) simplifies to, 

(5.45) 
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Now using equation (5.45) in equations (5.41) and (5.43), the following set of 

equations describing the motion of the cable in the directions tangential and normal to 

the cable (i.e. local coordinates) is obtained. 

au au 
-+Au-+Bu=O at =as 

(5.46) 

where 

u : vector consisting of [Vx., Vy., Vz., E, <j>, \jf]T 

0 
VY, - vz' 1 dT --- ---

1+ E l+E µc aE 
Au1 

vz' vx' 
l+E 

0 
Vx, -Vz, Tan \jf 

0 0 
l+E 

Au2 

0 
VY, Tan \jf vx' 0 

Au= 1+ E l+E 
[ V' T] Au 3 1 +xE -µ:-

-1 0 0 0 

0 
1 

0 0 

VY, Cos \jf vz' 
(Vx, - Vz, Tan \jf) 

0 
(1 + E) Cos \jf l+E 

0 0 
1 

0 ---
VY. Sin \jf - vx' 

l+E l+E l+E 

and where 

- Vz. VY, Sin \jf - VY, Cos \jf (Vx, - Vz. Tan \Jf) 
Au = ----'------'---------

1 l+E 

TCos \jf Cos \jf (Vx, - Vz, Tan \Jf) 2 

Au 2 = - + ---------
µc 1+ E 

Vx. VY. Sin \jf +VY. Cos\jf (Vx, - Vz, Tan \Jf) 
Au =---------------

3 l+E 
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5.2.2 Wave Speeds 

Let us now look at the solution of the continuous cable model developed in the 

previous sub-section. For the six equations given in matrix form in equation (5.46), 

the determinant is written as, 

(5.47) 

where ! is an unity matrix and Aw represents the eigenvalues of the system. 

The six characteristics of the equations can be derived using classical eigenvalue 

theory, (Patton (1972)), as, 

-+ Aw12 - -
' 

1 E dT 
µc . (1 + E). dE 

/.. -+ 1 
w5,6 - - µc. (l+E). dE 

E dT 

(5.48a) 

(5.48b) 

(5.48c), 

Since two of the roots are repeated, the equations are a mixed hyperbolic-parabolic 

system of partial differential equations. The characteristic values obtained in (5.48a) 

represent the speeds at which the tensile disturbance (tensile stress wave) travels 

along the line, with the positive travelling down the line and the negative up the line. 

The characteristic values obtained in (5.48b) and (5.48c) represent the speeds at which 

the transverse disturbance (transverse flexural wave) travels along the line, again with 

the positive travelling down the line and the negative up the line. Although the two 

speeds in equations (5.48b) and (5.48c) are equal in value, the first is in the X'-Y' 

plane while the second is in the X' -Z' plane. 

5.2.3 Relationship between Continuous and Discrete Systems 

Now let us look at the relationship between the equations for the continuous system 

and those developed for the discrete system, (i.e. the lumped mass model). The latter 

system was developed in Chapter 3, and the relevant equations will be referred to in 

this sub-section. 
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The equations describing the motion of the nodes ill a discrete system are those 

derived in equations (3.14) in Chapter 3. For simplicity, the added mass terms will be 

neglected, thus these equations reduce to: 

(5.49a) 

(5.49b) 

(5.49c) 

Now using equations (3.27), the external forces can be expanded to include the 

tension terms as, 

(5.50a) 

mi . y, = T1 Sin <!>1 Cos \jfi - T 1-1 Sin <1> 1-1 Cos \jf 1-1 + F10y (5.50b) 

(5.50c) 

Considering Figure 3.1, for segment "i" it is noted that, 

x -x. 
Cos<j>. Cos\jf. = i+I 

1 

I I li (1 + EJ 
(5.5la) 

y -y 
Sin<!> Cos \jf = i+i 

1 

I 
1 1, (1 + EJ 

(5.51b) 

(5.51c) 

where 11 is the unstretched length and E1 is the strain of segment "i". A similar set can 

be written to describe the angles of segment "i-1". Thus, equations (5.50) can be 

written as, 
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(5.52a) 

m y·· = T Yi+1 - Y1 -T Y1 - Yi-1 + F 
I • I I 1 (1 ) 1-J 1 (1 ) 10y 

I + El i-1 + E1-l 
(5.52b) 

(5.52c) 

From here on for simplicity, we will only consider the equations in the X-direction. 

Now using a Taylor expansion for the coordinates in the X-direction, coordinates xi+1 

and x1 are expanded about Xi+112 (i.e. the mean between the two coordinates) as, 

(5.53) 

(5.54) 

where "s" define the spatial coordinates. 

Now consider a lumped mass system where all segments are similar, thus having the 
same length, i.e. 11 = 11_1 = 1. Then by substituting x 1+1 - xi+112 = 112 and 

xi - x 1+112 = -112 in equations (5.53) and (5.54), and subtracting one from the other 

we have, 

axl 13 a3x 15 a5x 7 
X1+1 - X1 = 1- + --2 --3 + --4 --5 + Q(l ) 

as 1+112 3!2 as 1+112 5!2 as i+l/2 

(5.55) 

where 0(17
) is the asymptotic notation of the terms having an order of 7. Following a 

similar procedure for coordinates x1 and Xi-I about X1-112 we have, 
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' axl 13 a3x ls asx 7 
X1 - Xi-1 = 1- + --2 -3 + --4 -s + O(l ) 

as 1_112 3!2 as i-l/
2 

5!2 as 
1

_ 112 ' 

(5.56) 

(Note: a similar set of equations can be written for the coordinat~s in the Y and Z 

directions). 

Etpploy_ing equations (5:55) and (5.56) in equation (5.52a), (i.e. the equation along the 

X-direction), and dividing by "l" we hav~, 

ml .xl ~ TI [axl + _f___ a
3
x + ~ asx + 0(17 )]-' ' 

1 '1(1 + cJ as t+l/2 3!22 as3 
i+l/2 5!2

4 
ass t+l/2 

T1_ 1 [axl 1
2 a~x 1

4 

asx O(l1)] F:ox ---- -- +---- + ---- + + -
1(1 + £1-1) as 1-112 3!2

2 
as3 

1-112 5!2
4 

ass 1-112 1 

(5.57) 

Separating into terms of a similar order in "l" gives,, 

(5.58) ' 

For any variable (say R) of the cable segment, R1 represents its value at node· -"i", 

while R1_112 and R1+112 represent its values along ~he cable segments just prior to and 

after node "i" respectively. Now using a Taylor expansion for R1+112 and Ri-112 about 

R1, and subtracting one from the other gives, 

(5.59) 

From the numbering system used for the lumped mass model (Figure 3.4), it is seen 

that coordinate Xi+v2 lies in segment i and coqrdinate Xi_ 112 lies in element i-1. Thus, 

using equation (5.59) in equation- (5.58) we have, 
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m1 .x. 1 a [ T ax] 1
2 

a
3 

[ T ax] 1
4 

as [ T ax] 
1 =as (l+c)as +24as 3 (l+c)as +1920ass (l+c)as + .. + 

1
2 

{a [ T a
3

x] 1
2 

a
3 

[ T a
3

x] 1
4 

as [ T a
3

x] } 
24 as (1 + E) as 3 + 24 as 3 (1 + E) as 3 + 1920 ass (1 + E) as 3 + .. + + 

1
4 

{a [ T asx] 1
2 

a
3 

[ T asx] 1
4 

as [ T asx] } 
1920 as (1 + E) ass + 24 as 3 (1 + E) ass + 1920 ass (1 + E) ass + .. + 

F:ox + ..... +-
1 

Taking limits as 1 --7 0 gives, 

---=- --- +-m a 
2 
x a ( T ax J F;0 x 

1 . at 2 as 1 + E . as 1 

where m1 = m1• 1 = m, since all segments are similar. Now since, 

x = a
2
x = acceleration in the X-direction 

at 2 

m 
µc = -

1 
= the unit mass per unstretched length of the cable 

(5.60) 

(5.61) 

F = Frnx = the external forces, except the tension forces per unstretched length of 
ox 1 

the cable 

equation (5.61) reduces to, 

(5.62a) 

µ a2y = _i_(_..:!:.._ ayJ + F 
c • at 2 as 1 + E • as oy 

(5.62b) 

a
2
z = _i_(_..:!:.._ azJ + F 

µc . at 2 as 1 + E . as oz (5.62c) 

where equations (5.62b) and (5.62c) are the component equations in the Y and Z 

directions, which are obtained from equations in (5.52b) and (5.52c) respectively. 
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Equations (5.62) are identical to those given by equations (5.34), i.e. the wave 

equations describing the motion of the continuous cable system. Therefore, we can 

conclude that the lumped mass system developed in Chapter 3 is a true representation 

of the continuous cable system. 

5.2.4 Effects due to Discretisation 

Now let us look at the effect on the continuous system as it passes over into the 

ordinary differential equations describing the lumped mass model. Again for 

simplicity only the equations in the X-direction are considered. 

Referring back to sub-section 5.2.3, substituting equations (5.55) and (5.56) in 

equation (5.52a) gave equation (5.60). Neglecting terms of order greater than 12
, 

reduces equation (5.60) to, 

(5.63) 

In order to simplify the investigation, assume that the cable is "stiff' and the tension is 

constant, i.e., 

E<< 1 (5.64) 

(5.65) 

Using the above conditions in equation (5.63) gives, 

(5.66) 

h · all · ·1 d ·· iFx w ere mi= m1_1 = m, smce segments are s1rm ar an x = -
2
-. 

eh 

Neglecting the external force F0 x, (again for simplicity), gives, 

m a2 x a1 x 12 a4 x 
---=--+---
T 1 at 2 as 2 12 as 4 

(5.67) 
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Similar equations can be developed for the Y and Z directions by using equations 

(5.52b) and (5.52c) respectively. 

Inspection of equation (5.67) shows that it is not an ideal wave equation, however it 

can still transmit waves along the cable. The solution to this equation is given in 

Huang (1992), and is of the following form, 

(5.68) 

given that, 

ro = k {TI ~I - I' k 2 

w w v-~ 12 w 
(5.69) 

where 

Ulw : wave frequency 

kw : wave number 

Further, the wave speed (Cw) is defined as, 

C = ro. = {TI ~I - I' k 2 

W kW v-;- 12 W 

(5.70) 

The dependence of the wave speed on the wave number results in the wave no longer 

being non-dispersive, as is the case with a continuous cable. Therefore, the effect of 

the wavelength has to be considered during the analysis. Note: the wavelength Ow) is 

give by, 

1 = 2n: 
w k 

w 

(5.71) 

For example, consider the case where kw << 1. Then from equation (5.69), the wave 

frequency becomes, 

(5.72) 
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which gives the wave speed from equation (5.70) as, 

(5.73) 

Thus, the wave speed for this condition is independent of the, wave number. 

Therefore, if the segment length is small or the wavelength is relatively large, then the 

discretisation has little effect. 

Now consider the wave equation given by (5.70). The maximum frequency occurs 

when the wave number reaches, 

k = {ff 
w v-;;;i (5.74) 

If excitation frequencies above this frequency are encountered, these wave fronts will 

be cut-off, (Huang (1992)). Thus, responses above this frequency will disperse as 

they travel along the cable model, i.e. the lumped mass models truncate the high 

frequency responses of the system. However, for most engineering applications this 

is acceptable, as the high frequency, low amplitude responses are of little interest. 

The geometric discretisation can also result in parasitical motion of the lumped 

masses. The tangential stiffness (kt) of a single lumped mass is linearly dependent on 

the relative tangential displacement, and is given by, 

(5.75) 

where 

E : modulus of elasticity 

Ai : cross sectional area of the cable segment 

11 : length of the cable segment 

The normal stiffness (kn) is non-linearly dependent on the normal displacement (8n) 

as, 
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(5.76) 

If the damping is neglected, then the resonant frequencies of the parasitical motions 

are given by, 

(5.77) 

where 

w : resonant frequencies 

k : either kt or kn, depending on the resonant frequency 

Mtotal : total mass of the lumped mass, i.e. its mass plus the added mass. 

5.3 Stability and Accuracy 

Given the long simulation time required for the solution of dynamic time domain 

cable system models, the mathematical representation and the solution technique must 

be sufficiently accurate and stable. The errors that can enter during the integration 

process are divided into two categories: 

• truncation error - the difference between the exact solution of the partial 

differential equation and the exact solution of the difference equation; and 

• numerical (round off) error - the difference between the exact solution of the 

difference equation and the numerical solution of the difference equation. 

Generally the former is much larger than the latter. Investigations by O'Brian et al. 

(1950-51) show that the stability issues encountered in numerical schemes are due to 

truncation errors rather than due to numerical errors in the scheme. 

Usually all implicit time integration schemes are unconditionally stable, while e~plicit 

schemes are only conditionally stable. Therefore, explicit schemes require a time step 

that is less than a defined critical value, while the implicit schemes have no limiting 

time step. However, when using implicit schemes for non-linear systems, large time 

steps will cause the numerical integration scheme to "blow out", i.e. become unstable. 
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The reason for this is the.truncation error introduced by the required iteration scheme, 

(i.e. the Newton-Raphson scheme in the case of the towed system model of this 

project). 

Thus, the selection of the time step is dependent on the accuracy and stability of the 

numerical scheme. Therefore, the time step should be sufficiently small to ensure 

accuracy and stability are met, but large enough to prevent long simulation times. 

Numerical stability depends not on the original set of equations, but on the numerical 

scheme used. Stability requires that the amplification of any errors entering the 

solution process should be limited. There are a number of methods for assessing the 

stability of a numerical scheme. These methods, which are discussed in the following 

sub-sections, include: 

• von Neumann method; 

• Routh-Hurwitz method; and 

• matrix stability method. 

During the analysis, four popular numerical integration schemes used in engineering 

will be discussed. This includes the Houbolt integration scheme used in this work. 

The four methods discussed are given below: 

Central Difference Scheme 

-'-- R t+2 _Rt 
Rt+i=----

2.~t 

_,_,_ Rt _ 2 R t+1 + R t+2 
Rt+1 = · 

~t2 

Houbolt Scheme 

R t+l = 11.Rt+l -18.Rt + 9.Rt-1 -2.Rt-2 

6.~t 

R t+l = 2.Rt+l - 5.Rt + 4.Rt-1 - '.[t-2 

~t2 

(5.78a) 

(5.78b) 

(5.79a) 

(5.79b) 
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Newmark-f3 Scheme 

R. 1+1 = R. 1 - <1-y) R. 1 ~t + yR t+l ~t (5.80a) 

R t+l = Rt + Rt ~t + (1- 2f3) Rt ~t 2 + 2f3 R t+l ~t 2 

2 2 
(5.80b) 

Wilson-0 Scheme 

. 3 (R t+0ti.t - R t) . 8 A .. 
R i+ec.1 = . - 2.R t - _.Ll_t .Rt 

0.~t 2 
(5.8la) 

.. 6 (R i+ec.1 - Rt) .. 6 . 
R1+ec.1 = · _ 2.Ri ---.Rt 

02 .~t 2 
\ 8.~t 

(5.8lb) 

On inspecting the schemes, it is seen that the first is an explicit scheme, while the 

others are implicit schemes. Further, the implicit schemes are multi-step algorithms. 

It is also seen that the Central Difference and Houbolt schemes require special starting 

procedures, since information from the pre,vious time steps to the simulation start time 

are required. The Newmark-f3 and Wilson-8 schemes, however, do not require such 

starting procedures. 

Bathe (1982) states that the starting procedure used in the Houbolt scheme for linear 

systems influences the results. However Thomas (1993), by studying the results of 

the same simulation using a number of starting procedures, shows that the results for 

non-linear cable systems using the Houbolt scheme are independent of the starting 

procedure employed. The conclusion drawn is that the iterative process utilised in 

non-linear systems "removes" the sensitivity of the scheme to the starting procedure. 

This was demonstrated in sub-section 4.5 of Chapter 4, where the use of two different 

time steps yielded the same results for a series multi-tow system. 

5.4 von Neumann (Fourier) and Routh-Hurwitz Methods 

In this investigation the stability characteristics of the approximate integration scheme 

are investigated using the versatile matrix stability method. This is carried out in sub­

section 5.5. However, a brief introduction to the other two methods are presented in 

this sub-section. 
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5.4.1 von Neumann (Fourier) Method 

Von Neumann's (also known as the Fourier) stability method is the more traditional 

method of investigating the stability of numerical methods. Although it has 

limitations, it is successfully used to investigate many (especially explicit) numerical 

schemes. Examples of such investigations on underwater cable systems are given in 

Walton and Polachek (1959) and Huang (1994). 

The method was developed by Professor J von Neumann, and consists of introducing 

a line of errors represented by a Fourier series at the mesh points of the computational 

network at t = 0. Then the propagation of the line of errors through the integration 

scheme is investigated. For the scheme to be stable, the error should not grow during 

the integration. 

Although the method assumes linear systems, it is possible to investigate non-linear 

systems by applying the method successively to a sequence of overlapping small time 

regions. 

Von Neumann's stability method is briefly described below, however for a more 

detailed study the reader is directed to O'Brien et al. (1950-51) and Ames (1969). 

The Fourier series representation of the line of errors is introduced at t = 0 as, 

(5.82) 

where 

R : variable, e.g. displacement 

13, : real positive number 

For stability, the sum of the above errors must reduce to the correct error value at each 

mesh point of the line. 

Due to the system being linear, it is possible to use linear superposition to obtain the 

complete effect. Thus, it is only required to consider a single error term, i.e., 
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(5.83) 

Now one must seek a solution for the partial differential equation that reduces to 

equation (5.83) at t = 0. The solution will be of the form, 

(5.84) 

The above is then substituted into the difference equation, and the condition for the 

error not to grow is ascertained. For this condition to be satisfied, 

(5.85) 

Therefore, the difference equation with the substituted error term is rearranged to give 

an expression for eaR. Then it is possible to find the conditions for the expression to 

be equal to or less than 1. 

Shortcomings in this method are its inability to include boundary conditions and the 

requirement to linearise the equations prior to the investigation. However, as stated at 

the beginning of this sub-section, it has been used by a number of researchers to 

investigate algorithms employed in the solution of underwater cable systems. 

5.4.2 Routh-Hurwitz Method 

The Routh-Hurwitz method is a technique of identifying the stability region by 

applying the z transformation, 

'A= (1 + z) 
(1- z) 

(5.86) 

which maps the circle !'Al= 1 into the imaginary axis Re z = 0 and the interior of the 

circle into the half plane Re z < 0. Then the Routh-Hurwitz condition states that the 

necessary and sufficient condition for stability is that the roots of the characteristic 

polynomial must have negative real parts. This method is explained in Hilber (1976) 

and Wood (1990), with the latter using it to determine the stability requirements of a 

number of numerical integration schemes. 
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5.5 Matrix Stability Method 

This is an extremely versatile approach to analyse the stability of numerical schemes. 

It is derived by using the two basic approaches utilised in the investigation of the 

dynamics of structures: 

• the direct integration of the equations of motion; and 

• the modal analysis. 

In the former, the equations are integrated using a numerical step-by-step procedure, 

the term direct implying that prior to this procedure the equations are not transformed 

in any manner. The solution procedure utilised in Chapter 4 is of this type. 

The latter approach consists of changing the basis from the element coordinate basis 

to an eigenvector basis, associated with the natural frequencies (or eigenvalues) of the 

undamped problem. Thus, it generates an alternate set of equations that can be 

integrated more efficiently by a direct integration scheme than the unmodified 

equations of motion. 

It reasons that if the modal form and the unmodified equations are integrated using the 

same scheme, the results should be the same. Therefore, it is possible to analyse the 

modal form of equations, to determine the accuracy and stability of the direct 

integration scheme. 

5.5.1 Modal Superposition 

Consider the general representation of the equations of motion of the cable, 

mR+cR+kR=F (5.87) 

where 

m : cable mass matrix 

c : cable damping matrix 

k : cable stiffness matrix 

R : time dependent displacement vector 

F : time dependent external load vector 
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The set of equations represented by equation (5.87) is assembled for a discrete system 

by superposition of the equations representing each individual node. If the number of 

nodes in the system is "n", then the matrices in equation (5.87) will be square matrices 

of nth order, while the vectors will be column matrices of a similar order. 

Now to convert equation (5.87) to the eigenvector basis. The transformation of the 

displacement from the element coordinate basis to the eigenvector basis is given by, 

where 

Rm : time dependent modal displacement vector 

Am : modal transformation matrix 

(5.88) 

The modal transformation matrix is obtained as follows. Since the eigenvalues are 

not affected by the damping in the system or the external forces, it is possible to 

neglect these terms in equation (5.87) during the conversion. Thus, equation (5.87) 

reduces to, 

mR+kR=O (5.89) 

The solution for equation (5.89) will be of the form, 

(5.90) 

where 

8 : vector of the order n, (that will be shown later to be the eigenvectors), where 

"n" is the number of nodes in the discrete system 

t : time 

tc : time constant 

Wn : frequency of vibration, i.e. natural frequency of vector 8 

Substituting equation (5.90) into equation (5.89) gives the generalised eigenproblem, 

which enables the calculation of 8 and Wn. Thus, 
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(5.91) 

Since the eigenvalue ")..," is defined as, 

A= w2 
n (5.92) 

it is possible to write the above equation as, 

kS=A.m8 (5.93) 

The eigenproblem in equation (5.93) yields "n" eigensolutions, 

(5.94) 

where the eigenvectors are m-orthonormalised, i.e. must have the following 

relationship, 

{ 
=I; i = j 

= O; i :;t j 
(5.95) 

and where 81J is the Kronecker delta, (note: the above is equal to a unity matrix, ! ). 

The vector 8
1 

is called the ith_mode shape vector and Ai is the corresponding 

eigenvalue. Thus, equation (5.89) is satisfied by any of the "n" displacement 

solutions, i. e., 

where = 1,2,3, .. .... n (5.96) 

Now defining matrices 8 and 2; as, 

e = [81 82 83 ······ en] = matrix that stores the eigenvectors along its columns 

A= = matrix that stores the eigenvalues along its diagonal 
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it is possible to write the "n" solutions to equation (5.93) as, 

k8=m8A. (5.97) 

Since the eigenvectors are m-orthonormal, we have, 

(5.98a) 

(5.98b) 

Thus, it is seen that 8 is suitable to be used as the modal transformation matrix Am , 

so equation (5.88) becomes, 

R=8R = m 
(5.99) 

Therefore, the set of equations represented by equation (5.87) is transformed into the 

eigenvector basis as, 

...:..:.. T --'-- - T-
R +8 c8R +A.R =8 F 

m = == m = m = (5.100) 

where the damping and external force terms have been included to complete the 

equation. From the above transformation, it is noted that the mass and stiffness 

matrices in equation (5.100) are decoupled. fu order to easily analyse the equation, it 

would be advantageous to also have the damping matrix decoupled. In general, the 

damping matrix cannot be constructed in a similar manner to the mass and stiffness 

matrices. The approach is to approximate the overall energy dissipation during the 

system response. 

The analysis is made easier if the damping is assumed to be proportionate, i.e., 

(5.101) 

where "81/' is the Kronecker delta and "s" is the modal damping ratio. Therefore, it is 
assumed that the eigenvectors 81' (where i = 1,2,3, ... ,n), are also s-orthonormal. 

Thus, the "n" constituent equations in equation (5.100) will be of the same form. The 

damping matrix is generally obtained using a linear combination of the mass and 

stiffness matrices. For example, Rayleigh damping can be assumed to be of the form, 
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c=am+~k 
= = = 

(5.102) 

where a and~ are constants determined from two given damping ratios corresponding 

to two unequal natural frequencies. When the system has more than two natural 

frequencies, then the two average damping ratio values are used in equation (5.102). 

A more advanced method of obtaining the damping matrix for systems with more than 

two natural frequencies, using Caughey series is described in Bathe (1982). 

5.5.2 Stability Analysis 

As stated previously, integration of the modal form and of the unmodified equations, 

using the same scheme should give the same result. Therefore, by analysing the 

modal form of the equations it is possible to determine the accuracy and stability of 

the direct integration scheme. This method requires only the variables 
.M, wru, and s

1
, (where i = 1,2,3, ... ,n), to be considered in the analysis, and not the 

complete stiffness and mass matrices. In addition, since all "n" equations in (5.100) 

are of a similar form, only one general expression needs to be studied. This is written 

as, 

(5.103) 

where 

Rm : time dependent modal displacement vector 

f : external load vector 

s : modal damping ratio 

Wu : natural frequency of the mode 

In light of the solution characteristic of the direct integration method, it is required to 

estimate the integration error in the solution of equation (5.103) as a function of 

~t It n,wn , s, and f , where tn,min is the minimum natural period of the cable mesh. 

Note: It is the time ratio ~t/tn,mm, (i.e. the ratio of the time step to the minimum 

natural period of the cable mesh), and not the absolute time step that governs the 

criteria for stability and accuracy, (Heam and Thomas (1991)). This can be explained 
by considering a fixed time step, ~t. An increase in the time ratio ~t I t means n,mm 

that natural period tn,mm is decreasing, i.e. the natural frequency is increasing. Thus, 
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the use of a larger time ratio results in the higher modes being inaccurately integrated. 

This concept will be discussed further after the conditions for stability and accuracy 

are obtained. 

One method of estimating the integration error of the solution technique employed for 

equation (5.103) is the use of the amplification matrix (also referred to as the 

approximation operator) and load operator introduced in equation (5.5). These will 

depend on the integration scheme used in the solution, and give the relationship 

between the quantities at the required time step as a function of the quantities of the 

previous time steps and the external forces respectively. The relationship is generally 

defined as, 

(5.104) 

where 

R : vector storing the solution quantities, (e.g. displacements, velocities, etc.) 

Ap : amplification matrix 

Lp : load operator 

Since the load operator does not influence the numerical stability of the scheme, the 

analysis is carried out with no external load. Thus, equation (5.104) reduces to, 

:R.1+1 =ApRt (5.105) 

Inspection of equation (5.105) reveals that it is possible to recursively calculate the 

solution at any given time as, 

(5.106) 

where superscript "m" represents the number of time intervals, i.e., 

t 1
+m = e + (m.M) (5.107) 

For stability and accuracy, the amplification matrix in equation (5.106) must remain 

bounded. Therefore, in order to investigate the stability and accuracy of an 

integration method, it is required to derive the amplification matrix for that scheme. 
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The derivation of the amplification matrix for the Houbolt scheme is given later in 

this sub-section, while the derivations for the other three methods discussed in this 

sub-section are given in Bathe (1982). 

Once the applification matrix for the integration scheme is obtained, the spectral 

decomposition of the matrix is used to analyse the stability. Thus, 

A =PJP-1 
p === 

(5.108) 

where 

P : matrix of eigenvectors of Ap 

J : Jordan form of Ap, with eigenvalues (/1.P
1

) of Ap along its leading diagonal. 

Now considering Ap 2 , we obtain, 

A 2 = p JP-1 p JP-1 
p === === 

(5.109) 

Since P-1 P = I, we get, 
= = = 

A 2 = PJ2 p-1 
p == = 

(5.110) 

Similarly, by continuing in this manner we obtain for "m" time steps, 

A m = PJm p-1 
p == = (5.111) 

i.e. a recursive relationship IS obtained for the amplification matrix. Expanding 

equation (5.111) we obtain, 

A.;1 0 0 
-I 

Pu P12 Pin Pu P12 Pin 

Apm = P21 P22 P2n 0 A.;2 0 P21 P22 P2n (5.112) 

Pn1 Pn2 Pnn 0 0 0 A.;3 Pn1 Pn2 Pnn 

where 
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Pab : eigenvector terms of Ap 

AP, : where i = 1,2,3, ... ,n 

eigenvalues of Ap 

On inspecting equation (5.112), it is possible to deduce the requirements for Ap to 

remain bounded as "m" increases, i. e., 

requirement for Ap ---7 0 as m ---7 oo 

This occurs if the maximum absolute value of the eigenvalues (APJ is equal to or less 

than one. Thus, 

where i = 1,2,3, ... ,n (5.113)' 

The maximum absolute value of the eigenvalues is defined as the spectral radius 
p(Ap ), i.e., 

where i = 1,2,3, ... ,n (5.114) 

Thus, 

(5.115) 

Therefore, the stability criterion for the integration method employed is:· 

The spectral radius of the amplification matrix should be equal to or less than one. 

It should also be noted, that smaller the spectral radius, more rapid is the convergence 

of the integration scheme. 

5.5.3 Stability of the Houbolt Integration Scheme 

The preceding explanation addresses the general stability requirements for a 

numerical integration scheme. Now let us investigate the scheme used in this project, 

i.e. the'Houbolt scheme given by equations (5.79) and reproduced below. 
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R t+l = 11.lP+l -18.lP + 9j_p-i -2.lP-2 

6.~t 

R t+l = 2.lP+l - 5 .lP + 4jp-i - 1.P-2 

~t2 

(5.79a) 

(5.79b) 

The equation of motion to be investigated was reduced to a modal form in equation 

(5.103), which is reproduced below with due regard to the time intervals, i.e. at time 

"t+ l". 

(5.116) 

Substituting equations (5.79a) and (5.79b) into equation (5.116) gives the recursive 

relationship inclusive of the amplification matrix as, 

lR t+1] l Rt ] R~ = Ap R~1 + Lp:ft+i 
Rt-I R t-2 

m m 

with 

5aP 
2 2 +6~p 

(l)n ~t 

Ap= 1 

aP 
(l)2 

n 

Lp= 0 

0 

and where 

0 

(5.117) 

aP 2~P 
+--

(l) 2~t 2 3 
n 

0 

0 
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~ = sap 
P w .M 

n 

The stability condition for the Houbolt scheme is measured by obtaining the spectral 
radius of the amplification matrix Ap obtained above. Thus, it is required to 

calculate the eigenvalues of Ap, which are obtained from, 

(5.118) 

where 

A1 : V2 trace Ap 

A2 : sum of principle minors of Ap 

A3 : determinant of Ap 

A plot of the spectral radius versus the time ratio ~t/ tn,mm for the Houbolt scheme 

(assuming no damping) is given in Figure 5.1. It is seen from this figure that the 
spectral radius is less than "1" for all values of ~t/ tn,mm. Therefore, the Houbolt 

scheme is deduced to be unconditionally stable. Note: although the inclusion of 

damping will change the shape of the curve, it does not significantly change the 

stability characteristics at low damping ratios. 

Similar curves are also produced in Figure 5.1 for the other three numerical 

integration schemes considered in this sub-section, i.e. the Central Differential, 

Wilson-8, and Newmark-~ schemes respectively. From these curves the conditions 

for stability for the respective schemes are obtainable. Details of the stability analysis 

of these methods are given in Bathe (1982) and Wood (1990). 

Inspection of these curves shows that as ~t It n mm increases, the spectral radius of the 

Houbolt scheme is the smallest. Therefore, it has the fastest rate of convergence of 

the four schemes considered. 

The explicit Central Difference scheme is conditionally stable, i.e. the time step has to 

be less than a critical value. It can be shown by following a similar procedure to that 

described for the Houbolt scheme in equations (5.117) and (5.118), that the condition 

for stability of the Central Difference scheme is, 
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t . 
L.\t~~ 

1t 
(5.119) 

For the Wilson-8, and Newmark-~ schemes, the stability is controlled by selecting 

appropriate values for the relevant parameters, (see equations (5.80) and (5.81)). 

0.80 

p(Ap) 
0.60 

0.40 

0.20 

0.0001 0.001 0.01 

(Bathe (1982)) 

Central-difference method 

Newmark method o = ..!. Q'. = l 
2' 4 

Wilson 0 method 
()=1.4 

Houbolt method 

0.1 1.0 10.0 100.0 

b.t/tn,~n 

10,000.0 

Spectral Radius of Numerical Integration Schemes with Zero Damping 

Figure 5.1 

5.5.4 Non-linear Systems 

The forgoing stability analysis w~s based on the system being linear. However, from 

Chapters 3 and 4 we know that the mathematical model for the towed cable system is 

non-linear. This means that the coefficients of the equations of motion change with 

time. 

Since the Houbolt scheme was shown in sub-section 5.5.3 to be unconditionally 

stable, it can be successfully used to solve the non-linear underwater tow model. As 

in linear systems, the Houbolt scheme being implicit, considers the equilibrium of the 

system at the "next" time step, i.e. at time= t+l. However, since the system is non-

215 



linear, an iterative process is required to solve the equations for each time step. The 

iterative process used in the solution and explained in Chapter 4 is the Newton­

Raphson iteration scheme. This form of iteration is called a predictor-corrector 

method, as the values predicted from the system equations are repeatedly corrected 

until convergence is achieved. 

Two criteria that affect such iteration schemes are: 

• the selection of a correct convergence tolerance, which is the difference 

between the exact solution of the difference equation and the accepted solution; 

and 

• the truncation error, which is due to the neglecting of higher order terms from 

the Taylor series expansion. 

Either one will introduce errors into the iteration process, which may grow during the 

integration resulting in: 

• inaccuracies entering the results; and I or 

• stability problems. 

Consider the solution technique outlined in Chapter 4. The correction terms for the 

iteration process are obtained by the Taylor expansion of equation (4.13), thus 

yielding equation (4.15) reproduced below. 

(5.120) 

+ higher order terms = 0 

It is assumed that the tentative values of the tow configuration are sufficiently close to 

the solution, thus enabling the higher order terms to be neglected. This is acceptable 

if the time step is sufficiently small, as the solution of the previous time step (i.e. time 

t) is used as the tentative values for the current time step (i.e. time t+ 1). However, if 

the time step is large, then the higher order terms cannot be neglected, as the error 

thus introduced may cause the iteration process to "blow up". A similar situation 
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occurs if the forcing function is large, as the changes introduced at each time step are 

significant. 

It is possible to increase the accuracy by including some higher order terms into the 

process. For example, the second order terms can be calculated by differentiating 

equation (4.11) with respect to the tensions of the relevant cable segments to the 

required order, (although the actual differentiation is not carried out here, it is a 

straightforward partial differential process). However, the additional computational 

effort this introduces does not offer a significant advantage over the use of a smaller 

time step with a solution scheme excluding the higher order terms. 

In general, the stability of implicit numerical schemes utilised for non-linear systems 

can be maintained by using a sufficiently small time step. The limiting condition for 

the time step has been investigated by a number of researchers based on experience 

and the testing of practical schemes (e.g. Bathe (1982), Wood (1990), and Thomas 

(1993)), and is predicted as, 

t 
.M~~ 

10 

This also meets the accuracy requirement discussed in the next sub-section. 

(5.121) 

Note: In Belytschko & Schoeberle (1975) and Hughes (1977) numerical schemes for 

non-linear systems in structures are analysed for stability using an energy stability 

criteria, i.e. the boundedness of the energy in the discrete system relative to its initial 

energy is postulated to imply stability. This consists of first developing an inequality 

for the energy of the discrete system at a particular time step as a function of the 

previous time step. Then the condition under which the energy at the time step is 

bounded relative to the energy of the previous time step is developed. However, this 

method was not adopted in this study, as the method described above gives acceptable 

results. 

5.6 Accuracy 

From the previous sub-section it was deduced that the time step for conditionally 

stable integration schemes (such as the Central Difference System), is governed by the 

stability requirements, (e.g. equation (5.119)). However, for unconditionally stable 

217 



schemes such the Houbolt scheme, the time step must be selected to yield the required 

accuracy. 

As stated for the stability criteria, it is possible to analyse the direct integration of the 

equations of motion by studying the modal form of these equations. Thus, the 

accuracy of the integration scheme is obtained by analysing the accuracy of equation 
(5.103) as a function of ~t/ t

0 
nun, l;, and f. 

The accuracy of the numerical schemes is measured by using two criteria, i.e. the 

period elongation and the amplitude decay of the solution, shown in Figure, 5.2. 

These give the deviation of the numerical solution against the exact solution, and 

Figure 5.3 shows these parameters for the three implicit integration methods. It is 
seen from the latter curves, that the accuracy is acceptable at low ratios of ~t It n,nun , 

i.e. when, 

(5.122) 

Wood (1990) investigated these parameters for the Newmak-B and Wilson-8 schemes. 

In this thesis, we will apply a similar investigation to the Houbolt scheme. Inspection 

of the Houbolt scheme given by equations (5.79), reveals that it is generally a multi­

step scheme, and specifically a three step scheme. Therefore, the analysis will 

concentrate on multi-step algorithms. 

As stated in sub-section 5.5.2, the integration of the unmodified equations and their 

modal form, using the same scheme should give the same result. Therefore, ·by 

analysing the modal fofIT1 of the equations, it is possible to determine the accuracy of 

the direct integration scheme. The conversion of the equations of motion to the modal 

form was explained in sub-sections 5.5.1 and 5.5.2, resulting in equation (5.103), 

reproduced below, 

(5.123) 

where all terms are as given in equation (5.103). 

In order to solve the above equation, it is replaced by a p-step algorithm. Thus, using 

equation (5.4) we get, 
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p 

L {(at ~cz + 2yt swn ~cl + 13t (I)~ )R~+t - l3t f"N+t }= 0 (5.124) 
t=O 

where 

a\ l3 \ y t : parameters of the multi-step integration algorithm 
R~+t : modal displacement at time "N+t" 

f N+t : external load vector at time "N+t" 

The local truncation error ( L" (RN L1t)) is obtained by using the exact solution of 

equation (5.123) in the integration scheme given by equation (5.124). 

Thus, 

Lt.t(R~~t) = f {(at ~C2 + 2yt sw0 ~C1 +13t w~)R~+t -W f"N+t }= O(~ta) (5.125) 
t=O 

where superscript "a" is the power of the "~t" term and O(~t a) is the asymptotic 

notation of the error having an order of "a". The error is of the order of the lowest 

"~t" term in equation (5.125). 

5.6.1 Accuracy Analysis of the Houbolt Scheme 

The converted modal form of the equations of motion of the system is given in 

equation (5.123). Inspection of equation (5.125) reveals that the external force terms, 
f N+i, combine in the same manner as the stiffness term, w~ R ~+t . Thus, to simplify 

the analysis, the external force vector will be omitted. Hence, equation (5.123) can be 

written as, 

(5.126) 

where all terms are as given in equation (5.103). 

The Houbolt scheme is given by equations (5.79). Therefore, by substituting 

equations (5.79a) and (5.79b) into equation (5.126), and dropping the subscript "m" 

for clarity, we obtain, 
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~(2.Rt+l -5.Rt +4.Rt-i -Rt-2)+ 
~t 

Sffin (11.R t+l -18.R t + 9.R t-1 -2.R t-2) + (t)~ R t+l = 0 
3.~t 

(5.127) 

Inspection of the Houbolt scheme given by equations (5.79), reveals that it is a three­

step (p = 3) integration scheme. Therefore, representing equation (5.126) in the 

general form for a p-step algorithm, i.e. as in equation (5.124), gives, 

3 

I(ai ~c2 + 2yt Sffin ~c1 + W w~ )R N+t = 0 (5.128) 
t=O 

Comparing equations (5.127) and (5.128) gives the parameters a\~\ and y 1 as, 

a 0 = -1 a 1 = 4 a 2 = -5 a 3 = 2 (5.129a) 

yo = -1/3 y1 = 3/2 y2 = -3 y3 = 11/6 (5.129b) 

~o = 0 ~1 = 0 ~2 = 0 ~3 = 1 (5.129c) 

As stated previously, the truncation error is obtained by using the exact solution in the 

numerical algorithm, (see equation (5.125)). The exact solution to equation (5.126) is 

given by, 

en = e<-Cwn ±1wnPlt = ew" <-cosv±ismv)t (5.130) 

where 

s = Cosv 

r = w
0 

(-Cos v ± iSin v) 

The characteristic polynomial of the p-step algorithm of equation (5.130) is given by, 

3 

I(at ~c2 + 2yt sron ~C1 + W w~ )rt= 0 (5.131) 
t=O 

This has an approximate principle root equal to, 
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e rt.1 = e <r + o)t.1 (5.132) 

where "8" is the error and 

(5.133) 

This means that the approximate solution is multiplied at each time step by e er+ o)t.t 

instead of ert.i. Substituting equation (5.132) in equation (5.131) and expanding the 

exponential term as a series gives, 

p ( ( - ~t 2 
- ~t 3 

- J Ia1 ~c2 +2y 1 sm0 ~c1 +Wm;)x 1+t~tr+t2 -, r 2 +t 3
-

1 
r 3 + .... =0 

~ 2 ~ 

(5.134) 

Collating the terms having a similar order of ~t yields, 

p p p 

+ f 2 It2 a 1 /2!+2smJ~'ItY 1 + (J)~ IW (5.135) 
t=O t=O t=O 

Now using the parameters a1, B1
, and y1 obtained for the Houbolt scheme in equations 

(5.129), the following conditions are obtained, 

(5.136) 
t=O t=O t=O 

(5.137) 

and 

p p p 

ItBt =It
2
yt12!=It

3
a 1 13!=3 (5.138) 

t=O t=O t=O 
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Substituting equations (5.136), (5.137), and (5.138) into equation (5.135) reduces it 

to, 

(5.139) 

where O(~t 2 ) is the asymptotic notation of the error having an order of "2". 

Substituting equation (5.133) into equation (5.139) gives, 

{(12 + 2swn 1 + (t)~) + 28 (1 + swJ}+ 

3~t {(1c12 + 2swn 1+w~)+312 8 + 4swn 18 + w~ 8 }+ o (~t 2 )= o 
(5.140) 

where all terms of 82 and above are included in O(~t 2 ) . 

Since equation (5.130) is an exact solution to equation (5.126), the latter gives, 

(5.141) 

Using equation (5.141) in equation (5.140) and simplifying gives, 

(5.142) 

Referring to equation (5.130), where 1=wn(-Cosv±iSinv) and s=Cosv, we 

have, 

1 = wn (- s ± i Sin v) or, (5.143a) 

(5.143b) 

Without the loss of generality, considering the plus sign and substituting equation 

(5.143b) into equation (5.142) gives, 

(5.144) 

Having obtained an expression for the error, it is now required to separate the error 

term into its components, i.e. the amplitude decay and period elongation. Thus, we 

define, 
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(5.145) 

where 

8 : error 

8a : amplitude error, which increases the damping by a small quantity 8a 

Op : phase error, which increases the frequency of oscillation by a small quantity 

8rf 2n. This can also be expressed as a period increase, i. e., 

2n 2n 2n8P 

(wn Sin V + 8P) - (1)
0 

Sin V = (w~ Sin 2 v) 
(5.146) 

or as a fractional period increase of 

(wn Sin V) 
(5.147) 

Now substituting equation (5.145) into equation (5.144) gives, 

(5.148) 

From equation (5.130) we have, 

I'= ro
0 

(-Cosv ± iSinv) (5.149) 

Using de Moivre's theorem, equation (5.149) becomes, 

(-Cosv + iSin v Y = (-1Y (Cosv - iSin v )a = (-1Y (Cos av - iSin av) (5.150) 

Considering the plus sign in equation (5.149) we have, 

ra = w~ (-1t (Cos av - iSin av) (5.151) 

Substituting equation (5.151) into equation (5.148) gives, 
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-28P (On Sin V - i 28a C.0
0 

Sin V 

+ 6w~ ~t {8a Cos 2 v - 8a Cos2v + 8P Sin 2v - 8P Cos vSin v} 

+ i 6 W~ ~t {8P Cos 2v - 8P Cos 2 v + 8a Sin 2v - 8a Cos v Sin v }+ 0 (~t 2 ) = 0 

(5.152) 

Separating out the real and imaginary parts gives, 

28P mn Sinv = 

+ 6 w~ ~t {8a Cos 2 v - 8a Cos 2v + 8P Sin 2v - 8P Cos v Sin v }+ 0 (~t 2 ) 

(5.153) 

28a Wn Sinv = 
+ 6w~ ~t {8P Cos2v - 8P Cos 2 v + 8a Sin 2v - 8a CosvSin v }+ 0 (~t 2 ) 

(5.154) 

Inspection of equations (5.153) and (5.154) shows that th.e error terms 8a and 8p are of 

the order ~t2 . Therefore, it is stated that the amplitude and phase errors are O(~t2). 

The actual expressions for the respective error terms can be obtained by solving the 

above equations. However, this will not be attempted in this work, as equations 

(5.153) and (5.154) are adequate to meet our requirements. 

It is interesting to note that if the three terms in equation (5.138) were not equal to 

each other, then the phase error (8p) would be O(M2
), while the amplitude error (8a) 

would remain O(~t). 

Wood (1990) showed that stability issues occur if a higher order accuracy is pursued. 

Therefore, as shown in Figure 5.3, errors in the order of O(~t2) are acceptable 

providing the time step is relatively small. Thus, a time step conforming to, 

~~0.1 
tn,mm 

(5.155) 

is sufficient to give the accuracy required. 

This can be explained by considering a mode within the system having a natural 

period "tn,a", where "a" represents the mode in question. For accuracy of the solution, 
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(5.156) 

If this is not the case, the mode will be integrated inaccurately, resulting in errors 

being introduced into the solution. The selection of the time ratio in accordance to 

(5.156) results in an accurate integration of the modes that conforms to, 

(5.157) 

where "i" represents the modes. However, higher modes, i.e. any mode where the 

period is greater than "tn,a", will introduce errors during the integration. Therefore, to 

ensure accuracy in all modes, "tn,a" should represent the highest mode, hence, the 

condition defined by equation (5.155). 

The requirement for accuracy can also be seen by inspecting the spectral radius shown 
in Figure 5.1. When the ratio ~t I tn mm ::::; 0.1, the spectral radius is equal to one. 

Therefore, the solution has no amplification. However, as the time ratio increases, the 

spectral radius falls below one, resulting in a damping effect on the solution, i.e. 

introducing amplitude damping. 

5.7 Natural Frequencies of the Model 

As seen from equations (5.121) and (5.155), the conditions to maintain stability and 

accuracy of numerical schemes with non-linear systems are the same. Therefore, to 

ensure stability and accuracy of the numerical integration of non-linear systems, (such 

as the underwater tow model), the time step should be smaller than one tenth of the 

smallest natural period of the cable mesh. 

In order to conform to the above, it is required to calculate the natural frequencies of 

the cable mesh system, which in tum will yield the respective natural periods. 

In conventional structural dynamic analysis, the displacements are considered to be 

small, thus the system mass and stiffness matrices can be considered to be constant. 

This yields constant natural frequencies for the system. However, cable systems 

undergo considerable displacement, resulting in time dependent mass and stiffness 

matrices, and hence time dependent natural frequencies. Ideally, therefore, the time 
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step should be adjusted during the simulation time to ensure adequate accuracy and 

stability. 

However, as the time step limit is only a gmde, and not a critical value as in an 

explicit numerical integration scheme, it is sufficient to obtain an approximate value 

for the natural frequencies. It is then possible to use a time step that is sufficiently 

lower than the smallest natural period (corresponding to the highest natural 

frequency), in order to achieve the required accuracy and stability. 

To calculate the natural frequencies and hence the natural periods, we first need to 

convert the tow model into an eigenproblem. Since the damping and external forces 

will have no effect on the natural frequencies, the general equation of motion, i.e. 

equation (5.87), is reduced to represent free vibration without damping, i.e., 

mR+kR=O (5.158) 

where m and k are the mass and stiffness matrices respectively. The solution for 

equation (5.158) will be of the form, 

(5.159) 

where 

8 : vector of the order n, (that was shown in sub-section 5.5.1 to be the 

eigenvectors), where "n" is the number of nodes in the discrete system 

t : time 

tc : time constant 

Wn : frequency of vibration, i.e. natural frequency of the vector 8 

Substituting equation (5.159) into equation (5.158) gives the generalised 

eigenproblem, which enables the calculation of 8 and ffin. Thus, 

(5.160) 

Since the eigenvalue "'A" is defined as, 
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/.. = w2 
n (5.161) 

it is possible to write the above equation as, 

k8='Am8 (5.162) 

Thus, we obtain the eigenvalues (/..) from the characteristic polynomial of equation 

(5.162) as, 

det(!s -'Am)= 0 (5.163) 

Solving equation (5.163) yields the natural frequencies of the system. 

Therefore, let us first reduce the equations of motion to the form given by equation 

(5.158). The equations of motion for the nodes representing the tow system are given 

by equations (3.14) in Chapter 3 as, 

mill. x, + m112. y, + mm. z, =Fix (5.164a) 

m121. x, + mm· Yi + m123. z, = F1y (5.164b) 

mm. x, + mm· Y, + m133 • z, = F1z (5.164c) 

where the terms m1ab are given in equations (3.7). Now using equations (3.27) in the 

'above equations, the external forces can be expanded to include the tension terms as, 

= T1 Cos <Pr Cos \j/1 - Ti-1 Cos <l>i-1 Cos \j/1-1 + F1ox (5.165a) 

= T1 Sin <!>1 Cos \j/i - T 1-1 Sin <!> i-1 Cos \jf i-1 + F1oy (5.165b) 

mm. xi + m132. y, + mm. z, 
= T1 Sin \j/1 - T 1-1 Sin \jf 1-1 - F1oz (5.165c) 
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Using the relationships for the cable segment angles defined in equations (5.51), in 

equations (5.165) gives, 

(5.166a) 

(5.166b) 

(5.166c) 

Expanding the tension terms and separating the coordinates yields, 

.. .. .. T1 ( T1 T1_ 1 J m .x + m . + m .z = x - + x 
111 I 112 Y1 113 I 1 (1 + E ) 1+1 1 (1 + ) 1 (1 + E ) I 

1 1 1 E1 1- 1 1-1 (5.167a) 
T!-1 

+ x1-1 + Fmx 
1

1
_ 1 (1 + E

1
_ 1 ) 

Representing equations (5.167) in matrix form gives, 
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[m,., m,12 m,,,Jn 
m,21 m,22 m,23 · ~· = 
m,31 m,32 m,33 z, 

X1+1 

Y1+1 

z,+1 
(5.168) 

[T~ 
0 0 T,b 0 0 T,c 0 

OJ 
x, [F;~ J Tia 0 0 T,b 0 0 T,c 0 . Y, + F;oy 

0 Tia 0 0 T,b 0 0 T,c z, FIOZ 

x,_1 

Y1-1 

z,_1 

where 

T,a = 
T, 

1, (1 +E.) 

T,b = 
( T, T,_, J 

- 11 (1 + c.) + l,_
1 
(1 + E,_1) 

T,c = 
T,_1 

11_1 (1 + E,_1) 

Equations (5.167) represent the equations of motion for node i. Similar equations can 

be produced for each node of the tow system. These equations are then assembled to 

produce a set of equations for the complete system as, 

mR +kR=F 
=o 

(5.169) 

where the term !:'
0 

includes all external forces and the damping forces introduced by 

the interaction between the cable I fish and the surrounding water. Therefore, this 

term can be neglected when calculating the natural frequencies, resulting in equation 

(5.169) being similar to equation (5.158). The eigenvalues can therefore, be 

calculated using the characteristic polynomial as defined in equation (5.163) as, 

det(,!s -Am)= 0 (5.170) 

230 



The actual calculation of the eigenvalues (and hence the natural frequencies) is 

tedious, especially if a large number of elements I nodes are present in the model. 

This gives large mass and stiffness matrices, which requires an iterative process to 

calculate the eigenvalues. 

Bathe (1982) gives a comprehensive description of the various methods available for 

the calculation of eigenvalues of systems having large mass and stiffness matrices. 

Thomas (1993) carries out such a calculation for a mooring cable model in two­

dimensions. 

5.8 Estimation of the Time Step 

In practice, a simpler and quicker method to estimate an appropriate time step for the 

dynamic simulation of the tow model is desirable. This can be achieved by using the 

wave speed obtained from the continuous cable model developed in sub-section 5.2.2. 

Consider the propagation of a wave. The period due to the wave is given by, 

lw 
t =­

p c 
w 

where 

tp : period of the cycle 

lw : wavelength 

Cw : wave speed 

(5.171) 

In sub-section 5.2.2, the wave propagation speeds along a continuous cable were 

given by equations (5.48) reproduced below, 

(5.48a) 

1 E dT 
(5.48b) 
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A.ws,6 = ± (5.48c) 

From the above it is seen that equations (5.48b) and (5.48c) are the same. In addition, 

although each equation represents two speeds, the magnitudes of the two speeds are 

the same, with the difference being limited to their directions. Therefore, equation 

(5.48a) represents the speed at which the tensile disturbance (tensile stress wave) 

travels along the line, while equations (5.48b) and (5.48c) represent the speed at 

which the transverse disturbance (transverse flexural wave) travels along the line. In 

short, there are two wave speeds, i.e., the longitudinal wave speed (A.wd and the 

transverse wave speed (AwT), given by, 

(5.172) 

AwT = 
1 E dT 

µc. (l+E). de 
(5.173) 

First consider the longitudinal wave speed given by equation (5.172). Rearranging 

equation (5.45) as, 

aT T 
(5.174) 

and substituting into equation (5.172) gives, 

(5.175) 

Now from Hook's law of elasticity we have, 

(5.176) 

where E is the modulus of elasticity of the cable material and A is the cross sectional 

area of the cable. Substituting equation (5.176) into (5.175) gives, 

232 



A ~~E.A 
wL 

µc 
(5.177) 

The relationship between the mass per unit length of the cable (µc) and the density of 

the cable material (Pc) is given by, 

(5.178) 

Substituting equation (5.178) into equation (5.177) gives the longitudinal wave speed 

as, 

(5.179) 

Now let us look at the transverse wave speed given by equation (5.173). Again 

substituting equation (5.174) into equation (5.173) gives, 

AwT = (5.180) 

Since the strain in the cable is relatively small, i.e. E << 1, equation (5.180) reduces to, 

(5.181) 

The relationship between the tension and the stress in the cable is given by, 

T=cr.A (5.182) 

where cr is the stress in cable when stretched and A is the cross sectional area of the 

cable. Substituting equation (5.182) into (5.181) gives, 

A =ft·A wT 
µc 

(5.183) 

Converting the mass per unit length into the density of the cable material by using 

equation (5.178) in equation (5.183) gives the transverse wave speed as, 
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(5.184) 

Thus, the longitudinal and transverse wave speeds are given by equations (5.179) and 

(5.184) respectively. 

Referring to equation (5.171), it is noted that the lowest period is obtained if the 

largest wave speed (represented by Cw) is used. From equations (5.179) and (5.184) it 

is seen that the longitudinal wave speed (A.wd is greater than the transverse wave 

speed (AwT). Therefore, it is the longitudinal wave speed that should be used in 

equation (5.171). Thus, the period is given by, 

t =~=l rP: 
p "- w 'VE: 

wL 

(5.185) 

In sub-sections 5.5 and 5.6 we identified that the time step for the numerical 

integration scheme should be less than one tenth of the smallest natural period of the 

cable mesh to ensue stability and accuracy, (equations (5.121), and (5.155)). 

However, Bathe (1982) and Ractliffe (1984) suggests that the time step can be less 

than a cut-off time period, which considers only the lower frequencies that tend to 

dominate the response. The time period value obtained in equation (5.185) suits this 

criterion, and can be used to estimate a suitable time step. Thus, the requirement for 

stability and accuracy is that the time step is less than one tenth of the cut-off period, 

i.e., 

t 
~t~-p 

10 

Substituting from equation (5.185) into equation (5.186) gives, 

(5.186) 

(5.187) 

Since we are considering an element mesh, the wavelength Ow) can be replaced by the 

length of the smallest element Orn) in the lumped mass model. Thus, equation (5.187) 

becomes, 
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(5.188) 

Since the higher frequencies contribute little to the solution, very little is gained in the 

way of accuracy by using very small time steps (Thomas (1993)). Thus, it is possible 

to use larger time steps than that specified in equation (5.188), provided that stability 

and convergence difficulties are not encountered in the iteration process required for 

the non-linear system. However, equation (5.188) can be used as a guide when 

selecting an appropriate time step for the time domain simulation of cable systems. 
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CHAPTER6 

EXPERIMENTAL METHODS AND VALIDATION 

6.1 Introduction 

In the previous chapters, the development of the two-part tow and multi-tow computer 

models was detailed. In order to supplement the data from the computer model and to 

validate the model, a series of experiments were carried out. These included: 

• scaled model tests in the circulating water channel at the Australian Maritime 

College; and 

• full scale trials using DSTO towed side scan sonar gear, deployed from RAN 

vessels. 

This chapter explains the experimental procedure and evaluates the results obtained. 

A summary of the results from the scaled model tests and the full scale trials is 

provided in Appendix A. A selection of the validation runs, i.e. the comparison of the 

scaled model results against equivalent computer simulations, is also presented. 

The drag and lift coefficients for the scaled models used in the circulating water 

channel were obtained experimentally using a horizontal planar-motion-mechanism 

(HPMM) having a 6 DOF load cell. These experiments and the processing of these 

coefficients to enable their input into the computer model are also described in this 

chapter. 

6.2 Scaled Model Trials 

The scaled model trails carried out in the circulating water channel at the Australian 

Maritime College contributed to the study of the two-part tow in two ways, i.e.: 

• the validation of the computer model; and 

• the response due to varying the tow configuration parameters. 
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The latter parameters included cable lengths, location of the junction along the 

primary cable, type of depressor, use of a drogue, and the change in excitation 

amplitude and frequency. 

The circulating water channel is shown in Figures 6.1 and 6 .2. It consists of a varying 

cross sectional water channel, with flow correction screens at its entrance. Four 

hydraulically driven pumps circulate fresh water through the channel. The upper 

surface is open to the atmosphere, while the lower surface consists of a moving belt. 

This configuration allows for a uniform flow profile across the investigation region 

within the channel. 

Circulating Water Channel 

Figure 6.1 

Experimental Procedure 

Figure 6.3 
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Top View of Channel 

Figure 6.2 

Scaled Models 

Figure 6.4 



A seamless glass window (Figure 6.1) allows for an unrestricted view of the channel's 

working section. A motorised platform (Figure 6.2) located on rails at the upper 

surface, enables the lowering of experimental apparatus into the fluid flow. 

Figure 6.3 shows the experimental set-up for the scaled model test in the circulating 

water channel. The configuration was excited by an "elliptical exciter" located on the 

motorised platform at the upper water surface. The motion of the towed fish was 

recorded on video and digitised using reference points on the towed body. By 

locating the video camera at different positions, it was possible to record the surge, 

sway, heave, pitch, and yaw motions. The tension values at the surface tow point 

were also recorded via a load cell. 

The scaled models used in the circulating water channel are shown in Figure 6.4. 

They consisted of a neutrally buoyant tow fish and two depressors, i.e. a fish with a 

depressor wing (giving negative lift) and a ball type depressor that acted as a clump 

weight. The scaling factor for the models were determined by the size of the 

circulating water channel, in order to reduce the end effects and maintain the full 

configuration within the working section of the channel. Therefore, the scale factor 

selected was one thirds (1/3) the full scale configuration. 

In order to compare the results between the computer model and the scaled model 

tests, it was required to calculate the various inertia and hydrodynamic coefficients of 

the fish and depressor .. These included the mass, added mass, and the hydrodynamic 

force anq moment coefficients. These were obtained using a mixture of experimental 

techniques and theoretical approximations. The calculation of the hydrodynamic 

force and moment coefficients is described in sub-section 6.5. 

6.2.1 Scaled Model Trial Configurations 

The scaled model experiments carried out in the circulating water channel consisted 

of the following tow configurations: 

• single part tow; 

• two-part tow with the secondary cable attached to the depressor; 

• two-part tow with the secondary cable attached to a point along the primary 

cable; and 
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• two-part tow with a drogue fitted to the aft end of the towed fish. 

The lengths of the following tow cables were also varied to give different cable 

configurations, (see Figure 1.2 for a description of these lengths): 

• secondary cable; 

• cable between the junction and the depressor, (effectively changing the primary 

cable length); and 

• cable between the towed fish and the drogue, (when fitted). 

In addition, two types of depressors were used, i.e. a depressor fish equipped with a 

negative lift wing and a ball type depressor that acted as a clump weight, (see Figure 

6.4). The water velocity was maintained at 1 metre per second for all runs. 

The experimental runs were again divided into two groups, depending on the direction 

of excitation. These were: 

• vertical excitation, where the excitation motlon was surge (X), heave (Z), or a 

combination of the two; and 

• horizontal excitation, where the excitation motion was sway (Y). 

Each configuration was tested for varying excitation amplitudes and frequencies. 

Table Al in Appendix A gives the data for the individual runs. Note: the excitation 

frequency is given as the excitation period, i.e. the reciprocal of the frequency. 

Figure 6.5 shows the two-part tow utilising a depressor fish, set up to investigate the 

vertical motions, (i.e. surge, heave, and pitch). Figure 6.6 is the same configuration 

set up for horizontal motions, (i.e. surge, sway, and yaw). A Perspex bottomed 

platform was "moored" on the water surf ace above the tow configuration to enable 

clear photography of the latter. 

The configuration was excited by an elliptical exciter (Figure 6.7), located at the water 

surface and capable of providing excitation in all three linear directions. The exciter 

was set up to ensure that the cable model remained submerged throughout each run. 
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Recording of Vertical Motion 

Figure 6.5 

Recording of Horizontal Motion 

Figure 6.6 

6.3 Scaled Model Test Results 

Surface Excitation Mechanism 

Figure 6.7 

The motions of the towed fish and depressor were obtained on video and digitised 

using reference points on the towed bodies. The recording of these motions depended 

on the excitation direction. In the vertical excitation runs, the vertical linear motions 

(surge and heave) and the vertical angular motion (pitch), of the depressor and towed 

240 



fish were recorded. For the ball type depressor, only the linear motions were 

recorded, as the pitch of a "clump" weight is of little relevance. 

In the horizontal excitation runs, the horizontal linear motions (surge and sway) and 

the horizontal angular motion (yaw), of the towed fish were recorded. The horizontal 

motions of the depressor were not recorded due to the inability to video tape its 

motion from above, as the towed fish obstructed the view of the depressor, (see Figure 

6.6). 

Table A2 in Appendix A summarises the results from these runs. It gives the 

maximum amplitudes of the relevant linear and angular displacements of the 

depressor and towed fish. 

In order to simplify the analysis of the results, the displacement amplitudes of similar 

configurations and excitations were plotted against the excitation periods. Due to the 

number of graphs involved, all of them are not reproduced in this text, however, a 

selection is given at appropriate locations in this chapter. Note: It is possible to 

reproduce these graphs by simply plotting the data given in Table A2, using a basic 

spreadsheet or plotting software. 

A number of conventional (single part) tow configurations were also tested under 

horizontal excitation. These allowed for direct comparison between the equivalent 

single part and two-part tow configurations. However, with vertical excitation, no 

single part tow configurations were tested, as the necessary comparison was carried 

out by considering the relative motions between the depressor and towed fish. 

6.3.1 Response of the Two-Part Tow due to Vertical Excitation 

Let us first investigate the general behaviour of the two-part tow undergoing vertical 

excitation, i.e. excitation in the X and Z directions. Figures 6.8 to 6.16 give the 

response of similar two-part tow configurations under varying excitation amplitudes 

and frequencies. Figures 6.8 to 6.12 represent two-part tow configurations utilising 

the depressor fish, where the first three figures deal with an increasing Z-direction 

excitation amplitude, while the latter three deals with a decreasing X-direction 

excitation amplitude. Similarly, Figures 6.13 to 6.16 represent equivalent two-part 

tow configurations using a ball type depressor. Again the first two figures deal with 

an increasing Z-direction excitation amplitude, while the latter three deal with a 

decreasing X-direction excitation amplitude. 
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On inspecting Figures 6.8 to 6.16, it is clear that the response of the towed fish is 

substantially better than that of the depressor, especially at the higher excitation 

frequencies. This is due to the inherent decoupling effect of the two-part tow 

configuration. 

Response to Varying Excitation Frequency 

In the configuration utilising the depressor fish (Figures 6.8 to 6.12), as the excitation 

frequency increases, the surge of the depressor fish tends to reduce, while its heave 

and pitch amplitudes increase. The latter motion increases substantially as the 

excitation frequency increases. 

In the case of the ball type depressor (Figures 6.13 to 6.16), its motions (surge and 

heave), are relatively "flat", i.e. they show little change as the excitation frequency 

changes. This is due to the effect of gravity forces dominating the hydrodynamic 

forces. This is also the reason for the surge of the depressor ball to be much lower 

than its heave. The latter motion does increase marginally as the excitation frequency 

increases, which is probably due to the inertia effect of the depressor ball. The surge 

amplitude of the depressor tends to mirror the excitation amplitude in that direction, 

and does drop slightly as the excitation frequency increases. 

In both depressor type configurations, at high frequency excitations all motions of the 

towed fish tend to reduce due to the decoupling effect of the two-part tow. It tends to 

reduce the transmission of the heave motion from the depressor to the towed fish 

effectively. However, in surge motion the reduction is less significant, and in the case 

of the ball type depressor, the surge of the towed fish tends to be slightly higher than 

that of the depressor, (Figures 6.13 to 6.16). 

In the case of the fish type depressor (Figures 6.8 to 6.12), a marked improvement is 

noted in the towed fish pitch amplitude at the higher excitation frequencies, over that 

of the depressor. However, at the lower frequencies they tend to be closer. When 

considering the pitch amplitude of the towed fish in isolation, the response degrades 

slightly as the frequency increases, and then improves at the higher frequency end. 

This change is not overly significant, and as shown later is dependent on the length of 

the secondary cable and the location of the junction. 
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0 0.5 2.0 3.5 

Depressor and Towed Fish Response 
for Configurations Cll to C13 

Figure 6.8 

0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations C31 to C33 

Figure 6.10 

Depressor and Towed Fish Response 
for Configurations A31 to A33 

Figure 6.12 

Note: 

0.5 1.5 2.0 3.5 

Depressor and Towed Fish Response 
for Configurations C21 to C23 

Figure 6.9 

12~-------------

10+-------.,--------

0.5 15 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations B31 to B33 

Figure 6.11 

Key to Graphs 

• depressor surge (cm) 
• depressor heave (cm) 
• depressor pitch (degrees) 
• fish surge (cm) 
• fish heave (cm) 
• fish pitch (degrees) 
X-axis period (seconds) 

• Figures 6.8 to 6.10 give an increasing change in the Z excitation amplitude for a 

tow configuration with a fish type depressor 

• Figures 6.10 to 6.12 give a decreasing change in the X excitation amplitude for 

a tow configuration with a fish type depressor 
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Response to Varying Excitation Amplitudes 

Let us first look at the response due to an increase in the X-direction excitation 

amplitude. Such an increase for the tow configuration with a depressor fish (Figures 

6.12, 6.11 and 6.10), results in an expected and noticeable increase in the surge 

motions of the depressor and the towed fish. This increase tends to be greater at the 

lower frequencies of excitation, while the overall increase is fairly similar for the two 

bodies, (possibly slightly greater for the depressor). 

There is a very small reduction in the heave amplitude of the depressor and the towed 

fish. The pitch amplitudes of the two bodies undergo a slight reduction at low 

frequencies, but increase in the higher frequency range. These changes are slightly 

larger for the towed fish, which indicates that the increase in surge excitation does 

marginally influence the other motions of the towed fish. 

In the configuration with the ball type depressor (Figures 6.16, 6.15 to 6.14), the surge 

of the depressor tends to be low and relatively similar to the X-direction excitation 

amplitude. As the latter increases, the surge amplitude of the depressor and towed 

fish tends to increase, especially at the lower frequencies. The surge of the towed fish 

is also seen to be slightly higher than that of the depressor. 

The heave, on the other hand, is much lower for the towed fish, due to the decoupling 

effect of the two-part tow. The depressor heave decreases slightly as the X-direction 

excitation increases, especially at the lower frequency end. The effect due to the 

increase in the X-direction excitation amplitude on the heave and pitch amplitudes of 

the towed fish is not easily identifiable, as these amplitudes fluctuate and tend to 

undergo very little change at the higher frequencies. 

Now let us look at the response due to an increase in the Z-direction excitation 

amplitude. As this increases, the depressor and towed fish in the tow configuration 

with a depressor fish (Figures 6.8 to 6.10), both undergo increases in the surge 

amplitude, especially at the lower frequencies. The heave amplitude of the depressor 

increases significantly, especially at the higher frequencies. However, for the towed 

fish its increase is marginal, with very little difference at the higher frequencies. The 

pitch amplitude increases for both the depressor and towed fish, although the increase 

is much smaller for the latter and is not dependent on the frequency. However, for the 

depressor, the increase is much higher at the higher excitation frequencies. 
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0.5 1.5 25 3.5 

Depressor and Towed Fish Response 
for Configurations 121 to 123 

Figure 6.13 

0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations H31 to H33 

Figure 6.15 

Key to Graphs 

• depressor surge (cm) 
• depressor heave (cm) 
• depressor pitch (degrees) 
X-axis period (seconds) 

Note: 

0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations 131to133 

Figure 6.14 

10--------------

0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations G31 to G33 

Figure 6.16 

• • • 
fish surge (cm) 
fish heave (cm) 
fish pitch (degrees) 

• Figures 6.13 to 6.14 give an increasing change in the Z excitation amplitude for 

a tow configuration with a ball type depressor 

• Figures 6.14 to 6.16 give a decreasing change in the X excitation amplitude for 

a tow configuration with a ball type depressor 

For the tow configuration with a ball type depressor (Figures 6.13 and 6.14), when the 

Z-direction excitation amplitude is increased, a slight increase occurs in the surge 

amplitude of the depressor, while its heave amplitude increases significantly across 

the frequency range. The towed fish on the other hand has a slight increase in surge 

across the frequency range, (very similar to that of the depressor) , while the heave and 
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pitch increases slightly at the lower frequencies and remains virtually constant at the 

higher frequencies. 

Thus, for the tow configurations using either type of depressor, an increase in the X­

direction excitation amplitude results in the surge amplitude of both the depressor and 

the towed fish increasing. The increase in the tow fish heave is kept to a minimum 

due to the decoupling effect, although its pitch can marginally increase. An increase 

in the Z-direction excitation amplitude results in the depressor following suit in both 

tow configurations. However, for the towed fish the surge motion increases, thus 

keeping the changes in the heave and pitch amplitudes small, i.e. the decoupling effect 

improves the latter two motions. 

Response to Varying the Location of the Junction along the Primary Cable 

Figures 6.17 a!ld 6.18 represent the motion of two-part tow configurations utilising a 

depressor fish, with the former having the junction along the primary cable, while the 

latter has the secondary cable directly fitted to the depressor. Figures 6.19 and 6.20 

deals with a similar pair, but utilising a ball type depressor. 

First consider the tow configuration with the depressor fish, (Figures 6.17 and 6.18). 

At higher excitation frequencies, the surge amplitudes of the depressor and towed fish 

undergo very little change due to the variation of the junction along the primary cable. 

At lower frequencies, the surge increases as the junction moves closer to the 

depressor. The depressor tends to have a slightly larger surge displacement than the 

towed fish and this gap tends to increase as the junction is moved away from the 

depressor. 

The heave and pitch amplitudes of the depressor fish increase when the junction is 

moved higher along the primary cable. However, the same displacement amplitudes 

for the towed fish reduce as the junction moves away (i.e. above) from the depressor. 

Figures 6.19 and 6.20 compare the response of varying the location of the junction on 

a two-part tow configuration utilising a ball type depressor. At low excitation 

frequencies, the location of the junction has little effect on the surge amplitudes of the 

depressor and towed fish. However, at higher frequencies, they are slightly lower 

when the secondary cable is secured directly to the depressor, although these changes 

are so small that they may not be significant. 
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Depressor and Towed Fish Response 
for Configurations B31 to B33 

Figure 6.17 

0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations B31 to H33 

Figure 6.19 

Key to Graphs 

• depressor surge (cm) 
• depressor heave (cm) 
• depressor pitch (degrees) 
X-axis period (seconds) 
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Depressor and Towed Fish Response 
for Configurations E31 to E33 

Figure 6.18 

o+-----~--~-----0 0 5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations K31 to K33 

Figure 6.20 

• • • 
fish surge (cm) 
fish heave (cm) 
fish pitch (degrees) 

The heave motion of the depressor displays very little change with varying location of 

the junction along the primary cable. However, the heave and pitch amplitudes of the 

towed fish are less when the junction is moved away (i.e. above) the depressor at low 

to medium frequencies of excitation, although a slight reversal occurs at high 

excitation frequencies. 

Thus, considering the two depressors, from Figures 6.17 and 6.18 (i.e. for the 

depressor fish), it is evident that the depressor response improves when the secondary 

cable is directly fitted to it. This may be due to the tension of the secondary cable 
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acting to damp the motion of the depressor. With the ball type depressor, very little 

change occurs in the depressor motion, again as its weight dominates the motion. 

For the towed fish in the configuration utilising the depressor fish, the motion is better 

when the junction is located a distance above the depressor, although this 

improvement is extremely small in surge. With a ball type depressor, again the towed 

fish shows better response with the junction located above the depressor, except at 

high excitation frequencies. These findings are in line with those obtained from the 

computer simulation given in sub-section 4.4 of Chapter 4. Note: if the junction is too 

close to the surface, the surface excitation will adversely effect the junction and hence 

the towed fish, thus negating the decoupling effect of the two-part tow. 

Response to Varying the Length of the Secondary Cable 

Let us now look at the effect of varying the length of the secondary cable has on the 

motions of the bodies. Figures 6.21 to 6.26 give three pairs of tow configurations, 

with the length of the secondary cable reduced from 0.8 metres to 0.5 metres in the 

second of each pair. Figures 6.21 to 6.24 are two-part tow configurations utilising a 

depressor fish, with the last two having the secondary cable attached directly to the 

depressor fish. Figures 6.25 and 6.26 use a ball type depressor. 

For the situation with the junction above the depressor (Figures 6.21 and 6.22), it is 

seen that a reduction in the secondary cable length results in a slight increase in the 

depressor surge, (especially at the higher frequencies of excitation), while its heave 

and pitch amplitudes tend to reduce. From Figures 6.23 and 6.24 (i.e. with the 

secondary cable attached directly to the depressor fish), the change in the depressor 

surge amplitude reduces significantly, while the heave and pitch amplitudes increase 

marginally, especially at the higher frequencies. This is due to the coupling effect of 

the depressor fish and the towed fish being inversely proportional to the length of the 

secondary cable. 

Considering the towed fish, all three amplitudes increase as the secondary cable is 

shortened, especially at high frequencies. The increase in the surge amplitude is 

relatively small, however the increase in heave and pitch amplitudes is significant. 

When the secondary cable is short, the pitch tends to increase slightly with the 

excitation frequency. By comparing Figures 6.23 and 6.24 it is seen that the 

dependence of the towed fish amplitudes on the secondary cable length reduces, when 

the secondary cable is fitted closer to the depressor. 
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Depressor and Towed Fish Response 
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Figure 6.21 
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Depressor and Towed Fish Response 
for Configurations F21 to F23 

Figure 6.23 
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Figure 6.25 
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Figure 6.22 
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Figures 6.25 and 6.26 deals with the same scenario, but utilising a ball type depressor. 

Very little effect occurs to the motions of the depressor due to shortening the length of 

the secondary cable, except for a small increase in surge and a small decrease in heave 

at the lower frequencies. The lack of any significant difference is again due to the 

weight dominating its motion. Very little effect on these results is noticed by varying 

the location of the junction along the primary cable length. For the towed fish, a very 

small increase is noted in the surge amplitude as the length of the secondary cable is 

reduced. However, the heave and pitch increase significantly, especially at the lower 

frequencies of excitation. 

In summary, for both types of depressors, the towed fish amplitudes tend to increase 

as the secondary cable is shortened. This is due to the increased coupling effect of the 

shorter cable. Although this has very little effect on the ball type depressor, the 

performance of the fish type depressor improves in a tow-part tow configuration 

having the junction above the depressor. The reason may be attributed to the effect of 

the secondary cable tension acting on the depressor fish. 

Response to the use of Fish Type and Ball Type Depressors 

Figures 6.17 to 6.20 can again be used to compare the response of the towed bodies, 

due to the utilisation of the fish type and ball type depressors in the two-part tow 

configuration. It is seen that the depressor surge amplitude is much lower for the ball 

type. Although the depressor surge amplitude drops in both types as the frequency of 

excitation increases, the drop is much lower in the ball type, since its motion is far 

less dependent on the excitation frequency. This is due to the dominant weight effect 

on its motion. 

The heave amplitudes of both types of depressors increase with the excitation 

frequency. However, this increase is prominent and greater with the fish type 

depressor, whereas for the ball type depressor the heave amplitude, like the surge 

amplitude, tends to be "flatter". At low frequencies of excitation, the heave is a lot 

lower for the fish type depressor. However, as the frequency increases they tend to 

equalise, and may even swap over at very high frequencies. 

For the towed fish, the surge with a ball type depressor is lower, since the ball itself 

has very low surge amplitude. In both cases, the surge amplitude will fall as the 

frequency increases, however the surge is "flatter" with the ball type depressor. On 

the other hand, the heave and pitch amplitudes of the towed fish are "flatter" with the 
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fish type depressor. In the latter configuration, these motions are significantly less 

when the junction is moved away (i.e. above) the depressor. In both cases, the heave 

and pitch amplitudes of the towed fish drop as the frequency increases. With the ball 

type depressor, these amplitudes are seen to be more dependent on the frequency, 

especially when the secondary cable is directly attached to the depressor. 

At lower frequencies , the depressor fish gives better performance, while the ball type 

depressor seems to be better at the other end of the frequency spectrum. The latter 

also is better in damping out large X-direction excitation . 

Response to the use of a Drogue 

The last test in the vertical direction was to identify the effect of a drogue fitted to the 

aft end of the towed fish. Figures 6.27 to 6.30 describe the motion of a two-part tow 

utilising a depressor fish and a drogue. The first is without a drogue, while the next 

three have a drogue fitted to the towed fish via a cable of length 0.3 , 0.4, and 0.6 

metres respectively. The effect of the drogue is not seen to be of great significance, 

especially at higher frequencies of excitation . However, at the lower frequencies a 

slight improvement is noted in the towed fish heave and pitch amplitudes. At higher 

frequencies, the drogue can adversely effect these motions marginally. 

Figures 6.31 to 6.33 describe the motion for a similar tow configuration, however 

utilising a ball type depressor. The first is without a drogue, while the next two have a 

drogue fitted to the towed fish via a cable of length 0.3 and 0.6 metres respectively. 

In this case there is a slight improvement in the surge amplitude of the towed fish at 

higher frequencies of excitation . However, the heave and pitch amplitudes tend to 

deteriorate slightly. 

0 .5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations C31 to C33 

Figure 6.27 

251 

12~-------------

10+---------------

o+--~-~-~--------
o 0.5 1.5 2.5 3.5 

Depressor and Towed Fish Response 
for Configurations AA62 to AA64 

Figure 6.28 



12~--------------

10 +-----------------''------

-
0.5 1.5 25 3.5 

Depressor and Towed Fish Response 
for Configurations AA42 to AA44 

Figure 6.29 

0.5 1.5 25 3.5 

Depressor and Towed Fish Response 
for Configurations J31 to J33 
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Figure 6.33 
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Figure 6.30 

Depressor and Towed Fish Response 
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Figure 6.32 
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Thus, the use of a drogue seems to adversely effect the motion with a ball type 

depressor, and provides little improvement with a fish type depressor at lower 

excitation frequencies. Therefore, it may not warrant its use to improve the vertical 

response of a two-part tow configuration. 
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6.3.2 Response of the Two-Part Tow due to Horizontal Excitation 

Let us now investigate the behaviour of the two-part tow undergoing horizontal 

excitation, i.e. excitation in the Y-direction. Only the motion of the towed fish was 

recorded, as the latter obstructed the view of the depressor, (see Figure 6.6). 

Therefore, a number of equivalent single part tows were carried out to quantify the 

improvement due to the two-part tow configuration. 

Figures 6.34, 6.36, and 6.37 give the response of a single part tow and two equivalent 

two-part tows respectively. The first of the two-part tows utilises a depressor fish , 

while the second utilises a ball type depressor. 
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Towed Fish Response for 
Configurations YY21 to YY23 

Figure 6.34 
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Towed Fish Response for 
Configurations YA21 to YA24 

Figure 6.36 
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Towed Fish Response for 
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Figure 6.35 
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Towed Fish Response for 
Configurations W A21 to W A23 

Figure 6.37 
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On inspecting these figures, it is seen that the response of the towed fish is 

substantially better with the two-part tow, especially using the depressor fish. No 

significant change is noted for the surge motion, except for a slight improvement at 

the low frequency end. For the two-part tow configuration with a depressor fish, the 

improvement in the sway and yaw amplitudes are significant. 

For the ball type depressor, the improvements are mainly in the lower excitation 

frequency region, while in some cases, the single part tow may prove better at higher 

frequencies. Overall the inherent decoupling effect of the two-part tow configuration 

greatly improves the response of the towed vehicle under the influence of horizontal 

excitation. 

Response to Varying Excitation Frequency 

Let us now look at the effect of varying the frequency of the Y-direction excitation 

amplitude. Figures 6.35 to 6.37 give the response of the two-part tow configuration as 

a function of the Y-direction excitation frequency, with the first two dealing with a 

depressor fish and the latter utilising a ball type depressor. 

On inspecting Figures 6.35 and 6.36 for the tow utilising a depressor fish, it is seen 

that an increase in excitation frequency reduces the sway and yaw amplitudes of the 

towed fish, although the rate of reduction reduces as the frequency increases. The 

surge on the other hand remains reasonably "flat'', increasing a little as the frequency 

increases and then dropping off. 

In Figure 6.37 for the tow utilising a ball type depressor, an increase in the excitation 

frequency reduces the sway amplitude of the towed fish. In this case, the rate of 

reduction dramatically increases at higher frequencies, i.e. opposite to that of the fish 

type depressor. The yaw amplitude tends to be "flat" over the low to medium 

frequency range, with only a marginal drop as the frequency increases. However, at 

high frequencies, it follows the heave motion and drops off significantly. 

Response to Varying Y-Direction Excitation Amplitude 

The response due to an increase in the Y-direction excitation amplitude for the tow 

configuration with a depressor fish is given in Figures 6.35 and 6.36. As expected all 

three displacement amplitudes, (i.e. surge, sway, and yaw), increase as the Y-direction 

excitation increases. 
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Response to Varying the Location of the Junction along the Primary Cable 
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Towed Fish Response for 
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Figure 6.38 
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Towed Fish Response for 
Configurations YC21 to YC23 
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Figure 6.42 
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Towed Fish Response for 
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Figure 6.39 
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Figures 6.38 to 6.40 represent the motion of two-part tow configurations utilising a 

depressor fish, with the distance from the depressor to the junction being 0.5, 0.25, 

and 0.0 meters respectively. Figures 6.41 and 6.43 deal with a similar set, but 

utilising a ball type depressor. 

For the configuration having the depressor fish (Figures 6.38 to 6.40), the "flat" surge 

curve of the towed fish tends to remain unchanged with the relocation of the junction, 

except for a possible slight deterioration at the high frequency end. The sway tends to 

increase as the junction moves closer to the depressor, especially when the secondary 

cable is fitted directly to the depressor, and at low frequencies. The yaw amplitude 

also shows an increase as the junction moves closer to the depressor. 

Now considering Figures 6.41 and 6.43 for the configuration with a ball type 

depressor, again the surge tends to remain "flat" with very little change. The sway 

and yaw amplitudes however, tend to increase significantly across the frequency 

range. 

Thus, the movement of the junction closer to the depressor in both tow configurations 

tends to adversely effect the sway and yaw motions of the towed fish. Again as in the 

vertical excitation situation, care must be taken to prevent the junction being too close 

to the surface, as it will negate the decoupling effect of the two-part tow. 

Response to Varying the Length of the Secondary Cable 

Let us now look at the effect on the motion of the bodies, due to the varying length of 

the secondary cable. Figures 6.44 to 6.47 represent the effect of reducing the length 

of the secondary cable from 0.8 metres to 0.5 metres, with the first two utilising a 

depressor fish, and the latter two utilising a ball type depressor. 

Considering first the configuration with the depressor fish, it is seen that the towed 

fish surge amplitude increases slightly at low frequencies, bul possibly reverses at the 

higher frequencies. The sway on the other hand tends to increase significantly at low 

frequencies, but tends to remain unchanged or even possibly swap over at the higher 

frequencies. The yaw amplitude tends to increase slightly across the frequency range. 

Now considering the configuration with the ball type depressor (Figures 6.46 and 

6.47), as the secondary cable shortens the tow fish surge remains approximately 

constant, possibly with a slight increase at the lower frequency range. The sway and 
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yaw amplitudes tend to increase significantly at the lower frequencies but equalise at 

the higher frequencies. 
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Towed Fish Response for 
Configurations Y A21 to Y A24 

Figure 6.44 
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Figure 6.46 

Key to Graphs 

• • 
fish surge (cm) 
fish sway (cm) 

0.5 1.5 2.5 3.5 4.5 

Towed Fish Response for 
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Figure 6.45 
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Figure 6.47 
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Thus, in both configurations as expected the shorter cable adversely effects the sway 

and yaw motions, especially at the lower frequencies . The improvements in the 

higher frequencies are relatively insignificant. 

Response to the use of Fish Type and Ball Type Depressors 

Figures 6.48 and 6.49 compare the motion of the towed bodies , due to the utilisation 

of the fish type and ball type depressors respectively. The surge amplitude varies 

little between the two configurations, although the depressor fish configuration does 
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seem to have a slight advantage at the lower frequency end. However, when 

considering the sway and yaw amplitudes, the improvement in the response when 

using a depressor fish is highly significant, although the difference reduces at the 

higher frequencies. 
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Figure 6.48 
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Figure 6.49 
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The reason for the higher towed fish response amplitude with the ball type depressor, 

is the larger lateral motion imparted to the depressor. The momentum of the baJI 

tends to swing the depressor from side to side, with very little damping due to the low 

hydrodynamic forces present on the ball. This in turn causes the towed fish to 

accelerate in the lateral direction. The depressor fish on the other hand creates larger 

hydrodynamic forces that tend to damp out the lateral motions. 

Therefore, it can be concluded that although the difference in the vertical movements 

are not significant, (see sub-section 6.3.1), the fish type depressor has a clear 

advantage when it comes to the horizontal excitation. 

Response to the use of a Drogue 

Finally let us look at the effect on the horizontal displacements due to the fitting of a 

drogue to the aft end of the towed fish . Figures 6.50 to 6.52 describe the motion of 

two-part tow configurations fitted with a drogue and utilising a depressor fish, while 

Figures 6.53 and 6.55 utilise a ball type depressor. Each set consists of a two-part tow 

without a drogue, followed by two configurations, each having a drogue fitted using a 

0.3 and 0.5 metre cable respectively. 
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Figure 6.52 
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For the configuration utilising the depressor fish, very little change is noticed in the 

surge amplitude. The sway tends to increase at lower frequencies, but remains closer 

at the higher frequency end, while the yaw amplitude marginally reduces. However, 

none of the changes are significant. With the ball type depressor, the surge again 

remains approximately constant. The sway and yaw amplitudes tend to reduce 

slightly at the lower frequency range and remain relatively unchanged at the other end 

of the frequency spectrum. 

As with the vertical excitation, the drogue has very little effect on the response of the 

towed fish. 

6.3.3 Conclusion from the Scaled Model Trial Results 

From the above analysis of the vertical and horizontal motions, it is clear that the two­

part tow offers a much more stable platform, due to the inherent decoupling effect of 

the configuration. In general, as the excitation frequency increases, the response of 

the towed fish improves, although the same is not true for the depressor. Although 

there is little difference in the vertical motions of the towed fish due to the fish and 

ball type depressors, a significant improvement is gained by utilising the former in the 

horizontal direction. However, the ball type depressor is more suitable to dampen out 

surge excitation. 

The two-part tow is able to absorb heave excitation, with a slight increase in the tow 

fish surge amplitude. An increase. in surge excitation is however transmitted to the 

towed fish, although its effect on the angular motion is restricted. In the case of 

lateral (sway) excitation, a slight increase occurs in the sway and yaw amplitudes of 

the towed fish, although the rate of increase is reduced via the two-part tow 

configuration. 

It was also noted that locating the junction a distance above the depressor improves 

the response, although it should not be too close to the surface. Directly connecting 

the secondary cable to the depressor does improve the response of the depressor, but 

adversely effects the motion of the towed fish. Although increasing the length of the 

secondary cable improves the response of the towed fish, beyond a given length there 

would be little, if any, improvement. 

The use of a drogue seems to only marginally improve the low frequency response of 

the two-part tow, and in some cases adversely affects the response at higher 
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frequencies, albeit in a relatively small way. The marginal improvement and the 

possible deterioration of the response may not warrant the use of such devices, 

especially given the difficulties in deploying and recovering a two-part tow with a 

drogue from a "cluttered" after deck of a small surface vessel, typical of those used 

for inshore and coastal operations. 

6.4 Full Scale Trials 

As stated in Chapter 1, the project was initiated due to adverse results from towed 

sonar operations of the Royal Australian Navy (RAN), due to the effect of surface 

vessel motion. The tow in question was a conventional tow arrangement as shown in 

Figure 1.3, towing a Klein side scan sonar vehicle. 

Full Scale Trial Single Part Tow 

Figure 6.56 

Aft Deck of Deploying Vessel 

Figure 6.58 
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Full Scale Trial Two-Part Tow 

Figure 6.57 

Deploying of Two-Part Tow 

Figure 6.59 



In order to investigate the behaviour of the towed fish, the Defence Science and 

Technology Organisation (DSTO), carried-out a number full-scale trials using the 

conventional tow arrangement in 1993. The objective was to document the behaviour 

of the tow fish under usual tow conditions, and investigate the effects of varying 

parameters of the tow configuration. These included the change of the tow point 

location and the inclusion of a depressor wing. The results from these trials showed 

that there was a significant exceedence of the motion limits stipulated for efficient 

sonar operations. This was verified in the trials conducted jointly by the author and 

DSTO, as shown later in this sub-section. 

In 1994 and 1995, AMC and DSTO conducted further trials with both the 

conventional and two-part tow configurations in Jervis Bay and Port Phillip Bay. In 

both cases, DSTO side scan sonar vehicles were deployed from Royal Australian 

Navy vessels using the relevant onboard gear. The objectives were to compare the 

two configurations under varying conditions and to investigate the behaviour of the 

two-part tow by varying the tow configuration parameters. Figures 6.56 and 6.57 

show the single and two-part tow arrangements used in the trials. Figures 6.58 and 

6.59 show the surface vessel and the deploying of the two-part tow. 

Discussions with the sonar operators established the limiting parameters given in 

Table 6.1. Note: although the operational roll and heave rate limits were higher than 

those given in the table, they were set to be compatible to the other rate limits. 

Motion Rate Limits 

Surge 1 m/s 

Sway 1 m/s 

Heave 1 m/s 

Roll 6.28 deg/s 

Pitch 6.28 deg/s 

Yaw 1.05 deg/s 

Full Scale Trail- Limiting Parameters 

Table 6.1 

The trial in Jervis Bay in 1994 detailed in Table A3 in Appendix A, consisted of 50 

single part tow and 22 two-part tow runs. The trial in Port Phillip Bay in 1995 

detailed in Table A4, consisted of 25 single part tow and 30 two-part tow runs. In this 

text, the above two trials will be referred to as Trial 1 and Trial 2 respectively. 
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From Tables A3 and A4 it is seen that the various tow configurations investigated 

included: 

• change in cable length; 

• direction of tow to swell, (i.e. into, against, and across); and 

• the use of a depressor wing. 

For the two-part tow, the secondary cable length was maintained at 10 metres 

throughout all runs in both trials. 

The information on the motion of the sonar vehicle was obtained via a motion and 

environment measuring system located in the vehicle. This unit known as TOWfish 

Data Acquisition System (TOWDAS) was supplied by DSTO. It contains three gyros 

and three accelerometers arranged in the X, Y and Z axis, two inclinometers, depth 

sensor, internal and external temperature sensors, and leak detectors. The gyros and 

accelerometers measure rates of change in the six degrees of freedom and the 

inclinometers measure static pitch and roll. Data was acquired at a rate of 50 samples 

per second on each of the gyros and accelerometers and 2 samples per second on each 

of the other sensors. These were transmitted to an interface controller located on the 

towing vessel, which displayed the system status on a series of indicators and 

transmitted the data to a computer for data display and storage. The surface tow point 

cable tension was also recorded via a load cell. 

6.4.1 Full Scale Trial Results 

The recorded files were processed using dedicated computer programs to convert 

them into text files and to analyse the data. In order to remove any high frequency 

noise, the data was filtered through a 0.1 to 25 Hz window. The linear motions, i.e. 

surge, sway, and heave, which were recorded as accelerations, were then integrated to 

give the respective rates, i.e. in metres per second (m/s). The processed data was then 

compared against the stipulated rate limits using a computer program, which provided 

the following: 

• average deviation and standard deviation of the absolute rates of the six 

motions; 
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• percentages for each of the six rates exceeding the above stipulated limits; 

• percentage that at least one of the six rates exceeded the relevant stipulated 

limits; and 

.- probability density of the six rates. 

Tables A5 and A6 in Appendix A summarise the results form Trials 1 and 2 

respectively. The average values for all of the runs in each Trial are reproduced in 

Tables 6.2 and 6.3. 

s· I P t T mgJe ar ow 
Rates Roll 

A v Deviation 5.85 
Av St Dev 0.08 
Av % Excess 32.46 

Two-Part Tow 
Rates Roll 

Av Deviation 1.84 
AvStDev 0.07 
Av % Excess 1.06 

s· I P t T mgJe ar ow 
Rates Roll 

A v Deviation 7.62 
AvStDev 0.04 
Av % Excess 42.45 

Two-Part Tow 
Rates Roll 

A v Deviation 3.27 
AvStDev 0.06 
Av % Excess 12.86 

Pitch Yaw Surge Sway 
1.35 1.58 0.17 0.08 
0.14 0.11 0.28 0.24 
1.48 54.43 0.59 0.00 

Pitch Yaw Sun?e Sway 
0.76 0.51 0.09 0.04 
0.10 0.08 0.24 0.26 
0.05 10.04 0.00 0.00 

Trail 1 - Summary of Results 

Table 6.2 

-Pitch Yaw Surge Sway 
1.17 1.86 0.06 0.09 
0.05 0.04 0.17 0.16 
0.09 59.97 0.00 0.03 

Pitch Yaw Surge Sway 
1.07 0.85 0.11 0.09 
0.07 0.04 0.21 0.17 
0.16 30.58 0.02 0.00 

Trail 2 - Summary of Results 

Table 6.3 
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Heave Any 
0.07 
0.22 
0.00 65.38 

Heave Any 
0.06 
0.26 
0.00 10.78 

Heave _Any 
0.11 
0.14 
0.25 72.27 

Heave Any 
0.04 
0.16 
0.00 36.80 



In both cases it is seen that the two-part tow reduces the wave induced motion of the 

towed fish in comparison to the equivalent single part tow. In Trial 1 (Table 6.2), it is 

seen that the percentage exceeding the rate limit of at least one motion is reduced 

from 65.38 to 10.78, i.e. a reduction of 83.51 %. In Trail 2 (Table 6.3), this reduces 

from 72.27 to 36.80 i.e. a reduction of 49.08%. 

The results also allow for comparison of the tow fish behaviour under varying 

. conditions. Tables A 7 to All in Appendix A show the comparison between 

compatible runs in Trial 2, (Note: a similar comparison was carried out on the results 

of Trial 1, however, it is not reproduced in this text). In these comparisons, only the 

percentage exceeding at least one rate limit, yaw rate limit, and pitch rate limit were 

considered. In addition, average deviation, standard deviation, and the percentage 

significance of any change in comparison to the first run in each group were also 

obtained, (a group being the number of runs being compared). The latter is the 

probability against the sample averages of the same distribution taking the same 

values indicated. The(+/-) sign give the direction of change of the average deviation 

in comparison to the run. A ±99 change gives the most significant variation. The 

runs selected for comparison are usually compatible in all aspects except for the 

parameter being analysed. 

Direction to Swell 

Table A 7 looks at the effect on the tow fish motion due to the direction of tow to. the 

swell. The table consists of four sections, where the single part and two-part tows 

were each investigated to compare their behaviour with the change in direction, i.e. 

with the swell (0) versus across the swell (90), and with the swell (0) versus into the 

swell (180). 

In the single part tow, a drop was noted in the percentage exceeding the rate limit of at 

least one motion, as the direction of motion changed from being with the direction of 

the swell to across, and then into the swell. There was also a drop in the yaw rates 

with a corresponding increase in the pitch rate, when the above changes in directions 

occurred. However, the changes in the rates are insufficient to make a significant 

difference, which is reinforced by the percentage significance of the changes in each 

group. 

Considering the two-part tow, it was noted that the percentage exceeding the rate limit 

of at least one motion increased when the direction of motion moved from being with 
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the swell, with the highest change occuning when travelling across the swell. This 

trend also held true for the yaw and pitch rates. However the changes were again of 

low significance. 

Change in Cable Length 

Table A8 shows the effect due to the change in the primary cable length. In the two­

part tow the change in length was limited to the primary cable, as the secondary cable 

was kept constant at 10 metres. Again the analysis looks at the single and two-part 

tows separately. In each group, the shorter cable is the first run, and the comparison is 

canied out against it. 

In the single part tow, the increase in cable length resulted in a drop in the percentage 

exceeding the rate limits of at least one motion. Considering the yaw and pitch rates 

separately, a decrease was noted in the yaw rate, but an increase occurred in the pitch 

rate, although the increase is relatively small. The latter however seems to be 

significant, judging by the percentage significance of the changes in each group. 

For the two-part tow, the increase in cable length seemed to have very little 

improvement in the given rates, except for the pitch rate. In the latter the drop is 

substantial, which seems to be significant given the high percentage significance of 

the changes ·in most groups. This may be of importance since it may not be required 

to have long primary cables when utilising a two-part tow arrangement to decouple 

the motion of the surface vessel and the towed fish. Obviously, this will assist with 

the deploying of the tow gear and equipment, especially from small surface vessels 

such as coastal trawlers. The same however, cannot be said for a single part tow. 

Single versus Two-Part Tow 

Table All compares the two-part tow runs with compatible single part tow runs 

canied out during the trial. It is clearly evident from these results that the two-part is 

far less susceptible to external excitation than its equivalent single part tow. Using a 

compatible two-part tow in preference to a single part tow, results in approximately a 

60% reduction in the percentage exceeding the rate limit of at least one motion. 
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6.5 Scaled Model Hydrodynamic Coefficients 

As stated earlier, the scaled model tests were used to validate the computer program. 

Therefore, it was required to obtain the force and moment hydrodynamic coefficients 

for the tow fish and depressors. These coefficients were obtained by using the 

hori zontal planar-motion-mechanism (HPMM) fitted with a six degree of freedom 

load cell and located at the circulating water channel as shown in Figure 6.60. 

Although ideally the load cell should be placed within the model at its centroid, the 

relatively small size of the models did not permit this. Therefore, they were attached 

to the load cell via a specially built low drag connecting bracket. 

Use ofHPMM to Obtain the Hydrodynamic Coefficients 

Figure 6.60 

The recorded values from the HPMM were then manipulated to give the forces and 

moments acting at the tow point of the model. This was essential since the computer 

model requires these forces and moments at the tow point of each body, (see sub­

section 3.5 of Chapter 3). The procedure of obtaining the above can be summarised 

as follows: 

• conect the data by removing any zeroing errors; 

• subtract the forces and moments generated by the connecting bracket; 

• subtract the cross coupling terms due to the offset location of the model with 

respect to the load cell; and 
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• translate the forces and moments to the tow point of the model. 

The forces and moments for the models were obtained for angles of incidence from 0 

degrees to 25 degrees. (The angle of incidence being the angle the model's centreline 

makes with the flow direction). In order to prevent flow interference between the 

horizontal planar-motion-mechanism and the tow fish, the latter was only rotated in 

front of the mechanism. The opposite rotation was obtained by swapping over the 

model in relation to the mechanism. 

The forces and moments obtained were converted to coefficients by the respective 

force and moment equations described in sub-section 2.5 of Chapter 2. The 

coefficients thus obtained for the tow fish and depressor fish were plotted against the 

angle of incidence as shown in Figures 6.61 to 6.63. 
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Coefficients for Tow Fish 
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Horizontal Coefficients for Depressor 
Figure 6.63 
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Vertical Coefficients for Depressor 
Figure 6.62 

30 

Key to Graphs 

• surge coefficient 
• heave coefficient 
• sway coefficient 
• pitch coefficient 
• yaw coefficient 
X-axis angle of incidence (degrees) 

Note: For the tow fish, the horizontal and 
vertical coefficients are similar. 

Since the tow fish is symmetrical about the X-Z and X-Y planes, the coefficients 

shown in Figure 6.61 were used in both the vertical and horizontal directions. 
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The computer model requires the force and moment coefficient curves to be fed in via 

a third order polynomial equation, as a function of the tangent of the angle of 

incidence, (see sub-section 3.5 in Chapter 3). Thus, utilising a curve fitting technique, 

the curves are represented in the following format. 

Coefficient = a + b Tan <p + c Tan2 cp + d Tan3 cp (6.1) 

where 

a, b, c, d : constants defining the equation 

<p : angle of incidence of the vehicle to the flow direction 

The horizontal planar-motion-mechanism is also capable of calculating the 

hydrodynamic acceleration coefficients of the bodies. However, as the models were 

relatively simple, the hydrodynamic inertia coefficients were obtained by theoretical 

approximation. The methods for such approximations are given in number of fluid 

mechanics publications such as Humphreys and Watkinson (1978), Gerhart and Gross 

(1985), and Clauss et al. (1992). Similarly, all coefficients for the ball type depressor 

were obtained using theoretical approximations. 

6.6 Validation of the Computer Program 

In order to confirm that the computer model accurately simulates the behaviour of 

towed systems, a number of the scaled model runs were used to validate the two-part 

computer model. The results from the computer model proved to emulate those 

obtained from the equivalent scaled model tests, thus successfully validating the 

computer program. 

Three examples of these validation runs are reproduced in this sub-section. These 

consist of two runs under vertical (X-Z plane) excitation, utilising a ball and fish type 

depressor respectively, and the other under horizontal (Y-Z plane) excitation utilising 

a depressor fish. The results consist of the relevant linear and angular displacements 

of the towed fish and depressor, as well as the surface tow point tension. The 

dimensions and specifications for the runs, together with the equivalent scaled model 

run identification labels, are given in Table 6.4. All three simulations were carried out 

using a time step of 0.001 seconds and a tension error limit of 1 N. 
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Figures 6.64 to 6.71 compare the results from the computer model for the two-part 

tow with a ball type depressor under vertical excitation, against its equivalent test run, 

i.e. run 131. The excitation frequency and amplitudes are as in Table 6.4. 

131 C31 YA22 No.of 
Seements 

Primary Cable 1.5 m 1.5 m 1.5 m 8 (6 + 2) 
Secondary Cable 0.8m 0.8m 0.8m 5 
Depressor to Junction Cable 0.25m 0.25m 0.25m 2 
Depressor Type Ball Fish Fish 
Excitation Frequency 0.2857 Hz 0.2857 Hz 0.2857 Hz (Note: 

X Amplitude 0.035 m 0.035 m 0.035 m period= 3.5 
Y Amplitude 0.0m O.Om O.Om seconds) 
ZAmplitude 0.1 m 0.1 m 0.1 m 

Cable Diameter 2.2mm 
Cable Mass per Unit Length 3.013 g 
Cable Tangential Drag Coefficient 0.2 
Cable Normal Drag Coefficient 1.2 
Cable Tangential fuertia Coefficient 0.1 
·Cable Normal fuertia Coefficient 1.0 

Tow Configuration Information for Validation Runs 

Table 6.4 

The X-axis in all graphs is the period in seconds. The pitch angles are the deviation 

about the mean angle of incidence of the models. The surge and heave are also 

manipulated to give the displacement from the steady state condition. In the 

experimental results, when more than one displacement is produced on a graph, the 

phase between them should be disregarded, as they are selected arbitrarily. Further, 

the experimental results have been averaged and "smoothened" to remove any effects 

due to turbulence and measuring errors. 

Pitch Angle of Tow Fish for 131-
Computer - Degrees 

Figure 6.64 
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Pitch Angle of Tow Fish for 131-
Experiment - Degrees 

Figure 6.65 
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Figure 6.66 

Surge of Tow Fish for 131 - Computer 
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Figure 6.68 
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Figure 6.70 

Key to Graphs 
• fish displacement 
• depressor displacement 

Heave of Tow Fish for 131 -
Experiment - Centimetres 

Figure 6.67 

Surge of Tow Fish for 131 -
Experiment - Centimetres 

Figure 6.69 
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Tension at Surface for 131 -
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Figure 6.71 

• surface node tension 
X-axis period (seconds) 
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The tension values from the computer program were filtered to remove the high 

frequency response. This is done by the use of a low pass filter or by a moving point 

average, the latter used here as it is readily available in most spreadsheet packages. 
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Figures 6.72 to 6.79 compares the results from the computer model for the two-part 

tow utilising a depressor fish under vertical excitation, against its equivalent test run, 

i.e. run C31. The excitation frequency and amplitudes are as in Table 6.4. Note: the 

previous run (131) and this one (C3 l) allows for a comparison of the two-part tow 

utilising different depressor types, as they are otherwise similar. 
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Figure 6.72 
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Figure 6.74 
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Figure 6.76 

15 20 
-1 
-2 

-3 .. 
-5 

Pitch Angle of Tow Fish and Depressor 
for C31 - Experiment - Degrees 

Figure 6.73 
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Figure 6.75 

15~--------------

-15~--------------

Surge of Tow Fish for C31-
Experimental - Centimetres 

Figure 6.77 
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Figure 6.79 

Key to Graphs - same as for Figures 6.64 to 6.71. 

Finally Figures 6.80 to 6.83 show the yaw and sway results for the same tow 

configuration with a depressor fish under horizontal excitation, i. e. test run Y A22. 

Again the configuration and excitation details are given in Table 6.4. 

Yaw Angle of Tow Fish for Y A22 -
Computer - Degrees 

Figure 6.80 

Sway of Tow Fish for Y A22 -
Computer - Centimetres 

Figure 6.82 
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Yaw Angle of Tow Fish for YA22-
Experiment - Degrees 

Figure 6.81 

Sway of Tow Fish for Y A22 -
Experiment - Centimetres 

Figure 6.83 



Key to Graphs - same as for Figures 6.64 to 6.71. 

Table 6.5 gives the averages and standard deviations of the differences between the 

computer and experimental results, as a percentage of the amplitude of the relevant 

motions for the three examples considered. 

131 ~Fish Pitch Heave Surge 
Average -0.65 8.73 -0.21 
Standard Deviations 13.72 19.45 14.61 
C31-Fish Pitch Heave Sur2e 
Average -2.75 8.6 0.52 
Standard Deviations 14.5 18.65 8.74 
C31 - Depressor Pitch Heave Sur2e 
Average -9.03 -0.76 2.79 
Standard Deviations 11.57 17.72 10.63 
YA22-Fish Yaw Swav 
Average -6.66 -5.68 
Standard Deviations 10.99 15.49 

Statistical Analysis of the Computer and Experimental Results 

Table 6.5 

As seen from the Figures 6.64 to 6.83 and Table 6.5, there is good correlation between 

the results from the computer program and the equivalent scaled model tests. This 

should be considered in light of the small dimensions of the configuration, the 

approximations in the derivation of some coefficients, and the inevitable errors in the 

experimental procedures and analysis. 

Thus, it can be concluded that the computer program is a good representation of the 

actual two-part tow. Therefore, it can be used with a high degree of confidence to 

simulate the behaviour of such configurations. 
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CHAPTER 7 

CONCLUSION 

7.1 Summary 

The main objective of this project was to investigate the use of a two-part underwater 

tow to minimise the transmission of wave induced motions from the surface tow 

vessel to the towed underwater body. This was carried out in three stages, i.e. the 

computer simulation of the two-part tow, scaled model tests of the tow configuration, 

and full scale trails. During the simulation stage, the computer model was expanded 

to deal with series and parallel multi-tow systems. 

The description of the various conventional, two-part and multi-tow configurations 

was followed by an extensive review of the literature in modelling of cable I towing 

systems as well as the techniques utilised to solve these models. The literature review 

of the cable modelling looked at early analytical techniques right up to state of the art 

finite difference I element methods. These ranged from early one dimensional static 

models through to quasi static models, culminating in three-dimensional dynamic 

models. 

The commonly employed three-dimensional dynamic cable modelling techniques 

were analysed to select an appropriate method for this project. Each modelling 

technique was explained in detail and analysed to deduce its attributes and limitations. 

The method of characteristics and the finite difference method both use complex 

solution procedures, so the inclusion of the junction and multiple towed bodies would 

require substantial modification and add to the complexity of the solution procedure. 

In addition, the behaviour of the models under slack cable conditions is debatable. 

For these reasons these two modelling techniques were rejected. 

The incorporation of the junction in the hinged rod model was also found to be 

tedious and could further complicate the representation of parallel multi-tow 

configurations. In addition, as the model does not support longitudinal wave 

propagation, it cannot represent the dynamic effect due to rapid cable top motion. 

Therefore, this method too was rejected. 
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The finite element method can represent two-part and multi-tow configurations. 

However, it offers no advantages over the lumped-mass method and uses a more 

complex set of equations,. with the solution process being slower due to 'the use of 

. matrix algebra. In the lumped-mass system, due to the redistribution of forces from 

the segments to the adjacent nodes, the representation of the junction in the towed 

cable system is simplified. This provides an elegant·method of modelling series and 

parallel multi-tow systems. In addition, the lumping of the forces at the .nodes 
. . 

fac;ilitates the integration of the towed fish model with that of the cable. Therefore, 

the latter method was selected to represent the two-p·art and multi-tow cable systems. 

One area within fluid dynamics that is continuously being investigated is the 

prediction of the cable drag and inertia forces. A description of such prediction 

methods and the equations generally ~sed to predict these forces were also presented. 

These equations include coefficients, which are usually predicted by experimental 

data, although some researchers have put forward analytical techniques. The effects 

. of surface roughness, inclination to the flow direction, oscillations of the flow/cable, 

.and. vortex shedding, on these coefficients ·were also discussed. Examples of the 

experimental data used for the prediction of these coefficients were presented and the 

selection of the appropriate ~oefficients was explained. 

Also discussed were the methods available to model underwater vehicles. Again the 

methods available to"predict the relevant hydrodynamic coefficients were discussed, 

with a combination of experimental and theoretical approximations seleeted to predict 

the coefficients of the undei-Water bodies of the towed system. 

_The three-dimensional dynamic modelling of the tow configuration wa~ described in 

detail. The cab~e was divided into a number of lumpe.d masses separated by elastic 

segments. This allowed the junction to be represented as a node, with more than two 

cable segments a~tached to it. By modelling the cable as a continuous system and 

comparing it with the lumped-mass model, 'it was shown that' the latter was a true 

representation of the continuous system. The effects. due to this discretisation were 

also discussed. 

The cable was modelled with three degrees of freedom about the global axis system, 

while the towed fish was modelled with six .degrees of freedom about its local axis 

.system. This required that the latter be manipulated to ensure integration with the 

cable model, thus providing'adequate coupling of forces and motions. To enable this, 
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the modelling of the towed fish was carried out about its tow point, requiring the 

translation of all forces, moments artd inertia effects. 

The versatility of the dynamic modelling technique enabled the model to have more 

than one junction, thus allowing for the modelling of parallel multi-tow systems. The 

program was also modified to facilitate series multi-tow systems, by incorporating an 

aft tow point to the tow fish. 

The solution for the dynamic model commences from a quasi-static model, that also 

allows for preliminary low level investigations. The dynamic model uses the values 

from the quasi-static model as initial tentative values and employs a time stepping 

technique, solving the dynamic equations subject to the boundary conditions. The 

driving function for the model is the path of motion of the upper end of the cable, i.e. 

the surface tow vessel. The non-linear differential equations describing the motion of 

the system are solved using the Houbolt scheme, i.e. an implicit multi-step numerical 

integration scheme. Since the equations are non-linear, the solution requires an 

iteration process. This is achieved using a Newton-Raphson iteration process based 

on the constraint equation for the constitutive stress-strain relationship of each cable 

segment. This results in a predictor-corrector solution scheme. 

The solution procedure results in a set of equations expressed by a tri-diagonal matrix, 

which can be solved using the well known Thomas algorithm. However, the 

discontinuity of the junction will result in zero terms in the tri-diagonal band and non­

zero terms outside the band. In order to facilitate a fast solution, the matrix is 

converted into its true tri-diagonal form by manipulation. This solution procedure 

enables a rapid solution to the parallel multi-tow configuration, i.e. a system having a 

number of junctions. 

In the case of a series multi-tow system, the configuration is_ divided into separate 

cable systems at each tow fish, which .are solved separately. , They are then interfaced 

through the geometry of the appropriate tow fish. The error introduced by solving the 

cable systems separately as opposed to solving them as one system is shown to be 

insignificant, although the increase in solution speed is substantial. Examples of 

program outputs were also presented for the various tow configurations. 

One of the problems encountered during such numerical solution techniques is 

numerical instability. Although a number of researchers have done work in structural 

dynamics to explain these phenomenon, very little work has been carried out with 
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underwater cable systems. Therefore, this work has explained the operation of 

explicit and implicit integration schemes, identified reasons for numerical instability, 

and attempted to identify the requirements for stability and accuracy. 

Although a number of numerical schemes were used during the development stages, 

the Houbolt scheme was finally selected for the modelling. Therefore, the 

investigation is centred around this scheme. It was derived from first principles and 

the "mechanics" of the integration scheme was explained. Methods available to 

investigate the stability and accuracy requirements were discussed, including the 

requirements for non-linear systems. An appropriate method was selected and used 

on the Houbolt scheme to derive an acceptable time step to meet these conditions. 

This time step is dependent on the natural frequencies of the cable system, and since 

the calculation of these frequencies is tedious, a simpler method based on the wave 

speeds of the continuous cable system was derived. It was also seen that the iteration 

process required due to the non-linear equations of motion, removed any errors that 

were introduced by the starting procedure or by the use of larger time steps. 

The investigation was supplemented by scaled model and full scale trial data, while 

the former was also used to validate the computer program. Both experiments clearly 

showed that the two-part tow offered a much more stable platform, due to the inherent 

decoupling effect of the configuration. The two-part tow is able to absorb heave 

excitation, with a slight increase in the tow fish surge amplitude. An increase in surge 

excitation is however transmitted to the towed fish, although its effect on the angular 

motions are restricted. In the case of lateral (sway) excitation, a slight increase occurs 

in the sway and yaw amplitudes of the towed fish, although the rate of increase is 

reduced via the two-part tow configuration. 

Increasing the length of the secondary cable improves the response of the towed fish, 

although beyond a given length there will be little, if any, improvement. The same 

can be said with regard to the length of the primary cable. 

Although there is little difference in the tow· fish response under vertical excitation 

due to the utilisation of a fish or ball type depressor, a significant improvement is 

gained by utilising the former under horizontal excitation. The location of the 

junction a distance above the depressor also improves the response. Directly 

connecting the secondary cable to the depressor does improve the response of the 

depressor, but adversely effects the motion of the towed fish. The marginal 
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improvement due to the use of a drogue does not warrant the use of such devices, 

especially given the difficulties in deployment and recovery. 

Inspection of the results from the computer model compared to those from the scaled 

model tests showed good agreement, thus successfully validating the computer 

program. The validation required the calculation of the hydrodynamic coefficients for 

the scaled models, which were obtained using a horizontal planar-motion-mechanism. 

7.2 Conclusions and Recommendations 

The use of the two-part tow is a cheap but effective method of reducing the 

transmission of wave induced surface vessel motion along the tow cable to the towed 

underwater body. In order to optimise the tow configuration, its parameters have to be 

adjusted to suit the towing conditions and the underwater bodies. Although this is 

possible by trialing a number of full scale configurations, it is financially and time­

wise more efficient to carry out computer simulations of the various configurations to 

decide upon an acceptable arrangement. 

The computer model developed during this project is ideally suited for this task. 

Since the quasi-static model can be run separately, it provides the user with an 

adequate tool to carry out initial investigations, especially since it requires only basic 

input information. It can be used to identify the approximate parameters to achieve 

the required depth and trail. · 

Once this is achieved, the dynamic model can be initiated to investigate the behaviour 

of the system. The tow cable and underwater vehicle parameters can then be modified 

during these dynamic runs to obtain the required response. These parameters include: 

primary and secondary cable lengths, location of junction along primary cable, mass, 

buoyancy and .hydrodynamic coefficients of the cable and towed bodies, and the tow 

speed and direction. The simulation also allows the operator to plan surf ace vessel 

manoeuvres during towing operations, to prevent contact between towed bodies, 

cables, and underwater objects. 

The model is able to simulate conventional, two-part, multi-tow systems. With the 

two-part tow, the model is able to vary the location of the junction along the primary 

cable length, which to the best of the author's knowledge, is a feature not found on 

other towing models. The multi-tow configurations allow for two variations, i.e. 
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series and parallel multiple towed systems. In such tows, simulation is of importance 

due to the difficulties in deploying the tows and the possible contact between the 

number of towed bodies and cables. In addition, the number of parameters that can 

be changed is also greater, thus offering a larger number of combinations. 

The experimental data obtained during this project will assist operators in deciding on 

the parameters that will improve the response of the tow configurations. These will 

assist in the selection of the preliminary configuration. 

In general, based on the experimental work and results form the computer simulations, 

the following conditions were found to improve the response of a two-part tow 

configuration. 

The junction is best located along the primary cable length as opposed to being at the 

depressor, as the latter configuration increases the coupling between the two cables. 

Although longer primary and secondary cables do improve the decoupling of the 

motions, it is not required to have excessively long cables as the improvements are not 

significant for very long cable lengths. The use of a depressor fish, with adequate 

hydrodynamic damping is preferable to a clump weight, as the latter imparts larger 

motions to the cables. This is especially true with horizontal motions, i.e. sway and 

yaw motions. However, the clump weight _does prove to be better in reducing surge 

motion. Under certain conditions the latter can be beneficial, as the two-part tow 

inherently tends to reduce heave; sway and associated angular motions at the expense 

of surge motion. 

The dynamic simulation requires a sufficiently small time step to ensure accuracy and 

stability. Due to the non-linear equations of motion, the time step cannot be easily 

predicted using existing theories, although these effects were investigated in detail. 

However, a guide to predict an approximate time step, based on the wave speeds of 

the cable system, is presented. In practice, the operator should attempt to use the 

largest possible time step, as the iteration process removes any errors introduced. 

Due to the nature of the model, unrealistic input data, especially with regard to the 

cable and tow body hydrodynamic coefficients, can lead to numerical instability. 

Therefore, operators should ensure that the input values are realistic and posses the 

required physical damping. Continuous instability during simulation runs may 

warrant the inspection and correction of these coefficients. These coefficients can be 

obtained using experimental data and/or theoretical approximations. The information 
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provided in this thesis on the prediction of these coefficients should assist operators 

with this task. 

7.3 Future Work 

Future work can be divided into a number of areas. These include the following: 

• DSTO is currently developing a modified Klein sonar platform that incorporates 

adjustable control surfaces. This allows the operator to control the trajectory of 

the tow fish from the surface. The towed fish model in the computer program can 

be modified to incorporate movable control surfaces, thus allowing the operator to 

simulate the motion. A further step from this would be the incorporation of an 

adaptive control system, allowing the control surfaces to be automatically adjusted 

to maintrun the required altitude and attitude. 

• The versatility of the program enables it to be modified to represent a number of 

different tow configurations. These could include a variety of multi-tow 

configurations not already incorporated within the program. Thus, the program 

can be modified to meet the requirements of specific operations in the offshore, 

military, and maritime industries. 

• A variety of full scale tows, covering conventional, two-part, and multi-tow 

configurations, would be beneficial to further validate and refine the model. 

• The model can be improved to include a number of operational effects, including 

the upper end of the tow cable being above the water surface, sheared flow (i.e. the 

current velocity changing with water depth), the effect of waves on the velocity of 

the surrounding water relative to the cable, and the effect of vortex induced 

motions and forces. 

• As the finite element. method is also able to model the cable junction, it may be 

beneficial to develop an equivalent simulation model using this technique and 

compare the results of the two programs. This will no doubt add to the hotly 

debated topic, as to the merits or otherwise of each method, aggressively promoted 

by each school. 
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• As stated earlier, very little work has been done in investigating the stability and 

accuracy criteria with underwater cable systems. This thesis attempts to identify 

some of these criteria, however, a lot more work is required to thoroughly 

understand the mechanisms involved with the numerical stability of the iteration 

process and the implicit integration scheme used to solve the non-linear set of 

equations. The depth of the area is such that it would require a study purely 

dedicated to the stability and accuracy requirements. 

• Considering the practical operations, one major drawback of the two-part tow is 

the difficulties faced with the deployment and recovery of the configuration from 

small coastal vessels. The requirement to deploy two fish one after the other is 

hindered by the available after deck space and the weight of the units. The 

deployment of a single launch unit, that separates into two parts after deployment, 

would be greatly appreciated by the operators. The recovery process too would be 

simplified if the reverse could be facilitated. Such a design could be developed 

and incorporated into the existing computer model to predict deploying and 

recovery operations. 

As a final comment, it can be concluded that the objectives of this project were 

achieved, i.e. the successful simulation of the two-part underwater tow and the 

investigation to improve its behaviour under the influence of wave induced surface 

excitation. In addition, the project was successfully expanded to include series and 

parallel multi-tow configurations. 

Although a number of investigations have been carried out dealing with aspects of 

underwater towing operations, the strength of this investigation lies in that it combines 

these aspects into one study, i.e. mathematical modelling, computer simulation, 

prediction of the hydrodynamic coefficients, scaled model experiments, full scale 

trials, and the analysis of the numerical technique. 
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APPENDIX A 

EXPERIENTIAL RESULTS 

Code Primarv 

A11 1.5 
A12 1.5 
A13 1.5 
A21 1.5 
A22 1.5 
A23 1.5 
A31 1.5 
A32 1.5 
A33 1.5 

811 1.5 
812 1.5 
813 1.5 
821 1.5 
822 1.5 
823 1.5 
831 1.5 
832 1.5 
833 1.5 

C11 1.5 
C12 1.5 
C13 1.5 
C21 1.5 
C22 1.5 
C23 1.5 
C31 1.5 
C32 1.5 
C33 1.5 

021 1.5 
022 1.5 
023 1.5 
031 1.5 
032 1.5 
033 1.5 

E21 1.5 
E22 1.5 
E23 1.5 
E31 1.5 
E32 1.5 
E33 1.5 

F21 1.5 
F22 1.5 
F23 1.5 
F31 1.5 
F32 1.5 
F33 1.5 

Second J to Oep Oep F to Org x 

0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 

0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 
0.8 0.25 Fish 0.02 

0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 
0.8 0.25 Fish 0.035 

0.8 0 Fish 0 
0.8 0 Fish 0 
0.8 0 Fish 0 
0.8 0 Fish 0 
0.8 0 Fish 0 
0.8 0 Fish 0 

0.8 0 Fish 0.02 
0.8 0 Fish 0.02 
0.8 0 Fish 0.02 
0.8 0 Fish 0.02 
0.8 0 Fish 0.02 
0.8 0 Fish 0.02 

0.8 0 Fish 0.035 
0.8 0 Fish 0.035 
0.8 0 Fish 0.035 
0.8 0 Fish 0.035 
0.8 0 Fish 0.035 
0.8 0 Fish 0.035 

Scaled Model Tests AMC - Information 

Table Al 
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y z T 

0 0.05 3.5 
0 0.05 2.5 
0 0.05 1.5 
0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

0 0.05 3.5 
0 0.05 2.5 
0 0.05 1.5 
0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

0 0.05 3.5 
0 0.05 2.5 
0 0.05 1.5 
0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

0 0.075 3.5 
0 0.075 2.5 
0 0.075 1.5 
0 0.1 3.5 
0 0.1 2.5 
0 0.1 1.5 

PTO 



Continued from previous page 

Code 

G21 
G22 
G23 
G31 
G32 
G33 

H21 
H22 
H23 
H31 
H32 
H33 

121 
122 
123 
131 
132 
133 

J21 
J22 
J23 
J31 
J32 
J33 

K21 
K22 
K23 
K31 
K32 
K33 

L21 
L22 
L23 
L31 
L32 
L33 

S21 
S22 
S23 
S31 
S32 
S33 

T21 
T22 
T23 
T31 
T32 
T33 

Primarv Second J to Dep Dep F to Drg x y 

1.5 0.8 0.25 Ball 0 0 
1.5 0.8 0.25 Ball 0 0 
1.5 0.8 0.25 Ball 0 0 
1.5 0.8 0.25 Ball 0 0 
1.5 0.8 0.25 Ball 0 0 
1.5 0.8 0 25 Ball 0 0 

1.5 0.8 0.25 Ball 0 02 0 
1.5 0.8 0.25 Ball 0.02 0 
1.5 0.8 0.25 Ball 0.02 0 
1.5 0.8 0.25 Ball 0.02 0 
1.5 0.8 0.25 Ball 0.02 0 
1.5 0.8 0.25 Ball 0.02 0 

1 5 0.8 0.25 Ball 0.035 0 
1.5 0.8 0 25 Ball 0 035 0 
1.5 0.8 0.25 Ball 0.035 0 
1.5 0.8 0.25 Ball 0.035 0 
1.5 0.8 0.25 Ball 0.035 0 
1.5 0.8 025 Ball 0.035 0 

1.5 0.8 0 Ball 0 0 
1.5 0.8 0 Ball 0 0 
1 5 0.8 0 Ball 0 0 
1 5 0.8 0 Ball 0 0 
1.5 0.8 0 Ball 0 0 
1.5 0.8 0 Ball 0 0 

1.5 0.8 0 Ball 0.02 0 
1.5 0.8 0 Ball 0.02 0 
1.5 0.8 0 Ball 0.02 0 
1.5 0.8 0 Ball 0.02 0 
1.5 0.8 0 Ball 0.02 0 
1 5 0.8 0 Ball 0.02 0 

1.5 0.8 0 Ball 0.035 0 
1.5 0.8 0 Ball 0.035 0 
1.5 0.8 0 Ball 0.035 0 
1.5 08 0 Ball 0.035 0 
1.5 0.8 0 Ball 0.035 0 
1.5 0.8 0 Ball 0.035 0 

1 5 0.5 0 Fish 0 0 
1.5 0.5 0 Fish. 0 0 
1 5 0.5 0 Fish 0 0 
1.5 0.5 0 Fish 0 0 
1.5 0.5 0 Fish 0 0 
1.5 0.5 0 Fish 0 0 

1.5 0.5 0 Fish 0.035 0 
1.5 0.5 0 Fish 0.035 0 
1.5 0.5 0 Fish 0.035 0 
1.5 0.5 0 Fish 0.035 0 
1.5 0.5 0 Fish 0.035 0 
1.5 0.5 0 Fish 0.035 0 

Scaled Model Tests AMC-Information (continued) 

Table Al 
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z T 

0.075 3.5 
0075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0 075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1 5 

0.075 3.5 
0.075 2.5 
0 075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 35 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0 075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0 075 2.5 
0.075 1.5 

01 3.5 
0.1 2.5 
0.1 1.5 

PTO 
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Code 

V21 
V22 
V23 
V31 
V32 
V33 

X21 
X22 
X23 
X31 
X32 
X33 

AA12 
AA13. 
AA14 
AA22 
AA23 
AA24 

AA32 
AA33 
AA34 
AA42 
AA43 
AA44 

AA52 
AA53 
AA54 
AA62 
AA63 
AA64 

AB22 
AB23 
AB24 
AB42 
AB43 
AB44 

AB52 
AB53 
AB54 
AB62 
AB63 
AB64 

AC22 
AC23 
AC24 
AC42 
AC43 
AC44 

Primary Second J to Dep Dep F to Drg x y 

1.5 0.5 0.25 Fish 0 0 
1.5 0.5 0.25 Fish 0 0 
1.5 0.5 0.25 Fish 0 0 
1.5 0.5 0.25 Fish 0 0 
1.5 0.5 0.25 Fish 0 0 
1.5 0.5 0.25 Fish 0 0 

1.5 0.5 0.25 Fish 0.035 0 
1.5 0.5 0.25 Fish 0.035 0 
1.5 0.5 0.25 Fish 0.035 0 
1.5 0.5 0.25 Fish 0.035 0 
1.5 0.5 0.25 Fish 0.035 0 
1.5 0.5 0.25 Fish 0.035 0 

1.5 0.8 0.25 Fish 0.4 0 0 
1.5 0.8 0.25 Fish 0.4 0 0 
1.5 0.8 0.25 Fish 0.4 0 0 
1.5 0.8 0.25 Fish 0.4 0 0 
1.5 0.8 0.25 Fish 0.4 0 0 
1.5 0.8 0.25 Fish 0.4 0 0 

1.5 0.8 0.25 Fish 0.4 0.035 0 
1.5 0.8 0.25 Fish 0.4 0.035 0 
1.5 0.8 0.25 Fish 0.4 0.035 0 
1.5 0.8 0.25 Fish 0.4 0.035 0 
1.5 0.8 0.25 Fish 0.4 0.035 0 
1.5 0.8 0.25 Fish 0.4 0.035 0 

1.5 0.8 0.25 Fish 0.3 0 0 
1.5 0.8 0.25 Fish 0.3 0 0 
1.5 0.8 0.25 Fish 0.3 0 0 
1.5 0.8 0.25 Fish 0.3 0.035 0 
1.5 0.8 0.25 Fish 0.3 0.035 0 
1.5 0.8 0.25 Fish 0.3 0.035 0 

1.5 0.8 0.25 Fish 0.6 0 0 
1.5 0.8 0.25 Fish 0.6 0 0 
1.5 0.8 0.25 Fish 0.6 - 0 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 

1.5 0.8 0.25 Fish 0.6 0 0 
1.5 0.8 0.25 Fish 0.6 0 0 
1.5 0.8 0.25 Fish 0.6 0 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 
1.5 0.8 0.25 Fish 0.6 0.035 0 

1.5 0.8 0 Ball 0.3 0 0 
1.5 0.8 0 Ball 0.3 0 0 
1.5 0.8 0 Ball 0.3 0 0 
1.5 0.8 0 Ball 0.3 0.035 0 
1.5 0.8 0 Ball 0.3 0.035 0 
1.5 0.8 0 Ball 0.3 0.035 0 

Scaled Model Tests AMC-Information (continued) 

Table Al 
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z T 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 '3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 
0.1 3.5 
0.1 2.5 
0.1 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 
0.1 3.5 
0.1 2.5 
0.1 1.5 

-

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 
0.1 3.5 
0.1 2.5 
0.1 1.5 
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Code 

AD22 
AD23 
AD24 
AD42 
AD43 
AD44 

AG21 
AG22 
AG23 
AG31 
AG32 
AG33 

AH21 
AH22 
AH23 
AH31 
AH32 
AH33 

AJ21 
AJ22 
AJ23 
AJ31 
AJ32 
AJ33 

AK21 
AK22 
AK23 
AK31 
AK32 
AK33 

VA11 
VA12 
VA13 
VA14 
VA21 
VA22 
VA23 
VA24 

VB11 
VB12 
VB13 
VB21 
VB22 
VB23 

VC21 
VC22 
VC23 

Primary Second J to Dep Dep F to Drg x v 

1.5 0.8 0 Ball 0.6 0 0 
1.5 0.8 0 Ball 0.6 0 0 
1.5 0.8 0 Ball 0.6 0 0 
1.5 0.8 0 Ball 0.6 0.035 0 
1.5 0.8 0 Ball 0.6 0.035 0 
1.5 0.8 0 Ball 0.6 0.035 0 

1 5 0.5 0.25 Ball 0 0 
1.5 0.5 0.25 Ball 0 0 
1.5 0.5 0.25 Ball 0 0 
1.5 0.5 0.25 Ball 0 0 
1.5 0.5 0.25 Ball 0 0 
1.5 0.5 0.25 Ball 0 0 

1.5 0.5 0.25 Ball 0.035 0 
1.5 0.5 0.25 Ball 0 035 0 
1.5 0.5 0.25 Ball 0.035 0 
1.5 0.5 0.25 Ball 0.035 0 
1.5 0.5 0.25 Ball 0.035 0 
1.5 0.5 0.25 Ball 0.035 0 

1.5 0.5 0 Ball 0 0 
1.5 0.5 0 Ball 0 0 
1.5 0.5 0 Ball 0 0 
1.5 0.5 0 Ball 0 0 
1.5 0.5 0 Ball 0 0 
1.5 0.5 0 Ball 0 0 

1.5 0.5 0 Ball 0.035 0 
1.5 0.5 0 Ball 0.035 0 
1.5 0.5 0 Ball 0.035 0 
1.5 0.5 0 Ball 0.035 0 
1.5 0.5 0 Ball 0.035 0 
1.5 0.5 0 Ball 0.035 0 

1.5 0.8 0.25 Fish 0 0.1 
1.5 0.8 0.25 Fish 0 0.1 
1.5 0.8 0.25 Fish 0 0.1 
1.5 08 0.25 Fish 0 0.1 
1.5 0.8 0.25 Fish 0 0.15 
1.5 0.8 0.25 Fish 0 0.15 
1.5 0.8 0.25 Fish 0 0.15 
1 5 0.8 0.25 Fish 0 0.15 

1.5 0.5 0.25 Fish 0 0.1 
1.5 0.5 0.25 Fish 0 0.1 
1.5 0.5 0.25 Fish 0 0.1 
1.5 0.5 0.25 Fish 0 0.15 
1.5 0.5 0.25 Fish 0 0.15 
1.5 0.5 0.25 Fish 0 0.15 

1.5 0.8 0 Fish 0 0.15 
1.5 0.8 0 Fish 0 0.15 
1.5 0.8 0 Fish 0 0.15 

Scaled Model Tests AMC- Information (continued) 

Table Al 
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z T 

0.1 3.5 
0.1 2.5 
0.1 1.5 
0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 25 
0.075 1.5 

0.1 3.5 
0 1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 2.5 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1.5 

0.1 3.5 
0.1 25 
0.1 1.5 

0.075 3.5 
0.075 2.5 
0.075 1 5 

0.1 35 
0.1 25 
0.1 1.5 

0 4.5 
0 3.5 
0 2.5 
0 1.5 
0 4.5 
0 3.5 
0 2.5 
0 1.5 

0 4.5 
0 3.5 
0 2.5 
0 4.5 
0 3.5 
0 2.5 

0 4.5 
0 3.5 
0 2.5 
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Code Primarv 

YD21 1.5 
YD22 1.5 
YD23 1.5 

YE21 1.5 
YE22 1.5 
YE23 1.5 

YF21 1.5 
YF22 1.5 
YF23 1.5 

YG21 1.5 
YG22 1.5 
YG23 1.5 

YY11 1.5 
YY12 1.5 
YY13 1.5 
YY21 1.5 
YY22 1.5 
YY23 1.5 

WA21 1.5 
WA22 1.5 
WA23 1.5 

WB21 1.5 
WB22 1.5 
WB23 1.5 

WC21 1.5 
WC22 1.5 
WC23 1.5 
WC24 1 5 

WD21 1.5 
WD22 1.5 
WD23 1.5 
WD24 1 5 

WE21 1.5 
WE22 1.5 
WE23 1 5 
WE24 1.5 

WF21 1.5 
WF22 1.5 
WF23 1.5 
WF24 1.5 

Second J to Dep Dep Fto Ora x 

0.8 0.5 Fish 0 
0.8 0.5 Fish 0 
0.8 0.5 Fish 0 

0.8 0.25 Fish 0.3 0 
0.8 0.25 Fish 0.3 0 
0.8 0.25 Fish 0.3 0 

0.8 0 25 Fish 0.5 0 
0.8 0.25 Fish 0.5 0 
0.8 0.25 Fish 0.5 0 

0.8 0.25 Fish 0 
0.8 0.25 Fish 0 
0.8 0.25 Fish 0 

0 
0 
0 
0 
0 
0 

0.8 0.25 Ball 0 
0.8 0.25 Ball 0 
0.8 0.25 Ball 0 

0.8 0 Ball 0 
0.8 0 Ball 0 
0.8 0 Ball 0 

0.8 0.5 Ball 0 
0.8 0.5 Ball 0 
0.8 0.5 Ball 0 
0.8 05 Ball 0 

0.5 025 Ball 0 
0.5 0.25 Ball 0 
0.5 0.25 Ball 0 
05 0.25 Ball 0 

0.8 0.25 Ball 0.3 0 
0.8 0.25 Ball 0.3 0 
0.8 0.25 Ball 0.3 0 
0.8 025 Ball 0.3 0 

0.8 0.25 Ball 0.5 0 
08 0.25 Ball 05 0 
0.8 025 Ball 0.5 0 
0.8 0.25 Ball 0.5 0 

Scaled Model Tests AMC - Information 
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y z T 

0.15 0 4.5 
0.15 0 3.5 
0.15 0 2.5 

0.15 0 4.5 
0.15 0 3.5 
0.15 0 2.5 

0.15 0 45 
0.15 0 3.5 
0.15 0 2.5 

0.15 0 45 
0.15 0 3.5 
0.15 0 2.5 

0.1 0 4.5 
0.1 0 3.5 
0.1 0 2.5 

0.15 0 4.5 
015 0 3.5 
0.15 0 2.5 

0.15 0 4.5 
0.15 0 3.5 
015 0 2.5 

0.15 0 45 
0.15 0 3.5 
0.15 0 2.5 

0.15 0 4.5 
0.15 0 3.5 
0.15 0 2.5 
0.15 0 1.5 

0.15 0 4.5 
0.15 0 3.5 
0.15 0 2.5 
015 0 1.5 

0.15 0 4.5 
0.15 0 3.5 
0.15 0 2.5 
0.15 0 1.5 

0.15 0 45 
015 0 3.5 
0.15 0 2.5 
0.15 0 1.5 



Code 

A11 
A12 
A13 
A21 
A22 
A23 
A31 
A32 
A33 

811 
812 
813 
821 
822 
823 
831 
832 
833 

C11 
C12 
C13 
C21 
C22 
C23 
C31 
C32 
C33 

021 
022 
023 
031 
032 
033 

E21 
E22 
E23 
E31 
E32 
E33 

F21 
F22 
F23 
F31 
F32 
F33 

G21 
G22 
G23 
G31 
G32 
G33 

Oep Max amplitude Fish Max amplitude 
Surge Heave Pitch Surge 

Period cm cm deg cm 

3.5 36 2.8 2.5 3.4 
25 3.2 3.6 3 2 95 
1.5 2.5 35 4.5 26 
3.5 6.5 44 2.9 55 
2.5 58 53 4.2 5 
1.5 43 7.1 7.8 4 
3.5 8.7 6.4 3.9 7.9 
25 7.3 7.3 5.6 6.8 
1 5 5.5 98 10 5 5.1 

35 4.5 2.6 2.5 44 
2.5 3.9 34 4.3 36 
1.5 3.6 3.3 8.5 2.4 
35 7 1 4.1 25 6.6 
25 6 5.4 4.1 5.4 
1.5 4.3 7.1 7.5 3.8 
3.5 9.4 55 3.4 8.6 
2.5 7.9 72 5.8 7.3 
1.5 58 10 10 3 55 

3.5 57 2.5 2.5 5.2 
25 4.4 3.6 4.5 3.75 
1 5 3 4 8 2.6 
35 8.5 3.9 25 7.7 
2.5 6.4 55 4.7 62 
1.5 42 76 82 4 
3.5 11 5.4 3.5 10 
2.5 9.1 7.3 6 82 
1.5 6 10.25 10.7 6 

35 6.2 4.2 34 6 
2.5 5.85 44 41 5.4 
1.5 4 1 63 7.1 4.1 
3.5 9 1 53 3.25 8.1 
2.5 7.5 6.5 5 7.3 
1.5 7.9 6 8 5.6 

3.5 7.7 2.9 2 7.2 
2.5 63 4.4 3.5 63 
1.5 4.4 6.5 6.9 43 
35 10 4.2 2.5 95 
2.5 8.8 58 4.5 8 
1.5 5.9 8.5 9.25 5.7 

3.5 8.8 2.7 1.7 8.5 
2.5 7.2 4.4 38 7 
1.5 46 6.6 7.5 4.5 
3.5 11.2 3.9 26 10 
25 9.3 57 4.7 8.8 
1.5 6.2 8.8 9.3 6.1 

3.5 1.4 7.2 2 
2.5 1.2 7.2 1 6 
1.5 1 2 7.25 1.4 
35 2 9.4 2.2 
25 1.8 9.4 1.8 
1.5 1 6 9.6 2.4 

Scaled Model Tests AMC - Results 

Table A2 
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Heave Pitch 
cm deg 

1.6 1.5 
1 1 2 
0.6 1.2 
2.8 25 
2 2.1 

0.35 1 5 
2.75 3 
2.25 3.2 
0.5 1.5 

1 55 1 5 
1.3 1 
07 1.5 
1 8 32 
1.4 2.3 
0.7 1.7 

2.85 2.8 
2.1 2.3 
1.1 1.5 

1 7 1.4 
1.15 1.9 
08 1.25 
1 9 2 
1.6 2.7 
0.8 1.5 
2.8 2.4 
2.1 3.1 
1 3 23 

32 3.25 
3.3 3.75 
1.9 2.7 
47 43 
37 3.3 
2 32 

41 2.8 
2.7 2.5 
1.5 22 
3.5 27 
3.5 2.8 
25 3 25 

3 1 32 
37 38 
1.8 3 
3 28 

3.7 3.6 
2.2 3.2 

27 32 
2 24 
1 1 7 

4.2 3 1 
27 2.8 
1.5 22 
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Deo Max amolitude Fish Max amolitude 

Code 

H21 
H22 
H23 
H31 
H32 
H33 

121 
122 
123 
131 
132 
133 

J21 
J22 
J23 
J31 
J32 
J33 

K21 
K22 
K23 
K31 
K32 
K33 

L21 
L22 
L23 
L31 
L32 
L33 

S21 
S22 
S23 
S31 
S32 
S33 

T21 
T22 
T23 
T31 
T32 
T33 

V21 
V22 
V23 
V31 
V32 
V33 

Surge Heave Pitch Surge Heave 
Period cm cm deg cm cm 

3.5 2.8 6.4 2.9 2.9 
2.5 2.4 6.4 2.5 24 
1.5 1.3 7.2 1 8 1.2 
35 2.8 9 36 47 
25 24 92 2.2 25 
1.5 1.4 9.7 2 1 1.4 

35 3.4 64 4 2.9 
2.5 2.4 69 2.5 1.9 
1.5 1.5 7.2 1.65 1.2 
3.5 4.2 8.4 4.3 4.4 
2.5 3.5 8.8 3 2.4 
1.5 1.7 9.4 2.4 1.3 

3.5 2 6.9 2.5 4 
25 1 6 7 1.8 1.8 
1.5 1 2 74 1.6 1 
3.5 2.1 9.3 2.9 4 
25 1.8 9.6 2 1 2.6 
1.5 1 2 98 1 9 1.1 

3.5 2.5 6.6 3 4 
2.5 1.7 6.8 1.8 2.3 
1.5 1 7 1.5 1 
3.5 3 9 3.6 5 
2.5 2 9.2 2.6 3 1 
1.5 1.4 9.4 1.8 1.1 

3.5 3.8 6 4.2 34 
2.5 2 68 2.6 2.1 
1 5 1 2 7 1.4 1 
3.5 42 8 48 4.5 
2.5 2.5 9 28 3 
1 5 1 2 9.8 1.7 1 

3.5 7 3.7 24 6.5 3.9 
2.5 6.5 4.25 3.55 6.2 3.4 
1.5 4.5 6.5 7.1 4.5 2.6 
3.5 9.4 5.1 3.2 9 4.8 
2.5 8.9 5.6 4.3 8.3 4.5 
1.5 5.9 8.9 9.75 5.9 2.9 

3.5 8.8 3.2 2.2 8.4 4.5 
2.5 7.5 4.7 4.1 7 3.4 
1.5 4.4 7.3 8 4.4 2.8 
3.5 11 4.3 2.35 10 3.6 
2.5 9.2 615 5 8.6 4.4 
1.5 5.85 9 05 9.9 5.6 3.1 

3.5 6.6 3.6 2.6 5.7 2.8 
2.5 6.35 4 3.4 57 2.2 
1.5 4.75 6.2 68 4.4 1.7 
3.5 9.1 4.85 3.6 8.2 36 
2.5 8.4 5.8 435 7.6 3 
1.5 6.7 86 9.45 59 22 

Scaled Model Tests AMC-Results (continued) 
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Pitch 
dea 

28 
2.6 
1.4 
3.8 
3 

1.5 

2.5 
2.2 
1.7 
3.3 
2.5 
2 

3.2 
2.2 
1.1 
3.9 
3.3 
1.7 

3.1 
2.8 
1.2 
3.8 
3.4 
2 

3.2 
2.3 
1.4 
4.1 
3 

1.6 

3.1 
37 
3.1 
35 
4.6 
46 

35 
38 
3.5 
3.2 
4.1 
4.5 

2.7 
2.3 
2.2 
2.7 
2.8 
2.8 
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Dep Max amplitude Fish Max amplitude 

Code 

X21 
X22 
X23 
X31 
X32 
X33 

AA12 
AA13 
AA14 
AA22 
AA23 
AA24 

AA32 
AA33 
AA34 
AA42 
AA43 
AA44 

AA52 
AA53 
AA54 
AA62 
AA63 
AA64 

AB22 
AB23 
AB24 
AB42 
AB43 
AB44 

AB52 
AB53 
AB54 
AB62 
AB63 
AB64 

AC22 
AC23 
AC24 
AC42 
AC43 
AC44 

AD22 
AD23 
AD24 
AD42 
AD43 
AD44 

Surge Heave Pitch Surge Heave 
Period cm cm deg cm cm 

3.5 8.9 2.4 1 6 8.2 2.25 
2.5 725 3.9 3.5 7 235 
1.5 5.05 6.85 7.2 4.9 1.7 
3.5 8.2 3.65 2.1 9.8 2.7 
2.5 9.3 5.35 4.15 8.8 2.5 
1.5 6.15 8.75 9.9 5.9 1.9 

3.5 6.2 3.6 2.4 5.4 2.5 
2.5 5.7 3.7 3.1 5 1.8 
1.5 5.4 4.4 5.4 5 1.75 
3.5 8.4 4.6 2.55 7.4 2.85 
2.5 7.8 4.75 3.35 6.6 2.4 
1.5 7.3 7.35 7.8 5.4 1.65 

3.5 7.8 1.6 2.1 7 1.6 
2.5 7.5 2.6 2.95 6 1 3 
1.5 5.6 44 68 4.2 1 
3.5 10 25 2.95 1.55 8.3 2.35 
2.5 9 3.6 2.9 7.8 2.1 
1.5 7.4 7.05 7.7 6 1.6 

3.5 8 5.4 2.7 7.2 3.25 
2.5 7.45 5.5 3.9 6.4 2.9 
1.5 7.2 7.3 8.4 5.3 1.85 
3.5 9.75 3.75 2.1 8.25 2.5 
2.5 9.5 3.85 3.1 8 2.25 
1.5 7.2 7.1 81 5.85 2.1 

3.5 7.7 5.1 3.35 6.95 3.2 
2.5 7.3 5.2 3.8 6.3 2.75 
1.5 7 7 7.3 5.45 2.05 
3.5 9.7 3.65 2.1 8.4 2.8 
2.5 8.75 4.3 3.2 7.6 2.15 
1.5 7.1 725 7.85 5.75 2 

3.5 8 4.85 3 6.9 3.25 
2.5 8.15 4.75 3.6 6.45 2.75 
1.5 7.35 7.2 7.7 5.4 1.9 
3.5 9.8 3.35 2 8.4 2.55 
2.5 9.5 4.15 3.05 7.75 1.8 
1.5 7.1 7.7 8 5.7 1 8 

35 1.6 8.4 2.6 5.5 
2.5 1.4 9 1 9 4.45 
1.5 1 9.2 1.8 2.2 
3.5 3 8.2 4.25 5.4 
2.5 2.2 8.6 2.7 3.85 
1.5 1.3 9.2 1.75 2.1 

3.5 1.6 8.8 2.5 5.85 
2.5 1.3 9 1.65 4.45 
1.5 1 9.2 1.9 2.3 
3.5 3 8 3.75 5.3 
2.5 2.4 6.8 2.8 4 
1.5 1.6 7.2 1.8 2.25 

Scaled Model Tests AMC-Results (continued) 
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Pitch 
deg 

2.25 
2.75 

3 
2.7 
3.1 
3.3 

1.5 
2.1 
1.5 
2.2 

2.35 
22 

1.3 
21 
1.8 

2.15 
2.5 
2.3 

2.3 
2.75 
2.55 
2.1 

2.25 
2.75 

2.7 
3.05 
2.9 
2.4 

2.35 
2.75 

2.45 
2.25 
2.7 

2.15 
2.45 
2.4 

485 
4.6 
2.8 
4.35 
3.65 
2.9 

4.5 
4.1 
2.9 
4.25 
4.1 
3 
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Dep Max amplitude Fish Max amplitude 
Surge Heave Pitch Surge Heave Pitch 

Code Period cm cm deg cm cm deg 

AG21 3.5 1 65 6.8 2.1 5.2 4.2 
AG22 2.5 1 4 7 1 75 3.1 3.4 
AG23 1.5 1 7.2 1.7 1.35 2 
AG31 3.5 2.2 9.2 2.8 6.2 4.9 
AG32 2.5 1.8 9.4 2.2 36 4 
AG33 1.5 1.3 9.8 2.6 2 3.1 

AH21 3.5 3.6 6.4 3.6 4.5 4.1 
AH22 2.5 2.6 6.8 2.4 3 2.9 
AH23 1.5 1.3 7.2 1.5 1.5 2.2 
AH31 3.5 4.2 8.2 5 5.9 5 1 
AH32 2.5 2.6 8.6 2.75 3.9 4.2 -
AH33 1.5 1.4 9.4 2.4 2 2.8 

AJ21 3.5 1.8 7 2.2 5.6 4.9 
AJ22 2.5 1.3 72 1.6 3.6 4.4 
AJ23 1.5 0.8 76 1.3 1 1 2.1 
AJ31 3.5 2.2 8.8 2.8 6.8 56 
AJ32 2.5 1.6 9.2 2 4.3 4.9 
AJ33 1.5 1.2 9.6 1.9 1.65 2.5 

AK21 3.5 4.2 6 4.5 4.9 45 
AK22 2.5 2.4 6.8 2.7 33 3.9 
AK23 1.5 1.1 7.2 1 2 1.4 2.2 
AK31 3.5 4.6 8.6 4.8 6.4 5.5 
AK32 25 3.3 9.2 3.3 4.2 4.5 
AK33 1 5 1 5 9.6 1.5 1 4 2.6 

Dec Max amolitude Fish Max amplitude 
Surge Yaw Surge Yaw 

Code cm Sway cm deg cm Sway cm deg 

YA11 4.5 06 3.1 2 
YA12 3.5 0.9 2.2 1.55 
YA13 2.5 0.95 1.2 1.25 
YA14 1.5 0.55 0.8 1.1 
YA21 45 0.75 39 2.4 
YA22 3.5 0.85 2.8 2 
YA23 2.5 1.1 1.6 1.35 
YA24 1.5 0.9 1 1.25 

YB11 4.5 1 4.75 3.25 
YB12 3.5 0.7 1.9 1.95 
YB13 2.5 0.75 1.3 2 
YB21 4.5 1 5 3.9 
YB22 3.5 1.05 2.6 2.3 
YB23 2.5 1 1.35 1.5 

YC21 4.5 0.75 7.1 3.6 
YC22 3.5 0.9 3.7 23 
YC23 2.5 0.75 2.1 1.85 

YD21 4.5 0.85 4.1 2.7 
YD22 3.5 0.95 1.9 2.05 
YD23 2.5 0.95 1.4 1.95 

Scaled Model Tests AMC-Results (continued) 
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DeD Max amolitude Fish Max amolitude 

Code 

YE21 
YE22 
YE23 

YF21 
YF22 
YF23 

YG21 
YG22 
YG23 

YY11 
YY12 
YY13 
YY21 
YY22 
YY23 

WA21 
WA22 
WA23 

WB21 
WB22 
WB23 

WC21 
WC22 
WC23 
WC24 

WD21 
WD22 
WD23 
WD24 

WE21 
WE22 
WE23 
WE24 

WF21 
WF22 
WF23 
WF24 

Surge Yaw Surge 
cm Swav cm dea cm Swav cm 

4.5 0.75 
3.5 0.8 
2.5 0.85 

4.5 1 
3.5 1.05 
2.5 0.75 

4.5 0.7 
3.5 1 
2.5 0.6 

4.5 1.6 
3.5 0.95 
2.5 0.9 
4.5 1.6 
3.5 1.2 
2.5 0.75 

4.5 1.2 
3.5 0.85 
2.5 0.9 

4.5 1.55 
3.5 1.3 
2.5 0.9 

4.5 1.6 
3.5 1.05 
2.5 0.75 
1.5 0.5 

4.5 1.5 
35 1.2 
2.5 0.9 
1 5 0.7 

4.5 1.45 
3.5 0.9 
2.5 0.62 
1.5 0.7 

4.5 1.25 
3.5 1 
2.5 0.88 
1 5 0.95 

Scaled Model Tests AMC-Results 
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5.4 
2.85 
1.8 

5.7 
3.3 
1 1 

4.1 
2.7 
1.65 

9.3 
5 

2.7 
12.3 
6.75 
3.65 

10 
75 
5.8 

9.7 
8.45 
7.25 

7.5 
6.5 
3.8 
1.4 

11.2 
10 

5.85 
1.85 

8.5 
8.6 
7.2 
1.75 

7.5 
7.7 
6.3 
2.1 

Yaw 
dea 

3.6 
1.85 
1.7 

3.8 
2.6 
1 4 

3.9 
2.7 
1.8 

5.65 
4.2 
2.7 

7.85 
5.75 
3.8 

6.65 
5.8 
5.9 

7.05 
6.85 
72 

6.2 
5.2 
4.2 
1.3 

8 1 
7.5 
5.9 
2.7 

6.5 
6.3 
6.1 
2.6 

4.8 
57 

5.95 
2.5 



Trial 1-Jervis Bay 

File Type 

ST1-1 Sino le 
ST2-1 Sino le 
ST3-1 Single 
ST4-1 Sinole 
STS-1 Sina le 
ST6-1 Single 
ST7-1 Sino le 
ST8-1 Sino le 
ST9-1 Sino le 
ST10-1 Sinole 
ST11-1 Sinqle 
ST12-1 Sinale 
ST13-1 Sinale 
ST14-1 Single 
ST15-1 Single 
ST16-1 Sino le 
ST17-1 Sinole 
ST18-1 Sinale 
ST19-1 Sinale 
ST20-1 Sina le 
ST21-1 Single 
ST22-1 Sinale 
ST23-1 Sinole 
ST24-1 Sinole 
ST25-1 Sinale 
ST26-1 Sina le 
ST27-1 Single 
ST28-1 Sinole 
ST29-1 Sinqle 
ST30-1 Sinqle 
ST31-1 Sina le 
ST32-1 Single 
ST33-1 Single 
ST34-1 Single 
ST35-1 Single 
ST36-1 Sino le 
ST37-1 Sinole 
ST38-1 Sinole 
ST39-1 Sinqle 
ST40-1 Single 
ST41-1 Single 
ST42-1 Sinole 
ST43-1 Sinqle 
ST44-1 Sino le 
ST45-1 Single 
ST46-1 Sino le 
ST47-1 Sinole 
ST48-1 Single 
ST49-1 Sinole 
STS0-1 Sina le 

Single Tow 

Primary Second Dirto 
Cable Cable Swell 

10 - with 
10 - into 
10 - across 
10 - with 
10 - across 
10 - into 
20 - into 
20 - with 
20 - across 
20 - with 
20 - into 
20 - across 
20 - across 
20 - with 
20 - into 
20 - with 
20 - into 
20 - across 
20 - into 
60 - into 
60 - with 
60 - -
60 - with 
60 - into 
60 - with 
60 - into 
60 - with 
60 - into 
60 - with 
60 - into 
60 - with 
60 - into 
60 - with 
20 - with 
20 - into 
20 - across 
20 - across 
20 - with 
20 - into 
20 - with 
20 - into 
20 - across 
20 - across 
20 - with 
20 - into 
20 - with 
20 - into 
20 - across 
20 - across 
20 - with 

Trial 1 - Tow Information 
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1994 

Wing Tow 
Point 

no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 

-no forward 
no forward 
no forward 
ves forward 
ves forward 
ves forward 
yes forward 
yes forward 
yes forward 
ves forward 
ves forward 
no forward 
no forward 
no forward 
no forward 
no forward 
no forward 
yes forward 
yes forward 
yes forward 
yes forward 
yes forward 
yes forward 
ves forward 
ves forward 
yes forward 
yes forward 
yes forward 
yes forward 
ves forward 
yes forward 
yes forward 
ves forward 
no forward 
no forward 
no forward 
no forward 
no forward 

PTO 



Continued from previous page 

Trial 1-Jervis Bay Tow-PartTow 

File Type Primary Second Dirto Wing 
Cable Cable Swell 

TT1-1 Two Part 10 10 across no 
TT2-1 Two Part 10 10 into no 
TT3-1 Two Part 10 10 with no 
TT4-1 Two Part 20 10 into no 
TTS-1 Two Part 20 10 across no 
TT6-1 Two Part 20 10 with no 
TT7-1 Two Part 20 10 into no 
TTS-1 Two Part 20 10 135 deg no 
TT9-1 ' Two Part 20 10 across no 
TT10-1 Two Part 20 10 into no 
TT11-1 Two Part 20 10 across no 
TT12-1 Two Part 20 10 with no 
TT13-1 Two Part 20 10 into yes 
TT14-1 Two Part 20 10 across yes 
TT15-1 Two Part 20 10 into no 
TT16-1 Two Part 20 10 with no 
TT17-1 - - - - -
TT18-1 - - - - -
TT19-1 - - - - -
TT20-1 - - - - -
TT21-1 Two Part 50 10 into no 
TT22-1 Two Part 50 10 with no 

Trial 1-Tow Information (continued) 

TableA3 

310 

1994 

Tow 
Point 

forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 
forward 

aft 
aft 

forward 
forward 



Trial 2 - Port Phillip Bay Single Tow 

File Type Primary Second Dirto Wing 
r.:ihle C:ihle sw~ll 

ST1·2 Sina le 20 - with no 
ST2-2 SinQle 20 - across no 
ST3·2 Sina le 20 - into no 
ST4·2 SinQle 20 - with no 
ST5·2 Single 20 - across no 
ST6-2 SinQle 20 - into no 
ST7·2 SinQle 20 - with no 
STS-2 Single 20 - across no 
ST9-2 SinQle 20 - into no 
ST10-2 SinQle 15 - with yes 
ST11-2 SinQle 15 - across yes 
ST12-2 SinQle 15 - into yes 
ST13-2 Single 15 - ? yes 
ST14-2 Single 35 - across yes 
ST15-2 Single 35 - with yes 
ST16-2 SinQle 35 - into yes 
ST17-2 SinQle 35 - across yes 
ST18-2 SinQle .35 - with yes 
ST19-2 SinQle 35 - into yes 
ST20-2 Single 40.5 - across no 
ST21-2 Sinale 40.5 - with no 
ST22·2 Sina le 40.5 - into no 
ST23·2 Sina le 40.5 - across no 
ST24-2 SinQle 40.5 - with no 
ST25-2 SinQle 40.5 - into no 

Trial 2 - Port Phillip Bay Two-Part Tow 

File Type Primary Second Dirto Wing 
Cable Cable Swell 

TT1·2 Two Part 20 10 across no 
TT2·2 Two Part 20 10 with no 
TT3·2 Two Part 20 10 across no 
TT4·2 Two Part 20 10 into no 
TT5-2 Two Part 20 10 across no 
TT6-2 Two Part 20 10 with no 
TT7-2 Two Part 20 10 into no 
TTS-2 Two Part 20 10 with no 
-TT9-2 Two Part 20 10 across no 
TT10·2 Two Part - - - -
TT11-2 Two Part 15 10 with yes 
TT12·2 Two Part 15 10 across yes 
TT13-2 Two Part 15 10 into yes 
TT14-2 Two Part 15 10 across yes 
TT15·2 Two Part 15 10 with yes 
TT16-2 Two Part 15 10 into yes 
TT17-2 Two Part 15 10 with yes 
TT18·2 Two Part 15 10 across ves 

Trial 2-Tow Information (continued) 
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1995 

Tow Speed 
Point 

forward 5.5 
forward 5.7 
forward 5.6 
forward 5.6 
forward 5.7 
forward 5.6 
forward 8.5 
forward 8.6 
forward 8.5 
forward 5.5 
forward 5.5 
forward ? 
forward 8.4 
forward 5.6 
forward 6.2 
forward 4.6 
forward 7.5 
forward 8 
forward 7.9 
forward 5.7 
forward 5.6 
forward 5.4 
forward 7.8 
forward 8.3 
forward 7.5 

1995 

Tow Speed 
Point 

forward 4.7 
forward 5.7 
forward 5.7 
forward 5.9 
forward 6.2 
forward 6.7 
forward 7.5 
forward 7.9 
forward 7.9 

- -
forward 4.9 
forward 5.2 
forward 5 
forward 5.4 

aft 5.3 
aft 5.1 

8.1 
8 

PTO 



Continued from previous page 

TT19-2 
TT20-2 
TT21-2 
TT22-2 
TT23-2 
TT24-2 
TT25-2 
TT26-2 
TT27-2 
TT28-2 
TT29-2 
TT30-2 

Two Part 15 10 across yes 
Two Part 15 10 into yes 
Two Part - - - -
Two Part 15 10 with yes 
Two Part 15 10 across yes 
Two Part 15 10 into ves 
Two Part 40 10 into no 
Two Part 40 10 across no 
Two Part 40 10 with no 
Two Part 40 10 across no 
Two Part 40 10 into no 
Two Part 40 10 With no 

Trial 2-Tow Information (continued) 
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8 
7.7 

- -
forward 8 
forward 8 
forward 8.4 
forward 5.6 
forward 5.8 
forward 6.3 
forward 8 
forward 8 
forward 7.8 



Trial 1 - Jervis Bay 
Filtering: 
Sruge Rate Limit: 
Sway Rate Limit: 
Heave Rate Limit: 

File Rates 
ST1-1 Av Deviation 

St Dev 
% Excess 

ST2-1 Av Deviation 
St Dev 
% Excess 

ST3-1 Av Deviation 
St Dev 
% Excess 

ST4-1 Av Deviation 
St Dev 
% Excess 

STS-1 Av Deviation 
St Dev 
% Excess 

ST6-1 Av Deviation 
St Dev 
% Excess 

ST7-1 Av Deviation 
St Dev 
% Excess 

STS-1 Av Deviation 
St Dev 
% Excess 

ST9-1 Av Deviation 
St Dev 
% Excess 

ST10-1 Av Deviation 
St Dev 
% Excess 

ST11-1 Av Deviation 
St Dev 
% Excess 

ST12-1 Av Deviation 
St Dev 
% Excess 

ST13-1 Av Deviation 
St Dev 
% Excess 

ST14-1 Av Deviation 
St Dev 
% Excess 

ST15-1 Av Deviation 
St Dev 
% Excess 

ST16-1 Av Deviation 
St Dev 
% Excess 

0.1- 25 Hz 
1 m/s 
1 m/s 
1 m/s 

Roll Rate Limit: 
Pitch Rate Limit: 
Yaw Rate Limit: 

Single Tow 

Roll Pitch Yaw Surge Sway 
10.14 1.36 2.17 0.22 
0.056 0.114 0.044 0 36 
63.93 0.01 71.68 0 
12.31 1.65 2.49 0.11 
0.054 0.135 0.045 0.176 
70.3 ·0.32 75.92 0 

12.34 1.41 2.7 0.09 
0.08 0.072 0.061 0.177 

70.39 0.08 77.22 0 
12.76 2.22 2.86 0.34 
0.077 0.119 0.16 0.283 
68.73 2.79 75.64. 1.81 
13.19 2.34 3.82 0.15 
0.086 0.141 0.145 0.207 
70.15 4.04 81.98 0 
12.74 2.49 3.4 0.18 
0.041 0.057 0.093 0.168 
69 49 4.73 80.58 0 

6.74 1.02 1 7 0.1 
0.068 0.071 0.091 0.206 
45.15 0 62.36 0 

6.86 1.01 1.81 0.09 
0.066 0.047 0.097 0.261 
46.35 0 65.5 0 
718 1 05 ;, 2.09 0.07 

0.034 0.062 0.054 0.195 
48.91 0 70.4 0 

7.29 1.03 1.76 0.14 
0.055 0.1 0.061 0.442 
49.66 0.01 64.27 0 

7.93 1.24 2.19 0.09 
0.054 0.056 0.05 0.241 
52.95 0.01 72 04 0 

7.31 1.13 1.97 0.06 
0.046 0.059 0.059 0.157 
49.47 0.05 67.8 0 

5.03 1.06 1.64 0.06 
0.053 0.094 0.101 0.233 
31.85 0.01 60.27 0 

4.6 0.88 1 1 0.09 
0.047 0.121 0.141 0.605 
27 62 0 44.52 0 

4.76 0 97 1.22 0.11 
0 041 0 083 0.106 0.292 
29.23 0 48.59 0 

2.2 0.72 0.66 0.08 
0.082 0.107 0.075 0 517 

2.9 0 20.03 0 

Trial 1-Tow Results (continued) 
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0.07 
0.183 

0 
0.07 

0.194 
0 

0.09 
0.243 

0 
0.08 
0.24 

0 
0.14 

0.199 
0 

0.14 
0.144 

0 
0.06 

0.207 
0 

0.06 
0.181 

0 
0 06 

0.201 
0 

0.06 
0.236 

0 
0.06 

0.141 
0 

0.06 
0.153 

0 
0.07 

0.206 
0 

0.09 
0.498 

0 
0.05 

0.144 
0 

0.03 
0.252 

0 

1994 

6.28 deg/s 
6.28 deg/s 
1.05 deg!s· 

Heave Any 
0.05 

0.151 
0 87.53 

0.1 
0.192 

0 91 11 
0.07 

0.182 
0 91.93 

0 06 
0.212 

0 91.54 
0.09 

0.148 
0 93.88 

0.11 
0.136 

0 93.38 
0.05 

0.181 
0 76.61 

0.05 
0.231 

0 79.08 
0.06 

0.244 
0 83 46 

0.03 
0.318 

0 81.23 
0.05 

0.175 
0 85.69 

0.05 
0.272 

0 82.71 
0.05 

0.171 
0 71.43 

0.03 
0.175 

0 58.57 
0 05 

0.287 
0 61.5 

0.03 
0.114 

0 22 

PTO 
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File Rates 
ST17-1 Av Deviation 

St Dev 
% Excess 

ST18-1 Av Deviation 
St Dev 
% Excess 

ST19-1 Av Deviation 
St Dev 
% Excess 

ST20-1 Av Deviation 
St Dev 
% Excess 

ST21-1 Av Deviation 
St Dev 
% Excess 

ST22-1 - Not Comolete 
ST23-1 Av Deviation 

St Dev 
% Excess 

ST24-1 Av Deviation 
St Dev 
% Excess 

ST25-1 Av Deviation 
St Dev 
% Excess 

ST26-1 Av Deviation 
St Dev 
% Excess 

ST27-1 Av Deviation 
St Dev 
% Excess 

ST28-1 Av Deviation 
St Dev 
% Excess 

ST29-1 Av Dev1at1on 
St Dev 
% Excess 

ST30-1 Av Deviation 
St Dev 
% Excess 

ST31-1 Av Deviation 
St Dev 
% Excess 

ST32-1 Av Deviation 
St Dev 
% Excess 

ST33-1 Av Deviation 
St Dev 
% Excess 

ST34-1 Av Deviation 
St Dev 
% Excess 

ST35-1 Av Deviation 
St Dev, 
% Excess 

ST36-1 Av Deviation 
St Dev 
% Excess 

Roll Pitch Yaw Surae Sway 
3.87 1.09 1.12 0.18 

0.128 0.08 0.101 0.237 
19.86 0 44.71 0 

2 69 0.95 0.98 0.09 
0.086 0 066 0.095 0.168 
6 95 0 39.03 0 
5.48 1.15 1.32 0.22 

0.064 0 213 0.162 0.255 
35.67 014 51.29 0.24 
319 2.31 1.33 0 26 

0.042 0.252 0.245 0.196 
11.54 4.65 52.25 0.51 

4.04 1.1 0.98 0.28 
0.063 0.117 0 154 0.224 
21.28 0.17 37 33 0.04 

2.56 1.2 0.96 0.27 
0.34 0 276 0.363 0.34 
7 06 0.59 32 35 0.98 
3.07 3.35 1.22 0.32 

0.115 0 276 0.124 0.272 
10 63 14.64 47 51 2.23 
13.18 1 57 2.39 0.42 
0.153 0.333 0.088 0.619 
73.24 09 75 8.35 

3 41 4.16 1.42 0.41 
0.165 0.276 0.21 0.278 
14.19 21.19 52.29 5.66 
8.74 1 67 1.71 0.42 

0.182 0.21 0.12 0.348 
53.75 0.65 62:92 4.21 
4.35 2.24 1.53 0.27 

0 215 0.32 0.195 0.264 
23.35 4.76 55.62 0.84 

5.67 0.89 1.41 0.23 
0.074 0.211 0 121 0.443 
36.79 0 03 53.16 0.31 

2.62 2 28 0.84 0.31 
0.111 0.256 0.165 0.23 

7.07 4.97 31.13 2.08 
354 0.91 1 14 0.29 

0.083 0157 0.12 0.314 
16.18 0 01 45.79 0.33 
4 28 2.53 1 49 0.31 

0.077 0 41 0.199 0.241 
24.03 7.46 56.63 1.06 

4.51 0.96 1.34 0.29 
0.068 0.241 0.197 0307 
26.17 0.09 50.43 036 

4.05 0.91 1.18 0.06 
0.03 0.055 0.038 0.171 

21.31 0 47.36 0 
3.79 0.93 1.11 0.08 

0.047 0.043 0.049 0.145 
18.58 0 44.56 0 
4.19 1.17 1.37 0.16 

0.034 0.114 0.093 0.42 
23.17 0 01 53.39 0 

Trial 1-Tow Results (continued) 
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0.06 
0.204 

0 
0.06 

0.292 
0 

012 
0307 

0 
0.07 

0.183 
0 

0.12 
0.286 

0 

0 11 
0 276 

0 
0.06 

0.186 
0 

0 11 
0.417 

0 
0.06 

0.259 
0 

0.12 
0.299 

0 
0.07 

0.257 
0 

0.14 
0.404 

0 
0.06 

0.173 
0 

0.14 
0278 

0 
0.12 

0.198 
0 

0.25 
0.346 

0 
0.04 

0.227 
0 

0.03 
0.246 

0 
0.07 

0.374 
0 

Heave Anv 
0.06 

0.155 
0 53.98 

0.06 
0.187 

0 42.67 
0.09 

0.258 
0 68.55 

0.11 
0.2 

0 58.63 
0.08 

0.157 
0 49.67 

0.08 
0.289 

0 35.16 
0.16 

0.215 
0 57.39 

0.14 
0.484 

0 93.14 
0.18 

0.225 
0 65.9 

0.13 
0.287 

0 80.46 
014 

0.221 
0 65.12 

0.09 
0.378 

0 67.57 
0.12 

0.185 
0 39.63 

0.09 
0.347 

0 53.14 
0.12 

0.267 
0 67.89 

0.1 
0.274 

0 61.6 
0.04 

0.2 
0 57.81 

0.05 
0.15 

0 54.12 
0.07 

0.201 
0 63.74 

PTO 
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File Rates 
ST37·1 Av Deviation 

St Dev 
% Excess 

ST38-1 Av Deviation 
St Dev 
% Excess 

ST39-1 Av Deviation 
St Dev 
%Excess 

ST40-1 Av Deviation 
St Dev 
% Excess 

ST41·1 Av Deviation 
St Dev 
% Excess 

ST42-1 Av Deviation 
St Dev 
% Excess 

ST43-1 Av Deviation 
St Dev 
% Excess 

ST44-1 Av Deviation 
St Dev 
% Excess 

ST45-1 Av Deviation 
St Dev 
% Excess 

ST46-1 Av Deviation 
St Dev 
% Excess 

ST47·1 Av Deviation 
St Dev 
% Excess 

ST48-1 Av Deviation 
St Dev 
% Excess 

ST49-1 Av Deviation 
St Dev 
% Excess 

ST50·1 Av Deviation 
St Dev 
% Excess 

Averages Av Deviation 
Av St Dev 
Av% Excess 

File Rates 
TT1-1 Av Deviation 

St Dev 
% Excess 

TT2-1 Av Deviation 
St Dev 
% Excess 

TT3·1 Av Dev1at1on 
St Dev 
% Excess 

Roll Pitch Yaw Surge Sway 
3.67 0 82 1.27 0.15 0.1 

0.051 0.352 0.238 0.485 0.335 
17.14 0 49.28 0 0 

3.3 0.64 0.88 0.05 0.04 
0.037 0.049 0.055 0.277 0.21 
12.81 0 34.23 0 0 
2.49 0.68 0.61 0.09 0.04 

0.043 0.085 0.079 0.147 0.19 
4.55 0 17.06 0 0 
2.39 0.78 1.25 0.07 0.04 

0.079 0.059 0.052 0.374 0.233 
4.28 0 50.21 0 0 
1.52 0.72 0.93 0.1 0.04 

0.059 0.091 0.106 0.222 0.169 
0.24 0 36.07 0 0 
2.23 0.95 1.32 0.13 0.07 

0.072 0.101 0.075 0.293 0.236 
3 86 0 52.04 0 0 
2.23 1.24 1.16 0.13 0.07 

0.071 0.105 0099 0.21 0.324 
2.6 0 46.68 0 0 

4.52 1.04 1.25 0.06 0 04 
0.06 0.034 0.037 0.221 0.167 

2682 0 50.09 0 0 
2.77 1 04 0 97 0.11 0.03 

0.054 0.046 0.058 0.166 0.187 
7.65 0 38.64 0 0 
9.86 0.87 1.69 0.06 0.04 

0.109 0.048 0.078 0.202 0.157 
60.44 0 61.98 0 0 

6.63 0.95 1.38 0.07 0.04 
0.122 0.097 0.083 0.233 0.118 
44.98 0 54.28 0 0 

9.84 1.23 2.03 0.14 0.1 
012 0.139 0.074 0.634 0.412 

60.47 0.04 67.7 0 0 
7.85 1.34 2.43 0.07 0.08 

0.044 0.088 0.104 0.23 0.208 
51 82 0 05 72.41 0 0 

6.68 1.02 1.86 0.04 0.06 
0.051 0.058 0.059 0.234 0.116 
45.22 0 65.09 0 0 
5.85 1.35 1.58 0.17 0.08 
0.08 0.14 0.11 0.28 0.24 

32.46 1.48 54.43 0.59 0.00 

Tow-Part Tow 

Roll Pitch Yaw Surge Sway 
1.62 0.78 0.54 0.09 0.03 

0.096 0.16 0.106 0.252 0 147 
0.41 0 11.65 0 0 
1.37 1.62 0.44 0.16 0.02 

0.135 0.196 0.137 0.171 0.24 
0.35 0.85 6.13 0 0 

1 4 0.68 0.42 0.09 0.02 
0.154 0.201 0.159 0.23 0.172 

0.14 0 4.91 0 0 

Trial 1-Tow Results (continued) 
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Heave Any 
0.06 

0 286 
0 56.9 

0.04 
0.149 

0 41 72 
0.05 

0.163 
0 20.33 

004 
0.221 

0 51.45 
0.04 

0.133 
0 36.15 

0.05 
0202 

0 53.13 
0.07 

0.207 
0 47.68 

0.05 
0.155 

0 62.15 
0.05 

0.157 
0 42.42 

0.02 
0.185 

0 82.68 
0.03 

0.115 
0 71 51 

0.06 
0.302 

0 8524 
007 

0.329 
0 85.19 

0.03 
0.208 

0 79.1 
0.07 
0.22 
0.00 65.38 

Heave Any 
0.05 

0.163 
0 11.98 

0 08 
0.202 

0 7.04 
0.05 

0.244 
0 5.04 

PTO 
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File Rates Roll 
TT4-1 Av Deviation 2.22 

St Dev 0.049 
% Excess 2.78 

TT5-1 Av Deviation 2.11 
St Dev 0.085 
% Excess 1.9 

TT6-1 Av Dev1at1on 2.2 
St Dev 0.054 
% Excess 2.47 

TT7-1 Av Deviation 1.89 
St Dev 0.07 
% Excess 0.97 

TT8-1 Av Deviation 1.82 
St Dev 0.044 
% Excess 0.82 

TT9-1 Av Dev1at1on 2.02 
St Dev 0.048 
% Excess 1.48 

TT10-1 Av Deviation 1.97 
St Dev 0.069 
% Excess 1.26 

TT11-1 Av Deviation 1.82 
St Dev 0.048 
% Excess 0 69 

TT12-1 Av Deviation 1.86 
St Dev 0 092 
% Excess 1 

TT13-1 Av Deviation 1.86 
St Dev 0.068 
% Excess 0.88 

TT14-1 Av Deviation 1.77 
St Dev 0.102 
% Excess 0.63 

TT15-1 Av Deviation 1.97 
St Dev 0.056 
% Excess 1.61 

TT16-1 Av Deviation 1.77 
St Dev 0.07 
% Excess 0.5 

TT17-1to21-1 Not Com:>lete 
TT21-1 Av Deviation 1.9 

St Dev 0.043 
% Excess 0.89 

TT22-1 Av Deviation 1.59 
St Dev 0.046 
% Excess 0.21 

Averages Av Deviation 1.84 
Av St Dev 0.07 
Av% Excess 1.06 

Pitch Yaw Surge 
0.84 0.56 0.1 

0 088 0.053 0.187 
0 12.76 0 

0.73 0.57 0.08 
0.112 0.068 0.262 

0 13.94 0 
0.67 0.56 0.07 

0.054 0.053 0.25 
0 13.44 0 

0.77 0.51 0.08 
0.09 0.082 0.188 

0 959 0 
0.062 0.51 0.07 

0.07 0.071 0.34 
0 9.63 0 

0.84 0.61 0.08 
0.099 0.085 0.182 

0 16.96 0 
0.75 0.55 0.08 

0.1 0.077 0.213 
0 12.92 0 

0.62 0.51 0.07 
0.098 0.09 0.181 

0 9.94 0 
0.6 0.5 0.06 

0 085 0.082 0.28 
0 8.92 0 

0.75 0.48 0.07 
0.078 0.096 0.175 

0 8.39 0 
0.61 0.48 0.07 

0.091 0.113 0.242 
0 8.5 0 

1.24 0.53 0.15 
0.152 0.052 0.169 

0 11.39 0 
0.59 0.45 0.07 

0.062 0.058 0.375 
0 6.6 0 

0.86 0.52 0.11 
0.119 0.069 0.342 

0 10.87 0 
0.67 0.41 0.08 
0.03 0.057 0.306 

0 4.15 0 
0.76 0.51 0.09 
0.10 0.08 0.24 
0.05 10.04 0.00 

Trial 1-Tow Results 
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Sway Heave Any 
0.03 0.06 

0.263 0.201 
0 0 14.67 

0.04 0.06 
0.201 0.372 

0 0 15.32 
0.04 0 03 

0.227 0.19 
0 0 15.15 

0.03 0.04 
0.27 0.201 

0 0 10.13 
0.06 0.06 

0.292 0.261 
0 0 10.13 

0.06 0.09 
0.275 0.28 

0 0 17.88 
0.03 0.04 

0.255 0.235 
0 0 13.79 

0.06 0.07 
0.353 0.323 

0 0 10.47 
0.03 0.03 

0.254 0.228 
0 0 9.68 

0.03 0 03 
0.196 0.207 

0 0 8.91 
0.05 0.05 

0.358 0303 
0 0 8.95 

0.07 0.13 
0.342 0.266 

0 0 12.27 
0.03 0.03 

0.271 0.336 
0 0 6.91 

0.08 0.09 
0.347 0.277 

0 0 11.42 
0.05 0.04 

0.301 0.41 
0 0 4.27 

0.04 0.06 
0.26 0.26 
0.00 0.00 10.78 



Trial 2 - Port Phillip Bay 
Filtering: 0.1 - 25 Hz 
Sruge Rate Limit: 1 m/s 
Sway Rate Limit: 1 m/s 
Heave Rate Limit: 1 m/s 

File Rates Roll 
ST1-2 Av Deviation 16.11 

St Dev 0.021 
% Excess 83.54 

ST2-2 Av Deviation 14.18 
St Dev 0.051 
% Excess 78.43 

ST3-2 Av Deviation 13.16 
St Dev 0.04 
% Excess 75.94 

ST4-2 Av Deviation 15.59 
St Dev 0.035 
% Excess 82.78 

ST5-2 Av Deviation 14.03 
St Dev 0.053 
% Excess 78.71 

ST6-2 Av Deviation 12.83 
St Dev 0.04 
% Excess 74.86 

ST7-2 Av Deviation 4.81 
St Dev 0.043 
% Excess 29.83 

STS-2 Av Deviation 4.96 
St Dev 0.06 
% Excess 31.2 

ST9-2 Av Deviation 4.43 
St Dev 0.027 
% Excess 25.97 

ST10-2 Av Deviation 3.1 
St Dev 0.021 
% Excess 10.36 

ST11-2 Av Deviation 3.17 
St Dev 0.025 
% Excess 11.44 

ST12-2 Av Deviation 3.22 
St Dev 0.023 
% Excess 11.7 

ST13-2 Av Deviation 6.36 
St Dev 0.029 
%_Excess 43.13 

ST14-2 Av Deviation 3.17 
St Dev 0.032 
% Excess 11.49 

ST15-2 Av Deviation 3.37 
St Dev 0.037 
% Excess 14 05 

ST16-2 Av Deviation 2.79 
St Dev 0.037 
% Excess 7.35 

ST17-2 Av Deviation 4.93 
St Dev 0.029 
% Excess 30.67 

Roll Rate Limit: 
Pitch Rate Limit: 
Yaw Rate Limit: 

Single Tow 

Pitch Yaw Surge 
0.93 3.25 0.03 

0.025 0.023 0.232 
0 83.62 0 

1.08 3.01 0.04 
0.056 0 048 0.112 

0.01 80.75 0 
1.02 2.79 003 

0.055 0.035 0.073 
0 80 0 

0.95 3.21 0.03 
0.034 0.037 0.31 

0 83.51 0 
1.02 3.03 0.04 

0.036 0.047 0.098 
0 81.69 0 

0.95 2.76 0.03 
0.045 0.033 0.128 

0 80.04 0 
0.91 - 0.85 0.03 
0.04 0.04 0.167 

0 32.01 0 
0.91 0.89 0.04 

0.095 0.058 0.295 
0.01 34.24 0 
0.85 0.82 0.03 

0.023 0.028 0.212 
0 30 28 0 

1.08 1.37 0.05 
0.033 0.031 0.283 

0 54.06 0 
1.12 1.48 0.05 

0.026 0.033 0.145 
0 57.09 0 

1.12 1.53 0.04 
0.025 0.041 0.148 

0 58.6 0 
1.84 1.77 0.16 

0.036 0.027 0.168 
0.57 63.55 0 
1.42 1.56 0.15 

0.095 0.061 0.168 
0.03 5853 0 
1.22 1 45 0.08 

0.034 0.033 0.138 
0 55.62 0 

1.57 1.27 012 
0.067 0.055 0.143 
0.13 50.86 0 
1.75 1.78 0.12 

0.031 0 041 0.167 
0.52 6394 0 

Trial 2 - Tow Results 
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Swav 
0.05 

0.102 
0 

0.05 
0.127 

0 
0 05 

0.185 
0 

0.05 
0.161 

0 
0.05 

0.125 
0 

0.04 
0.141 

0 
0.09 

0.186 
0 

0.1 
0.165 

0 
0.08 

0.229 
0 

0.04 
0.161 

0 
0.04 

0.213 
0 

0.04 
0.158 

0 
0.22 

0.178 
0.04 
0.06 

0.133 
0 

0.06 
0.235 

0 
0 06 

0.167 
0 

0.25 
0.157 
032 

1995 

6.28 deg/s 
6.28 deg/s 
1.05 deg/s 

Heave Anv 
0.05 

0.103 
0 97.5 

0.06 
0186 

0 94.68 
0.06 

0.097 
0 93.53 

0.04 
0.155 

0 97.01 
0 05 

0.139 
0 94.85 

0.06 
0.186 

0 93 
0.05 

0.128 
0 50.04 

0.04 
0.118 

0 52.29 
0.04 

0.144 
0 46.23 

0.05 
0.104 

0 58.89 
0 06 

0.118 
0 62.06 

0.07 
0.122 

0 63.4 
0.37 

0.169 
3.19 79 86 
0.24 

0.233 
0.29 63.32 
0.19 

0.148 
0 01 61.62 
0.27 

0.144 
0.48 5466 
0.31 

0.105 
0.89 75.21 

PTO 



Continued from previous page 

File Rates 
ST18-2 Av Deviation 

St Dev 
% Excess 

ST19-2 Av Deviation 
St Dev 
% Excess 

ST20-2 Av Deviation 
St Dev 
% Excess 

ST21-2 Av Deviation 
St Dev 
% Excess 

ST22-2 Av Deviation 
St Dev 
% Excess 

ST23-2 Av Deviation 
St Dev 
% Excess 

ST24-2 Av Deviation 
St Dev 
% Excess 

ST25-2 Av Deviation 
St Dev 
% Excess 

Averages Av Deviation 
Av St Dev 
Av % Excess 

File Rates 
TT1-2 Av Deviation 

St Dev 
% Excess 

TT2-2 Av Deviation 
St Dev 
% Excess 

TT3-2 Av Dev1at1on 
St Dev 
% Excess 

TT4-2 Av Deviation 
St Dev 
% Excess 

TT5-2 Av Deviation 
St Dev 
% Excess 

TT6-2 Av Deviation 
St Dev 
% Excess 

TT7-2 Av Deviation 
St Dev 
% Excess 

TT8-2 Av Deviation 
St Dev 
% Excess 

TT9-2 Av Deviation 
St Dev 
% Excess 

TT10-2 - Incomplete Run 

Roll Pitch Yaw Surae Swav 
4.88 1.77 1.71 0.09 0.23 

0.032 0.025 0 031 0.189 0.168 
30.47 045 62.72 0 0.01 
4.68 1.7 1.63 0.09 024 

0.027 0.028 0038 0.159 0.154 
28.52 0.36 60.83 0 0.26 
11.94 1.25 2.55 0.07 005 
0.065 0.097 0.044 0.184 0.152 
71.24 0.01 76.25 0 0 
15.59 0.97 3.07 0.03 0.06 
0.028 0.032 0.015 0.182 0.111 
82.47 0.01 82.39 0 0 

8.91 1.29 2.06 0.04 0.04 
0.049 0.068 0.046 0.079 0.131 
60.44 004 71.27 0 0 
4.64 0 83 0.85 0.04 0.09 

0.055 0.059 0.042 0.144 0.176 
27.81 0 32 24 0 0 
4.49 075 0.85 0.03 0.09 
0.02 0.027 0.038 0.139 0.137 

26.51 0 32.19 0 0 
5.1 0.9 0.86 0.04 0.09 

0.038 0.074 0.066 0.21 0.215 
32.43 0 33.03 0 0 
7.62 1.17 1.86 0.06 0.09 
0.04 0.05 0.04 0.17 0.16 

42.45 0.09 59.97 0.00 0.03 

Tow-Part Tow 

Roll Pitch Yaw Surge Sway 
2.57 0.62 0.63 0.05 0.03 

0.106 0.098 0.06 0.147 0.14 
5.59 0 18.13 0 0 
2.44 0.6 0.61 0.05 0.03 

0.042 0.045 0.022 0.195 0.108 
3.94 0 16.86 0 0 
2.43 0.57 0.61 0.06 0.03 

0.042 0.027 0.024 0.174 0.111 
3.71 0 16.51 0 0 
2.26 0.89 0.66 0.06 0.04 

0.057 0.043 0.031 0175 0.17 
2.82 0 20.71 0 0 
2.25 0.9 0.68 007 0.05 

0.046 0.043 0.042 0.149 0.129 
2.59 0 21.18 0 0 
2.31 0.91 0.69 0.07 0.04 
0.04 0.034 0.036 0235 0.128 
2.85 0 22.39 0 0 
2.79 1.2 0.82 0.06 0.05 

0.033 0.029 0.028 0.208 0.168 
7.28 0.05 30.55 0 0 
2.88 1.25 0.86 0.07 0.06 

0.047 0.04 0.033 0.216 0.102 
8 0.06 32.68 0 0 

2 91 1.28 0.84 0 08 0 06 
0.03 0057 0.021 0.293 0.199 
8.59 0.04 31.79 0 0 

Trial 2 - Tow Results (continued) 
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Heave Anv 
0.31 

0.201 
1.27 74.6 
0.26 

0.117 
0.18 71.75 
0.04 

0.176 
0 91.01 

0.03 
0.13 

0 97.11 
0.04 

0.098 
0 85.4 

0.05 
0082 

0 48.46 
0.05 

0 111 
0 47.73 

0.05 
0.13 

0 52.62 
0.11 
0.14 
0.25 72.27 

Heave Any 
0.02 

0.154 
0 20.64 

0.02 
0.167 

0 17.99 
0.02 

0.103 
0 17.57 

002 
0.14 

0 22.61 
0.02 

0.146 
0 22.75 

0.02 
0.168 

0 24.09 
0.03 
0.12 

0 33.95 
0.03 
0.15 

0 3633 
0.03 

0 151 
0 35.63 

PTO 
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File Rates 
TT11-2 Av Deviation 

St Dev 
% Excess 

TT12-2 Av Deviation 
St Dev 
% Excess 

TT13-2 Av Deviation 
St Dev 
% Excess 

TT14-2 Av Deviation 
St Dev 
% Excess 

TT15-2 Av Deviation 
St Dev 
% Excess 

TT16-2 Av Deviation 
St Dev 
% Excess 

TT17-2 Av Dev1at1on 
St Dev 
% Excess 

TT18-2 Av Deviation 
St Dev 
% Excess 

TT19-2 Av Deviation 
St Dev 
% Excess 

TT20-2 Av Deviation 
St Dev 
% Excess 

TT21-2- Incomplete run 
TT22-2 Av_ De)liation 

St Dev 
% Excess 

· TT23-2 Av Deviation 
St Dev 
% Excess 

TT24-2 Av Deviation 
St Dev 
% Excess 

TT25-2 Av Deviation 
St Dev 
% Excess 

TT26:2 Av Deviation 
St Dev 
% Excess 

TT27-2 Av Deviation 
St Dev 
% Excess 

TT28-2 Av Deviation 
St Dev 
% Excess 

TT29-2 Av Deviation 
St Dev 
% Excess 

TT30-2 Av Deviation 
St Dev 
% Excess 

Averages Av Deviation 
Av St Dev 
Av% Excess 

Roll Pitch Yaw Sun:ie Swav 
2.92 0.86 0.74 0.1 0.04 
0.05 0.057 0.028 0.23 0 202 
8.64 0 25.31 0 0 
2.92 0.86 0.72 0 09 0.04 

0.047 0 045 0.03 0.176 0.197 
8.77 0 24.25 0 0 
27 0.75 0.67 0 08 0.03 

0.08 0.09 0.051 0 26 0.191 
6.71 0 20.96 0 0 
2.89 0.87 0.75 014 0.04 

0.069 0.072 0.048 0.446 0.206 
8.62 0 26.05 0 0 
2.97 0.83 0.75 0.08 0.05 

0 086 0.068 0.042 0.192 0.117 
9.31 0 25.84 0 0 
2.74 0.76 0.69 0 09 0.04 

0.066 0.056 0.039 0 222 0.196 
7.42 0 2215 0 0 
4.94 1.75 1.2 0.17 0.22 

0.063 0.118 0.06 0.285 0.247 
31.08 0.44 .48 31 0 0 

4.95 1.92 1.23 0.2 0.26 
0.063 0.099 0.038 0.176 o .. 187 

30.9 0 55 49.02 0 0 
5.04 1.9 1.34 0.3 0.26 

0.076 0.137 0.054 0235 0.183 
31.63 o.74 53 0.57 0 
. 4.66 1.85 1.19 0.25 0.29 
0.104 0.221 0.094 0.158 0.168 
27 86 0.39 47.61 0 0 

4.98 1 86 1.25 0.23 0 22 
0.054 0.091 0.05 0.159 '0.207 
31 56 0.71 49.46 '0 0 

5.05 1'82 1.28 0.23 0.22 
0.068 0.129 0.06 0.175 0'226 
31.83 0 91 ' 51.2 0 0.06 

4.81 1 77 '1.29 0.21 02 
0.057 0.106 0046 0.174 0 252 

29.8 0.64 51.71 0 0 
2.25 0.52 0.56 0.03 0.03 
0.05 0.036 0048 0.169 0.117 
2.42 0 13.71 0 0 
2.43 ·0.57 0.62 0.05 0.03 

'0.037 0.044 '0.023 0.206 0.142 
4.05 0- 17 7 0 0 
2.55 0.59 0.64 0.03 0.03 

0.063 0.03 0.043 . 0.253 0.148 
5.14 0 19.68 0 0 
3.32 0.78 0.87 0.04 0.05 

0.038 0.031 0.031 0.183 0.126 
13.13 0 33.59 0 0 
'3.18 0.77 0.82 0.04 0.05 

0.05 0.044 0.034 0.122 0.16 
11.69 0 30.71 0 0 

3.38 0.83 0.9 0.02 0.05 
0 043 0.044 0 03 0.202 0.157 
14.19 0 35.18 0 0 
3.27 1.07 Q.85 0.11 0.09 
0.06 0.07 0.04 0.21 0.17 

12.86 0.16 30.58 0.02 0.00 

Trial 2 -Tow Results (continued) 
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Heave Anv 
0.03 

0.148 
0 30.57 

0.03 
0.175 

0 29.5 
002 

0.126 
0 25.06 

003 
0.129 

0 31.45 
0.03 

0.202 
0 31.27 

0.02 
0.139 

0 26.63 
0.09 

0.233 
0 63.74 

0 1 
0.175 

0 63.94 
0.11 

0.211 
·o 67.41 

0.11 
0.27 

0 61.53 

0.1 
0.159 

0 64.64 
0.1 

0.193 
0 66 15 

0.09 
0.167 

0 65.38 
0.02 

0.122 
0 14.42 

0.02 
0.148 

0 18.98 
0.02 
0.11 

0 21.36 
0.02 

0.158 
0 39.24 

0.02 
0.114 

0 36.06 
0.03 

0.185 
0 41.39 

0.04 
0.16 
0.00 36.80 



Single Tow 
% Excess 

Run Yaw Pitch 

ST1 83.62 0 
ST2 80.75 0.01 

ST4 83.51 0 
ST5 81.69 0 

ST7 32.01 0 
ST8 34.24 0.01 

ST10 54.06 0 
ST11 57.09 0 

ST15 55.62 0 
ST14 58.53 0.03 

ST18 62.72 0.45 
ST17 63.94 0.52 

ST21 82.39 0.01 
ST20 76.25 0.01 

ST24 32.19 0 
ST23 32.24 0 

Averages first line 
Averages other lines 

ST1 83.62 0 
ST3 80 0 

ST4 83.51 0 
ST6 80.04 0 

ST7 32.01 0 
ST9 30.28 0 

ST10 54.06 0 
ST12 58.6 0 

ST15 55.62 0 
ST16 50.86 0.13 

ST18 62.72 0.45 
ST19 60.83 0.36 

ST21 82.39 0.01 
ST22 71.27 0.04 

ST24 32.19 0 
ST25 33.03 0 

Averages first line 
Averages other lines 

Av Dev (Stnd Dev) %Sign 
Any Yaw Pitch Wing 

97.5 3.25(0.07) 0.93(0.02) 
94.68 3.01 (0.14 )-84 1.08(0.06)+97 

97.01 3.21 (0.12) 0.95(0.03) 
94.85 3.03(0.14 )-64 1.02(0.04)+82 

50.04 0.85(0.03) 0.91(0.04) 
52.29 0.89(0.05)+47 0.91(0.09)+ 2 

58.89 1.37(0.04) 1.08(0.04) 
62.06 1.48(0.05)+90 1.12(0.03)+58 

61.62 1.45(0.05) 1.22(0.04) 
63.32 1.56(0.10)+67 1.42(0.13)+82 

74.6 1.71 (0.05) 1.77(0.04) 
75.21 1.78(0.07)+54 1.75(0.05)-21 

97.11 3.07(0.05) 0.97(0.03) 
91.01 2.55(0.11 )-99 1.25(0.12)+97 

47.73 0.85(0.03) 0.75(0.02) 
48.46 0.85(0.04)+ 2 0.83(0.05)+85 

73.06 1.97 1.07 
72.73 1.89 1.17 

97.5 3.25(0.07) 0.93(0.02) 
93.53 2. 79(0.1 Ol-99 1.02(0.06)+84 

97.01 3.21 (0.12) 0.95(0.03) 
93 2. 76(0.09)-99 0.95(0.04)+ 2 

50.04 0.85(0.03) 0.91(0.04) 
46.23 0.82(0.02)-52 0.85(0.02)-83 

58.89 1.37(0.04) 1.08(0.04) 
63.4 1.53(0.06)+96 1.12(0.03)+59 

61.62 1.45(0.05) 1.22(0.04) 
54.66 1.27(0.07)-96 1.57(0.11 )+99 

74.6 1.71(0.05) 1.77(0.04) 
71.75 1.63(0.06)-64 1. 70(0.05)-70 

97.11 3.07(0.05) 0.97(0.03) 
85.4 2.06(0.09)-99 1 .29(0.09)+99 

47.73 0.85(0.03) 0.75(0.02) 
52.62 0.86(0.06)+11 0.90(0.07)+96 

73.06 1.97 1.07 
70.07 1.72 1.18 

Trial 2 - Results - Direction to Swell 
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NW 
NW 

NW 
NW 

NW 
NW 

w 
w 

w 
w 

w 
w 

NW 
NW 

NW 
NW 

NW 
NW 

NW 
NW 

NW 
NW 

w 
w 

w 
w 

w 
w 

NW 
NW 

NW 
NW 

Dirn Len Vel 

0 20 5.5 
90 20 5.7 

0 20 5.6 
90 20 5.7 

0 20 8.5 
90 20 8.6 

0 15 5.5 
90 15 5.5 

0 35 6.2 
90 35 5.6 

0 35 8 
90 35 7.5 

0 40.5 5.6 
90 40.5 5.7 

0 40.5 8.3 
90 40.5 7.8 

0 20 5.5 
180 20 5.6 

0 20 5.6 
180 20 5.6 

0 20 8.5 
180 20 8.5 

0 15 5.5 
180 15 ? 

0 35 6.2 
180 35 4.6 

0 35 8 
180 35 7.9 

0 40.5 5.6 
180 40.5 5.4 

0 40.5 8.3 
180 40.5 7.5 

PTO 
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Two-Part Tow 
% Excess Av Dev (Stnd Dev) %Sign 

Run Yaw Pitch Any Yaw Pitch Wing Dim 

TT2 16.86 0 17.99 0 61(0.01) 0.60(0.03) NW 0 
TT3 16.51 0 17.57 0.61 (0.01 )+ 2 0.57(0.02)-63 NW 90 

TT6 22.39 0 24.09 0.69(0.02) 0.91(0.03) NW 0 
TT5 21.18 0 22.75 0.68(0.03)-19 0.90(0.04)-14 NW 90 

TT8 32.68 0.06 36.33 0.86(0.03) 1.25(0.05) NW 0 
TT9 31.79 0.04 35.63 0.84(0.02)-43 1.2810.07)+25 NW 90 

TT11 25.31 0 30.57 0.74<0.02) 0.8610.05) w 0 
TT12 24.25 0 29.5 0. 72(0. 02)-49 0.86(0.04)+ 2 w 90 

TT15 25.84 0 31.27 0.75(0.03) 0.83(0.06) w 0 
TT14 26.05 0 31.45 0. 75(0.04)+ 2 0.87(0.06)+33 w 90 

TT17 48.31 0.44 ·63.74 1 20(0.07) 1.75(0.21) w 0 
TT18 49.02 0.55 63.94 1.23(0.05)+26 1 .92(0. 19)+43 w 90 
TT19 53 0.74 67.41 1.34(0.07)+81 1 .90(0.26)+32 w 90 

TT22 49.46 0.71 6464 1.25(0.06) 1.86(0.17) w 0 
TT23 51.2 0.91 66.15 1 28(0.08)+23 1.82(0.23)-10 w , 90 

TT27 19.68 0 21.36 0.64(0.03) 0.59(0.02) NW 0 
TT26 17.7 0 18 98 0.62(0.01 )-47 0.57(0.03)-47 NW 90 

TT30 35.18 0 41.39 0.90(0.03) 0.83(0.04) NW 0 
TT28 33.59 0 39.24 0.87(0.03)-54 0.78(0.02)-74 NW 90 

Averages first line 36.82 0.85 1.05 
Averages other lines 39.26 0 89 1.15 

TT2 16.86 0 17.99 0.61 (0.01) 0.60 0 03) NW 0 
TT4 20.71 0 22.61 0 66(0.02)+95 0.89 0.04)+99 NW 180 

TT8 32.68 0.06 36.33 0.8610.03) 1.25 0.05) NW 0 
TT7 30.55 0.05 33.95 0.82(0.02)-71 1.20 0.03)-56 NW 180 

TT11 25.31 0 30.57 0.74(0.02) 0.86 0.05) w 0 
TT13 20.96 0 25.06 0.67(0.03)-91 0.75 0.07)-79 w 180 

TT15 25.84 0 31.27 0.75(0.03) 0.83 0.06) w 0 
TT16 22.15 0 2663 0.69(0.03)-83 0 76 0.04)-65 w 180 

TT22 49.46 0.71 64.64 1 25(0.06) 1.86 017) w 0 
TT20 47.61 0.39 61.53 1.19(0.11 )-33 1.85 0.41)- 2 w 180 
TT24 51.71 064 65.38 1.29(0.06)+33 1.77 0.19)-26 w 180 

TT27 19.68 0 21.36 0.64(0.03) 0.59 0.02) NW 0 
TT25 13.71 0 14.42 0 56(0.03)-96 0.52 0 02)-99 NW 180 

TT30 35.18 0 41.39 0.90(0.03) 0.83 0.04) NW 0 
TT29 30.71 0 36.06 0 82(0.03)-95 0. 77 0.03)-76 NW 180 

Averages first line 34.79 0.82 0.97 
Averaaes other lines 35.7 0.84 1.06 

Trial 2- Results -Direction to Swell (continued) 
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Len Vel 

20 5.7 
20 5.7 

20 67 
20 6.2 

20 7.9 
20 7.9 

15 4.9 
15 52 

15 5.3 
15 5.4 

15 8.1 
15 8 
15 8 

15 8 
15 8 

40 6.3 
40 5.8 

40 7.8 
40 8 

20 57 
20 59 

20 7.9 
20 7.5 

15 4.9 
15 5 

15 5.3 
15 .5.1 

15 8 
15 7.7 
15 8.4 

40 6.3 
40 5.6 

40 7.8 
40 8 



s· I mg eTow 
o/o Excess 

Run Yaw Pitch 

ST1 83.62 0 
ST21 8239 0.01 

ST4 83.51 0 
ST21 82.39 0.01 

ST7 32.01 0 
ST24 32.19 0 

ST2 80.75 0.01 
ST20 76.25 0.01 

ST5 81.69 0 
ST20 76.25 0.01 

ST8 34.24 0.01 
ST23 32.24 0 

ST3 80 0 
ST22 71.27 0.04 

ST6 80.04 0 
ST22 71.27 0.04 

ST9 30.28 0 
ST25 33.03 0 

ST10 54.06 0 
ST15 55.62 0 

ST11 57.09 0 
ST14 58.53 0 03 

Averages first line 
Averages other lines 

ST12 58.6 0 
ST16 50.86 0.13 
ST19 60.83 0.36 

Averages first line 
Averages other lines 

Two-Part Tow 
o/o Excess 

Run Yaw Pitch 
TT1 18.13 0 
TT26 17.7 0 

TT9 31.79 0.04 
TT28 33.59 0 

TT3 16.51 0 
TT26 17.7 0 

TT5 21.18 0 
TT26 17.7 0 

Av Dev (Stnd Dev) %Sign 
Anv Yaw Pitch 

975 3.25(0.07) 0.93 0.02) 
97.11 3.07(0.05)-95 0.97 0.03)+67 

97.01 3.21 (0.12) 0 95 0.03) 
97.11 3.07(0.05)-71 0.97 0.03)+31 

50 04 0.85(0.03) 0.91 0.04) 
47.73 0.85(0.03)+ 2 0.75 0.02)-99 

94.68 3.01(0.14) 1.08 0.06) 
91.01 2.55(0.11 )-98 1.25 0.12)+77 

94.85 3.03(0.14) 1.02 0.04) 
91.01 2.55(0.11 )-99 1 .25 0.12)+92 

52.29 0.89(0.05) 0.91 0.09) 
48.46 0.85(0 04)-46 0.83 0.05)-55 

93.53 2.79(0.10) 1.02 0.06) 
85.4 2.06(0.09)-99 1.29 0.09)+99 

93 2.76(0.09) 0.95 0.04) 
85.4 2.06(0.09)-99 1.29(0 09)+99 

46.23 0.82(0.02) 0 85 0.02) 
52.62 0.86(0.06)+48 0.90 0.07)+51 

58.89 1.37(0.04) 1.08 0.04) 
61.62 1.45(0.05)+77 1.22 0.04)+98 

62.06 1.48(0 05) 1.12 0.03) 
63.32 1.56(0.10)+53 1.42 0 13)+96 

76.37 2.13 0.98 
74.62 1.9 1.1 

63.4 1.53(0.06) 1.12 0 03) 
54.66 1.27(0.07)-99 1.57 0.11)+99 
71.75 1.63(0.06)+ 74 1.70 0.05)+99 

63.4 1.53 1.12 
63.2 1.45 1.64 

Av Dev (Stnd Dev) %Sign 
Any Yaw Pitch 

20.64 0.63(0.04) 0.62(0 06) 
18.98 0.62(0.01 )-17 0.57(0.03)-53 

35.63 0.84(0.02) 1.28(0.07) 
39.24 0.87(0.03)+61 0.78(0.02)-99 

17.57 0.61 (0 01) 0.57(0.02) 
18.98 0.62(0 01 )+34 0.57(0.03)+ 2 

22.75 0.68(0.03) 0.90(0.04) 
18.98 0.62(0.01 )-93 0 57(0.03)-99 

Trial 2 - Results - Cable Length 
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Win a Dim Len Vel 

NW 0 20 5.5 
NW 0 40.5 5.6 

NW 0 20 5.6 
NW 0 40.5 5.6 

NW 0 20 8.5 
NW 0 40.5 8.3 

NW 90 20 5.7 
NW 90 40 5.7 

NW 90 20 5.7 
NW 90 40 5.7 

NW 90 20 8.6 
NW 90 40.5 7.8 

NW 180 20 5.6 
NW 180 40.5 54 

NW 180 20 56 
NW 180 405 5.4 

NW 180 20 8.5 
NW 180 40 5 7.5 

w 0 15 55 
w 0 35 62 

w 90 15 5.5 
w 90 35 5.6 

w 180 15 ? 
w 180 35 4.6 
w 180 35 7.9 

Wing Dim Len Vel 
NW 90 20 4.7 
NW 90 40 5.8 

NW 90 20 7.9 
NW 90 40 8 

NW 90 20 5.7 
NW 90 40 5.8 

NW 90 20 6.2 
NW 90 40 5.8 

PTO 



Continued from previous page 

% Excess Av Dev (Stnd Dev) %Sian 
Run Yaw Pitch Any Yaw Pitch Wing 

TT2 16.86 0 17.99 0.61 (0.01) 0.60(0.03) NW 
TT27 19.68 0 21.36 0.64(0.03)+64 0.59(0.02)-23 NW 

TT6 22.39 0 24.09 0.69(0.02) 0.91 (0.03) NW 
TT27 19.68 0 21 36 0.64(0.03)-80 0.59(0.02)-99 NW 

TT8 32.68 0.06 36.33 0.86(0.03) 1.25(0.05) NW 
TT30 35.18 0 41.39 0.90(0.03)+66 0.83(0.04)-99 NW 

TT4 20.71 0 22.61 0.66(0.02) 0.89(0.04) NW 
TT25 13.71 0 14 42 0.56(0.03)-99 0.52(0.02)-99 NW 

TT7 30.55 0.05 33.95 0.82(0.02) 1.20(0.03) NW 
TT29 30.71 0 36.06 0.82(0.03)+ 2 0.77(0.03)-99 NW 

AveraQes first line 25.73 0.71 0.91 
Averages other lines 25.64 07 0 64 

Trial 2- Results- Cable Length (continued) 
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Dim Len Vel 

0 20 5.7 
0 40 6.3 

0 20 6.7 
0 40 6.3 

0 20 7.9 
0 40 7.8 

180 20 5.9 
180 40 56 

180 20 7.5 
180 40 8 



Sing eTow 
% Excess 

Run Yaw Pitch 

ST1 83.62 0 
ST7 32.01 0 

ST4 83.51 0 
ST7 32.01 0 

ST21 82.39 0.01 
ST24 32.19 0 

ST2 80.75 0.01 
ST8 34.24 0.01 

ST5 81.69 0 
ST8 34.24 0.01 

ST20 76.25 0.01 
ST23 32.24 0 

ST3 80 0 
ST9 30.28 0 

ST6 80.04 0 
ST9 30.28 0 

ST22 71.27 0.04 
ST25 33.03 0 

ST15 55.62 0 
ST18 62.72 0.45 

ST14 58.53 0.03 
ST17 63.94 0.52 

ST16 50.86 0.13 
ST19 60 83 0.36 

Averaaes first line 
Averages other lines 

Two-Part Tow 
% Excess 

Run Yaw Pitch 

TT1 18.13 0 
TT3 16.51 0 
TT5 21.18 0 
TT9 31.79 0.04 

Averaaes first line 
Averages other lines 

TT1 18.13 0 
TT3 16.51 0 
TT5 21.18 0 
TT9 31.79 0.04 

TT26 17.7 0 
TT28 33.59 0 

Av Dev (Stnd Dev) %Sign 
Any Yaw Pitch 

97.5 3.25(0.07) 0.93(0.02) 
50.04 0 85(0.03)-99 0.91 (0.04)-32 

97 01 3.21 (0 12) 0.95(0.03) 
50.04 0.85(0.03)-99 0.91 (0 04)-56 

97.11 3.07(0.05) 0.97(0.03) 
47.73 0.85(0.03)-99 0. 75(0.02)-99 

94.68 3.01(0.14) 1.08(0.06) 
52.29 0.89(0.05)-99 0.91 (0.09)-88 

94.85 3.03(0.14) 1.02(0.04) 
52.29 0.89(0 05)-99 0.91(0.09)-75 

91.01 2.55(0.11) 1.25(0.12) 
48.46 0.85(0.04)-99 0.83(0.05)-99 

93.53 2.79(0.10) 1.02(0.06) 
46.23 0.82(0.02)-99 0.85(0.02)-99 

93 2.76(0.09) 0.95(0.04) 
46.23 0.82(0.02)-99 0.85(0.02)-96 

85.4 2.06(0.09) 1.29(0.09) 
52.62 0.86(0 06)-99 0.90(0.07)-99 

61.62 1.45(0.05) 1.22(0.04) 
74.6 1 71 (0.05)+99 1.77(0.04)+99 

63.32 1.56(0.10) 1.42(0.13) 
75.21 1 78(0.07)+92 1.75(0.05)+97 

54.66 1.27(0 07) 1.57(0.11) 
71.75 1.63(0.06)+99 1.70(0.05)+73 

85.31 2.5 1.14 
55.62 1.07 1.09 

Av Dev (Stnd Dev) %Sign 
Any Yaw Pitch 

20.64 0.63(0.04) 0 62(0.06) 
17.57 0 61 (0.01 )-35 0.57(0.02)-55 
22.75 0.68(0 03)+69 0.90(0.04)+99 
35 63 0.84(0.02)+99 1 .28(0.07)+99 

2064 063 0.62 
25.32 0.71 0.92 

20.64 0.63(0.04) 0.62(0 06) 
17.57 0.61 (0.01 )-35 0.57(0.02)-55 
22.75 0.68(0.03)+69 0.90(0.04)+99 
35.63 0.84(0.02)+99 1.28(0.07)+99 

18.98 0.62(0.01) 0 57(0.03) 
39.24 0.87(0.03)+99 0.78(0 02)+99 

Trial 2 - Results - Tow Speed 
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Wing Dirn Len Vel 

NW 0 20 5.5 
NW 0 20 8.5 

NW 0 20 5.6 
NW 0 20 8.5 

NW 0 40.5 5.6 
NW 0 40.5 8.3 

NW 90 20 5.7 
NW 90 20 8.6 

NW 90 20 5.7 
NW 90 20 8.6 

NW 90 40 5.7 
NW 90 40.5 7.8 

NW 180 20 5.6 
NW 180 20 8.5 

NW 180 20 5.6 
NW 180 20 8.5 

NW 180 40.5 5.4 
NW 180 40.5 7.5 

w 0 35 6.2 
w 0 35 8 

w 90 35 5.6 
w 90 35 7.5 

w 180 35 4.6 
w 180 35 7.9 

Wing Dirn Len Vel 

NW 90 20 4.7 
NW 90 20 5.7 
NW 90 20 6.2 
NW 90 20 7.9 

NW 90 20 4.7 
NW 90 20 57 
NW 90 20 6.2 
NW 90 20 79 

NW 90 40 5.8 
NW 90 40 8 

PTO 



Continued from previous page 

% Excess 
Run Yaw 

TI2 16.86 
TI6 22.39 
TI8 32.68 

TI27 19.68 
TI30 35.18 

TI4 20.71 
TI7 30 55 

TI25 13.71 
TI29 30.71 

TI11 25.31 
TI17 48.31 

TI15 25.84 
TI17 48.31 

TI11 25.31 
TI22 49.46 

TI15 25.84 
TI22 49.46 

TI12 24.25 
TI18 49.02 
TI19 53 
TI23 51 2 

TI14 26.05 
TI18 49.02 
TI19 53 
TI23 51.2 

TI13 20.96 
TI20 47.61 
TI24 51.71 

TI16 22.15 
TI20 47.61 
TI24 51.71 

TI20 47.61 
TI24 51.71 

Averages first line 
Averages other lines 

TI18 49.02 
TI19 53 
TI23 51.2 

Averages first line 
Averaaes other lines 

Av Dev Stnd Dev) %Sian 
Pitch Any Yaw Pitch Wing 

0 17.99 0.61 (0.01) 0.60(0.03) NW 
0 24.09 0.69 0.02 +99 0.91 0.03 +99 NW 

0.06 36.33 0.86(0.03)+99 1.25 0.05 +99 NW 

0 21.36 0.64 0.03 0.59 0.02 NW 
0 41.39 0.90 0 03 +99 0.83 0.04)+99 NW 

0 22.61 0.66 0.02 0.89 0.04 NW 
0.05 33.95 0.82 0.02 +99 1.20 0.03 +99 NW 

0 14.42 0.56 0.03 0.52 0.02 NW 
0 36.06 0.82 0.03 +99 0.77 0.03 +99 NW 

0 30.57 0.74 0.02 0.86 0.05 w 
0.44 63.74 1.20 0.07 +99 1 75 0.21 +99 w 

0 31.27 0.75 0.03 0.83 0.06 w 
0.44 63.74 1.20 0.07 +99 1.750.21 +99 w 

0 30.57 0.74 0.02 0.86 0.05 w 
0.71 64.64 1.25 0.06 +99 1.86 0.17 +99 w 

0 31.27 0.75 0.03 083 0.06 w 
0.71 64.64 1.25 0.06 +99 1 86 0.17 +99 w 

0 29.5 0.72 0.02 0.86 0.04 w 
0.55 63.94 1.23 0.05 +99 1.92 0 19 +99 w 
0 74 67 41 1.34 0.07 +99 1.90 0 26 +99 w 
0.91 66 15 1.28 0.08 +99 1.82 0.23 +99 w 

0 31.45 0.75 0.04 0.87 0.06 w 
0.55 63.94 1.23 0 05 +99 1.92 0.19 +99 w 
0 74 67 41 1.34 0.07 +99 1.90 0.26 +99 w 
0.91 66.15 1.28 0.08 +99 1.82 0.23 +99 w 

0 25.06 0.67 0 03 0.75 0.07 w 
0.39 61.53 1 19 0.11 +99 1 85 0.41 +99 w 
0.64 65.38\ 1.29 0.06 +99 1.77 0.19 +99 w 

0 26.63 0.69 0.03 0.76 0.04 w 
0.39 61.53 1.19 0.11 +99 1.85 0.41 +99 w 
0.64 65.38 1.29 0.06 +99 1.77 0.19 +99 w 

039 61 53 1.19 0.11 . 1.85 0.41 w 
0.64 65.38 1 .29 0.06 +54 1.77 0.19 -12 w 

27.59 0.71 0 82 
52.42 1.08 1.5 

0.55 63.94 1.23 0.05) 1.92(0.19) w 
0.74 67.41 1.34 0.07 +78 1.90 0.26 -4 w 
0.91 66.15 1.28 0.08 +39 1.82 0.23 -25 w 

63.94 1.23 1.92 
66.78 1.31 1.86 

Trial 2-Results-Tow Speed (continued) 
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Dirn Len Vel 

0 20 5.7 
0 20 6.7 
0 20 7.9 

0 40 6.3 
0 40 7.8 

180 20 5.9 
180 20 7.5 

180 40 5.6 
180 40 8 

0 15 4.9 
0 15 8.1 

0 15 5.3 
0 15 8.1 

0 15 4.9 
0 15 8 

0 15 53 
0 15 8 

90 15 5.2 
90 15 8 
90 15 8 
90 15 8 

90 15 5.4 
90 15 8 
90 15 8 
90 15 8 

180 15 5 
180 15 7.7. 
180 15 8.4 

180 15 5.1-
180 15 7.7 
180 15 8.4 

180 15 7.7 
180 15 8.4 

90 15 8 
90 15 8 
90 15 8 

PTO 



Continued from previous page 

%Excess Av Dev (Stnd Dev) %Sian 
Run Yaw Pitch Any Yaw Pitch Wing 

TT19 53 0.74 67.41 1.34(0 07) 1.90(0.26) w 
TT23 51.2 0.91 66.15 1.28(0 08)-40 1.82(0.23)-16 w 

Averaaes first line 67.41 1.34 1.9 
Averages other lines 66.15 1.28 1.82 

TT13 20.96 0 25.06 0.67(0.03) 0 75(0.07) w 
TT16 22.15 0 26.63 0.69(0.03)+32 0.76(0.04)+ 9 w 

Averages first line 25.06 0.67 0.75 
Averaaes other lines 26.63 0.69 0.76 

Trial 2- Results -Tow Speed (continued) 
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Dirn Len Vel 

90 15 8 
90 15 8 

180 15 5 
180 15 5.1 



s· I mg:eTow 
% Excess Av Dev (Stnd Dev) %Sian 

Run Yaw Pitch Any Yaw Pitch Win a Dim 

ST11 57.09 0 62.06 1.48(0 05) 1.12(0 03) w 90 
ST2 80.75 0.01 94.68 3.01 (0.14)+99 1 08(0.06)-42 NW 90 

ST14 58.53 0.03 63.32 1.56(0.10) 1.42(0.13) w 9_0 
ST20 76.25 0.01 91.01 2.55(0.11 )+99 1.25(0.12)-62 NW 90 

ST19 60.83 0.36 71.75 1.63(0.06) 1.70(0.05) w 180 
ST25 33.03 0 52.62 0.86(0.06)-99 0.90(0.07)-99 NW 180 

ST12 58.6 0 63.4 1.53(0.06) 1.12(0.03) w 180 
ST3 80 0 93.53 2 79(0.10)+99 1.02(0.06)-88 NW 180 

ST13 63.55 0.57 79.86 1.77(0.05) 1.84(0.07) w ? 
ST9 30 28 0 46.23 0.82(0.02)-99 0.85(0.02)-99 NW 180 

ST15 55.62 0 61.62 1.45(0.05) 1.22(0.04) w 0 
ST21 82.39 0.01 97 11 3.07(0 05)+99 0.97(0.03)-99 NW 0 

ST16 50.86 0.13 5466 1.27(0.07) 1.57(0.11) w 180 
ST22 71.27 0.04 85.4 2.06(0 09)+99 1.29(0.09)-95 NW 180 

ST17 63.94 0.52 75.21 1.78(0 07) 1 75(0.05) w 90 
ST23 32.24 0 48.46 0.85(0.04)-99 0.83(0.05)-99 NW 90 

ST18 62.72 0.45 74.6 1.71 (0.05) 1 77(0.04) w 0 
ST24 32.19 0 47.73 0.85(0 03)-99 0 75(0.02)-99 NW 0 

Averaaes first line 67.39 1.58 1.5 
Averages other lines 72.97 1.87 0.99 

Two-Part Tow 
% Excess 

Run Yaw 

TT12 24.25 
TT1 18.13 

TT11 25.31 
TT2 16.86 

TT15 25.84 
TT2 16.86 

TT14 26.05 
TT3 16.51 

TT20 47.61 
TT7 30.55 

TT16 22.15 
TT4 20.71 

TT13 20.96 
TT4 20.71 

TT22 49.46 
TT8 32.68 

Av Dev (Stnd Dev) %Sian 
Pitch Anv Yaw Pitch Win a Dim 

0 29.5 0.72(0.02) 0.86(0.04) w 90 
0 20.64 0.63(0.04)-95 0.62(0.06)-99 NW 90 

0 30.57 0.74(0.02) 0.86(0.05) w 0 
0 17.99 0.61 (0.01 )-99 0.60(0.03)-99 NW 0 

0 31.27 0.75(0.03) 0.83(0.06) w 0 
0 17.99 0.61 (0 01 )-99 0 60(0.03)-99 NW 0 

0 31.45 0.75(0.04) 0.87(0.06) w 90 
0 17.57 0.61 (0.01 )-99 0.57(0.02)-99 NW 90 

0.39 61.53 1.19(0.11) 1.85(0.41) w 180 
0.05 3395 0.82(0.02)-99 1.20(0.03)-87 NW 180 

0 26.63 0.69(0.03) 0.76(0.04) w 180 
0 22.61 0.66(0.02)-59 0.89(0.04)+97 NW 180 

0 25.06 0.67(0.03) 0.75(0.07) w 180 
0 22.61 0.66(0.02)-18 0 89(0.04)+92 NW 180 

0.71 64.64 1 25(0 06) 1 86(0.17) w 0 
0.06 36 33 0.86(0.03)-99 1.25(0.05)-99 NW 0 

Trial 2- Results -Depressor Wing (continued) 
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Len Vel 

15 5.5 
20 5.7 

35 5.6 
40 5.7 

35 7.9 
40.5 7.5 

15 ? 
20 5.6 

15 8.4 
20 8.5 

35 6.2 
40.5 5.6 

35 4.6 
40.5 5.4 

35 7.5 
405 7.8 

35 8 
40.5 83 

Len Vel 

15 5.2 
20 4.7 

15 4.9 
20 5.7 

15 5.3 
20 5.7 

15 5.4 
20 5.7 

15 7.7 
20 75 

15 5.1 
20 5.9 

15 5 
20 5.9 

15 8 
20 7.9 

PTO 



Continued from previous page 

%Excess Av Dev (Stnd Dev) %Sign 
Run Yaw Pitch Any Yaw Pitch Wing Dirn 

TT17 48.31 0.44 63.74 1.20(0.07) 1.75(0.21) w 0 
TT6 22.39 0 24.09 0.69(0.02)-99 0.91 (0.03)-99 NW 0 

TT23 51.2 0.91 66.15 1 28(0.08) 1.82(0.23) w 90 
TT9 31.79 0.04 35.63 0.84(0.02)-99 1.28(0.07)-97 NW 90 

TT24 51.71 0.64 65.38 1 29(0.06) 1.77(0.19) w 180 
TT7 30.55 0.05 33.95 0 82(0.02)-99 1.20(0.03)-99 NW 180 

TT18 49.02 0.55 63.94 1.23(0.05) 1.92(0.19) w 90 
TT9 31.79 0.04 35.63 0.84(0.02)-99 1.28(0.07)-99 NW 90 

TT19 53 0.74 67.41 1.34(0.07) 1.90(0.26) w 90 
TT9 31.79 0.04 35.63 0.84(0.02)-99 1.28(0.07)-97 NW 90 

Averaaes first line 48.25 1.01 1.37 
Averaaes other lines 27.28 0.73 0.97 

Trial 2- Results - Depressor Wing (continued) 
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Len Vel 

15 8.1 
20 67 

15 8 
20 7.9 

15 8.4 
20 7.5 

15 8 
20 7.9 

15 8 
20 7.9 



%Excess 
Run Yaw 

ST1 83.62 
TT2 16.86 

ST4 83.51 
TT2 16.86 -

ST7 32.01 
TT8 32.68 

ST2 80.75 
TT3 16.51 

ST2 80.75 
TT5 21.18 

ST5 81.69 
TT3 16.51 
TT5 21.18 
TT1 18.13 

ST8 34.24 
TT9 31.79 

ST3 80 
TT4 20.71 

ST6 80.04 
TT4 20.71 

ST9 30.28 
TT7 30.55 

ST10 54.06 
TT11 25.31 
TT15 25.84 

ST21 82.39 
TT27 19.68 

ST24 32.19 
TT30 35.18 

ST11 57.09 
TT12 24.25 
TT14 26.05 

ST20 76.25 
TT26 17.7 

ST23 32.24 
TT28 33.59 

ST22 71.27 
TT25 13.71 

ST25 33.03 
TT29 30.71 

Averages first line 
Averaaes other lines 

Av Dev lStnd Dev) %Sian 
Pitch Any Yaw Pitch Wing 

0 97.5 3.25(0.07) 0.93(0.02) NW 
0 17.99 0.61 (0.01 )-99 0.60(0.03)-99 NW 

0 97.01 3.21(0.12) 0.95(0.03) NW 
0 17.99 0.61 (0.01 )-99 0.60(0.03)-99 NW 

0 5004 0.85(0.03) 0.91(0.04) NW 
0.06 36.33 0.86(0.03)+ 16 1 .25(0.05)+99 NW 

0.01 94.68 3.01 (0.14) 1.08(0.06) NW 
0 17.57 0.61 (0.01 )-99 0.57(0.02)-99 NW 

0.01 94.68 3.01 (0.14) 1.08(0 06) NW 
0 22.75 0.68(0.03)-99 0.90(0.04)-98 NW 

0 9485 3.03(0.14) 1.02(0 04) NW 
0 17.57 0.61 (0.01 )-99 0.57(0.02)-99 NW 
0 22.75 0.68(0.03)-99 0.90(0.04)-97 NW 
0 20.64 0.63(0.04)-99 0.62(0.06)-99 NW 

0.01 52.29 0.89(0.05) 0.91(0.09) NW 
0.04 35.63 0.8410.02)-61 1 .28<0.07)+99 NW 

0 93.53 2 79(0.10) 1.02(0.06) NW 
0 22.61 0.66(0.02)-99 0.89(0.04)-94 NW 

0 93 2.76(0 09) 0.95(0.04) NW 
0 22.61 0.66(0.02)-99 0.89(0.04)-68 NW 

0 4623 0 82(0.02) 0.85(0.02) NW 
0.05 33.95 0.82(0.02)+ 2 1.20(0.03)+99 NW 

0 58.89 1.37(0.04) 1.08(0.04) w 
0 30.57 0. 7 4(0. 02)-99 0.86(0 05)-99 w 
0 31.27 0. 75(0.03)-99 0.83(0.06)-99 w 

0.01 97.11 3.07(0.05) 0.97(0 03) NW 
0 21.36 0 64(0.03)-99 0.59(0.02)-99 NW 

0 47.73 0.85(0.03) 0.75(0.02) NW 
0 41.39 0.90(0.03)+75 0.83(0.04)+94 NW 

0 62.06 1.48(0.05) 1.12(0.03) w 
0 29 5 0. 72(0.02)-99 0.86(0.04)-99 w 
0 31.45 0.75(0 04)-99 0.87(0.06)-99 w 

0.01 91.01 2.55(0.11) 1.25(0.12) NW 
0 18.98 0.62(0.01 )-99 0.57(0.03)-99 NW 

0 48.46 0.85(0.04) 0.83(0.05) NW 
0 39.24 0.87(0.03)+31 0. 78(0.02)-61 NW 

0.04 854 2.06(0.09) 1.29(0 09) NW 
0 14.42 0.56(0.03)-99 0.52(0.02)-99 NW 

0 52.62 0.86(0.06) 0.90<0.071 NW 
0 36.06 0.82(0.03)-46 0. 77(0.03)-91 NW 

75.39 2.04 0.99 
26.48 0.71 0.81 

Trial 2 - Results - Single vs Two-Part Tow 

Table All 
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Dirn Len Vel 

0 20 5.5 
0 20 5.7 

0 20 5.6 
0 20 5.7 

0 20 8.5 
0 20 7.9 

90 20 5.7 
90 20 5.7 

90 20 5.7 
90 20 6.2 

90 20 5.7 
90 20 5.7 
90 20 6.2 
90 20 4.7 

90 20 8.6 
90 20 7.9 

180 20 5.6 
180 20 5.9 

180 20 56 
180 20 5.9 

180 20 8.5 
180 20 7.5 

0 15 5.5 
0 15 4.9 
0 15 5.3 

0 40.5 5.6 
0 40 6.3 

0 40.5 8.3 
0 40 7.8 

90 15 5.5 
90 15 5.2 
90 15 5.4 

90 40 5.7 
90 40 5.8 

90 405 78 
90 40 8 

180 40.5 5.4 
180 40 5.6 

180 40.5 75 
180 40 8 

PTO 



Continued from previous page 

%Excess Av Dev (Stnd Dev) %Sign 
Run Yaw Pitch Anv Yaw Pitch Wing Dim 

ST12 58 6 0 63 4 1.53(0.06) 1.12(0.03) w 180 
TT13 20.96 0 25.06 0.67(0.03)-99 0.75(0.07)-99 w 180 
TT16 22.15 0 26.63 0 69(0.03)-99 0.76(0.04)-99 w 180 

Averages first line 63.4 1 53 1 12 
Averages other lines 25.84 0.68 0.76 

ST12 58.6 0 63 4 1.53(0 06) 1 12(0.03) w 180 
TT20 47.61 0.39 61.53 1.19(0.11 )-99 1.85(0.41 )+92 w 180 
TT24 51.71 0.64 65.38 1.29(0.06)-99 1. 77(0 19)+99 w 180 

Averages first line 63.4 1 53 1.12 
Averages other lines 63 45 1 24 1.81 

ST15 55.62 0 61.62 1 45(0.05) 1 22(0.04) w 0 
TT27 19.68 0 21.36 0 64(0.03)-99 0.59(0.02)-99 NW 0 

ST18 62.72 0.45 74 6 1.71 (O 05) 1 77(0.04) w 0 
TT30 35.18 0 41.39 0.90(0.03)-99 0 83(0 04)-99 NW 0 

ST14 58 53 0.03 63.32 1 56(0.10) 1.42(0.13) w 90 
TT26 17.7 0 18 98 0.62(0.01 )-99 0.57(0.03)-99 NW 90 

ST17 63.94 0.52 75.21 1 78(0.07) 1.75(0.05) w 90 
TT28 33.59 0 39.24 0.87(0 03)-99 0 78(0.02)-99 NW 90 

ST16 50.86 0.13 54.66 1.27(0.07) 1.57(0.11) w 180 
TT25 13.71 0 14.42 0.56(0.03)-99 0.52(0 02)-99 NW 180 

ST19 60.83 0.36 71 75 1.63(0.06) 1.70(0.05) w 180 
TT29 30.71 0 36.06 0.82(0.03)-99 0. 77(0.03)-99 NW 180 

Averages first line 66.86 1.57 1.57 
Averages other lines 28.58 0.73 0.68 

Trial 2- Results-Single vs Two-Part Tow (continued) 

Table All 
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Len Vel 

15 ? 
15 5 
15 5 1 

15 ? 
15 7.7 
15 8.4 

35 62 
40 6.3 

35 8 
40 7.8 

35 56 
40 5.8 

35 7.5 
40 8 

35 4.6 
40 56 

35 79 
40 8 



APPENDIXB 

COMPUTER PROGRAM FLOWCHARTS 

The flowcharts detailing the computer programs developed to predict. the behavior of 

two-part and multi-tow confi,gurations are presented below. These include the quasi­

static and dynamic model for the conventional, two-part and series multi-tows. The 

parallel multi-tow is similar to these flowcharts with minor modification. The :qi.ajar 

difference is the matrix solution subroutine and it is given at the end of this Appendix. 

List of Program Flowcharts 

' -
Overall Computer Program Flowchart for the Two-Part Tow 

Quasi-Static Main Program 
Subroutine Initial Data 
Subroutine Node Weight 
Subroutine Depressor Weight 
Subroutine Top Weight 
Subroutine Bottom Weight 
Subroutine Junction Weight 
Subroutine Segment Weight 
Subroqtine Fish Weight 
Subroutine Fish Lift Drag 
Subroutine Cable Drag 
Subroutine Node Drag 
Subroutine Cable Angle 
Subroutine _Junction Angle 
Subroutine Depressor Angle 
Subroutine Angle Adjust 
Subroutine Adjust Error 
Subroutine Correct Angle 
Subroutine Calculate Tension 
Subroutine Tail Tension 
Subroutine Make XY 
Subroutine Coordinate 
Subroutine Coordinate Calculate 

Dynamic Main Program . 
Subroutine Initial Data 
Subroutine Cable Area 
Subroutine Cable Transformation Matrix 
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335 

336 
338 
339 
340 
341 
341 

.- 341 
342 
342 
342 
343. 
343 
344 
345 
346 
347 
347 
348 
349 
349 
349 
350 
351-

352 
356 
357 
358 



Subroutine Fish Transformation Matrix 
Subroutine Fish Mass Matrix 
Subroutine Node Weights 
Subroutine Fish Mass Matrix 3 DOF Local 
Subroutine Top Equation Coefficients 
Subroutine Surface Conditions 
Subroutine Top Conditions 
Subroutine Fish Force Moment 
Subroutine Cable Added Mass 
Subroutine Inertia Coefficient 
Subroutine Cable Drag 
Subroutine Cable Velocity 
Subroutine Node Acceleration 
Subroutine Node Coordinate 
Subroutine Node Velocity 
Subroutine Equation Coefficient 
Subroutine Node Drag 
Subroutine Fish Angular Velocity Angle 
Subroutine Fish Angular Acceleration 
Subroutine Segment Angle Horizontal 
Subroutine Segment Angle Vertical 
Subroutine Correct Tension 
Subroutine Tail Tension 
Subroutine Convert Matrix 
Subroutine Eliminate C 
Subroutine Increment Values 
Subroutine Free Array 

Multi Tow in Parallel 
Subroutine Convert Matrix - Multi Tow 

Nomenclature for Flowcharts 

358 
358 
359 
360 
360 
361 
362 
363 
365 
366 
367 
368 
368 
369 
369 
370 
373 
374 
374 
375 
375 
376 
378 
379 
382 
383 
384 

385 
385 

The majority of the symbols used in the program flowcharts are those defined in the 
Nomenclature at the beginning of the thesis. However, some symbols are specific to 
the programJlowcharts and are defmed below or within each flowchart. 

Variables 
Ae 
Aab 

Aflr, Bflr 
As tore 

Amx,y,z 

B21, B23 
Bfgu,v,w 

Cati 

equivalent area of any additional mass at the node 
where a = 1, 2, 3 and b = 1, 2, 3 
mass matrix terms of the manipulated equation of motion of fish "f' 
where a = 1 to 6 and b = 1 to 6 
mass matrix terms of the equation of motion of fish "f' 
variables Afl, Bf! as defined in the Nomenclature 
storage variable for variable A 
surface excitation amplitude in the X, Y and Z directions 

variables B21, B23 as defined in the Nomenclature 
buoyancy force on fish along local axes 
tangential added mass coefficient of cable segment "i" 
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Cam 

Co,Lf 

cni 

C1i 

cab beg 
cabend 
check 
checks tore 

CTR 
CTRMrnb 

Cabfc 

Cabfc 

de 
DEN<)> 
DEN\j/ 
Dru,v,w 

EM, 
Fctm,t 

F2ctN,D 

FfDragr 
FfLiftr 
FHr, FVr 
FILE 
FIRST 
Ffu,v,wf 

FTRMfab 

fish node 
fr 
k 
lext 

Mfu,v,wf 

Mfgu,v,w 

miab 

mfr 
Ndt 
NUM<)> 
NUM\j/ 
noofcables 
nooffish 

normal added mass coefficient of cable segment "i" 
drag and lift force coefficients of fish for static model 
cable drag coefficient in the normal direction 
cable drag coefficient in the tangential direction 
node at start of cable system 
node at end of cable system 
absolute error of the horizontal angle (W) between two iterations 
storage variable for the absolute error of the horizontal angle (W) 
between two iterations 
incremental step counter 
where a= 1,2,3 and b = 1,2,3 
transformation matrix of cable segment "i" 
where a= X', Y',Z', b =pitch, and yaw, and c = 1,2,3,4 
Coefficients of third order polynomial representing force coefficients of 
fish, (note: force "a" due to angle "b" of order "c") 
where a = roll, pitch, yaw, b =pitch, and yaw, and c = 1,2,3,4 
Coefficients of third order polynomial representing moment coefficients 
of fish, (note: moment "a" due to angle "b" of order "c") 
equivalent diameter of any additional mass at the node 
denominator of the tangent of the horizontal angle 
denominator of the tangent of the vertical angle 
drag force on fish along local axes 
modulus of elasticity of cable element "i" 
drag forces on cable segment "i" in the normal and tangential directions 
components of the drag forces on second (tail) cable segment of tow fish 
in the Y and X directions 
drag forces on fish "f' 
lift forces on fish "f' 
total force on the fish in the horizontal and vertical directions 
true (1) or false (0) operator to identify surface node position input 
true (1) or false (0) operator to identify initial operations 
total force on the fish in the local directions 
where a= 1,2,3 and b = 1,2,3 
transformation matrix of fish "f' 
cable node representing the fish 
surface excitation frequency in hertz 
iteration counter 
stretched length of cable segment 
moment on fish about local axes at tow point 
force on fish due to gravity along local axes 
where a = 1,2,3 and b = 1,2,3 
mass matrix terms of cable segment i 
where a= 1,2,3 and b = 1,2,3 
storage variable for mass matrix terms 
mass of fish "f' 
total number of time steps 
numerator of the tangent of the horizontal angle 
numerator of the tangent of the vertical angle 
number of cable systems in the tow configurations 
number of fish in the tow configurations 
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pdr, rdr, ydr 
SCL 
Ti 
Tix,z 

Terror 
Terrormax 
TPANG 

TPYAW 

tinct 
time 
v 
Ve1 

Veqnt 

Vfr 
Vn,t 

Vx,y,zt 

WI 
Wfr 
xor, Yor, zor 

X1f, Ytf, Ztf 

xor, Yor, zor 

Ydrr, Ydyr 
Zdpr 

damping of fish in pitch, roll and yaw 
iteration scale factor to force convergence 
tension of second (tail) cable of tow fish 
tension of second (tail) cable of tow fish in the X and Z directions 
absolute error of tension terms between iterations 
maximum value of Terror 
pitch angle of fish with flow direction 
yaw angle of fish with flow direction 
time incremental counter 
simulation time 
horizontal velocity of the cable relative to the surrounding fluid 
volume of any additional mass at node "i" 
equivalent velocity 
volume of towed fish "f' 
velocity of cable relative to the surrounding fluid in the normal and 
tangential directions 
tow velocity in the X, Y and Z directions 
weight due to second (tail) cable on tow fish 
net weight in water of towed fish "f' 
components of the distance from the tow point (1) to the centre of 
gravity (G) of tow fish "f', measured from the tow point and positive in 
the directions of the local axes system. 
components of the distance from the tow point (1) to the tail (second) 
tow point (t) of tow fish "f', measured from the tow point and positive in 
the directions of the local axes system. 
components of the distance from the tow point (1) to the centroid (0) of 
tow fish "f', measured from the tow point and positive in the directions 
of the local axes system. 
damping in Y direction due to roll and sway 
damping in Z direction due to pitch 

Greek Symbols 
\jferror error in horizontal angle (\jf) 
\jferrorl 2 n minus the absolute value of \jferror 
\jfstore storage variable for horizontal angle ('JI) 
\jf errorl second storage variable for horizontal angle 
v surface excitation amplitude control variable 
Wr surface excitation frequency in radians per second 

Subscripts 
an 
c 
t 

Superscripts 

adjacent node 
cable system 
second (tail) cable of fish, (not used as time in flowcharts) 

m convergence correction superscript 
t time 
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Overall Computer Program Flowchart for the Two-Part Tow 

INCREMENT 
TIME 

t = t + 1 

START 

QUASI-STATIC SOLUTION 

INERTIA & DRAG 

ACCELERATION AT t+l 

POSITION & VELOCITIES 
ATt+l 

SEGMENT ERROR 

MATRIX SOLUTION 

TENSIONS 

END 
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N 

SURFACE 
NODE 

POSITION 

CORRECT 
TENSIONS 



Quasi-Static Main Program 

START 

GO SUB INITIAL DATA 

GO SUB NODE WEIGHTS 

i = cab beg( c) 

\jf, = 0 

SCL=0.5, K= 1 
\j/store = \jfj, \j/storel = \jf, 
check = 0, chec 

f = 1 

N 

GO SUB NODE DRAG 

336 

READ STATIC 
DATA FROM 

FILE 

y 

\jf, = \jf,_, 

GO SUB FISH LIFT DRAG 



GO SUB CABLE DRAG 

N 

GO SUB 
DEPPRESSOR DRAG 

GO SUB 
JUNCTION ANGLE 

GO SUB 
CABLE ANGLE 

N 

GO SUB ANGLE ADJUST 

CHECK = [ 'Jf r - 'JI] 

GO SUB CALCULATE TENSION 

WRITE STATIC 
RESULTS TO 

FILE 

UPGRADE 
STATIC DATA 

FILE 
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y 
GO SUB ADJUST ERROR 

GO SUB CORRECT ANGLE 

GO SUB CO-ORDINATE 

END 



i = i + 1 

N 

Subroutine Initial Data 

START 

n = 4 Tan-1(1) 
g = 9.81 

VSx = Vex - Vxt 
VSy = Vey 
VSz = Vez 

V = (VS~ + VS~) 112 

V=-V 

y 

To=O, <Po=O, \j/o=O 
Fcton = 0, Fctot = 0 

RETURN 
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N 



Subroutine Node Weight 

START 

i = 1 

c=~ 

c=c+l 

N 

GO SUB SEGMENT WEIGHT 

f= 1 

0 
339 

GO SUB 
BOTTOM WEIGHT 

GO SUB 
TOP WEIGHT 

GO SUB 
DEPRESSOR 

WEIGHT 

GO SUB 
JUNCTION 
WEIGHT 



f = f +1 

i = i +1 

y 

RETURN 

Subroutine Depressor Weight 

START 

N 

GO SUB 
BOTTOM WEIGHT 

RETURN 
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y 

y 

GO SUB 
FISH WEIGHT 

GO SUB 
SEGMENT WEIGHT 



Subroutine Top Weight 

( __ s_TAR.--T_) 

i 

RETURN 

Subroutine Bottom Weight 

( __ s____,T AR,...--T_) 

RETURN 

Subroutine Junction Weight 

START 

GO SUB 
SEGMENT WEIGHT 

W, = W, + [Y2 Po-1 10-1 - (1t PI 8) 10-1 Do-12
] g 

RETURN 
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Subroutine Segment Weight 

START 

W, = { [Y2 (p, 1, + P1-1 l,_1) - (n p I 8) (l; D,2 + 11_1 D,_1
2
)] 

+ [m.,, - p Ve,] } g 

RETURN 

Subroutine Fish Weight 

START 

Wff= (mff-P Vft) g 

RETURN 

Subroutine Fish Lift Drag 

START 

FfDragf = -llz Cof p Afxf V IVI 

FfLiftf = -llz Cu p Afxf V IVI 

RETURN 
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Subroutine Cable Drag 

START 

VS 0 = V Sin\J/j 
VSt = -V Cos\JfJ 

Fehn= -Y2 C111 P DJ 11 VS0 IVS0 I 

Fcht = -Y2 Cup DJ lJ vst IVStl 

RETURN 

Subroutine Node Drag 

START 

A 
nxde 

e=--
4 

Feix = -Y2 Cx, p Ae V IVI 

FeJz = -Y2 CzJ p Ae V IVI 

RETURN 
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f = f + 1 

N 

Subroutine Cable Angle 

START 

GO SUB TAIL TENSION 

Wl = Wcabend(c-1)-1 

F2ctN = - Y2 Fcti-2n COS'lfi-2 - Y2 Fct1-2t Sin'Jli-2 
F2c!D = Y2 Fw-2n Sin'Jf,-2 - Y2 Fct1-21 Cos'Jf,.2 

f = 1 

FHr=O 
FVr=O 

344 

N 

Wl =0 
F2dN = 0 
F2c!D = 0 

y 

Tix=O 
Tiz =0 

F2ctN = 0 
F2c!D = 0 
Wl =0 

FHr = -FfDragr + Tix 
FV r = FfLiftr + T tz - Wfr 



NUM\lf = T1-1 Sin\lfi-1 - 1/2 Fctm Cos\lf1 - Y2 Fcti-ln Cos\lf1.1 - Y2 Fct11 Sin\lf1 
- Y2 Fcti-1t Sin\lf1-1 + W1 + Feiz -FVr+ Wl + F2c!N 

DEN\lf = T1.1 Cos\lf1.1 + Y2 Fctm Sin\lf1 + Y2 Fcti-ln Sin\lf1.1 - Y2 Fct11 COS\111 
- Y2 Fct1-1t Cos\lf1-1 + Feix - FHr + F2c!D 

=Tan-1(NUM\j/J 
\jf 1 DEN\jf 

RETURN 

Subroutine Junction Angle 

START 

NUM\lf = T1.1 Sin\lf1-l + T D-1 Sin\lfD-1 - Y2 Fctm COS\111 - Y2 Fct1-ln COS\111-l 
- Y2 FcID-1n Cos\j/n-1 - Y2 Fct11 Sin\111 - Y2 Fct1-1t Sin\111-1 

- Y2 Fctn-1t Sin\lfn-1+ W1 + Fe1z 

DEN\lf = T1.1 Cos\lf1.1 + T D-1 Cos\lfn-1 + Y2 Fctm Sin\lf1 + 1/2 Fct1-ln Sin\lf1-1 
+ Y2 FctD-ln Sin\lfn-1 - Y2 Fct11 Cos\lf1 - Y2 Fct1-1t COS\111-1 

- Y2 Fctn-11 Cos\lfn-1 + Fe1x 

\jf = Tan-1(NUM\j/J 
I DEN\jf 

RETURN 

345 



f = f +I 

N 

Subroutine Depressor Angle 

START 

GO SUB TAIL TENSION 

WI = Wcabend(c-1)-1 
F2dN = -Yz Fdi-Zn Cos\j/1.2 - Yz Fw-21 Sin\j/1.2 
F2<1D = Y2 Fd1-2n Sin\lfi-2 - Y2 Fd1-21 Cos\lf1-2 

f =I 

y 

DEN\jf = Y2 Fmn Sin\j/1 - Yz Fdit Cos\jfi + Feix - FHr + F2<1D 

'If = Tan-1(NUM\jf J 1 
DEN\jf 

RETURN 

346 

N 

T1x=O 
T12 = 0 

F2dN = 0 
F2dD = 0 
WI =0 

y 

FHr = -FfDragr + Tix 
FV r = FfLiftr + T iz - Wfr 



N 

N 

Subroutine Angle Adjust 

START 

Subroutine Adjust Error 

START 

\jf error = \j/1 - \jf store 
\jf errorl = 2 7t - l\Jf errorl 

\jf error = -\jf error 1 

check = l\Jf errorl 

RETURN 
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\jf error = \jf error 1 



Subroutine Correct Angle 

START 

SCL = 0.5 x SCL 
\j/store = \j/storel 

\j/1 = \j/store + (SCL x \j/error) 

\j/store = \j/1 

RETURN 
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N 

\j/store 1 = \j/store 

checkstore = check 

k=k+l 



Subroutine Calculate Tension 

START 

T = DEN\j/ 
1 Cos\j/, 

RETURN 

Subroutine Tail Tension 

( __ s_TAR~T-) 

Ttx = Tt COS'lfcabend(c-1)-1 
T tz = Tt Sin'lfcab~nd(c-1)-1 

RETURN 

N 

Subroutine Make XY 

c START ) .. 
y, = x, Sin<j>, 
x, = x, Cos<j>, 

RETURN 
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Ti= -Tcabend(c-1)-1 



Subroutine Coordinate 

START 

c = noofcables 

i = ea bend( c) 

N 

N 

Xn = 0, Yn = 0, Zn = 0 

i = i- 1 

N 

GO SUB CO-ORDINATE CALCULATE 

N 

c = c - 1 11<1111<11111---·<-

350 

Xcabend(c) = X cabbeg(c+l) + Xt(c+l) 

Zcabend(c) = Z cabbeg(c+l) + Zt(c+l) 



i = 1 

GO SUB MAKE XY 

N 

RETURN 

Subroutine Coordinate Calculate 

START 

X1 = XJ - lext Cos'lf 1 

Z1 = ZJ - lext Sin'lf1 

RETURN 
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N 

i = i + 1 

Xi = X1-l - lext Cos"\j/1 

Z1 = Z1-l - lext Sin'lf 1 



READ DYNAMIC 
DATA 

N 

Dynamic Main Program 

START 

7t = 4 Tan-1(1), g = 9.81 
t = 1, time1 = 0 

GO SUB INITIAL DATA 
GO SUB CABLE AREA 

GO SUB NODE WEIGHT 

timet+I = timet + ~t 
FIRST = 1, tinct = 0, CTR = 0 

GO SUB FISH MASS MATRIX 
GO SUB FISH MASS MATRIX 3DOF LOCAL 

READ STATIC 
DATA& 

RESULTS 

READ SURFACE 
MOTION FROM 

FILE 

WRITE INITIAL 
DYNAMIC 

RESULTS TO 
FILE 

f = f+l 

"">---N _J 

N 

GO SUB TOP CONDITION 

tinc;:t = tinct + 1 
c = noofcables 

352 

y 

GO SUB SURFACE CONDITION 



i = i+l 

GO SUB TOP EQUATION COEFFICIENT 

0f------.----~·~I-----. 

y 

i = cabbeg (c) 

f = 1 

f= f+l 

GO SUB 
FISH TRANSFORMATION MATRIX 

GO SUB 
FISH FORCES MOMENT 

GO SUB CABLE ADDED MASS 
GO SUB INERTIA COEFFICIENTS 
GO SUB NODE VELOCITY 
GO SUB CABLE VELOCITY 
GO SUB CABLE DRAG 
GO SUB NODE DRAG 
GO SUB EQUATION COEFFICIENTS 

N 

i = cabbeg (c) 

GO SUB NODE ACCELERATION 
GO SUB NODE COORDINATION 

f = 1 

353 



N 

i = i+l 

y 

CTR=CTR+l 

FIRST=O 

f= f+l 

GO SUB 
FISH ANGULAR ACCELERATION 

GO SUB 
FISH ANGULAR VELOCITY ANGLE 

GOSUBSEGMENTANGLEHORIZONTAL 
GO SUB SEGMENT ANGLE VERTICAL 
GO SUB CABLE TRANSFORMATION MATRIX 

N 

GO SUB CORRECT TENSION 

GO SUB INCREMENT VALUES 
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N 

t = t + 1 
timet = time1-1 + L'.lt 

WRITE 
DYNAMIC 
RESULTS 

GO SUB FREE ARRAYS 

timestore = time1+1 

t = 1 
time1 = timestore 

timet+l = time1 + L'.lt 
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y 

FIRST= 1 

END 

• 

UPGRADE 
STATIC DATA 

FlLE 



Subroutine Initial Data 

START 

(!), = 2 1t f, 

~ = 0.5, v = 1.0, FctnO = 0, 
Fctw=O, T~ =0, Tt+1 -0 0 -

t xtop = Xn, t ytop = Yn, ztop = Zn t 

x.1 =O, y1 =O, z1 =O 

Tit+! = T/, <1>:+1 = <1>:, w:+1 = w: 

GO SUB CABLE TRANSFORMATION MATRIX 

y 

xstore1 = x,\ ystore1 = Y1\ 
zstore, = z/ 

0 t 0 t 0 t 
X1 = Xj, y, = y, , Z1 = Z1 

.t+I _ X t y t+I _ y t t+I _ z t X1 - I ' I - I ' z, -
x, = 0, y, = 0, z, = 0 

i = i + 1 

N 

356 



z=z+l 

f = f + 1 

i = i +l 

N 

f = 1 

f, = fishnode(f) 

N 

a.r = o, ~r = o, yr = o 
a.r = o, ~r = o, yr = o 
a.storer= 0, ~storer= 0, ystorer =<!>tit 

RETURN 

Subroutine Cable Area 

START 

N 

RETURN 
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Subroutine Cable Transformation Matrix 

START 

CTRMill = Cos<)>1t+r Cos\lf t 1, CTRM112 = Sin<)>1t+I Cos\lf /+1, CTRM1!3 = Sin\lf t 1, 
CTRM121 = -Sin<j>/+1, CTRM122 = Cos<)>t1, CTRM123 = 0 
CTRM C tht+l s· t+l CTRM s· tht+l s· t+l CTRM c t+l 131 = - os't'1 m\lf 1 , 132 = - m't'1 m\lf 1 , 133 = os\lf 1 

RETURN 

Subroutine Fish Transformation Matrix 

START 

FTRM C t+l c t+l FTRM s· t+l c t+l FTRM s· t+l fl I = OSYf OSCif , fl2 = lllYf OSCif , fl3 = - lllCif 
FTRMf21 = Cosyt1 Sinat1 Sinf3t1 - Cosf3/+1 Sinyt1 

FTRMf22 = Sinyt1 Sinat1 Sinf3t1 + Cosf3/+1 Cosy/+1 

FTRM C t+1 s· (-!. t+r FTRM c t+1 c (-!. t+1 f23 = OSCif llll-'f , f33 = OSCif OSl-'f 
FTRMm = Cosyt1 Sinat1 Cosf3t1 + Sinf3t1 Sinyt1 

FTRMf32 = Siny/+1 Sinat1 Cosf3t1 - Sinf3/+1 Cosyt1 

RETURN 

Subroutine Fish Mass Matrix 

Afn 1 = mff + AMf xf• 
Afn4 = 0.0, 
Aff21=0.0, 
Aff24 = -mff*ZGf, 
Afm = 0.0, 
Aff34 = 0.0, 
Aff41 = 0.0, 
Aff44 = If xf + Alf xf• 
Aff51 = mff*ZGf, 
Affs4 = 0.0, 
Aff61 = 0.0, 
Aff64 = -mff*XGf*ZGf, 

START 

Afn2 = 0.0, 
Afn5 = mff*Zm, 
Af f22 = mf f + Amf yf, 

Aff25 = 0.0, 
Aff32 = 0.0, 
Aff35 = -mff*Xm, 
Aff42 = -mff*zm, 
Aff45 = 0.0, 
Aff52 = 0.0, 
Affss = If yf + Alf yf, 
Afr62 = mff*XGf, 
Aff65 = 0.0, 

RETURN 
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Afm = 0.0 
Afn6 = 0.0 
Aff23 = 0.0 
Af f26 = mff*XGf 
Af m = mff + AMfzf 
Aff36 = 0.0 
Aff43 = 0.0 
Aff46 = -mff*XGf*ZGf 
Aff53 = -mf r*XGf 
Affs6 = 0.0 
Aff63 = 0.0 
Aff66 = If zf + Alfzf 



c = c+l 

N 

i = i+l 

N 

Subroutine Node Weights 

START 

c=l 

GO SUB 
SEGMENT WEIGHT 

RETURN 

GO SUB 
BOTTOM WEIGHT 

GO SUB 
TOP WEIGHT 

GO SUB 
DEPRESSOR WEIGHT 

GO SUB 
JUNCTION WEIGHT 

The subroutines called up in this subroutine are the same as for the equivalent 
Static program. 
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Subroutine Fish Mass Matrix 3 DOF Local 

START 

A -Af - Afns.Aff51 A Af 
fll - fll ' f12 = fl2 

Afrss 

A -Af - Afns.Afrs3 A Af 
f13 - fl3 ' f21 = f21 

Aff55 

Afr24 
Ar22 = Afr22 ---[Afr42 -Afr46.Aflr .Bflr] -[Afr26·Aflr .Bflr] 

Afr44 

A - f - Afos.Aff51 
Ar23 = Afr23, 01 - A 01 

Afrss 

A Af A -Af -~~.A~ f32 = f32 ' f33 - f33 
Aff55 

RETURN 

Subroutine Top Equation Coefficients 

P xcabend(c) = 0.0, 
Pzcabend(c) = 0.0, 
Rycabend(c) = 0.0, 

START 

P ycabend(c) = 0.0, 
Rxcabend(c) = 0.0, 
Rzcabend(c) = 0.0 

s /J,. 2 .. 
xcabend(c) = t Xcabend(c) 

s /J,. 2 .. 
ycabend(c) = t Y cabend(c) 

s /J,. 2 .. 
zcabend(c) = t Zcabend(c) 

RETURN 
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Subroutine Surface Conditions 

START 

y 

timet = lnteger(timet) 

x~+I = (xtopamet+I - xtop 0=t)(timet+I - timet) + xtopamet 

y~+I = (ytopamet+I - ytopamet)(timet+I - timet) + ytopamet 

z~+I = (ztopamet+I - ztopamet)(timet+I - timet) + ztopamet 

x = (x t+i - x t ) I ~t n n n 

xn =((x~+l -<)-(x~ -x~-1 ))/(~t) 2 

Yn =(y~+r _y~)/~t 

Yn =((y~+1 -y~)-(y~ -y~-1))/(~t)2 

• ( t+J t)/A zn= zn -zn ut 

zn =((z~+l -z~)-(z~ -z~-1 ))/(~t) 2 

I t+I I xt+ =-(1-e-vame )A Cos(m timet+) 
n rox r · 

x n = Awx ( (i)r (1- e-v amel+I) Sin( (i)r .time t+l) - v e-v tI~l+I Cos(mr .time t+l )) 

x =A (2vm e-v ame'+
1 

Sin(m time t+I) + (co2 + e -v time'+
1 
v 2m2 )Cos(m time t+I )) 

n rox r r · r r r · . 

I l+I I 
y~+ =-(1-e-vtime )A

00
Y Cos(mr.timet+) 

V time l+I t+J V timel+I t+J 
Yn =A

00
y(mr(l-e- )Sin(mr.time )-ve- · Cos(mr.time )) 

t+I I 2 l+I 2 2 I 
Yn =Awy(2vmre-vtime Sin(mr.timet+ )+(cor +e-V.time v mr)Cos(mr.timet+ )) 

l t+I 
z~+ = ztop + (1- e-v ame ) Awz Sin(mr .timet+I) 

· -v ame'+1 
• t+l -v ume'+1 

• • t+l zn =A 00z(mr(l-e )Cos(mr.time )-ve Sm(mr.time )) 
·· -v timett1 

• t+l 2 -v ume'+' 2 2 · · t+l z 0 = Awz (2vmre Cos(mr .time ) + (cor + e V (i)r )Sm(mr .time )) 

RETURN 
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Subroutine Top Conditions 

f = f+l 

START 

ce = cabend(c) 
cb = cabbeg(c+l) 

xt = (FTRMn1*Xt(e+1)) + (FTRMm*Yt<e+1)) + (FTRM01*zt(e+l)) 
yt = (FfRMf12*X1ce+1)) + (FfRMf22*Yt<e+1)) + (FI'RM02*Zt(e+1)) 
zt = (FI'RMm*zx(e+1)) + (FI'RMm*Yt<e+1)) + (FfRMm*Zt(e+1)) 
xt+l = xt+1 + xt 

ee eb ' 
t+l t+l 

Yee = Y eb + yt ' zt+l =zt+1 +zt ee eb 

uvel = (FTRMm * xeb) + (FfRMfl2* y eb) + (FI'RMm* zeb) 

vvel = (FI'RMm * X eb ) + (FfRMf22 * Y eb ) + (FI'RMm * Z eb ) 

wvel = (FfRMm* xeb) + (FfRMm* y eb) + (FfRMm* zeb) 

UVelt = UVel + Zt(e+l)* cXf, WVelt = wvel - (Xt(e+l)* cXf) 

vvel1 = vvel + (x1(e+1)* Y f) - (Zt(e+1)* $f) 

*-ee = (FI'RMn1*uvel1) + (FI'RMm*vvel1) + (FI'RM01*wvel1) 

y ee = (FI'RMn2*uvel1) + (FfRMm*vvel1) + (FI'RMm*wvel1) 

Zee = (FI'RMm*uvel1) + (FfRMm*vvel1) + (FfRMm*wvel1) 

uacl = (FI'RMm* xeb) + (FfRMfl2* y eb) + (FfRMm* zeh) 

vacl = (FI'RMm * xeh) + (FfRMf22* y eh)+ (FI'RMm* zeh) 

wacl = (FfRMo1* xeh) + (FI'RMm* y eh)+ (FI'RMm* zeh) 

Uaclt = uacl + Zt(e+l) * Uf , waclt = wacl - (Xt(e+l) *(if ) 

vacl1 = vacl + (xt(e+1)* Y f) - (Zt(e+1)* ~f) 
x ee = (FfRMm *uacl1) + CFfRMm *vacl1) + (FI'RMm *wacl1) 

y ee = (FI'RMn2*uacl1) + (FfRMf22*vacl1) + (FfRM02*wacl1) 

Zee = (FI'RMm*uacl1) + (FI'RMm*vacl1) + (FfRMm*wacl1) 

RETURN 
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Subroutine Fish Force Moment 

START 

y 

GO SUB TAIL TENSION 

Vfrxtow = xfishnode(f) - v X• Vfrytow = y fishnode(f) - Vy 

V fr ztow = Z fishnode (f) - V z 

Vfrutow = (FTRMm*Vfrxtow) + (FfRMfl2*Vfrytow) + FTRMm*Vfrztow) 
Vfrvtow = (FTRMf21 *Vfrxtow) + (FTRM122*Vfry10 w) + FTRMm*Vfrztow) 
Vfrwtow = (FTRMm*Vfrxtow) + (FTRMm*Vfry10 w) + FTRMm*Vfrztow) 

Vfruo = Vfrutow + (Zor* Ur), Vfrvo = Vfrvtow + (Xor* Y f) - (zor* ~f) 
Vfrw0 = Vfrwtow - (Xor* Ur) 

Vf,1 = (Vfruo2 + Vfrvo2 + Vfrw0
2

)
112 

Cvbw = 0.5 P Afxr Vf,? 
Cvbwl = Cvbw Altr 

N 

TPANG = (lxl0-6 + Vfrw0*Vfruo) I 
j(lxl0-6 + Vfrw0*Vfruo)I 

N 

TY ANG= -(lxl0-6 + Vfrvo*Vfruo) I j(lxl0-6 + 
Vfrvo*Vfruo)I 
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y 

y 

TP ANG = Vfrwo I Vfruo 

TY ANG = -(Vfrvo I Vfruo) 



Dfu = ((Cxpro + TPANG (Cxpf,l + TPANG (Cxpf2 + TPANG Cxpf3))) Cvbw) 
+ (TY ANG (Cxyfl +TY ANG (Cxyt2 +TY ANG Cxyf3)) Cvbw) 

Dfv = ((CYyfD +TY ANG (Cyyf,l +TY ANG (CYyf2 +TY ANG CYyf3))) Cvbw) 
+(TY ANG (Cxyfl +TY ANG (Cxyt2 +TY ANG Cxyf3)) Cvbw) + (Y drr* af 

+ Ydyr*Yr )*(Cvbw1Nf,1) 

Dfw = ((Czpro + TPANG (Czpf,l + TPANG (Czpf2 + TPANG Czpf3))) Cvbw) + 

(Zdpr* ~r *Altr*Cvbw1Nf,i) 

Mfgu = -FTRMn3.mfr.g, 
Mfgw = -FTRMm.mfr.g, 
Bfv = FTRM123.Vfr.p.g, 

Mfgv = -FTRMm.mfr.g 
Bfu = FfRMm.Vfr.p.g 
Bfw = FfRMm.Vfr.p.g 

Mfuf = -(Bfv *zor) - (Mfgv *zGr) + (rdr* ~f * Altr*Cvbw1Nf,i) + ((CRyfO + 

TY ANG (CRyfl +TY ANG (CRyf2 +TY ANG CRyf3))) Cvbwi) + (Ttwf*Ytf) -
(Ttvr*ztr) 

Mfvr = -(Bfw *xor) - (Mfgw *xGr) + (Bfu *zor) + (Mfgu *zGr) + (pdr* af * 

Altr*Cvbw1Nf,1) + ((CPpro + TP ANG (CPpn + TP ANG (CPpt2 + TP ANG 
Cppo))) Cvbw1) - (Ttwr*xtr) + (Trur*Ztr) 

Mfwf = (Bfv *xor) + (Mfgv *xGf) + (ydr* Y f * Altr*Cvbw1Nf,i) + ((Cyyro + 

TY ANG (CYyfl +TY ANG (Cyy12-+ TY ANG CYyf3))) Cvbwi) - (T rur*ytf) + 
(T1vr*x1D 

Ffur = Dfu + Mfgu + Bfu - ((Affl5 I Afrss)*Mfvr) + T rur 
Ffvf = Dfv + Mfgv + Bfv - (B21r*Mfur) - (B23r*Mfwr) + T1vf 
Ffwr= Dfw + Mfgw + Bfw - ((Af05 I Afr55)*Mfvr) + Ttwf 

RETURN 
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Subroutine Cable Added Mass 

Cau-1=0.1, Cam-I= 1.0 
CatD-1 = 0.1, CanD-1 = 1.0 

AIIltD-1 = 1;\i CatD-1 P 10-1 n Do} 
Amnn-1 = Y<i Cann-I P 10-1 1t Do-1

2 

START 

Cau = 0.1, Carri= 1.0 

Cau-1 = 0.1, Cam-I= 1.0 

Amti-1 = l,4 Cau-1 P li-1 1t D1-1
2 

AIDti = 1,4 Cali P 11 n D1
2 

Amru-1 = l,4 Caru-1 P 11-l 1t D1_/ 
Amru = l,4 Cam P 11 1t D1

2 

RETURN 

365 

y 

Cau-1 =0 
Cam-I= 0 



Subroutine Inertia Coefficient 

START 

m,11 = 0.5 {Amti-1 CTRM,_1112 + Amt1 CTRM11/ + Amm-1 [1- CTRM;-11/J + Amru 
[1 - CTRM,11

2]} 
m,12 = 0.5 {[Amr1-1 -Amru-1] CTRM,_111 CTRM,_112 +[Arnt, -Amru] CTRM111 

CTRM,!2} 
m,13 = 0.5 { [Amt1-1 - Amm-1] CTRM,_111 CTRM,_113 + [Amu - AmmJ CTRM,11 

CTRM,13} 
m122 = 0.5 {Alllt,-1 CTRM,_11/ + Am11 CTRM11/ + Amm-1 [l -CTRM,_11/J + Amm 

[1 - CTRM,1/]} 
mm = 0.5 { [Alllt,-1 - Amm_iJ CTRM1-112 CTRM,_113 +[Amo,- Amru] CTRM112 

CTRM113} 
mm= 0.5 { AII1t1-1CTRM,_113 2 + Amu CTRM,132 + Amm-1 [1 - CTRM,_13/] + 

Amru [ 1 - CTRM133 
2] } 

N 

m,11 = m,11 + 0.5 {AllltD-1 CTRMn-1112 + Amnn-1 [1- CTRMn-1112]} 
m,12 = m,12 + 0.5 { [AllltD-1 - Amnn.1] CTRMn.111 CTRMn.112} 

m,13 = m,13 + 0.5 { [AllltD.1 - Amnn-1] CTRMn-111 CTRMn-m} 
m122 = m,22 + 0.5 {Amtn-1 CTRMo-11/ + Amno-1 [1 - CTRMn-11/J} 
mm = mm + 0.5 { [AllltD-1 - Amnn.1] CTRMn.112 CTRMn.113} 
mm = mi33 + 0.5 { AllltD.1 CTRMn.113 2 + Amnn-1 [ 1 - CTRMn-133 2]} 

f=f+l 

y 

mli 1 = ffi111 + m, + Illeix + AIIle1x 
m122 = m122 + m, + Ille1y + AIIle,y 
mm = mm + m, + Ille1z + AIIleiz 

RETURN 
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m,11L = (FfRMm*m,11) + (FfRMn2*m,12) + (FTRMm*m,13) 
m,12L = (FTRMt21 *m,11) + (FfRM122*mI12) + (FTRMm*m,13) 
mll3L = (FTRMm *m,11) + (FfRM02*mI12) + (FTRMm*m,13) 
m121L = (FTRMn1*mI21) + (FfRMn2*m122) + (FTRMm*mm) 
m,22L = (FTRMt21*m121) + (FfRM122*m122) + (FTRMm*mm) 
m123L = (FTRMm *m121) + (FfRM02*m122) + (FTRMm*mm) 
m,31L = (FTRMm *ml31) + (FfRMn2*mm) + (FTRMm*mm) 
m,32L = (FTRMt21 *m131) + (FfRM122*mm) + (FTRMm*mm) 
m,33L = (FTRMm *m,31) + (FfRM02*mm) + (FTRMm*mm) 

m,11 = (FTRMm*m,11L) + (FfRMn2*m121L) + (FTRMm*mmL) 
m,12 = (FTRMm*m,12L) + (FfRMn2*m122L) + (FTRMm*mmL) 
m,13 = (FTRMm*m,13L) + (FTRMfl2*mmL) + (FTRMm*m,33L) 
ml21 = (FTRMt21*m,11L) + (FTRM122*mI21L) + (FTRMm*m131L) 
m122 = (FTRMf21 *m112L) + (FTRM122*m122L) + (FTRMm*mmL) 
ill123 = (FTRMf2l*m,13L) + (FfRM122*mmL) + (FTRMm*mmL) 
mm= (FTRMm*m111L) + (FTRM02*m121L) + (FTRMm*mmL) 
mm= (FTRMm*m,12L) + (FTRM02*m122L) + (FTRMm*mmL) 
mm= (FTRMm*m,13L) + (FfRM02*mmL) + (FTRMm*mmL) 

m,11 = mi11 +Am, 
m,13 = m,13 + Atl3, 

m122 = m122 + Af22, 
mi31 = m131 + Am, 
mm = mm + Af33, 
m,12 = m,12 + m,_1> 

m,12 = m112 + An2, 
m121 = ml21 + Af21> 
m,23 = m,23 + Af23 
m,32 = m,32 + Ao2, 
m,11 = m111 + m1-1>. 
mll3 = m113 + m,_1 

Subroutine Cable Drag 

START 

Fd1x' = -Y2 Cup D, l, VSrix' JVSnx'I 
Fct,y' = -Y2 Cru p D, 11 VSny' JVSny·J 
Fruz' = -Y2 Cru p D, 11 VSnz' JVSnz·J 

Fct1x = CTRM,11.Fct1x' + CTRMI21.Fdiy' + CTRMm.Fct1z' 
Fctiy = CTRM112.Fctix' + CTRM122.Fctiy' + CTRMm.Fctiz' 
Fd1z = CTRM,13.Fd1x' + CTRM,33.Fruz' 

RETURN 
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y 

an =j 

Subroutine Cable Velocity 

START 

VSnx = Yz [(X.1 - Vx) + (xan - Vx)] 

VSny = Yz[( Y 1 - Vy)+ (Yan - Vy)] 

VSnz = Yz [(Z
1 

- Vz) +(Zan - Vz)] 

N 

an= i+l 

VSnx' = CTRM111·VSnx + CTRMi12.VSny + CTRM113·VSnz 
VSny' = CTRM121.VSnx + CTRM122.VSny 

' VSnz' = CTRM131·VSnx + CTRM132.VSny + CTRMm.VSnz 

RETURN 

Subroutine Node Acceleration 

START 

x, ==(-Px1 T,'.:jl +Rx, T,t+I +Sx,)/(i'.1t)2 

Y1 =(-Py, Tl'.:j1 + Ry, Tit+! +Sy.) I (L1t) 2 

z, = (-PZI T,~1 + R,, T,t+l +S,J I (..M) 

RETURN 
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y 

.. = .. - (P T t+I ) I (L1t) 2 
X, X, Dx D-1 

Y1 =y, -(Poy Tb-:.11)/(L1t) 2 

z, == z, - (P0 , Tb"'.!1) I (L1t) 2 



Subroutine Node Coordinate 

START 

N 

t+l t+l t+l xstore1 = x1 , ystore1 = y1 , zstore1 = Z1 

x:+1 =2.5.x: -2.x:-1 +0.5.xstore, +0.5.[x,.(6.1) 2
] 

y:+1 =2.5.y:-2.y:-1 +0.5.ystore1 +0.5.[y 1 .(~t) 2 ] 

zt1 = 2.5.z: -2.z:-1 +0.5.zstore1 + 0.5.[z1 .(~t)
2 ] 

RETURN 

Subroutine Node Velocity 

START 

N 

t+l t+l t+l xstore1 = X1 , ystorei = Y1 , zstore1 = z1 

X. 1 =[ll.x:+1 -l8.x: +9.x:-1 +2.xstore1 ]/(6.~t) 

y 1 = [l l.y:+1 -18.y: + 9.y:-1 + 2.ystore1 ]/ (6.~t) 

zl = [11.z:+l -18.z: + 9.z:-l + 2.zstorei ]/ (6.~t) 

RETURN 

369 



Subroutine Equation Coefficient 

START 

y 

Fmx = Yi Fd1x + Yi Fru-lx + Yi FdD-lx - Feix 
F10y = Yi Fct1y +Yi Fct1-1y + Y2 FcID-ly - Fe1y 

Fmx =Yi Fd1x - Feix 
F1oy =Vi Fdiy - Feiy 
Fmz = Y2 Fd1z - Fe1z - W, 

Fioz = Y2 Fdiz - Yi Fd1-lz +Yi FdD-lx - Fe1z - W, 

Fiox = Y2 Fdix + Y2 Fdi-lx - Fe1x 
Fmy = Y2 Fd1y + Yi Fd1-ly - Feiy 
Fioz = Y2 Fd1z - Yi Fdi-lz - Fe1z - W, 

y 

I= (mill.mm) - (m,12.mi2J), J =(mm.mm) - (mm.mm) 
K, = (miJ3.m122) - (m,12.mm), K1 = (mi3J.m122) - (mm.mm) 
DEN= (I .J) - (K1.K2) 
L = (M)2 . I I DEN, M = (~t)2 • JI DEN 
N 1 = (M)2

• K 1 I DEN, N1 = (~t)2 • K1! DEN 

CTx1-1 = CTRMi-11i. CTyi-1 = CTRM1-112 
CTzi-1 = CTRM1-m, CTxi = CTRM,u 

CTyi = CTRM112, CTzi = CTRM,13 

f= f +1 

CTu = (FTRMm*CTXI) + (FTRMfl2*CTy1) + (FTRMfl3*CTz1) 
CTv = (FTRMf21*CTx,) + (FTRMf22*CTyi) + (FTRMm*CTz,) 
CTw = (FTRMm*CTXI) + (FTRMf32*CTy1) + (FTRMm*CTzi) 
CTx, = CTu. CTy1 = CTv, CTzi = CTw 
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CTx1-l = 0, CTy1-l = 0, CTz1-l = 0 

CTu-1 = (FfRMm*CTxi-1) + (FfRMn2*CTy1-1) + (FfRMm*CTz1-1) 
CTv-1 = (FfRMm*CTx1-1) + (FfRM122*CTy1-1) + (FfRMm*CTz1-1) 
CTw-1 = (FfRMm*CTx1-1) + (FfRMm*CTy1-1) + (FTRMf33*CTz1-1) 
CTxi-1 = CTu-1' CTy1-l = CTv-1' CTz1-l = CTw-1 

Px1 = m122.M.CTx1-1 - m122.N1.CTz1-1 + (mi32.N1 - m112.M).CTyi-1 
Pyie = { (~t)2 - (m121.m132.N1 + m112.m123.N2 - m112.mm.M - m123.m132.L) I m122}.CTy1-1 
Py1 = (mm.N2 - m121.M).CTXJ-1 +(mm.Ni - mm.L).CTzi-1 + Py1e 
Pz1 = m122.L.CTz1-1 - m122.N2.CTXJ-1 + (m112·N2 - mm.L).CTy1-1 
Rx1 = m122.M.CTx1 - Illjzz.N1.CTz1 +(mm.Ni - m12.M).CTy1 
Ry1e = { (~t)2 - (m121.m132.N1 + m112.m123.N2 - m112.m121·M - m123.m132.L) I m122}.CTy1 
Ry1 = (mm.N2 - mm.M).CTXJ + (m121.N1 - mm.L).CTz1 + Ryie 
Rz1 = m122.L.CTz1 - m122.N2.CTx1 + (m112.N2 - mm.L).CTy1 

y 

f = f +1 

RGx = (FfRMm *Rx1) + (FfRMm *Ry1) + (FfRMm *Rz1) 
RGy = (FfRMn2*RXl) + (FfRM122*Ry1) + (FfRMm*RzD 
RGz = (FfRMm*RXl) + (FTRMm*Ry1) + (FTRMf33*Rz1) 

Rx, = RGx. Rvi = RGv. R,, = RG, 
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PGx = (FfRMm*P"') + (FfRMm*Py1) + (FTRMm*Pz1) 
PGy = (FfRMn2*Px1) + (FfRMm*Py.) + (FTRMf32*Pz1) 
PGz = (FfRMfl3*Px1) + (FfRMm*Py1) + (FfRMm*Pz1) 
Pxi = PGx, Py1 = PGy. Pz1 = PGz 

N 

Pox= mJ2z.M.CTRMo-111 - mJ22.N1.CTRMo-113 + (mJ32.N1 
- mJ12.M).CTRMo.112 

Poye = { (~t)2 - (mj21.mJ32.N1 + mJ12·mJ23.N2 - mJ12·mJ21-M -
mJ23.mJ32.L).CTRMo.112}/ mi22 

Poy = (mJ23.N2 - mJ21.M).CTRMo.111 + (mJ21.N1 -
mJ23.L).CTRMo.113 + Poye 

Poz = mJ22.L.CTRMo-113 - mJ22.N2.CTRMo.111 + (mJ12.N2 
- mJ32.L).CTRMo.112 

f = f +1 

F0u = (FfRMm*F10x) + (FTRMn2*F10y) + (FfRMfl3*F10z) 
Fov = (FfRMm *F10x) + (FfRMm*F10y) + (FfRMm*F10z) 
Fow = (FfRMf31 *F1ox) + (FfRMf32 *F10y) +-(FfRMm *F10z) 
F10x = Fou + Ffuf• F10y = Fov + Ffvf, F10z = Fow + Ffwf 

S"' = m122.M.F1ox - m122.N1.F10z + (m132.N1 - m.12.M).F10y 
Syie = {(~t)2 -(m121.mm.N1 + m112.m123.N2 - m.12.mm.M- m123.m132.L) I 

m122}.F10y 
Syi = (m123.N2 - m121.M).Frox + (m121.N1 - mi23.L).F10z + Syie 
Sz1 = m122.L.F10z - m122.N2.F10x + (m.12.N2 - mm.L).F10y 
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f= f +1 

FGou = (FTRMm *F10x) + (FTRMf21 *F1oy) + (FfRMf31 *F10z) 
FGov = (FfRMfl2*Fiox) + (FTRMf22*F10y) + (FfRMm*F1oz) 
FG0 w = (FTRMm*F10x) + (FfRMf23*F10y) + (FfRMm*F10z) 
F10x = FGou. F1oy = FGov> F10z = FGow 

RETURN 

Subroutine Node Drag 

START 

de~2(3:~0 r 
Ae = nxde 

4 

F eix = 1h CX1 P Ae Veqnt ( X 1 - V x) 

Feiy = 1h Cy1 p Ae Veqnt (y1 - Vy) 

F eiz = 1h Cz, p Ae V eqnt ( Z 1 - V z) 

RETURN 
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Subroutine Fish Angular Velocity Angle 

START 

N 

a.storer= art-2, f3storer = f3t2, ystorer = yt2 

aj+1 =2.5.a} -2.at1 +0.5.astorer +0.5.[ar.(~t) 2 ] 

f3t1 =2.5.f3} -2.f3t1 +0.5.f3storer +0.5.[~r-C~t) 2 ] 

yj+1 =2.5.y} -2.yt1 +0.5.ystorer +0.5.[Yr·(~t) 2 ] 

Ur =[11.aj+1 -18.a} +9.at1 +2.astorer]/(6.~t) 

~r =[11.f3j+1 -18.f3} +9.f3t1 +2.f3storer]/(6.~t) 

Yr =[11.y}+r -18.y} +9.yt1 +2.ystorer]/(6.~t) 

RETURN 

Subroutine Fish Angular Acceleration 

START 

uaclf = (FI'RMm* X. 1 ) + (Ff~m* y.) + (FfRMm* zc.) 

vaclf = (FfRMf21* xl) + (FfRMf22* Y,) + (FfRMf23* zc,) 

waclf = (FI'RMm * x 
1 

) + (FI'RMm * y 1 ) + (FI'RMm * z ci ) 

Aff55 

ii =-1-{Mf [1+ Afr46.Aflr.Afr64]-[Af .Afl .Mf ] 
1-'r Af ur Af r46 r wr 

r44 r44 
-[Af r42 -Afr46 .Aflr .Bflr]vaclf} 

Yr =Aflr [Mfwr - Afr64 .Mfur -Bflr.vaclf] 
Afr44 

RETURN 
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Subroutine Segment Angle Horizontal 

START 

y N 

an =j an= i+l 

NUM"' = yt+1 _ yt+1 DEN"'= x1+1 _ xt+1 
'f' an 1 ' '+' an 1 

<1>1+1 =Tan-'(NUM<j>) 
I DEN<j> 

N 

<!>/+' = 2 n + <!>1 t+1 

Subroutine Segment Angle Vertical 

START 

RETURN 
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Subroutine Correct Tension 

START 

i = cab beg( c) 

y 

E =P .(x~+1 _xt+1)+P (y~+1 _y~+1)+P.( ~tI -zt+1) 
I Xl J I YI J I Zl Z J I 

F = (R + p )(x ~+1_x1+1) + (R + p )(y1+1 -y1+1) 1 X1 Dx J 1 yi Dy J 1 

212 T1+1 
+(R +P )(z1+1-z1+1)+-·1-(1+-' -) 

z1 Dz J 1 A,.E A,.E 

G1 =0 

C =-P ( 1+1 _x1+1)-P ( 1+1 _y1+1)-P (z1+1 _z1+1) 
I XJ X J 1 YJ Y J I ZJ J I 

C2 =RxJ(x~+1-x:+
1 )+Ry/Y~+1-y:+1 )+Rz/z~+l _z:+1) 

T1+1 
ER, =(x~+1 _x:+1)2 +(y~+1 _y:+1)2 +(z~+1 _z:+1)2 -[1;.(l+-1-)2] 

A,.E 

E P ( t+l t+l) p ( t+l t+l) p ( t+l t+l) I = Xl x,+l - x, + YI Y1+1 -y, + zi z,+1 - z, 

Fi =(RX! +PX1+1)(x:::-x:+1)+(Ry1 +Pyi+1)(y:::-y:+
1
) 

212 T1+1 
t+J t+J "1 1 +(RZl +Pz1+l)(zi+l -zl )+--(1+--) 

A,.E Ai.E 

G R ( 1+1 1+1) R ( 1+1 1+1) R ( 1+1 1+1) 1 = XJ+! xl+l - x, + yi+l Y1+1 -yi + z1+1 Zi+l - z, 

T1+1 
ER =(x1+1_x1+1)2+(y1+1_ 1+1)2+( 1+1_z~+1)2-[l2(l+-1-)2] 

1 t+l 1 1+! Y1 Z1+l 1 1. A,.E 

y 

D P ( t+l t+l) 
2 = Dx X1+l - X, + D P ( t+I t+l) I=- Dx X1+l - X1 -

P ( t+l t+I) p ( t+l t+l) 
Dy Yi+l -yi + Dz zl+l - zi P ( t+l t+l) p ( t+l t+l) Dy Y1+1 -y1 - oz z1+1 -z1 
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N 

i = i + 1 

i = i + 1 

µcabbeg(c) = 1.0 
llcabbeg(c) = 0.0 

µcabbeg(c)-1 = 0.0 
llcabbeg(c)-1 = 0.0 

i = cabbeg(c) + 1 

N 

ce = cabend( c) 

TOP= Fce-1 ·'llce-l - Ece-1 ·'llce-2 - ERce-1 

BOT = Ece-1 .µce-2 - Fee-! .µce-1 

8T = TOP Terrormax = 0 
ce BOT' 

i = cabbeg (c) 
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i = i + 1 

N 

T T t+l 
t = - ce 

RETURN 

Subroutine Tail Tension 

START 

ce = cabend(c-1)-1 
cb = cabbeg(c) 

y 

T T C "' 1+1 C 1+1 T T s· "' 1+1 C 1+1 
tx = t OS'l'ce OS\Jf ce , ty = t lil'l'ce OS\Jf ce , 

T tuf = (FfRMn 1 *Tix) + (FfRMt12 *T1y) + (FfRMm *T 1z) 
T tvt = CFTRMm *Tix) + (FfRMf22*T1y) + (FfRMm*T 1z) 
Tiwt= (FTRM01*T1x) + (FTRM02*T1y) + (FfRM03*T1z) 

RETURN 
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Tstore = T/+1 

T1+1 = T1+1 + 8T 
I I I 

Terror= I T/+1 
- Tstorel 

y 

Terrormax = Terror 

T _ T 1+1 
t - - 0 

T T S. t+l 
tz = t lil\Jf ce 



i = i + 1 

Subroutine Convert Matrix 

( START ) .. 
GN =j -D-2 

i = cabbeg(c) +1 

FU = (-Fi-1 I -Fi-l)*Ei, 
ERJ = -((-ERi-1 I -Fi-l)*Ei), 
Fi= -(-Fi - GU), 

N 

G 1J = (Gi-1 I -Fi-l)*Ei 
Ei = Ei -FU 
ER1 = -(-ER1 - (-ERJ)) 

i = j - 1 

ERJ = -((-ERD-1 I -FD-1)*EE) 
G3J = (C2 I -FD-1)*EE, 
FU = -(-FD-1 I -FD-1)*EE, 

y 

G2J = (C1 I -FD-1)*EE 
EE =EE - (-FU) 

y 

ERi =-(-ER, - (-ERJ)) 
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N y 

Ei = Ei-G2J 
F1 = -( -F1 - G3J) 

F1 = -( -F1) - G2J) 
G1 =G1 -G3J 

i = i + 1 

i = i + 1 

N 

0---------· 

y 

y 

GMNUMB = j-2 - i 
GM = GNGMNUMB 

ElJ = (E1 I G1)*GM, FlJ =-(-Fi I G1)*GM) 
GlJ = (GJ Gi%)*GM, ERJ =-((-ER.I G1)*GM) 

380 

y 



GMl =GNaN 

C1 =GMl 

GM2=GN1 
GMl =C1 

GN1 =GM2 
C1 =GMl 

y 

N 

GO SUB ELIMINATE C 

F0 _1 = GM3, Go.1 = GM2 

y 

y 

GM3=Gn.1 

GM2=GNaN 
GMl =GNaN-1 

GO SUB ELIMINATE C 

Go.1 =GM3 

GNaN=GM2 
GNGN-1 =GMl 
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y 

N 

GMl =C1 

GNaN=GMl 

GM2=C1 
GMl =C2 

C1 =GM2 
C2=GM1 



GM3=GN2 
GM2=GN1 
GMl =C1 

GO SUB 
ELIMINATEC 

GN2=GM3 
GN1=GM2 
C1=GMl 

i = i - 1 

y 

NM=j-i-2 
GM3 =GNNM+2 
GM2=GNNM+1 
GMl#=GNNM 

GO SUB 
ELIMINATEC 

GNNM+2=GM3 
GNNM+l =GM2 
GNNM=GMl 

( ___ RE_TURN __ ) 

Subroutine Eliminate C 

START 

GMl = GMl -GlJ 
GM2 = GM2 - (-FlJ) 
GM3 = GM3 - ElJ 
ERo-1 = -(-ERo-1 - (-ERJ)) 

RETURN 
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GM3=GN1 
GM2=C1 
GMl#=C2 

GO SUB 
ELIMINATEC 

GN1=GM3 
C1=GM2 
C2=GMl 



Subroutine Increment Values 

START 

n,~+2 = n,t+1 11 rt+2= 11 rt+1 Tt+2 = Tt+1 
'f1 'f'1 ' 'ft 'ft ' 1 I 

y 

i = i+l xt+2 = xt+l + ~tx 
I I I 

Y ~+2 = yt+l + ~t y" 
I I I 

z~+2 =zt+i +~tz 
I I I 

f = f+l 

RETURN 
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x~+2 = x t+1 
I I 

Y
t+2 - t+l 
I -y, 

zt+2 = zt+1 
I I 



i = i+l 

f = f+l 

Subroutine Free Array 

x1 =x1+1 
I I ' 

0 t 
x, =x,, 

t-1 xstore, = x, , 

N 

a1 -a1+1 
r - r ' 

a;= at
1
, 

0 t 
ar = ar, 

t-1 
astorer = ar ' 

START 

YI= yt+l 
I I ' 

,..2 = n..t+l 
'+'1 '+'1 ' 

0 t 
Y, =y,' 

t-1 ystore, = y, , 

x2=x1+2 
I I 

Y
2 - 1+2 
I -Y, 

z2 = z1+2 
I I 

~I_ ~t+l 
r - r ' 

~2 - ~t+l r - r ' 

~~ = ~~' 
~ ~t-1 storer= r , 

RETURN 
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z1 = z1+1 
I I 

wf=w'.+
1 

zo = zt 
I I 

t-1 zstore, = z, 

y 

yl -yt+l r - r 
y2 -yt+l r - r 

0 t 
Yr= Yr 

t-1 ystorer =Yr 

x 2 = x t+l 
I I 

y; = Y,1+1 

z2 = z1+1 
I I 



Multi Tow in Parallel 

For the multi-tow in parallel, the program is slightly different to that explained above. 
However, as the differences are small, only the matrix conversion subroutine is given 
here. The input data should include the number of junctions and the node positions of 
these junctions. In Subroutine Eliminate C, simply replace the subscript "D-1" with 
"lastnode( a)". The additional variables are: 

a 
firstnode(a) 
juntno(a) 
lastnode(a) 
nooftows 

variable representing each parallel tow 
first node of the parallel tow "a" 
node number of the junction in parallel tow "a" 
last node of the parallel tow "a" 
number of cable systems in the tow configuration 

Subroutine Convert Matrix - Multi Tow 

START 

a=l 

0----
N y 

firstnode(a) = towend(a)+l 
lastnode(a) = towend(a+ 1)-1 

firstnode(a) = towend(a)+ 1 
lastnode(a) = D-1 

i = i + 1 

i = firstnode(a) 

FlJ = (-Fi-1 / -Fi-l)*Ei, 
ERJ = -((-ERi-1 /-Fi-l)*Ei), 
Fi= -(-Fi - GlJ), 

GlJ = (Gi-1 / -Fi-l)*Ei 
Ei = Ei -FlJ 
ERI = -(-ER1 - (-ERJ)) 

i = juntno(a)-1 

N y 
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ERJ = -((-ER1astnode(a) / -F1astnode(ai)*EE) 
G3J = (C2a / -F1astnode(ai)*EE, G2J = (C1a / -F1astnode(ai)*EE 
FU = -(-F1astnode(a) I -F1astnode(a))*EE, EE= EE - (-FU) 

N 

D2a=EE 

N 

Ei = Ei-G2J 
FI = -(-F1 - G3J) 

0~ i=i+l 

ER1 = -(-ER1 - (-ERJ)) 

y 

D1a=EE 

FI = -(-Fi) - G2J) 
G1 = G1 -G3J 

a= nooftows 

0------.i 

a=a+l 

GN = juntno(a) - (lastnode(a)+ 1) - 2 
i = 1 

i = i + 1 

N 

i = juntno(a) - 1 

0---.i;l 
~ 
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• 

GMNUMB = juntno(a)-2 - i 
GM= GNGMNUMB 

GM=C2a 

EU = (E1 I GD*GM, FU = -( -F1 I Gi)*GM) 
GU= (G1 I G1%)*GM, ERJ = -((-ERJ Gi)*GM) 

N 

GM2=C1a 
GMl = C2a 

GN1=GM2 
C1.=GM1 

y 

GM3=Gn_, GM3 = F1astnode(J) 
GM2 = G1o.,nnnpfo\ 

y 

GM2=GNGN 
GMl =GNGN-1 

GO SUB ELIMINATE C 
G1astnode(a) = GM3 

GNGN=GM2 
GNGN-1 =GMl 
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GM2=GN1 
GMl =C1a 

C1.=GM2 
C2a= GMl 



N y 

GMl =GNGN GMl = C1a 

GO SUB ELIMINATE C 
F - GM3 G1astnode(a) = GM2 lastnode(a) - ' 

C1.=GM1 

GM3=GN2 
GM2=GN1 
GMl =C1a 
GO SUB 
ELIMINATEC 
GN2=GM3 
GN1 =GM2 
C1.=GM1 

i = i - 1 

y 

y 

NM= juntno(a)-i-2 
GM3=GNNM+2 
GM2=GNNM+l 
GMl#=GNNM 
GO SUB 
ELIMINATEC 
GNNM+2=GM3 
GNNM+l =GM2 
GNNM=GMl 
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N 

GNGN=GMl 

GM3=GN1 
GM2=C1a 
GMl# = C2a 
GO SUB 
ELIMINATEC 
GN1 =GM3 
C1.=GM2 
C2a = GMl 

RETURN 

a= a-1 


