
0342P 

• 

BOUNTY GOLD MINE: DEFORMATION IIlSTORY 

AND THE DEVELOPMENT OF ORE FLUID 

PATHWAYS WITIDN AN IRON FORMATION HOST, 

WESTERN AUSTRALIA 

( 

by Robert A. Rutherford 

This thesis is submitted as partial fulfillment of the 

Degree of Master in Economic Geology, University of Tasmania 



ABSTRACT 

The Bounty orebody has a steep plunge and is bound within strata parallel shear zones 

which are developed in an iron formation horizon. A footwall ultramafic volcanic 

sequence and a hanging wall gabbro bound the mineralized iron formation which dips 

steeply west. Shearing occurred during deformation event Dn and a peak contact 

metamorphic grade of lower amphibolite fades. 

Deformation in pre-Dn times was dominated by strong east-west directed 

compression which resulted in complex, upright folding and thrusting of the 

supracrustal sequence. With cessation or relaxation of the compression batholiths, 

plutons and porphyritic stocks, dykes and sills of granite to granodiorite composition 

intruded the folded greenstone sequence and broad contact metamorphic aureoles 

were formed. A period of vertically oriented, maximum compressive stress (Dn) 

succeeded the intrusive event. Resulting strain was focused along the footwall and 

hanging wall boundaries of the iron formation and shear zones with a normal 

movement sense developed. The hanging wall boundary of the iron formation, which 

was locally rotated west of north during intrusion of a pre-Dn pluton, underwent down 

dip or steep oblique shear movement with a normal sense. Sheared lithological 

boundaries striking about 4° to 8° west of north were dilated, developing ore fluid 

pathways with a steep plunge. 

The ore fluid pathways are controlled by the rheological contrast and original shape of 

the iron formations hanging wall boundary during Dn. The original shape was 

influenced by intrusion of a pre-Dn pluton proximal to the deposit. 
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INTRODUCTION 

The Bounty deposit is an Archaean gold-lode hosted within an amphibolite facies 

greenstone sequence. The orebody is stratabound within a sheared iron formation, 

steep plunging and contains greater than 1 million ounces of gold. Since the discovery 

of mineralization in 1986, a proved and probable reserve of 5.3 million tonnes at 

7. lg/t gold has been outlined to a depth of about 900 metres below surface. The 

deposit is open at depth. 

The mine is located 360 kilometres east of Perth in the Forrestania Greenstone Belt 

(Chin et al., 1984), Yilgarn Block, Western Australia (Fig. 1 and Fig. 2). This belt 

forms the southern extension to the Southern Cross Greenstone Belt (Gee, 1979) which 

also contains Archaean gold-lodes hosted in amphibolite facies rocks (Fig. 2). These 

deposits in the Southern Cross Belt are described as high-temperature Archaean gold 

skarns formed during contact metamorphic conditions of amphibolite facies (Mueller, 

1988; Mueller, 1991; Mueller et al., 1991; Mueller and Groves, 1991). Unlike the 

Sou~hern Cross deposits, the Bounty deposit has no significant tectonic events 

overprinting mineralization which has enabled it to be confidently constrained within 

the regional tectonic framework. 

This study follows Caswell's (1989) initial petrographic documentation and 

geochemical study of mineralization at the Bounty Gold Mine, and aims to define 

structural elements controlling gold mineralization within the deposit. To this end, 

the study documents the geological setting, igneous history, metamorphic history, 

vein history and gold mineralization with reference to deformation history on both 

regional and mine scales. 



INDIAN 

A 

B 

Figure 1: 

-2-

LOCATION PLAN PRINCIPAL PROJECTS WEST AUSTRALIA 

' ' 

( 
Narembean 

< .. _______ ~ Hydon 

/;~ 
,' 
Kul•n 

Soulhern Ctoss 

Regional Location 

SCALE 

---

LOCALITY DIAGRAM 

Enlargement of shaded area 
in Figure 1A 

Location of the Bounty Gold Mine. Adapted from Aztec Mining Company 
Limited unpublished reports. 



Figure 2: 

-3-

L(G€N0 

A dome II• tc Mol•C 6 u1t1omof1c 10C .. '\ 

GN Gl'\Cl'l.10 So 

GO Gro no (hO<llc So 

a 20 40 .. m 

G 

GN 

GN 

GN 

GN 

G 

.. 

Regional geology and location of gold mines. Adapted from Aztec Mining 
Company Limited unpublished reports. 



-4-

METHODOLOGY 

In this study, a regional geological map and colour contoured aeromagnetic data are 

compiled to highlight the regional tectono-thermal history and geological setting of 

the Bounty deposit. 

On the mine scale, rock types, fold styles and deformation fabrics were mapped from 

core through a typical cross-section of the deposit, section 34920N utilizing hole 

numbers MD02, MD12, MD24, MD41, MD44, MD71, MD71A and MD71B. Data was 

correlated with gold grade and modal sulphide content (visual estimate) and allied 

with detailed microstructural observations of selected samples. Orientations of 

bedding, folds, and deformation fabrics were measured from available oriented core 

(hole numbers MD77, MD78, MD79, MD84, MD85A, MD88 and MD88A) and some pit 

measurements. Few pit measurements were collected as structures of interest are 

generally associated within or adjacent to magnetic lithologies. Core structures were 

measured in their real orientations with assistance of an orientation jig. 

Also in this study, the distribution of gold within the main mineralized structure is 

compared to changes in its form and orientation. 

REGIONAL GEOLOGICAL SETTING 

Regional geological mapping (Chin et al., 1984; Martyn, 1988) have shown the 

Forrestania Greenstone Belt as an asymmetric regional syncline with its axis 

interpreted to plunge gently north (Fig. 2). Outer limbs of mafic and ultramafic 

volcanic stratigraphy with intercalated iron formations and cherts are folded about a 

core of pelitic and psammitic sediments. Stratigraphy dips steeply (70-90°) west on 

the eastern limb and varies between 30° and 80° east on the western limb. 

Ultramafic volcanics associated with nickel sulfides occur on both limbs and inferred 

facing from their stratigraphy (Porter and McKay, 1981) suggests the synform is 

synclinal. A regional bedding parallel foliation formed during development of the 

syncline. 
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More recently, Davies (1990) and Rutherford (1991, this edition) have defined 

numerous broad ductile deformation zones (up to about lOOm wide) which trend 

parallel to the axis of the interpreted syncline and are continuous over many tens of 

kilometres (Fig. 3, see page 74). The deformation zones occur subparallel to bedding, 

locally truncating it and some regional-scale upright fold structures (e.g. 

Mt Holland). They are characterized by a strongly developed foliation, down-dip 

elongation lineations with some thrust movement vectors reported (Davies, 1990). 

These structures, the complex upright fold structures and the dominant bedding 

parallel fabrics are interpreted to have developed during a regional period of strong 

east-west directed compression (Davies, 1990). 

Massive batholiths, plutons and porphyritic stocks of granite-granodiorite 

composition, generally with a high magnetic susceptibility, intrude the syncline 

forming ovoid dome structures (Fig. 3 and Fig. 4, see pages 74 and 75 respectively). 

Similar granites occur along the margins of the Forrestania Greenstone Belt, defining 

its cuspate shaped boundary, and intrude along the major ductile deformation zones 

(Fig. 3). This suite of intrusives have deformed margins and are described by Davies 

(1990) as syntectonic with respect to the east-west directed compression. 

Broad contact metamorphic aureoles up to medium-high grade (upper amphibolite 

facies) surround the syntectonic batholiths in the Southern Cross and Forrestania 

Greenstone Belts (Ahmat, 1986; Mueller, 1988). The broadness of the aureoles is the 

result of the relatively high ambient temperature of the greenstones at the time of 

emplacement (Mueller et al., 1991, Fig. 5). Regional metamorphism, probably 

synchronous with folding of the greenstone sequence, may have taken place at 

conditions of very low (prehnite-pumpellyite facies) to low metamorphic grade 

(greenschist facies - Mueller, 1988; Mueller et al., 1991). 

East-northeast trending fracture zones cut across the greenstone belt and are 

intruded with Proterozoic dolerite and gabbro. 
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Generalized map of the Southern Cross area showing the distribution of 
metamorphic grade within the greenstone belt (modified from Mueller et 
al., 1991; after Ahmat, 1986) relative to the contacts of the granitoid 
batholiths (e.g. Ghooli Dome). Metamorphic nomenclature follows 
Winkler (1979). The metamorphic P-T data are from (A) Gale and Klein 
(1981); (B) Blight and Barley (1981) and Ahmat (1986); (C) Porter and 
McKay (1981); (D) Caswell (1989). Granodiorite-hosted Aw-Mo-W 
deposits: Edna May (EM). Greenstone-hosted gold skarn deposits: 
Corinthian (CO), Copperhead (CP), Edward's Find (EF), Fraser's (FR), 
Great Victoria (GV), Lake Seabrook (LS), Marvel Loch (ML), Nevoria 
(NV). Greenstone-hosted skarn-like gold deposit: Bounty (BY). The inset 
map of Western Australia shows the location of the Southern Cross area 
in the Yilgarn Block. 
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MINE GEOLOGY AND STRUCTURE 

LOCAL GEOLOGICAL SETTING 

Stratigraphy 

The Bounty gold deposit is located within greenstones on the eastern limb of the 

interpreted regional syncline which dip between 70° and 90° west. 

Oldest greenstone rocks occur along the eastern margin of the greenstone belt and 

consist of a thick pile of iron tholeiitic basalts and dolerites with minor high-Mg 

basalt flows and exhalitive sediment horizons (Fig. 3). This sequence forms the 

stratigraphic footwall to a predominantly ultramafic volcanic sequence referred to as 

the Bounty Sequence (Davies, 1990). 

The Bounty Sequence is about 600m thick and has been mapped from an area south of 

Parker Dome south to Hatters Hill (Fig. 2 and Fig. 3). Volcanic rocks within the 

Bounty Sequence include komatiitic peridotites, komatiitic basalts and rare high-Mg 

basalts·. Numerous intercalated cherts, iron formations and pelites of variable 

thickness and lateral continuity are also present. Gross stratigraphic cyclicity of the 

ul tramafic sequence (basal koma tii tic peridoti te with nickel-bearing sulfides through 

komatiitic basalts, high-magnesium basalts overlain by exhalitive sediment) indicate a 

westerly younging direction (Porter and McKay, 1981; Martyn, 1988). 

Overlying the Bounty Sequence is a thick pile of high-Mg basalts and komatiitic 

basalts (Fig. 3). Volcanics exhibit gabbroic textures, variolitic textures, spinifex 

textures and pillow structures. Exhalative sediment horizons of variable strike length 

are a minor component. 

Pelitic and psammitic sediments with intercalated horizons of iron formation occur 

within the regional synclinal axis and represent the youngest greenstone stratigraphy 

(Fig. 3). 
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Tectono-Thermal History 

During the period of strong east-west directed compression (Davies, 1990) a bedding 

parallel foliation, upright, gently plunging folds and regional-scale ductile 

deformation zones and thrusts developed in the area. With cessation or relaxation of 

the compression, syntectonic plutons with broad contact metamorphic aureoles and 

high magnetic susceptibilities were intruded. They occur along the eastern margin of 

the belt, dome sediments located within the central core and intrude as stocks and 

dykes along the regional ductile deformation zones (Fig. 3 and Fig. 4). Bounty 

Sequence in the vicinity of the Bounty Mine was rotated west of north during and as 

the result of emplacement of a syntectonic pluton (Fig. 3 and Fig. 4). The porphyritic 

stocks and dykes, and regional plutons in the area have deformed margins indicating 

that they were affected by strain which post-dated the regional east-west directed 

compression. 

Mineral assemblages from basic rocks southwest and southeast of the Bounty deposit 

reflect a peak contact metamorphic grade of transitional amphibolite to lower 

amphibolite facies. These assemblages are hornblende - plagioclase and actinolite -

plagioclase - epidote (minor) respectively (Turner, 1981 ). Also characteristic of 

amphibolite facies are iron formation assemblages of grunerite - quartz - magnetite 

in the Bounty Sequence, pelitic assemblages of biotite - garnet occurring within the 

Bounty Horizon, south of the deposit, and andalusite - biotite - white mica within the 

central core of sediments (Binns et al., 1976; Ahmat, 1984). Geothermometry on 

biotite - garnet assemblages from pelitic beds in the Bounty Horizon, located within 

the deposit gave a peak metamorphic temperature of 560°C ± 50°C (Caswell, 1989; 

Fig. 5). 

Regional fracture zones and faults, with retrograde mineral assemblages trend in a 

northwest direction. They occur over lengths of about 1-5 kilometres with some 

continuous from the greenstones across the boundary with the syntectonic plutons. 
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Graphic textured granites and pegmatites containing muscovite or biotite intrude as 

flat dipping sheets or vertical dykes along the regional ductile deformation zones, the 

northwest trending faults and other crustal weaknesses (Fig. 3). Schorl-rich, 

spodumene-rich and muscovite-rich pegmatites are observed. Rare rubellite-rich 

varieties have been mined (Camp No Name rubellite prospect). East-northeast 

trending fracture zones intruded by Proterozoic dolerite and gabbro cut across the 

pegmatites and the greenstone belt (Fig. 3 and Fig. 4). 

MINE SEQUENCE GEOLOGY 

The Bounty orebody is stratabound within a sheared iron formation referred to as the 

Bounty Horizon which dips steeply west. The Bounty Horizon marks the top of the 

Bounty Sequence and is the westernmost exhalitive sediment horizon. Footwall 

komatiite peridotites and komatiite basalts of the Bounty Sequence and a hanging wall 

gabbro bound the mineralized Horizon (Fig. 3 and Fig. 6, see pages 74 and 76 

respectively). 

Porphyritic intrusives, graphic textured pegmatites and Proterozoic dykes intrude the 

ore environment (see section on intrusives). A Proterozoic dyke, referred to as the 

Binneringie Dyke, cuts across the Bounty deposit. The dyke is about 250 metres wide, 

subvertically dipping and separates the Main Bounty lode from the smaller North 

Bounty lode (Fig. 3). Archaean stratigraphy is continuous across the dyke. 

Footwall Komatiitic Volcanics 

Footwall komatiitic volcanic rocks adjacent the Bounty Horizon vary in composition 

from basaltic to peridotitic. Komatiitic basalts may be foliated, but generally 

comprise medium-grained, pale-green coloured actinolite ± biotite with an acicular, 

radiating texture. Plagioclase abundance is variable but generally minor. Komatiitic 

peridotites are fine-grained to medium-grained amphibole - serpentine - magnetite± 

chlorite ± talc rocks. Spinifex textures are common throughout with blades varying 

from about 2cm up to 30cm long. 
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Bounty Horizon 

Bounty Horizon within the mine area is a sheared amphibole-iron formation varying 

from about 15 metres to 30 metres thick. It is vertically and laterally continuous and 

dips between about 70° and 90° towards about 265° to 280°. The intensity of 

deformation within the horizon is variable, ranging from weakly deformed where 

primary bedding characteristics are preserved, to strongly deformed and mylonitic 

where primary bedding is destroyed (Fig. 6, see page 76). Spatial variation in strain 

through the Bounty Horizon is discussed in the section on structure. 

Zones of low strain preserve planar bedding (So), defined by alternating iron-rich beds 

(50%) and chert-rich beds (50%). Thickness of bedding varies from 0.4mm up to 

150mm but is generally about 10 to 50mm. 

Iron-rich beds consist predominantly of grunerite ± ferro-actinolite, magnetite -

biotite, magnetite - grunerite ± ferro-actinolite, or magnetite - plagioclase (rare) 

assemblages. Thin, iron-rich pelitic interbeds are less common and contain 

assemblages of biotite - garnet ± hornblende ± quartz. Chert-rich beds comprise 

granoblastic quartz with some magnetite, grunerite ± ferro-actinolite (Fig. 7 and 

Fig. 8). 

Dominant amphiboles within weakly deformed, weakly mineralized, Bounty Horizon 

include grunerite (60-80%) and ferro-actinolite (20-40%). Grunerite is partially 

replaced by ferro-actinolite (Caswell, 1989). 

Textures indicate recrystallization of iron formation assemblages (Fig. 9 and Fig. 10). 

Millimetre-scale grains of euhedral magnetite with a central inclusion of pyrrhotite 

occur as cores to acicular, radiating grunerite clusters which develop in a mass of 

granoblastic quartz. Here also, hedenbergite occurs as bedding parallel bands and 

crosscutting bands (possible veins) with corroded margins and inclusions of grunerite. 

Grunerite appears to replace hedenbergite during recrystallization. Magnetite 

recrystallization appears to post-date sulfidation. 
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Weakly deformed Bounty Horizon viewed in real orientation facing 
north. Alternating chert-rich and iron-rich beds (So). Note steep, 
westerly dip angle (scale bar in centimetres, MD24, 199 .3m) 

Photomicrograph of weakly deformed Bounty Horizon viewed in real 
orientation facing north. Grunerite - magnetite - actinolite, magnetite -
biotite, grunerite - actinolite and quartz - grunerite - actinolite -
magnetite beds. Note ferro-actinolite replacing grunerite (318024, photo 
length= 6.7mm, ppl) 



- 12-

Figure 9. Weakly deformed, recrystallized bedding viewed in real orientation 
facing south. Note coarse grained magnetite (scale bar in centimetres, 
MD44, 354.25m) 

Figure 10. Photomicrograph of weakly deformed, recrystallized bedding showing 
acicular, radiating grunerite clusters surrounding coarse grained euhedral 
magnetites with central cores of pyrrhotite. Polygonal granoblastic 
quartz (318033, photo length= 13.Smm, ppl) 
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Hanging Wall Gabbro 

The hanging wall gabbro is fine-grained to coarse-grained with a granular, decussate 

texture of subhedral hornblende after pyroxene (40-60%), plagioclase (40-60%), some 

actinolite, and variable amounts of biotite (Fig. 11). The gabbro appears to be 

homogeneous, although minor pyroxenitic layers and rare tremolite-rich layers occur 

towards the lower contact with the Bounty Horizon. A chilled margin is present 

adjacent to the lower contact, which is sheared. Contact with overlying komatiitic 

basalts is texturally gradational. 

MINE SEQUENCE STRUCTURE 

Introduction 

Deformation within the Bounty deposit is dominated by simple shearing (Dn). The 

development of strain partitioning during shearing has resulted in mappable structural 

zones within and adjacent to the Bounty Horizon (Fig. 6, Appendix II). Shearing 

developed foliation surfaces (Sn) oriented subparallel to So, down-dip elongation 

lineations (Ln) and asymmetric fold structures (Fn) and fabrics (Appendix I). A zone 

of highest strain occurs within Bounty Horizon adjacent to the hanging wall gabbro 

(hanging wall shear zone). A second zone occurs within footwall rocks adjacent to or 

locally in the Bounty Horizon (footwall shear zone). The Bounty shear zones locally 

transgress the major lithological boundaries, but are generally parallel to the gross 

stratigraphy. They appear to continue northwards beyond the deposit but are 

suspected, from core and mine observations, to thin and horse tail towards the south. 

The following section describes geological characteristics of structural zones within 

the Bounty deposit and the nature and timing of veins and intrusives with respect to 

shearing (Dn). 
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Figure 11. Massive hornblende - plagioclase gabbro viewed in real orientation facing 
north (MD24, 179m) 
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Footwall Komatiitic Volcanics 

Most exposures of footwall' rocks preserve a weak Sn overprinted by random oriented 

actinolite growth. Strain appears to have been partitioned throughout the volcanic 

sequence and is greatest adjacent to the Bounty Horizon (footwall shear zone). Sn is 

mainly defined by alignment of actinolite ± biotite in komatiitic basalts and 

amphibole - chlorite ± talc in komatiitic peridotites. Elongate quartz - pyrite ± 

actinolite veins define a rarely observed elongation lineation (Fig. 12). This, and a 

paralleling actinolite mineral lineation (Ln) plunge 85° towards 274° (Fig. 13). 

Veins 

A zone of intense veining occurs within footwall rocks adjacent to the Bounty Horizon 

(Fig. 14). The zone varies in thickness from one to several metres with veins 

constituting 50% of the rock. Veins are oriented parallel to Sn and are about 

10-lOOmm long, 3-lOmm wide. Both deformed (early-On) and undeformed (post-On) 

veins are recognized (Fig. 6). 

Deformed veins comprise quartz - pyrite ± actinolite ± pyrrhotite? in variable 

proportions. Vein minerals are either strongly deformed or recrystallized with a 

polygonal, granoblastic texture. Adjacent to the Bounty Horizon the veins have been 

folded during Dn and are locally transposed. Folds are asymmetric or intra-folial and 

gently plunging to the south. The foliation defined by actinolite, as described above, 

is axial planar to the folded veins. A similar deformed vein zone occurs in the 

footwall about 40m east of the Bounty Horizon (MD79, 344.87-359.0 metres). 

The undeformed veins are parallel to Sn but overprint the fabric and have irregular 

shaped margins. As such, they are described as post-On. They comprise coarse 

grained clinopyroxene (3-lOmm) with inclusions of calcite, euhedral epidote and an 

outer rim of clinozoisite (Fig. 15). Some vein quartz is present. Actinolite appears to 

be recrystallized adjacent to the vein margins. 
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Figure 12. Photomicrograph of elongate quartz - pyrite± actinolite veins in sheared 
footwall komatiitic basalt. Viewed normal to Sn. Note down-dip 
elongation lineation defined by the vein and extensional pull apart 
structures with subhorizontal plunging necks (318036, photo length = 
13.Smm, ppl) 
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Figure 13. Photomicrograph of actinolite mineral lineation (Ln) in sheared footwall 
komatiitic basalts. Viewed normal to Sn. Note recrystallized quartz -
pyrite vein on left and actinolite porphyroblasts cutting across Ln and Sn 
(318023, photo length= 6.7mm, xpl) 
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Figure 14. Veined footwall komatiitic basalt viewed in real orientation facing 
south. Note the white coloured, transposed and folded quartz - pyrite ± 
actinolite veins (early-On) and the undeformed, pale-green coloured 
calcsilicate - calcite - quartz veins with irregular shaped margins 
(post-On; M071B, 534m) 

Figure 15. Photomicrograph of post-On calcsilicate - calcite - quartz vein 
overprinting Sn in footwall komatiitic basalts. Vein consists of coarse 
grained clinopyroxene with inclusions of epidote and calcite and an outer 
rim of clinozoisite, actinolite and quartz (318026, photo length= 3.Smm, 
ppl) 
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Weakly Deformed Bounty Horizon 

Bounty Horizon of the weakly deformed category is poorly mineralized and preserves 

primary bedding (So) characteristics as described in the previous section. Less well 

recrystallized bedding preserves a weak bedding parallel foliation (Sn) defined by 

elongate clusters of magnetite with polygonal grain boundaries. 

Veins 

Rare veins containing hedenbergite - quartz - calcite - garnet - apatite assemblages 

occur parallel to bedding (Fig. 6, Fig. 16 and Fig. 17). Quartz within these veins 

preserve a strong foliation parallel to bedding (Sn) which wraps around coarse-grained 

hedenbergite. As such, the veins are described as early with respect to Dn (shearing). 

Moderately Deformed Bounty Horizon 

The boundary between the weakly deformed zone and this zone is either gradational 

or sharp. Moderately deformed Bounty Horizon is characterized by asymmetrically 

folded bedding (Fn), pyrrhotite-matrix breccias and spaced zones of strong foliation 

(Sn) and discontinuous So (Fig. 6 and Fig. 18). 

A sharp contact is generally defined by the presence of a pyrrhotite-matrix breccia 

subparallel to bedding (Fig. 6 and Fig. 18). These breccias vary in thickness from 

about 2cm up to 200cm and comprise clasts of deformed iron formation (some 

rotated) or calc-silicate, quartz or calcite minerals floating in a matrix of pyrrhotite 

(Fig. 19 and Fig. 20). Where a breccia zone is not observed, transition from the 

weakly deformed to moderately deformed is gradational. The moderately deformed 

zone is recognizable by tighter, more frequently formed folds, zones more pronounced 

foliation, and a greater gold grade and sulphide content (Fig. 6). 
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Figure 16. Photomicrograph of quartz - hedenbergite - calcite - garnet - apatite 
vein which has been deformed during Dn. Quartz has a mylonitic fabric 
(Sn) parallel to So. Hedenbergite selvage (centre) is recrystallized to 
grunerite. Grunerite and possibly hedenbergite are replaced by 
ferro-actinolite. Dn pressure shadow around hedenbergite augen. 
Fractures in quartz, grunerite, hedenbergite and ferro-actinolite are 
filled with pyrrhotite. Note euhedral apatite crystal (white) in 
hedenbergite selvage (318019, photo length= 13.Smm, ppl) 

Figure 17. Photomicrograph of hedenbergite augen (from Fig. 15) partially 
recrystallized to grunerite (white). Grunerite appears to have been 
replaced by ferro-actinolite (dark green) (318019, photo length= l.3mm, 
ppl) 
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Figure 18. Typical relationship between Dn folded bedding (solid line), 
pyrrhotite-matrix breccias (black) and spaced zones of strong foliation 
(dashed line) seen in the moderately deformed zone of Bounty Horizon. 
Specimen viewed in real orientation facing north . Note asymmetry of Fn 
structure and the development of pyrrhotit e in Fn hinge zones and along 
the boundary between folded bedding and a strongly deformed and 
foliated zone (scale bar in centimetres, MD71, 608.6m) 
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Figure 19. Pyrrhotite-matrix breccia viewed in real orientation facing north. 
Gold-poor, with clasts of quartz, actinolite and deformed iron formation 
comprising quartz - actinolite - biotite ± clinozoisite (scale bar in 
centimetres, MD44, 348.Srn) 

Figure 20. Moderately deformed zone viewed in real orientation facing south. 
Transposed fold structure with pyrrhotite-matrix breccia developed along 
the transposing shear surface (white arrow). Note shear surface is axial 
planar to Fn (scale bar in centimetres, MD2, 94.6m) 
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Fn Structures 

Fn structures have an upright, asymmetric shape with predominantly gentle 

south-southeast and north-northwest plunging axes (Fig. 18, Fig. 20, Fig. 21, Fig. 22 

and Appendix I). Fold closures in the Moderately Deformed Bounty Horizon vary 

progressively from open to tight near the weakly deformed zone, to tight or isoclinal 

towards the strongly deformed zone (Fig. 6). A fanning foliation (Sn) develops in fold 

hinge areas and fold amplitudes vary from metre-scales to millimetre scales. 

The predominant fold asymmetry for folds with their long limb (So) dipping west is 

consistent with formation during west-down, normal movement along a shear surface 

parallel to So (Fig. 6 and Fig. 18). Most open to tight folds measured in the 

moderately deformed zone plunge about 18° towards 193°, although some do plunge 

about 13° towards 351° (Fig. 23). Axial planes to folds with west-down, normal 

profiles strike north-south and dip 55° west (Fig. 23A), but steepen as the strongly 

deformed zone is approached (Fig. 23B). 

Fold profiles with an opposite asymmetry are less common and appear to be only 

observed where So dips near vertically or towards the east. Here the asymmetry is 

consistent with formation during east-down, normal movement along a shear surface 

parallel to So. Axial planes to folds with east-down profiles are tentatively 

calculated to dip 76° towards 085° (Fig. 24). 

The orientation of axial planes to open folds within the moderately deformed zone is 

consistent with normal shear movement along the west-dipping hanging wall shear 

zone (Fig. 23 and Fig. 24). From these observations, the maximum principle stress 

during Dn is estimated to be subvertical. 
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Figure 21. Photomicrograph of asymmetric crenulations (Fn) in west dipping biotite 
schist . Note biotite foliation and hornblende porphyroblasts are pre-Fn. 
Pyrrhotite located in Fn hinge zone. View facing north (318029, photo 
length= 6.7mm, ppl) 
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Figure 22. Photomicrograph of transposed asymmetric microfold (Fn) in west 
dipping bedding. View facing north. Note the zoned garnets and the 
microfaults normal and slightly oblique to So (east side) are infilled with 
pyrrhotite (318011, photo length= 13.Smm, ppl) 
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Equal Angle 

A 

Equal Angle 

B 

N = 18 

Figure 23 A. Equal angle stereographic projection of fold axes to asymmetric Fn 
structures with west-down normal profiles measured in the 
moderately deformed zone of the Bounty Horizon. Great circle 
equivalent to the axial plane of the Fn structures which dips 55° west 

. B. Equal angle stereographic projection of Fn fold axes as above (stars 
with shaded contours), and poles to Sn measured from strongly 
deformed zones of the Bounty Horizon (dots). Note that the pole to 
the axial plane of the Fn structures (shaded box) has a shallower dip 
than the average pole to Sn (white box). This is expected for folds 
with west-down, normal profiles (see text) 
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Equal Angle 

* 

* 

+ 

·,i Figure 24. Equal angle stereographic projection of fold axes to Fn structures with 
west-down normal profiles (stars) and the less common east-down normal 
profiles (dots). Great circles and poles to the great circles define the 
orientation of their axial planes 
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Foliation 

Discrete zones of strong foliation (Sn) up to about one metre wide have developed 

parallel to So and dip on average 83° towards 274° (Fig. 6, Fig. 23 and Appendix I). 

They are separated by zones of tightly folded iron formation, in which one or both 

limbs of tight, Fn structures are often transposed. Banding (once bedding) within the 

zones is parallel to the foliation, thin (0.4mm to lOmm), and discontinuous. Sulphide 

mineralization is most abundant in these zones. 

Foliation throughout the moderately deformed iron formation is axial planar to tight 

Fn structures. The foliation is defined primarily by ribbon quartz or biotite in the 

more pelitic beds. Hedenbergite augens and magnetite clusters are also flattened and 

elongate and display tensional fractures normal to their elongation direction (Fig. 25 

and Fig. 26). Amphiboles occur both parallel and overgrow the deformation fabric and 

are rarely preserved as a strong foliation. Garnet and hornblende porphyroblasts are 

wrapped by Sn developing asymmetric pressure shadows (Fig. 27 and Fig. 28). 

Boudinage, Tension Fractures and Micro-Faults 

Boudinaged beds with gently south plunging neck regions and tensional fractures 

oriented normal to So and Sn are common throughout the moderately deformed zone 

(Fig. 29). Micro-faults showing centimetre-scale offsets of chert beds occur parallel, 

or slightly oblique, to the foliation orientation (Fig. 22). Conjugate micro-faults have 

also been observed oriented near normal to the undeformed bedding orientation. 

Orientations of these structures, although not quantified, suggest they developed 

during a period of down dip elongation. 
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Figure 25. Photomicrograph of flattened and elongated hedenbergite and magnetite 
augens (Ln) in a matrix of ribbon quartz (Sn). Note pyrrhotite fills 
crosscutting veins oriented normal to Sn and Ln. Pyrrhotite replaces 
magnetite adjacent to these veins (318030, photo length= 6.7mm, ppl) 

Figure 26. Photomicrograph of elongate magnetite augen (Ln) in Fig. 25 with tension 
fractures oriented normal to the elongation direction. Fractures infilled 
with pyrrhotite (318030, photo length= l.3mm, reflected light) 
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Figure 27. Photomicrograph of deformed garnet and hornblende porphyroblasts with 
asymmetric pressure shadows filled with pyrrhoti te (318031, photo length 
= 6.7mm, ppl) 

Figure 28. Photomicrograph of a flattened and pulled apart garnet porphyroblast 
(centre) oriented oblique to the shear fabric (Sn). Note tension fractures 
in garnet filled with pyrrhotite (318032, photo length= 6.7mm, ppl) 
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Figure 29. Tension vein infilled with pyrrhotite mineralization and developed normal 
to So. Indicates pyrrhotite was introduced during down-dip extension. 
Viewed in real orientation facing north (scale bar in centimetres, MD4 l, 
240.2m) 
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Veins 

Three main vein types are observed within moderately deformed zone. Early-Dn 

hedenbergite - quartz - apatite assemblages, syn-Dn to late-Dn pyrrhotite-rich veins 

and matrix breccias (with associated calc-silicate - calcite - quartz assemblages) and 

post-Dn calc-silicate - carbonate veins. 

The early formed veins are deformed and define Sn and Fn structures. 

Pyrrhotite-rich veins and pyrrhotite-matrix breccias are developed parallel to Sn, in 

Fn hinge zones in boudin necks, and in tensional orientations and along microfaults 

oriented normal to Sn. Breccias also cut across mylonitic Sn and contain rotated 

clasts of the deformed iron formation (a more detailed description of the pyrrhotite 

mineralization is given in the section on mineralization). The post-Dn calc-silicate -

carbonate veins cut across So and Sn, have irregular vein margins and a variable, 

coarse-grained mineral assemblage. Minerals include clinopyroxene, garnet, 

hornblende, epidote, clinozoisite, actinolite, calcite, ankerite, quartz with possible 

wollastonite(?) and tremolite(?). 

F n+ 1 Structures 

In the weak and moderately deformed zones, So and Sn appear to be buckle folded in 

localized zones (e.g. drive 4, 34920N to 34945N). Resulting folds (F n+l) are steep 

plunging with vertical dipping axial planes striking in a northwesterly direction. Fold 

closures are open to tight with chevron and box shapes and have steep plunging axes. 

Strongly Deformed Bounty Horizon 

Strongly deformed zones of iron formation are developed subparallel to So, and occur 

adjacent to the hanging wall gabbro (hanging wall shear zone), and in some iron 

formation adjacent the footwall contact (footwall shear zone - see Appendix II, 
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Fig. 6). Both asymmetric and transposed structures and fabrics indicate that shearing 

dominated in these zones, which anastomose and locally transgress lithological 

boundaries. The hanging wall shear zone is about 2m to 7m wide, strongly mineralized 

and mainly developed in iron formation, rarely penetrating the gabbro (Fig. 6). The 

footwall shear zone is about Sm to lOm wide, and mainly developed in the komatiitic 

volcanic rocks. Deformed iron formation within, and marginal to, both shears appears 

similar, however, the footwall shear is generally gold-poor relative to the hanging 

waU shear. Exceptions of significant footwall mineralization do occur. The shears 

appear to converge within some parts of the iron formation (Appendix II). 

Intense shearing, boudinage, folding and transposition in the strongly deformed zones 

resulted in a finely banded to laminated (0.4mm up to about lOmm) appearance of the 

rocks (Fig. 30 and Fig. 31). Strong bedding parallel foliation (Sn) is defined by 

minerals identical to those described defining foliation throughout the moderately 

deformed zone. SIC fabrics indicative of a normal sense of movement are observed 

(Fig. 32 and Fig. 33). 

Sn is developed axial planar to gently plunging, transposed, asymmetric folds, rootless 

intrafolial folds, isoclinal folds (Fn) and, less common, steep plunging folds and sheath 

folds (Fig. 31). Fold closures vary progressively from tight towards the moderately 

deformed zone to isoclinal towards the chloritic contact shear (Fig. 6). Folds at 

centimetre and millimetre scales are most common. The predominant fold 

asymmetry is indicative of a normal sense of movement along a shear surface parallel 

to Sn. 

Veins 

Three vein styles are predominant within strongly deformed zones of the Bounty 

Horizon. Early-Dn quartz - calcite ± hedenbergite ±garnet veins, syn-Dn to late-Dn 

pyrrhotite-rich veins and matrix breccias, and late Dn-quartz ±visible gold veins. 
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Figure 30. Strongly deformed Bounty Horizon viewed in real orientation facing 
south. Note the discontinuous, transposed bedding. Contrast with Fig. 7 
(scale bar in centimetres, MD71, 71.Sm) 
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Figure 31. Photomicrograph of strongly deformed Bounty Horizon showing a 
transposed isoclinal fold (Fn) with its axial plane parallel to Sn. Sn 
defined by quartz, grunerite, actinolite and magnetite. Note magnetite -
plagioclase bed in core of isocline. Pyrrhoti te has replaced about 60% of 
the magnetite (318027, photo length= 13.Smm, ppl) 
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Figure 32. Photomicrograph of strongly 
deformed Bounty Horizon 
showing transposed quartz 
foliation (Sn) or possible S 
and C fabric (318027, photo 
length= 6.7mm, xpl) 

Figure 33. Photomicrograph of the 
chloritic contact shear 
viewed in approximate real 
orientation facing north. S 
and C fabrics indicate 
normal (west-down) 
movement along shear 
surfaces (317681, photo 
length= 13.Smm, xpl) 
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The early formed veins are about 2cm up to lOcm wide, strongly fractured and 

foliated. The pyrrhotite-rich veins and breccias are identical to those described 

within the moderately deformed zone and make up about 50-60% of the strongly 

deformed zone. Pyrrhotite veins cut across the early formed veins. 

Quartz ± visible gold veins are developed either subparallel or normal to Sn and So, 

cutting Fn structures. As such, they are described as late with respect to Dn. The 

veins are between 3cm and 20cm thick and continue along drives for about 1-10 

metres. The veins occur throughout the Bounty Horizon but are most common in the 

strongly and moderately deformed zones. 

Veins with visible gold comprise assemblages of quartz, calcite, hedenbergite with 

disseminated pyrrhotite ± pentlandite ± molybdenite ± chalcopyrite and selvages of 

hedenbergite - actinolite - calcite ± pyrrhotite ± visible gold (Fig. 34 and Fig. 35). 

Veins containing assemblages of quartz, actinolite, pyrrhotite, apatite and selvages of 

actinolite, biotite and clinozoisite do not contain visible gold (Fig. 34). 

Chloritic Contact Shear 

An anastomosing chloritic shear up to about 2m wide occurs at the contact between 

the hanging wall gabbro and the strongly deformed Bounty Horizon (Appendix I, 

Fig. 5). In outcrop it is visible as a smooth, shiny, black coloured surface (Fig. 36). 

The shear fabric is mylonitic and essentially defined by preferentially aligned, 

fine-grained chlorite after biotite, and elongate clasts and aggregates of deformed 

iron formation and quartz bands. Quartz aggregates within the shear are rod shaped 

with an apparent steep plunge, and have a granoblastic texture. SIC fabrics 

indicative of a normal sense of movement are observed (Fig. 33). 
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Figure 34. Photomicrograph of late-On veins of quartz ± visible gold. The central 
vein contains visible gold and consists of quartz, calcite, hedenbergite 
with disseminated pyrrhotite, pentlandite, molybdenite, chalcopyrite and 
selvages of hedenbergite, actinolite, pyrrhotite and visible gold. The vein 
on the right is free of visible gold and consists of quartz and actinolite 
with disseminated pyrrhotite and apatite and selvages of actinolite, 
biotite and clinozoisite (318614B, photo length= 13.Smm, ppl) 



-39-

Figure 35. Photomicrograph of disseminated sulfide minerals in late-Dn quartz veins 
with visible gold. Molybdenite (right), pyrrhotite with lama11ae of 
pentlandite (left) and gold in contact with pyrrhotite (centre) (318614B, 
photo length = l .3mm, reflected light) 
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Figure 36. View in pit facing east of the chloritic contact shear. Note folds 
buckling the shear surface plunge gently towards the south 

Figure 37. Photomicrograph of the chloritic contact shear. Chlorite replaces biotite 
and occurs in irregular oriented fractures cutting across the rnylonitic 
quartz fabric and euhedral pyrites (3 l 7682B, photo length= 13.Srnrn, ppl) 
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Chlorite is ubiquitous and occurs replacing biotite along the foliation or in numerous 

crosscutting fractures (Fig. 37). Subhedral pyrite (1-2% visual estimate) and minor 

pyrrhotite within the shear is fractured and infilled with chlorite. Some graphite and 

carbonaceous material also occur within the shear, particularly towards the southern 

end of the deposit. 

Veins 

Folded and foliated veins of quartz - calcite± garnet± hedenbergite and undeformed 

quartz± visible gold veins (as described in the strongly deformed zone) occur within 

the shear. The veins are generally oriented parallel to the boundaries of the shear. 

Hanging Wall Gabbro 

Strain within the gabbro is partitioned and localized along broadly spaced zones of 

foliation varying from about 0.5 to 3 metres wide. Foliation within the zones is 

moderately developed and defined by the alignment of biotite and hornblende, with 

biotite replacing most hornblende. The foliation parallels the contact with the Bounty 

Horizon (So) and as such is defined as Sn. Most of the gabbro is massive to only 

weakly foliated with biotite as a minor phase. 

A second and younger deformation fabric (Sn+l), defined by subvertical zones of 

weakly developed fracture cleavage and veining is visible in the Bounty Pit (Fig. 38). 

This fabric strikes north-northwest and is defined by the preferred alignment of 

fractures intruded by subparallel quartz - epidote - chlorite ± calcite veins with 

chlorite alteration haloes (Fig. 38). Sn+l truncates Sn as defined by biotite, locally 

altering it to chlorite (Fig. 39). 
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Figure 38 . View in pit facing northwest of north-northwest trending fracture 
cleavage (Sn+l) intruded by quartz - epidote - chlorite veins with 
chlorite alteration haloes. Equal angle stereographic projection of poles 
to Sn+ 1 
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Figure 39. Photomicrograph of deformed hanging wall gabbro showing plan view of 
north-south trending biotite foliation (Sn) altered to chlorite (dark clots) 
adjacent to a north-north west trending Dn+ 1 quartz - epidote -
chlorite vein (319693, photo length = 13.Smm, xpl) 
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Intrusives 

Intrusive bodies within the Bounty deposit can be defined relative to Dn. Pre-Dn 

intrusives contain a weak to moderate foliation parallel to Sn and include quartz -

feldspar porphyries and feldspar porphyries. A pre-Dn quartz - feldspar porphyry, 

visible in the pit, cuts across the hanging wall gabbro and terminates against the 

Hanging Wall Shear Zone where a strong foliation has developed parallel to the shear. 

Regionally, the porphyries are interpreted as the hypabyssal equivalents of the 

syntectonic porphyritic stocks and granitoid plutons and batholiths. 

In the Bounty Mine, post-Dn shoal-rich pegmatites, spodumene-rich pegmatites, 

muscovite-rich pegmatites and the Proterozoic dyke suite occur as undeformed dykes 

or sills that truncate So, Sn and S 1. The pegmatites occur as subvertical sills or n+ 

gently south-southeast dipping dykes and are truncated by east-northeast trending 

fracture zones along which the Proterozoic dykes intrude. 

STRUCTURAL SYNTHESIS 

Deformation in pre-Dn times was dominated by strong east-west compression, which 

resulted in complex upright folding and thrusting of the supracrustal sequence. 

Following this event, the deformed supracrustal sequence was intruded by 

granite-granodiorite plutons and porphyritic stocks, sill and dykes (Fig. 6). 

Development of a vertical directed maximum compressive stress succeeded the 

intrusive event. Resulting strain (Dn) partitioned across the Bounty Sequence focused 

shear zones with a normal movement sense along the footwall and hanging wall 

boundaries of the Bounty Horizon. Strain partitioning produced a structural zonation 

within the Bounty Horizon. This is defined by three zones: 
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1. a weakly deformed zone where bedding characteristics are preserved; 

2. a moderately deformed zone where bedding is folded and boundinaged; and 

3. a strongly deformed zone where bedding is destroyed. 

Normal movement along the shears developed asymmetric and transposed structures 

(Fn), bedding parallel fabrics (Sn), down dip elongation lineations (Ln), and extension 

structures normal to bedding. In the moderately deformed zone, gentle plunging 

asymmetric folds developed with open to tight closures and an axial planar foliation 

dipping 55° west. In higher strained zones, folds became isoclinal and transposed as 

their axial planes rotated into parallelism with the bedding-parallel shear planes. 

As shearing progressed, mylonitic fabrics were overprinted by more brittle 

extensional structures oriented normal to the elongation direction. 

A weak regional deformation event occurred after Dn. This event (D 1) is 
n+ 

expressed as a north-northwest striking, subvertical fracture cleavage in the hanging 

wall gabbro, and as northwest trending fracture zones and faults on a regional scale. 

Quartz - epidote - chlorite ±calcite veins with chloritic alteration haloes occur along 

the fracture cleavage in the hanging wall gabbro and, as such, are interpreted as a 

Dn+l vein event. Buckle folds within the Bounty Horizon with a steep plunge and 

north-northwest trending axial planes are interpreted as F n+l structures. 

Chloritisation of the sheared hanging wall boundary is interpreted to have occurred 

during this event. 

Graphic textured granites and pegmatites intrude as flat dipping sheets or vertical 

dykes along the early thrusts, Dn shear zones, northwest trending regional faults and 

other crustal weaknesses. The pegmatites and earlier formed structures are cut 

across by east-northeast trending fracture zones along which Proterozoic dykes 

intrude. 
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MINERALIZATION AND ITS RELATIONSHIP TO DEFORMATION 

Gold mineralization is associated with replacement, vein and matrix breccia styles of 

pyrrhotite mineralization which, through their distribution and structural zonation, 

appear to have developed synchronous to late with respect to Dn. 

SULPHIDE DISTRIBUTION 

Bounty Horizon 

Pyrrhotite is the dominant sulphide mineral within the Bounty Horizon and its 

distribution suggests it was introduced during the Dn shearing event. Pyrrhotite 

abundances (visually estimated volume percent) vary from 1-2% for the weakly 

deformed zone, between 5 and 20% for the moderately deformed zone, and between 

20 and 60% for the strongly deformed zone (Appendix II). In the latter it occurs as 

disseminated grains replacing magnetite-rich bands, vein fill or as matrix to 

breccias. Within the weakly deformed zone, pyrrhotite is disseminated in 

magnetite-rich beds and generally occurs where a weak foliation or open folding has 

developed. Partial replacement of magnetite by pyrrhotite occurs in the weakly 

deformed and moderately deformed zones, while almost total replacement 

predominates in the strongly deformed zone. 

Fractures, grain boundaries, and cleavage surfaces in quartz, magnetite, 

hedenbergite, grunerite, actinolite, biotite, garnet and arsenopyrite are locally filled 

by pyrrhotite (Fig. 22, Fig. 26, Fig. 27 and Fig. 28). Asymmetric pressure shadows 

developed around sheared hedenbergite selvages and amphibole or garnet 

porphyroblasts are also filled with pyrrhotite (Fig. 16, Fig. 27 and Fig. 28). Pyrrhotite 

is present on Sn cleavage surfaces in Fn hinge zones, in gentle plunging boudin necks 

and in micro-faults subparallel or oblique to So and Sn (Fig. 18, Fig. 20, Fig. 21 and 

Fig. 22). Tension fractures and conjugate micro-faults oriented near normal to both 

the undeformed bedding or mylonitic Sn and Ln fabrics are filled with pyrrhotite 

(Fig. 24 and Fig. 29). 
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Pyrrhotite-rich veins with a massive pyrrhotite-matrix and floating clasts of 

deformed iron formation or co-precipitated calc-silicates, calcite or quartz form a 

breccia texture (Fig. 19; see following section on pyrrhotite-matrix breccias). 

Pyrrhotite-matrix breccias develop within zones of strong foliation and transposition, 

in Fn hinge zones, boudin necks, micro-faults and tension fractures as described 

above. The matrix pyrrhotite has a subgranoblastic texture and some deformation 

twins (Caswell, 1989). 

Minor amounts of pyrite and marcasite, arsenopyrite, chalcopyrite and sphalerite 

occur with the vein, matrix breccia and replacement styles of pyrrhotite 

mineralization (Fig. 40). Pyrite and marcasite are abundant in the oxidized upper 

levels, but are minor at depth. Most pyrite and marcasite occurs as subhedral and 

euhedral grains with rare grains containing inclusions of pyrrhotite and gold. Pyrite 

and marcasite replaces pyrrhotite, often retaining its breccia texture. Pyrite in the 

chloritic contact shear contains fractures infilled with chlorite (Fig. 37). 

Arsenopyrite is subhedral to euhedral and contains fractures filled with pyrrhotite, 

sphalerite and chalcopyrite (Fig. 40). 

Late-On quartz veins with visible gold contain disseminated pyrrhotite, pentlandite, 

molybdenite and chalcopyrite (Fig. 35). Vein selvages mainly consist of disseminated 

pyrrhotite. 

The strong correlation of pyrrhotite distribution with Dn strain partitioning in the 

Bounty Horizon and its occurrence along Sn, in Fn hinge zones, in tensional structures 

normal to Ln and Sn, and in Dn pressure shadows around porphyroblasts indicate 

sulfide mineralization occurred during Dn. However, the occurrence of pyrrhotite in 

tensional fractures normal to Ln and crosscutting mylonitic Sn fabrics suggests 

shearing (Dn) without mineralization was active at some localities which, with time, 

became mineralized. As such, shearing is a progressive event and pyrrhotite 

mineralization is described as synchronous to late with respect to Dn. 
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Figure 40. Photomicrograph of matrix pyrrhotite with sphalerite and chalcopyrite 
surrounding subhedral arsenopyrite grain. Pyrrhotite sphalerite and 
chalcopyrite also occur as veins and inclusions in arsenopyrite (318028, 
photo length = .3mm, reflected light) 
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Intrusion of the Proterozoic Binneringie Dyke across the mineralized Bounty Horizon 

oxidized most pyrrhotite to magnetite within 100 metres of its contact (Caswell, 

1989). 

Footwall Komatiitic Volcanics 

As previously described, pyrite ± pyrrhotite(?) occurs in, and associated with, 

deformed quartz ± actinolite veins located within footwall komatiitic volcanic rocks 

adjacent to the Bounty Horizon. These veins have been folded during movement along 

the footwall shear zone. The timing of pyrrhotite, which occurs disseminated 

throughout the sheared komatiites, is not determined. Footwall rocks are, however, 

weakly mineralized in gold (Fig. 6), suggesting the pyrrhotite may have been 

introduced during sulfidation of the Bounty Horizon. 

GOLD DISTRIBUTION 

Economic gold mineralization is stratabound within the sheared Bounty Horizon. Gold 

mineralization occurs with late-On quartz veins and syn- to late-On vein, matrix 

breccia, and replacement styles of pyrrhotite mineralization. These have mineral 

clasts, vein minerals and/or selvages of hedenbergite, calcite, actinolite, 

Ca-plagioclase, quartz, clinozoisite, biotlte, hornblende and apatite in varying 

proportions and assemblages. Gold grades also show a good correlation with strain 

zonation through the Bounty Horizon, thus timing the mineralization as a Dn event. 

Highest grades of mineralization occur in the strongly deformed, strongly sulphidic 

zone of the hanging wall shear while only minor gold mineralization (<0.Sppm) occurs 

in the weakly deformed, weakly sulphidic zone (Fig. 6). Gold grades through the 

moderately deformed zone are also greatest in the discrete zones of strong foliation 

and pyrrhotite mineralization. The chloritic contact shear zone is weakly mineralized 

in gold, although grades increase where clasts of iron formation or gold-bearing 

quartz veins are present. 
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Economic gold mineralization mostly occurs within the hanging wall shear zone. 

However, below level 4 and south of 34850N a significant zone of mineralization is 

developed in sheared Bounty Horizon adjacent to the footwall contact (Fig. 41, grade 

envelopes D, E and F). The footwall lodes mainly consist of vein quartz with visible 

gold and associated haloes of hedenbergite and pyrrhotite. Mine observations and 

grade level plans suggest that mineralization is controlled by the favourable strike 

orientation of the sheared footwall contact (discussed further in the section on gold 

grade contours). A more detailed study of the footwall mineralization is required. 

Pyrrhotite-Matrix Breccia 

Deformation of the iron formation shows a direct correlation with pyrrhotite 

mineralization. The presence of pyrrhotite alone is, however, not an indication of 

economic gold grades as both gold-rich and gold-poor breccias with a pyrrhotite 

matrix are observed. 

Gold-rich breccias contain mineral clasts of hedenbergite, calcite, plagioclase, quartz 

and actinolite or hornblende (blue-green coloured) with minor biotite and accessory 

apatite (Fig. 42 and Fig. 43). Some plagioclase clasts appear fractured and pyrrhotite 

develops a net texture where calcsilicates or calcite comprises about 50-70% of the 

assemblage (Fig. 43). Mineral clasts within the gold-poor breccias essentially consist 

of quartz and actinolite with some biotite and clinozoisite (Fig. 44). Deformed iron 

formation clasts appear to be more abundant in the gold-poor breccias and are partly 

altered to assemblages containing actinolite, biotite and clinozoisite (Fig. 19 and 

Fig. 45). Hedenbergite-rich vein assemblages with minor interstitial magnetite and 

pyrrhotite are also observed in areas of poor mineralization. 



-52-

Figure 42. Photomicrograph of gold-rich pyrrhotite-matrix breccia. Pyrrhotite 
(black) with mineral clasts of hedenbergite, plagioclase, calcite and 
quartz. Note pyrrhotite-matrix breccia cuts across quartz with a 
partially recrystallized ribbon (mylonite) texture (318625, photo length= 
6.7mm, xpl) 

Figure 43. Photomicrograph of gold-rich pyrrhotite-matrix breccia showing some 
typical variations in the proportion of mineral clasts to pyrrhotite and 
mineral clast assemblages. Note the assemblage with abundant 
Ca-plagioclase, minor hedenbergite, calcite and actinolite, and net 
textured pyrrhotite (left); the assemblage with abundant calcite, 
actinolite and hedenbergite with minor pyrrhotite (right); and the 
pyrrhotite-rich assemblage with floating clasts of actinolite, calcite, 
hedenbergite and Ca-plagioclase (centre) (318631, photo length= 6.7mm, 
ppl) 
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Figure 44. Photomicrograph of a gold-poor pyrrhotite-matrix breccia with floating 
mineral clasts of quartz and actinolite (318622, photo length = 3.Smm, 
ppl) 

Figure 45. Photomicrograph of a gold-poor pyrrhotite-matrix breccia (black) with 
floating mineral clasts of quartz and actinolite. Note the net textured 
pyrrhotite and the Fn structure which was partially destroyed during the 
introduction of pyrrhoti te (318629, photo length = 6. 7 mm, ppl) 
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Observations, though not thermodynamically constrained, suggest the solubility of 

hedenbergite, calcite and Ca-plagioclase affects the composition of the ore fluid and 

may be important parameters in controlling the solubility of gold. 

Hanging Wall Shear Zone 

The sheared hanging wall boundary of the Bounty Horizon is marked by the distinctive 

chloritic contact shear which has been mapped in detail by mine geologists I. Chen 

and D. Buchanan. Using this information, a long section showing form contours of the 

shear as projected onto a reference plane was constructed (Connelly Diagram). The 

reference plane strikes north-south, dips 75° west and has a grid reference on level 1 

of 35120N 20674.5E. Distance between the reference plane and the shear was 

measured every 10 metres along drives 1 through to 5 inclusive (Appendix rm. 
Position of the sheared hanging wall boundary is conjectual south of 34750N in 

drives 4 and 5 and from about 34780N to 34700N in drive 3. Long sections 

highlighting changes in strike and apparent dip angle of the hanging wall shear 

relative to the reference plane were also constructed. These sections are compared 

with a contoured long section of gold grade within sheared Bounty Horizon adjacent to 

the hanging wall boundary (Appendix III, Fig. 46). 

Form Diagram (Coru1elly Diagram) 

Highest contour values on the long section represent areas furthest from the 

reference plane. Data show a broad buckle in the shear centred about 34900N 

(Fig. 46). North of 34900N, the shear plane strikes west of north and steepens in a 

southwesterly dip direction. To the south, the shear becomes near parallel to the 

reference plane and steepens in an easterly dip direction. 

Changes in Strike 

The difference between adjacent form variables in the horizontal direction (S) were 

calculated along each drive. 
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S(L) = D(n-10) - D(n) 

where D(n) is the distance along level L between reference plane and shear at 

northing n; D(n-10) is the distance along level L between reference plane and shear 

at northing n minus 10 metres; and S(L) is the difference along level L between 

adjacent variables D(n-10) and Dn. 

This method of analysis effectively mapped changes in strike of the hanging wall 

shear relative to the reference plane such, that the larger S, the greater the strike 

deviation from north. 

S = 0 strike of shear parallel to strike of reference plane (north). 

S > 0 strike of shear west of north. 

S < 0 strike of shear east of north. 

Results highlight a sharp change in strike from S>l to S<l at about 34900N (Fig. 46). 

Between 34920N and 34940N, a large positive S up to 4. 7 metres is observed. A large 

negative S down to 3 metres occurs between 34850N and 34860N. 

Changes in Apparent Dip 

The difference between adjacent form variables in the vertical direction (A) were 

calculated. 

A(n) = D(L+l) - D(L) 

where D(L) is the distance at northing n between reference plane and shear on level 

number L (numbers 1 through to 5); D(L+l) is the distance at northing n between 

reference plane and shear on level number L+l; and A(n) is the difference between 

D(L+l) and D(L) at northing n. 
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This method of analysis mapped changes in apparent dip angle of the hanging wall 

shear relative to the reference plane. 

A= O apparent dip angle of shear at northing n is equal to the dip angle of 
the reference plane (75° west). 

A > O apparent dip angle of shear at northing n is steeper than the dip angle 
of the reference plane. 

A< O apparent dip angle of shear at northing n is shallower than the dip 
angle of the reference plane. 

Contouring the A(n) data show a large surface area of the shear with an apparent dip 

angle, relative to the reference plane, of greater than 75° (Fig. 46). The shear has an 

apparent dip angle of less than 75° from about 34850N to 34700N. Contours, although 

limited by the vertical extent of data, reflect buckle folding of the shear surface with 

subhorizontal to gentle southwards plunging axes (Fig. 36). 

Gold Grade Contours 

A long section showing contoured gold grade data from 10 metre stope blocks over 

6 levels has been compiled by mine geologist Duncan Buchanan. Contours illustrate 

the steep plunge and anastomosing distribution of the gold mineralization. 

Visual comparison of gold grade with the form diagram (Fig. 46) suggests some 
I 

correlation of grade with strike of the sheared hanging wall contact. An area of gold 

grades less than 2.5g/t occurs about the major bend in the shear located between 

34850N and 34900N. 

Visually, a strong correlation of contour shape and magnitude exists between the gold 

grade long section with that illustrating strike changes in the hanging wall shear; 

particularly north of 34750N (Fig. 46). South of 34750N, the shear position is 

conjectual and mineralization is complicated by a footwall lode. Gold mineralization 
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greater than 5g/t Au appears coincident with positive S values less than 3 or localized 

negative S values greater than -0.5. Negative S values less than -1.5 and S values 

greater than 3 appear coincident with areas of low grade (less than 2.5g/t Au). For S 

values between 0.5 and -1.5, grades less than about 5g/t Au are more common, 

however, local variations in grade from greater than 2.5g/t Au to less than IOg/t Au 

occur. This variance between the long sections may reflect differences in sample 

spacing or inaccuracies in positioning of the shear. Contour shapes and magnitudes 

showing good correlation are highlighted on the long sections (Fig. 46, Appendix III). 

A. North plunging shoots of S >l with >lOg/t Au contours from 351 ION to 35050N. 

B. Low grade tongue of -0.8 >S <0 with <lOg/t Au contour over levels 1 to 3 from 

35000N to 35070N. 

C. Broad, steep plunging zone of S >0.5 with >10g/t Au contour from 34900N to 

35020N. 

D. Thin, steep plunging zone of S >3 with <2.5g/t Au contour over levels 4 and 5 

from 34920N to 34930N. 

E. Steep plunging 0.5 and 0 S contours with 15g/t Au and IOg/t Au contour over 

levels 2, 3 and 4 between 34950N and 34975N. 

F. Broad zone of S <0 and S <1.5 with <5g/t Au and <2.5g/t Au contour from 34900N 

to 34830N over levels 3, 4 and 5. 

G. Negative S value on level 5 (34990N to 35000N) appears coincident with a NW 

striking fault with a small dextral offset. 
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Strike control on the distribution of gold grade is also evident from the continuity of 

the greater than 2.5g/t gold grade envelopes viewed on level plans (Fig. 41). Where 

the sheared hanging wall boundary strikes between 4° and go west of north, grade 

envelopes are continuous over 50 to 200 metres and occur adjacent to the sheared 

boundary. Thin grade envelopes continuous over about 20 to 50 metres are developed 

along the sheared hanging wall boundary where it strikes between 0° and 5° east of 

north and greater than 8° west of north. The footwall envelopes which also strike 

between about 4° and go west of north (Fig. 41), appear to have developed where the 

sheared footwall boundary was in this favourable strike orientation. Gold grade on 

the bend in the shear hanging wall boundary situated between 34850N and 34930N is 

generally less than 2.5g/t (Fig. 41 and Fig. 46 location F). 

Changes in the apparent dip angle between the reference plane and the sheared 

hanging wall contact show a poor correlation with gold grade (Fig. 46). Data show 

buckle folding of the shear surface with subhorizontal to gentle south plunging axes. 

Buckling is interpreted to have developed during Dn which is characterized by the 

development of asymmetric folds plunging gently towards the south (Fig. 36). 

METAMORPHISM AND ITS RELATIONSHIP TO DEFORMATION 

Mineral assemblages and their overprinting relationship with respect to On fabrics 

indicate that metamorphism of lower amphibolite facies was active before and 

continued after shearing ceased. 

Peak metamorphic assemblages in unminera1ized Bounty Horizon mainly comprise 

grunerite - magnetite - quartz in variable proportions, magnetite - biotite, magnetite 

plagioclase (rare) and biotite - garnet (almandine) ± hornblende ± quartz (Fig. 8). 

These minerals are pre-On and define a bedding parallel foliation (Sn), occur in folded 

beds and, less commonly, define a folded foliation (Fig. 21). All locally contain 

pyrrhotite in some cleavages or fractures. 
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Figure 46. Contoured long sections highlighting the form and changes in the 
orientation of the sheared hanging wall boundary of the Bounty Horizon 
(over mining levels 1 through to 5 inclusive); and the gold grade 
distribution within sheared Bounty Horizon adjacent to the hanging wall 
boundary (see text and Appendix III for details) 
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Garnets occur as euhedral undeformed porphyroblasts overgrowing foliated 

biotite-rich beds (Fig. 22) or as folded and rotated porphyroblasts in crenulated 

biotite-rich beds (Fig. 27, Fig. 28 and Fig. 47). Deformed garnet, hornblende and 

ferro-actinolite porphyroblasts occur along Sn axial planar to Fn structures (Fig. 48 

and Fig. 50). Garnet porphyroblast growth appears therefore to be post Dn-l' 

pre-On and syn-Dn. These characteristics may be typical of syntectonic 

porphyroblast growth controlled by shifting patterns of strain partitioning during 

progressive shearing (Bell and Fleming, 1985). All of the garnets described above 

have fractures infilled with pyrrhotite (Fig. 49). 

Amphibole growth and peak metamorphism appears to have continued after Dn and 

pyrrhotite - gold mineralization. Randomly oriented actinolite porphyroblasts within 

footwall komatiites, grunerite and actinolites in the Bounty Horizon overprint Sn and 

Ln (Fig. 13). Late-On peak metamorphic conditions also resulted in the local 

development of granoblastic quartz and subgranoblastic pyrrhotite textures within the 

strongly deformed zone. Recrystallization of fine-grained So in the weakly deformed 

zone developed a radiating grunerite texture around coarse-grained subhedral 

magnetite cored with pyrrhotite. 

Hedenbergite is considered to be a vein mineral and not part of the original peak 

metamorphic assemblage. It occurs as deformed selvage and vein mineral in early-On 

quartz - calcite - hedenbergite ± garnet ± apatite veins (Fig. 16), as undeformed 

selvages or mineral clasts in pyrrhotite-matrix breccias and pyrrhotite veins (Fig. 42 

and Fig. 43), or as selvages and vein minerals around the late-On quartz veins with 

visible gold (Fig. 34). Extreme deformation of early-On veins has developed a quartz 

mylonite with augens of magnetite and hedenbergite defining Sn and Ln (Fig. 25). 

During Dn, asymmetric pressure shadows filled with pyrrhotite around the early-On 

hedenbergite selvages (Fig. 16). Most early-On hedenbergite augens have been 

affected by peak metamorphic conditions and are partially replaced by grunerite 

(Fig. 17). 
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Figure 47. Photomicrograph of asymmetric Fn structures viewed facing south. 
Asymmetry consistent with formation of the fold during west-down 
normal shear movement along shear surfaces parallel to So (steep west). 
Note the crushed and folded garnets (pre-Dn) within the lower 
biotite-rich bed (518022, photo length= 6.7mm, ppl) 
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Figure 48. Photomicrograph of Fn structure with an axial planar Sn fabric developed 
in quartz-rich bed. Garnet and hornblende developed along Sn (central 
black zone) (318021, photo length = 13.Srnrn, ppl) 
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Figure 49. Photomicrograph of fractured garnet along Sn (from Fig. 48). Fractures 
infilled with pyrrhotite and sphalerite (318021, photo length = 1.3mm, 
reflected light) 
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Figure 50. Photomicrograph of Fn structure with an axial planar Sn fabric developed 
in quartz-rich and amphibole-rich beds. Actinolite (dark green) replacing 
grunerite (light green) along Sn (318020, photo length= 13.Smm, ppl) 
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Grunerite is replaced by ferro-actinolite during a period 'ca-metasomatism (Caswell, 

1989). Replacement occurs along Sn timing the metasomatism with the shearing and 

the gold mineralizing events (Fig. 50). Pyrrhotite along fractures or cleavages within 

some ferro-actinolite suggests it may pre-date the pyrrhotite-gold mineralizing event. 

Metamorphism succeeding Dn includes chloritisation associated with Dn+l and 

oxidation of Bounty Horizon pyrrhotite to magnetite adjacent to the Proterozoic 

Binneringie Dyke. 

SUMMARY 

Deformation in pre-On times was dominated by strong east-west directed 

compression, which resulted in complex upright folding and thrusting of the 

supracrustal sequence (D 1). With cessation or relaxation of the compression, n-

batholiths, plutons and porphyritic stocks, sill and dykes of granite-granodiorite 

composition were emplaced (Fig. 51). These have characteristic magnetic signatures 

and shapes and occur within and along the margins of the greenstone belt, and along 

some of the regional-scale thrusts. The intrusive suite is interpreted as pre-Dn. 

A pre-Dn pluton was intruded adjacent to the eastern side of the belt, about 

800 metres northeast of the Bounty Deposit. The intrusion truncated and rotated 

greenstone stratigraphy adjacent to its margin (Fig. 3 and Fig. 4). In the Bounty Mine 

area, the host rocks were intruded by porphyritic dykes and locally rotated west of 

north (Fig. 52) during and as a result of the pluton's emplacement. 

The bulk movement history of the Bounty Shear indicates that a vertically oriented 

maximum compressive stress (Dn) succeeded the pre-On intrusive event. 

Gravity-driven sagging of the greenstone pile or east-west directed extension 

following the regional east-west compression are possible causes of the vertically 
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oriented stress. As a result, strain was focused along existing deformation zones, 

rheologically contrasting rock boundaries and margins of pre-Dn intrusives. Shear 

zones with a normal movement sense developed along the footwall and hanging wall 

boundaries of the Bounty Horizon and early-On veins were intruded. 

As normal shear movement progressed, these early veins, together with the peak 

metamorphic mineral assemblages, were aligned defining Sn parallel to bedding and 

Ln oriented down dip (Fig. 52). 

Detailed form and orientation analysis of the sheared hanging wall boundary has 

shown areas of high grade gold mineralization to be controlled by its strike 

orientation. High grade, permeable zones of the shear appear to strike between about 

4°· and go west of north. Low grade, less permeable zones of the shear appear to 

strike between 0° and 5° east of north and greater than about go west of north. 

The hanging wall boundary of the Bounty Horizon, locally rotated west of north during 

intrusion of a pre-Dn pluton, underwent down dip or steep oblique shear movement 

with a normal sense. The steep oblique movement translates in plan view to a lateral 

movement component, which had a sinistral sense. Sheared lithological boundaries 

striking between about 4° and 8° west of north were dilated, developing ore fluid 

pathways with a steep plunge. Results suggest the ore fluid pathways are, in part, 

controlled by the original shape of the Bounty Horizon's hanging wall boundary which 

was influenced by intrusion of the pre-Dn pluton located about 800 metres towards 

the northeast. 

Dilation synchronous to late with respect to Dn deposited vein, matrix breccia and 

replacement styles of pyrrhotite-gold mineralization within the sheared Bounty 

Horizon. Dilation late with respect to Dn deposited quartz ± visible gold veins. For 

both types of mineralization, varying proportions and assemblages of actinolite, 

hedenbergite, Ca-plagioclase, hornblende, biotite, clinozoisite, calcite, quartz or 

apatite were deposited as vein minerals, mineral clasts and/or selvage. Grunerite was 

replaced by ferroactinolite during a period of Ca-metasomatism synchronous with Dn. 
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Differing chemical-physical conditions during dilation and mineralization have 

developed both gold-poor and gold-rich pyrrhotite-matrix breccias and quartz veins ± 

visible gold. Gold-rich pyrrhotite breccias and quartz veins with visible gold 

generally have mineral clast, vein mineral or selvage assemblages of hedenbergite, 

calcite, Ca-plagioclase, quartz, actinolite or hornblende in varying proportions with 

minor biotite and accessory apatite. Gold-poor pyrrhotite breccias and quartz veins 

with no visible gold have mineral clast, vein mineral or selvage assemblages of 

actinolite, quartz, biotite and clinozoisite in varying proportions with accessory 

apatite. 

Following the termination of Dn and the gold mineralizing event, compositionally 

variable calc-silicate - calcite veins intruded the Bounty Mine sequence overprinting 

Dn structures and fabrics. Also, peak metamorphic conditions which coincided with 

Dn and the gold mineralizing event continued (Fig. 5). Evidence for syn-Dn and 

post-Dn peak metamorphic conditions include: 

the development of f erroactinolite, hornblende and garnet along Sn in Fn fold 

hinges; 

amphibole porphyroblasts overprinting Sn and Ln within footwall komatiites and 

Bounty Horizon; 

high temperature calc-silicate assemblages associated with syn-Dn to late-On 

gold mineralization; and 

post-On high temperature calc-silicate vein assemblages. 

A weak regional deformation event (D 1) occurred after Dn (Fig. 5). The event is n+ 

expressed as regional northwest trending fracture zones and faults or north-northwest 

trending zones of retrograde fracture cleavage intruded by quartz - epidote - chlorite 

±calcite veins within the hanging wall gabbro. Steep plunging buckle folds within the 

Bounty Horizon and chloritization of the sheared hanging wall boundary are 

interpreted to have developed during this event. 
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Graphic textured granites and pegmatites intruded as flat dipping sheets or vertical 

dykes along D 1, Dn, D 1 structures and other crustal weaknesses. The 
n- n+ 

pegmatites and earlier formed structures and stratigraphy were cut across by 

east-northeast trending fracture zones which were intruded by Proterozoic dykes. 

Intrusion of the Proterozoic Binneringie Dyke across the mineralized Bounty Horizon 

oxidized most pyrrhotite to magnetite within 100 metres of its contact. 
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Figure 51. Summary of the tectono-thermal history and the timing of veins and gold 
mineralization within the geological setting of the Bounty Gold Mine 
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Schematic illustration summarising structural 
elements controlling gold mineralisation 

within the Bounty gold deposit. 
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CONCLUSIONS 

I. The Bounty orebody is bound within strata parallel shear zones which developed 

in an iron formation referred to as the Bounty Horizon during deformation event 

Dn. A footwall ultramafic volcanic sequence and a hanging wan gabbro bound 

the mineralized horizon which dips west between 70° and 90°. 

2. Deformation in pre-Dn times was dominated by strong east-west directed 

compression which resulted in complex, upright folding and thrusting of the 

supracrustal sequence. 

3. With cessation or relaxation of the east-west compression batholiths, plutons and 

porphyritic stocks, dykes and sills of granite to granodiorite composition were 

intruded into the folded greenstone sequence and broad contact metamorphic 

aureoles developed. 

4. A period of vertically oriented, maximum compressive stress (Dn) succeeded the 

intrusive event. Resulting strain was focused along the footwall and hanging wall 

boundaries of the Bounty Horizon and shear zones with a normal movement sense 

developed. 

5. The hanging wall boundary of the Bounty Horizon, which was locally rotated west 

of north during intrusion of a pre-On pluton, underwent down dip or steep oblique 

shear movement with a normal sense. The steep oblique movement translates in 

plan view to a lateral movement component, which had a sinistral sense. Sheared 

lithological boundaries striking about 4° to 8° west of north were dilated, 

developing ore fluid pathways with a steep plunge. 

6. The ore fluid pathways are controlled by the rheological contrast and original 

shape of the Bounty Horizon's hanging wall boundary during Dn. The original 

shape was influenced by intrusion of a pre-Dn pluton located about 800 metres 

towards the northeast. 
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7. Differing chemical-physical condition during dilation and mineralization 

developed gold-rich and gold-poor pyrrhotite-matrix breccias and quartz veins ± 

visible gold. 

8. Dn and the gold mineralizing event occurred during a peak contact metamorphic 

grade of lower amphibolite facies. 
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APPENDIX I 

EQUAL ANGLE, WULFF NET PROJECTIONS OF FABRICS 

AND STRUCTURES MEASURED FROM ORIENTED CORE 

(MD77, MD78, MD79, MD84, MD85A, MD88, MD88A) 

AND PIT EXPOSURES IN THE BOUNTY MINE 
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APPENDIX II 

BOUNTY HORIZON CROSS SECTION 34920N SHOWING 

ITS STRUCTURAL ZONATION, GOLD GRADES AND 

PERCENTAGE PYRRHOTITE AND PYRITE 



APPENDIX ID 

CONTOURED LONG SECTIONS OF THE SHEARED 

HANGING WALL BOUNDARY OF THE BOUNTY HORIZON 
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