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ABSTRACT 

Disease management in conventional viticulture involves regular applications of 

synthetic fungicides. There is, however, significant pressure from grape and wine 

markets to reduce inputs of synthetic fungicides because of concern about their 

safety to humans and the environment, and due to increasing evidence of pathogen 

populations developing fungicide resistance. Aerobic compost extract (ACE) is an 

oxygenated watery extract of compost that favours the persistence of aerobic 

microorganisms extracted from compost. Some horticultural practitioners claim that 

ACE is a sustainable alternative to synthetic fungicides when applied to the soil or to 

the fruit and foliage for crop protection. Scientific evidence supporting the 

effectiveness and safety of ACE is limited. Moreover, wide variation in production 

systems for ACE has made comparison of the few refereed reports available difficult. 

The primary aim of this research was to standardise production of ACE for safety to 

humans, and for consistent and high levels of suppression of two grapevine diseases 

caused by fungal pathogens of different biology; namely, powdery mildew, caused 

by Erysiphe necator, and botrytis bunch rot, caused by Botrytis cinerea. 

Production variables for ACE from three composts with variable raw ingredients 

were evaluated systematically by quantifying the growth and reproduction of B. 

cinerea on detached bean leaflets treated with different ACEs. Bacterial-dominant 

ACEs produced with a compost weight to water volume ratio of 1 :3 to 1: 10, and 

from compost sampled in the very early secondary mesophilic stage of composting 

inhibited B. cinerea colonisation of bean leaflets to a greater extent than ACEs 

produced from compost sampled in the later mesophilic stages. There was evidence 

to suggest that the magnitude of pathogen suppression was associated positively to 

the number of bacterial and fungal Terminal Restriction Fragments (T-RFs) or 
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microbial taxon diversity in ACE. This association will need to be tested further by 

measuring T-RFs in ACEs prepared from a variety of compost windrows. ACE 

directly inhibited the germination of B. cinerea conidia in vitro and removal of 

microorganisms from ACE by filtration reduced but did not eliminate its capacity to 

inhibit conidial germination. Water-soluble antibiotics were not detected in filtered 

ACE following an in vitro assay for the inhibition of B. cinerea colony growth. 

Under glasshouse conditions, the mean powdery mildew severity on Cabernet 

Sauvignon leaves was less than 0.1 % when ACE was applied up to 4 days before or 

up to 7 days after inoculation with E. necator conidia; mean severity on non-treated, 

inoculated leaves was 22%. This result suggested that ACE had curative as well as 

protective properties. ACE or ACE amended with fish hydrolysate and/or_liquid kelp 

was prepared using standardised methods and applied nine or 12 times at 10-14 day 

intervals to Chardonnay or Riesling vines grown commercially in different growing 

seasons in southern Tasmania. Powdery mildew was controlled by ACE or amended 

ACE to a commercially acceptable level on Chardonnay leaves and bunches under 

conditions of high disease severity. The incidence of latent B. cinerea in Chardonnay 

bunches at harvest, after moist incubation, was nearly half that observed in non­

treated bunches. The incidence and severity of sporulation of B. cinerea on Riesling 

grape bunches was reduced significantly by ACE or amended ACE relative to a 

dechlorinated water control treatment; these control bunches (not leaves) escaped 

visible infection by E. necator but powdery mildew was controlled on leaves treated 

with ACE or amended ACE. Treatment of Riesling leaves with ACE increased the 

number of culturable microorganisms on leaves 100-fold, 1 h after application. By 13 

days post-application the number of culturable microorganisms remained higher than 

pre-application counts. 
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The human pathogenic bacteria Escherichia coli, Listeria monocytogenes and 

Bacillus cereus were not detected in compost used to prepare standardised ACE. 

Production conditions for ACE did not favour re-growth of a non-pathogenic 

streptomycin resistant strain of E. coli. However, there was an increase in E. coli 

numbers when fish hydrolysate or molasses were introduced to ACE. Further 

experimental work is necessary to ensure negligible growth and persistence of human 

pathogens in standardised ACE amended with nutrients. In the interim, standardised 

ACE should be prepared without the addition of nutrients to prevent danger to human 

health. 

The effectiveness of standardised ACE can now be evaluated across _a range of 

viticultural conditions and for its impact on grape and wine quality. It is envisaged 

that ACE will be integrated with other measures to reduce the severity of diseases of 

grapevines and other horticultural crops. 
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GLOSSARY (Definitions relating to fungi based on those ofHawksworth et al. (1995) 

Term 
Aerobic compost extract (ACE) 
Apothecium 
Appressorium 
Antagonism 

Ascomycete fungi 

Ascospore 
Ascus 
Cleistothecium 
Conidium 
Conidiophore 
Electrical conductivity 
Flag shoots 

Hypha 
Mycelium 
Non-aerobic compost extract (N-ACE) 
Sustainability 

Sclerotia 

Withholding period 

Definition 
Compost extract produced to promote survival of aerobic microorganisms 
A cup or saucer-like ascus 
A growth on a germ-tube or hypha, for attachment in the initial stages of infection 
A general term for interactions of organisms damaging to one or more of the associates i.e. 
antibiosis, parasitism 
Division/Phylum of fungi, when reproducing sexually, produce non-motile spores in a cell 
called an ascus 
A spore produced in an ascus by free cell formation 
A sexual spore bearing cell 
A closed fruiting body of an ascomycete fungus in which ascospores are produced 
An asexual non-motile spore borne on a conidiophore 
Specialised hyphae bearing conidiogenous cells which produce conidia 
Soluble salt content 
Stunted shoots of grapevine that are covered partly or wholly by powdery mildew from buds 
infected by Erysiphe necator in the previous season before flowering. Most easily detected 2-
6 weeks after budburst. 
One of the filaments of a mycelium 
The vegetative body of a fungus; a mass of hyphae 
Compost extract produced without aeration 
Using, conserving and enhancing the community's resources so that ecological processes, on 
which life depends, are maintained, and the total quality of all species life, now and in the 
future, can be maintained or increased 
A mass of vegetative hyphae, in or on which asexual spores or sexual fruiting bodies ( eg. 
apothecia) are produced 
Period that must elapse from last day of application of a pesticide until the first day of crop 
harvest 
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INTRODUCTION 

Powdery mildew and botrytis bunch rot are two economically important diseases in 

grapevines worldwide (Pearson and Goheen 1988, La Guerche et al. 2006). 

Conventional viticulture aims to prevent these two diseases by regular applications of 

synthetic fungicides (Wicks et al. 2002). Aerobic compost extract (ACE) is a watery 

extract of compost, otherwise known as compost tea, which some practitioners claim 

is a sustainable alternative to synthetic fungicides. However, there has been little 

scientific research investigating the effectiveness and mechanism of ACE in 

suppressing foliar and fruit diseases. The primary aim of this research was to 

standardise production of ACE for maximum suppression of grapevine powdery 

mildew, caused by Erysiphe necator, and bunch rot, caused by Botrytis cinerea. 

Evidence is presented to demonstrate the potential for ACE to be integrated with 

other measures to reduce diseases of grapevines and other horticultural crops to a 

commercially acceptable level. 

A diagrammatic representation of the thesis structure is presented in Fig. 1 to show 

how this thesis is divided into chapters that relate to specific hypotheses. The next 

section of this thesis reviews the theory and practice of aerobic compost extract 

(ACE) for disease management, and fruit and foliar disease control by application of 

ACE, with particular reference to powdery mildew and botrytis bunch rot of 

grapevine. The project aims are listed at the end of the review. In Chapter 1, a rapid 

bean leaflet bioassay was developed to test the ability of different ACEs to suppress 

colonisation and sporulation of B. cinerea. This bioassay revealed the parameters of 

ACE production that were the most important in suppressing B. cinerea. The 

diversity of bacterial and fungal taxa, determined by terminal restriction fragment 

length polymorphism (T-RFLP) was correlated with the suppressive ability of ACE. 

Introduction 
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Subsequently, a standardised, pathogen-suppressive ACE was used to determine the 

mechanism of pathogen suppression. In Chapter 2, having developed some 

understanding of the processes that regulate efficacy of ACE in vitro, the system was 

applied in viva and in the field. Grapevines grown in the glasshouse were inoculated 

with E. necator conidia to assess the effectiveness of a single application of ACE in 

relation to the timing of pathogen infection and to explore whether ACE was acting 

to prevent infection or to limit pathogen colonisation. The field experiments 

illustrated the effectiveness of standardised ACE, and ACE amended with nutrients, 

for limiting natural epidemics of powdery mildew and botrytis bunch rot on 

grapevines in commercial production. The possibility of human pathogen presence 

and re-establishment in ACE was investigated in Chapter 3. Finally, Chapter 4 

assembles the thesis results in a general discussion and presents. the main 

conclusions. Chapter 1, 2 and 3 have been written in manuscript format. 

Introduction 
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LITERATURE REVIEW: 
A review of the literature on production of 

ACE and disease suppression 

I 

PROJECT AIMS 

I 
CHAPTER 1 aims: CHAPTER 2 aims: CHAPTER 3 aims: 

• To standardise the production of ACE • To determine whether ACE prevents • To evaluate the presence of human 

• To identify the putative mechanism of ,...____ infection of grapevine leaves by E. - pathogens in compost and ACE 
action for suppression of B. cinerea in necator or pathogen colonisation in the • To determine if human pathogens can 
vitro glasshouse grow in ACE 

• To evaluate ACE in the field 
I I I 

I 

CHAPTER4: 
General discussion of thesis outcomes, 

conclusion~ and recommendations 

Figure 1 A diagrammatic representation of the structure and objectives of the thesis. Introduction 
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LITERATURE REVIEW 

Introduction 

Synthetic fungicides are a major component of conventional management of fungal 

diseases in viticulture. However, development of resistance in pathogen populations 

to certain synthetic fungicides (Steden et al. 1994, Erickson and Wilcox 1997, 

Savocchia et al. 2004) and public demand for residue-free wines (Kerr 1992) has led 

to a greater need to produce a sustainable solution to crop disease management. 

A promising disease control practice that could form part of a sustainable, integrated 

management strategy is the application of aerobic compost extract (ACE). ACE is 

produced by leaching microorganisms and nutrients from aerobic compost into 

oxygen-rich water (Scheuerell and Mahaffee 2002). Practioners have made claims 

that ACE, when applied to the crop canopy, suppresses a broad range of diseases 

while maintaining biodiversity in an agricultural ecosystem (Riggil 1996, Touart 

2000). There are very few scientific research papers illustrating disease control with 

ACE (Cronin et al. 1996, Welke 2004, Scheuerell and Mahaffee 2006), yet ACE is 

the most frequently recognised and employed method of compost extract production 

among practitioners today (Scheuerell and Mahaffee 2002, Litterick et al 2004). ACE 

has successfully replaced the production of non-aerobic compost extract (N-ACE) 

due to faster and more reliable extraction (Ingham 2003), a perceived absence of 

human pathogens and a lack of toxic metabolites from non-aerobic microorganisms 

(Ingham 2000). 

There are a substantial number of variables involved in the production and 

application of ACE and several topics that require further research. Like any new 

crop protectant that is developed, a consistent product must be produced in order to 

LITERATURE REVIEW 
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control disease effectively and reproducibly. Standardisation of ACE is likely to 

involve analyses of the compost source, extraction process and an understanding of 

mechanism of action and maintenance of microorganisms applied in the field. 

Previous research investigated some aspects of ACE standardisation (Welke 2004, 

Scheuerell and Mahaffee 2006) but progressive analyses of greater depth will be 

essential for commercialisation and development of a simple and reliable method of 

ACE production, while ensuring high efficacy as well as human safety. 

The aim of this review is to identify research required to produce an ACE that is safe 

to humans and consistently suppresses two economically important diseases of 

grapevine, powdery mildew and botrytis bunch rot. 

History and impact of powdery mildew and botrytis bunch rot in viticulture 

Common grape, Vitis vinifera, is cultivated globally and is the most widespread 

grapevine belonging to the Vitaceae family. V vinifera is cultured for table grapes or 

processed into wine, sultanas or juice (Pearson and Goheen 1988). As it is a 

perennial crop, research must be conducted over several seasons in order to obtain 

robust conclusions. 

V vinifera is susceptible to an extensive array of pests and diseases, particularly 

phylloxera, powdery and downy mildews, and bunch rots caused by various 

pathogens. Powdery mildew and botrytis bunch rot, caused by the fungal pathogens 

Erysiphe necator Schw. (Braun and Takamatsu 2000; synonym Uncinula necator) 

and Botrytis cinerea, are two important foliar and fruit diseases of grapevine that 

affect vineyards worldwide (Pearson and Goheen 1988, Gadoury et al. 2001 ). In the 

temperate, maritime climate of Tasmania, where relative humidity during the 

LITERATURE REVIEW 
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growing season is often above 60%, powdery mildew develops in non-treated vines 

in most growing seasons (Scott et al. 2007). Botrytis bunch rot develops to varying 

degrees each season in susceptible grapevine varieties in Tasmania (K. J. Evans, 

personal communication). Delays in harvesting varieties with compact bunches, 

especially when crop loads are high, may increase the risk of a severe epidemic of 

botrytis bunch rot when there is sufficient moisture during the ripening period. Both 

diseases are managed in most Tasmanian vineyards with protective fungicides every 

growing season, which represents a significant cost to the grower. 

Powdery mildew is one of the most damaging fungal diseases of grapevines globally 

(Gadoury et al. 2001) and can lead to chlorosis, necrosis and reduced vigour and 

productivity of grapevine. Infections on the young green leaves can lead to a 

reduction in photosynthesis (Nail and Howell 2005), and thereafter a decline in total 

soluble solids of berries (0Brix) which is important in wine production (Stummer et 

al. 2005). Grapes with powdery mildew infection used for wine making have been 

shown to possess 'dusty' or 'mouldy' aromas, an 'oily' and 'viscous' component, 

and green, bitter and herbaceous tannins (Stummer et al. 2002, Emmett et al. 2004). 

Powdery mildew can make wine and table grapes unmarketable. 

B. cinerea Pers. Fr. (telemorph Botryotinia fuckeliana) attacks many different plant 

species (Coley-Smith et al. 1980). Severe epidemics of botrytis bunch rot in 

grapevines cause significant crop and economic loss (Elmer and Michailides 2004). 

Infection of berries by B. cinerea can lead to an increase in laccase production, 

which reduces wine quality because phenolics such as the red colour compounds in 

red wine are oxidised to brown coloured compounds (Iland et al. 2000). 

LITERATURE REVIEW 
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E. necator and B. cinerea have very dissimilar life cycles and ecological niches. E. 

necator is an obligate parasite that infects green tissue and young growth in 

grapevines and as a consequence must be cultured with its host plant (Evans et al. 

1996), whereas B. cinerea is a cosmopolitan, necrotrophic pathogen that obtains 

nutrients from dead tissue of many plant species, including grapevines (Pearson and 

Goheen 1988). Both fungi have the ability to infect leaves, flowers and berries on V. 

vinifera. E. necator infection of grapevine berries is greatest at fruit set and 

resistance to E. necator increases with berry age (Ficke et al. 2002). In contrast, 

berry and flower resistance to B. cinerea decreases with tissue age (Jarvis 1977). 

Furthermore, berries can become highly susceptible to infection by B cinerea condia 

if wounded (Coertze and Holz 2002). The significant differences between these 

pathogens in life history and biology mean that the basis for their control is likely to 

be different. 

Biology of E. necator 

E. necator belongs to the Erysiphales and has a narrow host range (Agrios 1997). 

The pathogen is spread by windbome ascospores and/or conidia. E. necator can 

overwinter in dormant buds as mycelia, which generate conidia upon recolonisation 

of grape shoots in spring (Rumbolz and Gubler 2005) or may overwinter as 

cleistothecia that release ascospores following maturation (Gadoury and Pearson 

1991). Conidia contribute to multiple infection cycles during the growing season. 

Environmental conditions favouring various stages in the life cycle of E. necator are 

described in Table 1. The key factors determining the onset and rate of development 

of epidemics include surface moisture for the release of ascospores, relative 

humidity, which influences the germination of conidia, and temperature, which 

determines the time from infection to sporulation. Nutrient supply and UV intensity 

LITERATURE REVIEW 
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also affects powdery mildew development. Willocquet et al. (1996) showed that 

spore germination and mycelial growth decreased on grapevine leaf disks when 

exposed to UVB and that shaded or cloudy conditions were more favourable to spore 

germination and mycelial growth than sunny conditions. In potted grapevines, Keller 

et al. (2003a) illustrated that high nitrogen supply and low UV increased E. necator 

incidence and severity. 

A diagram of the life cycle can be found in Pearson and Goheen (1988). 

Table 1 Environmental conditions favouring various stages in the lifecycle of 
Erysiphe necator on a susceptible variety of Vitis vinifera (RH =relative humidity). 

Stage of lifecycle Experimental Optimum environmental References 
conditions conditions 

Ascospore Field: berries > 2.5 mm rain Gadoury and 
discharge and and leaves Pearson (1990) 
infection 

> 2.5 h wetness duration Jailloux et al. 
> 11°C (1999) 
12-15 h leaf wetness 

Field: leaves when average Gubler et al. 
temperature 10-15°C (1999) 

Ascospore In vitro Maximum germination Hajian-Shahri et 
germination at 25°C al. 2006 

Regrowth of Field: leaves 18-30°C Gubler et al. 
dormant (1999) 
mycelium 

Germination of In vitro 85%RH Carroll and 
conidia Wilcox (2003) 

24-25°C Delp (1954) 
Bendeck et al. 
(2007) 

Field: leaves 25°C Gubler et al. 
(1999) 

Conidial Field: leaves 7-10 days after primary Gubler et al. 
production infection (1999) 

Rate of Field: leaves Three consecutive days Gubler et al. 
sporulation with at least 6 h at 21- (1999) 

30°C 
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Biology of B. cinerea 

B. cinerea can overwinter as sclerotia within bark or on decaying infected plant 

material, or as vegetative hyphae in dormant buds, leaves and canes on the vineyard 

floor or as remnants in the vine canopy (Elmer and Michailides 2004 ). In spring, 

sclerotia produce mycelia that bear conidiophores containing conidia or, when 

compatible sexual mating types unite, the sclerotium bears an apothecium containing 

asci (Elmer and Michailides 2004). B. cinerea conidia are the principal source of 

inoculum for infection of grape bunches (Nair & Nadtotchei 1987). Conidia are 

primarily dispersed by wind and water droplets (Holz et al. 2000) and occasionally 

by insects (Fermaud and Le Menn 1989). Environmental conditions that facilitate 

development of botrytis bunch rot in grapevine are illustrated in Table 2. 

Table 2 Environmental conditions favouring various stages in the l~fecycle of 
Botrytis cinerea in relation to fruit infection and development of bunch rot of a 
susceptible variety of Vitis vinifera. 

Stage of lifecycle Experimental Optimum References 
conditions environmental 

conditions 

Appressorium In vitro 15-20°C Shiraishi et al. 
formation (1970) 

Elongation of germ In vitro 25-30°C Shiraishi et al. 
tubes (1970) 

Mycelium In planta: berries 21°C Thomas et al. 
development 94%RH (1988) 

0 m/s wind speed 

Colony expansion In vitro 20-30°C Shiraishi et al. 
Dark (1970) 

Conidial In planta: berries 21°C Thomas et al. 
production 94%RH 1988 

0.6 m/s wind speed 

Symptom In planta: flowers 23.7°C Nair and Allen 
expression 1.3 h wetness (1993) 

In planta: berries 20.8°C Nair and Allen 
13.9 h wetness (1993) 
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There are various infection pathways for B. cinerea in grapes (Elmer and Michailides 

2004). B. cinerea conidia usually infect soft or moist senescent tissues, especially 

ripe or decayed fruit, wounded tissue and dehiscent flowers. The temperature, 

humidity and duration of wetness that prevail during flowering, veraison and bunch 

closure will have a significant effect on the timing of B. cinerea infection and hence 

the infection pathway and disease management. 

Disease management 

Approaches to disease management in horticulture can be divided into three broad 

categories: (1) conventional, (2) organic and biodynamic and (3) integrated disease 

management. In conventional horticulture, disease is managed primarily using 

synthetic fungicides, whereas in organic and biodynamic systems, synthetic 

fungicides are omitted. Integrated disease management combines both organic and 

conventional methods of disease control. Regardless of production system, the 

horticultural sector is searching for the most sustainable approach . to disease 

management. 

(1) Conventional viticulture 

A wide array of synthetic chemicals are used for managing grapevine diseases in 

conventional viticulture (Wicks et al. 2002) and each chemical targets the 

metabolism of a plant pathogen at critical points in its life cycle, during the host­

pathogen interaction. Synthetic chemicals are classed into groups of fungicides 

based on the specific mechanism of action or the metabolic reaction targeted in the 

fungus or plant. 
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Resistance of fungal populations to synthetic fungicides is a maJor concern in 

conventional viticulture. The dimethylation inhibiting fungicides (DMis ), for 

example, are losing effectiveness for controlling powdery mildew in the field in 

California (Ypema et al. 1997, Gubler et al. 1996), Portugal (Steva 1994) and 

Australia (Savocchia et al. 2004). In Australia, the Agricultural and Veterinary 

Chemical Control of Use Act regulate product labelling of synthetic fungicides. 

Label instructions help prevent fungicide resistance and relate to length of spray 

intervals, spray dose, maximum number of applications per growing season, the 

maximum residue limit (MRL) in wine and the withholding period. The extent of 

restriction, especially for wine destined for export to countries that have a very low 

or no MRL, can make it difficult to control several grapevine diseases. For example, 

there are limited synthetic botryticide options available to control botryti~ bunch rot 

during the pre-harvest period (Bell and Essling 2007), and at this time, berries are 

most at risk of B. cinerea infection due to increasing berry age. 

(2) Organic and biodynamic viticulture 

In contrast to conventional viticulture, non-synthetic chemicals and labour-intensive 

monitoring for pests and diseases replace calendar-based application of synthetic 

chemicals. Essentially, organic viticulturalists need to understand the epidemiology 

and life cycle of pathogens for successful disease control. Disease can be limited if 

the crop is manipulated to alter host susceptibility or microclimate. Cultural control 

in this way can reduce reliance on synthetic fungicides. Organic growers must 

integrate knowledge of disease susceptibility of each grapevine variety (Boso et al. 

2004) and the impact of irrigation practices (Keller et al. 2003b), nutrition (Cole 

2002), canopy management (Cole 2002) and biological fungicides (Elmer and 

Reglinski 2006) when managing powdery mildew and botrytis bunch rot. 
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During the growmg season, powdery mildew may be controlled effectively by 

regular applications of elemental sulfur. Even though sulfur sprays are "certified" as 

organic, there is anecdotal evidence to suggest that vineyard workers and neighbours 

can develop allergies to sulfur. As stated previously, sulfur can be toxic to beneficial 

insects (Calvert and Huffaker 1974) and phytotoxicity is considered a risk when 

temperatures exceed 40°C and relative humidity is above 70% (Magarey et al. 2002). 

Therefore, alternatives are suggested because this method of disease control may not 

be sustainable. Potassium bicarbonate, oils, milk, whey and biological control agents 

have been tested on grapevines as alternative methods for powdery mildew control 

(Azam et al. 1998, Yildirim et al. 2002, Crisp et al. 2003, Scott et al. 2007). 

Biological control agents and ACE have been evaluated as alternative methods for 

botrytis bunch rot control (Dubos 1992, Elad and Shtienberg 1994). Most grape 

growers need to be convinced about the effectiveness and reliability of alternative 

measures before adoption, which becomes a challenge when the test materials are not 

well understood and/or the experimental results are highly variable. Research on 

biological control and ACE is reviewed later in this section. 

Biodynamic viticulture concerns disease management techniques, which are viewed 

by many as having a "spiritual" component (Moore 1997). The modem concept of 

biodynamics originated in the early 1920s when a number of lectures were given by 

Rudolf Steiner, a philosopher from Austria (Steiner 1974). The specific seasons, the 

moon and stars are all important in biodynamic agriculture. Compost is also regularly 

applied to biodynamic crops. Scientific verification of biodynamic viticulture and 

agriculture is lacking, for example, Carpenter-Boggs et al. (2000) compared soil 

microbial biomass and activity in a randomised complete block experiment on two 
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broad-acre farms and illustrated no significant difference between biodynamic and 

organic fertiliser regimes. In fact, there is a lack of research investigating the 

difference between conventional and organic/biodynamic practices and their effect 

on microbial ecology of the soil and/or aerial plant surface. 

(3) Integrated disease management 

Since the early 1990's, Australian viticulture has adopted, at least in theory if not 

practice, the principles of integrated disease management (IDM). IDM aims to 

prevent disease outbreaks by understanding the life cycles of arthropods and 

pathogens in relation to the host plant and the environment. Cultural controls, such as 

canopy or vineyard floor management, are integrated to reduce sources of inoculum 

and/or the infection efficiency of the pathogen. If disease cannot be prevented by 

cultural and/or biological controls then synthetic fungicides are utilised to prevent 

loss of crop yield or quality. Additionally, prediction or forecasting tools can aid 

IDM practitioners to time application of synthetic fungicides strategically, according 

to a susceptible crop stage and/or availability of pathogen inoculum. 

Biological control agents 

Various single micro organisms have been demonstrated to suppress the grapevine 

pathogens B. cinerea (Blad 1996, Reglinski et al. 2005) and E. necator (Falk and 

Gadoury 1994, Falk et al. 1995). Many biological control agents have been reported 

to be as effective as synthetic chemical control under glasshouse and controlled 

environmental systems (Elad et al. 1993, Dik and Blad 1999, Guetsky et al. 2001). 

Currently, the highest percentage of biocontrol agents used commercially in 

horticulture is from the two genera, Trichoderma and Bacillus (Stewart 2001 ). There 

are several mechanisms by which species of Trichoderma reduce pathogen infection 
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including parasitism of pathogenic fungal mycelia, antibiosis and/or production of 

cell wall degrading enzymes such as chitinases and j3-1,3-glucanases (Elad 1994, 

Metcalf 2002). Research on the biological control potential of Trichoderma spp. 

against B. cinerea on grapevine began in the late 1970's (Dubos et al. 1978, 1982) 

and the greatest reduction in disease incidence and severity to date have been under 

low to moderate disease pressure (Bisiach et al. 1985, Gullino and Garibaldi 1988, 

Garibaldi et al. 1989). 

Single biological control agents that perform well in controlled environments often 

produce inconsistent results in the field, which suggests that single species are 

constrained by mechanism of action, and/or abiotic conditions such as temperature, 

humidity and rainfall. Several authors discuss application of two or more biological 

agents to increase disease suppression (Guetsky et al. 2002, Stewart 2001). The 

mechanism of action of multiple biological control agents may be additive and 

disease control improved in a variable cropping environment. Another strategy is to 

combine biological control with other control methods. In glasshouse and field 

experiments with grapevines, Reglinski et al. (2005) improved the efficacy of a 

single biological control agent, Ulocladium oedemansii, by applying the fungal 

antagonist in combination with a chemical elicitor of induced plant resistance (5-

chloro salicylic acid (5-CSA)). Treatment with both U oedemansii and 5-CSA was 

as effective as treatment with 0.1 % Shirlan® (fluaziman) for preventing B. cinerea 

sporulation on grapevine bunches. This approach to disease management shows great 

potential; however, the large number of applications would not be an economically 

viable option for grape growers when compared to synthetic fungicides. Furthermore 

a second year of field data by Reglinski and colleagues has demonstrated a reduction 

in berry weight, leaf chlorosis and residues in wine following regular application of 
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5-CSA. (T. Reglinski, HortResearch New Zealand, personal communication). These 

results illustrate that it is important to measure grape and wine quality when testing 

developmental materials and to conduct field experiments over several seasons. 

Aerobic compost extract (ACE) 

History and production techniques 

Production systems for compost extract have predominantly been described in the 

literature as non-aerobic or aerobic (Litterick et al. 2004). In non-aerobic systems, 

compost is left soaking in water for several days before filtering to produce an 

extract (Fig. 2A). In contrast, compost in aerobic systems is generally held in a 

porous screen in dechlorinated water and a circulating water pump or stirring is 

applied to maintain aerobic conditions for 24 to 72 h (Fig. 2B). 

Production of non-aerobic compost extract (N-ACE) has been performed for 

centuries. Ancient Egyptians, Greeks and Romans were the first to suspend bags of 

manure in drums of water to produce a leachate (Ingham and Alms 2003). These N­

ACEs were presumably applied to crops to improve plant growth. It was not until the 

1920s, however, that organic farmers recognised the disease suppressive qualities of 

N-ACE (Brinton 1995). Disease suppression was thought to be due to antagonistic 

effects of microorganisms present in N-ACE (Brinton 1995). 
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A 
Mix 1 part compost to 5-10 parts tap 

water (w/v) 

L 
Leave at ambient temperature for 5-10 

days 

L 
Filtration through cheesecloth or other 

filters 
L 

Apply with standard equipment as a 
fungicide or for fertigation 

30 

B 
Place compost in a porous bag/container 

and suspend in dechlorinated water as 
follows: 

1 part compost to 4 parts water (w/v) 
L 

Maintain aerobic conditions 
(> 6 mg I L dissolved oxygen) and leave 

for 24-72 h at 22°C ± 2°C 
L 

No filtration required 

L 
Apply with standard equipment as a 

fungicide or for fertigation 

Figure 2 Flow diagrams of compost extract production systems. A. A non-aerobic 
system for extract production (Weltzien 1992). B. A generalised production system 
for aerobic compost extract. 

Scientific studies on N-ACE began in laboratory and greenhouse settings, with the 

first experimental results reported by Weltzien and Ketterer (1986). Preliminary bio-

assays demonstrated suppression of downy mildew on glasshouse grown grapevine 

leaves when N-ACE was applied as a foliar spray to the abaxial surface of detached 

leaves prior to inoculation with Plasmopara viticola (Weltzien and Ketterer 1986). 

Weltzien (1989) was the first to suggest N-ACE as an economically viable 

alternative to synthetic fungicides but recommended further research. 

Researchers have studied production techniques for N-ACE more extensively than 

ACE production techniques for variables such as ingredients used to initiate 

composting, duration of compost extraction and the influence of adding nutrients to 

the extracts (Weltzien 1990, 1992, Ketterer et al. 1992, Scheuerell 2003). These 

studies have been conducted in vitro, on detached leaves, in glasshouse and field 

environments, and the majority of experiments have illustrated statistically less 

disease in the N-ACE treatments than the water or non-treated control treatments. In 
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controlled environments, N-ACE was just as effective as the synthetic fungicide 

treatments (Weltzien 1989). Unfortunately, very few of these published reports stated 

the disease severity in field experiments, which is essential in viticultural studies 

because as little as 4% severity of powdery mildew or botrytis bunch rot can cause 

winemakers to apply a price penalty to harvested grapes (Cooperative Research 

Centre for Viticulture 2005). The benefit of the early research on N-ACE was that it 

highlighted the variables associated with extract production, such as compost source, 

extraction times and method of application. The detached leaf bio-assay of Weltzien 

and Ketterer (1986) illustrated the type of rapid technique needed to reliably 

evaluate different ACEs prior to testing in the glasshouse or field. 

Only since the mid- l 990s have researchers and practitioners been considering 

aerobic systems for extract production. ACE has replaced N-ACE due to frequent 

grower reports of fungal disease control, considerably faster production times and 

because there are now many companies promoting and selling ACE. Most studies 

investigating ACE have been performed in the field. The focus of research has been 

to compare (1) ACE to N-ACE (Welke 2004, Scheuerell and Mahaffee 2006), (2) 

unamended ACE to ACE with nutrients (Cronin et al. 1996, Al-Dahmani et al. 2003, 

Scheuerell and Mahaffee 2004), (3) various dilutions of ACE (Welke 2004, 

Scheuerell and Mahaffee 2004) and (4) unamended ACE to ACE with additional 

spreaders/stickers (Scheuerell and Mahaffee 2006). The percentage of disease 

control within each study has been conflicting and the majority of researchers have 

concluded that the ACE is an ineffective means of disease control. It is clear that 

there has been a lack of standardisation of ACE production among studies. 
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Considering the increase in ACE production and application globally, plus the 

shortage of detailed research papers illustrating disease control by ACE; the next 

section of this review focuses on the variables associated with ACE production and 

which conditions might be standardised before testing ACE in the field. 

Factors affecting ACE quality 

Source of compost 

Many filamentous fungi, bacteria, nematodes and yeasts are present in composted 

material (Weltzien 1992) and the diversity, abundance and activity of 

microorganisms varies according to compost source and maturity (Hoitink and 

Boehm 1999, Noble and Roberts 2003). Compost of high quality, as defined in Table 

3, might be necessary for maximum disease control by its extract, although this 

hypothesis would need to be tested empirically. The quality of disease control by 

ACE may depend on compost age, type (animal, plant material), carbon to nitrogen 

ratio (C:N), pH, temperature, moisture content and nutrient levels. 
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Table 3 Typical ranges of test parameters for compost prepared according to the 
Australian Standard for compost (AS 4454 2003). 

Parameter 

pH 

Electrical conductivity 

Soluble phosphorus 

Total phosphorus 

Ammonium 

Ammonium + nitrate 

Nitrogen 

Organic matter content 

Boron 

Sodium 

Moisture content 

Measure 

mg/L 

% dry mass 

mg/L 

mg/L 

% dry matter 

% dry matter 

mg/kg 

%drymass 

% 

Range 

5-7.5 

No limit, although high 
EC can be detrimental to 
crop production 

:S 5 for phosphorus 
sensitive plants 

:S 0.1 for phosphorous 
sensitive plants 

<300 

2: 100 if an input to plant 
nutrition is required 

2: 0.8 if an input to plant 
nutrition is required 

2: 25 

<200 

<1 

25- 40 (maximilln 
dependent on % organic 
matter) 

During the process of composting, compost goes through a predictable series of 

biological, physical and chemical processes. A schematic generalisation of the 

stages in composting is demonstrated in Fig. 3 (adapted from Epstein 1997). In the 

first stage, known as the primary mesophilic stage of composting, the fresh compost 

contains readily degradable compounds that can be utilised by mesophilic 

microorganisms resulting in a rapid increase in temperature from ambient 

temperature to around 60°C. As the process continues, temperature stabilises at 

approximately 55-70°C, humic substances and thermophilic bacterial numbers 

increase, while human, plant and animal pathogens, weed seeds and other 

microorganisms are destroyed.. In the final stage of composting, known as the 

secondary mesophilic stage, the temperature falls gradually from 55-70°C to ambient 

temperature and remains at this temperature for several weeks. In the early secondary 
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mesophilic phase, mesophilic microorganisms, which are often different from the 

primary mesophilic microorganisms, recolonise the compost including those with the 

potential to suppress plant disease, such as actinobacteria, Trichoderma, Ulocladium, 

Penicillium and Cladosporium (Ryckeboer et al. 2003b ). In the late secondary 

mesophilic phase, there is a reduction in the amount of degradable products available 

and consequently a decline in microbial activity (Hoitink and Boehm 1999, Tuomela 

et al. 2000, Ryckeboer et al. 2003a). 

-
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j: 
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0+-~~~-1--~~-----1f--~~~~~~--+-~~~~~~~~~~~ 

prirrary 
rresoptilic 

ttenroptilic earty secordary 
rresoptilic 

secordary rresoplilic 

Figure 3 Schematic, generalised representation of the temporal variation in compost 
internal windrow temperature during aerobic composting. 

To date, there has been an extensive range of compost types used for production of 

ACE. These have included waste products of animal manure, green and woody plant 

material or a combination of several waste products. Waste ingredients should be 

combined to obtain an initial C:N ratio of 25-30: 1 for rapid composting leading to a 

finished product with a C:N ratio of 10:1 (Shilesky and Maniotis 1969, Golueke 

1992, Toumela et al. 2000). Microorganisms use carbon as an energy source and 

nitrogen for growth. A high concentration of nitrogen in the initial waste ingredients 

can lead to volatile ammonia (Pagans et al. 2006) and unpleasant odours (Finstein 
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and Morris 1975). Furthermore, excess nitrogen is leached into the environment and 

can contaminate riparian zones leading to algal blooms and reduced water quality. 

The U.S. Environmental Protection Agency (Anon. 1998) has produced evidence of 

contaminated water, dead fish, reduced biodiversity, odours and toxic organisms near 

composting plants and farms, most likely due to nitrogen compounds from these 

producers. In contrast, a high concentration of carbon can lead to reduced microbial 

activity and slower degradation of compost and a deficiency in nitrogen necessary 

for plant growth when compost is applied to crops (Boulter et al. 2000). During 

composting the balance between carbon and nitrogen should be closely monitored, 

examined and controlled. It is also important that researchers investigating ACE state 

the C:N ratio of the initial and final compost because the ratio is an important 

determinant of the metabolic pathways of composting (de Bertoldi et al. 1996). The 

C:N ratio might also be an important predictor of the antimicrobial activity of ACE, 

but this hypothesis needs to tested empirically. 

Water source and oxygen 

The water used for ACE production should be dechlorinated. Chlorine in ACE may 

destroy or inhibit the activity of the microorganisms with a likely decline in the 

efficacy of the extract (Ketterer 1990). 

There appears to be consensus among scientists and practitioners that ACE should be 

made with adequate levels of dissolved oxygen for continual activity and 

reproduction of aerobic microorganisms (Lasaridi and Stentiford 1998, Al-Dahmani 

et al. 2003, Table 4). Anecdotal reports suggest that maintenance of adequate oxygen 

levels is necessary otherwise non-aerobic conditions may lead to the production of 

numerous acids including butyric, propionic and acetic acids (Merrill and McKeon 
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1998, Bess 2000). These acids and many alcohols produced by non-aerobic 

organisms may be potentially phytotoxic. Non-aerobic conditions have also been 

suggested to stimulate reproduction of human pathogenic fungi (Ingham 2000). 

There is no evidence to support these claims and indeed out of approximately 30 

published articles on N-ACE none have reported symptoms of phytotoxicity 

following application ofN-ACE to the fruit and foliage of crops. 

Table 4 Method of aeration employed for production of aerobic compost extract 

Method of aeration Reference 

Submerged pump for circulating water Ingham (1999) 
around a porous bag holding compost 

A hose which flows water over compost Riggil (1996) 
on a screen suspended above a barrel of 
the resultant extract containing a stirrer. 

Salinity 

The electrical conductivity (EC) of ACE should be tested prior to application to the 

crop canopy so that the risk of phytotoxicity due to excess salt is minimised. The 

salts that are generally found in compost include potassium chloride, sodium 

chloride, various nitrates, compounds involving sulfates, and calcium, magnesium, 

and potassium carbonates (Watson 2004). The EC of compost is determined by the 

initial ingredients and the compost maturity. Sources of raw materials that are rich in 

nutrients, such as animal manure, will lead to compost with higher EC levels than 

those not containing animal manure (Watson 2004). Early secondary mesophilic 

compost has a much higher conductivity than late secondary mesophilic compost and 

the maturation process reduces the level of conductivity through leaching of salts 

and/or through microbial osmotic activity (Lau and Wong 2001). Issues of high 

conductivity might arise in ACE when nutrient amendments are included during 
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extraction. Ideally, the EC of compost should be as low as the level tolerated by the 

target crop plant. The effect of EC on soil has been well described, whereas the effect 

of EC in materials applied to fruit and foliage of crops does not appear to have been 

reported explicitly. 

Table 5 describes different ranges of EC in soil and the influence of EC on crop 

yield, noting that each crop and plant species has a different susceptibility to a 

particular salinity level. The upper limit of conductivity at which grapevines can 

grow without negative impact is 4.7 dS/m in the soil (Qian et al. 2004). Different 

cultivars have variable tolerances for salinity in soil. For instance, Tee et al. (2004) 

reported that cultivars Shiraz, Pinot Noir, Cabernet Sauvignon and Merlot, grown on 

'own' roots, were sensitive to high levels of salt in the river basin soil of the Murray-

Darling region in Australia, whereas rootstock cultivars Paulsen, Ruggeri and 

Schwarzmann grown in the same region were salt tolerant. 

Table 5 Effect of electrical conductivity (EC) in soil on crop health, using a 1 :2 
volumetric test (Anon. 1999). 

Salinity level in the soil 

Non-saline 

Very slightly saline 

Slightly saline 

Moderately saline 

Strongly saline 

Electrical 
conductivity 
(dS/m) 

<1 

1-2 

2-3 

3-6 

>6 

Crop response 

Negligible 

yield reduction in sensitive 
crops 
yield of most crops, except 
tolerant crops, affected 
yield of tolerant crops 
unaffected 
yield of only very tolerant 
crops unaffected 
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pH 

The optimum pH of finished compost should be between 5 and 7.5, depending on 

compost use (AS 4454 2003). At this pH level, the compost is neither highly acidic 

nor does it contain a high level of ammonia. Neutral pH is appropriate for most 

applications of ACE to soil or the crop canopy. The pH of ACE should be 

comparable to the compost, except when pH-modifying nutrients are introduced to 

ACE. For example, if citric acid is added to ACE as a food source for 

microorganisms, it will reduce the pH. The possible consequence is that the growth 

of fungi is enhanced because the optimum pH for growth of most bacterial species is 

between 6.5 and 8, while for fungi, optimum pH is between 2 and 6.5 (Matthies et al. 

1997). 

Extraction time and compost to water ratio 

It has been suggested that the efficacy of ACE depends on the duration of extraction 

(Scheuerell 2003). According to Ingham (1999), the time of extraction in aerobic 

systems should be 18-24 h, because after this period non-aerobic organisms may 

begin to multiply. However, there is no scientific evidence supporting this statement. 

In theory, aerobic conditions should be maintained in ACE when microorganisms are 

supplied with sufficient oxygen to maintain growth and metabolism. An extended 

duration of extraction, nevertheless, may lead to a circumstance where all nutrients 

present in ACE are utilised by the aerobic microorganisms and there is a decline in 

microbial activity and diversity. As long as aerobic conditions are maintained, it is 

postulated that the microbial qualities of ACE will be determined primarily by the 

initial compost source and microorganisms colonising compost from the external 

environment. 
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The quantity of compost in water also presumably influences biological and chemical 

characters of ACE and potential to control plant pathogens. Studies on compost to 

water ratio in relation to pathogen suppression are limited to N-ACEs. This means 

that the information cannot be applied directly to ACE because production 

conditions, compost source and experimental conditions vary. However, these 

studies illustrate how the effectiveness of extracts contrast with different compost to 

water ratios and provide a guide as to what ratios may be tested in experiments with 

ACE. According to Weltzien (1990), N-ACE controlled the plant pathogen 

Phytophthora infestans on detached potato leaflets when the compost to water ratio 

ranged between 1 :3 and 1: 10 but not when the compost to water ratio was 1 :50. A 

more detailed in vitro experiment by Cronin et al. (1996) with Venturia inaequalis, 

the cause of apple scab or black spot, determined the ECso (the concentration that 

inhibited germination of 50% of V inaequalis conidia) of non-aerobic slurries of 

compost. There was a linear relationship between the logrocfu (colony forming units) 

of the extract concentration and germination inhibition. The extracts were mixed 

with sterile deionised water in ratios ranging from 1 : 3 .16 to 1 : 100. In contrast to 

studies of Weltzien (1990) and Cronin et al. (1996), the quantity of compost in water 

did not influence grey mould suppression on field grown strawberries (Welke 2004). 

In conclusion, a standardised ACE should be developed by testing a range of well­

characterised composts, extraction times and compost to water ratios. 

Additives 

Nutrient availability is critical for microbial metabolism and growth (Eqli and Zinn 

2003). Nutrients added to ACE might increase the activity and abundance of 

microorganisms. However, some materials rich in protein and amino acids, like fish 

emulsion or fish hydrolysate, may enhance microbial reproduction (El-Tarabily et al. 
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2003) to a degree where oxygen is consumed faster than it is introduced by water 

circulation or addition of oxygen gas, leading to non-aerobic conditions. Nutrients 

might also alter microbial composition. Ingham (2000) suggested that bacterial­

dominant or fungal-dominant ACEs can be prepared by selecting appropriate nutrient 

amendments but presented no scientific evidence in support of these claims. 

The benefit of using ACE amended with nutrients appears to depend on the 

pathosystem. Travis et al. (2003) compared ACE with ACE modified by addition of 

humic acids, fish hydrolysate and granular molasses and found no significant 

difference between treatments in the suppression of powdery mildew and botrytis 

bunch rot on glasshouse-grown grapevines (Travis et al. 2003). In another study, the 

most consistent ACE for suppression of damping-off on field-grown cucumbers 

caused by Pythium ultimum was ACE amended with kelp, humic acids and rock dust 

(Scheuerell and Mahaffee 2004). In another pathosystem, Scheuerell and Mahaffee 

(2006) illustrated no significant difference between unamended ACE and ACE with 

nutrients for grey mould suppression on geranium, regardless of an increase in 

microbial numbers with additional nutrients (Scheuerell and Mahaffee 2006). 

Further research is necessary to elucidate whether microbial numbers, as influenced 

by additives or other factors, have a positive effect on pathogen inhibition and 

disease suppression. 

Many ACE practitioners test new recipes regularly with the goal of achieving 

enhanced plant production, soil structure and nutrient cycling in the soil, plus 

reduced disease incidence or severity (Ingham 2000). These recipes appear to be 

adopted from recommendations made by salespeople without any controlled 

scientific experimentation to support their use. Presently, the additives that are sold 
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commercially for use with ACE include molasses, sugar, brewer's yeast, seaweed, 

rock dust, fish hydrolysate, fish emulsion and calcium carbonate. If ACE can be 

standardised for consistent suppression of a particular pathogen, then calcium 

carbonate is a potential additive for enhanced effectiveness of ACE. Calcium 

carbonate lowers the pH of a solution (McLean et al. 1961) and may increase the 

abundance of fungal species, given that the optimum pH for fungl. is between 2 and 

6.5 (Matthies et al. 1997). If the additive does make the ACE 'fungal dominant', then 

this treatment could be used to test the hypothesis that fungal dominant ACEs are 

more effective than other ACEs. 

Storage and application 

Survival of microorganisms under storage 

The survival time for aerobic microorganisms after extraction and before application 

has not yet been studied scientifically. Foregoing commercialisation of bio­

fungicides, experiments are required to determine the long-term survival or integrity 

of the active component/s. Abadias et al. (2001) discovered that the greatest survival 

rate and viability of Candida sake occurred when the biocontrol agent was freeze­

dried and stored in lactose and skim milk. In contrast, Sandoval-Coronado et al. 

(2001) illustrated successful storage of aerial dried Pseudomonas fumosoroseus at 

4°C for 45 days. While these types of studies indicate the potential for biocontrol 

agents, including ACE, to have a 'shelf life', more research is required to determine 

the viability of microorganisms in ACE during storage and transport. The ability to 

store ACE will depend on the rate of oxygen use by microorganisms, the capacity to 

moderate microbial metabolism, the survival rate of microorganisms under storage, 

the potential to concentrate ACE produced in large quantities and the possibility of 

microbial competition, parasitism and antibiosis within ACE. If ACE is to be 
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developed commercially, and if its shelf life is short, then it is likely to be produced 

and sold only at a regional and/or local level. 

Modifying ACE prior to application 

Adjuvants are mixed with synthetic fungicides to reduce the surface tension of the 

spray droplets, helping the fungicide to adhere and increase its surface area on the 

leaf or fruit surface (Zabkiewicz 2007). By this mechanism and their chemical 

nature, adjuvants improve wetting, wax solubilisation and active transport of the 

fungicide across the leaf (Steurbaut 1993). Spray adjuvants have been shown to 

increase the effectiveness of ACEs in reducing B. cinerea development on 

glasshouse grown geranium (Scheuerell and Mahaffee 2006). In grapevine, however, 

a number of adjuvants have been shown to disintegrate the epicuticular waxes on 

berry surfaces, causing greater susceptibility to B. cinerea infection and depletion of 

the number of microorganisms on the fructosphere (Marois et al. 1987, Rogiers et al. 

2005). The addition of organic adjuvants to ACE needs to be investigated further to 

determine if adjuvants reduce the number of microorganisms and consequently the 

effectiveness of ACE. Fish hydrolysate and fish emulsion contain fish oil and could 

be tested as potential organic adjuvants (de Ong 1927). 

Application 

Prior to application of ACE, assessment of the spray equipment will be essential to 

ensure survival of the microorganisms as they pass through pumps at high pressure 

and through spray nozzle orifices. The type of sprayer, nozzle and pump will 

influence the velocity, pressure, droplet size and coverage of ACE on the crop 

canopy. The mechanism of action of ACE will determine the spray interval and 

timing in relation to pathogen infection: either before the disease is established 
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(protective spray) or after disease is established (eradicant spray). Finally, the 

interval between spraying events will depend on crop phenology and susceptibility, 

disease pressure and the survival of microorganisms from ACE in changing 

environments. 

Microbial abundance and dynamics in the phyllosphere 

Information on the dynamics and composition of microorganisms on the surface of 

plant tissue is essential to gain a greater understanding of the changes that occur 

when microorganisms in ACE are added to the phyllosphere. Changes in microbial 

ecology can then be correlated to the level of disease suppression. In addition to 

glasshouse and detached tissue assays, it is important that phyllosphere microbiology 

is studied within the field environment, because changing environmental conditions 

(temperature, humidity, light and moisture) will alter the dynamics of 

microorganisms on the host surface. 

Only one study has evaluated microbial composition on grapevine leaves following 

application of compost extract. Sackenheim et al. (1994) applied a combination of 

horse manure N-ACE, brewer's yeast and sucrose to grapevine leaves and discovered 

that the bacterial and fungal species which inhabited the leaf surface depended on the 

nutrients added to N-ACE and the foliar microclimate. In this study, the abundance 

of microorganisms was determined by spreading various dilutions of ACE on a solid 

medium required for microbial growth. This technique is a useful tool to measure the 

relative abundance of culturable microorganisms but it may not detect a large 

proportion of taxa that are non-culturable (Amann et al. 1995). Since the study of 

Sackenheim et al. (1994), DNA techniques have been developed to determine the 
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abundance of both culturable and non-culturable microorganisms (Garland et al. 

2001). 

Two DNA techniques, single stranded conformation polymorphism (SSCP) and 

denaturing gradient gel electrophoresis (DGGE), can be used to study microbial 

communities as described by Theron and Cloete (2000) and Liu et al. (2002). SSCP 

represents conformational changes of single-stranded RNAs/DNAs in solution and 

has been used to determine the succession and diversity of microbial communities 

during composting (Peters et al. 2000), while DGGE has been used to investigate the 

effect of addition of organic fertiliser amendments to soil on bacterial community 

succession (Marschner et al. 2002). Individual DNA bands generated by DGGE or 

SSCP that are associated uniquely with a particular sample or group of samples can 

be cloned and sequenced. These techniques might be useful to investigate changes in 

ACE microbial populations in the phyllosphere over time. 

In comparison with DGGE and SSCP, terminal restriction fragment length 

polymorphism (T-RFLP) appears to be a more reproducible molecular technique for 

routine analysis of microbial communities. T-RFLPs are generated by PCR with 

fluorescently labelled primers that are digested with restriction enzymes to produce 

DNA fragments of different lengths (Osborn et al. 2000). These fragments are 

separated by gel or capillary electrophoresis and each fragment is called a terminal 

restriction fragment (T-RF) because each fragment is considered to represent a single 

microbial species or a taxon comprising closely-related species (Hill et al. 2003). 

The advantage of T-RFLP over DGGE and SSCP is that T-RFLP appears to resolve 

a greater diversity of microorganisms and multiple samples can be loaded 

simultaneously (Liesack and Dunfield 2002, Nunan et al. 2005). Both DGGE and T-
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RFLP have been used to analyse bacterial communities in submerged rice plants and 

have generated similar results; however, T-RFLP detected a greater diversity of 

bacteria than DGGE (Horz et al. 2001). Unlike DGGE and SSCP, gel analysis is 

rapid and the computer output can be compared to sequence databases, such as the T­

RFLP fragment sorter Fragsort 5.0 (Michel and Sciarini 2003). The disadvantage of 

T-RFLP over DGGE and SSCP is that each T-RF could represent a number of 

microbial species. However, application of multiple restriction enzymes can 

adequately determine if a sequence is present or absent from the community and 

allows comparison of microbial diversity for microbial communities. 

A greater understanding of microbial survival and the dynamics of microbial 

communities on grapevine leaves and berries in relation to the application of ACE, 

using culture-based and DNA techniques, will aid production and application of 

ACE for maximum suppression of foliar and fruit diseases. 

Mechanism of disease suppression 

Many practitioners claim disease suppression following application of ACE to crops, 

but to date there is no clear explanation for the mechanism or mechanisms involved 

in pathogen and thus disease suppression (Sackenheim et al. l 994, Elad and 

Shtienberg 1994, Merrill and McKeon 1998, Scheuerell 2003). McQuilken et al. 

(1994) provided evidence that the abundance of microorganisms determined 

pathogen suppression by comparing filter-sterilised and heat-sterilised N-ACEs to 

non-sterilised extracts and their ability to suppress B. cinerea infection on bean 

leaflets. Weltzien (1989), who studied downy and powdery mildew on grapes, also 

found no effect of filter or heat-sterilised N-ACEs on spore germination or disease 

development indicating that it was activity of microorganisms that was associated 
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with pathogen and disease suppression. In contrast, Cronin et al. (1996) reported that 

metabolites of non-aerobic microorganisms contributed to pathogen suppression. 

Similarly, Al-Dahmani et al. (2003) reported a heat stable metabolite produced in 

compost prepared with cow manure, pine bark or yard waste that was correlated to 

disease suppression of bacterial spot on tomato. However, this metabolite was 

inconsistently produced in these composts. Consistent pathogen and disease 

suppression appears to be achieved with extracts containing metabolically active 

microorganisms (Ketterer 1990, Stindt and Weltzien 1990, Urban and Trankner 

1993). The only peer reviewed paper investigating filter sterilisation of ACE 

demonstrated that living microorganisms were essential for disease control 

(Scheuerell and Mahaffee 2004). 

Possible explanations for disease suppression with ACE include those that explain 

the various mechanisms of single agents for biological control (Elmer and Reglinski 

2006). These mechanisms include induced plant resistance to disease, competition 

with the plant pathogen for nutrients, hyperparasitism and direct inhibition of the 

target plant pathogen by production of antimicrobial compounds including 

chitinolytic enzymes. Mechanism of action must be understood in order to develop a 

reliable recommendation for the use of a new biological control agent and this 

knowledge will help target research towards increased efficacy and consistency in 

results. If ACE production was standardised and its composition predictable, then it 

might become a candidate for registration as a crop protectant. Information on 

mechanism of action would be necessary for the registration process. 

Nutrients in the infection court are essential for B. cinerea conidial germination and 

host infection (Holz et al. 2004). Therefore, microorganisms present in ACE might 
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suppress B. cinerea spore germination by competing for nutrients. Germination of B. 

cinerea conidia has been inhibited by isolates of Rhodotorula glutinis and 

Cryptococcus albidus colonising beet root leaves, bean and tomato plants (Elad 

1996). R. glutinis and C. albidus were able to outcompete B. cinerea and suppress 

germination over a wide range of nutrient levels. Several of the single biological 

control agents that can outcompete B. cinerea may be present in ACE. The level of 

disease suppression accomplished by competition is dependent on biotic ( eg. plant 

defence responses) and abiotic factors such as temperature, relative humidity, and 

nutritional environment (Guetsky et al. 2002). Future studies on the mechanism of 

action of ACE should be performed over a wide range of temperature, humidity and 

nutritional environments. The challenge in such studies is that fluctuating 

environmental conditions found in the field are difficult to simulate in controlled­

environment incubators. 

Antibiosis is evident when there is lysis of hyphal cell walls of a pathogen without 

physical contact between the pathogen and the antagonist. Antagonistic 

microorganisms degrade cell walls of adjacent pathogen hyphae by releasing volatile 

and non-volatile antibiotics (Lederer et al. 1992). El-Masry et al. (2002) produced an 

ACE in vitro from composted green waste in which no evidence of antibiotics or 

siderophores was detected; however, there were lysogenic enzymes present that may 

have accounted for some of the inhibitory activities of ACE. In contrast, Dianez et al. 

(2006) evaluated the presence of siderophores in ACE made from grape mare 

compost and illustrated that siderophores were partially responsible for the in vitro 

suppression of nine soil-borne pathogens. Suppression was suggested to be due to a 

combination of factors, including competition, lysogenic enzymes and antibiotics, 

although further experimental evidence is required. 
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Weltzien and Ketterer (1986) were the first to suggest induced resistance in 

grapevine due to application of N-ACE. A type of induced resistance, known as 

systemic acquired resistance (SAR), is a broad-spectrum resistance, which develops 

systemically in the plant after it is attacked by a pathogen (Ross 1961 ). SAR is 

activated by a chemical elicitor that initiates a complex set of reactions and 

ultimately results in the development of host defence responses against the plant 

pathogen (Zhang et al. 1998). There have been several types of elicitors recognised 

(Guetsky et al. 2002). Synthetic analogues of natural chemical elicitors such as 

benzo (1,2,3) thiadiazole-7-carbothioic acid (S) methyl ester and probenazole have 

been commercialised for crop protection and sold as Bion® and Oryzemate®, 

respectively (Gorlach et al. 1996, Sekizawa and Mase 1980). 

SAR can also be induced by environmental microorganisms (Kessmann et al. 1994). 

For example, Pseudomonas fluorescens, present naturally in soil, induces resistance 

in tobacco leaf tissue (Kessmann et al. 1994). Induced resistance by naturally 

occurring microorganisms is an exciting new prospect for biological control of plant 

pathogens. Some organisms in ACE may secrete chemical elicitors and induce plant 

resistance and others may have direct antagonistic effects against pathogens. In order 

to demonstrate induced resistance, it is necessary to rule out direct impact of ACE on 

each stage of the pathogen life cycle and develop or apply an assay that detects 

induced resistance using a biochemical or molecular marker associated with the host­

pathogen system under study. 
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Human pathogens 

The principal safety concern surrounding ACE is the potential for survival, re­

establishment and growth of human pathogens during production and/or application. 

Human pathogens have been found in both aerobic and non-aerobic compost extracts 

when nutrients have been added to the extracts (Kannangara et al. 2006, Ingram and 

Millner 2007). Potential sources of human pathogens in ACE are from the compost 

source, contaminated water used during extraction and/or direct contamination from 

workers handling equipment without appropriate microbial safety protocols 

employed. 

If human pathogens are introduced to ACE they will proliferate if the growth 

conditions are suitable. Levels of oxygen, pH, temperature, salinity, and duration of 

extraction, additives and the field environment will determine the survival of these 

organisms. To prevent the risk of human pathogen regrowth, Lung et al. (2001) 

recommended that compost used for extraction should maintain at least 45°C for 72 h 

during composting and that additives should not be used during extraction. There is 

still a risk of human pathogen contamination after the thermophilic phase of 

composting because some bacteria such as Bacillus cereus can survive as spores 

during the thermophilic stage of composting (Bollen 1993). Other human pathogens 

might contaminate the compost from environmental sources, for example, Listeria 

monocytogenes. Sidorenko et al. (2006) showed that high temperature soils 

containing an abundance of humic and fulvic acids stimulate reproduction of L. 

monocytogenes. Compost is high in humic <1ncl folvic <1cids and f,. mnnncytngenes is 

an environmental bacterium that might be able to compete well in compost. 
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Scheuerell and Mahaffee (2002) suggested that addition of nutrients, especially 

molasses, during ACE production, is the primary reason for re-establishment and 

growth of human pathogens. At least three studies involving additives to ACE report 

establishment and regrowth of human pathogens in ACE. Duffy et al. (2004) 

inoculated ACE with E. coli 0157 H7 and a Salmonella sp. and found that addition 

of molasses at the beginning of ACE extraction led to an increase in colony counts of 

these human pathogens. Regrowth of these bacteria did not occur below 0.5% 

molasses, but was observed when 0.5 or 1 % of molasses was added. The laboratory­

scale methods used by Duffy et al. (2004) to make ACE were not representative of 

current extraction techniques used commercially. Furthermore, only one cfu of E. 

coli per ml was added to each extract, thus increasing the potential for an extended 

lag phase and mortality of the bacterium during inoculation. In addition, oxygen, pH 

and conductivity were not measured throughout the extraction process. In contrast, 

Kannangara et al. (2006) and Ingram and Millner (2007) prepared ACEs in the 

laboratory which resembled commercial ACE production and E. coli was inoculated 

in sufficient numbers, ranging from 1 x 101 to 1 x 10 7 cfu/ml across both studies. 

Both research groups measured the oxygen level and pH during extraction and 

maintained a consistently high level of oxygen during ACE production. In both 

studies, numbers of E. coli were below the limit of detection in non-inoculated 

extracts, with or without additives, and there was no increase in E. coli numbers in 

inoculated, unamended extracts. 

According to Kannangara et al. (2006), when powdered kelp or molasses were 

introduced to N-ACE and ACE, there was a significantly higher number of E. coli in 

N-ACE. There was however, a linear relationship between the concentration of 

molasses or kelp and the number of E. coli in ACEs, and the number of E. coli in 
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ACE amended with powdered kelp was lower than observed in ACE amended with 

molasses. Interestingly, carrot juice reduced the number of E. coli in ACE and 

increased the number of microorganisms. Kannangara et al. (2006) used carrot juice 

because carrot cells are thought to secrete phytoalexin 6-methoxymellein, an 

antimicrobial substance. 

Unlike the results of the study by Kannangara et al. (2006), Ingram and Millner 

(2007) found that there was a significantly greater number of E. coli and Salmonella 

sp. in ACE than N-ACE, when commercially available bacterial supplements, kelp, 

humic acid or rock dust were included in the extracts. E. coli are facultative 

anaerobes that have been shown to proliferate in both aerobic and non-aerobic 

conditions (Unden et al. 1994). The dissimilar human pathogen growth ,patterns in 

ACE and N-ACE in these experiments may be due to variation in nutrient type, 

nutrient concentration, pH, conductivity or compost source, rather than oxygen level. 

Further research should compare ACE amended with nutrients to the equivalent 

concentration of nutrients in water (without compost extraction) as well as the 

survival of human pathogens at various pHs, salt levels and nutrient concentrations. 

To safeguard agricultural workers and/or prevent the food supply from becoming 

contaminated, the ecology of human pathogens in the cropping environment where 

ACE has been applied, including microclimates that favour their regrowth, should be 

investigated. 

Summary 

There is an increasing trend world-wide for greater adoption of sustainable 

agricultural practices. ACE appears to be a promising alternative to synthetic 
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fungicides that could be integrated into crop disease management. Research on N­

ACE dates back to the 1980s, and when compared to ACE, there is more 

experimental evidence for its effectiveness in vitro, and in planta under controlled 

and field conditions. ACE, with its short production time, has been adopted widely 

by practitioners in recent years. This review of the literature demonstrates that ACE 

has the potential to suppress certain pathogens and diseases. The lack of 

demonstrated effectiveness of ACE in field grown crops to date indicates that ACE 

needs to be developed further and standardised for maximum and consistent 

pathogen suppression. Understanding the mechanism of action of ACE and the 

potential for human pathogen regrowth will inform production techniques and 

patterns of application for maximum safety and control of foliar and fruit diseases. 

Detailed studies of microbial ecology of the phyllosphere should also be performed 

to understand the impact of ACE application in relation to plant pathogen 

development in various cropping environments. 
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PROJECT AIMS 

The primary aim of this research was to standardise the production of aerobic 

compost extract (ACE), using compost produced by a collaborative industry partner, 

Soil First Pty Ltd, so that each batch produced consistently high levels of suppression 

of two major fruit and foliar diseases of grapevine (Vitis vinifera L.). Botrytis cinerea 

and Erysiphe necator, the cause of botrytis bunch rot and powdery mildew, 

respectively, were used to identify and standardise an ACE that would consistently 

reduce infection and colonisation of these two plant pathogens with different life 

history and biology. 

The specific objectives of this research were: 

1) To define qualities of compost and an extraction process that produced an 

extract that suppressed the growth and reproduction of B. cinerea 

significantly and consistently in vitro. 

2) To investigate the mechanism of powdery mildew suppression in relation to 

the time of infection of glasshouse grown grapevines by conidia of E. 

necator. 

3) To assess the effectiveness of ACE in reducing powdery mildew and botrytis 

bunch rot when applied to disease susceptible varieties of wine grapes grown 

in commercial vineyards. 

4) To determine the survival of microorganisms m the phyllosphere after 

treatment of leaves with ACE in the field (commercial wine grape 

production). 

5) To investigate the safety of ACE for commercial production and application: 

o To determine the presence of human pathogens in compost and ACE. 
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o To assess the capacity of human pathogens to grow in ACE and ACE 

amended with nutrients. 
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CHAPTERl: 

STANDARDISED PRODUCTION OF AEROBIC COMPOST EXTRACT 

(ACE) FOR SUPPRESSION OF THE COSMOPOLITAN PLANT 

PATHOGEN, BOTRYTIS CINEREA 

1.1 Abstract 

Aerobic compost extract (ACE) is a watery extract of aerobic compost that favours 

the persistence of aerobic microorganisms. ACE is applied to the soil or to the fruit 

and foliage of horticultural crops to improve plant health but there is limited 

scientific evidence to support its use for crop protection. Three composts with 

variable raw ingredients were used to evaluate production variables for ACE 

systematically. A reproducible bioassay was used to assess the impact of different 

ACEs on the growth and reproduction of the fungal pathogen Botrytis cinerea on 

detached bean leaflets. Bacterial-dominant ACEs produced with a compost weight to 

water volume ratio of 1 :3 to 1 :30, and from compost sampled in the early secondary 

mesophilic stage of composting inhibited B. cinerea colonisation of bean leaflets to a 

greater extent than ACEs produced from compost sampled in later mesophilic stages. 

There was limited evidence to suggest that the magnitude of pathogen suppression 

was associated positively to the number of bacterial and fungal Terminal Restriction 

Fragments (T-RFs) or microbial taxon diversity in ACE. ACE directly inhibited the 

germination of B. cinerea conidia in vitro and removal of microorganisms from ACE 

by filtration reduced but did not eliminate its capacity to inhibit conidial germination. 

Water-soluble antibiotics were not detected in filtered ACE following an in vitro 

assay for the inhibition of B. cinerea colony growth. Standardised production of 

ACE, including sampling the compost windrow at an internal temperature of 40-
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50°C, can now be adopted for evaluating ACE for plant disease management in the 

field. 

1.2 Introduction 

B. cinerea is a cosmopolitan and necrotrophic fungal pathogen that infects a wide 

range of fruit, vegetable and ornamental crops (Coley-Smith et al. 1980). Diseases of 

flowers and fruit caused by B. cinerea, including bunch rot of wine and table grapes 

and grey mould of strawberries, can lead to significant loss of crop yield and quality 

(Sutton 1998, Blad et al. 2004). Many horticultural producers worldwide use 

multiple applications of synthetic fungicides to protect crops from infection by B. 

cinerea. There is significant market and legislative pressure to reduce fungicide 

inputs because of concerns about the development of pathogen resistance to 

fungicides and the safety of fungicides to humans and the environment. Integrating 

alternative control measures, such as cultural and biological controls, is the first step 

to reducing fungicide inputs while maintaining cost-effective disease management. 

Biological control has focussed on the use of one or several well-characterised fungal 

or bacterial species to target a specific plant pathogen. Potential mechanisms of 

action of biological control agents include the production of antibiotic compounds 

(Cronin et al. 1996, Haggag and Saber 2007), cell wall degrading enzymes (Blad 

1994, Metcalf 2002), siderophores (Leong 1986, Dianez et al. 2006), competition for 

nutrients in the pathogen infection court (Buck 2002), and/or the induction of the 

defence response in the plant host (Blad 2000, Magnin-Robert et al. 2007). The 

approach to biological control investigated in this study, application of aerobic 

compost extract (ACE), is a type of multiple-target biological control that has been 

poorly characterised. 
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Growing numbers of farmers, farm service providers, landscape gardeners and golf 

course managers are producing and applying ACE to soil or plant canopies for 

improved plant health and putative suppression of a wide range of plant pathogens 

(Touart 2000, Scheuerell and Mahaffee 2002). ACE is a watery extract of compost 

that is produced aerobically using extraction conditions that favour growth of aerobic 

microorganisms from the original compost. It is produced within 72 h, in custom­

built extraction tanks, and applied to the soil or to fruit and foliage soon after 

production. Practitioners report the amendment of ACE with nutrients such as kelp 

extract, rock dust, humic acid or molasses during extraction in order to promote 

microbial abundance and disease suppression (Ingham and Alms 1999, Ingham 

2003). There are many anecdotal reports that application of ACE reduces the 

incidence and severity of a range of fungal and bacterial plant diseases ( eg. Diver 

2002, Ingham 2003), yet few scientific studies that support these claims. Inhibition of 

the germination of pathogen spores by ACE in vitro has been reported, for example, 

ACE prepared from spent mushroom compost reduced the germination percentage of 

conidia of Venturia inaequalis, the cause of apple scab (Cronin et al. 1996). 

Apart from in vitro studies, there appears to be only one scientific, peer-reviewed 

report that demonstrates that application of unamended ACE can reduce the 

incidence of disease relative to water or non-treated controls. During a natural 

epidemic of botrytis grey rot on field grown strawberries, Welke (2004) illustrated a 

significant reduction in disease incidence when berries were treated with bi-weekly 

application of unamended ACE in comparison with berries treated with water or non­

treated berries. In a recent study, Scheuerell and Mahaffee (2006) evaluated the 

effectiveness of different ACEs prepared from various compost substrates, with or 

without adjuvants or additives, by applying treatments to leaves of glasshouse grown 
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geraniums prior to inoculation with B. cinerea. Only ACEs amended with kelp 

extract, rock dust, humic acid or adjuvants such as yucca extracts or spreader/stickers 

reduced the severity of grey mould relative to the non-treated control, but these 

results were inconsistent given that significant reduction occurred in just seven of 27 

experiments. Only one study has used commercially available ACE applied in vitro, 

in vivo and in field trials on potato crops for control of the late blight pathogen 

Phytophthora infestans (Sturtz et al. 2006). This commercial product did not appear 

to reduce the growth of P. infestans or the incidence oflate blight significantly. 

The multitude of production techniques for ACE (Scheuerell and Mahaffee 2002) 

and lack of a standardised method of ACE production among studies has made it 

difficult to evaluate the effectiveness of ACE for consistent crop protection. 

Furthermore, the capacity to standardise production of an ACE that suppresses 

disease consistently has not been fully explored. Systematic evaluation of production 

parameters for ACE starts with the desired carbon to nitrogen (C:N) ratio at compost 

windrow initiation (Shilesky and Maniotis 1969, Tuomela et al. 2000), followed by 

development of criteria for sampling the compost at an appropriate stage during the 

composting cycle. The presence of microorganisms in compost and hence extracts, 

has been demonstrated to be a contributing factor to the level of disease or pathogen 

suppression observed (Scheuerell and Mahaffee 2004, 2006). The number of 

culturable microorganisms, however, does not appear to be related to the level of 

pathogen suppression (Scheuerell and Mahaffee 2004, 2006). The abundance, 

diversity and/or metabolic activity of both culturable and non-culturable 

microorganisms in ACE needs to be investigated for the potential of this information 

to indicate which part of the composting cycle produces a disease suppressive ACE. 
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The primary aim of this study was to develop a systematic process for identifying 

potentially disease suppressive ACEs prior to evaluating their effectiveness under 

glasshouse and field conditions. A bean leaflet assay was used to investigate the 

effect of compost age, internal windrow temperature, extraction time and other 

production parameters on the ability of different ACEs to inhibit the growth and 

reproduction of B. cinerea. From the ACEs assessed, a number were selected that 

varied in their capacity to inhibit B. cinerea on bean leaflets and were characterised 

for the abundance of culturable microorganisms and diversity of microorganisms by 

analysis of community DNA for Terminal Restriction Fragment Length 

Polymorphisms (T-RFLPs: Liu et al. 1997, Clement et al. 1998, Osborn et al. 2000). 

The level of pathogen suppression and microbial characters of ACE were then 

related to the physical and chemical characters of compost from which they were 

prepared. A second objective was to conduct a preliminary investigation of the 

mechanism of action of a pathogen-suppressive ACE identified during the initial 

screening process. 

1.3 Materials and Methods 

1.3.1 Production of compost 

Compost was produced by Soil First Pty Ltd on a commercial scale using open 

windrow composting (Epstein 1997) at Parrata in central Tasmania, Australia. The 

compost windrows were in the form ofa long hill ridge measuring 3 m wide and 2 m 

high. The dominant raw materials, which varied depending on supply of waste 

products, and production times for specific batches of compost are summarised in 

Table 1.1. Composting was initiated with a carbon to nitrogen ratio (C:N) of 30:1, 

based on the recommendations of Shilesky and Maniatis (1969) and Tuomela et al. 

(2000). A hydrolysate of raw salmon waste was added 2 to 3 weeks after 
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establishment of the compost windrow, which increased the internal temperature of 

the windrow and decreased the C:N ratio. This practice, while not ideal for producing 

good quality compost, was based on a commercial need to manage excess salmon 

waste. In compost windrow two (Table 1.1 ), raw salmon waste was added a second 

time at 5 weeks, resulting in an elongation of the thermophilic phase. Compost began 

to cool from thermophilic to mesophilic conditions approximately 5 to 6 weeks after 

windrow establishment. 

Internal windrow temperature was measured daily at three positions: approximately 

10 m from each end of the 50 m windrow and in the centre of the windrow. The 

temperature probe, a Wavetek Meterman™ Test Instruments Model TM 

Thermometer with TP254 Immersion Probe, was inserted at a depth of 1 m from the 

apex of the windrow. Windrow moistness was evaluated daily by a visual technique 

referred to in the compost industry as the 'squeeze' method (Rynk 1992). Compost 

was turned weekly with a tractor drawn windrow turner and if necessary water was 

applied during turning. Electrical conductivity, pH, nitrate, nitrite, ammonium and 

percentage humus were generally measured when the compost was mature according 

to AS 4454 for compost, mulches and conditioners (2003), typically 12 to 13 weeks 

post-windrow establishment. 
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Table 1.1 The dominant raw ingredients and time to maturity (production time) of 
compost windrows sampled for preparation of ACE. 

Compost windrow 

one andtwo 

three 

four 

Dominant raw ingredients 

cow manure from feedlot beef, 
Eucalyptus spp. sawdust, 
newsprint waste-water sludge 
based on plantation Pinus radiata 
and regrowth Eucalyptus spp., 
hydrolysate of raw salmon 
(Salmo salar) from aquaculture 
filleting waste 

chicken manure from organic 
chicken farms, mulched green 
waste from municipal councils, 
hydrolysate of raw cultured 
salmon (S. salar) from filleting 
waste 

Compost production time 
and seasons during 
production 

87 days, summer/autumn 
(one) or 76 days, 
winter/spring (two) 

79 days, summer/autumn 

mulched green waste from 85 days, winter/spring 
municipal councils, hydrolysate 
of raw cultured salmon (S. salar) 
from filleting waste 

1.3.2 Compost extraction method and characters of ACE 

Three 100 L tanks were placed in a dark room maintained at 22°C ± 4°C. Each tank 

contained 30 L of tap water and a pond pump (Bianco, BIAWFP1500, White 

International Pty Ltd, Milperra, Australia) that circulated the water in a fountain 

motion at 1,500 L h-1 for 24 h for dechlorination (Lawson 1994) prior to compost 

extraction. A 10 kg sample of compost was collected from each of the three positions 

within the windrow where internal temperature had been measured, placed in a 20 L 

container and transferred by road transport of 1 h duration to New Town Research 

Laboratories for immediate extraction. Each compost sample was placed into a 100% 

polypropylene sack ( 40 cm x 70 cm pillow protector) and suspended in one of the 

three tanks containing dechlorinated tap water. A compost to water ratio of 1 :3 was 

CHAPTER 1 



62 

chosen to replicate ACE production conditions employed by the Soil First Pty Ltd. 

The pond pump continued to circulate the water for maintenance of aerobic 

conditions for microbial metabolism. The duration of compost extraction was varied 

by sampling extract from each tank at specified times after extraction commenced. 

The pH, dissolved oxygen, conductivity, temperature and nitrate were measured 

immediately prior to extraction and every 24 h, up to 72 h. Nitrate was determined 

from nitrate Merckoquant® strip tests (Merck Pty Ltd). The other physical 

parameters were measured using WTW Handheld 340i or Inolab meters (Merck Pty 

Ltd). 

1.3.3 Bean leaflet assay 

Detached bean leaflets inoculated with B. cinerea conidia were used to quantify the 

growth and sporulation of B. cinerea in response to treatment of bean leaflets with a 

particular ACE prior to inoculation. The bean leaflet assay was based on a method 

reported by Bouhassan et al. (2004). Vicia faba L. (South Australian Faba bean 

breeding program, clone 1142), large seeded broad beans, were grown from seed in a 

glasshouse at 22°C ± 4°C. Seedlings were transferred individually to 20 cm-diameter 

pots containing premium potting mix (75% composted bark, 20% sand, 5% peat fibre 

including dolomite lime, gypsum, Osmoform® and Osmocote®) and watered daily. 

A single leaflet was collected from the third node of each of four bean plants per 

experimental treatment. Leaflets were surface sterilised by washing in sterile distilled 

water before transfer to 0.5 g L-1 sodium hypochlorite for 3 min and finally rinsed 

three times in sterile distilled water. The leaflets were then placed on sterile paper 

towel and dried in a laminar flow hood. Each leaflet was immersed in 4 ml of a 

specified compost extract for 30 s and placed individually in 90 mm-diameter Petri 
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plates lined with sterile paper towel moistened with 2 ml of sterile water. The leaflet 

was allowed to dry before inoculation with a suspension of B. cinerea conidia. 

Strain DAR 78113 of B. cinerea was isolated in May 2003 from naturally infected 

berries of Vitis vinifera variety Chardonnay grown commercially in the Coal River 

Valley of southern Tasmania. This isolate was maintained on slopes of Pectin Agar 

(PA) (Metcalf 1997) at 4°C for the duration of experimentation. Pectin agar 

contained the following (g/L): NH4H2P04, 0.9g; (NH4)2HP04, 2.0 g; MgS047H20, 

0.1 g; KCl, 0.5 g; and citrus pectin, 10.0 g (Sigma Aldrich Co., NSW, Australia). The 

pH was adjusted to 4.0 before addition of 30 g of agar and autoclaving. Conidia of B. 

cinerea strain DAR 78113 were generated from 14-day old cultures on PA in Petri 

plates that had been maintained in darkness (Stewart and Long 1987) at 21 °C ± 4 °C. 

These cultures were scraped from the Petri plate into sterile deionised water, shaken 

vigorously and the mixture filtered through two layers of cheesecloth to remove agar 

and mycelial fragments. The suspension was adjusted to 1 x 105 B. cinerea conidia 

mr1 with the aid of a haemocytometer. Six 10 µl drops of suspension were then 

placed on the adaxial surface of each surface sterilised bean leaflet, with three drops 

on each side of the midrib. Plates were then sealed with Parafilm TM and incubated in 

darkness at 21°C ± 4°C. After 48 h, the number of necrotic lesions per leaflet was 

scored and after 5 days the area of necrosis per leaflet (mm2) was measured by 

photography and image analysis using the UTHSCSA lmageTool for Windows, 

Version 3 program (available from ftp://maxrad6.uthscsa.edu). After 9 days, the 

number of necrotic lesions with sporulating B. cinerea per leaflet was recorded. 
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1.3.4 Effect of compost age and duration of extraction on the capacity of ACE to 

inhibit B. cinerea 

The bean leaflet assay was used to quantify the effect of compost age and duration of 

extraction on suppression of growth and sporulation of B. cinerea by ACE. The 

experiment was conducted for compost windrows one, two and three listed in Table 

1.1 and comprised four compost extraction times (0, 24, 48 and 72 h) and up to nine 

compost ages, based on weekly sampling of each compost windrow and windrow 

position from approximately 55°C (cooling phase) until compost maturity. At 0, 24, 

48 and 72 h from the onset of extraction, 100 ml of each extract was collected from 

each tank, representing each windrow position, and maintained at 4 °C for no longer 

than 4 days. The 0 h extraction time represents the tank water prior to addition of 

compost. Samples of ACE were brought to room temperature prior to treatment of 

bean leaflets. The abundance of culturable bacteria and fungi, or colony forming 

units (cfu)/ml, was estimated for each extract by serial dilution, whereby 100 µl of 

each dilution was spread evenly on each of four plates of nutrient agar (NA) or 

potato dextrose agar acidified to pH 3.5 with lactic acid (APDA), respectively. 

Colonies on the NA plates were predominantly bacteria; those that did not represent 

a presumptive bacterium (shiny appearance, discrete colonies and distinct margins) 

were not counted. Conversely, colonies on the APDA plates were predominantly 

fungi; those that did not represent a presumptive fungus (fuzzy appearance) were not 

counted. Plates of NA were inverted and incubated at 25°C for 72 h and plates of 

APDA were incubated at 21°C ± 4°C for 7 days prior to colony counts. 
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1.3.5 Effect of compost to water ratio during extraction on the capacity of ACE 

to inhibit B. cinerea 

The bean leaflet assay was used to determine the minimum compost to water ratio 

required for maximum suppression of growth and sporulation of B. cinerea. Compost 

four (Table 1.1 ), with an internal temperature of 50°C in the cooling phase, was 

sampled from the centre of the windrow approximately I m from the apex for 

preparation of five batches of ACE in separate I 00 L tanks. Each tank contained 

different compost to (dechlorinated) water ratios. Using a total water volume of 30 L, 

each tank contained 30, 10, 3, 1 or 0.3 kg of compost corresponding to a 1:1, 1:3, 

1:10, 1:30 or a 1:100 compost weight to water volume ratio. Compost extract 

samples were collected from each tank at 0, 24, 48 or 72 h after extraction had 

commenced and 100 ml of each extract was used to treat bean leaflets. The 

abundance of culturable bacteria and fungi (log1ocfu!ml) for each extraction time was 

determined. This experiment was performed three times using the same bulk sample 

of compost. 

1.3.6 Diversity of microorganisms in selected ACEs 

The diversity of microorganisms in selected extracts prepared from compost 

windrow three (Table 1.1) was determined by analysis of Terminal Restriction 

Fragment Length Polymorphisms (T-RFLPs: Liu et al. 1997, Clement et al. 1998, 

Osborn et al. 2000). Extracts analysed were 48-h extracts prepared from compost 

sampled at the central position in the windrow (tank 2) from the 'production 

variables' experiment (section 1.3.4) and for each compost age. Three 1 ml samples 

of each ACE were concentrated by centrifugation at 13,000 x g (Hettick Zentrifugen 

Mikro 20) at room temperature for 15 min. The cell pellet was resuspended in 1 ml 

of resuspension buffer (50 mM Tris, 150 mM NaCl, 50 mM EDTA, pH 8). Total 
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community DNA was extracted from each 1 ml sample of ACE using the Fast Prep 

DNA kit for Soil (MP Biomedicals, NSW, Australia). The isolated DNA was 

purified further using a Qiaquick PCR purification kit (Qiagen, Victoria, Australia) 

and quantified by gel electrophoresis in 1 % agarose buffered by 1 x T AE. 

Bacterial 16S rDNA genes from total community DNA were amplified by universal 

eubacterial primers (Osborne et al. 2006): 27F (5'-AGAGTTTGATCCTGGCTCAG-

3') and 1492R (5'-GGTTACCTTGTTACGACTT-3'). Intergenic spacer regions of 

fungal rDNA genes (White et al. 1990) were amplified with ITSl (5'­

TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-

3'). In all PCR reactions the forward primer was labelled with WellRED dye D3 and 

the reverse primer was labelled with WellRED dye D4 (Sigma-Proligo, NSW, 

Australia). Bacterial and fungal PCR was carried out in a 50 µl volume containing 20 

ng of template DNA, 20 pmol of each primer, 1 x OptiBuffer (Bioline, NSW, 

Australia), 1.5 mM MgClz, 10 mM each of dATP, dCTP, dGTP and dTTP (dNTP 

mixture, Bioline, NSW, Australia) and 4 U of BIO-X-ACT Short DNA polymerase 

(Bioline, NSW, Australia). Using an Eppendorf Mastercycler, reactions consisted of: 

(i) one cycle of 5 min at 95°C (ii) 25 cycles of 30 s at 95°C, 30 s at 55°C, 1 min at 

70°C and (iii) a final extension step of 10 min at 70°C. Two PCRs using the same 

DNA sample were performed. The duplicate PCRs were pooled using the Qiaquick 

PCR purification kit (Qiagen, Victoria, Australia) and 5 µl of PCR products were 

visualised by electrophoresis using 1.5% Agarose in 1 x T AE buffer. 

Fluorescently labelled PCR products (100 ng) were digested with 5 U of restriction 

enzymes HaeIII, HhaI or MspI (New England Biolabs Inc., Queensland, Australia) in 

a 20-µl reaction volume. All reactions were incubated at 37°C for 3 h and 
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deactivated by heating for 20 min at 65°C (Hhal and Mspl) or 80°C (Haelll). The 

digested PCR products were desalted using a Qiaquick Nucleotide Removal Kit 

(Qiagen, Victoria, Australia) and stored at -20°C until digested, desalted PCR 

products were separated by capillary electrophoresis (Frag-4 default setting, CEQ 

8000, Beckman Coulter automated sequencer, NSW, Australia). Each sample (5 µl) 

was added to 30 µl of sample loading solution and 0.25 µl of a 600 bp molecular 

ruler size standard comprising 32 different length fragments from 70 to 640 

nucleotides (Beckman Coulter Inc., NSW, Australia) labelled with dye DI (Beckman 

Coulter Inc, NSW, Australia). Run conditions were a capillary temperature of 50°C, 

sample denaturation for 120 s at 90°C, sample injection for 30 s at 2 kV and a 

separation time of 60 min at 4.8 kV. 

Bacterial and fungal T-RFLP data were analysed separately. The fragment length and 

peak height of the terminal restriction fragments (T-RFs) were determined by 

comparison to the 600 bp size standard using the Beckman Coulter CEQ 8000 

fragment analysis software, algorithm v. 2.1.3. A separate profile was produced for 

each of the three restriction-enzyme digests. When at least two of the triplicate ACE 

samples produced the same T-RF then this T-RF was considered accurate. Each T­

RF was scored as present or absent and analysed as binary data. Terminal restriction 

fragments with peak heights of less than 100 florescence units were excluded from 

analysis. The number of T-RFs generated depends on the restriction enzymes used 

and a single T-RF can represent several species or taxa. Therefore, data from the 

profiles for the three restriction enzymes were combined for statistical analyses. The 

number of T-RFs for each sample of ACE was denoted Sbac for bacterial richness or 

Srungi for fungal richness. The total number of T-RFs observed across the three 

samples of ACE analysed per compost age was denoted total Sbac or total Sfungi and 
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the total number of T-RFs observed across all compost ages was denoted 'grand total 

Shae' or 'grand total Sfungi'· The proportion ofT-RFs for each sample of ACE was then 

defined as the Sbac or Sfung1 divided by 'grand total Sbac' or 'grand total Sfung1'· 

1.3. 7 Mechanism of action 

1.3.7.1 Effect of ACE on germination of B. cinerea conidia 

An in vitro assay was conducted to determine whether or not ACE or modified ACE 

directly inhibited germination of B. cinerea conidia. ACE was prepared from 

compost four (Table 1.1) with an internal windrow temperature of 50°C. ACE was 

modified after 24 h of extraction, by addition of one or two nutrients. Foundation 

Fish™ (FF, raw salmon waste, Table 1.1) was added at a concentration of 1 part FF: 

120 parts ACE (v/v). Liquid Kelp™ (LK), comprising Bull Kelp (Durvillaea 

potatorum), was added at a concentration of 1 part LK: 60 parts ACE (v/v). The 

nutrient concentrations were equivalent to the concentrations used by Soil First Pty 

Ltd for commercial production of ACE. After 48 h extraction, 100 ml of ACE or 

modified ACE was collected in a sterile container. Microorganisms were removed 

from 25 ml of ACE or modified ACE by passing it through a sterile 0.2 µm filter 

(Schleicher and Schull). Unfiltered or filtered ACE or modified ACE was diluted 

with sterile dechlorinated water by adding 25, 15, 5, 1.67 or 0.5 µl extract in a total 

volume of 50 µl, corresponding to extract:water ratios of 1:1, 1:3, 1:10, 1:30 or 

1: 100, according to Cronin et al. (1996). In summary, the treatments were a sterile 

dechlorinated water control and variable dilutions of unfiltered or filtered ACE, ACE 

modified with FF, ACE modified with LK or ACE modified with FF and LK. 

Each treatment (n = 9), in a 50 µl volume, was mixed with 50 µl of 1 x 105 B. 

cinerea conidia mr1 sterile water in a well of a 96-well ELISA plate. The conidial 
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suspension was prepared as described previously, except that 0.05 % (v/v) Tween 20 

was added to the sterile deionised water to dislodge conidia from PA plates. 

Treatments were randomised within blocks of four replicates in two ELISA plates. 

The plates were covered with Parafilm TM and left in darkness at 21 °C ± 4 °C for 24 h. 

After 24 h, each 100 µl solution was spread evenly on deionised water agar in a 90 

mm-diameter Petri plate. The plates were incubated in darkness at 21 °C ± 4 °C and 

after 24 h, 100 conidia per plate were evaluated for germination. Conidia were 

considered germinated if the hypha was at least the length of the conidium and the 

number of germinating conidia was expressed as a proportion. 

1.3. 7.2 Assay for the presence of water-soluble antibiotics in ACE The potential for 

water-soluble antibiotics produced by microorganisms in ACE to inhibit the growth 

of B. cinerea in vitro was investigated using ACE or modified ACEs prepared for the 

germination assay described above. After 48 h extraction, microorganisms were 

removed from 100 ml of ACE or modified ACE by filtering through a sterile 0.2 µm 

filter (Schleicher and Schull). 

An antibiotic assay was developed with slight modifications to the well-cut diffusion 

technique described by El-Masry et al. (2002). Conidia of B. cinerea were added to 

Mueller-Hinton agar (Oxoid, Australia Limited) at 45°C, to a final concentration of 1 

x 105 conidia mr1 of agar. Ten 90 mm-diameter Petri plates were prepared, each 

containing 15 ml of inoculated agar. Six wells were cut out of the agar, using an 11 

mm-diameter sterile cork borer, approximately 1 cm from the edge of the Petri plate 

and two drops of sterile water agar were added to the base of each well. Into each 

well, 100 µl of one of six treatments was added: filtered ACE; filtered ACE with LK; 

filtered ACE with FF; filtered ACE with FF and LK; sterile distilled water or sterile 
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distilled water containing 10 µg µr 1 tetracycline hydrochloride (Sigma-Aldrich Co., 

USA). Each treatment was placed in a random order in each Petri plate and ten Petri 

plates were prepared in this manner. The plates were sealed with Parafilm ™ and 

placed in the dark. After 7 days, the area surrounding the well where the growth of B. 

cinerea was inhibited was measured using UTHSCSA Image Tool for Windows, 

Version 3. The edges of the B. cinerea colonies near the treatment wells were also 

observed using a stereomicroscope at 400 x magnification for signs of abnormal 

hyphal growth. 

1.3.8 Data analyses 

General Analysis of Variance (ANOVA) in Genstat® for Windows, 8th or 9th 

Edition, was used to compare treatment means as indicated in the tables of results 

along with the residual degrees of freedom ( df) and the least significant difference 

(lsd). If there were no significant differences among means for variables measured at 

each extraction time for a given compost age, then the data for different extraction 

times were combined for ANOV A of the effect of compost age. 

For bean leaflet assays, the mean number of lesions (sporulating or not) per leaflet 

and area of necrosis per leaflet of the four replicate bean leaflets was subject to 

principal component analysis (PCA, Jolliffe 2002). The first principal component 

(PCAl) was defined as the negative average of the number oflesions (sporulating or 

not) and the area of necrosis associated with pathogen colonisation. The second 

principal component was defined as a contrast between number of lesions and area of 

necrosis plus the number of sporulating lesions. PCAl eigenvector values were used 

to generate means for ANOV A. In short, the higher the PCAl eigenvector value, the 

greater the level of B. cinerea inhibition on bean leaflets and a negative eigenvector 
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value can be interpreted as large areas of necrosis and profusely sporulating lesions 

on bean leaflets. For the experiment investigating compost age and duration of 

extraction, compost samples from each windrow position and hence compost 

extraction tanks represented blocks. Simple linear regression was also performed to 

identify significant correlations (P < 0.05) between mean PCAl and internal 

windrow temperature, mean abundance of culturable bacteria or fungi, or mean 

proportion of bacterial or fungal T-RFs (microbial diversity). 

Bacterial and fungal T-RFLP data were also analysed usmg multi-dimensional 

scaling (MDS) of Euclidean distances fitted using monotonic regression (non-metric 

MDS) in Genstat® for Windows 8th Edition. The degree of correspondence between 

distances in the MDS plot was measured by a stress function, which illustrated the 

relationship between the MDS points and the actual distances between treatments. A 

stress value less than 0.2 represents meaningful data and a value greater than 0.3 

generally represents a poor description of the ordination (Clarke and Warwick 2001). 

For the germination assay, the linear relationship between the mean proportion of 

germinating B. cinerea conidia (n = 4) and the dilution of the extract with water was 

analysed using general linear regression analysis with groups in Genstat® for 

Windows 9th Edition. Equality of the regression intercepts and slopes between 

unfiltered, unamended ACE and each of the other ACE treatments was determined 

by analysis of variance after arcsine transformation (Milligan 1987) of the proportion 

of germinating conidia. 
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1.4 Results 

1.4.1 Characters of compost and compost extracts The temperature of each 

compost windrow declined, as expected, in the cooling phase of composting until 

compost maturity at 12 to 13 weeks after windrow initiation (Fig. 1.1). Compost 

extracts prepared from compost windrows one, two and three were used for the 

compost age/duration of extraction experiment and had a mean pH of 7.1-7.7, a 

mean dissolved oxygen of greater than 6.5 mg/L, a mean conductivity of 6.7-7.6 

dS/m and a mean temperature was 23.9-26.6°C (Table 1.2). Nitrate was present in 

all extracts except those prepared 5 and 6 weeks post windrow initiation (Table 1.2). 

Nitrate was also present in all extracts prepared using compost four, which was used 

for the studies of mechanism of action (Table 1. 7). 

1.4.2 Effect of compost age and duration of extraction on the capacity of ACE to 

inhibit B. cinerea 

Compost extract prepared from all three compost windrows and various compost 

ages inhibited the growth and sporulation of B. cinerea on bean leaflets (Fig. 1.2, 

Tables 1.3, 1.4). The mean PCAl eigenvector value indicated a significant (P < 

0.001) effect of each ACE on B. cinerea colonisation of bean leaflets relative to the 

control (0 h extraction time, Table 1.3). There was no significant difference among 

extraction times for the mean level of pathogen suppression. The mean number of 

culturable bacteria and fungi in the 24-h extracts, prepared from composts two and 

three, was slightly but significantly higher when compared with the numbers 

observed with longer extraction times (Table 1.3). 

CHAPTER 1 



80 

~ 40 
""C c: -

·s: 30 
ea 
c: 
L... 

~ 20 

10 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 

Com post age (days) 

Figure 1.1 Internal windrow temperature for compost windrows one, two, three and four. 

73 

- Compost one 

-Compost two 

--- Compost three 
- - - Compost four 

CHAPTER 1 



74 

Figure 1.2 Bean leaflets immersed for 30 s in 4 ml of A. 48 h ACE prepared from 
compost with an internal windrow temperature of 50°C and B. 0 h ACE 
(dechlorinated water), dried and inoculated with six 10 µl drops of 1 x 105 Botrytis 
cinerea conidia m-1 and incubated at 21 °C ± 4°C in darkness for 5 days. Necrotic 
lesions, symptomatic of infection by B. cinerea, developed on inoculated leaves 
treated with dechlorinated water (B). 

Table 1.2 Mean physical characters of ACE for compost windrows one, two and 
three. Means (± standard deviations) for compost age were from data combined 
from extraction times of 24, 48 and 72 h. Means for compost extraction time were 
from data combined from all compost ages. The 0 h extraction time represents the 
tank water prior to addition of compost. 

Compost pH Dissolved Conductivity Temperature Nitrate 
age oxygen (mS/cm) (°C) (mg/L) 
(weeks) (mg/L) 

5 7.5 ± 0.7 7.0 ± 0.4 7.6 ± 0.7 26.5 ± 3.4 0.0 ± 0.0 

6 7.7 ± 0.4 6.7 ± 0.3 7.3 ± 2.7 26.6 ± 3.3 0.0 ± 0.0 

7 7.5 ± 0.4 6.6 ± 0.5 6.8 ± 1.5 26.2 ± 3.7 35 .8 ± 79.0 

8 7.5 ± 0.4 6.8 ± 0.5 6.4 ± 1.6 26.1 ± 3.7 108.2 ± 163.2 

9 7.3 ± 0.3 7.0 ± 0.8 6.8 ± 1.5 26.1 ± 1.8 132.5 ± 202.5 

10 7.2 ± 0.3 7.4 ± 0.8 7.6 ± 1.4 26.0 ± 1.9 105 .0 ± 135 .0 

11 7.5 ± 0.4 7.0 ± 0.5 7.6 ± 1.5 25.2 ± 1.5 243 .3 ± 207.0 

12 7.5 ± 0.3 7.0± 0.6 7.4 ± 1.7 24.4 ± 0.7 398.3 ± 143 .6 

13 7.1 ± 0.2 7.6 ± 0.2 6.9 ± 1.7 23.9 ± 0.7 300.0 ± 120.9 

Compost extraction 
time (h) 

0 7.2 ± 0.3 8.1 ± 0.7 1.1 ± 1.4 24.0 ± 2.4 0.0 ± 0.0 

24 7.4 ± 0.4 7.2 ± 0.6 6.8 ± 1.8 25 .6 ± 2.4 149.5 ± 191.7 

48 7.5 ± 0.4 6.9 ± 0.5 7.6 ± 1.4 26.0 ± 2.7 191.8 ± 217.0 

72 7.5 ± 0.4 6.9 ± 0.6 7.2 ± 1.5 25 .8 ± 2.9 183 .6 ± 183 .6 
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The internal compost windrow temperature accounted for 92.2%, 92.5% or 93.3% of 

the variance in B. cinerea inhibition on bean leaflets when PCA with two principal 

components was calculated for compost windrows one, two and three, respectively. 

The internal windrow temperature accounted for 62.4% (windrow one), 77.2% 

(windrow two) and 71.2% (windrow three) of the variance when the first principal 

component (PCAl) was analysed. ANOVA of PCAl eigenvector values revealed 

that the mean PCAl eigenvector values were relatively high when the internal 

windrow temperatures were 51°C, 50°C and 48°C for compost windrows one, two 

and three, respectively (Table 1.5). However, in compost windrow two there was no 

significant difference in PCAl eigenvector values between internal windrow 

temperatures of 50°C at 9 weeks and 37°C at 10 weeks. There were negative PCAl 

eigenvector values for some treatments; namely l 7°C for compost windrow one, 

56°C in compost windrow two and 30°C and 21°C for compost windrow three. There 

were relatively large areas of necrosis and mean numbers of sporulating lesions when 

bean leaflets were treated with extracts prepared from compost sampled whilst at 

these temperatures (Table 1.6), suggesting little or no inhibition of B. cinerea. 

For ACE prepared from compost windrow two, the highest number of culturable 

fungi was observed from a 50°C compost and the highest number of culturable 

bacteria was observed when compost was cooling from 55°C (week 8) to 37°C 

(week 10) (Table 1.5). Like compost windrow two, the greatest number of culturable 

fungi was evident from ACE prepared from compost windrow three at 48°C whereas 

the greatest numbers of culturable bacteria were evident between 48°C (week 5) and 

31 °C (week 7). Internal windrow temperature in compost three explained 51 % of the 

variation in the mean number of culturable fungi (P = 0.027 for the linear 

regression). 
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1.4.3 Effect of compost to water ratio during extraction on the capacity of ACE 

to inhibit B. cinerea 

The first principal component (PCAl) explained between 69.5% and 86.9% of the 

variation in B. cinerea inhibition on detached bean leaflets in relation to the compost 

to water ratio during extraction (Table 1.7). The PCAl eigenvector values were 

highest at compost to water ratios of 1 :3, 1: 10 and 1 :30 relative to other ratios tested. 

At a compost to water ratio of 1: 100 the PCAl eigenvector value was negative and 

there were significantly more lesions and a significantly greater area of necrosis on 

bean leaflets than at any other ratio (Table 1.8). The greatest numbers of 

microorganisms were present in ACE when the compost to water ratio was 1: 1. At 

this ratio, there was less dissolved oxygen and a higher conductivity than at any other 

ratio of compost to water. As the compost to water ratio decreased, the temperature 

appeared to decline but the pH remained constant (Table 1. 7). 
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Table 1.3 First principal component results (PCAl eigenvector values) of the mean effect of compost extraction time across compost ages on the 
extent of symptoms and sporulation caused by Botrytis cinerea on bean leaflets (n = 4) treated with various compost extracts prior to inoculation. The 
corresponding mean number of bacteria and fungi (log10cfu/ml) is presented for compost windrows two and three. Means within columns followed by 
the same letter are not significantly different at P < 0.001. Refer to Table 1.4 for the arithmetic means of symptoms and incidence of sporulation. 

Compost Compost Compost windrow two 
extraction windrow one 
time (h) 

PCA1 1 PCAl No. of bacteria No. of fungi PCAl 
(log1ocfu/ml) (log10cfulml) 

0 -1.90 b -2.12 b NIA2 NIA -1.91 

24 0.42 a 0.97 a 7.95 a 6.59 a 0.77 

48 0.66 a 0.69 a 7.07 b 5.41 b 0.64 

72 0.82 a 0.47 a 7.13 b 5.00 c 0.50 

lsd 0.44 0.51 0.16 0.17 0.55 

df 102 90 4 4 90 
p < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
1 The higher the PCAl eigenvector value, the greater the level of pathogen inhibition. 
2 NI A is not applicable. 

Compost windrow three 

No. ofbacteria No. of fungi 
(log10cfulml) (log10cfulml) 

b NIA NIA 
a 9.39 a 7.67 a 
a 9.32 b 7.10 b 

a 8.93 c 6.80 c 

0.04 0.07 

6 6 

< 0.001 < 0.001 
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Table 1.4 The mean effect of compost extraction time across compost ages on the number of necrotic lesions, area of necrosis and number of 
sporulating lesions caused by Botrytis cinerea on bean leaflets (n = 4) treated with each compost extract prior to inoculation. 

Compost Compost windrow one 
extraction 
time (h) 

Number of Area of 
lesions1 necrosis 

(mm2)2 

0 5.2 37.3 
24 2.3 18.3 
48 1.9 13.3 
72 2.0 10.2 

Mean number from six inoculation points per leaflet. 
2 Mean area from six inoculation points per leaflet.. 

Incidence of 
sporulation3 

5.1 
2.0 
1.9 
1.5 

3 Number of sporulating lesions from six inoculation points per leaflet. 

Number 
lesions 

5.8 
2.5 
2.7 
2.5 

Compost windrow two Compost windrow three 

of Area of Incidence of Number of Area of Incidence of 
necrosis sporulation lesions necrosis sporulation 
(mm2) (mm2) 
46 5.7 5.8 73 5.9 
17 1.2 2.9 46 2.0 
18 1.9 2.8 44 2.6 
25 2.3 3.2 46 2.5 
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Table 1.5 First principal component results (PCAl eigenvector values) of the mean effect of compost age across extraction times for 24, 48 and 72 h 
on the extent of symptoms and sporulation caused by Botrytis cinerea on bean leaflets (n = 4) treated with each compost extract prior to inoculation. 
Compost age is presented as weeks after windrow initiation and as internal windrow temperature during the early secondary mesophilic stage. The 
corresponding mean number of bacteria and fungi (log10cfu/ml) is presented for compost windrows two and three. Means within columns followed by 
the same letter are not significantly different at P = 0.05. 

Compost age Compost windrow Compost windrow two Compost windrow three 
(weeks) one 

T PCA1 1 T PCAl No. of bacteria No. of fungi T PCAl No. of bacteria No. of fungi 
(oC) (oC) (log1ocfulml) (log1ocfulml) (oC) (log1ocfulml) (log1ocfulml) 

5 47 0.74 ab 54 1.04 abc 7.26 c 5.92 be 48 1.88 a 9.43 c 8.51 a 
6 51 1.38 a 55 0.44 cd 7.03 d 5.22 e 37 0.59 bed 9.82 b 8.16 b 
7 45 0.83 ab 56 -0.56 e 7.10 cd 5.18 e 31 0.48 cd 10.00 a 7.58 c 
8 36 0.29 be 55 0.65 be 7.82 ab 6.34 b 40 1.31 ab 9.04 d 7.13 d 
9 32 0.60 be 50 1.31 a 7.87 a 6.95 a 30 -0.01 de 8.80 f 6.49 e 
10 26 0.84 ab 37 1.35 a 7.76 ab 5.48 d 23 1.05 be 8.85 e 6.39 e 
11 21 0.42 be 30 1.13 ab 7.66 b 5.54 d 21 -0.59 e 8.86 e 6.13 f 
12 17 -0.05 c 20 0.33 d 6.46 e 5.71 cd 18 0.38 cd 8.92 e 7.16 d 
13 10 0.66 be 

lsd 0.71 0.65 0.34 0.53 0.80 0.07 0.17 
df 64 56 13 29 56 29 19 
p 0.017 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
1 The higher the PCAl eigenvector value, the greater the level of pathogen inhibition. 
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Table 1.6 The mean effect of compost age across extraction times of 24, 48 and 72 h on the number of necrotic lesions, area of necrosis and number of 
sporulating lesions caused by Botrytis cinerea on bean leaflets (n = 4) treated with each compost extract prior to inoculation. Compost age is presented 
as weeks after windrow initiation and as internal windrow temperature during the early secondary mesophilic stage. 

Compost Compost windrow one Compost windrow two Compost windrow three 
age 
(weeks) 

T (°C) Number Area of Incidence of T(°C) Number Area of Incidence T (°C) Number Area of Incidence 
of necrosis sporulation3 of necrosis of of necrosis of 
lesions1 (mm2)2 lesions (mm2) sporulation lesions (mm2) sporulation 

5 47 2.2 4.0 1.7 54 3.1 6.7 1.1 48 1.1 31 1.1 
6 51 1.4 1.8 0.2 55 3.0 26 1.7 39 3.0 60 1.7 
7 45 1.6 15 1.4 56 2.9 45 3.8 31 3.3 55 2.0 
8 36 2.7 21 2.0 55 3.2 21 1.2 40 2.8 19 1.7 
9 32 2.2 14 1.9 50 2.3 8.5 0.8 30 2.9 77 2.9 
10 26 1.6 6.3 2.0 37 1.6 12 1.3 23 2.0 38 2.4 
11 21 1.6 3.4 1.8 30 2.0 12 1.9 21 4.8 55 3.7 
12 17 2.9 50 3.0 20 2.6 26 2.6 18 3.6 30 3.14 
13 10 2.3 9.7 1.9 

Mean number from six inoculation points per leaflet. 
2 Mean area from six inoculation points per leaflet.. 
3 Number of sporulating lesions from six inoculation points per leaflet. 
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Table 1.7 First principal component results (PCAl eigenvector values) of the mean effect of changing the compost to water ratio during extraction, 
across extraction times of 24, 48 and 72 h, on the extent of symptoms and sporulation caused by Botrytis cinerea on bean leaflets (n = 4) treated with 
compost extract prior to inoculation. ACE was prepared from compost four sampled when the internal windrow temperature was 50°C (week 5), in the 
cooling phase of composting. The corresponding mean number of bacteria and fungi (logrocfu/ml), and mean characters of ACE are presented for each 
dilution. Means within columns followed by the same letter are not significantly different at P = 0.05 and standard deviations(±) for each dilution were 
from data combined from extraction times of 24, 48 and 72 h. 

Ratio of compost PCA1 1 Number of Number of pH Dissolved Conductivity Temperature Nitrate 
to dechlorinated bacteria fungi oxygen (dS/m) (oC) (mg/L) 
water in a total (logrocfu/ml) (logrocfu/ml) (mg/L) 
volume of 
30 L water 

1:1 0.12 be 10.4 a 7.2 a 6.7± 0.0 2.6 ± 1.6 19.3 ± 1.0 27.4 ± 0.3 66.7 ± 28.9 

1:3 1.15 a 8.4 b 7.1 b 7.0 ± 0.2 6.4 ± 0.5 8.7 ± 1.5 25.9 ± 0.2 66.7 ± 28.9 

1:10 1.48 a 8.4 b 7.1 b 7.1±0.4 6.6± 0.3 4.3 ± 0.1 25.3 ± 0.6 66.7 ± 28.9 

1:30 0.72 ab 8.1 c 5.7 c 7.4 ± 0.4 8.0 ± 1.6 0.7± 0.5 24.4 ± 1.8 50.0 ± 0.0 

1:100 -0.36 c 7.2 d 5.8 c 7.0 ± 0.1 9.3 ± 0.9 0.3 ± 0.2 23.8 ± 1.2 50.0 ± 0.0 

lsd 0.84 0.08 0.11 

df 32 9 11 
p < 0.001 < 0.001 < 0.001 
1 The higher the PCAl eigenvector value, the greater the level of pathogen inhibition. 
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Table 1.8 The mean effect of changing the compost to water ratio during extraction, 
across extraction times of 24, 48 and 72 h, on the number of necrotic lesions, area of 
necrosis and number of sporulating lesions caused by Botrytis cinerea on bean 
leaflets (n = 4) treated with each compost extract prior to inoculation. ACE was 
prepared from compost four sampled when the internal windrow temperature was 
50°C (week 5), in the cooling phase of composting. 

Dilution Number oflesions1 Area of necrosis (mm2
)
2 

1:1 2.2 35 
1:3 0.9 23 
1:10 1.7 19 
1:30 1.0 12 
1:100 3.1 61 
Mean number from six inoculation points per leaflet. 

2 Mean area from six inoculation points per leaflet.. 
3 Number of sporulating lesions from six inoculation points per leaflet. 

1.4.4 Diversity of microorganisms in selected ACEs 

Incidence of 
sporulation3 

3.4 
2.1 
3.0 
1.7 
2.7 

T-RFLP appeared to be a reproducible technique because two or three terminal 

restriction fragments (T-RFs) of equivalent length were observed for each T-RF 

analysed across triplicate DNA preparations from the same batch of ACE. Analysis 

of community DNA in ACE prepared from compost windrow three revealed a 

maximum of 102 bacterial T-RFs when combining results of restriction enzymes for 

each extract (Table 1.9). A considerably lower number of fungal T-RFs, up to 25 T-

RFs across restriction enzymes, were observed (Table 1.9). There was a significantly 

greater proportion of bacterial T-RFs present in ACE prepared from compost three 

with an internal windrow temperature of 48°C than in the remaining extracts. The 

smallest proportion of bacterial T-RFs was observed in ACE prepared from compost 

at weeks 10 to 12 (23°C-18°C) (Table 1.9). In addition, ACE produced from 

compost with an internal windrow temperature of 48°C contained the greatest 

proportion of fungal T-RFs (Table 1.9). There was no apparent trend in the 

proportion of fungal T-RFs as the compost cooled below 48°C. 
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Figs 1.3 and 1.4 show a schematic representation of the diversity of bacterial and 

fungal taxa across extracts prepared from various compost ages and corresponding 

internal windrow temperatures in compost windrow three. For each enzyme assayed, 

ACEs prepared from the windrow at weeks 10 to 12 had lower diversities of bacterial 

T-RFs relative to ACE prepared at week 5 (Fig. 1.3). When bacterial DNA was 

digested with HaeIII (Fig. l .3B), there was a greater diversity of bacterial taxa in 

weeks 5, 6 and 7 than from week 8 until maturity (week 12). Among all extracts, the 

greatest diversity of fungal taxa was apparent when ACE was prepared from compost 

with an internal windrow temperature of 48°C (week 5, Fig. 1.4) and at week 9 for 

restriction enzyme Hhal (Fig. 1.4A). 

The results of multidimensional scaling (MDS) of bacterial and fungal T-RFs 

distinguished ACE prepared from 48°C compost from all other ACEs, based on the 

distance of this T-RF profile from others (Fig. 1.5). However, there was no grouping 

of internal compost windrow temperatures in relation to bacterial T-RF profiles (Fig. 

I.SA). Conversely, there were two clusters of internal windrow temperatures, 

specifically l 8°C, 21°C and 23 °C and 31°C, 39°C and 40°C, in relation to fungal T­

RF profiles (Fig. l .5B). Internal windrow temperatures 30°C and 48°C were far apart 

on this MDS plot, illustrating dissimilarity in T-RF profiles between these windrow 

temperatures and the remaining windrow temperatures. 
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Table 1.9 Results of T-RFLP analysis of 48-h ACEs prepared from compost 
windrow three with data generated using three restriction enzymes. The total number 
of T-RFs for three samples of ACE for each compost age is denoted as total Sbac for 
bacterial richness and total Sfung• for fungal richness. Mean proportion was calculated 
from the proportion of T-RFs, which is the Sbac or Sfung• for each ACE sample 
divided by the grand total Sbac or Sfung1 observed across compost ages. 

Compost age 
(weeks) 

5 

6 

7 

8 

9 

10 
11 

12 (maturity) 

lsd 
df 
p 

T (°C) 

48 

39 

31 
40 

30 

23 

21 
18 

1.4.5 Mechanism of action 

Bacteria 

Total Mean 
Sbac proportion 

102 0.5 a 

70 0.34 b 
54 0.27 b 
65 0.32 b 
71 0.35 b 
25 0.12 d 
43 0.21 c 
46 0.23 be 

0.06 
14 

< 0.001 

1.4.5.1 Effect of ACE on germination of B. cinerea conidia 

Fungi 

Total Mean 
Sfung• proportion 

25 0.64 a 

11 0.28 ed 

8 0.21 d 

9 0.23 e 

20 0.51 b 

11 0.28 ed 

13 0.33 c 

14 0.36 c 

0.04 

14 
< 0.001 

ACE, ACE with amendments and filtered ACEs inhibited the germination of B. 

cinerea conidia to varying degrees, with simple linear regression demonstrating the 

effect of various dilutions of each extract with water (Fig. 1.6). In summary, the 

germination of B. cinerea conidia was not inhibited by dechlorinated water, and the 

mean germination proportion was 0.97 (data not shown). The mean germination 

proportion was less than 0.1 at all dilutions ofunamended ACE and less than 0.01 for 

ACE diluted 1: 1 with water (Fig. l .6A). There was no relationship between the 

various dilutions of ACE amended with FF and the mean germination proportion, 

which was less than 0.01 at all dilutions (Fig. l .6B). ACE or amended ACE (Figs 

l.6A, B, C, D) inhibited germination of B. cinerea conidia to a greater extent than 
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filtered ACE or filtered amended ACE (Figs l.6E, F, G, H). The slope and intercept 

of the regression line for ACE amended with LK was not significantly different from 

the regression coefficients for ACE (Table 1.10). However, the addition of FF to 

ACE reduced the intercept of the regression line significantly (Table 1.10) indicating 

that these treatments inhibited the germination of B. cinerea to a greater extent than 

unamended ACE. The intercepts for all filtered extracts were significantly different 

from unfiltered ACE, indicating that filtration increased the mean germination 

proportion of B. cinerea conidia. Filtered ACEs amended with FF were the only 

treatments where the decline in the mean germination proportion with increasing 

concentration was similar to the ACE treatment. Relative to the ACE treatment, 

there was a steeper decline in the mean germination proportion with increasing 

concentration in the other filtered ACEs. 

1.4.5.2 Assay for the presence of water-soluble antibiotics in ACE 

The antibiotic tetracycline, the positive control in the antibiosis experiment, was the 

only treatment that inhibited the growth of B. cinerea significantly in vitro, when 

compared with filtered ACE and the dechorinated water control (Table 1.11). A large 

proportion of hyphal tips at the edge of B. cinerea mycelia in the vicinity of filtered 

ACE appeared to burst and hyphal contents became coagulated (Fig. 1. 7), relative to 

hyphae in the same relative location in the water control. 
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Table 1.10 Coefficients for the linear regressions of the proportion of germinating 
Botrytis cinerea conidia (arcsine transformed) and various dilutions of amended 
and/or filtered ACE prepared from compost four. The P value represents the 
probability of equality of the regression intercepts and slopes between unfiltered, 
unamended ACE and the ACE treatment specified. 

Treatment Intercept Slope 
Coefficient Pvalue Coefficient P value 

ACE+FF 1.471 0.001 0.261 0.167 

ACE+FF+LK 1.456 0.003 0.175 0.085 

ACE+LK 1.296 0.669 0.611 0.972 

Filtered ACE 0.197 < 0.001 -0.082 < 0.001 

Filtered ACE + FF 0.245 < 0.001 1.565 0.402 

Filtered ACE + FF + 0.520 < 0.001 0.809 0.367 
LK 
Filtered ACE + LK 0.767 < 0.001 0.825 0.029 

Table 1.11 Mean inhibition of the growth of Botrytis cinerea surrounding an agar 
plug (well) containing one of six treatments: filtered ACE, filtered ACE + LK, 
filtered ACE + FF, filtered ACE + FF + LK, dechlorinated water control and 
tetracycline. ACEs prepared from compost four. Plates were incubated in darkness 
for 7 days. Means followed by the same letter were not significantly different at P = 

0.05. 

Treatment Area surrounding the 
well (mm2

) 

Filtered ACE 5.0 a 
Filtered ACE + LK 4.8 a 
Filtered ACE + FF 4.1 a 
Filtered ACE + FF + LK 2.1 a 
Dechlorinated water control 7.2 a 
Tetracycline (1 Oµg/µl) 98.5 b 

lsd 14.32 

df 45 
p < 0.001 
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Figure 1.3 Schematic representation of 16S rDNA bacterial T-RFs from community 
DNA in 48-h ACEs prepared from compost three every week in the cooling phase 
until compost maturity. T-RF profiles were generated with restriction enzymes Hhal 
(A), HaeIII (B) or Mspl (C).Bars that are wider than the thinnest bar represent more 
than one T-RF. The solid line represents internal windrow temperature. 
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A 
60 

10 

5 6 7 8 9 10 11 12 

Corrpost age (v.eeks) 

B 

5 6 7 8 9 10 11 12 

Qxrpost age (v..eeks) 

c 

5 6 7 8 9 10 11 12 

Qxrpost age (v..eeks) 

Figure 1.4 Schematic representation of internal transcribed spacer (ITS) fungal T­
RFs from community DNA in 48-h ACEs prepared from compost three every week 
in the cooling phase until compost maturity. T-RF profiles were generated with 
restriction enzymes Hhal (A), HaeIII (B) or Mspl (C). Bars that are wider than the 
thinnest bar represent more than one T-RF. The solid line represents internal 
windrow temperature. 
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Figure 1.5 Multi dimensional scaling (MDS) of 16S rDNA bacterial T-RFs (A) and 
internal transcribed spacer (ITS) fungal T-RFs (B) from community DNA in 48-h 
ACEs prepared weekly from compost three. T-RFs were generated and combined 
using three restriction enzymes. Numbers between the axes represent the internal 
windrow temperature. Analyses revealed 2D stress values of 0.06 and 0.01 for 
bacterial and fungal MDS plots, respectively. 
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Figure 1.6 Germination proportion of Botrytis cinerea conidia in vitro when mixed with 
various dilutions of ACE treatments in sterile water: (A) ACE; (B) ACE + FF; (C) ACE + 
FF + LK; (D) ACE + LK; (E) Filtered ACE; (F) Filtered ACE+ FF; (G) Filtered ACE+ FF 
+ LK; and (H) Filtered ACE + LK. FF is Foundation Fish™ added at 24 h at a 
concentration of 1 part FF:120 parts ACE (v/v). LK is Liquid Kelp™ added at 24 hat a 
concentration of 1 oart LK:60 oarts ACE (v/v). ACE was oreoared from comoost four. 
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Figure 1.7 Bursting hyphal tip of Botrytis cinerea (A) and coagulated hyphal content 
(B) fo llowing contact with filtered ACE in water agar. ACE was prepared from 
compost four with compost to water ratio of 1 :3 and an extraction time of 48 h. 
Photographs were taken after 7 days incubation in darkness. 

A 

1.5 Discussion 

The few studies evaluating ACE to date have been based on extracts prepared from 

mature compost. It was demonstrated, for the first time, that a bacterial dominant 

ACE prepared from compost prior to maturity consistently inhibited the growth and 

reproduction of B. cinerea on bean leaflets. Specifically, ACEs produced from three 

different composts sampled in the early secondary mesophilic stage of composting 

suppressed B. cinerea on detached bean leaflets to a greater extent than ACEs 

produced from compost sampled in later mesophilic stages. Furthermore, an 

inexpensive and reproducible bean leaflet assay was presented which rapidly and 

systematically selected the most pathogen-suppressive ACE prior to field tests. 

Parameters found to influence the suppression of B. cinerea on bean leaflets 

significantly were the internal windrow temperature and compost age when sampled 
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for ACE production and the compost to water ratio during extraction. The presence 

of microorganisms was a substantial component of the activity of ACE and there was 

limited evidence to suggest that the magnitude of pathogen suppression on bean 

leaflets was associated positively with the diversity of culturable and non-culturable 

microorganisms in ACE, as measured by T-RFLP. 

Composting is a dynamic process involving complex interactions between chemical, 

physical and biological factors that led to temporal changes in the relative abundance 

and diversity of different types of microorganisms (Epstein 1997, Ishii et al. 2000, 

Ryckeboer et al. 2003b ). In the initial phase of composting, carbon is abundant and 

microorganisms use carbon as a source of energy for growth and reproduction. As 

composting proceeds, a large percentage of carbon is converted to carbon dioxide 

and released by microorganisms. Like carbon, biologically available nitrogen is 

essential for microbial growth, but if it becomes limiting, then microbial growth may 

be inhibited, which in turn slows the composting process (Shilesky and Maniotis 

1969). Nitrogen was abundant in the compost rows used in this study because salmon 

waste was added after windrow initiation and thus lowered the C:N ratio. The lack of 

nitrate in ACE prepared from composts one to three at weeks 5 and 6 indicated that 

nitrogen was present mostly in organic form, including microbial biomass, and that 

inorganic nitrogen might have been released from the compost as ammonia and/or 

nitrate. In general, ACE produced from compost windrows at 7 to 13 weeks old 

contained nitrate and this observation was in agreement with the findings of other 

studies where maximum nitrification was noticed in the secondary mesophilic stage 

of composting (Bishop and Godfrey 1983, Diaz et al. 1993). Further research is 

required to determine if the presence of nitrate in ACE influences its capacity to 

suppress leaf and fruit pathogens by supporting saprophytic and/or pathogenic 
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microorganisms on the leaf or fruit surface. Harper et al. (1981) found that nitrate or 

ammonium forms of nitrogen supported abundant growth of B. cinerea in vitro. In 

addition to the C:N ratio, other factors such as aeration rate and moisture can affect 

composting reactions, highlighting the need for quality control during composting to 

minimise loss of nitrogen to the external environment and to maximise its conversion 

to the organic form. It is proposed that a highly pathogen-suppressive ACE might be 

associated with an absence of nitrate in the extract. 

The, pH, dissolved oxygen and soluble salt content of ACE may also influence the 

degree of disease control in the crop canopy. pH of ACE for each compost age and 

extraction time was between 6 and 8, which is tolerated by horticultural crops. In 

most batches of ACE prepared, the amount of dissolved oxygen was above 6 mg/L, 

which is essential for growth of aerobic microorganisms (Deacon 1997). Anaerobic 

conditions and numerous acids develop when dissolved oxygen is lower than 6 mg/L 

(Merrill and McKeon 1998, Bess 2000). The compost used in this study contained 

high levels of fish waste, which most likely contributed to the relatively high amount 

of dissolved salts in ACE(> 6 dS/m). If this level of dissolved salts had been present 

in soil water, then it might have caused a significant decline in the yield of Vitis 

vinifera grapevines (Steppuhn et al. 2005). Soil-water (1: 1) electrical conductivity 

(EC) values below 0.8 dS/m, are optimal for crop growth (Anon. 1999). ACE was 

not applied to soil or potting media in this study and the high salt content did not 

appear to produce any symptoms related to phytotoxicity on detached bean leaflets. 

However, more attention should be paid to the soluble salt content of compost and 

ACE in further experimentation to ensure that sustained application of ACE to the 

fruit, foliage or soil does not impair plant health, crop yield and quality. 
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The bean leaflet assay was an efficient and reproducible method for screening 

production parameters for ACE and it quantified differences among treatments for 

the growth and reproduction of B. cinerea. For example, the magnitude of pathogen 

suppression by ACE on bean leaflets declined as the amount of compost relative to 

water used during extraction was reduced (Tables 1.7, 1.8). It was concluded that 

compost to water ratios of 1 :3 to 1: 10 should be adopted in field experiments to test 

the ability of ACE to suppress disease caused by B. cinerea. At a ratio of 1: 1, the 

level of pathogen suppression was minimal and probably due to a depleted quantity 

of dissolved oxygen and hence inactivity of microorganisms (Lasaridi and Stentiford 

1998, Al-Dahmani et al. 2003). 

In compost windrows one and three, maximum pathogen suppression was observed 

when ACE was prepared from compost with an internal windrow temperature 

between 40°C and 50°C, whereas the optimum temperature range for compost two 

was between 30°C and 50°C. The inconsistency in observations between windrow 

two and the other two rows might be explained by the irregular production conditions 

for compost two; in particular, the temporal course of the internal compost windrow 

temperature was atypical because of the discontinuous thermophilic phase (Fig. 1.1 ). 

Again, the bean leaflet assay was useful for identifying when to sample the compost 

windrow for production of a pathogen-suppressive extract. Internal compost 

windrow temperature is an easy parameter to measure and a practical way of 

identifying the optimum sampling time. Use of this parameter for producing batches 

of ACE that consistently suppress B. cinerea will depend on using composting 

conditions that are standardised and monitored rigorously. 
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The abundance and diversity of microorganisms in ACE, in conjunction with internal 

compost windrow temperature, was evaluated as another means of selecting compost 

windrows for production of a pathogen-suppressive ACE. Culture dependent 

assessment of microbial numbers determines the relative abundance of 

microorganisms among treatments; however, it does not accurately quantify the 

absolute change in microbial numbers, given that compost is likely to contain a large 

proportion of non-culturable microbial species (Tiquia 2005). In general, the 

numbers of culturable bacteria or fungi did not relate directly to the level of pathogen 

inhibition on detached bean leaflets. This result was demonstrated clearly in the 

compost to water ratio experiment, where ACE prepared with a compost to water 

ratio of 1: 1 contained a significantly greater number of fungi and bacteria but 

significantly reduced pathogen inhibition (Tables 1.7, 1.8). This finding was 

consistent with the studies of Scheuerell and Mahaffee (2006), who found that the 

addition of nutrients to ACE increased the number of bacteria but did not reduce grey 

mould on geranium. There was also no indication in this study of a threshold number 

of culturable microorganisms in ACE for suppression of B. cinerea on bean leaflets, 

even though a range of cfu (5.2 to 10.4 log10cfu!ml) was observed among extracts 

assayed. This result suggested that the type and/or diversity of microorganisms rather 

than their abundance, or the relative abundance of bacteria and fungi in ACE, was 

important in determining the suppressive ability of compost extract. The exception 

was ACE produced from compost windrow three, where there was a positive 

correlation between the PCAI eigenvector values and the number of culturable fungi 

(Table I. 7). In this case, both diversity and abundance of fungi may have contributed 

to a pathogen-suppressive ACE because the highest diversity of fungi was present in 

ACE prepared when the internal windrow temperature was 48°C (Table 1.7). In 

aerobic windrow composting, biological diversity, abundance and activity are 
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primarily determined by windrow temperature (Ryckeboer et al. 2003b ). The 

microbial qualities of compost at the early secondary mesophilic stage of composting 

are described in detail in the General Discussion. 

T-RFLP described the dynamics of both culturable and non-culturable 

microorganisms during the composting process, as well as investigating the diversity 

of the microbial community in each batch of ACE. Bacterial and fungal diversity, as 

measured by Total Sbac and Total Sfungi (Table 1.9), fluctuated as compost cooled. 

Nevertheless, ACE prepared from compost in the last 3 weeks of composting had 

significantly less microbial diversity and less impact on B. cinerea than ACE 

prepared from 5-week old compost in the very early secondary mesophilic stage 

(Table 1.9). These results suggest that T-RFLP can be used to compare the 

effectiveness of ACE as a function of compost age used to prepare ACE and can 

indicate the dynamics of the microbial community structure during the composting 

process. T-RFLP analysis can now be applied to assess the diversity of 

microorganisms associated with other variables in ACE production, including 

compost extraction time, compost to water ratio when extraction commences and the 

impact of varying compost raw ingredients and/or C:N ratios. It is postulated that 

compost raw ingredients can be varied for production of a pathogen-suppressive 

ACE, within a defined range of C:N at windrow initiation, as long as windrows are 

monitored and managed daily to ensure efficient composting and a product that 

provides consistent results. 

ACE directly inhibited the germination of B. cinerea conidia in vitro and the addition 

of fish hydrolysate to ACE reduced the mean germination proportion further. A 

potential mechanism of action by ACE amended with FF is competition for nutrients 
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because an abundance of nitrogen, amino acids and vitamins in fish hydrolysate 

(Aspmo et al. 2005) would cause an increase in microbial reproduction, activity and 

numbers, thus creating competition between the microorganisms and the plant 

pathogen. Competition for nutrients has been proven to be a fundamental mechanism 

by which biological control agents protect plants from necrotrophic phytopathogens 

(Blakeman 1993). Fish hydrolysate may have also changed the composition of 

microorganisms in ACE. Additional in vitro, in vivo and field experiments are 

necessary to confirm if there is benefit in amending ACE with fish hydrolysate for 

pathogen and disease suppression. 

In possibly the only other study of the mechanism of action of ACE, Dianez et al. 

(2006) conducted in vitro studies of non-filtered, filtered or autoclaved ACE from 

grape-mare compost for inhibition of nine soil-borne plant pathogens, although 

maintenance of aerobic conditions was not verified. Dianez et al. (2006) found that 

removal of microorganisms from ACE did not eliminate the suppressive ability of 

the extract completely, as reported here, suggesting the presence of antimicrobial 

chemicals in the filtered extract. The lack of negative and positive controls in the 

study of Dianez et al. (2006) for the presence of water soluble antibiotics limits 

comparison of their results with the findings of this study (Table 1.11, Fig. 1.7). 

Tetracycline was a very effective antibiotic when used as a positive control (Table 

1.11); however, comparing the ability of tetracycline to inhibit the in vitro growth of 

B. cinerea to filtered ACE may not allow detection of a low level of antibiotic 

activity in ACE. If antibiotics against B. cinerea in ACE were absent, then one 

explanation for the activity of filtered ACE was the relatively high salt content. To 

test this hypothesis, filtered ACE would need to be assayed against a salt solution of 

similar conductivity and this type of control should be included in future assays. 
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Nevertheless, the well-cut diffusion assay demonstrated a lack of activity by the ACE 

filtrates. The combined results for the antibiotic and germination assays, with the 

latter demonstrating a large difference in activity between unfiltered ACE and 

filtered ACE treatments, suggests that the filtrate is ineffective in comparison with 

unfiltered ACE and that the mechanism of inhibition requires close proximity 

between microorganisms in ACE and B. cinerea. The results for the germination 

assay were consistent with findings from studies where filtered anaerobic compost 

extracts did not suppress B. cinerea on bean leaves (Stindt 1990). Similarly, 

anaerobic compost extract filtered with paper with decreasing pore sizes increased 

infection by Phytophthora infestans on detached tomato leaves (Ketterer 1990). 

Additional research is necessary to fully elucidate the mechanism/s of action of ACE. 

There are likely to be myriad mechanisms involved, with specific mechanisms 

dominating under certain environmental conditions. 

In summary, the growth and reproduction of B. cinerea was suppressed on bean 

leaflets using compost dominated by bacteria and comprising a diverse array of 

bacterial and fungal taxa. The bean leaflet assay in conjunction with analyses of T­

RFLPs were useful tools for evaluating ACE production techniques towards a 

pathogen-suppressive extract. These tools can now be applied to investigate ACE 

further in relation to compost prepared from a range of raw materials, as well as the 

impact of ACE on microbial ecology of leaf and fruit surfaces following application 

to horticultural crops. Standardised production conditions for ACE, including 

sampling compost in the early secondary mesophilic stage and a compost to water 

ratio of 1 :3, have been adopted in field experiments to evaluate ACE for the 

management of powdery mildew and botrytis bunch rot in wine grapes (Chapter 2). 
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CHAPTER2: 

STANDARDISED AEROBIC COMPOST EXTRACT (ACE) SUPPRESSES 

POWDERY MILDEW AND BOTRYTIS BUNCH ROT UNDER 

GLASSHOUSE AND VINEYARD CONDITIONS 

2.1 Abstract 

Sustainable alternatives to synthetic fungicides are sought because of the potential 

for pathogens to evolve fungicide resistance, negative impacts on beneficial 

organisms and concerns about human exposure to fungicide residues. Aerobic 

compost extract (ACE), a watery extract of compost, was evaluated for the 

management of grapevine powdery mildew and bunch rot caused by pathogens of 

different biology and epidemiology; namely, the obligate biotroph Erysiphe necator 

and the nectrotroph Botrytis cinerea. ACE or ACE amended with fish hydrolysate 

and/or liquid kelp was prepared using standardised methods (1 :3 compost:water 

ratio, Chapter 1) and applied nine or 12 times at 10-14 day intervals to Chardonnay 

or Riesling vines grown commercially in different growing seasons in southern 

Tasmania. Powdery mildew was controlled by ACE or amended ACE to a 

commercially acceptable level on Chardonnay leaves and bunches under conditions 

of high disease severity. The incidence of latent B. cinerea in Chardonnay bunches at 

harvest, after moist incubation, was nearly half that observed in non-treated bunches. 

The incidence and severity of sporulation of B. cinerea on Riesling bunches was 

reduced significantly by ACE or amended ACE relative to a dechlorinated water 

control treatment; these bunches escaped visible infection by E. necator but powdery 

mildew was controlled on leaves. Treatment of Riesling leaves with ACE increased 

the number of culturable microorganisms on leaves 100-fold, 1 h after application. 

By 13 days post-application the number of culturable microorganisms remained 
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higher than pre-application counts. Under glasshouse conditions, the mean powdery 

mildew severity on Cabernet Sauvignon leaves was less than 0.1 % when ACE was 

applied up to 4 days before or up to 7 days after inoculation with E. necator conidia; 

mean severity on non-treated, inoculated leaves was 22%. This result suggested that 

ACE had curative as well as protective properties. Further research is required to 

determine mechanisms of action, effectiveness in a range of environments and spray 

timing in relation to pathogen activity and host susceptibility to disease. 

2.2 Introduction 

Botrytis bunch rot, caused by B. cinerea, and powdery mildew, caused by E. necator, 

are two fungal diseases renowned in the wine grape industry for inciting considerable 

losses in grape yield and wine quality (Stummer et al. 2005, La Guerche et al. 2006). 

These diseases are commonly managed by regular applications of protective 

fungicides. However, the number of pathogen populations reported to tolerate 

various synthetic fungicides is increasing (Brent and Holloman 2007) and there has 

been a global push in recent decades towards sustainable disease management and 

alternative measures for crop protection (for example; Yildirim et al. 2002, Crisp et 

al. 2006a). 

Aerobic compost extract (ACE) is a watery extract of compost that is receiving 

increased attention in horticulture as a substitute for commercial fungicides or as a 

component of integrated disease management. Anecdotal reports describe a reduction 

in the severity of numerous diseases when ACE is applied as a foliar spray to various 

crops (Scheuerell and Mahaffee 2002, Litterick et al. 2004). In contrast, scientific 

evaluation of ACE for managing a diverse range of fungal diseases and crops 

demonstrated no significant reduction in disease severity when compared to non-
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treated control treatments (Welke 2004, Al-Mughrabi 2006, Scheuerell and Mahaffee 

2004, 2006, Sturtz et al. 2006). According to Haggag and Saber (2007), ACE 

prepared to their specifications could suppress early blight on tomato (Alternaria 

solani) and onion (A. porri) to the same degree as conventional treatments. However, 

the method of compost extraction was not described and it is not known whether or 

not aerobic conditions were maintained during production. 

Methods of ACE production either on-farm or for commercial sales have been 

variable and manipulated in an effort to increase disease suppression (Weltzien 1992, 

Scheuerell and Mahaffee 2002). Standardisation of the production variables is 

essential for maximum and consistent disease control. Compost source, time since 

compost windrow initiation, internal windrow temperature, compost extraction time 

and various extract physical and chemical characters were evaluated and particular 

variables standardised (Chapter 1) to produce an ACE that consistently suppressed 

the growth and sporulation of B. cinerea on detached bean leaflets. Despite variation 

in raw ingredients used to prepare compost, a pathogen-suppressive ACE was 

reproduced from compost with an internal temperature of between 40°C and 50°C in 

the cooling phase of composting. The level of B. cinerea suppression in one compost 

windrow sampled over time during the cooling phase appeared to be correlated to the 

diversity of bacteria and fungi according to analysis of terminal restriction fragment 

length polymorphisms. 

The main aim of the research described in this Chapter was to evaluate the 

effectiveness of multiple applications of standardised ACE (Chapter 1) for managing 

powdery mildew and botrytis bunch rot in commercial vineyards in southern 

Tasmania, Australia. Within this general aim, two specific objectives were 
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addressed toward improved understanding of the mechanism of action of ACE. The 

first objective was to investigate changes in the abundance of culturable 

microorganisms in the phyllosphere of grapevine leaves following application of 

ACE under field conditions. The second objective was to quantify the level of 

powdery mildew suppression by ACE in relation to the time of application before or 

after inoculation of leaves of potted grapevines with E. necator conidia. The results 

demonstrate the significant potential for ACE to be incorporated into a management 

program for grapevine powdery mildew and botrytis bunch rot. 

2.3 Materials and Methods 

2.3.1 Production of ACE 

Compost extract was produced according to the pilot-scale technique described in 

Chapter 1. In short, compost was prepared with an initial C:N ratio of 30:1, with raw 

ingredients varying but based on a combination of cow manure or chicken manure 

and/or timber waste as described in Chapter 1. Waste from the commercial culture of 

Atlantic salmon (Salmo salar) in Tasmania was added to each compost windrow 2 

weeks after windrow initiation. For production of extract, compost was sampled 

when the internal windrow temperature was 50°C in the cooling phase of composting 

and extracted in a 1 :3 ratio with dechlorinated (Section 1.3 .2), aerated water for 48 h 

to produce aerobic compost extract (ACE). Previously (Chapter 1), compost:water 

ratios of 1 :3 and 1: 10 suppressed B. cinerea on bean leaflets to an equivalent level. A 

compost:water ratio of 1 :3 was selected for this study because this ratio was being 

used in commercial production of ACE. Two variations on ACE were also prepared 

whereby one or two additional nutrients were added 24 h after extraction was 

initiated. The nutrients were hydrolysate of Atlantic salmon (Table 1.2) and liquid 

bull kelp (Durvillaea potatorum), formulated by Soil First Pty Ltd, Margate, 
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Tasmania, as Foundation Fish™ (FF) and Liquid Kelp™ (LK). Nutrient 

concentrations were 1 part FF: 120 parts ACE (v/v) and 1 part LK: 60 parts (v/v). 

The FF additive was not included in amended ACE in 2006/07, due to the possibility 

of the re-growth of human pathogens (refer to Chapter 3). At 48 h extraction time, 

immediately prior to field application, each batch of ACE or modified ACE was 

analysed for pH, dissolved oxygen, conductivity, temperature and nitrate. Nitrate was 

determined from nitrate Merckoquant® strip tests (Merck Pty Ltd). The other 

physical parameters were measured using WTW Handheld 340i or Inolab meters 

(Merck Pty Ltd). For the glasshouse experiment, all physical parameters were 

measured following production and before storage as specified in the next section. 

One batch of ACE per field experiment was also sent to the Environmental Analysis 

Laboratory (NSW, Australia) for analysis of macro and micronutrients. 

2.3.2 Glasshouse experiment 

A glasshouse experiment was conducted to identify the level of powdery mildew 

suppression by ACE in relation to the period of time before or after infection of 

leaves by E. necator. Vitis vinifera cv. Cabernet Sauvignon, clone LC14, was 

propagated from hardwood cuttings obtained from South Australian Vine 

Improvement, Nuriootpa, South Australia. Roots were initiated by application of 2 

g/L iso-butyric acid to the cutting base before planting into 15 cm-deep, moist 

vermiculite with basal nodes 3 cm above a heat bed (Thermofilm, Victoria) 

maintained at 25°C. The heat bed with cuttings was placed in a cool storeroom ( < 

8°C) to retain dormancy of the buds during root initiation. After 22 days, individual 

cuttings with roots were planted into 20 cm-diameter pots containing a potting 

mixture prepared specifically for grapevines: three parts pine bark, one part coarse 

sand, one part fine sand, 2 g/L Osmocote® Classic controlled release fertiliser for 
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native plants, 1.5 g/L calcium carbonate and 1.5 g/L magnesmm sulphate 

(Horticultural Supplies, Tasmania, Australia). Potted vines were maintained on 

raised mesh tables at 25°C ± 4°C in a glasshouse and watered regularly. Infection by 

E. necator, prior to inoculation, was prevented by release of vapours of penconazole 

(TOPAS® lOOEC, Syngenta Australasia, Szkolnik, 1983). 

When vines had developed at least six leaves, the six youngest, fully expanded leaves 

were designated a position; namely, leaf position one for the youngest expanded leaf, 

leaf position two for the next oldest leaf, and so on. At this time and immediately 

prior to the first treatment of vines with ACE, experimental vines were transferred to 

a glasshouse maintained at l 9°C ± 2°C where vapours of penconazole were absent. 

The vines were placed 30 cm apart on an elevated table and a shade cloth with 70% 

UV protection was positioned 1 m above the table and draped over the sides of a 

support surrounding the potted vines to increase humidity and reduce light intensity. 

ACE was prepared, as described previously, from compost based on timber and fish 

waste with a compost to water ratio of 1 :3. Six 500 ml samples of ACE were stored 

at 4°C for up to 14 days prior to use. The experiment was designed as a randomised 

complete block design with six blocks and eight treatments. Each plot comprised a 

single potted grapevine. The treatments were: ACE applied 7, 4 and 1 day/s prior to 

inoculation with E. necator and ACE applied 1, 4 and 7 day/s post-inoculation. 

Control treatments were a dechlorinated water control applied 1 day post-inoculation 

and a non-treated control. ACE was removed from cool storage and upon reaching 

room temperature (21°C ± 4 °C) was applied immediately as a fine mist to the adaxial 

side of the leaves using a hand-held atomiser (Hills™ Trigger). 
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A bulk isolate of E. necator was collected from Vineyard B (see Section 2.3.3.2) in 

February 2004 and multiplied using detached leaves of Vitis vinifera cv. Cabernet 

Sauvignon, clone LC 10, as described by Evans et al. (1996). Conidia were harvested 

from 14 day-old powdery mildew colonies by shaking two infected leaves in 50 ml 

of distilled water containing 0.05 % (v/v) Tween 20. The concentration of conidia 

was adjusted to approximately 1 x 105 conidia per ml of sterile distilled water with 

the aid of a haemocytometer. Conidial suspensions were applied with a handheld 

atomiser (Preval® sprayer power unit, Precision Valve Corporation) until droplets of 

water were visible on the leaves. Following inoculation of all vines, a fan was placed 

near the vines until all water droplets had dried. 

Powdery mildew severity and incidence on the leaves tagged at the beginning of the 

experiment was recorded at 25 days post-inoculation, to account for the fact that the 

glasshouse temperature was below the optimum of 24-25°C for development of 

powdery mildew (Delp 1954). Incidence was calculated as the percentage of leaves 

with powdery mildew at a particular leaf position across the six blocks (n = 6 per leaf 

position). Severity was assessed for individual leaves at each leaf position using a 

standard area diagram (B. Emmett, Department of Primary Industries, Victoria, 

personal communication). Mean severity was then calculated for the three youngest 

tagged leaves per plant because these leaves represented the zone of the shoot that 

expressed greatest disease severity, given that Vitis vinifera expresses leaf-age 

related resistance to powdery mildew (Doster and Schnathorst 1985). The incidence 

of powdery mildew for the three youngest leaves was calculated from the data for 

severity. 
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2.3.3 Field experiments 

Two field experiments to assess the effectiveness of ACE in managing powdery 

mildew, caused by E. necator, and bunch rot caused by B. cinerea, were conducted 

in different growing seasons at two different vineyards in the Coal River Valley of 

southern Tasmania, Australia. One vineyard was managed organically which enabled 

direct comparison of the application of ACE to a standard organic spray program for 

powdery mildew. This organic vineyard rarely developed severe botrytis bunch rot. 

Therefore, a conventionally-managed vineyard was selected with a history of 

moderate to severe botrytis bunch rot to evaluate application of ACE for suppression 

of this disease in relation to a conventional spray program for both powdery mildew 

and botrytis bunch rot. This change also necessitated selection of a different cultivar 

for evaluation of ACE. 

2.3.3.1 Chardonnay in 2005106 

In 2005/06, the field experiment was at Vineyard A (42°44' S, 147°29' E) located in 

Penna, Tasmania, in a block of V. vinifera cv. Chardonnay managed organically. The 

trellising system was Vertical Shoot Positioning (VSP), with rows 2.5 m apart and 

vines 1.5 m apart. Rows were oriented north east to south west. The trial was a 

randomised complete block design with four treatments and five replicates of plots 

with six to seven vines. The treatments were ACE, ACE amended with FF and LK, a 

standard organic fungicide program (Table 2.1) and a non-treated control. 

There were two buffer rows of vines separating the trial area from the rest of the 

vineyard block to capture spray drift; these were hand sprayed with a standard 

organic spray program. Spraying was completed in the morning on days of no rain 

and all treatments were applied with a hand held gun attached to a hose reel and 
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diaphragm pump. The pump pressure was 1,500-1,600 kPa, delivering approximately 

63 ml per s. The vines were sprayed nine times, every 10-14 days from Eichom­

Lorenz (E-L, Coombe 1995) stage 13 to E-L stage 34 (Table 2.1). Ambient 

temperature, rain and relative humidity were recorded using a Measurement 

Engineering Australia (MEA) Automated Weather Station (AWS) positioned 100 m 

north of the trial site. Weather data are presented in Fig. 2.1 A. 

Once colonies of E. necator were detected, 20 leaves or ten bunches were selected 

randomly, from three central vines per plot, for fortnightly assessment of the mean 

disease severity per plot. The severity of powdery mildew on a bunch or leaf was 

assessed using a standard area diagram (B. Emmett, Department of Primary 

Industries, Victoria, personal communication). Disease incidence was the percentage 

of leaves or bunches with powdery mildew per plot and was derived from the 

measures of disease severity. The final disease assessment occurred at veraison, 

when maximum differences among experimental treatments were likely to be 

evident. 

The severity and incidence of bunch rot caused by sporulating B. cinerea was 

assessed at harvest for 30 bunches selected randomly per plot, with the aid of a 

standard area diagram (B. Emmett, Department of Primary Industries, Victoria, 

personal communication). The level of latent botrytis infection was also assessed at 

harvest. Ten bunches on each side of the panel were harvested per plot and 

transferred by road in a cooler box for 30 min to New Town Research Laboratories. 

The 20 bunches were surface sterilised in 70% ethanol for 30 s, then 2 min in 0.35% 

sodium hypochlorite and 30 s in 70% ethanol and air dried (Coertze et al. 2001). 

Each bunch was placed separately into plastic containers on sterile paper towel 
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soaked in distilled water to maintain high humidity. The containers were maintained 

at room temperature (21 °C ± 4 °C) on the laboratory bench. After 10 days, bunches 

were scored for incidence and severity of sporulating colonies of B. cinerea. 

Table 2.1. Materials applied to Chardonnay vines in the standard organic fungicide 
program at vineyard A in 2005/06. ACE or amended ACE treatments were applied 
on the same dates. 

Date Crop 
stage1 

17-0ct E-L 13 

28-0ct E-L 15 

9-Nov E-L 16 
21-Nov E-L 19 

1-Dec E-L23 
9-Dec E-L26 
19-Dec E-L28 
29-Dec E-L30 
15-Jan E-L 31 

Spray volume Material, manufacturer and rate of active 
per vine constituent2 per 100 L 

0.29 L 

0.29L 

0.34 L 
0.29 L 

0.51 L 
0.86 L 
0.57 L 
0.57 L 
0.57 L 

Acadian™, Bio-Ag Consultants and 
Distributors Inc., 160 g (kelp meal) 
Acadian™ plus Synetrol Horti® oil, 
Organic Crop Protectants Australia, 200 ml 
(Australian canola oils and essential 
botanical oils) 
Acadian™ plus Synetrol Horti® oil 
Cosavet™ DF, Sulfur Mills Ltd, 800 g 
(colloidal sulfur) 
Cosavet™DF 
Cosavet™DF 
Acadian™ plus Synetrol Horti® oil 
Synetrol Horti® oil 
Synetrol Horti® oil 

Crop stage determined according to a modified Eichorn-Lorenz scale (Coombe 
1995). 
2 Rate of active constituent for each material remained the same throughout trial 
period. 

The mean total soluble solids (0Brix) per treatment was measured at harvest. Five 

berries from each of five basal bunches were sampled from two vines per plot, 

adjacent to the vines used for disease assessment. Juice was extracted from each 

sample of five berries and a droplet of juice placed on the well of a refractometer 

(PAL - 1 Digital Refractometer, ATAGO™) to measure 0Brix for the calculation of 

mean °Brix per plot. 
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2.3.3.2 Riesling in 2006107 

In 2006/07, the field experiment was at Vineyard B (42°36' S, 147°26' E) located 

about 6 km north of Campania, Tasmania, approximately 30 km north-west and 

inland from the slightly cooler 2005/06 site. The trial site was managed 

conventionally and located at the south-eastern and elevated end of a block of V. 

vinifera variety Riesling because a severe frost in October 2006 damaged vines at 

lower elevation in the block. Vines were 1 m apart and trellised by VSP with rows 

2.5 m apart, oriented north-north/west to south-south/east. Dataloggers (Tinytags, 

Hastings Data Loggers, NSW, Australia) that recorded temperature, relative 

humidity and rainfall were positioned at a height of 1.5 m in open grassland 

approximately 50 m from the trial site. Weather data are summarised in Fig. 2.IB. 

The trial was a randomized complete block design with six blocks of 12 treatments 

for evaluating various crop protection programs for botrytis bunch rot. Each block 

comprised a single vineyard row and each plot contained seven to eight vines. There 

were two rows of buffer vines on either side of the trial site and a buffer zone of 

seven to eight vines at the northern boundary of the site where rows extended into the 

non-trial area of the block. Only five of the 12 treatments were used for the 

evaluation of ACE, including unamended ACE, ACE amended with LK, a control 

treatment of dechlorinated water and two standard fungicide programs; one for 

powdery mildew only and one for both powdery mildew and botrytis bunch rot 

(Table 2.2). Treatments were applied by hand as described previously, except the 

pump pressures were 1,500-1,600 kPa from E-L 12 to E-L 19 and 1,000 kPa from E­

L 19 to E-L 37. ACE treatments were applied 12 times throughout the season, every 

10 to 14 days from E-L 12 until E-L 34. 

CHAPTER2 



110 

The incidence and severity of powdery mildew was assessed as described previously. 

Unlike the previous season, latent infection by B. cinerea was assessed at pre-bunch 

closure. Five basal bunches and five distal bunches were sampled randomly per plot 

and transported by road in cooler boxes for 40 min to the laboratory. A basal bunch 

was the lowest bunch on a shoot trained upwards and a distal bunch was the bunch 

above the basal bunch. Bunches were frozen overnight and then each bunch was 

surface sterilised as described previously. Twenty berries with pedicels attached were 

excised from each bunch and placed in separate cells of Nylex™ Gutter Guard in 

plastic containers lined with paper towel soaked in sterile distilled water to maintain 

high humidity. The lids were replaced and the containers maintained at room 

temperature (21°C ± 4°C) on a laboratory bench, with natural light from windows, 

for 14 days. Each berry was then examined for B. cinerea sporulation at 40 x 

magnification and the incidence of latent infection expressed as the percentage of the 

20 berries with sporulating B. cinerea (Beresford and Hill 2008). 

The severity of visible bunch rot and sporulating B. cinerea per bunch was assessed 

with the aid of a standard area diagram (B. Emmett, Department of Primary 

Industries, Victoria, personal communication) four times between veraison and 

harvest. For the first assessment 30 bunches were selected randomly from the central 

five or six vines per plot and then the same 30 bunches were assessed for subsequent 

assessments. At harvest, all bunches from the central vine per plot were collected and 

weighed. Yield per plot, expressed as the equivalent tonnes of grapes per hectare 

(ha), was calculated as the number of vines per ha multiplied by the number of 

bunches per central vine multiplied by the average bunch weight. Ten of the 30 

tagged bunches were collected from each plot and bunch compactness was calculated 

according to the water displacement method (Shavrukov et al. 2004). Juice was 
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extracted from the same ten bunches and used to measure total soluble solids (0Brix), 

Titratable Acidity (TA) and pH according to the procedures described by Hand et al. 

(1996). 
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Table 2.2 Materials applied to Riesling vines at Vineyard B, 2006/07, in the standard fungicide program for powdery mildew and botrytis bunch rot. 
ACE or amended ACE treatments were applied on each date except that the final treatments of ACE were applied on February 21, 2007. 

Date Crop stage1 Spray volume Powdery or downy mildew fungicide and rate 
pervme of active constituent2 per 100 L 

19-0ct E-L 12 0.31 L Prill Dry Champ® WG, Nufarm Americas 
Inc., 180g (cupric hydroxide) 

1-Nov E-L 14 0.31 L 
13-Nov E-L 15 0.63 L 
16-Nov E-L 16 0.31 L Cosavet™ DF, Sulfur Mills Ltd, 600g 

(colloidal sulfur), Prill Dry Champ® WG 
23-Nov E-L 18 0.54L Topas® 100 EC, Syngenta Crop Protection 

Pty Ltd, 12.5ml (penconazole) 
27-Nov E-L22 0.52L 

4-Dec E-L24 0.50 L 
4-Jan E-L26 0.52 L Flint® 50 WG, Syngenta Crop Protection Pty 

Ltd, 14g (trifloxistrobin) 
16-Jan E-L 31 0.60 L Cosavet™DF 

31-Jan E-L32 0.54L 
21-Feb E-L34 0.42 L Cosavet™DF 

15-Mar E-L37 0.40 L Cosavet™DF 

1 Crop stage determined according to a modified Eichorn-Lorenz scale (Coombe 1995). 
2 Rate of active constituent for each material remained the same throughout trial period. 

Fungicide for botrytis bunch rot and rate 
of active constituent2 per 100 L 

Bravo@ 500, Syngenta Crop Protection Pty Ltd., 
200ml ( chlorothalonil) 
Scala® 400 SC, Bayer CropScience, 200ml 
(pyrimethanil) 

Captan 900 WG, Crop Care Australasian Pty Ltd., 
120g (captan) 

Switch 62.5 WG, Syngenta Crop Protection Pty Ltd, 
80g (cyprodinil and fludioxonil), Sync™ Fungicide 
Activator, Precision Laboratories Inc., 20ml 
(carbohydrate based surfactant, an amine polymer 
complex and a pH buffer) 
Rovral® Liquid Fungicide, Bayer CropScience, 
1 OOml (iprodione) 
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Figure 2.1 Average daily temperature (°C), relative humidity (%) and total daily 
rainfall (mm) at (A) Vineyard A, 2005/06 at (B) Vineyard B, 2006/07. 
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2.3.3.3 Microbial abundance in the phyllosphere 

At both vineyard sites, microbial populations were sampled from leaves in plots 

treated with ACE at E-L stage 34 (veraison). At Vineyard A, six leaves were 

sampled randomly from each plot, 30 min before application of ACE, and 1 h, 1 day 

and 5 days after application of ACE, and 1 day before the subsequent spray. The 

sampling strategy was the same at Vineyard B, except that leaves from the ACE 

treatment and three other treatments specified in Table 2.13 were also collected one 

day before subsequent spray application. The leaves were placed in plastic bags and 

transported to the laboratory in a cooler box. Ten segments were taken from each 

leaf, five on either side of the midrib, with an 11 mm sterile cork borer (Met-App Pty 

Ltd). These sections were placed in 10 ml of sterile saline solution (0.32 M sodium 

chloride) and vortex mixed for 1 min. A serial dilution was performed in saline 

solution and 100 µl of dilutions were spread onto yeast peptone dextrose agar 

(YPDA, selective for yeasts), acidified potato dextrose agar (APDA, selective for 

filamentous fungi) or nutrient agar (NA to enumerate bacteria). The NA plates were 

inverted and incubated at 25°C for 72 h. The YPDA and APDA plates were placed in 

the dark at 21°C ± 4 °C) for 7 days. The number of colony forming units ( cfu) of 

bacteria, yeast and fungi was calculated per ml of solution. 

2.3.4 Data analyses 

Data were subjected to analysis of variance (ANOV A) in Genstat0 for Windows 8th 

Edition. When necessary, percentages were arcsine transformed and colony forming 

units ( cfu) were transformed to log1ocfu!ml. In all tables of results, df is the degrees 

of freedom and lsd is the least significant difference. 
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2.4 Results 

2.4.1 Physical and chemical characters of ACE 

The mean physical and chemical characters of extracts applied to glasshouse vines 

were unlike those applied in the vineyards (Table 2.3). In the glasshouse, the 

concentration of dissolved oxygen appeared to be higher and conductivity was lower 

than the field. In the field trials, the mean pH of ACE or amended ACE was close to 

neutral, the mean temperature was 23-26°C, the mean dissolved oxygen was always 

greater than 6.1 mg/Land the mean conductivity was 5.0-6.7 dS/m. Nitrate (0-100 

mg/L) was present in all extracts prepared for application at Vineyard B. When 

compared to unamended ACE, there appeared to be a small but insignificant increase 

in conductivity when ACE was amended with either LK or FF and LK (P = 0.46 and 

0.65, respectively). 

Table 2.3 Average selected physical and chemical characters of 48-h ACE and 
amended ACE measured before storage and application in the glasshouse or field, 
respectively. Each value for Vineyard A in 2005/06 and Vineyard B in 2006/07 was 
the average for nine and 12 batches of ACE, respectively, corresponding to the 
different times of application 

Physical and Glasshouse Vineyard A Vineyard B 
chemical properties experiment 

ACE ACE ACE with ACE ACE 
FF1 and withLK 
LK2 

pH 7.1 7.5 7.4 7.2 7.2 

oxygen (mg/L) 8.2 6.8 6.1 6.9 7.1 

conductivity 1.0 6.3 6.7 5.0 5.6 
(dS/m) 
temperature (°C) 23 27 27 24 24 
nitrate (mg/L) 0 0 0 50 50 
1 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 
rart FF:120 parts ACE (v/v). 

Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 
parts ACE (v/v). 
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The total quantities of various macronutrients applied to vines treated with ACE 

during 2005/06 and 2006/07 are shown in Table 2.4. The total quantity of nitrogen 

applied in 2005/06 at Vineyard A (14.8 kg/ha/year) was much greater than the total 

quantity (4.7 kg/ha/year) applied in 2006/07 at Vineyard B. 

Table 2.4 Total nutrients applied to vines from multiple applications of ACE at 
Vineyard A in 2005/06 and at Vineyard B in 2006/07. 

Nutrient Total quantity of nutrient applied (kg/ha/year) 
Vineyard A Vineyard B 

nitrogen 14.8 4.70 

phosphorus 2.26 0.64 

potassium 16.2 15.8 

calcium 0.49 1.45 
magnesium 0.53 1.09 
chloride 28.3 25.2 

sulfate 6.36 2.75 

2.4.2 Glasshouse experiment 

Inoculation of leaves of glasshouse grown Cabernet Sauvignon vines with E. necator 

confirmed the expression of leaf age-related resistance to powdery mildew. Leaves in 

positions one and six represented the youngest and oldest leaf, respectively. In shoots 

that were inoculated but were not treated with ACE, the incidence and severity of 

powdery mildew on leaves declined with increasing leaf position (Table 2.5). The 

greatest mean incidence and severity of powdery mildew was evident on non-treated 

and dechlorinated water treated leaves (Table 2.6). There was a significantly greater 

incidence and severity of powdery mildew on leaves treated with ACE 7 days prior 

to E. necator inoculation than with the other times of ACE application. 
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Table 2.5 The percentage incidence and mean severity of powdery mildew on 6 non­
treated leaves per leaf position of Vitis vinifera variety Cabernet Sauvignon that had 
been inoculated with Erisiphe necator conidia in the glasshouse 25 days previously. 
Leaves in positions one and six represent the youngest and oldest leaf, respectively. 

Leaf position Incidence (%) Mean Severity (%) 

1 100 21 

2 100 36 

3 100 8.2 

4 40 1.4 

5 40 0.4 

6 0 0.0 

Table 2.6 Effect of different treatment times with ACE on mean incidence and 
severity of powdery mildew on leaves of Vitis vinifera variety Cabernet Sauvignon in 
the glasshouse, 25 days after inoculation with Erisiphe necator conidia. Arcsine­
transformed data in parentheses. Means within columns followed by the same letter 
are not significantly different at P = 0.05. 

Spray timing in relation to 
inoculation with E. necator conidia 

-7 days 

-4 days 

-1 days 

+1 days 

+4 days 

+7 days 

Inoculated but not treated 

Dechlorinated water applied at + 1 
day 

lsd for transformed means 

df 
p 

2.4.3 Field experiments 

Mean incidence (%) 

46.7 (0.75) 

6.67 (0.12) 

0.00 (0.00) 

6.67 (0.12) 

0.00 (0.00) 

13.3 (0.25) 

100 (1.57) 

100 (1.57) 

0.44 

28 

< 0.001 

b 

a 

a 

a 

a 

a 

c 

c 

2.4.3.1 Suppression of powdery mildew on leaves 

Mean severity (%) 

2.75 (0.05) 

0.07 (0.00) 

0.00 (0.00) 

0.01 (0.00) 

0.00 (0.00) 

0.02 (0.00) 

21.7 (0.24) 

21.5 (0.24) 

0.05 

28 

< 0.001 

b 

a 

a 

a 

a 

a 

c 

c 

At Vineyard A, powdery mildew was observed on the abaxial surface of leaves in 

non-treated plots prior to capfall when the inflorescence was well developed(Fig. 
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2.2). Incidence on the abaxial surface of leaves increased to 100% by E-L stage 29 

(berries pepper-corn size) and the infection progressed to the upper surface of leaves 

by E-L stage 23 (17-20 leaves separated, 50% caps off). Powdery mildew infection 

on Riesling leaves at Vineyard B was considerably later in 2006/07, when compared 

with Chardonnay in 2005/06 (Fig. 2.2). Powdery mildew was first observed on the 

abaxial surface of Riesling leaves in the dechlorinated water control plots when the 

berries were pea-sized, reaching a maximum of 55% incidence by harvest. Powdery 

mildew progressed to the adaxial surface of leaves after veraison (Fig. 2.2). 

All treatments in both growing seasons significantly reduced the incidence and 

severity of powdery mildew on the adaxial surface of leaves when compared to the 

non-treated or dechlorinated water controls (Table 2.7). When the dechlorinated 

water control was excluded from analysis of treatments at Vineyard B in 2006/07, 

the incidence of powdery mildew on the adaxial surface of leaves treated with ACE 

plus LK was significantly lower (P = 0.02) than observed on vines treated with ACE 

or the standard program. 
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Figure 2.2 Mean incidence of powdery mildew on (a) the abaxial (•)and adaxial (o) surface of Chardonnay leaves at Vineyard A from November 15, 
2005, when the inflorescence was well developed prior to cap fall (E-L 17) and (b) the abaxial (•)and adaxial (o) surface of Riesling leaves at 
Vineyard B between December 20, 2005 (E-L 31, berries pea size) and March, 23, 2006 (E-L 37, berries not quite ripe). 
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Table 2. 7 Mean incidence and severity of powdery mildew on the adaxial surface ofleaves at Vineyard A, E-L 31 (pea size berries) and Vineyard B, 
E-L 37 (berries not quite ripe). Transformed data in parentheses. Means within columns for transformed data followed by the same letter are not 
significantly different at P = 0.05. 

Treatment Mean incidence (%) Mean severity(%) 

Vineyard A Vineyard B Vineyard A Vineyard B 

Non-treated 100 (1.57) b 56.7 (0.92) b 73.1 (1.09) b 23.7 (0.19) b 
(Vineyard A) or 
dechlorinated water 
control (Vineyard B) 

ACE 4.5 (0.18) a 7.9 (0.21) a 0.1 (0.07) a 0.5 (0.01) a 

ACE with FF1 and 6.0 (0.18) a 1.3 (0.05) a 0.1 (0.05) a 0.0 (0.00) a 
LK2 (Vineyard A) or 
ACEwithLK 
(Vineyard B) 
Standard fungicide 5.5 (0.23) a 11.3 (0.34) a 0.1 (0.02) a 0.0 (0.00) a 
program for powdery 
mildew 

lsd for transformed 0.14 0.37 0.10 0.12 
means 

df 12 15 12 15 
p < 0.001 < 0.001 < 0.001 = 0.012 
1 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 part FF:120 parts ACE (v/v). 
2 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 
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2.4.3.2 Suppression of powdery mildew on fruit 

Powdery mildew on non-treated Chardonnay bunches in 2005/06 was severe, 

whereas Riesling bunches escaped infection by E. necator in 2006/07. The incidence 

of powdery mildew on non-treated Chardonnay bunches increased from close to 0% 

at E-L 26 (cap-fall complete) to 100 % by E-L 31 (berries pea size) (Fig. 2.3). An 

increase in powdery mildew severity followed the increase in incidence and the 

maximum severity observed was 77% (Table 2.8). Both ACE treatments 

significantly reduced the incidence and severity of powdery mildew on Chardonnay 

bunches when compared to the non-treated control and were equivalent to the 

standard organic spray program, which reduced powdery mildew severity to a 

commercially acceptable level (Table 2.8). 
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Figure 2.3 Mean incidence ( •) and severity ( o) of powdery mildew on Chardonnay 
bunches in non treated plots between December 6, 2005 (E-L 26, cap-fall complete) 
and February 6, 2006 (E-L 33, berries still hard and green) at Vineyard A. 
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Table 2.8 Powdery mildew incidence and severity on Chardonnay bunches at E-L 35 
(veraison) at Vineyard A. Transformed data in parentheses. Means within columns 
for transformed data followed by the same letter are not significantly different at P = 
0.05. 

Treatment 

Non-treated 
ACE 

ACE with FF1 and LK2 

Standard organic 
fungicide program for 
powdery mildew 

lsd for transformed means 
df 
p 

Mean incidence (%) 

100 (1.57) 

27.0 (0.53) 

13.0 (0.24) 

31.0 (0.60) 

0.30 

12 

< 0.001 

b 

a 

a 

a 

Mean severity(%) 

77.3 (0.54) 

0.34 (0.11) 

0.05 (0.05) 

0.17 (0.07) 

0.08 

12 

< 0.001 

b 

a 

a 

a 

1 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 
part FF: 120 parts ACE (v/v). 
2 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 
parts ACE (v/v). 

2.4.3.3 Suppression of botrytis bunch rot 

Sporulating B. cinerea was not evident on Chardonnay bunches at Vineyard A in 

2005/06 and so bunches were assessed for latent B. cinerea. The incidence of latent 

B. cinerea was significantly greater in Chardonnay bunches from non-treated plots 

than from plots treated with ACE or the standard organic fungicide program for 

powdery mildew (Table 2.9). There was no significant difference among treatments 

for the severity of latent B. cinerea in Chardonnay bunches. 

The percentage of berries at pre-bunch closure with latent B. cinerea in Riesling 

bunches at Vineyard B was < 2% and did not differ significantly among treatments 

(Table 2.10). Prior to harvest, there was a significantly greater incidence and severity 

of sporulating B. cinerea in the control treatments (plots treated with dechlorinated 

water or the standard fungicide program for powdery mildew) than in ACE treated 
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plots or bunches treated with the conventional spray program for both botrytis bunch 

rot and powdery mildew spray program (Table 2.10). By harvest, the incidence and 

severity of sporulating B. cinerea had declined as the weather remained sunny and 

dry. 
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Table 2.9 Effect of aerobic compost extracts (ACEs) on latent and sporulating (visible) Botrytis cinerea. At harvest in Vineyard A, 20 Chardonnay 
bunches per plot were surface sterilised and moist incubated to promote growth of latent B. cinerea. At pre-bunch closure in Vineyard B, prior to the 
application of treatments for this crop stage, latent B. cinerea was assessed by selecting 20 Riesling berries per 10 surface sterilised bunches per plot . 
The incidence and severity of sporulating B. cinerea on Riesling bunches (n=30) at E-L 36 (berries with intermediate 0Brix values) was also assessed at 
Vineyard B. Arcsine-transformed data in parentheses. Means within columns for transformed data followed by the same letter are not significantly 
different at P = 0.05. 

Treatment 

Non-treated (Vineyard A) or dechlorinated 
water control (Vineyard B) 
ACE 
ACE with FF1 and LK2 (Vineyard A) or 
ACE with LK (Vineyard B) 
Standard fungicide program for powdery 
mildew 
Standard conventional fungicide program 
for powdery mildew and botrytis bunch rot 

lsd for transformed means 
df 
p 

Vineyard A 

Mean incidence of 
latent B. cinerea at 

harvest(%) 

34 (0.62) b 

18 (0.43) a 
18 (0.43) a 

13 (0.36) a 

NA3 

0.18 
12 

0.046 

Mean severity of 
latent B. cinerea at 

harvest(%) 

2.61 (0.07) 

3.80 (0.07) 
2.12 (0.05) 

1.39 (0.03) 

NA 

0.05 
12 

0.321 

Percentage of 20 
berries with 

sporulating latent 
B. cinerea at pre-bunch 

closure 
0.25 (0.03) 

0.83 (0.04) 
1.42 (0.10) 

0.00 (0.00) 

0.25 (0.04) 

0.07 
20 

0.089 
1 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 part FF: 120 parts ACE (v/v). 
2 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 
3 NA = not applied at this site. 

Vineyard B 

Mean incidence 
of sporulating 

B. cinerea (%) at 
E-136 

13.3 (0.33) b 

9.44 (0.25) b 
0.00 (0.00) a 

2.22 (0.08) a 

1.11 (0.06) a 

0.18 
20 

0.004 

Mean severity of 
sporulating 

B. cinerea (%) at 
E-136 

1.35 (0.03) b 

0.62 (0.06) b 
0.00 (0.00) a 

0.12 (0.00) a 

0.14 (0.00) a 

0.03 
20 

0.003 
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2.4.3.4 Effect of compost extracts on grape yield, bunch compactness and juice 

composition 

In 2005/06, the mean total soluble solids of non-treated Chardonnay bunches at 

harvest was 21.8 °Brix, which was significantly greater than the ACE and standard 

organic treatments with 19.4 and 19.0 °Brix, respectively (lsd = 1.95, df = 12, P = 

0.036). No other measures of juice composition or grape yield were taken at this 

site. 

The average yield of Riesling vines across the trial site was below average at 7 .1 

tonne/ha. There were no significant differences in yield, average berry weight or 

components of juice quality across treatments (Table 2.11 ). The compactness of 

Riesling bunches varied across treatments with vines treated with ACE or the 

standard fungicide program having slightly but significantly higher percentage bunch 

openness than bunches treated with amended ACE or dechlorinated water (Table 

2.11). 
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Table 2.11 Effect of aerobic compost extracts (ACEs) on yield, juice composition 
and bunch openness of Riesling vines at Vineyard Bin 2006/07. 

Treatment Yield Average Juice composition Bunch 
(tonne/ha) berry openness 

weight (%) 
(g) 

pH Titratable 0Brix 
acidity 

Dechlorinated 7.3 a 1.0 a 2.9 a 10.4 a 20.6 a 31.0 b 
water control 

ACE 7.4 a 1.0 a 3.0 a 9.9 a 20.4 a 35.8 a 

ACE with 7.9 a 1.0 a 2.9 a 10.4 a 20.3 a 31.9 b 
LK1 

Standard 7.2 a 1.1 a 2.9 a 10.2 a 20.6 a 34.7 a 
conventional 
fungicide 
program for 
botrytis 
bunch rot and 
powdery 
mildew 

lsd 5.02 0.45 0.09 1.06 0.54 2.83 

df 12 27 12 12 12 147 
I' 0.992 0.888 0.528 0.703 0.562 0.003 
1 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 
parts ACE (v/v) 

2.4.3.5 Microbial abundance in the phyllosphere 

Application of ACE increased the number of culturable bacteria, fungi and yeast on 

the leaf surface relative to pre-application levels at both vineyards (Table 2.12). The 

magnitude of the increase was approximately 100 fold at 1 h post-application. The 

number of culturable microorganisms on the leaf surface then declined gradually 

over 13 days, with the exception that the number of culturable bacteria at 13 days 

post-application on Riesling leaves was higher than observed on leaves at 1 day post-

application. At 13 days post-application, the number of culturable microorganisms at 

both vineyards was higher than observed 1 h pre-application. At Vineyard B, 4 7 mm 

of rainfall was recorded 6 days after application of treatments. 
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Microbial numbers for all treatments 13 days post-application at Vineyard B are 

presented in Table 2.13. In summary, bacterial numbers, as measured by colony 

counts on NA, were not significantly different across treatments. When data for the 

dechlorinated water control were excluded from the analysis, ACE-treated leaves had 

significantly greater numbers of bacteria than the other two treatments (lsd = 0.14, df 

= 8, P < 0.001). The numbers of fungi and yeasts were significantly lower on leaves 

receiving the standard fungicide treatment when compared with all other treatments 

and the dechlorinated water control. Leaves treated with ACE amended with LK had 

significantly higher numbers of yeasts than leaves treated with ACE or dechlorinated 

water. 
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Table 2.12 The number of culturable bacteria, fungi and yeast quantified using different growth media, from leaves sampled at different times, before 
and after application of ACE at E-L 34 (veraison), to Chardonnay and Riesling vines at Vineyard A and Vineyard B, respectively. 

Time of sampling, pre- or Bacteria (log10cfulml) Fungi (log10cfulml) Yeast (log10cfulml) 
post-application of ACE 

Vineyard A VineyardB Vineyard A VineyardB Vineyard A VineyardB 

1 h pre-application 4.90 d 4.65 e 4.72 d 4.23 c 4.62 e 4.43 c 

1 h post-application 6.90 a 6.58 a 6.86 a 5.16 a 6.87 a 5.75 a 

1 day post-applicatio 6.08 b 5.51 c 6.32 b 5.09 a 6.24 b 5.38 b 

5 days post-application 6.00 b 5.29 d 5.99 b 4.76 b 5.98 c 5.07 b 
13 days post-application 5.47 c 5.95 b 5.37 c 4.79 b 5.31 d 4.99 b 

lsd 0.17 0.17 0.45 0.17 0.17 0.11 

df 16 16 16 16 16 16 
p < < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

0.001 
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Table 2.13 Number of culturable microorganisms (log10cfu) on leaves measured at 
13 days post-application of treatments applied at veraison to Riesling vines at 
Vineyard B. 

Treatment Number of microorganisms (log10cfu/ml) 
Bacteria Fungi Yeast 

Dechlorinated water control 4.20 a 4.84 a 4.94 b 

ACE 4.39 a 5.29 b 4.44 b 

ACEwithLK1 4.18 a 4.18 a 5.60 a 

Standard fungicide program 4.23 a 3.83 c 3.79 c 
for powdery mildew and 
botrytis bunch rot 

lsd 0.23 0.12 0.17 

df 12 12 12 
p 0.23 < 0.001 < 0.001 

2.5 Discussion 

Regular applications of ACE or amended ACE can suppress powdery mildew on 

grapevine fruit and foliage to commercially acceptable level in southern Tasmania. 

The severity of botrytis bunch rot in non-treated or water-treated plots at both field 

sites was not high enough to cause an economic impact. Nevertheless, ACE or 

amended ACE reduced the incidence of latent infection at Vineyard A and the 

incidence and severity of sporulation by B. cinerea at Vineyard B. This study is the 

first to illustrate suppression of two diverse pathogens following regular applications 

of ACE in the field environment. ACE was as effective as the standard commercial 

spray programs and there did not appear to be any additional benefit in amending 

ACE with the nutrients tested. Furthermore, application of ACE was not detrimental 

to juice quality (Brix0
, TA, pH) or grape yield (Table 2.11 ), and has the added benefit 

of supplying beneficial nutrients to the crop canopy and reducing the cost of 

supplementary fertilisers. Based on this study, ACE has the potential to be 

incorporated into a disease management program for grapevine powdery mildew and 

botrytis bunch rot control in southern Tasmania. ACE should now be tested at more 
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sites and in a range of viticultural environments to confirm the potential for 

widespread application. 

The risk of powdery mildew infection during the 2005/06 season was severe due to 

consistently humid conditions, lengthy periods of significant cloud coverage and 

high shoot vigour resulting from relatively high rainfall during spring. Each plot 

treated with ACE, amended ACE or the standard treatment received two sprays 

during the flowering and fruit set period, a time when developing fruit were highly 

susceptible to infection by E. necator (Ficke et al. 2002). These spray timings were 

probably critical in controlling powdery mildew on bunches given that the incidence 

of powdery mildew escalated on leaves and bunches in non-treated plots following 

flowering (Figs 2.2 and 2.3). In 2006/07, there were multiple rain events during 

veraison in mid February. ACE or the standard fungicide treatment prior to veraison 

may have reduced B. cinerea inoculum and/or latent infections in relation to control 

treatments at this time (Table 2.10). Differences in the amount of re-growth by B. 

cinerea after latency or the level of new berry infection in subsequent moist events 

during the ripening period might explain differences in disease expression between 

treatments. 

Controlling powdery mildew on grape berries, even non-visible (diffuse) infections, 

is known to reduce the amount of bunch rotting fungi and wine spoilage yeasts on 

berries (Gadoury et al. 2007). In Vineyard A, the ACE treatment and the standard 

program for powdery mildew significantly reduced the incidence of bunch rot 

expressed after re-growth of latent B. cinerea, relative to the non-treated control. The 

powdery mildew fungicides and/or kelp meal used at this site either reduced potential 

berry damage by E. necator, and hence entry points for B. cinerea, and/or had direct 
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activity against B. cinerea. In Vineyard B, plots sprayed for powdery mildew control 

appeared to have a lower mean incidence and severity of sporulating B. cinerea than 

the dechlorinated water control, although the means were not separated statistically. 

A dechlorinated water control was included in the glasshouse experiment (for 

powdery mildew) and field trial with Riesling to determine whether water alone had 

an effect on the level of either powdery mildew or botrytis bunch rot but there was 

no evidence to support this hypothesis. 

The results of the glasshouse experiment suggested that ACE had both protective and 

curative properties. Microscopy is required to observe the response of E. necator to 

ACE treatment before and after inoculation and to elucidate the mechanism of action 

(Crisp et al. 2006b ). Potential mechanisms of action include hyperparasitism, or 

direct inhibition of spore germination or growth post germination by secretion of 

antimicrobial chemicals. Components of ACE might also have induced plant 

resistance to E. necator colonisation, given that ACE significantly reduced the 

severity of powdery mildew when applied up to 7 days prior to E. necator 

inoculation. Induced resistance in grapevine leaves to infection by B. cinerea was 

reported by Reglinski et al. (2005) after a chemical elicitor was applied 7 days prior 

to inoculation. This phenomenon could also be investigated in relation to powdery 

mildew by measuring the activity of pathogenesis-related proteins following ACE 

application (Aziz et al. 2003, Haggag and Saber 2007). 

ACE augmented the number of fungi, bacteria and yeast on leaves during field 

experimentation (Table 2.12). The numbers of microorganisms declined from 1 h 

post-application to 13 days post-application reflecting the inability of all 

microorganisms from ACE to survive in a fluctuating environment. However, the 
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numbers of microorganisms were still above pre-application levels at 13 days post­

application. The increase in the number of bacteria between 5 and 13 days post­

application at Vineyard B might have been promoted by rainfall 6 days following 

ACE application. The persistence and growth of microorganisms used for single 

target biological control can be constrained by sub-optimal conditions of UV 

radiation, temperature, humidity, rainfall, nutrient availability and mechanism of 

action (Hurst et al. 2001). Unlike single biocontrol agents, ACE contains a diversity 

of microorganisms and it is possible that some taxa may survive under conditions in 

which other taxa would perish. In previous studies, a greater abundance of culturable 

microorganisms in ACE did not relate directly to pathogen suppression (Scheuerell 

and Mahaffee 2004, 2006, Chapter 1). Scheuerell and Mahaffee (2006), for example, 

found that addition of nutrients to ACE increased the number of bacteria but did not 

reduce grey mould on geranium in comparison with ACE with no nutrient 

amendments. At Vineyard B, there was a greater number of culturable yeasts 13 days 

after application of ACE amended with LK than the other treatments. However, this 

observation did not appear to be related to the disease suppressive ability of the 

extract. Nevertheless, leaves treated with ACE had significantly greater numbers of 

yeast than leaves treated with conventional fungicides and as a consequence bunches 

treated with ACE should be tested for the presence of 'wild' and spoilage yeasts prior 

to winemaking. 

Both broad spectrum and single-target fungicides were used in the standard fungicide 

treatments. At E-L stage 34 (veraison), the number of culturable bacteria colonising 

the leaf surface at Vineyard B was not significantly different across treatments 

indicating that bacterial populations were relatively resistant to fungicide residues 

that had persisted from previous applications. Yeast and fungal populations, 
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however, were more sensitive to fungicide application. Sholberg et al. (2006) found 

similar results on grapevine leaves and berries with fungicide treatments reducing the 

number of fungi on berries and eliminating fungi on leaves. 

Unlike previous studies, the amount of nutrients in ACE as well as the total quantity 

applied during the viticultural growing season is reported here. These measurements 

are particularly important because applications of nutrients can influence the 

susceptibility of vines to disease. Excessive amounts of nitrogenous fertilisers 

applied to soil can promote lush, green foliage suitable for the colonisation by 

obligate pathogens such as powdery mildew fungi, which obtain nutrition from living 

plant cells (Keller et al. 2003a). Dense canopies promoted by plant nutrition can also 

elevate relative humidity and promote infection by plant pathogens. In contrast, 

excessive amounts of potassium in soil can reduce the severity of powdery mildew 

and botrytis bunch rot in grapevines (Marschner 1986). Nutrients in ACE were 

applied to the foliage rather than the soil, but there was still the possibility that these 

nutrients altered plant physiology. The quantity of total nitrogen applied at Vineyard 

A (Table 2.6) was approximately three times greater than at Vineyard B, however 

suppression of powdery mildew was equivalent to the commercial treatments in both 

seasons. Furthermore, changes in crop yield or grape juice composition following 

season-long applications of ACE were not detected. There were also no obvious 

differences in shoot vigour among treatments, based on visual observation. 

The presence of nutrients in ACE, especially nitrate, might influence its capacity to 

suppress leaf and fruit pathogens by supporting pathogenic microorganisms on the 

plant surface that require nutrients for spore germination. Welke (2004) reported a 

reduction in grey mould incidence and higher strawberry yields in comparison with 
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the control treatments, when aerated compost extracts based on cow manure with less 

than 1 mg/L of inorganic nitrogen (nitrite and nitrate) were sprayed on crops. 

Conversely, non-aerated compost extracts based on chicken manure with greater than 

100 mg/L of nitrate and nitrite had little effect on crop yield or suppression of grey 

mould. A lack of nitrate in ACE, as illustrated at Vineyard A and in the cow manure 

compost in Welke (2004), demonstrates that nitrogen was mostly present in the 

organic form, including the microbial biomass. The presence of nitrate in ACE 

applied to plots at Vineyard B did not appear to affect its activity against B. cinerea, 

although the severity ofbotrytis bunch rot infection at this site was relatively low. 

The electrical conductivity of ACE applied to grapevmes in the field was, on 

average, 2': 5 dS/m. Yield loss and phytotoxicity can occur when electrical 

conductivity in vineyard soils is above 7 dS/m (Stepphun et al. 2005). The 

conductivity level tolerated by foliar or fruit application of salt on grapevine does not 

appear to have been reported. The level of soluble salts in ACE did not appear to 

affect the yield of Riesling grapes in comparison with the control treatments (Table 

2.11 ). Elevated salt levels may have contributed to the suppression of powdery 

mildew and botrytis bunch rot, but powdery mildew was also suppressed in the 

glasshouse experiment where the average conductivity was relatively low at 0.96 

dS/m. Segarra et al. (2007) found that increasing the concentration of salt in compost 

reduced B. cinerea severity in cucumber plants and suggested that salt stress induced 

disease resistance in the host plant. Overall, these results suggest that the 

mechanism/s of ACE might vary in significance in different environments. 

Further research is required to determine the effectiveness of ACE and its 

mechanism/s of action in a wide range of environments. Adoption of ACE as a 
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biological control agent will depend on strategies for integrating it into existing crop 

and disease management that allow the timing and number of applications of ACE to 

-
be optimised in relation to pathogen activity and canopy susceptibility to disease. 

Knowledge of the mechanism of ACE in suppressing these grapevine pathogens will 

aid development of the disease management strategy. 
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CHAPTER3: 

POTENTIAL FOR GROWTH OF HUMAN PATHOGENIC BACTERIA IN 

AEROBIC COMPOST EXTRACTS (ACE) 

3.1 Abstract 

Aerobic compost extract (ACE) is a watery extract of compost and a type of compost 

tea that is applied by horticultural producers to fruit and foliage of crops for 

improved plant health and crop protection. Commercial open windrow compost was 

collected during the cooling phase of composting when the internal windrow 

temperature was 50°C and the presence of Escherichia coli, Listeria monocytogenes 

and Bacillus cereus was assessed. There was a negligible number of human 

pathogenic bacteria in compost samples, so aerobic compost extracts (ACEs) with a 

ratio of 1 part compost to 3 parts water were prepared and inoculated with non­

pathogenic streptomycin resistant E. coli (1 x 107 cfu/ml), which were then 

enumerated over a 72 h period of extraction. There was no significant change in the 

number of streptomycin resistant E. coli during extraction of ACE that has not been 

amended with nutrients. However, there was a significant increase in E. coli numbers 

when 0.8% fish hydrolysate or 1 % molasses were introduced to ACE 24 h after 

extraction commenced. Introduction of 0.5-2% liquid kelp or a mixture of 1.7% 

liquid kelp and 0.8% fish hydrolysate led to a decline in the number of E. coli. 

Increasing the liquid kelp concentration to 8% in the mixture with 0.8% fish 

hydrolysate resulted in E. coli numbers equivalent to ACE amended with 0.8% fish 

hydrolysate only. 

There appeared to be no relationship between the number of E. coli and the 

abundance of culturable bacteria and fungi in ACEs amended with nutrients, 
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although a low oxygen concentration, pH and high conductivity was associated with 

increased E. coli numbers in an ACE amended with 1 % molasses. Fermentative 

metabolism of the simple carbohydrates in molasses might explain this increase in E. 

coli numbers and the reduction in pH. The results of this study imply that methods 

should be identified and imposed to assure that human pathogens do not contaminate 

ACEs during or after preparation. 

3.2 Introduction 

Agricultural producers expect commercial sources of compost or amended compost 

to be free of human and plant pathogens. In Australia, the quality and application of 

compost is generally not regulated by the government, even though application of the 

Australian Standard for production of compost, soil conditioners and mulches (AS 

4454 2003) is required by law. This Standard requires that commercially prepared 

composts have achieved conditions equivalent to pasteurisation for elimination of 

vegetative human pathogens. Compost analyses and audits made by request to a state 

department of health are voluntary (Anon. 2004) and this situation can lead to a 

quandary, with regard to product safety, for producers, farm workers and the 

consumer when results are not available. 

Aerobic compost extracts are applied to fruit, foliage and/or soil to enhance crop 

yield and suppress diseases caused by plant-pathogenic fungi and bacteria. In brief, 

aerobic compost extract (ACE) is prepared by suspending a porous bag or sieve 

containing aerobic compost in oxygenated water for 24 to 72 h. ACE, a type of 

compost "tea'', is being used widely by a small sector of horticultural producers 

(Touart 2000, Scheuerell and Mahaffee 2002). However, retailers of fresh food and 

consumers are increasingly concerned about the possibility of human pathogens in 
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poor quality compost applied to horticultural crops. An additional concern is re­

establishment and growth of human pathogens in ACE, especially when nutrients are 

added during extract production (Duffy et al. 2004). 

Few scientists have published research on human pathogen presence and growth in 

ACE prepared from mature, commercially available composts. Results from in vitro 

assays involving inoculation of unamended ACE with E. coli and/or S. enterica 

revealed no significant increase in populations of these human pathogens (Duffy et 

al. 2004, Kannangara et al. 2006). Nevertheless, these studies revealed a strong 

positive correlation between molasses and kelp concentrations in ACE amended with 

these nutrients and E. coli numbers. Moreover, E. coli and S. enterica populations 

can proliferate in water-based solutions of fish hydrolysate, kelp, seaweed and/or 

humic acids, in the absence of ACE (Ingram and Millner 2007). To ascertain whether 

or not results from in vitro studies applied to commercial production conditions, 

Ingram and Millner (2007) inoculated ACE or ACE amended with nutrients with 

human pathogens, using extracts prepared by a commercial compost tea brewer. 

There was a significant increase in the numbers of E. coli, S. enterica and total fecal 

coliforms in treatments supplemented with a mixture of molasses, bat guano, sea bird 

guano, powdered soluble kelp, citric acid, Epsom salts, ancient seabed minerals and 

calcium carbonate or a mixture of powdered soluble kelp, liquid humic acids and 

rock dust. These results suggest that practitioners adopting ACE need to be 

especially cautious when adding nutrients to compost extracts if human pathogens 

contaminate ACE during production and if conditions during or after production 

enable pathogens to grow and multiply. 
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The results in Chapter 1 illustrated ACE production conditions necessary for 

consistent suppression of the fungal plant pathogen Botrytis cinerea after inoculation 

of detached bean leaflets that had been treated with a test batch of ACE. The most 

pathogen-suppressive ACE identified in Chapter 1 had the greatest diversity of 

bacteria and fungi and was prepared from compost collected from open windrows in 

the cooling phase of composting, at an internal windrow temperature between 40°C 

and 50°C. These production conditions for ACE were standardised and adopted for 

further testing. During the viticultural seasons of 2005/06 and 2006/07 (Chapter 2), 

application of standardised ACE to commercial wine grapes demonstrated reduction 

of powdery mildew, caused by Erysiphe necator, to commercially acceptable levels 

on Chardonnay grape clusters and Riesling leaves. The next step in the research was 

to determine the safety of standardised ACE for use in horticultural production. 

This study in relation to the safety of ACE addressed three objectives. The first 

objective was to investigate the presence of human pathogenic bacteria in 

commercially produced composts during the early secondary mesophilic stage of 

composting. The second objective was to determine, using a non-pathogenic, 

streptomycin-resistant E. coli, the potential for populations of E. coli to multiply in 

ACE or ACE amended with nutrients, prepared under small-scale laboratory 

conditions that simulated standardised production. The final objective was to 

investigate if any increase in the number of E. coli, inoculated into a particular ACE, 

also altered the total number of culturable bacteria and/or fungi when compared with 

an ACE that did not support the multiplication of the test strain of E. coli. The use of 

compost from the early mesophilic stage of composting differentiates this research 

from previous studies that utilised mature compost and the results support earlier 
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reports that adding particular nutrients to compost extracts can lead to re-growth of 

human pathogenic bacteria. 

3.3 Materials and Methods 

3.3.1 Compost production 

Compost was produced by Soil First Pty Ltd (Parrata, Tasmania, Australia) as 

described in Chapter 1. Briefly, compost was initiated in open windrows with an 

initial C:N of 30: 1. The primary raw ingredients included mulched green waste from 

municipal councils in Tasmania and waste from Atlantic salmon (Salmo salar) 

aquaculture. A 10 kg and a 300 g sample of compost were collected at a depth of 1 m 

at three positions along a windrow: approximately 10 m from each end of the 50 m 

windrow and in the centre of the windrow, when the internal temperature was 

approximately 50°C in the cooling phase of composting. The three 10 kg samples 

were placed in containers that had been surface sterilised with 70% ethanol and 

transported to the New Town Research Laboratories for pilot-scale extraction. The 

three 300 g samples were placed in autoclaved containers and transported directly to 

the microbiology laboratory of the University of Tasmania for laboratory-scale 

extraction. Both laboratories are located in Hobart, approximately 1 h by road from 

Parrata. 

3.3.2 Production of ACE 

Three 100 L tanks were surface sterilised with 70% ethanol and ACE was prepared 

as described in Chapter 1 with a compost to water ratio of 1 :3. Prior to compost 

addition (0 h extraction time) and after every 24 h of extraction, up to 72 h, 500 ml 

samples of ACE were aseptically collected from each tank. The samples were placed 

in an icebox and transported 15 min by road to the microbiology laboratory for 
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challenge trials with a non-pathogenic streptomycin resistant mutant of E. coli M23. 

In addition, a sample of 48 h ACE was sent to the Environmental Analysis 

Laboratory (Lismore, NSW, Australia) for analysis of macro-nutrients. 

3.3.3 Analysis of human pathogens 

A membrane filtration method was used to test compost and ACE samples for 

presence of E. coli, L. monocytogenes and B. cereus. For each 300 g compost 

sample, 100 g of compost and 200 ml of sterile distilled water were placed in a 

Stomacher® Classic filter bag (177 mm x 304 mm, Seward Laboratories, UK) with 

a 25 µm inner mesh. The liquid that was separated from the compost particles was 

passed through a 47 mm-diameter sterile vacuum filter (Sterifil® Aseptic System, 

Millipore Co.) containing a sterile membrane filter paper with 0.45 µm diameter 

pores (Whatman Microplus - 21ST white/black). After filtration, each filter paper 

was placed grid side up onto one of three selective agar media in 90 mm-diameter 

Petri plates and prepared according to the manufacturers' instructions: Membrane 

Lauryl Sulfate broth (MLS; Oxoid CM0451; Oxoid Australia Limited) solidified 

with 1.5% agar for E. coli, Listeria selective agar (Oxford formulation; Oxoid 

CM0856 with SR0140 Supplement, Oxoid Australia Limited) for Listeria sp. and 

Bacillus selective agar for Bacillus sp. (Oxoid CM0617 with SR0099 Supplement, 

Oxoid Australia Limited). The same filtration and plating procedure was completed 

with 500 ml of each ACE prepared at New Town Research Laboratories. MLS plates 

were inverted and incubated at 30°C for 4 hand then at 44°C for 14 h. Both Bacillus 

selective agar and Listeria selective agar plates were inverted and incubated at 3 7°C 

for24 h. 

Colonies of bacteria were picked off and, as appropriate, subcultured for further 

identification. Beta-haemolysis on Sheep blood agar (Oxoid CM0271, Oxoid, 
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Australia Limited) and microscopy were used to confirm presumptive B. cereus. 

Confirmation of presumptive Listeria sp. was based on beta-haemolysis and 

presumptive E. coli were confirmed using the API 20E system (Biomerieux Inc., 

Baulkham, NSW, Australia). 

3.3.4 Persistence and multiplication of E. coli in ACE or ACE amended with 

nutrients 

3.3.4.1 Laboratory scale ACE production and inoculation conditions 

To compare the potential for populations of E. coli to persist and/or multiply in ACE 

or amended ACE, standardised ACE was prepared on a small scale in the laboratory. 

Sterile flasks of 2 L capacity were filled with 1 L of sterile distilled water. A pond 

pump (Bianco, BIA WFP200, 200 L/h, 240 v, White International Pty Ltd, Milperra, 

Australia) sterilised with 70% ethanol was placed in each flask to ensure a dissolved 

oxygen level above 6 mg/L. An autoclaved, 100 % polypropylene bag (6 cm x 25 

cm) was filled with 300 g of compost and suspended in the flask above the pond 

pump. 

At 0 h extraction time, immediately prior to addition of bags of compost, three flasks 

per experimental treatment, representing compost from three windrow positions, 

were inoculated with a non-pathogenic streptomycin resistant strain of E. coli, M23, 

to a final concentration of 1 x 107 colony forming units (cfu)/ml. E. coli strain M23 

was obtained from the culture collection of the School of Agricultural Science, 

University of Tasmania, Tasmania, Australia and was originally isolated from E. coli 

M23 by culture on nutrient agar including 100 mg/ml of streptomycin and selection 

of colonies. Three flasks were not inoculated and acted as the control treatment. One 
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or more nutrients, described below, were added to each of three flasks 24 h after 

extraction commenced. 

Electrical conductivity, dissolved oxygen, pH, temperature, and nitrate were 

measured immediately prior to extraction and every 24 h, up to 72 h. Nitrate was 

determined using nitrate Merckoquant® strip tests (Merck Pty Ltd). The other 

physical parameters were measured using WTW Handheld 340i or Inolab meters 

(Merck Pty Ltd). 

3.3.4.2 Experiment one: effect of nutrient additives on E. coli populations 

A total of 18 flasks (three flasks per treatment) were prepared, as described in the 

previous section, for the following treatments: non-inoculated ACE, inoculated ACE, 

inoculated ACE amended with molasses (M), Liquid Kelp™ (LK), Foundation 

Fish™ (FF) hydrolysate or a mixture of LK and FF. These nutrients and the 

concentration applied in treatments are described in Table 3.1. 
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Table 3.1 Raw ingredients and quantity of each product added to ACE after 24 h of 
extraction. 

Product 

Molasses (Roberts Pty 
Ltd, Tasmania) 

Foundation Fish™ (FF) 
(Soil First Pty Ltd, 
Tasmania) 

Liquid Kelp™ (LK) (Soil 
First Pty Ltd, Tasmania) 

Raw ingredients in 
product 

Molasses 

hydrolysate of atlantic 
salmon (Salmo salar) 
aquacultural waste, post 
filleting 

Bull kelp (Durvillaea 
potatorum) 

Quantity 

1 part M: 100 parts ACE 
(v/v) or 1 % 

1 part FF:120 parts ACE 
(v/v) or 0.8% 

1 part LK:60 parts ACE 
(v/v) or 1.7% 

3.3.4.3 Experiments two and three: effect of liquid kelp and/or fish hydrolysate on 

E. coli populations 

The effect of adding various quantities of LK to ACE was investigated. Twenty-one 

flasks were prepared for the following treatments: a non-inoculated control, 

inoculated ACE, and inoculated ACE amended with 0.5%, 1 %, 2%, 4% or 8% (v/v) 

LK. LK was included 24 h after extraction commenced and three flasks were utilised 

per treatment. This experiment was repeated with the exception that 0.83% (v/v) FF 

was added to each flask at 24 h. 

3.3.4.4 Enumeration of microorganisms in all experiments 

At 72 h, 10 ml was sampled from each flask to enumerate culturable, aerobic, 

bacteria and fungi. Serial dilutions were prepared using sterile 0.14 M sodium 

chloride. A sample of 100 µl of each dilution was plated, in triplicate, on nutrient 

agar and acidified potato dextrose agar (APDA), respectively. Nutrient agar plates 

were inverted and incubated at 25°C for 72 hand APDA plates were incubated in the 
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dark at 21°C ± 4°C for 5 days. Following incubation, colonies were enumerated to 

calculate cfu/ml in each ACE sampled. 

Samples of ACE were collected from each flask at 0, 24, 48 and 72 h extraction and 

E. coli was enumerated by spreading 100 µl of appropriate dilutions on nutrient agar 

plates containing 100 mg filter sterilised streptomycin per ml of nutrient agar. At 24 

h extraction the ACE samples were collected immediately prior to nutrient 

amendment. The plates were inverted and incubated at 3 7°C for 24 h prior to 

enumeration of colonies. 

3.3.5 Data analyses 

Analysis of variance (ANOVA) in Genstat™ for Windows 8th Edition was applied to 

treatments and cfu/ml was transformed to log10cfulml, as appropriate, to homogenise 

the variance in the data. 

3.4 Results 

3.4.1 Nutrient content and physical characters of ACE and amended ACE 

A sample of 48 h ACE from pilot-scale production (10 kg of compost in 30 L water) 

contained 185, 25.3 and 620 mg/L of the major nutrients N, P and K, respectively, 

i.e. a ratio of approximately 7: 1 :24. It also contained 57 mg/L of calcium, 43 mg/L of 

magnesium and 992 mg/L of chloride. 

The mean physical characters of compost extracts from laboratory-scale production 

(1 L water) are presented in Tables 3.2A, B, C and D. In summary, at 24, 48 and 72 h 

extraction time, the mean pH of ACE or ACE amended with one or more nutrients 

was close to neutral across almost all experiments, with the exception of ACE 
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amended with M, which was more acidic at 48 and 72 h than other ACEs prepared in 

experiment one. The amount of dissolved oxygen in all ACEs in experiment one was 

above 6 mg/L, excluding ACE amended with FF and ACE amended with M at 48 

and 72 h extraction time (Table 3.2A). When combining data from 24, 48 and 72h 

extraction times; there was significantly less dissolved oxygen (3.4 mg/L) in ACE 

amended with M than other ACEs prepared in experiment one (Table 3.2D) .. In 

experiment two and three the amount of dissolved oxygen declined over extraction 

time for all treatments (Table 3.2B, C). The mean conductivity of water used to 

prepare ACE was less than 1 dS/m and conductivity increased with extraction time. 

ACE amended with FF had a significantly higher mean conductivity than unamended 

ACE in experiment one (Table 3.2D). The mean temperature of all ACEs was 

between 22°C and 26°C (Table 3.2A, B, C, D) and there was no significant 

difference in mean temperature among treatments in experiments one, two or three 

when 24, 48 and 72h extraction times were combined for analysis (Table 3.2D) .. 

Nitrate was present in all extracts excluding 0 h extraction time. There was no 

significant difference among extracts for nitrate concentration in experiments one, 

two or three when 24, 48 and 72h extraction times were combined for analysis (Table 

3.2D). 

3.4.2 Analysis of human pathogens in compost and unamended ACE 

None of the three composts sampled contained detectable levels of E. coli, L. 

monocytogenes or B. cereus. Similarly, none of the ACEs prepared from compost 

with an internal windrow temperature of 50°C and at various windrow positions 

contained detectable levels of those pathogens. 
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3.4.3 Multiplication of E. coli in ACE and ACE amended with nutrients 

The number of streptomycin resistant E. coli in unamended ACE was similar across 

all extraction times (0 to 72 h) for experiment one (Table 3.3). In contrast, in 

experiment two there was a slightly significant decline in E. coli numbers from 0 to 

72 h extraction time (Table 3.3). Numbers of E. coli were not significantly different 

in any treatments in all three experiments 24 h after extraction commenced and 

before amendment of specific treatments with nutrients (Figs 3 .1, 3 .2 and 3 .3 ). At 48 

and 72 h extraction time, there were significant differences between unamended 

ACE and treatments where ACE was amended with one or more nutrients (Fig. 3.1). 

There was a steady increase in E. coli numbers between 24 and 72 h in ACE 

amended with 1 % M or 0.8% FF in comparison with unamended ACE. In contrast, 

there was a decline in E. coli numbers between 24 and 72 h when 1. 7% LK was 

added to ACE. There was a sharp decline in E. coli numbers in ACE amended with a 

combination of LK and FF from 48 to 72 h. 

There was no significant difference among treatment means for the number of 

culturable bacteria when ACE was amended with nutrients (Table 3.4). In contrast, 

there was a significant increase in numbers of fungi in ACE amended with 1. 7% LK 

or 1 % M when compared with all other treatments, including unamended ACE 

(Table 3.4). 

3.4.3.1 Effect of liquid kelp and/or fish hydrolysate on E. coli populations 

The number of E. coli in unamended ACE appeared to increase between 48 h and 72 

h extraction time, but the number was still less than observed at 0 and 24 h (Fig. 3.2). 

At 48 h extraction time, there were significantly fewer E. coli in ACE with 1 % LK in 

comparison with unamended ACE (Fig. 3.2). At 72 h extraction time, all LK 

treatments reduced the number of E. coli, with the greatest reduction in E. coli 
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numbers at 0.5%, I% or 2% LK. The number of culturable bacteria was not altered 

significantly by the addition of 0.5% to 8% LK to ACE (Table 3.4). In relation to 

unamended ACE, there were significantly fewer fungi when ACE was amended with 

4% or 8% LK, yet significantly more fungi when ACE was amended with I% LK. In 

short, the number of fungi appeared to increase as the concentration of LK 

approached I% and then declined as the concentration of LK increased beyond I%. 
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Table 3.2A Mean (± standard deviations) pH, dissolved oxygen, conductivity, temperature and nitrate in ACE and ACE with amendments for 
experiment one. 
Treatment Extraction pH Dissolved oxygen Conductivity 

time (h) (mg/L) (mS/cm) 
Unamended ACE 0 7.13± 0.10 9.42 ± 0.64 0.08± 0.00 

24 7.26 ± 0.32 9.49 ± 0.12 2.85 ± 0.37 
48 7.38 ± 0.05 10.1±0.56 3.48 ± 0.22 
72 7.28 ± 0.03 9.75 ± 0.32 3.18 ± 0.53 

ACE+LK 0 7.10 ± 0.09 9.85 ± 0.20 0.08± 0.02 
24 7.03 ± 0.07 9.53 ± 0.08 3.00 ± 0.28 
48 7.18 ± 0.03 9.78 ± 0.14 3.20± 0.06 
72 7.2 ± 0.02 9.66 ± 0.13 3.21±0.05 

ACE+FF 0 7.14±0.14 9.70± 0.04 0.08 ± 0.00 

24 7.04± 0.07 9.34 ± 0.21 2.71±0.32 
48 6.52 ± 0.04 5.71 ± 0.18 4.80 ± 0.19 
72 6.77 ± 0.22 5.45 ± 0.21 4.84± 0.25 

ACE+LK+FF 0 7.24 ± 0.27 9.71 ± 0.12 0.08 ± 0.00 
24 7.09 ± 0.08 9.48 ± 0.20 2.74 ± 0.19 
48 6.60 ± 0.11 7.77 ± 0.14 7.77 ± 0.14 
72 6.47 ± 0.30 7.78 ± 0.15 5.13 ± 0.12 

ACE+M 0 7.08 ± 0.09 9.74 ± 0.11 0.09± 0.00 
24 7.24± 0.10 9.47 ± 0.22 3.03 ± 0.10 
48 5.20 ± 0.02 0.42 ± 0.24 5.49 ± 0.21 
72 5.11±0.10 0.34 ± 0.16 5.53 ± 0.22 

1 Molasses added after 24 h of extraction at a concentration of 1 part M:lOO parts ACE (v/v). 
2 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 part FF: 120 parts ACE (v/v). 
3 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 

Temperature Nitrate 
(oC) (mg/L) 
22.4 ± 0.29 0.00 ± 0.00 
23.1±0.95 250 ± 0.00 
23.6 ± 0.3 333 ± 144 
23.8 ± 0.25 333 ± 144 
22.2 ± 0.36 0.00 ± 0.00 
23.6± 0.2 150 ± 86.6 
23.5 ± 0.31 200 ± 86.6 
23.3 ± 0.27 200 ± 86.6 
22.6± 0.06 0.00 ± 0.00 

23.5 ± 0.55 200 ± 86.6 
23.5 ± 0.31 250 ± 0.00 
23.7 ± 0.15 250 ± 0.00 
22.2 ± 0.55 0.00 ± 0.00 
23.9 ± 0.32 150 ± 86.6 
25.1± 0.08 250 ± 0.00 
23.6 ± 0.45 200 ± 86.6 
22.8 ± 0.1 0.00 ± 0.00 
23.6 ± 0.15 200 ± 86.6 
23.5 ± 0.40 250 ± 0.00 
23.4 ± 0.21 250 ± 0.00 
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Table 3.2B Mean (± standard deviations) pH, dissolved oxygen, conductivity, temperature and nitrate in ACE and ACE with amendments for 
experiment two. 
Treatment Extraction pH Dissolved oxygen Conductivity Temperature Nitrate 

time (h) (mg/L) (dS/m) (oC) (mg/L) 
Unamended ACE 0 7.09± 0.07 8.47 ± 0.44 0.67 ± 0.47 22.7 ± 0.40 0.00 ± 0.00 

24 7.40 ± 0.25 7.57 ± 0.34 8.29 ± 0.07 22.6 ± 0.15 333 ± 144 
48 7.46 ± 0.18 5.03 ± 0.23 11.4 ± 1.28 23.6 ± 0.23 333 ± 144 
72 7.49 ± 0.12 5.28 ± 0.35 10.6 ± 0.45 23.7± 0.06 333 ± 144 

ACE+ 0.5% LK1 0 7.08 ± 0.03 8.40 ± 0.15 0.89 ± 0.11 22.7 ± 0.10 0.00± 0.00 
24 7.36 ± 0.42 7.76 ± 0.08 8.26 ± 0.04 22.6± 0.06 333 ± 144 
48 7.33 ± 0.19 5.55 ± 0.35 10.6 ± 1.44 23.5 ± 0.40 333 ± 144 
72 7.25 ± 0.07 5.83 ± 0.19 10.5 ± 0.61 23.6 ± 0.23 333 ± 144 

ACE+ 1%LK 0 7.09 ± 0.10 8.28 ± 0.06 0.72 ± 0.30 22.2 ± 0.12 0.00± 0.00 
24 7.28 ± 0.09 7.65 ± 0.05 8.20 ± 0.11 22.9± 0.15 250 ± 0.00 
48 7.38 ± 0.14 5.44 ± 0.38 11.2 ± 1.10 23.3 ± 0.17 250 ± 0.00 
72 7.35 ± 0.28 5.72 ± 0.36 10.5 ± 0.44 23.5 ± 0.23 250 ± 0.00 

ACE+2%LK 0 7.08 ± 0.08 8.33 ± 0.10 0.44 ± 0.42 22.5 ± 0.52 0.00 ± 0.00 
24 7.49 ± 0.19 7.63 ± 0.27 8.13 ± 0.17 22.7 ± 0.12 250 ± 0.00 
48 7.37 ± 0.16 5.15 ± 0.75 11.3 ± 1.85 23.4± 0.26 250 ± 0.00 
72 7.35 ± 0.07 5.61±0.40 9.99 ± 0.32 23.7 ± 0.10 250 ± 0.00 

ACE+4%LK 0 7.28 ± 0.33 8.25 ± 0.07 0.43 ± 0.49 22.4 ± 0.10 0.00 ± 0.00 
24 7.53 ± 0.16 7.63 ± 0.41 8.08 ± 0.12 22.9 ± 0.21 333 ± 144 
48 7.41±0.10 5.75 ± 0.51 13.8± 1.62 23.6 ± 0.10 250 ± 0.00 
72 7.39 ± 0.25 5.18 ± 0.06 10.0 ± 0.31 23.4 ± 0.40 250 ± 0.00 

ACE+8%LK 0 7.07± 0.06 8.10 ± 0.19 0.93 ± 0.02 22.4 ± 0.10 0.00 ± 0.00 
24 7.30 ± 0.28 7.72 ± 0.39 8.10 ± 0.03 22.3 ± 0.27 333 ± 144 
48 7.48 ± 0.06 5.22 ± 0.18 12.1±1.87 23.3 ± 0.21 500 ± 0.00 
72 7.42 ± 0.33 5.28 ± 0.06 10.0 ± 0.07 23.3 ± 0.25 500 ± 0.00 

1Liquid Kelp™ added after 24 h of extraction at a concentration of I part LK:60 parts ACE (v/v). 
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Table 3.2C Mean (± standard deviations) pH, dissolved oxygen, conductivity, temperature and nitrate in ACE and ACE with amendments for 
experiment three. 
Treatment Extraction pH Dissolved oxygen Conductivity 

time (h) (mg/L) (mS/cm) 
Unamended ACE+ FF1 0 7.12 ± 0.03 8.47 ± 0.44 0.67 ± 0.47 

24 7.10 ± 0.09 7.57 ± 0.34 8.29± 0.07 
48 7.31 ± 0.35 5.03 ± 0.23 11.4 ± 11.3 

72 7.27 ± 0.30 5.27 ± 0.35 10.6 ± 0.45 
ACE + 0.5% LK2 +FF 0 7.10 ± 0.03 8.40 ± 0.15 0.89 ± 0.11 

24 7.07 ± 0.07 7.79 ± 0.08 8.26± 0.04 
48 7.20 ± 0.36 5.55 ± 0.35 10.6 ± 1.44 
72 6.99± 0.02 5.83 ± 0.19 10.5 ± 0.61 

ACE+ 1% LK +FF 0 7.10 ± 0.08 8.28 ± 0.06 0.72 ± 0.30 
24 6.99± 0.10 7.65 ±0.05 8.20 ± 0.11 
48 6.75 ± 0.24 5.44 ± 0.38 11.2 ± 1.10 
72 6.94± 0.69 5.72 ± 0.36 10.5 ± 0.44 

ACE+2%LK+ FF 0 7.33 ± 0.43 8.33 ± 0.10 0.44 ± 0.42 
24 6.93 ± 0.05 7.63 ± 0.27 8.13±0.17 
48 6.78 ± 0.49 5.15 ± 0.75 11.3 ± 1.85 
72 6.74 ± 0.35 5.61 ± 0.40 9.99 ± 0.32 

ACE+ 4% LK +FF 0 7.05 ± 0.11 8.25 ± 0.07 0.43 ± 0.49 
24 6.83 ± 0.12 7.63 ± 0.41 8.08 ± 0.12 
48 6.88 ± 0.31 5.75 ± 0.51 13.8 ± 1.62 
72 6.94 ± 0.11 5.18 ± 0.06 10.0 ± 0.32 

ACE+ 8%LK+FF 0 7.12 ± 0.01 8.10 ± 0.19 0.93 ± 0.02 
24 6.48 ± 0.35 7.72 ± 0.39 8.10 ± 0.03 
48 6.72 ± 0.47 5.22 ± 0.18 12.1±1.87 
72 6.99 ± 0.18 5.28 ± 0.06 10.0 ± 0.07 

1 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 part FF:120 parts ACE (v/v). 
2 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 

Temperature Nitrate 
(oC) (mg/L) 
22.7 ± 0.40 0.00 ± 0.00 
22.6 ± 0.15 333 ± 144 
23.6 ± 0.25 333 ± 144 
23.7 ± 0.06 333 ± 144 
22.7± 0.10 0.00 ± 0.00 
22.6± 0.06 333 ± 144 
23.5 ± 0.40 333 ± 144 
23.6 ± 0.23 333 ± 144 
22.2 ± 0.12 0.00 ± 0.00 
22.9 ± 0.15 250 ± 0.00 
23.3±0.17 250 ± 0.00 
23.5 ± 0.23 250 ± 0.00 
22.5 ± 0.52 0.00 ± 0.00 
22.7 ± 0.12 250 ± 0.00 
23.4 ± 0.27 250 ± 0.00 
23.7 ± 0.10 250 ± 0.00 
22.4 ± 0.10 0.00 ± 0.00 
22.9 ± 0.21 333 ± 144 
23.4 ± 0.10 250 ± 0.00 
23.4 ± 0.40 250 ± 0.00 
22.4 ± 0.10 0.00± 0.00 
22.3 ± 0.27 333 ± 144 
23.3 ± 0.21 500 ± 0.00 
23.3 ± 0.25 500 ± 0.00 
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Table 3.2D. Mean pH, dissolved oxygen, conductivity, temperature and nitrate in ACE and ACE with amendments for data combined from extraction times 24, 48 and 72 h .. 
Although the means for variables measured at 24 h were different from those measured at 48 and 72 h in some treatments of each experiment (Tables 3.4 A, B and C), data were 
combined from these three extraction times for ANOV A and statistical separation of relatively large differences among means within an experiment. Means for compost extraction 
time were from data combined from all human pathogen inoculation experiments. Treatments with the same letter are not significantly different at P = 0.05. The least significant 
difference is specified as 'lsd' and 'ns' means 'not significant'. 

Experiment Treatment 

One Unamended ACE 
ACE+ 1%M1 

ACE+ 1.7% LK2 

ACE + 0.8% FF3 

Two 

Three 

Extraction time (h) 

ACE+ 1.7% LK + 0.8% FF 
lsd 

Unamended ACE 
ACE+0.5%LK 
ACE+ 1%LK 
ACE+2%LK 
ACE+4%LK 
ACE+8%LK 
lsd 

ACE + 0% LK + 0.8% FF 
ACE + 0.5% LK + 0.8% FF 
ACE+ 1% LK + 0.8% FF 
ACE + 2% LK + 0.8% FF 
ACE + 4% LK + 0.8% FF 
ACE + 8% LK + 0.8% FF 
lsd 
0 
24 
48 
72 
lsd 

pH 

7.4 a 
5.9 d 
7.1 b 
6.8 c 
6.7 c 

0.15 

7.5 
7.3 
7.3 
7.4 
7.4 
7.4 
ns 

7.2 a 
7.1 a 
6.9 b 
6.8 be 
6.9 b 
6.7 c 

0.10 
7.1 
7.1 
7.0 
7.0 
ns 

Dissolved oxygen (mg/L) 

8.4 b 
3.4 d 
9.7 a 
6.8 c 
8.3 b 

0.35 

7.7 a 
7.3 ab 
7.6 ab 
7.2 b 
7.7 a 
7.3 ab 

0.44 

5.6 b 
6.4 a 
6.3 a 
6.1 ab 
6.2 a 
6.1 ab 

0.55 
8.9 a 
7.1 b 
6.2 c 
6.0 c 

0.60 

Conductivity (mS/cm) 

3.2 c 
4.7 b 
3.1 c 
7.8 a 
7.6 a 

0.63 

5.1 c 
6.1 a 
5.4 b 
6.1 a 
5.5 b 
6.3 a 

0.25 

10.1 
9.8 

10.0 
9.8 

10.7 
10.1 

ns 
0.3 
6.3 
8.2 
7.6 

0.57 

Temperature (0C) 

23 
24 
24 
24 
24 
ns 

23 
23 
23 
23 
23 
23 
ns 

25 
25 
25 
25 
25 
25 
ns 
23 
24 
23 
24 
ns 

Nitrate (mg/L) 

306 
233 
183 
233 
200 

ns 

333 
333 
250 
250 
277 
444 

ns 

250 
250 
250 
250 
333 
333 

ns 

0.0 
252 
276 
303 

26 
1 Molasses added after 24 h of extraction at a concentration of 1 part M: 100 parts ACE (v/v). 2 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 
part FF: 120 parts ACE (v/v). 3 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 
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Table 3.3 Effect of extraction time on the mean number of streptomycin-resistant 
Escherichia coli M23 in unamended ACE. Treatments with the same letter are not 
significantly different at P = 0.05. The least significant difference is specified as 'lsd' 
and 'ns' means 'not significant'. 

Extraction Mean number of E. coli (log10cfu/ml) 
time (h) 

Experiment one Experiment two 

0 7.26 6.92 a 

24 7.06 6.79 b 

48 7.26 6.08 d 

72 7.07 6.55 c 

lsd ns 0.12 

Table 3.4 Effect of ACE and ACE with amendments on the mean number of 
culturable bacteria and fungi at 72 h extraction time (log1ocfulml). Treatments 
followed by the same letter are not significantly (P <0.05). ns = not significantly 
different. 

Experiment Treatment Mean number of Mean number of fungi 
bacteria (log10cfu/ml) (log10cfu!ml) 

One Unamended ACE 9.39 7.46 b 

ACE+ 1%M1 9.77 8.66 a 

ACE+ 1.7% LK2 9.20 8.77 a 

ACE + 0.8% FF3 9.93 7.94 b 

ACE+ 1.7% LK + 0.8% FF 9.33 7.80 b 

lsd ns 0.68 

Two Unamended ACE 9.30 7.59 b 

ACE+0.5%LK 9.10 7.73 ab 

ACE+ 1%LK 9.16 7.96 a 

ACE+2%LK 9.20 7.85 ab 

ACE+4%LK 9.26 7.01 c 

ACE+8%LK 9.24 7.09 c 

lsd ns 0.33 

Three ACE + 0% LK + 0.8% FF 9.42 7.58 b 

ACE + 0.5% LK + 0.8% FF 9.25 8.39 a 

ACE+ 1% LK + 0.8% FF 9.22 8.39 a 

ACE+ 2% LK + 0.8% FF 9.25 8.46 a 

ACE+ 4% LK + 0.8% FF 9.23 8.56 a 

ACE+ 8% LK + 0.8% FF 9.32 8.59 a 

lsd ns 0.35 
1 Molasses added after 24 h of extraction at a concentration of 1 part M: 100 parts ACE (v/v). 
2 Foundation Fish™ hydrolysate added after 24 h of extraction at a concentration of 1 part FF:120 
parts ACE (v/v). 
3 Liquid Kelp™ added after 24 h of extraction at a concentration of 1 part LK:60 parts ACE (v/v). 
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Figure 3.1 Experiment one: effect of ACE or ACE amended with molasses (M), liquid kelp (LK), fish hydrolysate (FF), or a mixture of fish hydrolysate and liquid kelp (FF + LK) 
on the persistence and multiplication of a non-pathogenic streptomycin resistant strain of Escherichia coli (log10cfu/ml) up to 72 h after extraction commenced. At 0 h extraction 

time, each flask was inoculated with the Escherichia coli strain to a final concentration of ~l x 107 cfu/ml. ACE was amended with nutrients 24 h after extraction. Significant 
differences among treatments were observed at 48 b extraction time (lsd = 0 21, P < 0 001) and 72 b extraction time (lsd = 0 50, P < 0.001) 
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Figure 3.2 Experiment two: effect of ACE amended with various concentrations of liquid kelp (LK) on the persistence and multiplication of a non-pathogenic streptomycin 
resistant strain of Escherichia. coli (log10cfu/ml) up to 72 h after extraction commenced. At 0 h extraction time, each flask was inoculated with the Escherichia coli strain to 
a final concentration of ~1 x 107 cfu/ml. ACE was amended with nutrients 24 h after extraction commenced. Significant differences among treatments was observed at 48 h 
extraction time (lsd = 0.36, P = 0.021) and 72 h extraction time (lsd = 0.24, P <0.001). 
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Figure 3.3 Experiment three: effect of ACE amended with 0.8% FF and various concentrations of liquid kelp (LK) on the persistence and multiplication of a non-pathogenic 

streptomycin resistant strain of Escherichia. coli (log10cfu/ml) up to 72 h after extraction commenced. At 0 h extraction time, each flask was inoculated with the Escherichia 
coli strain to a final concentration of~ 1 x 10 7 cfu/ml. ACE was amended with nutrients 24 h after extraction commenced. Significant difference among treatments was observed 
at 48 h extraction time (lsd = 0.15, P <0.001) and 72 h extraction time (lsd = 0.03, P <0.001). 
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As illustrated in Fig. 3.1, there appeared to be an increase in the number of 

streptomycin resistant E. coli after 48 and 72 h of extraction when 0.8% FF was 

added to ACE. Moreover, the highest mean number of E. coli in experiment three 

was observed when ACE was amended with 0.8% FF, without addition of LK (Fig. 

3.1). The addition of 0.5% and 1% LK appeared to negate the effect of 0.8% FF 

(Figs 3.1, 3.3). However, where 0.8% FF was added to various concentrations ofLK 

(Fig. 3.3), the mean number of E. coli generally increased with increasing 

concentration of LK, and the mean number approached that observed in the 'FF 

only' treatment when the concentration of LK in the nutrient mixture was 8%. 

The number of culturable bacteria did not differ significantly across treatments in 

experiment three (Table 3.4). There appeared to be a small but statistically 

insignificant increase in the number of culturable fungi with increasing concentration 

ofLK. 

In all three ACE experiments, there was no significant change in the total number of 

culturable bacteria when there was a significant change in the number of pathogenic 

streptomycin resistant E. coli. Overall, the numbers of culturable bacteria or fungi in 

the various ACEs did not appear to be related to the number of E. coli. 

3.5 Discussion 

Supplementing standardised ACE with molasses or fish hydrolysate can lead to an 

increase in E. coli populations when compared to inoculated, unamended ACE. This 

result is consistent with the findings of other studies where the multiplication of 

enteric pathogens in amended ACE has been demonstrated (Duffy et al. 2004, 

Kannangara et al. 2006, Ingram and Millner 2007). In contrast to other research, this 
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was the first study to prepare ACE from compost in the early secondary mesophilic 

stage rather than the late mesophilic (mature) stage of aerobic composting. 

Furthermore, this study was the first to measure the number of culturable bacteria in 

every ACE treatment to determine if nutrient amendments altered total bacterial 

numbers or just the inoculated strain of E. coli. Kannangara et al. (2006) measured 

bacterial densities in ACE with and without carrot juice but not in ACE amended 

with kelp or molasses. Culturable fungi were also enumerated in every ACE 

treatment in this study and served to describe how nutrient amendments influenced 

fungal abundance. 

ACE production methods and experimental systems used to enumerate human 

pathogenic bacteria have been variable across studies, making comparisons difficult. 

In both this study and the study of Kannangara et al. (2006), a high inoculum load 

was employed to ensure that growth of the challenge strain, if possible, would be 

able to be observed and not overwhelmed by other organisms already present in the 

test batch of ACE produced under conditions that simulated commercial practice. In 

contrast, the method used by Duffy et al. (2004) was limited because only one cfu of 

E. coli or S. enterica was added to the extract, limiting the chance for bacterial strain 

persistence and multiplication. In future, the significance of the E. coli inoculum 

concentration in this study could be assessed by application of a range of inoculum 

doses. Indeed, the compost industry requires a standardised method for determining 

the potential for human pathogen presence and growth in ACE and amended ACE. 

There is a common perception that the natural microbial community in ACE 

amended with nutrients outcompetes human pathogenic bacteria (Ingham 2000). In 

both the studies conducted by Duffy et al. (2004) and Kannangara et al. (2006), there 
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was a positive correlation between the concentration of molasses and E. coli numbers 

and the speculative conclusion was that the natural microbial community did not 

prevent the growth of E. coli. The study reported here confirms this result given that 

there was a greater number of E. coli in ACE amended with molasses or fish 

hydrolysate than any other treatment (Table 3.4), while the number of culturable 

bacteria did not change when ACE was amended with these nutrients. Furthermore, 

there did not appear to be any relationship between the number of fungi across ACE 

treatments tested and the number of E. coli. Both ACE amended with liquid kelp 

(LK) or molasses (M) had a significantly greater number of fungi than unamended 

ACE at 72 h extraction time; however, ACE amended with M supported the growth 

of E. coli whereas ACE amended with 0.5% to 2% LK inhibited the growth of E. 

coli. 

The abundance of culturable bacteria was not significantly correlated with changes in 

conductivity, pH, oxygen and nitrate levels across treatments and extraction times. 

The results in Chapter 1 illustrated that the bacterial diversity, rather than abundance, 

was most likely important for pathogen suppression by ACE and perhaps bacterial 

diversity changed in response to changing environmental conditions in this study. 

Analyses of bacterial diversity across treatments and extraction times would be 

necessary to test this hypothesis. There was a significantly lower quantity of 

dissolved oxygen, a lower pH and a greater conductivity in ACE amended with Mor 

FF than unamended ACE (Table 3.2D). These conditions may have favoured growth 

of facultative anaerobes, including E. coli, as discussed by Kannangara et al. (2006), 

given that E. coli primarily inhabits the digestive system of animals, which has a low 

level of dissolved oxygen. Furthermore, E. coli and other bacteria in ACE may have 

metabolised the simple carbohydrates present in molasses and amino acids and 
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peptides present in FF consequently consuming oxygen and produced acidic end 

products. 

The significant decline in E. coli populations from 0 h to 72 h extraction time when 

0.5% to 2% LK was introduced to standardised ACE (Fig. 3.1) was in contrast to the 

results of Kannangara et al. (2006), where there was a positive correlation between 

E. coli numbers and the kelp supplement up to a concentration of 0.8%. Differences 

in the formulation of kelp (powdered or liquid) used in each study might explain the 

contrasting results. According to Whiting et al. (2007), powdered kelp is lower in 

plant growth-promoting hormones and macro- and micro-nutrients than cold 

processed liquid kelp, although how these differences in composition would have led 

to contrasting results with regard to E. coli growth remains obscure. Previous 

research on kelp extracts has shown antibacterial activity against a variety of 

pathogenic microorganisms, including gram-positive and gram-negative bacteria 

such as Staphylococcus sp., Bruce/la sp., Bacillus sp., Klebsiella sp., E. coli and 

Salmonella sp. (Mautner et al. 1953). Mautner et al. (1953) suggested that the 

antibiotic activity was due to the presence of phenolic compounds commonly found 

in kelp. Research by Yuan and Walsh (2006) verified this suggestion and revealed a 

correlation between antioxidant activities and amino and phenolic acids in kelp 

extracts. 

According to Leibig's Law of the Minimum, the growth of an organism is controlled 

by the scarcest resource (van der Ploeg et al. 1999). Understanding how ACE 

amended with particular nutrients either promotes or inhibits E. coli growth, will 

further define conditions under which ACE can be prepared that reduces the risk of 

human pathogen contamination and multiplication. The inhibitory effect of LK on E. 
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coli populations diminished with increasing concentration of LK in ACE, especially 

by 72 h after extraction (Fig. 3.2A, B, C, D). Similarly, when the concentration of 

LK in ACE increased above 2% in the presence of 0.8% FF (Fig. 3.3), there appeared 

to be a threshold concentration of LK, above which the growth of E. coli was no 

longer reduced relative to ACE amended with 0.8% FF. These results, when taken 

together with the decline in fungal numbers when the LK concentration increased 

above 2%, suggest complex dynamics of individual microbial taxa as determined by 

availability of macro- and micro-nutrients, growth promoting substances and/or 

production of antibiotics. 

In summary, E. coli multiplied in vitro when inoculated standardised ACE prepared 

from compost in the early mesophilic phase of composting was extracted for 72 h 

and amended with Mor FF. Conversely, there was a decline in E.coli numbers when 

ACE was amended with up to 2% LK. The interaction between nutrients added to 

ACE could be examined further by including additional control treatments, such as 

the individual nutrients in the absence of ACE. Further analyses, such as microbial 

diversity in different ACEs or the presence of antibiotics in nutrient supplements, in 

particular LK, might aid interpretation of results. The reason for some changes in 

direction of trends of E. coli numbers between 48 h extraction time and 72 h 

extraction time also needs to be assessed and the potential for pathogen survival on 

the leaf and fruit surface following ACE application. Results of this study on 

standardised ACE, and earlier research on E. coli growth and persistence in ACE 

(Duffy et al. 2004, Kannangara et al. 2006, Ingram and Millner 2007), suggest the 

potential for enteric pathogens to multiply if amended ACE was contaminated; 

however, the probability that enteric pathogens in ACE survive the transfer to the 

surface of fruit and foliage and are ingested by humans at a harmful level remains 
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unknown. In the meantime, ACE should be prepared from compost made according 

to the Australian Standard and using occupational, health and safety practices. This 

will reduce the risk of enteric pathogens contaminating ACE and multiplying to 

levels that present a danger to human health. 
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GENERAL DISCUSSION 

The results presented in this dissertation suggest that aerobic compost extract (ACE) 

has the potential to be incorporated into an integrated management strategy for 

sustainable control of two diverse grapevine pathogens: Erysiphe necator which 

causes powdery mildew and Botrytis cinerea the causal agent of botrytis bunch rot. 

This is the first study to standardise the production of ACE prior to field evaluation 

and to demonstrate disease control in wine grapes produced commercially in a 

variable cropping environment. 

The first step of this research was to define qualities of compost and an extraction 

process that could produce aerobic compost extracts that consistently inhibited the 

growth and sporulation of B. cinerea in vitro (Chapter 1). A detached bean leaflet 

assay was utilised as a model experimental system to determine the qualities of 

compost and extraction parameters necessary for maximum pathogen suppression 

before evaluating ACE on whole plants in Chapter 2. The system was initially 

developed by Bouhassan et al. (2004) and modified for evaluating ACE and 

assessing plant symptoms by the use of image analysis. The assay separated ACE 

treatments efficiently and reproducibly for their impact on the growth and 

sporulation of B. cinerea, including the effect of varying compost to water ratios and 

the temperature of compost used to prepare ACE. This technique has the potential to 

be adopted across horticulture for testing ACE and for screening single-target 

biological control agents for B. cinerea and possibly other necrotrophic plant 

pathogens. This rapid bioassay also provides an alternative to other techniques used 

to evaluate ACE in relation to B. cinerea, for example, the inoculation of potted 

plants of geranium described by Scheuerell and Mahaffee (2006). A significant 

finding of this research was that the bean leaflet assay identified production 
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conditions for ACE which led to suppression of two grapevine diseases of diverse 

epidemiology and pathogen biology; namely, grapevine powdery mildew and 

botrytis bunch rot. In particular, B. cinerea was suppressed on bean leaflets under 

controlled conditionsand powdery mildew, caused by a different pathogen species 

(E. necator) with a different mode of nutrition, was suppressed on on grapevine 

leaves and berries in a variable field environment. 

There are a large number of variables involved in the production of ACE (Scheuerell 

and Mahaffee 2002). The most suppressive and consistent extracts were generally 

produced from compost in the early secondary mesophilic phase of composting when 

internal windrow temperatures were between 40°C and 50°C. The compost 

ingredients did not appear to be important for determining the activity of ACE, rather 

a great diversity of microorganisms as illustrated by T-RFLP and/or the presence of 

biological control agents in ACE appeared to determine the level of pathogen 

suppression. 

The major difference between the standardised ACE prepared in this research and the 

extracts reported in the peer-reviewed literature to date (Welke 2004, Scheuerell and 

Mahaffee 2004, 2006, Haggag and Saber 2007) is that ACE was prepared from 

compost prior to compost maturity. Aerobic windrow composting is a complex 

process whereby internal windrow temperature is the primary regulator of microbial 

diversity (Ishii et al. 2000, Peters et al. 2000, Anastasi et al. 2002, Tiquia 2005), 

activity (Ryckeboer et al. 2003a) and population structure (Hermann and Shann 

1997). At temperatures between 40°C and 50°C in the early secondary mesophilic 

phase of composting thermophiles and mesophiles co-exist and, according to 

Ryckeboer et al. (2003b ), the relative abundance ( cfu) of bacteria, actinobacteria and 
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fungi is 30-40%, 30-35% and 20-25%, respectively. At this composting stage, the 

following conditions are observed: (1) the optimum temperature for thermophilic 

fungi that moderate levels of nitrogen (Finstein and Morris 1975), (2) a diverse range 

of bacteria that use numerous enzymes to degrade organic material and transfer 

soluble materials into bacterial cells (Ryckeboer et al. 2003b ), and (3) a great 

diversity and abundance of actinobacteria (Fergus 1964, Finstein and Morris 1975, 

Amner et al., 1988). In theory, ACE produced from immature compost with a 

diverse range of microorganisms might maintain effectiveness in a field environment 

when particular groups of microorganisms in ACE increase in frequency and 

environmental conditions become unfavourable for another group. This concept of 

microbial buffering capacity in relation to disease suppression in a variable field 

environment is similar to the proposal of Stewart (2001 ), who suggested application 

of multiple biological control agents to consistently suppress crop diseases. 

To date, ACE practitioners (Touart 200, Litterick et al. 2004) and researchers (Welke 

2004, Scheuerell and Mahaffee 2004, 2006, Haggag and Saber 2007) have focussed 

on adding nutrients to ACE with the intention of manipulating ACE to favour 

particular microorganisms. The in vitro germination results in Fig. 1.5 and Table 1.8 

of Chapter 1 indicate that ACE amended with FF inhibits the germination of B. 

cinerea to a greater extent than unamended ACE. However, the field results in 

Chapter 2 show that standardised unamended ACE is just as effective as ACE 

amended with FF in limiting disease in the field. Furthermore, results of Chapter 3 

illustrate that selected nutrients such as fish hydrolysate can enhance the growth of 

human pathogenic E. coli. Indeed, rather than producing an extract from mature 

compost that is manipulated to favour a particular group of biological control agents 

that suppress a particular plant pathogen, the standardised unamended ACE 
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developed in this thesis appears to have potential to limit a range of plant pathogens 

over a variety of crops. 

The next step in the standardisation of ACE in vitro and in vivo will be to continue to 

investigate the diversity of microorganisms using T-RFLP across compost windrows 

with variable initial ingredients, across compost extraction times and various 

compost quantities in water. These analyses will provide information regarding the 

threshold level of microbial diversity necessary for consistent pathogen and disease 

suppression and might also indicate how much diversity can change and still provide 

the same level of suppression. The addition of primers for actinobacteria (Conn and 

Franco 2004), known to be present in early secondary mesophilic compost 

(Herrmann & Shann 1997), will also help to interpret microbial ecology in composts 

between 40°C and 50°C. Measurements of microbial biomass, by extracting organic 

carbon (Vance et al. 1987), and microbial activity, by FDA and p-glucosidase 

analysis (Bandick and Dick 1999; Ryckeboer et al. 2003a), should be completed in 

conjunction with T-RFLP analysis of ACE and the results correlated with aspects of 

the early secondary mesophilic compost and pathogen suppression. In this thesis, 

nitrate was often absent from ACE prepared during the early secondary mesophilic 

stage of composting with nitrification increasing as composting proceeded to 

maturity. To ensure that the composting process is consistent and on target 

biologically and chemically, daily measurements of microbial activity by carbon 

dioxide analysis, plus temperature and moisture levels in the compost windrows will 

be necessary, as well as weekly measurements of nitrate, nitrite and ammonium, 

hydrogen sulphide, conductivity and pH. 
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This research has highlighted the need to introduce new terminology; namely, 

"broad-spectrum" ACE and "prescriptive" ACE. Broad-spectrum ACE refers to 

unamended ACE prepared from immature compost, as described in this research, and 

prescriptive ACE refers to ACE modified to increase the frequency of particular 

microbial taxa for targeting a specific pathosystem. Both broad-spectrum and 

prescriptive ACE might be integrated into disease management, with prescriptive 

ACE targeting a key stage in the life cycle of a pathogen on a particular host. The 

next step in research might be a series of experiments to investigate ACEs amended 

with particular nutrients that favour certain actinobacteria or fungi that have been 

proven to have antifungal properties. The aim would be to produce extracts where all 

the nutrients present in the solution are converted to biocontrol agent biomass and 

end-products of metabolism, including antimicrobials. In this case, when ACE is 

applied to the crop canopy there will be no nutrients available for the plant pathogen 

to utilise. The duration of extraction will be crucial because the aim will be to apply 

ACE once the microorganisms have completed the exponential growth phase and 

utilised all monosaccharide sugars. If the primary mechanism of inhibition of 

prescriptive ACE is due to antimicrobial activity, in particular, secondary 

metabolites, then extending the ACE production time further into the stationary 

phase of microbial growth may be advantageous. On the other hand, if the primary 

mechanism of action is due to end-products of catabolism, i.e. organic acids, then the 

end of the exponential phase of growth will be the optimal ACE production time 

before other organisms metabolise the end-products (Brock and Madigan 1991). It is 

hypothesised that myriad mechanisms of action might be associated with broad­

spectrum ACE, with the relative contribution of each mechanism varying depending 

on environmental conditions. In contrast, prescriptive ACE might be linked to fewer 
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mechanisms of action. Understanding the key mechanisms of action of prescriptive 

and broad-spectrum ACEs, will improve the way ACE is produced and applied. 

Chapter 3 demonstrates the significance of ensuring product safety if prescriptive 

ACEs are developed. The results show that if more than one nutrient is added to 

ACE then the interactions become complicated. To fully understand the effect of 

nutrients added to ACE and interactions between nutrients, additional control 

treatments should be tested. Appropriate control treatments for analysing the growth 

of E. coli, or other microbial taxa such as yeasts and actinobacteria, should include 

various concentrations of each nutrient supplement in aqueous solution, in the 

absence of ACE, and for composite nutrient supplements, the individual chemical 

components of the supplement. 

The next phase of ACE research will require further testing of the effectiveness of 

ACE and developing ACE for application in commercial horticulture. A perceived or 

real risk associated with relying solely on multiple applications of ACE across a 

growing season could be addressed by including ACE in an integrated disease 

management strategy. Synthetic fungicides or single biocontrol agents such as 

Trichoderma sp. (Elad 1994) or Ulocladium sp. (Reglinski et al. 2005) could be 

applied during flowering to prevent B. cinerea infection in the grape florets, while 

ACE could be applied early and late in the season for powdery mildew control on the 

leaves. Compatibility of ACE with existing crop protectants needs to be investigated 

concurrently. 

While microorganisms m ACE are necessary for disease control, particular 

microorganisms in ACE may impact negatively for crop production and post-harvest 
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processing. In wine making, fermentation can be inhibited by ingress of so-called 

'wild' or foreign yeasts (Pandey 2004). The potential of ACE as a source of 

deleterious yeasts on grape berry surfaces needs to be investigated prior to 

application to commercial vineyards. PCR-RFLP of the ITS region of 5.8 rRNA 

genes and/or selective growth media for various yeast genera could be used to 

characterise yeast microflora on grape berries after application of ACE (for example, 

refer to Combina et al. 2005). Understanding the persistence of microbial 

populations from ACE in the frutosphere will determine the minimum interval 

between the last application of ACE in the vineyard and the harvest date that 

prevents potential, but as yet unquantified, negative impacts of ACE on wine 

making. 

It is hoped that communication of the results obtained in this thesis will raise 

awareness among compost producers about the importance of quality control during 

composting for production of ACE that suppresses disease consistently. ACE offers a 

potential extra market for compost, which might enable existing and prospective 

compost producers to realise profitable business plans. Extra business can also be 

generated through consultancy to horticultural producers on how to integrate ACE 

into disease management. Additional field experiments investigating ACE across 

horticultural crops, regions and seasons, using commercial practices and equipment, 

will provide practical and concrete evidence to industry on the benefits of ACE. 

Researchers and practitioners will need to develop practical strategies for integrating 

ACE with current technologies. Adoption of ACE will depend on the cost and 

availability of waste products for composting as well as consultants and end-users 

being receptive to the idea of biological control and the adoption of sustainable 

practices in general. Key drivers that motivate change from conventional disease 
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management and mechanisms for change will need to be communicated and 

implemented. Therefore, the uptake of ACE will depend not only on demonstrated 

effectiveness, but also on well-targeted extension so that the technology does not 

remain on the 'academic shelf. 

Commercialisation of standardised unamended ACE for crop protection may be a 

difficult task considering the registration process for fungicides. This process 

requires well-defined active ingredients, with known human toxicology and 

predictable mechanisms of action. Standardised ACE is a heterogeneous product of 

unknown chemistry, and contains a variety of live microorganisms whose diversity is 

likely to vary from batch to batch. Myriad mechanisms of action are likely, with 

specific mechanisms likely to dominate under certain environmental conditions. 

However, if retail markets for horticultural produce increase their demand for 

products free of fungicide residues then there may be justification for developing 

new criteria and regulations for approving the use multiple-target biological controls 

such as standardised ACE. The final paragraph of this thesis sets out some 

preliminary criteria for managing risk in relation to standardised ACE production and 

application. These recommendations assume that the effectiveness of ACE for 

managing a specific plant disease has been demonstrated over multiple sites and 

seasons. 
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Preliminary Recommendations 

1. Production of compost according to the Australian Standard with a C:N ratio at 

compost windrow initiation of 25-30:1 and daily and weekly testing of compost 

quality. 

2. Production of ACE using compost from the early secondary mesophilic stage of 

(aerobic) composting and compost to water ratios between 1 :3 and 1 :30. 

3. Maintenance of batch to batch quality control by bioassay for pathogen 

suppression. 

4. Specification of a 'use-by' date for ACE and certification that the batch tested 

negatively to indicator species of human pathogens or at a level below some 

threshold concentration considered to pose a threat to workers or final product safety. 

5. After further research, specification of crop-specific spray intervals, methods of 

integrated disease management and horticultural equipment suitable for the 

application of ACE. In particular, equipment including spray tanks should be cleaned 

appropriatelyto avoid undesirable microbial growth and blockage of spray nozzles or 

other narrow orifices. 

6. Specification of crop-specific withholding periods (the time between the last 

application of ACE and harvest) or crop phenological stages when ACE application 

should be avoided, if further research indicates any negative impacts on fresh or 

processed crop quality. In the case of wine grapes, the effect of ACE application on 

wine quality should be assessed. 
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