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Abstract 

Recently, there has been a significant effort to apply behavioural and anatomical 

studies ofhippocampal place learning in rodents and other animals to the problem of 

robot localisation and mapping. The stated purpose of these recent experiments is 

twofold. Firstly, it is hoped that a study of this material will lead to improved 

algorithms for mobile robotics. Secondly, the behaviour of these new algorithms 

may be studied to evaluate psychological theories, and aid in the development of 

new theories. This thesis builds on these experiments by developing a complete 

localisation and navigational system for a simulated mobile robot. In order to 

provide a complete and efficient system, several new algorithms were developed. 

Firstly, a method for preprocessing input was required, thus the adaptive response 

function neuron (ARFN) was developed. This neuronal model is able to identify 

similar input patterns, while discriminating between conceptually different sensory 

experiences. ARFNs learn a locally tuned response to input patterns, and are able to 

adapt the centre, width and shape of each input's response function on-line. These 

cells demonstrate one simple way that neurons in the cerebral cortex may learn a 

locally tuned response to input. 

Secondly, a place cell system was developed for localisation. The new system 

provides a simple technique for establishing place cell firing based on odometric 

information and the current view (as captured by ARFNs). This system enables the 

robot's position to be accurately estimated, even in the presence of random and 

systematic odometric errors. The main advantage of the new system is that it allows 

certain topological assumptions to be made a priori, thus accelE;rating the training of 

downstream navigational systems. This prior Rnowledge--In.ay help explain the dead 

reckoning abilities of some animals and provides new insights into the place cell 

system in general. 

Finally, a novel reinforcement learning algorithm was developed for goal 

independent navigation in complex environments. The new algorithm, called 

Concurrent Q-Learning (CQL), learns a value function for all goals simultaneously, 

and updates this value function more efficiently than similar algorithms. This is 

particularly true in dynamic environments, where CQL is shown to outperform other 

reinforcement learning algorithms. Unlike CQL, alternative methods for achieving 

goal-independent navigation, such as coordinate learning, cannot easily be applied to 

complex environinents. Furthermore, the performance of CQL shows that 
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coordinate learning is not necessary to solve behavioural tasks previously thought to 

require an abstract vector representation. 

While the focus of this research has been on spatial cognition, the hippocampus is 

also thought to be fundamental to other basic thought processes. Therefore, it is 

hoped that this research may stimulate further study not only into animal and robotic 

navigation, but also into biological and artificial intelligence in general. 
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Chapter 1. Introduction 

Mobile robotics is an exciting field of study with applications m defence, 

exploration, accessibility, transportation and recreation. Mobile robots allow 

operations in areas that are unsafe, uninteresting or otherwise impractical for a direct 

human presence. Most of these applications require some level of autonomy. For 

example, a robot exploring the surface of Mars, cannot receive human guidance in 

real time and must be able to complete some tasks independently for efficient 

operation. Similarly, if a robot is required to perform a task that is considered 

uninteresting for a human operator, the robot must be able to act autonomously. 

One key attribute required by mobile robots is the ability to localise and navigate 

within a potentially unfamiliar environment. While researchers have made dramatic 

improvements in this area in recent years, it is clearly evident that the navigational 

abilities of mobile robots are still easily outmatched by those of animals. It would 

seem apparent that a lot can be learned from studies of animal navigation. However, 

the study of such fundamental behaviour is not always easy. 

Chomsky (1968, p24) stated that "one difficulty in the psychological sciences lies in 

the familiarity of the phenomena with which they deal". This statement is equally 

true for the field of artificial intelligence, a field closely associated with the 

psychological sciences. For abilities involving spatial cognition and navigation, this 

is especially true. Even simple questions such as "how do I know where I am?" can 

be very difficult to answer either informally or formally. Despite these difficulties, 

we are able to apply these cognitive abilities with ease to solve complex spatial 

problems. 

While familiarity remains a problem, it is somewhat easier to analyse the behaviour 

of other more primitive animals that also display remarkable navigational abilities. 

Tolman (1948) reviewed many experiments dealing with the navigational abilities of 

rats. It was shown that rats were able to learn the layout of a complex maze-like 

environment. Despite many similar views in this environment, the rats were able to 

fmd their way to a food source, taking fewer wrong turns with each successive trial. 

In addition, the rats were able to learn about the environment even in the absence of 

any reward. When a reward was later added to the environment, the rats were able to 

use this latent learning to return directly to the location of the reward. The ability of 

rats to reason a shorter path to the goal was also demonstrated. Rats were trained to 

follow a restricted path to the goal. When that path was later blocked and several 
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new paths opened, the rats were able to choose the path that lead most directly to the 

goal location. Similar abilities have been documented for many other animal 

species, ranging from ants (Wehner & Raber, 1979) and bees (Dyer, 1996), to birds 

(Wiltschko, 1997) and other rodents (Alyan & Jander, 1994; Etienne, 1987; 

Mittelstaedt & Mittelstaedt, 1980). 

In contrast to the ease with which animals are able to solve complex navigational 

tasks, traditional techniques in artificial intelligence have difficulty solving some 

problems that appear relatively simple. While this is most apparent for simple 

sensory processing, it is also true of higher cognitive processes such as spatial 

cognition. It is therefore important to gain a greater understanding of the biological 

mechanisms in order to develop improved artificial navigation algorithms. 

Conversely, Hirtle and Heidorn (1993) have stated that the development of a 

computational model may aid in the development of biological theories by focusing 

on the processes and representations involved. 

The aim of this thesis is to develop an artificial navigation system based on studies 

of animal navigation and biology, with the goals of extending the range of tools 

available for use in mobile robotics, and to gain a better understanding of the 

biological systems. While this is not the first experimental work in this area, 

previous studies have focused mainly on localisation and mapping and have not 

explored the relationships between these systems and navigation. Here a holistic 

approach is taken covering localisation and both low level and high level 

navigational cognition. 

1.1. Hypotheses 

Given that animals display navigational abilities that clearly outmatch those of 

mobile robots, it was hypothesised that: 

A study of past and recent psychological and anatomical studies may 

lead to new navigational solutions that may be applied in the field of 

mobile robotics. In particular, a navigational system developed in this 

way should be able to deal gracefully with dynamic goals and 

environments, and produce apparently natural behaviour in the face of 

uncertain or incomplete information. 
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Furthermore, it was hypothesised that: 

The implementation of a biologically inspired solution for localisation 

and navigation may provide valuable new insights in the field of spatial 

cognition. This should be particularly true for interactions between the 

localisation and navigational system, as this is an area that has not been 

extensively studied 

Finally, this research may have relevance to fields other than spatial cognition. The 

brain areas associated with localisation and navigation also play major, and 

presumably similar, roles in other cognitive tasks. Therefore, it should be possible to 

adapt algorithms based on these biological systems to more general problems in the 

field of artificial intelligence. 

1.2. Methodology 

To assess the validity of these hypotheses it was proposed that a complete 

navigational system, based on developments in the field of spatial cognition, be 

developed for a simulated mobile robot. While experiments conducted in simulation 

only will not provide a definitive verification of the proposed methods, there are 

many advantages of such an approach. Aside from time and cost, simulated 

experiments allow a range of environments and robot configurations to be tested 

quickly, and allow the researcher to concentrate on the algorithms rather than the 

hardware. 

Given that in nature successful navigation is not reliant upon a well-developed visual 

system, it was decided to implement the system for a simulated robot with range, 

tactile, and odometric sensors only. A full description of the simulated robot and 

environment can be found in Appendix A. 

In addition to this simulation, more simplistic problems were also considered in the 

development of some algorithms. For example, classification problems were used in 

Chapter 5, and grid-world problems were used extensively in Chapter 8. 

1.3. Structure of the Thesis 

Chapter 2 reviews the literature regarding biological mechanisms for localisation and 

navigation, while Chapter 3 examines some . previous computational models that 

implement these theories in simulated and real mobile robots. Chapter 4 presents the 

design of the proposed model and relates this to previous models. 
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Chapter 5 and Chapter 6 discuss the implementation of systems used for localisation. 

Chapter 7 discusses a system for low-level navigation, and in Chapter 8 a novel 

reinforcement learning algorithm for path planning is developed. Chapter 9 details 

the integration of these sub-systems and presents the results of testing in various 

. configurations and environments. 

Finally, Chapter 10 concludes by relating the findings to previous and future work. 

Appendices are also included to provide detail of the simulation environment, a 

summary of symbols and notation, and a list of publications arising from the thesis. 
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Chapter 2. Localisation and Navigation in 
Nature 

Animals and humans show a remarkable ability to navigate in complex environments 

with apparent ease. This ability can be broken down into a number of non-trivial 

sub-tasks. These tasks include: 

Localisation. The ability to know one's current location and orientation with respect 

to the environment. While this ability may seem trivial, it is in fact a complex task 

requiring the interaction of many sensory systems. 

Path Integration. Also known as dead reckoning, this ability allows an animal to 

track its progress as it moves around an environment. If an animal wishes to return 

to a previous location, path integration allows a direct route to be calculated. Path 

integration is also a critical component of localisation. 

Mapping. Many navigational tasks require some form of spatial map to be learned 

and committed to memory. While some navigational tasks may be performed 

through a simple sensor/action association (taxon1 navigation), many tasks require a 

more abstract representation of ones environment. 

Path Planning. Even with a map of the environment, path planning can be a difficult 

task in many environments. Furthermore, a robust path planning system should 

include the ability to find detours around novel obstructions, and to find shortcuts as 

these become available. 

Goal Identification. While the identification of some goals may be quite 

straightforward, others can be more complex. Goal identification not only needs to 

identify important locations related to such primary needs as food and shelter, but 

also needs to address the issues of exploration and threat avoidance. 

This chapter investigates some of the biological mechanisms that underlie these 

abilities. Section 2.1 introduces the concept of cognitive maps, and reviews 

evidence that the hippocampus may be the locus of this mapping ability and other 

aspects of spatial cognition. Section 2.2 examines information input to the 

1 Taxon navigation is the term used to describe the group of navigational strategies based on simple 

stimulus-response-stimulus or route-like algorithms (O'Keefe & Nadel, 1978). 
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hippocampus and section 2.3 discusses some theories of how this input, along with a 

system for path integration, may provide a means for localisation. Section 2.4 

presents new evidence suggesting that navigation and path planning may be achieved 

through reinforcement learning in the basal ganglia. Finally, the main points are 

summarised in section 2.5. 

' 
2.1. Cognitive Maps and the Hippocampus 

Tolman (1948) proposed that the brain might hold a topological map of its 

environment, and that this map could be used for various navigational tasks. This 

cognitive map theory has also been strengthened by later experiments, such as those 

involving the Morris Watermaze (Morris, 1981; Steele & Morris, 1999). 

The Morris Watermaze (Morris, 1981) is an example of a problem that cannot be 

solved without an abstract representation of space (Muller, Kubie, Bostock, Taube, 

& Quirk, 1991). The Watermaze consists of a cylindrical environment filled with an 

opaque liquid. A platform is placed just below the level of the liquid so that it 

cannot be seen by a swimming rat. 

In the reference memory in the watermaze (RMW) task (Foster, Morris, & Dayan, 

2000; Morris, 1981; Steele & Morris, 1999) rats are trained to find the location of the 

hidden platform over a period of several days, undergoing four trials per day. After 

this initial training period, the platform is moved to a new location. Once the new 

platform location is discovered, the rats are able to navigate directly to the new 

location on subsequent trials. 

In the delayed matching-to-place (DMP) task (Foster et al., 2000; Steele & Morris, 

1999) the platform is moved at the end of every day. Even in this more complex 

task, the rats are able to achieve "one-trial learning"2 after very few days. Typical 

results for the RMW and DMP tasks are shown in Figure 2.1. 

2 One-trial learning is the ability to immediately repeat a task after one successful trial. 
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Figure 2.1 Performance of rats in the Morris Watermaze in a) the Reference 

Memory in the Watermaze, with the platform moved on day 8, and b) the Delayed 

Matching-to-Place tasks, with the platform moved at the beginning of each day. 

(reproduced from Morris, 1981; Steele & Morris, 1999) 
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Studies of brain lesions in animals (see Barnes, I988 for a review) and humans 

(Habib & Sirigu, I987) have identified the hippocampus as a possible location for 

the cognitive map proposed by Tolman. Figure 2.2 shows the hippocampus 

including some of the key neural connections. The hippocampus consists of two thin 

layers of neurons, called the dentate gyrus and Ammon's horn (cornu Ammonis, 

abbrev. CA), that are folded over each other. Ammon's horn is divided into several 

groups of neurons of which only CAI and CA3 are relevant to this discussion. The 

hippocampus receives most input from the entorhinal cortex via a group of axons 

called the perforant path. Perforant path axons synapse on granule cells in the 

dentate gyrus, which in turn form connections with pyramid cells in CA3. CA3 

neurons send output from the hippocampus via the fornix, to neurons in CAI via the 

Schaffer collateral, and also to a very large number of other CA3 neurons. CAI 

output also departs the hippocampus via the fornix, and the subiculum, which sends 

output back to the entorhinal cortex, thus completing a circuit. 

CAI 

Fomix 

Figure 2.2 The hippocampus, including some neural connections. Axons 

comprising the perforant path (pp), arising in the entorhinal cortex (EC), make 

connections with granule cells (small circles) in the dentate gyrus (DG). Mossy 

fibre (mf) projections from DG make strong connections with pyramid neurons 

(small triangles) in CA3. These neurons send output via the Schaffer collateral (sc) 

to CAI, also exiting the hippocampus via the fomix. Neurons in CAI send the 

majority of their output to the subiculum (S) that in tum send output back to the 

entorhinal cortex. (adapted from Amaral & Witter, I989) 
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O'Keefe and Dostrovsky (1971) observed that pyramid cells in the hippocampus of 

rats responded maximally when the rat was in a certain location. The region in the 

environment where a place cell, as these neurons are now known, fires most strongly 

is known as the cell's place field. The properties of place cells and place fields 

include: 

• Place fields are established within about ten minutes of entering a new 

environment (Wilson & McNaughton, 1993). 

• Place fields tend to follow local barriers within the environment. For example, 

Muller and Kubie (1987) found place fields in a cylindrical environment that 

extended along the wall of the cylinder, with the interior edges of these fields 

being concave. 

• The combined output from a relatively small group of place cells is sufficient to 

accurately predict the rat's position to within a few centimetres (Wilson & 

McNaughton, 1993). The combined output of all place cells is often referred to 

as the place code. 

• Place fields are influenced by visual stimulus. If visible landmarks within an 

environment, are rotated, place fields rotate with respect to each other by the 

same amount (Muller & Kubie, 1987; O'Keefe & Speakman, 1987). 

• In the absence of visual stimulus, place cells persist (Muller & Kubie, 1987; 

O'Keefe, 1976; O'Keefe & Speakman, 1987). Hence idiothetic information, such 

as vestibular, visual motion and motor efferent inputs, must also be able to 

influence place cell firing (Bures et al., 1999). Other experiments also confirm 

that path-integration or dead-reckoning is a crucial component of navigation in 

many animals (Alyan & Jander, 1994; Etienne, 1987; Mittelstaedt & 

Mittelstaedt, 1980). 

• Some place cells show correlations to non-spatial aspects of the environment, 

and it has been suggested that these cells may code for context with space being 

just one of the relevant parameters (Eichenbaum, 1996; Eichenbaum & Cohen, 

1988; Eichenbaum, Otto, & Cohen, 1992; Markus et al., 1995; Muller & Kubie, 

1987). For example, some cells show a correlation with the current behaviour of 

the rat. 

• Place cell activity is independent of goal location (Speakman & O'Keefe, 1990). 
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• The proximity of place cells in the hippocampus bears no correspondence with 

the proximity of their place fields within the environment (Muller & Kubie, 

1987; O'Keefe, 1976). 

• Place fields in different environments are not correlated, and a cell exhibiting a 

place field in one environment may have no place field in another (Muller & 

Kubie, 1987). 

• Place cell firing actually predicts the future position of the rat on a short time

scale (~lOOms) (Muller & Kubie, 1989). 

• Place cells have been found in other brain areas, but those in areas CAI and 

especially CA3, are most correlated with the rat's location (Amaral & Witter, 

1989). 

O'Keefe and Nadel (1978) suggested that these place cells might form the basis of a 

system for localisation and navigation. They proposed two different mechanisms; a 

"taxon" system, and a "locale" system. The taxon system was used for route 

learning. For a given route, each place cell would be associated with an appropriate 

response leading to the next location on the route. The locale system could be used 

for map-like navigation. The map was proposed to be an absolute Euclidean 

representation of the environment (O'Keefe, 1989, 1990, 1991). Such a 

representation would allow distances and directions to be calculated between the 

field centres of place cells. 

Having established the existence of place cells, and having proposed that these cells 

form part of a cognitive map of the environment, it is natural to ask how place cell 

firing arises, and hence how an animal may localise within its environment. For this 

it is necessary to understand how the hippocampus interacts with other brain areas, 

and in particular what inputs the hippocampus receives. Figure 2.3 shows some of 

these interactions. The following sections discuss the implications of this network of 

connections, and in particular considers hippocampal input, the fomiation of the 

place code, and hippocampal output and its possible influences on navigation. 
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Figure 2.3 Some of the functional connections of the hippocampus and the place 

cell system. 

2.2. Hippocampal Input: Head Direction and Local View 

The major source of input to the hippocampus is the entorhinal cortex, and while 

some connections are made with areas CAI and CA3, the majority of this input is to 

the dentate gyrus. The entorhinal cortex receives highly processed sensory 

information originating in the parietal cortex (Deacon, Eichenbaum, Rosenberg, & 

Eckmann, 1983), which receives sensory input including visual and vestibular input. 

The parietal cortex also receives feedback from the entorhinal cortex. The 

postsubiculum receives vestibular input and is a source of input to the entorhinal 

cortex. The subiculum is also a major source of input to the entorhinal cortex. 

Cells with some correlation to place have been found in the parietal cortex, 

entorhinal cortex and subiculum. These cells are generally not referred to as place 

cells since the correlation is coarse and noisy. Cells that are highly correlated with 

head direction, irrespective of location, have been found in the postsubiculum. 

These are referred to as head direction cells (Ranck, 1984; Taube, Muller, & Ranck, 

1990). Some head direction cells have also been found in the subiculum. Cells 

whose firing is correlated with both place and direction have also been found in the 

subiculum (Sharp & Green, 1994). 
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2.2.1. Head direction 

Orientation and location are two interacting concepts necessary for absolute 

localisation3
, with orientation being perhaps the simpler concept (Muller et al., 

1991). It seems sensible then, to examine the head direction system before 

attempting a detailed analysis of the place cell system. 

Cells have been found in the postsubiculum that fire only when the rat's head is 

oriented in a particular direction. These head direction cells have many properties in 

common with place cells: 

• The firing of head direction cells is independent of behaviour. 

• The population of head direction cells provides an accurate, distributed 

representation for any head direction (Blair, Lipscomb, & Sharp, 1997). 

• The firing of head direction cells is maintained even in total darkness 

(McNaughton, Chen, & Markus, 1991) 

• Local landmarks influence the firing of head direction cells and may be used to 

correct errors in the head direction signal (McNaughton, Markus, Wilson, & 

Knierim, 1993; Taube & Burton, 1995; Taube et al., 1990). 

Other closely related brain areas also contain cells that clearly play an important role 

in maintaining the head direction signal. Neurons correlated with angular head 

velocity have been found in the dorsal tegmental nucleus (Basset & Taube, 2001 ), 

and in the anterior thalamus, head direction cells have been found that predict the 

rat's future head direction (Blair & Sharp, 1995). Head direction cells that fire more 

strongly when the rat is turning have been found in the lateral mamillary nucleus 

(Leonhard, Stackman, & Taube, 1996). Also of interest is the fact that the tuning 

curves (a plot of firing rate versus direction) of head direction cells are often 

distorted when the animal rotates as shown in Figure 2.4. 

3 Absolute localisation is the ability to localise immediately upon entering an environment. 

Incremental localisation is the ability to maintain a position estimate during navigation. 
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Figure 2.4: Head direction cell tuning curves. a) Typical raw data for the tuning 

curves of a uni-modal cell in the anterior thalamus. b) Tuning curves are normally 

approximated to a Gaussian fit. c ), d) and e) show idealised tuning curve distortion 

for an animal turning to the left and right for a cell with two tuning curve peaks. 

(adapted from Blair et al., 1997; Goodridge & Touretzky, 2000) 

A number of models have been proposed to explain the firing of head direction cells, 

with the majority of researchers agreeing with the basic principles. The proposed 

cell populations and representative connections are shown in Figure 2.5. Not shown 

are connections with cells encoding visual input; these would presumably make 

connections with head direction or turn-modulated head direction cells. It is 

expected that visual information, such as the relative direction to distal landmarks, 

would become correlated with head direction over time to facilitate the correction of 

integration errors. With the addition of a place signal, local landmarks could also be 

used to correct for errors in head direction integration. 
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Figure 2.5: Model of the head direction circuit: showing head direction (HD), 

angular velocity (AV), tum-modulated head direction (TMHD) cells, and 

representative connections. Separate populations of AV and THMD cells are 

proposed for clockwise (elk) and counter-clockwise ( cnt) rotations. Each HD cell 

excites neighbouring TMHD cells, which in tum excite neighbouring HD cells in 

each direction. When the animal is not turning THMD input to HD cells is uniform 

in each direction, but when the animal turns AV cells increase the firing of 

corresponding THMD cell populations. This asymmetric input causes the activity 

of HD cells to shift in the appropriate direction. (adapted from Blair et al., 1997) 

McNaughton and colleagues (1991) suggest that the integration of angular head 

velocity information is accomplished using a simple look-up table approach. Given 

the current head direction and the current angular velocity the conceptual table 

would store the unique head direction that would result after a certain time delta. 

The table would presumably be implemented via TMHD~HD cell connections. 

The attractor model of the head direction system was later developed to further 

explain the dynamics of the system (Skaggs, Knierim, Kudrimoti, & McNaughton, 

1995). An attractor is a neural network with a pattern of connection weights such 

that only a small number of possible network states are stable. Any non-stable state 

will quickly be transformed into a stable state through the intrinsic dynamics of the 

system. A one-dimensional ring attractor can be constructed such that the only 

stable states are those with a 'hill' of activity at a certain position on the ring (Zhang, 

1996). By providing external input to the left or right of the active neurons, the 'hill' 
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can be made to move in that direction. Through the choice of appropriate 

parameters, a network can be constructed that integrates angular velocity quite 

accurately. 

A further refinement of the attractor hypothesis was developed that involved the 

coupling of two attractor networks representing cell populations in the anterior 

thalamus and postsubiculum respectively (Redish, Elga, & Touretzky, 1996). A 

similar model was later developed by Goodridge and Touretzky (2000) that also 

accounted for deformation of head direction tuning curves in the anterior thalamus 

(see Figure 2.4). 

2.2.2. Local View 

Place cells are strongly influenced by the local view, and it has been suggested that 

the source of this local view information is the entorhinal cortex (Redish & 

Touretzky, 1997). The assertion that entorhinal cortex cells are directly associated 

with hippocampal place cells is strongly supported by the fact that the effects of cue 

rotation and removal on place cell firing is mirrored in the firing of entorhinal cortex 

cells. 

The entorhinal cortex receives highly processed sensory information from 

neocortical areas, and entorhinal cortex 'place' cells are more influenced by sensory 

information than true place cells (Muller et al., 1991). Unlike place cells in CA3 and 

CAl, cells in the entorhinal cortex generally have 'place' fields in all environments 

(Muller et al., 1991), further supporting the notion that these cells may essentially 

form a coding for local view. 

If entorhinal cortex cells do code for local view, then that view must be in 

allocentric 4 coordinates, since the firing of these cells is independent of the current 

head direction. In order to convert egocentric sensory information into an allocentric 

view, the entorhinal cortex must receive information about the current head 

direction. The entorhinal cortex does receive input from the postsubiculum and this 

input is likely to include head direction information, further supporting the local 

view hypothesis. 

4 Strictly speaking, allocentric refers to an environment based reference frame, or world-centred 

coordinates. However as in this case, it is often used to describe coordinates centred on the current 

animal location but with orientations relative to the environment. Egocentric refers to an animal 

centred reference frame. 

15 



Since place cells are more sensitive to changes in the local environment than to 

changes in distal landmarks (Muller & Kubie, 1987), it seems likely that any view 

cells influencing the firing of place cells will also be more sensitive to local cues. In 

particular, the distance to and orientation of nearby walls seems to have a 

particularly strong effect on place fields, and hence should be a major factor in view 

cell firing. 

2.3. Place Cell Learning: Path Integration and Localisation 

The main input to the hippocampus comes from the entorhinal cortex, and it has 

been proposed that the function of some entorhinal cortex cells is to identify local 

views. While hippocampal place cells are influenced by visual sensory cues, they 

also continue to fire in complete darkness, suggesting that local view cells are not the 

only influence on the firing of hippocampal place cells. In the absence of sensory 

cues, the only explanation is that the animal localises through some form of path 

integration or dead reckoning (McNaughton et al., 1991; Muller et al., 1991; 

O'Keefe, 1976). Evidence for path integration can be seen in the ability of a wide 

range of animals to return to a starting location after taking a circuitous route, even 

in total darkness (Alyan & Jander, 1994; Etienne, 1987; Mittelstaedt & Mittelstaedt, 

1980). Furthermore, Sharp and colleagues (1995) report that hippocampal place 

cells are influenced by vestibular and visual motion inputs. 

The functioning of the path integrator would be analogous to the head direction 

system described earlier. Input representing the perceived self-motion of the animal 

would move the centre of activity of the integrator cells. In this case, these would 

conceptually (but not necessarily physically) be arranged in a two-dimensional array. 

Input from local view cells would then allow corrections to be made to adjust for 

errors in the self-motion input. 

It has been suggested that hippocampal place cells themselves form the basis of a 

path-integration system rather than a topological map (McNaughton et al., 1996). It 

is suggested that the ten minutes required for stable place fields to develop (Wilson 

& McNaughton, 1993) would not be enough time for the formation of a consistent 

topological map. However, since path-integrator connections could be largely pre

configured, ten minutes should be ample time to establish place fields of a path 

integrator. The only learning required would be the binding of local view and place 

cells to correct for integration error. It has been shown that the correlation of place 

fields in a novel environment can be predicted by previous activity correlations of 
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place cells during sleep (Kudrimoti, McNaughton, Barnes, & Skaggs, 1995). The 

ability to make such a prediction suggests some degree of pre-configuration. 

McNaughton and colleagues suggest this path integration system would operate in a 

similar way to their model for head direction integration (McNaughton et al., 1991). 

As with the head direction model, cells that are correlated with position and the 

direction of movement should have a direct influence on place cells. Cells in the 

subiculum satisfy this requirement but have only an indirect influence, via the 

entorhinal cortex, on place cells in the hippocampus. In support of this Redish and 

Touretzky (1997) propose that path integration is performed by a loop consisting of 

the hippocampus, subiculum and entorhinal cortex. In their model, local view and 

path integrator input is combined in the dentate gyrus, and these cells drive the place 

cells of CA3 and CAL If either the path integrator or local view input changes a 

different hippocampal place cell will be activated (Redish & Touretzky, 1999). 

Output from these place cells then feeds back to the path integration circuit via the 

subiculum. 

In a similar way to the head direction system, path integration may be accomplished 

in part by an attractor network (Kali & Dayan, 2000). Recurrent connections 

between cells in CA3 could form the basis of a two-dimensional attractor network 

with a hill of activation representing the location of the animal in the environment. 

Applying appropriate self-motion related input could shift the hill of activation to 

facilitate path integration. 

2.4. Hippocampal Output: Path Planning and Goals 

The major output from the hippocampus is from CAI to the subiculum. The 

subiculum sends output to the basal ganglia, which in turn sends output to areas 

associated with motor control. Reinforcement learning is a major function of the 

basal ganglia. The firing of dopaminergic neurons in the basal ganglia is highly 

correlated with the error in reward prediction (Schultz & Dickinson, 2000; Schultz, 

Tremblay, & Hollerman, 2000). Neurons in the striatum show correlations to 

expected and experienced rewards and also to the initiation and execution of actions 

related to those rewards (Schultz & Dickinson, 2000; Schultz et al., 2000). Suri 

(2002) proposes that the actor-critic temporal difference learning architecture (Barto, 

Sutton, & Anderson, 1983) is a suitable model for some functions of the basal 

ganglia. An overview of the architecture is shown in Figure 2.6. 
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Figure 2.6: Neural implementation of actor-critic temporal difference learning. 

(adapted from Suri, 2002) 

In Figure 2.6, the critic learns to predict the value of the current state, as represented 

by the input stimulus. The small circle in the figure represents dopamine neurons, 

which calculate the error in the predicted value. This error is then used to train the 

critic, and also the actor. The actor consists of discrete units corresponding to each 

possible action. The output of each of these actor units is a measure of the suitability 

of performing that action given the current stimulus. See section 7 .1 for a full 

description of temporal difference learning and the actor-critic architecture. 

Little work has been conducted to fully examine the connection between navigation 

and the basal ganglia. However, initial investigations strongly suggest that 

reinforcement learning may play a significant role in navigation. For example, Mura 

and Feldon (2003) showed that lesions of the dopaminergic system in rats led to a 

profound deficit in the ability of the animal to find the platform in the Morris 

watermaze. Combined with the theory that the dopaminergic system is closely 

related to reinforcement learning, this suggests that reinforcement learning may play 

an important role in this learning task. 
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Another indicator that the basal ganglia are associated with reinforcement learning 

and navigation, arises from interactions with the hypothalamus. The hypothalamus 

is a centre for controlling motivational states (Swanson & Mogenson, 1981) and this 

motivational information is sent to, among other brain areas, the basal ganglia. Since 

satisfying many motivations will require moving to a particular location (e.g. moving 

to food), it seems likely that motivational signals would be sent to an area of the 

brain involved with navigation. This concept is explored further by Guazzelli, Arbib 

and colleagues (Arbib, 1999; Guazzelli, Corbacho, Bota, & Arbib, 1998) through 

their world graph theory. They propose a model for determining the rewards of an 

actor-critic learning algorithm by considering the current set of motivational drives. 

Neurons encoding the current motivational drives are assumed to reside in the 

hypothalamus, the output of these neurons then influences the firing of dopamine 

neurons in the basal ganglia. 

Brown and Sharp (1995) developed what is essentially a reinforcement learning 

model of navigation by considering the interaction of place and head-direction cells, 

and motor neurons in the nucleus accumbens. In the model, the activity of place 

cells and head-direction cells result in the firing of cells in either of two groups of 

motor cells. One group corresponds to moving left and the other to moving right. A 

trace is kept of which group of cells fire for a given place and head-direction cell 

combination, and this trace decays over time. When the goal is encountered, 

synaptic connections between place and head-direction cells and motor neurons are 

strengthened according to the corresponding trace. 

2.5. Summary 

This chapter has reviewed the current understanding of spatial cognition with 

emphasis upon the concept of cognitive maps. Hippocampal place cells have been 

identified as an important component of the localisation and mapping system. Place 

cell firing is maintained through input from the visual processing system and head 

direction cells in the postsubiculum. A method for path integration has also been 

cited as a crucial component of the system and, while further work is needed, this 

appears to be accomplished via a loop consisting of the hippocampus, subiculum, 

postsubiculum, and entorhinal cortex. Finally, it has been suggested that the basal 

ganglia also play an important role in navigation and path planning and that a 

reinforcement learning approach may be the most appropriate method for modelling 

this type of learning. 
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Chapter 3. Localisation and Navigation: 
Computational Models 

The field of mobile robotics is large and diverse. It would not be possible to review 

all of the research in the field relating to localisation, mapping and navigation, and 

furthermore much of this information would not be relevant to this thesis. The main 

aim of the thesis is to examine biological mechanisms that may be useful in the field 

of mobile robotics. Therefore, this chapter will review those computational models 

, that demonstrate applicability to mobile robotics and that claim some degree of 

biological inspiration. In particular, those models inspired by the mammalian place 

cell system described in the previous chapter will be reviewed. 

Section 3.1 will review models of localisation and mapping that attempt to simulate 

the place cell system itself. In section 3 .2, navigational models utilising a place cell 

representation will be discussed. Section 3 .4 will summarise this literature and 

discuss the strengths and weaknesses of experimental work to date. 

3.1. Localisation and Mapping 

3. 1. 1. Analysing the Local View: Extracting Landmarks 

The first stage of localisation in biological systems is the activation of view-cells. 

Likewise, for all of the computational models reviewed, processing the current view 

formed an important first step in the localisation procedure. 

Typically landmarks are first extracted from the local sensory view. The type, 

bearing, or range of each landmark (or some combination of these) is then either 

further processed or passed directly to the place cells. While this general principle is 

common for most of the syst~ms reviewed, they differ in the type of sensory 

information provided, the landmark information that is used, and the degree of 

further processing of this information. 

In the simplest case, Guazzelli, Bota and Arbib (2001) conducted experiments in 

simulation only with the bearing and distance of three distal landmarks given directly 

to the agent. 

Burgess, Donnet and O'Keefe (1996; 1998) show that it is possible to extract 

landmarks from a real, though simple, environment with experiments conducted on a 
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Khepera5 mobile robot. The robot sensors consisted of video and short-range ( 4cm) 

infra-red proximity sensors. The environment was a rectangular 'room' with white 

walls and a dark floor. One wall had an identifying dark strip. As in the work of 

Gauzzelli and colleagues (2001 ), the range and bearing of landmarks, which in this 

case were the four walls of the environment, were used. The landmarks were found 

by rotating the robot to face each wall and acquiring an image. The image was then 

analysed to find the centroid of each wall, from which range and bearing information 

could be calculated. 

Gaussier and colleagues (Gaussier, Joulain, Banquet, Lepretre, & Revel, 2000; 

Gaussier, Revel, Banquet, & Babeau, 2002) also extracted landmarks from camera 

images, however their system demonstrates that it is possible to extract useful 

landmarks in a more natural environment. The system was implemented on a Koala6 

mobile robot equipped with a video camera capable of taking panoramic images over 

a 300 degree range. The robot operated in a 7.3m x 5.4m laboratory environment. 

Landmarks were extracted from the camera image using pattern recognition 

techniques. The image was first scanned for points of interest indicated by changes 

in horizontal image intensity. The area around these focal points was then compared 

to learned views. As with the two models discussed above, the bearing of each of 

these landmarks was extracted, but in contrast the type of landmark was used rather 

than the range. 

Wan, Touretzky and Redish (Touretzky, Wan, & Redish, 1994; Wan, Touretzky, & 

Redish, 1994a, 1994b) show that landmarks can also be extracted in real 

environments from more rudimentary sensory input. Their model was implemented 

on a Xavier7 mobile robot. This robot was equipped with a ring of 24 sonar sensors, 

an infrared laser rangefinder, and a colour camera. Information from the sonar 

sensors was stored in an occupancy grid8 and standard edge detection algorithms 

were used to detect comers. The locations and types (concave or convex) of these 

5 Khepera is a small mobile robotics platform. See www.k-team.com for details. 

6 Koala is a mid-sized mobile robotics platform. See www.k-team.com for details. 

7 Xavier is another mid-sized robot. See www-2.cs.cmu.edu/~Xavier for details. 

8 An occupancy grid, also called a free space map, divides the space into discrete cells and labels each 

cell as either occupied or unoccupied. The occupancy may also be a fuzzy value. 
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comers become the landmarks of the system. Ranges and bearings to these 

landmarks were used along with the angle of incidence between the landmarks. 

The amount of further processing conducted on the extracted landmark information 

varies between researchers. Gaussier and colleagues (2000; 2002); and Wan, 

Touretzky and Redish (Touretzky et al., 1994; Wan et al., 1994a, 1994b) perform no 

additional processing, the raw landmark information is used directly as input to the 

place cells. The remaining models discussed in this section use the landmark 

information as input to a view cell layer where the information is refined before 

being sent to the place cell layer. 

The view cells in the model of Burgess, Donnet and O'Keefe fired maximally when 

a particular wall was at a set distance from the robot. The output of the sensory cells 

was calculated using a Gaussian function, with the width of the Gaussian modified 

by the preferred distance of the wall, increasing as the preferred distance increases. 

Equation 3.1 gives the activation function for the ith sensory cell, where x is the 

distance from the wall, d1 is the cell's preferred direction, and A and a are tuning 

parameters. 

---r==A= exp [-( x - d, )2 ] 
~27rdd, 2dd, 

3.1 

Guazzelli, Bo ta and Arbib (2001) first form view cells that respond to the bearing 

and range of one particular landmark. A further layer of cells then receives input 

from a selection of the primary view cells corresponding to different landmarks. 

In contrast to all of the models discussed so far, Arleo and Gerstner (2000) did not 

explicitly extract landmarks from sensory information. Experiments were conducted 

using a Khepera mobile robot in a 60x60cm square environment surrounded by 

walls painted with vertical black and white stripes of various widths (barcode style). 

Features were first extracted from a video image of the walls in the current heading 

by using Walsh:like filters (Andrews, 1970). They defined five classes of filters 

each corresponding to a different one-dimensional horizontal pattern. From these 

classes they then defined ten filters corresponding to different frequencies, enabling 

a degree of range discrimination (the same pattern at a greater range will have a 

higher frequency). While this is not a landmark-based system, it could be argued 

that each view cell is responding to the presence of a particular landmark at a 

particular range. As with the model of Guazzelli and colleagues (2001 ), higher-level 
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view cells were then generated t~at depend on the activation of several simple view 

cells. 

3. 1. 2. Generating Place,·Cells from the Local View 

Burgess, Donnet and O'Keefe (1996; 1998) and Gaussier, Revel and Banquet (2000; 

2002) each demonstrate that it is possible to generate simulated place cells that 

exhibit many of the properties of their biological equivalents from landmarks alone. 

In the model of Burgess and colleagues (1996; 1998), the view cell output is sent to 

the next layer of cells, which model cells in the entorhinal cortex, via hard-wired 

connections. Each of these cells receives input from two view cells responding to 

two orthogonal walls. Output from this layer goes to the place cell layer; these 

on/off connections are trained using a form of competitive learning. Place cells then 

send output to goal cells, presumed to be in the subiculum. The structure of the 

model is shown in Figure 3.1. 
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Figure 3.1: The place cell model of Burgess, Donnet and O'Keefe (1996; 1998). 

The model was able to simulate many of the observed properties of place fields, 

including elongation of place fields near walls, and distortions of place fields when 
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the environment is similarly distorted. However in a more complex environment, the 

robot would be subject to perceptual aliasing problems. That is, in environments 

where the vf~w from two distinct places may be identical or similar, place cells tuned 

to this view will not be able to distinguish between the two locales, and hence will 

have two place fields. This is not a desirable property if these place cells are to be 

used for navigation. 

Place cells in the model of Gaussier and colleagues (2000; 2002) learn the expected 

bearings of visible landmarks when viewed from the corresponding environment 

location. The closer each landmark is to it's expected bearing, the higher the place 

cell activation. While this is potentially very useful, the resultant place fields do not 

resemble those of biological place cells. While the higher sensory resolution of the 

robot in this model would greatly reduce the risk of perceptual aliasing, it would 

nevertheless remain a problem with any view-only method. 

3.1.3. Path Integration 

Path integration alone is unable to produce a robust position estimate. Even if the 

system is perfectly accurate under normal circumstances, and this is almost 

impossible to achieve on a robotic platform, it is unable to provide initial localisation 

within the environment. Therefore, none of the models discussed in this chapter 

suggest a path integration only system for localisation. Instead, path integration is 

combined with the landmark or view cell information to overcome the perceptual 

aliasing problem. 

Wan, Touretzky and Redish (Touretzky et al., 1994; Wan et al., 1994a, 1994b) 

combine the landmark information with current path estimate in a single step. The 

activation of place cells is determined using radial basis functions tuned to distances 

and bearings of landmarks, to the angles between landmarks, and to the path 

integrator coordinates. The expression for place cell activity is in the form of a 

product of Gaussians corresponding to each of these items. When any of this 

information is unavailable, the corresponding term drops out of the expression. This 

enables navigation in the dark and correct localisation when path integrator 

coordinates are known to be incorrect, such as when the robot enters the 

environment. For example, upon entering an environment, place cell activity is first 

calculated using the current view only. Each active place cell then recalls its learned 

position and orientation, and this information is used to reset the path integrator. 

In contrast to Wan and colleagues (Touretzky et al., 1994; Wan et al., 1994a, 1994b), 

which is very abstract, Guazzelli, Bota and Arbib (2001) implement a more detailed 
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path integrator. The path integrator mimics the behaviour of the attractor model 

proposed by Kali and Dayan (2000). Path integration is implemented as a moving 

hill of activity on a two dimensional array of cells. The position of this hill 

represents the position of the animal, and is moved by applying movement 

information or information from the place cell layer. Connections between the path 

integration layer and the place cell system are mediated by feature detection layers as 

shown in Figure 3.2. Connections between these and other layers are modified using 

a form of competitive Hebbian learning. Each place cell responds to features present 

in the path integration layer and in the view layer. 

Feature 
Detection 
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View Cells 

Sensory Input 

Feature 
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Figure 3.2: Simplified overview of the computational model of Guazelli, Bota and 

Arbib (2001 ). 

Arleo and Gerstner (2000) use a similar path integration system, with the activation 

of path integration cells calculated as the Gaussian distance of the cell's preferred 

position from the estimated position. Place cells are activated by connections from 

the more complex view cells and path integration cells. These place cells are trained 

using Hebbian rules. The path integration system is recalibrated periodically using 

the population vector (Georgopoulos, Kettner, & Schwartz, 1988) of place field 

centres, which are set when a new place is first encountered. A similar system was 

also developed for maintaining the head direction estimate (Arleo & Gerstner, 2001), 

demonstrating the versatility of the approach. 

26 



summary 

3. 1.4. Kalman Filtering 

All of the models discussed share a similar philosophy based on observations of 

biological systems. The basic process is to identify landmarks in the sensory view 

and extract information about the relative positions of those landmarks, this 

information can then be combined with estimates from a path integrator for more 

robust localisation. An alternative approach is to examine non-biological methods 

for achieving the same result and then to relate these back to the biological solutions. 

A Kalman filter (Jazwinski, 1970) estimates the state of a dynamic system by 

combining a series of noisy state observations and on a model of how the state may 

change. In the case of robotic localisation, the state is the location of the robot, state 

observations are sensor input, and state changes are indicated by motor outputs, 

wheel rotation or some other measure of change in position. Under certain 

conditions, a Kalman filter can be shown to provide optimal update rules for 

combining uncertain information (Bousquet, Balakrishnan, & Honavar, 1997). 

Figure 3.3 depicts the basic Kalman filtering concept. 

Prediction 

State Predicted 
Estimate Measurement 

State 
Estimate 

Actual Observed Update 

State Measurement 

Observation 

Figure 3.3: A schematic of Kalman filtering (adapted from Balakrishnan, Bhatt, & 

Honavar, 1998). 

Kalman filtering has been used by many researchers (e.g. Dissanayake, Durrant

Whyte, & Bailey, 2000; Kleeman, 1992) for robot localisation, however few have 

related this back to the biological system. Balakrishnan and colleagues 

(Balakrishnan, Bousquet, & Honavar, 1999; Balakrishnan & Honavar, 1997; 

Bousquet et al., 1997) compare this with hippocampal localisation, as summarised in 
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Figure 3.4. They argue that the function of the hippocampus during localisation is 

the same as that of a Kalman filter. 
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Figure 3.4: Hippocampal localisation and position update procedure (adapted from 

Bousquet et al., 1997). 

From this observation, a computational model composed of five modules was 

developed as shown in Figure 3.5. 
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Figure 3.5: Hippocampal model of Balakrishnan and Colleagues (Balakrishnan et 

al., 1999; Balakrishnan & Honavar, 1997; Bousquet et al., 1997). 
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The computational model was designed to be a simplified simulation of modules 1 to 

4. As is common with the biologically based model discussed in section 3.1.1, 

Module 1 view cell activation consists of a product of Gaussians tuned to the 

positions of perceived landmarks, with the type of landmark acting as an additional 

input. Module 2 cells respond to particular combinations of Module 1 cells, with 

new units being added if there is no Module 2 unit that matches the Module 1 

activation. As each module 2 unit is added, it becomes iissociated with the current 

position estimate from the path integrator. The authors then use a modified form of 

the Kalman filtering algorithm to update the state estimate. 

Lee and Reece (1997) also use a Kalman filter for localisation, but take a different, 

somewhat less biologically plausible, approach. The system was developed for a 

mobile robot called ARNE9
. ARNE is constructed on a 300mm circular base with a 

two-wheel differential drive system. The robot is equipped with a single sonar 

sensor that is able to rotate, and is set to take readings at every 18 degrees. Sonar 

readings were used to build either a feature map10 or an occupancy grid of the 

environment, and this map was used in conjunction with a Kalman filter to allow the 

robot to localise within the environment. While this system was not biologically 

based, it was later extended by Reece and Harris (Harris & Reece, 1997; Reece & 

Harris, 1996) to include some biologically inspired features. 

A limitation of the original localisation system was that it was able to perform 

incremental localisation only. That is, given a starting position plus odometric 

information and sonar data, the robot was able to estimate the new location. The 

extensions of Reece and Harris also allow absolute localisation. That is, the ability 

to localise based on current sensory information only, as when the robot first enters 

the environment. 

The extended system included an environment memory consisting of place cells. 

Each place cell stored a map representation in robot-centred coordinates. In each 

cycle, the partial map generated by the mapping system was presented to the place 

cells. Each place cell received a score based on the similarity of the stored map to 

the partial observed map. The retrieved maps of those place cells that fire strongly 

were then used to assist in localisation and mapping. The authors claim that this 

9 ARNE is another mid-sized mobile robot. See Lee (1996) for more information. 

10 A feature map simply stores the positions and orientations oflabelled features. 
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place system is similar to Marr's (1971) auto-associative theory of hippocarnpal 

function, although this connection is not made clear. 

3.2. Navigation 

Place cell to goal cell connections are trained using 'one-shot' Hebbian learning as 

each goal is encountered. These goal cells form the basis for navigation, which will 

be discussed in section 3.2. 

3.2.1. Coordinate Based Navigation 

If the place cell model includes a metric path integration system, then navigation can 

be achieved using a simple coordinate based procedure. The robot remembers the 

path integrator coordinates of the goal location and compares these to the current 

position estimate. Vector subtraction of these coordinates gives the direction to the 

goal. Such a system was used by Touretzky, Wan and Redish (1994) in their 

simulations. Similarly, Balakrishnan, Bhatt and Honavar (1998) used this technique, 

however they also included a heuristic method for choosing an appropriate goal. 

This simple coordinate based navigation cannot be applied without a metric estimate 

of the rodent position. While some of the models discussed in the previous section 

do not include this metric, Foster, Morris and Dayan (2000) developed a 

reinforcement learning algorithm for learning coordinates from place cell activation. 

The method was based on temporal difference learning (see Section 7.1). The 

system learned a 'value' function for each axis of the coordinate system. Value 

functions were updated using odometric input as a reward signal. The system was 

tested in a simulation of the Morris waterrnaze and the results showed good 

correspondence to the results for rodent experiments. 
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Figure 3.6: Coordinate-based navigation is unsuitable for complex environments. 

The large arrow shows the computed direction to the goal location, whereas the 

dashed arrow shows the optimal direction of movement. 

The results of such experiments with robots and rodents are taken as evidence that 

rodents do maintain a coordinate representation of goal locations and the current 

position estimate. Unfortunately however, coordinate learning is not suitable for use 

in environments involving large or concave obstacles, as shown in Figure 3.6. Small 

convex obstacle can be navigated by moving along the object while also moving 

closer to the goal. However for larger and, in the worst case, concave obstacles 

(dead-ends) this technique will fail. Environments containing such obstacles will be 

referred to as complex environments. 

3.2.2. Potential Fields 

Gaussier and colleagues (2000; 2002) implemented navigation through the use of 

potential fields. When a goal is reached, the robot learns to associate nearby views 

with the goal by backing a small distance away from the goal and training view cells. 

This is repeated for movement in multiple directions. To return to the goal, the robot 

finds the view cell that best matches the current sensory input and moves in the 

direction indicated by that cell. Again, this method of navigation is only useful in 

simple environments, and will also be limited by the size of the environment. In 

addition, the complicated process of learning views for each goal limits the 

attractiveness of this approach. 

Burgess, Donnet and O'Keefe (1996; 1998) developed a similar method that did not 

require a complicated learning procedure when the goal was reached. Associations 
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between goal cell and place cells were learned based on the direction of movement 

when the goal was reached, and the recency of place cell firing. While reducing the 

complexity of the learning procedure, this method does not solve the problem of 

navigating in large complex environments. 

3.2.3. Reinforcement Leaming 

Reinforcement learning has long been used for low-level navigation, such as 

collision avoidance and wall following, and for navigation to a fixed goal (Sutton & 

Barto, 1998). Unfortunately, reinforcement learning algorithms perform poorly 

when navigating in environments with dynamic goal locations, such as watermaze 

tasks (Foster et al., 2000). Reinforcement learning algorithms learn the values 

associated with states and actions, with respect to the current goal. If the goal 

location is changed, the previously learned values interfere with the new task being 

learned. This problem will be discussed further in section 8.1. 

Foster and colleagues (2000) developed a method for combining reinforcement and 

coordinate learning. The agent uses the actor-critic (see Section 7 .1.1 for details) 

paradigm to choose between movement in each of eight discrete directions (as in 

conventional methods), as well as the direction computed by the coordinate system 

(see Section 3 .2.1 ). In open environments, the critic will learn that the coordinate 

system may be trusted to compute an appropriate action, enabling efficient 
' 

navigation with dynamic goals since the coordinates are goal independent. However 

in complex environments, the system will revert to the traditional reinforcement 

learning approach with the associated poor performance when goal locations change. 

Arleo and Gerstner (2000; 2001) also used reinforcement learning for navigation. In 

particular, Watkins' Q-leaming was used to learn a value function from a linear 

approximation based on place cell activity (see section 7.1 for details). In principle, 

a value function can be learned for each goal location, allowing navigation in both 

open and complex environments with dynamic goals. This technique does not make 

use of coordinate information, however it should be possible to combine the method 

with that of Foster and colleagues. 

3.2.4. Hierarchical Navigation 

The model of Trulli er and Meyer ( 1997) consists of four layers corresponding to the 

entorhinal cortex, the dentate gyrus, area CA3 and goal cells. The entorhinal cortex 

cells learn orientation-dependent local views. The dentate gyrus is a form of short

term memory that remembers the current sequence of view cell firing as the animal 
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moves. The CA3 layer learns associations between place cells with neighbouring 

place fields. These associations are direction specific, so that a given connection 

may represent a neighbour to the North, for example. 

Goal cells code for where the animal is in relation to each goal, with one goal cell for 

each direction (eg. North, East, South and West). When the animal reaches a goal, it 

triggers the CA3 connections in each direction and the propagation of neighbouring 

cells allows connections to be learned between the appropriate goal cell and all place 

cells in that direction. The major limitation of this form of navigation is that, like the 

coordinate techniques, the model is limited to simple environments without 

obstacles. This issue was addressed in a later refinement (Trullier & Meyer, 1998). 

The extended model includes the notion of sub-goals. When the robot is at a 

location where goal information is not available, it moves around until it finds a 

location where goal information is available. At this point, a new set of sub-goal 

cells is recruited for the current location. Eventually enough sub-goal cells will be 

recruited to enable navigation from any location within a complex environment. 

However, this approach does not fit experimental observations, since it requires 

several visits to the goal location in order to learn enough sub-goals to enable 

successful navigation in complex environments. In contrast, rats are able to return to 

the goal after only one trial in the same situation. 

Reinforcement learning has also been used with a similar hierarchy of goal states 

(Dayan & Hinton, 1993; Dietterich, 1998; D!gney, 1996; Kaelbling, 1993a; Parr & 

Russell, 1997; Singh, 1992). These techniques show great promise for robust 

navigation in complex environments, and for reducing the time complexity of 

reinforcement learning algorithms (see Section 8.2.5). 

3.3. Low-Level Navigation 

While not a focus of this thesis, a complete system would also require 

complementary navigational systems for low-level tasks such as collision avoidance 

and exploration. Reinforcement learning is commonly used for this task and is the 

approach that will be taken for this thesis. Chapter 7 provides a review of temporal 

difference based reinforcement learning and demonstrates how that may be applied 

to the proposed system. 
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3.4. Summary 

This chapter has reviewed some of the major biologically inspired systems for 

localisation, mapping and navigation. The general approach to localisation is quite 

consistent and involves the combination of view and odometric input to establish 

place units. However, the models differ in the way that this information is used, and 

in the way that cognitive maps are addressed. Some models maintain explicit 

representations of maps, whereas in other models, the maps are implicit or not 

present. 

Many of the systems reviewed do not address the issue of navigation, and of those 

that do, the algorithms used are often restricted to small, open environments. 

Nevertheless, all of the algorithms reviewed have some merit. A combined approach 

involving reinforcement learning, coordinate systems and hierarchies of goals is 

most likely to provide an appropriate navigational solution. 
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Chapter 4. System Design 

The main objective ofthis research is to develop an autonomous navigational system 

for a simulated mobile robot based on biological principles. The system will provide 

navigational abilities in typical real world environments, and should rely on simple 

sensory systems only. 

Real world environments are typically complex and cluttered, with many obstacles, 

dead ends and potential shortcuts. They are also rarely static and may involve doors, 

movable obstructions, people or other robots. Ideally, a navigational system will be 

able to deal efficiently with all of these situations, without requiring complex and 

expensive sensors. Simple, inexpensive sensors that are commonly used on mobile 

robots include sonar and infrared rangefinders, bumpers for collision detection, and 

various devices for measuring odometric information, such as wheel rotation. A 

carefully designed bumper system is generally error and noise free. However, 

measurements from inexpensive rangefinders (especially sonar) and odometric 

devices may contain considerable noise, and/or be error prone. While generally 

noisy, sonar readings are also subject to misinterpretation resulting from specular 

reflections, echoes, and weak returns. Odometric readings are often very precise, but 

if measuring wheel rotations, for example, may introduce errors due to wheel slip 

and collisions, hence the resulting accuracy is usually quite poor, especially since 

these errors have a cumulative effect. The navigational system will need the ability 

to overcome the limitations of these sensors. 

Two essential components of any navigational system are localisation and 

navigation. That is, the ability to determine the current position and the ability to 

deduce appropriate actions to reach the current goal. This chapter will describe the 

general design of the proposed system with reference to the previous models 

discussed in Chapter 3. 

4.1. Localisation 

Localisation can be divided into two parts; determining the current heading and 

determining the current position. Of these two, determining the current heading is 

considerably more critical as small errors in head direction can lead to large errors in 

the position estimate. Directional sensors (such as electronic magnetic compasses) 

are cheap and widely available, however such sensors are in general not very 

accurate. In particular, these may suffer from local disturbances due to the presence 
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of metal objects or power lines. Gyroscopes and accelerometers for tracking 

changes in direction are considerably more accurate, but these may introduce a small 

drift to the perceived heading, which is extremely undesirable when this reading is 

used to calculate changes in position. However, a careful combination of 

measurement devices can lead to reasonably robust head-direction systems (e.g. 

Benson, Stombaugh, Noguchi, Will, & Reid, 1998; Kim & Seong, 1996). 

Alternatively, an attractor based head-direction network, such as those used by 

Skaggs and colleagues (1995), may be used to maintain head-direction. As a further 

alternative, the place cell system preposed below could easily be modified to also 

correct head-direction. Given the many options available for maintaining a robust 

estimate of head-direction, this thesis will tackle only the more difficult problem of 

maintaining a positional estimate. However, care will be taken to ensure that the 

system is not overly dependent on an accurate head-direction estimate, although it is 

assumed that any global drift will be corrected. 

Figure 4.1 shows the basic structure of the proposed system. 

Localisation Module: 

View Cells 
Path Integration 
Place Cells 

Position 

Figure 4.1: Localisation module. 

The proposed localisation module is similar in structure to the models of Burgess, 

Donnet and O'Keefe (Burgess et al., 1996, 1998), and Arleo and Gerstner (2000). 

Sensor information is first used to establish the firing of a set of view cells. View 

cell output is then sent to place cells where the localisation is refined. Unlike the 

model of Burgess and colleagues, a path integration system is also included, in a 

similar way to the models of Wan, Touretzky and Redish (Touretzky et al., 1994; 
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Wan et al., 1994a, 1994b), Guazzelli, Bota and Arbib (2001), and Arleo and Gerstner 

(2000). 

View cells in the proposed system will receive input from a set of range sensors. 

Unlike the models discussed in the previous chapter, view cells will learn an 

egocentric view of the environment. In contrast to the model of Burgess and 

colleagues (1996; 1998) view cells will be based purely on the features visible at the 

current robot heading. As with other models, view cell activation is a measure of the 

difference between the observed view and the cell's learned view. 

As with the models of Arleo and Gerstner (2000), and Wan and colleagues 

(Touretzky et al., 1994; Wan et al., 1994a, 1994b), the proposed path integration 

system will be abstracted by simply storing the coordinates (in two dimensions) of 

the current position estimate. The influence of path integration input on place cell 

firing is calculated using the Gaussian distance between the stored position estimate 

and each place cell's stored field centre. The position estimate is primarily updated 

using odometric information. This system was chosen for ease of implementation 

and computational efficiency when compared to the model of Guazzelli and 

colleagues (2001), or the full attractor model proposed by Kali and Dayan (2000). 

The view cell and path integrator information is combined by place cells, where the 

necessary conversion is made from egocentric view cells to allocentric place cells. 

Finally, the population vector of place cells is used to correct the position estimate of 

the path integrator ~n a similar manner to other models. 

The proposed navigational system will offer two major improvements over previous 

models. Firstly, view cells will use a new learning algorithm that is more suited to 

complex and unpredictable environments. Previous models have used a fixed 

Gaussian function tuned to environmental features. The new model will learn a 

similar function, but will adjust the centre, width and shape of the function online to 

provide better view discrimination without loss of generality. This new algorithm 

for learning view cells will be discussed in Chapter 5. 

Secondly, Kudrimoti and colleagues (1995) provide evidence for the 

precon:figuration of the place cell system. To investigate the value of this 

precon:figuration, the path integrator coordinates of place cells will be fixed prior to 

training. This will allow the navigational system to make use of this known 

configuration for initialisation, resulting in improved exploration performance, and 

providing a mechanism for dead reckoning. The place cell system will be presented 

in Chapter 6. 
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4.2. Navigation 

The navigational system can similarly be divided into two parts; low-level and high-

' level navigation. The low-level navigation system will provide the ability to deal 

with basic exploration and collision avoidance. This system should be relatively 

independent of the environment and will require some representation of the robot's 

current view. The high-level navigation system will be responsible for choosing the 

best direction of movement for reaching the current goal. This system will require as 

input the current goal and the current position. An overview of the navigation 

module is shown in Figure 4.2. 

Position 

High Level 
Navigation 

(path planning) 

Low Level 
Navigation 

(collision avoidance) 

Action 

Figure 4.2: Navigation module 

Reinforcement learning is commonly used to solve low-level navigational problems. 

The basal ganglia are widely regarded as a centre for reinforcement learning, and 

recent evidence suggests that temporal difference learning in particular, is an 

appropriate algorithm for modelling this system. Brain areas associated with 

processed sensory input send information to the basal ganglia; this information is an 

obvious minimal requirement for collision avoidance. Chapter 7 will briefly 

introduce the temporal difference learning algorithm and will examine the 

application of this algorithm to the low-level navigation task. 

For high-level navigation, a system capable of dealing with complex and dynamic 

environments is required. Therefore, a coordinate-based system is not appropriate. 

The relationship between the hippocampal place cell system and reinforcement 

learning in the basal ganglia suggests that reinforcement learning may play a role in 

high-level navigation also. The high-level path planning system is therefore based 
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on the Q-learning approach of Arleo and Gerstner (2000). The major improvement 

over previous navigational systems, and the system of Arleo and Gerstner in 

particular, will be the development of a new reinforcement learning algorithm, called 

concurrent Q-learning (CQL), that provides complete goal independence. This will 

allow immediate navigation to any goal from any starting location. While similar to 

the DG-learning algorithm (Kaelbling, 1993b), CQL offers improved efficiency, 

especially in dynamic environments. A hierarchical form of CQL is also developed 

that greatly reduces the computational cost of the algorithm. The CQL algorithm is 

presented in Chapter 8. 

4.3. Integration 

The localisation and navigation algorithms required for the complete system are 

developed independently in the following chapters. This has the advantage of 

ensuring that, where possible, these algorithms retain applicability to other problems 

in the field of artificial intelligence. The disadvantage of this approach however, is 

that integration of these independent sub-systems is more difficult. Issues arising 

from this integration are discussed in Chapter 9. 

Although the current goal is given to the high-level navigation system, a mechanism 

is needed to convert that goal into the place representation. As with the models of 

Burgess and colleagues (Burgess et al., 1996, 1998), and Balakrishnan and 

colleagues (Balakrishnan et al., 1999; Balakrishnan & Honavar, 1997; Bousquet et 

al., 1997), a goal system is developed in Section 9.1.l to learn associations between 

goal locations and place cells. 

Section 9.1.2 deals with the integration of the place cell system and the high-level 

navigation system. Section 9.1.3 discusses the method used for combining the 

output of the low-level and high-level navigation systems. Initialisation of the high

level navigation system, using information available due to the preconfiguration of 

the place cell system, is discussed in Section 9 .2. This section also discusses other 

initialisation and pre-training issues. Finally, Section 9.3 discusses the performance 

of the complete integrated system. 
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Chapter 5. View Cell System 

View cells should be able to accurately capture the salient information of the view at 

a particular location and orientation. While substantial changes in that position and 

orientation should result in a significantly decreased firing of the view cell, minor 

changes should not result in a major change. Many researchers have found a simple 

Gaussian function sufficient to model view cells. However, these experiments take 

place in simple environments (eg. rectangular or cylindrical) and/or it is assumed 

that the view cell input has already been significantly processed ( eg. by finding the 

orthogonal distance to walls). 

A view cell in more complex environments with no prior processing of sensory 

information would need to be more robust. Figure 5.1 shows a simple robot with 

two range sensors. Small changes in the position and orientation of the robot will 

not result in a significant change in the first sensor reading. However, a small 

change may result in a significantly different reading from the second sensor, due to 

the acute angle of the incident wall. In addition, the proximity of the comer means 

that the range of distances perceived by the second sensor will have an abrupt lower 

bound. 
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Figure 5.1: Left: A robot with two range sensors (1 and 2) faces a typicai" wall 

section. Right: Response functions that would capture this view, while allowing 

small variances in robot position and orientation. 

A cell to capture this view would need to have different response functions for each 

sensor in order to maintain a robust output across small variations in position and 
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heading, while retaining the ability to differentiate conceptually different views. 

Furthermore, a robust system will need a method whereby these response functions 

may be learned on-line. 

Section 5 .1 presents a general neural model with properties that are suitable for 

learning view cells in this context. Section 5 .2 discusses the application of this 

model to the current problem. 

5.1. Adaptive Response Function Neurons 

Biological neurons are typically modelled using a linear response function (with a 

sigmoidal activation function). The electrical potential of a neuron is calculated as 

the weighted sum of its inputs, with the weights representing the synaptic 

efficiencies of the input connections. While the biological system is considerably 

more complex than this, it can be assumed that the response functions of the majority 

of neurons are at least monotonic. Biological neurons do exist, however, that 

respond in a selective way to input. This may be due to either the physical properties 

of some sensory neurons, or to the topology of the network containing the locally 

responsive neuron (Moody & Darken, 1989) 

Certain classes of artificial neural network also contain neurons that are locally 

responsive to certain input levels. These include self-organising maps (SOMs) 

(Kohonen, 1995) and radial basis function (RBF) networks (Moody & Darken, 

1989). The output of a SOM neuron is typically a distance measure from the 

supplied input to a stored exemplar, while the response function of RBF neurons is 

typically a Gaussian. 

The outputs of SOM neurons are compared to find a winning neuron, hence the 

critical parameters for a SOM are just the stored exemplars - that is, the centres of 

the response functions. The locations of the centres of the response functions are 

randomly initialised. For each example presentation the winning neuron (that neuron 

whose exemplar is closest to the input), and some surrounding "neighbourhood" of 

neurons, have their exemplars shifted towards the given input pattern. 

The outputs of RBF neurons, on the other hand, are often passed onto a second layer 

of neurons, which are typically trained using a supervised gradient descent rule. 

Thus, both the centres and widths of the response functions of RBF neurons are 

important. Many techniques have been proposed for determining appropriate centres 

and widths of the basis functions of RBF networks. 
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One solution is to find RBF centres by applying a clustering algorithm such as K

means and determining appropriate widths using techniques such as "P-nearest 

neighbours" (Bruzzone & Prieto, 1999; Moody & Darken, 1989). In order to 

produce more compact RBF networks, Leonardis and Bischof (1998) propose a 

method of pruning based on the minimum description length (MDL) principle. None 

of these training methods can be employed on-line. 

The resource-allocating network (RAN) of Platt (1991) adds neurons if the network 

error is high and adjusts the centres of existing neurons ifthe error is low. The width 

of the Gaussian response functions is reduced as new neurons are added. While the 

RAN can be trained on-line, it has the disadvantage of having an indeterminate 

network size. 

By considering a biologically plausible sub-network for the formation of locally

tuned neurons, a training method was developed that can be used on-line. The 

training algorithm independently adjusts the centres, widths and shapes of locally 

tuned response functions for each input to the neuron. 

5. 1. 1. The Neural Model 

Within the field of artificial neural networks (ANNs), a frequency model of 

biological neurons is commonly used. The output of such a neuron represents the 

firing frequency of the neuron. The activation function is typically a sigmoid, and 

the input response is usually linear with individually adjustable weights representing 

synaptic efficiencies. This model will be used to develop the adaptive response 

function neuron (ARFN). 

Consider a cortical neuron that receives input from both an excitatory and an 

inhibitory intemeuron. Now suppose that each of these intemeurons is excited by a 

common cortical input (see Figure 5.2). With appropriate choices for thresholds, the 

output neuron, which we shall call the ARFN, will have a Gaussian like response to 

the cortical input. Equation 5.1 gives the input response function, R(x), for the 

ARFN. 

R(x)= ~e-gx 
l+ee e 

5.1 

where Se and s1 are the synaptic efficiencies of the intemeuron--..+ARFN connections 

for the excitatory and inhibitory intemeurons respectively; ge and g1 are the synaptic 
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efficiencies of the input~intemeuron connections; and te and t; are the synaptic 

efficiencies of the threshold~intemeuron connections. 

Bias Input 

Intemeurons 

Figure 5.2: A neuron arrangement to implement a guassian-like response function. 

White neurons are excitatory, grey neurons are inhibitory. le, l ;, g e, g ;, Se and S; are 

the synaptic efficiencies of the indicated connections. 

In Figure 5.2 we see that there are six synaptic connections that could be modified. 

Two of these (g; and ge) are from the input to the two intemeurons. Modifying the 

synaptic efficiencies of these neurons would effectively modify the slopes (gain) of 

the corresponding sigmoid activation functions of the intemeurons. These could 

potentially be modified independently to create an asymmetrical output response 

function. 

Another two synapses (te and t;) occur between the inhibitory bias input and the 

intemeurons. Modifying the synaptic efficiencies of these neurons would alter the 

threshold of the two sigmoids. This would adjust the centre and width of the output 

response function. 

Finally the synaptic connections (se and s;) between the intemeurons and the ARFN 

could be modified. It is not clear that modification of these synapses would perform 

any useful function. Therefore these synapses have been ignored (set to a value of 

1.0) in the development of the ARFN, and will be omitted in the following 

discussion. 
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Figure 5.2 shows the network topology for a single input ARFN. For an ARFN with 

multiple inputs, each input has its own pair of interneurons, which allow independent 

response functions to develop. The inhibitory bias input is shared by all interneurons 

as shown in Figure 5.3. 

Bias Input 

Input 1 

Input 2 

• • • 

Inputn 

Figure 5.3: Synaptic connections for a multiple-input ARFN. 

Output 

In Figure 5.3, the response for each input is combined to form a single output. The 

most appropriate method for combining the individual response functions will 

depend upon the application. One method would be to treat the output as a standard 

neuron and calculate the output using a sigmoid activation function, adjusting the 

threshold and gain of this function to suit the level of discrimination required. 

Alternatively, the output could simply be the average of each individual response 

function. This approach was taken for the remainder of this section. If greater 

sensitivity is required, the output can be the product of the individual response 

functions, and this method was used for view cells in section 5.2. 

5.1.2. Training 

Training the thresholds of the interneurons is straightforward. In the case of the 

excitatory neuron, if the response of the interneuron is high, the threshold should be 
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trained up, if it is low it should be trained down. The opposite should occur for the 

inhibitory interneuron. These learning rules are shown in equations 5 .2 and 5 .3 

below. 

5.2 

lit, =11r [ a-(1-r,)] 5.3 

where 1Jr is the training rate for thresholds; re and r1 are the outputs of the excitatory 

and inhibitory interneurons respectively; and a is a parameter determining the 

equilibrium position for the training rule. 

In terms of a possible biological implementation, it is assumed that if the neuron is to 

be trained, the bias input is set high; and if the neuron is not to be trained, the bias 

input is set low. This could be achieved by feedback connections after some form of 

competition has determined those neurons to be trained. Thus equations 5.2 and 5.3 

can be considered modified Hebbian learning rules. 

If the parameter a in equations 5.2 and 5.3 above is greater than 0.5, then as well as 

adjusting the centre of the response function, the width will also be adjusted in an 

intuitive way. As shown in Figure 5.4, if the output of both the excitatory and 

inhibitory interneuron is either high or low, the response function will expand as well 

as moving the centre of the response function towards the input value. If the output 

of the excitatory interneuron is high and the output of the inhibitory neuron is low, 

the response function will contract towards the input. If the network is consistently 

trained on a small range of inputs, the width of the response function will be small; 

whereas if the input range is wide, the width of the response function will be large. 
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Figure 5.4: The effect of threshold training on the width and centre of the response 

function, R(x), for a>0.5 and inputX. re is the output of the excitatory intemeuron, 

1-r, is the inverse of the output of the inhibitory intemeuron. (a) For the input X 

shown, a-( 1-r,) > re-a > 0, hence the thresholds of the intemeurons both increase 

resulting in the expansion of R(x) (dotted line). (b) For the input X shown, a-(1-r,) 

< 0 < re-a, hence the thresholds of the interneurons move towards the input 

resulting in the contraction of R(x) (dotted line). 

Unfortunately, as the width of the response function decreases, the amplitude will 

also reduce until the excitatory and inhibitory sigmoids completely cancel each 

other. Conversely, the amplitude of the response function increases as the width 

increases. To avoid this, the gains of the sigmoids must increase as the width of the 

response function decreases. 

If the output of the excitatory intemeuron is less than 0.5, decreasing the gain of the 

sigmoid (decreasing the synaptic efficiency of the input~intemeuron connection) 

will increase the response of the neuron to that input value. Similarly, if the output is 

greater than 0.5, increasing the gain of the sigmoid will increase the response of the 

neuron to that input value. Since we want the output of the neuron to increase for a 
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particular input value after training, we could devise learning rules for the 

input~intemeuron synapses as shown in equations 5.4 and 5.5 below. 

5.4 

fig, = T/g [ (1-r, )- 0.5 J 5.5 

where 1'/g is the training rate for gain; and ge and g1 are the synaptic weights of the 

gain connections for the excitatory and inhibitory intemeurons respectively. 

Unfortunately, these intuitive rules do not produce desirable behaviour. If these 

rules are used, the excitatory intemeuron places too much importance on outlying 

high inputs, and vice versa for the inhibitory intemeuron. The modified rules in 

equations 5.6 and 5.7 overcome this problem. 

fige = T/g (r,, -0.5) (/J-r,,) 5.6 

fig, = 17g [(1-r,)-o.5][/J-(1-r,)] 5.7 

where fJ>ci>0.5. The /J-term modifies the effect of outlying high inputs (or low 

inputs for the inhibitory neuron) and has the effect of decreasing the gain or slope of 

the sigmoid for inputs in this region. This rule has the undesirable effect that it is 

now impossible to learn flat-topped response functions. While it may be possible to 

develop training rules that overcome this problem, in practice it has been found that 

these rules produce a very good fit to the presented data as can be seen in Ollington 

and Vamplew (2003). However, these rules require a number of parameters to be 

tuned and the effect of tuning is not always intuitive. Therefore, results for the 

remainder of this section were obtained using the much simpler and more robust 

rules below. 

We can define a sigmoid by two points, so to define the ARFN response function we 

need to find four points. We choose the x-coords to be XpJ, xp2, xp3, and xp4 

representing the plh, p21
\ p31h and plh percentiles of the dataset respectively 

(normally pi = l-p4, and p2 = l-p3). These points can easily be calculated offline, 

or found online using the simple learning rule: 

!ix = {77(1- p) 
P 17P 

if x; < xP 

otherwise 
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where 11 is the training rate and x1 is the current training data. 

Figure 5 .5 shows how y-coords y J and Y2 may be chosen to complete the definition of 

the response function. 

1 I 
I I I 
I I 1 I 

Y 2 -----------------------------------r-------- :------- 1-----------------+-------------------------------------
, I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I I 
I I I I 

y 1 ---------------------------------- I -------~--------+---------------- '-------------------------------------

Figure 5.5: Demonstrates how the four percentile points, Xp1, Xp2, Xp3, and Xp-1, 

define the response function. 

It would obviously be useful to find percentile points near the periphery of the 

dataset, however in practice these points can be difficult to estimate. This is because 

examples falling outside these points will occur very rarely or may not occur at all 

during training. If points that are more central are used, it may be necessary to 

choose high values for y J and Y2 in order to maintain good generalisation. In most 

cases, the following parameters have been found to be effective: pi = 10%, p2 = 
25%,p3 = 75% andp4= 90%; andy1=0.95 andy2 = 0.98. Parameter choice will be 

discussed further below. 

5. 1.3. Validating the Model: Classification 

The primary motivation for the development was for view classification as described 

at the beginning of the chapter. Therefore, a synthetic classification dataset was 

devised to test the suitability of ARFN s for this purpose. The dataset represents 

three distinct "views" that may confront a mobile robot with two range sensors as 

shown in Figure 5.6. 
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View 1 

~ 
View2 

3:)) 
I ~ 

View3 

!i:J 

Figure 5.6: Three robot "views" used for generating the view dataset. 

The robot has two range sensors, one angled 30 degrees to the robot's left, and one 

angled 30 degrees to the robot' s right. The dataset consists of ranges that would be 

recorded for these sensors assuming complete accuracy. However, the robot' s 

position and orientation was slightly different for each example in the dataset. 100 

examples were generated for each view, the complete dataset can be found in 

Appendix C. 

The ARFN was compared to a backpropagation network, and to a network trained 

using a fixed-width Gaussian where the width of the Gaussian was a tunable 

parameter. All networks were trained using 50% of the dataset and tested using the 

other 50%. The ARFN network achieved a mean accuracy of 99.6±0.1% on the 

training data, and 98.9±0.2% on the test data. The backpropagation network achieved 

a mean accuracy of 99.3±0.1% on the training data, and 99.2±0.2% on the test data. 

The Gaussian network achieved a mean accuracy of 95.2±0.4% on the training data, 

and 94.5±0.5% on the test data. The results show that there exist even simple 

datasets for which a fixed-width Gaussian is not the best choice, and where even a 

simple supervised ARFN network achieves similar performance to the much slower 

learning backprop network. 
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To help visualise the response functions, the ARFN was also trained on the entire 

data set and the resultant response functions for a single trial were plotted along with 

the frequency distribution of the input data for each category. The response 

functions are shown in Figure 5.7. 
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Figure 5.7: Response functions learned for view 1, 2 and 3 (top to bottom) for the 

left and right sensors when training on the view dataset. The solid line show the 

response function learned, and the dotted line shows the :frequency distribution (not 

to scale) of the dataset. 

' \ 

Figure 5.7 clearly demonstrates the potential of ARFNs. A narrow response function 

would easily distinguish between view 2 and 3 based on the value for the right 

sensor. However, there would be difficulty distinguishing between view I and 2, 

since high values for the right sensor would not be recognised as potentially 

belonging to view 1. Conversely, a wide response function would not be able to 

distinguish between view 1 and 3, since the functions for the left sensor would 

overlap significantly. ARFNs are able to learn the sharp distinction between view 1 

and 3 readings for the left sensor, while also learning the broad function required for 

view 1 's right sensor. 

The ARFN was also tested on two real world data sets obtained from the UCI 

repository of machine learning databases (Newman, Hettich, Blake, & Merz, 1998), 

namely the Iris dataset of Fisher (1936) and the Satellite dataset, which will be 
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referred to as the View and Sat datasets. The results for all three datasets are 

summarised in Table 5.1. 

Table 5.1: Comparison of mean accuracy of supervised backpropagation, ARFN 

and Gaussian networks. Results are for 100 independent trials with 50% of the 

dataset chosen for training and the other 50% used for testing. 95% confidence 

intervals are also shown. The backpropagation networks had 2, 3, and 3 hidden 

nodes for the View, Iris and Sat datasets respectively. The Gaussian width was 1.5, 

0.6 and 0.8 for the View, Iris and Sat datasets respectively. 

View Dataset Iris Dataset Sat Dataset 

Training Test Training Test Training Test 

Backprop 99.3±0.1 99.2±0.2 99.0±0.2 95.0±0.4 79.3±0.2 78.9±0.2 

Gaussian 95.2±0.4 94.5±0.5 93.3±0.4 91.1±0.7 74.9±0.1 74.5±0.1 

ARFN 99.6±0.1 98.9±0.2 95.8±0.4 93.5±0.5 67.8±0.2 67.7±0.2 
ARFNt 74.4±0.2t 74.1±0.3t 

t sat results for alternative parameter choice 

Note that for the Sat dataset, the parameters suggested in the previous section do not 

give good results compared to the tuned Gaussian network. Since it is difficult to 

correctly classify more than 80% of this dataset, it is not useful to search for 

percentile points that are beyond or close to this range. When the network was 

retested with pi = 25%, p2 = 40%, p3 = 60% and p4 = 75%, significantly better 

results were observed. However, neither the Gaussian nor the ARFN networks were 

able to achieve results comparable to the backprop network for this dataset. 

Multi-layer networks 

To improve performance on more difficult data, the number of ARFNs must be 

increased. This was achieved by adding an extra layer to the network with the 

hidden layer consisting of ARFN s, and the consisting of regular neurons. The 

hidden layer was trained using an unsupervised learning scheme, while the output 

layer was trained using supervised learning. 

The network was again compared to a similar network of Gaussian neurons, with the 

hidden layer of this network trained as a Kohonen-style Self-Organising Map. 

Hidden neurons were arranged into a 2D square map for this purpose. This training 

method, however, proved to be unsuitable for training ARFNs since the network was 

very sensitive to the neighbourhood size chosen for training. Instead, the hidden 

ARFN layer was initialised so that all neurons produced a high response to all of the 
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data (ie XpJ = -0.1, Xp2 = 0.0, Xp3 = 1.0, and xp4 = 1.1) and, for each example 

presentation, only the winning neuron was trained (with ties broken randomly). As 

neurons become more specialised, other neurons that have not previously been 

trained are found to provide the best match for new data. In this way, all neurons 

quickly settle into a particular niche of the dataspace. 

Figure 5.8 shows performance of the Gaussian and ARFN networks for different 

numbers of hidden neurons. 
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Figure 5.8: The performance of ARFNs and fixed-width Gaussian neurons on the 

Sat data set. Results for the training (a) and test (b) data sets are shown, error bars 

indicate 95% confidence intervals. The backprop line is for reference only and 

shows the mean performance for the optimal number of hidden nodes. 
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Both the ARFN and Gaussian networks show similar performance on the unseen test 

data, however both fall slightly short of the backprop network. The ARFN network 

does not perform well with fewer hidden nodes, but with 64 hidden nodes performs 

considerably better on the training data that the Gaussian network, and slightly better 

than the backprop network. This is probably partly due to the unsupervised training 

scheme used. The method enables all neurons to quickly find a niche within the 

dataset, achieving maximum separability while minimising the number of useless 

neurons. 

5. 1.4. Summary 

The adaptive response function neuron presented is able to achieve a better fit to the 

presented data than a neuron using a fixed-width Gaussian response function. 

ARFNs trained in a supervised manner are able to perform better than fixed-width 

Gaussians on some datasets, and equivalently on others. Unlike many methods for 

adjusting response function widths, ARFNs may be continually updated online, and 

may learn asymmetrically shaped response functions. It appears that these properties 

make ARFNs particularly well suited to the types of data that are likely to be 

presented to the proposed view cell system. 

While backpropagation algorithm performs as well or better on the datasets tested, 

this,algorithm is not well suited to fast on-line learning. In addition, backprop is not 

biologically plausible and does not fit well with the biological data for view cells. 

Aside from practical applications, ARFNs also provide some biological justification 

for other networks using local response functions. The ARFN is not a model of any 

particular biological system. However, it is certainly possible, given the neuron 

types and numbers available, that such neurons could exist in the neocortex or 

archicortex. Using only simple Hebbian-like training rules, ARFNs are able to adapt 

the width, shape and centres of locally tuned response functions. In addition, an 

even simpler training scheme can be used to provide similar results, while being less 

dependant on parameter choice. 

5.2. ARFNs as View Cells 

To test the viability of ARFNs as view cells, a simulated robot (see Appendix A) 

undergoing a collision avoidance task was used to generate training data. The robot 

had 9 range sensors at angles of -135, -90, -45, -22.5, 0, 22.5, 45, 90, and 135 

degrees with respect to the orientation of the robot. The environment consisted of a 

simple maze, as shown in Figure 5.13. 
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The ARFNs were trained using the on-line training rule given in equation 5.8, and 

the unsupervised learning scheme described in section 5.1.3. To improve long-term 

stability, the learning rate for each view cell was slightly reduced (by 0.1 %) each 

time that cell was trained. 

Figure 5.9 shows the views learned by 16 of these cells. 
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Figure 5.9: View patterns learned by 16 representative cells from an array of 225. 

View cell input is in the form of 9 range readings at -135, -90, -45, -22.5, 0, 22.5, 

45, 90, and 135 degrees with respect to the orientation of the robot. 0 degrees (the 

robot heading) is directly up in the diagrams. The dotted concentric circles are at 

ranges of3m and 6m. 

It can be seen that the ARFN s have learned to respond to a variety of different views 

ranging from corridors at various orientations, to open spaces. What cannot be seen 

from these diagrams is the shape of the response function for each input, which is 
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important for understanding the range of views that each cell will respond to. Three 

of these view cells (25, 81 and 213) were chosen for more detailed analysis. 

Detailed plots of these response functions are given below in Figure 5 .10, Figure 

5.11 and Figure 5.12. 
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Figure 5.10: The response function learned by cell 25 . View cell input is in the 

form of 9 sonar readings at -135, -90, -45 , -22.5, 0, 22.5 , 45, 90, and 135 degrees 

with respect to the orientation of the robot. The thick line plots the range at which 

each input fires maximally, while the shaded region shows the ranges at which each 

input response is over 0.75. 

The response function for cell 25 (Figure 5.10) has learned to recognise a situation 

where the robot is moving down a corridor. The width of the corridor is tightly 

defined (small response range), while the length of the corridor is more ambiguous. 

Therefore, this cell should respond to corridors of a particular width but of various 

lengths, or to remain active as the robot moves down a particular corridor. 
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Figure 5.11: The response function learned by cell 81. View cell input is in the 

fonn of 9 range readings at -135, -90, -45, -22.5, 0, 22.5 , 45 , 90, and 135 degrees 

with respect to the orientation of the robot. The thick line plots the range at which 

each input fires maximally, while the shaded region shows the ranges at which each 

input response is over 0.75. 

Cell 81 (Figure 5.11) recognises a view where the robot faces an irregularly shaped 

open space. The approximate diameter of the space is four metres (the size of the 

central area in the environment), however a reasonable response will be given for 

diameters between 2 and 10 meters. This range also means that the response will be 

high for various positions within the open space. 
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Figure 5.12: The response function learned by cell 213. View cell input is in the 

form of 9 range readings at -135, -90, -45 , -22.5, 0, 22.5 , 45, 90, and 135 degrees 

with respect to the orientation of the robot. The thick line plots the range at which 

each input fires maximally, while the shaded region shows the ranges at which each 

input response is over 0.75. 

Figure 5.12, the response function for cell 213, depicts a view where the robot is 

facing towards a comer with a large open space towards the right rear. Notice that 

the walls near the comer are reasonably well defined whereas the size of the of the 

open space is not. 

These view cells are able to detect a range of situations with similar salient features. 

Without the ability to learn variable response function widths, the view cells would 

be much more limited. For example in a corridor situation, a view cell with a fixed 

narrow response function would identify corridors of one particular length, or one 

particular position within the corridor. In contrast, a view cell with a broad response 
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function would respond to open spaces as well as corridors. Not only does this 

mimic the behaviour of biological view cells, which are shown to have fields that 

follow boundaries in the environment, but this is also likely to be a desirable 

property. For example, given a particular goal location, the appropriate action is 

likely to be the same for any position with the corridor. 

While these plots give some indication of the usefulness of view cells trained in this 

way, further information can be gained from analysing the particular location and 

orientations where these cells were the most active. This information, shown in 

Figure 5.13, will further help to determine the suitability of these cells for place cell 

input. 
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Figure 5.13: Location and orientation where the winning ARFN was either cell 25, 

- 81 or 213. Solid lines represent walls. Dotted ovals show groups of cells sampled 

at similar orientations, with the average orientations indicated by arrows. The 

perimeter of the environment measures 8x8m. 

Figure 5 .13 show the locations and orientations where each of the three cells 

considered was the most active. For any given orientation, these view cells may 
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have more than one place field, however these fields are generally separated enough 

that they should be distinguishable through path integration, with the possible 

exception of cell 81. 

The view fields of cell 81 are spread over a broad range of positions and orientations 

near the entrance to the open space. While initially this may seem problematic, it is 

interesting to note that biological place fields are also larger in open areas than in 

more restrictive parts of an environment. The overlapping place fields of other cells 

should help reduce ambiguity where a more restricted place code is required. 

5.3. Summary 

This chapter has presented a neural model, called the adaptive response function 

neuron, capable of learning a locally tuned response function that responds 
- - -- -

selectively to the training examples. The new model is able to adjust the centre, 

width and shape of the response function to match the training data in an intuitive 

and powerful way. The model suggests a simple architecture for the formation of 

locally tuned neurons in the cerebrum and other cortical areas. Networks of adaptive 

response function neurons may be applied and trained in the same way as radial basis 

function networks or self-organising maps. Adaptive response function neurons 

have the advantage that fewer cells are required to capture the important aspects of 

the input data. 

A system was proposed for training adaptive response function neurons as view 

cells. These view cells are able to generalise between input representing the same 

view at slightly different orientations or positions, without losing the ability to 

discriminate between conceptually different views. Thus, adaptive response function

view cells show a relatively high correlation to the position and orientation within an 

environment, and should provide an excellent source of sensory information for the 

establishment of place cells. The ability of these view cells to generalise between 

similar views should also prove useful for low-level navigational systems. 
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Chapter 6. From View Cells to Place Cells 

The view cells produced by the system described in the previous section provide a 

good basis for place cell input. View cells show good place and orientation 

discrimination. However, they often have place fields in more than one position and 

orientation. If a good estimate of head direction is available, this situation is 

significantly improved. A path integration system that allows only those places that 

are within a reasonable distance of the current estimate to be recognised would be 

sufficient to resolve any remaining ambiguity. 

Section 6.1 presents a method for combining path integrator and view cell input, and 

examines the place fields generated by this method. The correction of path 

integration errors is discussed in section 6.2. 

6.1. Combining Path Integrator and View Cell Input 

While an attractor model (Kali & Dayan, 2000) of path integration is a popular 

model for biological systems, it was decided that such a model would be 

computationally too expensive for the system under development. Instead, the path 

integrator simply stores an estimate of the robot's coordinates in the XY plane, and 

updates these from self-motion measurements. 

Evidence from sleep experiments suggests that the relationships between cells 

comprising the path integration system are partially pre-configured (Kudrimoti et al., 

1995). Therefore in the proposed place cell system, each cell is assigned a fixed set 

of path integrator coordinates. Any method may be chosen for this assignment, for 

the current work, the assigned coordinates correspond to a square grid of place field 

centres. This assignment is made with no knowledge of the environment other than 

the maximum size. While a random or self-organising allocation of coordinates 

would be biologically more plausible, given a large number of randomly allocated 

cells it should be possible to find a subset that approximates a square grid. 

Path integrator coordinates are primarily updated from odometric estimates of the 

robot's change in position. The primary influence on place cell activity is based on 

the Gaussian distance of the centre of the cell's place field from the current path 

integrator coordinates. 

61 



The path integrator contribution to the activation of place cell i is given by: 

6.1 

where p' is the current path integration vector, Pi is the centre of place cell i's place 

field and cr is a parameter controlling the range of the path integrator contribution. 

Odometric errors may result from undetectable occurrences such as wheel slip or 

collisions. These errors will cause cumulative path integration errors and must be 

corrected by view cell input. However, view cell input alone should not be sufficient 

to cause place cell firing. Therefore, view cell input is used to moderate the path 

integrator input, rather than drive it. The place cell system learns an association 

between view cell input and place cell firing. View cell input may be significantly 

different for different robot headings in the same place, and so a separate association 

is learned for each of a discrete set of orientations. During each update cycle the 

weight, ~ , from view cell i to place cell j, for direction d, is adjusted using the 

modified Hebbian rule: 

~ 111 = {T/v PC} (l - PC}) (VC, - T,,c) 
y 0 

A 

A 

,if d = h 
6.2 

,otherwise 

where h is the discretised value of the current heading, h; VC1 is the output of view 

cell i; PC1 is the output of place cell j; Tvc is a threshold parameter determining the 

effect of view cell activation on the direction of weight changes; and 1/v is the 
A 

training rate. If the current heading is h , the view cell input, VI, to place cell j is 

given by: 

6.3 
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If view cell output is greater than Tvc, this view cell will contribute positively to 

place cell firing, otherwise it will inhibit place cell firing. The final place cell output 

is given by: 

PC= l 
1 l+exp[t-(aP11 +bVI1 )] 

6.4 

where the parameters t, a and b are chosen so that view cell input alone does not 

produce significant place cell activation, as shown in Figure 6.1. For the values oft, 

a, and b, chosen in Figure 6.1, path integration input alone will produce moderate out 

put enabling the system to learn weights for view cell input. Once view cell 

connection weights are established, input from these cells pushes place cell 

activation higher, but is not large enough to produce high activation if no path 

integration input is present. A higher value of b would result in problems with 

perceptual aliasing, since similar views may exist in different parts of the 

environment. If path integration input is present and view cell input, previously 

correlated with that location, is not present, the view cell contribution will 

significantly reduce place cell activity, indicating a path integration error. 

PI plus VI 

PI Only 

PI minus VI 

VI Only 

-t -t+b -t+a-b O -t+a -t+a+b 

Figure 6.1: Choosing appropriate parameters, a, b, and t, for the contributions of 

view cell and path integration input to place cell firing. Dashed lines show the 

activation levels for (from lowest to highest) strong view cell input only, strong 

path integration input with strong negative view cell input, strong path integration 

input only, and strong path integration and view cell input. 
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6. 1. 1. Place Fields 

The place fields generated in this way should show a high degree of positional 

selectivity. The shapes of place fields will also be influenced by the current view 

and hence the orientation of the robot. Figure 6.2 shows the place fields of nine 

place cells sampled during a collision avoidance task. 

4 

7 ( . : 
' - .. 

Figure 6.2: Place fields of 9 place cells sampled in the southwest comer of the 

environment. Data was averaged over all robot orientations. The place cell path 

integrator coordinates are indicated by small solid circles. Solid contours indicate 

an activation level of 0.5, and are shown for 9 cells (Cells 1-6,8,9). The dotted 

contours indicate the 0.25 activation level of a single bimodal place cell (Cell 7). 

The generated place fields show a high degree of overlap, which would provide good 

generalisation for any navigational system based on these cells. The shapes of place 

fields also conform to the environment. For example, the field of cell 4 is elongated 

in the direction of the corridor, and the field of cell 9 bends around the comer of the 
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wall. The field of cell 7 is clearly bimodal. However, the activation levels of this 

cell were significantly lower than other cells. A more detailed analysis of four of 

these fields follows in Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6. 

Figure 6.3: Place field detail for cell 1. Dotted contours indicate activation levels 

of 0.15 and 0.5. Solid contours indicate activation levels of 0.3 and 0.7. The 

central figure shows the average activation over all robot headings, while the 

surrounding figures show the activation average of headings within 22.5 degrees of 

each compass point. 

The path integrator coordinates for cell 1 correspond to a location near the southwest 

comer of the environment. For all orientations, the place field centre is located close 

to these coordinates. However, the shape of the place field varies significantly with 

orientation. It is not clear in this instance whether this variation would be enough to 

adversely affect navigation, or conversely whether this distortion may in fact be 

beneficial. 
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Figure 6.4: Place field detail for cell 4. Dotted contours indicate activation levels 

of 0.15 and 0.5. Solid contours indicate activation levels of 0.3 and 0.7. The 

central figure shows the average activation over all robot headings, while the 

surrounding figures show the activation average of headings within 22.5 degrees of 

each compass point. 

The field of cell 4 is elongated along the corridor and, since the appropriate action is 

not likely to change in this region, this should be a beneficial property. For 

orientations to the northwest and west, this cell shows some bimodal behaviour. 

However, the activity level in the secondary field is very low, and not likely to affect 

navigation. 
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Figure 6.5: Place field detail for cell 9. Dotted contours indicate activation levels 

of 0.15 and 0.5. Solid contours indicate activation levels of 0.3 and 0.7. The 

central figure shows the average activation over all robot headings, while the 

surrounding figures show the activation average of headings within 22.5 degrees of 

each compass point. 

Cell 9 has a place field that also shows some variation with the orientation of the 

robot. However, the area of peak activity is quite stable with respect to orientation, 

and should not pose a problem for the navigational system. The size of this cell's 

place field is also larger than for those cells in a more restricted part of the 

environment, and this is in agreement with experimental results for behavioural 

studies. 

67 



..... 
. . fa\. . . . . . . . . . . 
\ t . . ..... · 

t•i 

i ··. ;6 : ·. : l : . . . 
~ . . . .. .. . . ...... · 

()
········\ 

' •, 
~ i 

; 

! 
. I 
\ ..... ···· 

..--······. . ) 
j .. .. 

·. .·· ....... 

• ......... 1 

'• 
\ 
l r· 

.·· {. ........ · 

.··•· . . .. 

G \ . . . . . ...... 

0 
........ . . . . . . 

I i 
·. .l 
'""··· 

.... . . .. . . ... _.: 0 . . . 
. . . . 
~ . .... • Li 

.... 

~S) 
V= l ... · 
\ ...... ·· 

:· . . . 
{i 

n ·-· 

Figure 6.6: Place field detail for cell 7. Dotted contours indicate activation levels 

of 0.15 and 0.5. Solid contours indicate an activation level of 0.3. The central 

figure shows the average activation over all robot headings, while the surrounding 

figures show the activation average of headings within 22.5 degrees of each 

compass point. 

Cell 7 has a place field with a distinctly bimodal nature. In addition, the area of 

greatest activity is dependent upon the orientation of the robot. Furthermore, the two 

centres of activity are located on opposite sides of the wall. This cell would not be 

suitable as input to a navigational system. However, the maximum output of this cell 

is considerably lower than for other cells and in fact the output of this cell was 

always dominated by neighbouring cells such as cell 4. Hence, even this distinctly 

bimodal cell will not have an adverse effect on navigation. 
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6.2. Correcting Odometric Errors 

The place fields generated by this algorithm show many of the properties of 

biological place fields, and should provide valuable input to the navigational system. 

In addition to navigational input, the place cells should also be able to correct for 

odometric errors in the path integration system on which they rely for input. To 

correct the position estimate, an estimate of the robot's current location is calculated 

as the average of place field centres, weighted by the view moderated place cell 

output. The difference between this population vector (Georgopoulos et al., 1988) 

and the current position estimate is calculated, and the position estimate is updated 

usmg: 

6.5 

where 1'/p is the training rate. Note that if view cell to place cell weights are low, as 

when the robot first enters the environment, llp will be very small. That is, the 

robot will initially trust it's path integrator coordinates. 

This process is best illustrated by an example. Figure 6. 7 shows a typical situation 

where the robot approaches a wall after having accumulated an error in the path 

integrator coordinates. 
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0 0 0 8 0 0 0 0 
Figure 6. 7: The influence of path integration and view cell input on place cell 

activity. As the robot approaches a wall the path integration coordinates, indicated 

by an 'X', are currently incorrect and produce the place cell activity, indicated by 

shaded circles, shown in a). However, the current head direction and view will be 

more associated with place cells that are close to, and to the left of, the wall. These 

place cells -will have their activity increased, whereas other place cells will have 

their activity decreased. This view cell moderated activity, shown in b ), results in a 

new position estimate and the path integrator coordinates are shifted towards this 

new value. 

The ability of the place cell system to correct for path integration errors was tested 

by adding noise to the robot's path-integration estimate, as well as a small systematic 

error at each time step. This error would cause the position estimate to drift if not 

corrected. If place cells were distributed over an area the same size as the 

environment then the position estimate would be easily corrected by the system as 

the edges of the environment were approached. To remove the possibility that edge 

effects could unfairly allow the system to correct errors, place cells were distributed 

over an area significantly larger than the accessible environment. Results are shown 

in Figure 6.8. 
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Figure 6.8: Error in position estimate over time. The thin line shows the 

cumulative odometric error. The thick line shows the error in the path integration 

estimate. 

Due to the coarse nature of the place cell distribution in these experiments, the 

position estimate is quite noisy, but importantly the error in this estimate does not 

increase when self-motion estimates are systematically incorrect. This amount of 

variance is generally not a problem for the types of navigational problems 

investigated, and minor errors may be partially countered by the collision avoidance 

sub-system (see section 7.2). In a biological system, the vastly increased numbers of 

place cells would result in a much more precise estimate. 

6.3. Summary 

The place cell system developed is able to maintain a reasonably accurate estimate of 

the robot's position even in the presence of random and systematic odometric errors. 

The system is relatively easy to implement and the implementation is 

computationally inexpensive. The place fields generated show many of the 

properties of biological place fields, and in most cases fields are quickly learned that 

are unambiguous with respect to the environment. While some of the generated 

place fields are bimodal, the activity levels of these cells are considerably lower than 

other cells. Therefore, these cells are unlikely to cause problems for the navigational 

system. 
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Similar place cell systems have previously been developed. The main advantage of 

this system, however, is that place field centres are fixed prior to training. This 

allows downstream navigational systems to make a priori assumptions about the 

relative positions of each place cell's place field. In particular, it should prove useful 

to assume an open environment and initialise the navigational system accordingly. 

This mechanism may help explain the dead-reckoning abilities of some animals in 

open environments. However, even in complex environments, such an initialisation 

will provide a reasonable first guess for the best direction in which to travel. This 

issue is discussed further in section 9 .2. 

One disadvantage of the system is that it is unable to perform absolute localisation. 

That is, localisation without the benefit of odometric information, such as when the 

robot is first placed in a known environment at an unknown location, or when the 

robot is lifted and moved to a new location. -The proposed- system is unable to 

maintain multiple estimates of its current position. Therefore, in the absence of 

reliable odometry, it is forced to chose one location that best matches the current 

view. In environments where perceptual aliasing may occur, a poor first estimate 

may lead to an unrecoverable situation. This problem could be easily solved by 

maintaining multiple position estimates instead of just one, or by implementing an 

attractor model. Scenarios requiring absolut~ localisation were not investigated in 

the current work. 
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Chapter 7. Low-Level Navigation 

This chapter develops a system for low-level navigation. The goal of this system is 

to allow the robot to perform rudimentary exploration of an unknown environment, 

and avoid collisions. A common technique for learning autonomous behaviour in 

mobile robots is reinforcement learning (e.g. Asada, Noda, Tawaratsumida, & 

Hosoda, 1996; Gaskett, Fletcher, & Zelinsky, 2000; Mahadevan & Connel, 1992), 

and this fits well with the biological motivations of the current work. 

Reinforcement learning is the process of learning the appropriate action for a given 

situation or state, based solely on the experienced reward. This is in contrast to 

supervised learning, where the appropriate action is given to the learning agent by 

some external knowledgable entity, and the agent must learn to reproduce that 

action. While supervised learning is a powerful learning/teaching technique, in 

many situ~tions it is not possible to obtain examples of suitable behaviour, or access 

to a knowledgable supervisor. 

In the context of navigation, the current state is typically the perceived location of 

the agent, the action is the direction of movement, and a reward is experienced when 

a goal location is reached. In this type of problem, the agent will wander around the 

environment for some time, finally reaching the goal by some circuitous route. This 

presents two important problems to the learning agent. 

The first problem is that of temporally distal rewards. It is difficult to learn about the 

action just performed if no feedback is given. When the goal location is reached, the 

action just performed may be preferred when in the same previous location in future, 

but a mechanism should also exist for learning about actions and locations prior to 

the most recent action. 

The second problem is that of exploration versus exploitation. If all actions leading 

up to the goal location are to be chosen in preference to others, then every route to 

the goal will follow the same path as the first successful attempt. However, this path 

may be far from optimal, and some attempt should be made to find shorter paths. 

Obviously, at some point the agent must choose the optimal action in preference to 

exploratory choices. The difficulty is in finding the right balance, and this often 

depends on the type of problem being solved. 

Section 7 .1 introduces the temporal difference learning algorithm. This 

reinforcement learning algorithm is one popular solution to the problem of 
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temporally distal rewards. Also discussed in this section are some strategies for 

addressing the exploration versus exploitation problem. Section 7.2 demonstrates 

the use of temporal difference learning for low-level navigation. 

7.1. Temporal Difference Learning 

Temporal difference (TD) learning (Sutton, 1988) is a popular reinforcement 

learning method that updates the value of the action just performed based on the 

estimated value of the current state. The value of a state, with respect to a particular 

action selection policy, is the expected discounted future reward if that policy is 

followed from the current state onwards. That is, if the agent receives reward rt at 

time t, then for a policy .1Tand discounting factory (O<y<l), the value "V(st) of state St 

IS: 

7.1 

This can be rewritten in terms of the value of the subsequent state: 

V' (s,) ~ E, {t,r'r,.1••} 
= E" {'1+1 + Irk'r+1+k} 

k=I 

= E" {'1+1 + r Irk1(1+1)+1+k} k=O 
= Etr h+I + rV" (s1+1)} 7.2 

Equation 7.2 can be used to derive a rule for learning value estimates on line. The 

error, J, in the estimated value, V, of state St is defined as: 

7.3 

If the training rate is 17, then the value estimate is updated using equation 7.4: 

7.4 

The full algorithm is given below in Figure 7.1. 
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Initialise V(s)Vs, ff 

Initialises 

Repeat: 

a~ action given by ff for s 

Take action a; observe reward r, and next state, s' 

<5 ~ r + yV(s')-V(s) 

V(s) ~ V(s) + 17<5 

s~s' 

Figure 7 .1: The temporal difference learning algorithm. 

The TD-learning algorithm partially solves the problem of learning state values from 

temporally distal rewards, but the values are only valid for the current policy. The 

next section presents a method for learning the optimal policy and value function 

simultaneously. 

7. 1. 1. Actor-Critic 

One of the earliest implementations of TD-learning for action selection was the 

actor-critic architecture (Barto et al., 1983). When using TD-learning, if the error in 

a value estimation, b from equation 7.3, is positive, the action just performed was 

more favourable than expected. The preference for choosing that action when 

encountering the same situation in future should be increased, and the converse is 

true for negative actions. If the preference for choosing action a1 from state s1 is p(st> 

aJ, then these preferences may be updated with training rate 17' using: 

7.5 

A suitable policy, .1T, may then be constructed based on these preferences, and this 

policy may also address the exploration versus exploitation problem. For example, 

the s-greedy selection policy chooses the most preferable action on most occasions, 

but occasionally, with probability s, chooses an alternate exploratory action. 

Alternatively action probabilities, P, may be derived from a Boltzman distribution 

with 'temperature' r: 

ep(s,a)/T 

P(s,a) = :~.::ep(s,b)li- 7.6 

b 
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Through the TD-learning algorithm and appropriate action selection strategies, the 

actor-critic architecture is able to solve both of the problems confronting a 

reinforcement learning agent. In addition, this architecture fits well with some recent 

models of biological reinforcement learning in the basal ganglia (see section 2.4 for 

details). However, an alternate approach, where action values for each state are 

explicitly represented, is often preferred. 

7.1.2. SARSA 

The SARSA (state-action, response, state-action) algorithm (Rummery & Niranjan, 

1994) uses the TD technique to learn the action value function, Q, directly. The 

error in an action value prediction Q(st, at) for an action at performed at time t from 

state St in this modified algorithm is: 

7.7 

By applying the update rule in the normal way, action values are learned for the 

current policy. That policy is usually derived from the action values themselves, 

using techniques such as those used for the action preferences in the actor-critic 

architecture. Hence, the policy and value functions are learned simultaneously. This 

is known as on-policy learning. 

This simple algorithm, shown in Figure 7.2, often performs better than the slightly 

more complex actor-critic architecture, but as with actor-critic, the policy learned is 

not necessarily the optimal policy. 

Initialise Q(s, a)Vs, a 

Initialise s 

Choose a from s using policy derived from Q 

Repeat: 

Take action a; observe r, s' 

Choose a' from s' using policy derived from Q 

5 ~ r + yQ(s', a')-Q(s, a) 

Q(s, a)~ Q(s, a)+ r;5 

s~s';a~a' 

Figure 7.2: The SARSA learning algorithm. 
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7.1.3. Q-Learning 

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is an off-policy method, 

meaning the value function learned is for the optimal policy, regardless of the policy 

currently being followed. This is achieved by using the maximum action value from 

the current state to train the value for the previous action, regardless of which action 

is actually chosen from the current state. That is: 

c5~1i+i + ymaxQ(st+Pa)-Q(st'at) 7.8 
a 

It has been proven that, provided each state-action pair is visited equally often, Q
learning converges to the optimal action value function (Watkins & Dayan, 1992), 

and hence the optimal policy may be derived. The complete algorithm is given in 

Figure 7.3. 

Initialise Q(s, a)\f s, a 

Initialise s 

Repeat: 

Choose a from s using policy derived from Q 

Take action a; observer, s' 

c5 ~ r + r max Q(s', a')-Q(s, a) 
a' 

Q(s, a)~ Q(s, a)+ 11c5 

s~s' 

Figure 7.3: The Q-Leaming algorithm. 

7.1.4. Eligibility Traces 

All of the TD-learning methods discussed so far allow value functions to be updated 

immediately after each experience, based on the estimated value of the current state. 

While this partially solves the problem of temporally distal rewards, in practice it 

may take some time before useful information is available for these updates to be 

meaningful. For example, consider an agent moving through states A, B, C, D, E 

and F to a goal state G. If the value function is initialised with zero values, then the 

error perceived after each state transition, A~B, B~C, C~D, D~E and E~F will 

be zero and no updates will be made to the value function. 

After the transition F~G, the value for state F will be updated, but even now, the 

values for the other states will not. If after reaching G the agent returns to A, and 
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again follows the same path, the value for state E will be updated, since F now has a 

meaningful value estimate. On the next traversal, D will be updated, and so on. 

What is needed is a mechanism to update all previously visited states after the first 

traversal. This mechanism is provided by eligibility traces, originally proposed by 

Klopf (1972). 

An eligibility trace e(s) is maintained for each state. If replacing traces are used, this 

trace is set to 1 when the state is visited and decays by A.y (O<A.<l) at each time step. 

That is: 

ei(s) = {
1, 

A.re1-1 (s), 

if St= S 

otherwise 

Alt_ematively, accumulating traces may be :used: 

if St= S 

otherwise 

7.9 

7.10 

For the type of tasks being examined, replacing traces offer a significant 

improvement over accumulating traces (see Sutton & Barto, 1998, p186 for details). 

Therefore, replacing traces were used for all experiments. 

TD(A.) (TD-learning using eligibility traces) updates all state values at each time step 

based on their eligibility trace. The error is calculated using equation 7.3 and each 

state value is updated using: 

V(s) ~ V(s) + r;e(s)o , \:Is 7.11 

The complete algorithm is given in Figure 7.4. 
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Initialise V(s) Vs; n-; and e(s) = 0 Vs 

Initialises 

Repeat: 

a~ action given by n- for s 

Take actiol") a; observe reward r, and next state, s' 

c5 ~ r + yV(s')-V(s) 

e(s) ~ 1 

for alls: 

s~s' 

V(s) ~ V(s) + 17c5e(s) 

e(s) ~ y..1e(s) 

Figure 7.4: The Temporal Difference learning algorithm with the addition of 

eligibility traces. 

Similarly for SARSA(A.), an eligibility trace, e(s,a), is maintained for each action pair 

and updated using: 

{
1, if st = s, at = a 

et(s,a) = 
Ar et-I ( s' a), otherwise 

7.12 

The action value function is updated using: 

Q(s,a) ~ Q(s,a) + 17e(s,a)c5 , Vs,a 7.13 

Implementation of eligibility traces for Q-learning is not so straightforward. ~ Two 

methods have been proposed: Watkins' Q(A.) (Watkins, 1989; Watkins & Dayan, 

1992) and Peng's Q(A.) (Peng & Williams, 1996). Peng's Q(A.) is not an entirely off

policy method (Sutton & Barto, 1998, p184), therefore only Watkins' Q(A.) will be 

discussed here. 

Watkins' Q(A.), see Figure 7.6, cuts off eligibility traces when a non-optimal action is 

chosen, for example when an exploratory move is made. This is because it can not 

be guaranteed that the error for such an action is applicable to previous action 

choices, as shown in Figure 7.5. 
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Figure 7.5: Applying eligibility traces to Q-leaming. a) The values for actions 

from A-B, B-D and C-D (y, 1 and 1 respectively) have been previously learned (for 

Das the goal). The value for action B-C is currently 0. The actions A-Band B-C 

have just been performed giving eligibility traces of .Ay and 1 respectively. b) The 

values for actions from A-B, B-C and C-D (y2, y and 1) have been previously 

learned (for Das the goal). The value for action B-D is currently 0. The actions A

B and B-D have just been performed giving eligibility traces of .Ay and 1 

respectively. 

The error for action B-C (a non-optimal action) in Figure 7.5a is y (from equation 

7 .8). The value of action B-C will correctly be trained towards this value. However, 

if an update were made for action A-B, based on the eligibility trace, the value of this 

action would be trained too high. The value for action A-B would be increased from 

y towards y+Ji.yy (applying equation 7.13), when in fact the current value is correct. 

Resetting eligibility traces when a non-optimal action is chosen avoids this problem. 

The replacing eligibility trace update rule for Watkins' Q(Ji.) is therefore: 

if s1 = s, a1 = a 

if s1 -:f:. sv a1 -:f:. a, a1 = argmaxQ(st'a) 7.14 
a 

otherwise 

The action value update, when using Watkins' Q(Ji.) is the same as in equation 7.13. 
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Initialise Q(s, a); e(s, a) \Is, a, 

Initialise s, a 
Repeat: 

Take action a; observer, s' 

Choose a' from s' using policy derived from Q 

a*~ arg max Q(s', b) 
b 

8 ~ r + rQ(s', a*) - Q(s, a) 

e(s,a)~l 

for alls, a: 

Q(s, a)~ Q(s, a)+ r;8e(s, a) 

if a'= a* 

e(s, a)~ yA.e(s, a) 

else 

e(s,a)~O 

s~s'; a~a' 

Figure 7.6: The Watkin's Q(-1) algorithm. 

Figure 7 .Sb shows another situation where action values could be updated incorrectly 

if eligibility traces were not reset to zero when non-optimal actions are chosen. The 

error for action B-D in Figure 7.5b is 1 and, using Q-learning, the value for this 

action will be trained towards this value. However, ifthe value for action A-B were 

updated using the eligibility trace, the calculated error would be too high. 

Unfortunately, resetting the eligibility trace to zero causes no training to take place at 

all, when in fact the value for action A-B should be increased from y2 to y. The 

Concurrent Q-Learning algorithm developed in section 8.2 addresses this issue. 

7. 1. 5. Function Approximation 

So far, all TD-learning algorithms considered have been based on a table look-up 

implementation. While the table-based approach is easy to implement and 

comprehend, in many cases such an implementation will be unfeasible or have poor 

performance. If the state space is very large then implementation may be limited by 

the available memory. Also, many states may be quite similar, and an ability to 

generalise between these states will probably be desirable. A table-based approach 

will be unable to deal with these difficulties. 
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The alternative is to approximate the value function from measurements or features 

of the state. If V(s) is a smooth differentiable value function with parameters B, 
then it is possible to apply gradient descent techniques to the problem. For TD the 

error is calculated in the usual way using equation 7.3, and the parameters of the 

approximation function are updated using: 

If eligibility traces are used, the trace should be updated using: 

with value updates as in Figure 7.7. 

Initialise 11; ff; and e = O 

Initialises 

Repeat: 

a+--- action given by ff for s 

Take action a; observe reward r, and next state, s' 

<5 +--- r + rV(s')-V(s) 

e +-A-re+ V8V(s) 

8 +--- 8 + TJ<Se 

s +--- s' 

7.15 

7.16 

Figure 7.7: The temporal difference learning algorithm using the gradient descent 

method and eligibility traces. 

For SARSA and Q-learning, action values may be learned in the same way. 

In the case of linear function approximation, these rules are quite straightforward to 

implement. If rA is a set of n measurements of states, the value function will be of 

the form: 

n 

f;(s) = 2:BiU)r/Js(i) 7.17 
1~1 
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The gradient of the value function will then be simply: 

7.18 

Linear function approximation may be combined with various forms of feature 

extraction, such as self-organising maps (Kohonen, 1995), radial basis function 

networks (Broomhead & Lowe, 1988), and tile coding (Albus, 1971). 

7 .2. Low-Level Design and Testing 

This section develops the low-level navigational system and addresses key design 

issues to be decided in the development of a reinforcement learning system. The 

system is then tested in the simulated environment (Appendix A), with a particular 

emphasis on appropriate input for this system. 

7.2.1. Reward Structure 

For collision avoidance, the most obvious reward structure would be a high reward 

for no collision and a low or negative reward if a collision was experienced. 

However, if this naYve reward structure were used, the robot would quickly learn that 

it could achieve the maximum reward by simply doing nothing. The reward 

structure summarised in Table 7.1 was found to produce more appropriate behaviour, 

given that a high degree of movement is also desirable. Note that these values were 

chosen so that repetitive behaviour, such as moving backwards and forwards, will 

also result in a relatively low reward. 

Table 7.1: Reward given for each of the nine possible robot actions. If a collision 

is experienced the reward is set to zero. 

Turn Left Do Not Turn Turn Right 

Move Forward 0.8 1.0 0.8 

Stop 0.6 0.5 0.6 

Move Backward 0.5 0.4 0.5 

7.2.2. Exploration and Leaming Strategy 

For these experiments, actions were selected using the Boltzmann distribution 

(equation 7.6) to provide a balance between exploration and exploitation (no 
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annealing policy was used with temperature -r = 0.1 throughout). Therefore, an on

policy reinforcement learning algorithm such as SARSA will not learn a policy that 

is optimal, but rather the optimal policy taking into account the possibility of 

exploratory actions. On the other hand, an off-policy method such as Q-learning will 

learn the optimal policy. However, the non-optimal policy learned by SARSA will 

be safer, since it will avoid situations where a poorly chosen exploratory action will 

lead to a collision. Despite this added safety, Q-learning was chosen as the 

reinforcement learning paradigm for these experiments. The reason for this decision 

was that, in the final navigational system, the collision avoidance sub-system is not 

directly responsible for action selection, and hence an on-policy method would not 

be suitable. 

7.2.3. Input Representation 

One of the most important decisions to be made when designing a reinforcement 

learning system is how states will be represented or measured. In this case, the 

information available to the robot consists of the range estimates of each of the 

sensors, and the collision indicator. Also available in the completed system, will be 

output from the view cell and place cell populations. Of these two, view cells seem 

to be a more appropriate source of input to the collision avoidance system. View 

cells offer a high degree of generalisation between environments, since similar views 

should exist. View cell input should also be more naturally correlated with 

appropriate actions than place cells. In addition, place cell firing is not generally 

correlated with head direction, and the appropriate action from a given place may 

vary dramatically with the direction the robot is facing. 

Three architectures were implemented and compared. In the first, the state 

representation consisted of the raw sensor information. From this, a linear value 

function was learned using the process described in section 7.1.5. The second 

architecture used the winning view cell as the state for a simple table-based 

reinforcement learning agent. Thirdly, both techniques were combined, using the 

linear function approximation technique, but with view cells as input. 

7.2.4. Testing 

The collision avoidance system was tested using the simulation described in 

Appendix A. Figure 7.8 shows the performance of the robot for different input 

representations, while Figure 7.9 shows the training environment and typical paths 

that were learned. 
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Figure 7.8: Performance of the mobile robot performing the collision avoidance 

task. Three Q-learning strategies were compared: linear function approximation 

with raw sensor readings as input, linear function approximation with view cells as 

input, and table based Q-leaming using the winning view cell as the current state. 

(error bars are insignificantly small and have been omitted) 

Figure 7.9: Typical paths learned using a) linear approximation from raw sensor 

data, b) table lookup using the winning view cell as the current state, and c) linear 

approximation from view cell output. 

Figure 7.8 shows that Q-learning was unable to learn the action value function using 

linear approximation from raw sensor readings. The average reward under this 

strategy is little better than could be expected for the random selection of actions 

from Table 7.1, and the path in Figure 7.9a shows that suitable behaviour was not 
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learned. This is because, at the time scale used, successive sets of sensor readings 

differ only slightly, and hence it is difficult to apply the TD algorithm. In theory, it 

should be possible to solve the problem if the parameters A. and y are carefully 

selected, however in practice this proved very difficult. 

The table-based approach, using the winning view cell as the current state, did result 

in suitable behaviour, as shown in Figure 7.9b. However, Figure 7.8 shows that the 

performance is worse than that using linear approximation from view cells. While 

both of these methods result in few collisions, paths for the tabular approach are 

more erratic than those for linear approximation (Figure 7 .9c ). When using tabular 

reinforcement learning, no generalisation is made between similar views, and 

therefore, as each new view is experienced, the value function needs to be learned 

from scratch. In addition, the combined output of several view cells produces a more 

precise estimate of the current state than can-be achieved-by considering the winning 

view cell only. 

As expected, linear approximation using view cells as input gave the best 

performance. The view cells respond to subtle differences in sensor input, enabling 

better state discrimination than using raw sensor input. Furthermore, the ensemble 

output of view cells allows greater generalisation, and hence faster learning, than 

using a tabular approach based on the winning view cell. 

7 .3. Summary 

This chapter has reviewed reinforcement learning techniques from the group of 

algorithms known as temporal difference learning. On e of these techniques, Q
learning was used to develop the low-level navigation system. In particular, it was 

found that Q-learning, using action values computed from a linear combination of 

view cell outputs, produced good performance for the exploration and collision 

avoidance task. 

86 



Chapter 8. High-Level Navigation 

8.1. Goal-Independent Learning 

Reinforcement learning (RL) techniques, such as TD learning (Sutton, 1988), have 

been shown to display good performance in tasks involving navigation to a fixed 

goal (Foster et al., 2000; Sutton & Barto, 1998). However if the goal location is 

moved, the previously learned information interferes with the task of finding the new 

goal location, and performance suffers accordingly (Foster et al., 2000). Since a 

mobile robot needs to be able to navigate throughout its environment performing 

tasks at potentially any location, a more flexible learning algorithm is required. 

Rats provide us with a good example of an animal with navigational abilities similar 

to that desirable for a mobile robot. Rats exhibit "one-trial learning" in tasks where 

the goal location is moved after learning to navigate to a previous location, as shown 

in the Morris watermaze experiments (see Figure 2.1 ). 

Foster and colleagues (Foster et al., 2000) explored the use of place cells for 

navigation in the watermaze tasks using TD-learning. It was found that the 

performance of the actor-critic (Barto et al., 1983) architecture was qualitatively 

similar to that of a rat when the platform location was not moved. However, as 

expected, it was not able to achieve one-trial learning when the platform was moved. 

To overcome this problem, Foster and colleagues used TD-learning in a novel way to 

learn a mapping from the place cells to a coordinate system. As the coordinate 

mapping became more accurate, the system was able to utilise this information to 

compute direct paths to the goal location. The coordinate learning was goal 

independent, and could be used to achieve one-trial learning when the platform was 

moved. 

A limitation of Foster and colleagues' method is the inability to deal appropriately 

with complex environments involving barriers and dead-ends. In such environments, 

computing the direction to a goal location may not provide any useful information, 

and may even be counter-productive. In the worst case scenario, this system will 

revert to using the goal dependent RL technique only, and will not be able to achieve 

one-trial learning. 

Dyna-Q (Sutton, 1990) is a reinforcement algorithm that learns a model of the 

environment. The model is used to generate simulated experiences, hence allowing 
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additional value updates. Dyna-Q is able to deal more successfully with dynamic 

goals, since many simulated experiences may be generated when changes to the 

model are identified. Many updates based on simulated experiences will enable 

Dyna-Q to achieve one-trial learning when a goal location changes, or when the 

environment changes, but these offline updates will require considerable computing 

resources. 

The DG-learning algorithm (Kaelbling, 1993b) is capable of learning in a manner 

that is completely goal independent, and thus achieves one-trial learning in 

watermaze tasks. In addition, DG-leaming may be applied in complex 

environments. The algorithm learns the expected number of steps, DG(s, a, g), 

from each state, s, to each other state, g, for a given action, a. The learning rule is a 

slight variation of the Q-learning update rule: 

DG(s, a, g) ~a (1 +~~n DG(s', a', g)) + (l-a)DG(s, a, g) 8.1 

where s'is the nest state andDG(s, a, g) is defined to be zero ifs= g. This update 

rule is applied for all g at each time steps. Actions are selected by choosing the 

action that minimises DG(s, a, g) for a given goal. 

While the DG-learning algorithm is goal independent, it does not include a method 

for applying eligibility traces. That is, the update rule relates to the most recent 

action only. However, it is possible to apply the triangular inequality to update other 

action values. In terms of DG-learning, the triangular inequality is written: 

DG(Si, a, s2 )::;; DG(Si, a, s,) + min DG(s,, a', s2 ) 
a' 

8.2 

This rule may be used to derive additional value updates called relaxations: 

DG(Si, a, s
2

) ~ min ( DG(Si, a, s2), DG(Si, a, sJ + ~~n DG(s,, a', s2)) 8.3 

The Floyd-Warshall algorithm provides a relaxation method that converges on the 

correct function after ISl3 steps, or ISl3xlAI steps in the case of DG-learning, as shown 

in Figure 8.1. 
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for i = 1 to lsl 
for j =Ito lsl 

fork= Ito lsl 
VaeA 

DG(s
1

, a, sk) +-- min ( DG(s1 , a, sk), DG(s1 , a, s,) + ~~n DG(s,, a', sk)) 

Figure 8.1: The Floyd-Warshall algorithm for DG-learning. Note that the order of 

iteration is important, the intermediate states (outer loop) should vary most slowly 

It would not be practical to run the complete relaxation algorithm after each 

reinforcement learning update, therefore Kaelbling suggests performing relaxation in 

parallel to reinforcement updates. Unfortunately, the relaxation procedure can only 

find shorter paths, and will produce poor performance if novel obstructions are 

encountered. In other words, the DG algorithm will be able to achieve one-trial 

learning when a novel goal is located, or when a novel shortcut is found, but will not 

perform well when a novel obstruction is encountered. 

The following section presents a new algorithm that is similar to DG-learning. The 

new algorithm, based on Q-learning, improves upon the relaxation procedure of DG

learning to achieve much better performance in situations involving novel 

obstructions. 

8.2. Concurrent Q-Learning 

To achieve the level of goal independence required, an algorithm that solves the 

reinforcement learning problem for all possible goal locations (place fields) 

concurrently was developed. Having learned this map-like representation, it is 

possible to navigate from any location directly to any other location, whether that 

location has previously been a goal location or not. The method is similar to DG

learning (Kaelbling, 1993b) but is based more directly on Q-learning (Watkins, 

1989; Watkins & Dayan, 1992). 

For path finding, the agent should receive a reward only when the designated goal is 

reached. The concurrent Q-learning algorithm (CQL) maintains an independent set 

of action values for each state as though that state was the goal, regardless of the 

actual location of the current goal. The action value for reaching a goal state sd after 

performing action a from the current state s is denoted <;/ (s, a), and we define 

g(s,a)=l Vs,a. The learning rule for CQL is identical to Q-learning, except that 
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each set of action values is updated by considering each state in turn as the goal 

location. That is for each state, action values are updated by applying the learning 

rule with a reward of 1 if the current state is the goal being considered, and 0 

otherwise. The basic CQL algorithm is given in Figure 8.2 below (note that 

max <;/ (s', a')= 1 if s'=sd). 
a' 

Initialise <;/ (s, a) Vsd, s ES, Va EA, 

Initialise s 

Repeat: 

Choose a from s 

Take action a; observes' 

For each state (destination), sd ES: 

8 ~ r max <;/ (s', a')-<;/ (s, a) 
a' 

<;/ (s, a)~<;/ (s, a)+ 178 

s~s' 

Figure 8.2: The Concurrent Q-Learning algorithm. 

Having learned a 'map' of the environment, all that remams is to choose an 

appropriate action. That is, a state must be chosen as an ultimate goal and an action 

must be chosen to move towards this goal. To do this the agent must first have an 

estimate_ of the expected reward, rs, for each state s. Given the reward vector, the 

expected return, Rs(s',a), of moving towards state, s, via an action, a, from the 

current state s', can be calculated. The state-action pair with the highest expected 

return is then chosen as the current goal and action, as shown in Figure 8.3. 

For all sd, a 

Rl (s, a)~<;/ (s, a) x l'1 
? ~ argl max Rl (s, a) 

l,a 

cl~ arg max R? (s, a) 
a 

Figure 8.3: Greedy action selection algorithm for the CQL algorithm. s is the 

current state, sT is the selected target state, and ar is the selected action. 
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This greedy action selection algorithm may easily be modified to use an a-greedy 

strategy (as in the current work) or similar non-greedy strategy. 

As with DG-learning, relaxation may be used to improve performance. Relaxation is 

the process of enforcing the triangular inequality: 

AC~AB+BC 8.4 

This equation can be converted to the action value representation: 

ff (A, a)~(/ (A, a) x max ff (B, a') 
a' 

8.5 

This rule would ideally be applied to all possible state and action combinations for 

each iteration of the learning algorithm. However, the complexity of the full 

relaxation procedure, O(ISl3 xlAI), would make this impractical. Therefore for CQL, 

relaxation is only performed for paths involving the most recently experienced state 

transition, thereby reducing the complexity to O(JSl2xlAI). The CQL algorithm, 

including relaxation, is given in Figure 8.4. 

Initialise (/ (s, a) Vsd, s ES, Va EA, 

Initialise s 

Repeat: 

Choose a from s 

Take action a; observes' 

For each state (destination), sd ES: 

5 ~ r max (/ (s', a')-<;/ (s, a) 
a' 

(/ (s, a)~(/ (s, a)+ 175 

Relaxation 

tor all state-action pairs (s0
, a°) 

s~s' 

5° ~ (;! (s0
, a0 )y max (/ (s', a)-Q! (s0

, a0
) 

if 5° > 0 

(/(so' ao) ~(/(so' ao) + 175° 

Figure 8.4: The Concurrent Q-Leaming algorithm with relaxation. 
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Unfortunately, relaxation can only be used to find shorter paths. Therefore, to make 

the most effective use of relaxation, action values should be initialised with 

pessimistic values, and this can have a negative impact on exploration (Kaelbling, 

1993b). This effect on exploration can be addressed by assigning an exploration 

bonus to either the states, or state-action pairs. 

A state-based exploration strategy may be implemented by direct modification of the 

reward vector prior to action selection. To do this each location is assigned an initial 

estimate, r eq, of the expected reward for that state. At each time step, the reward for 

the current location is updated to the experienced reward (in the watermaze this 

would be 1 if the platform is reached, and 0 otherwise). The value for all other 

locations decay towards req at some small rate. Since this strategy only modifies the 

reward vector, it does not alter the effectiveness of the relaxation procedure. 

Therefore, action values may be pessimistically initialised without adversely 

affecting initial exploration. In the extreme case, r eq may be set to 1. Note that these 

rewards are used for action selection only, action values are still updated 

independently of the current goal or experienced rewards. 

In some situations, exploring each state may not be sufficient to find new paths, and 

instead, the exploration of each action from each state must be encouraged. In those 

cases where a state-based exploration strategy is not sufficient, a system similar to 

that used in the Dyna-Q+ algorithm (Sutton & Barto, 1998) can be implemented. 

In the Dyna-Q+ algorithm, state-action pairs are assigned an additional reward, 

based on the time since this action was last performed. This additional reward is 

used for training in both the learning and planning stages of the algorithm. Such a 

system would have an undesirable effect on the consistency of action values. 

However, if this additional reward is used for action selection only, it should still 

produce the desired effect. In accordance with Sutton and Barto (1998), the CQL 

algorithm will be denoted by a '+' when this strategy is used. If n(s,a) is the number 

of time steps since the state-action pair was visited, and K is some small number, 

then the action selection algorithm can be modified to incorporate this exploration 

strategy as shown in Figure 8.5. 
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For all l,a 

It (s, a)~ (if (s, a)+ K~n(s, a)) x I' 
s1' ~ arg

1 
max .Kd (s, a) 
l,a 

cl~ arg max Rl' (s, a) 
a 

I 

Figure 8.5: Action selection algorithm for CQL+ (the CQL algorithm with bonus 

given for exploratory actions). s is the current state, sr is the selected target state, 

and ar is the selected action. n(s,a) is the number of time steps since action a was 

chosen from states, and K is some small constant. 

These exploration strategies enable pessimistic initialisation of action values as 

required for efficient use of the relaxation procedure. However, another 

disadvantage of the relaxation process is that, if a novel obstruction is encountered, 

relaxation will not be able to update all action values for paths that are now closed. 

This problem is addressed in sections 8.2.1 and 8.2.2. 

8.2.1. Adding Eligibility Traces to CQL 

As with other forms of TD-learning, the learning rate of CQL may be significantly 

improved if eligibility traces are included. Two methods of implementing eligibility 

traces for Q-learning are Watkins' Q(A.) (Watkins, 1989; Watkins & Dayan, 1992) 

and Peng's Q(A.) (Peng & Williams, 1996). The method most appropriate for CQL is 

Watkins' Q(A.), since Peng's Q(A.) is not truly an off-policy method (Sutton & Barto, 

1998, p184). 

The implementation of Watkins' Q(A.) for CQL requires an eligibility trace to be kept 

for each goal state. All traces for a state-action pair are set to 1 whenever that action 

is chosen. Whenever a non-optimal action is chosen, with respect to a particular 

goal, that goal's eligibility trace is set to zero for all state-action pairs. The 

eligibility trace for the current location is also set to zero for all state-action pairs. 

The p.ew algorithm, denoted CQL-e, is given in Figure 8.6. 
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Initialise (/ (s, a), e11 (s, a) \;//, s ES, Va EA, 

Initialise s, a 

Repeat: 

Take action a; observes' 

Choose a' from s' 

For each state (destination), sd ES: 

e11 (s, a)~ 1 

a* ~ arg max (/ ( s', b) 
b 

5 ~ rfl (s', a*)-(/ (s, a) 

For all state-action pairs (s0
, a°): 

if e11 (s0
, a°)> 0: 

(/ (s0
' a0

) ~ (/ (s0
' a0

) + r;5 e11 (s0
' a0

) 

else: 

Relaxation 

~ ~ g (s0
, a0 )y max (/ (s', a)-(/ (s0

, a0
) 

a 

if~ >0 

(/ (s0
, a0

) ~ (/ (s0
, a0

) +a~ 
Trace Update 

if a' = a* and s' * / 
e5

d (s°' a0
) ~ 2r e11 (s°' a0

) 

else 
d 

e5 (s°, a0
) ~ 0 

s~s';a~a' 

Figure 8.6: The Concurrent Q-Learning algorithm with relaxation and eligibility 

traces (CQL-e ). 

Eligibility traces will allow values to be updated in some situations where no update 

is possible through relaxation. For example, if a novel obstruction is encountered, 

then all state-action pairs leading to the novel experience will have their action 

values updated. However in certain circumstances, this may be only a small subset 

of the action values potentially affected by this obstruction. The next section 

introduces a further modification of the CQL algorithm that updates all values 

affected by each experience. 
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8.2.2. Using Q-Values for More Efficient Learning 

The relaxation method allows all relevant action values to be updated if a novel 

shorter path is found. However, it is not able to make any updates when a novel 

obstruction is encountered. In Figure 8.7 CQL would update only the action value 

E-F. CQL-e is able to update more action values in this situation. If CQL-e was 

used, the action values B-C, C-D, D-E as well as E-F would be updated (A-B would 

not be updated since this action is not optimal with respect to G). However, even 

these additional updates are far less than are conceptually possible, as shown below. 

Figure 8.7: A navigational problem consisting of a grid of states with possible 

actions to each adjacent state; a wall with two 'doorways' divides the environment 

into two regions. An agent familiar with the environment has just moved along the 

path A-B-C-D-E and attempts to move to F, but the doorway, previously open, has 

been blocked. Clearly, the value of taking the action E~F, with respect to the goal 

G, should be reduced. However in addition, any action for which the subsequent 

optimal path to G previously included the action E~F should have its value 

reduced. The actions for which this is the case are identified in bold. 

In order to perform all possible updates in Figure 8.7, we need a method for 

determining that an action is on an optimal path to a given goal. If (s,a) is the state 

action pair for which an error has just been observed, and if: 

Qf (so, ao) ~ Q' (so, ao) x Qf (s, a) 8.6 

then the state-action pair (s,a) must be on the shortest path from s0
, via a0

, to sd. 

Therefore, any error observed in the action value for (s,a) must also be applicable to 
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(s0 ,a0
). To make the appropriate update we can replace the eligibility trace 

e11 (s0
, et) with the corresponding action value, and apply the update rule whenever 

equation 8.6 holds, as shown in the new algorithm denoted CQL-q. The modified 

algorithm is shown in Figure 8.8. 

Initialise r;f (s, a) vl, s ES, Va EA, 

Initialise s, a 

Repeat: 

Take action a; observes' 

Relaxation 

For each state (destination), sd e S: 

FC?r each action a' and inte~medi_ate state, s e S : 

if g (s', a') x max r;f (s, a)> r;f (s', a') 
a 

r;/ (s', a')~ g (s', a') x max r;/ (S, a) 

Choose a' from s' 

For each state (destination), sd e S: 

o ~ y max Q(s', b)-r;/ (s, a) 
b 

For all state-action pairs (s0
, a0

): 

a 

if Q' (s0
, d) x r;/ (s, a)~ r;f (s0

, et) 

r;/ (s0
, a0

) ~ Q' (s0

, et) [r;f (s, a)+ 170 J 
s~s';a~a' 

Figure 8.8: The Concurrent Q-Leaming algorithm with relaxation and 'Q' updates 

(CQL-q). 

While the new update rule largely eliminates the need for relaxation, in certain 

situations CQL-q may make value updates that are unduly pessimistic. For example, 

if two independent paths of equal length exist to a given goal, then if one path 

becomes blocked, the values for actions leading to the origin of both paths will be 

reduced erroneously. Therefore, relaxation is still required to correct action values 

that may have been trained too low. However, relaxation now only needs to be 

performed for the current state, prior to action selection. 
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8.2.3. CQL Performance in the Watermaze 

To test the ability of the algorithm to deal with dynamic environments, CQL was 

applied to the RMW and DMP tasks as described in Steele and Morris (1999). Input 

to the learning system was via 400 simulated place cells, which is comparable to the 

number of place cells in Foster and colleagues (2000). Unlike Foster and colleagues 

however, the environment was discretised into 400 corresponding locations in a 

square 20x20 grid (note that some locations are not accessible). Movement was 

restricted to the eight adjacent locations, with the action being performed in one time 

step. The platform was the same size as a single place field, making it 

proportionately the same size as in Steele and Morris (1999). Platform locations 

were chosen to minimise the possibility of straight-line movement between platform 

and start locations. The environmental setup is shown diagrammatically in Figure 

8.9. 

~·- .......... · --:- ··· r·· --=- ·· ·r· ... ... ...... ·- - ·· 7 ......... ·· ·: -· · ;· ·· ·r ·· I ... -~ · -~ 
~ .......... ~... . ·t .... f .......... l .......... l.. . . : I :--- --~;=:r=F~ 
f .... !' 
i . 

f ~ lI!:t .. :_~;~~~~~: 1 · t . '. :-~-~_,___ ., . T • 1 

[-f '.l=f ~~[~'.-:::'.:~:~l~~~i-~f~~I~~~-~;=-:~J 
Figure 8.9: The environment used for the watermaze task showing: place cell 

locations (grid), start locations (white squares with bold outline), and goal locations 

(solid squares). The dark grey squares were used as goal locations for the RMW 

task. All solid squares were used as possible goal locations for the DMP task. The 

central barrier is also shown for tasks where this was included. 

97 



For the watermaze task, each location was assigned an initial estimate, r eq, of the 

expected reward for that state. At each time step, the reward for the current location 

was updated to the experienced reward (that is: 1 if the platform is reached, and 0 

otherwise). The value for all other locations decayed towards req at some small rate. 

In combination with the action selection algorithm (Figure 8.3), this process achieves 

a good balance between exploration and exploitation. In addition, to improve the 

efficiency of searching when the platform location is unknown, the system was given 

a slight preference for travelling in the same direction as that chosen at the previous 

time step. This is similar to Foster and colleagues' decision to add momentum to 

their system. In addition, non-greedy actions were limited to the two directions 

adjacent to the greedy action. 

Figure 8.10 compares the performance of Q(J.), CQL-e, CQL-q and DG-learning in 

the RMW and DMP tasks (variance is detailed in Table 8.1). Like the actor-critic 

architecture in Foster and colleagues (2000), Q(l) was able to learn the initial goal 

location quite quickly. However as expected, performance suffered when the goal 

location changed. This was particularly noticeable in the DMP task, where repeated 

interference from previous platform locations caused a progressive degradation in 

performance. The improved performance over the actor-critic architecture in Foster 

and colleagues (2000) was primarily due to the inclusion of eligibility traces. 

The CQL-e algorithm learned faster than Q(l) and also showed very good one-trial 

learning when the platform location changed in the RMW task. In the DMP task, 

CQL-e was able to achieve one-trial learning by day four to five. DG-learning 

performed slightly better than CQL-e, presumably this was due to the alternate cost

per-step representation used. CQL-q learned faster than all other algorithms, due to 

the increased number of updates made at each time step. 

To confirm the ability of CQL to handle complex environments, the algorithm was 

also tested in a watermaze environment with a centrally located barrier as shown in 

Figure 8.9. Due to time constraints, only CQL-e was tested. The performance 

difference between the RMW and DMP tasks, with and without barriers, is no 

greater than would be expected given the greater path lengths required when the 

barrier is present. This confirms the ability of CQL-e to handle complex 

environments. CQL-q and DG-learning were later tested in similarly complex 

environments, as shown below in Figure 8.12, and both would be expected to 

perform well in the watermaze task with barriers. 
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Table 8.1 Mean time to find the platform on the fourth trial of each 'day', for each 

algorithm, including 95% confidence intervals. 

RMW Day 1 Day2 Day3 Day4 Days Day6 Day7 Day8 Day9 

Q-Learning 46±9 29±5 24±4 21±2 19±2 19±2 16±2 49±13 29±6 

DG-Learning 31±5 21±3 18±2 18±2 17±2 17±2 16±2 14±2 14±2 

CQL-e 31±5 22±3 20±2 17±2 15±2 15±2 15±2 19±4 14±2 

CQL-q 18±3 15±2 14±1 14±1 14±1 13±1 12±1 12±1 12±1 

Q-Learning 43±9 45±9 55±10 74±16 87±19 91±19 107±27 107±25 102±22 

DG-Learning 25±4 16±2 14±2 11±1 12±1 11±1 10±1 10±1 11±1 

CQL-e 33±5 22±4 20±4 14±2 11±1 11±1 11±1 10±2 10±1 

CQL-q 21±3 11±1 11±1 11±1 11±1 10±1 10±1 10±1 10±1 
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Figure 8.11: Performance of CQL-e on the RMW (a) and DMP (b) tasks in 

watermazes with and without a centrally located barrier. 2=.95 in all cases, y=.90 

for trials with no barrier and y=.95 in trials with barrier. Error bars have been 

omitted for clarity. 
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8.2.4. CQL Performance in Dynamic Environments 

To test the performance of the CQL algorithm in changing environments, a grid

world task was devised similar to those used by Sutton and Barto (1998). A lOxlO 

square environment was divided into two equal sized "rooms". The two rooms were 

connected by two doors, which could be opened or closed. The goal location 

alternated between random locations in each room so that the agent had to navigate 

through the doors for each episode. Movement was allowed only in the North, 

South, East and West directions. 

The detour experiment started with both doors open. After the task had been learned 

by the agent, one door was closed. The blocking experiment started with one door 

open. After the task had been learned, this door was closed and the other door 

opened. The shortcut experiment started with one door open. After a period of time, 

the other door was opened to create a potential shortcut. Since these tasks require 

goal independent learning, conventional reinforcement learning techniques will fail. 

Therefore, the three experiments were conducted for DG-learning, CQL-e and CQL

q, only. 

For these tasks, the goal location was given directly to the agent; that is in the action 

selection algorithm (Figure 8.3), r8 is equal to 1 if s is the goal location and 0 

otherwise. This means that the process used in the watermaze tasks to encourage 

exploration may not be applied here. Therefore, to encourage exploration in these 

tasks, the action selection algorithm including an exploratory bonus was used (Figure 

8.5). In accordance with Sutton and Barto (1998), the CQL algorithms will be 

denoted CQL-q+ and CQL-e+ when this strategy is used, and DG+ when used with 

DG-learning. 

The environments and results for these three experiments are shown in Figure 8.12. 
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Figure 8.12: Environment setup and results for the a) detour, b) blocking and c) 

shortcut experiments. The straight bold line in c) is a visual guide only (Error bars 

for these graphs are insignificantly small and have been omitted). 
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Figure 8.12a shows that CQL-q was able to solve the detour task more efficiently 

than both DG-learning and CQL-e. Most importantly, when the door was closed, 

CQL-q was able to adjust to the new environment very quickly compared to DG

learning and CQL-e, both of which continued to try using the South door long after it 

was closed. 

With DG-learning, relaxation updates are not applicable in this case, as they can not 

be used to increase the estimated distance of the path via the South door. Hence, 

much exploration is required to correct previously learned values. As expected, the 

eligibility trace updates of CQL-e offered some improvement. A more dramatic 

improvement is seen with the CQL-q algorithm, which is able to update all relevant 

action values as soon as the closed door is found. These pessimistic updates are then 

corrected as the agent searches for a shorter path via the relaxation updates. 

For the blocking and shortcut tasks, the CQL-q+, CQL-e+ and DG+ algorithms were 

used. Without the exploratory bonus given during the action selection phase of these 

algorithms, the CQL and DG-learning algorithms find these problems difficult to 

solve, as do goal-dependent algorithms, such as Dyna-Q (Sutton & Barto, 1998). 

Figure 8.12b shows similar performance for all algorithms before the door states 

changed. When the doors were switched however, CQL-q+ was able to locate and 

utilize the new path much more quickly than CQL-e+ or DG+. When the door is 

closed, CQL-q+ quickly updates all values close to zero. With low action values, the 

exploration bonus dominates, and an exploratory sweep of the room commences. 

Once the new door is discovered, CQL-q+ immediately updates all relevant action 

values, and almost immediately returns to optimal behaviour. In contrast, action 

values are updated much more slowly by CQL-e+, and even more slowly by DG+. 

Consequently the exploration bonus is not able to dominate the now incorrect action 

values, and the agent begins a period of erratic behaviour. 

The shortcut task in Figure 8.12c does not involve a novel obstruction, and therefore 

all algorithms show similar performance in this task. The slight upward curvature of 

the graphs in the latter half of the experiment indicates that all three algorithms 

correctly learn to exploit the shortcut. 

8.2.5. Hierarchical Learning for Reducing the Complexity of CQL 

While Q-learning and, by extension, CQL are efficient learning algorithms in terms 

of the number of time-steps taken to learn optimal solutions (Koenig & Simmons, 

1993), they both suffer the 'curse of dimensionality' with respect to the update time 
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per step. Given a state space S, and action space A, the worst case update time 

complexity for Watkins' Q(A.) is O(ISlxlAI), while for CQL it is O(ISl2x1AI). Lazy 

learning may be applied to Q(A.) to reduce the complexity to O(IAI) as in the Fast 

Online Q(A.) algorithm (Wierling & Schmidhuber, 1998). However, such techniques 

would be more difficult to apply to CQL, and at best would only reduce the 

complexity to O(ISlxlAI). 

One common approach to this type of problem is to employ a tree data structure. 

Hirtle and Jonides (1985) found that human subjects organised spatial landmarks in a 

hierarchical manner, and it seems likely that other information may also benefit from 

being organised in this way. If a tree of states were used in conjunction with CQL, 

each state would need to learn action values for each of its siblings, each of its 

parent's siblings, each of its parent's parent's siblings and so on, as shown in Figure 

8.13. Additionally, all of a state's siblings would have their action values updated 

whenever an action is performed from that state. 

Figure 8.13: Left: A group of states that may be best represented as hierarchical 

groups. Solid arrows show possible actions, dotted lines show action values that 

would need to be learned from the shaded state. The shaded ovals show some 

conceptual groups. Right: A tree structure representing the environment on the 

left. The leaf nodes of the tree represent the states themselves; other nodes 

represent a conceptual grouping of the states. Dotted arrows show the action 

values, corresponding to the diagram on the left, that must be learned from the 

shaded state. Shaded circles correspond to the conceptual groups in the left 

diagram. 
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Previous work has considered similar hierarchical structures to reduce the 

complexity of reinforcement learning algorithms (Dayan & Hinton, 1993; Dietterich, 

1998; Kaelbling, 1993a; Parr & Russell, 1997; Singh, 1992). For the CQL algorithm 

operating on ISI states arranged in a balanced tree structure of degree d, this approach 

would yield a theoretical worst case update time per action of: 

W(!SI) = [ (d -1) x loga lslf = O(log lsl) 8.7 

While this is a significant improvement, there are likely to be few real world 

problems for which a suitable tree structure can be determined prior to training. For 

all other problems, the tree structure would need to be determined dynamically. 

While Digney (1996) presents an algorithm that learns such a structure dynamically, 

it is not clear that such a technique could easily be applied to CQL. 

An alternate, though similar, approach would be to identify some states as being 

more important than others. These key states would be similar to the parent nodes in 

the tree structure, with states learning action values to other states based on their 

proximity, and the degree of importance placed upon them; ignoring states of lesser 

importance. An algorithm for this truncated form of CQL is given in Figure 8.14. 

Initialise ff(s,a) Vsa,sES, VaEA, 

Initialise s, a 

Repeat: 

Take action a; observes' 

Choose a' from s' 

For each state sa ES I ff (s', a')> T(l): 

c5 ~ r max Q( s', b) - ff (s, a) 
b 

For each S1 ES I max ff (S1, b) > T(s): 
b 

For each d EA 

if Q' (s0
, a0

) x ff (s, a)?. ff (s0
, a0

) 

ff (s
0

, d) ~ Q'(s
0

, d) [ff (s, a)+ 178 J 
s~s';a~a' 

Figure 8.14: The truncated CQL algorithm (T-CQL). T(s) is the training threshold 

assigned to state s. Low thresholds can be considered to represent high importance 

or key states. 
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Note that theyalue update algorithm for T-CQL omits the relaxation step of CQL. It 

was found that these updates were not necessarily valid in the truncated algorithm. 

The role of these updates, primarily one of finding shorter paths, has been transferred 

to the action selection algorithm, which is discussed below. 

The update procedure in Figure 8.14 is not sufficient to solve the problem, since 

states with high thresholds (low importance) will never learn action values to distant 

states with similarly high thresholds. In order to choose an action that will lead to 

such a state, the agent needs to search for an intermediate key state with a low 

threshold that has legitimate action values for the target. The agent then begins to 

move in the general direction of the target by first moving towards the closest of 

these intermediate states. As it moves towards the nearest intermediate state, a new 

state closer to the target may become known, and the trajectory changes towards the 

new state, as shown in Figure 8.15. 

.. 
l 

l .. 

, .. ··\ 
........ ... 

•··. 

··........ ···· .. ... 
. ····· ... ..,, 

····•·· ...... . 

'·· ....... 
······ 

.. 
l 

! .. 
i 

... ·· 
.. .. 

..· 
........ ·· 

\ 

.. 
····•· ... 

........... 
······ 

·· ... ... ·· .. 

······· ................ . 

' 

\ 
·. 

··. 

\ ··•· ... 

··· .... 

........................... 
I 

................. :·: . ....,=:: .. ~~····· . 
.•...... ·· ··. 

"· ... ·· ... 

\:0 
\ .. .. 

.. ·· 

·· . 
•.·· 

·.·.:.:: .. :··· ...... ·······:·}',;.··· .. / 
/ . ... · . .. · 

.. · 

.. 

..· 

····· .. . .... 
·····::.::·•~"'.:::·.: ................ . 
····· .... . . ... 

·············· ........ ··········· 

Figure 8.15: A typical trajectory generated using the T-CQL algorithm. Solid 

circles represent states; corresponding dotted circles represent their training 

thresholds. Dashed lines show the planned path; solid arrows show the actual path 

taken. 

While Figure 8.15 shows that non-optimal paths may be generated, in practice 

optimal paths are often found, either through the use of redundancy in choosing key 

states, or simply because there are a finite number of actions that may be chosen 
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from any state. The action selection algorithm, as depicted in Figure 8.15, is given 

below in Figure 8.16. 

i ~ arg max [max Q'(s, b) x max d (x, b) Ix ES, max Q'(s, b) > T(x)J 
x b b b 

a~ argmaxd (s,b) 
b 

Figure 8.16: The action selection algorithm for the T~CQL algorithm. s1 is the 

target state, a is the action that will be performed from the current state, s. 

This action selection strategy will be sufficient, provided the agent has explored 

enough to find suitable key states with low thresholds. In the early stages of 

training, this may not be the case, and problems may arise. For example, the agent 

may reach a key state with accurate action values to the current target; the 

subsequent state may not have learned about the target, the agent then searches for a 

suitable intermediate state. At this point, the action values of the previous key-state 

would not normally be updated, because the current state has no information about 

the target. If little exploration has been undertaken at this point, the agent may find 

that the most suitable intermediate state is the key state just visited. The agent will 

then return to the key state and continue back and forth between the two states 

indefinitely. 

To solve this problem, action values are updated for each state that meets the 

threshold criterion, and for the current target. This may lead to a certain degree of 

'forgetting' in the early stages of training since, as in the example above, a key state 

may have its action values erroneously updated based on incorrect information from 

the subsequent state. TP.e advantage, however, is that it encourages exploration by 

forcing the agent to choose an alternate route from the key state. 

The final issue is the choice of thresholds or key states. While this may be easier 

than finding a tree structure for the states, it may still be difficult or impossible to 

identify key states prior to training. However, it was found that, provided a 

reasonably conservative distribution function was chosen, the thresholds could be 

assigned randomly. 
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In keeping with the tree-like nature of the algorithm, thresholds were chosen from an 

exponential distribution as shown in equation 8.8: 

ax 

f (x) = !!!!____ 
e0 -l 

8.8 

where a is a parameter controlling the shape of the function. 

Distributions for various values of a are shown in Figure 8.17. 

0 0.25 0.5 0.75 1 

Figure 8.17: Exponential distributions generated for various values of a in equation 

8.8. 

The worst case time complexity, for both the update and action selection algorithms, 

will occur when training is near completion, since action values start at zero and 

more updates are performed when more action values are higher than thresholds. It 

will also occur for a state near the conceptual centre of the environment, since this 

state should be within the threshold of a larger number of states than a state at the 

edge of the environment. 

To derive an expression for the update time complexity, we will consider a simple 

environment consisting of states arranged in a two-dimensional plane. Each state 

has neighbours to the north, south, east and west, with no barriers. The number of 
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states that are r steps from the central state is 4r. Therefore the number of states, 

N(R), which are within R units of the central state, and which need to be considered 

in the update algorithm is: 

R 

N(R) = L 4r P(T < y) 8.9 
r=I 

For any threshold probability distribution that it not asymptotic at r=O, this is a 

convergent series. For example, if the thresholds are distributed evenly between 0 

and 1, then in the limit as R--+oo: 

N(R) =I 4ry::::: 4r 2 

r=I (1- r) 
8.10 

This may easily be extended to the general case, giving worst-case time complexities 

for the update and action selection algorithms of O(IA[), provided the probability 

distribution is not asymptotic at zero. 

The T-CQL algorithm was tested in a complex office-like environment consisting of 

256 states, as shown in Figure 8.18. Possible actions consisted of the four compass 

points: north, south, east and west. The agent was required to navigate between 

successive random or pseudo-random locations within the environment. The 

successful traversal from one location to another constituted one episode. 

Figure 8.18: The environment used for testing T-CQL. Thick lines represent walls; 

thin lines represent state divisions. 
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Threshold values were chosen from random exponential distributions, as shown in 

equation 8.8. These results were compared with those for the full CQL algorithm, 

which is equivalent to the T-CQL algorithm with all thresholds equal to zero. 

Several threshold distributions were considered, with the parameter a, in equation 

8.8, taking values of O(flat), 2, 4, and 6. The performance is shown in Figure 8.19, 

see Table 8.2 for details of variances. 
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Figure 8.19: Performance comparison of T-CQL and CQL. The solid line shows 

the performance of the full CQL algorithm with dotted lines showing the 

performance of T-CQL with thresholds chosen randomly from exponential 

distributions with the parameter a as shown (error bars have been omitted for 

clarity). 
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Table 8.2 Mean time and 95% confidence intervals for CQL and T-CQL. 

Trial 1 Trial 10 Trail 20 Trail 30 Trail 40 Trail 50 

Complete 380±32 32±9 25±7 20±5 17±2 15±2 

a=O 380±26 32±7 25±6 15±1 16±2 16±2 

a=2 403±27 36±8 21±4 20±5 16±2 18±3 

a=4 435±32 44±9 31±7 19±5 17±3 15±2 

a=6 450±31 62±11 41±9 26±5 23±4 23±5 

Figure 8.19 shows that the Jinal perforinance; of all but the most extreme (a=6) 

threshold selections, was comparable to the full version of CQL. The learning rate 

for a=O and a=2 appear comparable to the full version, with some indication of a 

slight decline as a increases further. 

Figure 8.20 shows the average number of updates required per time step for the same 

set of threshold distributions. T-CQL performed approximately 1/8th, 1/25th, l/60th 

and 1/150th the number of updates compared to CQL for values of a equal to 0, 2, 4 

and 6 respectively. Of all threshold distributions tested, only a=6 came close to 

reaching its theoretical maximum number of updates in this environment. 
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Figure 8.20: The average number of updates made per time step for each episode. 

The solid line is for the full version of CQL; dotted lines show the values for T

CQL for the given threshold distributions. (Error bars for these graphs are 

insignificantly small and have been omitted) 

50 

In order to get an indication of how well the performance of T-CQL scales as the 

number of states increases, the observed path length was also compared to the 

optimal path length for each threshold distribution. The results are shown in Figure 

8.21, and demonstrate that, for conservative threshold distributions, T-CQL should 

scale well as the number of states, and hence average path length, increases. 

However, for an exponential threshold distribution with a=6, the performance 

degraded rapidly as the goal distance increased. However, given the R2-values for 

trend-lines in Figure 8.21, it is difficult to draw any strong conclusions from this 

limited data. 
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Figure 8.21: T-CQL scaling as goal distance increases. The solid line shows the 

trend line for the complete version of CQL; dotted lines show trends for T-CQL. 

Trend-lines for a equal to 0, 2 and 4 are indistinguishable. The R2 -values for these 

trend-lines are 0.629, 0.685, 0.760, 0.712 and 0.531, for complete CQL and T-CQL 

with a equal to 0, 2, 4, and 6 respectively. 

8.3. Summary 

In this chapter, a new algorithm called concurrent Q-learning was developed to 

enable robust navigation in complex and dynamic environments with dynamic goals. 

The new algorithm is similar to DG-learning, but action values are fully utilised to 

enable more value updates for each experience. Unlike the relaxation procedure 

used in DG-leaming, these updates are able to deal effectively with novel 

obstructions or optimistic value initialisation. 

The main weakness, of both DG-learning and concurrent Q-learning, is the poor 

update time complexity. A hierarchical form of CQL, called T-CQL, was developed 

to address this issue. T-CQL is able to perform updates with time complexity O(JAI), 

with minimal loss in performance. While hierarchical forms of DG-learning do 

exist, these still suffer from DG's inability to deal with novel obstructions. 
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Chapter 9. System Integration and Testing 

In previous chapters the localisation and navigational systems were developed. 

Chapter 5 developed view cells which are used as input for the place cell system 

developed in Chapter 6. Chapter 7 developed the low-level navigational system 

responsible for collision avoidance and simple exploratory behaviour, and Chapter 8 

developed the high-level system responsible for path planning. This chapter 

discusses the integration of the sub-systems (Section 9 .1 ), initialisation and pre

training (Section 9.2), and finally presents the performance of the complete system 

(Section 9.3). 

9.1. Integration 

Some components of the final system have already been tested together in previous 

chapters. The view cell system of Chapter 5 was used as input for the low-level, 

collision avoidance system developed in section Chapter 7. The view cell system 

also provides crucial input to the place cell system developed in Chapter 6. Figure 

9 .1 is a diagram of the complete system showing these interactions, and also 

showing other components that need to be integrated. 

Figure 9.1 shows that, in addition to the interactions already discussed, the high-level 

navigation system receives the current location as input from the place cell system. 
/ 

Therefore, the current goal location must also be in the same place cell format, and 

this conversion is made by the goal system, which also receives place cell input for 

training. Output from the path planning system is in the form of the preferred 

heading, and this is converted to a preferred motor action. Finally, conflicts between 

the preferred action from the path planning system, and the safe exploratory action 

from the low-level navigation system, are resolved by the motor control unit. 

This section discusses the goal system, the conversion of continuous place cell input 

into a discrete format suitable for use by the CQL algorithm, and the implementation 

of the motor control unit. 
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Figure 9.1: Schematic diagram of the proposed model. Ovals represent systems 

external to the model; boxes represent internal systems. 

9.1.1. Goal Memory 

A goal memory is needed to learn associations between goals and locations. If the 

goal is to recharge, for example, the robot needs to learn the locations of all 

recharging points. Typically, the region where a goal is present will correspond to 
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one or more place fields, and these fields may or may not be adjacent or overlapping. 

That is, in general there is no one-to-one mapping from goals to place cells. 

A suitable goal system can be implemented using a simple associative memory 

(Figure 9.2) that learns a mapping between goals and place cells. The memory 

consists of two layers, a layer of goal cells and a layer corresponding to the place 

cells, with complete connectivity between the layers. When a goal is encountered, 

the ,connection weights between the corresponding goal cell and active place cells are 

increased, and connections to inactive place cells are decreased (see equation 9 .1 ). 

To facilitate latent learning, this training is performed even when the goal 

encountered is not the current goal. 

~1'1{1 = 17a GC, ( PC1 - 0.5) 9.1 

When choosing an action, the input of this memory is set to the expected reward for 

achieving each goal (typically, the reward for one goal will be 1, while the reward 

for other goals will be 0). The output of the memory is then taken to be the expected 

reward, r1 , for reaching each place cell or state sd. Actions can then be selected 

using the action selection algorithm in Figure 8.5. 

0 
0 o0o 

o0o 
0 G~O Goal 

00~ Cells 

0 o0o 
0 o0o o0o 
0 o0o 0 

00 
Figure 9.2: Goal-place associative memory. 
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9.1.2. Planning Updates 

The goal system provides the motivational input to the planning system and this 

allows actions to be chosen. However, a suitable method for updating the planning 

system is required. To do this we must choose when and how to perform temporal 

difference updates. 

If the winning place cell were taken as the current location, then the system could be 

updated when a· new winning cell was observed. However, due to the continuous 

nature of place cell activity, and noisy input from the view cells, the winning place 

cell may change rapidly even when the robot is not moving. This will lead to many 

unnecessary and ultimately pointless, if not detrimental, updates. To solve this 

problem a form of hysteresis was introduced. Updates were performed only when 

the output of the winning place cell was significantly (50%) higher than the current 

output- of the cell that was the winner at the time of the previous update. 

As well as the current state, the path planning system needs to know the previously 

chosen action. Due to the nature of the environment and possible conflict with the 

collision avoidance system, the previously selected action may not be related to the 

action ultimately performed. For example, the planning system may suggest 

movement in a particular direction, but the collision avoidance system may predict a 

collision for movement in that direction. In this case, if the system decides to do 

nothing, the planning system would never be updated, since the winning place cell 

would never change. On the other hand, if an alternate action were chosen (see 

Figure 9.3), the system would have to decide which action should be used to update 

the planning system. 
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Figure 9.3: A situation where the action chosen by the path planning system may 

not be the best action to use for updating the system. The dotted line shows the 

actual path followed by the robot. 

If the actual direction of movement were used for training, the planning system 

would never learn anything about the intended direction of movement and may 

continue to choose that action in future. Alternatively, if the intended action were 

used for training then the planning system would learn an erroneous and possibly 

unpredictable outcome for that action. Finding a robust solution to this apparently 

simple problem proved to be a non-trivial task. 

It was decided that a combination of these alternatives should be used. If the motor 

system decides that remaining stationary is the best way to resolve conflicting input 

from the planning and collision avoidance sub-systei;ns, the planning system is 

trained using the intended action for the update. This update will have the effect of 

reducing the expected value of that action, since the state has not changed. 

Alternatively, if another action is performed, as in Figure 9.3, the planning system is 

updated using the executed action. The system was also initialised with low values 

so that these alternative actions will quickly become more attractive than those 

obstructed actions that are never executed, and hence rarely updated. 
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9.1.3. Combining Planning and Low-Level Navigational Input 

The motor system receives input from the planning system, the collision avoidance 

system, and the head direction system. The desired direction of movement from the 

planning system is compared to the current heading from the head direction system. 

This relative direction is then used to modify the action values provided by the 

collision avoidance system. Figure 9.4 shows the action values to be modified. 

60° 

120° 

Figure 9.4: Modification of collision avoidance action values relative to the 

preferred direction of movement suggested by the planning system. The 3 x3 grids 

represent the nine action values for moving (from left-to-right and top-to-bottom) 

forward and turning left, forward, forward and turning right, turning left, stopping, 

turning right, backwards and turning left, backwards, and backwards and turning 

right. Each grid shows the values for movement if the preferred direction is in that 

sector relative to the heading of the robot. The shaded boxes represent action 

values to be reduced. 

If the planning system does not know how to reach the current goal, the agent should 

generally follow the action values specified by the collision avoidance sub-system, 

since this will achieve rapid exploration of the environment. This should also be true 

if the goal is not believed to be accessible or if no goal is specified. On the other 

hand, if the goal is known to be accessible, the action values specified in Figure 9.4 

should be significantly reduced to encourage movement in the appropriate direction. 
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However even in this case, the collision avoidance system should be able to suggest 

small trajectory excursions to manoeuvre around obstacles or to account for small 

errors in the position estimate. 

This behaviour is achieved by reducing the indicated values by an amount depending 

on the planning system's predicted return for reaching the current goal, g, as shown 

in equation 9.2. 

Rg(s a) 
CA modifier = 1- ' 

5 
9.2 

When the goal location is near, the route chosen by the planning system will be 

closely adhered to, whereas for a more distant goal, exploratory actions are more 

likely to occur. If the planning system is initialised with low values based on the 

relative positions of place fields, these will provide a small preference for moving in 

the chosen direction. However if a wall is encountered, this modification will not be 

large enough to stall the exploration process. 

9.2. Pre-training and Initialisation 

A large part of the navigational system may be pre-trained. View cells should 

generalise well enough to enable the same set of cells to be used across many 

environments. Similarly, the collision avoidance system may also be pre-trained, 

since input to this system is view cell output. In addition to this pre-training, one 

important advantage of using a place cell system with fixed place fields is that this 

preconfiguration should allow for intelligent initialisation of the path planning 

system. 

9.2.1. View Cells and Low-level Navigation 

To test the usefulness of pre-training, the view cell and collision avoidance sub

systems were trained in the environment shown in Figure 9.5a. The robot was then 

transferred to a new environment, shown in Figure 9.5b, without re-initialising the 

view cell and collision avoidance systems. The average reward received by the low

level navigation system in the second environment was compared to the average in 

the frrst environment after training was complete. 
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a ................................... . 
b .... ----------------~ 

Figure 9.5: Environments used for testing the view cell and collision avoidance 

pre-training. a) is the training environment and b) is the test environment. 

In the training environment the average reward per time step was 0.831 ±0.005 (95% 

confidence), compared with 0.833±0.005 (95% confidence) in the test environment. 

A more dramatic change to the environment might yield poorer results. However, 

provide9 a suitably varied training environment is chosen, these results indicate that 

pre-training is unlikely to have a significant adverse effect on performance. In fact, 

in the majority of situations, pre-training should significantly improve learning speed 

in new environments. Therefore, all remaining experiments were conducted after 

these systems were trained in the environment depicted in Figure 9.5a. 

9.2.2. Place Cells and High-Level Navigation 

The view cell to place cell connections cannot be pre-trained and, since no 

information about the presence of obstructions is known prior to entering the 

environment, the path planning system cannot be pre-trained. However, since place 

field centres are fixed for each place cell, the path planning system can be initialised 

using this information. An initial estimate of action values can be made for each pair 

of place cells based on the distance between their place fields (see Figure 9.6). For 

an open environment with no obstructions, this initialisation alone would solve the 

path planning problem. However in more complex environments, this initialisation 

may be det~imental, especially if dead-ends are present. 

It should be noted however, that for an open environment the action values 

themselves are not important. Instead, it is the value of each action relative to other 

action values that is important. Therefore, the action values may be initialised with 

low, but spatially consistent, values. That is, the action values of a pair of place cells 
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may be initialised using some multiple of the distance between the place field centres 

as shown in equation 9 .3. 

r m[ JJz-(A +x,, )]J 
gi (Si, a)= f llXi.11 9.3 

where m is the scaling factor, Pi and J52 are the place field centres for place cells 

corresponding to states s1 and s2 respectively, and ~is the expected displacement 

vector for action a (and will have the same magnitude for all actions), as shown in 

Figure 9.6. 

Figure 9.6: Example demonstrating the procedure for the calculation of action 

value initialisation. 

Such an initialisation will enable immediate navigation in open environments, while 

allowing any errors in complex environments to be quickly corrected. In addition, 

once a valid path is found, the corresponding action values will dominate this 

initialisation. 

This initialisation has the added benefit of greatly increasing the number of action 

values that may be updated in the early stages of training, as illustrated in Figure 9.7. 

In Figure 9.7a, only the action just performed is updated, whereas in Figure 9.7b, all 
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paths containing this state transition are updated. Note that such an initialisation 

would not be suitable for DG-learning, since the relaxation process will not be able 

to decrease these values if an obstruction is encountered. Whereas, CQL will make 

the appropriate updates for negative as well as positive errors. 

a) 

b) 

; 

0.1 0.1 ,--- ......... .,,,.--- ........ ......... 

0.1 

~- -~~ ---------------

0.122-+0.218 ,,. - .... 
~ ...._ 

0.1 

0.122-+0.218 ,,. - .... 

.... _______ ..... 
0.042-+0.076 

... 

Figure 9.7: An environment includes four states A, B, C, and D, with direct 

movement possible (solid arrows) from A-B, B-C and C-D. Dashed arrows 

indicate action values for non-direct movement. An agent starts at B and moves to 

C. a) Shows the possible value updates, for y = 0.9 and 17 = 0.5, if values are 

uniformly initialised with the value 0.1. b) Shows the possible updates if values are 

initialised with low, but consistent, values. In this case, the value of m in equation 

9.3 is 10 (ie. 0.349 = y1x10
, 0.122 = y2x10

, etc.). 

The degree to which interstate distances should be overestimated for the purposes of 

initialisation is likely to depend on the environment. If the environment is known to 

be completely open, for example, the navigation system should be initialised using 

the true distances, and minimal further training will be required. As the complexity 

of the environment increases, it is likely that the distances should be increasingly 

overestimated by increasing the value of m in equation 9 .3. 

This hypothesis was tested by training the robot in four environments of varying 

complexity, shown in Figure 9.8. The robot was asked to find each of the eight goal 
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locations, followed by a further 42 goals randomly selected from these eight. The 

robot was not relocated after successfully finding a goal. 
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Figure 9.8: Environments used for testing initialisation of the path planning 

system. Solid lines represent walls; dotted squares represent goal locations. 

Figure 9.9 shows the performance of the robot for different value initialisations. 

As expected, the best value for the initialisation parameter, m, increases as the 

complexity of the environment increases. For the open environment (a), the best 

value is approximately 2 to 4. Surprisingly, using a scaling factor of 1 (the actual 

interstate distance) for initialisation does not give optimal results. This is 

presumably due to the fact that movement and position estimates are not precise, 

since the robot may not be at the exact centre of the place field when updates are 

made. For environments b, c, and d, the best scaling factors are 4, 16, and 32 

respectively. A scaling factor of 16 to 32 gives reasonable performance across all 

environments. 
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Figure 9.9: Performance in each of the environments a, b, c and d, showing the 

number of times steps taken to find 50 goals for various values of the scaling factor 

m. 

9.3. The Complete System 

128 

The quantitative results in the previous section do not give a good indication of the 

actual paths chosen by the robot. This section presents actual paths chosen by the , 

robot for the complete system, using both pre-training and path-planning .. ~

initialisation. In particular, environments and tasks were chosen to help characterise 

the nature of the robot's navigational decision making. This is very important for · 

any robot that is expected to interact with humans, as is often the case for mobile 

robots. In such cases, a robot that makes a predictable error may be more desirable ;_ 

than a robot that makes a technically correct but unexpected decision. · 

Figure 9 .10 shows the effect of the initialisation on navigation m an open 

environment. The robot starts at a goal location and proceeds to explore the 

environment. At some point, the robot is asked to return to the starting goal location. 

In such a task a typical human would anticipate that the robot would return to the 

initial location via the shortest route, rather than retracing its original path. 
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Figure 9.10: Analysis of system dead-reckoning ability. The robot starts at a goal 

location (dashed square) in the southwest corner of the environment. At some point 

(indicated by the block arrow) the robot is instructed to return to the start location. 

The paths in Figure 9.10 demonstrate the value of the initialisation procedure 

discussed in the previous section. When the robot is told to return to the original 

location, a direct route is chosen. With standard initialisation, such as would be 

required if place field centres were not fixed, the robot would either return via the 

original route, or randomly attempt to find some other route. Neither of these 

options would inspire confidence in a human observer or operator. 

Figure 9.11 and Figure 9.12 demonstrate learning in a more complex environment 

where pre-initialisation may lead to poor performance. The task and environment 

are identical to those used in Figure 9.8d. The robot is asked to move to a randomly 

chosen goal location. Upon reaching this goal, a new objective is randomly selected 

and the robot continues to the next goal. For this experiment, 100 consecutive goals 

were used. 
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Figure 9.11: Learning performance of the complete navigational system, showing 

the path chosen by the robot when navigating from goal 1 to goal 3 at various 

stages of training. a) shows the first attempt, with successive trials shown in b) 

through d). 

' ' 

In Figure 9 .11 a, the robot has just moved from the starting location in the south west 

comer to goal location 1 via a circuitous route that passed through goal 3, hence 

learning the location of goal 3 en route. The robot is then asked to return to goal 3. 

Despite having learned one possible route to goal 3, the robot attempts the shorter, 

direct path indicated by initial action values. A number of possible actions in this 

area have favourable values for reaching locations near goal 3, and several of these 

are tried before resorting to the longer path already discovered. Figure 9 .11 b shows 

the path chosen by the robot on the next occasion that the robot reached goal 1, and 

was asked to navigate to goal 3. On this occasion the robot immediately begins 

taking the known longer route, but then attempts to find a shorter path near goals 2 
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and 4, a region not explored completely on previous trials. After a short time, the 

robot continues on the known route. On the third occasion that the robot is faced 

with the same problem (Figure 9.1 lc), the robot decides to use the known route after 

briefly checking for shortcuts near goal 1. Finally, Figure 9.1 ld shows that on the 

fourth occasion the known route is chosen immediately. 
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Figure 9.12: Learning performance of the complete navigational system, showing 

the path chosen by the robot when navigating from goal 4 to goal 1 at various 

stages of training. a) shows the first attempt, with successive trials shown in b) 

through d). 

Figure 9.12 shows results from the same experiment for paths from goal 4 to goal 1. 

In Figure 9.12a it can be seen that, under some circumstances, the robot may explore 
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widely before reverting to the known route. As possible shortcuts are explored and 

discounted (Figure 9.12b), the routes become more direct. 

While the results of these experiments show that the behaviour is not always optimal, 

a human observer would get the sense that the robot knew what is was trying to 

achieve. It would be easy to imagine an animal behaving similarly in a similar 

situation. 

Figure 9.13 demonstrates the behaviour of the robot in dynamic environments. The 

robot is initially trained in an environment with four goal locations. The 

environment consists of two rooms separated by two doors, similar to the 

environment in section 8.2.3. At some point, one of the doors is closed and the robot 

must learn to use the alternate route. This task is similar to the detour experiment in 

section 8.2.4. Here the robot is tested in a continuous environment, and with the 

benefit of pre-training and initialisation. 
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Figure 9.13: Performance in dynamic environments. Dashed squares indicate goal 

locations. Thick solid lines indicate walls. The double lines in the north of the 

environment indicate a closed door. 

In Figure 9.13a, the north door is closed once the robot reaches the northeast goal 

location. The robot is then asked to navigate to the northwest goal. The robot 

initially attempts to use the north door. As action values for reaching the northwest 

goal via the north door drop, the robot moves a short distance away to try to find a 

route through the nearby wall, which may not have been attempted earlier. The 

robot then returns to the door and tries that route again. As these action values 

continue to drop, the robot finds that the route via the south door is more favourable. 
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In Figure 9.13b, the robot is asked to navigate to the southwest goal when the door is 

closed. The robot chooses the route via the north door, although the southern route 

is equal in length. Since both routes are of similar length, the robot changes to the 

southern route more quickly than in Figure 9.13a. Note that the route chosen is via 

the more familiar path from the northeast goal to the southeast goal. 

It is difficult to assess the performance of a real or simulated robot, since simple 

measures of path length or travel time do not capture the subjective qualities of the 

robot's performance. These subjective qualities can have a significant impact on 

how the robot is perceived by non-academic or casual observers, and in many cases 

this is of significant importance. These experiments show that the paths chosen by 

the robot appear intelligent and reasoned. While the paths may not be optimal, it is 

easy to rationalise about why a particular path is chosen and this is a very important 

quality for any robot that is intended to interact with humans. 
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Chapter 10. Conclusion 

This thesis has presented a localisation and navigational system for a simulated 

mobile robot based closely on biological theories and experimental results. The 

system was shown to be capable of efficient and robust navigation in complex and 

dynamic environments. While the system is yet to be verified in a real environment, 

this work has already resulted in new learning algorithms for localisation and 

navigation, that may also be applied to other problems in the field of artificial 

intelligence. 

10.1. Localisation 

Localisation was achieved first through the establishment of view cells, cells that 

respond to a particular sensory view. In the case of these experiments, the sensory 

view consisted of the readings from an array of range sensors. The sensory pattern 

from such an array is' highly dependent on the position and especially the orientation 

of the robot. For example, depending on the angle of incidence with a wall, the 

range returned by a sensor may change either dramatically with the robot's 

orientation, or very little. For every given view of the environment small changes in 

position and orientation may result in a significantly different sensory pattern, with 

each individual sensor affected to differing degrees. This presented a problem for 

the localisation system since it is desirable for the perceived view to change little for 
' 

small changes in position and orientation. 

To overcome this problem a new type of locally tuned neural model was developed. 

Adaptive response function neurons provide an online method for learning the 

centres, widths and shapes of basis functions for locally tuned neurons. These 

neurons provide a high level of generalisation without loss of class separability. 

Adaptive response function neurons (ARFN s) may be trained in either a supervised 

or an unsupervised manner, and should prove to be a useful tool for solving many 

problems in the field of pattern recognition. This was demonstrated through testing 

on several standard classification problems where a network of ARFNs was able to 

achieve similar or better performance than a similar network of locally tuned neurons 

that learned the centre of the response functions only. 

ARFN view cells alone display very useful localisation properties, but suffer from 

perceptual aliasing. To overcome this problem, a place cell layer was implemented 

that received input from both the view cells and a simple path integrator. The 
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preferred location of each place cell was pre-initialised allowing the navigational 

system to perform dead reckoning without the need for coordinate learning. 

10.2. Navigation 

Two types of navigational systems were implemented. The low-level navigation 

system uses standard Q-learning to learn collision avoidance behaviour. View cell 

input was used as input to this system and was shown to be a better source of input 

than the raw sensor data. View cell input is particularly useful as the output or the 

ARFN s is designed to vary little with small changes in position and orientation, thus 

reducing the possibility of repetitive, contradictory action selections. 

The high-level navigation system is used for path finding and this is achieved using 

the new Concurrent Q-Learning (CLQ) algorithm. CQL is a general reinforcement 

learning algorithm that is goal independent. Information gained in one task is 

automatically transferred to new tasks without suffering interference or loss of 

information pertaining to the original task. Furthermore, CQL makes optimal use of 

information gained from environmental experiences by updating all possible states 

after each experience. This improved performance is especially noticeable in 

dynamic environments. CQL is able to quickly choose detours and find shortcuts as 

the environment changes. A hierarchical version of CQL was also developed that 

reduces the time complexity of the update algorithm to such an extent that practical 

application of the algorithm is not limited by the size of the state space. 

The implicit mapping system implemented through CQL will have significant 

advantages over an explicit map. When learning an explicit map it is imperative that 

localisation errors are kept to an absolute minimum. Any error in localisation, that is 

not consistent across the entire environment, will result in an inconsistent map. In 

contrast, localisation need only be locally consistent with the implicit mapping 

achieved through reinforcement learning. For example, it does not matter that the 

perceived heading is North when the actual heading is East; all that matters is that 

performing a certain action either will or will not take the robot closer to the goal. 

This has the potential to reduce the need for precise, accurate sensors thus reducing 

the cost and complexity of any real system. 

10.3. Biological Implications 

Previous models have addressed many of the problems covered in this thesis. 

However, while other models have addressed various components of spatial 

cognition, the current work presents a complete and robust localisation and 
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navigational system. In addition, the current work presents novel and interesting 

solutions to some of the problems faced by biological systems. In particular, new 

insights into dead reckoning and navigational abilities are discussed. 

The place cell system presented assumes that place cells have predetermined path 

integrator coordinates. These coordinates may be used for dead reckoning in new 

environments with no need for coordinate learning. The current model captures the 

coordinate information in initial action values that are later modified through 

reinforcement learning. The agent then has immediate access to this information 

without the need for vector calculations. While not the case in the current 

implementation, this information could be distributed across two groups of place 

cells. One group of place cells would maintain general spatial relationships that are 

independent of the environment. This group would be closely related to the path 

integration system. The second group of cells would represent locations in particular 

environments. 

Navigation in the model is achieved using reinforcement learning, which is 

presumed to be the function of the basal ganglia. While other researchers have 

postulated a role for the basal ganglia, and hence reinforcement learning, in 

navigation, previous models do not propose a specific mechanism. According to the 

current model, both groups of place cells would be expected to send information to 

this area. This information would then be processed through methods similar to the 

concurrent reinforcement learning algorithm developed in this thesis. 

This suggests that the hippocampal system is predominantly a mechanism for path 

integration and localisation, and is not necessarily the location of a cognitive map. 

Instead, the basal ganglia would form a crucial component of the cognitive map, 

perhaps in conjunction with the hippocampus. The model also predicts that, if 

connections between the environment-independent set of place cells and the basal 

ganglia were severed, the animal would not be able to navigate using dead 

reckoning. Whereas, if the connection between the second group of place cells and 

the basal ganglia were severed, the animal would exhibit poor navigation in complex 

environments. 

In the developed model, egocentric view cells also play an important role in 

navigation, providing valuable input for low-level navigation. The low-level 

navigation is also achieved through reinforcement learning. Therefore, it is 

predicted that these cells would also send output to the basal ganglia. 
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While the focus of this thesis has been on navigation, the hippocarnpus is thought to 

play an important role in cognition in general. One hypothesis is that the 

hippocarnpus forms a working memory that may play a key role in learning 

relationships that may later be transferred to long term memory. The current work is 

compatible with this hypothesis, and therefore the above observations are equally 

applicable to the field of cognitive neuroscience in general. 

10.4. Future Work 

While the current system presents a complete localisation and navigational system, it 

is limited to a single environment (with the exception of view cells and low-level 

navigation, which are environment-independent). Also, only one set of place cells is 

modelled, and the system does not propose a role for the various groups of place 

cells found in animals. In other words, the place cell system developed models only 

those place cells closely associated with the path integrator. A second group of place 

cells could be added to the model to represent places in different environments or 

reference frames. This also suggests a possible separation of action values 

corresponding to each of the place cell groups. Those place cells closely associated 

with path integration could store the initial action values described in section 9 .2. 

These action values would not require training. A separate set of action values, for 

the second group of place cells, could be learned for each environment. The agent 

could then choose which set of action values to use for navigation in a given 

situation, in a similar way to the system proposed by Foster and colleagues (2000). 

The place cell system used by the model relies on input from egocentric view cells. 

Combined with the fixed initialisation of place field centres, this leads to bimodal 

place fields in some instances. While this does not appear to be a significant 

problem, there may be instances where this causes erratic navigational behaviour. In 

addition, these unused place cells lead to reduced efficiency. A possible 

improvement would involve the use of allocentric view cells, either replacing, or in 

addition to, the egocentric view cells. This could be combined with a method for 

shifting the place field centres as the environment is explored to achieve a more 

efficient spread of place cells across the environment. This would be particularly 

suited to the secondary group of place cells discussed above. 

The concurrent Q-learning algorithm will also benefit from further investigation. In 

particular, the thresholding system described in section 8.2.5 requires further work to 

determine the best method for assigning thresholds. A method for dynamically 
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ass1gmng thresholds would be particularly useful, and may result m further 

improvements in the efficiency and performance of the algorithm. 

In addition to these algorithmic improvements, the system will also be verified using 

a real robot with an emphasis on complex and dynamic environments. Testing with 

different types of environmental sensors ( eg. sonar, vision) will also be conducted. 

Computer games and training simulations are ariother area where the navigation 

system, in particular, has great potential. These applications are very demanding and 

further work will to be conducted to further develop efficient implementations of the 

CQL algorithm. 
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Appendix A. Simulation 

The simulated robot is not based on any real robot and is instead rather simplistic 

and abstract. Similarly the environment is also simplistic. Where not otherwise 

specified, all simulations were conducted in a spatially continuous environment with 

time discretised into 0.02s steps. For maximum flexibility, the simulation was 

created with Auran J et11
• 

Physical Parameters 

The robot consisted of a square base with a width of 40cm. The movement rate was 

1 m/s either forward or backward and the turn rate was 2 rad/s. The simulation did 

not model inertia and acceleration, and the robot was allowed to turn with no effect 

on forward or backward speed. 

Sensors included 9 range sensors arranged as shown in Figure A. l. The sensor 

model (below) was designed to simulate in an abstract way the performance of a 

combination of sonar and IR sensors. The robot was also able to detect a collision 

with any part of the base. 

11 Auran Jet is a graphics engine that is available free for academic use. See 

www.auranjet.com 
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Figure A.1: Physical parameters of the simulation showing: robot size, wall 

thickness, sensor arrangement, and sensor range. 

Range Sensors 

The range sensor model was chosen to give sufficiently noisy readings without 

requiring excessive computational resources. For each sensor, one ray segment was 

created at each time step originating at the sensor location and extending for 35m in 

a random direction within 20 degrees of the sensor orientation. For each reading, a 

weighting was calculated based on the angle between the ray and the sensor facing 

using: 

A.1 

where w(t) is the weighting at time t, Br and Bs are the directions of the ray segment 

and sensor respectively, and m is the 'beam width' of the sensor. For all 

experiments, OJ was set to I 0 degrees. 

The sensor reading at time t was calculated using: 

T 

L w(t)r(t) 
R(T) = ~t=~T-~~---

L w(t) 
t=T-9 
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where R(T) is the range returned by the sensor, and r(t) is the collision range for the 

ray segment at time t. 

This procedure produced noisy sensor data with many of the properties of real range 

sensors. For example, sensor readings are less accurate ifthe angle of incidence with 

the wall is acute, readings are less accurate near a corner, opening or wall edge, and 

readings are less accurate ifthe robot is moving. 

Collision Sensing 

The robot was able to detect collisions with any part of the base of the robot. These 

collisions generated a single collision signal with no indication of the area on the 

base with which the collision occurred. In addition, 'virtual' collisions were 

generated by the range sensor array to ptevent collision where possible. If any of the 

five forward facing sensors indicated a range of less than 1 Ocm, no further forward 

movement was allowed and a collision signal was generated. Similarly, if either of 

the backward facing sensors indicated a range less than 1 Ocm, no further backward 

movement was allowed and a collision signal was generated. These virtual 

collisions provided a safety margin to protect the robot and the environment, and 

reduced the chance that the square robot would become wedged against a wall. 

Odome try 

Full odometric information was available to the robot. The current heading was 

considered completely accurate and no noise was added to this measurement in any 

experiments. The current velocity of the robot was also available, however noise 

was added to this measurement as specified in Chapter 6. 

151 





Appendix B. Symbols Used 

The following tables list the symbols used for each section of the thesis. Also given 

is the default or initial values of parameters where applicable. 

Table B.1: Adaptive Response Function Neurons (Section 5.1) 

Symbol Description Initial/Default Value 

R(x) ARFN response for input x -
', 

re Response of excitatory intemeuron -
r1 Response of inhibitory intemeuron -
Se Synaptic efficiency of excitatory intemeuron ~ 1.0 

ARFN connection 

S1 Synaptic efficiency of inhibitory intemeuron ~ 1.0 
ARFN connection 

fe Synaptic efficiency of bias input~ excitatory -
intemeuron connection 

f1 Synaptic efficiency of bias input~ inhibitory -
intemeuron connection 

ge Synaptic efficiency of input ~ excitatory -
intemeuron connection 

gl Synaptic efficiency of input ~ inhibitory -
intemeuron connection 

1Jt Training rate for threshold 2.0 

1Jg Training rate for gain 2.0 

a Equilibrium position for training 0.75 

fJ Additional equilibrium position for training gain 0.8 
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Table B.2: Place Cells (Chapter 6) 

Symbol Description Initial/Default Value 

vc View cell output -

PC Place cell output -

VI View cell contribution to place cell firing -
PI Path integrator contribution to place cell firing -
p' Position estimate -
p Place field centre -

()" Gaussian width of path integration input 1.0 
d Synaptic weight of the connection from view -W.; 

cell i to place cellj for direction d 

1'/v Training weight for view cell input 0.5 

1'/p Training weight for correcting position estimate 0.1 

a Multiplier for path integration input 3.6 

b Multiplier for view cell input 1.2 

t Sigmoid threshold for place cell activation 3.0 

154 



Table B.3: Temporal Difference Leaming (Section 7.1) 

Symbol Description Initial/Default Value 

1[ Policy -

V"(s) Value of state s under policy n -

r reward -

y Discounting factor -

<5 Estimated error in value function -

1J Training rate -

rl Training rate for actor -

p(s,a) Actor's preference for choosing action a from -
states 

e Probability of choosing a non-greedy action -
P(s, a) Probability of choosing action a from states -

T Temperature for Boltzmann distribution -

Q(s,a) Value of choosing action a from state s -

e(s) Eligibility trace for state s -
A. Trace decay parameter -

"1J Vector of parameters for function -
approximation 

- Vector of measurements of state s ~ -

Table B.4: Collision Avoidance (Section 7.2) 

Symbol Description Initial/Default Value 

y Discounting factor 0.9 

A. Trace decay parameter 0.9 

1J Training rate 0.1 

T Temperature for Boltzmann distribution 0.1 
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Table B.5: Concurrent Q-leaming (Chapter 8) 

Symbol Description Initial/Default Value 

(/ (s, a) Value of performing action a from states, with -
respect to goal state sd 

R1 (s, a) Expected return for reaching goal state sa after -
performing action a from state s 

I' Reward for reaching goal state sa -
y Discounting factor 0.95 

,1, Trace decay parameter 0.95 

17 Training rate 0.8 

K Exploration bonus parameter 0.001 

n(s,a) Number of time steps since action a was 10000 
performed from state s 

T(s) Update threshold for states -

Table B.6: System Integration (Chapter 9) 

Symbol Description Initial/Default Value 

x:i Displacement vect()r for action a -

p Place field centre -

m Multiplier for initialisation 8.0 
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Appendix C. View Dataset 

Range 1 Range2 View 6.65 18.51 0 5.78 15.51 0 
5.98 15.47 0 9.26 19.83 0 11.08 20.08 0 
6.2 15.47 0 11.74 19.37 0 7.34 17.39 0 
5.31 16.98 0 5.58 18.04 0 5.97 14.27 1 
5.7 16 0 12.83 19.57 0 5.77 14.43 1 
5.57 17.18 0 5.3 16.6 0 5.81 13.71 1 
7.33 17.89 0 5.45 15.07 0 5.74 14.16 1 
8.4 18.61 0 5.26 14.77 0 5.68 14.27 1 
5.32 15.04 0 5.57 16.63 0 6.44 13.99 1 
5.64 18.59 0 7.95 18.09 0 6.51 13.86 1 
6.89 18.5 0 6.17 17.62 0 5.5 13.72 1 
6.11 15.44 0 7.5 18.36 0 5.84 14.59 1 
5.41 17.05 0 5.95 17.33 0 6.12 13.9 1 
5.43 15.72 0 4.94 15.42 0 5.64 14.36 1 
11.15 20.26 0 8.92 19.15 0 5.71 14.13 I 
5.36 15.78 0 9.68 18.46 0 5.92 13.91 1 
6.59 16.43 0 11.26 19.91 0 7.11 11.87 1 
5.91 16.47 0 6.5 18.45 0 5.96 13.87 1 
7.37 18.33 0 5.44 17.07 0 6.41 13.62 1 
9.91 19.62 0 6.01 15.85 0 5.81 14.38 1 
5.67 15.89 0 8.03 18.94 0 6.36 14.05 1 
5.18 16.87 0 5.56 15.4 0 6.92 13.07 1 
13.6 19.78 0 5.24 15.96 0 5.99 14.11 I 
7.74 19.38 0 5.46 15.41 0 5.63 13.94 1 
6.11 15.62 0 5.25 14.56 0 7.58 10.19 1 
5.94 16.31 0 9.05 20.08 0 6.29 14.3 1 
6.21 16.77 0 5.37 15.84 0 5.31 14.39 1 
5.84 17.31 0 7.27 16.47 0 5.64 14.38 1 
5.92 15.86 0 5.64 17.52 0 6.27 13.94 1 
5.62 17.66 0 9.91 18.74 0 5.68 14.49 1 
8.39 19.3 0 5.69 16.37 0 5.83 14.29 1 
9.77 19.18 0 11.13 19.05 0 5.91 14.4 1 
12.04 19.22 0 12.47 20.19 0 6.4 14.06 1 
5.71 17.18 0 8.41 18.9 0 6.74 12.92 1 
8.08 18.48 0 5.95 15.47 0 7.49 11.12 1 
5.24 15.95 0 7.93 18.66 0 5.83 14.37 1 
9.68 17.72 0 13.56 20.61 0 6.57 14.11 1 
5.56 16.6 0 5.64 17.79 0 5.46 13.81 1 
8.97 19.64 0 5.72 - 16.43 0 7.18 13.72 1 
5.73 15.51 0 5.53 15.27 0 5.55 14.16 1 
5.07 15.97 0 5.57 17.04 0 6.55 13.6 1 
8.33 17.31 0 5.49 16.18 0 6.25 13.66 1 
6.52 17.86 0 6.05 15.61 0 5.71 13.69 - 1 
5.52 15.5 0 8.76 18.82 0 6.92 13.84 1 
6.06 15.91 0 7.14 18.88 0 6.3 14.46 1 
7.97 19.13 0 5.43 15.48 0 5.33 13.94 1 
5.28 16.7 0 10.1 19.73 0 5.09 14.39 1 
5.22 16.9 0 5.52 15.59 0 6.38 14.19 1 
6.09 16.21 0 5.6 15.8 0 5.85 13.77 1 
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5.59 13.97 I 6.52 13.82 I 14.74 11.07 2 
6.4 14.14 1 12.18 11.42 2 12.03 10.94 2 
6.08 14.02 1 11.96 11.61 2 11.57 10.96 2 
6.53 13.14 I 12.55 10.62 2 12.05 10.79 2 
7.32 11.4 I 12.09 11.22 2 12 11.17 2 
5.88 14.35 I 12.28 11.22 2 13.5 11.01 2 
7.6 10.52 I 13.3 10.85 2 12.87 10.97 2 
5.47 13.97 I 13.64 10.65 2 13.35 11.15 2 
5.31 13.83 I 11.76 10.84 2 12.74 11.35 2 
5.83 13.64 1 12.7 11.45 2 11.9 10.55 2 
5.5 14.17 1 13.21 10.71 2 13.8 11.46 2 
6.66 14.15 I 11.84 11.54 2 14.03 11.02 2 
6.11 14.08 I 12.33 11.08 2 14.36 11.34 2 
6.49 14.3 1 12.27 10.98 2 13.01 11.33 2 
6.16 14.4 I 14.31 11.46 2 12.28 11.11 2 
5.49 13.51 1 12.33 10.92 2 11.44 11.47 2 
6.87 14.64 1 12.99 10.57 2 13.53 11.4 2 

7.14 14.15 I 12.2 11.43 2 12.28 11.06 2 
7.21 11.8 I 13.32 10.88 2 11.84 10.84 2 
6.17 14.47 I 14.04 11.28 2 12.47 10.92 2 
5.66 14.16 1 12.32 11.19 2 11.46 10.77 2 
5.15 14.35 1 12.27 10.88 2 13.8 11.29 2 
6.61 14.56 1 14.83 10.95 2 12.45 10.71 2 
6.02 13.95 1 13.47 11.07 2 13.26 10.51 2 
5.39 13.82 1 11.54 11.54 2 12.63 11.3 2 

6.18 13.83 1 12 11.45 2 14.04 10.7 2 

5.25 13.6 I 12.84 10.9 2 11.74 11.24 2 
6.54 13.43 I 12.25 11.46 2 14.35 10.84 2 
6.02 13.69 1 12.11 11.39 2 14.67 11.55 2 

6.66 13.57 1 12.58 11.32 2 13.64 11.17 2 
5.99 14.37 1 13.64 10.86 2 11.9 11.4 2 
6.93 13.09 1 13.98 10.72 2 13.49 11.12 2 

5.3 14.21 1 14.58 10.96 2 14.86 11.58 2 
7.23 11.92 1 12.39 11.33 2 12.67 11.22 2 

7.56 10.77 1 13.54 10.94 2 12.62 10.96 2 

6.65 14.35 1 11.91 10.84 2 12.24 11.04 2 

5.67 14.25 1 14.04 10.57 2 12.67 10.53 2 

6.55 14.3 1 12.05 11.16 2 12.04 11.06 2 

7.65 10.13 1 13.78 11.08 2 11.47 11.49 2 

5.94 14.32 1 12.6 10.71 2 13.74 II 2 

6.13 13.97 I 12.19 10.7 2 13.27 11.11 2 

5.99 13.91 I 13.64 10.73 2 12.17 10.96 2 
5.88 13.63 I 12.98 11.37 2 14.07 11.25 2 
5.6 14.03 I 11.64 11.04 2 12.24 11.04 2 
5.23 14.34 I 11.39 11.51 2 11.53 11.12 2 
6.71 14.19 I 13.52 10.98 2 12.62 10.86 2 
6.24 14.29 I 12.49 10.71 2 14.32 11.45 2 

5.86 13.87 I 12.23 10.91 2 13.29 10.7 2 
6.92 12.8 I 12.77 11.18 2 
5.93 13.96 I 13.13 10.83 2 
5.17 14.05 I 13.85 11.01 2 

6.31 13.79 I 14.48 10.94 2 

7.16 11.95 I 12.67 11.23 2 
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