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Abstract 

This thesis examines several aspects of the preparation, extraction and analysis of 

solvent soluble compounds from leaf material of Tasmannia lanceolata and reports a 

preliminary survey of extracts of some members of the natural population of the 

species in Tasmania. 

A major constituent of these extracts, polygodial, was shown to be stored within 

specialised idioblastic structures scattered throughout the mesophyll, and 

characterised by distinctive size and shape, and a thickened wall. The contents of 

these cells were sampled directly, analysed and compared with the composition of 

extracts derived from ground, dry whole leaf. This result was supported by 

spectroscopic analysis of undisturbed oil cells in whole leaf tissue. 

In a two year field trial, the progressive accumulation of a number of leaf extract 

constituents (linalool, cubebene, caryophyllene, germacrene D, bicyclogermacrene, 

cadina-1,4 - diene, aristolone and polygodial) during the growth flush was 

followed by a slow decline during the subsequent dormant season. These results 

were interpreted in relation to leaf dry matter accumulation, in order to propose a 

harvest period within which leaf material will produce consistent composition of 

extract. 

Under four levels of irradiance in a growth cabinet experiment the plant exhibited 

many characteristics of a 'shade' species, in particular, a limited ability to acclimate 

to high light levels. Assimilation rates were highest at 150µmol m-2s-l while 

elevated respiration rates and a reduced quantum yield occurred at a higher light 

level. Maximum assimilation rates in leaves grown at 150µmol m-2s-l were 

obtained at around 250µmol m-2s-l. Optimum net assimilation rate was obtained 

from 18-25°C. The effect of level of irradiance on the proportion of extractable 

compounds in the leaf, chlorophyll levels, specific leaf area, leaf thickness and 

percentage dry matter in the leaf are reported and discussed in relation to a probable 

production system in which the new canopy is largely removed at the end of each 

growth cycle. 

The ontogenetic patterns determining canopy architecture were observed in the 

field, and used, with support from the results of a trial pruning of mature trees, to 

discuss the likely outcome of various harvest methods. These results are combined 

to suggest a production strategy for maximum yield of leaf extract of consistent 

composition. The strategy proposes harvesting in late summer, after new leaf has 

achieved full maturity and may enable full canopy recovery in the subsequent 

growing season. 
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CHAPTER 1: INTRODUCTION 

Interest in 'wild' populations of plant species with a view to cultivation for human 

consumption has enjoyed a long history. It is of particular contemporary significance, 

as concerns are raised about the loss of 'non-commercial' species (flora and fauna) 

through the careless or deliberate activities of agriculture, forestry, mining and urban 

development. Support for measures to preserve 'biodiversity' hinge on two premises: 

the altruistic assumption that human domination and extinction of fellow travellers is 

inherently wrong, or that useful, and (emotively) 'lifesaving' compounds, extracts, 

synthetic mechanisms, etc may be revealed by current and future technologies should 

we care to investigate. 

I 

If the current development plans for Tasmannia lanceolata extract evolve as planned 

by industry, it might become a case in point - for at least the last fifteen years, many 

thousands of hectares of mature trees have been cleared each year in a routine operation 

referred to as 'pepper rolling' in preparation for eucalypt and pine plantations by 

Tasmanian forestry operators. While the species is in no danger of extinction, 

substantial areas which might have provided commercial raw material have been lost 

and will require many years of managed cultivation and the expenditure of considerable 

capital to replace them should commercial development require it. 

Tasmannia lanceolata - 'mountain pepper' - produces, upon solvent extraction, a 

fragrant product with unusual spicy, peppery characteristics. This extract has been 

received with interest by a number of flavour and fragrance industry representatives, 

and identified by the Tasmanian Essential Oils industry as a priority for further 

development. 

Commercialisation of such a product demands consistency of extract quality and yield, 

and, as is the case with 'domestication' of any plant species, an understanding of the 

plant's response to management techniques with the aim of maximising productivity. 

The development path for most agricultural crops commenced with a long period of 

passive management - harvest of wild stands, and was followed, often after many 

hundreds of years, with efforts to improve the technology and plant material involved. 

In the case of Tasmannia lanceolata, the technological approach has been introduced 

early in the development path with a coordinated research and market development 

program of which this study is a part. 

This study, therefore, begins a long process of interaction between the population of the 

species found growing naturally, and the interests of those who would develop it as a 

horticultural crop. The ultimate object of the interaction is the cultivation of selected 

plant material, under carefully managed growing conditions and coupled to harvest and 



product preparation technology. All of this must result in a product which fulfills the 

strict requirements of the food and flavour extract industry. 

2 

The study attempts firstly to resolve several fundamental issues relating to the extract 

itself, - its preparation and composition, where certain of the components reside in the 

plant tissue and how the process of accumulation of these components relates to the 

normal annual growth cycle. 

Secondly, and following the previous point, it investigates the basic ontogenetic 

patterns in the plant, and relates these to the problem of harvest of those plant parts 

containing the extract, on an annual basis. 

Lastly, the impact of such a harvest on the photosynthetic capacity of the canopy is 

investigated, providing basic information on the potential productivity of the species, 

and a guide to the suitability of local light environments for maximum productivity. 

Combining these findings, a suitable harvest strategy is proposed, providing for 

consistent extract composition at optimum yield, and with adequate provision for 

regeneration of vegetative growth. 
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CHAPTER 2: LITERATURE REVIEW 

2.0 Introduction 

This review commences with a general introduction to Tasmannia lanceolata , and the 

family to which it belongs, considering the morphological and developmental literature 

relating to the species, then referring to published work dealing with oils and extracts 

obtained from members of the family. Particular attention is devoted to polygodial, an 

unusual and potent extractive, and the subject of a number of continuing inquiries in its 

own right. 

Secondly, five topics are discussed as they relate to the experimental approach in this 

thesis- the study of oil cells as a morphological phenomenon, seasonal changes in 

extract composition and their significance in biological studies, literature relating to 

canopy structure and manipulation in tree species, light acclimation in understorey 

species (of which Tasmannia lanceolata is one) and lastly a general review of harvest 

strategies employed in the production of essential oils and extracts. 

2.1.1 Distribution of the Winteraceae 

The family Winteraceae is confined to the southern hemisphere reflecting its origins on 

the Gondwanan supercontinent. Against a background of some dispute regarding the 

systematics of the family and its genera, Cronquist ( 1981) is followed here in 

considering the family together with the Magnoliaceae, Annonaceae and seven other 

families as belonging in the order Magnoliales. Smith (1945) placed six genera in the 

family, distributed as follows -

Exospermum (2 spp.) and Zygogynum (6 spp.)- New Caledonia 

Pseudowintera (2 spp.)- New Zealand 

Bubbia (30spp.) New Guinea, New Caledonia, Lord Howe Is., Queensland 

Belliolum (8spp.) New Caledonia and the Solomon Islands 

Drimys southern Mexico to Cape Hom and the Juan Fernandez group, 

Australia, Tasmania, New Guinea , Celebes, Borneo and the Phillipines. 

The inclusion of Tasmannia as a section within the genus Drimys has since been 

displaced by a recognition of two separate genera (Smith 1969), principally as a 

consequence of morphological studies by Bailey (1944), Bailey and Nast 

(1943a,b: 1945a,b) and chromosome studies by Ehrendorfer et al., (1968). The genus 

Drimys is confined to South America while Tasmannia is limited to Australia, 

Tasmania, New Guinea and one wide ranging species in the Phillipines, Borneo and the 

Celebes. 
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A further addition to the family has been that of the genus Takhtajania recorded from 

one collection in Madagascar (Leroy 1980 cited in Vink 1988), bringing the widely 

held number of genera to eight. 

Vink (1988) argued that recognition of Tasmannia as a separate genus was not 

appropriate and detailed an evolutionary relationship to support this as well as 

combining Bubbia, Zygogynum, Exospermum and Belliolum , renamed Zygogynum 

so that he only recognised four genera. Vink's system appears not to have prevailed in 

subsequent literature and the genus Tasmannia appears generally recognised. 

About seven species of Tasmannia are distinguished in Australia (Sampson et al. 

1988), with distributions as follows -

glaucifolia; local, disjunct confined to Barrington Tops, NSW 

stipitata; common,SE Queensland to Hastings R NSW 

xerophila; high altitudes, SE NSW, ACT and Vic. 

insipida; SE Qld, east NSW 

purpurascens; Barrington Tops, Gloucester Tops NSW 

membranea; NE Qld, south of Cape York above 500m. 

lanceolata; wet sclerophyll forest to alpine heath, SE NSW, Vic and Tasmania 

Tasmannia lanceolata_(Poir.) AC Smith, referred to previously as Tasmannia 

aromatica,, Winterania lanceolata and Drimys aromatica, (Smith 1943) is described 

as a much branched shrub up to about 5 metres high with dark green glabrous leaves 

and distinctive crimson young stems. The dioecious plant bears black fruit, the size of a 

pea, containing numerous small seeds. The plant inhabits cool wet habitats from sea 

level to about 1200m in Tasmania, preferring disturbed sites in which it is an early 

coloniser, preceding wet eucalypt forest and Nothofagus rainforest (Read and Hill 

1983) and is found in similar situations in Victoria and at high altitudes in NSW as far 

north as the Hastings River. 

2.1.2 Medicinal and Culinary Uses of the Winteraceae 

Several Winteraceous species have been associated with medicinal use amongst 

indigenous peoples in the regions in which they occur. New Guineans (presumably 

Solomon Islanders) are reported to have used the pounded leaves of a Belliolum 

species for treatment of 'diseased spots' on the skin of pigs and decoctions of 

Tasmannia species were taken as an abortifacient (Kloppenburgh-Versteegh cited in 

Perry 1980). Drimys wintera Forst., (locally known as 'canelo', 'foique' or 'casca 

d'anta'), distributed between the Straits of Magellan and central Chile (to about 32°S) 

forms a large tree to 30 metres and is reported to be used in Brazil as a treatment for 

cholic, cattle itch and as a 'stomachal tonic' (Retamar 1986). 
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Decoctions of Pseudowintera axillaris, a New Zealand shrub were used by Maori 

people as a stimulant, for skin diseases, venereal diseases and stomach ache. The leaves 

were chewed to relieve toothache (Salmon 1980). 

European use of the family began in 1597 when Captain Winter, Commander of the 

Elizabeth, under Drake, used the bark of D. wintera to relieve scurvy amongst his crew. 

The species subsequently enjoyed some European use as a herbal remedy until it 

became hard to obtain and was partly replaced by T. lanceolata,.. D. chilensis and False 

Winter's Bark- Cinnamomum corticosum from Jamaica and the West Indies. Winter's 

Bark either True or False appears to have become increasingly scarce, and fell from 

favour as a herbal remedy during the twentieth century (LeStrange 1977). Bark of 

Pseudowintera axillaris, was used by pioneering New Zealanders as a quinine 

substitute while the sap was used for treating skin diseases (Salmon 1980). 

During the nineteenth century and the first half of this century, Tasmannia species have 

been intermittently referred to as presenting economic possibilities. T. lanceolata was 

mentioned by Maiden (1889) for its potential as a pepper or allspice substitute, and for 

its resemblance to Winters Bark. T. aromatica (syn. T. lanceolata) was suggested by 

Maiden (1899) as a possible source of a succulent, though insipid(!) fruit. 

Dr. Beth Gott (Dept. of Ecology, Monash University- pers. comm.) has found no direct 

evidence of Aboriginal use of Tasmannia species for any purpose, but quotes two 

aboriginal names ascribed to the species. 

Historical reference suggests use of Tasmannia has been mainly medicinal or herbal in 

nature, although reference to preparation of materials and doses is invariably vague. 

Australian 'bush tucker' writers refer to the use of Tasmannia lanceolata and T. 

insipida as flavouring herbs in preparation of meat and savoury dishes (Cribb and Cribb 

1975, Low 1988, Cherikoff 1989), and one current estimate of Australian consumption 

for this purpose is approximately 2-3000 kg dry weight annually (I R Farquhar: pers. 

comm). 

2.2 Morphological and anatomical studies of Tasmannia 

Scientific interest in the genera Drimys and Tasmannia has centred on the significance 

of a number of morphological characters and developmental patterns for an 

understanding of the development and evolution of angiosperms in general. 

The vesselless xylem in the wood of the species, first observed in the mid nineteenth 

century, was studied in some detail in the early part of this century (Jeffrey and Cole 

1916, Bailey and Thompson 1918). Debate at the time focussed on whether the nature 

of vessel-like structures found in the wood of members of the genus was that of a 

simplified vessel structure developed from an earlier, more organised transport system 

as found in other members of the Magnoliaceae or rather (as is now generally 

accepted), an undeveloped primitive characteristic indicating a gymnospermous 
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ancestry. The long, scalariforrnly pitted tracheids found in the wood of Drimys and 

Tasmannia species as well as nine other genera of woody angiosperms from five 

different families are considered to represent the precursors of the more advanced 

xylem element in which the membranes of bordered pit pairs towards the ends of the 

cell have disappeared, and which have become increasingly broader and shorter. Pitting 

of the thick lateral walls of tracheids found in the older wood of Drimys is usually 

circular, with occasional scalariform pitting towards the ends of the cells (Foster and 

Gifford 1974). The development and specialisation of the vessel members in 

dicotyledonous angiosperms is considered (Cheadle, 1953) to have arisen successively 

in the secondary xylem, the metaxylem and the protoxylem. 

Carlquist ( 1989) related a number of anatomical characteristics of the wood of 

members of Tasmannia to regional climatic factors - most importantly temperature. 

Growth rings, arising from the distinction between 'earlywood' and 'latewood' in 

secondary thickening, were more prominent in populations found in colder climates, 

the proportion of 'latewood' being greater in collections from high altitudes and more 

southerly distribution. Latewood is characterised by narrower tracheids, more resistant 

to embolism should groundwater remain frozen on a sunny day when transpiration 

could lead to collapse of vessel walls. Similarly, the degree of complex, prominent 

vesturing (wartiness) on the internal walls of the tracheids paralleled the above trend, 

being most obvious on populations from cold areas. These trends are observed where 

frosts occur in spring and autumn - higher altitudes and latitudes. Carlquist (1989) 

details these morphological trends for Tasmannia and summarises aspects of wood 

anatomy and morphology in Winteraceae, having addressed the subject in a series of 

papers on the family cited therein. 

Relevant to this was Bongers' ( 1973) survey of epidermal leaf characters in the 

Winteraceae, examining the range of epidermal characters in the family. Within 

Tasmannia a range of cuticular thickness, stomata! densities and the presence of plugs 

of alveolar material occluding the stomata in a few species were observed. The 

significance of the stomata! occlusion in association with the vesseless nature of the 

wood, and the adaptive significance for water transport in the genus was discussed. 

Bongers suggests that since genera of the Winteraceae occur entirely within mesic 

environments, the apparent failure of the family to develop a more efficient (broad, 

unobstructed, more or less continuous) vessel system may reflect a lack of evolutionary 

advantage of such developments in these situations, contrary to Carlquist's (above) 

interpretation of the trend as conferring some advantage with respect to frost and 

freezing resistance. 

The vesseless character was of interest to Ritman and Milburn (1991) in their 

observations of the attenuation of audible and ultrasonic emissions in Tasmannia 

stipitata and Thuja occidentalis in which the detection of such emissions was used to 

detect sites of cavitation in whole plants. 



7 

Bailey and Nast (1945c) summarised an extensive survey of the comparative 

morphology of the family, examining pollen, stamens, carpels, leaf vascularisation and 

epidermis. 

This study directed its attention to characteristics of systematic value and the findings 

were later invoked in a revision of the taxonomic status of the genus (Smith 1969). 

The seasonal development of meristematic tissue at the shoot apex of Tasmannia 

lanceolata, T. wintera and Pseudowintera axillaris (together with representatives of 

four other ranalian families exhibiting primitive characters) is described in detail by 

Gifford (1950). 

Tucker and Gifford ( 1964, 1966a, 1966b) devoted their attention to details of the floral 

ontogeny of Tasmannia lanceolata . The species is dioecious, and the development of 

vascular bundles in the carpellate flower, the development of the carpel, and floral 

development in the carpellate inflorescence itself drew further attention to the 

distinction between the two sections (Tasmannia and Wintera) of the genus Drimys. 

Carpel development, is described as conduplicate - the carpel enfolds a series of ovules 

attached to the adaxial inner surface, and the margins, although closely appressed, 

remain separate as a distinct cleft in the mature fruit. Pollen tubes arising from pollen 

adhering to the crests pass amongst a mat of hairs between the appressed ventral 

surfaces of the carpel, but do not penetrate the carpel tissue. This is regarded (Fahn, 

1982) as a manifestation of a primitively developed carpel from which gradual fusion 

of the margins, and development of a stigma from the paired crests by progressive 

closure of the margins towards the upper part of the carpel could have occurred. 

Stamen venation was the subject of a study by Sampson (1987) who examined all 

genera in the Winteraceae and reported the presence of a single vascular bundle 

branched slightly at its tip in Tasmannia lanceolata. The vasculature of the carpel after 

ovule initiation was the subject of a paper by Tucker (1975) in which the contribution 

of the dorsal and ventral vascular bundles to ovular supply and the phylogenetic 

significance of the predominantly ventral supply observed in D. wintera and T. 

lanceolata was discussed. 

Vink's (1970) assessment of the morphology of the Winteraceae provides extensive 

detail of leaf, flower, fruit and seed morphology, a summary of flower ontogeny in 

'Sect. Tasmannia' and a discussion of the consequences for taxonomy of the genus. 

'Drimys lanceolata' is then typified and its cytology, distribution and ecology briefly 

discussed. 

Vink (1970) describes the flush of growth which occurs together with or immediately 

after anthesis as a 'periodic shoot increment - p.s.i.', along which the spirally inserted 

leaves may be evenly distributed or may be crowded below the apex. The mean lengths 

of leaves along the twigs increased distally and leaves on lateral twigs had lower mean 

leaf lengths. Fine white crystals found on twigs of herbarium specimens were 

considered to arise from preparation techniques, recrystallising from 'substances' 
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originating in the twig. On leaf specimens, however, the occlusion of stomata by waxy 

plugs is considered a characteristic of 'sect. Tasmannia', and their absence in some 

herbarium specimens was considered to be due to the melting or dissolving of wax 

crystals during processing. 

Vink's description of leaf morphology mentions the wide variation in general outline 

and xeromorphy, particularly cuticle thickness and the angle of leaf venation to the 

midrib. Vink also included 'sharp peppery taste' as a distinguishing characteristic for 

entities within Tasmannia piperita collected in the New Guinea highlands. 

Petals of some genera in the family have been shown to have cells on their inner 

surfaces which are densely packed with polysaccharide granules (Thien et al. 1990). 

Hydrolysis of the granules results in the rapid uptake of water and the opening or 

closing of the petals, while chewing activity observed upon these floral parts suggests 

that the granules may serve also as a pollinator reward for visiting insects. 

Casey (1991) used Tasmannia lanceolata from several Tasmanian localities, together 

with specimens collected on Flinders Is., in Victoria and towards the northern end of 

the distribution in NSW, in a study of the effects of light climate and altitude on leaf 

morphological and physiological characteristics. He examined variation in leaf weight 

and specific leaf area, leaf and cuticle thickness, palisade cell length and number of 

layers and stomata! densities, and undertook a comparison of frost resistance and 

photosynthetic efficiency in leaves of plants collected from these localities and grown 

under controlled conditions. In general, genetic influences were considered responsible 

for leaf size, cuticle character, frost resistance and photosynthetic activity amongst the 

types, and lowland types tended to demonstrate a more plastic response to 

environmental influence on leaf size than those originating at the higher altitudes. 

Despite the attention to the morphology and anatomy of Tasmannia reviewed above, 

there appears to be no specific consideration of the distinctive oil-bearing 

characteristics of the species, or even the genus. Bongers (1973) and Vink (1970), 

despite detailed study of leaf morphology and epidermal characters in Winteraceae 

scarcely mention oil cells as a feature. West (1969) examined a range of genera in 

several related families, including Winteraceae, (but not Tasmannia) for the presence of 

oil cells and gave a general account of their structure and occurrence. Carlquist (1989) 

mentions that oil cells occur in rays of Tasmannia wood. 

Oil cells are considered to offer systematic utility in some families, particularly 

Annonaceae (Bakker and Gerritsen 1992) and have been described in detail for the 

others in which they occur (Maron and Fahn 1979, Platt-Aloia et al. 1983, Bakker and 

Gerritsen 1990), but their presence in the Winteraceae has not been examined in detail 

in light of the extractable compounds reported for leaf and wood of many members of 

the family. 
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The distribution of Tasmannia lanceolata and indeed most members of the 

Winteraceae, in moist environments, often associated with rainforest or wet sclerophyll 

vegetation types might lead to a general assumption that ideal cultivation practices 

would provide for moist, shaded growing conditions. 

T. lanceolata appears to tolerate a wide range of temperature environments- from 

southern high altitude sites to warm temperate conditions on the mid coast of New 

South Wales, provided moisture is neither limiting nor inundating. The tracheal 

transport system appears to provide at least one physical explanation for its 

confinement to such situations. 

The significance of light level, a critical factor at rainforest margins and in canopy 

breaks, in the performance of the species both in establishment and growth is less clear. 

It would appear that while the species does not flourish at high light levels found on 

completely open or north facing environments, it does respond to the temporary 

increases in light associated with canopy breaks, and colonises open habitats in high 

rainfall (cloudy) situations but does not persist under dark, closed canopies. Again, this 

suggests a fairly narrow range of preferred light environments and may constrain 

cultivation practice with regards site selection, plant density etc. 

The success of the species during the early stages of colonisation might be due to the 

pungent properties of the leaf and stem, providing some protection from browsing. 

2.3.0 Extracts of the Winteraceae 

The self evident presence of aromatic and volatile compounds within the foliage, fruit 

and bark of members of the Winteraceae has prompted several investigations of their 

extracts and volatile oils. With modern analytical techniques many interesting 

constituents have been identified, but until the 1970's the plant species themselves were 

regarded as little more than curiosities and no serious attempt at cultivation or even use 

of products of wild plants other than D. winteri appears to have occurred. 

Petrie (1912) reported positive reaction to a test for cyanogenetic glucosides in a water 

infusion (40°C, 24hrs) of chopped leaves of Drimys aromatica (T. lanceolata) and 

Drimys dipetala (Tasmannia insipida) in a survey of Australian species for 

hydrocyanic acid. More recently, Collins et al. (1990) included the plant in their survey 

of plants of the Australasian region, and using Mayer's and 'silicotungstic' tests for the 

presence of alkaloids in two Victorian samples of plant material found 0.005 - 0.01 % 

by dry weight in bark and none in leaf and stem samples. 

Atkinson and Brice (1955) tested the essential oil of T. lanceolata for its activity in 

suppressing growth in broth and agar dilutions of Staphylococcus aureus , S. typhae 

and Mycobacteria phlei. , finding it effective in suppressing growth of S aureus and M 

phlei at 'reasonable' titres. 

Stevens (1955) investigated the essential oil of T. lanceolata, distilling relatively large 

quantities of leaf and stem material from a number of sites around Tasmania, 



determined some physical and chemical constants for the oil, and attempted to 

determine the structure of a crystalline compound guaiol, which occurred in large 

concentrations in oils from several of the sites. 
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Loder (1962) first reported the occurrence of a sesquiterpene dialdehyde 'polygodial' in 

petroleum extracts of T. lanceolata, (the compound first described from solvent 

extracts of Polygonum hydropiperby Barnes and Loder (1962)), but reported no 

evidence of alkaloids in the extract. 

Drimys winterii, and its compatriots Drimys brasiliensis and Drimys confertifolia have 

been investigated since the late fifties at which time Appel et al. (1963) showed the 

presence of a number of drimane type sesquiterpenes in extracts of dried bark of a 

number of samples of D. winteri from different regions of Chile. Subsequently, as part 

of a survey of Chilean flora for anti-tumor compounds, hexane and acetone leaf extracts 

of D. winteri were shown to be active against mouse leukaemia lymphocytes and a 

number of compounds were recovered from the extracts, including cryptomeridiol, 

cirsimaritin, quercetin, taxifolin, astilbin and quercitrin, amongst which taxifolin was 

found to be active in antitumor tests (Cruz et al. 1973). Sierra et al. (1986) reported the 

isolation and structural determination of 38- acetoxydrimenin and the isolation of 

safrol, drimenol and polygodial from the leaves of D. winteri . Dried leaves yielded 

approximately 10% w/w of petroleum (60-80°C) extract from which 0.9g (0.09%) of 

polygodial was recovered by TLC methods. 

Vink (1970) describes an earlier report in which the flavonols quercetin, kaemferol and 

hydroquercetin were found throughout the Drimys (both sections) and Pseudowintera. 

The flavones luteolin and apigenin were often found within the 'sect. Tasmannia'. 

Drimys brasiliensis was shown (Vichnewski et al. 1986) to contain two drimane 

derivatives, lB-p-coumaroyloxypolygodial and 1 ~-p-coumaroyloxyvaldiviolide as well 

as confertifolin, previously isolated from D. confertifolia (Appel et al. 1958) 

Some thirty constituents, sixteen of them identified, of the volatile oil of 

Pseudowintera axillaris were reported by Corbett and Grant (1958). A more 

comprehensive summary of the composition of the essential oils for both 

Pseudowintera axillaris and P. colorata was published by Cambie (1976), in which 29 

compounds common to both species were listed, and the identification of two 

compounds, (-) - cyclorotenone and (+)-a.- santalene in the bark of P. colorata was 

reported. McCallion et al. ( 1982) report the isolation of polygodial from the leaves of 

P. colorata and the results of tests of the activity of the compound against the yeast 

Candida albicans. Keller et al.(1992), as part of a survey of New Zealand plants for 

enzyme inhibitory activity found methanolic extracts of P. colorata showed 20-40% 

inhibition of a.-chymotrypsin and a.- glucosidase. 

Dragar (1984) obtained essential oil and petroleum ether extracts of T. lanceolata and 

confirmed some physical constants and the chemical composition of the oils. 

Southwell and Brophy (1992) included T. lanceolata in a comparison of the Australian 

species of the genus by the composition of their essential oils. Both ethanol extracts and 
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the hydrodistilled oils were analysed by liquid chromatography and GC-MS to identify 

the major constituents and some conclusions were drawn regarding the 

chemotaxonomy of the Australian species as a result, specifically that the oils could 

serve as an adjunct to classical morphological characters in distinguishing Tasmannia 

species. The material used for the steam distilled oils was taken from three specimens 

originating in the vicinity of Clyde Mountain NSW, three from the ACT, and one from 

'the southern highlands' of NSW. All but one of the solvent extracted samples were 

taken from plants originating in the Tasmanian highlands, but were provided by the 

Australian National Botanic Gardens in Canberra, presumably from specimens grown 

in the gardens. The authors noted that the peppery taste present in the leaf of most 

species was not evident in the volatile oils. 

Reports of the chemical constituents of Drimys, Pseudowintera and Tasmannia 

species are summarised in Table 2.1. 
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Table 2.1: Reported constituents of extracts and oils of members of the 
Winteraceae; see Key to references and extraction method at end of table. 
Continued ..... 

S~ecies (Reference:for extraction method see key at end of Table) 
Pseudo- Pseudo- T. T. Drim~s spp Tasmannia Tasmannia 
wintera wintera lanceol- lanceol- (5,6,7,8) (exc. lanceolata 

COMPOUND colorata colorata ata(3) ata(4) lanceolata) (10) 

~1) ~2) (9) 
cx-pinene '.\/ '.\/,'.\/ '.\/,'.\/ 
cx-thujene ...; ...; ...;,...; 

l...; B-pinene ...; ...; ...; ...;,...; 
myrcene ...; ...; ...; ...;,...; ...;,...; 
( + )- limonene ...; ...; ...;,...; ...;,...; 
y- terpinene ...; ...; ...J,- {-
ex- terpinene ...; ...; 
terpinene - 4-ol ...;,...; ...;,...; 
terpinolene ...; ...; ...; 
cx-terpineol ...;,...; ...J,...J 
y- terpineol ...; 
hexenyl-n valerate ...; ...; 
eugenol ...; ...; ...; ...J,...J ...;,...; 
bicyclic sesquiterpene ...; 
( + )- aromadendrene ...; ...; 
humulene ...; ...; 
guaiol 

...J(5) valvidiolide 
fuegin ...J(5) 
winterin ...J(5) 
futronolide ...J(5) 
camphene ...; ...J(5) 
sabinene ...; ...;,...; ...;,...; 
cx-phellandrene ...;,...; ...;,...; 
B- phellandrene ...; ...; ...;,...; ...;,...; 
p-cymene ...; ...; ...;,...; ...J,-
1,8-cineole ~ ...;,...; ...;,...; 
linalool ...; ...;,...; ...;,...; 
piperitone ...; 
safrole ...; ...J(8) ...;,...; -,-
sabiny le acetate ...; 
eugenol ...;,...; ...;,...; 
methy I eugenol ...; 
caryophy Ilene ...; ...;,...; ...;,...; 
myristicin ...; ...J,...J -,-
a-cadinene ...; ...J,- ...J,-
confertifolin ...J(6) 
IB-p-coumaroyl-oxypolygodial ..J(6) 
IB-p-coumaroyloxyvalvidiolide ...J(6) 
cryptomeridiol ...J(7) 
quercetin ...J(7) 
quercitrin ...J(7) 
taxifolin ...J(7) 
astilbin ...J(7) 
cirsimaritin ...J(7) 
(-)- 3B acetoxydrimenin ...J(8) 
drimenol ...J(8) 
polygodial ...J(8) 
car-3-ene ...;,...; -,-
cx-cubebene ...;,...; ...J,-
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Species (Reference:for extraction method see key at end of Table) 
Pseudo- Pseudo- T. T. Drimys spp Tasmannia Tasmannia 

COMPOUND 

a-copaene 
a-gurjunene 
cx-amorphene 
germacrene-D 
viridiflorene 
viridiflorol 
bicyclogermacrene 
cadina-1,4-diene 
calamenene 
elemol 
globulol 
croweacin 
spathulenol 
caryophyllene oxide 
bulnesol 
cx-eudesmol 
8-eudesmol 
y-eudesmol 
(-)-cyclocolorenone 
cx-santalene 
(-)-8-elemene 
dipentene 
tricosane 
pentacosane 
famesol 

wintera 
i;;Qlgrata 
(1) 

References and extraction method 

wintera lancegl-
i;;QlQrata .!ill!.(3) 
(2) 

...J 

1 Corbett and Grant (1958) : Steam distilled 
2 Cambie (1976): Steam distilled 
3 Stevens (1955): Steam distilled 
4 Dragar (1984) : Steam distilled 
5 Appel et al. (1958): Petroleum ether extract 

lancegl-
.!ill!.( 4) 

~ 

6 Vichnewski et al. (1986): Hexane I ethyl acetate extract 
7 Cruz et al(1913): Ethyl acetate extract 
8 Sierra et al. (1986) : Petroleum ether extract 

(5,6,7,8) (exc. lanceolata 
lanceolata) (10) 
(9) 
~.~ 
...J,...J 
...J,­
...J,...J v,­
V,­
...J,...J 
...J,...J 
...J,...J 
...J,­
...J,...J 
v,­v,­v,­v,­
...J,­
...J,...J 
...J,...J 

-,...J 

~.­
...J,...J 

~~...J 
...J,­
...J,...J 
...J,...J 
...J,­
...J,-
-,-
-,-

-,-
-,-
-,-
-,-
-,-

v,-

9 Southwell and Brophy (1992) : Steam distilled (first check), ethanol extract (second check) 
10 Southwell and Brophy (1992): Steam distilled (first check), ethanol extract (second check) 
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2.3.1 Extraction Methods 

a) Aqueous Extracts 

Use of bark, leaves and fruit of Winteraceae species by indigenous peoples, 

presumably over a very long period, has usually depended upon the preparation of 

aqueous decoctions. This has been the case with Drimys winteri in Brazil and Chile, 

with Pseudowintera in New Zealand and with the Belliolum species in South East Asia. 

Early European use of these and other aromatic species often took the form of 'tonics' 

prepared as infusions of ground or chopped fresh and dried plant material. 

b) Steam Distillation 

Stevens (1955), using fresh, whole leaf and twig material recovered between 0.28 and 

0.53% of volatile oil in an apparatus capable of distilling up to 400kg at a time, 

cohobating the aqueous distillate after separation of the oil in two glass jars, one 

containing a layer of ether to serve as an additional trap for oil. In these trials it was 

found that guaiol crystallised from the dried oil, within the condenser and inside the lid 

of the distillation vessel. The date of collection of material is not mentioned. 

Corbett and Grant (1958) used whole fresh leaves and terminal branchlets of 

Pseudowintera colorata in llOkg batches recovering 0.417% v/w of a green oil from 

material collected in autumn. 

The work of Southwell and Brophy (1992) was based upon the hydrodistillation to 

exhaustion (about 4-6 hrs) of individual plant specimens. 

c) Solvent Extracts 

Barnes and Loder's (1962) recovery of polygodial from T. lanceolata commenced with 

the preparation of a petroleum extract of the dried, milled leaves of the plant, yielding 

about 4.5% of oil. The purification of polygodial was carried out by partitioning the 

oil between petroleum-70% methanol-water, the methanolic layer diluted with an equal 

volume of NaCl solution. An ether extract of the aqueous portion of this, combined 

with the oily portion was concentrated and redissolved in petroleum (b.p. 40-60) before 

being chromatographed on a silica gel column. Elution of the column with 1: 1 

petroleum: benzene and with benzene and removal of the solvents gave fractions 

which crystallised on standing, yielding colourless crystals of polygodial. 

Appel et al. (1958) employed fractional distillation, together with chromatographic 

techniques on their crude petroleum(70-80°) extract of powdered D. winteri to separate 

a number of sesqiterpenes (see Table 2.1). Sierra et al. (1986) using similar plant 

material recovered about 10%w/w of crude petroleum extract which they 

chromatographed on silica gel to separate safrole ( 0.19% in leaf) with 19:1 v petrol: 

EtOAc, drimenol (0.07% )with 9: 1 Petrol:EtOAc, an unidentified crystalline compound 

(0.07%) from hexane and polygodial (0.1 %in leaf), from pentane. 
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McCallion et al. (1982) used crushed, freeze dried leaves, extracted for 48 hrs with 

acetone. The extract was then concentrated, taken up in petroleum and the petroleum 

fraction used for their chromatographic procedures. Using a 10% deactivated alumina 

column (25x80mm) two fractions were separated. The first, eluted with petroleum ether 

consisted of plant carotenoids while the second, biologically active fraction, eluted with 

acetone, was 'decolourised' with activated charcoal, concentrated and rerun on a smaller 

deactivated alumina column. Bioassays (soaked paper discs on seeded nutrient agar and 

monitored for development of zones of inhibition) were used to identify the active band 

resulting from the second chromatography, and this was further purified using 

preparative thin layer chromatography to separate the a. - and (3- epimers of the active 

compound, polygodial. Percentage yields of the compounds were not given. 

Southwell and Brophy (1992) used 30 hours ethanol extraction of 'plant material' 

followed by liquid column purification of components in their comparison of 

Australian Tasmannia species. 

Other reports examining crude solvent extracts for new terpenoid or phenolic 

compounds of Winteraceous species have used hexane (Cruz et al. 1973) and hexane­

EtOAc (Vichnewski et al. 1986). 

2.3.2 Polygodial -a bioactive sesquiterpene dialdehyde 
Polygodial (a.k.a. tadeonal by Asakawa et al., 1978), Fig 2.1 has attracted interest as a 

biologically active component in extracts of a diverse array of organisms. Since the 

identification of the sesquiterpene by Barnes and Loder (1962), it has been isolated 

from a nudibranch mollusc (Dendrodoris limbata), (Cimino et al. 1982), three Porella 

species of liverwort (Asakawa et al., 1978), and from members of three higher plant 

families: 

-the Polygonaceae (Polygonum hydropiper) - (now Persicaria hydropiper )a 

cosmopolitan species used as a colourful and spicy relish in Japanese sushimi and from 

which the original identification was obtained (Barnes and Loder 1962), 

- the Winteraceae, from members of the genera Drimys, Tasmannia, and Pseudowintera 

(Sierra et al. l 986, Loder 1962, McCallion et al. 1982), 

- the Canellaceae - the East African Warburgia ugandensis and W. stuhlmannii which 

have traditional use as sources of spice and medicine (Kubo et al. 197 6, Kubo and 

Ganjian 1981, Taniguchi and Kubo 1993). 
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Figure 2.1: Naturally occurring drimane sesquiterpene dialdehydes with antibiotic 

and hot tasting properties. 1- polygodial; 2-warburganal; 3-cinnamodial; 4-

muzigadial. 

a) Biological Activity 

A number of interesting properties have been demonstrated for the compound, some of 

which relate to its biological utility in the organisms concerned. Among these are 

piscicidal, antibiotic, hot taste to humans and insect antifeedant properties. Also 

attributed to polygodial in extracts of P. hydropiper were plant growth inhibition and 

anti-inflammatory properties by Furuta et al.(1986) in a study of a related drimane type 

sesquiterpenoid polygonolide. 

i) Piscicidal activity 

The nudibranch mollusc was shown (Cimino et al. 1982,1983) to synthesise polygodial 

and to store it in its mantle where it serves as an effective defence against predation- in 

fish feeding trials, the freshwater fish Carassius carassiusm and the marine species 

Chromis chromis immediately rejected food particles treated with as little as 30µgcm-2 

of surface area. Cimino et al. (1985) attempted to establish a product-precursor 

relationship between sesqui-terpenoid esters found in the digestive gland of the animal 

and polygodial, found only in the skin, concluding that there is no such relationship, 

and that the two products were synthesised by separate pathways, and to differing 

degrees depending upon some seasonal factor related to a defence requirement of the 

animal. 

The use of fresh water extracts of shoots and leaves of P. hydropiper to kill predatory 

fish in commercial fish farms prior to stocking has been investigated (Kulakkattolickal 

1989a and 1989b) and appears to have some potential due to its very low LC50 levels 

for the predatory species concerned and the rapid loss of toxicity to fish (about 5hrs). 

ii) Antibiotic activity 

Purified extracts of P. colorata containing the compound were examined by McCallion 

et al. (1982) for activity against a range of bacteria, fungi and yeast isolates using paper 

disc bioassays, for zones of inhibition surrounding 6mm discs containing polygodial. 

With Staphylococcus aureus and Candida albicans , at 20µg per disc, a large zone of 

inhibition (> 8.8 mm) was maintained around the discs for at least 13 days. The authors 

noted that microscopic examination of affected cells showed them to be smaller, and 

deformed in comparison with control cells and that their material of P. axillaris and P. 

traversii did not contain polygodial and did not exhibit antibiotic activity. 
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Kubo and Taniguchi ( 1988) used polygodial, warburganal and muzigadial, isolated 

from Warburgia species to examine antibiotic activity on fifteen microorganisms. The 

three compounds proved to have similar antimicrobial spectra and were particularly 

effective against Saccharomyces cerevisiae, Candida utilis and Sclerotinea libertiana. 

Polygodial was 2-8 times more potent than the other two compounds against all species 

of yeasts and filamentous fungi and slightly more effective than the commercially 

available amphotericin B. Actinomycin B, when used together with polygodial 

demonstrated a sixteenfold increase in potency against S. cerevisiae and powerful 

antifungal activity against C. utilis . Microscopic examination of cells after treatment 

led the authors to conclude that the plasma membrane was the primary site of action of 

the polygodial, and that by 'punching' holes in the membrane the polygodial allowed 

ingress of the antibiotic, greatly enhancing its activity. They proposed that its use in 

combination with less effective antibiotics, might offer opportunities for new treatment 

of persistent mycoses or for reduced doses of current treatments. 

Similar synergistic effects of polygodial on a range of yeasts, filamentous fungi, and 

bacteria species with a number of antibiotics and other naturally occurring compounds 

have been reported-Taniguchi et al (1988a,b), Kubo (1988), Kubo and Himejima 

(1991), Himejima and Kubo (1992, 1993), Kang et al. (1992) 

Interestingly, Kang et al. (1992) suggested that the use of (polygodial containing) 

Polygonum hydropiper and Perillafrutescens, (shown to contain perrillaldehyde, an 

effective antibiotic in its own right) together as spicy relishes ('tade' and 'shiso' or 

'aoziso', respectively) in the consumption of raw fish in the Japanese Sushimi tradition 

may indicate an underlying wisdom with respect to control of Salmonella poisoning. 

Anke and Sterner (1991) include polygodial in a comparison of antimicrobial and 

cytotoxic properties of a number of similar compounds, finding antibiotic but no 

mutagenic capability. 

iii) Hot taste and insect antifeeding 

In an effort to determine the mechanisms involved, Kubo and Ganjian (1981) compared 

insect antif eedant activity and the hot taste experienced by humans for a number of 

similar sesquiterpenes (polygodial, warburganal, muzigadial and ugandensidial - Fig 

2.1) and for four related, but tasteless compounds (including the 9a- epimer of 

polygodial). They found a systematic relationship between the taste, antifeeding 

activity and the spatial geometry of the compounds and suggested that the crucial 

criterion was the distance between the double bond end of the -enal moiety and the 

nucleophilic dipole of the aldehyde. D'Ischia et al. (1982) also explored the mechanism 

of activity, comparing the reactivity of the compound with thiols and primary amines 

and showed that the mechanism for activity was most likely to be a reaction with -NH2 

groups, explaining the relative unreactivity of the 9a- isomer. Fritz et al. (1989) 

reviewed Kubo and Gangian's proposals, described two other contributions by Sodano 

et al. (1982, 1987) and in a series of experiments using army worm larvae Spodoptera 

frugiperda for their bioassay, examined a number of substituted analogues of 
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polygodial and warburganal finally proposing a scheme involving both the D'Ishia et 

al.(1982) and Kubo and Gandjian (1981) mechanisms in reactions at the 

chemoreceptor. 

CHO 
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Figure 2.2: Proposed pathway for reaction of polygodial with L-cysteine in vivo. 

(from Fritz et al. 1989) 

This reaction (Fig. 2.2) involves the formation with the -NH2 of L-lysine of an 

aromatic pyrrole and a reaction between the sulfhydryl ofL-cysteine and the enal at C7. 

This accounts for several of the observed characteristics of the antifeedant reactions -

the behavior of the epimer of polygodial, the importance of the aldehyde groups, the 

weak activity of large analogues and the more potent activity of warburganal, with its 

additional a-C9 hydroxyl group. 

Caprioli et al.(1981) discussed the stereochemistry of several isomeric bicyclic 

dialdehydes of slightly different configuration to natural polygodial, and concluded that 

a reaction in vivo with a primary amino group would depend upon specific spatial 

arrangement of the CHO groups and upon distances between them in the formation of 

intermediate compounds. 

Schoonhoven and Fu Shun (1989) showed, using larvae of Pieris brassicae that 

stimulation of deterrent receptors and a reduced sensitivity of most other receptors 

explained in large part the antifeeding activity of polygodial, warburganal and 

muzigadial. After termination of treatment, receptor cells regained their sensitivity and 

in most cases showed some hypersensitivity after recovery. 

Several groups have investigated the possible applications of the antifeeding response 

in agriculture. Polygodial was shown to decrease acquisition of some aphid borne plant 

viruses (Gibson et al. 1982) by altering probing and settling behaviour in the aphid 

concerned (Myzus persicae). However, Hardie et al. (1992) reported that the behaviour 

of starved aphids was not affected by treatment of the substrates with polygodial, 

despite the earlier findings of Dawson et al. (1986) with beet yellow virus, and Gibson 

(1982)-barley yellow dwarf virus, that such treatment altered acquisition and 

transmission. The discrepancy was resolved by Powell et al. (1995) using choice/no-
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choice assays, finding that the insects, when given choice, concentrated their settling, 

searching and feeding behaviour on untreated leaf areas, whereas, in a no choice 

situation, aphids on treated leaves did not behave significantly differently to those on 

untreated leaves. The authors speculate on the significance of this finding for pest 

control strategies in the field situation. 

van Beek and de Groot (1986) review the significance and variety of terpenoid 

antifeedants of natural origin. 

b) Synthetic preparation of polygodial. 

Methods for producing the compound have been reported by several workers: Pickett 

(1985) reported the synthesis and resolution of polygodial resulting in a racemic 

mixture which, if it contained trace quantities of the ( + )- isomer, proved highly 

phytotoxic and the use of natural polygodial from plant sources was recommended. Ley 

(1990) discussed synthetic production of polygodial and warburganal as a 'case study' 

for development of new synthetic insect control systems and callus and suspension 

cultures of Polygonum hydropiper were used by Banthorpe et al. (1989, 1992) to 

accumulate polygodial and its parent drimenol. The latter paper presents work 

conducted on purification of the enzyme system, farnesyl pyrophosphate:drimenol 

cyclase from cell cultures of Polygonum hydropiper in levels comparable to those in 

extracts of the parent plant material. These papers discuss the difficulty of using the 

dialdehyde directly as a plant protectant owing to its volatility and instability, and raise 

the possibility of gene transfer from Polygonum hydropiper to endow commercially 

important crops with the capacity to synthesise the antifeedant themselves. 

de Groot and van Beek (1987) review previous efforts to synthesise members of the 

group of drimane sesquiterpenes including polygodial, warburganal, and cinnamodial, 

noted for their activity, and describe a variety of suitable synthetic approaches for each. 

Subsequently contributions by Drones et al. (1994, 1995), Barrero et al. (1994), employ 

zamoranic acid and sclareol, respectively as starting compounds for multiple step 

syntheses. Jansen et al. (1989) used dihydrocarvone to prepare chiral intermediates for 

polygodial synthesis, and Kutney et al. (1990) proposed a synthetic route to polygodial 

employing derivatives of thujone. 

Separation of enantiomers and analysis of the compound were reported by Brooks et al. 

(1985, 1988) and Hariguchi et al. (1993) and van Beek et al. (1994) report HPLC 

methods for determination of polygodial. 

2.3.3 Concluding Comments 
The forgoing discussion highlights the relative rarity of polygodial in nature, (although 

it appears often among members of the family Winteraceae), and invites speculation 

upon the biological utility of the compound where it occurs. Similarly it raises questions 

about the suitability of plant material or extracts containing the compound for human 

consumption. 
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In this respect, a parallel with capsaicin might be drawn. Present as the hot principle in a 

variety of capsicum fruits, capsaicin is injested in substantial quantities around the 

world. The neurotoxic effects of the compound are well documented, but information 

on carcinogenicity and mutagenicity remains limited and contradictory and there is even 

some suggestion that the compound may induce chemoprevention in some instances 

(Zhang et al. 1993). Surh and Lee (1995) review the conflicting literature surrounding 

the toxicology of capsaicin, and conclude that minute ingestion of the compound 

(present in dried fruit at approximately 0.5%) results in little or no toxic effect, while 

heavy injestion may result in saturation of the relevant defensive mechanisms, with 

noxious effect. 

Traditional consumption of at least one of the species containing polygodial as a 

flavouring relish (Polygonum hydropiper) and more recently, over twenty years of use 

in Australia of Tasmannia spp. as novel foodstuffs (Cribb and Cribb 1975, Low 1988, 

Cherikoff 1989) would seem to offer anecdotal evidence for the safety of small 

quantities of the compound for human consumption. 

In particular, some indication of the 'typical' concentration of the compound in natural 

leaf and in the appropriate extracts of Tasmannia lanceolata is required. These should 

be compared with those concentrations typically found in Polygonum hydropiper -

(0.06% w/w in dried plant material and 12% in the petroleum ether extract - (Barnes 

and Loder 1962)). 

The presence of polygodial in T. lanceolata together with its demonstrated antifeedant 

properties suggests that the apparent success of the species in colonising open areas in 

wet situationsmight be due in some part to the discouraging effect of polygodial on 

browsing vertebrates and invertebrates. 

Lastly, the large variety of secondary compounds reported for T. lanceolata suggests 

that other commercially useful compounds might emerge from an exhaustive 

identification of extract constituents across a range of plant material, habitats and 

geographic locations. 
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2.4 Oil cells as storage sites for secondary metabolites 

Amongst the higher plants a diversity of storage and secretory systems associated with 

the production, transport and sequestration of the products of the secondary metabolism 

are encountered. Such structures include glandular, hairs and trichomes, multicellular 

cavities, secretory idioblasts, resin ducts and areas of epidermal cells (Fahn 1988) and 

are borne both on, (and sometimes articulated from the surface of) the plant, and within 

the plant body. 

Superficially the simplest of these is the oil cell or oil idioblast found embedded in 

parenchymatous tissue, often in association with similar structures containing 

mucilaginous deposits, or with tannin containing cells. 

Oil cells occur in a taxonomically diverse range of angiosperm species, but are most 

common in, and have been described as characteristic of, the primitive woody Ranalean 

plant families by West (1969), who surveyed their development in nine of these 

families, including Magnoliaceae, Lauraceae, Annonaceae and Winteraceae. West 

describes a 'normal oil cell ontogeny' typical of most of the 46 species (27 genera) 

studied and details those secondary structural developments which deviated 

significantly from this. West's study included Drimys winteri (a specimen collected in 

Brisbane, Australia) and Pseudowintera axillaris as representatives ofWinteraceae and 

confirmed only the presence of mature oil cells in both species and the normal pattern 

of development in the latter. 

These systematic aspects of oil cell occurrence and distribution patterns have been 

examined in Cinnamomum spp. by Balck.er et al. (1992), inAnnona by Bakker and 

Gerritsen (1992) and in the dicotyledons generally by Baas and Gregory (1985). Oil 

cells have not been used for systematic studies in Winteraceae, and are mentioned by 

Bailey and Nast (1945b) only as a typical characteristic of the family. Vink's (1970) 

examination of Winteraceae did not mention oil cells as having potential as a systematic 

tool, despite the use of numerous other anatomical and morphological characters to 

determine the taxonomic status of the 'Old World' genera - Pseudowintera, Drimys 

sect Tasmannia (sic), and the other tropical and sub tropical members of the family. 

Whole extracts of leaf material were used by Southwell and Brophy ( 1992) to support 

certain taxonomic distinctions within the genus Tasmannia. 

While the single cell oil idioblasts typically found in the woody Ranalean plant families 

have undergone considerable scrutiny from the point of view of ultrastructural 

·development, the content of the cells and the development and accumulation of those 

contents has not been well examined. 
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2.4.1 Oil Cell Development and Structure 

Several oil cell-containing species are described in the literature as exemplifying the 

process of oil cell development. Maron and Fahn ( 1979) examined oil cells in the leaves 

of wurus nobilis L and described four 'stages' in cell development: 

1 - the presence of only the outer cellulose wall, when cytoplasm contains many 

ribosomes grouped together, a few , short profiles of endoplasmic reticulum, many 

mitochondria and dictyosomes and variously shaped plastids containing electron 

translucent vesicles, 

2 - presence of a lamellated suberin layer inside the cell wall, wall protuberances 

with plasmodesmata, a vacuole which increases in volume as suberin deposition 

proceeds, numerous polysomes (groups ofribosomes), stacks of ER in parallel arrays, 

decreasing numbers of dictyosomes, and occasionally plasmalemma invaginations 

containing vesicles and disorganised membrane structures, 

3 - an inner cellulosic wall appears, commencing near where the suberin layer is 

thinnest, at which location cupule formation commences with a thickening of the inner 

layer. Ground cytoplasm becomes more electron opaque containing only a few small 

vacuoles and a 'large space develops which contains the oil drop', and which is lined 

with the plasmalemma which adheres to the inner surface of the cell wall, particularly 

at the site of the cupule, a peglike projection of the oil body, 

4 - the oil drop occupies most of the volume of the cell, cytoplasm becomes very 

opaque and organelles can no longer be distinguished. 

Oil cells were first encountered at the third leaf primordium from the apex, although 

stage of development was not correlated with ontogenetic leaf stage. 

Bakker ands Gerritsen (1990) proposed a slightly different scheme in their study of 

Annona muricata , adding that the young cell may have arisen from an unequal cell 

division and would be found with a smaller 'sister' cell, and preferring to subdivide a 

'stage 3' (in which the inner cell wall was present) into three parts, based on the size of 

the oil globule, the amount of smooth tubular and vesiculating endoplasmic reticulum 

and the degeneration of other organelles in the fully mature cell. (See Fig 2.3) 
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Figure 2.3: Schematic representatio111 of developmental stages in oil cell differentiation inAnnona 
muri£gtg. 1: Young cells with abberent plastids and an electron translucent cytoplasm 
2: Suberised layer deposited against the primary wall. 3a: inner wall deposition initiated, 
oil cavity develops, tubular ER and crystalline bodies appear in cytoplasm. 3b: Enlarged 
and degenerating organelles. w= initial cell wall,n=nucleus, s= suberized layer, iw=inner 
wall, oc=oil cavity.(Adapted from Bakker and Gerritsen 1990) 
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A number of other studies of oil cell development and structure in Magnolia 

grandiflora (Postek and Tucker 1983), Persea americana (~latt-Aloia et al. 1983, Platt 

and Thompson 1992), Cinnamomum spp (Bakker and Gerritsen 1989, Bakker et al 

1992), Liriodendron tulipifera (Mariani et al. 1989), Annona muricata (Bakker and 

Gerritsen 1990) have contributed to the model for secretory cell development. 

The occurrence of the cupule, involvement of plastids in oil production and the tripartite 

wall structure appear generally accepted although Postek and Tucker's paper questioned 

the concept of the cupule, suggesting it might be an artefact, and found no more than 

two wall layers in their survey of 16 families. There are no reports of entry of oil 

droplets into a differentiated oil cell, nor any details of the mechanism of filling of the 

drop although Fahn (1988) describes the probable movement of oil drops from points of 

synthesis (plastids) into the cytoplasm and then fusion with the growing droplet, 

probably by reverse pinocytosis through the surrounding membrane. 

The function of suberised layers or walls is proposed by Bakker and Baas (1993) to 

serve to compartmentalise potentially toxic substances, by preventing apoplastic 

transport of the cell contents. It is not clear from this paper whether plasmodesmata are 

occluded by the suberin layer in oil secreting cells, although such a situation is noted by 

Platt-Aloia et al. (1983) in avocado mesocarp, in which case all transport pathways are 

presumably blocked, and no further apoplastic or symplastic exchange is possible. 

In general, idioblast differentiation and development are detected in ground meristem 

associated with very young tissue and are distinguished by size, a less electron dense 

cytoplasm, fewer starch granules, the presence of osmiophilic material associated with 

several different organelles and the eventual development of the suberised layer 

generally regarded as typical of the structure (Platt-Aloia et al. 1983, Bakker and 

Gerritsen 1990, Fahn 1988). 

Tucker (1964) reported the occurrence of secretory oil cells in close association with 

terminal veinlets in at least 138 Magnoliaceous species, describing the adjoining wall of 

the tracheal element as sometimes appearing pitted, although this association has not 

been mentioned in the many subsequent publications on the subject. 

2.4.2 Contents of Oil Cells in Plant Tissue 

In considering the process of development of oil cells and the accumulation of 

secondary products in plant tissue generally, it is important to distinguish between the 

contents of the specialised structures, and the composition of oils and extracts obtained 

from the whole tissue system. 

Essential oil/ extract composition and yield serve to provide an indication of overall 

metabolic activity at sites of synthesis. They may be correlated with structural changes 

such as gland filling (in hops for maturity - Menary and Doe 1983) or resin canal 
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frequency in pine trees (to assess genetic variation - White and Nilsson 1984); with 

ontogenetic and seasonal patterns in plant growth (Leach and Whiffin 1989; Zavarin et 

al. 1971); or with geographic variation within or between species (von Rudloff 1972, 

1975; Zygaldo et al. 1990) 

Sol vent extracts (or steam distillates) of whole leaf tissue will contain not only the 

contents of oil bearing structures associated with the leaf tissue, but also lipid soluble 

(or steam volatile) compounds present elsewhere in the leaf, for example, as inclusions 

in synthetic organelles in epidermal, mesophyll cells, or in intercellular spaces in the 

leaf and as elements of cuticular and alveolar deposits. A study of changes in the 

composition of 'total extract' during plant growth will not distinguish between 

extractable compounds associated with maturation (development of cuticle, cell walls 

and tracheary elements, increase in cell size, production of secondary products in 

epidermal and mesophyll cells) and progressive development and filling of the oil 

bearing structures themselves. Furthermore, many plant tissues contain more than one 

type of secretory organ which may independently accumulate quite different suites of 

secondary compounds (Fahn 1988). Lastly, the high temperatures and often acid 

environment of the plant material during steam distillation might result in the formation 

of artefacts particular to the oil and plant species. This is examined in detail with r~spect 

to cx-terpinene and terpinolene present in steam distilled tea tree oil by Southwell and 

Stiff (1989) who also cite a number of examples of other terpenes similarly implicated 

in artefact formation. 

The problem of distinguishing between the contents of the structures and the 'whole' oil 

or extract was raised by Russin et al. (1988) in considering previous examinations of 

the steam distilled oil of Tagetes erecta. None of those studies cited had distinguished 

between the contents of the various structures, nor addressed the possibility that some 

oil constituents might be artefacts produced by the high temperature environment 

during distillation, A similar situation applies to most studies of spatial or temporal 

variation in oil composition in essential oil species. Bicchi et al. (1985) did show the 

difference in composition between the oil contained within secretory cavities and that 

obtained by steam distillation, and Russin and his colleagues developed a procedure for 

isolating secretory cavities and examining their contents (Russin et al. 1988, 1992) -see 

2.4.3 below. 

Once again this issue was set aside by Zygaldo et al. (1990) for the related Tagetes 

minuta, where a generalised oil composition was reported in geographically separate 

populations and proposed as a suitable indicator for chemosystematic comparisons. 

Kobiler et al. (1993) separated oil cells from avocado mesocarp in order to show that 

the structural integrity of these cells prevented antifungal compounds held within them 

from acting to control infection, while the same compound, present in the pericarp but 

not sequestered in oil cells, was able to prevent infection in this tissue. This was 

practical recognition of the importance of identifying oil cell constituents per se, 
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systems. 
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More generally, detailed qualitative investigation of biochemical processes at sites of 

terpene synthesis and storage (eg isolation and investigation of secretion products and 

enzyme systems, incorporation studies, examination of synthetic and secretion 

processes in situ and study of plant chemical defence systems), require the same 

discriminating analysis of essential oils obtained from the plant structure in question. 

Therefore methods are required for separation of the secretory structure from the rest of 

the plant tissue (ideally intact and vital), removing the contents of the storage sites, or 

by some other means determining the nature of their chemical content. Some of these 

methods are reviewed below. 

A) Isolation of oil bearing organs/cells 

The liberation of intact mesophyll cells and protoplasts from leaf tissue is well 

established for use in cell culture, photosynthetic and biochemical studies. Grinding 

techniques (Colman et al. 1979, Oliver et al. 1979) or enzyme digestion, followed by 

sieving and centrifugation using density gradients (Franceschi et al. 1984) have been 

shown to produce large numbers of mesophyll cells or protoplasts, usually assessed for 

purity and viability by means of staining and microscopic examination or gas exchange 

measurements. 

Due to the variety in morphology of the oil bearing structures, methods for their 

isolation have tended to vary according to the size and structural integrity of the system. 

i) Superficial glands 

In ·species in which oil bearing structures are borne on the leaf surface, a number of 

mechanical techniques are reported for obtaining preparations of the cells or their 

contents, ranging from the homogenisation of leaf tissue and separation of the gland 

heads on a Percoll density gradient (Slone and Kelsey 1985), abrasion or scraping of 

leaf surfaces (Croteau and Winters 1982; Gershenzon et al. 1987; Keene and Wagner 

1988), preparation of epidermal peels (Croteau 1977)and use of adhesive tape (Keene 

and Wagner (1985), although none of these methods appeared to generate preparations 

of sufficient purity or vitality to permit purification of biosynthetic enzymes. For this 

type of secretory material, the method of Gershenzon et al. (1992) appears to be the 

most useful, in which a gentle abrasion of the leaf surface with glass beads in buffer at 

4°C is followed by filtration through a series of nylon meshes, washing with buffer and 

suspension of the resulting cell clusters in buffer for biosynthetic studies and 

preparation of cell free extracts. This method was further improved by Hashikodo and 

Urashima (1995) shaking leaflets of Rosa rugosa with a mixture of quartz and sea 

sand, to produce intact trichomes without inducing browning and enzyme denaturing in 
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the process. Yerger et al. (1992) report the use of powdered dry ice, added to leaf 

material and 'vortexed' to produce large quantities of pure trichomes from a variety of 

plant materials -geranium (Pelargonium sp.), tomato (Lycopersicum), squash 

(Cucurbita sp.), and velvetleaf (Abutilon sp.). 

ii) Oil Cavities 

Multicelled secretory cavities embedded within the leaf lamina of African marigold 

(Tagetes erecta) were examined by Russin et al. (1988) after manual dissection from 

the surrounding mesophyll. The structures were then extracted in petroleum ether and 

the composition of the extract determined by HPLC. Russin et al. (1992) took the 

isolation approach further, and used a digestion and filtering technique to obtain 

secretory cavities entirely free from surrounding mesophyll cells, which they then 

examined microscopically for structural integrity and with vital stains for viability. 

iii) Single oil cells 

Platt and Thompson (1992) report a method for isolating oil cells from the mesocarp of 

soft ripe avocado fruit by homogenisation and filtration and from immature or mature 

unripe fruit by digestion of small pieces in a cellulytic medium followed by 

homogenisation and filtration. Cells appear intact and relatively free from cellular 

debris and were tested using histochemical techniques for the presence of alkaloids and 

terpene compounds with the result that both classes of compound were indicated, to 

different degrees in the variously mature fruit tissues examined. 

B) Direct sampling of the contents of secretory structures 

There are a number of reports of direct sampling of the contents of secretory structures 

for analysis. Lanyon et al. ( 1981) examined one of three types of secretory structure 

found on Cannabis sativa - the secretory sac of the capitate stalked gland, - using a 

micropipette to remove the contents of the sac without damage to the underlying disc 

cells and showed that the cannabinoid profile of this oil did not differ significantly from 

that reported for whole gland extracts, suggesting that secretory product is almost 

entirely removed to the secretory sac upon production. Turner et al. (1978) using 

similar techniques compared drug and fibre strains of the species, and glands taken from 

vein and nonvein areas of the leaf and bract surfaces. Capitate-sessile glands on the 

leaves contained low levels, and in some strains none, of the principal cannabinoid 

associated with that strain, while high levels of the compound were detected in capitate­

stalked glands on bracts of the same clone. 

Venkatachalam et al. (1984) also considered stalked and sessile glands, but on Salvia 

officinalis , while Bicchi et al. ( 1985) concentrated on a comparison of direct sampled 

and microdistilled oils from Tagetes spp and Humulus lupulus finding marked 

differences in each case- that distilled oils contained a predominance of monoterpene 

and oxygenated monoterpene compounds, and lacked the less volatile higher carbon 
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number terpenoid compounds of the extracts, the difference being most marked in the 

case of hops. A similar approach was used by Menary et al. ( 1986) to compare oils 

from lupulin glands and glandular trichomes and to investigate the consequence for 

storage stability of alpha acids of the natural partitioning of some of the components of 

these oils. 

Microsampling techniques were used by Spring ( 1991) to analyse the sesquiterpene 

lactones of the Asteraceae in a consideration of the chemosystematics of the family. 

The isolation and analytical techniques appropriate for these relatively non- volatile 

compounds include GC (with derivatisation) and HPLC methods. These trichomes are 

quite large, and collection of trichome contents using an insect pin or needle, or 

breaking the basal cell away on dried plant material appeared to be quite 

straightforward. 

C) Other methods of determination of 'oil cell' contents 

Rather than separating the cells to determine the exact nature of their contents, some 

techniques are available for analysing the contents in situ . The histochemical methods 

employed for oil cells in avocado fruit by Platt and Thompson (1992), included two for 

compounds of a terpenoid nature -sulphuric acid (red reaction with sesquiterpene 

hydroperoxides) and Nadi reagent (pink for resiniferous acids, blue -essential oils and 

violet a mixture of these). The results for this technique, (performed in tandem with cell 

isolation, extraction and TLC techniques) were not completely satisfying, indicating 

differences in oil cell content associated with fruit maturity which were not detected in 

chromatography of the extracts, and only providing a general reaction for the large 

classes of compounds likely to be present. 

Zarate and Yeoman ( 1994 ), similarly examined oil cells in situ in sections of ginger root 

tissue. They used UV spectral results to confinn visual evidence of colour change in oil 

cell contents upon the addition of 10% sodium carbonate, due it is suggested, to the 

presence of curcumin derivatives or flavonoid-like compounds, rather than to the main 

pungent principle gingerol. A ferric chloride/ potassium ferricyanide mixture was used 

to detect phenolics, and Nile red for the detection of lipidic material. An attempt to 

correlate oil cell number with gingerol yield and cryo-fractured rhizome material 

visualised under SEM are also presented. The authors suggest that the collective 

evidence of staining reaction and the freeze fracture results confinn the presence of 

lipid material within the cells, and that the probable location of gingerol in (non-polar) 

lipid solution together with the correlation of cell numbers to gingerol yield points 

strongly to the likelihood that the compound is accumulated and stored within the 'cells 

with yellow contents'. 

Karwazki (1993) detected the enzyme chalcone synthase in tannin containing idioblasts 

and oil cells in Kalanchloe daigremontiana and Acorus calamus and leaves of K 

tubifera by means of indirect immunoflourescence, and found that the distribution of 

the enzyme did not change during the period of organ development. 
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Hagendoom et al. (1994) employed FTIR spectroscopic methods to examine whole oil 

cells of Polygonum hydropiper, specifically for the presence of polygodial. This report 

suggests that the compound was localised in these cells and not present in neighbouring 

tissue, nor in similar cell structures in a related species which did not yield this 

compound upon extraction. The spectra presented appear to suffer from the presence of 

substantial quantities of water, and include several departures from spectra of the pure 

compound presented in the same paper. Nonetheless, sufficient agreement is in 

evidence to confirm that polygodial is localised in the cells themselves and that oil cells 

in this genus do not invariably accumulate this compound. No discussion of what 

compound(s) might be characteristic of the cells in related species is offered. 

2.4.3 Concluding remarks 

The above discussion identifies and describes the oil cell system found in the 

Winteraceae, and underlines the fact that in the case of Tasmannia lanceolata , the 

presence of these cells has not been considered in either morphological or chemical 

studies. Clearly the oil cell system should be considered with respect to the complex of 

secondary compounds obtained by extraction of leaf material, and in particular, some 

effort made to distinguish between extract and oil cell contents, for the purposes of 

experimental comparisons. Of the methods described above, direct removal of oil from 

the cells, separation of oil cells by digestion and filtration and use of FTIR spectroscopy 

appear to offer the most promise. 
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2.5 Seasonal Changes in Oil Composition 

Seasonal changes in oil composition, together with the developmental and 

morphological changes associated with the annual growth cycle may be employed 

definitively in several areas of research, in particular, commercial production, 

chemosystematic studies and ecological studies of species interaction where chemical 

influences are implicated. 

2.5.1 Commercial production of essential oils 

Since for most essential oil crops the compositional requirement for oils and extracts is 

quite specific, selection of suitable cultivars from an unselected population depends 

upon a critical comparison of chemotypes available, and careful management of 

harvest with respect to timing and the nature of the material harvested. With 

established commercial essential oil species, the importance of ontogenetic changes in 

determining the composition of oils and extracts is clear, as is selection of the plant 

parts to be harvested. 

Hay ( 1993) notes the significance of phenology and ontogeny in commercial 

production of volatile oils from field crops, observing that selection of species and 

cultivars depends upon matching phenology to the available growing season, and 

management and profitability depend upon interrelationships amongst three aspects of 

ontogeny-

1) time course of biomass (DM) production, 

2) time course of oil content per unit dry matter, and 

3) time course of production of oil constituents. 

These parameters are reported for many traditional essential oil crops, and 

characterisation of the seasonal change in relation to dry matter and oil yield continues, 

even for widely established species such as peppermint (Court et al. (1993), Bouverat­

Bemier (1992)). 

Studies of this kind for a range of common essential oil crops are frequent in the 

literature-

Apiaceae eg Petroselenum -Porter (1989a), Anethum -Clark and Menary (1984); 

Lamiaceae eg Majorana, Melissa, Ocimum, Origanum, Salvia Basker and Putievsky 

(1978), Thymus -McGimpsey et al. (1994), Lavandula~Lammerinck et al. (1989), 

Mentha -Clark and Menary (1979); 

Asteraceae - Tagetes..::Thappa et al. (1993), Artemesia Putievsky et al. (1992); 

Myrtaceae - Melaleuca alternifolia - Southwell and Stiff (1989). 

Such studies provide a basis, biochemically and agronomically, for selecting an 

optimum harvest date. 
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For example Porter's (1989a) study of two cultivars of parsley- Petroselinum crispum, 

monitored twelve components in the steam volatile oil at six stages of development for 

each cultivar, corresponding to developmental stages between the rosette and mature, 

brown secondary umbels. Oil yield was expressed as % of fresh weight and the levels 

of each of the compounds as a percentage in the oil. The plants were also separated into 

portions- stem, leaf, primary secondary and tertiary umbels to provide an indication of 

the contribution of each to the whole oil yield. Composition and yield varied 

continuously during the development cycle, reflecting the large changes in proportion 

of the plant parts and changes in oil composition within them. In general, as oil 

accumulation proceeds from 'herb' to 'seed', oxygenated compounds (eg myristicin) 

begin to dominate the oil, and yields per plant increase. Harvesting of 'herb' oils, 

characterised by ~- phellandrene and p -mentha 1,3,8 triene, required some 

compromise in yield, as it was necessary to cut short the development of the oil rich 

inflorescence. Porter notes that because of the continuum of compositional changes 

during the developmental cycle, each crop 'offers a wide range of oil compositions' 

enabling achievement of target oil qualities demanded by the market. 

Where crop response to local growing conditions is not well understood, there is a 

requirement for study of the phenological and ontogenetic responses to prevailing 

conditions. In this respect the quality of the oil at the time of harvest will be of 

paramount importance. This situation applies to any introduction of a conventional 

crop to a new region, for example Kallio and Jiinger-Mannermaa(l 989) ..: juniper berry 

production in Finland, Hay et al. (1988) - Summer Savoury for Scottish conditions and 

Clark and Menary (1984) -dill for Tasmanian conditions. In these examples, the 

phenology of the crop is 'fitted' to the prevailing temperature and day length regime. 

On the other hand, in consideration of a wild population for commercial use, the 

natural variety of habitat conditions, ecotypes and genetic diversity at the individual 

level complicates examination of phenology and ontogenetic change in yield 'quotient'. 

Examples of this are found with Holm et al (1988) - Dragonhead oil in Finland, 

Hegerhorst et al. ( 1988) - commercialisation of Rubber Rabbit bush, Dragar and 

Menary (1992) - essential oil from a Tasmanian Asteraceae, and the series of studies of 

Satureja douglasii -by Lincoln and Langenheim (1976, 1978,1979) and Rhoades et al. 

(1976). 

The last example represents a case in point. Satureja douglassii , a mint naturally 

distributed on the west coast of the USA north to British Columbia, found in a 

diversity of habitats and offering a wide range of ecotypes, was examined for 

systematic chemical groupings. Five chemotypes were discerned from among 51 

separate populations, the leaves of all types containing substantial proportions of 

bicyclic monoterpenes, but differing in their remaining constituents, named 'carvone', 

'pulegone', 'isomenthone', 'menthone' and 'bicyclic' (compounds- camphene, camphor, 

bomeol) for the high relative proportion of each in the so-called chemotypes. These 

studies considered developmental changes only cursorily, and as a result, in the 1978 
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report of the effects of irradiance and temperature on oil composition, showed that the 

net influence of these factors was complicated by onto genetic trends, particularly leaf 

position on the stem, and changes in yield/leaf dry matter and yield of leaf dry matter. 

In the Rubber Rabbitbush study (Hegerhorst et al. 1988), seasonal trends were 

considered for several major terpenoid compounds and rubber and resin content in 

green tissue, one year old tissue and tissue several years old were determined over an 

eleven month period. This showed that rubber and resin were strongly negatively 

correlated and changed steadily over the sampling period and provided an indication of 

the metabolic interrelation between the two products, as well as suggesting an optimum 

harvest date. Holm' et afs (1988) interest in Dragonhead (Dracocephalum moldavica) 

arose from the possibility of producing a 'Lemon Balm' -like oil in the short cold 

growing season at high latitudes. The highest oil yield (the optimum for harvest) was 

found to coincide with flowering, although the desirable geranial continued to increase 

thereafter, offering, as in the case of parsley, the possibility of trading yield against 

quality requirement. 

Russin et al. (1988) were more specific in their examination of oil development in 

Tagetes minuta , studying the changes in the contents of isolated secretory cells, rather 

than those in the essential oil obtained from the whole leaf. The significance of this 

approach lies in the difference between the elements of foliar secretion. The authors 

observe that in this species, three types of secretory structure are found, and 

presumably three (or more) different sequences of oil accumulation contribute to the 

whole. 

Clearly, the processes of synthesis and accumulation of oil components together with 

the extent of volatile emissions, or catabolism of stored compounds underly the 

development of the final oil composition. Since the relevant economic parameters are 

harvestable yield of oil /dry matter, and oil composition at harvest, it is a fundamental 

requirement that the pattern of oil metabolism and dry matter accumulation be 

correlated with phenological events and that these events 'fit' the available 

environmental circumstances. 

2.5.2 Chemosystematic studies 

The importance of seasonal changes in terpene and other secondary compounds should 

be considered in chemosystematic and genetic studies. There is a great deal of literature 

in which volatile or extractable plant metabolites are used to compare plant entities, 

from comparisons within species and between individuals, regional groups or ecotypes 

to studies of familial and higher order relationships. Such studies rely on similarities or 

differences in levels of such metabolites to justify changes to accepted taxonomic 

groupings, and ideally should clearly separate any effect of time of sampling or type of 

plant material sampled, from the genetic component of variation. Many, however fail 
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to specify the time of year, physiological age or even the type of plant material used in 

the comparisons. 

Menadue and Crowden (1983) included ethanol leaf extracts in a study of two Richea 

species from 24 populations (4 of one, 20 of the otlier) from which they concluded that 

the smaller group should be submerged in the larger and that no discontinuity in the 

chemical or morphological characters used justified retaining the separation. The report 

describes the material sampled as terminal portions of single branches but does not 

mention the time of year of sampling nor the age of leaves used in the analysis. 

Southwell and Brophy ( 1992) suggested that essential oil chemistry of the Australian 

Tasmannia species might be a useful adjunct to morphological studies in confirming 

certain slightly contentious aspects of the taxonomy of the genus. However, their 

preliminary investigation and conclusions regarding affinities and separation of some 

members of the genus depended upon oils and extracts obtained from samples of a few 

plants from only three wild locations or a few Tasmanian collections grown in an 

institutional gardens, for which the time of harvest or the physiological age of the 

material in each case is not recorded. Berry et al. (1985) concentrated on cluster 

analysis of sesquiterpene compounds found in Rimu (Dacrydium cupressinum) foliage 

to impute biosynthetic linkages between them. Stating that 'no effort was made while 

sampling Rimu foliage to distinguish between old and new growth, and samples taken 

in Spring 1981 may well have included some new growth', these authors rely on the 

assumption that 'sesquiterpene levels are largely unaffected by environmental factors' 

to conclude that the levels are genetically controlled. Adams et al. ( 1970), in 

establishing the taxonomic status of a new species of Juniperinus, compared the oil 

obtained from type samples taken on a specific (and carefully reported) date, with oils 

obtained from other recognised taxa some five years previously on an unspecified date. 

The above examples show that systematic studies may be less than conclusive when 

the nature of the plant material or growing conditions are not specified. 

On the other hand, many chemosystematic studies do attempt to address the problem of 

seasonal or ontogenetic changes. 

Zygaldo et al. (1990) comparing populations of Tagetes minor used fully open 

flowers as a sampling unit to avoid the problem, while Butcher et al. ( 1994) confined 

their sampling of eleven populations of Melaleuca alternifolia to a two week period in 

early autumn, using only the previous season's growth. The latter approach requires 

care, particularly when applied to populations in widely different environments 

wherein the stages of ontogeny may not be synchronous. The former approach, on the 

other hand, ignores the difference in time of season or even the kind of season which 

has occurred during the development of the flowers. Li (1993) incorporated three 

'dimensions' of influence in his study of volatile oils of provenances of Eucalyptus 

nitens , E. delegatensis and E. globulus. growing in similar environments. These he 

described as ontogenetic, physiological and seasonal. The sampling system provided 
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an opportunity to separate the effects of a) time of initiation/emergence, 

b)physiological age at time of sampling and c) any trend in composition over the 

season (after consideration of a and b).The scheme in Fig 2.4 shows the approach 

taken, with each successive sampling date providing leaves of an age series which can 

be compared with those of the matrix developed over previous sample dates for 

composition changes. The scheme relies ori a regular sequence of newly emerging 

leaves for development of the 'leaf age' series - appropriate for the Eucalypt species and 

the growth season of the experiment described but not for short, or changeable growing 

seasons where it would not be possible to compare a current date 'D' leaf with the 

previous 'C' leaf etc., nor for species which undergo determinate growth cycles for a 

short part of the season eg spring, or which exhibit uneven patterns of leaf emergence 

during the season. 

A B C D 4 3 2 7 s 
Leaf aae Ph7~oloafcal qe 1erie1 Samp11D1 u-

(1) (3) (2) 
Cale&ories of leaf samples and sources of variation for each cazeiry of leaf' sample: 

(1) Lear qe dasses: leaves iniLiaied at differ=i Lime, same physiological mge sampled a di1f'ereni times 

throughout the s~ periM.. Varialicn between leaf smnplcs within each age class 1re affecled by sampling lime 
factor and could compound c:nvironment/seasonal etrecu with ontopnetic effect. 

4 

(2) Time series: leaves iniLiaied al diffa-c:nt times but sampled al mme time. Varialion between leaf samples within 

each time series is affected by age factor IJld could compound se&sooawme effects on inilialion of leaves, 

ontogc:nelic and physiological aging e:fects. 

(3) Pb7slologlcal age series: leaves iniLiatcd al same time but sampled at different time. 

V llriation between leaves within esch series are mainly affected by physiological mge differences, but 

could compound differences due to environment at lime of sampling. 

Figure 2.4: Sampling matrix for comparing the effects of sampling date, 
physiological age and time of initiation of Eucalvpt leaves on the 
composition of their volatile oil content (from Li 1993). 
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The importance of addressing the prospect of changes during growth and maturation in 

systematic studies is increasingly recognised. Zavarin et al. (1971) noted the 

implications for chemotaxonomy and many publications since have dealt specifically 

with the problem in order to determine the appropriate sampling regimen for the 

species' concerned (von Rudloff 1972, 1975; Bernard-Dagen et al. 1979; Pitarevicet al. 

1984; Scora et al. 1984; Simmons and Parsons 1987; Holmet al. 1988; Southwell and 

Stiff 1989; Whiffin and Hyland 1989). 

Whiffin and Hyland (1989) for example, incorporated seasonal variation in the level of 

several terpene compounds into a systematic study of Australian rainforest trees, using 

monthly samples of leaf to establish patterns in composition of steam distilled oil for 

ten trees of Syzigium canicortex an Australian tropical rainforest species. The study 

concluded that for this species, the variation in oil composition during the year was less 

than that between individuals and that systematic studies might safely be conducted at 

any convenient time of the year. For another species Litsea leefeana, principle 

coordinate analysis was used to account for the variation amongst three trees during the 

year, and showed that they remained clearly distinct at all times. Lastly, the study 

showed that there was no consistent pattern of oil composition over the year for single 

trees of six different genera in the Lauraceae, nor was the extent of divergence among 

them noticeably greater at any particular month. This result may be unexceptional for 

tropical species experiencing less distinct seasonal cycles, but is clearly not the case in 

many temperate species. 

For example Nerg et al. (1994) compared extractable compounds in leaves of Scots 

pine seedlings grown from seed of nine different geographical origins and held at three 

latitudes ( approx. 58°, 62° and 66°N) in Finland and Estonia and found that seed 

origin was insignificant in comparison with the changes during the season and between 

the location of growth. 

Simmons and Parsons (1987), showed the confounding of genetic and seasonal effects 

in a study of seasonal variation of the steam volatile oil of Eucalyptus ovata and E. 

camphora . They concluded that patterns of variation were most likely to be due to 

leaf ageing, and that the genetic characteristics of particular trees would determine 

response to ageing effects, leading to the likelihood of large differences within and 

between species and between individuals in a population. Canonical variate analysis 

demonstrated a clear grouping of different trees despite considerable variation over the 

sampling period. 

Importantly, the authors concluded that for chemotaxonomic work with Eucalypt spp., 

winter and autumn sampling, together with a suitable sampling method should enable 

elimination of leaf ageing and seasonal effects from chemosystematic studies. Scora et 

al. (1984) distinguished between terminal, juvenile, 'adolescent' and mature foliage in 

Artemisia douglasiana and noted that although oil yield was lowest for the latter group, 

the homogeneity of the samples indicated it was the most suited for chemtaxonomic 

purposes. 
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White (1983) discussed patterns of terpene mixtures in wild stands of lodgepole pine 

and other pine species in a study of correlations between terpenes by family and in the 

wild stand, but other than specifying sample date and type of leaf material did not 

incorporate any seasonal aspect in the work. Subsequently, White and Nilsson (1984), 

examining heritability of resin canal frequency and levels of mono- and sesquiterpene 

compounds, concluded that terpene production and storage was compartmentalised in 

the canals, that their frequency determined total terpene yield, and that this was only 

moderately under genetic control. Again there was no consideration of the ontogeny of 

the storage organ or the progressive accumulation of oil constituents. 

A series of studies of North American Pinus species - P. mariana (von Rudloff 

1975a); P. contorta, (von Rudloff and Nyland 1979); P. banksiana, (Lapp and von 

Rudloff 1982) and P. pinaster (Zimmerman-Pillon and Bernard Dagan 1977) depended 

upon an earlier determination of the nature of the seasonal development and change in 

terpene components in the foliage of white spruce (P. glauca) (von Rudloff 1972). In 

that investigation, von Rudloff sought to determine the source and site of seasonal 

variation, comparing buds, new shoots and older plant parts during a full year of 

growth. Comparison of oils sampled during autumn over five years from a single tree 

showed that type and relative amount of terpene present was under strict genetic 

control. 

The author did not employ a weight basis for expression of terpene compositions, 

preferring to avoid errors associated with complete evaporation of the ether used to 

collect the distilled oil. Similarly, he pointed to seasonal changes in non-volatile 

components in the leaf as the reason for not using leaf dry weight as the basis for 

presentation of results, preferring 'relative percentages' of components within the oil 

against a summation of areas of all recorded peaks. 

The most significant change occurred in new shoots after flushing of the buds in 

spring, although the pattern of change was different for each of the major terpenes, and 

older leaves showed only slight variations in early summer. Pinenes decreased from 

high relative percentages (in the oil) in the bud prior to bud flush, to a minimum about 

three weeks later, after which they rose to approximately the level detected in leaves on 

older shoots. Limonene and myrcene showed the opposite effect, while the remaining 

four terpene compounds examined each rose from trace amounts in the buds to an early 

maximum in May. After this, relative amounts dropped gradually to the typical values 

found in autumn and winter foliage. 

Hence von Rudloff ( 1972) distinguished between three phases of terpene synthetic 

activity in the white spruce foliage - in new buds during autumn and early winter, high 

activity during the early summer flush, and low activity in older leaves during the same 

period. Sesquiterpene alcohols and hydrocarbon were at a maximum in the oil (about 

10% of each) in early summer when total yield of volatile oil was about 0.05% by FW 

of foliage, but by midsummer, when total oil yield had risen to 0.35%, the percentage 
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of these combined was less than 1 %. On a dry weight of foliage basis, this represented 

a fall from O.Olto 0.004% of actual amounts of the sesquiterpenes and it was suggested 

that further metabolism of the compounds must be occurring, and that some 

resinification may take place in the warmer summer weather. 

Bernard-Dagen et al. (1979) integrated ultrastructural and extraction studies to examine 

needles of maritime pine (Pinus pinaster) and were able to distinguish three 'zones' in 

the needles, and to show that epithelial cells lining the resin ducts were functional 

mainly in the basal parts of the needle, where they were responsible for the elaboration 

and secretion of monoterpene compounds into the resin duct. These cells deteriorate 

during the growth of the needle so that in the mid- and tip regions of the needle, they 

no longer perform a secretory function. Monoterpene levels remained steady during the 

season in all portions of the needle - highest at the base, and lowest at the tip, 

supporting the proposition that they are substantially synthesised early in the growth 

period and are subsequently metabolised or diluted as the resin canal ages and its 

surrounding epithelium deteriorates. Sesquiterpene synthesis, however, continued in 

all parts of the needle, progressively and continuously enriching the resin as the season 

proceeded. The paper is not specific in suggesting where these compounds are 

synthesised other than to refer to the 'permanent secretory activity typical of these 

unspecialised tissues'. This work was taken further to compare eight phenotypes of the 

species in a study which also examined wood and cortical tissue for terpene 

composition (Zimmerman-Pillon and Bernard-Dagen 1977). 

Taking the question of suitability of sample technique one step further, a number of 

studies have examined diurnal variation in leaf oils, for example Leach and Whiffin 

(1989) who showed that in Angophora costata, diurnal variation was small, and 

significant only for two compounds (of the 86 numbered peaks resolved in this study) 

which tended to decrease during the night and rise to maxima during the day. Scora et 

al. ( 1984) expected, but failed to find, a diurnal pattern in composition of the essential 

oil of Artemesia douglasiana . 

2.5.3 Ecological and other studies 

The apparent use by many plant species of secondary compounds as defences against 

herbivory and infection has interested ecologists because of the implications of 

investment in irretrievable compounds by species for which resources may be difficult 

to obtain. Such investigations usually assume that a reduction in predation occurs as a 

result of changes in levels or nature of the compounds in question. 

Similarly, turnover (recycling of energy, carbon etc on a continuous basis) in these 

compounds and their retrieval upon senescence of the plant part has been incorporated 

into several theories and models on evolution, cost, and availability of plant defence 

strategies (Coley et al. 1985, Fagerstrom 1989). The notion of 'mobility' of the 

particular compounds and ultimate loss to, or recovery by the plant is invoked in 
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comparisons between long lived plants in resource-poor environments for which the 

investment in immobile defence mechanisms is a 'least cost' strategy, and short-lived, 

fast growing plants for which recovery of the resources may be preferred. Recently part 

of the basis for some of these theories has been called into question with the p~per of 

Mihaliak: et al. (1991) and Gershenzon et al. (1993) in which the earlier work 

demonstrating rapid loss of labelled monoterpenes from apical peppermint cuttings was 

shown to be artifactual and not applicable in intact plants of a variety of oil bearing 

species. Ultimate loss ofterpene compounds from senescing leaves (Croteau 1988) 

may not be exhaustive, and such compounds may be evident in leaves after senescence. 

Such consideration of animal and insect interactions with plant species are complicated 

by the concept of coevolution, whereby natural predators will develop strategies to deal 

with an evolving defence system and within the populations of protagonists there will 

be more or less successful individuals on both sides. Eliminating the ontogenetic or 

diurnal elements of phytochemical change allows a more powerful determination of 

such interactions. 

Halls et al. (1994) examined Rubber Rabbitbush (Chrysothamnus nauseosus) which 

contains a variety of active antimicrobial, antifungal and insecticidal properties, and 

showed that attention from browsing animals could be correlated with reduced winter 

levels of the volatile secondary chemicals. This correlation was not supported by clear 

evidence of active 'antiherbivory', since an earlier study (Ward 1971) showed that 

winter foliage of the plant was of comparable digestibility for the browsing species. 

Cedarleaf et al. (1983) followed annual changes in monoterpene content in Big 

Sagebrush (Artemesia tridentata ) proposing that mule deer browsing patterns might be 

determined by preference for seasonally low terpene content. The study showed 

substantial seasonal variation in 'monoterpenoid' content of current season's growth, 

cycling between 1and5% on a dry matter basis but did not examine the browsing 

pattern in detail, or include choice or digestibility assays. The authors concluded that 

on the basis of earlier reports of browsing patterns, there was no support for the 

suggestion that browsing and terpene changes were related. A similar conclusion was 

drawn by Lincoln and Langenheim ( 1979) in relation to twice yearly yield 

determinations of monoterpenes and herbivory in Satureja douglasii .. 

On the other hand in a study of six 'chemovars' of Thymus vulgaris, each distinguished 

by a single dominant monoterpene, Linhart and Thompson ( 1995) showed consistent 

patterns of feeding preference amongst adult and immature individuals of the snail 

Helix aspersa . This study did demonstrate the interaction of specific monoterpenes 

with choice and digestibility of the leaf material but did not consider changes in the 

levels of the active compounds during leaf development and maturity. Wagner et al. 

( 1990) noted seasonal changes in secondary metabolite levels, including terpenes, in 

three hosts of the western spruce budworm and found consistencies with feeding 

patterns in the insect. 



39 

Studies of the type described above may not conclusively distinguish between 

endogenous seasonal cycles in the relevant 'defensive' compounds, and injury-induced 

reactions such as those detected by Bamola et al. (1994) in which defoliated Pinus 

carribaea appeared to increase the needle content of several monoterpenes. Neither, in 

many cases, do they establish causal connections between herbivory and secondary 

compounds present. However, they do provide basic data upon which more definitive 

feeding and browsing assays might be based. 

Extract or oil composition has been employed effectively for each of the areas of 

research outlined above - commercial production, chemosystematics and ecological 

investigation. As shown, in many cases the seasonal cycle of synthetic, accumulative 

and degradative processes is the single most significant aspect of the system under 

study. For this reason, a basic and rigorous analysis of this cycle must underly the 

research, or mistaken assumptions can easily detract from the conclusions. 

The basic study must incorporate a sampling method which will resolve the difference 

between ontogenetic processes and environmental changes, it must use an extraction 

and analysis technique which identifies the key compounds and an appropriate means 

for the expression of results must be employed. 

In Tasmannia lanceolata, from the review of the available literature, it appears that 

ecological studies of the type represented above (herbivory and successional status) 

might arise from recognition of the properties of polygodial. Certainly this compound, 

and the whole extract are of interest from the commercial point of view, and any 

attempt to establish a production system based on the species will require information 

regarding ontogeny and oil accumulation and composition. Lastly extract analysis has 

already been proposed in the area of chemotaxonomy for the genus (Southwell and 

Brophy 1992). 

It would appear necessary, therefore, that a basic study of the type described, 

identifying the annual pattern of extract composition, and expressing it in terms of the 

annual growth increment, is essential to inform any such research in the future. 



40 

2.6 Canopy architecture and harvest strategies 

Porter ( 1989b) described a principle objective of pruning models as the removal of as 

many individual 'units' (leaves, buds, limbs) from the plant body as would allow for 

their complete replacement in one growth period. Harvest of vegetative material from 

mature plants on a regular, (usually annual) basis requires an understanding of the 

normal patterns of growth determining canopy form in the undisturbed plant, and a 

knowledge of the response of the plant to harvesting. 

This is the issue with vegetative harvesting systems (such as applies to tea, and would 

be relevant to Tasmannia), for which the particular unit of concern is the annual shoot 

growth - usually on the top or outside of the remaining canopy. Productivity in this 

context refers to annual dry matter production of leaf and shoots, is usually closely 

related to light interception (Palmer 1989), and was calculated by Linder (1985) for a 

range of forest stands, to approximate 1.7 g MJ-1 photosynthetically active radiation. 

From a physiological point of view, there are two aspects to consider. 

The first of these is the effect of removal of storage resource and photosynthetic organs 

on the capacity of the plant to recover its energy investment. This will reflect the 

ecological habit of the plant, its usual level of tolerance to browsing, wind damage etc. 

This in tum will depend on the productivity of the remaining photosynthetic organs, the 

distribution of resources in the whole plant and the speed with which replacement 

leaves and twigs become net contributors of carbohydrate. 

Intervention in the normal progression from growth, through maturity to senescence of 

leaf and stem structures will disturb source/sink relationships, allocation of resource to 

reproductive vs vegetative activity and will alter the significance (in energy terms) of 

independent factors such as frost damage, herbivory and disease agents. 

Secondly, the phenological mechanisms which operate to respond to natural predation, 

injury or senescence of growth points, will determine the optimum position, timing and 

extent of such harvests. 

In addition, of course, there is the question of tissue injury and possible infection 

associated with any 'harvest' technique. 

2.6.1 Growth patterns in Tasmannia. lanceolata 

Gifford (1950) describes the activity of the shoot apex during the cycle of growth and 

dormancy, with particular attention to the shape and cytology of the apex itself, and 

refers to 'future papers' devoted to leaf development and comparative studies of 

inflorescence and floral apices in the Winteraceae. 

One of these, Tucker and Gifford (1966b) provides a growth chronology in a discussion 

of floral ontogeny in T. lanceolata, referring to the typical cycle in San Francisco. 

Shoots expand actively from spring till late summer (earlier, and for longer than the 
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typical Tasmanian situation), followed by a period in late summer-autumn when 

extension growth ceases or is greatly reduced, but buds undergo a development phase. 

By late autumn/winter the terminal bud contains an apical meristem, about 8 spirally 

arranged leaf primordia, each subtending a leafless vegetative meristem, then 6-23 

floral bracts also spirally arranged and each subtending a single flower, with no 

bracteoles. The apex is essentially dormant during winter, and open flowers are first 

observed in late September. 

Floral initiation and development occurs between December and April (southern 

hemisphere), initiation continuing until late summer - February. By late January, the 

older flowers have carpels and young flowers of all ages are present. 

Vegetative axillary buds remain undeveloped throughout the dormant season, and in 

spring each produces two sub-opposite prophylls and a succession of vegetative leaves. 

The floral axillary bud appears convex, when compared to the vegetative bud at a 

comparable, pre-appendage formation stage. These buds produce two sepals, also sub­

opposite. 

Vink (1970) describes a typical cycle of growth in Drimys spp. which can be 

paraphrased as follows: 

The twig bears leaves in clockwise or anticlockwise direction, in a 2/5 spiral terminated 

by a bud, whose scales continue the spiral of the foliage leaves. The bud is either 

vegetative (producing a new shoot flush) or mixed (producing a shoot and flowers in 

axils of bud scales) and the shoot may extend simultaneous with, or subsequent to 

anthesis. Leaves on one shoot increment (bud scale scars to terminal bud) are usually 

evenly spaced or crowded below the apex - pseudoverticillate. 

A lateral shoot usually produces one or more vegetative terminal buds (one per cycle) 

after which mixed buds are formed until shoot apex terminates its activity, whereupon a 

new lateral shoot takes over as leader. 

Mean of leaf lengths per shoot increment increases distally along the twig, and lateral 

shoots have lower values for these than leading shoots. Increase of leaf length ceases 

with termination of activity of meristem at which time a lateral takes over as leader. 

Flowers are inserted in axils of scales of mixed terminal bud and occasionally in the 

axil of the first leaf above the scales. The inflorescence is terminated by a vegetative 

apex. Bud scales of the mixed bud are referred to as 'bracts' since they can subtend 

florescences. 

For Vink's 'sect. Tasmannia~ he notes that within the terminal bud, bracts increase in 

size acropetally, that initiation and anthesis of flowers tends to be acropetalar, but that 

in the lower 1-4 florescences the trend may be reversed, and flowers may be replaced 

by vegetative buds. Similarly, vegetative buds may occasionally be found in the axils of 

the highest bracts. 
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2.6.2 Classical Canopy Models 

Canopy morphogenesis and the structural consequences of differing mechanisms are 

considered by Halle et al. (1978) and a number of 'architectural' models are described 

in detail. The essence of this approach is that the model implies change and proposes 

the plan of growth rather than shape or physiognomy of the resulting mature plant. 

These authors use a definition approach (the provision of precise boundaries for 

inclusion of an example) to designating models rather than typification (using a 

taxonomic point of reference as representative) and distinguish 23 models for canopy 

growth. An illustrated key is provided and examples of species (usually tropical or sub 

tropical tree species) typical of each are listed. 

Criteria of importance in this analysis are the life span of meristems (monopody vs 

sympody), the differentiation of vegetative meristems into sexual (determinate) or 

vegetative (indeterminate) structures, plagiotropic or orthotropic habit, rhythmic or 

continuous growth cycles and the chronology of branch development. 

Applying this approach to Tasmannia lanceolata classifies the typical habit as 

conforming to Rauh's Model, specifically: monopodial trunk, rhythmic growth, 

branches morphogenetically identical to the trunk, flowers lateral. 

For the 'ideotype', branches usually develop by prolepsis in temperate species, or 

syllepsis in tropical species, the inflorescence is always lateral, and may be on first part 

of a renewal shoot subtended by leaves or scale leaves ( eg avocado), or may occur at 

distal end of an extended shoot. Periodicity reflects latitude and environment, less 

tropical examples tending towards more periodic growth. The 'strategy' of the model is 

its simplicity and ability to regenerate. Usually damage to the trunk meristem results in 

the ready substitution of uppermost lateral meristem and little disturbance to growth, 

while rhythmic growth allows suspension of meristematic activity during periods of 

(seasonal) stress, most usually cold or drought. 

Commercially important examples conforming to this model include Hevea (Rubber), 

several timber species (Sweitenia, Khata, Triplochiton) and the subtropical fruit species 

Artocarpus (breadfruit), Persea (avocado) and Mammea. 

For these species, the most comprehensive literature on canopy management applies to 

the avocado, (family Lauraceae )which, although directed towards reducing vegetative 

growth and maximising reproductive productivity, does examine in detail some of the 

elements of canopy formation, and presents a number of empirical approaches to the 

problem of stimulating and supressing vegetative growth at specific axes. It also 

includes useful discussion and data to show how such intervention in the normal 

growth pattern can alter the balance between reproductive and vegetative growth. 

The general problem of management for vegetative productivity in perennials - the 

removal of much of the photosynthetic tissue and growth axes by harvest, in direct 
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growth, has been addressed most thoroughly in the development of manual and 

mechanical pruning and harvest strategies for production of tea (Camelia sinensis). 
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Although both these species are tropical/ subtropical in distribution, the general 

relevance of the principles is explained below. There is no published literature on the 

response of Tasmannia lanceolata to physical 'damage', - even the frequent insect 

injury of buds which is observed in the Tasmanian field situation (P.McQuillan, 

University of Tasmania - pers. comm). 

2.6.3 Pruning and canopy management - evergreen tree crops 

Whiley et al. (1988) summarise the problems for avocado orchard management 

associated with canopy development and tree vigour. The productivity of such 

orchards is low compared with that for other sub tropical fruits largely due to the 

energy cost of producing the large oil-storing fruit with a large seed. Trees tend to 

vegetative growth due to a high turnover of short lived leaves typical of trees evolved 

to inhabit understory niches. Root systems are shallow and relatively inefficient ('litter 

feeders'). 

Management techniques are directed towards reducing fruit drop at times when 

competition between vegetative growth and reproductive activity or fruit development 

is most intense, and usually involve water management, fertiliser applications, 

Phytopthora control, rootstock choice, strategic pruning, etc. 

With a detailed analysis of canopy architecture, bud phenology and shoot growth in 

avocado Thorp and Sedgley (1993b) and Thorpe et al. (1994) showed the significance 

for productivity of modular growth (rhythmic extensions of growth twice or thrice per 

annual cycle), apical dominance (influence of the primary axis over subordinate 

axillary buds on the growing shoot) and acrotonous growth (growth of proleptic shoots 

resulting in development of many major limbs). Node numbers were higher in 

reproductive shoot modules, but were not influenced by cultivar, rootstock, location, 

climate etc, but were regulated endogenously. 

The architec~al analysis approach was also used by Cutting et al. (1994) who devised 

an experiment in which pruning cuts applied at two morphologically and 

physiologically different locations and times were shown to influence shoot number 

and complexity and to enable control of shoot vigour. In avocado, lateral buds abscise 

when less than one year old, while those in the bud ring may last for many years. Cuts 

were applied through the bud ring and midway along the previous growth flush in late 

summer and late autumn. The experiment showed that pruning to increase complexity 

is possible but that the position of the cut is critical. The vigour of the many shoots 

generated (as flush shoot diameter) was less than that ofunpruned shoots, resulting in a 

smaller canopy diameter and increased shoot number. 
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Thorp and Sedgley (1993a) aimed to contain vegetative growth in established avocado 

trees, by removal of apical or axillary buds and removal of the whole summer (second) 

flush and compared these treatments with the normal (unpruned) growth arising from 

buds on primary and secondary axes for vigour, number and position. In the same trial, 

and in that of Wolstenholme et al (1990), growth regulators were used to reduce spring 

flush and divert resources into fruit set. 

Scholefield et al. ( 1985) examined carbohydrate levels during the annual cycle and 

found them to be lowest after the summer flush, and just prior to floral initiation. 

Levels increased over winter, reaching a maximum in early spring before decreasing 

sharply during flowering, shoot growth and fruit development. This paper describes 

methods used for recording shoot flushing, bud examination and carbohydrate sampling 

of trees in southeastem Australia. Fruit drop seemed to be related to competition for 

falling carbohydrate reserves by the post-anthesis flushing of the vegetative terminal 

buds in the inflorescence. The authors suggest that these cycles of flush and associated 

carbohydrate cycling are similar to those found in citrus. A similar competitive 

situation might also apply to the mixed bud found frequently on shoots of Tasmannia 

lanceolata. 

In the production of tea, (Camelia sinensis), vegetative productivity is the primary 

objective. There is an extensive, though specific, literature on the subject, typically 

discussing growth response to plucking and pruning (eg Mwakha 1989; Mwakha and 

Ankuya 1990; and Smith et al. 1990), seasonal and clonal differences in growth rates 

(Stephens and Carr 1990; Mwakha 1991) or light as a factor in productivity (Barua 

1969). 

The usual pattern of canopy management is to gather the tender shoots (two leaves and 

the terminal bud) from the plants at regular intervals depending on growth rate, and at 

longer intervals, to reduce the height of the canopy by pruning back to some 

predetermined level. The extent and timing of the pruning operation is a major factor in 

bush recovery, and subsequent yield, (Mwakha 1989, 1990) and local practices tend to 

vary. Of particular interest is the use of 'lung pruning' techniques, in which a varying 

proportion of maintenance foliage is retained after pruning, shown (Mwaka and 

Anyuka 1990) t<;> increase subsequent yields, but adding to the difficulty of hand 

harvesting, and supressing underlying shoots if left beyond the time of first tipping. 

The growth equations developed by Smith et al. (1990) are particular to the clonal 

material and location studied (Malawi), although some adaptation for the general 

situation may be possible. 

Barua's (1969) discussion of the effect of light on plantation productivity includes some 

commentary on the effect on productivity of retaining maintenance foliage in the lower 

parts of the canopy, and the difference amongst clones in foliage habit between the 

horizontal 'Assam type' and the semi-erect 'China type' of canopy. Agronomic factors 

resulting in poor canopy development and incomplete ground cover are shown to have 
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been the reason for favourable responses to shading treatments reported for many 

experiments carried out on Assam type bushes in NE India. Redirection of assimilates 

toward economic yield rather than increases in total net production resulted from 

reductions in irradiance to about 60% of full sunshine over these poorly developed 

bushes. Barna also notes that some endogenous control of this partitioning is 

implicated, to some extent independent of total radiation and net productivity. 

With respect to the subject of this study it appears that the key aspects for consideration 

are firstly the nature of the response to pruning or harvesting 'events' by the plant, 

including a determination of the availability and behaviour of growing points on the 

mature canopy. While normally responsible for directing canopy development, in a 

pruned plant this response will control development of the annual harvest 'quotient'. 

Secondly, physiological factors determining productivity in the canopy, most 

importantly, the response to changes in light levels brought about by such manipulation 

of the plant canopy should be examined. 



46 

2. 7 Light acclimation in understorey species. 

Bjorkman (1981) points out that distribution of photosynthate between photosynthetic 

and other tissue within the leaf, (and the allocation to leaf vs other plant parts) is 

substantially affected by the light environment experienced by the plant,- in broad 

terms 'sun' vs 'shade'. This influence is likely, therefore, to extend to the proportions of 

secondary compounds synthesised and stored within leaves during growth and 

development. 

Changes in light environment brought about in the natural situation (either suddenly, 

by treefall or herbivore damage, or gradually by overtopping of a plant canopy by 

neighbouring species) require a capacity for adjustment of canopy structure, leaf 

orientation, photosynthetic apparatus and the balance between storage and expenditure 

in the plant as a whole. 

For leaves on a particular plant, the photon flux density (PFD) conditions during leaf 

development and maturation, and the acclimation capability of the species may 

constrain its response to instantaneous extremes of light. 

Within the whole canopy, a wide range of light levels will be experienced by each leaf 

depending upon aspect, position in the canopy, orientation and changes in ambient 

light conditions with cloud cover, time of day and season. 

As explained in Section 2.6 and discussed by Barna (1970) in relation to tea (a 

perennial crop in which fresh vegetative growth is harvested), pruning and harvesting 

of a perennial species imply drastic changes to the light environment of leaves during 

a typical seasonal cycle. 

2.7.1 Photosynthesis in Tasmannia lanceolata andDrimys spp. 

This section will consider the literature relevant to photosynthetic capacity in 

Tasmannia lanceolata , discuss two areas of research activity in which ·acclimation of 

species to changing light regime is of interest, and summarise the expected outcomes 

for photosynthetic and leaf morphological parameters of large changes in light 

climate. 

For Tasmannia lanceolata, Read and Hill (1989) concluded that the species occupied 

the niche of early invader at disturbed sites likely to support closed canopy rainforest, 

and determined that in comparison with dominant species and other more persistent 

understory species Tasmannia lanceolata had a higher light compensation point 

(approx 35 µmol m-2sec-1) and lower rate of photosynthesis (4.3 mg C02 dm-2hr-1) 

at light saturation (around 600 µmol m-2sec-1) and would not grow quickly enough to 

secure a position in the upper canopy. Casey (1991) found with collections from 

altitudes ranging from 1160m to about 600m that leaf morphology, frost tolerance and 
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photosynthetic performance tended to reflect site of origin. Seedling plants were 

collected from the field and grown under glasshouse conditions before the trials 

commenced. Light saturation for photosynthesis occurred at about 500 µE m-2 sec-1. 

Temperature optima (standardised as% of maximum rate) for photosynthesis amongst 

the sampled populations decreased with increasing elevation, from 18-20°C for low 

altitudes to about 14-15°C . Predictably, higher elevation sites showed broader 

response curve, 70% of Pmax at 5°C, while lowland sites only 50% Pmax at 5°C. The 

temperature optimum for photosynthesis appeared to correlate well with mean annual 

temperatures at site of origin. 

Armesto and Fuentes (1988) and Rebertus and Veblen (1993) noted a similar niche 

habit with Drimys wintera which was uncommon in the rainforest canopy but which 

regenerated in gaps produced by treefalls to the exclusion of other canopy species. 

Drimys wintera was gradually overtopped by large trees growing around the gap edge, 

particulary where it grew on unsuitable substrates. 

2. 7.2 Ecological significance of acclimation 

The question of successional adaptation was considered by Turnbull (1991). In a study 

of early, mid and late successional subtropical rainforest species, he used seedlings 

grown under four levels of neutrally shaded sunlight and filtered shade to analyse 

interactions between photon flux density and reduced red/far red ratio on selected 

photosynthetic characteristics of each species. The generalised response expected was 

for pioneer species to exhibit higher rates of Amax than late successional species. 

Growth irradiance significantly influenced light saturated photosynthesis (Amax) in 5 

of the species - maximum assimilation rate decreasing with increasing shading. In a 

second paper Turnbull et al. (1993) report on the dynamics of acclimation to these 

changes in light levels and ratios. Acclimation was significant for all the 

photosynthetic parameters examined for transfer of plants between high and low light 

regimes and vice versa. Morphological/structural characteristics were not included in 

this study and the authors concede that acclimation will probably be ultimately limited 

by structural parameters. Osunkoya eand Ash(l991) used only growth rates and 

biomass allocation parameters to compare acclimation in seedlings of rainforest tree 

species and showed that relative growth rate as a measure of carbon economy in the 

plant could be used to compare acclimation ability in the species to reduced irradiance. 

The question of whether ecotypes from differing light environments will retain their 

'sun' or 'shade' photosynthetic capacity or will acclimate fully, has not been 

satisfactorily resolved. As cited in Boardman (1977), previous work by a number of 

researchers had shown that ecological races of several species retained aspects of their 

photosynthetic response. For example, Solidago virgaurea clones from shaded 

habitats did not fully adjust to high light intensity, and those from sunny habitats 



consistently showed higher light saturated photosynthetic rates (Bjorkman 1968, 

Holmgren 1968). Gauhl (1976) found a similar result for Solanum dulcamara, while 

Teramura and Strain (1979) reported signficant differences in phototosynthetic and 

diffusion resistance response between shaded, flecked and open-grown adjacent 

populations of Plantago lanceolata , when cloned and grown in standard conditions 

and concluded that this indicated genetic differentiation between them. 
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The Solanum dulcamara example was further examined in Gauhl (1976), in which he 

found that the depressing effect of mild water stress on photosynthetic capacity 

persisted long after changed light conditions might have induced light acclimation. 

Clough et al. (1983), on the same species, agreed that persistent changes in leaf water 

potential, correlated with light levels may be the more important element of 

differences within and between so-called sun and shade ecotypes, and that real 

differences in survival and reproduction (the prerequisites for recognition of distinct 

ecotypes) may be more difficult to attribute to photosynthetic performance or 

acclimation ability. Clough et al. (1983) then questioned whether the widely reported 

persistence of limits to photosynthetic capacity in shade and sun 'ecotypes' might in 

fact often be attributable to this phenomenon. 

2.7.3 Light level and the accumulation of secondary compounds 

The allocation of photosynthetic resource to primary or secondary metabolic processes 

reflects the functional significance of the compounds in question and the availability 

of the resource. 

Where defensive properties are attributed to compounds, consideration of the 

interaction between light and secondary product metabolism focusses on the 

ecological implications. Givnish (1988) included a consideration of defence 

compounds in discussing the 'economics' of allocation of resources in sun and shade 

plants, referring to the papers of Coley (1983) and Coley et al. (1985) in which she 

predicts that shade adapted species will allocate more resource to their defensive 

mechanisms and will be more specific in their herbivore targets than sun species. 

These arguments are not extended to the intraspecies level, although one apparent 

example of a visual defence adjusting to open and closed canopies is cited (Smith 

1986). 

Lincoln and Langenheim (1979) examined the effects of irradiance on monoterpenoid 

yields in Satureja douglasii correlating these with the degree of herbivory observed in 

an open meadow adjoining a Sequoia dominated forest. High yielding types were 

associated with low light and high herbivory, and although genotypic factors were 

implicated in the yield variation, it was not eliminated in the comparison between light 

levels. Neither was the covariance of herbivory with monoterpene yield and light level 
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confirmed as causal ( seedling selection or stimulation of defence reaction) or 

consequential (selective browsing, or preference of the herbivore for shaded habitat). 

Lincoln and Lagenheim (1978), using clonal material of Satureja douglasii compared 

the effects of light and day temperature on composition and yield per leaf of pentane 

extracted oils. In leaf pairs on the same species they showed that yield per unit leaf 

dzy wei~ht decreased during development, and was markedly reduced at high light 

levels, irrespective of day temperature. This was attributed to an increase in total leaf 

dry weight under high light levels. 

On the other hand there was a negligible affect of light level on yield per leaf pair. 

These findings are discussed in relation to possible direct influences of light on the 

compounds concerned such as photochemical reactions or volatilisation, and 

previously reported reductive conversions of several monoterpene constituents 

resulting in alterations to oil composition in Mentha piperita (Burbott and Loomis 

1967). 

This result - falling terpene yield per unit leaf dry weight - was not observed in a 

number of other studies, even in other members of the family -Lamiaceae - Burbott 

and Loomis' (1967) study in peppermint, Yamaura et al. (1989) for Thymus vulgarus, 

and Finnage (1981) in Hedeoma drumondii. 

In summary, monoterpene (and more generally, secondary metabolite) production 

seems to be readily influenced by light regime, and indeed by any experimental 

condition which influences the photosynthetic performance of the leaf (Gershenzon 

and Croteau 1990). 

The cumulative nature of oil synthesis results in sensitivity of oil quality to the balance 

of photosynthetic and respiratory activity during leaf development. This was shown in 

Mentha piperita by Clark and Menary (1980a), in a dissection of 'apparent 

photosynthesis' into its component photosynthesis, photorespiration and dark 

respiration to estimate true photosynthesis. The result was incorporated into an oil 

accumulation model to show the influence of environmental factors, most importantly 

night and day temperatures, on the oil composition at any time. 

2. 7.4 Effects of light level on photosynthetic and morphological 
characteristics 

a) General 

The review of Bjorkman (1981) details factors determining photosynthetic 

performance under strong and weak photon flux densities and the pattern of 

acclimation of plant species representative of shade and sun environments to each, 

respectively, and discusses the phenomenon of photoinhibition. 

At low light levels, a strategy of high efficiency (photosynthesis vs respiration) and 

minimal direction of resources away from photosynthetic tissue tends to occur. 
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Chlorophyll content in obligate shade plants is at least as high as that found in sun 

plants, and tends to be enriched in chlorophyll b (chi b) relative to chlorophyll a (chl 

a). This reflects the increased proportion of total leaf chlorophyll associated with the 

light harvesting chlorophyll ab- protein complex, considered to be primarily associated 

with the PSII photosystem (see Fig 2.5 below). 

Sun leaf: 
380•Chl(a+ bl 

P700 X 

PSI 
PSil 

Shade leaf: 
1060• Chi (a+b) 

PSII 

Figure 2.S: {from Bjorkman 1981): Schematic proposal for organisation of photyosynthetic system 
in sun and shade leaves. The important feature is that the electron transport chains {via 
cytochrome f) are served by larger numbers of PSI and PSII units in the shade leaf, and 
that the ratio of these is higher in the sun leaf. Consequently the total amount of 
chlorophyll per chain is much higher in the shade leaf and more of the chlorophyll is 
associated with the light harvesting chlorophyll complex, including all the chlorophyll b. 

Quantum yield is not found to differ markedly between sun and shade grown leaves of 

the same species and appears to be essentially the same in normal leaves of higher C3 

plants regardless of the species and light regime, provided that for shade plants the 

light regime is not extreme and temperature and leaf water potential are within a 

normal range. 

Distribution of dry matter within the plant (and, by extension, allocation to defensive 

and structural tissues), are strongly and consistently influenced by QFD. Leaf weight 

ratio (WwW PianJ and specific leaf area (AI.dWLeaf) are both increased under low 

light regimes, while increases in leaf allocation may be at the expense of root growth. 

Bjorkman (1981) presents a model of sun and shade leaves which attempts to account 

for the experimental experience, at the heart of which is the schematic model for 

photosystem organisation shown in Fig 2.5 in which the basic difference is shown as 

the PSI:PSII ratios - 2: 1 for sun leaves, 3: 1 for shade leaves. 

Other differences discussed by Bjorkman (1981) include those of leaf structure - ratios 

of mesophyll surf ace area to that of the leaf, mesophyll morphology and volume to 

surface area ratio, and stomata! conductance. 
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Photoinhibition - the over-illumination of shade adapted leaves or plants - is observed 

as a reduction in Amax and sometimes in the quantum yield at high light intensities. 

The phenomenon may be partly or fully reversible, and is usually detected only in low 

light-grown leaves. Obligate shade plants exhibit a limited capacity to adapt to high 

light regimes, while leaves on sun plants grown at low light levels appear capable of 

quickly adjusting to higher light levels. 

b) Recent studies 

Wild and Wolf (1980) compared the effects of different light levels on morphological 

and physiological aspects of leaf development in Sinapis alba, in particular frequency 

and size of stomata and mesophyll and guard cell number, size, and chlorophyll 

content. 

Pons and Pearcey (1994) found that leaf mass and respiration per unit area declined 

sharply after shading, and shaded leaves lost N/unit area progressively before 

senescing. This process occurred more quickly in shaded leaves on unshaded plants. 

Amax also declined with shading, more rapidly than leaf N suggesting that N exported 

from the leaf mostly came from N involved in photon absorption, (PSII core 

chlorophyll), rather than from compounds involved in the provision of photosynthetic 

capacity' (light harvesting complex m, which underwent a relative increase upon 

shading (indicated by a decrease in chlorophyll a/b ratio). 

Sims and Pearcey (1991) distinguished two functions of respiration in non-growing 

leaves on plants moved from low to high light. Firstly the requirement for 

maintenance of the photosyntyhetic apparatus, and secondly the (larger) component 

arising from other effects of high light eg higher rates of protein turnover with repair 

of photoinhibition, transport and processing costs for increased amounts of 

photosynthate or increases in other energy-requiring metabolism (nitrate reduction). 

Comparing costs and benefits of acclimation to high light they concluded that it 

involved larger leaf construction commitment than simple maintenance of the shade 

leaf, and as a consequence, for light conditions at which either sun or shade leaves 

achieve maximum assimilation rate, shade leaves obtain higher 'return on investment' 

in carbon. 

Givnish (1988) also reviewed the literature on the subject of adaptation to sun and 

shade and re-evaluated the classical paper of Bjorkman et al(I981) (in which leaves 

were shown to perform best, photosynthetically at the light level to which they have 

been grown) in terms of 'whole plant energetics'. 

Brooks et al. (1994) examined the progress of acclimation in mature (that is, 

structurally 'determined') foliage of Abies amabilis using paired branches on mature 

trees and subjecting foliage to shade or no shade as well as removal of buds to prevent 

new growth and to identify the extent to which acclimation was dependent on the 

ageing process and source-sink factors. 
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With respect to Tasmannia lanceolata, the key issues here would be a more detailed 

assessment of basic light response parameters, and a consideration of the acclimation 

capacity of the species. The second point is relevant in the context of a pruning or 

harvesting system which would remove substantial portions of the photosynthetic 

canopy after the completion of the seasonal growth cycle. 

A general consideration of the response of leaf morphology and production of 

secondary compounds to different light levels might also be useful in developing a 

production strategy, where opportunity exists to select sites and plantation system (for 

example monospecific plantations vs use of the species as an understory crop). 
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2.8 Harvest Strategies for Yield and Composition of Secondary Compounds 

'Harvest strategy' may be considered to embrace the following aspects of crop 

management: 

• physiological status of the plant and its oil product and the scope for 

manipulation of this by agronomic means, 

• disease and pest management imperatives, 

• practical limitations of harvesting equipment and processing facilities and 

• product durability and storage methods 

Much of the relevant literature underlying agronomic management strategies for 

essential oil crop harvesting has been reviewed in Section 2.5.1, since the primary 

requirement is an understanding of ontogenetic changes in oil composition and biomass 

production, as summarised by Hay (1993), and exemplified by Porter's (1989a) study of 

parsley. 

Agronomically there may be some scope for alteration of the phenological process and 

consequently the timing of harvest by means of manipulation of nitrogen and irrigation 

levels, planting date or planting density (Clark and Menary 1980b, Hay et al. 1988, 

Svoboda et al. 1990), and these aspects of production might be incorporated in a 

harvest strategy. Many environmental factors on the other hand are shown 

experi1mmlally to alter oil production and phenology, for example temperature, 

irradiance level and photoperiod (Skubris and Markakis 1976, Clark and Menary 1979, 

Y amaura et al. 1989) but are only under the control of the grower in field conditions to 

the extent that choice of site and geographic location may determine the limits for these 

parameters. 

An example of the type of strategy which might be applied to control the quality and 

yield of essential oil, is the proposal of Clark and Menary (1979). Harvest date is 

determined on the basis of regular field samples for composition, while the broad 

strategy is to take two harvests and blend the resulting oils, and to control vegetative 

development of each crop using high levels of nitrogen and irrigation, while retaining 

flexibility to cut prematurely should a disease outbreak occur. 

In practice, disease or herbivory on canopy structure and loss of oil bearing organs 

may, in the field situation, dictate a harvest timetable quite independent of oil quality, 

requiring the blending of crops between seasons, locations and producers to obtain the 

desired result. 

Removal of only certain plant parts, on the basis of known variations in extract 

composition within the plant (eg. parsley seedvs herb oil- Porter 1989a), or in order to 

retain the canopy framework in a perennial species, offer both opportunities and 

constraints for development of harvest strategies. 

In addition to the purely physiological framework, many practical constraints may 

operate during commercial harvesting and should be incorporated into harvest 
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strategies in light of the above. Most obviously, limitations in handling, transport, 

distillation and extraction capacity, together with the durability of the harvested plant 

material, fresh, frozen or dried may dictate compromise on the 'ideal' composition or 

yield requirement. These issues are usually specific to the crop, location and market 

concerned and would not be usefully reviewed here. 

2.9 Conclusion 

The requirement to develop a generalised production and harvesting strategy for 

Tasmannia lanceolata provides a unifying context for the issues discussed in the 

forgoing review: 

• there is a general technical requirement for a methodology of extraction, preparation 

and analysis which will generate extracts of a reliable quality at maximum yield from 

the plant material used, 

•preparation of the leaf extract requires detailed knowledge of the storage system 

within the species, the structure(s) involved and their location and morphology, and the 

role of the structures in accumulation of components in the extract, 

• the timing and method of harvest will specifically depend upon matching market 

requirements of the extract to the pattern of seasonal change, 

• site selection, plantation system and pruning strategies will depend upon the 

requirement of the plant for light and space, 

• a harvest strategy must be devised to retain the productive integrity of the plant - bud 

and leaf production and the canopy framework must be preserved, - while dry matter 

(and extract) yields are maximised. 
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CHAPTER 3 GENERAL METHODS , DEVELOPMENT OF EXTRACTION 

SYSTEM AND PRELIMINARY STUDIES 

3.1 Extractions 

a) Solvent 

Unless otherwise specified, the extraction solvent used was redistilled petroleum ether 

(bp 40-60°). Solvent composition was checked for irregularities by inclusion of 

solvent blanks in all analytical runs. 

b) Leaf Preparation 

Except where otherwise mentioned, fresh leaf was dried in a thermostatically 

controlled drying cabinet incorporating a circulation fan and set to 35°C. Leaves were 

separated from stems and placed in open kraft paper bags on racks. and dried for 

48hrs. 

With the exception of the drying experiment (Sect 4.2). all yields and percentage 

composition are expressed in terms of 'dry weight' (%w/w of DM)- that is weight of 

leaf dried at 35°C for 48hrs. For the drying experiment results are expressed in terms 

of leaf dried to constant weight at 70°C. 

Leaf samples were broken up and combined in a small mortar and pestle, and ground 

to a fine, uniform powder which was weighed into 20ml glass vials with close fitting 

plastic caps. 

5ml of solvent containing lmg of C18 standard octadecane was added and the vials 

shaken (Janke and Kunkel shaker table KS500) for two hours at 150cpm, and allowed 

to settle before a lml aliquot was transferred to a GC vial, and the vial capped and 

analysed as described below. All extractions were conducted in the laboratory where 

room temperature is controlled to approximately 20°C. 

c) Preparation of whole extracts 

Where complete extraction and recovery of a sample of extract was required (cf 

analytical determination of yield) the standard procedure employed was to grind the 

plant material to a very fine powder in a mortar, immerse, sonicate briefly and then 

shake in solvent (2 hrs, 150cpm, 20°C), and filter the solution through a sintered glass 

funnel, washing the leaf residue and the funnel at least twice in fresh solvent. The 

combined solution was then evaporated to dryness in a small rotary vacuum 

evaporator (Biichi, Rotavapor R) using a warm water bath at 60°C, and applying a 

maximum vacuum of 680mm Hg for approximately two minutes. The condenser was 

chilled using recirculated refrigerant at 2°C. In the text of this thesis, such an 

evaporation is referred to as 'removal of solvent from the extract on the RVE'. 

The duration of maximum vacuum is critical, here. particularly with very small ( < 

500mg ) quantities of extract. Prolonged application of these conditions continued to 
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reduce final mass, probably by loss of some lower boiling point fractions of the 

extract, while inadequate removal of solvent could easily result in innacuracies. In any 

event, 2 minutes of maximum vacuum was chosen as a compromise 'standard 

condition'. The effect of extended evacuation of a single 250 mg sample of extract is 

shown below- Figure 3.1 

3 
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0 50 100 150 200 

Time (minutes)@ 60°C, 680 mmHg 

Figure 3.1: Result of prolonged heating and evacuation on Tasmannia lanceolata 
extract - (each point represents the mean weight loss/ minute since the 
previous measurement). 

3.2 Extract Analysis 

a) General 

With the exception of certain analyses conducted at the University's Central Science 

Laboratory (CSL), which are described in the text, all GC analysis was conducted on 

an HP 5890 gas chromatograph fitted with an HP7673A automatic injector and FID 

detector, operation and data analysis by HP/Chemstation 3365 software. 

Column was a 15m RPI column (i.d. 0.22mm, phase thickness 0.33µm) operating 

with head pressure of 8 psi, the carrier being high purity nitrogen with column flow of 

2 ml min-1. Injector mode was arranged for split flow, the ratio being 25:1, injector 

temperature 250°C, detector temperature 280°C and oven temperature was 

programmed: 50°C (1 min) - (20° min-1) -150° - (5° min-1) _ 260° (5 mins). Sample 

size was 1 µI. 

After a number of trials using the solvent sampling method described elsewhere (Sect. 

4.7) it was decided to establish the integration parameters to reject peaks with areas 

less than 400, to commence integrating with the peak corresponding to 1,8 cineole 

(sometimes a mixture with limonene) with retention ratio approximately 0.32 (c/C18 

std) and to cease with that of kaurene (retention ratio approx. 1.25). Total peak area 



calculated by this means (excluding the standard) was described as representing'% 

volatiles' and is usually included in the data presentation. 

FID response was determined only for polygodial (see below), for which a pure 

sample, prepared by solvent partitioning, thin layer chromatograpy and 

recrystallisation,. and authenticated using GCMS, was used (RIRDC Report 1995). 

Since, for the purposes of most experimental extractions the relative proportions of 

compounds in the extract was of interest, all compositional data is presented with 

reference to the internal C18 standard used. That is, all percentage yields of extract 

constituents, including polygodial, are calculated from peak areas on the FID output, 

by the following formula: 

% of Compound Z in extract sample = 

wt (g) C1g Std 

Wt (g) Sample 

b) FID response to polygodial 

Method 

X AreaZ X 100 ............ (3.1) 

Areastd 1 

A standard curve for the FID response factor to polygodial in the analytical GC 

procedure above was determined as follows: 
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A series of solutions of the pure polygodial sample were prepared from a stock 

solution containing 4.796mg m1-l redistilled hexane together with a standard solution 

containing l.2560g octadecane (C1g) in 25mls redistilled hexane. 

Results and conclusions 

The response factor for polygodial is included in the equation 3.2 and is determined 

from the inverse of the slope of the curve: area ratio for polygodial and C18 vs 

concentration ratio of polygodial and C18. 

% polygodial =Area polygodial x Mass C~_ x Response Factor x 100 ..... Eqn. 3.2 
Area c18 Mass sample 

The mean for duplicate analysis of each of the solution mixtures is summarised in 

Table 3.1. The relationship is shown in Figure 3.2 and displays a slope of 0.663. The 

response factor for use in determining % polygodial by weight. is therefore 1.51. 

Table 3.1: Solution concentrations and FID response ratios (mean of two 

analyses) for determination of response factor for % polygodial. 
polygodial conc'n C1s concentration Area ratio: Conc'n ratio 

(mg mI-1) (mg mI-1) polygodial/std polygodial/std 
4.796 1.256 2.484 3.818 
3.837 1.256 2.027 3.055 
2.878 1.256 1.471 2.291 
1.918 1.256 0.960 1.527 
0.996 1.256 0.449 0.793 
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y = 0.663x - 0.037 r2 = 0.999 

0 2 3 4 
Concentration ratio polygodial/C18 

Figure 3.2: Standard curve to determine FID response for polygodialc/ Ct8 
hydrocarbon standard. Response factor = inverse of slope = 1.508 

3.3 Plant materials, growing conditions 
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Much of the physiological work in Sections 5.0, 7.1, 7.2 of this project was carried out 

using clonal plant material designated W3 which was found to propagate readily and 

to yield an extract of roughly median composition (see Figure 3.4). The material was 

produced from several cuttings taken from bushland on Mt Wellington, Tasmania, and 

propagated on a mist bed at 20°C. A voucher specimen has been lodged with the 

Tasmanian Herbarium - HO 312698. This material was multiplied several times to 

produce approximately fifty plants of each type which were maintained in 150mm 

pots in a shade house at ambient temperature and 75% of ambient light until required. 

Plants were watered daily and received a weekly application of normal 'Hoaglands' 

nutrient solution. The soil medium used was a 3:1 mixture of coarse washed river sand 

and spagnum peat moss (TEP Medium, Tartu Estipeat BV), containing lOOg/201 of 

Osmocote (17-1.6-8.7; 8-9 month release). Where specific growing conditions were 

part of an experimental regimen this is detailed in the text. 

Mature plants used in the seasonal development work are described in Sect. 6.0. 

3.4 Microscopy 
a) Light microscopy 

Micro graphs used to compare leaf morphology (Sect. 7 .1) were prepared from discs of 

leaf tissue fixed in 3% glutaraldehyde in cacodylate buffer and hand sectioned and 

mounted in glycerol. Bud sections were fixed and infiltrated with resin as in (b) below, 

then stained with toluidine blue. All photographs were taken through an Arrow SOB 

blue filter and recorded on Kodacolor IOOASA film. 



b) Transmission Electron Microscopy 

Samples used in sect. 5.2 were prepared by first fixing the plant material in 3% 

glutaraldehyde in sodium cacodylate buffer (pH 7 .2) for 12 hrs at room temperature, 

followed by 5 rinses in buffer and dehydration in ethanol series. Samples were then, 

post-fixed with osmium and infiltrated with Spurr's medium, then sectioned for 

examination under the transmission electron microscope. Sections were stained with 

lead citrate and uranyl acetate, mounted on grids and examined under a Phillips 

CMlOO (Phillips Scientific and Industrial, Australia) electron microscope at 80kV. 

Micrographs were recorded on Kodak EM 4489 film. 

c) Scanning Electron Microscopy 
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Samples used in Section 5.2 were prepared by placing fresh, whole leaves on filter 

paper soaked in osmium tetroxide in aqueous buffer (pH 7.2) in a glass petri dish for 

24 hours, then slicing the leaf at an oblique angle to obtain a broad exposure of the 

mesophyll. Small pieces of this tissue were then mounted on microscope stubs and 

freeze dried for 24 hrs before being sputter coated with gold and then examined under 

the scanning electron microscope (Phillips 505 SEM) at approximately 15k V. 

Micrographs were recorded on a Rolex 120, using Ilford FP4 film. 

3.5 Preliminary investigations 

At the commencement of the investigation, several general investigations were 

undertaken, to establish the scope of variability in the Tasmanian population at large, 

to determine whether the observed trend in leaf morphology from low to high altitudes 

was accompanied by a trend in extract composition, and to compare the oil obtained 

by steam distillation with solvent extracts. 

3.5.1 Plant Collections 

Extracts obtained from previous collections of Tasmannia lanceolata leaf material have 

shown widely different yields and composition (C Dragar- pers. comm., Stevens 1955) 

between locations, while at least one author (Southwell and Brophy 1992) has 

suggested the utility of extract chemistry in differentiating amongst members of 

Tasmannia on the basis of fresh material collected from a relatively small number of 

locations. 

In order to obtain a general indication of variability in extract yield and composition 

within and between sites in Tasmania, a 'preliminary' collection was conducted as 

described below. 

Method 

During March 1993, leaf material of Tasmannia lanceolata was collected from twelve 

locations around Tasmania (Site details Table 3.2), mature leaf from 2 - 6 plants per 

location was dried, ground and shaken in petroleum ether. The extract was obtained by 



filtration followed by evaporation of the solvent in a rotary vacuum evaporator (see 

3.1). The extract was weighed, and a sample analysed for composition. 

TABLE 3.2: Site data for samples collected in 'preliminary' survey. 

ID Location 
W Mt Wenington 
B South Bruny Is. Allonah 
M Middleton, Cox's Rd 
P Tasman Peninsular, Macgregor Pk 
N Winnaleah 
S Smithton, Salmon River Rd 
G Talbot Lagoon, Guildford 
Y Takone Rd, Y olla 
H Hellyer Gorge/Parrawe 
Q Murchison Hwy, Queenstown 
D Derwent Bridge 
L Lost Falls 

Results 

Altitude 
600 
<100 
<100 
500 
200 
<100 
600 
350 
500 
300 
800 
400 

Tasmap Ref. 
EN201492 
EM959199 
EN119191 
EN411760 
EQ703535 

CQ816277 

No Plants 
6 
6 
6 
6 
6 
5 
6 
2 
4 
6 
2 
3 
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Yield of extract and specific components was expressed as % weight of dry leaf 

material, and these results, together with some observations for the plants concerned 

and the resulting extracts are included at Appendix 2.1. Note that peak assignment is 

tentative, and that the temperature programme for this data was - initial temperature 

50°C, 20°/minute to 150°C, 5°/minute to 260°, final temperature held for 7 minutes; 

other GC parameters as for the standard analysis (sect. 3.2). 

Analysis of the results with respect to variation between and within sites for the small 

number of samples was limited to a comparison of polygodial levels and the result of 

this for the twelve sites is shown in Fig 3.3, the error bars showing standard error for % 

polygodial w/w of dry leaf for the relevant number of trees at each site. 

The proportions of polygodial, 'volatiles' and non volatile components in the total 

extract can be seen in Fig 3.4, showing each of these elements of the extract as 

percentages of dry leaf extracted. Yields vary between 0.88% and 13.3%of DM, and 

polygodial from 0.11 % to 2.9% of DM, and the collections are arranged in order of 

increasing concrete yield. 
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Figure 3.3: Polygodial levels- mean and ± se of mean for each collection site 
in 'preliminary collections'. 

Discussion 
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While the limited site selection presented here could not be regarded as representing the 

range of extract compositions to be encountered in the whole Tasmanian population of 

the species, (in particular there were no representatives from the South West coast, 

where the species is particularly abundant and vigorous), it does provide a graphic 

indication of the spread of this particular characteristic, and of the scope for selection of 

plants on the basis of polygodial level or extract yield, without singling out any specific 

commercial requirement. The survey also shows clearly that this variability must be 

co~sidered in comparative experimental work undertaken in any study of the species. 
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3.5.2 The effect of altitude on extract composition 
Amongst natural populations of Tasmannia lanceolata variation in leaf thickness and 

size with altitude is typical of that found with other species found across wide 

altitudinal range (Komer et al. 1989, Casey 1991). As a preliminary trial, material 

collected from plants spanning the middle to higher elevations found in close proximity 

on Mt Wellington, near Hobart, were compared for extract characteristics below. 

Method 

Leaf and twig material collected from plants from small local populations along an 

altitude transect on Mt Wellington was dried and analysed. The populations were not 

discrete, and all collections were within llan of the next nearest neighbouring 

collection. Material from only one plant per altitude was split into two, and one 

analysis conducted on each portion. 

Results 

Results are shown in Table 3.3, with the same restrictions regarding identity of 

components as applied to Sect. 3.5.1, above. Percentage dry matter of sub samples of 

leaf (to constant weight at 70°C), and leaf area to dry weight ratios (Specific Leaf Area) 

were determined for as many leaves as possible per altitude sample (Table 3.4). 

Table 3.3: Leaf extract composition, means for two analyses of leaves taken 
from plants along an altitude transect on Mt Wellington, Hobart 

Component Ret.Time 400 600 700 800 900 1000 1100 
1,8 cineole0 5.42 0.22 0.24 0.19 0.79 0.31 0.37 0.08 

linalool 5.99 0.13 0.25 0.20 
cubebene 8.83 0.20 0.45 0.29 0.39 

caryophyllene 9.84 0.22 0.14 0.09 0.07 0.08 0.07 
a-cadinene 10.68 0.11 0.27 0.16 0.23 
Unknown 10.91 0.25 0.18 0.11 0.40 0.31 0.21 0.17 

calamenene0 11.15 0.21 0.66 0.36 0.43 
cadina-1,4 diene 11.43 0.78 1.95 1.17 1.70 0.02 

guaiol (?) 12.37 0.23 0.90 0.41 0.58 0.15 
polygodial 2.17 2.44 0.65 4.75 0.05 1.90 0.02 

% Volatiles* 5.98 9.45 4.16 8.22 1.48 7.84 1.14 
0 Peak area may include other compounds 
*Total area integration between peaks at 5.47 mins and 20.92 mins (ex. C18 std) 

Table 3.4: Leaf area and dry matter determinations of leaves from the Mt. 
Wellington transect. 

Elevation No leaves Leaf area ~mm22 %DM SLAm2kg-1 
400 57 709 34 7.1 
600 61 532 33 7.1 
700 43 567 33 7.1 
800 32 680 37 5.0 
900 23 411 41 5.6 
1000 75 126 38 5.3 
1100 53 138 42 3.7 
1200 79 97 43 3.7 

1200 

0.14 

0.07 

0.14 

0.10 

0.85 
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Collections from the wider distribution of Tasmannia lanceolata have shown (3.5.1, 

above) that variation between plants at a site is such that the data presented here must . 

be considered exploratory in nature only. However, three tendancies are suggested by 

the data in the Tables above: a general fall in the levels of terpenoid volatile 

constituents in the leaf, an increasing proportion of dry matter, (resulting in decreasing 

specific leaf areas), and a marked reduction in leaf size at the higher altitudes. The 

latter two trends are widely reported for species occurring along attitudinal gradients, 

(Komer et al. 1989), and although in comparison with the range of altitudes discussed 

in that report, 400-1200m represents only a small span, the higher elevation does 

equate to the maximum altitude at which the species is found in Tasmania. Expression 

of 'percentage volatiles' on the basis of area, (using the data for SLA) does not remove 

the obvious irregularities in this data, and while the very low levels found at higher 

altitudes were at the low extreme for the survey reported in 3.5.1 above, it is not 

possible, without further sampling, to predict any trend in this characteristic with 

altitude. 

3.5.3 Steam distillation of Tasmannia lanceolata 

For comparison with the solvent extract, a quantity of steam distilled essential oil of 

Tasmannia lanceolata was prepared. 

Stevens (1955) distilled several batches of leaf and stem material collected from six 

sites around Tasmania, and found that yield of oil varied between 0.28 and 2%, 

depending on the type of material - the higher yield obtained from separated leaf 

alone. These distillations were allowed to continue for several days until no oil was 

detected in the distillate. Stevens found very high proportions of guaiol in the steam 

volatile oil, in one case resulting in crystallisation of the compound from the oil and 

Dragar (1984) reported almost 3% of this compound and identified 22 other terpenoid 

compounds in a small quantity of steam distilled oil obtained from plants collected on 

Mt Wellington, Tasmania. Use of laboratory scale microdistillation apparatus 

produced only minute quantities of oil, so a large distillation using a small commercial 

still was undertaken. 

Experimental method 

A large batch of mixed leaf and twig gathered from the site at Parrawe was packed 

into a small commercial distillation vessel. Steam was passed through the plant 

material and condensed in a simple water cooled vapour-in-tube condenser. The 

distillate was allowed to settle in a separation tank whereupon the oil accumulated on 

the surface of the water. The distillation was continued for two hours, by which time 

no oil could be detected on the surface of distillate at the condenser outflow. 



Samples of leaf taken from the vessel after distillation were dried and extracted to 

determine whether the leaf still contained components found in extracts of fresh or 

dried leaf. 

Results and Discussion 
The complete distillation of 680kg of mixed leaf and twig material yielded 2.2 litres 

(0.32% v/w) of a dark yellow oil. A sample of leaf material taken from the vessel at 

the completion of the distillation was dried, ground and extracted in the usual way. 

The oil, and the extract solution were analysed by GCMS, the results of which are 

summarised in Table 3.5, together with the average percentages of components 

obtained from a selection of T. lanceolata leaf extracts. 
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Table 3.5: Composition of steam distilled leaf oil (as % of peak area) compared with 'typical' 
extract of Tasmannia lanceolata leaf, and extract obtained from distilled leaf taken from 
still after two hours of distillation (the 'mare') 

Peak identity 

<X-pinene 
j3-pinene 
<X-phellandrene 
1,8 cineole +* 
linalool 
0-terpineol 
piperitonc 
safrole 
eugenol 
r-allemene 
<X-cubebene 
methyl eugenol 
a.- copaene 
caryophy Ilene 
bicyclogermacrene+ * 
calamenene 
0-cadinene 
palustrol +* 
cadina- 1,4 -diene 
guaiol 
drimenol 
polygodial 

Constituent as a percentage of total peak area 
'average' extract distilled oil extract of mare# 

1.64 12.7 
0.38 3.74 

1.69 
1.00 6.35 
2.38 10.14 
0.10 1.07 
0.58 0.87 

0.11 
1.38 2.25 0.50 

0.47 
1.51 1.09 4.77 

1.39 
0.57 
1.37 1.48 1.40 
1.18 4.59 
1.01 5.15 6.67 
3.79 2.99 
1.85 2.62 
3.80 14.38 
6.32 6.33 1.60 

0.72 0.93 
19.7 0.75 4.77 

* peak may be mixed with other compounds 

Significant discrepancy between the distilled oil and a typical leaf extract may be 

observed in the results above. Steam distilled oil, in which the monoterpene compounds 

tend to predominate, contained very little polygodial or cadina- 1,4 -diene. This might be 

the consequence of degradation during distillation in the case of the former, or simply 

due to high boiling point and the resulting low partial pressure in the vapour phase 

during distillation. Unfortunately the results allow only a general comparison between 

extraction and distillation since no pre-distillation sample for extraction was taken. 

Southwell and Stiff (1989) note that artefact formation during distillation has been 

implicated for several terpene compounds, and report their own observations in relation 

to steam distilled tea tree oil. 
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3.6 Asexual Propagation of Tasmannia lanceolata 

Introduction 

For the purposes of this project, it was necessary to obtain cutting material from mature 

plants and to establish this in the glasshouse as quickly as possible. Seedling production 

was not practicable both because of the slow germination of the species (T. W alduck, 

Tasmanian Forest Seeds, pers. comm.), and the uncertainty of using open pollinated seed 

for preparing uniform experimental material. 

Secondly, in any subsequent commercial cultivation of clonal selections oITasmannia 

lanceolata it will be necessary to undertake vegetative multiplication programme, 

having the following objectives: 

1) acquisition and cultivation of vegetative material from identified wild plants of 

varying age/vigour/environmental circumstances, etc., and 

2) multiplication of favourable selections as quickly and economically as possible. 

The following general observations were made in preliminary trials with cutting 

propagation of Tasmannia lanceolata : 

• Cuttings taken in autumn, stripped of their lower leaves, inserted in an 

unpasteurised medium containing 30% peat and 70% coarse sand and maintained 

under leaf controlled mist with bottom heating (20 - 23 °C) will produce functional 

roots in approximately 90% of cases, within 8 weeks. However the rate and vigour 

of root formation varies widely, some cuttings producing a mass of vigorous roots 

within a few weeks, while others may require 6-7 weeks before producing two or 

three fragile roots. As a consequence the resulting plants are very variable, and the 

management of large quantities of cutting stock would be difficult. Similarly, the 

rate of shoot growth subsequent to rooting and potting on is extremely variable. 

• Where cuttings have been taken in winter, spring or early summer a less reliable 

strike appeared to occur, root development was variable, and cuttings were more 

inclined to collapse prior to forming roots. 

• In the natural situation the plant exhibits a vesicular- arbuscular mycorrhyzal 

association. 

• Cuttings used in these trials were taken of recent shoots from plants of widely 

varying maturity (in many situations the plant grows slowly and some shrubs may 

be many decades old) without regard for the age of the plant. 

• Opportunities exist for obtaining many hundreds of cuttings from single plants 

in their natural situation. 

This investigation aimed to determine the effect of bottom heat and a rooting hormone 

(indole butyric acid - IBA) treatment on root initiation and development in clonal cutting 

material taken from the parent plant at different stages of seasonal development. No 



attempt was made to determine the effect of juvenility in the stock plant, nor to 

investigate use of wood older than one growth cycle. 

Experimental Methods 

1) Plant material 
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Uniform age, clonal plant material (initially generated from cuttings of a 'wild' plant, and 

allowed to grow unpruned after potting) was maintained in 6" pots in a shade tunnel for 

more than 14 months. At the commencement of the experiment, plants bore the well­

developed buds characteristic of winter conditions -swollen and awaiting lengthening 

days to commence growth. 

A comparison of 'spring', 'summer' and 'autumn' growth for suitability as cutting material 

would normally need to be conducted at different times of the year, complicating the 

control of factors such as air temperature and daylength. The three growth types used in 

this trial were obtained by treating the plants as described below and taking the cutting 

'types' simultaneously. 

48 large plants were repotted (16/6/95), and treated as follows: 

16 plants -Group C, were placed in a temperate glasshouse (21 ° Days, ea 14 ° 
nights, under lights to provide 14hour days, in order to stimulate a vigorous growth flush 

The remaining 32 plants were held in a growth tunnel under 21° C, 8 hr days, 2° 

C night temperatures. 

When the first group had completed shoot extension, (effectively at the 'summer 

solistice'), it was then moved to 'autumn' conditions (shorter, cooler days) in an outdoor 

shade tunnel (16/8) and held at these conditions for one month. 

At the same time, half the second group of plants (Group B- 'summer') were moved into 

long day conditions, while the remaining plants -Group A, 'spring', were held under 

winter conditions until one week before the commencement of the experiment, when 

they were moved to the temperate glasshouse. 

At the time of setting, 'spring' cuttings could have been described as hardwood, the 

stems being firm, though still reddish, and leaves mature and toughened, while 'autumn' 

cuttings were still semi-soft, with green-red stems and fully expanded but soft leaves, 

and a slightly swollen apical bud. 'Summer' cuttings were 'soft', the more distal leaves 

incompletely expanded and the stems green and soft and the apex remained small, 

though no longer extending. 

2) Treatment of cuttings 

IBA (Sigma Chemicals) at 3 concentrations and a control:O, 500, 2000, 8000 ppm IBA 

in 50% ethanol. Bundles of cuttings were dipped in lcm depth of solution for six 

seconds, allowed to dry briefly and then inserted into the rooting medium. 
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3) Rooting Environment 

Cuttings were placed in a peat: sand mixture(! :3) under leaf controlled mist and ambient 

air temperature and light levels. Two temperatures in rooting bed- heated (20-22°C) and 

unheated (12-15°C), see Fig 3.5 

The temperatures of the sandbed, high and low temperature cutting trays, and air 

temperature within and outside the mist enclosure were monitored continuously using a 

Foxboro Multichannel recording thermograph. Shade mesh was spread over the igloo as 

soon as air temperatures above the bed began consistently to exceed 20°C. 

Polythene mist enclosure 

Sand bed 

Polystyrene 
insulation Potting medium 

uard plants 

Fig 3.5: Mistbed propagation system used to establish high and low rooting 
medium temperatures 

4) Experimental Design 

The experiment was conducted as a randomised complete block design, with two 

replicates of the 24 treatments, each plot (a small plastic seedling tray) contained 4 

cuttings; cuttings taken from the 16 plants in each season group were mixed and 

allocated randomly amongst treatments; blocks were situated adjacent to one another in 

the mistbed; temperature treatments were arranged on a plot by plot basis using 

insulated trays; the blocks were surrounded by a double row of 'guard cuttings' to ensure 

a uniform misting atmosphere among the plots; 

Time of Cuttin2 
'Spring'-A (yellow tag) 
'Summer'-B (yellow tag) 
'Autumn'-C(white tag) 

5) Measurements 

Hormone Treatment 
Nil - 'O' 
500ppm- 'l' 
2000ppm - '2' 
8000oom - '3' 

Low ( = air temp) - L 
High (20-22°C) - H 

After ten weeks under misting conditions, cuttings were removed from trays, washed 

free of soil, and assessed as follows: 

• Score for root develoment, 0-4 as follows. The total score for four cuttings in each plot 

was used in the analysis: 



0 - cutting completely dead or at least necrotic below the soil surface 

1 - no callus development but cutting fresh and healthy 

2 - callus development but no visible root development 

3 - roots present, less than ten of more than 2mm length 

4 - roots present -more than ten greater than 2mm long 
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• Mean length of longest roots, in millimetres (mean for four cuttings in each plot was 

used in the analysis). 

•Dry wt of roots (not including callus), taken after drying to constant weight at 50°C 

(mean for each plot used in the analysis). 

Analysis of results was conducted using the SAS anova procedure(SAS Institute­

Software vers. 6.07) to determine means and least significant differences for the 

dependent variables 'score', length and dry weight, (summarised in Appendix 2.2) 

Temperature data recorded in the propagation unit are summarised below, Table 3.6. 

Table 3.6 • Temperature data recorded over the duration of the trial. 

Temperature range: 
Outside enclosure 
Inside enclosure 
Low treatment 
High Lreatment 
Sand bed 

Temperarure Comparison 

Maximum °C 
20 
11.4 
23.5 
26 
28 

'Low' vs mistbed air temperature 
'Low' vs bottom heat 
'High' vs mistbed air temperature 
'High' vs bottom heat 
Low vs High 

Results 

Minimum°C 
<5 
5.8 
10 
18.5 
21.9 

Differentia1°C 
2.0-4.0 
3.5-10.5 
9.5-12.S 
2.0-3.0 
6.5-8.0 

Treatment means and LSD's are summarised in Table 3.7 below. There were no 

significant interactive effects amongst the three treatment dimensions. For 'Score', the 

number of deaths (or zero scores), associated with each treatment total (two blocks) is 

given in brackets. 
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Table 3.7: Treatment means for each parameter and LSD (p<.05) values for season, IBA treatment 
and heat/ no heat in rooting zone. 'Score' indicates root development (max. 16); 'Length' is 
mean of longest root for 4 cuttings per plot in mm.; 'Dry wt '- all roots per plot determined 
after drying @ 70°C 

'SEASON' Mean IBA(ppm) Mean TEMPERATURE. Mean 

SCORE Spring 11.81 (1) 0 10.92 (3) High 11.38 (9) 

Summer 8.63 (17) 500 11.00 (3) Low 8.63 (14) 

Autumn 9.56 (5) 2000 11.67 (2) 
8000 6.42 (15) 

LSD(P>.05) 1.83 2.11 1.49 

LENGTH Spring 15.2 0 12.18 High 15.69 
Summer 8.54 500 13.43 Low 5.7 
Autumn 8.35 2000 11.3 

8000 5.88 
LSD(P>.05) 4.4 5.08 3.59 

DRY WT Spring 10.82 0 7.93 High 11.76 

Summer 5.76 500 10.08 Low 2.63 

Autumn 5.01 2000 6.1 
8000 4.68 

LSD(P>.05) 4.89 5.64 3.99 

Conclusions 

The use of bottom heat in rooting cuttings of Tasmannia lanceolata would appear to 

improve root initiation and root vigour and in this experiment resulted in fewer losses of 

cuttings. IBA dipping of cuttings did not improve rooting performance for these 

parameters and at the highest level of 8000ppm resulted in significantly reduced 

development, length and dry weight. This effect was particularly pronounced in 

softwood cuttings where no bottom heat was applied (data not shown), and no cuttings 

survived the ten week propagation period. 

Most importantly, use of well hardened 'spring' type cutting material appears to give the 

most vigorous result with substantial benefit to root length and dry weight of roots 

generated with this type of cutting material. Good survival rates in 'autumn' -semihard 

wood - suggests that this material would ultimately generate adequate roots for 

propagation purposes, although for a uniform and rapid result, it appears that cutting 

material taken from mature plants late in winter would be more satisfactory. 

Irrespective of this, the experiment shows that vigorous cutting stock can be produced 

by controlling the growing conditions of the parent plant prior to taking cuttings -

simulating the conditions during the dormant and spring growth periods. In the 

development, at the appropriate time, of a strategy for multiplication of selected clonal 

material it may be assumed that two to three generations of cuttings might be produced 

during a calendar year, with careful management of light and temperature for rooting 

and maintenance of stock plants. 
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3.7 Other 

The growth cabinets used in Section 7.1 were large insulated chambers, with 

electronic temperature control of separate heating and cooling circuits. The chambers 

were illuminated by banks of timeswitch-controlled fluorescent tubes supplemented 

by incandescent lights. Air circulation in the cabinets was provided by axial fans 

positioned beneath a perforated baffle on the floor of the chamber. Temperature within 

the cabinets was recorded continuously during the experiments. 

Field radiation measurements presented in Chapter 7 were obtained using a Delta T 

Devices Tube Solarimeter and a Li-Cor inc. Pyranometer coupled to Delta T Devices 

Type MVI millivolt integrators. Methods used to obtain readings are described in the 

relevant methods section. 

Assimilation measurements in Sect. 7 .1 were conducted using an open circuit, infra red 

gas analysis system, using an ADC LCA3 gas analyser coupled to a perspex PLC3 leaf 

chamber. The apparatus was installed in an air conditioned room in which the 

temperature was maintained at 18-20°C during all measurements. 

Illumination was by means of a GTE Sylvania 400 Metalarc lamp mounted directly 

above the leaf chamber and providing a maximum of 1500µmol m-2sec-1 photon flux, 

and separated from the leaf chamber by a cool water bath approximately 25 mm deep. 

The required reduction in photon flux was obtained by placing screens of Sarlon® 

shade cloth over the chamber. Quantum flux (PFD) at the level of the leaf surface was 

determined using the quantum flux sensor (Lambda Instruments LJ185 recording in the 

range 4-700nm) for each light level. 

Leaf chamber temperature was controlled by fitting the chamber into a copper block, 

through which the contents of a water bath were recirculated. Temperature was 

measured continuously using the thermocouple installed in the leaf chamber. Gas flow 

to the IRGA and leaf chamber was supplied from gas bottles via short lengths of low 

density polyethylene tubing and was passed through copper tube immersed in an 

insulated waterbath maintained at 10°C by the addition of crushed ice at intervals 

during measurement periods. Gas was then bubbled through three simple humidifying 

flasks containing distilled water at room temperature, then passed through an F&P Co 

precision bore flowmeter calibrated from 0-lOOOml min-1airat20°C, and into the 

inlet port of the instrument, from where it was directed automatically either directly, or 

via the leaf chamber, to the gas analyser for comparison. 

Leaf area was determined by comparing manual measurement with the output of an 

electronic planimeter for two sets of forty leaves, for which the mean difference 

between the two methods was approximately 4%. Areas used in calculating the 

following results were obtained by multiplying the width of the chamber (25mm) by a 

manual measurement of the width of the region of lamina spanning it. The humidity of 

air passing into, and leaving, the leaf chamber was measured continuously on the 



instrument, and these figures recorded simultaneously with the C02 differential and 

leaf temperature. 
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A calibrated source of reference air was used to set analysis parameters on the 

instrument, and to determine C02 concentration in bottled, compressed air containing 

330-340ppm C02 which was used thereafter for the experimental work. 



CHAPTER 4: PREPARATION, EXTRACTION AND ANALYSIS OF 

TASMANNIA LANCEOLATA LEAF 

4. 0 Introduction 
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An account of the history of development of techniques for recovery of volatile and 

non-volatile lipid soluble compounds from plant parts is given in Geunther (1948), 

together with a brief, if slightly dated outline of 20th century practices for extraction of 

natural flower oils. The salient points here are the low temperature of the process and 

'trueness' of the resulting extract, its dark colour resulting from the presence of plant 

pigments, and the relative costliness of the process rendering it suitable only for the 

more valuable of plant products. 

Choice of solvent, the preparation of the plant material, parameters for the extraction 

process, and final product preparation are usually tailored to the specific requirements 

of the consumer of the product, subject to constraints of costs of production and 

processing. 

Of the available solvents, purified petroleum ether- ( its constituents mostly saturated 

paraffins - chemically relatively inert, completely volatile at low temperatures and, thus 

far, regarded as safe for use in preparation of food and flavour products), is the usual 

solvent of choice. Ethanol offers similar utility and a slightly difforent extraction 

performance, as do purified diethyl ether, ethyl acetate, hexanes and pentanes. On the 

other hand, while chlorinated solvents such as dichloroethane and dichloromethane, or 

aromatic solvents, for example benzene may offer technical possibilities, their 

hazardous properties render them unsuitable for commercial use. 

Commercial methods, usually subject to confidentiality or patent, are not well reported 

in the literature in their entirety. 

Georgiev and Gantchev (1983) compared five solvent types - petroleum ether, ethanol, 

methanol, dichloroethane and a mixture of petroleum ether and dichloroethane for the 

yield and quality of extract of Pinus sylvestris , and found that while ethanol and 

methanol gave high yields, the nature of the resulting extract was unacceptable. Only 

petroleum ether and the mixed solvent yielded suitable products, the latter a slightly 

higher yield and improved delivery of absolute of subsequent treatment. Georgiev and 

Gantchev(1983) also compared fresh and dried plant material and found that yield 

increased with reduced moisture content for both petroleum ether and mixed solvent, 

particularly with petroleum ether alone, while mixed solvent performed slightly better 

than petroleum ether in fresher material, as a result of the slightly more polar nature of 

the solvent. 

Commercial extraction methods are developed to generate a reproducible extract of the 

desired quality at maximum yield, at a cost commensurate with the value of the 

commodity, though these objectives often involve compromise between yield and 

quality. In commercialisation of a plant extract, efficiency of extraction, composition 
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and yield are of fundamental importance, while for experimental comparison of plant 

materials and in studies of synthesis and accumulation, a fast and precise means of 

thorough extraction of the particular suite of secondary chemicals is more important. 

The following study addresses two questions in relation to this: 

a) commercial requirement for high yield and predictable composition, 

consistent with economical use of solvent, ease of handling and durability of both raw 

plant material and the extract product (sect. 4.2 -4.6). 

b) requirement for a fast and precise experimental extraction technique using 

relatively small quantities of plant material, and providing extracts representative of a 

commercial extraction process (sect. 4.7-4.8). 

Leaf material of Tasmannia lanceolata represents the dry matter bulk of annual 

incremental growth, and will contain the greater part of the extractable yield of 

secondary compounds of commercial interest. The leaf also represents the probable site 

of synthesis and storage of many of these compounds. 

Freezing or drying of harvested material would appear to offer alternatives for 

extending the time frame for extraction, (assuming a limited harvest 'window'), 

particularly since experimental methods for preparing and extracting green leaf were 

less successful than those for dry leaf (see sect. 4.7 bdow). Practical considerations 

such as the separation of leaf from twigs and branches, the difficulty of breaking up 

fresh material, and the relative cost of frozen storage, packing and transport for fresh 

rather than dry leaf point to the benefits of preparing a dry, bulk product. 

In the following series of experiments, it is assumed that dry leaf will be used in 

commercial extractions, and several aspects relating to the preparation of a material 

suitable for this extraction are investigated. 

4.1 The effects of time and temperature during drying 

Tasmannia lanceolata leaf epidermal characters, as described by Bailey and Nast 

(1945b) and Bongers (1973), - the shiny glabrous adaxial surface, the presence of 

cuticular deposits, sometimes occluding the stomata on the abaxial leaf surface and the 

cuticle varying from thin to quite thick would seem to mitigate against the rapid and 

uniform desiccation of leaves at normal temperatures. Variation in rate of drying and 

equilibrium dry matter content between leaves in preliminary trials when simple air 

drying at room temperatures was undertaken indicates the need for some acceleration 

of the process and a more thorough circulation of air around the leaf. 

On the other hand, high temperatures might accelerate degradative processes in 

secondary metabolites, and the loss of lower boiling point compounds which might 

prove important from a flavour or fragrance point of view. 
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Experimental methods 

Whole, fresh leaves taken from twenty pot grown plants maintained in shadehouse 

conditions were combined, and samples were taken randomly from these. Only 

undamaged leaves were used and those significantly larger or smaller than usual were 

discarded. 

Six leaves per sample were weighed and placed in Kraft paper bags on wire shelves in 

the drying oven (see 3.lb). At the appropriate time, the samples, (referred to in this 

experiment as 'cured samples'), were reweighed, and three leaves per sample were 

weighed and transferred to a 70°C drying oven for dry matter determination (36 hrs, 

dried to constant weight). The remaining leaves were ground and extracted in the usual 

manner (see sect. 4.7) and the extract was analysed for yield and composition of a 

selection of components including a monoterpene tentatively identified as terpineol 

(N.Davies pers. comm.) and an unidentified oxygenated sesquiterpene eluting at 12.16 

minutes. Each treatment was replicated three times. 

Dry matter determinations for three samples of fresh leaves were also conducted. 

Treatments 

a) Drying temperature -

Temperatures of 25, 35, 55 and 70°C were applied for 48hrs each. In the case of the 

25°C treatment an additional 12 hrs of drying was necessary to achieve dryness 

equivalent to that of the other treatments. 

b) Drying time-

Leaf samples were maintained at a temperature of 35°C for 24hrs, 36 hrs, 48 hrs 72hrs, 

96hrs and 120hrs. 

Statistical Analysis 

Component levels (as% peak area relative to C18 standard) were calculated for each 

sample, and least squares means calculated using the SAS (SAS Institute Software 

vers. 6.07) 'proc glm, lsmeans' procedure. A summary of the output from this procedure 

is given in Appendix 2.2. 

Results and Conclusion 

Yield of each of the selected compounds expressed as a percentage of the dry leaf 

sample (dry matter at 70°C) is presented for the two experiments in Appendix 2.3a and 

2.3b and presented graphically in Figures 4.1.1and4.1.2 respectively. 
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Figure 4.1.1 Effect of drying time on composition of leaf extract -percentage of each 
component in leaf dried at 35C (error bars show standard error of 
means of three replicates). 
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The result shown in Fig 4.1. l suggests that a temperature of approximately 35°C for at 

least 50 hours should enable retention of most components of interest. Longer periods 

of drying up to 125hrs as might result in a less 'ideal' situation appear not to jeopardise 

recovery of the compounds monitored here, nor the collective 'volatiles' parameter. 

Figure 4.1.2 clearly shows the loss of all of the components recorded when drying was 

conducted at 70°C, and while the result for most of these compounds is not 

significantly reduced at temperatures between 25 and 50°C, the fall in 'volatiles' 

observed at the warmer temperatures indicates a significant loss of some lower boiling 

compounds even at 35°C. The sesquiterpene cadina- 1,4 -diene - (a significant yield 

component of many of T. lanceolata leaf samples but not as it happens, in the plant 

W3 used in this trial) appears to suffer some reduction during drying at 50°C. 

Yields of all compounds reported increased with time of drying, the initial 

improvement being attributable to improvement in solvent penetration of fully dried 

ground leaf material, particularly since comminution of leaf seems to improve as 

dryness increases. 

None of the compounds exhibited significant change after 75 hrs of drying, but for 

most (polygodial, linalool '12.16', terpineol and cadina- 1,4 -diene), there is evidence 

that levels continue to increase with time after the leaf is effectively fully dry. A 

possible explanation of this may be that it is dry matter (non extractable) which is 

changing -for example loss of non-structural proteins (sugars and fructans) as was 

detected by Trevino et al. (1995) in field dried oats. Such an explanation requires that 

some respiration (either plant or microbial in nature) continues in the Tasmannia leaf 

even at DM contents over 90% at 35°C, which seems unlikely. 

4.2 Effect of comminution of leaf on rate of extraction 

For commercial extraction, the intact leaf, with its tough cuticle and epidermis, and oil 

cells embedded well within the mesophyll presents a problem for rapid exposure of oil 

bearing structures to the solvent. Immersion of whole leaves in solvent during 

preliminary investigations resulted in imperceptibly slow extraction of secondary 

compounds even when sonication and gentle heating were employed. Destructive 

crushing, grinding or milling will increase the exposure of leaf tissue and ensure 

maintenance of the maximum concentration gradient across remaining membranes or 

cell walls and it was found that a large hammer mill, fitted with a fine screen, produced 

a powdery, friable dry leaf material which extracted quickly. To confirm this result, a 

mixed, milled leaf sample was used in the following trial comparing rate of extraction 

with leaf particle size. 
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Experimental methods 

Hammer milled leaf material was prepared using a commercial mill designed for use 

with animal feed preparation (Ferguson, Coventry) fitted with a screen made from 

perforated steel sheet with l .2mm holes. The resulting powder was then screened using 

a set of ten Endicott's US Standard soil sieves to determine the particle size distribution 

. then recombined into three size groups -

• d > 0.841 mm screen (13% of total) 

• 0.841> d > 0.177 (75%) 

• d < 0.177mm screen (13%). 

Duplicate 5g samples of material from each size range and triplicate samples of 

unseived bulk material were extracted in firmly capped glass bottles (petroleum ether, 

shaken at 160cpm) using 20 ml solvent containing the C18 standard, for a range of 

times as detailed in Table 4.2.1. A 1 Oml sample was withdrawn from the bottle after a 

few minutes of settling, and the weight of extract determined by evaporating the 

sample to dryness in the RVE (see Sect. 3.1) and a percentage yield calculated on the 

basis of dry leaf material extracted. 

A 'baseline', or 'total' extraction was performed on a separate larger sample by 

pounding the leaf in a mortar and pestle to an extremely fine consistency, adding 

solvent, sonicating for 15 minules, followed by shaking for 24hrs. 

GC analysis was conducted on extracts of the middle size range and polygodial ( as % 

of C 18 std.) is given for the mean of two analyses. 

Results and conclusions 

Figure 4.2.1 shows the distribution of particle sizes produced when the dry leaf 

material is milled using the commercial mill. The two larger, three smaller and 

remaining five fractions were recombined to produce the three size categories used in 

the experiment. 

Mean percentage yield of extract (w/w of dry leaf) at each time and for each size 

category is given in Table 4.2.1. Also shown is the mean polygodial percentage of the 

total extract at each time (for the middle size range only). 'Baseline' result represents a 

'theoretical' maximum extract for the leaf concerned after the extremely stringent 

preparation and extraction regime used. These results are presented graphically in 

Figure 4.2.2 below. 
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Figure 4.2.1 Particle size distribution in crude hamnier milled dry leaf material­
partitioned using standard soil seives. 

Table 4.2.1: Yield of extract expressed as a percentage of the dry leaf sample (w/w) 
for each size category and time of extraction. Standard errors are given 
for the mean of duplicate samples. Polygodial percentages quoted for 
the middle particle size are as mean% of total extract (w/w) for two 
analyses. 

Particle size 
(mm) 

> 0.844 

0.84>d>0.18 

d< 0.18 

Bulk 

'Baseline' 

Extraction 
time (hrs) 

0.5 
2 
8 

21.5 
48 
0.5 
1 
2 

21 
0.3 
0.5 

0.75 
4 

0.5 
1 
2 
16 
24 

Yield StdErr %polygodial 
2.62 0.03 
3.37 0.132 
3.58 0.004 
4.78 0.018 
7.42 0.094 
2.06 0.258 13.6 
3.34 0.108 14.2 
3.85 0.14 14.4 
4.87 0.106 12.4 
4.68 
6.54 0.172 
7.63 0.158 
7.96 0.4 
3.44 0.066 
3.64 0.232 
4.28 0.02 
4.89 0.204 
5.32 0.064 
9.16 
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Figure 4.2.2: Time course of total extract solution for fine, medium and coarse 
fractions of hammer milled dry leaf material of Tasmannia 'ianceolata 
'Baseline' represents yield obtained under 'ideal' conditions of 
preparation and extraction - see experimental methods. 

As expected, the more finely divided material extracted very quickly, after 4 hours 

producing a solution containing 2% w/v of extract, equivalent to about 8% w/w extract 

from the dry leaf powder. Th.is approached, but did not equal the yield obtained when 

an intensive grinding, sonication and shaking extraction was applied to the 'baseline' 

sample, suggesting that even with this degree of fineness, some extract still proved 

difficult to dissolve. 

There was no significant trend in either% polygodial or 'total volatiles' (data not 

shown) over the range of extraction times used with the middle size range, (75% w/w · 

of the crude milled material). 

The results suggest that a slightly higher yield of extract was ultimately obtained from 

the finely divided fraction compared with the coarse fraction even after 48hrs of 

shaking, perhaps due to the latter containing a higher proportion of tougher vascular 

tissue and cuticle and less of the more friable (oil cell rich), mesophyll tissue. 

In summary, the rate of solution of the extract is dependent on the degree of 

comminution and (for the concentration range employed here - up to 2% w/v) is not 

limited to any extent by saturation of the solution. With the hammer milling system 

employed in this experiment, it would appear that a substantial portion of the available 

extract will remain within the leaf matrix, even under extended periods of immersion in 

unsaturated solvent. 
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4.3 Extraction of pelletised leaf powder 

The difficulty of recovering extract-rich solvent from powdered preparations of leaf 

due to the friable and absorbant nature of the material, and industry experience with 

sol vent extraction of pelleted plant products (hops, pyrethrum flowers) suggests a 

comparison of rate and extent of recovery of extract compounds between loose milled 

leaf and compacted, cylindrical pellets approx Smm in diameter and 10-lSmm long, 

from which extract solution may be readily drained leaving very little solvent retained 

within the pellets themselves. 

Experimental method 

Freshly ground leaf powder (G) and freshly prepared pellets (P) of the same bulk leaf 

Sample were produced using a Lister feed-pelletizing plant. Three samples of each were 

then weighed, immersed in 1 OOml petroleum ether in conical flasks, stoppered and 

shaken gently (150cpm). A further three samples of each material were weighed and 

dried at 70°C to determine %DM. At 1, 2, 4, 7 and 67hrs, 5 ml samples of each solvent 

were withdrawn and dried in a weighed RVE flask, and the resulting extract weight 

determined. Note was taken of the level of solvent in each conical flask at the outset 

and at each subsequent sampling in case of evaporative loss. 

Two of the flasks, G2 and P2 proved not to be adt!quately stoppered and lost lOml 

solvent by the first sample time. The problem was rectified for G2 but not entirely for 

P2, which lost a further Sml by 2hrs and lOml more by the 4hr sample, whereupon 

replacement of the stopper prevented further evaporative loss. Adjustment for these 

losses is made in the calculations. 

All other sample weights are adjusted for the proportion of solvent sampled at each 

successive sampling. 

After the 67 hour sampling, the combined extract was sampled and analysed using the 

GC method described in Chapter 3 and the percentage of selected components was 

determined. 

Results and Conclusions 

Pellets and powder comprised 86.9 and 86.7% dry weight respectively. 

Table 4.3.1 below gives the mean yield of extract (expressed as w/w of pellets or 

ground leaf) for each set of three determinations per time of extraction. The graph of 

these results (Figure 4.3.1) shows the similar initial rates of extract solution and the 

ultimately lower yield of extract from powdered material. 

At the completion of the trial, an attempt was made to decant as much solvent as 

possible from each of the flasks, then to weigh, dry and reweigh the leaf material to 

obtain an indication of the ease of recovery of sol vent from spent material. The results 

of this varied widely amongst the three replicates, but pellets appeared to retain less 
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than 15% of their weight in solvent, and powder retained more than 100% of its weight 

in solvent after draining for 30 minutes. 

Table 4.3.2 shows the mean (for three analyses) for each of seven compounds 

commonly detected in bulk collections of leaf, expressed a) as a percentage in the 

extract, and b) as a percentage of the leaf used in the extraction. 

Table 4.3.l : Mean percentage (w/w) of extract in dried leaf (s.e. in brackets). 

% of Extract w/w 
Extraction Time Pellets Powder 

3.885 (0.154) 2.616 (0.240) 
7.711 (0.235) 5.629 (0.028) 
11.23 (0.140) 8.857 (0.323) 

lhr 
2hr 
4hr 
7hr 
67hr 

13.47 (0.364) 10.49 (0.394). 
14.87 (0.209) 11.42 (0.553) 
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Figure 4.3.1: Rate of extraction of pelletised and powdered leaf material (error 
bars show standard errors of mean of three replicates). 

Table 4.3.2: Composition and yield of major components extracted from ground 
leaf as loose powder and pellets. 

Com onent 
'Volatiles' 
linalool 
cubebene 
caryophy Ilene 
Gennacrene D 
cadinal ,4diene 
aristolone 
polygodial 

Percentage w/w in whole extract 
Ground leaf Pelletised leaf 

Mean Std Err Mean Std Err 
50.84 (0.569) 49.12 (0.437) 
0.89 (0.028) 1.03 (0.009) 
1.53 (0.027) 1.63 (0.001) 
0.84 (0.009) 0.88 (0.002) 
1.58 (0.025) 1.51 (0.015) 
5.05 (0.056) 4.81 (0.020) 
0.61 (0.041) 0.65 (0.009) 

16.34 (0.088) 13.70 (0.1 JO) 

Percentage w/w in leaf Dry matter 
Ground leaf Pelletised leaf 

Mean Std Err Mean Std Err 
5.80 (0.268) 7.30 (0.142 
0.10 (0.003) 0.15 (0.003 
0.17 (0.006) 0.24 (0.003 
0.10 (0.004) 0.13 (0.002 
0.18 (0.006) 0.23 (0.001 
0.58 (0.027) 0.71 (0.010 
0.07 (0.006) 0.10 (0.003 
1.87 (0.087) 2.04 (0.043 

Clearly, use of pellets in the extraction process offered many benefits, with all 

component percentage yields were improved with respect to the dry leaf material for 



the pellet sample, and a greatly improved rate of extraction and recovery of solvent 

from the spent plant material. 
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However, it should be noted that this approach does alter the composition of the 

extract, reducing the proportions of of some components (germacrene D, cadina- 1,4 

-diene and polygodial), and increasing that of others (linalool, cubebene, caryophyllene 

and aristolone). The components measured in this comparison were selected on the 

basis that they represented significant proportions of each of the groups of terpenes in 

the extract, and not in relation to their impact on organoleptic or physical 

characteristics of the oil. Use of pelletised leaf material must be considered conditional 

on further commercial information regarding preference for physical and organoleptic 

and composition properties. 

4.4 Ethanol Degradation of Extract Components 

Since, as mentioned above, ethanol represents a safe and commonly used extraction 

medium, and further refinement of crude extracts into absolutes for use in the flavour 

and fragrance industry usually involves separating waxy extractives on the basis of 

solubility in cold ethanol, an experiment was devised to determine the effect of alcohol 

on the stability of a key extract component, the sesquiterpene dialdehyde polygodial. 

Experimental Method 

Approximately 25mg of each of three extracts was dissolved in lml HPLC grade 

ethanol containing 1.1726 mg C 18 standard in a GC analysis vial. The solutions, 

maintained at room temperature (20°C), were immediately analysed by the standard 

method (Sect. 3.2) and re-analysed at 2, 5 and 95 hours. 

Results and Conclusions 

GC FID peak area ratios for the two polygodial peaks and the C18 standard, and a 

response factor of 1.5 (determined for polygodial in extract in a separate experiment 

and reported elsewhere (RIRDC Report 1995)) were used to estimate percentage 

polygodial for each extract and time. The mean percentage polygodial and standard 

error of the mean for each analysis period are presented in Table 4.4.1 below. Analysis 

of variance revealed no significant difference between the percentage of polygodial 

detected in ethanol solution even after 95 hours at room temperature. 

This suggests that, should a commercial requirement for ethanol soluble 'absolute' 

arise, there would be no loss of polygodial during the period in which the extract was 

dissolved in cold ethanol- usually 24 -48 hours. Since the object of such a procedure is 

the removal of a proportion of the extract (insoluble plant waxes), and results in a 

reduction in yield, the decision would involve economic considerations as well as 

concerns for the stability of key constituents. 



Table 4.4.1: Mean percentage of polygod.ial (area ratio with C18 standard) 

remaining in ethanol solution over time 

Hours in Solution Mean % polygodial Standard Error 

0 21.24 1.75 

2 21.07 1.78 

5 21.46 1.68 

95 20.51 2.07 
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4. 7 Effect of Storage conditions on extract quality 

In order to assess the stability of the key extract components during storage, a trial was 

established using a representative bulk extract in a variety of storage regimes and the 

effect on composition with respect to seven components was monitored for over ten 

months. Storage conditions most amenable to control and likely to affect extract 

stability were considered to be light, temperature, headspace atmosphere and time. 

Experimental Method 

Samples of extract were subjected to the following six storage methods. Each treatment 

was applied to three replicate samples. 

Table 4.5.1 describes the storage conditions applied to each of the treatments. Dark 

storage was provided in amber glass bottles wrapped in aluminium foil and the ambient 

temperature treatment was simply placement of the bottles in an air conditioned 

laboratory where temperatures ranged between approximately 12-22°C over the 

experimental period. The headspace of containers stored using nitrogen (1,2,4) was 

flushed with industrial grade nitrogen at the outset and after each sampling. 

Table 4.5.1: Storage treatments for leaf extract, three replicates per treatment. 
Treatment No __ Temperature Light Headspace 

1 -18°C Dark Nitrogen 
2 2°C Dark Nitrogen 
3 2°C Dark Air 
4 Ambient Dark Nitrogen 
5 Ambient Dark Air 
6 Ambient Light Air 

Samples were taken from the storage containers for analysis at fortnightly, then at 

increasingly longer intervals as the trial progressed. Components monitored during the 

trial were: a-pinene, linalool, calamenene, cadina- 1,4 -diene, polygodial and kaurene. 

GC FID analysis was conducted on the samples using a slightly different method from 

that described previously (sect. 3.2): 

Sample: 20-30mg in lml hexane, plus 20-25µ1 O.lg m1-l C18 standard 

Injection mode: lml solution, 50ml min-1 split vent flow 

Column: SGE 15m BPl, 0.22mmi.d., 0.25µm phase thickness 

Gas flow: 12psi head pressure, 2ml min-1 flow 

Results and Discussion 

Mean percentage compositions(% C18) for this experiment are given in Appendix 2.4, 

together with standard deviations for each treatment and time. These results are 

presented below in Figure 4.5.1. Note that 'total polygodial' is the result of summation 

of percentages for polygodial and its injection breakdown product (see Sect. 4.9). 
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Figure 4.5.la: Major constituents of Tasmannia lanceolata extract monitored over 
299 days. Figures in brackets are retention ratios with the Cts std. 

Key: Filled squares- control (dark, -18°C, Nitrogen) 
Open squares-dark, 2°C, nitrogen 
Filled diamonds- dark, 2°C, air 
Open diamonds- dark, ambient temp., nitrogen 
Filled triangles- dark, ambient temp., air 
Open triangles- light, ambient temp., air 
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Figure 4.5.lb: Major constituents of Tasmannia 'lanceo'lata extract monitored over 
299 days. Figures in brackets are retention ratios with the Cts std. 

Key: Filled squares- control (dark, -18°C, Nitrogen) 
Open squares-dark, 2°C, nitrogen 
Filled diamonds- dark, 2°C, air 
Open diamonds- dark, ambient temp., nitrogen 
Filled triangles- dark, ambient temp., air 
Open triangles- light, ambient temp., air 

Fluctuation between sampling dates was attributed to errors introduced by use of 

solvents at changing ambient temperatures, altering concentration of C 18 and extract in 

the analysed solutions. This problem could have been overcome by use of a standard 

temperature during pipetting. 

Some general trends were, nonetheless apparent, both with time and between 

treatments for certain of the compounds examined. Alpha-pinene, linalool and 



89 
polygodial remained unchanged over the duration of the experiment in all storage 

regimes, while the proportion of kaurene appeared to diminish as the experiment 

progressed, although there was no difference between storage methods in the extent of 

this change. Unknown ill content also fell over time, but this trend was more marked in 

the warmer conditions, with a slight fall evident in storage at 2°C. Steady changes were 

detected for calamenene (increase) and cadinal,4 diene (decrease), in both cases most 

obvious with the warmer storage conditions as might be expected if the 

dehydrogenation conversion of one to the other (Figure 4.5.2) is involved. These trends 

appeared unaffected by use of nitrogen vs air in the storage headspace. 

/ 

Cadina-f.4-diene Calamenene 

Figure 4.5.2: Dehydrogenation of cadina-1,4-diene to calamenene 

In conclusion, for the compounds monitored here, in particular polygodial, the major 

component of commercial interest, nu bt:mdit was gained by using nitrogen in the 

headspace, and for storage at 2°C or less in lightproof containers, at least ten months 

storage without detriment to might be reasonably expected. 

4.6 Quantitative analysis of leaf samples 

A quick and precise method for determining extract composition using small samples 

of plant material is required. The resulting extract should equate as closely as possible 

(for the purposes of this study) to that obtained from a commercially practical method 

of leaf preparation and extraction. This set of experiments examines firstly a suitable 

means of determining the composition of the extract, and secondly, the possibility of 

using fresh leaf samples in such assays. 

4.7.1 Sampling technique 

Initially, in determining yield and composition of leaf extracts, (eg in 'Collections' and 

'altitude', sect. 3.5), a technique of grinding, filtration and washing of the leaf powder, 

followed by evaporation of solvent under vacuum at 60°C was employed in which dry 

extract of each leaf sample was obtained. This was required for determination of 

organoleptic or physical properties, or an estimation of percentages of volatile 

compounds in the extract. 
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The method gave much opportunity for yield under-estimation by incomplete recovery 

of solvent from the leaf powder, over-estimation by accidental inclusion of very fine 

leaf material, and the possible loss of volatile components under evaporation. This, and 

the slowness of the technique suggested that unless 'whole' extract was required, use of 

an internal standard and sampling of the extract supernatant directly over the ground 

leaf after settling might be more appropriate. This method is referred to here as 'direct 

sampling' method. 

A simple solvent sampling method is developed and compared with the 'whole extract' 

recovery method for yield of each of eleven components distinguished as peaks in the 

normal GC analysis and expressed as a percentage (of C 18 std) of the dry leaf used in 

the extraction. 

Experimental Method 

Air dry leaf samples (W 4) of approximately 1 gram were chopped, frozen in liquid 

nitrogen and ground in a mortar and pestle. Ten mls petroleum ether containing 7.5mg 

octadecane (Sigma Chemicals) as an internal standard was added and the mixture 

ground briefly and allowed to stand for a few minutes to settle before a lml aliquot was 

carefully transferred to a GC vial (direct sampling method). 

The remaining solvent was filtered through a sintered glass funnel (Duran Jena Glass 

#3), the ground leaf washed twice in fresh solvent and th~ combined filtrates 

evaporated to dryness on a small rotary vacuum evaporator (at 60°C and 720mm Hg 

for 5 mins). A small sample of the resulting extract was transferred to a GC vial (total 

extract method). 

This procedure was repeated for five samples. 

Results and discussion 

Analysis, and calculation using the ratio: 

% x in leaf= m~ CC181- x Area Peale x 100, 

Area(C18) Wt. leaf (mg) 

provided estimates of yield (by dry weight of leaf) for each of eleven components 

appearing as peaks in the FID output and 'total volatiles' -total peak area between 1,8 

cineole (eluting at 5.3 mins) and polygodial (ea 18.9 mins) (Table 4.7.la). These pealc 

identities were not verified for this experiment and include a number of 'unknown' 

compounds. Leaf dry weight was established by drying two subsamples at 70°C to 

constant weight, and adjusting sample weight accordingly. Analysis of variance for the 

two methods for each of the eleven components and the percentage of volatiles in dry 

leaf is given in Appendix 2.5. 

Total yield of extract, that is, 1.11 times that finally recovered from evaporating the 

solvent from the five leaf washes, is given in Table 4. 7 .1 b below. 



Table 4.7.la: Mean yield of eleven components and 'total volatiles' for two 

methods of analysis as percentage in leaf DM10 

% inleafDM (w/w) 

Component Retention Time Direct sample Total extract LSD (0.05) 

1,8-cineole 5.3 0.16 0.08 0.05 
cubebene 8.66 0.49 0.52 n.s. 

caryophy Ilene 9.63 0.11 0.12 n.s. 
Unknown I 10 0.11 0.11 n.s. 

germacrene D 10.45 0.21 0.23 n.s. 
calamenene 10.94 1.02 1.16 n.s. 

cadinal ,4 diene 11.21 1.55 1.71 n.s. 
Unknown II 11.84 0.23 0.25 n.s. 
Unknown ID 12.11 0.68 0.79 0.12 

aristolone 14.78 0.08 0.10 0.02 
polygodial 16.61,18.88 0.91 1.12 0.14 

total volatiles 6.40 7.18 1.12 

Table 4.7.lb: Total extract yield from evaporated solvent corrected for volume 
expressed as a percentage of dry leaf material. 

Sample 
1 
2 
3 
4 
5 

Dry wt (g) (@70°C 
0.5436 
0.5663 
0.5493 
0.5555 
0.5240 

% yield of extract 
14.95 
14.68 
12.07 
11.36 
11.79 
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Note that the addition of the internal standard prior to grinding was employed in both 

cases to determine yields by leaf dry matter. If the results shown in Table 4.7.lb are 

typical, then taking a GC sample after evaporation, adding a standard, analysing, then 

calculating yield on the basis of total extract weighl antl GC sample composition would 

result in a wide variation of % yield estimates, since total yield itself was very variable. 

This variation was attributed to problems with filtration of extremely fine leaf particles 

and losses of some volatile components (note the significantly lower level of 1,8 -

cineole for example). While the two methods resulted in no significant difference for 

most of the components considered, 1,8-cineole levels were reduced by the complete 

recovery, probably by evaporative losses during drying down of the solvent. 

On the other hand, polygodial was detected in significantly reduced levels by the 

solvent sampling method. One explanation for this might be that polygodial is adsorbed 

to the particulate solids in the mixed phase system, while the preparation of complete 

extract, by filtration and rinsing of the leaf residue ensures more complete removal of 

the compound from the solids (but does not similarly affect the other compounds 

examined). Alternatively, undetected GC artefacts (see sect. 4.9) may have been 

produced in greater proportion in samples prepared from the solution than from those 

prepared by redissolving dried extract in petroleum ether for analysis. 
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4.6.2 Extraction of fresh leaf material 

The method of direct solvent sampling outlined above was next employed to compare 

the efficacy of extraction by petroleum ether of fresh and dry leaf material and the use 

of a more polar solvent mixture: 50:50 hexane/acetone in fresh leaf extraction. 

Fresh plant material proves difficult to extract thoroughly with non polar solvents such 

as hexane, pentane etc. which penetrate wet tissues poorly, even after thorough 

comminution. Solvent mixtures containing hydrophilic organic solvents, such as 

ethanol or acetone might be expected to penetrate intact wet cellular material more 

readily, and probably to dissolve additional compounds such as chlorophyll and other 

water soluble pigments and tannins in the process. 

Experimental Method 

To compare the performance of polar and non polar solvent mixtures on Tasmannia 

lanceolata leaf material, samples of fresh and dry leaf as used in the above experiment 

were extracted using petroleum ether and a 50:50 hexane: acetone solvent mixture. As 

with the previous experiment, leaf (fresh or dry) was frozen in liquid nitrogen, ground 

to a fine powder and lOmls of the solvent containing 7.5 mg of the Cl8 standard was 

added. A lml aliquot was withdrawn after further grinding and a few moments' settling 

and a GC analysis performed on the sample. 

Results 

Five samples were extracted using each method, and the resulting yield of each 

component expressed as a percentage of dry leaf (70°C) is given below (Table 4.6.2) 
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Table 4.6.2: Mean levels of eleven components and 'total volatiles' extracted from 
fresh or dry leaf with petroleum ether or fresh leaf with a 
hexane:acetone solvent mixture. 

% in leaf DM w/w 
Component Retention Pet. Ether Pet. Ether Hexane/acetone LSD (P<0.05) 

Time Dry leaf Fresh leaf Fresh leaf 

1,8-cineole 5.3 0.16 0.12 0.11 0.03 
cubebene 8.66 0.49 0.43 0.37 0.06 

caryophyllene 9.63 0.11 0.10 0.09 0.02 
Unknown I 10 0.11 0.11 0.08 n.s. 

germacrene D 10.45 0.21 0.19 0.16 0.04 
calamenene 10.94 1.02 0.90 0.58 0.25 

cadina 1,4-diene 11.21 1.55 1.35 1.17 n.s. 
Unknown II 11.84 0.23 0.20 0.11 0.05 
Unknown III 12.11 0.68 0.60 0.29 0.15 
Aristolone 14.78 0.08 0.06 0.02 0.02 
polygodial 16.61,18.88 0.91 0.82 0.24 0.24 

% vols in leaf 6.40 5.35 3.61 1.01 

Conclusions 

As noted above, use of the 'direct sample' method generates an analytical result which 

appears to underestimate polygodial percentage slightly in dry leaf but in most 

respects is similar to that obtained by the complete preparation of solid extract, a slow 

and messy procedure in which slight underestimation of some compounds may result. 

In most cases these differences will not justify full extraction, and where a comparative 

result is sought the direct sampling method is indicated by these results. 

Further simplification of comparative analyses by use of fresh leaf tissue was not 

supported by the results of 4.6.2 above- in the case of every extract component 

examined, petroleum ether extraction recovered more compound as detected by direct 

sampling, and in no case was the recovery from fresh leaf greater than that from the dry 

material. The use of a mixed, more polar solvent did not appear to be helpful in this 

regard. 

The method to be used for the comparative analyses in this thesis (Chapters 5, 6, 7) is 

the direct sampling of solvent over ground dried (35°C, 24hrs) leaf. 

4. 7 Identification of components in Tasmannia lanceolata extract 

Although typical extracts of leaf of Tasmannia lanceolata may be resolved 

chromatographically into more than fifty components, for the purpose of the 

physiological work, and comparisons of extraction techniques in this thesis, ten peaks 

were selected, representing clearly unambiguous (ie, never mixed with neighbouring 

compounds) entities across the range of elution times for terpenoid compounds 

commonly found in the extract. Peaks chosen were identified as the monoterpene 

linalool, sesquiterpenes cubebene, caryophyllene, germacrene, bicyclogermacrene and 
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cadina- 1,4 -diene and oxygenated sesquiterpenes aristolone, drimenol, and polygodial 

(two peaks). Use of the trivial name 'aristolone' here indicates only that the spectrum 

closely resembles the reference spectrum for aristolone included at Appendix 2.6. 

While the compound in the extract producing the peak and spectrum will normally be 

referred to as aristolone this was not an unequivocal assignment. 

A number of other common terpene compounds were readily recognised in the typical 

analysis such as 1,8 cineole, terpineol, eugenol, a-copaene, calamenene, guaiol and 

kaurene but were often confounded with neighbouring peaks or were occasionally 

either absent or present in insignifi_cantly small proportions. The ten peaks chosen are 

identified by elution time and comparison of mass spectroscopic data. 

It should be noted that both retention indices and mass spectra for a-copaene and a-

cubebene are not well distinguished in the literature. Separate analysis of essential oils 

of Cubeb and Copaiba provided clarification of retention times and MS for each of the 

compounds for our conditions (data not shown) and by comparison with the result for 

Tasmannia extract used here it was confirmed that the larger peak was a-cubebene. 

Experimental 

A sample of 17 .8mg of Tasmannia lanceolata bulk leaf extract (W3) and small 

samples (a few milligrams each) of hydrocarbon standards (CnH2n+2) ranging from 

C13 to C22 were rlissolved in lml acetone (analytical grade) in a GC vial. The solution 

was analysed by GC MS using the following parameters: 

Injection Mode : manual on-column injection. Detection Temp : 290°C 

Column : 20m HPl, 0.22mm id, 0.52 µm thickness. 

Program temp: 40°C (lmin) - 6°C/min - 290°C(7mins). Total time of 50 min. 

Results 
Table 4.7.1 lists the retention times for the Cn Hn+2 standards; Figure 4.7.2 the 

regression of carbon number with retention time; and Table 4. 7 .2 the Kovat's indices 

for the relevant compounds, calculated using the formula: 

t'R(A) - t'R(N) 
I ab = 1 OON + 1 OOn ------------------ ••••••••••••••••••••••••••••• Eqn 4.1 

t'R(N+n) - t'R(N) 

Where I is the retention index on phase a at temperature b and t'R(N) and t'R(N +n) are 

the adjusted retention times of n-paraffin hydrocarbons of carbon numbers N and (N 

+n) that are respectively smaller and larger than the adjusted retention times of the 

unknown, t'R(A) (Jennings and Shibamoto 1980). 

No index was calculated for linalool, (the retention time for this peak falls below that 

for the smallest standard used). No literature values for 'aristolone', drimenol or 

polygodial were obtained. 
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The gas chromatogram, annotated with peak identities and the associated retention time 

data are given in the Appendix 2.6, together with mass spectral data and the respective 

reference spectra for comparison. For polygodial, the spectrum obtained from a pure 

sample is provided. 

Table 4. 7.1. Retention times for hydrocarbon standards taken from the 
chromatogram at Appendix 2.6 and regression of hydrocarbon number 
n, with retention time data. 

Standard 
Peak 
Cl3 
Cl4 
Cl5 
Cl6 
Cl7 
Cl8 
C20 
C21 
C22 

Ret. Time 
(mins) 
9.71 
11.97 
14.33 
16.65 
18.91 
21.10 
25.22 
27.11 
28.97 

30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 8-1' ____ ._. __ .....,,.._ .......... ______ _ 

12 13 14 15 16 1 7 18 19 2 0 21 22 23 

Hydrocarbon No 

Table 4. 7.2. Calculated Kovat Indices, common names and literature values for 
selected peaks in GC FID chromatogram shown in Appendix 2.6 

Peak Retention Time Common Name Ko vat Literature 
No. (mins) Index Value* 

1 5.62 linalool 1092 
2 10.74 a- cubebene 1345 1381 
3 12.271 caryophyllene 1413 1428 
4 13.59 gennacrene D 1469 1468 
5 13.93 bicyclogennacrene 1483 1490 
6 14.79 cadina 1,4 -diene 1520 1518 
7 19.38 aristolone (?) 1721 
8 19.62 drirnenol 1732 
9 20.43 polygodial isomer 1769 
10 24.12 polygodial 1873 

* literature values are drawn from Davies (1990) and Ramaswami et al (1986) 

For GC analysis used in the remainder of this work, direct comparison of GC FID 

output with these confirmed peak patterns by retention time ratios with the C18 

standard was used to identify the relevant peaks. 

A typical GC FID chromatogram from which this data might be obtained is shown in 

Figure 4.7.1, upon which some peak identities determined by comparison with GCMS 

data are indicated by reference to the key in Table 4.7.3. Many of these identities are 

unconfirmed and are the subject of continued investigation. 
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Table 4.7.3: Suggested peak identities for Figure 4.7.1 determined by comparison 

with GCMS data. 

Peak Number 
(Fig. 4.7.1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Peak Identity 

1,8 cineole 
cis-ocimene 
linalool 
a-terpineol 
piperitone 
eugenol 
a-cubebene 
gurgenene 
caryophyllene 
'Unknown I' 
germacrene D 
calamenene (poss. mixture) 
cadina- 1,4 -diene 
'Unknown II' 
'Unknown III' 
guaiol 
a- cadinol 
aristolone 
drimenol 
polygodial 
polygodial 
kaurene 
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4.9 Injection artefacts of polygodial 

Most GC analysis conducted in this thesis employed an automatic sampling and 

injection system (see Sect 3.2), and the normal mode for injection usually resulted in 

the appearance of a peak confirmed as a probable isomer of polygodial by GC-MS 

analysis. In fact, in a separate study, not reported here, levels of five 'breakdown 

products' detected in a pure sample during injection and analysis were determined and 

the total of the two major isomers of polygodial was shown to account for 92% of the 

compound injected, while a further three substantial peaks representing other 

degradation products accounted for a further 7.5-8.0 % of the total (RIRDC Report 

1995). 

A simple and direct comparison of automatic and manual injection of pure polygodial 

is shown in Figure 4~9.1 - the TIC output of the GC analysis of a pure polygodial 

sample by automatic injection into the injection chamber, with two large peaks, 

together with that of the same sample eluted under the same conditions but with direct 

manual injection onto the GC column. 

The extent of conversion of the natunilly occurring isomer to this artefact appeared not 

to be related to temperature conditions in the injector but was reduced slightly in 

analyses of extracts cf pure sample and appeared to decrease slightly over the course of 

a few hours during repeated analyses (S. Garland pers. comm). 

bundance 

8000 

6000 
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ime-->a.4. oo 14. 50 15.00 
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15.50 

TIC: TLANOC.D (*) 
TIC: [BSBJ JCREADl.D (*) 

16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 

Figure 4.8.1: Pure polygodial sample analysed by GC TIC by direct (on-column) 
injection - top, and automatic injection- bottom, showing the presence of 
the dominant injection artefact. 
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4.10 Summary and Conclusions 

The foregoing series of experiments indicates a straightforward extraction and analysis 

protocol which satisfies the requirements for commercial use and for screening of the 

Tasmannia lanceolata population for extract yield and composition . 

The use of dry leaf material which is easily separated from the twigs upon which it is 

harvested and dried in the current semicommercial context and the application of a 

modified commercial hammermill and pelleting plant provides a good approximation of 

the pelletised, finely divided material used here which extracted quickly and thoroughly 

and with minimum loss of solvent in the residue. 

Drying at low temperatures and for approximately 48hrs gave a consistent result, while 

the commonly used solvent mixture 'petroleum ether' (bp.40-60°) resulted in a clean 

product containing a wide range of terpenoid compounds characteristic of the leaf 

material in each case. 

The extract was shown to be stable under normal cool storage conditions, over periods 

up to twelve months. 

The confirmation of identities of a limited suite of constituents in the extract included 

those represented most commonly in proportions of greater than 0.02% of the GC 

volatile fraction, and provided an adequate set of reference peaks for the physiological 

investigations carried out in this project Identification of the full range of compounds 

present was beyond the scope of the project and is the subject of further investigation. 

The fast and reproducibl~ solution sampling method described requires less than 200mg 

of leaf material and small quantities of solvent and carbon standard. 
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CHAPTER 5: OIL CELLS IN TASMANNIA LANCEOLATA: - CONTENTS AND 

STRUCTURE 

5.0 Introduction 

While the presence of oil cells in leaf tissue of Winteraceous species is well recognised 

(West 1969) there has been no reported effort to determine the exact composition of the 

contents of the storage body within these cells. 

As shown in Section 2.4, the composition of distilled oils or extracts need not represent 

that of the contents of such structures and detailed interpretation of yield and 

composition data is improved by specific information regarding partitioning of oil 

components in the tissue system. 

Leaf extracts of Tasmannia lanceolata contain a high proportion of polygodial, a 

compound found in very few other species, and which exhibits unusual, (perhaps 

phytotoxic - Furuta et al. (1986)) bioactivity, and which might require sequestration 

within isolating structures in the tissues in which it is found. The levels of the 

compound are observed to change rapidly within developing leaf tissue (Section 6.0) 

and tend to remain stable after leaf expansion is complete, suggesting very active sites 

of synthesis, and a durable storage system. 

The purpose of this study was firstly to determine if possible, the composition of the 

contents of the oil cells in leaf material of Tasmannia lanceolata and secondly to 

examine some aspects of oil cell structure which have not been previously reported for 

the species. 

5.1 Contents of Oil Cells 

Oil cells in leaf of Tasmannia lanceolata are large, distributed throughout the 

mesophyll of the leaf, and in fresh tissue are invariably quite spherical and turgid. 

This study aims to determine the composition of oil in mature cells, using direct 

sampling and spectrophotometric methods. 

Experimental Methods 

a) Direct sampling of oil from cells in vitro. 

Microsyringes with tip diameters of 20-25 µm were prepared and connected to a 

vacuum tweezer unit. Oblique slices of fresh leaf (W3) were placed on the stage of a 

dissecting microscope and allowed to dry slightly, revealing the glistening, spherical oil 

cells amongst the shrivelling mesophyll cells. By pressing the tip of the syringe against 

these cells and maintaining a steady low pressure within the tube, the cells could be 

punctured to release their contents which were immediately drawn into the syringe. The 

contents of approximately 20 cells could be collected in a few minutes whereupon the 

syringe was dipped briefly into HPLC grade hexane to allow a small quantity of solvent 
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to mix with the oil in the syringe, and the solution discharged into a glass GC vial partly 

filled with hexane. This process was repeated eight or ten times for each sample. 

Analysis was conducted on an HP 5890 gas chromatograph ( 25m x0.32mm i.d. HPl 

column, phase thickness 0.52nm, helium carrier at 15 psi head pressure, injector 250°C, 

detector 290°C, programmed from 60°C at 10° min-1 to 290°C, 1µ1 splitless injection), 

coupled to an HP 5970B Mass Selective Detector operating from rn/z: 40-500, and 

performing 1.4 scans sec-1. The sample was also injected manually directly onto the 

column, under the same conditions, for comparison. 

b) Fourier Transform Infrared Spectroscopy 

Pieces of fresh leaf were stripped of epidermis and allowed to dry slowly at room 

temperature between glass slides, reducing the water content while keeping the sample 

flat. 

Infrared absorption measurements were carried out using a Bruker IFS 66 FfIR 

spectroscope coupled to a microscope fitted with a mercury/cadmiurn/telluride IR 

detector. The dried sample was placed on a ZnSe plate and positioned under the 

microscope so that the still-turgid oil gland occupied the field. 

A sample of pure polygodial was dissolved in hexane and spread over the ZnSe plate in 

order to obtain a spectrum for comparison. 

Data collection was conducted at a resolution of 4 wave numb~rs, processing by Opus 

software and each sample obtained by averaging 32 scans. 

Results 

a) Direct Sampling of oil cells 

Samples of oil were analysed (typical gas chromatogram and mass spectra presented in 

Fig. 5 .1 a,b) together with the chromatogram obtained for a sample of pure polygodial, 

(presented elsewhere Section 4.9) and the resulting area percentages summarised below 

to provide an indication of relative proportions of the compounds detected. 

The injection of the oil cell sample was repeated by direct, on-column injection to 

identify possible injection artefacts and the spectrum for this is presented 'back to back' 

with that for the normal injection mode (Fig. 5.la -lower trace) and shows that several 

of the peaks represent only artefacts of the injection process. 

Peak identity for polygodial (peaks 'e' and 'f) was confirmed by comparison of mass 

spectra (Fig 5.lb) with those of the the pure sample and by retention time, the former 

representing an injection artefact as demonstrated by the fact that this peak and peaks 'a' 

and 'c' do not occur in the lower chromatograph generated by direct injection of the 

same sample. The identity of guaiol (Peak 'b') was confirmed by comparison with 

library mass spectra, but no attempt was made to identify the artefacts 'a' and 'c'. 

The small peak at 'd' which was not reduced by use of on-column injection technique 

was reported to be an impurity characteristic of the column at the time of this 

experiment (Noel Davies pers. comm.) 



Peak 
a* 
b 
c 
d 
e* 
f 

Common name 

guaiol 

column artefact 
polygodial* 
polygodial 

Retention Time* 
11.99 
12.63 
12.78 
13.60 
15.42 
16.87 

Total fore & f 

* Injection artefacts- see above 

Approximate relative 
percentages 

Sample 1 Sample 2 
1.6 2.6 
7.4 9.0 
4.9 4.2 
1.9 1.3 

24.6 37.2 
59.7 45.7 
84.3 82.9 
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Table 5.1: Area percentages (TIC) for components in oil obtained from oil cell in 

vivo. 



undance 

8000 

6000 

4000 

2000 
b 

-2000 

-4000 

-6000 

-8000 

ime--> 12.00 

TIC: TLANOC.D (-,*) 
TIC: [BSBl]CREADl. (*) 

e 

14.00 16.00 18.00 

103 

Figure 5.la: Chromatograms of content of oil cells. Automatic injection-upper 
trace, direct injection - lower trace. See Table 5.1 for peak identities. 
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(polygodial isomer injection artefact), peaf f (polygodial). 



IO 

"' N 

0 
IO 
t'i 

~ 
N 

0 
0 

N 

Ill~ - . c: -::I 
QI 0 

~ := 
..C IO 

~"" Ill • 

~-
0 
0 
...: 
IO 

"' c:5 
0 
IO 

c:5 
IO 
N 
d 

8 
d 

105 
b) FrIR Spectroscopy 

A spectrum recognised as that for cellulose (G. Rowbottom, pers. comm.) was obtained 

from a part of the leaf tissue devoid of oil cells, and subtracted from that of the whole 

oil cell to produce a 'corrected' spectrum for the oil cell. These spectra, together with 

that for pure polygodial are shown in Fig 5.2. 

As may be seen, there was good correspondence between the two spectra for the oil cell 

and pure compound, particularly in the two major areas of absorption. The distinct peak 

at about wavenumber 1690 was the major departure from this agreement and was not 

explained by concealment beneath either of the adjacent peaks. 

The FTIR technique as used here can only be considered to provide support for the more 

sensitive determination of oil composition by GCMS. The absence of major differences 

in the 'fingerprint' region of the spectrum supports the co~tention that the i)redominant 

compound present is polygodial, and that the enantiomeric arrangement in vivo is 

similar to that in the pure sample. 

~ 

·moo 3750 3500 3250 3000 2750 2500 2250 2000 1750 1500 12so 1cm soo 
IJaveruroer cm-t 

Figure 5.2: FflR Spectra of contents of Tasmgnnia lanceola!a leaf oil cell 
(adjusted for cellulose) and reference polygodial sample. Typical 
cellulose spectrum at top. 
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Discussion 

Direct sampling of oil cells has not been reported to my knowledge. The same simple 

technique has been applied to the larger secretory cavities and more accesible trichome 

structures in an effort to distinguish between the secretory product and the essential oil 

or extract obtained from the whole organ (Turner et al. 1978, Lanyon et al. 1981, 

Venkatchelam et al. 1984, Bicchi et al. 1985, Menary et al. 1986). 

Hagendoom et al. (1994) examined the distribution of polygodial in various plant 

organs of Polygonum hydropiper and showed FI'IR spectra obtained from oil gland and 

non-oil gland regions of the polygodial rich 'tepals' (sic.) and pure polygodial as 

evidence that the compound predominated in these structures, and claimed 'remarkable 

resemblance' between the spectra for oil cells and pure compound, despite a number of 

apparent differences in detail and the evident presence of. water indicated in the spectra 

obtained from the oil cell. 

By comparison the spectra presented here do not show the absorbances in the region 

3000-3 lOOcm-1 associated with water, suggesting that drying of the tissue was adequate 

and helpful. The absence of any significant additional peaks in the oil cell spectrum 

which might be attributable to other compounds, (for example the guaiol found in small 

amounts by direct sampling) confirms only that polygodial is the predominant 

constituent of mature oil cells in the leaf, since the FI'IR spectroscopic method is much 

less sensitive to the presence of minor compounds than GCMS used on the sampled 

contents of oil cells, and alone, cannot be considered proof of the absence of compounds 

other than polygodial. 

In the case of Tasma.nnia lanceolata the compounds detected in the oil cell itself 

represent only a small part by weight of the normal leaf extract. Polygodial normally 

represents 25 - 35% by weight of the GC volatile analysis of leaf extract, while guaiol, 

not identified in the analyses presented elsewhere in this thesis, is present at levels 

normally well below 2-3% (data not presented). Stevens (1955), in his examination of 

steam distilled oil of the species, reported very high proportions of guaiol in the volatile 

oil obtained from leaf gathered at certain sites. 

Dilution of the contents of the oil cell with other solvent soluble compounds derived 

from non-oil cell origins is occuning to a significant degree during extract preparation, 

while in obtaining the essential oil from fresh leaf material, in which polygodial is not 

detected, different compounds may predominate. 

These selective recovery or dilution effects must be considered in any comparison of 

plant material, and underline the importance of using an approriate method to express 

component yields. Unless qualitative description of the 'total extract/ oil' is required 

(such as in the commercial situation) characteristic compounds such as cannabinoids in 

Cannabis sativa. lupulins in hops1or in this case polygodial, should be expressed not as 

percentages in the 'oil' or 'extract' but in relation to the organ or plant material from 

which they are derived, eg as % of dry weight of leaf, or weight per gland. 
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5.2 Oil Cell Ultrastrueture in Tasmannia lanceolatti 

West's (1969) study of nine families broadly described as 'Ranalean' included 

Winteraceae but relied on a very small subset of the genera and species within this 

family, using only one example of each of two species -Drimys winteri and 

Pseudowintera axillaris. There have been no other reports of examination of oil cells in 

Winteraceous species despite the interest in several unusual secondary compounds 

obtained in relatively large quantity from them. Lauraceae oil cells, on the other hand, 

have been examined in detail in most of the contributions to the subject of oil cell 

structure and function, particularly those in the avocado (Persea) fruit (eg Platt- Aloia et 

al. 1983) and Cinnamomum sp (Bakker and Gerritsen 1989). 

The second part of this study aims to confinn aspects of oil cell ultrastructure reported 

for other 'Ranalean' species, for Tasmannia lanceolata, to visualise the gross structure 

and distribution of the cells in leaf tissue and to relate these to stages of leaf ontogeny. 

Experhnentall\lethods 

i) Scanning Electron Microscope (SEM): Mature leaf material of several different 

selections of Tasmannia lanceolata was prepared for examination by the method 

described in Section 3.4 (fixed in Os04 and freeze dried). 

ii) Transmission Electron Microscope (TEM): Similarly, buds and very young leaf 

( <3mm long) collected from plants held in the shade house were fixed, dehydrated, 

embedded and sectioned for TEM examination (see Sect. 3.4). At the time of this 

experiment the buds were more than two months into the dormant phase, and exhibited 

advanced development of new leaf primordia within the bud. The bud was stripped back 

in each case to approximately 1.5 mm diameter, by removal of all but the last 7-8 leaf 

primordia. 

Results 

The dormant apical bud typical of the late winter condition is shown in Plate 5.1 and 

again, in longitudinal section in Plate 5.2, in which well developed oil cells occupy a 

substantial part of the leaf mesophyll, and are surrounded by undeveloped mesophyll 

cells (lower right). The techniques commonly used in preparation and fixing of fresh 

tissue tend to result in stripping of lipid soluble compounds from large storage bodies 

and these oil cells are clearly empty, while smaller, less well developed, (though still 

empty) oil cells may be discerned in the younger primordia closer to the apex (top left). 

Oil cells are already quite spherical and distinct from the rest of the mesophyll in even 

the very young leaf primordia nearest the apex, although the difference in size is less 

pronounced. Most cells in the mesophyll rapidly increase in size, roughly doubling in 

diameter from the first to the fourth primordia in this case, but throughout, the oil cells 

remain noticeably larger than their non-oil cell counterparts. 
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Plate 5.1 (above): View of typical dormant bud prior to the onset of 

spring growth; bar = 5mm. 

Plate 5.2 (below) :Longitudinal section of dormant bud, shoot apex to the 

upper left of the frame, showing the basal portion of four leaf 

primordia containing oil cells; bar = l00;1m 
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The two SEM micrographs in Fig. 5.3 typify the appearance of the leaf mesophyll 

observed in several samples from each of six plants. The areoles, (the area delineated by 

schlerenchymatous transport tissue), (Fig. 5.3a) each contain very many large (ea 50µm 

dia.), nearly spherical cells embedded in the matrix of the mesophyll. Fig 5.3b shows 

one such cell surrounded by a 'supporting' system of radiating mesophyll cells, smaller, 

more elongated and still containing intact chloroplasts adhering to their walls. The 

continuity of the open intercellular spaces within the mesophyll and the virtual 

complete exposure of the surface of the mesophyll cells to this space may be seen. On 

the other hand, much of the surface of the oil cell itself is covered by the adjoining 

mesophyll. There are no chloroplasts visible in the interior of the oil cell. 

Figure 5.4 shows a portion of a leaf primordium very close the the bud apex, most cells 

showing many signs of normal metabolic activity (intact organelles, abundant 

endoplasmic reticulum), while the distinctive cell on the left of the field contains one 

large space, surrounded by a dense cytoplasm, containing several plastids. Cells having 

this appearance were scattered through the tissue, usually with obviously empty central 

spaces, occasionally, as in this case, with some homogeneous, electron translucent 

matrix in the central space. Although these cells were not distinctly larger than other 

developing mesophyll cells, their frequency, and the compression of the cytoplasm 

leads to the conclusion that they represent an early stage of oil cell development. 

Detail of oil cell cytoplasm is shown in Fig 5.5 in which dictyosomes and plastids are 

still intact, and in which very many endocytotic events are occurring in the membrane 

surrounding the oil body (arrows). This oil cell was found in a leaf primordium 4-5 

nodes from the bud apex*, and was typical of the greatly enlarged oil cells in primordia 

at this stage, in which cytoplasmic integrity accompanied the engorged oil space and 

movement of oil into this space continued. 

Fig. 5.6 shows an oil cell in a leaf primordium approximately 8 primordia from the 

apex in which the traces of cytoplasm which remain appear disorganised and 

fragmented. The fragmentation may be a result of the sectioning process, but in oil cells 

in leaf primordia at this stage, no distinct organelles could be distinguished, the 

cytoplasm appearing as a uniform, (or sometimes alveolar) and granulated dark mass 

usually adhering to the inside of the cell wall, and lacking any distinct membrane 

adjacent to the oil body. On the other hand, in oil cells of this maturity, the presence of 

the typical wall structure was evident, in this example as ·a lamellate region adjacent 

and interior to the middle lamella (arrow), shown in more detail in Plate 5.7. 

Dark, somewhat diffuse bodies present in adjacent cells resemble, in appearance and 

location, those described by Bakker and Gerritsen (1990) as possible oil globules. 

*The exact number of nodes between the apex and a sectioned leaf primordium could not be determined 

in a two dimensional specimen - the implication of'age' of the leaf must be considered as relative only. 
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Plate 5.3 (above): (a) SEM micrograph of portion of leaf sectioned to reveal oil cells 

embedded in the mesophyll; bar= lOOµm (b) Single oil cell within an array of 

unspecialised mesophyll cells. Note absence of chloroplasts in, and relative size 

of oil cell; bar = 45µm. 

Plate 5.4 (below): TEM micrograph of leaf primordia close to bud apex. Note large, 

homogeneous body within the cell on the left side of the field; bar = 5µm. 



Plate 5.5: Oil cell showing cytoplasm, intact plasmalemma and organelles 

appressed to wall. Ribosomal activity, several apparent cytotic events, 

localised thickening of cell wall may be seen; bar = lµm. 

Plate 5.6: Mature oil cell, 7-8 primordia below the apex. Note aditional wall 

layer, not present in non-oil cell walls; bar = lµm. 
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Plate 5.7: Detail of mature oil cell wall, showing additional layers 

associated with the oil cell, cf junction between other mesophyll 

cells. Bar = 2µm 
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Discussion 

The observations recorded here appear to agree with the generalised models for oil cell 

development in Magnoliaceous species reported by Platt Aloia et al. (1983), Mariani et 

al. (1989) and Bakker and Gerritsen (1990): 

The lamellate wall structure of the mature oil cell was seen, although the composition of 

the parts of the wall (suberin, polysaccharide or cellulose) was not confirmed, and three 

distinct layers could not be discerned in all mature cells. The specialised wall structure 

was not observed in oil cells until cytoplasm degeneration was well advanced, although 

Bakker and Gerritsen (1990) report that in Annona muricata the complex wall 

develops quite early in oil cell development while cytoplasmic organisation is still 

complete. Bakker and Gerritsen ( 1990) also found that in.most sections it was possible 

to find a variety of stages of oil cell development, until the later primordia in which 

most cells were fully 'mature', but avoided correlating oil cell development stage with 

leaf ontogeny, as did Mariani et al. (1989), Maron and Fahn (1979) and Bakker and 

Baas (1993). 

Oil cells could be distinguished in primordia 2-3 nodes below the apex, and thereafter 

development was very rapid, largely complete to the stage of cytoplasmic breakdown 

only a few primordia further from the apex. 

No cupule was detected in any of the sections examined, although, as observed by 

Mariani et al. (1989), observation of this feature in thin TEM sections is dependent on 

locating the appropriate section, and some writers have either failed to detect (Platt­

Aloia et al. 1983) or questioned the authenticity of the feature (Postek and Tucker 

1983). Convincing evidence for the structure has been presented by Maron and Fahn 

(1979) and Bakker and Gerritsen (1990), and it must be concluded here that the small 

number of samples examined simply failed to include an appropriate section. 

Lysigenous development of the oil space, reported for representatives of Magnoliaceae 

(West 1969) has not been supported since, for any members of the species studied, and 

was not observed here. 

Fahn (1988) observes that different cells and cell compartments appear to contain 

osmiophilic droplets, and suggests that different oil components may be synthesised in 

different compartments. In the case of the results of this investigation, several 

observations might be resolved by this proposal. The presence of dark, electron dense 

material in a number of the normal mesophyll cells - see Plate 5.5, 5.6 , together with 

the apparently unassociated movement of droplets from the oil cell cytoplasm into the 

cavity suggests that at least two oil 'systems' may be present. This would be supported 

by the results of Sect 5.1 in which only part of the solvent soluble mixture obtained 

from dry leaf was found in the oil cell structure~ themselves. 

An interesting variation on this is inherent in the conclusion of Kobiler et al. (1993) 

that biologically active compounds may be 'at large' and active in certain tissues but not 

in others- their example was the antifungal compounds found sequestered in impervious 
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structures in avocado mesocarp but not in the pericarp where, they propose, protective 

antifungal action may occur. A similar example was the spatial separation of reactive 

compounds demonstrated by Menary et al. (1986) in hop secretory cells and secretory 

spaces. 

Evidence that secretory structures such as trichomes, and secretory cavities contain 

specific portions of the essential oil or extract commonly associated with the whole 

organ or plant is common in the literature eg Turner et al. (1978), Russin et al. (1988, 

1992), Gershenzon et al. (1992). 



CHAPTER 6: SEASONAL CHANGES IN LEAF EXTRACT 
COMPOSITION 

6.0 Introduction 
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Commercial exploitation of an essential oil or extract - producing species requires a 

detailed knowledge of the changes associated with development, maturation and 

senescence of the oil - containing organs in question. This information, together with 

estimates of dry matter production during the growing season enable determination of a 

harvest date which will result in the maximum yield of oil of an acceptable 

composition. 

At a fundamental level this implies knowledge of the regulation and kinetics of the 

relevant synthetic processes, the physiology of storage and transport of the products of 

this synthesis and a parallel model for growth and development of the balance of the 

plant body. 

In fact there are few examples of essential oil crop species for which a comprehensive 

model for all these dynamic processes is even partly complete. 

Substantial elements of the model have been developed for members of the diverse and 

commercially important family Lamiaceae. For example, details of the monoterpene 

synthesising enzymes present in Lhe spearmint trichome were discussed by Gershenzon 

et al. (1989), structure, distribution of, and ontogenetic trends in density for glandular 

trichomes in peppermint by Maffei et al (1989), and the relationship between yield and 

biomass in Salvia spp. by Pitarevic et al. (1984). Similarly in Apiaceae another 

significant essential oil bearing family, the ontogenetic changes in overall oil 

composition in parsley were examined by Porter (1989a), and Clark and Menary 

( 1984) reported the changes in yield and composition of dill oil during crop 

development in New Zealand and Tasmania respectively. 

Acquisition of such a model begins with an empirical determination of the general 

pattern of oil production in the organ, on the plant, and under characteristic 

environmental conditions. This reveals the normal pattern of accumulation (and 

perhaps loss) of oil components and enables correlation of this with the phenology of 

vegetative and reproductive development. 

More broadly, it would require consideration of dry matter yield, (the annual vegetative 

increment for a perennial species), providing a general context for determination of 

commercial viability. 

Examination of biochemical interrelationships amongst oil components and storage 

system structure and function, will enable the interpretation of the process of oil 

synthesis and accumulation. This interpretation is a necessary first step towards 

developing the production models mentioned at the beginning of this section. 



116 

6.1 Changes in extract composition during the annual growth flush 

To undertake an unambiguous determination of ontogenetic changes in overall extract 

composition in leaf tissue on a perennial species, a number of aspects of seasonal 

change must be accommodated. 

For shoots in which extension and leaf initiation occur together and over an extended 

period (for example where no pulsed growth occurs, or in species for which the 

growing season is very long), there are three temporal aspects of leaf development to be 

considered - the time of initiation of the leaf, the physiological age of the leaf and the 

prevailing seasonal conditions at the time. of sampling. 

ie. a) Regular collection of marked leaves (expanded at some point early in a 

growth cycle) does not enable identification of the impact of 'time of initiation' on 

changes in extract composition. 

b) comprehensive sampling at a specific date, and sorting leaves by age ignores 

the implications of time of year (season) on oil composition. 

c) collecting leaf samples of a particular maturity through the season, will not 

allow consideration of the effect of physiological age on oil composition. 

The identification of sets of leaves initiated over a series of dates and sampled at a 

number of points in their development should enable prediction of oil composition 

typical of leaves uf known initiation date sampled at any time during an annual growth 

cycle. 

The three sample series in the scheme in Fig 6.1 (after Li1993) would provide the 

following information: 

1) Composition of leaf initiated at time in - combined leaf age x time of sampling. 

Difference between series 1, 1' 1" 1"' reflects importance of initiation date 

2) Composition at leaf age A, B, C etc- combined time of sampling x time of initiation. 

Difference between series 2, 2',2", 2"' reflects importance of leaf age. 

3) Composition of leaf at sample date sn - combined leafage x time of initiation. 

Difference between 3, 3', 3", 3"' reflects the importance of sample date 

With respect to extract composition the latter two will probably be the more important -

metabolic activity will reflect the prevailing conditions, and the cumulative result of 

production and storage of secondary metabolites will depend on the age of the leaf. 
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Figure 6.1: Schematic representation of a sampling matrix designed to allow 
comparisons of initiation date, season and physiological age, (after Li 
1993) 

The success of this scheme, particularly the 'series 2' comparisons - following a 

particular leaf cohort as it matures, (with the possibility of removing season and 

position effects), depends upon regular leaf emergence and fitting of sample dates to 

ensure that CS is equivalent to B4 and A3 etc. 

In Tasmannia lanceolata mature vegetative buds contain a full complement of leaf 

primordia which emerge over a short period following the opening of the bracts in 

spring (Gifford 1950). A preliminary investigation showed that detectable levels of 

several of the components of interest were present in very young leaves and that these 

levels changed rapidly as the leaves unfurl and expand. Although only a few day's 

development separate emergence of the first and last leaves on the new shoot, it was 

decided to adopt a simplified version of the above, to separate three leaf 'types' by 

position on the new shoot and to compare extract quality among them at each date, as 

well as comparing leaves at each position between dates. Leaf weight, percentage dry 

matter and a representative suite of mono- and sesquiterpenes including polygodial 

were to be monitored in the leaves as they emerged, matured and ultimately were 

overtopped by a succeeding generation in the subsequent year. 
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Plate 6.1: General view (above) from southeast corner of t he Parrawe site 
at which the trees used for the seasonal variation trial were located, and 
(below) trees typical of those used in the trial ((approx. 3m high) 



6.1.1 Experimental Procedures 
a) Field experiment 
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The majority of the study was undertaken on an old field site at Parrawe, an abandoned 

township situated some 40km inland in Northwest Tasmania at an elevation of 600m 

and in a rainfall belt of 1750-2000 mm. Mean sunshine hours for Savage River, 30km 

to the west of the site and monthly rainfall and daily maxima and minima for the nearby 

recording station at Waratah are presented in the Appendix 1.2. The site, on tertiary 

basalt, was cleared of Nothofagus cunninghammii and Atherospermum moschatum 

rainforest between 1915 and 1930, sown with pasture species and grazed for some years 

before being abandoned some time during the 19.SO's. Tasmannia lanceolata has 

colonised the area (about .SOha) almost completely, forming clumps and isolated 

individuals between a few years and upwards of thirty years of age over the whole site, 

tending to be most successful in the vicinity of old logs and tree stumps (Read and Hill 

(1983) (see Plate 6.1). 

Individuals for the experiment were solitary trees, of similar aspect, age/size, position in 

relation to shelter, drainage lines and frost hollows. Ten such trees were chosen, 

including five each of staminate and carpellate individuals on the basis of dissections of 

flower buds at the site. Trees were tagged with surveyors tape. A choice was first made 

in early October and revised in late November, as it became clear that the proportion of 

vegetative buds (less globose and smaller than the rapidly swelling flower huds) was 

too small on some trees to allow for sufficient sample material. Monitoring of bud 

development on three occasions during this time confirmed closely similar progress 

amongst the chosen plants. The scheme in Fig 6.2 shows the chronology and 

comparisons planned for this experiment. 
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Figure 6. 2: Sampling matrix for field trial at Parrawe -see text for explanation. Budburst occurs 
in mid-November and shoot growth is complete by mid January. Sample dates (S1-S7) 
equate to 20, 40, 70, 100, 160, 240 and 320 days after budbu.rst 
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Comparisons of interest are those between A, B and C at each sample date - series 2 etc 

- comparing the effect of leaf position, and comparisons between Al, A2, A3 etc - the 

progress of maturation in leaves at each position. 

At the first harvest date, a few days after budburst (DAB), when shoots had begun to 

extend, 10 'typical' shoots on each tree were tagged as markers to enable the selection of 

approximately equivalent shoots at each subsequent harvest. At each harvest, shoots 

were selected on the basis of their similarity in length, leaf number and maturity to the 

tagged shoots. In this way a degree of 'equivalence' between leaves of consecutive 

harvests was obtained. 

For ten shoots gathered from each tree (twenty each for harvests at 20 and 40 DAB), 

leaves corresponding to positions 'A' -the oldest, 'B' -a leaf in approximately the mid 

position (numerically) on the shoot and 'C' -the fully formed leaf closest to the apical 

bud, were removed from the shoot, weighed and bulked together for each tree and each 

leaf position,. These samples were then dried at 35°C for 48 hrs. A sample of extract 

was prepared by grinding and extraction in petroleum ether containing C18 internal 

standard, and the extract analysed using the GC method ('Chris Mth' -see Sect. 3.2). 

A sample of 10 'B- type' leaves was used at each harvest to establish a mean %DM of 

the 'dry' leaf material used in the analysis for all trees at that date. The number of leaves 

on the shoot was averaged for the ten shoots from each tree, and a mean fresh weight 

determined for the ten leaves of each type collected per tree. 

A number of leaf samples providing a longitudinal comparison of leaves from each of 

three seasons was obtained as shown in the scheme below (Figure 6.2a). The leaf cohort 

entitled '1993 lear was that examined in the main part of this study, above, and for this 

group, the '93 Mature' result was obtained from the mean for the harvests 4-7, while the 

other results presented were of the means for ten trees, one sample each as indicated by 

the asterisk. 

1992 1993 I 1994 I 1995 

ONO JFMAMJJASONDJFMAMJJASOND JFMAMJ 

1992 r-------------t '92 1year old 
LEAF ~- ----------------------• '92 2yearold 

1993 1--*~~*-*---* '93 Mature 
LEAF 1--------------• '93 1year old 

1994 L__* '94 Mature 
LEAF I 

Figure 6.2a: Longitudinal comparison of leaf samples at the P81T8we site. 

For the last two harvests before budburst the developing apical buds including bud 

scales were removed, weighed, dried and analysed as for the leaf samples. 
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Extract analysis was carried out for the following parameters 

•the total for compounds eluting between the '1,8 cineole' peak at a relative 

retention time to the C18 standard of 0.34, and that of kaurene (relative retention 

time 1.27) inclusive, termed 'volatiles', 

• compounds identified as linalool (relative retention time 0.37), cubebene (0.55), 

caryophyllene (0.61), germacrene D (0.66), bicyclogermacrene (0.67) cadina 1,4 -

diene (0.71), aristolone (0.93) and polygodial (l.05 +l.19) which between them 

accounted for most of the volatile constituents identified in the analysis. 

b) Changes prior to, and at budburst 

The results obtained in the field trial described above did not provide useful detail of 

the changes occuning around the beginning of budburst and during the emergence of 

the first leaf. The first data point obtained in that experiment was approximately 20 

days after the first sign of budburst, and it would have been impractical to collect 

samples during the initial period due to the remoteness of the site, and limited number 

of suitable growth points per tree. To focus on this very early period, a second 

experiment was conducted using clonal plant material (W3) held in the glasshouse. 

The first leaf of emerging shoots on as many plants as possible was sampled during the 

first 8-10 days of bud break, commencing with furled outer leaves inside the elongated, 

(but still closed) bud, continuing through the emergence of the furled bud from the 

bracts, as the bud unfolded, and as the shoot began to lengthen until the outer leaves 

were about 15 mm long. This point roughly corresponded to 'S3' in the field trial. Two 

further samples were collected to confirm the pattern discerned in plants in the field. 

Dissected leaves were weighed fresh and dried, and ground as described previously, 

before being sealed in a glass vial and stored at 2°C. At the completion of sampling, 

3ml of solvent plus 0.306 mg C 18 standard were added to each tube, the tubes shaken 

for two hours and a GC sample analysed. Sample sizes of approximately 20 -1 OOmg 

(dry) were obtained, two samples at each date and one analysis conducted per sample. 

Six stages of development were arbritarily identified as follows: 

0: elongated, unopened buds 

1: shoot tip just protruding from sepals, less than half leaf visible above bracts 

2: rosette not unfurled but at least half leaf visible above bracts 

3: rosette unfurled prior to extension of shoot 

4: shoot about 1.5 cm long, outer leaves approx. 15mm long (approx date 3) 

S: shoot almost fully extended, lower and middle leaves about 25mm long 

6: leaves fully expanded (40-50mm), shoot fully extended. 

Extract parameters reported for this experiment include: 

•the total for compounds eluting between the '1,8 cineole' peak at a retention time 

relative to that of the C18 standard of 0.34, and that of kaurene (relative retention time 

1.27), termed 'volatiles', 
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•a compound tentatively identified (N. Davies, pers. comm.) as cis-ocimene (relative 

retention time 0.342), linalool (0.37), two unknowns (0.80 and 1.05), aristolone (0.93) 

and polygodial (1.05 +1.19) and kaurene (1.27), which between them accounted for 

most of the constituents identified in the analysis. 

6.1.2 Results 

a) Field trial 

Statistical analysis 

i) Comparison between trees - the SAS 'proc glm' procedure (SAS Institute -Software 

vers. 6.07) was applied to the 'percentage in leaf' data-Table 6.1, using only the results 

for harvests 4, 5, 6 & 7 to obtain an estimate of mean 'mature '93 leaf' levels of the nine 

parameters for each tree (Appendix 2.9). 

ii) Comparisons between 'positions', - analysis for 'position' using the 'proc glm' 

procedure indicated no significant differences between the three positions for any of the 

parameters at the first three harvest dates (see Appendix 2.10). In subsequent harvests 

the three positions became still more similar and no further comparisons for 'position' 

were conducted. Thereafter the three positions were treated as replicates for each tree. 

iii) Comparison between harvest dates - compositional data (nine parameters x ten trees 

x three samples (positions) x seven harvests) was expressed firstly as percentage of 

each component in dry leaf weight, and then transformed, using the data for percentage 

dry matter (mean for each harvest), mean number of leaves per shoot (for each tree) and 

average fresh weight of leaf on the shoot (mean of three leaf types for each tree) (Table 

6.3) to estimate weight of each compound per shoot. The two datasets were then 

subjected to statistical analysis using the 'proc glm' procedure to generate Type III 

analyses of variance, means and standard errors for each compound by harvest date, 

tree number and date x tree (Appendices 2.11 & 2.12). Where a compound was 

undetected a zero value was used in the analysis, as an approximation assuming that the 

compound was present. 

iv) Composition data for buds collected at harvests 6 and 7 are presented as means for 

ten trees (one sample each) for each harvest. 

Data 

Composition results (%w/w in leaf dry matter) for sample dates 1-7 are summarised in 

Table 6.1.and depicted in Figure 6.3. Standard errors reported refer to harvests 2-7 ( 40-

320 DAB) - the initial harvest (2 positions cf 3) produced slightly larger standard errors 

in each case (not reported). For each harvest, fresh weight of leaves, leaf number and % 

DM data are presented in Table 6.2 and the change in dry matter of leaf per shoot at 

each harvest is shown as a blue curve on the top graph in Figure 6.3. 
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Table 6.1: Leaf extract composition - expressed as % of leaf dry weight LS means 
for ten trees, three samples per tree. 

Component Harvest Date (DAB) 
(% perleafDM) 20 40 70 100 160 240 320 Side" 
volatiles 1.65 2.16 3.97 4.71 5.31 5.41 4.62 0.043 
linalool 0.032 0.06 0.08 0.09 0.14 0.14 0.14 0.005 
cubebene 0.08 0.11 0.17 0.24 0.26 0.26 0.22 0.003 
caryophyllene 0.01 0.03 0.07 0.09 0.11 0.11 0.09 0.002 
gennacrene D 0.03 0.06 0.10 0.14 0.15 0.15 0.11 0.002 
bicyclogermacrene 0.04 0.10 0.09 0.09 0.04 0.05 0.06 0.004 
cadina- 1,4 -diene 0.36 0.42 0.77 0.93 1.03 0.99 0.77 0.018 
aristolone 0.13 0.11 0.10 0.06 0.06 0.06 0.05 0.002 
polygodial 0.52 0.75 1.70 1.49 1.71 1.69 1.40 0.018 

Table 6.2: Fresh weight per leaf (on each tree and at each harvest), % DM average 
for harvest and number of leaves on new shoots- average for ten shoots 
and seven harvests. Right hand columns give mean dry weight of leaf 
per twig (mg) at each harvest derived from the foregoing (tree by tree) 
and standard error for mean of these ten results. 

Tree No 1 2 3 4 5 6 7 8 9 10 Mean 

Mean leaf no. Mean 5.7 8.4 5.8 7.8 5.2 6.4 6.9 5.7 6.1 6.5 Dwt/ Std 

%DM Mean fwt/leaf (mg) I twig Err 

20DAB 32.0 17 18 21 14 14 14 10 16 15 22 33 2.8 
40DAB 35.3 40 36 38 34 28 22 18 14 26 33 66 7.7 
70DAB 36.8 108 134 132 92 93 86 90 73 110 12~ 249 23.1 
lOODAB 38.8 152 181 162 155 176 146 144 146 190 17~ 408 25.7 
160DAB 43.1 164 214 131 140 158 195 183 161 194 21.::1 492 42.3 
240DAB 42.0 163 189 189 180 156 172 124 151 227 19.::1 474 35.9 
320DAB 42.0 177 197 182 156 179 159 163 175 224 221 498 32.0 

As can be seen from Figure 6.3 a number of substantial changes occur in leaf extract 

composition, simultaneous with the rapid accumulation of dry matter early in the 

season. Total dry leaf weight per shoot doubled from 20 to 40 DAB and then increased 

fourfold by 70 DAB. This period of rapid growth was complete by 150DAB with the 

shoot bearing approximately 475mg of dry leaf. With respect to the concentration of 

components in the leaf: 

• Most of the compounds monitored follow a roughly similar pattern of increasing 

percentage in the leaf. Germacrene D, linalool, caryophyllene, cubebene, cadina- 1,4 -

diene and polygodial all accumulate rapidly during this initial growth period, reaching a 

plateau, usually around the time dry matter accumulation has peaked, and then fall 

slightly during late winter as the subsequent generation of buds begin to swell. 

Exceptions to this amongst these compounds were polygodial, which reaches its 

maximum concentration in the leaf by 70DAB, when leaf weight has reached slightly 

more than half its final figure, and linalool, in which the late winter decline was not 

observed. 

I 
I 
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• Aristolone and bicyclogermacrene followed a distinctly different trend during the 

growth cycle. Aristolone, present at its maximum concentration at 20 DAB declined 

rapidly to a stable level of less than half the original concentration by 150 DAB and 

remained steady for the remainder of the sampling period. Bicyclogermacrene, detected 

at low levels at the first sampling appeared to increase rapidly, then decline to a low at 

150 DAB after which a steady increase appeared to occur for the rest of the season. 

With respect to this compound, the concentration detected in the same leaf cohort late 

in the following growing season approached that detected at the maximum (40 DAB). 

Close inspection of the 20DAB result for this compound revealed that the mean derived 

from a possible 20 loci (position x tree) in the statistical analysis, including only 8 

detections in the extract samples, the mean of which was 0.08%, and this result must be 

regarded with some caution in light of the high 'one year ·old' result for the same leaves. 

The possibility that this compound follows roughly the same pattern as detected for 

aristolone - high at budbursts, then declining steadily, cannot be ruled out. 

• The trend for 'volatiles' reflects the pattern described for the compounds above which 

account for a substantial proportion of the FID integration. Three additional peaks, two 

not identified in this work, the third a mixture of two compounds and including 

calamenene (N. Davies, pers. comm.) also contributed to this trend. 



125 

6 450 
600 co ~ 

Q day g 
;>.. 5 500 00 

.0 ·~ 'ea 
~ 4 400 ~ 
.5 Q 
~ 3 300 t: 

"' Mean Dwt/twig 0) 

2 200 ~ 

1 
---0-- Volatiles 100 

0 
0 50 100 150 200 250 300 350 

~ 
0.15 

450 Q --0-- caryophyllene ;>.. 0.12 day 
.0 

] 
0.09 --<>----- germacrene D 

.5 <> 
~ 0.06 0 <> ---<>- linalool 

0 
0 .03 bicyclogermacrene 

0 
0 IB aristolone 

0 50 100 150 200 250 300 350 

~ 1.8 
Q 

1.6 450 
;>.. 
.0 day . 
'ea 1.4 
~ 1.2 0 ---0--- cadina 1,4 diene 
.5 

1 
~ 

0 .8 polygodial 

0 .6 CJ 

0.4 
0 .2 

0 50 100 150 200 250 300 350 

0 .3 450 
~ day Q 
;>.. 0.25 ----· .0 

I cubebene 'ea -- - -
~ 0.2 
.5 
~ 0. 15 I 

0.1 / 

0.05 

0 50 100 150 200 250 300 350 

Days after leaf emergence 

Figure 6.3: Change in % of extract constituents (by DM) in new grown leaf, during 
development over summer and during the following autumn and 
winter. Development of total leaf dry matter per shoot is shown in the 
blue curve on the top graph. The 450 day level ('93 leaf lyo) is shown in 
the bar at the right 



126 
The estimation of 'per twig' yields of each component was obtained (as explained 

above) from the raw data for percentage composition and the dry matter per shoot data 

in Table 6.2. Means and standard errors are summarised in Table 6.3 and depicted in 

Figure 6.4 below. 

Component Harvest Date (DAB) 
(mg per shoot) 20 40 70 100 160 240 320 StdE" 

volatiles 0.53 1.47 10.11 19.45 26.64 25.73 23.05 0.18 
linalool 0.01 0.04 0.22 037 0.70 0.64 0.71 0.02 

cubebene 0.03 0.07 0.45 1.02 130 1.28 1.11 0.01 
caryophyllene 0.01 0.02 0.19 039 0.54 0.52 0.44 0.04 
germacrene D 0.01 0.04 0.27 0.58 0.74 0.71 0.57 0.01 

bicyclogermacren 0.01 0.07 0.23 036 0.20 0.25 0.28 0.02 
cadina 1,4 diene 0.12 0.29 2.05 3.91 5.22 4.86 3.86 0.07 

aristolone 0.04 0.08 0.24 0.24 0.27. 0.26 0.25 0.08 
polygoclial 0.17 0.50 4.15 5.99 839 7.79 6.94 0.07 

Table 6.3: Leaf extract composition - estimated total of each component per shoot 
(LS means for ten trees, 3 samples per tree) derived from raw yield 
data and Table 6.2. 

By transforming the percentage data (Table 6.1 above) into effective 'yield per shoot' it 

is possible to discern nett trends in accumulation and loss in the shoot as a whole, by 

volatilisation, metabolic conversion or translocation. 

In lhis regard, for the most part the patterns reflect the trend in dry matter accumulation 

-the sigmoid curve in which accumulation accelerates at the beginning of the season 

before reaching a plateau. This was the case even for aristolone, for which the fall in 

concentration in the leaf was more or less balanced by an increase in total leaf weight. 

This resulted in an increase to 70 DAB, then maintenance of a very steady level in the 

shoot for the rest of the growth cycle. For polygodial, cadina 1,4 diene, cubebene, 

germacrene D and caryophyllene, this plateau was reached by 150 DAB and was 

followed immediately by a steady decline. In the case of linalool, the decline was not 

evident, and this compound, together with bicyclogermacrene appeared to still be 

increasing from the end of summer and through the autumn winter period. 
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Mean percentage in dry leaf of the four main parameters ('volatiles', polygodial, cadina-

1,4 -diene and cubebene) in mature leaf (calculated from the last four harvests) is 

shown for each tree in Figure 6.5, demonstrating the between-tree variation at the site. 
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Figure 6.5: Mean % w w of volatiles, polygodial, cadina 1,4 diene and cubebene 
in mature leaves >100 DAB (means for ten trees, 4 samples per tree). 



129 

The mean percentage of leaf dry weight for 'volatiles' and the eight compounds as 

determined in leaves from consecutive seasons is shown in the Table 6.4 for '1992' leaf 

at one and two years old, 93 leaf at maturity and after one year, and 1994 leaf at 

maturity (see 6.1.la for the scheme explaining these comparisons). The results show a 

consistent pattern of slow decline in most constituents from year to year, and of similar 

levels of each compound in mature leaves produced from one year to the next. 

Table 6.4 : Comparison of extract composition (as w/w of dry leaf) in leaves, 
between seasons - means for ten trees (one sample each except * -four 
samples per tree) 

92 leaf (1 yo) 92 leaf (2yo) 93 leaf (mature)" 93 leaf (1 yo) 94 leaf (mature) 
% in dry leaf 

volatiles 
linalool 

cubebene 
caryophy Ilene 
gennacrene D 

bicyclogennacren 

Mean StdErr Mean Std err Mean StdErr Mean StdErr Mean StdErr 

cadinal ,4diene 
aristolone 
polygodial 

4.22 
-
0.29 
0.09 
0.11 
-
0.66 
0.06 
1.41 

0.18 
-
0.02 
0.01 
0.01 
-
0.04 
0.01 
0.09 

4.06 0.377 5.01 
0.09 0.009 0.13 
0.22 0.053 0.25 
0.06 0.008 0.10 
0.08 0.018 0.14 
0.01 0.003 0.06 
0.47 0.122 0.93 
0.07 0.018 0.06 
1.08 0.160 1.57 

0.32 4.86 0.18 4.41 
0.01 0.10 0.01 0.11 
0.05 0.28 0.04 0.28 
0.01 0.09 0.01 0.09 
0.02 0.11 0.02 0.16 
0.01 0.10 0.01 0.07 
0.17 0.75 0.10 0.97 
0.02 0.05 0.02 0.04 
0.17 1.21 0.15 1.31 

Table 6.5 compares extracts from unopened buds (one sample per tree) co11ected in 

mid and late winter and the previous season's leaf at the late winter stage. 

0.30 
0.02 
0.05 
0.01 
0.03 
0.01 
0.16 
0.01 
0.21 

For the nine parameters reported, the composition of bud extract changes rapidly in the 

2-3 months prior to budburst. The very high level of percentage volatiles in immature 

buds when compared with leaf extract reflects a high level of several unidentified 

compounds as well as elevated levels of the eight compounds listed. Comparing the 

bud extract immediately before budburst (320 days) with mature leaf on the same trees 

indicated substantial differences in cubebene, germacrene D and cadina- 1,4 -diene (all 

much less in bud extract) and bicyclogermacrene (almost three times as much in buds). 

Interestingly, polygodial levels (as a percentage w/w) in the bud were highest in mid 

winter, and declined with the onset of spring growth. 

Table 6.5: Comparison of extract composition (as w/w of dry leaf) between buds 
and leaf in late winter 

Component Buds@ Buds@ Leaf@ 
( % per leaf DM 240days 320Days 320Days 

% volatiles 7.15 4.463 4.623 
linalool 0.19 0.178 0.141 

cubebene 0.05 0.038 0.221 
caryophy Ilene 0.08 0.06 0.088 
Gennacrene D 0.03 0.022 0.113 

bicyclogennacrene 0.17 0.146 0.055 
cadinal,4diene 0.19 0.159 0.771 

aristolone 0.04 0.038 0.052 
polygodial 1.67 1.311 1.400 



b) Results for budburst trial 

Simple analyses of variance for the two samples per development stage were 

undertaken for each component. LSD's were calculated where the F test indicated a 

significant difference amongst the means. 
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Table 6.6 shows the mean yield of extract components detected in the leaf samples at 

each developmental stage. In the cases where no result is recorded, an undetectably 

small yield may be assumed. These results are presented in Figure 6.6, with the bars 

indicating the least significant difference between means at the 0.05 percent level. It 

should be remembered that the abcissa in this depiction is not linear, and represents an 

arbitary series of development 'stages'. 

Unfortunately, of the compounds monitored in the field trial only polygodial featured at 

significant levels in the 'W3' extracts used in the 'budburst trial' (Table 6.6), so it was 

not possible to follow trends from pre-budburst through to mature leaf. In fact, the 

pattern of polygodial level in the two experiments was quite inconsistent, field grown 

buds containing higher levels of polygodial during the dormant period than at budburst, 

while in the glasshouse experiment, polygodial increased rapidly during very early leaf 

development. 

Table 6.6: Changes in percentage by leaf dry weight of compounds detected in the 
bursting bud (0-3) and the young shoot ( 4-6). 

Development 'Stage' 0 2 3 4 5 6 LSD 

% volatiles in leaf 1.200 1.426 1.878 1.883 1.684 4.213 5.921 0.199 
cis-ocimene 0.021 0.016 0.027 0.027 0.019 0.007 0.01 

linalool 0.041 0.052 0.074 0.070 0.083 0.110 0.010 
Unknown I - 0.8 0.023 0.029 0.032 0.034 0.036 ns 

Unknown Il - 1.05 0.019 0.026 0.089 0.040 
aristolone 0.029 0.028 0.032 0.031 0.020 0.015 0.008 
polygodial 0.915 1.002 1.338 1.339 1.197 2.748 0.188 

kaurene 0.027 0.025 0.028 0.022 0.053 0.005 
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6.2 Discussion 

The results obtained here concord in a general sense with those of the von Rudlhoff 

studies in Pinus (von Rudlhoff 1972, von Rudlhoff 1975a&b, von Rudlhoff and Nyland 

1979, Lapp and von Rudlhoff 1982) inasmuch as the rapid changes are confined to the 

pre-budburst and shoot growth periods, and are followed by a long period of relative 

stability with respect to both total quantity and relative proportions of the volatile oil 

constituents. The gradual decline in levels of terpene compounds over the autumn, 

winter period observed in the present experiment was also observed for the Pinus spp 

in some of those studies and in this study appeared to continue until leaf senescence 

began. Such a pattern appears typical for many perennial oil bearing tree and shrub 

species (Zavarin et al. 1971, von Rudlhoff 1972, Bernard-Dagen et al 1979, Scora et al. 

1984, Li 1993). Synthesis and accumulation continue in parallel with dry matter 

accumulation, followed by a prolonged period of loss, retrieval of these compounds 

from the storage organ, or their conversion to other metabolites. 

These. declines (albeit small) occurred after completion of the annual growth cycle and 

terpene levels continue to fall into the second year and beyond (leaves generally remain 

on the plant for no more than two summer seasons (see sect. 7.2)). This observation 

suggests the action of one of three possible agencies in reduction of total leaf terpene 

content. 

Firstly, some further metabolic turnover of secondary compounds from the 'terpene 

pool' may be occurring, as suggested by the earlier work of Croteau et al. (1972) and 

Burbott and Loomis (1969). Catabolism and transport within Lamiaceae species of 

several monoterpene compounds as their glycosidic derivatives was reviewed by 

Croteau ( 1988) More recently some doubt has been raised as to the generality of 

the earlier assumptions about metabolic turnover of monoterpenes based on labelling 

studies in detatched plant structures as opposed to the whole plant (Mihaliak et al. 

1991, Gershenzon et al. 1993). Such retrieval mechanisms have been used in the 

development of several theories of plant defence (Coley et al. 1985) and often appear 

as explanation of changes in secondary metabolite composition such as those observed 

here. 

Secondly, loss of volatile compounds through emission from the leaf surface as 

reported by Yokouchi et al. (1984) and Monson et al. (1994) but rejected as a cause of 

differential composition with age by Rhodes et al. (1976) for oil contained in the 

superficial and fragile glandular trichomes of Satureja douglasii. 

A third possibility, not mentioned in any of the publications referred to in the previous 

paragraphs, could be an ongoing consolidation of leaf dry matter (further development 

of schlerenchyma, transport tissue, cuticle deposition etc.) without change to the total 

reservoir of terpene compounds. The results presented appear to support the last 

process, at least during the initial dormant period, the mean dry weight of leaf per twig 

remaining unchanged during the winter period despite the observation that insect and 

herbivore damage was evident on many sample twigs. This suggests that increases in 
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specific leaf weight roughly compensate for loss of leaf through browsing and 'dilute' 

the oil in the leaf tissue during this first dormant period. 

In the case of Tasmannia lanceolata studied here, with the exception of linalool, 

bicyclogermacrene and aristolone, the compounds showed very similar rates of decline, 

post-maturity, despite the fact that only one of them, polygodial, is sequestered in a 

robust and durable oil cell, enclosed by suberin and associated in mature leaf with a 

degenerate cytoplasmic residue. This suggests to the writer that the agency responsible 

for the decline in this initial dormant period is not metabolic in nature. Similarly, 

volatilisation of leaf oil components might be expected to affect low boiling point 

compounds such as linalool (b.p. 198°C) to a greater extent than compounds such as 

caryophyllene (b.p. 256°C), and is less likely to affect the contents of the oil cell than 

compounds stored in less robust structures, but in this case, linalool has maintained its 

proportion in leaf while caryophyllene has declined, as has polygodial during the 

dormant period. 

Linalool levels are not sustained beyond the subsequent growing season, however, and 

at 450 days after leaf emergence most compounds, linalool included, have fallen to well 

below their 'mature leaf levels. It appears from this that some long term loss of 

terpenoid compounds from mature leaves must be occurring as well as the short term 

'dilution' of these compounds by increases in sclerification and structural development. 

With respect to the variation amongst the experimental material, it should be noted that 

variation between trees was substantial (see Figure 6.5) - leaves on some trees 

contained more than twice as much polygodial and cadina- 1,4 -diene as others, and 

some compounds were not detected in some trees at any time during the sampling 

period. On the other hand, the results obtained for samples taken from the same tree, 

and from date to date proved very consistent, reinforcing the observation detailed in 

Sect. 3.5 that the inherent variability in extract composition is substantial, even amongst 

trees at a uniform site. This suggests a cautious approach in employing this type of 

information in chemotaxonomic argument (eg Southwell and Brophy 1992). 



CHAPTER 7: HARVESTING FOR EXTRACT YIELD AND 
COMPOSmON 

7.0 Introduction 
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This chapter addresses questions arising from the proposition that commercial control 

over extract quality and yield will depend upon a managed production system. Such a 

system will at the least require the use of clonal material, and will incorporate a canopy 

training and harvest method devised to retain photosynthetic productivity and structural 

fonn while maximising the annual dry matter production of leaf. 

Dry matter production will depend upon photosynthetic efficiency and the capacity of 

the plant to regenerate - for new growth points to commence activity and for the 

remaining leaf area to respond to renewed exposure to the outside of the canopy. 

Accordingly, this chapter deals in tum with several matters falling into the general 

category of 'cultural issues'- the effect on photosynthetic productivity of large changes in 

light climate on leaf growth and extract yield, a basic examination of canopy response to 

harvest or pruning operations (specifically shoot growth and the resulting canopy 

architecture), and finally, a harvest strategy incorporating all of these findings is 

presented. 
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7 .1 The effect of changes in light environment on leaf physiology and 
oil production in Tasmannia lanceolata 

Introduction 

Where commercial production of leaf material and leaf extract are concerned, light 

environment and photosynthetic activity in Tasmannia lanceolata will influence 

productivity as primary regulators of C02 assimilation, and therefore, of production of 

leaf dry matter and synthesis of secondary products. Specifically, information 

regarding the behaviour of the photosynthetic apparatus will aid 

• prediction of the effect of light levels on leaf dry matter yield, morphology and oil 

content and 

• interpretation of yield and composition data for leaf collected from plants across the 

normal range of the species. 

In practice this information would apply in 

• selection of promising propagation material from wild stands, 

• choice of site for commercial production, 

• development of a strategy for removal of part of the canopy at harvest. 

Comparison of leaf extracts collected from plants growing in the bush will be 

improved by taking account of the effect of light environment on leaf morphology, 

particularly where yields and composition are expressed in terms of dry weight of leaf. 

Trends in specific leaf area, with different local light environment may interact with 

yield of secondary products by dry leaf weight, and an indication of any tendancy in 

this regard would enable more careful sampling, or removal of such covariates in the 

analysis of yield data. 

Manipulation of the canopy (for example by removal of new growth during harvesting) 

will drastically alter leaf age composition for the whole plant and the light environment 

of the remaining leaves. The carbon balance of the plant depends heavily on the ability 

of these leaves to adjust to the altered regime and to contribute sufficient photosynthate 

to sustain renewed growth. This requirement is recognised in commercial tea 

production systems and pruning to lower the harvest platform is undertaken only at 

infrequent intervals Barna (1969), and the retention of 'lung' shoots is incorporated in 

the periodic pruning strategy in some production areas (Mwakha and Anyuka 1990). 

Barua (1969) also stressed the importance of clonal variation and leaf orientation habit 

in comparing photosynthetic capability. 



136 

The general questions to be addressed in this investigation are: 

1) what is the effect of different light levels on leaf morphological and physiological 

characteristics relating to leaf and oil production and 

2) if specific leaf area changes, what is the effect on polygodial content expressed as 

dry matter, i.e. is there any connection between sun/shade growth and % polygodial 

and is there any effect on polygodial yield. 

Clonal material was used in the following series of experiments in which sets of plants 

were subjected to different light levels during a growth cycle and the effects of this 

treatment on several morphological and physiological parameters are compared. 

Experimental Methods 

Plant material: Healthy plants of clonal material of 'W3', of similar canopy size, shape 

and density, all held previously for twelve months in a shade tunnel (covered with 

Rheem green knitted shadecloth admitting 75% sunlight) were selected. Plants were 

kept in 150mm pots, placed in large saucers and watered every second day, to ensure a 

plentiful supply of water throughout the experiment. The plants (three per treatment) 

were moved into four growth cabinets operating at 15/20°C night/day and set to four 

'light environments' - 100, 50, 30 and 10% of the maximum available illumination -

300µmol m-2 scc-1, (measured by a Lambda Instruments LJ 185 recording in the range 

400-700nm, with a quantum flux sensor positioned at the midpoint of the portion of 

canopy to be sampled). Plants were rearranged within each cabinet every week. 

Instrumentation 

Net assimilation of C02 was measured as described in the general methods, sect. 3.7. 

Calculation of net assimilation rate was based on the method described by Long and 

Hfillgren (1985) in which A is calculated as: 

A = mole fraction of air x Cl-Xe) x Ll C02 
(1-Xo) leaf area 

(where Xe and Xo are water vapour at inlet and outlet respectively (mol mol-1) 

calculated from humidity and temperature, and AC02 is difference between inlet and 

outlet (µmol mo1-l)). 

Assimilation measurements 

a) Instantaneous response to light level 

Two of the three plants were used to determine assimilation parameters prior to 

commencement of the treatment, at seven days, and fortnightly thereafter, until the new 

leaves which commenced growth after the plants were placed in the cabinets appeared 

to have fully developed, or a second shoot extension had begun. At each measurement, 

the plants were moved to the instrument room with the minimum of disturbance, and 
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allowed to adjust to the changed conditions for some 30 minutes before fitting of 

leaves into the leaf chamber. Preliminary checks confirmed that stomata! conductance 

remained undiminished with this treatment for at least 2 hours after the plants were 

removed from the light cabinet. After this time, some leaves began to reduce 

transpiration activity, particularly on those plants treated with the highest light level. 

This time was, however, sufficient to obtain four reliable detenninations per treatment. 

Leaves were allowed to stabilise in the chamber for 10 minutes before the first readings 

were taken. The leaf chamber was maintained at 20-22°C throughout. 

Stomata! conductance was determined (Delta-T Devices AP3 Automatic porometer) 

for leaves to be measured for assimilation rate prior to fitting into the leaf chamber, and 

only those leaves having diffusive resistances less than 4 s cm-1 were used. 

C02 assimilation was first detennined at saturating PFD-(800µmol m-2 sec-1) before 

various combinations of shade cloth were used to obtain a range of PFD's down to 0. 

Light saturation curves for each light regime were obtained after 7, 21, 35 and 49 days 

of treatment. Comparison of the treatments and dates was simplified by use of 

parameters derived from these response curves, viz 

Amruc the maximum COz assimilation rate observed under conditions of saturating 

light, taken directly from the mean of readings obtained at 800 µmol m-2 sec-1. 

Q - apparent quantum yield and Rdark -leaf respiration rate under zero photon flux, 

were obtained from the linear l'~gression for the three points below 150µmol m-'2 

sec-1. 

Cp - light compensation point, derived as the ratio of dark respiration to quantum 

yield, was calculated from the mean values for each time and treatment. 

b) Temperature and assimilation rate 

The response of maximum assimilation rate to leaf temperature was detennined at two 

degree intervals in the range 8-32°C and held at each measurement temperature for 5 

minutes or until the C02 differential had stabilised before readings were taken. 

Instantaneous light levels were maintained at 840µmol m-2sec-1 during these 

determinations. The leaf was stabilised in the chamber at 20°C, and the temperature 

reduced at approx. 0.5° min-1to8°, then raised to 32°C at the same rate. This 

procedure was repeated three times with a plant taken directly from the shade house at 

the commencement of the experiment. 

Other analyses 

Samples of leaves produced during the growth cycle ('new'), and of those present on 

the plant prior to light treatment ('old'), were collected from the lower two thirds of 

new, and pretreatment shoots at the completion of the treatment period. This material 

was then subjected to a number of analyses as follows: 
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a) Extract composition and yield 

Duplicate samples were dried and analysed in the usual manner, (see Sect. 3.1-2) and 

the yield of 'total volatiles' and polygodial calculated as a percentage of dry leaf 

weight. Two samples of leaves collected from untreated plants were also analysed. 

These samples are referred to as 'pre-treatment' in the results. 

b) Chlorophyll extractions 

Six determinations, (two each for three leaves) per category and treatment, of 

chlorophyll a and chlorophyll b were conducted: 

samples comprising two discs taken from the mid section of the lamina of each leaf, avoiding 

margins and midrib were weighed, and ground in three washes of cold acetone in a small 

mortar, and the solvent pipetted into a centrifuge tube. The tubes were made up to to 4ml and 

0.5ml cold distilled water was added (resulting in approx: 90% acetone) and the tubes sonicate 

(Branson 5200 sonicating water bath) for 15 seconds each before being centrifuged for 20 

minutes (MSE Super minor centrifuge). Samples were assessed for absorbance at 647 and 

664nm using a 90% acetone blank and concentrations of chlorophyll a and b calculated by the 

equations of Jeffrey and Humphrey (1975). 

Chlorophyll a and bare expressed as grams metre-2 and as milligrams gram-I and means for 

these values and the ratio between them are calculated for all six samples for each treatment. 

c) Specific leaf area and percentage dry matter 

Two 'lots' of five. leaves of each category nnd for each treatment we1~ weighed fresh 

and the total area determined using a Paton Electronic Planimeter, resolving to 

O.lmm2, before the leaves were dried for 24hrs at 70°C and reweighed. From this data, 

% dry matter of the fresh leaf and specific leaf area (SLA) were calculated. 

d) Leaf inclination 

The angle of the midrib to the horizontal (classed to the nearest 10°) was estimated for 

leaves on three shoots ('old' and 'new') on each of the three plants in each treatment. No 

data for leaf inclination Was gathered prior to plants being placed in growth cabinets. 

e) Lamina morphology 

Leaf discs were taken from fresh leaf material and placed immediately into 3% 

glutaraldehyde in phosphate buffer, left for 12 hours, then rinsed and stored in fresh 

buffer. The samples were then sectioned by hand and photographed under the light 

microscope to show differences in mesophyll and palisade structure. 

f) Field measurements 

Irradiance at the canopy surface and beneath the leaf layer were determined for ten 

trees at the field site at Parrawe in late spring (2811111995). Following the estimation 

of the inclination of canopy surface on the northern and southern aspects of each of ten 

trees, a tube solarimeter (see sect. 3.7) was positioned firstly at 65 ° to the horizontal, 

facing north, then at 75° to the horizontal, facing south and the total count for each was 

compared with that of a spot pyranometer positioned horizontally at ground level. 

Pyranometer integrations of 100 units were then used to set recording periods for 

subsequent tube solarimeter readings. 
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Canopy measurements were obtained by fixing the tube solarimeter beneath the leaf 

layer, parallel to the canopy surface and facing north or south, and incident radiation 

measured for a period corresponding to 100 counts on the pyranometer. Two readings 

were obtained and averaged for each position and for each tree. Canopy surface angle 

for north and south aspects was determined using a precision clinometer, and quantum 

flux measured using the Lambda LJ185 quantum flux sensor. Conditions during the 

measurement period (1130 - 1430 hrs) were overcast. 

Results 

1) Assimilation measurements. 

Light saturation curves for each light regime obtained after 7, 21, 35 and 49 days are 

shown in Figure 7.3.1. The parameters derived from these curves ( viz Amax, Q, R&rk 
and Cp) are tabulated in Appendix 2.13, and shown graphically: (a) -(d) in Figure 

7.3.2. 

It should be remembered that these results arise from the application of only one set of 

treatment environments to each group of plants. Replication occurs at the level of plant 

and leaf selection. 
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Figure 7.3.1 Light saturation curves for Tasmannia lanceolata grown under four 
light levels- error bars represent± SE of mean for three leaves (7 days), and four 
leaves (21,35 and 49 days). 
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All treatments exhibited a small increase in Amax in existing leaves after the move to 

warmer conditions, which in the lower light treatments remained elevated until 

approximately the 35 day determination, by which time leaves under all these 

treatments exhibited Amax levels similar to those of the untreated plants at the out'let, 

levels which remained the same at the final 49 day determination. 

At 300µmol m-2 s-1 photoinhibition was observed to reduce Amax significantly by 21 

days, although these leaves appeared to have completely recovered their pretreatment 

maximum assimilation rates by the end of the experiment. The 35 day readings 

appeared to suffer from a depression in Amax across all treatments, leading one to 

suspect some undetected water stress effect perhaps due to a missed watering during 

the period prior to the taking of readings (as discussed by Clough et al 1983). 

Among the leaves developed under the treatment light regime, only those in the 150 

µmol m-2 s-1 reached the Amax level of the pretreatment leaves by the end of the 

experiment. 

Changes in apparent quantum yield were slight over the duration of the treatment, 

declining under the highest light treatment, and increasing only slightly with the other 

treatments. This accords with Bjorkman's (1981) conclusion that quantum yield does 

not vary markedly across a wide range of light levels, unless plants are subjected to 

excessively high light levels or other stresses such as low leaf water potential. 

A significant increase in dark respiration in plants subjected to 300µmol m-2 s-1 

suggests an explanation for the reduced assimilation rate observed in these leaves in the 

early part of the treatment period. The intermediate light treatments were not 

significantly different from one another, respiration rate declining steadily during the 

course of the treatment. In the case of the very low light treatment, this decline was 



exaggerated during the first part of the treatment period, but by the end of the 

experiment was not different from that of the two intermediate treatments. 

143 

Similarly, (and as a result of) the pattern of changes in respiration rate, the light 

compensation point rose sharply and remained high under the highest light treatment, 

but declined steadily, and to the same extent in all the other treatments. 

The temperature response of net assimilation in leaves of plants taken from the 

pretreatment environment is shown in Figure 7.3.3, for the range 8-32°C. In each case 

leaves were taken to 35°C, after which assimilation rates were observed to recover 

incompletely or not at all upon subsequent cooling to 25°C. 

This result confirms that of Casey (1991) for low altitude populations of Tasmannia 

lanceolata with the rather broad curve indicating an optimum temperature for net 

assimilation between 18-25°C and 90% of Amax was obtained for temperatures 

between 10 and 30°C, a typical result for low altitude species inhabiting mesic 

environments (Berry and Bjorkman 1980). 
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Figure 7.3.3 Response of assimilation rate to temperature in shadehouse grown 
Tasmannia lanceolata , error bars show ±..SE of mean of three 
determinations. 

Other results 

a) Extract composition and yield - polygodial content and the level of 'total volatiles' 

expressed as a percentage of dry leaf material are tabulated below (Table 7.3.1) and 

pictured in the histograms in Figure 7.3 .4. 

In summary, polygodial percentage (w/w in dry leaf) was not affected by the light 

environment in which leaves grew, despite the effect observed on SLA (see below), 

while volatile level appeared to be slightly reduced at extremes of high and low light 

growth environment, and slightly increased at lSOµmol m-2s-1. 

In pretreatment leaves subject to the treatment light levels for 49 days, polygodial and 

volatile levels were reduced substantially at the high light regime. On the basis of 
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extract composition alone, it appears that the light environment resul ting in the most 

similar response in new leaves as old, was the 30% (85 µmol m2s-1) level. 

The fall in percent volati les and percent polygodial observed in pretreatment leaves at 

300µmol m-2s-1 suggests either a loss of secondary metabolite by volatilisation, 

transport out of the leaf, or metabolic conversion into some non-volatile product, or an 

increase in leaf dry matter (relative to oil compounds) arising from changes to the 

distribution of photosynthate amongst soluble carbohydrate and the structural and 

photosynthetic components of the mature leaf under this 'extreme' light regime. 

Table 7.3.1: Polygodial (P) and volatiles (vols) content (% of dry leaf) obtained 
from leaves at completion of light treatment and samples taken from 
untreated plants. Standard errors are for the means of two samples. 

PFD (µmol m -2sec- l)Mean P StdErr Mean Vols Std err 

Pre-treatment 3.37 0.18 5.05 0.22 
'Old' leaves 300 2.14 0.08 3.18 0.33 

150 2.77 0.14 4.47 0.25 
85 3.33 0.23 5.10 0.27 
30 3.21 0.04 4.59 0.19 

'New' leaves 300 3.27 0.15 4.20 0.05 
150 4.00 0.41 6.30 0.47 
85 3.43 0.10 4.92 0.35 
30 3.23 0.07 4.45 0.14 
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Figure 7.3.4 The effect of light levels on polygodial and 'total volatiles' in dry 
leaf after 50 days light treatment- mean % of each in leaf dry matter 
'new' leaves produced during treatment. Error bars show ±.SE of means. 
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b) Chlorophyll extractions - chlorophyll content is expressed on a leaf area and leaf 

fresh weight basis and is shown in the two charts in Figure 7.3.5. 

Chlorophyll levels in new leaves were all lower than those in mature leaves suggesting 

that leaf development was incomplete at that time. Chlorophyll a: b ratios were lowest 

in the 30% light treatment, as a result of the higher levels of chlorophyll b following 

that treatment when compared with higher and lower light levels. 
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Figure 7.3.5 The effect of light levels on chlorophyll in leaf tissue (w/area -upper 
figure, w/w -lower figure) following 50 days treatment of pre-existing and 
newly produced leaves. Figures attached to histogram bars (upper figure) 
are chlorophyll a:b ratios for each category. Error bars are± se of mean of 
6 determinations. 



c) Specific leaf area and percentage dry matter results for old and new leaves are 

presented in the histograms in Figure 7.3.6. 
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Inspection of the trends in specific leaf area and percentage dry matter, suggests that, as 

expected, SLA diminished and %DM increased steadily as light levels increased, even 

in leaves which were fully mature before treatment. This trend in SLA was more 

marked in the newly formed leaves, those under low light with significantly higher 

SLA and high light leaves significantly lower SLA than established leaves on the same 

plant. There was no significant difference at 30% light. 
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Figure 7.3.6 The effect of light level on specific leaf area (m2 kg-I) and% dry 
matter in leaves maintained, or newly grown, under four photon.Oux 
densities. Error bars are ± se of means of two samples of five leaves taken 
from lower two thirds of the shoots. 
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d) Leaf inclination to the horizontal as measured on all plants at the completion of the 

light treatment is shown in Figure 7.3.7. The plants responded predictably, low light 

inducing a more horizontal distribution in the canopy and the effect being more 

obvious in newly formed leaves. 

a) Inclination of leaves formed under 
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Figure 7 .3. 7 Histograms showing the distribution of leaf inclination for leaves 
fonned prior to and during the four light treatments. Inclination 
measured as degrees from the horizontal, for the first half of the midrib 
of leaves means for three shoots per plant. 

e) Lamina morphology. 

Photomicrographs taken of leaf sections after treatment are shown in Plate 7.1. While 

leaves which were fully formed prior to the application of the treatment remain quite 

similar to one another with respect to thickness (035-0.4mm) and lamina morphology 

( 1-2 layers of epidermal cells, 2 layers of columnar palisade, 0.2mm spongy 

mesophyll), the leaves formed under the four light regimes exhibit characteristics 

typical of extremes of light environment Leaves formed at the highest light level were 

much thicker (>0.6mm), exhibiting three layers of cells having a columnar section, 

while those grown under the lowest light conditions contained only one distinct layer 

of columnar mesophyll cells, and consequently were thinner than the pretreatment 

leaves (< 0.35mm). There was no marked alteration of epidermal development evident 

in the sections, nor was any trend in oil cell frequency apparent by inspection. 

Increased leaf thickness under high light levels appeared to arise largely from the 

increased elongation of upper mesophyll layers, while an increase in spongy cell 

diameter could be observed at the highest light level only. 



Leaf present at commencement of treatment Leaf grown during treatment period 

Plate 7.1: Fresh, band cut leaf sections taken at completion of the light level 
treatments; From top: 100%, 50%, 30% and 10% of maximum flux density 
in cabinets (300pmol m·2 s· 1); bar = IOOµm. 
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f) Field radiation observations 

The angle at the surface of northern and southern faces of the canopies of ten trees was 

measured using a clinometer and the mean of these used to set the solarimeter tubes 

for 'canopy surface' measurements (65° to the north, 75 to the south). The proportion of 

radiation received by the horizontal pyranometer which was detected by the north- and 

south-facing inclined tubes was 0.78 and 0.52 respectively. For ten mature trees, each 

at least 3m high and 5m distant from its nearest neighbour, the mean proportion of 

solar radiation detected inside the canopy was 0.39 and 0.67 of that detected on the 

north and south facing canopy surfaces respectively, and therefore 0.30 and 0.34 

respectively, of the radiation recieved by the horizontal detector. The canopies were 

observed in almost all cases to approximate to a layer of leaves from 150 -300mm 

thick. 

Quantum flux measured using a sensor positioned horizontally Im above the ground 

ranged between 200 and 900 µmol m-2 s-1 during the measurement period. 

Discussion 

The four treatment light levels have induced several predictable consequences. 

The effect on chlorophyll level is typical of a number of C3 species for which increases 

in controlled light level have increased chlorophyll content (cited in Bjorkman 1981), 

usually with a resultant increase in light saturated assimilation rate, unless some 

photoinhibitory effect is induced. The association between these trends is complex, and 

includes the effect of increased leaf thickness and structure (mesophyll size and shape) 

on absorption, alterations in the proportions of other photosystem components and the 

(slight) contribution of changes in stomata! conductance with altered leaf morphology 

(Boardman 1977). In this case, specific leaf area responded to the different light 

regimes (affecting leaf thickness and mesophyll density) as would be expected from 

previous reports (Bjorkman 1981) and reduced SLA was clearly associated with 

increased dry matter both in new and pretreatment leaves at higher light levels. The 

relationship between light saturated photosynthesis and specific leaf area reported for 

some species could not be confirmed due to the limited number of data points (light 

levels), but in new leaves at least, the decline in Amax at high light levels appeared very 

similar to that reported for several 'shade' species - eg Fragaria spp (Bjorkman and 

Holmgren 1963) and Solidago virgaurea (Holmgren 1968) in which lower SLA 

(larger, thinner leaves) does not provide increased photosynthetic capacity at high light 

levels. 

The results of Turnbull et al. (1993) indicated significant acclimation to reduced light 

level in several rainforest understorey species, both early and late successional. 

If Tasmannia lanceolata is to be considered an early successional species (Read and 

Hill 1983), then it would be expected to demonstrate a capacity to respond favourably 

to variation in light regime (Bazzaz and Carlson 1982), and the results here would 
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appear to support this. Acclimation resulted in gradual recovery of pretreatment levels 

for the net assimilation rate, (after the initial effects of photoinhibition at the highest 

light treatment), with some suggestion of a slight increase, due probably to the warmer 

conditions during treatment. Quantum yield was relatively unaffected, and dark 

respiration declined steadily during the treatment period in all but the highest light 

level. In this treatment, a large increase in respiration rate over the first half of the 

treatment period, and a drop in quantum yield contributed substantially to the fall in 

initial net assimilation rate in this treatment. 

The fall in respiration rate over the duration of the other three treatments would have 

been an important factor contributing to the improvement in net assimilation rate 

observed at transfer despite the predicted fall. This has had the consequence of 

masking the expected pattern of a fall in Amax after reduction in PFD followed by 

gradual acclimation to the new light regime as is normally observed following such 

transfers (Turnbull et al. 1993, Sims and Pearcey 1991, Osunkoya and Ash 1991). 

Another 'masking' influence is the capacity of the foliage to reorient itself in partial 

compensation for changes in light level. In this case, changes in leaf angle will have 

reduced the differences in effective light level between treatments. Such 'nastic' 

responses to short lived changes in light pattern are often observed in plants growing in 

low flux densities, allowing them to obtain maximum illumination by following the 

sun (Fitter and Hay 1987). 

Lastly the results show an apparent increase in commitment to leaf dry matter in leaves 

grown at higher light levels. The substantial reduction in SLA in 'old' leaves is 

attributed to an increase in weight per leaf - Turnbull et al. (1993) found small post­

transfer changes in leaf area occurred but individual leaf areas were not monitored in 

this experiment. In higher light treatments this increase might be expected to reduce the 

yield (by DM) of sequestered secondary products, even without any real change in the 

total quantity per leaf. In fact, there was a reduction in yield of secondary products, and 

SLA changes may wholly explain the reduced levels of these compounds at the higher 

light level. An analysis of yield per leaf of the relevant compounds could have 

established this - Lincoln and Langenheim ( 1978) found significant light treatment 

differences in total monoterpene yield by leaf weight that did not translate into 

significance in yield per leaf pair in Satureja douglasii, but in explanation of 

significant interactions of light with compositional type and temperature on 

monoterpene yield per leaf pair, invoked volatilisation and photochemical reactions as 

possible causes. 

Overall, three aspects of the response of the plant - adjustment of the photosynthetic 

apparatus by acclimation, apparent changes in investment in leaf dry matter (not 

volatile solvent soluble compounds) and the response of leaf angle will all help to 

buffer the effect of naturally induced changes in irradiation. 
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Such agencies might be responsible for the reduction in 'total volatiles' observed in this 

experiment for newly formed leaves, particularly since the major volatile component, 

polygodial does not differ from levels found in leaves before treatment. On the other 

hand, the fact that total volatiles appear to have been enhanced at 50% of the maximum 

light treatment at the same time as SLA has increased over that of pretreatment leaves 

suggests an overall increase in yield of extract with growth of new leaves under these 

conditions. Yamaura et al (1989) for example found that monoterpene production in 

thyme seedlings was induced by irradiation, correlated with number of peltate 

glandular trichomes in which oil is accumulated. These changes were detected over a 

short period (up to 8 days), and seem to indicate simply that in the absence, or with 

very short periods of daily illumination, normal production of secondary compounds is 

prevented or greatly reduced. 

In the context of seasonal changes in irradiation during development of new growth, 

the picture is more complex than that investigated in this experiment. In open 

situations in the natural habitat of the species, saturating PFD's of 300+ µmol m-2 sec- I 

would be commonplace on the outside of the canopy during the growing season. 

The field observation that canopy surface assumes a lower angle to the horizontal on 

the northern (sun) side than on the shady side of the trees at the site is to be expected in 

trees growing in an open situation in which diffuse incident radiation contributes less 

to the whole than it might beneath a forest canopy. No attempt was made to include the 

effect of the prevailing (WSW) wind direction on the general form of the canopy, 

although at this and many sites of occurrence of the species, plants tend to occupy 

sheltered niches in which wind pruning is unlikely to be significant. 

Radiation levels detected beneath the shadier side of the canopy were larger (as a 

proportion of those observed by the horizontal pyranometer) than those found beneath 

the sunny side of the canopy. This might be expected if a higher leaf area index is 

assumed for the sunny aspect of the trees, so that a larger contribution is due to diffuse 

and reflected radiation on the interior of the shady side of the canopy. This result might 

also be attributable to the combined effects of leaf inclination and orientation, although 

no data to support this were obtained at the field site. 

Long term trends in seasonal light levels will result in a gradual fall in incident 

radiation for the six months following completion of leaf development, during which 

time some of the changes detected in this experiment would occur. 

Furthermore, interaction between light levels and ambient temperature during this 

cycle are likely to alter the simplistic responses observed here. For example, the extent 

of photoinhibition upon increase in light level is reduced at higher temperatures 

(Bjorkman 1981) an apposite interaction, since in the natural situation, irradiation 

would increase gradually as the summer solistice approaches and remain high during 

the warm summer period which follows (see climate data - Appendix 1.1). 
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Nunez (1983) presents a solar radiation model to calculate direct and diffuse total daily 

radiation received on sloping surfaces in Tasmania. The model, using azimuth and 

elevation of the surface, and by reference to simple diagrams developed for December 

and June for the Tasmanian situation, indicates (allowing for local variations in cloud 

cover) mean daily solar radiation accurate to within 10-15%. This information could 

be used, together with the general indications revealed in the above experiments to aid 

a choice of aspect and slope suitable for cultivation of the species. 

Extension of single leaf photosynthetic parameters to predict total canopy productivity, 

such as proposed by Sims et al. (1994) for the case of Alocasia macrorrhiza, or Sands' 

( 1995) generalised algorithm based upon single leaf photosynthetic characteristics 

require highly detailed information regarding the influence of environmental factors 

such as diurnal and seasonal temperature variation on photosynthetic response as well 

as canopy characteristics- LAI, mean leaf angle, canopy thickness and so on. The data 

gathered here do not provide sufficient detail to undertake such a predictive approach 

and only provide an indication of the photosynthetic performance of the plant in 

comparison to other species reported in the literature. 
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7 .2 Canopy architecture and pruning strategies 

7 .2.1 Introduction 

The approach in this section has been firstly to develop, by general observation, a 

detailed understanding of the cyclic growth pattern in T lanceolata in its natural habitat 

and to describe this cycle, with support from the published literature, with a view to 

identifying all possible vegetative axes which might respond to harvest or pruning. 

These observations are then supplemented with the results of some simple trials in 

which simulation of pruning methods was carried out on a group of mature trees at the 

field site at Parrawe. The effect of these treatments upon activation of vegetative axes is 

reported. 

Lastly an attempt is made to describe the normal pattern of leaf retention (relevant in 

considering the consequences of pruning for the photosynthetic capacity of the canopy). 

No effort is made to predict the form of the canopy likely to result from such methods, 

since for the natural population, canopy shapes vary widely (see Plate 7.2), reflecting 

habitat type and differing degrees of herbivorous and insect alteration of the 'ideal' 

pattern of shoot extension. 

7.2.2 Observations of shoot ontogeny and morphology 

The developmental sequence observed in Tasmannia lanceolata under normal 

(moderate altitude, field conditions in Tasmania) circumstances may be summarised as 

follows. 

The group of buds clustered at the end of the shoot may be vegetative, producing a new 

shoot flush, or mixed, shoots developing from the central meristem, while single 

flowers develop in each axil of the surrounding floral bracts. All structures in the bud 

are formed during late summer and autumn, so that flower initiation is complete by the 

onset of the dormant period in winter (Gifford 1950). 

Buds begin to swell in mid spring, with vegetative buds elongating until bud scales no 

longer cover the outer leaves. Mixed buds assume a globular shape, swelling until the 

inflorescence of 5 -20 unopened flowers emerges from within the floral bracts. Floral 

development is described in detail for the carpellate flower by Tucker and Gifford 

(1966b). Bud break in late spring/early summer is rapid with both bud types. Flowers 

open acropetaly over a short period and in vegetative buds leaves emerge, bud scales 

dehisce and shoot extension commences, the first two or three leaves being well 

developed by the time the shoot emerges. Shoot extension and anthesis may occur 

together in mixed buds, but more usually, shoot extension is delayed until flowering is 

substantially complete (Vink 1970). Shoots on mixed buds tend to be shorter and bear 

fewer leaves than simple vegetative shoots (Plate 7.3). 



Plate 7.2: Typical canopy forms observed Oeft) at an open site and in a 
sheltered onderstorey situation (right). 

Plate 7.3: Mixed bod, prior to extension of apical vegetative shoot. Note: 
Several bracts surrounding the central axis have been removed for 
clarity; the small number of Dowers is not typical for most buds. 
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Vegetative shoot extension, the expansion of 6-10 leaves and elongation of the shoot, 

commences in late spring (Plate 7.4) and is complete after two to four weeks, (by mid 

summer), after which the leaves continue to grow and mature and the shoot thickens 

during late summer. Node length decreases acropetally, while leaf area tends to a 

maximum with the third or fourth node. The first 1-2 transition leaves are typically 

small or incompletely formed. 

The shoot terminates with an apical bud delineated by bracts or bud scales which 

continue the spiral of the foliage leaves. Intemode length towards the end of a shoot 

shortens dramatically, resulting in the last two to five leaves forming a false whorl 

about the terminal bud (Plate 7.5). Consequently the terminal bud may be closely 

surrounded by several subjacent lateral buds which often develop to substantial size, the 

tip of the shoot broadening to accomodate them, and often re-orienting the positions of 

the buds to near- equal elevation. The last, often poorly developed leaf may apear to 

arise from the terminal bud itself, subtending a very small vegetative bud which usually 

remains undeveloped in the subsequent season (arrowed in Plate 7.5). 

Bract scars remain evident as a short ring around the base of each shoot for many years 

after the extension of the shoot, enabling identification of seasonal increments of 

growth for up to 5 years in many cases. In favourable circumstances, (warm, wet 

conditions) some plants were observed to undergo more than one vegetative extension 

during a summer season, the bract scars separating them being more difficult to detect 

in this case. Vink (1970) noted that the lower (and occasionally the upper) few of these 

scars may subtend vegetative apices rather than floral buds. These buds rarely develop 

in the normal course of events, unless the shoot above is damaged, when they may 

produce a short shoot with two or three leaves in the next season, initiating 

development of a new branch axis. 

Lateral shoots arising from the buds immediately below the terminal bud may develop 

either together with (and sometimes as vigorously as) the terminal shoot (see Plate 7.6), 

or may develop during a subsequent season in which case they tend to be smaller and 

carry fewer leaves. Such lateral shoot development is normally associated only with the 

last 2-4 nodes of the 1 year old shoot. The occasional development of axillary buds 

(always vegetative) from lower nodes usually results in short shoots bearing 2-3 leaves. 

Lateral buds in proximal positions on shoots (usually the first 4-5), subtend buds on 

which the first 2-4 bracts appear decussate, commencing with a 'pair' arranged at 90° to 

the axes of leaf and stem. With the abscission of the subtending leaf and sometimes the 

first 2-3 bracts in older wood, the axes of these buds assume a position almost 

perpendicular to the stem and submerged within the bark. Under the normal cycle of 

growth these buds rarely develop into active reproductive or vegetative axes, b,ut 

nevertheless appear to persist long after senescence of the subtending leaves . 



Plate 7.4: Emergence and extension of a vegetative bud (spring /early 
summer). Note shoot carries full complement of leaves as it 
emerges from within the scales enclosing the bud. 

Plate 7.5: Mature shoot after completion of extension and bud 

156 

development - late summer. Note false whorl about the terminal 
bud, finishing with a small leaf appearing to arise from the terminal 
bud itself (arrow). First 4-5 buds below apex will develop shoot 
systems during next spring- summer. 
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Plate 7.6: Typical shoot structure on glasshouse - grown Tasmannia 
lanceolata.. One year old shoot (0) bears six new shoot systems, 
the most vigorous being the apical shoot (A), remaining shoots 
diminishing in vigour with distance below the apex. Ring of bract 
scars may be seen at the base of each shoot (8). Previous season's 
leaf remains present along the whole length of the older shoot. 
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The frequent insect destruction (in mid to late autumn) of apical buds observed in trees 

in field situations appears to enable substitution growth by the lateral shoots (above) in 

place of the terminal shoot. The result is that trees tend to express a sympodial growth 

habit while all shoots are orthotropic (erect and radially symmetrical) and the 

underlying morphogenetic habit is rhythmic and monopodial (aspects of the Rauh 

model of canopy architecture: Sect. 2.6). 

In summary, at the end of an annual growth cycle (before the onset of winter), the 

following potential vegetative axes are observed on the mature plant : 

1) terminal apex- in a large, often mixed bud, containing 5-25 flowers, 5-7 leaf 

primordia 

2) a false whorl of three to five distal lateral apices- often more or less identical to 1 

above). Any of these may be destroyed by insect attack during the autumn- winter 

period. 

3) Lateral buds in axils of leaves below the terminal 'whorl'. Some well developed, 

containing 5-7 leaves, though those in the axils of the lower two to three leaves on a 

shoot are usually very small and undeveloped. 

4) Buds in the axils of bract scars - usually the lower few, but occasionally the upper 

two or three. Normally remain dormant unless apex is damaged. 

5) Undeveloped buds in leaf axils and bract scars of all previous seasons' extension 

growth. 

7 .2.3 Field trials and observations 

i) Response to pruning position in mature trees 

Methods 

In order to describe the response to application of pruning cuts at various points on the 

shoot system, the growth points described above were grouped for each shoot 

increment as follows: 

'Type 1 ': apical and subapical (up to five large buds at the tip of the shoot) 

'Type 2': proximal (the axillary buds in the lower 2-4 leaves on the shoot) 

'Type 3': bract (in axils of the upper and lower bud scale scars at the base of the shoot) 

Pruning cuts were applied at the end of the 1994-95 growth cycle, as detailed below, 

and the response (size, position and number) of each bud category for at least the most 

recent shoot cohorts was recorded after three months (late May), eight months (early 

October) and after the commencement of the subsequent budburst (November 1995) 

and samples of each taken for dissection. Each treatment was applied to fifteen marked 

shoots on each of eight mature trees growing at Parrawe in February 1995. The 

response of uncut shoots on the same tree was recorded as a control. The generalised 

response is reported. Instances of individual buds breaking in mid winter, and large 



differences in behaviour between bud positions on the same shoot or adjacent shoots 

were noted but are not included here. 

159 

The cuts were applied as follows (see Plate 7.7, below) and each shoot marked with a 

coloured tag denoting the treatment : 

A) removal of most of new seasons shoot(s), leaving one proximal bud. This cut 

removes Type 1 axes for the current shoot, leaving proximal buds, bracts and those on 

the previous increment. 

B- removal of whole of current season's growth to below first node. Only bract buds 

and those on the previous increments remain. 

C- Removal of all of new seasons growth -cut below attachment of lowest of new 

shoots removing all buds on recent season's growth. 

Controls - separated from treated shoots by at least 2 season's growth, not pruned 

Figure 7.7: Scheme for application of pruning cuts- A: above first node on current 
shoot; B: remove all but bract buds on current shoot; C: remove all of 
current seasons shoots to below insertion point. 

Observations 

Late autumn- May 21st 

Control: All apical buds and subjacent lateral buds swollen (5-7 mm diameter) and 

contain at least 7 flower primordia. No swollen buds are visible on lower 

positions. 

A: The majority of the remaining axillary buds (1/shoot) had swollen perceptibly 

when compared to those on untreated shoots. 
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B: Between 1.6 and 3.4 bract buds (average) per shoot had swollen so as to be 

visible to the unaided eye (0.5-1.0 mm diameter). On three trees, more than one 

lateral bud had developed slightly, (diameter 1-2mm) when compared with other 

dormant buds on the same shoot. 

C: No visible change in bud development in previous season's shoot at any of the 

potential growth points. 

Late Spring - 30th November 

Control: Fruits well developed (2-4mm dia.) and small apical buds visible at centre 

of inflorescence. Vegetative shoots beginning to elongate, 2-3 leaves fully 

emerged from bud in most cases. In the case of trees with heavy flower and fruit 

set, vegetative bud development (above the inflorescence, or on non-flowering 

axes) was usually much reduced in comparison with that on other trees at the site. 

A: In approximately 50% of cases, the single remaining axillary apex had assumed 

a stage of development similar to that of the apical bud observed on uncut shoots, 

while, in the remaining examples, buds were somewhat smaller than the normal 

apical bud (3-4 mm dia.) and were observed to have just commenced elongation, 

suggesting roughly a fortnight's delay in budburst. Upon dissection these lateral 

buds were found to comprise 2-3 bud scales and 4-5 leaves enclosing a tenninal 

bud of 1-2 scales nnd 3-4 leaf primorilia. 

In some plants, several bract buds around the base of the shoot had begun to swell, 

and contained up to 7 well developed leaf primordia but at this time these buds 

were all less than 2mm in diameter. See Plate 7 .8A 

B: In almost all cases the group of buds clustered around the base of the (removed) 

one year old growth in the axils of the lower bract scars had swollen but not yet 

opened. The largest of these (usually the lowest) contained up to 9 leaf primordia 

within two to three bud scales. In several cases axillary buds at the last two or 

three nodes of the previous shoot increment had begun to open, and although 

quite small, appeared to have begun to elongate. This was the case only in those 

leaf axils in which no shoot had developed in the previous season, whether or not 

the leaf was still present. See Plate 7 .8B 

C: Only occasionally were well developed buds evident in the lateral positions on 

the remaining shoot. In most cases small buds (up to 1.5 mm diameter) were 

present and appeared to be developing in the two to three leaf axils beneath the 

pruning position. These buds contained 4-5 leaf primordia within 2 or sometimes 

3 bud scales, and only rarely had these buds begun to elongate or open. See Plate 

7.8C. 

In summary, a pruning cut above the lowest node on recent season's growth stimulated 

development of the axillary bud so that in spring it was often able to produce as many 

leaves as the apical bud on equivalent uncut shoots. Removal of all of the previous 
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season's growth at its base resulted in commencement of development of the buds in 

the axils of bracts and bract scars towards the tip of the remaining twig. These buds, 

although less advanced by the normal time of budburst than those on unpruned new 

growth, contained a complement of leaf primordia equivalent to buds on that growth. 

By the time observations were complete (early summer), few of these buds had begun 

to elongate, although it appeared that some shoot development would occur that season. 

After removal of the whole shoot and part of the previous season's growth, bud ' 

development at the remaining axes was very slow, although sigificantly increased in 

comparison with the same positions on unpruned shoots. 

Removal of shoot growth results in activation of remaining vegetative axes close to the 

point of pruning. The most rapid and vigorous response follows removal of most of the 

last season's shoot to leave at least one axillary bud. 



Plate 7.8: Pruned twigs collected in late November; 
Treatments: A (top) : last season's shoot cut to above first node; 

B (centre) : last season's shoots cut below first node; 

162 

C (bottom) : cut below insertion of last season's shoots. 
Arrowheads indicate developing buds in bract scars (centre) and 
lower lateral position on previous season's growth (bottom) 
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ii) Leaf longevity 

With respect to the photosynthetic canopy, leaf longevity appears greatly affected by 

the agencies of herbivory, and frost and wind damage, so that in general it is unusual to 

observe leaves older than two years remaining on a mature tree. 

Methods 

The number of leaves remaining on current and previous seasons' growth on ten trees at 

the Parrawe site was recorded at the time of termination of the 1994 spring growth . For 

ten branch systems on each tree, selected at random over the surf ace of the canopy, the 

number of fully formed leaves attached to the recent growth extension, the shoot upon 

which it was inserted, (and in some cases the extension previous to that) were recorded. 

In each case, where more than one shoot represented the.seasonal extension, a mean 

leaf number for these was recorded. It was usually not possible to determine the true 

terminal shoot in this case. 

Observations 

The result of this survey is shown in Table 7.2.1, mean number of leaves present for ten 

branch systems for each tree. Variance is calculated for the most recent growth 

increment 

Also presented is the mean number of leaves observed on the '1993' growth increment 

during the preceding growth period and estimated from fifty twigs collected per tree in 

February 1994. This provides an indication of the extent of loss of leaves experienced 

by the 'one year old' twigs. 

The number of large limbs constituting the framework of the canopy, that is, arising 

from the lower 10% of the "tree and thicker than about 40mm diame~er (the usual size of 

large branches which continue to attain the full height of the canopy in trees of this size 

at the site), and the height and breadth of the canopy (expressed as a ratio), are included 

at Table 7.2.1. 

While the ten trees observed varied considerably in the number of leaves per shoot 

increment in both years for which the data was gathered, the 1994 shoots appear to have 

borne consistently more leaves than did shoots on the same trees in the previous year. It 

may be relevant here that in 1994 the species was considered to have been unusually 

fruitful in Tasmania, (T. Walduck, Tasmanian Forest Seeds. pers.comm.) and in 1995 a 

late frost resulted in almost no fruit set at the site. 

At the time of data collection (by which the new shoots had achieved maturity), a 

substantial proportion of leaves on the previous shoot increment, and all but a few of 

those on the 2 year old wood had senesced, been removed by predation, or broken off 

by wind or frost damage. 
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Table 7.2.1: Mean leaf number/shoot (and variance for 15 shoots) present on each 
of the most recent three cohorts observed at the completion of the latest 
growth cycle (February), and general observations of canopy structure for 
ten trees at the Parrawe site, 1995. 

Tree Shoot Mean No. Leaves present Leaf No No. height/width 
No cohort {variance tor new shootsl {I9932 limbs ratio 
I New 9.8 (3.96) 7 1.50 

Iyo 4.8 5.7 
2yo 1.2 

2 New 8.5 (0.72) 10 1.15 
Iyo 6.0 8.4 
2yo 0.8 

3 New 7.4 (1.16) 8 1.10 
Iyo 5.9 5.8 
2yo 

4 New 9.0(1.56) >20 1.20 
Iyo 6.3 7.8 
2yo 0.7 

5 New 5.8 (3.29) 20 1.30 
Iyo 4.3 5.2 
2yo 0.7 

6 New 8.7 (2.23) I5 1.3I 
Iyo 5.6 6.4 
2yo 2.5 

7 New 8.2 (3.96) I2 1.3I 
Iyo 6.2 6.9 
2yo 4.9 

8 New 8.7 (3.12) 20 1.00 
Iyo 4.7 5.7 
2yo 3.7 

9 New 6.8 (0.79) 6 1.17 
Iyo 3.4 6.I 
2yo 

10 New 8.8 (3.51) I4 1.00 
Iyo 5.6 6.5 
2yo 0.5 

Discussion 

The observations recorded here provide only the most superficial indication of the 

response of Tasmannia lanceolata to pruning or harvest methods, since the trials were 

conducted on a small number of trees, and examined response in a relatively small 

proportion of the whole canopy in each case. A preferable approach would have been to 

use established clonal material at a field site, to apply a single treatment to the whole 

canopy and to replicate treatments on large numbers of plants. However the time 

involved in developing plants to a reasonable size for such a comparison was beyond 

the scope of the project. The effect of application of each treatment to the whole canopy 

on source/sink relationships and the resulting stimulation of the various potential 

growth axes cannot be predicted from this trial. However, the work does serve to 

describe the common pattern of shoot ontogeny, and identifies potential replacement 

axes available for continued canopy development in the season following a pruning 



event. It also provides an indication of the relative vigour of buds developing at the 

various sites during the dormant period and spring after several different types of 

pruning method. 
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Bud development at all axes on the two most recent shoot systems was observed among 

the various treatments, distinct from the situation reported for avocado in which only 

the buds in the bud scale ring remain viable beyond their first year, axillary buds 

abscising after the first season (Cutting et al. 1994). For trees employed in this trial, 

the most robust replacement occurs when only the upper part of the recent shoot is 

removed, releasing lateral buds further down the shoot which, by the following spring, 

have developed substantial leaf and shoot systems and begin to grow simultaneously 

with the normal undisturbed terminal buds elsewhere on the tree. Where this shoot was 

removed down to the ring of bud scale scars, the buds in the axils of these scars (and 

occasionally in previously undeveloped lateral buds nearby) begin development during 

the autumn and winter following pruning. Development and emergence of shoots 

arising from these buds was not followed in this experiment, but it appeared that such 

shoots would be somewhat smaller and emerge later than the control shoots and those 

subject to treatment A. Leaf primordia numbers given in the results are indicative only, 

given the evident variation among trees with respect to nodes/annual shoot increment 

(Table 7.2.1) and a strict comparison would follow the strategy described at the 

beginning of this discussion. 

A study of growth potential of axillary buds in roses by Marcelis- van Acker (1994) 

found that after release from apical inhibition, shoots arising from axillary buds bore 

fewer leaves and greater numbers of scale and transitional leaves, and non-elongating 

nodes with increasing bud age. It would be reasonable from the observations here to 

presume that, for the initial growth cycle following pruning, the same would be true of 

replacement axes in Tasmannia lanceolata. The development of only a few leaves on 

shoots at the lateral buds below a 'type A' pruning treatment, together with the presence 

in some cases of a well advanced (for the time of year) terminal bud at the apex of this 

shoot suggests that a 'second flush' of growth might arise from these shoots sometime 

during summer and after maturation of the initial group of leaves, possibly generating 

in toto, an annual shoot increment with as many nodes as the unpruned apices. For the 

lower growth axes, as with the Marcelis-van Acker (1994) fmding, fewer leaf primordia 

were present at the completion of the experiment, although it is not possible to project 

this observation forward to future shoot and node development. 

To compare the contribution of the successive season's shoots to total leaf number/ 

canopy, several factors apply: 

1) number of shoot axes and the rate of shoot multiplication from year to year 

2) number of nodes per axis 
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3) extent of retention of leaves for more than one full annual cycle. 

Firstly, since the normal growth habit tends to result in an increasing number of shoot 

axes/ canopy each year, and for the trees surveyed in this season at least, the node 

number per shoot did not appear to fall in any tree (Table 7 .2.1: 'new' vs 'leaf no.1993'), 

it might be assumed that total leaf number/canopy increased substantially from 1994 to 

1995. 

This inference cannot be generalised for all years in mature trees since there are several 

factors which may result in no increase, or a decrease in number of new leaves per 

year: 

-failure of one or several of the distal buds to produce a shoot, due to a 

particularly heavy flower or fruit production or severe insect attack, 

-seasonal conditions resulting in development of short shoots, bearing few 

leaves. 

Secondly, inspection of the result in Table 7.3 .1 for total leaf number present/shoot 

cohort reveals that in every tree but one, the total number of leaves per shoot on current 

season's growth exceeds the total surviving 'per shoot' for the two previous cohorts (Iyo 

and 2yo) combined. 

A general conclusion for this is that the majority of leaves on the tree at this time (the 

completion of shoot extension) would be less than four months old, and further, 

assuming the pattern of leaf loss observed is typical, then at any time it may be 

assumed that the most recent shoot cohort bears the substantial majority of the leaf area 

of the plant. The implications of this for harvest and whole plant productivity are clear, 

since comprehensive removal of the recent shoot cohort will drastically reduce total 

leaf area for the tree. 

The indicative data for limb number and crown shape show only the wide range in both 

parameters at the site. Trees with a single trunk to 1 metre above ground level are quite 

unusual in the natural Tasmanian population, reflecting the consequence of loss of the 

primary apex to external agents, (usually invertebrate) and the propensity for producing 

multiple, near-equivalent shoots from the cluster of terminal and subjacent lateral buds 

found at the end of each shoot increment. From a commercial point of view, this habit 

might be encouraged, perhaps by early pruning in the case of a dominant and persistent 

terminal apex to stimulate production of multiple stems to aid early canopy closure in 

an intensive 'orchard' system. 
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CHAPTER 8: GENERAL DISCUSSION 

Clearly from the result obtained in the survey of local populations of Tasmannia 

lanceolata, the scope for adjustment of the extract composition at the plant selection 

level is considerable. Altering solvent type or extraction protocol were shown to 

influence the composition of leaf extracts, but among the small group of plants sampled 

in the survey of twelve sites in Tasmania, levels of many compounds detected ranged 

over several orders of magnitude. Similarly, overall extract yield exhibited a wide range 

- from 0.9 to 13.3% of dry leaf weight. As long as commercial production relies on 

acquisition of leaf from unselected sources, results will fall somewhere between these 

extremes. 

The first step in 'domesticating' selected plant material would not appear to present 

great difficulties. The species strikes readily from cuttings, and provided parent plants 

are of reasonable size and vigour, production of a basic stock of several thousand plants 

from a single parent plant could easily be achieved within a twelve month cycle. The 

use of semi-hard (autumn) or hard (late winter) cutting material, and application of 

bottom heat to the rooting mediuip results in rapid and vigorous root development after 

ten Wt:t:ks. Simulation of long, warm days for dormant stock plants resulted in 

immediate expansion of buds and production of suitable cutting material in early 

winter, so it would appear that there exists scope for 'doubling up' on cutting cycles if 

suitable material was limited. 

An immediate requirement for a selection programme is the preparation of an inventory 

of extract 'fingerprints' for as much of the natural population across its range as is 

feasible, and the development of an industry 'standard' for compositional and 

organoleptic preference. The first of these may depend upon the sampling and analysis 

technique developed here. Screening large numbers of plants and generating yield and 

composition data for each must rely on as few samples as possible per plant, and 

analysis of the solvent supernatant over finely ground leaf material after a short period 

of shaking, (used throughout the 'seasonal variation' experiment), was shown to 

reproducible results with small (less than 200 mg) samples of dry leaf per analysis. 

While this analytical procedure proved very reliable for the comparative purposes of 

the experimental work undertaken here, a number of issues regarding the procedure 

were not completely resolved. Only a few of the many terpenoid compounds observed 

using the gas chromatographic procedure were clearly identified, and of these, FID 

response for polygodial alone, is reported. Secondly, a number of injection artefacts 

generated from pure polygodial in experimental analyses were not incorporated in the 



summation for polygodial used in the seasonal trial. Physical factors affecting these 

conversions were not examined, and the extent to which the minor peaks were 

represented in analyses appeared to vary from time to time. These matters are the 

subject of continuing.experimental work. 
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Lastly, the means of reporting composition does not account for the fraction of extract 

(up to 50%) which is not detected by the GC method used. The analysis method detects 

only a limited range of volatile secondary metabolites, predominantly the terpenoid 

compounds characteristic of most flavour and fragrance products, and does not include 

the large number of high boiling point compounds which may be present in 'concretes' 

and 'absolutes' which contribute little to the taste and smell of the product. Should the 

physical consistency of the extract prove to be of commercial significance, 

consideration of further preparation techniques may be necessary, for example 

preparation of a cold ethanol-soluble absolute would remove some waxy compounds 

and result in a less viscous product. 

Consistent with the available market information regarding requirements for flavouring 

and fragrance extracts, a protocol is proposed which will produce a consistent suite of 

the solvent soluble compounds found in the leaf. Use of dried leaf material for 

extraction is indicated for two reasons. 

Firstly, separation of fresh leaf from Lhe twigs, and the comminution of green plant 

material present additional technical problems, and appear unwarranted when the 

extracts resulting from fresh material (even using a more hydrophilic solvent) are 

examined. In most cases, slightly less of each of the compounds monitored was 

obtained using petroleum ether on fresh material than with dry leaf, and still less with a 

mixed hexane: acetone solvent. Secondly, commercial operations will benefit from the 

flexibility of using dried leaf material. Fresh leaf may be gathered during a limited 

period, dried and stored until required. The alternative - freezing of fresh plant material 

- is expensive and introduces additional technical problems during the freezing and 

thawing operations. Effective extraction plant capacity is increased by extension of the 

processing period, and the milling ( comminution) of dry leaf requires less specialised 

equipment. 

The drying regimen indicated by the results - approx. 35°C, 48 hours and the use of a 

circulating fan - provides the most basic guide for the commercial situation. Drying 

rates are largely dependent on interaction between the equipment used and the nature of 

the plant material. The experimental oven used here to dry small quantities of leaf 

resulted in rapid moisture loss over the 48hr period, and probably represents an 

idealised situation. The system did demonstrate, however, that leaf will dry at 35°C in 

48hrs, and that with respect to extract composition, no detectable loss of volatiles 

occurred under these conditions. 

Predictably, the finely comminuted fraction of leaf powder extracts quickly, and the 

demonstration that an important part of the extract is held in discrete, reinforced 
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structures embedded in the mesophyll, confirms the need for mechanical disruption of 

the tough, dry leaf before exposure to solvent. The equipment used to prepare the 

milled material resulted in a fairly wide spectrum of particle sizes and consequently, an 

extended extraction period, suggesting that ideally, all leaf material should be reduced 

to the finest size (less than 0.2mm in this case). In practice, the commercial solution 

will be a compromise between speed of extraction and the cost of the fine milling. Two 

aspects of this should be treated cautiously - preparation of finely milled material may 

result in unacceptable heating of the powder, depending on the equipment used, and 

preparation of pellets from the fine fraction alone was not attempted and may prove 

more difficult unless an inert binding agent is incorporated to prevent disintegration 

during handling. The experiment also demonstrated that solvent saturation by extracted 

compounds did not limit the extraction process even when concentrations of 2% w/w of 

solvent were attained. 

Pellet preparation, a technique already employed with hops and pyrethrum provides 

several simple physical advantages - reduced volume of plant material, ease of handling 

and storage and more complete removal of extraction solvent from amongst the plant 

material. Extraction of pelletised, rather than loose leaf powder resulted in slight 

alteration to the proportions of some of the compounds monitored, but a faster, and 

ultimately more complete recovery of total extract. This last aspect may be due more to 

reduced loss of extract-rich solvent with the discarded pellets than a failure to dissolve 

compounds. Repeated washes of powder might retrieve more extract but would 

certainly increase the cost of extraction markedly. 

The confirmation that prepared product remains stable over at least a twelve month 

period will allow annual adjustment of harvest strategies and an informed commercial 

choice between strorage of dry leaf material, increased extraction plant capacity, and 

storage of prepared product when matching supply and demand for product. 

As explained in the literature review, it is important to distinguish, for practical 

purposes, between the contents of specialised glandular structures, and the composition 

of the essential oil or extract as a whole. This applies whether the structures are 

specialised multicellular systems within, or external to the main plant body or, as in the 

case of Tasmannia lanceolata, simpler, intracellular structures having the funtional role 

of separating their contents from the metabolic pool. 

In either case, distillation or extraction procedures do not discriminate between the 

contents of these systems and the range of other susceptible compounds found in the 

plant. Investigation of biochemical interactions, the production of commercial oils and 

studies of chemically mediated interactions between plants and their pathogens, 

competitors and predators all depend upon information about the spatial distribution of 

the compounds concerned. So long as most of the literature relating to changes in, and 

the functional significance of secondary compounds relies upon generalised extractions 

for compositional data, important distinctions may be overlooked - patterns of 



170 

synthesis, storage and secretion of these compounds often reveal subtle aspects of the 

strategies involved. 

An example of this is Kobiler et al 's (1993) observation that certain antifungal 

compounds in the mesocarp of avocado fruit are sequestered within oil cells and are 

ineffective in preventing fungal infection in undamaged ripe fruit, while in the pericarp, 

containing no oil cells, the same compounds are present and effectively inhibit fungal 

infection. 

Polygodial has been shown to possess powerful (and sometimes destructive) biological 

activity and the isolation of the compound in impermeable structures might be a self­

protective strategy. The compound might then be released by injury of leaf tissue, and 

serve to prevent further browsing or pathogenic invasion. 

As explained in the literature review, oil cells occur in several polygodial-containing 

species - Drimys spp, and Pseudowintera , but are also found in many other 

Magnoliaceous families, in particular members of the Annonaceae and Lauraceae and 

conform to a similar structural and developmental pattern in most familes in which they 

are reported. It would seem reasonable to propose a similar functional significance to 

the structure in these instances as that suggested here for Tasmannia lanceolata and by 

Kobiler et al (1993) for avocado fruit - that defensive and potentially phytotoxic 

secondary products are sequestered within them and are released upon injury. 

This proposition then invites an examination uf the method of accumulation and 

storage in other organisms in which polygodial (or any other compounds identified in 

oil cell systems) has been detected. 

As reported in the literature review, in the case of the nudibranch Dendrodorus spp. , 

polygodial is found only in the mantle of the mollusc, where it serves as a chemical 

defence against predatory fish, but is toxic to the animal if injected directly in similar 

quantities (Cimino et al 1985). Nudibranch molluscs exhibit a variety of secretory 

systems in their mantle tissue, specialised arrays of cells often containing active 

defensive compounds such as sulphuric acid without, apparently, harming the 

organism, and which are usually ejected when predatory attack seems likely 

(Thompson 1976). 

Similarly, the Porella liverwort species belong to an order (Jungermanniales) in which 

oil containing structures are a feature of the gametophyte leaf, characterised by single 

or multiple oil bodies within cells with additional thickening at wall junctions, but 

whose function has not been elucidated (Schofield 1985). An antiherbivory role might 

be suspected if these cells in fact contained polygodial or any of the related 

sesquiterpenes found in extracts of these plants. 

'Oil cavities' are described in Polygonum hydropiper as sites of concentration of 

polygodial by Hagendoom et al (1994), although they do not describe any structural 

specialisation for these features. Lastly, no reference was found to the occurrence of an 

oil storage system in the Cannellaceae to which the Warburgia tree species belong. 
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The concept of the impermeable oil cell system might lead to detection of analogous 

structures in each of the above cases, although no direct reference other than those 

described was found at this time. 

In the particular case of Polygonum hydropiper several attempts to produce the 

compound or relevant synthetic enzymes using cell and tissue culture have been 

reported (Hagendoorn et al 1994, Banthorpe et al 1989, 1992) in an effort to avoid 

'cultivation (which) ... .is laborious and inefficient' . 

If, as is suggested above, accumulation of this, and other potentially phytotoxic 

compounds does require specialised storage structures, single cell culture for 

polygodial production seems unlikely to succeed. Indeed Banthorpe et al (1989) report 

extensive necrosis in cell cultures and maximum levels of polygodial far below those 

found in intact plant material, suggesting that when synthetic activity occurs but 

sequestration in special structures does not, physical destruction of the cell system 

rather than equilibrium dynamics may limit accumulation. 

Clearly since, of the many extract components obtained from leaves of T. lanceolata , 

only polygodial is stored in the only obvious secretory structure, the question of where 

other lipid soluble terpenoid compounds are to be found arises. Many will be associated 

with the normal intracellular synthetic strnclures- plastidial membranes, dictyosomes, 

mitochondria etc, in lipid solution or as free oil droplets within the cytoplasm, and 

accordingly might be expected to remain involved in normal metabolic activity within 

the cell. However, the finding here, common to many studies of seasonal patterns in 

levels of terpene compounds in plant tissue, is that following intense synthetic activity 

during which many compounds gradually accumulate, a prolonged period of relative 

stability occurs. In this, the patterns parallel that for the sequestered polygodial, 

suggesting that, while no obvious spatial or structural isolation mechanism is identified, 

the compounds in question are somehow metabolically isolated- either in equilibrium 

with precursors and products, or lacking appropriate enzyme systems preventing further 

changes in concentration after accumulation is complete. 

Turnover in certain secondary metabolites obtained from essential oil species is subject 

to some debate - the many reports of re-utilisation of some of these either within the 

storage organ, or elsewhere in the plant body are reviewed by Croteau (1988). On the 

other hand, the recent papers of Mihaliak et al (1991) and Gershenzon et al (1993) 

question whether the turnover often reported for monoterpenes and determined in 

radiolabelling experiments may not, in some cases, have been artifactual, and 

characteristic only for the cutting material often used in such experiments. 

Details of the localisation of selected terpene compounds found in extracts such as that 

of T. lanceolata , would help to resolve some of these issues, and perhaps identify other 

intracellular storage or synthetic systems. With T. lanceolata, compounds such as 

cadina- 1,4 -diene, often found in leaf at more than 1.0 -1.5% of the dry weight of leaf 
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would appear to be amenable to a histochemical or radiolabelling approach combined 

with ultrastructural examination. 

The second aspect of the distribution of active secondary compounds of interest is the 

temporal one. The experiments conducted in this project have shown that, as is the case 

with many examples of plant secondary metabolites, a distinct cycle of synthetic 

activity followed by storage or isolation of the products and a slow decline in absolute 

quantity with advancing age of the organ in question may be observed in leaves of 

Tasmannia lanceolata. 

With respect to commercial extract production, yield and composition are the 

parameters of most interest. Manipulation of composition in the manner proposed for 

peppermint (Clark and Menary 1979) or parsley (Porter i989a) by adjusting harvest 

time is unlikely to offer much scope in the case of Tasmannia lanceolata, at least in 

relation to most of the compounds monitored here. Relative proportions amongst these 

compounds (except for bicyclogermacrene and aristolone) do not alter greatly during 

the first 150 days of shoot growth and only a temporary and slight increase in levels of 

linalool was detected during the first dormant period thereafter. Since two year old 

leaves do not exhibit significantly different relative levels of the compounds, the extract 

obtained from any or all of the current season's growth and that of the previous year 

would not be expected to alter greatly wilh respect to the proportions of these 

compounds during the annual cycle. 

During a short period at the beginning of the growth cycle, the small dry matter 

contribution from new leaf will contain slightly less of most of these compounds (but in 

the same relative proportions) than the previous season's leaf or the same leaf at 

maturity, but this will alter only percentage yield w/w of extract compounds, and hence 

is relevant only in consideration of cost of extraction. This assumes no contribution to 

dry matter from buds, flowers and fruit, all of which will, at some time, be present in 

the harvestable parts of the plant. 

Clearly the maximum yield by weight of extract containing the characteristic 

proportions of the major (reported) components is obtained by harvesting fully mature 

leaf of the most recent growth increment. This corresponds to late summer, before loss 

of leaf dry matter (leaf fall and browsing damage) and the slow, steady fall in 

concentration of these compounds in the leaf commences during late autumn and 

winter. This experiment monitored only a few of the many compounds present 

reflecting only that there is presently no specific commercial requirement of the extract. 

Nonetheless, the data gathered do include GC-FID peak areas for the full range of 

volatile components between linalool and polygodial, (spanning the range of usual 

interest to perfume and flavour consumers) for all date and tree loci and could be 

readily reviewed for identified compounds of interest. 
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From a chemosystematic standpoint the results are both positive and problematic. 

Firstly it can be seen that except with very small, undeveloped leaves, a 'typical' extract 

analysis will result from most leaf samples, such as the Tasmannia lanceolata 

specimens used in the report of Southwell and Brophy (1992). A similar observation by 

Simmons and Parsons (1987) led to the conclusion for eucalypt species that sampling 

during autumn and winter would eliminate leaf ageing and seasonal effects and allow 

meaningful comparisons between trees or locations. 

On the other hand the quite extreme variation between individual trees reported in the 

preliminary survey, and supported by the observations at the Parrawe site suggests that 

great care should be taken in employing the notion of chemotype with this species, 

certainly in the Tasmanian context. The report of Southwell and Brophy (1992) lists 

linalool, 1,8-cineole, caryophyllene, and bicyclogermacrene among the major 

constituents of the ethanolic extract of T. lanceolata and this was also true of the 

extracts examined in this report with the notable omission of cadina- 1,4 -diene (not 

found in T. lanceolata) and polygodial (not identified by the analytical procedure) in 

the Southwell and Brophy investigation. That paper notes that high 1,8 cineole levels 

could be considered characteristic of the species, when compared with T. glaucifolia 

(high safrole), T. insipida (high viridiflorol or isomer) or T. xerophila (myristicin) for 

example. Unfortunately, while a peak representative of 1,8-cineole appeared 

consistently in the analyses comlucted in this project, it was not well distinguished from 

a neighbouring peak by the analytical method and was not included in the routine 

analyses for seasonal variation. 

As with the Southwell and Brophy (1992) investigation, polygodial was not obtained to 

any extent in the steam volatile oil but remained (albeit at quite low levels) in the 

extracted leaf material. The distilled oil, rich in monoterpene components including 

pinenes, linalool, and 1,8 cineole also contained guaiol, found by Stevens (1955) in 

saturating concentrations in oils from some locations, and also obtained by extraction 

of dry leaf material in routine analyses, although again, this was not included in the 

seasonal comparison because of problems with occasional overlapping of peaks. 

Changes in the levels of specific compounds in leaf material from budburst to maturity 

are relevant to considerations of defensive strategies, but for this species, there have 

been few reported studies of insect and herbivore interactions with the plant. Read and 

Hill ( 1983) describe the consumption and regurgitation of ripe fruit by several bird and 

marsupial species in relation to distribution and establishment patterns. Observation at 

the study site during the conduct of this investigation showed the presence of a number 

of leaf mining larvae, stem borers, leaf eating larvae and very small larvae developing 

in the ripening fruit. In the experimental glasshouse, occasional infestations of common 

scale and mite species have necessitated chemical control methods. Clearly in these 

cases some adaptive advantage befalls invertebrates able to eliminate or metabolise the 

high levels of polygodial present in seed and leaf tissue when the compound has been 
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(Schoonhoven and Fu-Shun 1989, Powell et al 1995 and others). 
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Seasonal and intraspecific variation in antiherbivory compounds is reported for a 

number of other species and there have been several attempts to correlate this with 

cycles of herbivore browsing pressure or insect pest ecology (reported in the literature 

review p. 38). In view of the antifeeding activity reported for polygodial, the pattern of 

insect attack observed in T. lanceolata in the natural setting should be considered in the 

context of polygodial levels in the bud, new leaves and shoots (personal observations). 

Some trees appeared to suffer more insect damage than others but this was not 

noticeably associated with low levels of polygodial in those individuals. Furthermore 

the most destructive period of insect attack appeared to occur sometime during the 

dormant period when many terminal buds were destroyed by an egg laying insect but 

this coincided with a time of relatively high polygodial concentration, apparently 

contradicting the simple proposition that the compound protects against insect damage. 

On the other hand, the occurrence of high levels of polygodial in leaves at the 

commencement of their period of maximum contribution to photosynthate production 

would appear to represent a timely defence investment if a deterrence effect could be 

demonstrated. This was not included in the scope of this work, although a substantial 

literature relating to the ai1tiht:rbivory effects of the compound, and the presence of a 

number of leaf eating insect larvae in the canopy of mature trees suggests the 

possibility of such a strategy, and may provide a clue as to the pioneering success of the 

species. 

The question of recovery of energy-costly secondary metabolites at the end of the 

photosynthetic life of the leaf was not fully addressed in the experimental work here. 

The oldest leaf samples taken in the experiment were attached to the tree, and although 

in these, most of the compounds monitored were at lower levels than found in new 

leaves, they still contained more than 4% w/w of volatiles in dry leaf, compared with 

5% in newly mature leaf on the same trees. No suggestion of turnover or 

interconversion of the secondary compounds followed in the course of this 

experimental work could be discerned. 

From the point of view of the commercial interest in obtaining high yields of extract on 

a regular (probably annual) cycle from managed plantations of Tasmannia lanceolata, 

the work undertaken in this project provides a physiological basis for further 

investigation of the 'plantation' approach. 

In considering the effect of different light levels on leaf morphological and 

physiological characteristics relating to leaf and oil production, Bjorkman's (1981) 

general conclusion is relevant- while in sun species, photosynthetic rate and the ratio of 

mesophyll area to leaf area tend to vary together, the same is not true with obligate 
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shade species. The results appear to suggest a situation closer to the latter extreme - the 

highest light level induced the expected change in mesophyll morphology (increased 

area/area of leaf) but did not produce a similar increase in photosynthetic rate. This 

suggests that other aspects of the photosynthetic system are limiting, for example, that 

enzyme components might be at saturating concentration in the chloroplasts. 

Accordingly, the experimental results suggest that Tasmannia lanceolata behaves as a 

shade plant, most of the indicators pointing to improved photosynthetic performance 

with increasing light level up to about 150µmol m-2 s-1. At twice this level of 

irradiation, increased dry matter content and mesophyll thickness have not improved 

photosynthetic performance and levels of secondary products (w/w) are reduced. 

This leads to the general observation that high irradiance sites will not necessarily aid 

'productivity' in the strict sense, since extract is the product being sought. Such sites 

may indeed lead to some photoinhibition, and alteration of leaf morphology. 

More particularly, harvest of the complete outer canopy, bearing almost all of the leaf 

area fully adapted to the existing radiation levels, may in some situations stimulate an 

adverse response in previously shaded older leaf upon which total reliance for further 

photosynthate production will fall. 

In practice of course, the change in light level experienced by each leaf will be quite 

specific to the aspect, time of year, position on the canopy, leaf angle, absorptivity of 

the harvested canopy etc. The capacity to adjust leaf angle and the photosynthetic 

apparatus to the new circumstances will dictate the effectiveness of the leaf in its 

reinstated role. For these reasons, this study can only be regarded as indicative of the 

capacity of typical leaves for acclimation to altered light levels. 

Clearly the experience of vineyard and orchard production is relevant, wherein, in most 

cases maximum light interception is sought, and much research has been undertaken in 

comparing plant spacing, density, canopy orientation and site selection for their effects 

on light interception. The provision of artificial or natural shade might also be 

considered in this context. 

The implication of the above, and the observations with regard to canopy growth 

response, is that the species, as represented by the mature specimens at the study site, 

appears quite 'forgiving' in the sense that both physiologically and ontogenetically, 

established trees are fully capable of recovery after removal of all but the first node of 

the recent season's growth. The vigour of such recovery growth was not studied in 

detail, and would certainly vary from tree to tree, so that from this work it is not 

possible to conclude that an annual harvest could be assumed, but rather that repeated 

harvest cycles, probably biennial, could confidently be considered sustainable. 

Several other issues in relation to canopy development for commercial productivity and 

harvest should be considered. 

Firstly the establishment of a basic canopy framework bearing a full diversity of 

potential growth points occurs during a non-harvest development period. During this 
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time certain aspects of the natural canopy architecture might be amenable to promotion 

of the natural tendancy for branching, increase of the length and node number of the 

periodic shoot increment and perhaps the number of such increments per year. 

Secondly, clonal selection will help remove variation in response between individual 

trees to insect damage, pruning intervention and other cultural practices which could 

confound attempts to construct a uniform canopy shape for mechanical harvest . 

Lastly, the phenology of shoot flushing may be altered by a regular harvest regimen, 

particularly if exhaustion of the reserve of viable axes occurs over several cycles of 

growth and harvest, and the effect of these techniques on carbohydrate cycling and 

storage clearly requires further study. 

Conclusion 
The essential oil industry relies largely on the production of established commodities to 

strict standards, and represents a diversity of international consumers. Introduction of a 

novel, and distinctly Tasmanian product has obvious commercial possibilities, and for 

T. lanceolata , the technology for extraction and product preparation, while sharing 

much established technology, clearly requires further research. Commercial quantities, 

of consistent composition tailored to market requirements must be produced, both by a 

combination of suitable plant material and careful control of the extraction and 

preparation of the product. A strategy for selection of suitable material for extract 

production from a variable natural resource depends upon the relative importance of 

yield and composition, the former influencing variable costs of harvest and extraction, 

the latter the price and volume of extract the market will absorb. 

The work reported in this thesis provides a starting point for addressing many of the 

technical problems which will arise during the development process. The establishment 

of a 'seasonal' setting for the basic processes of propagation, planting, pruning and 

harvest will enable the initial step towards a managed production system. Post harvest, 

the extraction and analytical procedures provide a reliable formula for preparation of a 

high quality product. Both these areas will undergo further development and 'fine 

tuning' as market requirements are discerned and practical experience is gained. 

From the biological viewpoint, the experimental observations also raise several 

questions regarding the physiological processes and significance of the oil synthesis 

and storage system in this and related species and may also contribute towards 

resolution of some of the ecological issues regarding defence, successional status and 

the energy budget in T lanceolata . 
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96 w/w leafDM 
Extract yield 

1 ,6 cineole0 

linalool 
a-terpineol 
piperitone 

eugenol 
a-cubebene 

caryophyllene 
Unknown I 

germacrene D 
unknown IV 
calamenene• 

Cadlnal ,4-diene 
unknown II 
unknown 111· 

guaiol 
aristolone 
drlmenol 

Polygocialt 
kaur-1 6-ene 
96 volatiles* 

96 non volatiles# 

Extract consistency 
Shaded habitat? 

Fruit in evidence? 
Stem colour 

Retention Nl N2 N3 N4 N5 NG Dl 02 
1.36 

L1 
0.66 

L2 
2.44 

L3 Wl W2 W3 W4 W5 W6 Gl 

Time(min) 3.26 2.56 2.06 2.17 3.41 2.49 1.65 
0.014 0.021 0.034 0.004 0.019 0.004 

0.002 0.010 0.030 0.030 0.006 

2.63 5.43 9.56 5.44 13.15 10.76 13.3 4.16 
0.003 0.034 0.006 0.020 0.020 0.027 0.024 0.032 5.47 0.030 

6.02 0.161 0.005 0.039 0.119 
0.006 0.011 
0.016 0.006 

0.097 0.219 0.061 

6.91 0.013 0.006 0.007 0.007 0.009 0.002 0.003 
0.005 0.006 
0.014 

7 .49 0.005 0.009 0.007 0.006 0.004 0.003 0.002 0.019 
0.023 

0.033 
0.044 6.61 0.046 0.022 0.044 0.036 0.052 0.026 0.009 0.003 0.028 

6.91 
9.92 
10.29 
10.76 
11.00 

11.26 
11.55 
12.19 
12.47 
12.71 
15.22 
15.44 

20.92 

0.011 0.003 0.007 0.012 0.004 0.400 0.291 0.013 0.636 0.521 0.602 

0.016 0.046 0.006 0.017 0.054 0.019 0.036 0.066 0.021 0.032 0.014 0.196 0.075 0.042 0.224 0.146 0.400 0.021 
0.004 0.007 0.002 0.002 0.004 0.005 0.003 0.047 0.021 0.065 0.054 0.040 0.012 
0.005 0.006 0.003 0.002 0.006 0.004 0.031 0.059 0.002 0.006 0.233 0.173 0.013 0.515 0.315 0.366 0.127 
0.099 0.111 0.043 0.021 0.049 0.039 0.046 0.043 0.029 0.037 0.036 0.214 0.074 0.114 0.072 0.197 0.112 0.221 
0.006 0.016 0.009 0.016 0.004 0.004 0.014 0.004 0.004 0.342 0.509 0.012 1.324 0.745 0.659 0.012 
0.006 0.021 0.016 0.012 0.029 0.004 0.002 0.002 0.003 0.030 0.027 1.647 1.425 0.034 3.992 2.345 2.676 0.051 
0.010 0.006 0.004 0.002 0.006 0.010 0.022 0.003 0.005 0.006 0.126 0.141 0.016 0.416 0.263 0.302 0.012 
0.161 0.126 0.103 0.096 0.152 0.040 0.017 0,015 0.194 0.175 0.236 0.359 0.215 0.966 0.736 1.096 0.266 

0.002 0.005 0.017 0.059 0.006 0.006 0.006 0.006 0.025 0.016 0.026 0.006 
0.023 0.013 0.011 0.010 0.006 O.Q16 0.004 0.006 0.011 0.009 0.021 0.051 0.021 0.069 0.106 0.031 0.014 
0.021 0.019 0.014 0.016 0.041 0.016 0.012 0.003 0.004 0.016 0.042 0.007 0.006 0.054 0.024 0.065 0.045 0.027 
0.476 0.705 0.410 0.113 0.629 0.566 0.466 0.053 0.080 0.499 0.617 0.134 0.233 1.279 0.924 0.965 1.479 0.962 

0.036 0.046 0.029 0.060 0.006 0.020 0.015 0.005 0.009 0.032 0.040 0.033 
1.33 1.30 0.92 0.61 1.55 0.97 0.91 0.56 0.34 1.06 1.37 
1.95 1.28 1.16 1.56 1.86 1.52 0.74 0.78 0.54 1.38 1.46 

4.25 6.97 2.31 
1.18 2.59 3.13 

0.069 0.076 0.043 
10.84 7.94 9.67 2.59 
2.31 2.84 3.43 1.57 

solid solid solid solid solid solid solid solid solid solid solid liq liq solid liq 
no no no no no no no no part y y y y y y 

y n n y n y y y n y y n Y Y n 
orange red o r ro o r o 0 

sol 
y 
n 

ro 

liq solid 

Y n 
Y n 

• Peak area may include other compounds 
*Total area integration between peaks at 5.47 mlns and 20.92 mins (ex. Cl 6 std) 

#96 concrete/OM - 96 Vols/ DM 

Appendix 2.1: Composition data and extract characteristics for prellrnlnary collections, Sect. 3.S 



96 w/w leafOM 
Extract yield 

1 ,8 cineole0 

linalool 
a-terpineol 
plperitone 
eugenol 

a-cubebene 
caryophyllene 

Unknown I 

germacrene 0 

unknown IV 
calamenene• 

Cadinal ,4-dlene 

unknown II 

unknown 111° 
guaiol 

aristolone 
drimenol 

Polygocialt 
kaur-16-ene 

96 volatiles* 

96 non volatiles# 

Extract consistency 
Shaded habitat? 

Fruit In evidence? 

Stem colour 

G2 G3 G4 GS GG Pl P2 P3 P4 PS PG Hl H2 H3 H4 Yl Y2 Sl S2 
4.11 4.87 1.14 1.22 1.SG 2.82 2.92 4.92 1.72 1.77 2.27 3.38 9.83 6.4S 7 .04 11.61 13.17 0.88 3.3 

0.007 0.006 0.006 0.034 o.oss O.OSl 0.007 0.013 0.019 0.031 0.021 0.017 0.007 0.021 0.016 0.004 0.013 
o.oss 0.008 0.018 0.043 0.006 o.oos 0.009 0.020 0.024 0.066 0.030 0.042 0.1S3 o.oos 

0.016 0.01 S 0.006 0.005 0.009 o.oos 0.004 
0.01 S 0.003 0.007 0.003 0.006 o.oos 0.01 S 0.006 0.014 

0.047 O.OSl 0.022 0.008 0.022 O.OSG O.OS7 0.049 0.010 0.007 0.043 0.017 0.03S 0.0S8 0.064 O.OSl 0.006 0.012 
0.016 0.003 0.010 0.003 0.281 0.021 0.014 0.977 0.443 0.610 0.758 0.869 0.002 0.1 SO 

0.006 0.070 0.038 O.OS4 0.038 0.072 0.109 0.076 0.013 0.106 O.OS9 0.173 0.128 0.144 0.193 0.19S 0.036 0.069 

0.003 0.003 0.012 0.020 0.004 0.3S4 0.092 0.1 S2 0.134 0.275 0.001 0.031 

0.117 0.007 0.024 0.004 0.014 0.026 0.136 0.007 0.004 0.041 0.600 0.199 0.377 0.432 O.S24 0.089 
0.081 0.094 o. 1 SS 0. 1 S9 0.071 0.124 0.178 0.092 0.070 0.029 0.090 0.064 0.064 0.103 0.089 0.088 0.103 0.060 O.OSG 

0.03S 0.008 0.011 0.003 0.008 0.070 O.S43 0.007 0.1 OS 0.018 0.034 0.607 0.439 0.496 0.80S 0.9S3 o.oos 0.174 
0.046 0.104 0.008 0.006 0.009 0.041 O.GSO 0.009 0.03S 0.016 0.062 3.702 1.S86 2.367 3.168 3.748 0.013 0.441 

0.020 0.018 0.008 0.04S 0.11S 0.010 0.009 0.019 0.289 0.134 0.21S 0.3SS 0.4S1 0.001 0.051 

0.308 0.614 0.076 0.07S O.OS7 0.007 0.081 0.240 0.010 0.009 0.034 0.4S7 0.330 0.3SO 0.829 1.140 0.036 0.181 
0.01 S 0.023 0.018 0.030 0.01 S 0.012 

0.291 0.036 o.oos 0.007 0.016 o.oos 0.041 
0.026 0.03S 0.009 0.017 0.043 0.012 0.013 0.013 0.020 0.027 

0.027 0.034 
0.204 0.100 

0.745 1.080 O.OSl O.OS4 0.231 O.S22 0.072 0.019 0.011 0.062 0.031 1.094 0.116 0.271 0.207 1.217 1.389 0.012 0.019 

O.OS 1 0.031 0.041 0.028 0.024 0.048 0.039 O.OSG O.OS9 0.072 0.081 0.01 S O.OGS 0.022 0.067 O.OS2 0.096 o.oss 0.123 

1.99 2.71 0.77 0.60 0.72 1.00 1.87 3.23 0.44 O.SG 1.06 1.99 8.31 4.S7 5.86 9.62 11.17 0.36 1.79 

2.12 2.16 0.37 0.62 0.84 1.82 1.0S 1.69 1.28 1.21 1.21 1.39 1.S2 1.88 1.18 1.99 2.00 O.S2 1.Sl 

solid solid solid 
SO/SO SO/SO 

n y n 

solid solid solid 
n slight n 
y n n 

solid solid solid solid 
n n SO/SO y 
y n n n 

crimson r 

solid 
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n 
r 

solid 
n 
0 

r 

liq. 

n 

r 

liq. 

n 

r 

liq. liq/thin lfq/thin solid solid 

n full full n n 
n y y n 

r r bronze bronze 

• Peak area may include other compounds 

*Total area Integration between peaks at S.47 mlns and 20.92 mins (ex. Cl 8 std) 

#96 concrete/OM - 96 Vols/ OM 

Appendix 2.1: Composition data and extract characteristics for preliminary collections, Sett. 3.5 
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96 w/w leaIDM 
Extract yield 

1,8 cineole0 

linalool 
a-terpineol 
piperitone 
eugenol 

a-cubebene 
caryophyllene 

Unknown I 
germacrene D 

unknown IV 
calamenene0 

Cadinal ,4-diene 
unknown II 

unknown 111° 
guaiol 

aristolone 
drimenol 

Polygo<ialf 
kaur-16-ene 

96 volatiles* 
96 non volatiles# 

Extract consistency 
Shaded habitat? 

Fruit in evidence? 
Stem colour 

S3 S4 S6 Ql Q2 Q3 Q4 QS Q6 Ml M2 M3 M4 MS MG 81 82 83 84 85 86 
3.68 4.02 7 .09 8.9 9.09 7 .79 8.45 

0.021 0.064 0.079 0.150 0.034 0.166 0.013 
3.98 4.07 5.970 5.870 5.670 5.000 5.450 5.870 5.020 9.490 7 .130 5.220 9.050 6.940 

0.024 
0.475 0.148 0.232 0.032 0.063 0.018 

0.019 0.020 0.023 0.045 
0.009 
0.011 0.027 0.041 

0.053 0.009 
0.006 

0.018 0.021 

0.059 

0.017 
0.017 0.379 0.321 0.306 0.320 0.088 0.07 4 o. 195 

0.050 0.034 0.135 0.166 0.195 0.118 0.152 0.079 0.041 0.006 0.143 0.081 0.056 0.045 0.048 0.057 0.062 
0.032 0.059 0.063 0.043 
0.094 0.167 0.17 5 0.182 0.167 0.008 0.059 0.042 0.081 

0.136 0.044 0.063 0.116 0.072 0.181 0.133 0.022 0.109 

0.014 0.265 0.763 0.020 0.470 0.313 0.300 0.137 0.261 0.113 0.062 0.239 0.240 0.554 

0.028 0.071 
0.020 0.173 

0.064 o.oso 

0.013 0.100 0.078 

0.070 0.399 0.155 
0.041 0.511 0.929 0.046 1.088 0.089 1.137 1.145 0.042 0.125 0.620 0. 737 0.244 0.213 0.597 0.607 1.287 0.145 0.989 0.378 
O.olS 0.072 0.123 0.059 0.128 0.032 0.139 0.090 0.018 0.021 0.066 0.054 0.028 0.032 0.059 0.054 0.098 0.046 0.021 0.099 
0.280 0.204 0.330 0.602 0.273 0.587 0.595 0.226 0.247 0.078 0.237 0.133 0.112 0.071 0.229 0.220 0.340 0.133 0.065 0.309 
0.006 0.012 0.022 
0.012 O.Ql 2 0.008 O.ol 6 0.022 
0.035 0.027 0.043 0.103 0.062 0.074 0.046 
0.151 0.077 0.121 2.857 1.836 2.216 1.447 0.202 1.191 0.782 0.339 0.038 0.480 0.319 0.635 0.438 1.341 2.053 1.223 1.664 1.078 
0.159 0.167 0.086 0.041 0.056 0.058 0.012 0.024 0.033 0.038 0.092 0.019 0.083 0.085 0.083 0.116 0.087 0.049 0.062 0.101 
1.42 2.37 4.76 5.54 5.78 4.57 5.43 3.05 2.12 1.80 4.61 2.28 3.09 1.93 2.65 2.99 5.38 3.00 1.94 4.91 2.94 
2.26 1.65 2.33 3.36 3.31 3.22 3.02 0.93 1.95 4.17 1.26 3.39 1.91 3.52 3.22 2.03 4.11 4.13 3.28 4.14 4.00 

solid solid solid liq/thk liq/thk liq/thk liqlthk liqlthk liqlthk 

50150 n y SO/SO y y y y y 

n y y n y n 
rb r/crmsn bronze 

n y n y 

y 

y 

y 

y 
y 

n 
y 

n 
y 

n 

y 

y 

0 Peak area may Include other compounds 
.,, Total area Integration between peaks at 5.47 mins and 20.92 mins (ex. Cl 8 std) 

#% concrete/OM - % Vols/ DM 

Appendix 2.1: Composition data and extract characteristics for preliminary collections, Sect. J.5 



ANOVA AND LSD PROCEDURE- CUTTING PROPAGATION 
00002 data prop; 
00003 input season$ block$ temp$ hormone score length dwt; 
00004 cards; 
00005 A I H ·o 14 26.0 14.7 ........................ . 
00052 C II L 3 5 O O; 
00054run; 
00057 proc anova; 
00058 class season hormone temp block; 
00059 model score length dwt = block season hormone temp season•hormone season•temp 
00060 hormone•temp season•temp•hormone; 
00061 means season hormone temp.llsd; 
00062 means season•hormone season•temp hormone•temp season•hormone•temp; 
00063 run; 

Class Levels Values 
SEASON 3 ABC 
HORMONE 4 0123 
TEMP 2 HL 
BLOCK 2 111 
Number of observations in data set= 48 

Dependent Variable: SCORE 
Source IF SSquares MSquare F Value Pr> F 
Model 24 574.3333333 23.9305556 3.83 0.0010 
Error 23 143.6666667 6.2463768 
Corrected Total 47 718.0000000 

Source IF Anova SS Mean Square FValue Pr>F 
BLOCK 1 21.3333333 21.3333333 3.42 a.ons 
SEASON 2 85.8750000 42.9375000 6.87 0.0046 .... 
HORMONE 3 209.5000000 69.8333333 11.18 0.0001·· 
TEMP 1 90.7500000 90.7500000 14.53 0.0009*'" 
SEASON .. HOR MONE 6 88.6250000 14.noa333 2.36 0.0631 
SEASON"'TEMP 2 34.8750000 17.4375000 2.79 0.0821 
HORMONE"'TEMP 3 3.7500000 1.2500000 0.20 0.8952 
SEASON*HORMONE"'TEMP6 39.6250000 6.6041667 1.06 0.4158 

Variable: LENGTH Dependent 
Source 
Model 

CF SSquares MeanSquare F Value Pr> F 
24 2307.891667 96.162153 2.66 

Error 23 830.738125 36.119049 
Corrected Total 47 3138.629792 

Source IF Anova SS Mean Square F Value Pr>F 
BLOCK 1 36.226875 36.226875 1.00 0.3270 
SEASON 2 486.750417 243.375208 6.74 0.0050** 
HORMONE 3 398.483958 132.827986 3.68 0.0268* 
TEMP 1 1197.001875 1197.001875 33.14 0.0001** 
SEASON*HORMONE 6 71.297917 11.882986 0.33 0.9148 
SEASON"'TEMP 2 45.158750 22.579375 0.63 0.5440 
HORMONE"'TEMP 3 56.445625 18.815208 0.52 0.6721 
SEASON*HORMONE"'TEMP6 16.526250 2. 754375 0.08 0.9979 

Dependent Variable: DWT 
Source IF $Squares MeanSquare F Value Pr> F 
Model 24 1999.556667 83.314861 1.87 0.0697 
Error 23 1026.802500 44.643587 
Corrected Total47 3026.359167 

Source a= AnovaSS Mean Square FValue Pr>F 
BLOCK 1 19.5075000 19.5075000 0.44 0.5152 
SEASON 2 319.4379167 159.7189583 3.58 0.0444* 
HORMONE 3 196.0175000 65.3391667 1.46 0.2506 

0.0109 

TEMP 1 999.1875000 999.1875000 22.38 0.0001** 
SEASON*HORMONE 6 192.5887500 32.0981250 0.72 0.6384 
SEASON"'TEMP 2 30.9537500 15.4768750 0.35 0.7107 
HORMONE"'TEMP 3 34.4275000 11.4758333 0.26 0.8555 
SEASON*HORMONE"'TEMP6 207.4362500 34.5727083 o.n 0.5981 

Appendix 2.2: ANOVA and LSD's for cutting propagation methods- sect. 3.7 
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198 
Hours Mean caryophylle 

@35°C %DM 'Volatiles' linalool terpineol ne Rt=l2.16 cadinal ,4 diene poly~'Odial 

Fresh 23.74 
24 82.78 3.609 0.220 0.032 0.038 0.216 0.051 2.600 
36 96.71 4.102 0.240 0.035 0.038 0.254 0.057 2.949 
48 96.00 4.614 0.256 0.044 0.044 0.282 0.067 3.397 
72 95.90 4.798 0.352 0.056 0.044 0.327 0.066 3.464 
96 97.00 4.059 0.247 0.037 0.042 0.274 0.059 3.028 
120 97.68 4.993 0.345 0.059 0.040 0.311 0.067 3.568 

StdErr. 0.328 0.029 0.004 0.003 0.027 0.004 0.21 I 

Appendix 2.3a: Mean percentage (as w/w leaf OM) of selected components 

after drying at 35°C. Standard errors given are for least squares 

means for three replicates. 

Temp. Mean \"olatiles' linalool terpineol caryophyllene Rt =12.16 cadinal,4diene polygodial 
oc %DM 

Fresh 23.77 
25 93.62 7.693 0.300 0.050 0.047 0.267 0.067 
35 96.00 4.617 0.257 0.043 0.043 0.283 0.063 
55 95.99 4.530 0.280 0.040 0.047 0.267 0.057 
70 100 2.157 0.067 0.010 0.013 0.093 0.020 

StdErr 0.767 0.030 0.005 0.003 0.031 0.004 

Appendix 2.3b : Mean percentage (as w/w leaf DM) of selected components 

after drying for 48hrs at four temperatures. Standard errors are for 

means of three replicates 

3.860 
3.397 
3.330 
1.783 

0.262 
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Tune (days~ Method (see sect. 4.6) Std Error 
2 3 4 

alpha-pinene 

Llnalool 

calamenene 

1 2 3 4 s 6 
Peak:Std =0.28 

0.86 

1 5 6 

137 135 1.23 1.27 1.15 1.03 0.04 0.08 0.03 0.04 0.06 0.04 
0.86 0.85 0.63 0.85 0.64 0.63 0.19 0.23 0.07 0.08 0.07 0.1 
1.45 1.3 1.21 1.19 0.87 0.98 0.04 0.09 0.07 0.06 0.04 0.03 

1.2 1.13 1.21 0.95 1.12 1.17 0.04 0.09 0.04 0.07 0.04 0.02 
0.84 0.66 0.74 0.64 0.6 0.55 0.13 0.12 0.1 0.03 0.14 0.08 
135 1.23 1.19 1.15 1.22 1.1 0.05 0.07 0.04 0.08 0.02 0.1 
1.35 1.19 1.22 1.18 1.46 137 0.03 0.1 0.06 0.02 0.02 0.02 
1.3 1.09 0.83 0.79 0.54 0.7 0.02 0.2 0.05 0.01 0.09 0.07 

1.05 0.92 1.11 0.95 1.18 1.17 0.03 0.23 0.15 0.13 0.06 0.06 
Peak:std =0.55 

1.47 
1.7 1.7 1.69 1.65 1.63 1.67 0.03' 0.04 0 0.01 0.02 0.03 

1.64 1.58 1.4 1.55 1.47 1.33 0.08 0.02 0.06 0.04 0.07 0.1 
1.71 i.M 1.66 1.61 1.62 1.6 0.01 0.02 0.01 0.01 0.01 0.04 
1.63 1.63 1.65 1.65 1.61 1.66 0.02 0.05 0.01 0.02 0.01 0.04 
1.55 1.49 1.49 1.52 1.47 1.48 0.02 0.05 0.03 0.02 1.2 0.03 
1.65 1.66 1.62 1.66 1.65 1.61 0.01 0.02 0.02 0.01 0.02 0.05 
1.68 1.64 1.63 1.62 1.67 1.67 0.02 0.01 0.02 0.02 0.01 0.03 
1.71 1.73 1.64 1.66 1.55 1.63 0.02 0.03 0.07 0.01 0.02 0.02 
1.59 1.57 1.55 1.55 1.55 1.55 0.01 0 0.04 0.03 0.07 0.04 

Pcak:std =0.70 
3.49 
3.71 3.75 3.75 3.7 3.76 3.79 0.05 0.05 0.02 0.01 0.06 0.04' 

I 
3.92 3.79 3.85 3.76 3.92 3.97 0.16 0.01 0.05 0.14 0.11 0.12 
3.72 3.67 3.75 3.67 3.81 3.91 0.02 o.o5 0.01 0.02 0.02 0.08' 
3.66 3.79 3.79 3.91 3.78 4.08 0.04 0.07 0.03 0.03 0.01 0.07 
3.87 3.88 3.85 3.97 3.88 4.22 0.02 0.06 0.05 0.04 0.31 0.05 
3.64 3.94 3.74 3.93 3.88 4.12 0 0.1 0.04 0 0.02 0.06 
3.73 3.82 3.79 3.91 3.93 4.23 0.04 0.06 0.04 0.04 0.03 0.09 
3.82 4.11 3.96 4.11 4.02 4.43 0.04 0.2 0.2 0.01 0.01 0.05 

3.555 3.745 3.71 3.88 3.99 4.26 0.01 0.01 0.07 0.07 0.14 0.04 

Cadina 1,4diene IPeak:std =0.71 
4.21 
4.64 4.6 4.61 4.43 4.49 4.5 0.06 0.09 0.01 0.02 0.06 0.061 
4.62 4.42 4.34 431 4.41 4.34 0.23 0.08 0.08 0.18 0.17 0.l5i 
4.66 4.35 4.49 4.2 4.37 4.2 0.01 0.08 0.02 0.01 0.03 0.1' 
4.53 436 4.48 4.42 4.2 4.28 0.05 0.25 0.02 0.03 0.02 0.09 
4.65 437 433 4.33 4.21 4.17 0.02 0.19 0.1 0.06 0.42 0.05 
4.54 4.5 435 437 4.29 4.01 0.02 03 0.05 0 0.04 0.13 
4.59 4.24 4.28 4.22 4.22 4 0.04 0.2 0.07 0.03 0.1 0.04' 

4.7 4.41 4.42 435 4.1 4.01 0.04 0.29 0.1 0.01 0.07 0.04' 
4.5 4325 4.26 4.14 4.14 3. 0.01 0.02 0.08 0.06 0.07 0.05 

Appendix: 2.4: Composition data (obtained by GCanalysis) of eldracts stored by six 
methods as described in section 4.6. Std. Err. is for mean of analyses of 
three samples per treatment. Continued •.•• 



Unknown 'III" Peak:Std 0.77 20 
2.640 
3.010 3.050 3.000 2.930 2.890 2.87 0.030 0.050 0.020 0.006 0.030 0.040 
2.890 2. 760 2.460 2.500 2.380 2. 0.130 0.020 0.040 0.140 0.040 0.160 
2.970 2.870 2.900 2.530 2.550 2. 0.030 0.040 0.020 0.010 0.030 0.040 
2.920 2.930 2.930 2.500 2.450 2. 0.060 0.040 0.010 0.060 0.010 0.050 
2.640 2.520 2.620 1.950 2.030 1.97 0.095 0.047 0.045 0.070 0.025 0.046 

1 2.920 2.840 2.790 2.250 2.220 2.18 0.030 0.900 0.070 0.010 0.030 0.080 
2.93 2.67 2.69 1.96 2.01 0.04 0.06 0.03 0.05 0.08 0.04 
2.98 2.83 2.71 1.9 1.81 0.01 0.07 0.1 0.06 0.03 0.02 

2.555 2.255 2.28 1.46 1.45 0.06 0.02 0.01 0.03 0.03 0.02 
Total polygodial 

14.86 
15.62 15.89 15.6 15.6 15.7 0.14 0.24 0.05 0.06 0.11 0.13 
16.94 16.03 15.8 16 15.9 0.92 0.1 0.07 0.27 036 0.47 
15.92 15.54 15.8 15.3 15.6 0.07 0.08 0.01 0.08 0.08 0.23 

15.7 15.91 15.9 15.7 15.4 0.1 038 0.19 0.16 0.05 035 
16.26 16.25 16.3 15.8 15.4 0.09 0.12 0.2 035 1.06 0.19 
16.05 16.11 16 16.l 15.8 0.1 0.1 0.2 0.04 0.2 0.5 
15.68 15.29 15.3 14.9 15.3 0.1 0.03 0.2 0.2 0.2 0.2 
17.06 17.21 16.8 16.3 15.8 0.05 OA 0.6 0.08 0.2 
16.65 16.87 16.7 16 16.2 0.05 0.3 0.42 0.21 0.06 0.27 

kaur-16-ene Peak: Std 1.27 
1.01 
I.OS 1.1 1.1 1.13 1.18 0.07 0.04 0.02 0.03 0.04 0.02 
132 1.28 1.21 1.23 1.23 0.04 0.01 0.03 o.oi 0.03 0.02 
0.97 1 1.01 0.97 0.95 0.05 0.03 0.01 0.02 0.01 0.01 
0.51 0.82 0.82 0.78 0.85 0.2 0.04 0.05 0.11 0.02 0.05 
039 0.46 0.49 0.4 0.42 0.06 0.1 0.07 0.01 0 0.03 

0.4 0.46 0.51 0.51 0.56 0.03 0.02 0.03 0.06 0.03 0.06 
0.425 0.42 0.42 0.4 0.41 0.01 0.01 0.04 0.01 0.1 0.01 

0.46 0.44 0.51 0.43 035 0.01 0.1 0.09 0.1 0.01 0.01 
0.355 0.365 0.37 036 037 0.01 0.01 0.01 0.01 0.01 0.01 

Appendix 2.4 Continued : Composition data (obtained by GC analysis) of extracts 
stored by six methods as described in section 4.6. Std. Err. is for mean of 
analyses of three samples per treatment. 
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An ova An ova 
96 volatiles Groups Collllt Sum A~·. Var. cubebene Groups Count Sum Av. Var. 

Pet ether/fresh 5 26.77 5.354 0.271 Pet ether/fresh 5 2.13 0.427 0.002 
0.370 0.002 
0.485 0.002 

hex:acet/fresh 
Pet ether/dry 

5 18.06 
5 31.98 

3.612 0.960 
6.396 0.386 

Source SS d.f MS F 

~----------------------Between Groups 19.785 2 9.892 18.36** 
Within Groups 6.4661 12 0.539 
Total 26.251 14 ISD(0.05)= 1.012 

hex:acet/fresh 
Pet ether/dry 

5 1.85 
5 2.42 

Source SS df MS F 

-----------------------Between Groups 0.0328 2 0.016 8.40** 
Within Groups 0.0234 12 0.002 
Total 0.0562 14 ISD(0.05)= 0.061 

1,8 cineole Groups Count Sum 

0.71 
0.53 
0.77 

Al'. Var. germacren• ____ G_ro_up_s __ c_o_un_r _s_um ____ A_"· ___ v:_ar._. 

Pet ether/fresh 5 0.142 0.000 Pet ether/fresh 5 0.92 0.185 0.001 
hex:acet/fresh 5 
Pet ether/dry 5 

0.105 0.001 
0.155 0.000 

Source SS d.f MS F 

~---------------------Between Groups 0.0065 2 0.003 7.88** 
Within Groups 0.0050 12 0.000 
Total 0.0115 14 ISD(0.05)= 0.028 

hex:acet/fresh 
Pet ether/dry 

5 0.78 0.155 0.001 
5 1.07 0.214 0.000 

Source SS 

Between Groups 0.0086 
Within Groups 0.0125 
Total 0.0211 

df MS F 

2 0.004 4.12* 
12 0.001 
14 ISD(0.05)= 0.044 

-aristolone Groups CoU.IJt Sum 

0.32 
0.12 
0.40 

A\·. \'ar. Polygodial ____ G_ro_up_s __ c_o_un_r _s_u_m ____ A_~·. __ v:_ar._. 

Pet ether /fresh 5 0.064 0.000 Pet ether/fresh 5 4.08 0.816 0.014 
hex:acet/fresh 5 
Pet ether/dry 5 

0.023 0.000 
0.080 0.000 

Source SS d.f MS F 

--------------------~ Between Groups 0.0084 2 0.004 20.87** 
Within Groups 0.0024 12 0.000 
Total 0.0109 14 ISD(0.05)~ 0.020 

hex:acet/fresh 
Pet ether/dry 

5 1.20 0.241 0.072 
5 4.56 0.913 0.004 

Source SS df MS F 

------------------------Between Groups 1.3199 2 0.660 21.93** 
Within Groups 0.3611 12 0.030 
Total 1.6809 14 ISD(0.05)= 0.239 

:adioa. 1,4 - Groups Cou.nr Sum Av. Var. Unknown Groups CoU.IJt Sum Av. 

0.111 
0.083 
0.107 

\'ar. 

liene Pet ether/fresh 5 6.74 1.348 0.070 Pet ether/fresh 5 0.56 0.001 
0.002 
0.001 

hex:acetlfresh 5 5.87 1.174 0.058 hex:acet/fresh 5 0.41 
P~l ~lher1dry 5 7.76 1.552 0.020 Pet ether/dry 5 0.54 

Source SS d.f MS F 

----------------------~ Between Groups 0.3585 2 0.179 3.64 n.s. 
Within Groups 0.5917 12 0.049 
Total 0.9502 14 

·alamenene Groups 

Pet ether/fresh 
hex:acet/fresh 
Pet ether/dry 

Source 
Between Groups 
Within Groups 
Total 

·uyophylle Groups 

Pet ether/fresh 
hex:acetlfresh 
Pet ether I dry 

CoU.IJt 

5 
5 
5 

SS 

0.523 
0.380 
0.903 

CoU.IJT 

5 
5 
5 

Sum 

4.51 
2.89 
5.09 

df 

2 
12 

AV. Var. Unknown 

0.902 0.016 11 
0.577 0.046 
1.019 0.033 

MS F 

0.262 8.27** 
0.032 

14 ISD(0.05)= 0.245 

Sum 

0.50 
0.43 
0.57 

A\·. Var. Unknown 

0.101 0.000 ill 

0.085 0.000 
0.113 0.000 

Source SS d.f MS F 

---------------------Between Groups 0.0020 2 0.001 8.98** 
Within Groups 0.0013 12 0.000 
Total 0.00~ 14 ISD(0.05)~ 0.015 

Source SS d.f J.fS F 

----------------------Between Groups 0.0024 2 0.001 0.87 n.s. 
Within Groups 0.0165 12 0.001 
Total 0.0189 14 

Groups 

Pet ether /fresh 
hex:acet/fresh 
Pet ether/dry 

Cou.nr Sum 

5 0.97 
5 0.54 
5 1.13 

0.195 
0.109 
0.226 

Var. 

0.001 
0.003 
0.000 

Source SS df MS F --------------------Between Groups 0.0369 2 0.018 12.73** 
Within Groups 0.0174 12 0.001 
Total 0.0544 14 ISD(0.05)= 0.052 

Groups 

Pet ether /fresh 
hex:acetlfresh 
Pet ether/dry 

Count Sum A. i: 

5 2.98 0.595 
5 1.42 0.285 
5 3.42 0.684 

Var. 

0.004 
0.028 
0.004 

Source SS df MS F 

------------------------~ Between Groups 0.44 2 0.220 18.22** 
Within Groups 0.145 12 0.012 
Total 0.584 14 LSD(0.05)- 0.151 

14>pendix 2.Sa: Means and ANOVA for extraction method - solvent type 



96 vols in leaf Anova: Single-Factor 
Summary 
Grou.ps 

Direct sample 
Total extract 

Count 

5 
5 

Source SS 

Sum Average Variance 

31.980 6.396 0.386 
35.900 7.180 0.082 

F df MS 

--------------------------~ Between Grou~ 1.537 I.OOO 1.537 6.56* 
Within Groups 1.873 8.000 0.234 

Total 3.409 9.000 ..SD(0.05), J.IJ6 

I ,8-cineole Anova: Single-Factor 
Summary 
Groups 

Direct sample 
Total atract 

Count 

5 

5 

Sum 

0.773 
0.407 

Average Variance 

0.155 0.000 
0.081 0.001 

Source SS df MS F 
~~~~~~~~~~~~~~ 

Between Grou~ 0.0133 I.OOO 0.013 32.38-
Withi."l Groups 0.0033 8.000 0.000 

Total 0.0166 9.000 ..SD(0.05)~ 0.048 

aristolone Anova: Single-Factor 
Summary 

cadina 
1,4 diene 

caJamenene 

Groups Count Sum Average Variance 

Direct sample 5 0.398 0.080 0.000 
Total extract 5 0.474 0.095 0.000 

Source SS df MS F 
~----~----~------~------Between Grou~ 0.0006 I.OOO 0.001 7.08* 

Within Groups 0.0007 8.000 0.000 
Total 0.0012 9.000 ..SD(0.05), 0.021 

Anova; Single-Factor 
Summary 
Groups 

Direct sample 
Total ei..tract 

Source 

Count 

5 
5 

SS 

Sum 

7.762 
8.531 

df 

Between Grou~ 0.0592 I .OOO 
Within Groups 0.1588 8.000 

Total 0.2180 9.000 

Anova: Single-Factor 
Summary 

Groups Count 

Direct sample 5 
Total extract 5 

Sum 

5.094 
5.821 

Average Variance 

1.552 0.020 
1.706 0.020 

MS F 
0.059 2. 98n.s. 
0.020 

Average Variance 

1.019 0.033 
1.164 0.019 

Source SS df MS F 

--------~--~------------~ Between Grou~ 0.0528 I .OOO 0.053 2.02 n.s. 
Within Groups 0.2093 8.000 0.026 

Total 0.2621 9.000 

c:myophYnene Anova: Single-Factor 
Sumnuuy 
Groups 

D:irect sample 
Total ectract 

Source 

Coant 

5 
5 

SS 

Sum 

0.567 
0.619 

df 

Between Grou~ 0.0003 I.OOO 
Within Groups 0.0004 8.000 

Total 0.0007 9.000 

O.ll3 0.000 
0.124 0.000 

MS F 

0.000 5.09 D.S. 

0.000 
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cubebene Anova: Single-Factor 
Summary 
Groups Count Sum Average •'ariance 

Direct sample 5.00 2.423 0.485 0.002 
Total ei..tract 5.00 2.601 0.520 0.000 

Source SS df MS F 

---------------------------Between Grou~ 0.00 I.OOO 0.003 3.16n.s. 
Within Groups 0.01 8.000 0.001 

Total 0.01 9.000 

germacrene IAnova: Single-Factor 
Summary 
Groups 

Direct sample 
Total atract 

Count 

5.00 
5.00 

Sum 

1.068 
1.159 

A\'erage Variance 

0.214 0.000 
0.232 0.001 

Source SS df MS F 

--~--~--------------~---Between Grou~ 0.00 I.OOO 0.001 l.54 n.s. 

Within Groups 0.00 8.000 0.001 
Total 0.01 9.000 

polygodial Anova: Single-Factor 
Summary 
Groups Count Sum Average •'ariance 

Direct sample 5.00 4.563 0.913 0.004-
Total extract 5.00 5.583 I.117 0.002 

Source SS df MS F 

---------------------------Between Grou~ 0.10 I.OOO 0.104 31.49-
Within Groups 0.03 8.000 0.003 

Total 0.13 9.000 .SD(0.05)· 0.136 

Unknown Anova: Sing!P.-Fartor 
1 Summary 

Unknown 

JI 

Unknown 
m 

Groups 

Direct sample 
Total ei..tract 

Count 

5.00 
5.00 

Sum Average Variance 

0.536 0.107 0.001 
0.539 0.108 0.001 

Source SS df MS F 

~-------------------------Between Grou~ 0.00 I.OOO 0.000 0.0 n.s. 
Within Groups 0.01 8.000 0.001 

Total O.OI 9.000 

Anova: Single-Factor 
Summary 
Groups Count 

Direct sample 5.00 
Total ex"tract 5.00 

Sum Average 11ariance 

1.130 0.226 0.000 

I.263 0.253 0.000 

Source SS df MS F 
~--------~------~~--~-Between Grou~ 0.00 I.OOO 0.002 4.lOn.s. 

Within Groups 0.00 8.000 0.000 

Total 0.01 9.000 

Anova: Single-Factor 
Summazy 
G.maps 

Direct sample 
Total extract 

Somce 

CollDt 

5.00 
5.00 

SS 

Between Grou~ 0.03 
Within Groups 0.02 

Total 0.05 

Sum Average lfarianre 

3.422 0.684 0.004 
3.932 0.786• 0.001 

df MS F 
I.OOO 0.026 10.90"' 
8.000 0.002 
9.000 .SD(0.05) O.ll5 

Appendix 2.Sb: Means and ANOVA for direct sample vs drydown method- sect.4.7 
- see sect. 4. 7 
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0 
ime--> 5.00 10.00 15.00 20.00 25.00 

Peak# Compound name Ret. Time Width Area Start Time End Time 
1 4. 743 0.035 2311696 4.669 4.84 

2 linalool 5.627 0.029 40!>2172 !:J.!jl 5.73 

3 C13 9.712 0.05 24247895 9.555 9.942 

4 a cubebene 10.741 0.049 11341550 10 .567 10.816 

6 Cl4 11.974 0.054 22824398 ll. 793 12.053 

7 CaJ:yophyllene 12.269 0.05 3795121 12.173 12.36 

8 12.908 0.046 1924023 12.792 12.971 

9 gennacrene D 13.605 0.062 6151512 13.489 13.683 

10 13.835 0.066 5279021 13 .683 13.897 

11 bicycloge.:cmacrene 13.948 0.071 4375756 13.897 14.089 

12 Cl5 14.334 0.062 47893213 14.212 14.39 

13 14.439 0.061 19685086 14.39 14.508 

14 cadina 1,4 diene 14.794 0.061 36272925 14.642 14.927 

16 15.628 0.068 4395305 15.571 15.68 

17 15.948 0.079 9900110 15.831 16.03 

18 16.138 0.057 10882266 16.03 16.188 

19 16.231 0.057 4057130 16.188 16 .372 

20 Cl6 16.654 0.065 55436859 16.417 16.789 

21 17.147 0.075 2935611 16.933 17.249 

22 C17 18.91 0.06 56430295 18.643 19.242 
·23 ari.stoloDe 19.38 0.058 3051747 19.242 19.468 

24 drimenol 19.622 0.059 . 2737f128 19.513 19.771 

25 polygodi.al isaner 20.425 0.061 8679973 20.087 20.59 

26 Cl8 21.098 0.064 70479212 20.745 21.345 

27 polygodial 24.125 0.123 127214312· 23.377 24.338 

28 C20 25.217 0.068 93561938 24.867 25.295 

30 C21 27.109 0.066 53251346 26.892 27.376 

31 C22 28,97 0.065 68978207 28.737 29.266 
Appendix 2.6: Chrom~dogram and retention times used for calculation of Kovat's 

Indices (sect. 4.8). 
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Appendix .2.6 continued: Mass spectral data obtained from GCMS analysis described 
in Sect. 4.8. a) linalool, b) a-cubebene c) caryopbyllene d) germacrene D. 
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Appendix 2.6 continued: Mass spectral data obtained from GCMS analysis described 
in SecL 4.8. e) bicyclogermacrene f) cadina 1,4 diene g) aristolone h) 

driminol. 
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Appendix 2.6 continued: Mass spectral data obtained from GCMS analysis described 
in Sect. 4.8. i) polygodial isomer j) polygodial. 
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Appendix 2.6 continued: Reference mass spectra obtained from library sources (see 
Section 4.8) 
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Section 4.8), and from pure polygodial sample. 
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SAS Program 
00001 data a; 
00002 input no day pos $ vols lin cub car ger beg cad ars pol; cards; 
00004 1 20 A ................... 4.25 0.176 0.001 0.086. 0.052. 0.065 2.356; 
00207 data b; set a; if day>=lOO; 
00210 proc glm data=b; 
00211 class no day; 
00212 model lin cub car ger beg cad ars pol= no; 
00213 lsmeans no/etype=3 pdiff stderr; nm; 

Number of observations in data set= 120 
aass Levels Values 
NO 10 12345678910 
DAY 4 100 160 240 320 

Least Squares Means 
NO VOLS Std Err Pr> ITI LSMEAN 

LS MEAN LS MEAN HO:LSMEAN=O Number 
1 3.42583333 0.06730476 0.0001 1 
2 5.14083333 0.06730476 0.0001 2 
3 4.76166667 0.06730476 0.0001 3 
4 6.15916667 0.06730476 0.0001 4 
5 4.71500000 0.06730476 0.0001 5 
6 5.57000000 0.06730476 0.0001 6 
7 6.88250000 0.06730476 0.0001 7 
8 4.39750000 0.06730476 0.0001 8 
9 4.07916667 0.06730476 0.0001 9 
10 5.01166667 0.06730476 0.0001 10 

: 
NO LIN StdErr Pr>ITI LS MEAN 

LS MEAN LS MEAN HO:LSMEAN=O Number 
1 0.16541667 0.00795835 0.0001 1 
2 0.11675000 0.00795835 0.0001 2 
3 0.11333333 0.00795835 0.0001 3 
4 0.13958333 0.0079.5835 0.0001 4 
5 0.15200000 0.00795835 0.0001 5 
6 0.09191667 0.00795835 0.0001 6 
7 0.13183333 0.00795835 0.0001 7 
8 0.05675000 0.00795835 0.0001 8 
9 0.13308333 0.00795835 0.0001 9 

10 0.16908333 0.00598116 0.0001 10 

NO CUB StdErr Pr>ITI LS MEAN 
LS MEAN LS MEAN HO:LSMEAN=O Number 

1 0.00000000 0.03160991 1.0000 1 
2 0.38941667 0.00912499 0.0001 2 
3 0.31608333 0.00912499 0.0001 3 
4 0.34783333 0.00912499 0.0001 4 
5 0.23600000 0.00912499 0.0001 5 
6 0.28891667 0.00912499 0.0001 6 
7 0.42750000 0.00912499 0.0001 7 
8 0.22616667 0.00912499 0.0001 8 
9 0.22700000 0.00912499 0.0001 9 

10 0.00033333 0.00488173 0.9457 10 

NO CAR StdErr Pr>ITI LS MEAN 
LS MEAN LS MEAN HO:LSMEAN=O Number 

1 0.07241667 0.00341675 0.0001 1 
2 0.09858333 0.00341675 0.0001 2 
3 0.09108333 0.00341675 0.0001 3 
4 0.10275000 0.00341675 0.0001 4 
5 0.06091667 0.00341675 0.0001 5 
6 0.17358333 0.00341675 0.0001 6 
7 0.13850000 0.00341675 0.0001 7 
8 0.06958333 0.00341675 0.0001 8 
9 0.08441667 0.00341675 0.0001 9 

10 0.10341667 0.00341194 0.0001 10 

Appendix .2.7: SAS Output for Tree Means - Harvests 4-7: all positions, 4 dates; 



NO POL StdErr Pr>ffl LS MEAN 210 
LS MEAN LS MEAN HO:LS:rvffiAN=O Nwnber 

1 232066667 0.19568321 0.0001 1 
2 0.91383333 0.19568321 0.0001 2 
3 0.96816667 0.19568321 0.0001 3 
4 1.47000000 0.19568321 0.0001 4 
5 1.47625000 0.19568321 0.0001 5 
6 152516667 0.19568321 0.0001 6 
7 133141667 0.19568321 0.0001 7 
8 1.82191667 0.19568321 0.0001 8 
9 1.05558333 0.19568321 0.0001 9 
10 2.83950000 0.02617151 0.0001 10 

NO GER StdErr Pr>ffl LS MEAN 
LS MEAN LS MEAN HO:LS:rvffiAN=O Number 

1 0.03800000 0.01291511 0.0041 1 
2 0.21408333 0.00645755 0.0001 2 
3 0.17275000 0.00645755 0.0001 3 
4 0.18283333 0.00645755 0.0001 4 
5 0.12683333 0.00645755 0.0001 5 
6 0.15808333 0.00645755 0.0001 6 
7 0.23516667 0.00645755 0.0001 7 
8 0.13000000 0.00645755 0.0001 8 
9 0.12591667 0.00645755 0.0001 9 

10 0.00050000 0.00356546 0.8888 10 

NO CAD StdErr Pr>rTI LS MEAN 
LS MEAN LS MEAN HO:LSMEAN=O Number 

1 0.02066667 0.11123685 0.8530 1 
2 1.53150000 0.05561842 0.0001 2 
3 1.08108333 0.05561842 0.0001 3 
4 1.28066667 0.05561842 0.0001 4 
5 0.94466667 0.05561842 0.0001 5 
6 1.17058333 0.05561842 U.0001 6 
7 1.53058333 0.05561842 0.0001 7 
8 0.91183333 0.05561842 0.0001 8 
9 0.83725000 0.05561842 0.0001 9 

10 -0.00000000 0.03436883 1.0000 10 

NO BCG StdErr Pc>rTI LS MEAN 
LS MEAN LS MEAN HO:LSMEAN=O Number 

1 0.03775000 0.01337342 0.0058 1 
2 0.07825000 0.00772115 0.0001 2 
3 0.05058333 0.00772115 0.0001 3 
4 0.08108333 0.00772115 0.0001 4 
5 0.05791667 0.00772115 0.0001 5 
6 0.07733333 0.00772115 0.0001 6 
7 0.08383333 0.00772115 0.0001 7 
8 0.05300000 0.00772115 0.0001 8 
9 0.04316667 0.00772115 0.0001 9 

10 0.04200000 0.00577459 0.0001 10 

NO ARS StdErr Pc>rTI LS MEAN 
LS MEAN LS MEAN HO:LSMEAN=O Number 

1 0.18058333 0.07536925 0.0186 1 
2 0.01625000 0.13054336 0.9012 2 
3 0.03416667 0.07536925 0.6514 3 
4 0.07216667 0.07536925 0.3409 4 
5 0.02975000 0.07536925 0.6940 5 
6 0.04016667 0.07536925 0.5954 6 
7 0.10241667 0.07536925 0.1776 7 
9 0.01816667 0.07536925 0.8101 8 
10 0.07858333 0.00406026 0.0001 9 

Appendix 2.7 (continued): Output for Tree Means • Harvests 4-7: all positions, 
4 dates. 
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SAS Programme 'posn' - ANOV A for position date by date: 
00001 data a; 
00002 input no day pos $ vols lin cub car ger beg cad ars pol; 
00003 cards; 
00004 1 20 A 1.10 0.0 0.0 0.076 0 ....................... ; 
00206run; 
00207 data b;set a; 
00208 if day= 20; 
00209 run; 
00210 proc glm data=b; 
00211 class no day pos; 
00212 model vols lin cub car ger beg cad ars pol= pos; 
00213 lsmeans pos/etype=3 pcliff stderr; 
00214nm; 

20Days Class Levels Values 
NO 10 12345678910 
DAY 1 20 
POS 2 AB 
Number of observations in data set= 20 

Dependent Variable: VOLS 
Source DF SSquares MSquare 
Model 1 0.12333889 0.12333889 
Error 16 3.03642222 0.18977639 
Corrected Total 17 3.15976111 

Dependent Variable: UN 
Source DF SSquares MSquare 
Model 1 0.02318422 0.02318422 
Error 16 0.03880156 0.00242510 
Corrected Total 17 0.06198578 

Dependent Variable: CUB 
Source DF SSquares MSquare 
Model 1 0.00066006 0.00066006 
&ror 16 0.04787844 0.00299240 
Corrected Total 17 0.04853850 

Dependent Variable: CAR 
Source DF SSquares MSquare 
Model 1 0.00192200 0.00192200 
Fnor 16 0.00798400 0.00049900 
Corrected Total 17 0.00990600 

Dependent Variable: GER 
Source DF SSquares MSquare 
Model 1 0.00202672 0.00202672 
Error 16 0.01952089 0.00122006 
Corrected Total 17 0.02154761 

Dependent Variable: BCG 
Source DF SSquares MSquare 
Model 1 0.00291848 0.00291848 
Error 16 0.02134306 0.00133394 
Corrected Total 17 0.02426154 

Dependent Variable: CAD 
Source DF SSquares MSquare 
Model 1 0.00168200 0.00168200 
Error 16 0.77915911 0.04869744 
Corrected Total 17 0.78084111 

211 

FValue Pr>F 
0.65 0.4320 

FValue Pr>F 
9.56 0.0070 

FValue Pr>F 
0.22 0.6449 

FValue Pr>F 
3.85 0.0673 

FValue Pr>F 
1.66 0.2158 

FValue Pr>F 
2.19 0.1585 

FValue Pr>F 
0.03 0.8549 

Appendix 2.8: SAS output for significance of 'position' for harvests 1 (20 days) and 2 
(40 days), continued ••• 
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Dependent Variable: ARS 
Source DF SSquares MSquare FValue Pc>F 
Model 1 0.00020000 0.00020000 0.03 0.8682 
Error 16 0.11249800 0.00703113 
Corrected Total 17 0.11269800 

Dependent Variable: POL 
Source DF SSquares MSquare FValue Pc>F 
Model 1 0.01462050 0.01462050 0.17 0.6817 
Error 16 134062978 0.08378936 
Corrected Total 17 135525028 

40 Days a ass Levels Values 
NO 10 12345678910 
DAY 1 40 
POS 3 ABC 
Number of observations in data set= 30 

Dependent Variable: VOLS 
Source DF SSquares MSquare FValue Pc>F 
Model 2 039462000 0.19731000 0.75 0.4821 
&ror 27 7.10521000 0.26315593 
Corrected Total 29 7.49983000 

Dependent Variable: LIN 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00076580 0.00038290 0.41 0.6659 
Error 27 0.02504650 0.00092765 
Corrected Total 29 0.02581230 

Dependent Variable: CUB 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0Jl0035060 0.00017530 0.04 0.9601 
Error 27 0.11612570 0.00430095 
Corrected T ota1 29 0.11647630 

Dependent Variable: CAR 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00014687 0.00007343 0.11 0.8949 
Error 27 0.01778610 0.00065874 
Corrected Total 29 0.01793297 

Dependent Variable: GER 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00036140 0.00018070 0.16 0.8506 
Error 27 0.02997460 0.00111017 
Corrected Total 29 0.03033600 

Dependent Variable: BCG 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00375140 0.00187570 0.61 0.5522 
Error 27 0.08342730 0.00308990 
Corrected Total 29 0.08717870 

Dependent Variable: CAD 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00801927 0.00400963 0.06 0.9419 
Error 27 1.80350610 0.06679652 
Corrected Total 29 1.81152537 

Dependent Variable: ARS 
Source DF SSquares MSquare FValue Pc>F 
Model 2 0.00046247 0.00023123 0.03 0.9684 
Error 27 0.19434570 0.00719799 
Corrected Total 29 0.19480817 

Appendix 2.8: SAS output for significance of 'position' for harvests 1 (20 days) and 2 
(40 days) continued. •• 



Dependent Variable: POL 
Source DF SSquares 
Model 2 0.19252827 
Etror 27 2.63361760 
Corrected Total 29 2.82614587 

MSquare 
0.09626413 
0.09754139 

FValue 
0.99 

Pr>F 
0.3858 
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Appendix 2.8: SAS output for significance of 'position' for harvests 1 (20 days) and 2 
(40 days) 
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Dependent Variable: VOLS 
Source a= Squares Square FValue Pr>F 
Model 69 27075. 79268 392.40279 420.29 0.0001 
Error 128 119.50606 0.93364 
Corrected Total 197 27195.29874 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 3976.85712 441.87301 473.28 0.0001 
DAY 6 19433.81124 3238.96854 3469.18 0.0001 
NO*DAY 54 2821.16691 52.24383 55.96 0.0001 

Dependent Variable: LIN 
Source a= Squares Square FValue Pr>F 
Model 69 20.93937059 0.30346914 40.74 0.0001 
Error 128 0.95334933 0.00744804 
Corrected Total 197 21.89271992 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 3.17127471 0.35236386 47.31 0.0001 
DAY 6 14.88687594 2.48114599 333.13 0.0001 
NO*DAY 54 .2.17386904 0.04025683 5.41 0.0001 

Dependent Variable: CUB 
Source a= Squares Square FValue Pr>F 
Model 69 129.7945980 1.8810811 429.60 0.0001 
Error 128 o.se046n 0.0043787 
Corrected Total 197 130.3550657 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 49.79035476 5.53226164 1263.46 0.0001 
DAY 6 48.36647822 8.06107970 1841.00 0.0001 
NO*DAY 54 24.69570330 0.45732784 104.44 0.0001 

Dependent Variable: CAR 
Source a= Squares Square FValue Pr>F 
Model 69 12.88286298 0.18670816 350.82 0.0001 
Error 120 0.06812183 0.00053220 
Corrected Total 197 12.95098481 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 2.49096923 o.216n436 520.06 0.0001 
DAY 6 8.13399030 1.35566505 2547.28 0.0001 
NO*DAY 54 1.62182214 0.03003374 56.43 0.0001 

Dependent Variable: GER 
Source a= Squares Square FValue Pr>F 
Model 69 38.45818649 0.55736502 243.34 0.0001 
Error 128 0.29317833 0.00229046 
Corrected Total . 197 38.75136483 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 14.57490418 1.61943380 707.04 0.0001 
DAY 6 14.60694269 2.43449045 1062.88 0.0001 
NO*DAY 54 7.21014446 0.13352119 58.29 0.0001 

Dependent Variable: BCG 
Source a= Squares Square FValue Pr>F 
Model 69 5.61873454 0.08143094 10.53 0.0001 
Error 128 0.98953950 o.oon3078 
Corrected Total 197 6.60827404 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 1.94116616 0.21568513 27.90 0.0001 
DAY 6 2.08964125 0.34827354 45.05 0.0001 
NO*DAY 54 1.28870557 0.02386492 3.09 0.0001 

Appendix 2.9: Output for SAS General linear means - mg per shoot, programme as for 
Appendix 2.10, using transformed data; continued •••. 



Dependent Variable: CAD 
Source a= Squares Square FValue Pr>F 
Model 69 1932.247822 28.003592 189.77 0.0001 
Error 128 18.888096 0.147563 
Corrected Total 197 1951.135918 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 756.8443532 84.0938170 569.88 0.0001 
DAY 6 684.367 4728 114.0612455 772.97 0.0001 
NO*DAY 54 386.0464112 7.1490076 48.45 0.0001 

Dependent Variable: ARS 
Source a= Squares Square FValue Pr>F 
Model 69 8.46708792 0.12271142 57.84 0.0001 
Error 128 0.27155867 0.00212155 
Corrected Total 197 8.73864659 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 5.19514408 0.57723823 272.08 0.0001 
DAY 6 1.24396355 0.20732726 97.72 0.0001 
NO*DAY 54 1.37621677 0.02548550 12.01 0.0001 

Dependent Variable: POL 
Sumof Mean 

Source a= Squares Square FValue Pr>F 
Model 69 3096.416539 44.875602 308.86 0.0001 
Error 128 18.597616 0.145294 
Corrected Total 197 3115.014155 

Source a= Type Ill SS Mean Square FValue Pr>F 
NO 9 784.167824 87.129758 599.68 0.0001 
DAY 6 1735.599314 289.266552 1990.910.0001 
NO*DAY 54 427.025342 7.907877 54.43 0.0001 

Least Sqygres Means - Harvest Pate 

Dependent Variable: VOLS 
DAY VOLS 

LSMEAN 
20 0.5320000 

Std Err 
LSMEAN 
0.2332147 
0.1738280 
0.1738280 
0.1738280 
0:1738280 
0.1738280 
0.1764125 

Pr>ITI 
HO:LSMEAN=O 
0.0242 

40 1.4653333 
70 10.1130000 
100 19.4463333 
160 26.6433333 
240 25.7260000 
320 23.0499000 

Dependent Variable: LIN 
DAY LIN 

LSMEAN 
20 0.00900000 
40 0.03966667 
70 0.21566667 
100 0.36700000 
160 0.70133333 
240 0.64333333 
320 0. 71183333 

Std Err 
LSMEAN 
0.02107020 
0.01570480 
0.01570480 
0.01570480 
0.01570480 
0.01570480 
0.01575652 

Dependent Variable: CUB 
DAY CUB Std Err 

LSMEAN LSMEAN 
20 0.02650000 0.01608692 
40 0.07166667 0.01199048 
70 0.44500000 0.01199048 
100 1.01800000 0.01199048 
160 1.30266667 0.01199048 
240 1.27933333 0.01199048 
320 1.10596667 0.01208119 

0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

Pr>ITI 
HO:LSMEAN=O 
0.6700 
0.0128 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

Pr>ITI 
HO:LSMEAN=O 
0.1019 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
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Dependent Variable: CAR 

DAY CAR Std Err Pr>ITI 
LSMEAN LSMEAN HO:LSMEAN:::O 

20 0.00450000 0.00559785 0.4230 
40 0.02333333 0.00417239 0.0001 
70 0.18733333 0.00417239 0.0001 
100 0.38666667 0.00417239 0.0001 
160 0.54400000 0.00417239 0.0001 
240 0.52166667 0.00417239 0.0001 
320 0.43970000 0.00421190 0.0001 

Dependent Variable: GER 
DAY GER Std Err Pr>ITI 

LS MEAN LS MEAN HO:LSMEAN=O 
20 0.00950000 0.01162802 0.4155 
40 0.03733333 0.00866702 0.0001 
70 0.27100000 0.00866702 0.0001 
100 0.58000000 0.00866702 0.0001 
160 0.73566667 0.00866702 0.0001 
240 0.70533333 0.00866702 0.0001 
320 0.56466667 o.00873n6 0.0001 

Dependent Variable: BCG 
DAY BCG Std Err Pr>ITI 

LSMEAN LS MEAN HO:LSMEAN=O 
20 0.01250000 0.02119607 0.5564 
40 0.07233333 0.01579862 0.0001 
70 0.23433333 0.01579862 0.0001 
100 0.35900000 0.01579862 0.0001 
160 0.20000000 0.01579862 0.0001 
240 0.25200000 0.01579862 0.0001 
320 o.2n16667 0.01605281 0.0001 

Dependent Variable: CAD 
DAY CAD Std Err Pr>ITI 

LSMEAN LS MEAN HO:LSMEAN=O 
20 0.11500000 0.09349599 0.2210 
40 0.28466667 0.05968780 0.0001 
70 2.04500000 0.06968780 0.0001 
100 3.90766667 0.06968780 0.0001 
160 5.22266667 0.06968780 0.0001 
240 4.86066667 0.06968780 0.0001 
320 3.85550000 0.07013398 0.0001 

Dependent Variable: ARS 
DAY ARS Std Err Pr>ITI 

LS MEAN LS MEAN HO:LSMEAN=O 
20 0.04200000 0.01129782 0.0003 
40 0.07533333 0.00842089 0.0001 
70 0.23633333 0.00842089 0.0001 
100 0.23466667 0.00842089 0.0001 
160 0.26466667 0.00842089 0.0001 
240 0.25500000 0.00842089 0.0001 
320 0.24666667 0.00840942 0.0001 

Dependent Variable: POL 
DAY POL Std Err Pr>ITI 

LS MEAN LSMEAN HO:LSMEAN::O 
20 0.17000000 0.09100704 0.0641 
40 0.49466667 0.06783264 0.0001 
70 4.14866667 0.06783264 0.0001 
100 5.99366667 0.06783264 0.0001 
160 8.39433333 0.06783264 0.0001 
240 7.78900000 0.06783264 0.0001 
320 6.93596667 0.06959259 0.0001 

Appendix 2.9: Output for SAS General linear means - mg per shoot, programme as for 
Appendix 2.1 O, using transformed data. 



SAS Programme 
00001 data a; 
00002 input no day pos $ vols lin cub car ger beg cad ars pol; 
00003 cards; 
00004 1 20 A 1.10 0.0 0.0 0.076 0.0 ......... 0.0 0.052 0.0 0.065 2.356 ; 
00207 proc glm data=a; 
00208 class no day; 
00209 model lin cub car ger beg cad ars pol= no day no* day; 
0021 O lsmeans no day no*day/etype=3 pdiff stderr; 
00211 run; 

Class Levels Values 
NO 10 12345678910 
DAY 7 20 40 70 100 160 240 320 Number of observations in data set= 200 

NOTE: All dependent variable are consistent with respect to the presence or absence of missing 
values. However only 198 observations can be used in this analysis. 

Dependent Variable: VOLS 
Source CF SSquares MSquare FValue Pr>F 
Model 69 484.1973177 7.0173524 124.47 0.0001 
Error 128 7.2165833 0.0563796 
Corrected Total 197 491.4139010 

Source CF Type Ill SS Mean Square FValue Pr>F 
NO 9 103.1677675 11.4630853 203.32 0.0001 
DAY 6 327 .5621469 54.5936912 968.32 0.0001 
NO*DAY 54 36.0047081 0.6667539 11.83 0.0001 

Dependent Variable: LIN 
Source CF SSquares MSquare FValue Pr>F 
Model 69 0.49230249 0.00713482 10.56 0.0001 
Error 128 0.08646433 0.00067550 
Corrected Total 197 0.57876683 

Source CF Type Ill SS Mean Square FValue Pr>F 
NO 9 0.11475675 0.01275075 18.88 0.0001 
DAY 6 0.28651008 0.04775166 70.69 0.0001 
NO*DAY 54 0.07930044 0.00146853 2.17 0.0002 

Dependent Variable: CUB 
Source CF SSquares MSquare FValue Pr>F 
Model 69 3.67376439 0.05324296 210.22 0.0001 
Error 128 0.03241867 0.00025327 
Corrected Total 197 3.70618306 

Source CF Type Ill SS Mean Square FValue Pr>F 
NO 9 2.26941299 0.25215700 995.60 0.0001 
DAY 6 0.82027835 0.13671306 539.79 0.0001 
NO*DAY 54 0.34606533 0.00640862 25.30 0.0001 

Dependent Variable: CAR 
Source CF SSquares MSquare FValue Pr>F 
Model 69 0.38445615 0.00557183 76.46 0.0001 
Error 128 0.00932733 0.00007287 
Corracted Total 197 0.39378348 

Source CF Type Ill SS Mean Square FValue Pr>F 
NO 9 0.12721634 0.01413515 193.98 0.0001 
DAY 6 0.19488963 0.03248160 445.75 0.0001 
NO*DAY 54 0.02950729 0.00054643 7.50 0.0001 

Dependent Variable: GER 
Source CF SSquares MSquare FValue Pr>F 
Model 69 1.14727415 0.01662716 104.12 0.0001 
Error 128 0.02044117 0.00015970 
Corrected Total 197 1.16771532 

Source CF Type Ill SS Mean Square FValue Pr>F 
NO 9 0.62247376 0.06916375 433.09 0.0001 
DAY 6 0.30235349 0.05039225 315.55 0.0001 
NO*DAY 54 0.14008954 0.00259425 16.24 0.0001 
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Dependent Variable: BCG 
Source CF SSquares 
Model 69 0.34321913 
Error 128 0.06185182 
Corrected Total 197 0.40507195 

Source CF Type Ill SS 
NO 9 0.13604750 
DAY 6 0.11803146 
NO*DAY 54 0.07730757 

Dependent Variable: CAD 
Source CF SSquares 
Model 69 53.30178994 
Error 128 1.29604333 
Corrected Total 197 54.59783327 

Source CF Type Ill SS 
NO 9 34.20160134 
DAY 6 10.72692927 
NO*DAY 54 5.07093695 

Dependent Variable: ARS 
Source CF SSquares 
Model 69 1.04002465 
Error 128 0.02054933 
Corrected Total 197 1.06057398 

Source CF Type Ill SS 
NO 9 0.76414127 
DAY 6 0.15167696 
NO*DAY 54 0.10285492 

Dependent Variable: POL 
Source CF SSquares 
Model 69 88.86052450 
Error 128 1.18122750 
Corractad Total 197 90.04175.200 

Source CF Type Ill SS 
NO 9 41.92867064 
DAY 6 33.90820041 
NO*DAY 54 7.78954464 

Least Squares Means-Harvest Pate 

DAY VOLS 
LSMEAN 

20 1.65250000 
40 2.16300000 
70 3.97266667 
100 4.71433333 
160 5.31100000 
240 5.40900000 
320 4.62300000 

DAY LIN 
LSMEAN LS MEAN 
20 0.03230000 
40 0.05730000 
70 0.08393333 
100 0.08816667 
160 0.14236667 
240 0.13593333 
320 0.14143333 

MSquare 
0.00497573 
0.00048049 

Mean Square 
0.01513861 
0.01963858 
0.00144088 

MSquare 
0.77248971 
0.01012534 

FValue 
10.29 

FValue 
31.28 
40.71 
2.97 

FValue 
76.29 

Pr>F 
0.0001 

Pr>F 
0.0001 
0.0001 
0.0001 

Pr>F 
0.0001 

Mean Square FValue Pr>F 
3.80017793 375.31 0.0001 
1.78782154 176.57 0.0001 
0.09390624 9.27 

MSquare 
0.01507282 
0.00016054 

Mean Square 
0.08490459 
0.02527949 
0.00190472 

MSquare 
1.28783369 
0.00922834 

FValue 
93.89 

FValue Pr>F 
528.86 0.0001 
157.46 0.0001 
11.86 0.0001 

FValue Pr>F 
139.55 0.0001 

0.0001 

Pr>F 
0.0001 

Mean Square FValue Pr>F 
4.65874118 504.83 0.0001 
5.65136674 612.39 0.0001 
0.14425083 15.63 0.0001 

Std Err Pr>fTI 
LS MEAN HO:LSMEAN=O 
0.05816161 0.0001 
0.04335111 0.0001 
0.04335111 0.0001 
0.04335111 0.0001 
0.04335111 0.0001 
0.04335111 0.0001 
0.04335111 0.0001 

Std Err Pr>ITI 
HO:LSMEAN=O 
0.00638633 0.0001 
0.00474518 0.0001 
0.00474518 0.0001 
0.00474518 0.0001 
0.00474518 0.0001 
0.00474518 0.0001 
0.00474518 0.0001 
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DAY CUB Std Err Pr>ITI 
219 

LSMEAN LSMEAN HO:LSMEAN=O 
20 0.08100000 0.00389824 0.0001 
40 0.10570000 0.00290557 0.0001 
70 0.16733333 0.00290557 0.0001 
100 0.24216667 0.00290557 0.0001 
160 0.25666667 0.00290557 0.0001 
240 0.26410000 0.00290557 0.0001 
320 0.22076667 0.00290557 0.0001 

DAY CAR Std Err Pr>ITI 
LS MEAN LS MEAN HO:LSMEAN=O 

20 0.01210000 0.00209098 0.0001 
40 0.03436667 0.00155852 0.0001 
70 0.07276667 0.00155852 0.0001 
100 0.09410000 0.00155852 0.0001 
160 0.10676667 0.00155852 0.0001 
240 0.10900000 0.00155852 0.0001 
320 0.08823333 0.00155852 0.0001 

DAY GER Std Err Pr>ITI 
LS MEAN LSMEAN HOiSMEAN=O 

20 0.02775000 0.00309545 0.0001 
40 0.05600000 0.00230721 0.0001 
70 0.10166667 0.00230721 0.0001 
100 0.13786667 0.00230721 0.0001 
160 0.14510000 0.00230721 0.0001 
240 0.14636667 0.00230721 0.0001 
320 0.11293333 0.00230721 0.0001 

DAY BCG Std Err Pr>ITI 
LSMEAN LS MEAN HO:LSME'AN=O 

20 0.03261000 0.00519899 0.0001 
40 0.10390000 0.00387509 0.0001 
70 0.09143333 0.00387509 0.0001 
100 0.08573333 0.00387509 0.0001 
160 0.03980000 0.00387600 0.0001 
240 0.05156667 0.00387509 0.0001 
320 0.05480000 0.00387509 0.0001 

DAY CAD Std Err Pr>ITI 
LS MEAN LS MEAN HO:LSMEAN=O 

20 0.36050000 0.02464793 0.0001 
40 0.41623333 0.01837148 0.0001 
70 o.no96667 0.01837148 0.0001 
100 0.92756667 0.01837148 0.0001 
160 1.02453333 0.01837148 0.0001 
240 0.99390000 0.01837148 0.0001 
320 o.n133333 0.01837148 0.0001 

DAY AAS Std Err Pr>ITI 
LSMEAN LSMEAN HO:LSMEAN=O 

20 0.13100000 0.00310363 0.0001 
40 0.11183333 0.00231331 0.0001 
70 0.09806667 0.00231331 0.0001 
100 0.06050000 0.00231331 0.0001 
160 0.05476667 0.00231331 0.0001 
240 0.05730000 0.00231331 0.0001 
320 0.05200000 0.00231331 0.0001 

DAY POL Std Err Pr>ITI 
LSMEAN LS MEAN HO:LSMEAN=O 

20 0.51475000 0.02353084 0.0001 
40 0.74926667 0.01753885 0.0001 
70 1.69656667 0.01753885 0.0001 
100 1.49186667 0.01753885 0.0001 
160 1.71086667 0.01753885 0.0001 
240 1.68666667 0.01753885 0.0001 
320 1.39960000 0.01753885 0.0001 
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Light Mean StdErr. Mean StdErr. Mean StdErr. Mean StdErr. 
levd Days Amax Amax(n) Q Q Cp Cp Rdark Rdark 

Pretrial 0 931 0.14 (3) 0.092 0.002 13.20 1.91 1.21 0.18 

10% 7 10.72 0.29 (3) 0.101 0.005 9.80 0.62 0.99 0.10 
21 10.98 030 (4) 0.107 0.008 3.81 0.24 0.40 0.02 
35 8.94 038(4) 0.100 0.007 2.50 1.05 0.24 0.10 
49 11.95 .64 (4) 0.117 0.015 5.62 1.60 0.63 0.14 

30% 7 10.3 0.41 0.085 0.000 1238 0.56 1.05 0.05 
21 12.21 034 0.109 0.003 7.08 0.63 0.77 0.07 
35 8.97 0.57 0.107 0.004 3.73 1.54 0.40 0.16 
49 10.57 0.91 0.125 0.004 4.75 0.86 0.59 0.091 

50% 7 11.9 0.06 0.093 0.007 11.57 0.98 1.07 0.01 
21 13.92 0.13 0.122 0.005 7.21 0.94 0.88 0.11 
35 10.95 033 0.101 0.006 5.28 0.64 0.53 0.06 
49 11.94 036 0.110 0.012 4.56 1.15 0.47 0.10 

100% 7 9.86 038 0.091 0.008 16.40 2.01 1.52 0.29 
21 7.62 0.41 0.070 0.002 22.69 5.76 1.50 036 
35 7.13 0.48 0.069 0.001 10.88 0.60 0.75 0.05 
49 11.07 0.45 0.085 0.004 10.41 0.61 0.88 0.03 

10% New 738 037 0.110 0.008 11.73 2.13 1.29 031 
30% leaves 8.64 039 0.100 0.009 16.70 238 1.67 0.26 
50% @49 12.26 0.61 0.110 0.009 1336 0.12 1.47 0.13 
100% days 9.18 0.28 0.080 0.008 32.63 433 2.61 0.46 

Appendix 2.11: Parameters derived from light curves: Amax - light saturated nett 
assimilation rate; Q - quantum yield (slope of curve below lSOpmol m·2 
sec· I); Cp - compensation point; Rclark • estimate of dark respiration. 



Tree no I/lo north I/lo south 
1 0.34 0.44 
2 0.38 0.41 
3 0.44 0.46 
4 0.40 0.54 
5 0.39 0.45 
6 0.41 0.44 
7 0.35 0.41 
8 0.39 0.46 
9 0.39 0.51 
10 0.42 0.46 

Mean 1 O trees 0.39 0.46 
Std. Deviation of Mean 0.03 0.04 

Canopy surface radiation for inclined tubes at 65 and 75 degrees for north and south 
facing surfaces respectively were 0. 78 and 0. 52 of that detected by the horizontal 
pyranometer during fom five minute detection periods. 
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Appendix 2.12: Incident radiation- ratio of canopy surface: canopy interior 
measured using intearating solarimeter tubes (in canopy) and spot 
pyrometer (for unobstructed horimntal surface) at Parrawe site 
24/1V1995; 1100-1430 hrs 


