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ABSTRACT 

An exact distribution—free method is proposed for solving general linear 

regression problems, which have identically distributed errors and one of the 

slope parameters of interest. The method reduces the model to simple linear 

regression form through grouping of observations, and then uses an exact 

distribution—free method for slope in simple linear regression to test or estimate 

the parameter of interest. Of course reducing the model involves a loss of 

efficiency. The choice of an optimal grouping to minimize efficiency loss is 

discussed. 
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CHAPTER 1 

INTRODUCTION 

Statistical inferences are based only in part upon the observations. An 

equally important base is formed by prior assumptions about the underlying 

situation. Even in the simplest cases, there are explicit or implicit assumptions 

about randomness and independence, about distributional models, perhaps prior 

distributions for some unknown parameters and so on. Thus we can say briefly 

that each statistical method is based on special assumptions about the 

population from which the sample was obtained. 

The usual method of solving general linear regression problems is the least 

squares (LS) method. This method has the nice property of providing best linear 

unbiased estimates for the unknown parameters; however this method is 

vulnerable to gross errors in the data and is also inefficient for distributions 

with heavy tails (e.g., Cauchy—type distribution functions). In such cases we 

need alternative methods which rely on some broader and weaker assumptions 

about underlying distributional forms such as symmetry or identical error 

distributions; namely distribution—free methods. 

In simple linear regression (SLR), numerous distribution—free (DF) tests 

and the corresponding estimates can be developed. The SLR model is 

y. = a + fix + c , i = 1, 2, ... , n with {c . } being random errors. Mood and 

Brown (1950) have proposed a DF test, based on their median estimates. 

Parameters a and /3 can be estimated simultaneously from the two equations, 
A 	A 	 A 	A 

median (y i  — a — fix.) = 0 for x i  < xm  , and median (y. — a — fix . ) = 0 for 

x > xM ' where x is the median of x1' x2' . 
' 

X . The point estimate (a, /3) i  
is obtained by trial and error. Theil (1950) developed a simple point estimator 



of slope )3, the median of (n) slopes (y —y )/(x —x ) , 1 < i < j < n , with 
2 

assumptions that the errors are independent, identically distributed and all x .  1 
are distinct. He also obtained corresponding confidence intervals for ig 

Adichie (1967) considered a class of rank score tests for the hypothesis 

a = fi = 0 , with the basic assumption that F(y) = F(y — a — fix) is an 

absolutely continuous, symmetric distribution with square integrable density 

function. Moreover his point estimators of /3 required trial and error solutions 

and also Adichie gave no confidence interval for 	Sen's (1968) estimate is 

quite analogous to Theil's (1950) but is based on weaker assumptions and does 

not require all of the x , x , 	, x to be distinct. If N is the number of non 
12 	n 

zero differences x — x , (1 < i < j < n) , the proposed point estimator is the 

median of N slopes (y.—y.)/(x —x ) for which x 	x . The confidence 
ii 	ii 	 I j 

interval for 	is also obtained in terms of two order statistics of this set of N 

slopes. Brown and Maritz (1982) made a modification to the LS estimating 

equations in SLR, leading to exact DF inference about slope. Exact inference for 

intercept is developed by Maritz (1979), based on work of Theil (1950). 

The planar regression model is y = p + ax + /% + 	= 1, 2, ... n, 

where { } are random errors, {x . ,z i} are known and a, 13 are unknown 

parameters. Suppose 	is of interest, p and a are nuisance parameters and 

{ e } are identically distributed. Brown and Maritz (1982) showed how a 

suitable {x . , z} design, coupled with a restricted permutation or restricted i 
randomization scheme, enables exact procedures to be developed. Brown (1985) 

extended the Maritz/Theil ideas to general regression schemes, through 

grouping of observations to eliminate the nuisance parameters. By pairing 

observations , taking differences to eliminate p and giving symmetric errors, 

then dividing through by the a coefficient, the model is reduced to SLR with 
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symmetric errors, and /3 the slope parameter. The Maritz/Theil scheme then is 

applicable, but since that involves further pairing, the overall problem is one of 

finding groups of four observations, which through two pairing operations yield 

one observation distributed symmetrically about g . Exact DF methods for the 

symmetric location parameter problem are then used. 

This thesis outlines another approach to exact DF regression methods in 

the presence of nuisance parameters through grouping of observations to 

eliminate the nuisance parameters. The number of groups depends on the 

number of observations and also on the number of independent design variables. 

For instance in planar regression, the observations are grouped into k groups, 

where k = [n 1/2], the integer part of nil' ; in regression with three independent 

design variables k = [(n/ 2) 1/2]. After grouping and eliminating the nuisance 

parameters, the model is reduced to simple linear regression form, allowing 

exact DF methods for slope to be employed. 

Of course grouping and reducing the model as described seems to involve a 

loss of efficiency. A question of interest is the extent of efficiency loss suffered 

through grouping and reducing the model. How can the groups be chosen to 

minimize the loss of efficiency? This optimal grouping task is a very difficult 

combinatorial optimization problem, without convexity or other regular 

structure leading to efficient unique solution methods. Three methods will be 

discussed for finding approximate solutions. The methods are : a Monte Carlo 

method which is suitable for small or medium—size designs , a search for better 

neighbours method which is easy to program and implement but can get stuck 

in local optima, and a general technique known as simulated annealing which 
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has proved to be very successful in diverse Operations Research applications 

over recent years. 

To illustrate how the proposed method in this thesis works, and to 

demonstrate that the necessary computer programming is relatively 

straightforward, numerical examples will be given. 

To summarize what we have discussed, the aim of this thesis is to show 

how the general linear model (GLM) 

y =fi +fix +fix + 	+ fl x + e .  , i = 1, 2, ... , n 	(1.1) 
o 	l ii 	221 	 p 

	

where /3 . , j = 0, 1, 	, p are unknown parameters, x x
• 

, x are design 
j 	 ii 	21 	pi 

constants, { } are independent errors and identically distributed, with one of 

the fl .  (j 0) of interest, can be reduced to the simple linear regression model, 

through grouping of observations to eliminate the nuisance parameters, allowing 

exact distribution—free methods for slope in simple linear regression to be 

employed. 

The content of the thesis is as follows : Chapter 1 gives the background, 

problem and aim of the thesis. Chapter 2 contains several concepts about 

estimation and a brief resume of two documented regression methods, which 

will be used in the following chapters. The methods are least—squares methods 

and an exact distribution— free method for slope in simple linear regression 

(Brown and Maritz, 1982). The least squares method will be involved in the 

topic of efficiency—loss, and exact distribution—free tests for slope in simple 
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linear regression will be used for solving the general linear regression problem 

after reducing the model to simple linear form. In Chapter 3 it is shown how to 

solve the planar regression problems by using the proposed method. This 

chapter outlines the method of parameter elimination, a method of calculating 

the efficiency loss as a consequence of grouping of observations and reducing the 

model, methods of minimizing efficiency—loss, the basic steps of the computer 

programs of the approximation method, and a numerical example. In Chapter 4, 

we extend the ideas presented in Chapter 3 to the case of more than two design 

independent variables. The modifications are needed just in the section 

concerning the method of parameter elimination. A numerical example also is 

given in the last section of this chapter. A discussion about the benefits and 

limitations of the proposed method will be presented in Chapter 5. A complete 

computer program of the three approximation methods for solving the planar 

regression problems will be put in an Appendix. 



CHAPTER 2 

SOME BASIC CONCEPTS AND 

DOCUMENTED REGRESSION METHODS 

This chapter is presented as a basis for the following chapters, so it contains 

some concepts and documented regression methods which will be used to develop 

the proposed method. As stated in Chapter 1, the thesis is concerned with efficiency 

loss due to grouping and reducing the model, so a concept of efficiency is needed. 

Here Pitman's asymptotic relative efficiency (ARE) will be used and may be 

obtained by considering the ratio of efficiencies of least squares analyses for grouped 

and ungrouped cases, so Pitman's ARE and a short summary of4east squares 

method in the general linear model (GLM) will be discussed. One of the methods for 

finding the best grouping to minimize the loss of efficiency given in Chapter 3 will 

use pooling of estimate and variance, so a method of pooling estimates and variance 

also will be outlined briefly. The last section will outline an exact DF method for 

slope in SLR (Brown and Maritz, 1982) which will be used after reducing the GLM 

form to SLR form. 

The contents of this chapter are as follows : pooling estimates, Pitman's 

asymptotic relative efficiency, the least squares method and an exact DF method for 

slope in SLR. 

2.1. Pooled Estimates. 

Let 01 	2 
and 0 be two independent estimates of an unkhown parameter 0. 

••■ 

Assume that 0 and 02 are unbiased, so for i = 1,2, we have, for minimum 

variance 

6 



E(0 i) —0, 

and 

var(0 . ) = a. 

The pooled estimate 0 of estimators 01  and 02  is 

^ ^0/1 	cr21 92/6r2 2 
0 (2.1) 

1/U2 	+ 	1/72 
/ 	1 	2 

and the pooled variance of var(01) and var(02) is 

—1 
var(e) = 

2 	
1 	1 (2.2) a+ 
a2 

1 	2 

2.2 Pitman's Asymptotic Relative Efficiency. 

When two or more statistics are available for testing a given hypothesis, one 

statistic is considered more efficient if it is more powerful than other statistics, 

using the same level of significance, at the same fixed alternative. Such a 

comparison of powers for two statistics based on the same data is usually dependent 

on the level of significance a, the sample size n (or some measure of sample sizes 

with several samples), and the fixed alternative at which the powers are compared. 

In order to define a suitable measure of efficiency, an alternative approach is 

adopted comparing the corresponding sample sizes necessary to attain an equal 

power, say 13, at the same alternative for two tests using the same level a. A limit 

argument is usually needed for this measure to be independent of particular values 

7 
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a, n; furthermore one needs to use then a sequence of alternatives converging to the 

null hypothesis at a suitable rate in order to come up with a meaningful definition. 

Pitman (1979) defines asymptotic relative efficiency as follows : 

Let 01  and 0 be two unbiased estimators of an unknown parameter 0, and n 
 2 

the sample size. For n —> 00 , the efficiency of 0 1  relative to 02  is 

urnvar(0 ) 1 e = 
n —> var(0 ) 

2 

(2.3) 

where var(0 ) and var(0 ) are the variance of 01  and 0 respectively. 
1 	 2 	2 

2.3: The Least Squares Method. 

This section will give a short summary of the least squares method in the 

GLM. If the GLM equation (1.1) is written in a matrix notation, we have 

= xg c 	 (2.4) 

where Y.T  = (y i , Y2 , 	Y ) 	' ( fi 	) , cis  = (c c 	c ) and 0 	1 	 12 ' 	n 

lx X X 
11 12 IP 

lx x X 
21 22 2p x = 

1 	X X 	... X 
n2 n3 np_ 
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The least squares assumptions for the error terms are 

(i) } are random variables with mean zero and variance 02  (unknown) , that is 

E(c ) = 0 , var(c ) = 02. 
(ii) {c } are uncorrelated, that is if i # j, cov(c.,c.) = 0. .1 
(iii) { c . } are normally distributed random variables, that is c • - N(0,a2 ). 

The problem is solved by minimizing the sum of squares 

	

S= 	xg)T( x — xg) 

	

= 	— 2gTXTy + gTXTxg 

by differentiating S with respect to # , equating to zero, so obtaining the normal 

equations 

xTxg )(Tx 	 (2.5) 

We assume that X has full rank (p+1) , so g (the LS estimate of /) is 

g= (xTx)-1xTx 	 (2.6) 

From the least squares assumption E(c i) = 

unbiased estimate of g, and by assumptions 

or 1 according to whether i # j or i = j , we get 

0 , it can be shown that g is an 

cov(c., c . ) = 	a-2  , where 	is 0 1 	j 	ij 	 ij  

cov(g)= 02(xTx) -1 , 	 (2.7) 



ei.e. the covariance matrix of the elements of g , so that var()3. ) = a , 1-1 
i = 1, 2, ... , (p+1) , where la ii l are diagonal elements of the matrix (XTX)-1 . 

2.4 An Exact Distribution—Free Method i for Slope in Simple Linear Regression. 

Brown and Maritz (1982) made a modification to the least squares 

estimating equations, leading to exact distribution—free inference for slope. Instead 

of the least squares assumptions (i), (ii), and (iii) in Section 2.3., their method relies 

merely on two broader and weaker assumptions about underlying distributional 

forms, i.e. independent and identically distributed errors. These assumptions enable 

the basic permutation argument to be applied to obtain an exact permutation 

procedure for the slope parameter. 

The model used is y = a + fix + c , i = 1, 2, ... , n where a, g are 1 
unknown constants, {x.} are design constants, { .} are independent errors, 

identically distributed. The least squares estimating equations 

r = 0 1=1 
and 

x r =0 i=i 

where r. = y — a — , are modified to the general form 

1b(r) = 0 
1.1 

and 	 (2.8) 

h(x . )///(r . ) = 0 
1=1 

10 
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Both h and '0 should preserve the original orderings of {x . } and Ir.}. In 

addition, 0 should be suitably centred so that the first equation of (2.8) provides 

consistent estimates of ct when )5' is known. Though the approach is general, the 

various exact tests and confidence intervals are worked out in detail only for three 

specific cases of the general residual transformation 0 ; the cases considered are .0 

equal to sign, rank and 7/)(x) = x itself. Modified designs of h are used 

throughout and also for h = sign, rank and identity. 

Of course, as a consequence of the transformation described, an efficiency loss 

will be involved. The asymptotic efficiency of the estimate of slope relative to 

least squares is 

(2.9) 

where p is the limit correlation coefficient between {h(x . )} and {x i}, and e lk  is 

an efficiency factor associated with 0. 

A different choice of h and 7,1) will give different efficiency loss results. For 

each of the choices of 0 given, the associated procedures are less than optimal 

under at least one criterion; the choice sign suffers loss of efficiency, the choice rank 

is difficult to compute, and the choice of identity is not robust (the least squares 

choice). 

This thesis is concerned with loss of efficiency due to grouping which will be 

additional to, and independent of, whatever choices of h and 0 are used when the 

model is reduced to SLR form. So studying grouping efficiency loss will not need to 

refer to any particular choices of h and 0 ( see the next chapter). However, to 

illustrate how all the exact DF methods are used, with examples, some specific 
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choices of h and tp will be needed. For illustrative purposes the choices h(x) = x 

and OW = rank (r) will be used and will be outlined in this section. 

Inference about only slope )3 is based on the estimating equations (2.8), for 

h(x) = x, 0(r . ) = rank(r . ) — (n+1)/2 , and because rank(r.) is independent of a 

S(fi) = 	x i {rank(y i  — )3x i) — (n+1)/21. 	 (2.10) 

S is a monotone function of )3 which decreases only in downward jumps at certain 

13 values, i.e. at 	= )3. = (y. — y.)/(x — x.) for all pairs i, j. 

We now discuss the usual statistical inference problems, i.e. the problem of 

point estimation, confidence intervals and hypothesis testing. 

Suppose )3o is the true value of the slope /3. The estimated value of fl o is 

the weighted median of )3..  with weights Ix .  —x . 1 for all pairs i, j , so 13 	 1 	j 

a Y. Weighted median 	Y- 
'o 	Weights Ix.-x I 	x .  — x .  1 	j 	1 

(2.11) 

where )3o is the estimate value of )3o . 

Tests Ho : 48 = )3o are rejected for large or small values of S(fl).  Because 

of the assumption of identical error distributions, the exact null distribution of 

T = S(/3o
) + n(n+1)X12 is enumerated by calculating all the values i  x p , where =1 

	

p , p , 	p is a permutation of 1, 2, ... , n. All n! such values are equi—probable, 

	

12 	n 
and the number of these permutations obviously becomes excessive as n increases. 



and 

(/). 	T)) 2  

= 0(1) 	 (2.13) 

13 

In most cases it is convenient to use the normal approximation. According to 

Wald and Wolfowitz (1944), if the sequences (x i, x2, , x.) and (PI , P2 , P.) 

satisfy condition W , that is for all integral r > 2 

 

(x .  i)r 

 

	 = 0(1) 
r/2 

(2.12) 

    

 

(x .  3-02 

  

      

then the distribution of 

r = T —E(T)  
Var(T) 

approaches the normal distribution with mean 0 and variance 1 as n —> co , 

where E(T) = n i , Var(T) = (S.Spp)/(n-1) , = ( xj)/n , 15 = ( i rr1  p i) n , 

S i  (x — 302  and Sp  = 	(p — 15) 2  , and therefore the approximate XX •
=1 	i 	 p 	i=1 

distribution of T is 

T 	x .p. - N 
i=1 

S 	S 
nip,  xx  PP) 

( n-1 ) 
(2.14) 
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Because (pi , p2 , 	, pn) is a permutation of (1, 2, ... , n) , the condition 

(2.13) is satisfied, so whether (2.14) is satisfied or not merely depends on the 

condition (2.12). 

If the rank scores are chosen centred, that is E p . = 0 , or p . =i— (n+1)/2, 

we have 

S S 
T= 

	

	x .p .  - N(0 xx  
i1 

and 

p To)2 = n(n 2-1)  
PP 	 12 	• 

Thus the null distribution of T is 

N(0,n(n+1 ) 
12 	xx  

(2.15) 

For confidence intervals, the behaviour of S has to be examined. From (2.10) we 

obtain 

and 

S(—co) = 	x . 1 rank(x . ) — (n+1)/2 
1  

(2.16) 

S(oo) = 	xi { rank(—xi) — (n+1)/21. 



Thus 

S(co) = V  x . 1 (n+1) — rank(x) — (n+1)/2 1 L i=1 

= — X .  rank(x.) — (n+1)/2 1 
i=1 

(2.17) 

15 

S decreases only in downwards jumps of size Ix —x I at # = #. for all pairs• 

j. From (2.16) and (2.17) we see that S(+00) = — S(—o) , so the structure of S 

may therefore be enumerated systematically; the confidence intervals for the slope 

# must have some p as their end points, and the approximate confidence level of 
ii 

any such interval may be found. 



CHAPTER 3 

PLANAR REGRESSION 

This chapter outlines the proposed method of solving the planar 

regression problems when only one of the slope parameters is of interest. The 

basic steps are as follows. Firstly, eliminate the other slope parameter through 

grouping of observations such that the planar regression can be reduced to SLR 

form; the group is chosen to approximately minimize the efficiency loss. 

Secondly, estimate or test the slope of interest by using an exact 

distribution—free method for slope in SLR. 

This chapter is concerned with the first step and outlines the method of 

parameter elimination, the method of calculating the efficiency loss, the method 

of minimizing efficiency loss, the computer programs and a numerical example 

to illustrate how the method works. 

3.1. Method of Parameter Elimination 

In planar regression, the usual model for fitting a straight line to data 

is : 

y .  = p+ ax. + Oz.+
i
, i = 1, 2, ... ,n 	(3.1) 

where n is the number of observations, {x., z.} are design constants, { e.} 

are independent errors, identically distributed with finite variance, and p, a, # 

are unknown parameters. Suppose # is of interest, and that p and a are 

nuisance parameters. 

16 
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There are many possibilities for grouping of observations to eliminate 

the parameter a and reduce the equation (3.1) to SLR form, but this section 

outlines just one simple method of grouping. Other methods of grouping will be 

discussed later (see Chapter 5). The method is said to be simple because it is 

straightforward compared with other methods; moreover after reducing the 

model to simple linear regression form, the slope parameter of interest can be 

estimated or tested directly by employing an exact DF method for slope in 

simple linear regression. 

To eliminate the parameter a , the observations are placed into k 

groups where 

k= [n1 /9. 

y 

	

the integer part of n1 /2. Let A, A, 	, A be constants, and for i = 1, 2, ... , 
1 	2 	k 

k, define 

=Ay 	= 	A j j+ko_o 	. + a 	A .x.  A z 
=1 	j., j+k(i-1) i- 

j=1 ) 

	

Ae 	f 	. 	 (3.2) j 	. j ., 	+kki-1) 

Suppose that {A } are chosen so that for all i = 1, 2, ... , k , 

Ax 
j 

I 	= constant , x* say. 
j. , j +kki-1) 

(3.3) 



Then from (3.2) and (3.3) 

y* A* + gz* + e* 

where y*.  = E Ay. f 	, p* = 	+ aoc* , c= •  A , z* =E Az f 
1 	j=1 	j+kki-1) 	 j=1 	j 	i 	j=1 	j j+kk1-1J 

and e* = 	Xe f .  \. The equation (3.4) is of SLR form because len are 
j=1 j j+kki-1) 

independent, identically distributed, and so can be treated by exact DF 

methods. 

How can {A.} be chosen to assume that (3.3) holds? Let 

AT = (A , A , , A ) and a kxk matrix X be such that (X) = x 
1 	2 	k 	 i,j 	j+k(i-1) • 

We need to find A to satisfy (3.3) , i.e so that 

X A = x* 1 

where 1T = (1, 1, ... ,1) . Since the value of x* is immaterial, the choice 

A = X-1  1 	 (3.5) 

will always suffice. That is, the row—sums of X-1  provide the multipliers 

{A . }. 

The k pairs of values le, yn for the SLR model (3.4) can be I 
calculated more easily using a matrix notation. Let k x k matrices Z and Y 

be such that (Z) = z \ and (Y) = y f N 	 2 	k  . If z*T  = 	Z*, 	,z*)) 
j+kki-1) 	i,j 	j+kki-1) 

Of course, X needs to be non—singular, and only non—singular X should 
be accepted in the random search methods soon to be described. See 
also Brown, B.M. and Pella, M.J. (1 .991), The grouping problem in 
distribution—free planar regression, Austral. J. Statist. 33, to appear. 

18 

(3.4) 



and y*T = (y*, y*, ,y*) then 
1 	2 	k 

19 

(3.6) 

We have reduced the planar regression (3.1) with n observations to 

SLR equations (3.4) with k observations. 

3.2. Efficiency Loss due to Grouping. 

As stated in Chapter 1, grouping and reducing a model will result in, a 

loss of efficiency. The extent of efficiency loss thereby suffered is a question of 

natural interest. 

By an analysis similar to that in Brown (1985) , it can be shown that 

the asymptotic efficiency of exact DF methods applied after grouping is 

eG .eDF ' where e is the characteristic efficiency of the particular DF DF 

method used (for example as in the symmetric location problem or simple linear 

regression), and where eG  is a factor attributable to grouping. The factor eG  

is of interest here, and it may be obtained by considering the ratio of 

efficiencies of least—squares analyses for grouped and ungrouped cases. 

Such a ratio of efficiencies is just a ratio of variances of estimates of )3 

(see Section 2.2). If equation (3.1) is written in a matrix form, we have 

= A 0 + c, where 



X Z 

	

1 	1 

	

lx 	Z 

	

2 	2 
A = 

	

x 	Z 
n_ 

ir  = (Y Y --- Y ) , °T  = (ii, a, /3) and err  = (E , C , ... , c ) . Suppose that 
l' 2" n — 	 1 2 	n ,. 

LS assumptions are valid, and if # LS is the ungrouped LS estimate of 0 , then 

from (2.7) 

	

var(ks) = a {(ATA)'I„ , 	(3.7) 

where cr2  is the observational error variance. 

After grouping 

y*  = A* 0* + c* 

where eT  = (y*, Y* , ••• Y:) 2 

1 z* 
1 z* 

A* = 	2 

	

0*T  = (p*, #) and c*T  = (e* c* 	(*). 	The 	LS assumptions also hold for the — 	2"  k 

grouped data because WI are independent and normally distributed and if 

20 



GLS is the least squares estimate of # after grouping, then from (2.7) fi 

var(fiGis) 	
a*2{(A*TA*)-1} 

22 
	 (3.8) 

where a*2  = var(e *) = o-2  E \2 • Thus from (2.3), (3.7) and (3.8) we 
=1 

obtain 

eG = 	 

	

var(flGLs ) 	A2. 	A * TA*ri 

= 1  

The formula (3.9) is the asymtotic efficiency of estimates of slope 	for the 

grouped LS relative to ungrouped LS. 

3.3. Minimizing the Loss of Efficiency 

To maximize the grouping efficiency e G  , it follows from (3.9) that 

Var(#GLS ) must be minimized, i.e. groups are to be chosen to minimize 

k ) 2  

= 
{(A*TA* ) -1 } 	A2  = 	

j1 
 

22 i= 1  
k z* 2  — ( z* 

=1 
)2 

(3.10) 
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var(fiLs ) 	{(A TA) J (3.9) 
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This optimal—groupings task is a very difficult combinatorial 

optimization problem, without convexity or other regular structure leading to 
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efficient unique solution methods. Three methods for finding approximate 

solutions will be described. 

(i) A Monte Carlo method, estimating the probability of having the optimal 

solution, suitable for small or medium—sized designs; 

(ii) a search method which seeks improved neighbours of any current solution, 

which is easy to program and implement but which can get stuck in local 

optima; and 

(iii) a general technique known as simulated annealing, of great recent 

popularity in operations research circles. 

The two large—sample methods (ii) and (iii) will then be illustrated 

and compared via an example. 

3.3.1. A Monte Carlo Method. 

When n is not too large, it can be surprisingly efficient just to 

generate completely random groupings, evaluate e G  for each, and repeat a 

large number (say N) times. Although it may appear that there are a large 

number (n!) of possible groupings, many will share the same value of eG  , as 

can be observed by noting that e G  is unchanged by swapping rows and/or 

columns in the matrices X, Z and Y. Therefore if N is large, the probability 

that the current maximum eG is in fact the overall maximum can be 

surprisingly high. 

First, generate random groupings for a short time, then count and list 

the number of distinct values of e encountered. Let there be m distinct 

values. Then randomly generate N further groupings, where N is now very 
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much larger. Count the number of times a value eG  occurs which was among 

the initial set of m values. 

Let U be the number of such occurences, so that U - Bi(N, m/M) , 

where M is the total possible number of different e G values. When U is 

observed, a confidence interval for m/M and hence for M may be evaluated. 

Possibly the use of approximations Binomial —> Poisson  > Normal 

is the easiest path to take in getting the confidence interval. 

To illustrate, for the design with n = 9 points (using 9 observations 

selected randomly from the data of the numerical example of Section 3.4), an 

initial set of m = 83 distinct e values followed by N = 40,000 further 

random groupings gave U = u = 459 . The resulting approximate 95 % 

confidence interval for the Poisson parameter mN/M is (418.89 , 502.96) and 

the corresponding interval for M is (6601 , 7926). 

What then is the probability that among 40,000 values of e G  , the 

overall maximum is already present? Taking a conservatively large estimate of 

M as 8,000 , the probability of missing the maximum is e-5  = 0.0067; the 

calculations are as for the famous " birthdays paradox " . Thus in this case we 

can be over 99 % certain of having already found the overall solution. 

3.3.2. A search for better neighbours. 

Any "better—neighbour" search depends firstly on having a concept of 

"neighbour". In the present situation, a neighbour of a given grouping will be 

any other grouping produced by the smallest possible change, i.e. the 

interchange of a single pair of corresponding elements within X and within Z . 

Note that within—row or within—column changes create different groupings and 

different eG values. 
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A simple neighbours search is to start with any randomly chosen 

grouping, and generate a neighbouring grouping by interchanging a randomly 

chosen pair. Evaluate e G  for the new grouping, and move to the new grouping 

if the e value exceeds that for the original grouping. Keep re—generating 

random pairs and moving to better neighbours indefinitely, or until the 

procedure appears to terminate at a local maximum with no better neighbours. 

Repeat the whole procedure several times to see if improved finishing groupings 

can be obtained. 

Because every grouping has n(n-1)/ 2 neighbours, it can be more 

efficient to generate s neighbours at random at each step, where s is a fixed 

integer possibly greater than 1 . Choose the neighbour with best value of eG  

and move to it if the new e exceeds the old. For s > 1, this refinement can 

lead to more rapid improvement. 

A variation of the neighbour search is to divide the data into two (or 

more) separate sets, and carry out the grouping operation separately within 

each set. Each set yields an independent estimate of , say /3 1  and )62  , with 

different expressions var(fl i ) and var(fi ) . The final combined estimate will 
2 

use weight proportional to (variance) -1  (see Section 2.1), and the final 

expression for grouped efficiency is 

eG 	"TA)-11 33 1[{(A*TA*)-1} 22 A j2  ]-1 
	

(3.11) 

where 	refers to a sum over the two (or more) sets. 

As in the neighbour search, randomly chosen pairs are swapped, either 

within or between the sets, and improved combinations of sets/groups are 

accepted. 
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All these variations on the neighbour search theme end at local maxima 

which, while usually having good efficiency, might not be the overall optimum. 

3.3.3. Simulated annealing. 

The method of simulated annealing stems from Kirkpatrick et. al 

(1983), who applied to general optimization problems a method of Metropolis 

et. al (1953), which mimicked the passage to crystalline states of cooling high 

temperature material. The technique has proved to be very succsessful in 

diverse Operation Research applications over recent years. 

When applied to the optimal—grouping problem, the method is as 

follows. 

(i) Generate a new grouping G1 and evaluate its grouped efficiency eGi  . 

The new grouping can be generated in any fashion, either totally at random or 

by some interchanges of pairs within the existing grouping G o  . However, 

generating totally random new groupings would be computationally wasteful, 

and some method based on small changes to G o  is preferable. 

(ii) Accept G1 if eGi  > eGo  . Otherwise, accept G1 with probability 

p = exp { — (eGo  — eGi)/ T)} , 	 (3.12) 

where T is a " temperature " parameter which is decreased in some slow 

manner during the course of iterations. 

(iii) Continue the iteration process for as long as is possible. 
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Note that worse G1 can be accepted, with a relatively high probability 

at early stages when T is high, but with much lower probability later on. Thus 

G1 can escape from local maxima, but it is more difficult to escape from later 

local maxima which are more likely to be " close" to the overall maxima. 

3.3.4. Computer Programs. 

This section outlines just the basic steps of the computer programs for 

finding an approximation of the best grouping, whereas the complete program 

can be seen in Appendix 5. 

Because only k 2  observations of the n observations available are used 

for estimating the parameter of interest, firstly we have to choose the k 2  

observations from the n observations randomly. Our aim is to allocate the k 2  

observations into k groups such that e G  will be maximum; however, to 

simplify the flow—charts we just need to find an order of the k2  observations, 

because when we allocate the k2  observations into k groups, the first k 

observations becomes the members of the first group, the second k 

observations becomes the members of the second group and so on. So our aim 

now is to find an ordering of the k 2  observations which minimizes the loss of 

efficiency. 

The Turbo Pascal Language Version 5.0 is used to write the programs. 

Suppose that the original ordering of the observations is x . , z . , y. , where i = 

1, 2, ... , n . Some arrays will be used to store the (order of) data. We now 

discuss the flow—charts of the three approximation methods one by one. The 
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complete flow—chart will be very complicated, so to simplify the flow—charts, 

here we just show how to get the approximation of the best order of data 

without describing the flow—chart of the procedures of choosing the k2  

observations, calculating eG  , and so on. Those procedures can be seen directly 

in the computer programs. 

Monte Carlo Method. 

The arrays used to store the data are as follows : 

(i). X0rig[i], ZOrig[i], YOrig[i], i = 1, 2, ... , n , are used to store the original 

ordering of the n observations. 

(ii). XSelectBest[i], ZSelectBest[i], YSelectBest[i], i = 1, 2, ... , k 2  are first used 

to store the k2  observations selected, and later for keeping an ordering of the 

data which gives improved efficiency. 

(iii). XCalc[i], ZCalc[i], YCalc[i] are used to store an ordering of the data used 

for calculating e 0 G • 

Some other variables used in the flow—chart are: 

(i) BestEfficiency is used to store the best eG  so far. 

(ii) Nu0fRepeat is the number of repeats of the procedure of calculating e G  to 

get an approximation of the best efficiency. 

The flow—chart is as follows : 



BestEfficiency :. 
XSelectBest(i] 	XCalc[1] 
ZSelectBest[i] 	2Calcjil 
YSelectBest[i] 	YCalc[ij 

Yes 

Choose a random permutation 
of k 2  observations 

XCalcfil, ZCalcfil, YCalcjil  

NuOf Repeat 
No 

I 	
input 

X0rigfij. 20rig(i], YOrig[i] 

BestEfficiency - 0 
NumaRepeat - N 

Select k` observations 
XSelectBest[i], ZSelect8est[11 

YSelectBest[i], I . I, 2, ... 	k h  

I For  j 	to NuOtRepeat 

Yes 

Print 
BestEfficiency 
XSelectBest[il 
2Selec:Best[i] 
YSelectBest(i] 

Figure 3.1. 
The flow—chart of the Monte Carlo method. 

A Search for better neighbour. 

The arrays needed to store the data are the same as the Monte Carlo 

method, except that XSelectBest[i], ZSelectBest[i] and YSelectBest[i] have a 

slightly different meaning, in that the arrays are first used to store the k2  

observations selected, and then for storing a neighbour which gives improved 

efficiency. The variables BestEfficiency and Nu0fRepeat have the same 

meaning as for the Monte Carlo Method. The flow—chart is as follows : 
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nterchange elements within 
XCalc[i). ZCalc[i], YCalc[i) 

vi 

Calculate e0  

BestEliciency es  XCalc[il XSelectaest[i] 
XSelectBest[il XCalc[il 2Calc[i] ZSelectSestri) 
ZSelectSest[i] ZCalc(i) YCalc(i) YSelectEiest[i) 
YSelect3est[f] YCalc(i) 

No 
i NuOtRepeat ? 

C.—  Start 

V  

1 	
input 

X0rig[1]. ZOng[71, YOrig[11 

Nuallepeat - N 

choose le ooservations 
XSelectBest[i). ZSelectBest[ill  

YSelectEtestri). i . 1. 2. -.. k 

Choose a rancom permutation 
of kz  ooservations 

XCalc[i). nalc[11, YCalc[i] 

Calculate es 
BestErliciency 	eG  

XSelectBest[q 	XCalc[i] 
ZSelectBestD) 	ZCalc[i] 
YSelectSesqg 	YCalcD] 

For I 1 to Nu0fReoeal 

V  

Print 
Best Elf iciency 
XSelectBest[i] 
ZSelectSest[i] 
YSelectlilestM  

Figure 3.2. 
The flow—chart of a search for better neighbour 

29 
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Simulated Annealing Method. 

The arrays needed to store the data are as follows: 

(i) (i) X0rig[i], ZOrig[i], YOrig[i], i = 1, 2, ... , n 	are used to store the 

original ordering of the data. 

(ii) XSelectMove[i], ZSelectMove[i], YSelectMove[i], i = 1, 1, 	, k2  are first 

used to store the k2  observations selected, and then for storing an ordering of 

the k2  observations if it gives improved efficiency, or worse efficiency with 

probability as presented in (3.12). 

(iii) XCalc[i], ZCalc[i), YCalc[i] are first used to store a random permutation of 

data and then to store an ordering of the data used for calculating e G  . 

(iv). XSelectBest[i], ZSelectBest[i], YSelectBest[i] are used to store the best 

ordering of the observations so far. 

Some other variables used are : 

(i) Temp is used for temperature. 

(ii) TFactor is the temperature multiplying factor. 

(iii) NuOfTempUsed is the number of temperatures used in the process of 

getting the best efficiency. The temperature will decrease with the factor 

TFactor. 

(iv) NuOfCalcEachTemp is the number of repeats of the procedure of 

calculating eG  at each temperature. 

(v) ProbMove is the probability of moving from one ordering of the data to 

others. 

ProbMove < 
f =1 	if eG 	AnnealEf f 

[= exp{—(Annea lEff — eG ) / Temp} if eG  AnnealEff 

(vi) AnnealEff is used to record a new e G each time we move to a new 

ordering of the data. 

(vii) BestEfficiency is used for recording the best efficiency so far. 



Figure 3.3 
The flow—chart of the simulated annealing method 

For 1 to NurnOfTerroUsed 

C_Sta 

XOng[ii, ZOng[1]. YOrigtil; I . 1. 2. -. m 
Temp. TFactor. NuCITempUsed 

/ 	
input 

NuCtCatcEacnTemis 

[For k 1 to NumCalcE.acnTemp 

I Temp Temp • TFactor I 

No 

y YC71 

/ BestElficie Prim ncy. XSelectElest(1] 
ZSetectElest(f). YSeiect8est(11 

31 

XSelectMove(i] 	XCalc(il 
ZSelectMove(11:. ZCalc(71 
YSeiectMovegj 	YCalc(i) 

Calculate eG 
AnnealEll 	eG  

BestElficiency 

Choose k 1  observations 
XSelectMove(fl. ZSeiectMove(T), 

YSelectMovera. 	i . 1. 2. 	k 2  

c.hoose a rancom permutation 
of the k 2  ooservations 
XCalc(f). ZCatc(i). YCalc[il 

I interchange elements within' 
I 	XCalefil. ZCalcfil. YCalc10 I 

V  
I Calculate co  

ProtiMove 	1 I ProbMov exp(-(Annea8f 	yTernp)} 

> AnnealEff? 

Yes 

y Yea 

	

AnnealEll 	eG  

	

XSelec:Movecif 	XCalcgl 

	

ZSelectMove(i] 	ZCalc[i] 

	

YSelectMove(il 	YCalc[fl 

XCalctil XSelectMovegl 
ZCalc[i] 	ZSelectMoveg] 
YCalefil 	YSeIectMovefll  

Y02 
BestElliciency 	AnneatElf 

	

XSelectEest(fl 	XSelectMovegj 

	

ZSelectBest(q 	ZSelectMoveill 

	

YselectEestfil 	YSelectMovell]  

0 
NuOtCaicEachTemo? 

0 

0 

V 
Choose a rancom numoer 

0< fin < 1 
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3.4. A Numerical Example.  

To illustrate how the method works, and to demonstrate that the 

necessary computer programming is relatively straightforward, the data from 

Maritz (1981) page 194 was used, where observations were modulus of rigidity 

of timber specimens, and design variables were 

x air dried density 

z modulus of elasticity, and 

y modulus of rigidity. 

There were n = 50 observations, which is convenient for neighbour—searching 

with either 

a single set and k = 7 < 501/2 ,or 

two sets each with k = 5 = 25 1/ 2  . 

Table 1 shows the best e G values obtained in several runs of the various 

methods. For neighbour searches, the number of evaluations of eG  was 

N = 9,000 and for simulated annealing, N = 30,000 . 



Table 3.1. 
Efficiency of GLS to LS method 

using Neighbour—searches and simulated annealing method. 

(i) Neighbour—search with single set, k = 7 

S = 1 	s = 10 	s = 25 	s = 100 	s = 1096 

0.9526 	0.9453 
	

0.9453 
	

0.9125 	0.9136 
0.9304 	0.9453 
	

0.9453 
	

0.9310 
	

0.9426 
0.9125 	0.9316 
	

0.9371 
	

0.9375 
	

0.9125 

(ii) Neighbour search with two sets, k = 5 

s = 1  
0.9332 
0.9318 
0.9521 

(iii) Simulated annealing 

0.9702 
0.9730 
0.9762 

For this example, the best performance is by the simulated annealing 

method. 

We now continue to give a complete solution for this example. Suppose 

we choose the grouping which gave efficiency e G  = 0.9762. The groups of 

observations are presented in matrix form as follows 
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x= 

40.1 
68.1 
42.3 
39.6 
68.9 
63.3 
37.1 

30.7 
58.6 
40.3 
51.3 
43.0 
55.1 
38.3 

42.5 
56.9 
29.1 
51.7 
53.9 
58.3 
60.8 

36.8 
63.2 
32.5 
58.7 
55.3 
39.0 
49.0 

61.3 
31.4 
54.9 
42.4 
28.6 
55.2 
57.3 

50.2 
59.5 
43.0 
68.9 
52.8 
46.7 
50.3 

40.3 
25.3 
50.3 
53.8 
28.2 
40.6 
61.5 

 

         

203 146 189 194 272 228 193 - 
205 264 276 196 91 223 99 

Z = 
238 
110 

167 
248 

133 
261 

188 
189 

252 
130 

213 
246 

240 
186 and 

346 165 188 274 188 245 173 
268 222 238 182 244 210 188 
195 177 245 224 254 209 264 

1587 1069 1492 1306 2054 1728 1145 
1767 2036 1916 1746 925 1474 1000 
1595 1438 1087 1306 1990 1605 1897 
1254 1822 2129 2570 1129 2159 1676 
2649 1647 1621 2086 1033 2053 1112 
2604 1764 1870 1332 1909 1539 1281 
1323 1379 2116 1706 1889 1703 1994 

where the observations in the same row are in the same group. By using (3.5) 

we obtain 

AT  = 10-3  (8.5919, -3.5517,.--4.8352, 6.4375, 6.8459, 2.8427, 4.2365) 

and therefore, by (3.6), 

Y= 
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z*T  = (4.8885, 2.4273, 5.3664, 2.3963, 5.9581, 4.5989, 4.7556) 	and 

y*T = (34.8566 ,24.6856, 37.9711, 31.5204, 40.1202, 38.5121, 34.4414). 

In the model 

y .  = + coc + fiz +c 
i 

with independent errors having zero expectations and common variance a 2  , 

from Appendix 1 we see that the full least squares estimate of is 

3.319 with estimated standard error 0.81 

After grouping and reducing the model to 

y* = 	+ fiz* + c* , 
1 

the least squares estimate of /3 is 

3.263 with standard error 0.85 

The discrepancy between the full least squares and the grouped least squares 

point estimate of (3 is 0.056, with pooled standard error > 0.81 , and this is 

almost certainly due to sampling variation. From the two standard errors 

above, we can calculate an emperical relative efficiency of grouped to ungrouped 

least squares, that is e = (0.81) 2/(0.85)2  = 0.9081 , which is different to 
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eG = 0.9762. The discrepancy between the two efficiencies can be explained as 

follows. From Appendix 1 , we see that estimates of variance from ANOVA 

error mean squares are 

var(e . ) = cr2  = 34,963.286, 

and for the grouped case 

var(c* ) = a* 2  = 8.419. 

7 
Also we can calculate E A 2  = 2.24152 x 10 	The two efficiencies would be 

7 
the same if the assumption—estimate cr* 2  = .72  E A2  was satisfied. Here we i.1 

^ 7 
have a2  E A2  = 7.8371 < (7*2  = 8.419, which explains why e > e. 

Any exact method of inference for slope )3 in the simple linear 

regression model with y* regressed z* could now be used, and for this 

example we use the Brown and Maritz method (see Section 2.4). Since there are 

7 observations, we have ( 7) = 21 values of )3. The point estimate and the 
2 	 ij 

confidence interval ,8 can be obtained more easily by using the graph of S( 13). 

The values of 	and their weights can be seen in Table 3.2. 
Ii 



Table 3.2. 
The values of )3.. in ascending 

order and their weights. 

Weight 
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-220.5673 
-32.3527 
-12.6198 
-0.7049 

0.8142 
1.1831 
1.3387 
2.1719 
2.4145 
3.1743 
3.6321 
3.7605 
4.1324 
4.3714 
4.5203 
4.9124 
5.5543 
6.3669 
6.5179 
7.4166 

10.6470 

0.0310 
0.1567 
0.2897 
0.7675 
2.3593 
1.3592 
2.4923 
2.9701 
3.5618 
2.2026 
0.5917 
2.3283 
2.4613 
3.5308 
2.9371 
1.0695 
1.2025 
2.1716 
0.4778 
0.6108 
0.1329 

The formula (2.16) and (2.17) gives S(-o) = 16.8532 and 

S(00) = -16.8532 and the graph is shown in Figure 3.1. The graph shows that 

the solution for S = 0 is 	= 3.761 . From (2.15), we obtain 

var(S) = 54.361 and therefore the standard deviation is 7.373. The 90 

percent confidence interval of 3 can be calculated as follows 

P(-1.645 < 	S  	< 1.645) = 0.90 
7.373 

Or 

P(-12.129 < S < 12.129) = 0.90 



14 - - 
_ 
- 

_ 

- 

_ 
- 

- 
- - - 

- - 
-18  ""' 

V 

Figure 3.1 

The graph of the funtion S(,(3) . 
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3.319 (1.959, 4.680) 
3.263 (1.550, 4.977) 
3.761 (1.183, 4.921) 

Full LS 
fl 	Grouped LL 

Proposed 	) 
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and from the figure 3.1, we can obtain the 90 percent confidence interval of fi, 

1.1831 < 	< 5.9214. 

By the same method if the slope parameter a is of interest, with 

eG  = 0.9764 (the grouping matrices can be seen in Appendix 2), we obtain a 

point estimate of a = 16.764 and the 90 percent confidence interval of a is 

(13.367, 28.756). 

The next table displays the estimate of slope parameters a and 

and their confidence interval by using the full least squares, grouped least 

squares and the proposed method. 

Table 3.3. 
The estimation of slope parameters a and 43 by using 

full least squares, grouped least squares and the proposed method 

P ara-
meter Method Poi n t 

Estimate 
Confidence 

interval (90 %) 

Full LS 	20.305 	 (14.474, 26.136) 
a 	Grouped ,LS 	20.026 	 ( 9.329, 30.722) 

Proposed ) 	16.764 	 (13.367, 28.756) 

Note : *) eG  = 0.9764 and **) eG  = 0.9762 
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Table 3.3 shows that each 90 percent confidence interval of each 

slope parameter contains the three point estimates for that parameter. If the 

least squares assumptions hold, by using the t test with the same level of 

significance there is no reason to say that the three point estimates are 

different. 



CHAPTER 4 

GENERAL LINEAR REGRESSION 

In this chapter the method in Chapter 3 will be extended to situations 

where more than two independent design variables are taken into account. In 

order to avoid any confusion in notation when the observations are grouped, 

the general linear regression (1.1) is written again using superscript notation 

for the independent design variables as follows 

Y. = 13 xl + x2  + 	+ ,3 xP 	, i = 1, 2, ... , n 	(4.1) i 	2i 	P1 	i 

where n is the number 

parameters, x1 , x2 , , xP 

and identically distributed. 

interest and the other fl .  (i 

of observations, ,3 	/3 are unknown o' 	1, 	.. ' 	p 
are design constants, { e i} are independent errors 

Without loss of generality suppose that 131  is of 

#1) are the nuisance parameters. The next step is 

to eliminate the nuisance parameters such that the general linear equation 

(4.1) can be reduced to a simple linear form. 

2.1. Method of Parameter Elimination. 

To eliminate the nuisance parameters fi. (i 0 or 1) and reduce the 

model to SLR form, the observations are placed into 

k = Rn/(p-1)1 1 /21 	 (4.2) 

groups, where n is the number of observations and p is the number of 
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independent design variables. Thus the number of observations allocated in 

each group is m = (p-1)k. 

Let A , A , .
• 
. , A be constants, and for i = 1, 2, ... , k define 

12 	m 

m 	 m 	m 	 m 
y*.= 	A.y. i  , 	

Jr 1  
= 0 	A+/3 1 Ax 	, N 	

irl 
+,6 	Ax 

j1 	
2  f 	\ 

1 	1 j+Mki-1) 	0 . 	j 	1 j. , j j+ mki -1) 	2 	j j+mki-1) 
=  

m 	 m 

 

AxPj+m ( i-1) + 1 A : E 	 (4.3) 
j=1 	J 

	
• 	J  

Suppose that {Ai } are chosen so that for all r = 2, 3, ... , p 

	

m 	m 	m 
A .xr.  = 1 A.xr. 	= 	A xr 	=... 

	

.1 ,4 	J J 	j=i 	J .1 4-111 	iri 	j j+2M 

= constant, x* say. 
r 

Then from (4.1) , (4.3) and (4.4) 

y* = ,3*+ 13z* + c* 

	

i 	i 

where y* =E A y I \ )51*  = c + 	)(3 j  x* , c= 	A j 	 , j+mki-i) 	o 	o 	j=2 	j 	j=1 j 

	

Z*  = E A x1jr1 	i+mki-1) \ and e* = j=i A e j+mo f  -1) . The equation (4.5) is of SLR j 	 j  

form because {e*.} are independent and identically distributed, and so can be 

treated by exact DF methods. 

How can {A . } and fx*1 be chosen so that (4.4) holds? Let 

k x m matrices X ,X , ,X be such that 
2 	3 	p 

(4.4) 

(4.5) 



X =(X) =x2  f 

	

2 	2 

X = (X ) =x3  \ 

	

3 	3 i)j 

X = ) = XP  
p 	j 

If AT = (A , A , . , A )uT = (x*, x*... x* ••• x* x* ... x*) and X is 12 	m ' — 	2 2 	2 	p p 	p 

an m x m matrix such that 

- X - 2 

X 
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3 x = 

then we need to find A and u satisfying (4.4) , i.e. 

X A = u , 

and if X- is a non—singular matrix we get 

A = X-1  u . 	 (4.6) 

Note that there is some choice available in finding a suitable vector of 

multipliers A. From (4.6) , any choice of the vector u will suffice. 
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After defining a suitable A , the k pairs of values {z*. , y*} for the SLR 

model (4.5) can be obtained more easily by using matrix notation. 

Let k x m matrices Z and Y be such that (Z) = x 1 	and i+m(i-1) 

(Y) 1  = y j+mk f  i-i) If Z*T  = (Z* 7  Z* 7  ... 7  z*) and y*T  = (y*, y*, 	,y*) then ,i 	 1 	2 	k 	 1 	2 

z* = Z A 

	

y* = Y A 
	 (4.7) 

We have reduced the general linear model (4.1) with n observations to the 

simple linear regression model (4.5) with k observations. 

4.2 Minimizing the Loss of Efficiency. 

After reducing the model, the further steps are similar to the steps 

which we discussed in Chapter 3. Our aim is to maximize the grouping 

efficiency eG  , and to that end the approximation methods for finding the 

best grouping as described in Section 3.3 can be used. 

If equation (4.1) is written in a matrix notation, we have y = A 9 + , 

where 

	

1 	x1 	x2  ...x xP 

	

1 	1 	1 

	

1 	X 1 	X2  ... XP  

	

2 	2 	2 

A 

1 	X 1 	X2  ... XP  

	

n 	n 	n 



45 

= (y 1 , Y2 7 	Yn ) 7 0
T 	 /61 , 	flp) and 	= ( 11 , 12 1 	7 

(0) LS is the ungrouped least squares estimate of /3 then from (2.7) 

var{(fl)Ls} = 02{ATA)--11 22  

where e is the observational error variance. To get var
{(13 	

where 

(1)GLS 	 [3 is the least squares estimate of 	after grouping, we write 
13

1 )GLS }   

y* = A* 0 + c 

where y*T = (y )C y* 	, 
2 1 	k 

1 Z*  
1 

1 Z*  
2 

A* = 

0*T  = ( 15)* 	) and c*T  = 	f*, 	, c*k) , and by (2.7) o' 

Var{(131 ) GLS }  = e2{(A*TA1-11 22 

where o-* 2  = var(e) = 	E A2  . Thus the relative efficiency of grouped to j=1 	j 
ungrouped least squares is 
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(ATA ) 	22  

A2 (A*TA*)-4 1  
i 	22 

To maximize eG ' var{ (131 ) GLs }  must be minimized, that is groups 

are to be chosen to minimize 

A 2  
= 

{A*T.A* } -1 1 	A2  = 	
m 	

j1 	
• (4.9) 

22  

	

z*2 	z*)2/k 

j =1 

The values of (4.9) depend on the choice of A and u corresponding to 

allocation of the observations into the k groups. 

The vector uT  = (x*2 , x*2 , 	, x*2 , 	, x*, x*, 	x*) can be written 
P P 

as 

U = V u* 
	

(4.10) 

where u* = (x*
' 
 x*

' 	, x*) and V is an m x (p-1) matrix such that if 
2 	3 	p 

and 0T = (0, 0, 	, 0) then 
-k 	 -k 

eG (4.8) 



1 0 ...O 
—1 —1 —k 
0 1 ... 	0 
—t —1 —k 

0 	0 	... 	1 
-t -t 	-t 

Now (4.6) can be written as 

A = X -1  V u* = M u* 	 (4.11) 

where M = X -1  V . By (4.7) and (4.11) each term of the the denominator 

of (4.9) can be writen as 

V „*2 = „*T ,* _*T MT zT 7 As ..* 
41 	11 

j=1 
and 

z* )2/k = (z*T 11T _* 	*T T 
k— 	— Z 	= kU M Z 1T  Z M u*)/k 

j=1 

where 1T  = (1, 1, 	, 1). Now we can write (4.9) as 

in 
{(A*TA*)-1} 	A2 = 

22 	j 
irl 

T u* MT  M u 
(4.12) 

u*T MT ZT P Z M u* 
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- 

= 

where P = I — (1 1 T)/k and I is the k x k identity matrix. To get the 

minimum solution of (4.12), we minimize 
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u*T C u*  
P = 	

u*T B u* 
	 (4.13) 

where C = MT  M , B = MT  ZT  P Z M. By differentiating p with respect 

to the elements of u* , and equating to zero, we obtain 

(u*T  B u*) C u* = (u*T  C u*) B u* 

that is 

(C — p B) u* = 0 . 	 (4.14) 

In general C and B are non—singular, so there are two possibilities 

for solving (4.14); that is 

(i) 
	

B (B-1 C — pI) u* = 0 	 (4.15) 

where u* is an eigenvector of B -1  C corresponding to the eigenvalue p , 

and since our aim is to minimize p, p must be the minimum eigenvalue of 

C ; 

and 

p C (p -1  I — 	B)u* =0 
	

(4.16) 
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where u* is an eigenvector of C -1  B corresponding to the eigenvalue p -1  , so 

to minimize p, p-1  must be the maximum eigenvalue of C -1  B. 

So to choose eG optimally , 

(i) find the minimum eigenvalue p of 

B-1 C = NIT p z mr1 mT m 

-1 
or the maximum eigenvalue p of 

C -1  B = (MT m) -1  MT zT p z m  

(ii) set u* = the corresponding eigenvector, and the resulting maximal value 

of eG ' from (4.12) , (4.9) and (4.8) , is 

e = 	{(AT 	. 	 (4.17) 
22 

Now we can maximize the grouping efficiency e G  by using one of the 

three methods of finding approximate solutions as oulined in Section 3.3. 

4.3. A Numerical Example. 

This example is taken from Feldman et al (1986) page 31 

(demonstration data) where the observations are the cholesterol (y), 

cholesterol at 1 years old (xl. ), weight (x2.) and the tryglicerides (x 3. ). With 

model y .  = /3 + xi + fix2  + 	c , suppose /3 is of interest. Here m = 2, o 	2i 	i 

(&3 
 ac--)  
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so the 50 observations are divided into k = [50/21 1/2  = 5 groups, each 

containing 10 observations. Because # is of interest, let Y, Z, X2 , and X 
3 

be 5 x 10 matrices such that 

	

Y 	= (y) j+5 ( 1-1 ) 

(xIdi+s(i-1) 

X = (X ) = (x2 ) f 

	

2 	2 bj 	i j+50-1) 

X = (X ) = (X3 ) I \ 

	

3 	3 	I j+50-1) 

and then form the 10 x 10 matrix 

X 
X = [-)-! 1. ( 

3 

After using the simulated annealing method, we obtained an approximation of 

the best grouping which gave efficiency eG  = 0.9374 with 

(i) p-1  = 32832.50622848 , 

97614.6279807 —116468.3150964 I 
(ii) C -11  B = 	 , and 

	

54101.6117438 	—64433.8906319 



(iii) the grouping matrices as follows 

139 149 134 168 162 110 152 172 170 177 - 
183 156 116 191 170 138 146 154 201 122 
123 178 155 168 165 175 154 167 187 173 
125 205 160 158 165 162 177 153 201 166 
163 150 192 208 187 115 150 121 136 154 
148 61 53 98 79 65 60 100 105 135 
92 81 118 57 88 71 68 64 85 79 
59 85 69 96 91 118 69 105 95 82 
85 53 103 57 116 98 32 96 79 70 
59 167 47 65 85 184 73 105 145 89 _ 

173 142 135 178 203 176 185 134 191 229 
179 171 180 167 185 176 172 148 175 185 
187 209 223 210 137 186 149 273 182 160 
165 139 159 145 228 189 179 136 177 200 
190 249 172 182 162 224 167 244 200 175 

172 142 133 158 192 169 178 134 184 219 - 
172 151 170 167 180 171 161 148 162 180 
177 189 201 190 137 166 145 253 182 168 
164 129 152 135 208 182 159 130 188 221 
188 222 167 172 155 219 167 224 191 145 _ 

Note that all of the notations and definitions are the same as in Section 4.2. 

Thus an eigenvector of C -1  B corresponding to p -1  is 

u*T  = (1, 0.5562210). 

By using (4.11) we obtain 

AT  = 10 -3(1.541370, 2.562477, 3.256696, 1.348090, —2.749399, —1.049215, 

—1.332395, 5.295262, —0.5206508, —1.795876) 
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X 

z= 

Y = 



and then by (4.7) 

*T 
z = (0.519725, 0.963300, 2.126295, 0.528960 ,1.707120) 
*T 

= (0.553226, 0.918092, 1.867065, 0.479284, 1.582235) 

In the model y = + /3 + x 2  + x3  + e with independent errors i 	0 	li 	2i 	3i 	i 
having zero expectation and common variance cr 2  , from Appendix 3 the full 

least squares estimate of a is 

0.853 with estimated standard error 0.047 . 

After grouping and reducing the model to y* = 13* + z* + e* , the least 
0 	1 

squares estimate of becomes 

0.858 with estimated standard error 0.033 . 

As in the numerical example of Section 3.4 , the discrepancy between the full 

least squares and the grouped least squares point estimate of /3 is 0.005 with 

pooled standard error > 0.033 , and is almost certainly due to sampling 

variation. The discrepancy between e G  = 0.9365 , and an empirical relative 

efficiency calculated from the two standard errors above, that is e = 2.0285 , 
5 

is related to the fact that the assumption—estimate a*2  = a2 E A' was not 
J1 

satisfied . From Appendix 3 we see that estimates of variance from ANOVA 

error mean squares are 
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. 



var(c . ) = 78.113 , 

and for the grouped case 

var(c*) = 0.002 . 

5 
Also we can calculate E A2  = 6.333690 x 10 -5  , so 
^ 5 
u2  E A2  = 0.005> 0**2  = 0.002 which explains why e G  < e . 

The Brown and Maritz method for slope in simple linear regression now 

can be employed to estimate 	Since there are 5 pairs of new observations 

(z, 	, we have ( 5) = 10 values of. The values of /3 •  in ascending 
2 	 ij ij 

order and their weights are shown in Table 4.1. 

Table 4.1. 
The values of fi.. in ascending order 

and their weights. 

Weight 

—8.0067 0.0092 
0.6795 0.4192 
0.8160 1.1630 
0.8178 1.6066 
0.8226 0.4436 
0.8666 1.1874 
0.8688 1.5973 
0.8929 0.7438 
0.9362 1.1782 
1.0103 0.4343 
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The point estimate and the confidence interval of 131  can be obtained using 



4 

3 

2 
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0.8666 

-8 
.1 	 .6 	.8 	.9 	.0 	1 
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-4 

Figure 4.1 

The graph of the funtion S(fl1 ) . 
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the graph of the function S(3). The formula (2.16) and (2.17) give 

S(—co) = 4.3913 and S(co) = --4.3913 respectively, and the graph of S((3 1 ) is 

shown in Figure 4.1. The graphs shows that the solution for S = 0 is 

= 0.8666 . From (2.15), we obtain var(S) = 5.1988 and therefore the 

standard deviation 2.2801 . The 90 percent confidence interval of )3 can be 

calculated as follows 

P(-1.645 < 	2101 < 1.6445) = 0.90 

Or 

P(-3.7507 <S < 3.7507) = 0.90 

and from Figure 4.1., we obtain the 90 percent confidence interval of /3, 

0.680 <3 < 0.893. 

The following table shows the estimate of slope parameter /31  and its 

confidence interval using the full least squares, grouped least squares and the 

proposed method. 

Table 4.1. 
The estimation of the slope parameter fi t  using 
full LS, grouped LS and the proposed method. 

Method Point estimate Conf. Interval(90 %) 

Full LS 0.853 
Grouped LS 0.858 

0.774, 0.931 
0.781, 0.934 

Proposed 0.867 0.680, 0.893 
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The above table shows that each confidence interval contains the three 

point estimates of 13 '  and if the least squares assumptions hold, with the 1  
same level of significance, then there is no reason to say that the three point 

estimates are different. 



CHAPTER 5 

DISCUSSION AND CONCLUSION 

5.1. Discussion. 

In this section we discuss another possible way of grouping the 

observations in planar regression (see Section 3.1), a possible way to sidestep 

the difficulties of obtaining the eigenvector p for example when both of the 

matrices MT ZT P Z A and MT M are "nearly" singular (see Section 4.2), 

and a possible method to speed up the the simulated annealing convergence for 

a relatively large sample size. 

As an effect of grouping of observations, usually all of the observations 

cannot be used to estimate the parameter of interest, and therefore the 

observations used to estimate the parameter of interest must be chosen 

randomly from the observations available. The numerical example of Section 3 4, 

shows that just 49 of 50 data available were used. If the number of data used 

is less than the number of observations available, then there is a loss of 

information needed to estimate the slope parameter of interest. For planar 

regression, to maximize the number of observations used (and also the efficiency 

of grouping), we can combine a variation of neighbours search method (i.e. 

divide data into two or more separate sets and carry out the grouping 

operations separately within each set, see Section 3.3.2.) and the simulated 

annealing method. The variation ofVfieighbours search method is used to 

maximize the number of data used and the simulated annealing method to 

maximize groupings efficiency. If observations are divided into m sets, k is 

the number of groups in each set, and n is the number of observations, then 

57 
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k = mn 	 1:12  

The combined method helps us to maximize the number of data used, but 

implies extra work to estimate the parameter of interest. Because the m sets of 

observations give m independent estimates of the parameter of interest, then 

the parameter of interest can be estimated using a linear combination of the m 

estimators. In the numerical example of Section 3.5 , if we choose m = 2 , all 

of the 50 observations can be used to estimate # . 

In Section 4.2 , we maximize the grouping efficiency e G  by minimizing 

var{ (13i) 	I •GLS'' and in so doing need an approximation to the minimum 

eigenvalue p of (MT zT p z •) - A 1  MT  M or the maximum eigenvalue p' of 
(MT 	-T m ZT  P Z A . After obtaining p or p-1  we calculate u* as the 

corresponding eigenvector, but can encounter problems for example in case both 

of the matrices MT  ZT  P Z A and MT  M are nearly singular. To sidestep 

such problems we choose u* = 1. With this choice from (4.6) we obtain 

Using the choice of u* = 1 to solve the numerical example of 

Section 4.3 , gave an approximation of the best efficiency eG  = 0.9365 (the 

grouping matrices can be seen in Appendix 4). This result is close to the result 

in Section 4.3 , that is eG  = 0.9374. 



59 

The proposed method involves solving a difficult combinatorial 

optimization problem with the simulated annealing method showing the best 

performance. The method is quite computer intensive and to give good results, 

lengthly computer runs may be necessary. Because the method of grouping 

used implies n! possible groupings (many will share the same value of e G), the 

computing time needed to get an approximate solution will depend on sample 

size, the number of independent design variables and which approximation 

method is used. 

For a relatively large sample size, to speed up the the simulated 

annealing convergence, instead of interchanging one or more pairs as described 

in Section 3.3.3 , we choose r observations at random ( r also is chosen 

randomly, 2 < r < k2), and then permute the order of the r observations 

selected randomly. Preliminary experience shows that if r is restricted so that 

it is not too large (say 2 < r < 10 ), then there is a considerable reduction in 

computing time. 

5.2. Conclusion. 

In this thesis we have proposed an exact distribution—free method of 

solving general linear regression problems, where one of the slope parameters is 

of interest, through grouping of observations to eliminate the nuisance 

parameters and reducing the model to simple linear regression form, and then 

using an exact distribution—free method for slope in simple linear regression. 

Because the method merely relies on two broader and weaker 

assumptions about underlying distribution forms, that is, independent and 

identically distributed errors, the application of the proposed method therefore 
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involves all of the general linear regression problems with error terms satisfying 

the above assumptions. 

The method is a simpler alternative to the Maritz—Theil approach, and 

also gives satisfactory efficiency, especially for the planar regression. The 

efficiency will decrease if the number of independent design variables increases. 

There are two factors causing a loss of efficiency, that is grouping and reducing 

the model (eliminating the nuisance parameters). Grouping eliminates the 

individual character of data in that it ignores the variation of data within each 

group and then replaces them with a new value, and reducing the model 

eliminates the individual effect of each nuisance parameter. The above 

information explains why the grouping efficiency will decrease if the number of 

independent design variable increases. 

Three approximation methods for finding the best grouping to 

minimize efficiency loss are discussed. The methods are a Monte Carlo method, 

a search for better neighbours, and a simulated annealing method. The Monte 

Carlo method is easy to program and suitable for small and medium sized 

design, the search for better neighbours can get stuck in local optima but needs 

relatively less computing time compare to the simulated annealing method, and 

the simulated annealing method shows the best performance. 



Confidence Intervals and Partial F Table 
95n Lower: 	95% Upper: 	90% Lower: 	90% Upper: Partial F: Variable: 

R-sauared: 	Ad i. R-sauared: RMS Residual: Count: 

149  1.8 1 	 1.802 	1186.985 1.9 
Analysis of Variance Table 

Sum Sauares: 	Mean Square: DF: F-test: Source 

Beta Coefficient Table 
Std. Err.: 	Std. Coeff.: t- Value: Probability: Variable: Coefficient: 

Multiple Regression Y 	:var y 2 X variables 

REGRESSION 2 6857621.081 3428810.54 98.069 

RESIDUAL 46 1608311.164 34963.286 p =0001 

TOTAL 48 8465932.245 

No Residual Statistics Computed 

Multiple Regression Y 	:vary 2 X variables 

INTERCEPT -13.607 

var x 20.305 3.473 .565 5.846 .0001 

var z 3.319 .81 .396 4.096 .0002 

Multiple Regression Y 1 :var y 2 X variables 

INTERCEPT 

var x 13.312 27.297 14474 26.136 34.175 

var z 1.688 4.951 1.959 4.68 16.776 
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Appendix 1 
The least squares solution of the numerical 

example of Section 3.4. 

1. The full least squares. 



Simple Regression X 1 : variable z Y 	: variable y 

: 	 R-sauared: 	Ad i. R-sauared: RMS Residual: Count: 
1.696 	12.902 7 1.864 1.747  

Analysis of Variance Table 
Sum Sauares: 	Mean Sauare: DF: F-test: Source 

Coefficient: 	Std. Err.: 	Std. Coeff.: 	t-Value: 	Probability: Variable: 

INTERCEPT 20.275 
3.839 .0121 .85 .864 SLOPE 3.263 

Confidence Intervals Table 

95% Lower: 	95% Upper: 	90% Lower: 902 Upper: Variable .  

REGRESSION 1 124.061 124.061 14.735 

RESIDUAL 5 42.097 8.419 0 =.0121 

TOTAL 6 166.159 

No Residual Statistics Computed 

Simple Regression X i : variable z Y 	: variable y 

Beta Coefficient Table 

MEAN (X,Y) 31.624 37.264 32.234 36.654 

SLOPE 1.078 5.449 1.55 4.977 

2. The grouped least squares. 
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Appendix 2 
The grouping matrices for slope parameter a 

for the numerical example of Section 3.1' 

x= 

146 223 213 
222 346 209 
245 264 210 
165 248 264 
182 110 276 
244 224 254 
268 274 238 

130 205 196 186 
188 188 194 133 
252 167 272 91 
99 188 195 261 

245 246 189 188 
228 193 189 240 
177 173 238 203 

   

30.7 59.5 43.0 42.4 68.1 63.2 53.8 
55.1 68.9 50.3 40.6 28.6 36.8 29.1 
52.8 58.6 46.7 54.9 40.3 61.3 31.4 
43.0 51.3 61.5 25.3 32.5 37.1 51.7 
39.0 39.6 56.9 60.8 68.9 58.7 53.9 
55.2 49.0 57.3 50.2 40.3 42.5 50.3 
63.3 55.3 58.3 38.3 28.2 42.3 40.1 _ 

1069 1474 1605 1129 1767 1746 1676 
1764 2649 1703 1281 1033 1306 1087 
2053 2036 1539 1990 1438 2054 925 
1647 1822 1994 1000 1306 1323 2129 
1332 1254 1916 2116 2159 2570 1621 
1909 1706 1889 1728 1145 1492 1897 
2604 2086 1870 1379 1112 1595 1587 
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Confidence Intervals and Partial F Table 
95g. Lower . 	95% limier: 	90% Lower: 	90% Upper: Partial F: Variable: 

Analysis of Variance Table 
Sum Sauares: 	Mean Sauare: DF: F-test: Source 

Beta Coefficient Table 
Std. Err.: 	Std. Coeff.: Probability: t- Value: Variable: Coefficient: 

Multiple Regression Y i  :Cholestrol 	3 X variables 

R-sauared: 

1.903 

Ad 1. R-sauared: RMS Residual: 

1.897 	18.838 
R : Count: 

REGRESSION 3 33478.596 11159.532 142.865 

RESIDUAL 46 3593.184 78.113 p =0001 

TOTAL 49 _ 37071.78 

No Residual Statistics Computed 

150 1. 9 5  

Multiple Regression Y i  :Cholestrol 	3 X variables 

INTERCEPT 17.65 

Chol-lvr .853 .047 .948 18.068 .0001 

Weiaht .002 .054 .002 .036 .9716 

Trialvcerides .005 .049 .006 .103 .9186 

Multiple Regression Y I  :Chol estrol 	3 X variables 

INTERCEPT 

Chol-Ivr .758 .948 .774 .933 326.45 I 

Weiaht -.106 .11 -.088 .092 .001 

Trialvcerides -.093 .103 -.077 .087 .011 
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Appendix 3 
The least squares solution of the numerical 

example of Section 4.3. 

1. The full least squares. 



Ad i. R -sauared: RMS Residual: : R-sauared: Count: 
1.994 	1.047 1.998 	1.996 5 

Analysis of Variance Table 
Sum Sauares: 	Mean Sauare: DF: F- test: Source 

Variable: Coefficient: 	Std. Err.: 	Std. Coef f.: 	t-Value: 	Probability: 

952 Lower: 	95% Upper: 	90% Lower: 90% Upper: Variable: 

Simple Regression X 1 : variable 	z* Y 	: variable y* 

REGRESSION 1 1.53 1.53 694.48 

RESIDUAL 3 .007 .002 p = .0001 

TOTAL 4 1.536 

No Residual Statistics Computed 

Simple Regression X 1 : variable 	z* Y 	: variable y* 

Beta Coefficient Table 

INTERCEPT .077 
.0001 26.353 .998 .033 .858 SLOPE 

Confidence Intervals Table 

MEAN (X ,Y) 1.147 1.031 1.129 11.013 

SLOPE 	.754 .961 .781 .934 

2. The grouped least squares 
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Appendix 4 
The grouping matrices for the numerical example 

of Section 4.3 with the choice of u* = 1 . 

183 163 149 138 116 150 155 175 136 154 
122 156 162 150 177 173 172 177 192 160 
125 178 165 170 134 121 167 158 168 139 
191 115 208 154 170 187 205 205 146 152 
201 154 165 187 123 160 153 110 162 166 
92 59 61 71 118 167 69 118 145 69 
79 81 79 73 32 82 100 135 47 96 
85 85 91 105 53 105 105 57 98 148 
57 184 65 89 88 85 53 85 68 60 

_ 79 64 116 95 59 103 96 65 98 70 

179 190 142 176 180 249 223 186 200 149 - 
185 171 203 167 179 160 134 229 172 210 
165 209 137 191 135 244 273 145 178 173 
167 224 182 175 185 162 139 175 172 185 
177 148 228 182 187 159 136 176 189 200 

172 188 142 171 170 222 201 166 191 145 - 
180 151 192 167 159 168 134 219 167 190 
164 189 137 184 133 224 253 135 158 172 
167 219 172 145 180 155 129 162 161 178 
188 148 208 182 177 152 130 169 182 221 
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Appendix 5 
The computer program for solving 

the planar regression problems 

Program Maximize_Efficiency_Of_Grouping; 
USES CRT, PRINTER; 
LABEL 10; 
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Const 
NuOfdataAvailable 
NuOfDataUsed 
NuOfTemp 
Nu0fRepeat 
NLimit 

Col 
Constl 
Const2 
NuOf Group 

Type 
DataType 
DataTypel 
MatrixTypel 
MatrixType2 
MatrixType3 
MatrixType4 
MatrixType5 
MatrixType6 

50; 
49; 

100; 
250; 
20; 

1000; 
0.0001; 
3; 
1; 
2; 
7; 

1..NuOfDataAvailable] Of Integer; 
1..NuOfDataAvailable] Of Real; 
1..NuOfDataUsed,1..Coll Of Real; 
1..Co1,1..NuOfDataUsedj Of Real; 
1..Co1,1..Col] Of Real; 
1..NuOfGroup,1..NuOfGroup] Of Real; 
1..NuOfDataUsed,1..Constl] Of Real; 
1..Const,1..NuOfGroup] Of Real; 

= ARRAY 
= ARRAY 
= ARRAY 
= ARRAY 
= ARRAY 
= ARRAY 
= ARRAY 
= ARRAY 

Const 
X0rig : DataTypel = 

(99,173,188,133,146,240,248,261,245,186, 
91,188,194,195,177,188,252,222,244,274, 
182,110,203,193,167,276,254,238,264,189, 
188,238,130,189,213,223,245,272,264,196, 
165,210,224,228,209,268,205,346,246,237.5); 

ZOrig : DataTypel = 
(25.3,28.2,28.6,29.1,30.7,50.3,51.3,51.7,52.8,53.8, 

31.4,32.5,36.8,37.1,38.3,53.9,54.9,55.1,55.2,55.3, 
39.0,39.6,40.1,40.3,40.3,56.9,57.3,58.3,58.6,58.7, 
40.6,42.3,42.4,42.5,43.0,59.5,60.8,61.3,61.5,63.2, 
43.0,46.7,49.0,50.2,50.3,63.3,68.1,68.9,68.9,70.8); 

YOrig : DataTypel = 
(1000,1112,1033,1087,1069,1897,1822,2129,2053,1676, 

925,1306,1306,1323,1379,1621,1990,1764,1909,2086, 
1332,1254,1587,1145,1438,1916,1889,1870,2036,2570, 
1281,1595,1129,1492,1605,1474,2116,2054,1994,1746, 
1647,1539,1706,1728,1703,2604,1767,2649,2159,2078); 



Var 
XSelectMove,ZSelectMove,YSelectMove 	: DataTypel; 
XSelectBest,ZSelectBest,YSelectBest 	 : DataTypel; 
XCalc,ZCalc,YCalc 	 : DataTypel; 
Identity3 	 : MatrixType3; 
X,Y,Z,IdentNuOfGroup 	 : MatrixType4; 
Vectl 	 : MatrixType5; 
VarLeastSq,VarGLS,Temper,eG 	 : Real; 
AnnealEff,Rn1,BestEfficiency,Tfactor 	 : Real; 
I,J,NSucc 	 : Integer; 
Select 	 : Char; 

Procedure SwapInteger( Var p,q : Integer); 
Var 

Temp : Integer; 
Begin 

Temp := p; p := q; q := Temp; 
End 

Procedure SwapReal( Var p,q : Real); 
Var 

Temp : Real; 
Begin 

Temp := p; p := q; q := Temp; 
End 

Procedure Select OfObservations; 
Val.  

I,Counter,Rand 	: Integer; 
Temp 	 : DataType; 

Begin 
If NuOfDataUsed < NuOfDataAvailable Then 

Begin 
Rand := Trunc(Rand*NuOfDataAvailable)+1; 
Temp[1) := Rand; 
XSelectMove 1 := X0rig[Rand]; 
ZSelectMove 1 := ZOrig[Rand]; 
YSelectMove 1 := YOrig[Rand]; 
Counter := 2; 
FOR I := 2 TO NuOfDataUsed DO 

Begin 
Rand := Trunc(Random*NuOfDataAvailable)+1; 
WHILE Counter < = I DO 

Begin 
If Rand = Temp[Counter-1] Then 

Begin 
Rand := Trunc(Random*NuOfDataAvailable)+1; 
Counter := 1; 

End; 
Counter := Counter + 1; 

End; 
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Temp[I] := Rand; 
XSelectMoveI := X0rig[Rand]; 
ZSelectMove I := ZOrig[Rand] 
YSelectMove I := YOrig[Rand]; 
Counter := 2; 

End 
Else 

Begin 
XSelectMove := X0rig; 
ZSelectMove := ZOrig; 
YSelectMove := YOrig; 

End; 
End; 

Procedure RandomPermutation; 
Var 

I.J,K 	: Integer; 
Begin 

XCalc := XSelectMove; 
ZCalc := ZSelectMove; 
YCalc := YSelectMove; 
FOR I := 2 TO NuOfDataUsed Do 

Begin 
K := Trunc(Random*I-) + 1; 
SwapReal XCalcI,XCalc[K}); 
SwapReal ZCalc I ,ZCalc[K] ; 
SwapReal YCalc I ,YCalc[K ); 

End; 
End; 

Procedure Linked; 
Var 

I,J 	: Integer; 
Begin 

FOR I := 1 TO NuOfGroup DO 
Begin 

FOR J := 1 TO NuOfGroup DO 
Begin 

:= XCa1c[J+(I-1)*NuOfGroup]; 
Z I,J := ZCalc[J+(I-1)*NuOfGroupb 
Y I,J := YCalc[J+(I-1)*NuOfGroup]; 

End; 
End; 

End; 
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Procedure IdentityMatrixAndVector1; 
Var 

I,J 	: Integer; 
Begin 

FOR I := 1 TO Col DO 
Begin 

FOR J := 1 TO Col DO 
Begin 

IF I = J THEN Identity3[I,J] :=1 
Else Identity3 := 0; 

End; 
End; 

FOR I := 1 TO NuOfGroup DO 
Begin 

FOR J := 1 TO NuOfGroup DO 
Begin 

IF I = J THEN IdentNuOfGroup[I,J] :=1 
Else IdentNuOfGroup := 0; 

End; 
End; 

FOR I := 1 TO NuOfGroup DO 
Begin 

Vectl[I,Const1] := 1; 
End; 

End; 

Procedure CalcVarianceLeastSquares; 
Var 

I,J,K 	 : Integer; 
Temp,V,R 	: Real; 
A 	 : MatrixTypel; 
ATranpose 	: MatrixType2; 
AtA,AtAInvers 	: MatrixType3; 

Begin 
FOR I := 1 TO NuOfDataUsed DO {Form matrix A} 

Begin 
=1; 

A 1,2 := XSelectMovejn; 
A 1,3 := ZSelectMove[Ij; 

End; 
FOR I := 1 TO NuOfDataUsed DO {Form A transpose} 

Begin 
FOR J := 1 TO Col DO 

Begin 
ATranspose[J,I] := A[I,JJ; 

End; 
End; 

70 



71 

FOR I := 1 TO Col DO {Calc AtA = ATranspose * A} 
Begin 

FOR J := 1 TO Col DO 
Begin 

Temp := 0; 
FOR K := 1 TO NuOiDataUsed; 

Begin 
Temp := Temp+(ATranspose[I,K] *A[K,JD; 
AtA := Temp; 

End; 
End; 

End; 
AtAInvers := Identity3; {Calc. AtAInvers} 
FOR I := 1 TO Col DO 

Begin 
IF AtA[I,IJ < > 0 Then V := 1/AtA[I,I]; 
FOR J := 1 TO Col DO 

Begin 
AtA[I,J] := V*AtA[I,JJ; 
AtAInvers[I,J] := V*AtAInvers[I,J]; 

End; 
FOR J := 1 TO Col DO 

Begin 
IF J < > I Then 

Begin 
R := —AtA[J,I]; 
FORK := 1 TO Col DO 

Begin 
AtA[J,K] := AtA[J,K] + R*AtA[I,K]; 
AtAInvers[J,K] := AtAInvers[J,K]+R*AtAInvers[I,K]; 

End; 
End; 

End; 
End; 
VarLeastSq := AtAInvers[3,3]; 

End; 

Procedure CalcVarianceGroupedLeastSquares; 
Var 

I,J,K 	 : Integer; 
V,R,m1,m2,Temp,SigmaLdSq 	: Real; 
XInvers 	 : MatrixType4; 
Vectorl,Lamda,ZStar 	 : MatrixType5; 
ZStarTransp,LamdaTransp 	: MatrixType6; 

Begin 
XInvers := IdentNuOfGroup; {Calc. XInvers} 
FOR I := 1 TO NuOfGroup DO 

Begin 
IF X[I,I] < > 0 Then V := 1/X[I,I]; 
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FOR J := 1 TO NuOfGroup DO 
Begin 

X[I,J] := V*X[I,J1. 
XInvers[I,J] := V*kInvers[I,J]; 

End; 
FOR J := 1 TO NuOfGroup DO 

Begin 
IF J < > I Then 

Begin 
R := —X[J,I]; 
FOR K := 1 TO NuOfGroup DO 

Begin 
X[J,K] := XjJ,K1 + R*X[I,K]; 
XInvers[J,KI := XInvers{J,Kj+R*XInvers[I,K]; 

End; 
End; 

End; 
End; 

Vectorl : = Vectl; {Calc. Lamda} 
FOR I:= 1 TO NuOfGroup DO 

Begin 
Temp := 0; 
FORK := 1 TO NuOfGroup DO 

Begin 
Temp := Temp+(XInvers[I,K] *Vectorl[K,Const1]); 
Lamda[I,Constl] := Temp; 

End; 
End; 

FOR I := 1 NuOfGroup DO {Form Lamda Transpose} 
Begin 

LamdaTransp[Constl,I] := Lamda[I,Constl]; 
End; 

SigmaLdSq := 0; {Calc. SigmaLdSq = LamdaTramsp*Lamda} 
FOR I := 1 TO NuOfGroup DO 

Begin 
SigmaLdSq := SigmaLdSq+(LamdaTransp[Const1,n*Larnda[I,Const1]); 

End; 
FOR I := 1 TO NuOfGroup DO { Calc. ZStar = Z * Lamda} 

Begin 
Temp := 0; 
FOR K := 1 TO NuOfGroup DO 

Begin 
Temp := Temp + (Z[I,K]*Lamda[K,Const11); 
ZStar[I,Constl] := Temp; 

End; 
End; 

FOR J := 1 TO NuOfGroup DO {Form ZStar Transpose} 
Begin 

ZStarTransp[Const14 := ZStar[J,Const1]; 
End; 
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ml := 0; 	{Calc. ml = ZstarTransp * ZStar} 
FOR K := 1 TO NuOfGroup DO 

Begin 
ml := m1+(ZStarTransp[Constl,K[*ZStar[K,Cost1]); 

End; 
m2 := 0; Vectorl := Vectl; {Calc m2 = ZstarTransp * Vector* 

FOR K := 1 TO NuOfGroup DO 
Begin 

m2 := m2+(ZStarTransp[Const1,1<[*Vectorl[K,Cost1]); 
End; 

VarGLS := SigmaLdSq/(m1—(m2*m2)/k); 
End; 

Procedure CalcEfficiency; 
Begin 

eG := VarLeastSq/VarGLS; 
End; 

Procedure InterchangeOnePair; 
Var 

Lal,a2 : Integer; 
Begin 

al := 1+Trunc(Random*NuOfDataUsed); 
a2 := 1+Trunc(Random*NuOfDataUsed); 
SwapRealXCalcI,XCalc[al); 
SwapReal ZCalc al ,ZCalc[a21 ; 
SwapReal YCalc al ,YCalc[a2 ); 

end; 

Procedure RandomPermMElements; 
Var 

I,J,K,MElem,Rand,Counter 	: Integer; 
Templ 	 : Real; 

Begin 
MElem := 0; 
WHILE (MElem < = 0) OR (MElem > 10) DO 
Begin 

MElem := Trunc(Random*NuOfDataUsed)+1; 
End; 
Rand := Trunc(Random*NuOfDataUsed)+1; 
Templ := Rand; Counter := 2; 
FOR I := 2 TO MElem DO 

Begin 
Rand := Trunc(Random*NuOfDataUsed)+1; 
WHILE Counter < = I DO 

Begin 
IF Rand = Tempi [Counter-1] Then 

Begin 
Rand := Trunc(Random*NuOfDataUsed)+1; 
Counter := 1; 

End; 
Counter := Counter+1; 

End; 



Tempi[I] := Rand; Counter := 2; 
End; 

FORT := 2 TO MElem DO 
Begin 

K : = Trunc(Random*I)+1; 
SwapRel XCalcTemp 1 ,XCalc[Templ [11); 
SwapReal ZCalc Tempi I ,ZCalc[Templ[K] ; 
SwapReal YCalc Tempi I ,Yealc[Templ[K ); 

End; 
End; 

Procedure SelectOfEfficiency; 
Var 

Rn2,DE,ProbMov 	: Real; 
Begin 

Rn2 := Random; 
DE := (eG — AnnealEf)/(k*Temper); 
IF DE <-50 Then ProbMov := 0 
ELSE IF (DE > = —50) AND (DE < 0) Then ProbMov := Exp(DE) 
ELSE ProbMove := 1; 
IF Rn2 < ProbMov Then 

Begin 
AnnealEff := eG; 
NSucc := NSucc+1; 
XSelectMove := XCalc; 
ZSelectMove := ZCalc; 
YSelectMove := YCalc 

End 
ELSE 

Begin 
XCalc := XSelectMove; 
ZCalc := ZSelectMove; 
YCalc := YSelectMove; 

End; 
IF AnnealEff > BestEfficiency Then 

Begin 
BestEfficiency := AnnealEff; 
XSelectBest := XSelectMove; 
ZSelectBest := ZSelectMove; 
YSelectBest := YSelectMove; 

End; 
End; 

Procedure PrintResult; 
Var 

I,J : Integer; 
Begin 

Writeln(lst,'Best Efficiency = ',BestEfficiency:12:8); 
Writeln(lst,'Matrix X = 
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FOR I := 1 TO NuOfGroup DO 
Begin 

FOR J := 1 TO NuOfGroup DO 
Begin 

Write(lst,X[I,J]:8:2); 
End; 

Writeln(lst); 
End; 

Writeln(lst); 
Writeln(lst,'Matrix Z = 
FOR I := 1 TO NuOfGroup DO 

Begin 
FOR J := 1 TO NuOfGroup DO 

Begin 
Write(lst,Z[I,J]:8:2); 

End; 
Writeln(Ist); 

End; 
Writeln(lst); 

Writeln(lst,'Matrix Y = 
FOR I := 1 TO NuOfGroup DO 

Begin 
FOR J := 1 TO NuOfGroup DO 

Begin 
Write(lst,Y[I,48:2); 

End; 
Writeln(lst); 

End; 
End; 

Begin {Main Program} 
ClrScr; 
Writeln 
Writeln 
Writeln 
Writeln 
Write(' Select ? '); Read(Select); 
CASE Select OF 
'1' : 

Begin 
Select0FObservations; 
IdentityMatrixAndVectorl; 
CalcVarianceLeastSquares; 
Be,stEfficiency := 0; 
FOR I := 1 TO Nu0fRepeat DO 

Begin 
ItandomPermutation; 
Linked;1 
CalcVarianceGroupedLeastSquares; 
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Program Menu '); Writeln; 
1. The Monte Carlo method '); Writeln; 

' 2. The Search for better neighbours '); Writeln; 
'3. The Simulated Annealing method '); Writeln; 



If eG >= BestEfficiency Then 
Begin 

BestEfficiency := eG; 
XSelectBest := XCalc; 
ZSelectBest := ZCalc; 
YSelectBest := YCalc; 

End; 
End; 

End; 

'2' : 
Begin 

Select0fObservations; 
IdentityMatrixAndVectorl; 
CalcVarianceLeastSqures; 
RandomPermutation; 
Linked; 
CalcVarianceGroupedLeastSquares; 
CalcEfficiency; 
BestEfficiency := eG; 
XSelectBest := XCalc; 
ZSelectBest := ZCalc; 
YSelectBest := YCalc; 
FOR J := 1 TO Nu0fRepeat DO 

Begin 
Rnl := Random; 
IF (Rn1 <0.5) Then InterchangeOnePair 
ELSE RandPermMElements; 
Linked; 
CalcVarianceGroupedLeastSquares; 
CalcEfficiency; 
IF eG > = BestEfficiency Then 

Begin 
BestEfficiency := eG; 
XSelectBest := XCalc; 
ZSelectBest := ZCalc; 
YSelectBest := YCalc 

End 
ELSE 

Begin 
XCalc := XSelectBest; 
ZCalc := ZSelectBest; 
YCalc := YSelectBest; 

End; 
End; 

End; 
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13 1 

Begin 
Select0fObservations; 
IdentityMatrixAndVectorl; 
CalcVarianceLeastSqures; 
RandomPermutation; 
Linked; 
CalcVarianceGroupedLeastSquares; 
CalcEfficiency; 
BestEfficiency := eG; 
AnnealEff := eG; 
XSelectBest := XCalc; 
ZSelectBest := ZCalc; 
YSelectBest := YCalc; 
Temper := T; Tfactor := 0.9; 
FOR J := 1 TO NuOfTemp DO 

Begin 
If Temper < 0.00005 Then TFactor := 0.97; 
FOR J := 1 TO Nu0FRepeat DO 

Begin 
Rnl := Random; 
IF (Rnl <0.5) Then InterchangeOnePair 
ELSE RandPermMElements; 
Linked; 
CalcVarianceGroupedLeastSquares; 
CalcEfficiency; 
Select0fObservations; 
IF NSucc >. NLimit Then GOTO 10; 

End; 
10: 	Temper := Temper * TFactor; 

End; 
End; 
XCalc := XSelectBest; 
ZCalc := ZSelectBest; 
YCalc := YSelectBest; 
Linked; 
PrintResult; 

End. 
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