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Abstract 

Current and future digital telecommunication networks are facing ever increasing band­

width and service demands. One scheme aimed at meeting these demands is the broad­

band integrated services digital network (B-ISDN). The B-ISDN is based on the asyn­

chronous transfer mode (ATM) which provides flexible and dynamic transport and 

routing functions. One of the main challenges for designers and managers of these 

networks is to provide a guaranteed quality of service (QoS) for each connection, while 

still achieving a high network utilisation overall. 

To provide a guaranteed QoS, the network must have a mechanism for deciding whether 

it can support a requested quality of service for a new connection, whilst still main­

taining the QoS of existing connections. This decision process is called connection 

admission control (CAC). Mechanisms for implementing CAC must be acceptably ac­

curate, while executing in as the shortest time as possible. Most CAC mechanisms are 

based on the application of queueing theory to the network - the accuracy of which is 

largely dependent on the models of the network traffic used, and the solution method 

chosen for the queue analysis. 

B-ISDN connections can be generally classified as either loss sensitive or delay sensitive. 

Unfortunately, the requirements for transporting both these types of connections within 

the same network appear to be at odds with each other. Small internal buffers in ATM 

switching nodes result in small transmission delays but potentially high loss rates, while 

the use of large buffer sizes favours small loss rates with long transmission delays. To 

accommodate both types of connections, a dual buffer approach can be used within the 

network switches, wherein one buffer receives priority access to the output line over the 

other. Delay sensitive traffic can then be served ahead of loss sensitive traffic, and a 

large buffer space can be used to accommodate low loss requirements. The difficulty 

with the dual buffer approach for the purposes of CAC, is that analysis of the loss queue 

is complicated due to service interruptions caused by the delay traffic. Fortunately, a 

relationship between single buffer and dual buffer analyses exists, allowing some of the 

more important results for the loss queue to be obtained using single buffer analysis 

v 



VI Abstract 

only. 

This thesis considers the modelling of traffic both at the edges of the network, and at 

intermediate stages within the network. Several models are proposed, with a particular 

concern that the bursty nature of actual network traffics be adequately captured. In 

order to apply these descriptions of the network traffic to connection admission, the 

population analysis of infinite buffer queueing problems is carried out using the pro­

posed models. Queueing delays are then obtained directly from the queue population 

results. Although the traffic models are not particularly complicated, closed form so­

lutions for the average and variance of the queue population are obtained only for one 

type of bursty traffic model. For the other traffic models, exact numerical solutions 

are discussed, and some simple approximations examined. To overcome limitations in' 

these solutions, a new approximation technique is proposed, which achieves extremely 

high accuracy for a modest computational cost. In addition to these infinite buffer 

results, consideration is also given to obtaining the loss probabilities of the finite buffer. 

problem. 

The developed queueing theory is lastly applied to a dual buffer example problem to 

highlight the role of correlations between arrival processes, and to the modelling of 

queue outputs for the purpose of describing networks of switching elements. 
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Preface 

Current and future digital telecommunication networks are facing ever increasing band­

width and service demands, requiring new design approaches. The broadband inte­

grated services digital network (B-ISDN) is a scalable solution to the demand problem, 

based on the asynchronous transfer mode (ATM). ATM is a packet switching technol­

ogy, which provides flexible and dynamic bandwidth management capabilities for the 

B-ISDN by sharing available transmission bandwidth amongst all connections. As a 

result, one of the main challenges facing the B-ISDN will be providing a guaranteed 

quality of service (QoS) for individual connections, while still achieving high network 

utilisation overall. 

To provide a guaranteed QoS, the network must have a mechanism fo_r deciding whether 

it can support a requested quality of service for a new connection, whilst still main­

taining the quality of existing connections - a process called connection admission 

control (CAC). Mechanisms for implementing CAC must be acceptably accurate, while 

executing in as the shortest possible time. Due to buffering within the ATM switches, 

most CAC mechanisms are based on the application of queueing theory to the network 

- the accuracy of which is largely dependent on the accuracy of the models of network 

traffic sources, and the solution method chosen. 

The focus of this thesis is the discrete-time performance analysis of single and dual 

buffer queueing systems suitable for application in an ATM environment. This research 

has been motivated by a desire to both expand the current knowledge of queueing 

theory as applied to these problems, and to investigate practical solution methods and 

approximations. Implementation of the results within a larger CAC framework has not 

however been attempted in this work. 
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Thesis Organisation 

This thesis comprises 8 chapters and 6 appendices. Following the introductory ma­

terial of Chapter 1, Chapters 2 to 5 develop theoretical and numerical results for the 

population average and variance of some infinite buffer queueing problems based on 

an IBP traffic model. Losses in ·finite buffers and the relationship between queueing 

delays and queue populations are considered in Chapter 6, while Chapter 7 investigates 

dual buffer systems and queue output processes. Chapter 8 concludes the thesis, and 

suggests some areas for future research. 

Chapter 1 provides an introduction to the development of the B-ISDN. An overview 

of the structure of the B-ISDN and ATM is provided, and some of the issues relating 

to traffic management and connection admission control are discussed. ATM traffic 

modelling is considered, and the models used in the thesis are briefly described. The 

chapter concludes with a list of the contributions made by the author in this work. 

In Chapter 2, a general analytical solution for the average and variance of the population 

of an infinite buffer discrete-time G /D / 1 queue fed by a number of batch Markov arrival 

processes is developed. The solution is based on a probability generating function 

approach, and forms the background theory for the application to specific queueing 

problems in Chapters 3, 4, and 5. Consideration is also given to the analysis of multiple 

buffer queueing systems on the basis of the single buffer analysis. 

Chapter 3 applies the results of Chapter 2 to the analysis of queues subject to ar­

rivals from a heterogeneous mix of two state Markov sources. Since the exact solution 

technique is shown to be quite limited in the number of sources it can accommodate, 

several approximate solution methods are investigated for accuracy. A new approxi­

mation technique is then proposed, and shown to be extremely accurate. 

The queueing behaviour of a related Markov traffic model is then investigated in Chap­

ter 4. This problem has a well known closed form solution for its average queue popula­

tion, which is reproduced. This solution method is then combined with the analysis of 

Chapter 2 to finally provide a previously unknown, closed form solution for the queue 

population variance. 

In Chapter 5, the queueing problem of Chapter 3 is re-examined, but with the additional 

complication of cyclically interrupted service. Although the theoretical development 

is straightforward, numerical difficulties are encountered that prevent solutions being 

obtained for even fairly simple systems. An adaptive solution method is proposed which 

allows accurate estimates to still be obtained when the exact solution method fails. Due 

to the large computational burden of the exact solution, approximation techniques are 
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investigated, with the new method of Chapter 3 shown to provide the highest accuracy. 

Chapter 6 begins with an investigation of the loss probabilities of finite buffer queueing 

problems. An improvement to the commonly accepted relationship between the loss 

and tail distribution of the infinite buffer traffic is demonstrated, and the accuracy of 

an approximation result from the literature is confirmed. The relationship between 

queueing delays and queue populations are also considered in this chapter. 

Chapter 7 applies the average and variance solutions developed in Chapters 3 and 5 to 

dual buffer queueing systems, identifying the problem of correlation between the high 

and low priority arrival streams. The problem of modelling the output of a ·queueing 

system is also investigated, with a proposed parameter matching method tested for a 

simple queueing system. The parameter matching method also provides exact solu­

tions for the first moments of the busy periods of the output of the queueing system 

investigated in Chapter 4. 

Finally, concluding remarks on the results of this thesis are presented in Chapter 8 
~ .. "'I 

along with a discussion of future topics and research directions. 

The six appendices provide supplemental information for the main text of the thesis. 

Appendices A and C relate to the derivation of the various queueing theory results, 

while Appendix B provides results on an investigation into the average d~elays seen by 

individual traffic sources in a shared queueing system. Appendix D provides a short 

proof for a result that ties the definition of the autocorrelation parameter used in.the 

thesis to an observable physical quantity. Some practical details on the implementation 

of iterative queue analysis programs is provided in Appendix E, while Appendix F closes 

with a collection of miscellaneous mathematical relations. 
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Chapter 1 

Introduction 

Traditionally, network providers have built networks that cater exclusively for specific 
'ur 

services. For example, voice communication has been primarily the domain of the •. 
public switched telephone network or PSTN, while computer communications have 

been achieved using packet switched networks based on X.25 or similar protocols. Due 

to the specific nature of these networks, neither is very efficient at providing services 

for the other traffic type. This use of service specific transport mechanisms has been 

an efficient solution for both customers and network providers while the number of 

different services required has remained small. However, this situation is changing. 

Over the last two decades, the demand for new communication services has increased 

significantly, particularly with recent advances in computer and image processing tech­

nologies. It is readily apparent that the provision of separate networks (and perhaps 

separate connections to customer premises) for each service is becoming inefficient due 

to the costs involved in maintaining the multiple networks, and from a lack of flexibility 

in being able to adapt to shifts in demand or the possible provision of future service 

types. 

In 1984, the International Telegraph and Telephone Consultative Committee (CCITT) 1 

began to publish recommendations on the standardisation of an Integrated Services 

Digital Network or ISDN - a digital based network that would be capable of providing 

various communication services in one integrated network. By moving error recovery, 

flow control, and similar high level functions to the edges of the network, the use of the 

ISDN for switching and transmission could be made transparent to network customers. 

1In 1993, the CCITT was replaced by the Telecommunication Standardisation Sector (ITU-T) of 

the International Telecommumcat10n Union (ITU). We will continue to use the name CCITT in this 

document however. 

1 



2 Introduction 

The original ISDN proposal, now referred to as narrowband ISDN (N-ISDN), provides 

multiple 64 kbps digital circuit switched connections that can be used either for voice 

telephony or computer communications. The circuit switched approach means that 

connections are effectively isolated from each other, with low transmission delays, and 

simplified connection overheads. The 64 kbps capacity of the basic circuit is due to the 

bandwidth requirements of voice telephony. 

With the increasing transmission bandwidth requirements of new services, such as video 

conferencing and high speed intercomputer communication, the rather limited range 

of capacities available to N-ISDN services were soon seen by the telecommunication 

industry as inadequate. In recognition of this, the CCITT began in 1988 to concentrate 

on standards for a high bandwidth version of the ISDN called broadband ISDN (B­

ISDN). Unlike the circuit switched approach of the narrowband implementation, B­

ISDN is based on a packet switching methodology referred to as Asynchronous Transfer 

Mode or ATM. 

In section 1.1, we will look at the various components of the B-ISDN, and in particular 

look at the role of the ATM in the implementation of the network. In section 1.2, 

issues relating to the management of the network, in terms of admitting and policing 

user connections are considered. The modelling of ATM traffic for the purposes of 

implementing network management strat~gies is then considered in section 1.3, and 

finally section 1.4 concludes the chapter by summarising the aims and contributions of 

this thesis. 

1.1 Overview of the Broadband ISDN 

Figure 1.1 illustrates an example broadband ISDN, where customers or users gain access 

to the ATM based network via a standard interface called the User-Network Interface 

or UNI. The interface between intermediate switching nodes within the network is 

referred to as the Network-Node Interface or NNI. 

In the following we will discuss the various components of the B-ISDN, starting with a 

closer look at the ATM itself. 

1.1.1 The Asynchronous Transfer Mode 

There are two basic methods for implementing a digital network - using circuit switch­

ing, or using packet switching. In the former, a dedicated (virtual) circuit is provided 

for each connection that is logically separate from every other circuit. That is, the 
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• User-Network Interface 

• Network-Node Interface 

0 UserTerminal 

I~ I Network Sw1tchmg Node 

Figure 1.1: Example of an ATM based B-ISDN 

behaviour of one connection will not affect behaviour of another. In a packet switched 

network however, the bandwidth is shared amongst all connections in Sl).Ch a manner 

that the behaviour of each connection affects that of the others. 

The main advantage of the circuit switching- approach is that, once a connection has 

been made, information transmitted across the network incurs only a very small and 

usually constant delay. Its main disadvantage is that the bandwidth that the network 

can provide to a connection is limited to the capacities of the circuits that the net­

work supports. In addition, the dedication of a circuit to a single connection that 

may only use the whole circuit capacity sporadically means that the network is being 

underutilised. 

In contrast, a packet switched network is capable of providing a very wide range of ca­

pacities, allowing the requirements of each individual connection to be closely matched. 

As a result, more connections can potentially be simultaneously supported by such an 

arrangement. The disadvantages of this approach are that transmission delays in such 

an environment tend to be highly variable, and the shared nature of the available band­

width requires extra network controls to ensure that all connections do not suffer from 

the misbehaviour of one. 

The CCITT chose a packet switching implementation for B-ISDN in order to provide 

'dynamic bandwidth allocation on demand, with a fine degree of granularity' [59] as 

opposed to the circuit switched nature of the N-ISDN. To enable fast and efficient 

implementations of packet switches, and to minimise transmission delays, a small fixed 

packet size of 53 bytes ( 424 bits) was chosen, and distinguished by the name cell. Within 

each cell, 5 bytes were allocated to the header, providing identification and routing 
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information on a per cell basis, leaving 48 bytes for user information. In addition, error 

detection and recovery within the network were restricted wholly to the cell headers, 

with similar functions for user information being moved to the network edges. 

The term 'transfer mode' is used by the CCITT to indicate a specific method of trans­

mitting and switching information in a network [42]. The term 'asynchronous' in the 

ATM label indicates that cells belonging to a particular connection may occur at ir­

regular intervals on the connection medium. This is in contrast to the synchronous 

transfer mode or STM based approach used in digital circuit switched networks, where 

information belonging to a particular circuit occurs only at specific positions within a 

predefined constant period referred to as a 'frame'. 

Virtual Channels and Virtual Paths 

ATM is a connection oriented protocol, requiring a path or route to be set up through 

the B-ISDN before information can be sent from one user to another. This transmission 

path remains unchanged for the duration of the connection, and is created or assigned 

by signalling between the user and the network. A one way connection path between 

two users is described as a virtual path connection or VPC. A single VPC can support 

multiple virtual channel connections or VCCs, each which follow the same network path 

but belong to logically separate entities (such as different phone conversations between 

the same two customer sites). The ATM protocol guarantees that under normal (i.e. 

fault-free) conditions, cell sequence ~ntegrity within a VCC will be guaranteed - that 

is, cells belonging to a specific VCC will leave the network in the same order that they 

enter it2 . 

Cells belonging to a particular VCC and VPC are identified by a virtual channel iden­

tifier (VCI) and virtual path identifier (VPI) in the ATM header. Since a VPC will 

generally pass through a number of ATM switching nodes (as indicated by Table 1.1) 

it is not possible to guarantee the availability of a unique VPI and VCI for every net­

work path. Instead, a VPC is considered to be made up of a number of links, at the 

end points of which the path and channel identifiers are remapped to allow for unique 

identification of the connection along the next link. 

ATM Cell Header Structure 

Figure 1.2 shows the structure of the 5 byte ATM cell header at the UNI and NNI, 

where the following fields are identified [9]: 

2 Although this does not guarantee that all the cells entermg the network will be successfully trans­

ported. 
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Connection Type Number of nodes 

Local 1-4 

Toll 5-7 
International 8-10 

Table 1.1: Number of ATM switching nodes in typical end-to-end B-ISDN connections. 

These figures are from Table 1 of ITU draft recommendation E. 72x {56}. 

GFC: The 4 bit Generic Flow Control field has local significance only (applies to the 

UNI and not the NNI) and can be used to provide standardised local functions 

(such as flow control) on the customer site. The value encoded in the GFC is not 

carried end-to-end, and is overwritten by the ATM switches. 

VPI/VCI: The Virtual Path and Virtual Channel identifiers are nominally 8 and 16 

bits respectively for the UNI, and 12 and 16 bits respectively for the NNI. The 

actual number of routing bits in these subfields however is negotiated between 

the user and the network. · -/> 

PT: The Payload Type field consists of 3 bits that identify the contents or payload of 

the ATM cell as being either user or network information. 

CLP: The Cell Loss Priority is indicated by this one bit field, and allows the user or 

the network to optionally indicate the explicit loss priority of the cell. The use of 

loss priorities will be discussed in more detail in section 1.2. 

HEC: The Header Error Control field is used by the physical layer for detection~ and 

correction of bit errors in the cell header. The HEC can also be used for cell 

delineation or synchronisation by observing the number of bit errors at particular 

points in the transmission stream. 

When a cell is carrying user information (as distinct from network administration in­

formation), the 48 bytes of the payload are transported transparently by the ATM 

network. Although errors in the cell headers are (usually) identified by the HEC and 

subsequently dealt with, separate errors in the cell payload will not be identified. As a 

result, if error handling is desired, it must be performed by end-to-end protocols. 

1.1.2 B-ISDN Protocols 

In modern communications systems, a layered approach is used for the organisation 

of all communication functions. The functions of the layers, and the relations of the 

layers with respect to each other are described in a Protocol Reference Model (PRM). 

The B-ISDN protocol reference model is illustrated in Figure 1.3 as described in ITU-T 
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Bit 
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GFC VPI 

VPI 2 

UNI: VCI 3 Byte 

PT I CLP 4 

HEC 5 

Bit 
8 7 6 5 4 3 2 

VPI 

I 2 

NNI: VCI 3 Byte 

I PT I CLP 4 

HEC 5 

Figure 1.2: ATM cell header structure at the User Network and Network Node interfaces 

of the B-ISDN. 

Recommendation I.321 [61] and [9]. The B-ISDN PRM is similar to the Open Systems 

Interconnection (OSI) PRM defined for CCITT applications in [65], but contains several 

planes in contrast to the single one of the OSI model. 

The three planes of the B-ISDN PRM are identified as: 

User Plane: Provides for the transfer of user application information. It contains 

physical, ATM, and ATM adaptation layer functions required to implement the 

different user B-ISDN services, as well as application specific higher layer proto­

cols. 

Control Plane: Deals with call establishment and release, and other connection con­

trol functions necessary to provide switched network services. It shares the phys­

ical and ATM layers with the User plane, as indicated by Figure 1.3, in addition 

to its own ATM adaptation and higher layer protocols. 

Management Plane: Provides overall management functions , and Lhe ability lo ex­

change information between the Control and User planes. For convenience, the 

Management plane is divided into sections - Layer management and Plane man­

agement. The Layer management section performs layer specific management 

functions, while the Plane management section performs management and coor­

dinat ion functions related to the complete system. 
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Figure 1.3: B -ISDN Protocol Reference Model. 
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The physical layer is responsible for all physical transport functions , such as the conver­

sion of the ATM cell bit patterns to electrical or optical signals suitable for transmis­

sion on the physical medium, synchronisation of transmitters and receivers to match 

the transmission medium characteristics, and generation and confirmation of the HEC 

sequence. 

The ATM layer provides the multiplexing and switching functions of the B-ISDN pro­

tocol, and is independent of the physical transmission medium. In addition, this layer 

is responsible for the addition and removal of the cell headers, and the mapping and 

translation of the cell VPI and VCI fields . We will look at some of the switching 

functions of the ATM layer in the context of switch fabrics in section 1.1.4. 

The ATM adaptation layer (AAL) provides a plane-specific interface to the underlying 

ATM and physical layers. In particular, the AAL can provide functionality for the 

handling of transmission errors, flow and timing control, and the segmentation and 

reassembly of higher layer protocol data units into and out of ATM cell payloads. In 

order to minimise the number of AAL protocols, the CCITT identified four different 

service classes [62], as shown in Table 1.2. These service classes differ in their timing 

relations, bit rates, and connection modes. 

Corresponding to these four service classes, there are four basic AAL protocol types , 

defined as follows [63]: 
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Class A I Class B Class C I Class D 

Timing between source Required Not Required 

and destination 

Bit rate Constant I Variable 

Connection mode Connection Oriented I Connectionless 

Table 1.2: AAL Service classes according to ITU-T Recommendation I.362 {62]. 

AAL Type 1: Corresponding to class A, this protocol provides for connection ori­

ented, constant bit rate (CBR) services requiring a constrained timing relation­

ship between the source and destination. N-ISDN support, and other real time 

or circuit emulation services will use this protocol. 

AAL Type 2: Corresponding to class B, this AAL protocol provides for connection 

oriented services having timing constraints between the source and destination, 

and a variable bit rate (VBR). An example of a service requiring this protocol is 

VBR video. 

AAL Type 3/4: Corresponding to both classes C and D, this AAL protocol was orig­

inally specified as two separate types. This class provides for data transmission 

services using either connection oriented or connectionless methods. 

AAL Type 5: Corresponding to class C only, this AAL protocol type is a simpler 

form of the type 3/4 protocol that provides better bandwidth efficiencies at the 

cost of some error handling functions. 

AAL service classes A and B can be regarded as being 'delay sensitive' due to their 

requirements for a constrained timing relation between source and destination. Pro­

vision of guaranteed transmission delays is one of the main weaknesses of the shared 

bandwidth nature of ATM. Similarly classes C and D can be regarded as 'loss sensitive', 

since these classes are primarily intended for data communications, where it is usually 

more important that a cell be delivered successfully by the network (i.e. not lost) than 

be delivered quickly. This categorisation of the four AAL service classes into delay 

sensitive or loss sensitive services will be discussed again in section 1.2. 

1.1.3 The User Network Interface 

The UNI is responsible for defining such factors as the interface bit rate, structure, and 

ATM layer behaviour. With reference to the B-ISDN protocol reference model, the UNI 

consists of ATM and physical layer functions only within the User-plane, while AAL 

and higher layer protocol functions are additionally included within the Control-plane. 
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Interface Structures and Bit Rates 

Three physical cell transport mechanisms were foreseen by the CCITT [59] for the 

B-ISDN UNI: 

• Purely ATM based interface - ATM cells can be transmitted back to back, with 

the entire transmission bandwidth available to be used for the transport of ATM 

and higher layer information. 

• Non-ATM based interface - Some high speed transmission protocols, such as 

SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierar­

chy) require a portion of the transmission bandwidth to handle physical mainte­

nance, synchronisation and framing functions. ATM cells can be carried trans­

parently within the payload of these protocols. 

• Framed ATM based interface - To simplify interoperability between the pu_r:ely 

ATM and non-ATM based interfaces, physical layer cells (generated by the phys­

ical layer) are inserted into the ATM layer cell stream periodically. The inserted 

cells are typically used to provide physical layer Operations, Administration, and 

Maintenance ( OAM) functions. 

Purely ATM based interfaces are foreseen for smaller networks (such as private customer 

networks) where physical layer OAM functions are unlikely to be required [9]. For large 

or public networks, SDH or framed ATM based interfaces are required. Due to the,fact 

that some of the available link bandwidth in these latter two interfaces is dedicated 

to functions other than the transport of ATM layer cells, the term interface transfer 

rate is used to distinguish the effective transfer rate of the interface from the physical 

transmission rate of the link. Table 1.3 lists the four bit rates currently supported by 

the UNI as specified in [9] and [60]. Other interfaces may be added in future, but for 

the moment, the 155.52 Mbps interface is seen as the most common UNI for outgoing 

(user to network) information. 

Physical Rate Interface Rate Example Physical Protocol 

44.736 Mbps 40.704 Mbps DS3 

100 Mbps 100 Mbps 100 Mbps Multimode Fiber 

155.52 Mbps 149.76 Mbps SONET STS-3 

622.08 Mbps 599.04 Mbps SDH STM-4 

Table 1.3: Four basic UNI bit rates and example interface protocols. 

Note that the use of framed, or non-ATM interfaces at either the UNI or the NNI 

is generally ignored in the analysis of network switching and multiplexing elements. 
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Instead, a purely ATM interface is assumed, which introduces some (hopefully small) 

degree of error into the analytical results. This assumption, and the effect that it has 

on the perceived network performance is an area requiring further attention. 

1.1.4 Switching and Multiplexing 

Each intermediate node in the ATM network contains one or more switches which 

perform the routing functions for ATM cells traversing the network, which as discussed 

earlier, may also involve VPI and VCI translation. The three main components of an 

ATM switch are the input port controllers, interconnection network, and output port 

controllers, as illustrated in Figure 1.4. In addition to these switching components, a 

central processor (not shown in Figure 1.4) is required to provide ATM layer functions 

such as connection establishment and release, and to monitor the overall operation of 

the switch. 

1 IPC OPC 1 

Interconnection 
Input Network Output 
Ports Ports 

(Switching Fabnc) 

N .. IPC opc,. N 

Figure 1.4: Basic ATM switch configuration, showing the relationship between the input 

and output port controllers (labelled as !PC and OPC respectively) and the interconnec­

tion network of the switch fabric. In most cases, the switch will have an equal number 

of input and output ports, which all operate at the same line speed. 

Access nodes (on the edge of the network) may also provide multiplexing and demul­

tiplexing functions in addition to switching operations. Multiplexers provide a means 

for combining cells from a number of low speed input lines into a single cell stream 

suitable for transmission on one higher speed output line, while demultiplexers perform 

the corresponding inverse operation. Multiplexers and demultiplexers may also be used 

to support trunk lines within the network for carrying very large quantities of data over 

large distances (such as between two cities). 
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Switches and Switch Fabrics 

ATM cells are routed from the input port controllers (IP Cs) to the output port con­

trollers (OPCs) through the switch interconnection network (IN). The IN provides a 

self-routing facility which directs a cell from each input port to an output port using 

the contents of the cell header. Contention may occur however if two or more cells are 

directed to the same output port (output blocking), or attempt to use a common link 

within the fabric of the interconnection network (internal blocking). In either case, 

only one cell can be transmitted - the others must be either discarded, or preferably 

stored for subsequent transmission. 

There are three basic methods to provide storage (or buffering) for blocked cells within 

the ATM switch [105]: 

Input Queueing: Buffers are provided at each IPC, so that a cell that cannot success­

fully be routed to an output port (because of either internal or output blocking) 

waits at the input. Subsequently arriving cells are queued in arrival order. Al­

though simple to implement, the main disadvantage of this method is that while 

the cell at the head of the queue waits to be transmitted, it delays other cells 

in the same input queue which might otherwise be successfully routed to other 

available outputs. This head of line (HOL) blocking effect limits the maximum 

throughput of the input queueing approach. 

Output Queueing: Buffers are provided at each OPC so that multiple cells routed to 

the same output may be accommodated. The order of arrival of the cells at~ the 

output buffer (the order in which the cells are queued) is generally assumed to be 

random, although this will depend to a large degree on the implementation of the 

IN. Internal blocking can be avoided by increasing the speed of the interconnection 

network [5]. 

Shared Queueing: A single shared buffer is provided into which all cells from the 

IPCs are stored. A sophisticated control algorithm keeps track of the locations 

of the cells in this buffer, and determines which cells are to be sent to the output 

ports. Although cells routed to the same output port are stored in the same logical 

(or virtual) queue, their physical memory locations may be dispersed throughout 

the shared buffer. Internal blocking is not immediately obvious in this envi­

ronment, but can occur in the implementation of the control algorithm. This 

buffering arrangement is also called central queueing, since the shared buffer is 

usually central to the switching element implementation. 

Combinations of these three types of queueing can also be used. In any implementation 

the buffers must queue cells in a logical first in, first out (FIFO) order to ensure that 



12 Introduction 

cell sequence integrity within a VCC is preserved, as required for ATM. Of the three 

methods, shared and output queueing appear more favoured by industry (see Table 1.4) 

despite the simpler implementation of input queueing. The primary reason for this is 

the poor throughput and higher queueing delays of the latter approach. As an example 

of the throughput limitation, a simple input queueing switch, using an internally non­

blocking interconnection network can only achieve a maximum throughput of 0.586 

erlang [69], compared to a maximum of 1.0 for shared and output queueing. Although 

methods for increasing the throughput and decreasing delays by reducing the HOL 

blocking effect are available [105], the extra complexity of their implementation can 

reduce the comparative advantages of input queueing. 

Manufacturer Name Size Speed Buffering 

IBM Corporation PRIZMA 16 x 16 400 Mbps Shared 

Integrated Telecom Technology WAC-188-A 8x8 155 Mbps Shared 

MAZ Hamburg, GmbH SE DAS 340 4x4 155 Mbps Outi:mt 

MMC Networks Inc. ATMS2000 32 x 32 155 Mbps Shared 

Scorpio Communications · ATM JC 2x2 640 Mbps Shared 

Table 1.4: Size, speed, and buffering method details for 5 commercially available ATM 

switches as of June 1996. The size describes the number of input and output ports of 

the device, while the speed indicates the maximum line speed per port. The develop­

ment and functional implementation of IBM Corporation's PRIZMA Switch-on-a-chip 

is presented in {21]. 

Although the both the output and shared buffer implementations provide logical output 

queues, the shared buffer approach has the advantage that the total storage space 

required to achieve a desired cell loss probability can be significantly reduced over that 

required for output buffering. Output buffering has a slight advantage over shared 

queueing in terms of the complexity of the interconnection network and control logic, 

but overall design issues tend to favour the use of a shared buffer [42]. 

A comprehensive survey of the many different interconnection network topologies and 

buffering methods available is given by Ahmadi and Denzel in [5]. 

Construction of Larger Switches 

Table 1.4 lists some basic details on a selection of commercially available ATM switches, 

in particular showing that these switching elements have only a small number of input 

and output ports. The size of these switches is basically restricted by the limitations 

of silicon based VLSI implementation. Switches with large numbers of inputs and 

outputs must therefore be constructed by interconnecting smaller switching elements 
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in a suitable fashion. There are numerous methods and topologies for implementing this 

interconnection, and a serious study of the field is beyond the scope of this introduction 

- the interested reader is directed to [100] or [5]. 

Networks of Queues 

Within each switching element, cells may experience delays due to queueing. With 

multiple switching elements making up a single network node, and multiple nodes 

required to construct a single network path (see Table 1.1) cells belonging to a particular 

VPC will pass through a sequence of queues. 

The entire B-ISDN can in fact be envisaged as an interconnected network of queues. 

Figure 1.5 illustrates the basic idea for a simple interconnection of four 2 x 2 switches 

that might be used to construct a larger 4 x 4 switch. Cells belonging to one VPC 

are delayed in network queues by other cells due to contention for the output link, 

and may be lost entirely if a full buffer is encountered (no more space to store blocked 

cells). Factors such as queueing delay and cell loss are important descriptors of the 

performance of the network. We will look at this issue in the context of network 

management in the following section. 
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Figure 1.5: Illustration of how a simply interconnected network of four 2 x 2 switches 

effectively behaves as a network of queues. A single VPC path from input port 1 to 

output port 3 that passes through two queues is highlighted. 
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1.2 Traffic Management Issues 

A customer or user will generally require the network to provide a certain quality of 

service (QoS) for each of its connections. That is, the performance of the network, as 

seen by cells on the user VPC or VCC must be within certain bounds. The parameters 

that are used to quantify the connection QoS will vary with the type of information 

being transmitted, but may include cell transfer delay, cell delay variation, and cell loss 

ratio [64]. 

In order to provide QoS guarantees, traffic3 flows into and within the ATM network 

are controlled by a network administration or management, which has two primary 

objectives: 

• To ensure that the network meets the QoS requirements of established connections 

• To maximise the utilisation of network resources 

The CCITT has defined a set of generic traffic control functions to aid in meeting these 

objectives [64]: 

Network Resource Management: Provisioning may be used to allocate network 

resources for the purpose of separating traffic flows on the basis of quality of 

service requirements or connection type. Capacity can be reserved along certain 

network paths in order to accommodate peak hour usages or allow for rerouting 

of established connections in the event of a node or link failure [93]. 

Connection Admission Control: CAC is a set of actions taken by the network dur­

ing the establishment of a connection that determine whether the network can 

accept the new connection and still meet the QoS requirements of both the ex­

isting and new connections. Routing functions are also part of the CAC actions, 

which allows alternative routes to be investigated when establishing a new VPC. 

Usage Parameter Control: Each connection is admitted to the network on the basis 

of a set of traffic parameters that describe the potential behaviour of cells gen­

erated on the VPC or VCC. If traffic on the connection violates the negotiated 

traffic parameters (either maliciously or unintentionally) the QoS of other con­

nections within the network may be adversely affected. Usage parameter control 

(UPC) allows the network to monitor and optionally react to changes in the actual 

3 The term 'traffic' is a generic one, used to md1cate the behaviour of information flows withm the 

network. 
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traffic parameters. The UPC function is usually located within the user-network 

interface. 

Traffic Shaping: Traffic shaping is a mechanism that alters the traffic characteristics 

of a stream of cells on a VCC or VPC to achieve a desired modification of the 

traffic characteristics. Examples are peak cell rate reduction, burst length limit­

ing, and cell spacing. The UPC may perform traffic shaping on user traffic that 

violates its negotiated traffic contract. 

Priority Control: As mentioned in section 1.1.1, the ATM specification provides for 

two loss priority levels within each cell header. Priority control allows the network 

to selectively discard low priority cells, provided that it can still meet the QoS 

objectives of the connections involved. 

We will consider Connection Admission Control in section 1.2.2, but first we address the 

issue of priority control within the B-ISDN. While CAC allows the network to ensure 

that it can meet the QoS requirements of its users, priority control provides a means 

whereby the utilisation of the network resources can be maximised. If all connections 

are treated similarly, without priority distinction, then CAC and the allocation of 

network resources must be based on the most stringent of the QoS requirements, thus 

limiting the connections that the network can support [115]. 

1.2.1 Priority Control in the B-ISDN 

"' 
The CCITT has identified two loss priorities for ATM. The loss priority of cells belong-

ing to a particular VPC or VCC may either be set by the user (to separate information 

into essential cells and ordinary cells, such as might be used in layered video cod­

ing [110]) or by the network (to indicate cells violating the agreed traffic parameters at 

the UPC). 

Provision of Loss Priorities 

Loss priorities are often referred to as space priorities [72], since selective discard of 

cells by the network does not violate the cell sequence integrity of a VCC or VPC. 

Although low priority cells that violate their traffic contract may be discarded by the 

UPC at the network edges, the main benefit of the use of loss priorities is seen within 

the switching elements of the network. An ATM switch can implement loss priority 

distinction within switch buffers using one of two general methods [35, 68]: 

Partial Buffer Sharing: Cells of both priority levels are accepted to the buffer while 

the total number of queued cells is below some threshold value T. When the total 
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number of cells exceeds T, only high priority cells are accepted. The value of T 

may be fixed or be adaptively controlled. 

Modifications of this basic arrangement are possible. One method is to introduce 

hysteresis into the acceptance and rejection mechanism by providing one threshold 

above which low priority cells are rejected, and a second threshold below which 

they are accepted again. Another alternative is to count the number of low 

priority cells in the buffer, and use this for comparison with the threshold rather 

than using the total number of queued cells [18]. 

Pushout: Cells of both priorities are accepted to the buffer until it is full. A high loss 

priority cell arriving to the full buffer may push out a low priority cell that is 

already queued in the buffer. High priority cells are therefore not lost from the 

buffer until there are no low priority cells present. Low priority cells arriving to 

a full buffer are lost. Provision for a minimum number of low priority cells to 

be permitted in a full buffer can be used to provide control over the relative low 

priority loss rate. 

An alternative proposed by Suri et al. in [127] allows cells from either loss priority 

to push out cells of the other priority if there are more than a certain number of 

those cells in the buffer. The relative numbers of cells allowed in the buffer are 

adjusted to provide the best loss performance for the low priority cells without 

violating the QoS of the high priority cells. 

Numerous studies have been performed comparing these two methods [16, 72, 127], and 

of the two the pushout mechanism generally provides the better solution. This method 

provides smaller loss probabilities for both priorities, since no cells are discarded until 

the buffer actually becomes full, and in addition the pushout approach can ensure that 

no high priority cell is discarded while a low priority cell is queued. The disadvantage 

of the pushout method is that it requires a more complex control algorithm in order to 

maintain cell sequence integrity when cells are actually pushed out [72]. 

In addition to these cell based discard strategies, there has been a growing emphasis on 

the use of packet discard strategies [53, 54, 113] to further improve network performance 

for data communications. Many local area and packet switched networks for computer 

communication use large packet sizes to reduce transmission overheads. In order to 

transport these large packets across the B-ISDN or through a private ATM network, 

each packet is segmented into a number of ATM cells. If even a single ATM cell from 

this packet is lost in transmission due to buffer overflow, the entire packet is lost, even 

though the network may deliver the remaining cells successfully. In the event of a cell 

loss, it is to the advantage of the network if it can recognise other cells belonging to 

the same packet, and discard them as well before they enter the network queues. This 

action requires the network to recognise the start and end of each packet, requiring a 
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degree of AAL functionality to be provided within each switching node. Although this 

goes against the ATM philosophy to some extent, the advantages that packet discard 

strategies can provide to packet based data transmission appear considerable. 

Provision of Delay Priorities 

As we identified in section 1.1.3, the four AAL service classes recommended by the 

CCITT can be categorised as either loss sensitive or delay sensitive. Although two loss 

priorities are specified for ATM, there is no current recommendation for the explicit 

provision of delay priorities. 

One of the arguments often used against providing delay priorities in the B-ISDN is 

that queueing delays will be small compared to the propagation delays of the network 

[35, 115]. When network utilisations are low this may indeed be the case, but as the 

network utilisation increases, the average number of cells stored in the switch buffers 

and the queueing delays associated with these, will also increase. The use of small 

buffer capacities (such as in the SE DAS 340 switch of Table 1.4, which provides only 

10 cell positions per output buffer) was at one stage seen as necessary to limit queueing 

delays, but this approach also severely limits the potential utilisation of the network in 

terms of meeting user loss requirements. 

The simplest method to provide delay priorities within ATM switching elements is to 

allow high priority cells to preferentially be transmitted ahead of low priority cells 

sharing the same switch buffer. This preferential service can be achieved by providing 

logically separate queues for each priority class, and then implementing a service mech­

anism to select cells from each of the queues for transmission on the output link (see 

for example [10, 17, 55, 90, 129]). The simplest service mechanism is one that provides 

head of line service to the queues in order of priority [35, 134]. That is, the next cell to 

~ be transmitted is chosen from the highest priority buffer having queued cells. Thus the 

lowest priority queue will not receive service until all the other delay priority queues 

are empty. It is interesting to note that of the five switching elements listing in Table 

1.4, three of them provide facilities for implementing delay priorities. 

CCITT Draft recommendation E.73x [57] suggests that HOL queueing can be used 

to provide delay priorities, with the priority of a cell being indicated by the VPI and 

VCI values in the cell header. The delay priority of cells belonging to a particular 

VPC or VCC must be the same, unlike for the loss priority case, since otherwise cell 

sequence integrity could be violated. Different VCCs belonging to the same VPC could 

have different priorities however, since ATM only guarantees cell sequence integrity on 

virtual channels. Loss priorities could additionally be implemented using either partial 

buffer sharing, or pushout within each logical priority queue. 
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A Loss and Delay Priority Scheme 

Where traffic priorities are considered in this thesis (Chapters 2, 5, 6, and 7) two 

priorities are assumed for the purpose of separating traffic into delay sensitive and loss 

sensitive categories. That is, we assume that traffic that is not sensitive to delay must 

be sensitive to loss. This two priority system can be implemented using HOL service 

priority and a dual buffer arrangement within the ATM switches. Output queueing 

will be assumed throughout. Figure 1.6 shows a simple ATM switch arrangement using 

two buffers per output port. The dual buffer arrangement may be realised either by 

providing physically separate high and low priority buffers, or by logically partitioning 

the one physical space. 

1 1 

2 

Inputs Outputs 

3 3 

4 

Figure 1.6: A simple ATM switch using dual buffers at each output port to support 

separation of network traffic into either delay sensitive of loss sensitive categories. The 

upper of each buffer pair holds delay sensitive traffic, and recives HOL service priority. 

In order for the delay sensitive traffic to experience small queueing delays, the utilisation 

of this traffic type is kept fairly low, with correspondingly small queue occupancy levels. 

High utilisations for the loss sensitive traffic can be achieved at the same time however 

(leading to high network usage overall) provided that the buffer space allocated to 

the low priority buffers in the dual buffer implementation is sufficiently large. This 

approach therefore allows the network to meet the required QoS of both the delay 

sensitive traffic and loss sensitive traffic simultaneously whilst achieving high network 

utilisation - something that cannot be achieved using a single buffer implementation. 
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Hullett et al. [54] discuss basically this arrangement in a design for an ATM switching 

element they call the Dataswitch. A peak rate allocation scheme4 is used for the high 

priority queue, while statistical multiplexing of data traffic is used with an early packet 

discard mechanism in the low priority buffer. 

1.2.2 Connection Admission Control 

One of the most important functions of network management is connection admission 

control, which aims to prevent congestion within the network by determining when new 

connections should be accepted by the network. Congestion occurs when the network 

is unable to meet the QoS requirements of its established connections [64]. 

In order to determine whether a new connection can be supported by the network 

without causing congestion, the CAC mechanism requires that the user describe the 

expected or predicted behaviour of the new connection through a traffic descriptor, 

and additionally the required quality of service through a set of QoS parameters. A 

traffic descriptor is made up of parameters that describe properties of the information 

flow on the proposed connection. The traffic parameters must be unambiguous and 

understandable to the user, and importantly must be able to be monitored by the UPC 

function of the network management [9]. Three possible candidates are: 

Peak Cell Rate: This is the peak cell generation rate of the traffic, defined as~ the 

inverse of the minimum time ,between two cells. Equipment wishing to trans­

mit information across the B-ISDN will be required to observe this limit on the 

generation of cells. 

Average Cell Rate: The average cell rate is similarly defined as the number of cells 

generated by the connection divided by the duration of the connection. Since 

this quantity will not be known until the connection terminates, a suitable upper 

bound is generally used instead. 

Burst Duration: Many types of traffic are bursty in nature. That is, they generate 

cells at or near their peak rate for periods of time but are silent (or transmitting 

at a significantly reduced rate) in between these 'bursts'. An example of this is 

the transmission of full motion video, which results in periodic bursts of data 

corresponding to the coding of each video frame. The burst duration traffic 

parameter is used to describe some measurable statistic (such as the mean or 

maximum length) of this behaviour. 

4We discuss peak rate and statistical allocation in section 1 2.2. 
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Since the CAC operation is performed before the network can accept a new connection, 

it must be able to be implemented very quickly. This is especially true when the CAC 

mechanism needs to consider multiple network paths (such as when attempting to 

establish a new VPC). The basic operation of the CAC is to assume that the connection 

has already been accepted by the network, and then to analyse the performance of the 

network, as seen by each connection, to check that the QoS requirements are being 

met. If the QoS requirements of any connection (existing or new) are violated, the new 

connection is rejected (or a new route is investigated). The number of elements that 

must be investigated is potentially very high, which constitutes the main difficulty in 

implementing the CAC. 

The simplest CAC method that a network can use is peak rate allocation. A new con­

nection is only accepted if the sum of the peak rates of the new and existing connections 

at every point of the proposed network path are less than the capacity of the respective 

links or switching elements. Rather than explicitly calculating the perceived perfor­

mance for each connection in this situation, this method relies on the network having 

been suitably dimensioned5 so that the peak rate allocation method will guarantee the 

most stringent quality of service that the network supports. 

Although the peak rate allocation method is e~tremely fast, it leads to poor network 

utilisation for bursty sources, since the average cell rate of these traffics is usually 

considerably less than their peak cell rate. Fortunately for these types of sources, 

it is often possible to allow more connections than suggested by peak rate allocation 

without violating the negotiated quality of service requirements. The method relies 

on the probability that there are more sources transmitting at the peak rate that can 

be accommodated by the link in any time interval being small enough to enable the 

network to still meet its performance objectives - a technique referred to as statistical 

multiplexing. The extra number of connections that can be accommodated by statistical 

multiplexing (called the statistical multiplexing gain) and hence higher utilisation of 

the network, is dependent on both the traffic parameters, and their relation to the 

network transmission capacities. 

The use of statistical multiplexing to improve network utilisation means that the CAC 

mechanism must evaluate the performance of the network with the new connection 

present in order to judge whether QoS requirements would be satisfied by the new 

network configuration - something which can be avoided in the simple peak rate 

5Network dimensioning is the process whereby the number, size, capacity and speed of the vari­

ous network elements are chosen The same process that 1s used by the CAC to determine whether 

connections can be accepted, is generally used to dimension the network by considering the expected 

network usage, and then adjusting the parameters of the network in order to satisfy the projected QoS 

requirements. 
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allocation case. An alternative CAC method exists though, which is similar to peak rate 

allocation, but is based instead on the notion of equivalent bandwidth [38, 86, 91, 145]. 

This method uses an estimate for the effective or equivalent bandwidth of each type of 

connection traffic and decides connection acceptance or rejection by requiring the sum 

of the equivalent bandwidths at each link or network node to be less than the available 

capacity. 

The key to the success of this approach is in knowing the equivalent bandwidth quantity 

for each connection type before it is needed for actual CAC within a 'live' network. The 

equivalent bandwidth value is obtained from analysis of simple network arrangements 

having similar parameters to the actual network. From the number of traffic sources 

(usually identical) that this simple network can support and still satisfy the QoS criteria, 

a value for the equivalent bandwidth of the traffic is obtained. Safety margins can then 

be added to decrease the chance that this CAC implementation results in the wrong 

decision being made (acceptance of a connection which causes QoS degradation). Since 

these equivalent bandwidth calculations are performed 'off-line' they can be mad·Et as 

accurate or as complicated as desired, since long calculation times are not as important. 

Measuring Network Performance 

In both the peak rate allocation and equivalent bandwidth CAC methods, actual per­

formance evaluation of the network is avoided, although it is required for the more 

general CAC approach. However, in dimensioning the network to use peak rate; al­

location, or in obtaining the equivalent bandwidths of the various traffic types, s6~e 
degree of network performance analysis is still required, although not under the same 

time constraints. 

The purpose of such analysis is to investigate how the network performs from the point 

of view of the quality of service requirements of the carried network traffic. That is, 

the analysis must determine quantities such as the average cell transfer delay and its 

variation, and the average cell loss probability on a per connection and per priority 

basis [9, 64]. All three of these quantities are primarily governed by the behaviour and 

dimensioning of the buffers within the network6 . Thus, the performance analysis of the 

network primarily consists of the queueing analysis of the various elements making up 

the network. 

The main focus of this thesis is on the performance analysis of various queueing prob­

lems involving both single and dual buffer systems. The results are of importance to the 

implementation of connection admission control mechanisms, and hence to the manage-

6 Although there will be a component of the delay that is determmed by propogation delays on the 

chosen network path, this is not effected by the acceptance or rejection of new calls by the CAC 
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ment of the entire B-ISDN. In order to make accurate predictions of queue behaviour 

however, suitable models for the queue arrival processes are required, so .;..e will look 

at the modelling of ATM traffic in the following section. 

1.3 Modelling ATM Traffic 

The construction of analytic or procedural models of telecommunications traffic, and 

the subsequent study of their queueing performance, belongs to the area of teletra:ffic 

analysis. There are three basic steps involved in this process - traffic characterisa­

tion, traffic modelling, and queueing analysis. While the greater part of this thesis is 

concerned with the last of these, we discuss the first two steps in the following. 

1.3.1 Traffic Characterisation 

Traffic generation in the ATM network can be characterised using a multilayered struc­

ture [29, 32] as illustrated in Figure 1. 7. Each layer of this structure (call, burst, and 

cell) occurs over a different time scale, giving a multiresolution view of an ATM traffic 

stream. The call level describes the behaviour and incidence of new connections and 

has intervals and holding times measured over the time scale of seconds to minutes. 

The burst level indicates periods of high activity within the call and has a time scale of 

milliseconds. The cell level, which describes the actual pattern of ATM cell generation 

has a time scale in the order of microseconds (at 155.52 Mbps an ATM cell can be 

transmitted every 2.73 µsec). 

Call Level: 

Burst Level: 

Cell Level: 

----------------------(sec) 
' ' ' ' ' ' 

-----'-c=J _ _,___. __ ----'----'-0_,__--'-CJ-__,_ _ __._ __ _.__ (rnsec) 

/ 
/ 

Figure 1.7: Three time scales used to characterise the behaviour of ATM traffic. 

There are three basic locations for which traffic models can be characterised - at the 

source, at the network edge, and within the network. The traffic behaviour at the latter 

two locations is a direct consequence of the traffic generated at the first location, so we 

begin with identifying this process. 
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Traffic at the Source 

The traffic source in this context is the originating point of ATM cells, which may be a 

single user terminal on a private ATM network, or the bridging point for a non-ATM 

network (e.g. N-ISDN or Ethernet LAN). Three generic types of traffic are frequently 

identified in the context of the B-ISDN (see for example [136]): 

Voice Traffic: This is traffic originating from the equivalent of the analog telephone, 

and may be coded using 64 kbps PCM or 32 kbps ADPCM techniques. Direct 

PCM techniques result in a constant bit rate connection by continuous sampling 

of the voice source. To make use of statistical multiplexing, silence detection [58] 

can be used to prevent transmission of cells which contain little or no useful 

information, resulting in a bursty traffic process. Voice traffic is robust with 

respect to cell losses, but is sensitive to variations in transmission delay. Buffering 

at the receiving end can be used to improve this, but introduces an additional 

transmission delay to the connection. 

Video Traffic: Video traffic is expected to originate from a range of services, from 

low quality videophone and video conferencing through to standard entertain­

ment and high definition television. The video signal is composed of periodically 

generated 'frames' of information which describe the changing content of the dis­

played image, and as a result, the bursts of activity from video sowces are also 

periodic. Because high compression rates are used to reduce the required Qf!.nd-
.... ' ...... 

width of the video traffic, it is moderately sensitive to cell losses. As with v;oice 
~ .... ~-

traffic, buffering is used to absorb some of variations in network transmission 

delays. 

Data Traffic: Data traffic is a generic label for those communications requiring end­

to-end lossless transmission. ATM does not provide this sort of transfer capability, 

so it is implemented by higher layer functions at the network edges (at the source 

and destination). As a consequence, a single cell loss can incur a heavy penalty 

since an entire high level protocol data unit (PDU), representing tens to hundreds 

of ATM cells, must be retransmitted. 

Data traffic is inherently bursty in nature due both to the higher layer proto­

cols that guarantee lossless transmission, and to the intermittent transmission 

requirements of most data applications. This factor, along with a high tolerance 

to long transmission delays, makes this traffic a prime candidate for statistical 

multiplexing. 

An important consideration for network performance is the behaviour of these traffics 

at the cell level. For voice traffic, the generation of cells within a burst (or continuously 
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if silence detection is not used) is governed by the coding process and the size of the 

ATM cell payload, resulting in constant time intervals between cells7 . For video and 

data traffic, the cell generation process in not subject to the same coding restraints, 

but the traffic parameters negotiated with the network during connection establishment 

must still be observed, or cells may be discarded by the network UPC. Thus for data 

traffics, cells are generated at the agreed peak rate within a burst, even though a faster 

rate may be physically possible - a process referred to as peak rate limiting. 

The same approach can also be used with video traffic, resulting in bursts of cells at 

the peak rate followed by a silent period until the next frame begins. In many cases 

however, the size of the frame of video data is known before transmission begins. Since 

the time between frames is fixed, it is then possible to adjust the cell rate of the video 

source on a per frame basis, so that the transmission of each frame is only just completed 

before the next one is ready. In this situation, the video source never becomes 'silent' 

but instead acts as a constant bit rate source with a periodically varying rate. 

Traffic at the UNI 

From the discussion above, the cell generation process within each burst (or over du­

rations measured on a burst level time scale) will exhibit a fixed time interval between 

cells due to peak rate limiting. This will be the case at the source of the ATM traffic, 

but may not necessarily be the case at the UNI. 

A single UNI may be shared by a number of ATM terminals or devices, or may be 

part of a private ATM network. In the first of these arrangements, traffic generated 

by each terminal (or source) is multiplexed with traffic from the other terminals before 

being passed to the UNI. In the same manner as within network switching elements, 

the multiplexer resolves the problem of possible simultaneous cell arrivals by buffering 

the excess cells. When more than one traffic source is being used, queueing in this 

buffer introduces variation in arrival times of the cells at the UNI. This effect is termed 

cell delay variation ( CDV) and is a factor that must be accommodated by the UPC 

when determining compliance of a connection with its negotiated traffic parameters. 

This CDV effect can become more pronounced when a private ATM network provides 

the access to the B-ISDN, since in addition to delays caused by multiplexing at the 

UNI destination, cells from each traffic source are queued within the switching fabric 

of the private network. Thus, although peak rate limiting is used at the traffic sources, 

the behaviour of the cell generation process at the UNI will exhibit variations in the 

intervals between cells. 
7 Assuming a full 48 byte payload, cells are generated approximately every 6 msec when using 64 

kbps PCM. 
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Traffic within the Network 

As the number of switching elements that cells pass through increases, the effect of CDV 

on the connection accumulates, making the characterisation of the traffic increasingly 

more difficult. Thus although we can characterise the behaviour of a particular type of 

traffic in a certain manner at its source, the behaviour of the traffic within the network 

is more difficult to describe. 

Figure 1.8 shows the two primary operations that need to be considered in a packet 

switched network - the merging of those traffic streams taking the same network path, 

and the subsequent splitting of the merged stream at the next routing or switching 

point [107, 124]. In practise these two interrelated operations are difficult to describe, 

and only a few attempts have been made on their analysis (see [20,87, 102] and references 

therein). 
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Figure 1.8: Merging and splitting in network switching elements. 

An important consideration in regard to merging and splitting in the network is that 

traffic entering the switch buffers is no longer usefully identified on the basis of its 

originating sources. As an example, an output port of a particular ATM switch having 

4 input ports may be carrying traffic from 100 different voice connections, yet the cell 

arrival process to the relevant output buffer actually only consists of 4 'sources' -

the input ports of the switch. In order to describe this arrival process in terms of the 

original 100 sources would require identification of both the cumulative CDV effects 

for each traffic, and the correlations between arrivals from each source arising from 

multiplexing8. 

8 Cconsider that if we identify which sources the currently arriving 4 cells belong to, we have also 

effectively identified that the other 96 sources cannot be currently generating cells. 
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'Tuaffi.c processes within the network will therefore be difficult to quantify purely on the 

basis of the characteristics of the sources that contribute to each network node, although 

some parameters such as the average transmission rate, will be easily identifiable. 

1.3.2 Modelling Approaches 

There are two basic ways in which the arrival processes within a network can be de­

scribed. The first considers the times between events (such as an arrival to or a de­

parture from a queue), while the second considers the events that occur at specific 

times. For example, we may either measure the intervals between arrivals of cells to a 

specific switch buffer, or we may count the number of cells arriving to the queue in a 

suitable time period. Both approaches have a certain validity, but for a particular type 

of problem and analytic method, one traffic modelling approach will be preferable to 

the other. 

In this thesis we will use the event based (or event counting) approach to describe 

the behaviour of the network traffics, and consequently adopt a sympathetic analytic 

method in Chapters 2 to 5. Although interval based models are often able to describe a 

generic traffic source more accurately or more efficiently, the superposition of a number 

of these sources is considerably more difficult to express than with the alternative. 

Since we are particularly interested in queueing analysis within the heterogeneous traffic 

environment of a network switch, the use of models based on event counting methods 

is the better choice. 

One of the convenient aspects of ATM based networks for teletraffic analysis is that 

the length of an ATM cell is constant, which means that its service time (or the time 

required to transmit the cell on a fixed speed output line) is deterministic. For modelling 

purposes, the cell service period is a natural choice for the time interval in which to 

count events such as arrivals and departures. This time unit will be referred to as a 

slot, so that time is said to be slotted or divided into equal length intervals. 

We will assume that the input lines and output lines of all ATM switching elements are 

transmitting cells at the same speed. During one slot time, at most one queued ATM 

cell can be transmitted on the output line, and similarly at most one cell can arrive on 

each of the input lines. Thus each input line can be modelled using a binary process, 

which takes the value 1 when an arrival occurs in the current slot, and 0 otherwise. 

Note that multiplexers and demultiplexers, which involve either low speed inputs or low 

speed outputs, can be described similarly by restricting the slots in which arrivals or 

service can occur. For example, a multiplexer may be described by forcing each arrival 
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on an input line to occur separated at some multiple of T time slots, where T is the 

speed-up factor of the multiplexer (see for example [49]). Similarly, a demultiplexer 

can be described by only permitting service to occur once every T slots. We will look 

at this periodic service problem in more detail in Chapter 5. 

Constructing the Model 

Since we are using event counting as our basic approach, the traffic model must attempt 

to describe how the O's and 1 's, representing no arrivals and one arrival respectively, 

are generated over time by the observed traffic. This is usually done by assuming the 

traffic forms a stochastic process, which is then approximated by a suitable model. The 

traffic model parameters are adjusted in order to match the statistics of the model to 

the statistics of the original traffic9 . With this achieved, analytical techniques can be 

used to obtain queueing performance results for the model. If the model is a good one, 

these performance results will closely match those that the real traffic would obtain in 

the same situation. Simulation is often used in this regard to provide confirmation or 

otherwise of the model accuracy. 

The simplest stochastic event model is the Bernoulli arrival process, which generates 

an arrival in any slot with fixed probability p, and no arrival with probability (1 - p). 

The parameter p represents the average number of cells or arrivals generated by the 

model in each time slot. Thus, if we denote the equivalent statistic for the actual traffic 

by .A, then the modelling process simply requires p = .A. Because of the binary nature 

of the traffic process, the identification of this average arrival probability means that 

the marginal or steady state distribution of the traffic and the model are immediately 

identical. 

The Bernoulli traffic model cannot capture the dynamics of the actual traffic arrival 

process in time (bursts and silences for example) however, because it treats each time 

slot independently of every other. In order to match the autocorrelation behaviour of 

the traffic, more sophisticated models are required. Two such models that are used in 

the queueing analysis of this thesis are presented in the following. 

1.3.3 An Interrupted Bernoulli Model of ATM traffic 

An interrupted Bernoulli process or IBP, is a process that alternates between generat­

ing arrivals according to a standard Bernoulli process, and generating no arrivals at all. 

9 An alternative that can be used when the queuemg performance of the actual traffic is known, is to 

adjust the parameters of the model m order to match this performance in the same queueing situation 

(see the discussion on output modelling m Chapter 7 for example). 
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This model thus attempts to describe the burst level nature of the actual traffic process, 

while assuming that the cell arrivals within each burst are randomly distributed accord­

ing to a Bernoulli process. In [142], Xiong et al. show that this assumption leads to an 

upper bound on the queueing behaviour of the actual peak rate limited model. How­

ever, given the cumulative effect of CDV on the peak rate limited model, the Bernoulli 

assumption should provide a very good approximation for the actual traffic process 

during the burst period. 

If the IBP model is used to describe the behaviour of a single traffic source at the edge 

of the network the Bernoulli average arrival rate parameter can be directly equated to 

the negotiated peak cell rate of the connection. Within the network however, the IBP 

will be used to describe the arrival process from each input port, with the Bernoulli 

average arrival rate then determined by the merging and splitting probabilities at each 

node for the traffics that contribute to the modelled arrival process. 

When the IBP is generating cells, it is said to be in an active state, while the alternate 

behaviour is referred to as the inactive or silent state. In its most general form, the 

IBP model can provide phase-type distributions10 for the durations of the active and 

inactive states, and allow arbitrary correlations between successive durations. However, 

this level of complexity not only requires a large number of parameters to describe, but 

also results in intractable queueing problems. The most common form of IBP is one 

having independent geometric distributions for both the active and inactive periods, 

requiring only 3 parameters in total to describe the model. We will examine this IBP 

model in more detail in Chapter 3. 

An interesting form of IBP is one having a phase-type distribution for the active peri­

ods, a geometric distribution for the silent periods, and importantly an average arrival 

probability in the active state of 1 (a cell is generated in every time slot for which the 

IBP is active). Although such a high peak arrival rate is very unlikely for traffics after 

splitting (switching), it is more likely for the merged cell stream at the output of the 

switch buffer [124]. The advantage of this traffic model is that closed form solutions 

for the average and variance of the buffer population exist. We present the derivation 

of the variance solution in Chapter 4. 

Model Nomenclature 

For convenience of identification, we will refer to the IBP model with geometrically 

distributed active and inactive periods by the name geometric-geometric IBP. A similar 

notation is adopted for the second model above, referring to it as a phase-geometric 

10The phase-type distribution is a general distribution in discrete-time - see Chapter 2 of [95] for 

an elementary discussion. 
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Binary process. Thus the hyphenated term in the name of the process denotes the 

distribution type for the duration of the active and inactive states, in that order, while 

the 'IBP' and 'Binary' terms indicate that the Bernoulli arrival process during the 

active state has a generation rate that may be less than 1, or is always equal to 1, 

respectively. 

For ease of use, the hyphenated term for active and inactive distributions will usually be 

abbreviated in this thesis to geom-geom for the geometric-geometric term, and phase­

geom for the phase-geometric term. 

1.3.4 A Cyclic Arrival Model 

In an ATM network providing peak rate limited connections to a homogenous mix of 

CBR traffic sources, transmission delays will be fairly constant, except when a new 

connection is accepted, or an existing connection is released. When either of giese 

events occur, the arrangement and ordering of the traffic along the effec;ted network 

paths will be altered, resulting in a different delays at each network queue, and hence 

a different overall transmission delay. If the lengths of the calls are long (in the order 

of minutes) then it is likely that the pattern of traffic arrivals at each queue will not 

change very frequently, and the network may be able to achieve a steady state condition 

between changes. This will also be the case for a limited mix of CBR traffic sources 

with different periods, provided that the least common multiple of the traffic pe,r!ods 

(which defines the periodicity of the arrival pattern within the network) is small. ,,~ 

If bursty sources are also permitted to use the ATM network, the cell arrival patterns 

will change with the start and end of every burst. Since the burst time scale is several 

orders of magnitude smaller than the call level, any periodicity in the arrival patterns 

will be destroyed. However, if the CBR traffic is given HOL priority over the bursty 

traffic in an ATM network using dual buffers at each output port, the behaviour of 

the bursty traffic will be unable to effect the CBR traffic, and the possibility of steady 

state cell arrival patterns from these sources is again possible. 

Thus it appears that in addition to a model of the general bursty arrival process (the 

IBP discussed above) it would be convenient to have a periodic model as well for the 

case where CBR periodic sources are present as the high priority delay sensitive traffic 

in a dual buffer ATM implementation. In order to distinguish this periodically varying 

cell pattern model from a simple periodic model that generates a single cell every 

period, we refer to it as a cyclic process or model. The cyclic process is described in 

more detail in Chapter 5. 
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1.4 Contributions of this Thesis 

The focus of this thesis is on the discrete-time performance analysis of single and dual 

buffer queueing systems in an ATM environment. Two aims were established to provide 

direction to the work: 

1. Development of exact analytical solutions to queueing problems involving hetero­

geneous mixtures of sources. 

2. Investigation of the accuracy of faster approximate solutions to the same prob­

lems. 

In pursuing these aims, this thesis makes a number of contributions to the body of 

literature in this field that can be summarised as: 

• The development of some basic probability generating function based queueing 

theory in Chapter 2, providing explicit solutions for the average and variance of 

an infinite buffer, single server queue fed by a generic Markov modulated batch 

arrival process. Although this theoretical development is not new of itself, it 

provides a framework for the chapters that follow that has not been equivalently 

expressed in the literature. 

• Presentation of exact numerical solution implementations for the average and 

variance of an infinite buffer queue fed by two-state IBP sources in Chapter 3, and 

by two-state IBP sources and a single cyclic source in Chapter 5. In particular, 

the difficulties in obtaining exact solutions for the systems of linear equations 

that must be solved in order to realise the numeric solutions was investigated. In 

the cyclic source problem, an adaptive solution method was proposed for finding 

approximate results when exact ones are not achievable. 

• The proposal and investigation of a new and extremely accurate approximation 

technique in Chapter 3 that is faster than the probability generating function 

based solution method when 4 or more sources are considered, and is capable of 

providing solutions to problems that would otherwise be intractable using cur­

rent techniques. The approximation method was also shown to provide similar 

accuracy for the cyclic source problem of Chapter 5, and may provide a means 

for solving even more complex problems. 

• The development in Chapter 4 of a closed form solution for the population vari­

ance of a queue fed by phase-geometric distributed binary sources. This solution 

adds to the 1990 result for the average queue population of this problem by 

Neuts [98]. 
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• Investigation of a new loss approximation for single buffer queues in Chapter 6 

that improves on the commonly accepted result, where loss probabilities are given 

directly by the queue population's tail probability distribution. 

In addition to these main contributions, several other interesting results are: 

• The identification in Chapter 2 of a relationship between dual and single buffer 

systems that directly leads to a simpler method for obtaining the solution of in­

terrupted service queues when the interruption process is known. As an example, 

closed form solutions are presented for the population average and variance of a 

queue with random arrivals and phase-geometric service interruptions. 

• Development of the closed form solution for the variance of the queueing delay 

for a queue with random service interruptions and random service in Chapter 6. 

Even when the population average and variance for an interrupted service queue 

are known, obtaining the variance of the delay is not straightforward. 

• The empirical observation in Appendix B that the best average queueing delay 

that any independent traffic class can achieve in a single buffer queueing system 

is given by the average queue population. Some theoretical support for this claim 

is obtained when the traffic class is a periodic process. 

This thesis does not attempt to determine empirically whether the models presented 

and analysed here are accurate descriptions of real world traffic, since the emph~sis 
of the work is on the queueing results that have been obtained using these models. 

Although the models are flexible enough to exhibit various levels of short and long term 

autocorrelation, they may not adequately capture very long term autocorrelations that 

fall outside the settling times of the queueing systems that make up the network (such 

as autocorrelations arising from call connections and disconnections). 

However, since these models are based on the mechanics of the splitting and merging 

operations that occur within ATM networks, they are expected to exhibit a fairly high 

level of accuracy in practice, at least on time scales commensurate with the settling 

times of the queueing systems being studied. Consequently, the author believes that 

this thesis forms a solid base for further research in the areas of both queueing theory 

and performance analysis, and for subsequent investigation into the actual accuracy of 

the traffic models presented. 



Chapter 2 

General Theory for Queue 

Population Analysis 

In this chapter we develop a general analytic solution for the average and variance 

of the population of an infinite buffer discrete-time G /D /1 queue fed by a number of 

batch Markov arrival process, based on a probability generating function· approach. 

The results will be used in Chapters 3, 4, and 5 where more specific arrival processes 

are considered. 

In section 2.1 we review some of the solution methods used in the literature before 

moving on to develop the basic probability generating function theory for the queue 

population in section 2.3. In sections 2.4 through to 2.7, this basic theory is then 

developed into a general solution framework for the average and variance. In addition 

to this single buffer analysis, consideration is given to multiple buffer queueing systems 

in section 2.9. In particular we find that population analysis of dual buffer (priority) 

based queueing systems can for the most part be achieved using only single buff er 

theory. A simple example is provided to show how this is done. 

2.1 A Quick Review of Solution Methods 

Solution methods for queueing problems fall into two broad areas - exact methods 

and approximate methods. Approximate methods are usually considerably faster to 

implement, although with (sometimes greatly) reduced accuracy. In some instances, 

approximate methods must be used, since exact methods cannot be applied due to the 

constraints of computer time, memory, or more often than not, numeric precision. In 

any case, the question of the accuracy of the actual traffic model must contribute to 

33 
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the decision as to which approach is best. 

2.1.1 Exact Methods 

There are primarily two classes of techniques available for solving for the moments 

and/or distribution of the population of a queueing system subject to arrivals from 

Markov modulated sources. The first class is based on a probability generating ap­

proach, and is discussed in detail in this chapter. Its use hinges on being able to obtain 

a vector describing the probability that the system is empty (or that the queue is empty 

immediately before service) called the empty system probability vector. A common ap­

proach to generating this vector uses the fact that the probability generating function 

of the queue population must be analytic within the unit circle, requiring the poles of 

the relevant equation to correspond to its zeros. The poles can only be found numer­

ically, and require that the eigenvalues of the transition probability generating matrix 

of each source be known in algebraic form - which restricts the applicability of this 

technique to small transition matrices [79, 121, 126]. An additional complication is that 

the pole locations are in general complex, resulting in decreased solution accuracy and 

stability with increasing numbers of sources, or source dimension. 

To overcome the limitations of this approach, Neuts presented a geometric matrix an­

alytic approach [97] to finding the empty system vector. Various methods [94, 111, 112, 

116] have been proposed for efficient computation of the relevant matrix components 

required for evaluation of the vector, but although these methods are very stable, they 

require considerable amounts of CPU time, usually more so than the previous method 

of pole and zero evaluation 1 . 

The second class of queue analysis techniques, which requires the queue to have a 

finite buffer space, is based on describing the entire queueing system (including the 

queue population) as a Markov chain. The queueing system is expressed in matrix 

form, and its invariant probability vector (describing the steady state distribution of 

the queue population) is obtained either by direct matrix inverse, or by iteration until 

convergence to some satisfactory limit is achieved. The iterative approach has some 

significant advantages, and is discussed in more detail in Appendix E. 

iin order to obtain the empty system probability vector usmg the matrix-geometric method, the 

solution of m linear equations in m unknowns is reqmred, just as for the pole-zero method, where m 

is the number of states m the overall arrival process. However, whereas the pole-zero method requires 

m numerical solutions of eigenvalue and vector problems to obtam the lmear system parameters, the 

matrix geometric method reqmres large numbers of multiplications and addit10ns with m x m matrices 

[94]. For larger m, this extra computational requirement means that the matrix geometric method can 

be considerably slower than its pole-zero counterpart Support for this can also be found in [89] 
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One alternative method that provides much the same result, but can be applied to infi­

nite buffer analysis, is based on the matrix geometric approach above. Once the initial 

empty system vector is obtained, the vector describing the distribution of the queue 

population can be found recursively (see (112, 116] for a suitable method). Again how­

ever, this method is very CPU intensive, and will probably not provide any particular 

benefit over a direct or iterative solution for small numbers of sources. 

The first class of techniques has the advantage that, for a combined arrival process 

having a small state space, the moments of the queue population can be quickly found. 

The primary advantage of the second class of approach is that it is always stable, can 

provide a limited amount of information on the transient behaviour of the system, and 

perhaps more usefully, can accurately describe the finite buffer performance. Both 

classes however suffer from the problem that the state space increases exponentially 

with the number of sources - the so called 'curse of dimensionality'. For example, 

the total state space of an arrival process formed from the superposition of N non­

identical ·two-state processes will be 2N. For small N (say less than 8) this will be 

quite manageable, but it is desirable to be able to analyse problems having up to 16 or 

32 sources, since these are the sizes of switches currently being manufactured for the 

ATM network (see Table 1.4 in Chapter 1). Clearly neither the direct nor the iterative 

methods will be practical for these types of problems, and approximate methods are 

required. 

In this thesis we will concentrate on the probability generating function approach for 

exact analytic results, using the method of matching the zeros and poles, to determine 

the empty system probability vector. For confirmation of the accuracy and behaviour 

of the analytic approach, and to obtain exact results for finite buffer problems, we will 

use the iterative numeric method. 

2.1.2 Approximate Methods 

There are three classes of approximation techniques commonly used in queueing theory 

- fluid flow (or diffusion) methods, geometric tail approximation methods, and model 

approximation methods. We will not discuss the first technique in any detail here, but 

direct the interested reader to (28] and [99], and in particular to [7] for a discussion 

more directly applicable to the on-off source problem. 

Geometric tail approximations derive from the principle that the probability that the 

steady state population is greater than some value t is well described by a geometric 

distribution for large t for a wide class of queueing problems. In particular (22] shows 

that any queueing system having a probability generating function that can be ex-
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pressed as a rational function has this property, while [96] proves its existence for any 

queueing system if the underlying Markov chain is finite, aperiodic, and irreducible. In 

particular Sohraby reports in [120, 121] that the decay factor for the geometric tail is 

given by the solution to the equation z - 8(z) = 0 where 8(z) is the Perron-Frobenius 

eigenvalue of the arrival process. Application of this result to queueing problems with 

many sources will be discussed in Chapters 3. We will also consider the geometric tail 

approximation in Chapter 6 in the context of finite buffer queueing problems. 

Model approximation methods involve describing the superposition of the arrival pro­

cesses by some more tractable model. This often introduces a second level of approx­

imation, since the individual sources are usually already modelled by some simplified 

process. Some well known examples are the approximation of the superposition of on­

off sources by Markov modulated Poisson processes or MMPPs (see [44, 143] and the 

references therein), the superposition of IBPs by renewal processes [85, 92, 101, 140], 

and the superposition of a range of autocorrelated arrival processes by Gaussian ap­

proximations [2, 3]. A more recent approach is to model large numbers of sources using 

Fractal models [25, 26]. Although all of these methods allow the queueing system to 

be solved more easily, there is often a good deal of computation required in generating 

the parameters of the simplified model from the original source models, particularly as 

there are often many ways in which those parameters can be assigned [44, 143]. 

Other approximation methods exploit various properties of the particular queueing 

system being modelled, and are hard to classify in a general form. We will encounter 

this in Chapters 3 and 5, where one method (the kth order approximation) is discussed 

in more detail. 

2.2 Basic Assumptions 

The approach used in this and subsequent chapters for the analysis of queueing problems 

assumes that time is divided equally into discrete units (called slots) equal in duration 

to the time required to transmit a cell on the outgoing link of the observed buffer 

(the cell service time). The buffer is considered only to hold those cells waiting for 

service, and not the cell (if any)- currently receiving service. In queueing theory terms, 

the number of cells in the buffer is therefore the queue population, rather than the 

more common (an<l perhaps more realistic) system population. We have chosen this less 

common alternative because, with fixed service times, variations in transmission delays 

are caused only by the variable times that cells spend waiting for service. 

The buffer is assumed to receive service at the slot boundaries, with new arrivals being 

admitted to the buffer during the time slot. Queueing delays are measured in terms 
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of the number of whole time slots that a cell spends in waiting. Thus an arrival to 

an empty buffer is considered to have a zero queueing delay, although service may not 

actually begin for some fraction of a time slot. For deterministics service system (such 

as ATM) this extra delay will be relatively constant for every arrival and hence we will 

not be concerned with this issue. 

2.3 Queueing Analysis for Markov Modulated Sources 

In this section we will construct a general solution framework to obtain the average and 

variance of the queue population of the discrete time infinite buffer G /D /1 queue, which 

receives arrivals from N independent batch Markov arrival processes (D-BMAPs). Each 

source is described by a number of states, for which the arrival process from each source 

is dependent only its state in the current time slot, and on nothing else. The transitions 

between states is governed by a discrete time Markov process, with the assumption that 

the sources change state at the beginning of a time slot, and then generate the rele~ant 

arrivals for that time slot according to their new state. 

Let Ai be an mi x mi stochastic matrix that describes the state to state transitions of 

source i, where mi is the minimum number of Markov states required to describe the 

behaviour of source i. Let Pi(z) describe a diagonal matrix of probability generating 

functions describing the arrival process of source i in each state. The combined matrix 

AiPi(z) is referred to as the transition probability generating matrix, and describes 
:v· 

both the state to state transitions of source i and the arrivals generated by that source. 

In addition, define the invariant probability vector of source i by µi where µiAi = µi 

so that µi describes the steady state probabilities for the source being in each of its mi 

states. 

If mi is the minimum number of states required to describe source i, then Ai will be 

an irreducible stochastic matrix, and hence will have an inverse. Consequently, using 

the similarity transform of standard linear algebra [36] it is possible to write 

(2.1) 

where !li(z) is a diagonal matrix of the eigenvalues of AiPi(z) arranged so that the 

eigenvalue" having a value of 1 at z = 1 is in the top left corner. The matrix Gi (z) 

is formed from the right-hand (column) eigenvectors of AiPi(z) corresponding to the 

eigenvalues in ni(z). Similarly, matrix Hi(z) is formed from the left-hand (row) eigen­

vectors of AiPi(z), and is also given by Hi(z) = Gi(z)-1 . 

The overall arrival process to the queue can also be described by a D-BMAP of the kind 

described above for each source. Denote the m x m state to state transition matrix of 
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this combined process by A with probability generating function matrix P(z). Since 

the N sources are independent, we have 

AP(z) = AiP1(z) ® A2P2(z) ® · · · ® ANPN(z) 
N 

Q9 AiPi(z) 
i=l 

where® denotes the Kronecker product [34], and 

N 

m =II mi 
i=l 

We can therefore also write 

AP(z) = G(z)O(z)H(z) 

where 
N 

n(z) = ® ni(z) 
i=l 
N 

G(z) = Q9 G 2 (z) 
i=l 
N 

H(z) = Q9 Hi(z) 
i=l 

and where, as for the individual sources, H(z) = G(z)-1 also. 

2.3.1 The Queue Equation 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Let X(z) describe a row vector of probability generating functions for the stationary 

distribution of the queue population seen immediately after service has occurred, con­

ditioned on the states of A. That is, the jth element of X(z) describes the probability 

generating function for the steady state distribution of the queue population, given 

that the last state of the overall arrival process described by A was j. Then, in a 

similar manner as demonstrated for marginally distributed arrivals in Appendix A, it 

is possible to construct the relation 

X(z) (zl - AP(z)) = (z - 1) b (2.8) 

where bis a row vector describing the stationary probabilities that the queue is empty 

immediately prior to service (called the 'empty system' probability vector) and I is the 

identity matrix. This is the queue equation. 
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The unconditional behaviour of the queue (i.e. irrespective of the state of the arrival 

process) is given by X(z)e where e represents an appropriately sized2 column vector 

with all components equal to l. In addition, when z = 1 the queue equation becomes 

X(l) = X(l)A (2.9) 

which shows that X(l) = µ, the stationary probability vector of A. 

2.3.2 Alternative Form of the Queue Equation 

An alternative form of the queue equation exists that is based on equation (2.8), but 

uses the form of AP(z) given by equation (2.4) to provide a more explicit representation 

of X(z). This result is based on that presented in [79]. 

On rearranging equation (2.8) we get 

so that, using the result 
00 

LMi = (I-M)-1 

i=O 

for some matrix M (see Theorem F.3 in Appendix F) gives 

00 

X(z) = (1-z-1)b:L:z-n(AP(z)t 
n=O 
00 

(1- z-1) b L:z-nG(z)!l(z)nH(z) 
i=O 

Now, by spectral decomposition, we can write 

m-1 

G(z)!l(z)H(z) = L w1(z)g1 (z)h1 (z) 
J=O 

(2:10) 

(2.11) 

(2.12) 

(2.13) 

where w1 (z) is the jth eigenvalue of them x m matrix AP(z), and h1 (z) and g1 (z) are 

the corresponding left and right eigenvectors, obtained from the relevant row of H(z) 

and column of G(z). Thus equation (2.8) becomes 

X(z) = (I - z-1
) b ~ (f, z-•w,(z)•) g1 (z)h1 (z) 

which, making use of the infinite sum of a geometric series, finally yields 

X(z) = (z -1) b 1:1 
gJ(z)hj(z) 

J=O z - w1(z) 

(2.14) 

(2.15) 

2Unless explicitly required, the sizes of the identity matrix I and the umt column vector e will not 

be specified any further. It can be assumed that they agree dimensionally with those components of 

the expressions to which they belong 
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which is the alternative form of the queue equation. 

We will note here that the convention adopted throughout this thesis is for the eigen­

value taking the value of 1 at z = 1 is identified by j = 0, so that wo(l) = l. Given 

that A is irreducible, there will exactly one eigenvalue having this property, so this 

convention is not ambiguous. 

2.3.3 Solving for the 'Empty System' Probability vector 

In order to obtain X(z), the 'empty system' probability vector b must be found. We 

will use here the fact that, for a stable queue, X(z) is analytic within the unit circle 

(lzl ~ 1), and hence the poles of X(z) must also correspond to its zeros. From the form 

of the alternate queue equation (2.15), the poles of X(z) are given by the solution of 

(2.16) 

for each j. Also, since X(z) must be real for real z, the poles must either be real or 

occur in complex conjugate pairs. In general, the poles are complex and can only be 

found using numeric search algorithms (such as the Newton-Raphson method [109]) 
since the analytic expression of (2.16) is, in most practical cases, transcendental in z. 

If it is known a priori that the poles will be real (such as for the cases in [83, 146] and 

for the IBP analysis of Chapter 3), the simpler, although not neccesarily faster, but 

more stable bisection algorithm can be used to solve for the pole locations instead of 

the Newton-Raphson method. 

Since X(z) is required to be analytic in the unit circle, we must also have zeros at each 

of the pole locations. Denote the pole that solves equation (2.16) by z;. Then, for each 

pole z; =f. 1, a sufficient condition to keep X(z) analytic is that bgJ (z;) = 0. For the 

special case where z0 = 1 (which occurs for J = 0 by our stated convention), the fact 

that X(z) is analytic is not sufficient to establish a boundary condition. However, from 

the first derivative of equation (2.8) evaluated at z = 1, we obtain, on postmultiplication 

bye that 

be= 1 - A. (2.17) 

where A. is the steady state average number of arrivals to the queue in each time slot. 

Since gJ(z) can only equal a scalar multiple of the column sum vecLor e when Wj(z) = 1, 

this relation can only occur as a boundary condition for the pole at z = l. Thus a 

linear problem consisting of m equations in m unknowns if formed, which can be solved 

using standard linear algebra techniques. 

In practice, solving for the vector b involves finding each of the m poles of the queue 



2.4 Solution for X'(l) based on the Alternative Queueing Equation 41 

equation, and then constructing and solving a linear system of m equations in m un­

knowns. It is the solution of this linear system that usually presents the most difficulties, 

particularly since m increases geometrically with the number of sources. 

2.4 Solution for X'(l) based on the Alternative Queueing 

Equation 

The first derivative of X(z), evaluated at z = 1 gives a vector describing the average 

queue population conditioned on the states of A. From equation (2.15) 

X'(z) = 

(2.18) 

This relation cannot be evaluated directly at z = 1 because wo(l) = 1, resulting in 

indeterminate quantities. Instead, the limit as z approaches 1 is taken for X'(l), giving 

X'(l) = ~l gJ (1 )hJ (1) . Z - 1 ( / ( ) ( ) ( ) I ( )) 

b ;:i 1 - w1(l) + l~ 1 - wo(z) bgo z ho z + bgo z ho z 

1. 1 - wo(z) + (z - 1) w0(z) b ( )h ( ) + im 2 g 0 z 0 z 
z-tl (z - w0 (z)) 

(2.19) 

where the expression is somewhat simplified by taking into account that w1 (1) 1:1 if 

j -=fa 0. For convenience, we will write 

f1(z) = 
1 

z - ~ ) (g0(z)ho(z) + go(z)h0(z)) 
-wo z 

(2.20) 

and 
f. (z) = 1 - wo(z) + (z - 1) w0(z) (z)h (z) 

2 ( ( )) 2 go o z-wo z 
(2.21) 

so that 

(2.22) 

To evaluate the first limit, write z as z = 1 - E for some very small E. The first order 

Taylor series of wo(l - i:) around E = 0 is 

(2.23) 

for some remainder function R2, where we have made use of wo(l) = 1. Then 

1
. f ( ) l" -E (go(l - i:)ho(l - E) + go(l - E)hti(l - E)) 
Im 1 z = Im ---'------------'----'------'-

z-tl ~-to 1 - E - wo(l - E) 
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1
. gci(l - E)ho(l - E) + go(l - E)ho(l - E) 
im..::....::....'---------'~--'-~-'--~-'-~--'-------"-'-~---'-

HO 1 - w0(1) + ER2 

= 1 _ ~a(l) (ga(1)ho(1) + go(1)ha(1)) (2.24) 

For the second limit problem a similar approach is used. The second order Taylor series 

expansion of wo(l - E) around E = 0 is 

2 

Wo ( 1 - E) = 1 - EWo ( 1) + ~ W~ ( 1) - E3 R3 (2.25) 

for some remainder function R3. Similarly, the first order Taylor series expansion of 

c50(1 - E) around E = o is 

(2.26) 

for some remainder function R~. Hence 

1 ~() 1. 1-w0(1-E)-Ew0(1-E) (l )h(l) im 12 z = im go - E o - E 
z---+1 E---+0 (1-E-wo(l-E))2 

l' w~(l) + 2E (R3 - R~) (l )h (l ) 
E~2(1-wci(l)+~w~(l)-E2R3) 2 go -E 0 -E 

w~ (1) (l)h (1) (2 27) 
2 (1 - wa(1))2 go 0 . 

giving 

X'(l) ~l gJ (1) hJ ( 1) 1 ( / ( ) ( ) ( ) I ( ) ) 

b ~ 1-wJ(l) + 1-wci(l) bgo 1ho1+bgo1ho1 

+ w~ (1) b (l)h (1) (2.28) 
2 (1- wa(1))2 go 0 

This result will be used later in the solution for the variance of the queue-population. 

2.5 Solution for the Average Queue Population 

Let o(z) denote the Perron-Frobenius eigenvalue for the matrix AP(z). From section 

C.3 of Appendix C we know that o(l) = 1, which corresponds only to wo(l) for the 

convention we have adopted, giving o(z) = wo(z). The left and right Perron-Frobenius 

eigenvectors of AP(z) corresponding to o(z) are denoted by u(z) and v(z) respectively, 

and are formed under the constraints that u(z)v(z) = 1 and u(z)e = 1, with the easily 

proven results that 

u(l) = µ (2.29) 

and 

v(l) = e (2.30) 
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The relationship between the Perron:-Frobenius eigenvectors and the general eigenvec­

tors go(z) and ho(z) is described in Appendix C. 

Postmultiplying the queue equation (2.8) by v(z) gives 

(z - c5(z)) X(z)v(z) = (z - 1) bv(z) (2.31) 

The first derivative of equation (2.31) at z = 1 yields 

c5' (1) = ,\ (2.32) 

while the second gives 

2 (1 - .\) (X'(l)e + µv'(l)) - c5"(1) = 2bv'(l) (2.33) 

making use of X(l) =µand c5'(1) =A. The term ~'(l)e represents the average queue 

population, independent of the state of the arrival process, and is denoted by Lq. He_nce 

L _ bv'(l) c5"(1) _ '(l) 
q - 1 - ,\ + 2 (1 - .\) µv (2.34) 

However, from the first derivative of the constraint u(z)v(z) = 1 we can show that 

u'(l)e + µv'(l) = 0 (2.35) 

and from u(z)e = 1 we have u'(l)e = 0, so that µv'(l) = 0 also. Thus 

bv' (1) c5" (1) 
Lq = 1 - ,\ + 2 (1 - .\) (2:36) 

is the general solution for the average queue population of the observed infinite buffer 

queue. 

Note that the same result would have been obtained simply by postmultiplying equation 

(2.28) by e. The use of the Perron-Frobenius approach is deliberate however, since it 

provides the simplest method for obtaining the solution for the variance of the queue 

population. 

2.6 Solution for the Variance of the Queue Population 

The variance of the queue population, independent of the state of the arrival process 

is denoted by Var [Lq] and is given by 

Var [Lq] = X"(l)e + Lq - L~ (2.37) 
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' where X"(l)e is obtained from the third derivative of equation (2.31) evaluated at 

z = 1, giving on inspection 

Var [Lq] = bv"(l) - 2X'(l)v'(l) - µv"(l) + o"'(l) + (1 + o"(l)) Lq - £ 2 (2.38) 
1 - >. 3 (1 - >.) 1 - >. q 

Using the results of section C.3 we have 

2X'(l)v'(l) + µv"(l) = s~l) X'(l)gb(l) - 2~gj Lq + µv"(l) (2.39) 

where s(z) is a scalar function relating the general eigenvector solutions and the Perron­

Frobenius eigenvectors. 

From equation (2.28) 

X' (l)gb (1) 
b El g1(l)h1(l)gb(1) 

J=l 1 - w1 (1) 
1 r 

+ 
1 

_ >. (bgb(l)ho(l)gb(l) + bg0 (1)hb(l)gb(l)) 

w" (1) + 0 
2 bg0 (1)ho(l)gb(l) 

2 (1 - >.) 

where, using the results in Appendix C, we have 

I (1)2 
bgb(l)ho(l)gb(l) = ss(l) (1 - >.) + s'(l)bv'(l) 

and from the second derivative of h 0 (z)go(z) = 1, evaluated at z = 1 we obtain 

hence 

and also 

thus 

2hb (1 )gb (1) 

bg0 (1)hb(l)gb(l) = 

bg0 (1)ho(l)gb(i) 

-h~ (l)go (1) - ho(l)g~ (1) 

-u(l)v"(l) - 2s'(1)2 
s(1) 2 

s(l) (1 - >.) u(l)v"(l) 
2 

s'(1)2 (1 - >.) 
s(l) 

bv(l)u(l) (s'(l)v(l) + s(l)v'(l)) 

(1->.)s'(l) 

X' (l)gb(l) b El gj(l)hj(l)gci(l) + s'(l) (bv'(l) + o"(l) ) 
J=l 1-w1(1) 1->. 2(1->.) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

- s(l) u(l)v"(l) (2.45) 
2 
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and hence 

(2.46) 

Consider the derivative of gci(l) which will be given by 

g~(l) = ~ (@gn,o(l)) @S:,o(l) 0 c~l gn,o(l))) (2.47) 

where gn,o (1) indicates the eigenvector of source n corresponding to the zeroth eigen­

value of that source, and g~ 0 (1) indicates the first derivative of this eigenvector, eval-
' 

uated at z = 1. Hence 

h1 (1)g~(l) = t, ( (~ hn,c,0 (l)gn,o(l)) 0 h.,,,0 S:,o(l) 0 C2
1 
hn,,.,,gn,o(l))) 

(2.48) 

where rn,3 is a function that describes which eigenvalue for the nth source is indicated 

when the overall eigenvalue is j. From the basic properties of eigenvectors however, 

hn,rn,J (l)gn,o(l) will be 0 unless rn,3 = 0. This means that the entire summation will 

only be non-zero when the overall eigenvalue j is formed from the eigenvalues of one 

source only. That is 

2b N m, -1 (l)h (1) r (1) 
2X'(l)v'(l) + µv"(l) = - L L g(i,3) i,3 gi,o 

s(l) i=l J=l 1 - Wi,3 (1) 
(2.49) 

where g(i,3)(1) is given by 

g(.,,J (1) = (~ gn,O (1)) 0 g," (1) 0 c~ l gn,o(l)) (2.50) 

which is the general right-hand eigenvector corresponding to the zeroth eigenvalue of 

each source, except for source i, for which the eigenvector corresponding to the jth 

eigenvalue is used. 

Putting this together in the variance expression finally yields 

Var [Lq] = bv"(l) _ 2b t mE 1 g(i,3 )(1)hi,3 (1)g~,o(l) 
1 - >. s(l) i=l 3=1 1 - wi,3(1) 

c5"'(1) ( c5"(1)) 2 
+ 3 (1 - >.) + l + 1 - >. Lq - Lq (2.51) 

which is the general solution for the variance of the queue population of the observed 

infinite buffer queue. 

Alternatively, using hj(l)e = 0 if j i- 0 (which can be proved in the same manner that 

was used to show c5(1) = 1 in section C.3) we can also write 

2X'(l)v'(l) + µv"(l) = 2b 1::1 
g3(l)h3(l) v'(l) 

3
=l 1- w3 (1) 

(2.52) 
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and by the same reasoning as for the previous case, 

N m,-l g (l)h (1) 
2X'(l)v'(l) + µv"(l) = 2b L L (~J~ w i,~ v~(l) (2.53) 

i=l ]=l i,] ( ) 

so that 

Var [Lq] 

(2.54) 

2. 7 Mixing Autocorrelated and Random Sources 

In some instances, the arrival process to the queue can be described by the superposition 

of N batch Markov arrival processes, as discussed in detail above, and some number 

of point processes having no autocorrelation (purely random or marginal processes). 

The superposition of these latter components can be described by a single probability 

generating function p(z) which is independent of the Markov sources. Using the same 

notation as previously, the queue equation (2.8) then becomes 

X(z) (zl - p(z)AP(z)) = (z - 1) b 

with the alternate queue equation given by 

X(z) = (z - 1) b 1:1 
gJ (z)hj(z) 

J=O z - p(z)w1 (z) 

Them poles of X(z) are therefore given by the solutions of 

(2.55) 

(2.56) 

(2.57) 

Following the same approach for the derivations of the average and variance of the 

queue population as before yields 

bv'(l) p"(l) + 2p'(1)8'(1) + 811 (1) 
Lq = 1 - A + 2 (1 - A) (2.58) 

and 

Var [Lq] 
bv"(l) _ 2b t mfl g(i,1 )(1)hi,1 (l)g~,0 (1) 
l-A s(l) i=l J=l 1-wi,1 (1) 

p111 (l) + 3p"(1)8'(1) + 3p'(1)8"(1) + 8111 (1) 
+ 3 (1 - A) 

( 
p"(l) + 2p'(1)8'(1) + 8"(1)) 2 

+ 1 + l _ A Lq - Lq (2.59) 
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where>.= p'(l) + 8'(1) is the combined average arrival rate to the queue. 

These results can also be written in terms of the first three moments of the arrival 

process described by p(z) as 

L _ bv'(l) 8"(1) P2 - (1- 2>. + 2p1)P1 
q - 1 - >. + 2 (1 - >.) + 2 (1 - >.) (2.60) 

and 

(2,,61) 
t.~ ..... 

where Pr denotes the rth moment of the marginal arrival process. 

2.8 Other Methods for finding Lq and Var [Lq] 

One alternative to obtaining Lq and Var [Lq] using the approach covered ill' this chapter 

is to analyse the queueing system using Neuts' matrix geometric method [97]. As 

discussed at the start of this chapter, this method is computationally intensive, and 

will generally require longer execution times to provide the desired results. This method 

does provide the additional benefit of generating the exact probability distribution of 

the queue population however, and so may be more useful in some circumstances that 

might require this. 

The moments of the queue population can also be found using the 'non-vanishing' roots 

of X(z) - those roots lying outside of the unit circle, that are not cancelled by zeros. 

In [83] Li and Sheng use just this approach to evaluate the moments of the queue 

population, and show that (with considerable more difficulty) the technique can also 

be used to obtain the entire distribution of the queue population. Since these roots are 

normally very difficult to obtain in the z domain, the authors transform the solution 

into the z-1 domain, reflecting the non-vanishing roots into the unit circle. 

Although this approach appeared initially to provide a faster method for calculating 

the average and variance of the queue population, closer inspection shows that the 

algorithmic complexity of the root substitutions alone is at least equal to, if not greater 

than the complexity of the method presented in this chapter. Taking into account the 
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additional difficulty of finding the generally complex roots in the first place, it would 

seem that the best choice for calculating the moments of the queue population is the 

method presented here. 

2.9 Multiple Buffer Queueing Systems 

In the preceding sections of this chapter we have developed a basic theory for the average 

and variance of the queue population for a discrete time system consisting of a single 

infinite capacity buffer and uninterrupted service. As we have discussed in section 1.2.1 

however, we are also interested in dual buffer arrangements that can provide service 

priority to one of these buffers. Fortunately there is a relationship between these two 

queueing systems which we shall explore in this section. We start with the following 

general theorem. 

Theorem 2.1 Consider a single server queueing system providing deterministic ser­

vice to B infinite capacity FIFO buffers. The distribution of the queue population across 

all B buffers is independent of B and of the service order and service priorities, provided 

that 

1. The same set of arrival processes is considered. 

2. Service selection between buffers is non pre-emptive. 

3. The server never enters the idle state if there is an arrival waiting in any buffer. 

Proof. It is easy to see that this system is work conserving if conditions 2 and 3 are 

met3, since queued arrivals can only leave the system by completing service, and service 

must continue if queued arrivals are present. In addition, selection for service between 

the queued arrivals must be independent of their service times because every arrival 

has the same service requirement. These two properties mean that the queueing system 

satisfies Kleinrock's conditions for the system or queue population to be independent of 

the service order - see pages 113 and 114 of {71}. Then since the use of multiple buffers 

only changes the effective service order if condition 1 is met, the proof is complete. • 

Note that in this thesis we assume time is equally divided into slots, with one slot 

being equal in length to a single cell service period, and that services occur only on 

3 Cond1tion 2 could be dropped if a pre-emptive resume strategy was used that did not violate 

the work conserving requirement. That is, if arrivals that had their service interrupted were able to 

recommence service without incurring any additional service reqmrements. 
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slot boundaries. This discrete-time assumption effectively means that all deterministic 

service priority systems must be non pre-emptive at the cell level, since service of a 

previously selected cell will always be completed by the time the currently selected cell 

begins service. 

2.9.1 Dual Buffer Queueing Systems 

We are interested in a dual buffer queueing system, where the buffers each have infinite 

capacity. Arrivals to this system have high or low priority, with the high priority 

arrivals queued in one buffer (the high priority buffer) and the low priority arrivals in 

the other. The service mechanism is such that the low priority buffer receives service 

only if the high priority buffer is empty at the start of a time slot. This means that 

the high priority buffer always receives service if it has queued arrivals. We will refer 

to this arrangement as a dual buffer system with exhaustive service priority. The term 

'exhaustive' indicates that service of the high priority queue occurs until it is exhausted 

(empty). ' ··. 

The fact that the service of the high priority buffer is exhaustive means that the low 

priority buffer might go long periods without service. An alternative is to use a non­

exhaustive approach, where some maximum number k of sequential services of the 

high priority buffer is allowed (called limited-k service). After this maximum, the low 

priority buffer receives a single service (limited-1) before service returns to the high 

priority buffer. As with the exhaustive method, if the high priority buffer is empty, 

service remains available for the low priority buffer, and vice-versa. 

We will assume that the exhaustive service priority arrangement is used in the rest of 

this thesis, and that adequate service of the low priority queue is provided by considerate 

high priority traffic (using peak rate limited sources for example). In particular, the 

exhaustive service assumption means that arrivals to the high priority buffer receive 

uninterrupted service, which allows us to establish the following corollary from Theorem 

2.1. 

Corollary 2.2 Consider a discrete-time, dual buffer FIFO queueing system, where 

the buffers each have infinite capacity. Arrivals to the system are assumed to have 

either high or low priority, with the high priority arrivals queued in one buffer and 

the low priority arrivals in the other. The high priority buffer is assumed to receipe 

exhaustive service priority, so that the low priority buffer only receives service when the 

high priority buffer is empty. 

The average queue population for the low priority buffer is then given by the difference 
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in the average population between an uninterrupted service queue subject to arrivals 

firstly from both the low and high priority traffics together, and secondly from just the 

high priority traffic alone. That is 

L -L -L Qlow - Qboth Qhigh 

where Lq10w denotes the average queue population for the low priority buffer, Lqh•gh 

for the high priority buffer, and Lqboth for both traffics sharing the same buffer {which 

receives uninterrupted service). A similar result applies to the variance, so that 

where Cov [ Lq10w, Lqh,gh J denotes the covariance between the low and high priority buffer 

queue populations. 

Proof. Let Xn denote the total number of queued arrivals at the beginning of the nth 

time slot (after service but before the next group of arrivals). Let ln and hn denote the 

corresponding quantities for the low and high priority buffers respectively, so that 

(2.62) 

From standard probability theory we then have that 

(2.63) 

and 

Var [xn] = Var [ln] + Var [hn] + Cov [ln, hn] (2.64) 

Noting that the total queue population of the dual buffer system {represented by xn) 

must be equal to the queue population of a single buffer fed by the same high and low 

priority arrival processes together {Theorem 2.1) we have 

and 

so that, with a small change in notation, the form of the corollary result follows. 

Since the high priority buffer has exhaustive service priority, it can be regarded as 

receiving uninterrupted service, and can therefore be analysed separately to provide its 

queue population average and variance. Thus, the average queue population of the low 

priority buffer will be given by the difference between the averages for two single buffer 

systems, while the low priority variance is similarly given in terms of two single buffer 

variances and a covariance term. • 
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This dual buffer problem belongs to a class of queueing systems referred to as a 'cyclic­

service'4 or 'polli~g' systems [128]. These systems consist in general of a single server 

that provides service to a number of queues in a cyclically sequential fashion, serving 

one queue for some period of time before moving on to the next. The mechanism 

used to decide when service on the current queue is to finish is termed the service or 

scheduling strategy. Exhaustive and limited-k are two examples of service strategies. 

Polling systems generally present considerable analytical difficulties when it comes to 

obtaining measures of the queue population or delay. Consequently, the majority of the 

literature deals with either simple arrival models or special scheduling strategies (see 

for example [78, 90, 118, 132], or for a more extensive survey of the subject see [128]). 

One interesting result that applies to a wide range of these problems is a 'pseudo­

conservation law' [13]. These laws are an exact expression for the weighted sums of the 

mean queueing delays (or the sum of the average queue populations for each buffer) 

and are more easily obtained than the individual components of the sum. 

The combination of the exhaustive and limited-1 service strategies used in the dual 

buffer priority scheme discussed here has the advantage that the high priority buffer is 

effectively independent of the low priority buffer, and can be analysed separately using 

single buffer techniques. In addition, the average of the queue population for the low 

priority buffer can also be determined exactly using single buffer analysis techniques, 

reducing the complexity of this part of the analysis considerably. 

In [144], Zhang proposed the equivalent of Corollary 2.2 for use with fluid flow queueing 

models. The author developed a solution for the covariance term when the arrival 

process is described by a single Markov chain. Unfortunately, we have not found an 

equivalent solution for the population analysis techniques considered in this thesis, 

although such a development appears quite probable. 

Noting that the covariance term in the variance relation will always be greater than or 

equal to zero (the larger the high priority buffer, the larger low priority buffer will be 

on average also, since it will not receive service until the high priority buffer is empty) 

we see that ignoring this covariance term provides an upper bound to the variance 

equation. That is 

(2.65) 

The equality in this expression holds when the high priority buffer has an average queue 

population of zero (which must mean that the variance and covariance terms will also 

be zero). Although this situation may seem at first to be useless, we will see in the 

4This is the common use for the term 'cyclic-service' In Chapter 5 we refer to a single buffer 

queueing system subject to periodically interrupted service as receiving cychc service, but this is not 

the usual meaning. 
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following that it is actually quite useful for analysing one particular type of queueing 

problem. 

2.9.2 Analysis of Interrupted Service Queueing Problems 

Corollary 2.2 can be successfully applied to the analysis of single buffer queueing sys­

tems subject to service interruptions when this interruption process is known. The 

following corollary summarises its application. 

Corollary 2.3 The population average and variance of a discrete-time queueing system 

subject to service interruptions are given directly by the same quantities for an equivalent 

uninterrupted service queue subject to arrivals from both the original arrival process and 

from a process that generates a single arrival when service would normally not occur, 

and no arrivals when service would normally occur. Service interruptions are assumed 

to occur independently of the state of the queue buffer. 

Proof. The interrupted service queue may be thought of as being the lower priority 

buffer in a dual buffer queueing system with exhaustive service priority. That is, service 

interruptions of the observed queue occur because a higher priority buffer receives service 

in those time slots. We can assume that the arrival process to this higher priority buffer 

is exactly equal to the service interruption process, so that a single high priority arrival 

occurs in any time slot that the service of the lower priority buffer is to be blocked. 

With at most one arrival in any time slot and exhaustive service priority, the high 

priority queue population at the beginning of any time slot (i. e. immediately after 

service) will always be zero. Hence the queue population term represented by hn in the 

proof of Corollary 2.2 will be zero for all n, resulting in zero values for the average and 

variance. of the high priority buffer, and a zero covariance between the low and high 

priority queue populations. Hence from Corollary 2.2 

L -L Qmterrupted - Qboth 

and 

Var [ Lqmterrupted] = Var [Lqboth] 

where Lqboth and Var [Lqboth] represent the average and vartance of a single buffer, un­

interrupted service queue subject to arrivals from both the original arrival process and 

from an arrival process that describes the service process as indicated. • 

This result can also be arrived at by considering the service and arrival processes 

in discrete-time queues. Normally, when service occurs, the server removes a single 
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waiting arrival (if there is one) from the queue. When service is blocked (interrupted) 

no waiting arrivals are removed from the queue, although new arrivals may still occur. 

In terms of the queue population, this is equivalent to there being a single additional 

arrival to the queue which is then removed by the normal service process. Since the 

analysis of the queue population does not require that the arrivals are served on a first 

come - first served basis, the queue population must be the same regardless of whether 

service was blocked or an additional arrival occurred and service was still available. 

2.9.3 A Simple Interrupted Service Example 

As an example of the application of this corollary, we will derive the average and 

variance of the queue population for an interrupted service queue with arrivals from a 

purely random sources (the arrivals have no autocorrelation). The service interruptions 

are such that the queue has the opportunity for service in successive time slots for 

periods described by a geometric distribution, followed by non-service periods having 

a phase-type distribution. The service and non-service durations are assumed to be 

independent. 

Let >., M2, and M3 describe the first three moments of the non-autocorrelated arrival 

process, and in addition let f describe the steady state probability that the queue 

receives service in any time slot. From the description of the service interruptions, a 

phase-geom binary process (which we will discuss in detail in Chapter 4) can be used to 

describe the additional arrivals that mimic the service interruptions, where the average 

arrival rate of this process is 1 - f. 

From the results of Chapter 4, combined with the additional theory relating to mixing 

random and autocorrelated sources in section 2.7, we obtain directly that 

Lq = M2 + >. - 2>.f + >. (1 - !) (-1-) 
2 (! - >.) f - >. 1 - I 

(2.66) 

where I describes the autocorrelation parameter of the interruption arrival process 

(which is zero for random interruptions), given by 

(2.67) 

where 'T/r is the rth moment of the duration of the non-service periods. Similarly, the 

variance of the queue population is given by 

Var [Lq] = 4(!- >.) M3 + 3M:j + 6f (1 - 2!) M2 + 2f >. + >.2 -12f>.2 (1- !) 
12 (! - >.) 2 

f (1 - !) (M2 - >.2) I J2 (1 - !)21 2>.2 (1 - !) 
+ (! - >.)2 (1 - 1) + (! - >.)2 (1 - 1)2 + -(f--~:X~)-(1---,-) 
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2 (1 - !) ,\2 

f (! - ,\) (1 - 1)2 

(1 - !) (3,\ - f - 5,\f + !2) I 
(! - ,\) (1 - 1)2 

+ ,\2 
f (1 - !) ('f/3 - 1) 

3 (! - ,\) 'f/l 
(2.68) 

For the case where the interruption durations are geometrically distributed, the variance 

becomes 

Var [Lq] 
4 (! - ,\) M3 + 3M:j + 6f (1- 2!) M2 + 2f ,\ + ,\2 -12f ,\2 (1 - !) 

12 (! - ,\) 2 

f (1 - !) (M2 - ,\
2

) I f 2 (1 - !)2 I 
+ 2 + 2 2 (!-,\) (l-1) (!-,\) (l-1) 

(1 - !) (3,\ - f - 5,\f + f 2) I 

(! - ,\) (1 - 1)2 (2.69) 

In [14], Bruneel extended the work of Hsu [48] and Heines [46] tq analyse exactly this 

type of queueing problem, obtaining the probability generating function of the queue 

population as a result. Bruneel's result is obtained under the assumption that arrivals 

occur in continuous time, which increases the average and variance somewhat, but 

otherwise provides the same results as this example. The above approach, making use 

of Corollary 2.3, is considerably more straightforward however, and applies equally well 

to more complicated queueing problems. 

2.10 Summary 

In this chapter we presented some basic theory relating to the analysis of the queue 

population of a discrete-time infinite buffer G/D/1 queue fed by a number of batch 

Markov arrival processes. Following a brief discussion of exact and approximate meth­

ods for analysing these types of queueing systems, we have developed relations for the 

state conditioned average queue population vector, the unconditional average queue 

population, and unconditional queue population variance. These solutions are based 

on a probability generating function approach, and rely on being able to characterise 

the eigenvalues and eigenvectors of the Markov sources. Practical application of these 

results to a number of queueing problems will be covered in the chapters to follow. 

In addition we have shown how the population analysis of multiple buffer queueing 

systems is related to the single buffer analysis. A dual buffer queueing system, where 

one buffer has exhaustive service priority is considered in particular. This high priority 

buffer can be treated as a single buffer system which allows the average and variance 

of its queue population to be obtained. The average population of the low priority 

queue is given by the difference between a single buffer system serving both high and 



2.10 Summary 55 

low priority arrivals, and the high priority queue average. This method can also be 

applied to the variance, but yields only an upper bound. This result also extends to 

interrupted service queues, and provides a simple method for analysing these problems. 



Chapter 3 

Population Analysis for 

Geometric-Geometric IBP 

Arrival Models 

The geom-geom IBP is an interrupted Bernoulli process with geometric distributions 

for the durations of its active and inactive periods. Figure 3.1 illustrates the basic 

Markov chain that describes the behaviour of this arrival process. During its silent 

(or Off state) the process generates no arrivals, while in its active (or On state). the 

process generates arrivals according to a Bernoulli process. 

1-a 

a 

1-~ 

Figure 3.1: Illustration of the t~ansition probabilities for the Markov chain of a two-state 

IBP. 

This simple model has been widely considered in the literature, particularly for the 

analysis of switch and internal network behaviour. Analysis of the population of a 

queue fed by identical geom-geom IBP sources was considered in [51, 52, 142] and was 

extended in [83] to include multiple classes of identical sources. Approximate analyses 

for the queue population with heterogeneous sources were considered in [120] and [141]. 

Description of the output process of these queueing problems was considered in [30, 134], 

57 
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and in [12] and [124] with particular regard to describing the splitting process. 

It was noted in [12, 124], and can be inferred from the results in [20], that the two-state 

model is somewhat inadequate to capture the behaviour of internal network traffics. 

Fonseca and Silvester conclude otherwise however in [30], a conclusion supported to 

some degree by [134]. 

There are two main reasons why IBP models of greater complexity than this simple 

two-state model have not generally been considered in the literature. The first is that 

the number of states required to describe a heterogeneous mix of N sources increases 

as mN, where m is the number of states in the IBP model. Even for two-state IBP 

sources, this leads to exact solutions only being obtainable for less than 12 sources or 

so, and at a fairly high computational cost. The second reason is that the number of 

parameters required to describe the general m state source increases approximately as 

m2. 

One means of avoiding these problems is to assume that all the sources are identical 

or belong to classes of identical processes, such as in [126] or [68], where three state 

models are used. Another is to approximate the behaviour of the queue population. 

Sohraby uses this approach in [121] where IBP sources with general distributions for the 

active and silent periods are considered. Unfortunately, the accuracy of this particular 

approximation is heavily dependent on the queue load being near unity. 

We begin this chapter with the exact analysis of the population moments for a queue 

fed by N independent heterogeneous geom-geom IBPs in section 3.1. Although exact 

analyses has been performed in a similar fashion previously in [83, 142], we present the 

solution in detail here using the basic probability generating function approach outlined 

in Chapter 2. Some of these results will be developed further in Chapter 5 when we 

consider queues with interrupted service. 

In the remainder of the chapter we look at the performance of some approximate 

solutions for this queueing problem, with particular emphasis on the performance when 

the number of sources is large. Section 3.3 considers the use of the geometric tail 

approximation for obtaining the average and variance of the queue population, while 

the performance of the well known MMPP as an approximation for the superposition of 

the IBP sources is considered in section 3.4. Then in section 3.5 an approximation based 

on a result by Xiong and Bruneel is discussed. Unfortunately, none of these methods 

provide particularly good accuracy performance, except at very high queue utilisations. 

In section 3.6 we then present a completely new approximation method, which achieves 

very high accuracy at all queue utilisations, for a moderate computational cost. 



3.1 Exact Queue Population Analysis 59 

3.1 Exact Queue Population Analysis 

In this section we will look at the application of the theory developed in Chapter 2 

to the geom-geom IBP source problem. As we will see, the average and variance are 

straightforward to calculate once the empty system vector is obtained. 

3.1.1 Characterising a Geometric-Geometric IBP Source 

We can write the state transition matrix of the IBP Markov chain illustrated in Figure 

3.1 for the ith IBP source as 

1-0'.il 
/3i 

(3.1) 

where O'.i represents the probability that source i will remain in state 0 (denoted as the 

silent state) in the next time slot, given ~hat it is in state 0 in the current time slot. 

The quantity f3i has the corresponding relation to state 1 (denoted as the active state). 

Since the matrix Ai is stochastic, it has one eigenvalue with value 1 and one eigenvalue 

with value O'.i + /3i - 1, which we will denote by the term Ii· 

Let the average arrival rate from the ith IBP source be denoted by Ai, and let the 

corresponding average arrival rate when the source is in its active state be denoted by 

Bi· The state based probability generating function matrix Pi(z) for source i will then 

be given by ·.~ 

Pi(z) = [ 1 0 l 
0 Pi(z) 

(3.2) 

where Pi (z) is the probability generating function of the Bernoulli process for the active 

state of source i, given by 

(3.3) 

Since the silent state generates no arrivals, the invariant probability vector of Ai will 

be 

[ 
Ai Ai] 

µi = 1 - Bi ' Bi (3.4) 

and hence, with a little manipulation we obtain 

(3.5) 

(3.6) 

The autocorrelation coefficient function for the arrival process from source i can be 

derived fairly simply (using a process similar to that on page 54 of [33] for example) to 
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give 

( (
()i - Az) /m/ 

R m) = 1 _ Az /z for m -=f. 0 (3.7) 

which is geometric in 'Yz· This provides a physical meaning for 'Yi and we will refer 

to this term in future as the autocorrelation parameter. From inspection of A 2 and 

Pi(z), and from equations (3.5) and (3.6), we can see that the geom-geom IBP source 

is completely described by the parameters A2 , ()2 , and 'Yz· These parameters will be used 

throughout this chapter to describe the geom-geom IBP sources. 

The autocorrelation parameter is also related to the average length of the active periods 

of the IBP source (the average burst length) by the relation 

where 'f/z,1 denotes the first moment of the durations of the active periods of source i. 

3.1.2 Applying the Queue Population Theory 

In Appendix C we develop the relevant eigensystem analysis for geom-geom processes. 

From these results we obtain 

8' (1) =A (3.8) 

(3.9) 

8111 (1) = M _ 3 (M _A) _A+ 6 ~A (()·_A ) (A - A/z - 2Az + ()z/i) 'Yz 
3 2 ~ z z z (1 - )2 

i=l /z 

(3.10) 

where 8(z) represents the Perron-Frobenius eigenvalue for transition probability gener­

ating matrix of the combined arrival process. The quantities A, M2, and M3 represent 

the first three moments of the stationary distribution of the number of arrivals occur­

ring in one time-slot from the combined arrival process. For each individual source we 

also have 

h· (1) I (1) = -Aifz z,1 gz,O l 
- 'Yz 

(3.11) 

where hz,n(z) and g2,n(z) represent the left and right general eigenvectors corresponding 

to the nth (n = 0, 1) eigenvalue of AiPi(z) respectively. 

Substituting these results into equations (2.36) and (2.51) we obtain 

bv'(l) M2 - A 1 ~ Ii 
Lq = 1 - A + 2 (1 - A) + 1 - A~ Az (()z - Ai) 1 - -v 

z=l 1Z 

(3.12) 
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and 

Var [Lq] 

where b is the empty system probability vector, and v(z) is the right hand Perron­

Frobenius eigenvector of the combined arrival process, with derivatives given by 

N 

v'(l) = L (e2ei-1) ® v~(l) ® e2(N-il) (3.14) 
z=l 

and 

N 

v"(l) L (ez<i-1) ® v~'(l) ® e2(N-il) 

where ezn is a unit column vector of 2n elements, and 

v"(l) = [2).z'Yz (>.i - (1 + 'Yz) (Oz - >.i)) 2/z (fJi - >-z) (fJz/i - ).i/i - 2>.i)]T (3.17) 
z (1 - 'Yz)2 ' (1 - 'Yz)2 

Similarly, the vector g(z,l) (1) is given by 

(3.18) 

where 

[ 
f)z] T 

gi,1(1)= 1,1-).i (3.19) 

Thus the average and variance of the queue population are straightforward to calculate 

once b has been obtained. 

3.1.3 Obtaining the Empty System Vector 

As discussed in section 2.3.3, the b vector is obtained by :firstly finding the poles of 

the queue equation that lie within the unit circle, and then solving a linear system of 
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equations constructed from the general right hand eigenvector of the combined arrival 

process, evaluated at each of these pole positions. 

Denote the jth pole of the queue equation by z;, which will be that z satisfying 

(3.20) 

where Wj(z) is the jth general eigenvalue of the combined arrival process. From the 

Fixed Point Theorem in [47], equation (3.20) will have exactly one solution within the 

unit circle. Since we can easily show that w1 (0) > 0 and w1 (l) ::; 1, this solution must 

lie on the real axis. As in Chapter 2, we uniquely designate the eigenvalue that takes 

the value of 1 when z = 1 by j = 0 (that is w0 (1) = 1) so that we have z0 = 1, and 

0 < z; < 1 for j > 0. These z; can be easily found using the bisection algorithm or 

Newton-Raphson method [109]. 

This eigenvalue w1 (z) is given in terms of the eigenvalues of the individual sources by 

N 

w1(z) =IT Wi,r.,1 (z) (3.21) 
i=l 

where ri,J is a function that describes which eigenvalue (0 or 1) of source i is indicated 

when the overall eigenvalue is j, and wi,n is the nth (n = 0, 1) eigenvalue of the ith 

source, given by 

Wi,n(z) = ai + ~iPi(z) + (-lt ( ai + ~iPi(z)) 2 - 'YiPi(z) (3.22) 

The ri,J function can be easily realised by assuming that j expresses the selection of 

the individual eigenvalues using a binary ordering scheme. For example, the lowest 

order bit (enumerated from zero) of J can be assigned to the first source (enumerated 

from one) with the remaining bits assigned in increasing source order. The resulting 

expression for ri,J then becomes 

(3.23) 

where j = 0, 1, ... , ( 2N - 1). 

Once the poles are obtained, the linear system of simultaneous equations describing 

the empty system vector are given by 

(3.24) 

where e is a column vector of 2N ones, and each of the g1 (z;) are column vectors of 

the same size given by the Kronecker product 

N 

g1 (z) = @ gi,r.,
1 
(z) (3.25) 

i=l 
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where ri,J is as defined previously, and 

(3.26) 

Once the parameters of the linear system are determined, the system can be solved 

to find b. Note that b will have all non-zero elements if all the sources have ei < l. 
Conversely, if all of the 02 are equal to 1, then b will have only one non-zero element, 

and it is possible to obtain closed form expressions for the average and variance of the 

queue population. Although it is perhaps not likely that we would have 02 = 1 for all 

i (since it would involve all the sources transmitting in bursts at the link rate to the 

selected output queue), we consider it as a special case in Chapter 4. 

3.1.4 Numeric Implementation Issues 

There are two main areas where the implementation of this exact solution is suscep~ible 

to the finite accuracy of digital computation. The first is in the calculation of the pole 

locations, and the second is in finding the solution to the linear system. For the real 

pole situation considered here, very high accuracies in the pole placement are easily 

and quickly achievable provided that the calculations are performed in double precision 

(more than 12 significant digits on most computer platforms). 

The situation is not so easily defined for the solution of the linear syst~m, although 

double precision computations should be used throughout. Equation (3.24) can be 

rewritten as 

bM=x (3.27) 

where Mis the matrix formed from the gJ (z;) vectors, and x is the vector on the right 

hand side of equation (3.24). The classical linear algebra solution for b can then be 

written as 

(3.28) 

which requires M to be invertible. For matrices of any substantial size, direct imple­

mentation of this solution method for b is both inefficient in terms of computation, and 

highly susceptible to round-off errors. An alternative is to decompose M into a simpler 

form, and then use back-substitution to solve for b. 

One way to do this is with LU decomposition [109], where M is decomposed into a 

lower triangular matrix Land an upper triangular matrix U, such that M =LU. The 

decomposition and subsequent back-substitutions require roughly m 3 operations for a 

matrix of size m x m to solve the linear system, which is nearly optimal [109]. 

Although the LU decomposition avoids determining the matrix inverse M-1 directly, 

the inverse must of course still exist for there to be a solution for b. One standard way 
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to check if a matrix is singular (or ill-conditioned) is to look at the determinant of the 

matrix. If the determinant is either very close to zero, or very large, then the matrix 

is poorly conditioned, and we expect the accuracy of the linear system solution to be 

poor. (Classically, if the determinant is zero, a solution does not exist, except when 

x = 0). If this method of checking on the potential accuracy of b is used however, 

the results are deceptive. As an example, analysis of a simple queueing problem using 

4 geom-geom IBP sources (the parameters are described in Table 3.8) gives a matrix 

M with a determinant of 1.1 x 1011 , while another example with 8 sources yields a 

determinant of 6.6 x 10267 . Both of these are extremely large for determinants, and 

would normally be a cause for alarm. 

A more precise means for determining the accuracy of b however, is to calculate the 

residual of the solution. The residual r is defined to be 

r= lbM-xl (3.29) 

where l·I represents the modulus of the argument (the length of the multidimensional 

vector). The residual is therefore a least squares measure of the difference between 

the actual and obtained solutions for the b vector [109]. In the examples above, the 

residual was returned as 1.3 x 10-16 and 3.6 x 10-15 , implying that both solutions are 

actually very accurate. 

We do not know exactly why the residual can be so small with these extremely large 

determinants, although the reason is probably closely tied to the fact that the vector x 

has only one non-zero entry. That is the empty system vector b will actually be given 

by the (appropriately scaled) first row of the inverse matrix M-1 rather than relying 

on the entire inverted matrix. 

3.1.5 Run Times for this Exact Solution Method 

Timing results for this exact solution method were obtained for an IBM RS6000/320H 

and a Sun SPARC 10/402 workstation, using 1000 queueing problems for each N, where 

the parameters of the sources were obtained using a random generation scheme outlined 

in the following section. In each case, the time required to actually generate the 1000 

random queueing problems and-pass them to the calculation program was obtained 

separately, and subtracted from the observed run times of the entire generation and 

calculation process. In both cases, the C source code for performing the calculations 

(including the matrix manipulations and decompositions) is identical. These results 

are presented in Table 3.1. 

We have already mentioned that the LU decomposition used to obtain the solution to 

the linear set of equations describing the b vector involves approximately m 3 operations, 
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N IBM RS6000/320H Sun SPARC 10/402 

3 7.6 msec 6.6 msec 

4 16 msec 14 msec 

5 40 msec 35 msec 

6 105 msec 120 msec 

7 640 msec 650 msec 

8 4.5 sec 4.9 sec 

9 70 sec 54 sec 

Table 3.1: Mean run times for the exact solution method as a function of the number 

of sources for two common workstations. 

where m is the number of unknowns. For N geom-geom IBP sources, this means that 

the solution time should vary approximately as 8N for large N, since the number of 

states in the combined arrival process is given by 2N. 

Inspection of Table 3.1 shows that the increase in the run times with N is less than a 

factor of 8 for the smaller N as expected, but on both machines the increase in run times 

between N = 8 and N = 9 is considerably more than 8 times. Since memory constraints 

were suspected on the RS6000, a couple of example 10 and 11 source problems were 

analysed on the Sun SPARC. The run times of these problems indicated that the 

increase from 9 to 10 sources and from 10 to 11 sources caused an increase in execution 

speed very close to a factor of 8. The reason why the increase from 8 sources to 9 is 

so much more than this is not known, but the result was repeated several times on~the 

Sun SPARC, and simply appears to be an aberration in the solution process. 

3.2 Approximate Queue Population Solutions 

Considering the time and memory requirements of the above exact solution method 

(quite apart from the problem of numerical stability), practical use of these methods 

for connection admission or network analysis seems limited to small numbers of sources. 

One alternative is to consider the problem for a small number of classes of identical 

two-state sources [79,83,141]. This limits the state space or dimension of the problem 

to a total of I1~1 (1 +Ni) states, where Ni denotes the number of identical sources 

belonging to connection class i, and K denotes the number of classes. The homogeneous 

case is of course then described by K = 1. 

The problem with this approach is that, while it may have some validity at the network 

edges, it will rarely describe the behaviour of switches within the network. Since exact 

analytical methods cannot provide practical results for these problems when N is large, 
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the use of approximate solutions must be considered. 

One factor that must also be considered in deciding whether to use an approximate 

or exact analysis technique is that the practical accuracy of any solution is only as 

useful as the accuracy of the source model used. To illustrate this point, suppose that 

extensive computation is required to obtain an exact solution for a particular network 

traffic model. When the results are compared to observations of the 'real world' they 

might be found to only be accurate to within ±20%. In this situation, approximation 

methods with errors relative to the exact solution of up to say 103 could replace the 

exact models without significantly compromising the final applicability of the results. 

It is obviously important then that the accuracy of the approximation methods be 

known. In the following sections we will discuss several approximation techniques based 

on common approaches, and will study their accuracy relative to the exact solution 

results. In section 3.6 we will then propose a new approximation method which provides 

considerably better accuracy for only a slightly higher computational cost. 

Details of the Accuracy Study 

Rather than constructing arbitrary queueing problems on which to assess the accu­

racy of the approximation methods discussed in this chapter, we have chosen to use a 

random generation approach. Each queueing problem then consists of N sources with 

parameters chosen in the following manner. For each source i, an average arrival rate 

Ai is assigned using a uniform distribution in the range of 0 to 1. These Ai are then 

scaled1 so that the sum of these Ai (which gives the overall arrival rate from the queue 

A) has a value chosen uniformly from the range AL to Au. Once the Ai are obtained, 

the average generation rate Bi of the active state of source i can then be chosen (again 

randomly) from the range of Ai to 1. The autocorrelation parameter /i of the ith source 

is chosen independently of the other two parameters, using a uniform distribution in 

the range /L to /U. 

Unless otherwise noted, all the randomly generated queueing problems in this chapter 

were obtained using AL = 0.1, AH = 0.9, /L = 0, and /H = 0.99. Since A and / must 

both be less than one for the queuing problem to be stable, these ranges encompass 

the limits under which these approximation techniques might be expected to usefully 

operate in practice. 

The actual accuracy of the approximation is measured as the relative difference between 

the approximate results, and the exact results obtained using the approach discussed 

1Th1s approach provides for the possibility that a smgle source can be the source of the majority of 

the arrivals in the arrival process, which is a quite likely occurrence in the real world. 
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in section 3.1. The relative difference, or error is defined here as 

R 1 
. approximation result 

1 e at1ve error = 
1 

-
exact resu t 

(3.30) 

where the order of the terms is chosen so that a positive error corresponds to the approx­

imation result being larger than the exact result. Typically 1000 randomly generated 

problems were used for each error analysis, and in some cases 10, OOO and 100, OOO 

problems are considered for use in scatter plots and histograms. Comparisons between 

approximation methods are based on the statistics of the observed errors. In particular 

the mean, standard deviation, and the lst and 99th percentiles are considered. 

3.3 The Geometric Tail Approximation 

One well known property of a wide range of queueing systems (see Chapter 6) is that 

tail distribution of the queue population can be approximated by a function of the ~?rm 

(3.31) 

where we denote by tn the steady state probability that the queue population is strictly 

greater than n. This approximation improves as n increases due to the asy~ptotic na­

ture of this property, and is often referred to as the geometric tail approximation. The 

terms 'I/; and </; are called the geometric scaling factor and geometric coefficient respec­

tively. Although this approximation is more suitable for estimating loss"'probabilities 

(as we shall discuss in Chapter 6), here we will consider its use as a means for estimating 

the average and variance of the queue population. 

3.3.1 Obtaining the geometric coefficient efJ 

A convenient property of queues having this geometric tail property is that 

(3.32) 

where o(z) is the Perron-Frobenius eigenvalue of the arrival process (see Chapter 6 for 

more details). In other words, </; is the reciprocal of the single positive real solution 

of the equation z - o(z) = 0 lying outside the unit circle. This then provides us with 

a means whereby the exact value of </; can be calculated quite easily, using either the 

bisection or Newton-Raphson methods. 

An approximate solution for </; 

The main limitation in obtaining this exact' solution for </; lies in the requirement that 

the Perron-Frobenius eigenvector must be known in algebraic form. This restricts the 
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size of the Markov chain of each arrival process to 4 states at most2 , unless the process 

is a special case (such as the cyclic process dealt with in Chapter 5). In addition, for 

very large numbers of sources, the time required to find the exact solution may become 

excessive. 

Sohraby [120, 121 J presents an approximation for <P using the first order Taylor series 

expansion of equation (3.32) around <P = 1, which can be written as 

-1 2(1->.) 
<P ~ 1 + 8"(1) (3.33) 

or, more conveniently 
<P 811 (1) 

1 - <P ~ 2 (1 - >.) (3.34) 

For the geom-geom IBP sources considered in this chapter, this becomes 

</> M2 - >. 1 ~ 'Yi 
1-</J ~ 2(1->.) + 1->.~>.i(Oi->.i) 1-'Yi (3.35) 

where M2 is the second moment of the overall stationary arrival process. 

This approximation is derived assuming that the queue is heavily loaded, and hence 

that cp will be close to 1. To improve the accuracy of the approximation generally, a 

more exact approximation can be obtained by increasing the order of the Taylor series 

expansion. Following the same approach as before, we then obtain 

<P -28111 (1) 

1 - <P ~ 38"(1) - J98"(1) 2 + 24 (1 - >.) 8111 (1) 
(3.36) 

where, for the geom-geom IBP sources, 8"(1) and 8111 (1) are given by equations (3.9) 

and (3.10) respectively. 

Note that there may be situations where the contents of the square root in equation 

(3.36) become negative, resulting in a complex valued solution for </J. The reason for 

this is that equation (3.36) represents only a partial power series approximation to the 

actual <P solution, and in the full Taylor series expansion of</>, all the complex compo­

nents would cancel. In practical terms, we found it best to ignore the approximation 

of equation (3.36) when this problem occurred, and return to the solution given by 

equation (3.35). 

3.3.2 Estimating the Scaling Factor 

Although we have these two methods for obtaining the decay coefficient of the geometric 

tail, there is no simple method to obtain the scaling factor 'If;. In [120], Sohraby uses 
2There is no known closed form algebraic solution for the eigenvalues of a general matrix of size 

greater than 4 x 4 [139]. 
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the simple assumption that the tail of the queue distribution is geometric for its entire 

length (from 1 to oo) which leads to 'I/;= Acp in our notation. This solution forms a fairly 

loose upper bound to the actual tail distribution. Xiong and Bruneel [141] use a more 

complete analytic approach to provide another upper bound on 'I/;, which their numeric 

investigations show to be quite tight. The derivation of the result is straightforward, 

although too involved to present here, and the interested reader is directed to [141] for 

the details. We will encounter the main assumption behind Xiong and Bruneel's result 

again in section 3.5. 

Note that an upper bound on the scaling factor 'I/; does not mean that the average 

and variance calculated from this bound are guaranteed to be greater than the actual 

values. Whether this occurs or not is highly dependent on the behaviour of the actual 

tail distribution for smaller queue population values (where the geometric property 

does not hold so well). 

In our notation, Xiong and Bruneel's result becomes, with some manipulation 
.'-;. 

(3.37) 

where 
C(z) =TI (fJi - Ai) (1 _:_Ii) z + (1 - fJi) (oi(z) - 1i) 

i=l (1 - Ai) (1- Ii) (1- fJi + zfJi) 
(3.38) 

D(z) =TI 28i(z) - (Ai+ ()iii - Ai7i) (z - 1) - 1 - Ii 
i=l Oi(z) - (1 - fJi + zfJi) Ii 

(3.39) 

and where Oi(z) is the Perron-Frobenius eigenvalue of the ith source, and o(z) is, the 

overall Perron-Frobenius eigenvalue for the superposition of the N sources. Note that 

the first derivative of o(z) can be written in terms of the individual source eigenvalues 

as 

o'(z) = o(z) t o:(z) 
i=l 8i(z) 

As a third alternative, we note that our own observations suggest that 
1 

Var [Lq]t ~ Var [L~J 2 

Lq ~ L~ 

(3.40) 

(3.41) 

where L~ and Var [L~J denote the marginal solutions for the average and variance of the 

queue population (see Appendix A). In other words, the ratio of the standard deviation 

of the queue population to the average is approximately equal to the equivalent ratio 

of the marginal solution. In order to support this claim, we define the variable r to be 

that which satisfies 
1 

Var [L ] t Var [L~J 2 

___ q~ = r x ----
Lq L~ 

(3.42) 
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where we are suggesting that r ;::::; 1. Figures 3.2 and 3.3 show a scatter plot and 

histogram of the r values obtained from the analysis of 10, OOO and 100, OOO randomly 

generated queueing problems respectively using 4 sources. The average value for r 

observed over the 100, OOO samples was 0.9789 ± 0.0006 (with 99% confidence). 

It would appear from these Figures that the assumption that r = 1 is acceptable, if not 

particularly accurate. The obvious trend from the scatter plot is that the approximation 

performs better for higher utilisations, although the spread of values around the mean 

is fairly independent of the utilisation. Further observations (although not in as much 

detail) suggest that the approximation may improve slowly as the number of sources 

increases. Thus, taking approximation (3.41) as being exact, and assuming the tail of 

the population distribution is geometric, we obtain 

1 Var [L*] 
-(l+cfi)-1= i 
1/J (L~) 

(3.43) 

by making use of the equations (6.7) and (6.8). Alternatively, from the marginal vari­

ance and average results in Appendix A we obtain 

1/J = 3 (1 + b) (M2 - .:>..)
2 

4 (1 - .:>..) (M3 - .:>..) + 6 (M2 - 1) (M2 - .:>..) 
(3.44) 

where Mr denotes the rth moment of the net arrival process. We will refer to this 

solution as the ratio method. 

3.3.3 Comparison of the Approximations 

In order to choose the best geometric tail approximation, we will first consider the 

effect of the choice of the scaling factor 7/J, using the exact numerical solution for the 

geometric term cp discussed in section 3.3.1. Figure 3.4 shows the absolute value of the 

mean relative error in the approximation for both the average and the variance as a 

function of the number of sources for the three methods discussed above. The methods 

for calculating 1/J are Sohraby's [120], Xiong and Bruneel's method [141], and the ratio 

method, described by equation (3.44) above. In each case, the average and variance of 

the queue population are give!?- by 

~ 1/J 
Lq=--

1 -cp 
and Var (i ] = 1/J (l + cp -1/J) 

q (1-</>)2 
(3.45) 

respectively (see Chapter 6). 

The results for Sohraby's method [120) (where 1/J = .:>..cp) are obviously the worst of the 

approximations. All three however suffer from increasing mean errors as the number 

of sources increases, which is particularly undesirable since we ideally wish to use the 
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F igure 3.2: Scatter plot of the ratio variable r as a function of the queue load. The 

results are from observations of 10, OOO randomly generated geom-geom IBP queueing 

problems with utilisations between O.l and 0.9 . 
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randomly generated geom-geom IBP queueing problems with utilisations between 0.l 

and 0.9. The reason for the unequal slopes is readily apparent from Figure 3.2. 
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Figure 3.4: Mean relative error in the average and variance of the queue population as 

a function of the number of sources for 1000 randomly generated queueing problems. 

approximation for large numbers of sources. We suggested earlier that the accuracy of 

the ratio method might possibly increase with the number of sources, but this obser­

vation has not been born out by the results. Of the three methods, the best is the one 

using Xiong and Bruneel's approximation for 'I/; and this is the one we will concentrate 

on for the rest of this discussion. 

The accuracy of Xiong and Bruneel's approximation method depends greatly on the 

accuracy of the cp value. For low queue utilisations, the two approximate solutions for 

cp given by equations (3.35) and (3.36) can become quite different to the exact value of 

the geometric decay coefficient. As a consequence, use of Xiong and Bruneel's equation 

(3.37) results in very poor approximations for the scaling factor, with negative values 

of 'I/; being one occasional consequence. We will not therefore consider the performance 

of the overall approximation with these two solutions for cp, but note that they should 

still be suitable for analysis of problems when the queue utilisation is quite high. 

Tables 3.2 and 3.3 present the statistics3 on the relative error observed for Xiong and 

Bruneel's approximation, described by equation (3.37) using the exact solution method 

for </J. We see from the first percentile that the lower limit on the average and variance 

3 Although we present the statistics of the relative errors to three and two significant figures, we 

do not really have this level of precision. Particularly the lst and 99th percentiles are very uncertam, 

smce they are based on the least and greatest 10 results out of the 1000 obtained for each N. Ideally 

we would like 10, OOO sources or more, but this 1s not very practical for larger numbers of sources. 
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of the queue population stays close to -1003 (approximation of zero) while the upper 

limit (given by the 99th percentile result) decreases for the average, while staying 

relatively constant for the variance. 

N Mean Deviation lst Percentile 99th Percentile 

3 -10.73 263 -863 493 

4 -20.33 293 -953 353 

5 -27.23 333 -953 463 

6 -31.63 343 -993 323 

7 -36.13 353 -993 233 

8 -38.13 363 -1003 363 

9 -42.33 373 -1003 253 

Table 3.2: Statistics on the relative error between the approximate -and exact solutions 

for the average queue population obtained from the geometric tail _approximation using 

Xiong and Bruneel's solution for the scaling factor 't/J. Each row in the table represents 

Qbservations from 1000 randomly generated problems. 

N Mean Deviation lst Percentile 99th Percentile 

3 -5.223 233 -823 413 

4 -10.53 273 -923 493 

5 -15.33 323 -933 493 , .. 

6 -17.43 343 -993 443 

7 -21.03 363 -983 353 

8 -21.93 373 -993 453 

9 -25.33 393 -993 493 

Table 3.3: Statistics on the relative error for the queue population variance correspond­

ing to the average queue population results of Table 3. 2. 

To investigate the reason for these observations, Figure 3.5 shows a scatter plot of 

the relative error observed in the average queue population as a function of the queue 

load for 10, OOO randomly generated queueing problems using 4 sources and Xiong and 

Bruneel's solution for 'ljJ using exact results for </J. It is very clear that the behaviour of 

the approximation is heavily dependent on the queue load or utilisation, but even at 
- -

high utilisations there is still a large spread in the possible error in the approximation 

for the average population. 

Xiong and Bruneel's solution for 'ljJ coupled with the exact numeric solution for <P rep­

resents the best method found for the implementing the geometric tail approximation 

for moments of the queue population. As can be seen from the data, the results are 
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Figure 3.5: Scatter plot of the relative error in the average queue population approxi­

mation as a fun ction of the queue load for 4 sources. The results are from observations 

of 10, OOO randomly generated queueing problems using X iong and Bruneel 's m ethod for 

assigning the geom etric tail scaling fa ctor. 

far from satisfactory. All of the methods discussed in this section performed poorly for 

light queue utilisations, suggesting that this is a perhaps a property of the geometric 

tail approximation itself rather than the methods used to choose the parameters. As 

we will discuss later in Chapter 6, this is indeed the case, and we expect the geometric 

approximation to underestimate the average and variance when the utilisation is low 

- or more specifically when </> is small. 

3.4 The MMPP Approximation 

The discrete time Markov modulated Poisson process (MMPP) or switched Poisson 

process (SPP) is a Markov modulated process that generates arrivals while in state j of 

the governing Markov chain according to a Poisson process with average rate parameter 

Aj . Its use as an approximation for the net arrival process from on-off sources is popular 

in the literature, particularly in regard to buffer loss probabilities, and there is a wealth 

of articles available discussing its use (see [11 , 44, 45, 77, 84, 92 , 103, 135, 143, 146] and 

references therein). 

The solution for the moments of the population of an infinite buffer queue fed by an 
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MMPP is straightforward, since the small number of states in the model allows the 

probability generating function approach to be used with little computational cost. We 

will only consider the two state MMPP in the following discussion, although models 

with higher numbers of states have been considered in [143]. 

3.4.1 Parameter Matching 

A two-state MMPP can be characterised by four parameters - the average rate from 

each of the two states (denoted by Po and P1), the average arrival rate from the overall 

process (denoted by p), and the autocorrelation between the two states (denoted by 'Y). 
The transition matrix for the MMPP is then given by 

where 

A = [ µo + µn µ1 (1 - 'Y) l 
µo (1 - 'Y) µ1 + µo"f 

P1 -p 
µo = 

P1 - Po 
and 

p-po 
µi = 

P1 -po 

(3.46) 

(3.47) 

with a corresponding state based probability generating function matrix given by 

[ 

ePo(z-l) 0 l 
P(z) = 0 eP1(z-l) (3.48) 

so that AP(z) describes the transition probability generating matrix for the MMPP. 

The main task in modelling the superposition of a number of IBP souices by a two 

state MMPP is in matching these four parameters (po, p1 , p, 'Y) to the statisti~s- of 

the IBPs and to the net arrival process. Most of the available literature is concefi;J_ed 

with one [11, 45, 84, 92] or at most two classes [135, 136] of identical sources, which 

means it cannot easily be applied to the heterogeneous sources case. Hartanto [44] 

investigated the performance of three of the more recent matching methods, finding 

the method of Wang and Silvester [135] to be the most accurate with both one and two 

classes of identical sources. Unfortunately, these methods do not easily extend to the 

heterogeneous case [51]. 

Instead, we consider the method described by Lee and Lee [77] (and also discussed in 

[ 44]). This approach matches the average and variance of a superposition of interrupted 

Poisson processes (IPPs), and additionally the peak to mean ratio and the time constant 

(or sum) of their autocovariance functions. For the arrival rates of the MMPP, this 

approach gives 

p .\ (3.49) 

Po p (3.50) .\- r 
P1 .\ + Jr (a-2 - .\) (3.51) 
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where>. and cr2 are the required average and variance of the arrival rate, and 

1 N 
r = >: L >.iri 

i=l 

(3.52) 

where ri is the ratio of the peak arrival rate to the average arrival rate of source i. 

We cannot simply extend this approach to the IBP case however, because the super­

position of any number of IBPs always has cr2 < >. while an MMPP always has cr2 > >.. 

That is, there is a fundamental difference in the distributions, and we cannot match 

the variance of the MMPP to that of the IBP source superposition. As an alternative 

we will use the suggested [44] 

Po 

Pi 

(3.53) 

(3.54) 

where cr2 is the variance of the superposition of IBP's (giving the MMPP a variance of 

cr2 + >.). The peak to mean factor r is given simply by 

(3.55) 

In order to match the autocorrelation parameter of the MMPP, we note that its auto­

correlation coefficient function is given by 

1 
R(m) = - (p - Po) (pi - p) /lml 

cr2 
(3.56) 

and that of the ith IBP source is given by 

(3.57) 

so that, matching the autocorrelation sum of the MMPP to that of the superposed 

IBPs gives 

I 
l-1 

3.4.2 Queue Population Analysis 

(3.58) 

The average and variance of the queue population of an infinite buffer queue fed by 

a two state MMPP is straightforward, requiring a single numeric solution to a pole 

equation. To simplify the mathematics, we note that the MMPP arrival process can 

be described by the superposition of a Poisson process with rate parameter p0 and an 

interrupted Poisson process with a rate parameter in the active state of (p1 - p 0 ). 
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Denote by z* the value of z that satisfies 

z - ePo(z-l)w1 (z) = 0 (3.59) 

where w1 (z) is the eigenvalue of the IPP transition probability generating matrix that 

has the property w1 (1) =f. 1. From Appendix C, this eigenvalue is given by 

where 

and 

a(z) = e(z-l)(p1 -po) 

1 - (1 - 1) p - Po 
P1 -po 

I+ (1 - 1) p - Po 
P1 -po 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

Then, denoting the empty system vector by b = [bo, bi] we obtain 

bo= (1-p)(l-,6) 
1 - ,6- w1(z*) + ,6a(z*) 

(3.64) 

and 

bi= 1 - p - bo (3.65) 

Substituting in the relevant equations of section 2. 7 using the results of Appendi~ C, 

we finally obtain (with a little work) 

and 

L _ A (Po+ P1) - PoP1 (p1 - .A+ .Apo - bo (pi - Po) - PoP1) I 
q - 2 (1 - .A) + (1 - .A) (1 - 1) 

6.A (1- .A) (po+ P1) +.A (4 - .A) (po+ P1)2 

12 (1 - .A) 2 

(2.A + 4.A2 - 6 - 4po - 2.Apo - 4p1 - 2.Ap1 + 3pop1) POPI 
+ 12 (1 - >.) 2 

(3.66) 

(PoP1A - >.2 + P5 (2.A - >.2 - 2p1) +PI (1 - Po)2 - boPI (1 - .A)) I 
+~~~~~~~~~~~~~~~~~~~~~~ 

(1 - >.)2 (1 - 1)2 

I (1+1) (>. - Pl +Po (>.2 - 2>. + 2p1) + bo (1 - >.) (P5 - Po+ P1)) 
(1 - >.)2 (1 - 1)2 

(b5 (Po - P1)2 + bop1 (1 - .A) (2po - P1) + PoP1>.) 12 

+ (1 - >.)2 (1 - 1)2 (3.67) 
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3.4.3 Accuracy Study 

Equations (3.66) and (3.67) for the average and variance of the queue population are 

implemented in this study using equations (3.49), (3.53), (3.54), (3.55), and (3.58) to 

define the MMPP parameters from the parameters of the IBP sources. Tables 3.4 and 

3.5 show the relative error results for the approximation for N IBP sources. As for the 

previous approximation study, 1000 randomly generated problems with 0.1 :::; >. < 0.9 

and 0 :::; Ii < 0.99 were considered for each N. 

N Mean Deviation lst Percentile 99th Percentile 

3 401% 430% 44% 2000% 

4 346% 420% 32% 1600% 

5 317% 350% 38% 1700% 

6 307% 340% 29% 1600% 

7 301% 330% 33% 1400% 

8 287% 290% 32% 1300% 

9 289% 310% 30% 1500% 

Table 3.4: Statistics on the relative error between the approximate and exact solutions 

for the average queue population obtained from the MMPP approximation. Each row 

in the table represents observations from 1000 randomly generated problems. 

N Mean Deviation lst Percentile 99th Percentile 

3 1090% 2600% 26% 7200% 

4 1010% 3700% 4.83 6600% 

5 892% 2000% -8.5% 6300% 

6 910% 1900% 2.1% 7100% 

7 9233 1900% -7.5% 9400% 

8 8313 1200% -3.63 4900% 

9 905% 1700% -5.9% 8400% 

Table 3.5: Relative error in the queue population variance corresponding to the average 

queue population results of Table 3.4. 

The performance of this MMPP approximation is extremely poor, although a very small 

decrease in the observed errors does occur with increasing numbers of sources. Figure 

3.6 shows a scatter plot of the relative error in the average queue population approx­

imation observed from 10, OOO randomly generated queueing problems with 4 sources. 

Obviously the performance improves for very high utilisations, but even here, the mean 

relative error is of the order of 100%. Part of the reason for this is that the variance 
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Figure 3.6: Scatter plot of the relative error in the average queue population as a 

function of the queue load obtained from the MMPP approximation for 4 sources. 

of the MMPP arrival rate is >. greater than the variance of the IBP sources. This will 

contribute a relative error roughly proportional to 1/ >.. , which is a good description of 

the underlying curve visible in Figure 3.6. 

This suggests a possible improvement to the approximation. We can replace ·the 

marginal components of the MMPP queue population average and variance by the 

equivalent components of the actual IBP arrival process. Investigation of this improve­

ment shows it to reduce the mean errors to roughly 100% and 600% for the average 

and variance respectively, with little variation as N increases. These errors are still far 

too large however to make the MMPP a useful approximation method. 

3.5 Empty System Vector Approximation 

The primary difficulty in obtaining the exact solution to the IBP queueing problem lies 

in obtaining the empty system probability vector b. An approximate solution for this 

vector might however provide another means for estimating the average and variance 

of the queue population. In [141], Xiong and Bruneel develop a tight upper bound for 

the scaling factor in the geometric tail approximation by noting that the probability 

that the combined arrival process is in state i when the system is empty will always be 

less than or equal to the probability that the state is i when no arrivals are generated. 
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That is 

Pr (s = i I y = 0) ~Pr (s = i I a= 0) (3.68) 

where s denotes the state of the arrival process, y the system population, and a the num­

ber of arrivals in the corresponding time interval. Using the fact that the empty system 

probability vector of our notation is given by the set of probabilities Pr (s = i, y = 0) 

we then obtain an approximation for b as 

- 1-.X 
bi = N x Pr (a = 0, s = i) 

TI3= 1 (1 - .X3 ) 
(3.69) 

where bi denotes the approximation for the element of vector b corresponding to the 

combined process state i. The joint probability Pr (a= 0, s = i) is the probability that 

no arrivals are generated and the combined process is in state i, and is given by 

Pr (a= 0, s = i) = fi a-3,i (~3 
- A3 ) + (1 - a-3,i) (1 - ~3 ) 

3=l 3 3 

(3.70) 

where a-3,1 is an indicator that takes the value 1 if source j is active when the combined 

process state is i, and takes a value of 0 otherwise. 

3.5.1 Accuracy Study 

Figure 3.7 shows an example approximation to the empty state probability vector for a 

4 source problem (the actual source parameters are given in Table 3.8). Although the 

closeness of the fit is not particularly good, the approximation does follow the same 

pattern as the exact solution. In this example, using the approximate b vector in the 

corresponding equations for the average and the variance of the queue population yields 

relative errors of 10.93 and 0.23 respectively. 

This good result for the variance is unusual, and in most cases studied, the variance 

approximation was of very poor accuracy, with the approximate result frequently be­

ing less than zero. For example, the mean relative error observed for 1000 randomly 

generated queueing problems with 4 sources was a huge -2703. As an alternative, we 

have used the result for the average, combined with the exact analysis for the decay 

coefficient of the geometric tail property (see previous section) to provide an estimate 

for the geometric tail scaling factor. Thus, with the two geometric tail parameters 

defined, an approximation for the variance can be obtained. 

Figure 3.8 shows a plot of the mean relative error observed for the average and the geo­

metric tail supported variance approximations, as a function of the number of sources. 

As before, each result is obtained from observation of 1000 randomly generated queue­

ing problems with a queue load between 0.1 and 0.9, and with the individual sources 

autocorrelation parameters restricted to less than 0.99. 
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Figure 3.7: Approximate and exact joint probabilities for the system being empty and 

the combined arrival process being in the indicated state. This joint probability set is 

described in the text by the vector b. 
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N Mean Deviation lst Percentile 99th Percentile 

3 32.6% 83% 0.31% 380% 

4 33.1% 773 0.44% 360% 

5 31.7% 623 0.41% 310% 

6 33.2% 613 0.60% 360% 

7 33.6% 58% 0.82% 330% 

8 31.7% 44% 0.89% 220% 

9 31.7% 47% 1.2% 270% 

Table 3.6: Statistics on the relative error between the approximate and exact solutions 

for the average queue population obtained from the b vector approximation. Each row 

in the table represents observations from 1000 randomly generated problems. 

N Mean Deviation lst Percentile 99th Percentile 

3 37.4% 79% 0.15% 330% 

4 50.1% 85% 0.40% 390% 

5 60.9% 94% 1.1% 490% 

6 74.8% 1203 2.0% 640% 

7 82.7% 1103 2.3% 520% 

8 87.4% 110% 2.5% 520% 

9 96.5% 120% 2.9% 630% 

Table 3. 7: Statistics on the relative error between the approximate and exact solutions 

for the queue population variance obtained from combining the b vector approximation 

for the average with the geometric tail property. 

Although the mean relative error in the average queue population seems reasonably 

constant, the error in the variance increases steadily with the number of sources. This 

unfortunately rules out using this method for large N. 

For completeness however, Tables 3.6 and 3.7 present the statistics of the relative error 

observed from the random generated problems for the average and variance of the queue 

population respectively. One interesting and perhaps useful property of this method 

is that the approximate average queue population is always greater than the exact 

average. This can be related back to the approximation for the b vector, which is 

based on relation (3.68). Whether this relation can guarantee that the approximation 

will always be greater than the exact average is not known. 

The fact that the average queue population is always (or nearly always) greater than 

the actual average could also help explain why the queue population variance is on 

average so far below the actual variance. The variance is calculated from the second 
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moment of the queue population (which will have some error associated with it) by 

subtracting the square of the average. If the error in the second moment is not more 

positive than the error from the square of the average, the approximate variance will 

underestimate the actual variance. Obviously, the observed results show that this is 

indeed the case. 

3.6 A New Approximation 

Although the approximations discussed above provide simpler and above all faster 

solution methods than the exact solution method, they generally only achieve good 

accuracy for a small range of system parameters (such as high utilisation, or high peak 

rates). As we have seen, their 'general' performance using randomly generated problems 

is extremely poor, which means other approximation methods must be found if high 

accuracy is desired. In the following we propose a new approximation for these types 

of problems, which we will introduce by means of an example. The process is- ·fairly 

straightforward, although somewhat slower than the techniques discussed earlier. 

Consider a queue fed by four geom-geom IBP sources, labelled A, B, C, and D. We 

will assume that the average queue population can be approximated as 

Lq ~ M +A+ B + C + D + AB +AC+ AD+ BC+ BD +CD -., (3.71) 

where M is the queue population obtained when all sources are treated as Bernoulli 

processes (the marginal solution), A, B, C, and D represent the increase in the average 

queue population when only one of source A, B, C, or D respectively becomes autocor­

related, and terms of the form AB represent the additional increase above that of A and 

B when both source A and B become autocorrelated. That is, terms of the form AB 

do not indicate a multiplication operation, but instead represent a logical relationship. 

This is why a calligraphic type font has been selected for representing these terms. 

Thus, we have approximated Lq by a sum of terms due to the interaction of at most two 

autocorrelated sources. We assume contributions to the queue population due to the 

interaction of more than two sources are negligible. The motivation for investigating 

this approximation came from the results of Chapter 4. We consider in that chapter 

the case 'Yhere all the Bi terms of the IBP sources are equal to 1, which allows closed 

form solutions for the average and variance to be obtained. In those solutions, the 

average queue population is given exactly by autocorrelation contributions from each 

source alone, while the variance is given by contributions from pairs. 

To make this process a little clearer, we provide numerical results for the case where 

the parameters of the four sources are described by Table 3.8. The contributions of 



84 Population Analysis for Geometric-Geometric IBP Arrival Models 

each component are presented numerically in Table 3.9, to give an approximation for 

Lq of 6.3306666. Investigation of the exact queueing problem shows that the actual 

value of Lq is 6.327894 - a relative error in the approximation of only 0.04%. 

Source >. () I 

A 0.1 0.7 0.6 

B 0.5 0.8 0.3 

c 0.1 0.4 0.1 

D 0.2 0.4 0.9 

Table 3.8: Source parameters for approximation example 

Sources Lq Term Expression Value 

none 2.5 M Lq 2.5 

A 3.2799054 A Lq-M 0.7799054 

B 3.0014771 B Lq-M 0.5014771 

c 2.5294422 c Lq-M 0.0294422 

D 4.9295275 v Lq-M 2.4295275 

A andB 3.7839911 AB Lq-M- (A+B) 0.0026086 

A and C 3.3093844 AC Lq-M- (A+C) 0.0000368 

AandD 5.7439154 AV Lq-M- (A+V) 0.0344825 

B andC 3.0310195 BC Lq-M- (B+C) 0.0001002 

B andD 5.4823335 BV Lq-M-(B+V) 0.0513289 

G and D 4.9607271 CV Lq-M-(C+V) 0.0017574 

Table 3.9: Development of contribution terms 

This same approach can also be applied to the calculation of the variance. For the 

numeric example discussed above, the approximate variance is 65.467832, while the 

actual variance is 65.460375 - a relative error in the approximation of just 0.01 %. It 

would appear then that this method has the potential to provide a means whereby the 

average and queue population can be approximated to a very high degree of accuracy. 
I 

We will study the accuracy of this approach in more detail in the rest of this chapter. 

The strength of this method is that its solution requires the analysis of boundary 

conditions for at most two sources at once. Thus, with geom-geom IBP sources, we need 

only implement routines for solving linear systems of 2 and 4 unknowns, both of which 

can be performed very quickly. The evaluation of the ,average and variance of the queue 

population then only requires the modifications to the appropriate theory discussed in 

section 2. 7. Construction of the overall solution is straightforward, using the above 
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N Mean Deviation lst Percentile 99th Percentile 

3 0.0313 0.223 -0.223 0.853 

4 0.0553 0.233 -0.193 0.963 

5 0.0693 0.293 -0.493 1.33 

6 0.0833 0.343 -0.393 1.43 

7 0.0953 0.323 -0.333 1.63 

8 0.1083 0.363 -0.413 1.73 

9 0.1033 0.353 -0.443 1.73 

Table 3.10: Statistics on the relative error between the approximate and exact solutions 

for the average queue population. Each row in the table represents observations from 

1000 randomly generated problems. 

N Mean Deviation lst Percentile 99th Percentile 

3 -0.0513 0.263 -1.43 0.103 

4 -0.1023 0.403 -1.83 0.133 

5 -0.1313 0.413 -2.43 0.123 

6 -0.1903 0.683 -3.23 0.123 

7 -0.2053 0.553 -2.73 0.103 

8 -0.2033 0.553 -2.83 0.133 

9 -0.2283 0.663 -3.43 0.143 

Table 3.11: Statistics on the relative error between the approximate and exact solutions 

for the queue population variance. Each row in the table represents observations from 

1000 randomly generated problems. 

example as a guide. Further enhancements to the method are possible however, and 

these will be discussed in section 3.6.2. 

3.6.1 Accuracy Study 

As for the other approximation methods, we assess the accuracy of the new method 

using randomly generated queueing problems for various numbers of sources with queue 

utilisations between 0.1 and 0.9. The results are presented in Tables 3.10 and 3.11, 

where it is immediately obvious that the error terms are at least two or three orders of 

magnitude better than the previous approximation techniques. 

Although both the average and variance exhibit an increasing error magnitude with N, 

the result should remain small even for significantly more sources than we are able to 

consider here. We will look again at this trend in the mean relative error for up to 16 

sources later in section 3.6.2. 
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Figures 3.9 and 3.10 show a scatter plot and histogram of the relative error in the 

average queue population approximation obtained from the analysis of 10, OOO and 

100, OOO randomly generated queueing problems respectively using 4 sources. Although 

the distribution is very tight around the mean, there are still a significant number of 

outlying points. Since the queue load is obviously not a contributing factor (at least 

not by itself) to the instances of these larger errors, there must be other cause~. 

It turns out that the most significant factor in the accuracy of the approximation is, 

understandably, the autocorrelation parameter. As /z gets closer to 1, the magnitude 

of the observed errors increases considerably, and is greatly affected by the values of 

the remaining two parameters. To illustrate this point, Figure 3.11 shows the relative 

error in the average queue population observed for 4 and 8 identical sources, with auto­

correlation parameters of 0.7 and 0.9, and a queue utilisation of 803. The independent 

variable is (}i - the probability that source i generates an arrival while in its active 

state. 

Obviously then, there are situations where this approximation method becomes inaccu­

rate, although the random generation scheme used above for allocating the parameters 

of the queueing problem finds these situations only infrequently. Observations suggest 

that if more than 2 sources have /i values of 0.9 or greater, then the high accuracy of 

the approximation may be in doubt. This number of sources is significant because we 

are approximating the queue behaviour by contributions from at most pairs of sources 

only. It also suggests a natural extension to the approximation to help improve the 

solution accuracy. 

3.6.2 Improving the Approximation Accuracy 

So far we have only considered the approximation using at most pairs of autocorrelated 

sources (the AB terms in equation 3.71). We can regard this as a 'second order' 

approximation, and the case where we only consider each source by itself (the A terms) 

as the 'first order' approximation. The marginal case (the M term resulting from having 

no sources with autocorrelation) is of course the 'zeroth order' approximation. As with 

most approximation schemes, we might expect that as the order of the approximation 

increases, the accuracy also increases. That is, considering additional terms of the form 

ABC (third order) would improve the accuracy of the second order method, and so on. 

We find that this is indeed the case. Table 3.12 shows the mean and range of the error 

in the average queue population as a function of both the number of sources and the 

order of the approximation using highly autocorrelated sources. The /z parameters were 

chosen randomly from the range 0.9 to 0.99 rather than the 0 to 0.99 used previously 
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Figure 3.11: Effect of the autocorrelation parameter on the relative error in the average 

queue population approximation for 4 sources. 

in Tables 3.10 and 3.11 so that the results represent a form of 'worst case' performance. 

The range is defined here to be the difference between the 99th and the lst percentiles 

of the observed errors, and indicates a measure of their spread. The same data sets 

are used for the analysis of the accuracy of the each order of the approximation, and 

the entries marked with a '-' indicate that the solution is exact (the order of the 

approximation is equal to the number of sources). 

Direct application of the approach illustrated by the example of Table 3.9 for higher 

order approximations leads to large memory requirements. This is because the eval­

uation of the contribution of each rth order term (those terms resulting from using r 

autocorrelated sources out of the N present) requires knowledge of the contributions 

of all the terms of orders up to r - 1. To avoid this problem, we can use the following 

approach, which we illustrate for the average queue population, but which is equally 

applicable for the variance. 

Denote the sum of the average queue populations obtained from each combination of 

rth order terms by Sr. Then, by inspection of the sum of the contributions of each 

of these terms, it is possible to show that the desired kth order approximation for the 

overall average queue population is given by 

(3.72) 
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Second Order Third Order Fourth Order 

N Mean Range Mean Range Mean Range 

3 0.9963 133 - - - -

4 1.663 163 -0.0573 3.03 - -

5 2.003 183 -0.1063 5.13 -0.0063 0.883 

6 2.183 163 -0.1763 6.23 -0.0053 1.93 

7 2.253 193 -0.2213 7.63 0.0193 2.83 

8 2.403 183 -0.2393 8.73 0.0013 3.73 

9 2.283 173 -0.1973 9.83 -0.0043 4.83 

Table 3.12: Mean and range of the relative error zn the approximate average queue 

population as a function of the order of the approximation using highly autocorrelated 

sources. Each row in the table represents observations from 1000 randomly generated 

problems with 0.1 ~ A < 0.9 and 0.9 ~ 'Yi < 0.99. 

where (~) denotes the combination function or binomial coefficient for n and r. Thus, 

to calculate the kth order result from the (k - l)th order result, only the _k previous Sr 

terms need to be stored, and the result is available immediately once Sk is obtained. 

This method does have the disadvantage that it is more susceptible to round-off errors 

than calculating the individual contribution terms, and so it should always be used 

with double precision arithmetic. 

One practical concern is knowing what order of approximation is required to provide 

a certain accuracy or relative error. The purpose of Tables such as 3.10 and ~~12 is 

to provide a general guide to the accuracies provided by this approximation method. 

However, it will sometimes be desirable to have better idea of the accuracy of the 

approximation result, particularly for the purpose of deciding whether an increase in 

the order of approximation is required. One way to gauge the possible error in the 

approximation is to compare the difference between the kth and (k - l)th order results. 

If this change is suitably small (depending on the desired accuracy) the kth order result 

can be accepted. 

Alternatively, we might make use of the fact that increasing the order of the approx­

imation always decreases the distance between the approximate result and the exact 

result. Thus if the magnitude of the kth order result is the greater of those from the 

(k - l)th, kth and (k + l)th order approximations, then the exact solution must be less 

than that of the kth order. Similarly, if the kth order result is the lesser of the three, 

then the exact solution must be greater than kth order value. Thus, in this fashion we 

may either bracket the exact result, or use the maximum value as a tight upper bound. 
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N Mean Deviation lst Percentile 99th Percentile 

10 0.102% 0.36% -0.49% 1.4% 

11 0.107% 0.36% -0.47% 1.8% 

12 0.102% 0.34% -0.48% 1.6% 

13 0.098% 0.33% -0.46% 1.5% 

14 0.098% 0.35% -0.57% 1.2% 

15 0.104% 0.37% -0.65% 1.6% 

16 0.097% 0.33% -0.60% 1.5% 

Table 3.13: Statistics of the error in the average queue population of the second order 

approximation measured relative to the more exact fourth order approximation. Each 

row in the table represents observations from 1000 randomly generated problems. 

Using high order approximations for 'exact' results 

Although high order approximations would be impractical for real time decision making 

processes, they can serve to provide accurate results where actual exact analysis cannot 

be used. For example, we might wish to evaluate the performance of the geometric tail 

approximation for 16 sources or more. Since it is impossible (or at least impractical) 

with modern computing facilities to try and solve for an exact 16 source solution, 

current methods have been limited to the assumption that sources can be grouped into 

classes of identical processes (see [141] for example). The new method discussed here 

provides an alternative, since most solutions can be obtained to very high accuracy 

using only third or fourth order approximations. 

As a more illustrative example, we are concerned with the trend in the relative errors 

observed for the second order approximation as the number of sources increases. We 

have previously obtained results from comparison with the exact analysis of up to 

9 sources in Tables 3.10 and 3.11. In Figure 3.12 and in Tables 3.13 and 3.14 we 

continue the analysis of the mean relative error for up to 16 sources by using a fourth 

order approximation as the source of the 'exact' results. Importantly we find that 

the increase in the error of the second order approximation remains quite small. In 

the case of the average queue population, the relative error appears to have stopped 

increasing after about 8 sources. We expect that the variance result may also exhibit 

this behaviour for large enough N, although this is not visible in these results. 

Since the errors in the fourth order approximation are known to be several orders of 

magnitude smaller than those of the second (at least for up to 9 sources) we expect 

the calculated error results to be fairly precise for all N. Figure 3.12 also includes the 

mean errors observed for the average and variance relative to the exact results for up 

to 9 sources, and seems to indicate that the fourth order approximation serves quite 
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N Mean Deviation lst Percentile 99th Percentile 

10 -0.2453 0.65% -3.13 0.183 

11 -0.2413 0.63% -3.23 0.163 

12 -0.289% 0.703 -3.1% 0.143 

13 -0.283% 0.673 -3.13 0.113 

14 -0.261% 0.563 -2.63 0.183 

15 -0.2913 0.713 -3.73 0.143 

16 -0.3013 0.673 -3.3% 0.11% 

Table 3.14: Relative error statistics for the queue population variance corresponding to 

Table 3.13. 
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Figure 3.12: Mean error in the second order approximation for the average and variance 

of the queue population measured relative to the fourth order approximation results. The 

results were calculated for queue loads between 0.1 and 0.9 and with 0 :S /i < 0.99. 
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well as an 'exact' solution. 

To be more sure of the accuracy of these error results, third and fifth order approxi­

mations could be performed, and the change in the results considered. _However, since 

the second order results are so small anyway, we have not bothered to investigate the 

accuracy any further here. 

3.6.3 Approximation Run Times 

We have already mentioned that this new approximation, while considerably more 

accurate than the more common approximation techniques discussed in sections 3.2 to 

3.5, is also slower to obtain results. Here we will discuss some of the computational 

requirements of the approximation, and present some actual run times. 

The approximation breaks the solution of each queueing problem into combinations of 

r terms, where we denote the largest value of r = k as the order of the approxima­

tion. Simple algebra shows that for N sources, there will be ( ~) combinations of r 

autocorrelated sources, and hence the total run time will be approximately 

T = t· (~) 9r,N 
r=O 

(3.73) 

where 9r,N is the time required to solve for a queueing problem involving r autocorre­

lated sources out of N total. In the limit as N and r become large, we can approximate 

this by 

(3.74) 

where we have used the fact that the solution of a queue fed by r geom-geom IBP 

sources varies as sr for large r. This usual nomenclature for this type of limiting 

behaviour is to say that it has a time complexity of order 0 ( Nk8k). The results of 

section 3.1.5 indicate that for small N, and in particular for small k (which is where the 

greatest time advantage will be obtained in the approximation) the time T to obtain 

the solution will probably be significantly smaller than indicated by equation (3.74). 

On another note, if the sources are all identical, then each term in r sources from 0 

to k needs only to be evaluated once, significantly reducing the overall execution time. 

Similarly, for problems involving classes of identical sources, the total number of differ­

ent combinations involving r sources will be significantly lower than the heterogeneous 

case. However, as we have mentioned previously, although these pathological cases 

are popular in the literature, they are not particularly useful for queueing problems 

involving switches deep within the network. 
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N Second Fourth 

10 170 msec 4.9 sec 

11 200 msec 7.5 sec 

12 230 msec 11 sec 

13 270 msec 16 sec 

14 320 msec 22 sec 

15 360 msec 30 sec 

16 410 msec 39 sec 

Table 3.15: Mean run times for the second and fourth order approximations on the 

IBM RS6000/320H. 

Actual execution times for the approximation were obtained on an IBM RS6000/320H 

using 1000 randomly generated queueing problems for each N. Figure 3.13 shows a 

logarithmic plot of the calculation run times as a function of the number of sources. 

In addition, Table 3.15 shows the run times on the RS6000 for the second and fourth 

order approximations for 10 to 16 sources. 

We note that Figure 3.13 clearly indicates that there is a time advantage to using the 

approximation only when the number of sources is at least three more than the order of 

the approximation. Thus for problems with only 4 sources, the best solution approach 

method is the exact one. 

3.6.4 Other Variations 

A variation on the approach discussed above is to always include one or two particular 

sources in every calculation used to obtain the approximate queue population moments. 

That is, referring to the example at the beginning of this section, we might always 

include source A as an autocorrelated source, resulting in only the terms A, AB, AC, 
and AV being used to construct a 'second order' solution to the average and variance 

(see Table 3.16). In this case, the approximate average is 6.2774801 - an error of 0.83. 

The accuracy of the result is dependent to an extent on which source(s) are chosen to 

be used in each calculation. For example, choosing source D as the one to use in each 

calculation in this example yields an almost exact result, with an error of just 0.00043. 

We will refer to solutions formed from combinations of k autocorrelated sources but 

with s of these used in every calculation as 'kth order with s held' approximations. 

The reason for using this approach rather than the straight kth order method discussed 

earlier is simply that it is faster, although generally with poorer accuracy. The reason 

for the increased speed is not hard to see. Since s of the sources must always be used, 

only combinations involving s or more sources need be considered, and in addition, 
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Figure 3.13: Mean run times for the second to fifth orders of the approximation. Each 

time was obtained from 1000 solutions on an IBM RS6000/320H workstation. 

Sources Lq Term Expression Value 

A 3.2799054 a Lq 3.2799054 

A andB 3.7839911 ab Lq-a 0.5040858 

A and C 3.3093844 ac Lq-a 0.0294790 

A and D 5.7439154 ad Lq-a 2.4640100 

Table 3.16: Development of contribution terms 
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the number of combinations of r sources reduces from (1;) to (1;~88). This means that 

the upper limit on the time complexity of the approximation becomes 0 ( 8k (N - s )k) 

which can provide a considerable time saving for larger k. 

We mentioned above that the choice of which sources are to be 'held' or always in­

cluded, can affect the accuracy of the final results. From experimenting with various 

choices, it appears that the best approach is to 'hold' those s sources having the largest 

autocovariance sums. That is, we choose those sources having the largest values of Yi 

which we define as 

Yi = Ai ( Oi - Ai) ____:1!:__ 
1 - 'Yi 

(3.75) 

As we noted previously, the autocorrelation parameter 'Yi plays the largest role in deter-

mining the performance of the approximation method. The use of the autocovariance 

sum in this form provides a convenient metric for determining which sources will have 

the greatest impact on the approximation accuracy. 

' 
In general, a kth order approximation performs better than a kth order with s lield. 

Figures 3.14 and 3.15 compare the absolute value of the mean relative error for the av­

erage and variance respectively of the queue population as a function of N for several 

approximation orders with and without a single held source. In each randomly gener­

ated queueing problem, the individual source autocorrelation parameters were selected 

from the range of 0.9 to 0.99 in order to maximise the resulting approximation errors. 

As before, 1000 queueing problems make up the observations for each N.'" 

Figure 3.16 compares the run time performances of the kth order approximations with 

and without a held source as a function of N. As in the previous subsection, the run 

times are from an IBM RS6000/320H, and the times required to actually generate the 

1000 problems and pass them to the calculation program have been subtracted from 

the measured run times. For comparison, the run times for the exact solution are also 

shown. 

From these results we see that an approximation of order (k + 1) with 1 held source 

has an accuracy and a mean run time that usually falls between those of the kth and 

(k + l)th order approximations without held sources. Thus, if a kth order approxima­

tion is not quite accurate enough, but a (k + l)th order approximation is too expensive 

in terms of run time, an alternative would be to use a (k + l)th order approximation 

with 1 held source. We have not investigated the advantages (or otherwise) of using 

more than one held source. 

In Chapter 5, we will consider this approach again in the context of approximating the 

performance of queues with cyclically interrupted service (or cyclic arrivals). 
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Figure 3.16: Mean run times for the second, third, and fourth order approximations, 

with and without a held source. Each time was obtained from 1000 solutions on an IBM 

RS6000/320H workstation. 

3.7 Summary 

In this chapter we have discussed the analysis of the moments of the population of 

a G/D/1 queue fed by a number of generally non-identical geom-geom IBP sources. 

The average and variance are calculated in a straightforward manner using the results 

of Chapter 2 applied to this specific problem. For queueing problems involving small 

numbers of sources, the solution is fast enough to be applied directly. However for 

larger numbers of sources, the time required to solve the queueing problem becomes 

quickly impractical, and for more than about 12 sources, the solution simply cannot 

be obtained. Thus for the larger switch sizes that might be expected in ATM networks 

approximate solution techniques must be used. 

Investigation of approximate solutions based on the geometric tail property, the MMPP 

model, and an approximation for the empty system vector, were performed for sets of 

randomly generated queueing problems. Rather than making the assumption that 

the queue load is high, we have chosen to use a wide range of utilisations and source 

parameters, as might be expected within a real network switch. As a result, very poor 

accuracies were observed for all three approximation methods. 

A new approximation technique was then presented, which is somewhat slower than 
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the above methods, but has an extremely high accuracy that is independent of the 

queue utilisation. The second order approximation has a time order complexity of 

approximately 0 ( N 2), but only provides faster computation of the population moments 

than the exact method for queues with 6 or more sources. The accuracy of the method 

is improved by increasing the order of the approximation, but at the cost of rapidly 

increasing execution time. The higher order approximations are so accurate that they 

can be used to provide effectively 'exact' results in situations where the formally exact 

solution method cannot be applied. 



Chapter 4 

Population Analysis for 

Phase-Geometric Binary Arrival 

Models 

A special case of the geom-geom interrupted Bernoulli arrival process considered in 

the previous chapter is the case where the peak rates of the sources are all equal to 

the outgoing link rate, so that each source generates a single arrival in every time 

slot for which it is active (all the ei are equal to 1). In order to distinguish this case 

from the previous one, and to extend the analysis to include phase-type distributions 

for the active periods, these sources will be referred to as phase-geom Binary sources, 

although in truth both types of source are binary processes (they generate either one 

or no arrivals in each time slot). The main reason for considering these type of sources 

separately is that closed form expressions for both the average and the variance of the 

infinite buffer queue population can be found. This chapter is devoted to presenting 

these closed form solutions. 

4.1 Related Studies 

In 1986, Viterbi [133] presented an exact closed form solution for the average population 

of a discrete-time G /D / 1 queue fed by a number of heterogeneous on-off binary sources 

having geometric on and off periods (geom-geom sources). This solution was expanded 

by Neuts [98] to include sources where the active periods could be described by a phase 

type distribution (phase-geom sources). Similarly Dupuis and Hajek [24] rederived 

Neuts result and presented the equivalent solution both for the continuous time domain, 

99 
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and for sources that transmit one or more arrivals (i.e. non-binary sources) in each 

active period. Bruneel [15] had earlier considered the non-binary arrivals problem for 

identical geom-geom sources, also presenting a closed form solution for the average 

queue population. 

The main problem with these closed form results is that they provide only the first 

moment of the queue population. In order to make approximations for the purpose of 

estimating losses in finite buffers, or estimating bounds on the queueing delays, at least 

the first and second moments of the queue population are required. In [15], Bruneel 

indicates that the variance for the homogeneous geom-geom sources problem can be 

found in the same manner as the average, although this result is not presented in the 

paper, and investigation into Bruneel's method by this author failed to provide the 

desired result. 

In [33] Gordon considered a heterogeneous mix of non-binary geom-geom sources. The 

analysis presented explicit derivations for the z-transforms of the queue population 

and delay, with a reported computational complexity of the order of 2N. For the case 

where all the sources are identical (as in [15]), this complexity reduces to order N. 

As for the IBP problems in the previous chapter, a solution complexity of 2N is too 

large to use in all circumstances. As an alternative approach, Sohraby discusses an 

approximate solution method in [120] and [121] using a geometric approximation to 

the tail probabilities of the queue (see Chapter 6 for more discussion on this method). 

The numerical complexity of the solutions is only of order N, although the accuracy is 

not particularly good, except at very high utilisations. 

Thus, until now, no closed form solution for the queue population variance using het­

erogeneous sources (either the geom-geom or phase-geom) had been established. In a 

recent paper [108], this author presented a partly empirically observed solution for the 

variance of the heterogeneous problem using geom-geom Binary sources. That solution 

was obtained by observation of the symbolic solution to the queueing equation (2.8) 

for 3 sources using Mathematica [139], and then shown to be exact for larger number 

of sources as well, through comparison with numeric solutions. Although the closed 

form solution for this case was a useful discovery, a robust proof of the result was still 

lacking. 

In [98], Neuts remarked that "Fluctuations in the queue length (and therefore the 

delay of packets), which are of the utmost importance to applications, will require 

investigation by innovative and non-traditional methods." (page 95). In section 4.3 

of this chapter, a general solution for the variance of the queue population for this 

problem is presented. As will be seen in that section, the approach taken to find the 

solution is definitely non-traditional. The computational complexity of the solutions is 
I 
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of order N for the heterogeneous case, and requires only three parameters per source 

for phase-geom Binary arrival processes, or two per source for geom-geom processes. 

To start with however, we will reproduce Neuts result for the average queue population, 

but using our notation. 

4.2 Average Queue Population for Phase-Geometric 

Binary Sources 

From equation (2.36) of Chapter 2, the general form of the average queue population 

of a discrete time G/D/1 queue fed by batch Markov arrival processes is given by 

bv'(l) 8"(1) 
Lq = 1 - >. + 2 (1 - >.) (~.l) 

For the general problem, the entries of the 'empty queue' probability vector b hav~ to 

be determined using numeric techniques, which precludes any closed forni solution for 

the average (and variance) being obtainable. In the phase-geom special case however, 

each source generates a single arrival in every time slot for which it is active. Thus, if 

there is one or more sources active in a time slot, the queue is guaranteed not to be 

empty immediately prior to service. Thus, the only non-zero entries in the vector b 

will correspond to the states for which all arrival processes are silent. 

For the phase-geom arrival process problem, each source has a single silent state;!:re­

sulting in only a single state in the overall arrival process for which all the sources are 

silent. Thus, the vector b can be written as 

b = [bo,O] 

where the silent state is taken to be state 0 by convention. From equation (2.17) we 

have be= 1- >., giving bo = 1 - >.and hence 

/ 8"(1) 
Lq = va(l) + 2(1->.) (4.2) 

where vo(z) denotes the element of the right-hand Perron-Frobenius eigenvector cor­

responding to state 0 of the overall arrival process. From the properties of Kronecker 

products 
N 

vo(z) = II vi,o(z) (4.3) 
i=l 

where Vi,o(l) denotes the zero state element of the right-hand Perron-Frobenius eigen-

vector for source i. Thus 
N 

vb(l) = L v~,0 (1) (4.4) 
i=l 



102 Population Analysis for Phase-Geometric Binary Arrival Models 

since Vi,o(l) = l. From Appendix C 

I -0~'(1) 
vi,o(l) = 2 (1 - Ai) (4.5) 

where Oi(z) is the Perron-Frobenius eigenvalue for source i. 

From Appendix C also, we obtain 

N 

0"(1) = M2 - A+ L 0:'(1) (4.6) 
i=l 

where c5?(1) is given by 
c 2 - 2c2 - c 1 o:'(l) = i, i,1 

3 
i, 

(1 + ci,1) 
(4.7) 

for which the ci,r are directly related to the physical parameters of the phase-geom 

arrival process by 

(4.8) 

where 'T/i,r describes the rth moment of the duration of the active periods of source i. 

Alternatively, using Neuts' approach [98] to describing the burstiness or autocorrelation 

of the binary source, we redefine c5~' ( 1) as 

c5~' (1) = 2Ai (1 - Ai) -
1 

Ii 
-1i 

(4.9) 

where the parameter Ii (referred to as the autocorrelation parameter) is given by 

Ii= 1 - 2'T}i,1 
(1 - Ai) ( 'T/i,2 + 'TJi,1) 

(4.10) 

giving the average queue population finally as 

(4.11) 

Correcting for the difference between the average queue population and the average 

system population, equation (4.11) is algebraically equivalent to Neuts solution in [98], 

although in a simpler form. 

The Physical Meaning of the Autocorrelation Parameter 

In Chapter 3, the autocorrelation parameter of a geom-geom IBP source is related to 

the autocorrelation coefficient function R,, ( m) by 

(4.12) 
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where fh = 1 for the types of sources considered here. The single-sided autocorrelation 

coefficient sum Si is then defined for geom-geom Binary source i by 

00 
Ii 

Si = L Ri (m) = -
1 

-
m=l - Ii 

(4.13) 

which is a term that appears in the equation for the average queue population (and 

also in various forms in the variance equation derived later). 

Since equation (4.11) applies both to geom-geom and phase-geom Binary sources, we 

might speculate on whether the relationship of equation (4.13) holds for phase-geom 

Binary processes as well. Pieloor and Lewis first suggested this relation in [107], al­

though they were unable to provide a proof of the result. The relation can be proved 

however, and is provided as Theorem D.l in Appendix D. That is, the autocorrelation 

parameter for a phase-geom Binary source is directly related to the single-sided sum of 

the autocorrelation coefficient function by equation (4.13). 

The fact that this definition of the autocorrelation parameter is related to the actual 
' autocorrelation function in this manner suggests that the average burst length 'f/i,1 alone 

(used in [120] for example) is not an adequate descriptor for general distributions of 

the active period. The exception to this is when the active periods are geometrically 

distributed (as commonly used) where knowledge of the average burst length allows 

the higher moments to be calculated directly. 

So how does knowledge of the fact that equation ( 4.13) holds generally for phase-geom 

Binary sources help us? We note that the asymptotic variance of a general arrival 

process is defined by 

v = lim _!_ Var [N(n)] 
n--+oo n (4.14) 

where N(n) is the number of arrivals occurring in an arbitrary chosen group of n 

consecutive time slots. This is related to the single-sided autocorrelation sum S of the 

process by 

(4.15) 

where D"
2 is the variance of the arrival process1 . Since we can make an approximate 

measurement of v for a real world source, say by choosing n = 1000 or n = 10000 in 

equation (4.14), we obtain an estimate for the autocorrelation parameter that helps 

describe that source. 
1Th1s relation can be derived simply from the well known result for the variance of the sum of 

random variates. 
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4.2.1 Non-Binary Sources 

This result for the average queue population can be easily extended to the non-binary 

case, where each source generates at least one arrival per time slot for which it is active. 

This is the problem considered by Bruneel [15], Gordon [33], and Dupuis and Hajek [24]. 

Using basically the same approach as for the binary case above, we obtain 

(4.16) 

where Pi,l denotes here the first moment of the arrival process from source i when it is 

in its active state, and the autocorrelation parameter of each source is now defined by 

_ l 2Pi,l'T/i,l 
'Yi - -

(Pi,1 - Ai) ('T/i,2 + 'T/i,1) 
(4.17) 

with the second moment of the combined arrival process given by 

(4.18) 

where Pi,2 denotes the second moment of the arrival process from source i when it is in 

its active state. 

4.2.2 Identical Sources 

For N identical sources, we have Ai= A/N and 'Yi="(, for which Lq reduces to 

A2 (l+"()( 1) 
Lq = 2 (1 - A) 1 - 'Y l - N (4.19) 

or as N--+ oo 
A2 (1+"() 

Lq = 2 (1 - A) 1 - 'Y ( 4.20) 

which is the upper limiting value for the queue population of a large number of identical 

sources. 

4.3 Queue Population Variance for Phase-Geometric 

Binary Sources 

In Chapter 2, the general form for the population variance of a queue fed by discrete­

time batch Markov arrival process was given in equation (2.51). Here we will make use 

of the special properties of the phase-geom Binary process to provide a unique solution 
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for the queue population variance of a G/D/1 queue fed by these sources. The basic 

form of the variance solution is 

Var [L ] = bv"(l) - 2X'(l)v'(l) - µv"(l) + 8111
(l) + (1 + c5"(l)) L - L2 (4.21) 

q 1 - .\ 3 (1 - .\) 1 - .\ q q 

where it was also shown that 

2X'(l)v'(l) - µv"(l) = 2 L L g(i,J) x i,J gi,O N m,-l (b (1) h (1) / (1)) 

i=l J=l s(l) 1 - Wi,1 (1) 
(4.22) 

In this case, b = [1 - .\,OJ and so 

bg(i,J)(l) l N 
s(l) = s(l) (1- .\) 9i,1,o(l) II . sn(l) 

n=l,nfoi 

(4.23) 

where 9i,1,0 (1) is the element of the jth eigenvector of source i corresponding to state 

0 of that source, and sn(l) is obtained from 

gn,o(l) = sn(l)e (4.24) 

Then, noting that 
N 

s(l) = II sn(l) (4.25) 
n=l 

we obtain 
bg(i,1)(1) = (l - .\) 9i,1 ,o(l) 

s(l) Si(l) 
( 4.26) 

·-
which is a function of source i and selected eigenvalue j only. Thus we can write 

2X'(l)v'(l)-µv"(l) = 2(1-.\)L L i,J,O i,J i,o N (m,-l g (l)h (l)g' (1)) 

i=l J=l Si(l) (1- Wi,J(l)) 

N 

2 (1- .\) LFi ( 4.27) 
i=l 

for scalar Fi which is obviously a function only of the parameters of source i, and is 

independent of the other sources. Thus, if the form of Fi can be established for any 

one source, the overall solution to 2X'(l)v'(l) - µv"(l) can be constructed directly. 

Then, since every other term in the solution for Var [Lq] can be established, the variance 

solution will be complete. 

4.3.1 Variance for a single Phase-Geometric Binary source 

Consider the queueing problem when only one of the N Binary sources is of phase-geom 

type, and the remaining N - 1 sources are described by Bernoulli processes. Then the 

queue equation (2.8) can be rewritten as 

X(z) (zl - p(z)AiPi(z)) (z -1) b (4.28) 
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where Ai and Pi(z) describe the behaviour of the phase-geom Binary source i, andp(z) 

describes the random arrival process resulting from the superposition of the remaining 

N - 1 sources, where 

p'(l) =A - Ai (4.29) 

p"(l) = M2 - A- 2Ai (A-Ai) (4.30) 

p111 (l) = M3 - 3 (1 +Ai) M2 + >. (2 + 3.Ai) + 6>.~ (A - Ai) (4.31) 

so that the superposition of the phase-geom Binary source and the random process p( z) 

yields the same stationary marginal arrival process moments, denoted by >., M2, and 

M3 as in the case with N phase-geom Binary sources. 

The aim here is to find an expression for 2X'(l)v~(l) - µv~'(l), where vi(z) denotes 

the right-hand Perron-Frobenius eigenvector of AiPi(z). In the following, we will 

write X'(l) as [x~(l), x~ (1)], µi as [µi,o, µi,l J, and v~(l) as [v~,0 (1), vi,1 (1) J where the 

0 (or i, 0) subscript denotes the first element of the relevant vector, and the 1 (or i, 1) 

subscript and bold face type denotes the remainder of the vector. Then X'(l)vi(l) will 

be given by 

X' (l)vi(l) = x~(l)v~ 0 (1) + x~ (l)vi 1 (1) 
' ' 

and using 

v~,1(1) = (vi,0 (1) -1) e + (1- Ai) (I-Ti)-1 e 
from Appendix C gives 

from which we need to find xb(l) and x~ (1) (I - Ti)-1 e. 

The first derivative of equation ( 4.28) evaluated at z = 1 is 

Taking the first element of this vector equation gives 

1 [1-Ci] ( X (1) -T~ = Ai Ai - >.) 

while considering the remaining elements gives 

which can be written as 

(4.32) 

(4.33) 

(4.35) 

(4.36) 

( 4.37) 

(4.38) 
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so that 

(4.40) 

hence 

where we note that 
, (I_ T·)-2 ci,2 + ci,1 

CiO:i i e 2 ( 4.42) 

and 
1 (I T)-3 ci3+3ci2+2ci1 ea - · e= ' ' ' i i i 6 (4A3) 

Evaluating the second derivative of equation (4.28) at z = 1, postmultiplying by the 

column vector e, and simplifying gives 

(4.44) 

where Lq is the average queue population, which can be obtained directly from Neuts' 

equation (4.11). The term X'(l)AiP~(l)e can also be written as 

X'(l)AiP~(l)e = Lq - X'(l) [ ~ l ( 4.45) 

so that, from equation ( 4.36) we obtain 

I M2 - A 
x0 (1) = (A - Ai) (Lq - Ai)+ 

2 
(4.46) 

and hence, with some manipulation 

X'(l)v'(l) =~(A - A) (1 - A )2 (c· - ~) - A; (A - Ai) (4.47) 
i 6 i i i,3 1 - Ai ( 1 - Ai) ( 1 - 'Yi) 2 

where we have used the burstiness parameter /i to replace the ci,1 and ci,2 terms. 

Investigation of the second derivative of Ui (z )vi (z) = 1 yields 

(4.48) 

where, from Appendix C we use the relevant expressions to obtain, with some effort 

(4.49) 
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and eventually that 

'( ) I ( ) "( ) 2 (1 - A) A~ 1 ( ) 2 ( Ai ) 2X 1 vi 1 +µivi 1 = ( 2 --
3 

1- A (1- Ai) E:i,3 - -
1 

, (4.50) 
1 - Ai) (1 - 'Yi) - /\i 

which leads to the solution 

(4.51) 

in equation ( 4.27). Alternatively, from equation ( 4.8) we can write Fi as 

(4.52) 

Note that, if the ith source is geom-geom Binary process, then ca,i is defined in terms 

of the two parameters Ai and /i as 

(1 - Ai) 2 (1 - 'Yi) 
(4.53) 

giving 

2X'(l)v~(l) + µiv~(l) = -2 (1- A) Ai/i 
2 (1 - 'Yi) 

(4.54) 

or 
F _ _ Ai/i 

i - (1 - 'Yi)2 
(4.55) 

for this two-state case. 

4.3.2 Construction of the Variance Solution 

Construction of the actual variance equation, once the Fi terms are known is straight­

forward, using the results for the derivatives of o(z) and v(z) at z = 1 that are given 

in Appendix C. Consequently, this process will be omitted here, since nothing is used 

that has not either been discussed above, or mentioned in the appendix. 

The solution for the variance using phase-geom sources is given by 

Var[Lq] = 
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while, for geom-geom sources, the solution reduces to 

Var [Lq] = 

N 
1 '""" ( 2 ) 'Yi + l _ A L.,; Ai 2A - 5AiA + 4Ai - Ai 2 

i=l (1 - 'Yi) 

( 

N )2 1 A 1 A 'Yi + (l _ A)2 I: d - i) ~ 
i=l 'Yi 

(4.57) 

This equation is algebraically identical to the empirically derived solution presented 

in [108], although it is slightly simpler in form. 

Notice that the first component of both these solutions, is the contribution that can be 

attributed to the marginal arrivals solution (see Appendix A). 

4.3.3 Numeric Confirmation 

Although we have presented a solution for the variance based only on analysis of the 

relevant queueing equations, numerical confirmation of the accuracy of the resulting 

equations is still desirable, if only to confirm that the algebraic manipulations have 

been carried out correctly. In [108], Pieloor and Lewis used numeric results to confirm 

the accuracy of the then empirically derived solution to equation ( 4.57) for geom-geom 

Binary sources. 

Gordon [33] provides some independently generated variance results (using a numeric 

analysis approach) and it was hoped to confirm these using equation (4.56). Unfortu­

nately this author was unable to reproduce even the average queue population results 

in [33], although they should have been given by Neuts equation in [98], and indeed in 

one case should have been given by the marginal arrivals solution (Appendix A). The 

reason for this discrepancy is not known, but makes the variance results in [33] useless 

as a source of confirmation. 

Numeric solutions for the variance were obtained in this case using iterative techniques 

on the matrix geometric form of the queueing equation. Table 4.1 presents the average 
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m N Average Maximum 

2 2 2.2 x 10-13 5.1 x 10-12 

3 3.0 x 10-12 1.7 x 10-10 

4 1.6 x 10-12 3.9 x 10-11 

5 3.0 x 10-12 8.6 x 10-11 

3 2 2.1 x 10-10 4.1 x 10-10 

3 4.4 x 10-03 4.2 x 10-06 

4 3.8 x 10-03 3.7 x 10-06 

4 2 4.3 x 10-11 1.4 x 10-09 

3 7.2 x 10-11 7.9 x 10-10 

Table 4.1: Relative error between the queue population variance obtained from numeric 

analysis and the theoretical variance solution. Each row of the table represents results 

observed from 100 randomly generated problems. 

and maximum relative error observed for 100 randomly generated queueing problems, 

where the number of sources is denoted by N, and the number of states in each source's 

Markov process is denoted by m. From the tabulated results and the convergence 

requirements of each case (discussed below), the accuracy of the two variance equations 

is beyond doubt. 

For the geom-geom Binary sources problem (m = 2) the parameters of the sources were 

chosen by assigning each source randomly generated Ai and Ii values, since these define 

the 4 entries of the transition matrix exactly. In order to avoid excessive convergence 

times or large round-off errors, the total arrival rate (or the server load) was restricted 

to lie between of 0.4 to 0.8, while each Ii was restricted to be less than 0.9. The 

convergence criterion for the iteration process was a relative change in the variance of 

less than 10-10 , with a maximum permitted loss probability of 10-13 . 

For the cases where m = 3 and m = 4, the situation is considerably more complicated 

because large numbers of physical parameters are required to characterise the transition 

matrix entries (e.g. 6 parameters for them= 3 case). Thus, one method to generate 

these sources would be to somehow generate these parameters, and then perform some 

algebraic transform to obtain each of the required entries. The simpler alternative, 

used in this study, is to randomly assign a Ai for each source, and then to randomly 

generate the entries of the transition matrix under the constraint that this desired 

average arrival rate Ai be met. It is then straightforward (see Appendix C) to obtain 

the various parameters of the phase-geom process required to solve equation (4.56). 

Due to the extra complexity of these 3 and 4 state problems, and in particular the large 

number of states required to describe the transition probabilities of the overall arrival 
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m N Mean Maximum 

3 2 12% 120% 

4 5.8% 31% 

8 3.7% 11% 

16 2.8% 8.5% 

4 2 5.43 39% 

4 3.0% 9.6% 

8 2.1% 5.5% 

16 1.7% 3.6% 

Table 4.2: Relative error between the exact queue population variance obtained from 

equation (4.56) and the geom-geom approximation obtained from equation (4.57). Each 

row of the table represents results observed from 1000 randomly generated problems. 

process (given by mN) the convergence criteria were reduced to a relative change in 

the variance of 10-8 with a maximum loss probability of 10-11 . As for them= 2 c;:i,se, 

the overall arrival rate was restricted to the range of 0.4 to 0.8. 

4.3.4 Approximating Phase-Geometric Processes by 

Geometric-Geometric Processes 

Obviously there is a considerable advantage from a computational point of view to 

modelling a many-state phase-geom Binary arrival process by a two-state geom-geom 
·= 

process. For the average queue population, this is easily achieved by matching the auto­

correlation parameter Ii for each source. The effect on the variance however is harder to 

describe. In order to provide some quantitative feedback on using this approximation, 

the variance results of the randomly generated 3 and 4 state queueing problems (as 

done above) were compared with the equivalent geom-geom variance result. Table 4.2 

presents the results of this study, with the actual and approximate variance calculated 

in each case from equations ( 4.56) and ( 4.57) respectively for the randomly generated 

transition matrices. The variable m indicates the number of states in the transition 

matrix. 

From the tabulated results it would appear that as the number of sources increases, 

or as the number of states in the transition matrix increases, the accuracy of the 

approximation improves. The magnitude of the error for the smaller transition matrix 

size, and for small number of sources is a concern however. Since a maximum error 

is a poor indicator, Figure 4.1 presents a plot of the approximated variance against 

the actual variance for the problem above having m = 3 and N = 2. In order to 

keep the plot dimensions to a convenient scale, only those problems with a variance 



112 Population Analysis for Phase-Geometric Binary Arrival Models 
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Figure 4.1: Geom-geom variance approximation as a Junction of the actual variance 

for 946 samples of a G/D/1 queue fed by two 3-state sources with randomly generated 

parameters. 

below 20 were included (which was nearly 95% of the results anyway). The cause of 

the large error magnitudes is immediately obvious from the plot. The actual variance 

forms an upper bound to the approximate results, which sit in a small band below 

this. The width of this band seems fairly constant for most of the plot, and so when 

the magnitude of the actual variance is small, the geom-geom variance error tends to 

become quite high. 

The observed trends in Table 4.2 (that the error reduces with the number of states 

and number of sources) are explained then by the fact that, since sources with larger 

numbers of states, or queues fed by larger numbers of sources, usually experience larger 

queue population variances, the observed error decreases. So, in practice, if the geom­

geom modelled variance is high, then the accuracy of the approximation will be good, 

and can be confidently used. Conversely, if the approximate variance is small, it will 

be difficult to estimate how accurate the approximation is. 
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4.3.5 Identical Sources 

For N identical sources, we write.\= >../N, /i = /, 'T/i,l = 'T/1, and 'T/i,3 = 'Tj3, for which 

Var [Lq] reduces to 

Var [Lq] 

or as N-+ oo 

4>. + >.2 - 8>.3 + ~ - * (1 - >..) 
12 (1 - >.)2 

>..21 ( 3 - 4>.. + 2>.2 + i (1 - 4>. + >..2) + ~) 
+ 2 2 (1->.) (l-1) 

2>..4 ( 1 - i )2 

Var [L ] = + + --- 'T/
3 1 

4>. + >,2 - 8).3 >.21 (3 - 4>.. + 2>.2) >..3 ( ) 
q 12 (1 - >.) 2 (1 - >..) 2 (1 - 1)2 3 (1 - >.) 'f/l - ;, 

Similarly, for N identical geom-geom sources we obtain 

Var [Lq] = 
4>. + >..2 - 8>..3 + ~ - * (1 - >.) 

12 (1 - >.)2 

>.21 ( 3 - 2>.. - i (1+6>. - 5>.2) + ffe- (4 - 3>.)) 
+~---'-~~~~~~~~~~~~~~-----'-

(1 - >.)2 (1 - 1)2 

so that for N -+ oo, we obtain 

"\:T L 4>. + >,2 ---0- 8>..3 >.21 (3 - 2>..) 
v ar [ ] - + ----=----= 

q - 12 (1 - >.) 2 (1 - >.) 2 (1 - 1)2 

4.4 Summary 

(4.58) 

(4.59) 

(4.61) 

This chapter has considered a special case of the phase-geom IBP, where each source 

generates an arrival with probability 1 in every time slot that the source is active. 

This leads to a completely known 'empty queue' probability vector b, and hence to the 

possibility of closed form expressions for the queue behaviour. In [98], Neuts presented 

a solution for the average queue population of an infinite buffer, discrete time G/D/1 

queue fed by these sources, building on the earlier work of Viterbi [133]. 

We have presented here a cl?sed form expression for the variance of the average queue 

population of this queueing problem - a result that has not previously been obtained. 

The importance of this result is that both the average and the variance of the queue 
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population are required to estimate bounds on the queueing delays and to approximate 

the loss probabilities of the finite buffer case (see Chapter 6). 

The accuracy of approximating a phase-geom Binary source by a simpler geom-geom 

model was considered for a few cases, and in addition we have shown how the autocor­

relation function is directly related to the choice of definition for the autocorrelation 

parameter originally suggested by Neuts. 



Chapter 5 

Population Analysis of Cyclic 

Service Queues 

In Chapters 3 and 4 we dealt with the analysis of the population of a uninterrupted 

service queueing system subject to arrivals from numbers of IBP sources. However, we 

considered in the introduction to this thesis that there is a need for dual buffer, priority 

based queueing systems in order to meet the quality of service requirements of both loss 

and delay sensitive traffics. In this chapter we will consider the analysis of the lower 

priority queue in a dual buffer system, when the high priority queue is subject to arrivals 

from a cyclic or periodic process, and hence the lower priority queue receives service in 

a complementary cyclic fashion. Rather than analysing this interrupted service queue 

directly, we use Corollary 2.3 and analyse the population of a queueing system subject 

to arrivals from both a cyclic source and a number of IBP sources. As in Chapter 3, 

we restrict ourselves to geom-geom IBP sources. 

Figure 5.1 illustrates the basic transition process that describes the behaviour of a 

binary cyclic arrival process. Each state (numbered from zero in diagram) in the 

process is either active or silent. During its silent states, the process generates no 

arrivals, while in its active states, a single arrival is generated in every time slot (hence 

the binary appellation). We assume that at the beginning of each time slot, the process 

changes to the next state, wrapping around between the last and the first states. The 

pattern of arrivals from this source is therefore exactly periodic. 

Cyclic service (or cyclic arrival) queueing problems are perhaps better known in the 

literature as hybrid or integrated switching systems [8, 67, 70, 74, 80-82, 114, 123, 137]. 

These systems provide a number of circuit and packet switched connections using a 

frame based STM transport mechanism. The circuit switched connections in the frame 

115 
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Figure 5.1: Illustration of the transition probabilities of the Markov chain for a cyclic 

source. Since only one transition is possible from each state, the transition probabilities 

are all equal to one. 

can be thought of as a cyclic arrival or service process with a period equal to the frame 

length in cells. 

The majority of these hybrid studies are based on the observation of the queueing 

system at either the end or the beginning of a frame time. That is, the behaviour 

of the queueing system within the frame is ignored. This unfortunately will lead to 

underestimation of the actual queue performance [106], particularly as the frame size 

increases. The analyses in [74, 80-82, 123] are all similar in content, considering the 

queueing delay of the Poisson distributed 'data' traffic as the number of active states in 

the cyclic process vary (on-off variation in the 'voice' traffic that describes the framing). 

Wieselthier and Ephremides [137] present a slightly different slant by considering several 

different ways in which contention for the available slots in each frame might be resolved. 

In [8], Arthurs and Stuck present a more in-depth analysis, allowing the 'voice' and 

'data' traffics (the number of active states in a cycle and the arrivals from the other 

non-cyclic sources) to be described by a general Markov chain. Since this model is not 

tractable, they relax the restrictions to look at several simpler cases. 

An alternative approach, used in [67, 114] and [41] is to establish the capacity remaining 

within a cycle, and then analyse the queueing performance using this capacity measure. 

This approach leads to further underestimation of the actual performance however, 

since the deterministic nature of the service process is ignored in addition to the framing 

effects. In [70], Kaudel and Beshai attempt to capture the effect of the framing on the 

queueing performance for Poisson traffic. Their analysis is based on the assumption 

that the arrivals from the cyclic process are evenly spaced within the cycle, and that 

this pattern is then well described by a Poisson process. Unfortunately they do not 

provide simulation results (or similar) to indicate the accuracy, or otherwise of their 

approximations. 

Of the available literature, the only accurate analysis of the queueing performance of 

a framed system at the cell level was given by Pieloor in [106]. In this paper, the 

author considered a cyclic arrival process mixed with Poisson arrivals, using a numeric 

iterative approach to obtain the complete population and delay distributions, and the 

finite buffer average loss probabilities. Despite being able to extend the results to geom-
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geom IBP sources (see Appendix E) the computational requirements of the numeric 

iterative method are too high for all but t_he simplest cases, and alternative approaches 

are required. 

In [79] Li discusses the probability generating function analysis of a queueing system 

with arrivals from on-off sources that generate a single arrival periodically in their active 

states. Treating this as a framed system, Li derives expressions for the locations of the 

poles of the relevant queueing equation and also for the average queue population of 

the system. Despite the framed nature of Li's approach, it shares many features with 

the method to be presented here. 

Sections 5.1 and 5.2 present the exact solutions for the average and variance of the 

queue population, and in particular look at the problems in solving this solution due to 

the finite numeric precision of digital computer implementation. In order to overcome 

these numerical difficulties, we develop an adaptive solution method in sections 5.2.2 

and 5.2.3, and investigate its accuracy. 

In section 5.3 we then look at several approximate solution methods. In 5.3.1 we 

approximate the cyclic source by a random process, and in 5.3.2 we investigate the 

accuracy of worst case result for the adaptive solution method. Then in section 5.3.3 

we investigate the use of the kth order approximation method first discussed in chapter 

3. Unsurprisingly, given the results of that chapter, this approximation has the highest 

accuracy of the three methods investigated. 

5 .1 Exact Queue Population Analysis 

In this section we will apply the population theory of Chapter 2 to the analysis of an 

infinite buffer queueing system subject to arrivals from the superposition of a single 

cyclic binary source and N geom-geom IBP sources. Since we have investigated geom­

geom IBP sources in detail in Chapter 3, we will start by defining a cyclic binary 

source. 

5.1.1 Characterising th,e Cyclic Source 

The cyclic process illustrated in Figure 5.1 can be characterised both by the period in 

slot times, denoted by C, and a set of C parameters describing whether the process is 

active or inactive in each of the C states. Although this is the general form of a cyclic 

process, we incorporate a further restriction in order to simplify the use of the cyclic 

model. We assume that all the active states of the cyclic process are consecutive within 
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the overall period. That is, the cyclic process generates some b < C arrivals, one at a 

time over consecutive time slots, followed b:y C - b time slots in which no arrivals are 

generated. Figure 5.3 illustrates the traffic stream from this model, compared to an 

example of the more general arrival process (Figure 5.2). 

----- Cychc Arrivals ---~-

I -·----c--__,·-1 
Figure 5.2: An example general cell arrival pattern for a cyclic source with period C. 

----- Cyclic Arrivals ---~-

DDDD~~~GGDDDD~~~~~DDDD~G~ 
1.. c ·I 

Figure 5.3: Arrivals constrained to occur consecutively within the cyclic period C. 

There are two basic justifications for making this simplification to the general cyclic 

binary arrival model. The first is that, at each merging point in the network, the effect 

of queueing in switch output buffers will cause simultaneous arrivals to be output in 

random but consecutive order. This effect will be offset somewhat however by splitting 

at the next switch stage. 

The second justification is related, and is based on the fact that we are particularly 

concerned with the analysis of dual buffer priority systems where one buffer has non 

pre-emptive service priority over the other. In this arrangement, the queueing of the 

cyclic process in the high priority queue will cause (in the same manner as before) 

the high priority buffer to require service for consecutive time slots. That is, the 

interruption process of the low priority buffer will tend to involve consecutive services 

followed by consecutive non-services. As indicated by Corollary 2.3, this interrupted 

service problem can be described by a cyclic binary arrival process of the type proposed 

above. 

A third reason for making this assumption about the behaviour of the cyclic arrival 

process is that for a given C and number of active states b, it results in the largest 
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queue populations and delays [106]. That is, it forms an upper bound on the queueing 

performance of the system. 

With this simplification, the number of parameters required to describe the cyclic 

process reduces to just two - band C. The C x C state to state transition matrix is 

then described by 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

Ao= 
0 0 0 0 1 0 0 

(5.1) 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

1 0 0 0 0 0 0 

where the subscript 0 is used to indicate the cyclic source. As in Chapter 3, subscripts 

from 1 to N indicate the geom-geom IBP sources. The stationary probability vector 

for Ao is of course given by 

(5.2) 

The C x C probability generating function matrix Po(z) for the cyclic binary arrival 

process is given by 

1 0 0 0 0 0 

0 1 0 0 0 0 _,,.,. 

Po(z) = 
0 0 1 0 0 0 

(5.3) 
0 0 0 z 0 0 

0 0 0 0 z 0 

0 0 0 0 0 z 

where we are assuming, without loss of generality, that a cycle is made up of C - b 

silent time slots (represented by l's in the Po(z) matrix), followed by b active slots 

in which a single arrival is generated per time slot (represented by the z terms in the 

Po(z) matrix). The average arrival rate from this cyclic binary source is denoted by .Ao 

and has the value b/C. 

Note that the autocorrelation coefficient function of a cyclic arrival process is also cyclic, 

and it is fairly simple to show that 

R(m) = { 

b-m b for 0 :::; m + kC < b 
b(l-{J) - C-b 

b for b :::; m + kC < C - b (5.4) -C-b 
1 C-m for C - b :::; m + kC < C - b(l-fy) 
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for some integer k such that 0 :::; m + kC < C. In the case for IBP sources, we were 

concerned with the quantity known as the single-sided autocorrelation (or autocovari­

ance) sum, which is the sum from m = 1 to oo of R(m). From relation (5.4) above, 

it is straightforward to show that the sum across any number of cycles of R(m) is 0. 

However, the cyclic nature of the autocorrelation function means that the infinite sum 

does not converge, an? hence the single-sided sum of R( m) does not properly exist. 

5.1.2 Applying the Queue Population Theory 

In Appendix C we develop the relevant eigensystem analysis for cyclic arrival processes. 

In particular we obtain 

8b(l) =Ao 

8~ ( 1) = Ao (Ao - 1) 

8~'(1) =Ao (Ao - 1) (Ao - 2) 

(5.5) 

(5.6) 

(5.7) 

where 8o(z) is the Perron-Frobenius eigenvalue of the transition probability generating 

matrix AoPo(z). In addition we have 

where 

e2'Pn (1 - eb'Pn) 
h ( 1) I ( 1) - -----'"------:-'--

0, n go,o - C (1 - e'Pn )2 

27rn 
'Pn=-V-I c 

(5.8) 

(5.9) 

and where ho,n(z) and go,n(l) are the general left and right eigenvectors corresponding 

to the nth (n = 0, 1, ... , C - 1) general eigenvalue of AoPo(z). 

Incorporating the cyclic source into equation (3.12) for the average population of a 

queue subject to arrivals from geom-geom IBP sources only gives 

L = bv'(l) M2 - A - Ao (1 - Ao) _1_ ~A (e _A·) _l_ 
q 1 - A + 2 (1 - A) + 1 - A~ i i i 1 - 'V· 

i=l 1i 

(5.10) 

where b is the empty system probability vector, and v(z) is the right hand Perron­

Frobenius eigenvector of the combined arrival process, and the A and M 2 terms are 

the average and second moment of the combined arrival process (including the cyclic 

source). Similarly we obtain the queue population variance from equation (3.13) as 

b "(l) N A· C-1 e2'Pn ( 1 _ eb'Pn) 
lv- A + 2 L (1 ~Ii )2 bg(i,1) (1) - 2 L C (1 - 'Pn )3 bg(O,n) (1) 

i=l Ii n=l e 
Var [Lq] 

Ao (1 - Ao) (3A - 2 - 2Ao) M3 - 3 (M2 - A) - >. L2 
- 3 (1 - A) + 3 (1 - >.) - q 
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(5.11) 

The relevant derivatives of the overall Perron-Frobenius eigenvector v(z) are given in 

terms of the derivatives of the individual source eigenvectors as 

N 

v'(l) = v~(l) 0 e2N + L (e2<i-l)c 0 v~(l) 0 e2cN-i>) 
i=l 

and 

N 

v 11 (l) v~(l) 0 e2N + L (e2ci-l)c 0 v~'(l) 0 e2cN-iJ) 
i=l 

+ 2 ~ ( e2HJc 0 V,(1) 0 ~ ( e2u-'' 0 V.+,(1) 0 e2cN-•-,J)) 

N 

+ 2v~(l) 0 L (e2ci-1) 0 v~(l) 0 e2cN-iJ) (5.13) 
i=l 

where ex is a column vector of x elements, all of which have the value l. For the cyclic 

source we write 

and "(1) [ II II II JT Vo = vo,v1,···,vc-1 

where, from Appendix C 

and 

for j = 0 Ao ( 1 - C2b) 
v;_1 +Ao 

v;_1 +Ao - 1 

for 1 ::; j < C - b 

for C - b ::; j < C 

{ 

ifJ(C-b)(3C-6b+2bC-5-2b2) 

v; = v7_1 +Ao ( 2v;_1 - 1 +Ao) 

v7_1 + (1 - Ao) ( 2 - Ao - 2v;_1) 

for j = 0 

for 1 ::; j < C - b 

for C - b ::; j < C 

(5.14) 

(5.15) 

(5.16) 

The Perron-Frobenius derivatives for the individual IBP sources are given by equations 

(3.16) and (3.17). 

The vectors g(o,n) (1) and g(i,l) (1) are given by 

(5.17) 

and for i ~ 1 

(5.18) 
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respectively where 

go,n(l) = [1,e'Pn,e2rpn, ... ,e(C-l)rpn]T 

and where gi,1(1) is given by equation (3.19). 

(5.19) 

The only remaining term required in order to calculate the queue population average 

and variance is the empty system probability vector b. As we shall discuss in the 

following section, obtaining this vector is not, in many cases, a simple task. 

5.2 Obtaining the Empty System Probability Vector 

As discussed in Chapters 2 and 3, the b vector is obtained by first finding the poles of 

the queue equation that lie within the unit circle, and then solving a linear system of 

equations constructed from the general right hand eigenvector of the combined arrival 

process evaluated at each of the pole positions. Unfortunately, significant numerical 

difficulties are encountered in attempting to perform these operations. 

In the following we will consider the pole finding and linear system solving stages 

separately, before looking at some results for the accuracy of this method. In order 

to assess the accuracy of the queue population results, numeric iterative methods are 

used to generate results with relative convergence errors of less than 10-9 and loss 

probabilities of similar order. Although this method is both highly accurate and robust, 

it is unfortunately very slow, which is why we prefer to have other means available for 

analysing the queueing performance. The iterative solution method is discussed in more 

detail in Appendix E. 

5.2.1 Finding the Poles and Zeros of the Queue Equation 

As before, we denote the jth pole of the queue equation by z;, noting that this quantity 

satisfies 

(5.20) 

where w1 (z) is the jth general eigenvalue of the transition probability generating matrix 

of the combined arrival process, given by 

N 

w1 (z) = II wi,r,,1 (z) (5.21) 
i=O 

and where Wi,n is the nth eigenvalue of the ith source, and ri,J is a function that 

describes which eigenvalue of source i is indicated when the overall eigenvalue is j. For 
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the N geom-geom IBP sources, Wi,n(z) is given by equation (3.22) while for the cyclic 

source we have 
b 

wo,n(z) = e'Pn zc (5.22) 

where 'Pn is as described in equation (5.9). A convenient definition for the cyclic source 

problem, and one which is similar to the proposed form of ri,J in chapter 3 is 

{ 

jmodC 
ri,J = 21-i I b l mod2 

for i = 0 

otherwise 
(5.23) 

where Ix l represents the largest integer not greater than x, and J = 0, 1, ... , ( 2N C - 1). 

The are 2N C different eigenvalues that can be formed for the combined cyclic and 

geom-geom IBP arrivals queueing system. We note however that within every cycle of 

C periods, there are b time slots in which there is a guaranteed arrival from the cyclic 

source. This means that there will only be 2N (C - b) unknown probabilities in the 

empty system vector b - the remaining 2N b probabilities will be zero. Thus we ~0nly 

need to find the solution to 2N (C - b) pole equations. 

Now, since lw1 (z) I < 1 provided lzl < 1 there must be at least one solution to equation 

(5.20) according to the Fixed Point Theorem [47]. Obviously z; = 0 is one solution 

to equation (5.20) for all j, but this solution provides no useful information for our 

purposes. This solution will only be guaranteed unique however if w1 (z) is.a contraction 

mapping of z - that is if there exists some constant 0 ::::; r < 1 such that 

(5.24) 

for all z1 and z2 within the unit circle. Since w1 (0) = 0, and since it is always possible 

to find some z such that lw1 (z)I > lzl (consider when z--+ 0 for example) we know that 

no suitable value of r exists, and hence z; = 0 is not necessarily a unique solution to 

equation (5.20). We are interested then in finding firstly for which j there is a non zero 

solution to equation (5.20), and secondly the value of that solution. 

For convenience we describe the C eigenvalues of the cyclic source corresponding to a 

single combined eigenvalue of the N geom-geom IBP sources as belonging to a cycle. 

Thus there are 2N cycles covering every eigenvalue of the queueing system. Within 

each cycle there will be one positive real solution to equation (5.20) corresponding to 

'Pn = 0 (using the same argument as for the IBP sources only in Chapter 3). Due 

to the complex valued contribution when 'Pn -=/= 0 all other solutions will be complex 

and occur in conjugate pairs - with one possible exception. If C - b is even, then 

with one positive real pole, and all others appearing as conjugate pairs, there must be 

a second real valued pole. If present, this pole will occur on the negative real axis, 

where the imaginary contribution of the complex valued e'Pn term can be cancelled by 
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Relationship of j to b and C Location of pole z; 
jmodC = 0 positive real axis 

j mod C = r C2b l and C - b is even negative real axis 

r C2b l + 1 :::; J mod C :::; r C2b l + b z; is zero 

otherwise z; is complex 

Table 5.1: Summary of the relationship between the location of the pole z; and its index 

J· 

b 
contributions from the complex valued zc term of the cyclic process' eigenvalue, and 

the complex valued eigenvalues of the IBP sources. 

As an example, Figures 5.4 and 5.5 show the positions in the complex number plane 

of e'Pn for C = 16, with b = 5 and b = 6 respectively. In particular we have marked 

on these plots where the overall eigenvalues associated with each point have non-zero 

real or complex valued fixed points. These conclusions are based purely on empirical 

observations, but have consistently proved to be accurate for the many thousands of 

(randomly generated). queueing problems investigated. A discussion in [79] suggests 

that these relations can probably be proved, although we have not done so here. Table 

5.1 summarises the relationship between the pole location and its index when 'Pn is 

defined by equation (5.9) for general b and C. In addition, we note that if z; is a 

complex valued pole, then pole zZ is its conjugate, where 

k = j + C - 2(j mod C) (5.25) 

Thus, for each cycle we need only establish the position of r C2b l + 1 poles in order to 

know all of the poles. 

As with the purely real valued problem of Chapter 3, we attempt to find the 2N ( C - b) 

required solutions using the Newton-Raphson search algorithm in two dimensions [47, 

109]. Identification of those poles having purely real values can aid solution finding by 

restricting the search to the real axis only. Once the pole is found to within some small 

error value, the solution can be improved or 'polished' by making use of the iterative 

process described by 

(5.26) 

which will tend to the solution z; as n--+ oo [47, 79]. This iterative process is unfortu­

nately not certain to converge to the correct z; from every starting point zo, which is 

why the Newton-Raphson method is used to obtain a close initial guess. This iterative 

improvement of the Newton-Raphson method is not always necessary, but can help to 

significantly reduce the solution error when the initial point accuracy is not particularly 

high. 
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Figure 5.4: Relationship between e'Pn and the type of pole the corresponding overall 

eigenvalue will have. These results are for C = 16 and b = 5 (C - b odd). 
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Figure 5.5: Relationship between e'Pn and the type of pole the corresponding overall 

eigenvalue will have. These results are.for C = 16 and b = 6 (C - b even). 
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Convergence with the Newton-Raphson method is not guaranteed either for every 

starting point, and it is important that the search algorithm is able to recognise when 

the process has failed, and take appropriate action. This search for the pole locations 

fails in several ways, all of which are fairly easy to identify. The first is that the search 

point begins to move outside the unit circle - there are solutions to equation (5.20) 

that lie outside the unit circle (termed non-vanishing roots by Li and Sheng in [83]) and 

these can sometimes be found by the search algorithm instead of the desired solutions. 

The second is peculiar to searches on the real axis, and occurs when a positive (but 

very small) solution is found to what should be a negative (but very small) pole, and 

vice versa. These solutions appear to be due to the finite numeric precision of the 

computer implementation of the problem. The third type of failure, which has only 

been observed for the complex valued poles, occurs when the search remains within 

the unit circle, but does not converge to a solution for equation (5.20), or alternatively 

converges to z = 0. The reason for this is not known. 

A suitable approach to providing initial guesses for the search algorithm is based on 

the observation [79] that the C - b non-zero poles in a single cycle have arguments that 

are approximately evenly distributed around the unit circle. This is illustrated quite 

clearly in Figure 5.6 which shows these pole locations for an example queueing system 

having 4 IBP sources and a cyclic source with C = 16 and b = 4. In this case there 

are 12 non-zero poles in every cycle, of which two are on the real axis. Thus we might 

start the search for the pole z; at some point given by Ae1?1v'-I where 

{!3 = { 
J~b (j mod C) 

J~b (J mod C - C) 

if 0 S (jmodC) Sf C2bl 
if I 0 ;-b l + b < (j mod C) < C 

(5.27) 

and where the magnitude factor A would be say 1 for the first search attempt. Whenever 

the search fails, A can be reduced (say reduced by half) and the search started again 

with the new start point. 

Occasionally, no solution to equation (5.20) is found, even after many restarted searches, 

and the only option is to use the closest solution in place of an exact one. By closest 

solution we mean that z; which minimises z-w3 (z). It is a fairly simple matter to 

have the implementation of the search algorithm keep track of the best solution found 

at each step, and to return to this if no other pole is found. We will refer to problems of 

this kind as pole placement errors. Fortunately these types of errors do not appear to 

be very common (see section 5.2.3 below). The exact cause of the errors is not known, 

and they appear to be unaffected by increasing the numeric resolution, although we 

have not studied this problem in great detail. 
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Figure 5.6: fllustration of the tendency for the poles of the queue equation to be evenly 

distributed in anglular terms around the unit circle. 

5.2.2 Solving for the Linear System 

The state space of the system of the simultaneous equations describing the empty sys­

tem vector involves 2N (C - b) unknowns, corresponding to the non-zero probabilities 

in b. As in Chapter 3 the coefficients of the linear system are determined from the 

poles of the queueing equation and the relevant eigenvectors, and the system 

b 0 M = [(1- .\) ,0,0, ... ,OJ (5.28) 

is solved (using LU decomposition) for b 0
, which is a vector consisting only of the non­

zero elements of b, referred to as the reduced state empty system vector. The matrix 

M describes the coefficients for the simultaneous equations, where the columns of M 

are made up from those elements of the right hand eigenvector g1 ( z;) corresponding 

to the non-zero b vector probabilities, and only for those j having non-zero z;. The 

complete empty system vector is then obtained directly from the elements of b 0
• 

Eigenvector g1 (z) is given by 

N 

g1 (z) = Q9 gi,r,,
1 
(z) (5.29) 

i=O 

where ri,J is as defined previously in equation (5.23), and where gi,n(z) describes the 

general right hand eigenvector corresponding to the nth eigenvector of source i. For 
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the geom-geom IBP sources, eigenvector g2,n(z) (i = 1, 2, ... , N) is given by equation 

(3.26), while the eigenvector for the cyclic source is given by 

( ) _ [ ( ) -1 C-b -2 C-b+l -b C-l]T go,n z - 1,wo,n z , ... ,z wo,n(z) ,z wo,n(z) , ... ,z wo,n(z) 

(5.30) 

Alternatively, since the non-zero states of b correspond to the silent periods of the 

cyclic source, we can use 

(5.31) 

where 

(5.32) 

The columns of matrix M will then be made up of those g;(z;) for which z; is non-zero. 

One important consideration in the solution of this system is that the g1 (z;) are gen­

erally vectors of complex numbers. Rather than trying to perform complex valued 

matrix decompositions, we note that the elements of two eigenvectors corresponding to 

complex conjugate eigenvalues are themselves complex conjugates [36). Thus, we can 

construct the linear system from purely real coefficients by taking the real components 

of gj(z;) when the imaginary component of zj is zero or positive, and the imaginary 

components of g1 (z;) when it is negative. The reverse arrangement can be used equally 

well. 

An Ill-Conditioned Problem 

As for the case where there are only geom-geom IBP sources present, the normal 

indicators of how singular a matrix is (the determinant and condition number) show 

that M is ill-conditioned. Unlike the geom-geom IBP case however, the residual is not 

(by itself) a good indicator of how accurate the solution actually is. A considerably 

better indicator is to look for negative entries in the b 0 vector once it is obtained. These 

terms begin to appear when the numerical precision required to solve the linear system 

exceeds the precision used - a problem which can show up when the state space of 

the linear system is as small as 12 elements. 

Figure 5.7 shows the empty system vector obtained using a double precision LU de­

composition for an example system with 4 IBP sources and a cyclic source having 

C = 16 and b = 9. Obviously this solution is a long way from representing the cor­

rect empty system probability vector. Part of the problem is that the relationship of 

each probability term to some number of other terms means that once one of these 

becomes significantly negative, it causes adjacent values to be perturbed, giving rise in 

the extreme to the almost alternating spike effect apparent in Figure 5.7. 
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Figure 5.7: Diagram showing the values obtained for the entries of the empty system 

probability vector using double-precision LU decomposition. The example system has 4 

geom-geom IBP sources and a cyclic source with C = 16 and b = 9. 

Increasing the Numeric Precision 

One way around this problem is to increase the numeric precision used in the ca~cu­

lations. As an example, Figure 5.8 shows the empty system vector obtained usl.ng 

quadruple precision LU decomposition for the same queueing problem considered in 

Figure 5.7. The actual probabilities, obtained using the numeric iterative solution 

method, are shown for comparison. We can see that although the results are much 

improved, they are still not exact, implying that still higher numeric precision would 

be required to solve the system exactly. 

The difficulty here of course is that increasing the precision means both longer compu­

tation times, and increased memory demands. The double precision used as standard 

for the calculations throughout this thesis has 15 decimal digits of precision, requiring 

8 bytes of storage per number. The quadruple precision used to calculate the results 

show in Figure 5.8 has a precision of 33 decimal digits, and requires 16 bytes per 

number. More importantly, although double precision floating point calculations are 

implemented in hardware on most modern computer platforms, quadruple precision 

floating point hardware is far less common. As a consequence, these types of calcula­

tions must then be done in software, resulting in extremely long run times. For example, 

the results of Figure 5.8 required some 233 seconds computation time compared to just 
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Figure 5.8: Diagram showing the values obtained for the empty system probability vector 

using quadruple precision LU decomposition on the queueing problem considered in 

Figure 5.1. The actual probabilities (obtained from the matrix iterative solution method) 

are also shown. 

3 seconds for the double precision solution. 

Singular Value Decomposition 

One common method for dealing with ill-conditioned problems is to perform the singu­

lar valued decomposition (SVD) of the matrix rather than the LU decomposition. This 

method obtains the singular values of the matrix, along with sets of orthogonal vectors 

describing its range and null space. The explicit knowledge of the singular values allows 

us to exclude from the calculations those components which either belong in the null 

space, or are numerically close to this. A more complete description of the properties 

of the SVD, and in particular an implementation of the SVD algorithm can be found 

in [109]. 

Figure 5.9 shows the empty system vector obtained using double precision singular 

value decomposition for the same queueing problem considered previously in Figure 

5.7. In this case, those vector components having singular values smaller than 10-14 

times the largest singular value were excluded from the calculations. As can be seen, 

the results are an improvement on the double precision LU decomposition, but there 

is still a significant deviation from the actual solution. 
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Figure 5.9: Diagram showing the values obtained for the empty system probability vector 

using double precision LU decomposition on the queueing problem of Figure 5. 7. The 

actual probabilities (obtained from the matrix iterative solution method} are also shown. 

Although the SVD process is supposed to provide a least squares approximation to 

the correct solution (in the sense that its residual is minimised) it does not appear 

to provide particularly accurate solutions for the queueing systems under study. The 

reason for this poor showing in the method most recognised for solving ill-conditioned 

problems is probably due to the high precision required to arrive at the SVD form of 

the matrix in the first place. We have not explored this possibility any further, but it 

is a likely explanation. 

A further disadvantage to using the SVD approach over that of LU decomposition is 

that the SVD is considerably slower, with run times roughly proportional to m 4 where 

m is the dimension of the matrix. Thus, where possible it is desirable to perform 

the LU decomposition rather than the SVD. From our study of those factors that 

might signal a possibly poor solution, it was found that the dominant factor was the 

magnitude of the non-zero poles. The smaller these became, the more difficulty was 

encountered in obtaining an accurate solution. This observation led to the following 

adaptive approximation method which, as we will see, has a very high accuracy. 
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An Adaptive Solution Approach 

We consider here an solution method which is based on successively removing the proba­

bilities in those cycles having the smallest pole magnitudes until the LU decomposition 

returns positive probabilities only. We refer to this method as an adaptive solution 

since it repeats the process only as many times as necessary for each problem. 

Once all the poles of the queue equation are located, the maximum magnitude of the 

C - b poles in each of the 2N cycles is identified. If the LU decomposition returns 

negative entries in the reduced state empty system vector b0 then the cycle having 

the smallest of these maximum magnitudes is removed from the analysis. This simply 

means that all the probabilities in that cycle are assumed to be zero, so that the state 

space of the b0 vector is reduced by C - b elements. This process is repeated as many 

times as necessary until either all the entries in b0 are positive, or there is only one 

cycle left (which will be the first cycle since it contains one pole with magnitude 1 -

the largest of all the poles in the unit circle). We have never observed the situation with 

only the first cycle remaining to result in negative probabilities, although this might 

possibly occur for very large C. 

Figure 5.10 shows the results for the same problem as discussed previously, but using 

this -adaptiv~ method. The process had to remove 7 of the original 16 cycles in order 

to obtain the solution. This is clearer in Figure 5.11, which shows the empty system 

probabilities using a logarithmic scale. Most of the probabilities in the adaptive solution 

agree fairly closely with the exact solution, with the exception of cycle 5 (counting 

from 0 at the left). Some deviation is to be expected simply because the sum of all 

the probabilities is still 1 - ,A, even though we have removed some of the cycles in the 

adaptive case. We expect the magnitude of this deviation to increase as the number of 

cycles removed increases. 

This adaptive process can take a considerable amount of time if the initial number 

of unknowns is large, since an LU decomposition is performed at each stage. It is 

an advantage therefore to initially remove those cycles that will probably be removed 

during the adaptive process anyway. Our results appear to indicate that cycles with 

the largest pole magnitudes less than 10-s are good candidates for this initial removal 

when using double precision. 

Another adaptive process that was considered involved removing (as required) those 

cycles with the smallest probabilities - that is, those probabilities that were already 

very close to zero can be made equal to zero with little consequence to the accuracy. The 

difficulty with this approach appears to be in deciding which cycles have the smallest 

probabilities, since we are trying to obtain the probability vector. In this case, Xiong 
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Figure 5.10: Diagram showing the values obtained for the empty system probability 

vector using the adaptive approximation technique on the queueing problem of Figure 

5. 7. The actual probabilities (obtained from the iterative solution method) are also 

shown. 
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Figure 5.11: The results of figure 5.10 shown using a logarithmic scale. The zero valued 

probabilities are the reason for the vertical lines in the plot, as the logarithm result 

becomes -oo at these points. 
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Figure 5.12: Comparison between the exact empty system probability vector and the 

approximation of Xiong and Bruneel {discussed in more detail in section 3.5). 

and Bruneel's approximation [141 J to the empty system probability vector (discussed in 

more detail in section 3.5) can be used to estimate these probabilities quite accurately. 

Figure 5.12 shows the actual probabilities and the approximation obtained from Xiong 

and Bruneel's work, again using only the non-zero probabilities and a logarithmic scale. 

Obviously Xiong and Bruneel's approximation is quite suitable for picking the smallest 

probabilities. However, in investigating the performance of the adaptive solution based 

on the smallest probabilities we observed that this method nearly always removed a 

superset of those cycles that the adaptive process based on the pole magnitudes had 

removed. That is, more cycles were removed than were usually necessary (compared to 

the pole based method) and hence the solution accuracy was also lower. In addition, it 

was not possible to see a pattern in those cycles that would allow likely candidates to 

be removed before the first LU decomposition was performed in order to speed up run 

times. The maximum pole magnitude based adaptive solution therefore appears to be 

superior to the probability based one, and will be used here. 

So far we have concerned our discussion to consideration of the accuracy of the solutions 

for the empty system probability vector. Since our ultimate aim is to determine the 

average and variance of the queue population for the queueing system, in the following 

section we will look at the accuracy of the pole based adaptive approximation. Before 

proceeding to this discussion however, it is interesting to compare the population results 
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obtained from the various methods for obtaining b discussed above. These results are 

presented in Table 5.2, along with the exact solution obtained from numeric iterative 

analysis1 . Although the results are all quite close in this particular example, this is not 

usually the case (with the exception of the two adaptive methods). 

Method Average Variance 

Double Precision L UD 0.3644958 0.5111699 

Quadruple Precision L UD 0.4068025 0.5668265 

Double Precision SVD 0.3988731 0.5443205 

Pole Based Adaptive 0.4070765 0.5676050 

Probability Based Adaptive 0.4065476 0.5672422 

Iterative Solution (Exact) 0.4070751 0.5675998 

Table 5.2: Comparison of the population average and variance results for the example 

queueing problem considered in Figures 5. 7 to 5.11. 

Other Possible Solution Methods 

Neither the LU nor singular value decomposition methods discussed previously have the 

inherent constraint that the probabilities of the result be non-negative. Adding this con­

straint to the linear equations would bring it into the field of linear programming [122]. 

Linear programming solution methods basically operate by firstly identifying those 

variables spanning the range of M, and then minimising an objective function (il'sing 

steepest descent methods or similar) that describes the desired solution. When the 

system has an equal number of equations and unknowns, but is merely ill-conditioned, 

identification of the range of M (using singular value decomposition for example) can 

be quite computationally intensive. This is in addition to the time required to then find 

the optimal solution, which can be considerable for problems with large state spaces. 

For this reason, and given the high accuracy of the adaptive solution, we will not pursue 

this approach further. 

5.2.3 Investigating the Adaptive Solution Performance 

In this section we look at the accuracy and speed of the adaptive solution for finding 

the empty system probability vector. We have chosen to investigate three different 

cycle periods ( C = 8, C = 12, and C = 16) for 2 and 4 sources, using b values for each 

C that correspond to 25%, 50%, and 753 of the server capacity (a total of 18 different 

system combinations). 

1We refer to this solut10n as exact since rt was constructed using a convergence error of less than 

10-12
, with a loss probability smaller than this 
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For each combination, a total of 1000 queueing problems were generated using random 

selection of the parameters of the geom-geom IBP sources. The average arrival rates 

Ai from the IBP sources are chosen under the constraints that the overall load is less 

than 0.9 and the minimum total load contribution of the IBP sources is 0.05. The peak 

arrival rate Bi when each source i is active is chosen from the range (.Ai, 1] while the 

autocorrelation parameters are restricted to the range 0 ::; /i < 0.99. These 18, OOO 

randomly generated queueing problems are used for all the results in this section. 

Frequency of Errors 

Tables 5.3 and 5.4 show the number of inaccurate solutions observed per 1000 randomly 

generated queueing problems for various combinations of b and C, for two and four IBP 

sources respectively. The cause of the inaccuracy in the solution is identified in these 

tables as either a pole placement error (discussed in section 5.2.1) or a numeric precision 

error (negative entries in the double precision LU decomposition). 

b c Pole Placement Numeric Precision 

2 8 4 0 

4 8 1 1 

6 8 0 0 

3 12 6 1 

6 12 0 30 

9 12 0 91 

4 16 6 3 

8 16 1 159 

12 16 0 327 

Table 5.3: Numbers of inaccurate solutions per 1000 queueing problems for 2 geom-geom 

IBP sources and a single cyclic source with the indicated parameters. Pole placement 

inaccuracies refer to those in which the exact pole could not be found while numeric 

precision inaccuracies indicate those problems generating negative probabilities in the 

(double precision) LU decomposition. 

Pole placement errors are fortunately fairly rare, but appear to be more common when 

there are fewer sources, smaller cycle periods, and/ or a smaller component of the load 

contributed by the cyclic source. For the purposes of these results, a pole placement 

error was deemed to have occurred if the error in the pole equation (5.20) was greater 

than 10-10 for the best z; obtained. Numeric precision errors (which indicate that 

negative probabilities were obtained for the initial LU decomposition) are obviously a 

frequent problem however, increasing as both the number of sources and the period of 
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b c Pole Placement Numeric Precision 

2 8 0 0 

4 8 0 16 

6 8 0 11 

3 12 4 7 

6 12 1 337 

9 12 0 517 

4 16 1 86 

8 16 1 704 

12 16 0 879 

Table 5.4: Numbers of inaccurate solutions per 1000 queueing problems for 4 geom-geom 

IBP sources and a single cyclic source with the indicated parameters. 

the cycle increase. Obviously, being able to overcome the limitations of double p~~cision 

calculations, as discussed in the previous section, is an important requirement. 

Error Solution Accuracy 

As suggested previously by the results of Table 5.2, the pole magnitude based adaptive 

solution method is very accurate. To put this claim in more concrete terms, Tables 5.5 

and 5.6 present the mean and standard deviation of the relative error2 in the adaptive 

results for 2 and 4 IBP sources respectively, obtained from the randomly generated 

queueing problems of Tables 5.3 and 5.4. The results are for inaccuracies in the solution 

due to numeric precision only - we will look at errors due to pole placement separately. 

The exact results used to measure the relative error were obtained from the iterative 

' solution method using a relative convergence error of 10-9 in the average population, 

and loss probabilities below 10-s in each case. 

Note that the adaptive solution method was implemented without any initial removal 

of cycles, so these error results represent this method's best accuracy performance. 

The error results are also limited to the first 100 inaccurate solutions in every case 

because of the extremely long run-times required to solve the queueing problems using 

the numeric iterative method. In addition, relative error statistics of less than 10-6 are 

considered to be zero, and are shown as this in the tables. 

In general terms its seems that despite the higher frequency of numeric precision prob­

lems for the 4 IBP source case, the adaptive solution method performs better for larger 

numbers of sources. This may be partly due to the fact that increasing N means there 

2We have used the same defimt10n for the relative error as discussed on page 66 for queueing systems 

subject to geom-geom IBP sources only 
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Population Average Population Variance 

b c Points Mean Deviation Mean Deviation 

2 8 4 0.02 0.07 -0.01 0.04 

4 8 2 0.03 0.04 -0.02 -0.02 

6 8 0 - - - -

3 12 1 0 - 0 -

6 12 30 0 7 x 10-5 0 4 x 10-5 

9 12 91 3.5 x 10-4 0.0033 2.3 x 10-4 0.0023 

4 16 3 0 0 0 0 

8 16 100 -4.5 x 10-5 0.0014 5.2 x 10-5 0.0010 

12 16 100 0.0017 0.0084 0.0012 0.0062 

Table 5.5: Statistics on the relative error observed for the adaptive solution method 

applied to those problems encountering numeric difficulties with one cyclic source and 

2 IBP sources. Note that, as indicated by the Points column, some of the results have 

very few data points from which to measure the statistics, so care must be taken in 

interpreting these errors. 

Population Average Population Variance 

b c Points Mean Deviation Mean Deviation 

2 8 0 - - - -

4 8 16 8 x 10-5 3 x 10-5 4 x 10-6 2 x 10-5 

6 8 11 0 0 0 0 

3 12 7 0 0 0 0 
I 

6 12 100 -1.4 x 10-5 3.6 x 10-4 5.6 x 10-6 1.2 x 10-4 

9 12 100 7.1x10-5 8.7 x 10-4 2 x 10-5 1.8 x 10-4 

4 16 86 -4.6 x 10-5 4.7 x 10-4 3 x 10-5 6 x 10-5 

8 16 100 4.4 x 10-5 7.1x10-4 2 x 10-5 2.9 x 10-4 

12 16 100 0.0015 0.0091 8 x 10-4 0.0056 

Table 5.6: Statistics on the relative error observed for the adaptive solution method. 

The results are as for Table 5.5, but for queueing problems involving 4 IBP sources, 

rather than two. 
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Two IBP Sources Four IBP Sources 

b c Mean Deviation Maximum Mean Deviation Maximum 

2 8 - - - - - -

4 8 1 - 1 2.2 1.4 5 
6 8 - - - 2.3 1.3 5 

3 12 1 - 1 1.9 0.7 3 
6 12 1.2 0.4 2 3.7 2.2 12 

9 12 1.4 0.5 2 4.5 2.7 12 

4 16 1.3 0.6 2 2.6 2.1 12 
8 16 1.3 0.5 3 5.3 2.9 12 

12 16 1.5 0.6 3 6.7 3.1 14 

Table 5. 7: Mean and standard deviation of the number of cycles removed by the adaptive 

solution approach for those problems having inaccuracies due to numeric precision. 

are more cycles available in total, and hence possibly more cycles remaining once) the 

adaptive method has found a positive solution for the empty system probability vector. 

In more quantitative terms, Table 5.7 shows the mean, standard deviation, and max­

imum for the number of cycles removed by the adaptive method for those randomly 

generated queueing problems suffering from numeric precision inaccuracies. 

Another trend in the adaptive precision method apparent from Tables 5.5 and 5.6 is 

that its accuracy decreases as b gets larger for fixed C. This may be due in part to the 

fact that more cycles are removed on average for these cases, implying a corresponding 

decrease in the solution accuracy. 

In contrast to this, it has been observed in some cases that removing one more cycle 

than is necessary to achieve a positive b vector can actually improve the accuracy of 

the population average and variance. An example of this was observed for b = 12, 

C = 16, and· N = 2. The adaptive method only needed to remove one cycle to achieve 

the positivity requirement, but the resulting average and variance solutions had relative 

errors of 4.5% and 2.9% respectively. Forcing the adaptive solution to remove a second 

cycle resulted in errors of only -0.2% and -0.09% respectively. Whether this type 

of behaviour is merely coincidental, or an indication that there is a, superior adaption 

criteria is an area requiring further research. 

Table 5.8 lists the mean relative errors in the average and variance of the queue pop­

ulation for those cases where the solution inaccuracy was due to difficulties in finding 

the correct pole location. These errors can be quite large, which is why they have been 

separated from the adaptive solution results, which would otherwise be distorted. Also, 

due to the very small number of pole placement errors actually observed, we have only 
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Two IBP Sources Four IBP Sources 

b c Points Average Variance Points Average Variance 

2 8 4 23 -13 0 - -

4 8 1 33 43 0 - -

6 8 0 - - 0 - -

3 12 6 1203 -1203 4 -0.23 0.43 

6 12 0 - - 1 303 -83 

9 12 0 - - 0 - -

4 16 6 0.13 -0.43 1 173 -43 

8 16 1 23 -23 1 0.53 0.83 

12 16 0 - - 0 - -

Table 5.8: Mean relative errors in the average and variance of the predicted queue 

population due to pole placement inaccuracies. The points column shows how rare 

these events are, since these are the number of occurrences in 1000 samples for each b 

and C. 

presented the mean relative errors in Table 5.8, but even these figures are only a guide 

to the actual errors caused by the incorrect pole locations. 

Solution Run-Times 

An important consideration in the evaluation of the performance of an analytic ap­

proach lies in establishing its execution speed. Table 5.9 presents the mean run times 

(per problem) for each of the 18 queueing system arrangements observed on an IBM 

RS6000/320H workstation. For comparison, the mean run times for the iterative solu­

tion approach are also included for those cases where there were at least 10 solutions 

generated using this method. 

As might be expected there is a decrease in the run times between the cases where the 

cyclic source load contribution increases from 253 to 503 because the number of states 

is decreasing. There is a large increase in the run times however as the cyclic source load 

increases to 753, which can be attributed to two factors. Firstly, although the number 

of states (and hence the number of pole positions that must be found) has decreased, 

it has become more difficult to find each of the poles. A more optimum choice in the 

parameters of the search algorithm would probably reduce this component considerably. 

The second factor is the increased proportion of adaptive solutions required, since an 

adaptive solution requires more time for the multiple LU decompositions. 

We have not considered more than 4 IBP sources in our discussion so far, primarily 

because of the large state space this incurs, and the subsequent difficulties in confirming 
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Two IBP Sources Four IBP Sources 

b c Adaptive Iterative Adaptive Iterative 

2 8 179 msec - 1060 msec -

4 8 145 msec - 875 msec 690 sec 

6 8 767 msec - 6800 msec 1100 sec 

3 12 251 msec - 1680 msec 810 sec 

6 12 195 msec 9.6 sec 1480 msec 1100 sec 

9 12 780 msec 47 sec 6770 msec 1200 sec 

4 16 337 msec - 3460 msec 450 sec 

8 16 255 msec 43 sec 3070 msec 1100 sec 

12 16 833 msec 41 sec 7810 msec 1400 sec 

Table 5.9: Run times on an IBM RS6000/320H for the adaptive probability generating 

function approach and the numeric iterative solution method used to obtain the exact 

results for comparison with the adaptive solutions. If less than 10 iterative solutions 

were used, the run times have been omitted (represented by a - in the table). 

the accuracy of the probability generating function analysis using iterative methods. 

As can be seen in Table 5.9, the iterative solutions require very long run times. Even 

restricting the investigation to at most 100 iterative problems per system configuration, 

the total time to obtain all the exact solutions used in this section amounted to some 

156 hours of CPU time. 

The trend in the run times of the adaptive solution method is difficult to estal:Hish 

without more results, but we can speculate on the solution behaviour as b, C, and 

N vary. In Chapter 3 we discussed how the run times for geom-geom IBP sources 

increases roughly as 8N for large N due to the requirements of the LU decomposition. 

Using the same reasoning, we would expect the LU decomposition part of the cyclic 

source problem to result in run times behaving approximately as (C - b) 3 8N for large 

N. The overall solution however probably requires multiple LU decompositions, as well 

as needing to find the 2N ( C - b) poles of the queue equation in the first place. Even 

if we only consider a single LU decomposition, we have the same problem for large 

Nor large C as was encountered in Chapter 3 - queueing problems of practical size 

have impractical computational requirements. As in that chapter, we need to consider 

approximation methods. 

5.3 Approximate Queue Population Solutions 

As we have mentioned above, there is a definite need for approximate solution methods 

that avoid the state explosion problem. In this section we will be discussing three 
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approximation methods. We will not be considering the more traditional methods 

such as the MMPP and geometric tail approximations, since these showed such poor 

performance in the studies of Chapter 3. 

Unlike the studies of Chapter 3 we have a limited number of exact results available due 

to the frequency of inaccurate solutions arising from the methods of section 5.2, and 

the long run times required by more exact solution methods. As a consequence we will 

limit ourselves to considerations of the performance of the approximate solutions for 

just two system configurations (b = 4 with C = 8 and b = 4 with C = 16) for two and 

four IBP sources. It is hoped that future research can extend the scope of this study. 

5.3.1 Modelling the Cyclic Process by a Random Process 

In the introduction to this chapter, we mentioned that the majority of work done in 

this area has been based around a framed analysis, where the state of the queue is 

observed only once per frame time. We might consider whether this solution approach 

provides a simplification to the complexity of the problem. Unfortunately the analysis 

is no less complicated, and suffers from a similar number of unknowns. Li's analysis 

in [79] illustrates this point quite clearly. 

In the work of Rosenberg and Le Bon [114] and Habibi et al. [41] however, the approach 

used was to obtain the remaining capacity in a cycle from the blocking probabilities of 

the periodic processes that made up the cyclic process, and to then use this capacity to 

obtain the queue performance for the remaining traffic. This suggests that a cyclic pro­

cess might possibly be adequately described by a Bernoulli process, with the queueing 

analysis then becoming equivalent to an IBP only system. 

Matching the parameters of a Bernoulli process to that of a cyclic process just requires 

>.0 = b/C, where >.o is now the average arrival rate from the Bernoulli source. Incorpo­

rating this process into the IBP queueing system analysis involves writing Bo = 1 and 

')'o = 0, and solving the resulting N + 1 IBP source system. A more efficient approach 

would be to incorporate the results of section 2.7, solving the N IBP source system 

and then adding in the Bern.oulli source as a marginal arrival process. 

We might also attempt to describe the cyclic process as an autocorrelated random 

process rather than just as a marginal arrival process. That is, we would like to find 

parameters Bo and 'Yo that would describe the cyclic process fairly well. From consid­

eration of the fact that we have a cyclic process that generates b consecutive arrivals 

every cycle, a natural choice for Bo is 1. How do we then choose the autocorrelation 

parameter 'Yo? In the MMPP approximation of section 3.4 we matched the single-sided 
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autocorrelation sums of the superposed IBP sources to that of the MMPP. The same 

reasoning for the cyclic process cannot be applied however, because it does not have 

a well defined autocorrelation sum (its autocorrelation function is periodic), and other 

methods must be used. 

One approach is to assume that the contribution of the cyclic process to the queueing 

performance can be wholly described by its effect on the marginal components of the 

IBP sources. That is, we look first at the population of the queue when all the IBP 

sources are marginal bi = 0), and then when all the IBP sources are marginal but the 

cyclic process is described by a geom-geom binary source. Since we have a closed form 

expression for the average queue population in this latter situation, 'Yo can be found 

quite easily once Lq for the cyclic and marginal arrivals is known. Thus we are reducing 

the complexity of the problem from that of finding 2N ( C - b) unknowns in the empty 

system probability vector to that of finding C - b unknowns in order to establish 'Yo, 

followed by 2N unknowns in solving the IBP system3 . 

A second possible improvement in this geom-geom binary model of the cyclic process 

would be to somehow include a measure of the autocorrelation of the IBP sources. 

One way to do this is to describe each geom-geom IBP source by a roughly equivalent 

geom-geom binary source. That is, we set each Oi equal to 1, and modify 'Yi so that 

the single-sided autocorrelation sums of the two processes are equal. If we denote by 

'Y: the autocorrelation parameter of the geom-geom binary equivalent then this gives 

(fo33) 

or 
I 'Yi (Oi -.Ai) 

"( = 
i 1 - Ai - 'Yi (1 - Oi) 

(5.34) 

Since geom-geom binary sources each generate a single arrival per time slot in their 

active states, there will still only be C - b unknowns in the analysis of the queue with 

one cyclic arrival and N geom-geom binary sources. 

As an example of the performance of these three approximations, we consider a queue 

fed by 4 identical IBP sources and a cyclic source with b = 4 and C = 16. The IBP 

sources each have Ai = 0.15, Oi = 0.6, and 'Yi = 'Y ('y is the independent variable of 

the analysis). Figures 5.13 and 5.14 show the queue population average and variance 

respectively for the exact method and for the Bernoulli and two geom-geom binary 

approximations as a function of 'Y / (1 - 'Y). Obviously the second geom-geom binary 

3 Although there are actually N + 1 sources in this queueing problem now, there are still only 2N 

unknowns because source 0 1s a geom-geom bmary with Bo = 1. That 1s, every state in which source 

0 is active has an empty system probability of zero, leaving only 2N states m which this probability 1s 

unknown. 
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approximation is the best alternative of the three - particularly as its computational 

requirements are basically identical to the first geom-geom binary method. 

While all three approximations overestimate the population variance in Figure 5.14, the 

overestimation is nearly constant in the second geom-geom binary approximation. This 

suggests a simple addition to improve the variance accuracy of this method by calcu­

lating the 'YO term for the first geom-geom binary approximation (which will involve an 

additional C - b unknowns in a cyclic and marginal arrivals analysis). The difference in 

the variance between the first geom-geom binary approximation when the IBP sources 

are marginal, and the actual cyclic process analysis gives an approximately constant 

difference to improve the second geom-geom binary approximation. In graphical terms 

we are calculating the difference between the two curves in Figure 5.14 at 'Y = 0, and 

subtracting this from the second geom-geom binary approximation at the desired 'Y 

value. We will refer to this as the third geom-geom binary approximation. 

An alternative approach again would be to extend the geom-geom binary model to a 

phase-geom binary model, and hence be able to more accurately describe the variance 

by incorporating knowledge of the third moment of the active period into the calcula­

tions. Although the number of unknowns in solving for the empty system probability 

vector does not increase when incorporating this type of model, some of the attendant 

mathematics needs modification. We will not go into this any further here, but note 

that this approach is worth future consideration. 

Note that, although we have not explicitly mentioned it, the analysis of the IBP queue­

ing system could easily be performed using a second or third order approximation (see 

section 3.6) rather than directly trying to solve for the the 2N unknowns of the exact 

system. This approach becomes particularly attractive considering that the expected 

error of even the second order approximation is a good deal smaller than the overall 

approximation error, as we shall see. 

Comparative Accuracy Study 

As mentioned at the beginning of this section, we are considering the accuracy of 

the four approximations only for 4 system configurations for which exact population 

results were obtained in section 5.2.3. Tables 5.10 and 5.11 present the mean absolute 

relative error for the population average and variance respectively for each of the four 

approximations. The relative error is measured as described in section 3.2 and we use 

its absolute value4 in this comparison to avoid the problem where a wide spread of 

4The relative error used in this thesis is defined to be the difference between the approximation and 

the exact value, expressed as a proportion of the exact value The sign of this error measure is positive 

if the approximation is greater than the exact value. 
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Figure 5.13: Average queue population for a queue fed by a cyclic arrival process with 

b = 4 and C = 16 and four identical IBP sources with Ai = 0.15 and (Ji = 0.6. The 

'Y / (1- 'Y) independent variable is from the Ii = / of the IBP sources. Note that the first 

geom-geom binary approximation is calculated by treating the IBP sources as marginals, 

while the second approximation is calculated by treating the IBP sources as geom-geom 

binary sources (with suitably modified autocorrelation parameters). 
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Figure 5.14: Queue population variance for the queueing problem of Figure 5.13. 
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b c N Bernoulli First Second Third 

4 8 2 13.6% 5.76% 1.52% 1.52% 

4 16 2 15.6% 5.78% 1.96% 1.96% 

4 8 4 11.4% 5.26% 1.25% 1.25% 

4 16 4 12.1% 5.29% 1.43% 1.43% 

Table 5.10: Mean of the absolute value of the relative error in the average queue popula­

tion for each of the four approximation methods proposed in this section. Note that the 

second and third geom-geom binary approximations are identical in terms of the average 

queue population. Each row of the table represents observations over 1000 randomly 

generated queueing problems with A < 0.9 and 0 :::; '"Yi < 0.99. 

b c N Bernoulli First Second Third 

4 8 2 38.6% 22.2% 9.75% 2.82% 

4 16 2 23.4% 29.6% 13.8% 4.32% 

4 8 4 29.2% 18.1% 8.29% 3.74% 

4 16 4 16.1% 23.6% 11.3% 5.15% 

Table 5.11: Mean absolute relative error in the queue population variance for each of 

the four approximation methods. 

errors might misleadingly result in a mean error very close to zero. 

We present a more comprehensive set of error statistics for the third approximation 

method, which is the best of these four proposed methods. Tables 5.12 and 5.13 present 

the mean, standard deviation, first and 99th percentiles for the relative error (not the 

absolute relative error) in the average and variance respectively of the queue population 

obtained from this approximation method. 

The performance of this geom-geom binary approximation is not particularly good, 

although in some situations it may be adequate. Of real concern is the fact that the 

b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 -1.49% 2.19% -9.86% 0.19% 

4 16 2 -1.87% 3.71% -18.7% 1.69% 

4 8 4 -1.21% 1.40% -6.90% 0.68% 

4 16 4 -1.32% 1.99% -9.91% 1.23% 

Table 5.12: Statistics on the relative error in the average queue population for the 

third geom-geom binary approximation method (which is identical to the second for the 

average queue population}. 
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b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 2.083 3.763 -8.463 16.43 

4 16 2 2.443 6.643 -23.83 21.83 

4 8 4 3.593 3.153 -1.673 15.33 

4 16 4 4.773 5.123 -8.303 23.73 

Table 5.13: Statistics on the relative error in the queue population variance for the 

third geom-geom binary approximation method. This method tries to accomodate the 

inaccuracies in the variance of the two-state approximation for the cyclic process by 

using a linear comparison with the marginal arrivals problem. 

accuracy of the approximation appears to decrease both with increasing numbers of 

IBP sources and increasing cycle length. This behaviour is particularly undesirable for 

an approximation aimed at describing the behaviour of large queueing problems. 

5.3.2 Using the Adaptive Solution Approach 

The adaptive solution approach presented in section 5.2.2 reduces the number of cycles 

in the LU decomposition in order to maintain only positive entries in the resulting 

empty system probability vector. An extension of this idea would be to approximate the 

solution by using only the first cycle of probabilities, reducing the number of unknowns 

to C - b. This method also represents the worst case situation in the adaptive solution 

method, and is therefore of interest in this regard. 

We note that this method will provide exact results when all of the sources are either 

marginal bi = 0) or geom-geom binary (Oi = 1) since in both of these cases only a 

single cycle of C - b unknowns is required to establish the empty system probability 

vector b. Generally of course these conditions will not be satisfied, and this method 

will provide only approximate results. 

As a preliminary investigation we consider an example problem with b = 4 and C = 16 

using four identical IBP sources having Ai = 0.15, Bi = 0.3 and (}i = 0.7, and 'Yi = 'Y 

which is the independent variable in the study. The results are shown in Figures 5.15 

and 5.16 for the average and variance of the queue population respectively. Surprisingly, 

although the average queue population is poorly described by this approximation, the 

variance is very close. Unfortunately, as we shall see in the following more rigorous 

study, this is not usually the case. 

Tables 5.14 and 5.15 present the statistics for the relative error in the approximation for 

the population average and variance respectively observed for a number of randomly 



148 

~ ·~ 5.0 

Ul 

~ 
z 4.0 

~ 
~ 3.0 
0 
i:i... 

~ g 2.0 

1.0 
0.0 

Population Analysis of Cyclic Service Queues 

-- Exact result for 0=0 3 
········ Smgle cycle approx1mat10n for 0=0 3 
- - - Exact result for 0=0 7 
- - Smgle cycle approximation for 0=0 7 

0.5 1.0 
y/(1-y) 

1.5 2.0 2.5 

Figure 5.15: Average queue population for a queue fed by a cyclic arrival process with 

b = 4 and C = 16 and four identical IBP sources with >..2 = 0.15 and ()2 = 0.3 and 

()2 = 0. 7. The / / ( 1 - /) independent variable is from the /z = / of the IBP sources. 

60.0 

Ul 50.0 ,... u z 
<i:: 
~ 
<i:: 
> 

40.0 ~ 

z 
0 
~ 30.0 <i:: 
...-4 
~ 
i:i... 
0 20.0 ~ i:i... 

~ 
~ 10.0 ,... Cl 

0.0 
0.0 

-- Exact result for 0=0 3 /;/ 
........ Smgle cycle approximation for 0=0.3 /}' /,/ 
- - - Exact result for 0=0.7 /,/ 
- - Single cycle approximauon for 0=0.7 /,f ,,,, 

/ 
/ 

/ 

I 

0.5 

/ 
/ 

/ 

1.0 

/ 
/ 

,..? 
.y' 

y/(1-y) 

/f' 
.y 

I 

1.5 

/f' ,,,, 

/}' ,,,, 

2.0 

/;/ 
/,/ 

2.5 

Figure 5.16: Queue population variance for the queueing problem of Figure 5.15. 



5.3 Approximate Queue Population Solutions 149 

b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 -33.63 1203 -420% -0.263 

4 16 2 -80.3% 260% -1000% -0.54% 

4 8 4 -29.7% 88% -250% -0.39% 

4 16 4 -66.8% 180% -740% -0.61% 

Table 5.14: Statistics on the relative error in the average queue population for the 

adaptive solution approximation. Each row of the table represents observations for 

1000 randomly generated queueing problems with ,\ < 0.9 and 0:::; /i < 0.99. 

b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 227% 4700% -15% 3000% 

4 16 2 906% 13000% -11% 15000% 

4 8 4 154% 2300% -13% 1800% 

4 16 4 591% 7000% -9.9% 8600% 

Table 5.15: Statistics on the relative error in the queue population variance for the 

adaptive solution approximation. 

generated queueing problems. As before, the results are restricted to just 4 system 

configurations. 

The accuracy of this approximation is in general very poor, despite the results of Figure 

5.16. In particular negative values for the average queue population, and variances 

many times that of the actual variance appear to be fairly common. The performance 

of the approximation appears to improve with the number of sources, and to decrease 

with increasing cycle period. However, given the magnitudes of the errors, it is doubtful 

that they could be reduced to acceptable levels for practical sized problems. It is- not 

known what other ranges of parameters might allow this approximation to perform 

well. 

Note that the mean and standard deviation of the relative error are calculated here 

on the entire data set. An alternative would have been to exclude the results lying 

outside of the lst and 99th percentiles (the outliers) so as to describe the statistics of 

the majority of the relative errors. Although this would provide a more a favourable 

assessment the approximation, we have not used this option simply because the entire 

data set consists of valid results, and in addition, we are interested in the worst case 

performance of the adaptive approximation. In this regard, the worst case performance 

is quite poor indeed, although the conditions resulting in this situation are infrequent 

(for 4 IBP sources at least - see section 5.2.3). 
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5.3.3 The kth Order Approximation Method 

In section 3.6 of Chapter 3 we presented a powerful new approximation technique for 

studying queueing systems involving IBP sources. This method was based around the 

idea of describing the overall behaviour of the queue by the sum of contributions from 

sets of at most k autocorrelated IBP sources - a process described as a kth order 

approximation. In section 3.6.4, a modification to this technique, called a 'kth order 

approximation with s held' was also presented. In the following we will make use of 

both of these methods to approximate a queueing system subject to arrivals from both 

IBP sources and a cyclic source. 

Applying the kth Order Approximation 

Applying the kth order approximation to the cyclic arrivals problem basically follows 

the same approach as for the IBP only sources case. We assume the system has N + 1 

sources, and treat the cyclic source as a Bernoulli source in any combination of s 

autocorrelated sources (s = 1, ... , k) which do not include the cyclic source. The con­

tributions from these combinations can therefore be determined using only the IBP 

source analysis. For those combinations of s sources which do include the cyclic source 

however, we use the exact cyclic arrivals analysis developed in section 5.1. The pa­

rameters for the analysis will involve s - 1 autocorrelated IBP sources, N - s + 1 

marginal sources, and one cyclic source with parameters b and C, requiring the solu­

tion of 2s-l (C - b) unknowns. The results of this analysis are included in the overall 

kth order approximation as with any other combination. 

Note that for a kth order approximation, there will be v~Tl) cyclic source solutions 

involving the cyclic source and (s - 1) IBP sources for each s = 1, ... , k. 

Holding the Cyclic Source 

In this alternative, the cyclic source is included in every calculation. That is, every 

combination of s sources includes the cyclic source. Otherwise the procedure is the 

same as for the straight kth order approximation. In fact this approach requires exactly 

the same number of cyclic source solutions as the kth order approximation, but does 

not have the additional contributions from combinations of IBP sources only. 

Comparative Accuracy Stl.~dy 

We will look here at the population accuracies obtained from four approximations -

lst order, 2nd order, 2nd order with the cyclic source held, and 3rd order with the 
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b c N lst 2nd 2nd, 1 held 3rd, 1 held 

4 8 2 5.713 0.143 0.333 -

4 16 2 3.873 0.253 0.793 -

4 8 4 5.093 0.143 0.463 0.023 

4 16 4 3.293 0.353 1.243 0.053 

Table 5.16: Mean of the absolute value of the relative error in the average queue popula­

tion for each of the four approximation methods. Each row of the table represents obser­

vations for 1000 randomly generated queueing problems with A < 0.9 and 0 :S /i < 0.99. 

b c N lst 2nd 2nd, 1 held 3rd, 1 held 

4 8 2 16.23 0.143 3.523 -

4 16 2 7.683 0.193 4.523 -

4 8 4 12.13 0.153 7.053 0.013 

4 16 4 7.253 0.273 9.013 0.043 

Table 5.17: Mean absolute relative error in the queue population variance for each of 

the four approximation methods. 

cyclic source held. Tables 5.16 and 5.17 show the mean values of the absolute relative 

error in the four approximations for the four system configurations. Note that the third 

order approximation with one held source will be exact for the system configurations 

involving two IBP sources, and this is indicated in the tabulated results by a '-'., ;;, 

As expected from the results in section 3.6.4 for IBP sources, the four approximations 

can be ranked in terms of increasing accuracy (or decreasing error magnitude) as lst 

order, 2nd order with the cyclic source held, 2nd order, and 3rd order with the cyclic 

source held. This is also illustrated by considering that while both of the 2nd order 

approximations involve (N + 1) solutions having cyclic arrivals, the straight 2nd order 

approximation additionally includes contributions from combinations of IBP sources 

only. For a queueing system subject to arrivals from one cyclic source and N IBP 

sources, this method requires 

• N solutions involving the cyclic source, one IBP source, and N - 1 Bernoulli 

sources 

• One solution involving the cyclic source and N Bernoulli sources 

• N solutions involving one IBP source and N Bernoulli sources, and 

• N (N - 1) /2 solutions involving two IBP sources and (N - 1) Bernoulli sources 
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b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 -0.13% 0.94% -1.11% 0.08% 

4 16 2 -0.23% 0.42% -1.90% 0.13% 

4 8 4 -0.13% 0.21% -0.90% 0.09% 

4 16 4 -0.35% 0.37% -1.58% 0.08% 

Table 5.18: Statistics on the relative error in the average queue population for the 2nd 

order approximation method. 

b c N Mean Deviation lst Percentile 99th Percentile 

4 8 2 -0.03% 0.85% -0.48% 1.73% 

4 16 2 0.15% 0.44% -0.36% 2.08% 

4 8 4 -0.10% 0.23% -0.62% 0.75% 

4 16 4 0.15% 0.39% -0.34% 1.74% 

Table 5.19: Statistics on the relative error in the queue population variance for the 2nd 

order approximation method. 

Tables 5.18 and 5.19 present the mean, standard deviation, and the lst and 99th per­

centiles for the relative error in the average and variance respectively of the queue 

population obtained from the straight 2nd order approximation method. We have sin­

gled out this particular approximation basically because it provides fairly high accuracy 

for relatively low computational requirements. Few practical applications would require 

the additional accuracy of the 3rd order approximation, while the error magnitudes for 

the first order approximation are probably a little high. 

5.3.4 Approximations Summary 

Of the three approximation methods described in this section, only the kth order ap­

proximation first proposed in Chapter 3 for queueing problems involving IBP sources 

only was able to consistently achieve high accuracies over the range of randomly gen­

erated problems that have been used throughout this chapter. 

The first approximation method examined, which attempted to describe the cyclic 

source by a geom-geom binary process was able to achieve mean errors of a few percent 

of so, but with a considerable spread around this. Further investigation with more 

extensive sets of accurate results may allow the useful range of this approximation to 

be identified. In addition, there is the possibility for using a phase-geom binary model 

for the cyclic source to improve the accuracy of the variance approximation. 

Investigations into an approximation using a single cycle in the adaptive solution 
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method discussed in section 5.2.2 of this chapter resulted in very poor error perfor­

mance. Although it is a simple matter to disregard this approach as an approximation 

option, the implications for the range of errors that might be encountered by the adap­

tive solution method are not so easily ignored. Fortunately these types of errors in the 

adaptive solution are rare, and would probably be even more so if the recommended 

second order approximation is used. 

5.4 Summary 

The subject of this chapter has been the analysis of queues having arrivals from both a 

single cyclic source and from a heterogeneous mix of IBP sources. To be exact, in this 

chapter we have applied the probability generating function theory of Chapter 2 to the 

analysis of queues subject to both arrivals from IBP sources and to cyclic service by 

making use of Corollary 2.3. This corollary indicates that the average and varian1:e of 

the population of a queue subject to cyclic (or periodic) service are identical that'of an 

uninterrupted service queue subject to both the original queue's arrival process and an 

additional cyclic process having the complementary behaviour to the service process. 

The difficulty with implementing the developed theory was found to be in calculating 

the empty system probabilities. Even for relatively small queueing problems numeric 

difficulties were encountered, both in terms of being able to correctly identify the poles 

of the queue equation, and in reducing the resulting system of linear equations. fo:brder 

to overcome this problem a simple adaptive solution technique was presented arid its 

accuracy investigated for a small set of system configurations. Results on the accuracy 

of this solution method are encouraging, although there appears to be room for further 

improvement in the adaption process. 

As with most of these types of techniques, the computational complexity of the solution 

process is geometric in the number of IBP sources, and roughly linear in the length of 

the cycle period. As a means to overcoming this problem, three approximation tech­

niques were investigated. Although somewhat limited by a fairly small set of accurate 

solutions with which to compare the approximations, it was found that the kth order 

approximation technique of Chapter 3 provided the best error performance. In partic­

ular the 2nd order approximation appears to be the best option in terms of accuracy 

and computational complexity. 



Chapter 6 

Finite Buffer Approximations 

and Queueing Delays 

In the previous chapters we have discussed methods for obtaining the average and 

variance of the queue population for several queueing systems. The analysis in each 

case has been based on the assumption that the buffers involved have infinite capacity, 

which is of course impractical in a real world environment. In particular, the main 

concern for loss sensitive traffics is the performance of finite buffer queueing systems in 

regard to overflow behaviour. In the context of connection admission, it is important 

to be able to accurately predict the loss behaviour of a proposed traffic arrangement. 

Another practical concern is that although queue population statistics are measures 

of network utilisation, it is the queueing delays that directly impact the performance 

seen by the various traffics using the network. We discuss some of the issues relating 

to obtaining queueing delays from knowledge of the queue population in sections 6.3 

and 6.4. 

We begin this chapter with a discussion of a simple approximation for the population 

distribution of a queue, and show how this may be used to obtain estimates for the 

average loss probability of a single buffer (uninterrupted service) queueing system. We 

will also briefly look at the requirements for extending this to dual buffer (prioritised) 

systems before moving onto a discussion of delay related issues. 

155 
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6.1 The Geometric Tail Approximation 

In Chapter 3 a geometric approximation (section 3.3) to the tail probabilities of a 

queueing system fed by IBP sources was used to provide approximations for the queue 

population statistics. This geometric tail property applies to a wide range of queueing 

systems, and in particular can be used both to estimate loss probabilities, and to 

estimate quantities such as the 95th or 99th percentiles of the delay. 

Queue population and delay distributions are often described by probability density 

functions for their convenience of use. One useful alternative is the complementary 

cumulative distribution function, which describes the probability that an observed ran­

dom variable is greater than some desired value - the so called tail distribution. We 

will discuss only the tail distribution of the queue population here, although the rea­

soning applies equally well to the queueing delay in uninterrupted service systems (see 

section 6.3). 

Let qn denote the stationary probability that the population of the queue is n, and let 

tn denote the stationary probability that the queue population is strictly greater than 

n, so that 
oo n 

tn = :L qi = 1 - :L qi (6.1) 
i=n+l i=O 

Desmet et al. [22] showed that any integer-valued and non-negative random variable 

having a rational probability generating function has a tail distribution that can be ap­

proximated by a geometric distribution (the distribution is asymptotically geometric). 

That is, provided it is possible to show that the probability generating function q(z) of 

qn can be described by a rational function, tn can be approximated by 

(6.2) 

for some 'ljJ and </> for large n. This approximation is well known in the literature [1, 66, 

96, 120, 121, 138, 141, 142] and is often referred to as the geometric tail approximation. 

The 'ljJ and </> parameters are referred to as the geometric scaling factor and geometric 

coefficient. 

It is straightforward to show that a queueing system subject to arrivals from a discrete­

time Markov modulated process (or D-BMAP) satisfies the criteria of Desmet et al. by 

considering the form of the queue equation. From Chapter 2 we have q(z) = X(z)e or 

q(z) = (z - 1) b (zl - AP(z))-1 e (6.3) 

The above matrix inverse can be written as 

(zl - AP(z))-
1 = Jzl _ ~P(z)i x Adj (zl - AP(z)) (6.4) 
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where the determinant lzl - AP(z)I and each of the elements of the adjoint matrix are 

polynomials in z, since each element of the AP(z) matrix is either polynomial in z (for 

finite probability distributions) or can be expressed to arbitrary precision as such (for 

infinite probability distributions such as the Poisson process). Then, since b is a row 

vector of constants, q(z) must also be a rational function of polynomials in z, which is 

what we wished to establish. 

Exact Analysis for 'If; and </> 

The accuracy of the geometric tail approximation increases as n increases, due to the 

dominance of a single pole in the expression for q(z) having the smallest magnitude, as 

discussed in [22) and [1). As it turns out, this pole is given by the single positive real 

solution to the equation z - o(z) = 0 lying outside the unit circle [120, 141, 142), where 

o(z) is the Perron-Frobenius eigenvalue of the probability generating transition matrix 

of the combined arrival process. The value of <P is given simply by the reciprocal oLthis 

pole. In other words, <P may be obtained from the solution of the equation 

(6.5) 

using numeric methods on <PE (0, 1), such as the bisection or Newton-Raphson meth­

ods. 

Unfortunately there is no simple method to obtain 'If; without solving for the entire 

empty system probability vector, and approximate solutions are usually used (as,,,:was 

discussed in Chapter 3). Note that Xiong and Bruneel present the basics for-ahe 

calculation of 'If; from the system probability vector in [141), but actually utilise an 

approximation for b instead. We will look again at the accuracy of this approximation 

in the context of loss probabilities later. 

Approximations for 'If; and </> 

One alternative to obtaining the exact values for 'If; and </> is to use an approximation 

that is based on knowing the infinite buffer queue population average and variance, 

or approximate values for these quantities. For example, in Chapter 3 we proposed a 

new approximation for Lq and Var [Lq] for queues subject to arrivals from IBP sources. 

This new method avoids the major stumbling block of calculating the empty system 

probability vector. Then in Chapter 5 we showed that this approximation also applies 

when a cyclic source is mixed with the IBP sources. In addition, Chapter 4 presented 

closed form solutions for the case when each IBP source i has Bi = l. 

For this approximation for 'If; and <P we assume that the tail distribution is quite ade­

quately described by equation (6.2), and an approximation for the probability density 
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distribution of the queue population can then obtained as 

for n = 0 

otherwise 
(6.6) 

The corresponding approximations for the average and variance of the population are 

given respectively by 
- '1f; 
Lq = 1-ef> (6.7) 

and 
Var [L J = '1f; (l + ef>) - V;

2 
. q (1 - ef>)2 (6.8) 

under the assumption that the buffer is infinite. More usefully, equations (6.7) and (6.8) 

can then be rearranged to provide estimations for '1f; and if> from the known average and 

variance as 
2L2 

'1f; = q 
Var [Lq] + L~ + Lq 

(6.9) 

and 
Var [Lq] + L~ - Lq ef>=---,,------,,-----7---
Var [Lq] + L~ + Lq 

(6.10) 

The accuracy of this estimation is dependent basically on the actual value of if>. When 

this quantity is close to one, both Lq and Var [Lq] are dominated by the probabilities in 

the tail of the queue (qn for large n). ''.However, when if> is small, the main contributions 

to the queue population moments are from qn for small n - which is where the geo­

metric tail property does not apply. One way to overcome this problem is to calculate 

the exact value of if> (in general, not a significant computational problem) and combine 

this with the known average and variance using 

(6.11) 

This approach attempts to bypass as many of the early probabilities as possible by 

making use of 
00 

Var [Lq] + L~ - Lq = L n (n - 1) qn (6.12) 
n=2 

Obviously, if higher moments of the queue population are available, more of these 

early probabilities can be excluded. Conversely, if only the average queue population 

is known, then equation (6.7) can be rearranged to give '1f; from Lq and ef>, although the 

accuracy of this result will be poorer. 

6.2 Estimating Loss ,Probabilities 

Probably the most important application of the geometric tail approximation is in 

calculating buffer overflow probabilities. Buffer overflow in a finite capacity queueing 
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system occurs when incoming arrivals encounter a full buffer (no remaining storage 

capacity), resulting in the excess arrivals being discarded. Although there are other 

reasons for losses in finite buffer systems (such as in prioritised systems where previously 

queued arrivals may be pushed out by newer arrivals1) buffer overflow losses are implied 

whenever the term 'loss' is used here in an unqualified manner. 

Like any stochastic process, buffer overflows may be described or measured in many 

ways. The most basic measure is the stationary average probability that an arrival to 

the queue will be lost, denoted here by eK where the K subscript denotes the capacity 

of the buffer in terms of waiting cells - that is, not including the cell that might 

currently be receiving service. 

In a real queueing system, losses are not evenly distributed over time, but tend to be 

clumped due to autocorrelations in the arrival process and the fact that a full buffer 

empties slowly. Thus another useful measure of the overflow process is the number of 

consecutive losses [51, 75, 130] and/or the time between these 'bursts' of lost cellsJ37]. 

In the following we will look at how the geometric tail approximation can be applied 

to estimating the average loss probability. We will not consider other higher order 

measures of the loss performance for these types of finite buffer problems, although 

this may be a profitable area for future investigation considering the current interest 

in the topic. 

6.2.1 Predicting the Average Loss Probability for Marginal Arrival 

Processes 

As a starting point we will consider the finite buffer behaviour of a discrete-time de­

terministic service queueing system fed by a marginal arrival process. As in the rest 

of this thesis, time is assumed to be divided into equal periods called slots, with a slot 

being equal to the time required to service one arrival (or cell). Define qn to be the 

stationary probability that the queue population immediately after service is n, and we 

similarly define q;t° to be the corresponding probability immediately before service. Let 

Pk denote the probability that there are exactly k arrivals from the combined marginal 

arrival process in any time slot. 

For a buffer of size K, the arrival relation is described simply by 

n 

q;i = L qzPn-i for n < K (6.13) 
z=O 

1 Even m this situat10n, the losses may still be regarded as being caused by the overflow of the queue 

buffer, although 1t is not necessanly the new arrivals that are discarded. 
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and \ 
K oo 

qJ< = Lqi L P1 
i=O J=K-i 

Similarly, the service relation is described by 

for n = 0 

for n = K 

otherwise 

(6.14) 

(6.15) 

where qK = 0 always because there can only be at most K queued arrivals prior to the 

service, which then removes a single arrival from the buffer. 

The qt term is the probability that the queue is empty immediately prior to service. 

From equilibrium considerations we must have 

qt = 1 - (1 - ~K) A (6.16) 

where ~K is the loss probability from the queue when the buffer size is K, and>. is the 

average number of (attempted) arrivals per time slot, given by 

00 

>- = 2.::: kpk (6.17) 
k=O 

In the following theorem, we will prove that qt is a common factor for all of the qn in 

the marginal arrival process case. 

Theorem 6.1 For a discrete-time deterministic service queueing system with buffer 

capacity K, subject to marginal arrivals defined entirely by the probability distribution 

p = {pk}, the stationary probability qn that the queue population is n immediately after 

service can be written as 

(6.18) 

for,n < K, where qt is the probability that the queue will be empty immediately prior 

to s~rvice, and an is a function of n and of the arrival process probabilities only (i. e. an 

is independent of K). 

Proof. Assume initially that every qn for n < T for some T < K can be written in 

the form of equation (6.18). For T < K we have from the arrivals relation of equation 

(6.13) that 
T T-1 

q;f = L qiPT-i = qrpo +qt L aiPT-i (6.19) 
i=O i=O 

which on rearranging gives 

1 ( T-1 ) 
qr = - q;f - qt L aiPT-i 

Po i=O 

(6.20) 
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From equation (6.15} however, qj; = qT-l = ar-1qcj resulting in 

1 ( T-1 ) 
qr = - aT-l - L azPT-z qcj 

Po z=O 
(6.21) 

which shows that the in_itial assumption also holds for n = T. 

From equation (6.13} it is obvious that qo = qcj /po, which satisfies equation (6.18}. 

Thus, from the above reasoning and the process of mathematical induction we know 

that equation (6.18} must be satisfied for every qn. • 

Theorem 6.1 is an important result because it provides a means whereby knowledge 

of the qn and loss probabilities for some particular K allows the distribution of the 

queue population and the loss probability for any smaller K to be obtained, since the 

an quantities do not change. As an example, let q~ denote the steady state probability 

that the queue population is n for an infinite buffer, so that 

' q~ 
an= 1-A (6.22) 

For a finite buffer, using q(j = 1 - (1 - eK) A, consider that 

(q.23) 

where tn denotes the is the probability that the queue population of the infinite buffer 

problem is greater than n (the tail distribution). Then, since the above sum, being over 

all the non-zero probabilities of the finite buffer problem, must equal one, we obtain 

(6.24) 

which allows us to determine the finite buffer loss probability (or alternatively the 

finite buffer queue population distribution) from knowledge of the infinite buffer queue 

population distribution. This approach will apply equally well to a queue distribution 

obtained from a finite buffer analysis, provided that the length of the buffer used is 

greater than that of the desired K. 

Note that a commonly accepted solution for the average loss probability is to just 

use eK = tK [22, 66, 117, 121, 138]. That is, eK is approximated by the proportion of 

the infinite buffer queue population exceeding the finite buffer size. Obviously this 

will result in a fairly poor approximation on the basis of equation (6.24) except when 

A= 0.5. 
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Use of the infinite buffer as a source of queue population probabilities in equation 

(6.24) above suggests that the geometric tail approximation might be used instead of 

the actual values of tK. The approximate loss probability for the finite buffer would 

then be 

(6.25) 

where the 'ljJ and ef> values are the parameters of the geometric tail approximation 

described by equation (6.2). 

The average and variance of the finite buffer queue population, based on this geometric 

tail approximation, can also be found using this approach, and are given by 

and 

_ 'l/J ( 1 _ K ef>K -1 _ ef>K + K ef>K) 

Lq= (l-ef>)(l-'l/Jef>K-1) 

'ljJ ( 1 + ef>- K2ef>K-l _ (K -1)2 ef>K+l) 

(1 - ef>)2 (1 _ 'l/Jef>K-l J 
'l/;(2K2 -2K-l)ef>K -2 + -L 
(1 - ef>) 2 (1 - 'l/Jef>K-l) q 

(6.26) 

(6.27) 

respectively. In the limit as K --r oo, these become equal to the equations (6.7) and 

(6.8). The accuracy of equations (6.26) and (6.27) is of course dependent on how well 

the actual tail distribution is described by the geometric tail approximation. 

6.2.2 Predicting Average Loss Probabilities for Autocorrelated 

Arrival Processes 

Unfortunately, the approach used in the marginal arrivals case above does not lead to 

similar observations when the sources are described by autocorrelated arrival processes. 

To illustrate this point, consider a D-BMAP having m states. When the arrival process 

is in state i, it generates arrivals according to a probability distribution Pi = {Pk,i}, 

where Pk,i is the stationary probability that k arrivals will be generated by the D-BMAP 

whenever it is in state i. The state to state transition probabilities are represented by 

ai,J which denotes the probability that the next D-BMAP state will be j given that 

the last state was i. 

The time order of events in this queueing system is such that within each time slot, the 

D-BMAP changes state, arrivals are then generated using the parameters of the new 

D-BMAP state, and the queue then receives service. Define q;t i to be the probability , 
that the queue population is n and the D-BMAP is in state i after the arrivals occur, 

and define qn,i to be the probability that the queue population is n and the D-BMAP 



6.2 Estimating Loss Probabilities 163 

is in state i immediately after the service at the end of the time slot. In addition, 

let qn denote the probability that the queue population immediately after service is n, 

irrespective of the state of the D-BMAP, so that 

m-1 

qn = L qn,i 
i=O 

(6.28) 

We will start by considering an infinite buffer in order to reduce the number of separate 

equations we have to deal with. For this system the arrival relationship of equation 

(6.13) now becomes 
n 

q~i = L Si,1Pn-i,J (6.29) 
J=D 

where sn,J represents the probability that the queue population is n and the next D­

BMAP state will be j, given by 

where we also note that 

in addition to equation (6.28). 

m-1 

Sn,J = L O!i,Jqn,i 
i=O 

m-1 

qn = L Sn,i 
i=O 

The service relationship of equation (6.15) is similarly redefined to be 

for n = 0 

otherwise. 

(6'.30) 

(6.31) 

(6.32) 

Following the approach used above in the marginal case, and assuming that Po,i is 

strictly greater than zero for all i gives 

and hence 

+ qO,i 
Soi= -

' PD,i 

m-1 + 
""""' qO,i qo = L,., -
i=D Po,i 

From the service and arrivals relations of equations (6.29) and (6.32) we obtain 

qi = L qo,i _ L 1 + Pl'.i qo,i m-1 m-1 ( ) + 

i=D Po,i i=D pi Po,i 

(6.33) 

(6.34) 

(6.35) 

Unfortunately, we have no straight forward means to establish the qo,i terms individually 

- they can only be expressed as the solutions of m simultaneoti.s equations relating 

them to the known so,i values of equation (6.33). Hence, the qn probabilities cannot be 
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described directly in terms of the qdi values and the arrival process probabilities as was 
' 

the case for the marginal solution. In addition, the above reasoning assumes that each 

of the Po,m probabilities are greater than zero. This may not be the case in general, and 

in particular, is not the case when describing phase-geom binary processes, in which 

only one of the Po,m is actually non-zero. 

Despite this, we will assume that Theorem 6.1 approximates the behaviour of the auto­

correlated arrival process case well enough to use the average loss probability equations 

(6.24) and (6.25) developed in the marginal arrivals case. In the following we will 

investigate the accuracy of this assumption. 

6.2.3 Accuracy Study for the Average Loss Probability 
Approximation 

In the following we will study the accuracy of three approximations for the average loss 

probability compared with exact losses2 observed from iterative solutions (see Appendix 

E). In order to obtain the average loss probability we divide the problem into two parts. 

The first involves approximating the tail distribution of the queue population, and the 

second then approximates the average loss from t_his tail distribution. Unfortunately, 

even if the tail distribution is perfectly matched by the geometric tail approximation, 

the correct loss result is not guaranteed (unless the arrival process is marginal). There 

will therefore be two sources of errors in the average loss probability approximation. 

The three approximations under consideration are: 

1. Xiong and Bruneel's [141] approximation for 'l/J along with the exact numerical 

derivation for </J. The actual approximation is given by equation (3.37) in section 

3.3. 

2. Approximations for 'l/J and <P obtained from Lq and Var [Lq] only as given by 

equations (6.7) and (6.8). 

3. Numerical derivation for </;, with 'l/J approximated from </;, Lq, and Var [Lq] using 

equation (6.11). 

These methods will be referred to as methods 1, 2, and 3 respectively in the following. 

Methods 2 and 3 rely on knowledge of the average and variance of the queue population 

2 As for the other accuracy studies in this thesis, the loss results from the iterative method, using 

selected examples, were compared with simulation m order to confirm the correct implementation of 

the iterative solution. 
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for the queueing system. In this study these are obtained directly from the probability 

generating function analysis of the queueing system as described in Chapters 3 and 5. 

In practice, particularly when there are a large numbers of sources, these values could 

be obtained using a 2nd order approximation instead (see section 3.6). 

A Few Examples 

As a starting point we will consider the accuracy of the three approximations in terms 

of how well they describe the tail distribution of an example infinite buffer queueing 

system. The example system has 4 identical IBP sources with fixed parameters Oi = 0. 7 

and '°Yi = 0.5. The average arrival rates from the four sources are given as Ai = >../4 

where>.. is the overall arrival rate, and takes on the values 0.6, 0.7, 0.8, and 0.9. Figure 

6.1 shows the tail distribution probabilities as a function of the buffer position for the 

three approximations compared to the actual results. 

''j,: 

Figure 6.2 shows the average loss probabilities calculated from the three approxima-

tions for tK using equation (6.25). We see that although approximation methods 1 and 

3 give almost exact results for the tail distribution in Figure 6.1, they both slightly 

underestimate the average loss probability. This implies that the actual or exact tail 

probabilities in this autocorrelated arrivals case would also underestimate the loss result 

when using equation (6.24). The difference between the two is quite small however, in­

dicating that the assumption that Theorem 6.1 approximates the actual loss behaviour 

is acceptable. 

As another example, Table 6.1 shows the parameters for another four IBP sources. 

Figure 6.3 shows the loss approximations resulting from the actual tail distribution, and 

the three tail approximations. We note that even the actual tail distribution fails to 

provide the correct loss probabilities (the relative error in this case being about 52.53). 

In other words, this is one example where equation (6.24) does not hold particularly 

well for the autocorrelated arrivals case. Notice also how poor the second method is in 

approximating the geometric coefficient of the loss probability, even though the <P value 

in this case is very close to 1. 

Source Ai (Ji li 

1 0.33 0.79 0.78 

2 0.01 0.93 0.98 

3 0.20 0.42 0.56 

4 0.11 0.81 0.63 

Table 6.1: Geom.,geom IBP source parameters for the example queueing system used to 

generate the results in Figure 6.3. 
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Figure 6.1: Actual and approximate tail distributions for four average arrival rates using 

identical IBP sources. The three methods indicate the manner in which the parameters 

of the geometric tail distribution where obtained. 
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········· Approx1mat1on method I 
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Figure 6.2: Actual and approximate loss probabilities as a function of the buffer capacity. 

The loss estimations are performed using equation (6.25) with the tail approximations 

of Figure 6.1. Note that approximation methods 1 and 3 are so close to the actual tail 
' distribution in this example that they are not really visible. 
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Figure 6.3: Actual loss probabilities and estimated losses for the exq,mple queueing 

system with IBP source parameters described in Table 6.1. 

So far we have discussed only queueing systems fed by geom-geom IBP sources. As a 

last example we consider a queueing system fed by four identical IBP sources and a 

single cyclic source with parameters b = 2 and C = 10. As for the first example above, 

the IBP sources each have ()2 = 0.7 and /i = 0.5, but in this case we use.\= (>..-·0.2)/4 

where >. is the overall arrival rate to the queue from all five sources (with the
1 

•• cyclic 

source contributing a load of 0.2). The overall arrival rate takes on the value of 0.6, 

0.7, 0.8, and 0.9 as before. 

Figure 6.4 shows the tail distributions of the four example arrival rates, along with 

approximations from the second and third methods. We have not re-derived Xiong and 

Bruneel's result for IBP queueing systems with an additional cyclic source (although 

this should not be too difficult) so approximation method 1 is not used. Figure 6.5 

shows the actual average loss probabilities, and the loss probabilities calculated from 

the two approximations for the tail distribution. As in Figure 6.2, the losses calculated 

from the two tail approximations slightly underestimate the actual loss probabilities. 

The closeness of the third tail approximation method to the actual tail distribution 

indicates that the difference in the loss probabilities is mostly due to the assumption 

that equation (6.24) applies to this queueing system. 
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Figure 6.4: Actual and approximate tail distributions for four average arrival rates 

using 4 identical IBP sources and a single cyclic source with b = 2 and C = 10. 

-- Actual loss result 
- - - Approximation method 2 
- - - Approx1mauon method 3 

0 32 64 96 128 160 
BUFFER CAP A CITY 

Figure 6.5: Actual and approximate loss probabilities as a function of the buffer capacity 

for the queueing problem of Figure 6.4. 
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A More Extensive Study 

For a more extensive study of the accuracy of the loss estimation and the three meth­

ods for approximating the geometric tail parameters, 1000 queueing problems with 

randomly generated source parameters were generated for each of N = 2, 3, and 4 

sources. To keep the buffer requirements of these problems large enough to study their 

loss behaviour accurately, the utilisation for each problem was chosen from the range 

0.5 ::; >.::; 0.9, while the autocorrelation parameters were restricted to be in the range 

0.5 ::; Ii < 0.99 for each source. As with the other studies using randomly generated 

sources, the average arrival rate Oi during the active period of the ith source was chosen 

such that Ai < Oi :S 1. 

We will not consider queueing systems with an additional cyclic source here since it is 

apparent that these systems behave similarly to IBP source only systems (see Figure 

6.5). In addition, the run times for the iterative solution of these types of problems are 

considerable, which would restrict the analysis to the only the very simplest cases. 

In order to assess the accuracy of the loss estimation we note that distribution of the 

average loss probability also appears geometric with the buffer capacity (see Figures 

6.2, 6.3, and 6.5 for example). That is for buffer sizes above a certain value, the relative 

error between the actual loss probability and the estimated loss from equation (6.24) 

will be constant (the loss probabilities have a constant ratio). This same property will 

also hold true for equation (6.25) when using the first and third tail approximation 

methods. Since the second tail approximation method does not user the- correct value 

of </>, it will see an increasing relative error in the loss estimation as the buffer capacity 

increases. For this reason we will not be considering this method in the following. 

This observation of geometric behaviour provides a possible alternative to the use of 

importance sampling or large deviation theory in simulation studies involving very 

small loss probabilities [27, 31, 104). Rather than perturbing the parameters of the 

input process in order to study the loss behaviour for short simulation runs, several 

simulations at different buffer sizes could be performed to obtain the parameters for 

the geometric approximation for the loss distribution. Another simple approach might 

be to obtain the probabilities for the infinite buffer tail distribution using simulation, 

and then obtain the loss behaviour in a manner similar to the one used here. 

For this study we have chosen a buffer size of K = 100 as the capacity above which we 

expect the relative error in the loss estimation to remain constant. To insure accuracy 

in the calculation of the actual loss probabilities, convergence of the iterative solution 

required the,relative change in the loss probability to be less than 10-s over 10 itera­

tions. In addition, the minimum valid loss probability was set to 10-10 . Average loss 

-,-
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N Method Mean Deviation lst Percentile 99th Percentile 

2 1 85.7% 89% 1.6% 410% 

3 57.3% 513 -0.9% 210% 

3 1 66.7% 78% 0.5% 450% 

3 46.8% 44% -3.1% 210% 

4 1 61.7% 67% -0.2% 340% 

3 51.5% 93% -3.4% 290% 

Table 6.2: Statistics on the relative error in the average loss probability estimation for 

several queueing problems involving geom-geom IBP sources and two different approxi­

mation methods. 

probabilities below this value were taken to be zero, which meant they were ignored for 

the purpose of calculating relative errors. 

Table 6.2 shows the statistics of the relative error in the loss estimation based on the 

two methods for calculating the parameters of the tail distribution. The relative errors 

are calculated as described in section 3.2. Note that there were not the full number of 

results available for each N due to the aforementioned lower limit on the calculation of 

the actual loss probabilities. The statistics are actually calculated from 295 results for 

N = 2, 516 results for N = 3, and 642 results for N = 4. 

Overall, the third method has the best error performance, although the margin over 

Xiong and Bruneel's method is not particularly large. From the point of view of com­

putational complexity this result favours Xiong and Bruneel's method since this first 

method does not require extensive calculations and can be performed very quickly, 

while the third method relies on knowledge of the queue population average and vari­

ance. It also appears that the accuracy of the first method improves as N increases, 

although the small number of results and the small change in the statistics makes a 

definite conclusion difficult. 

Figure 6.6 shows how the relative error in the loss estimation varies with the average 

arrival rate to the queue for N = 2 using source parameters generated randomly under 

the same constraints used to obtain the error statistics of Table 6.2. The first approxi­

mation method (Xiong and Bruneel's) was used to provide the tail distribution data for 

calculating the loss estimate. These results were obtained from the analysis of 30, OOO 

queueing problems, with only some 8, 800 of these resulting in average loss probabilities 

of greater than 10-10 for the buffer capacity of 100 cells. Note that the mean relative 

error observed for this larger set of results for N = 2 was 86.6% for approximation 

method one, and 57.3% for method three, with corresponding standard deviations of 

1003 and 543 respectively. These agree very well with the results for the smaller data 
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Figure 6.6: Scatter plot of the relative error in the estimated average loss probability for 

2 IBP sources using the first approximation method for the tail distribution. Th e offered 

load is restricted to between 0.5 and 0.9, while the individual source autocorrelations are 

in the range of 0.5 to 0.99. 

set reported in Table 6.2. 

In the majority of the results , the approximate loss probability exceeds the actual value 

(although not by too much) , which is a desirable feat ure of the approach. The clus­

tering of the results at the higher utilisations is an artifact of the buffer size and lower 

probability limit chosen for the study - higher average arrival rates generally mean 

higher loss rates for a fixed buffer size. The results also indicate that the approximation 

will perform worse for lower queue utilisat ions, although still as an overestimation. 

Another Accuracy Measure 

An alternative measure of the accuracy of the loss estimation is to consider the error 

in predicting a buffer capacity to meet some required average loss probability. If ~ 

denotes the desired loss value, then equation (6 .25) can be easily rearranged to provide 

an estimate for the buffer capacity K required to meet this loss probability of 

K = log[>.~] - log ['l/I (1 - >. + >.~) ] 
log [<P] 

(6 .36) 

where the exact value of <P is used for the geometric tail approximation, along with 

some approxima tion for 'l/J . In general there will be some inaccuracy as ociated with 
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this estimate due to the scaling error between the tail and loss probability distributions. 

(We are assuming that the desired loss falls within the geometric region of the loss 

distribution). 

Let us assume that the loss probabilities are geometric in the vicinity of some buffer size 

T, and denote by fr the actual loss probability and by fr the estimated loss probability 

at Tusing equation (6.24) or (6.25). Then the ratio of fr to fr expressed as a power 

of</> is given by 

log [fr] - log [fr] 
L\~ = --lo_g_[</>_] __ (6.37) 

where ~r = <Pt>.~ {r. From the geometric property and the order of the terms in equation 

(6.37) .6.~ is also the amount by which the buffer capacity predicted by equation (6.36) 

will exceed3 the required buffer size for any K and K - .6.~ that fall on the geometric 

part of the loss distribution. 

Table 6.3 presents the statistics on .6.~ measured from the same results used to generate 

Table 6.2. We note that the buffer capacities predicted by equation (6.36) generally 

overestimate the required capacities. In those few cases where the buffer capacity is 

underestimated, the difference appears to be very small. These results are not unex­

pected when considering the results of Table 6.2, since overestimation of the loss for a 

particular buffer size translates directly to overestimation of the buffer capacity for a 

particular loss probability, and vice versa. 

N Method Mean Deviation lst Percentile 99th Percentile 

2 1 7.3 8.4 0.09 43 

3 5.7 6.8 -0.06 34 

3 1 6.8 8.3 0.03 45 

3 5.4 6.6 -0.17 32 

4 1 6.9 8.5 -0.01 45 

3 5.8 7.2 -0.16 37 

Table 6.3: Statistics on the amount by which the buffer size required to satisfy a par­

ticular average loss probability exceeds the actual required size ( .6.~). The units are the 

same as used to specify the buffer capacity (cells}. 

As for the relative error results, the performance of the third approximation method 

is slightly better than the first, but considering the extra computational complexities 

involved, the gain does not seem worth the effort. We note also that there is no 

particular improvement with increasing N, although this was suggested from the results 

of Table 6.2. Further studies will be required to establish this trend more precisely. 
3If /).K is negative, then the predicted buffer size is smaller than the required buffer size. 
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Figure 6.7: Scatter plot of Ll~ against A for 2 IBP sources using the first approximation 

method for the tail distribution . Th e loss results are the same as those used to generate 

Figure 6.6. 

Figure 6. 7 shows a scatter plot of Ll~ calculated from the first approximation against 

the offered load to the queue for N = 2 using the same 8, 800 exact loss results used 

to generate Figure 6.6. The mean buffer overshoot for t his data set was 7.4 using the 

first method, and 5.8 for the third with corresponding standard deviations of 9.0 and 

7.2 respectively. Again these agree quite well with the results from the smaller data set 

of only 295 loss results , but t he difference is enough to confirm that large data sets are 

probably necessary to properly establish trends in the accuracy of the approximation 

methods as N increases. 

We close this approximation study by noting that t he results of Tables 6.2 and 6.3 are 

encouraging in that they show that the estimate for the average loss probability (or 

equivalently the required buffer size) discussed in this chapter is an acceptable one. 

In particular , the fact that this prediction tends to overestimate the correct solution 

means that decisions based on these results will err on the side of caution - that is 

they will generally provide better loss performance than is required. 

6.2.4 Considerations for Dual Buffer Systems 

An important consequence of Theorem 2.1 in Chapter 2 is that the total buffer space 

requirements for a queueing system are not affected by the priority scheme used to 
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select which of the queued arrivals will be next to receive service, provided that the 

total buffer capacity can be fully utilised [35]. That is, as long as arrivals are not 

rejected from the system when it has available capacity (in any buffer). 

In the implementation of a finite buffer queueing system (within an ATM switch for 

example) there are two basic methods that can be used to create logically separate 

buffers - the buffers may either be defined over physically separate areas of memory, 

or they may share the total memory space available. In the first of thes'e approaches, 

when one queue fills its allocated memory space, any further arrivals to that buffer will 

be lost from the system, even though there may be capacity available elsewhere. In this 

case, the total buffer capacity (over all the logical buffers) is not being fully utilised, 

and we cannot use Theorem 2.1 to aid in predicting loss probabilities. 

In the second approach, the buffers share the total memory space allocated to the 

server. Each logical buffer can grow until there is no capacity available anywhere, so 

that arrivals are only lost from the system when the total remaining capacity is zero. 

In this case, the total buffer capacity is fully utilised, and Theorem 2.1 implies that the 

loss probability from the queueing system will be independent of both the number of 

logical buffers, and the service orders of those buffers. The manner in which arrivals 

to a full system are rejected does not affect this result, only the proportion of the total 

loss shared by each type of arrival. 

Thus, for a dual buffer (prioritised) system implemented with full utilisation of the 

combined memory space, the techniques discussed in this chapter for calculating the 

average loss probability can be applied to obtain the total loss probability. This simply 

involves the loss analysis of a single buffer queue subject to arrivals from both priority 

classes (using Xiong and Bruneel's approximation for the tail distribution say). 

This total average loss probability ~total is related to the average loss probabilities for 

the high and low priority traffics by the relation 

A]ow6ow + Ahigh~high = Atotal~total (6.38) 

however in general we know no more than this. If the high priority buffer is implemented 

with head of line service priority (waiting high priority cells are served ahead of low 

priority cells) and we assume that the high priority traffic also has push out priority 

over the low priority traffic then ~high can be obtained by considering the high priority 

traffic on its own using the combined available buffer space. The resulting 6ow is then 

obtained from equation (6.38). 

Alternatively, if there is no push out priority at all, then the two traffics will have 

the same loss probability such that 6ow = ~high = 6otal. This is easily arrived at by 
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considering that if there is no push out, losses will be independent of the priority of the 

arrivals, and hence each will see the same loss probability. Then, since the probability 

that the combined buffer is full is also independent of the arrival priorities, the result 

follows. 

In practice, if we assign the high priority to delay sensitive traffic and the low priority to 

loss sensitive traffic, it is most likely that we would give the loss sensitive traffic push out 

priority as well, perhaps combined with a mechanism to guarantee a minimum number 

of buffer places to the delay traffic. If this is the case, or if no push out is implemented 

at all, then we cannot say what either ehigh or 6ow will be. We can determine the 

maximum average loss probability for each traffic class however, by assuming that the 

other class somehow manages to experience no loss. This then gives 

and 

[
t ] Atotal t max <,low =-,--<.total 

/\low 

[
t ] Atotal t 

max <,high = -,--<,total 
/\high 

(6.39) 

(6.40) 

If the average loss requirement for one of the traffic classes is known, then the required 

etotal can be calculated from equations (6.39) and (6.40) as necessary. When the loss 

requirements of both traffic classes are specified, then the smallest of the resulting two 

etotal values is used. If this combined average loss probability can be guaranteed, then 

both traffics must experience the required (or better) average loss. 

6.3 Obtaining Delays from Populations for 

Uninterrupted Service Queues 

In [125], Steyaert et al. derive a general relationship between the distribution for the 

queueing delay experienced by arrivals to a discrete-time multi-server FIFO queue and 

. the distribution of the queue population. The arrival process is unconstrained in that 

it can be generally correlated, although the derivation is based on the assumption of an 

infinite buffer and a first-in, first-out service mechanism. The main result of interest 

here is that for a single server 

dn = ~ for n > 0 (6.41) 

where dn is the steady state probability that the queueing delay is n service periods 

(time slots), qn is the steady state probability that the queue population is n, and >. is 

the average number of arrivals occurring per time slot. It is interesting that statistics of 

the queueing delay can be obtained from the statistics of the queue population without 
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explicit knowledge of the nature of the arrival process - a feature which holds even 

for the multi-server case. 

From equation (6.41) we then obtain expressions for the average and variance of the 

queueing delay in terms of the equivalent measures of the queue population as 

L 
D - _!l (6.42) q- .A 

which is of course Little's result, and 

V [D l 
= Var [Lq] _ (1 - .A) L~ 

ar q .A _A2 (6.43) 

where we use Dq to indicate the average queueing delay, and Lq and Var [Lq] are the 

average and variance of the queue population. 

6.3.1 Estimating the Higher Percentiles of the Delay 

From the discussion at the beginning of this chapter we know that qn is well described 

by a geometric distribution for large n. This same reasoning must therefore also apply 

to the distribution of the delay given the result of equation (6.41). This provides a 

simple means whereby the high percentiles of the queueing delay can be obtained using 

this geometric property. We will use the 99th percentile in the following, although 

others are straightforward to accommodate. 

The 99th percentile of the queue population can be thought of as that number which 

the queue population rises above only 13 of the time. In terms of the tail distribution, 

the 99th percentile is given by the smallest n for which tn (the probability that the 

queue population is strictly greater than n) is 0.01 or less. The 99th percentile of the 

queueing delay is therefore given by the smallest n for which tn is less than or equal to 

0.01/.A. 

The geometric tail approximation can be used in place of the actual tail distribution in 

order to obtain an estimate for the 99th percentile of the queueing delay of 

_ -2 - log ['l/;.A] 
ngg = log[</>] (6.44) 

where ngg is the estimate of the relevant percentile value, and base 10 logarithms are 

assumed. The 'I/; and </> terms are the parameters of the geometric approximation to 

the tail probabilities. 

Unfortunately, ngg may not always be large enough to fall on the part of tn which 

obeys the geometric property (a problem which will be more common for lesser per­

centiles). However since the geometric assumption generally underestimates the proba­

bilities when n is small, the n99 obtained from equation (6.44) will tend to overestimate 
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the correct 99th percentile value. Thus as a general rule, the larger the value of n99 

the more accurate the estimate will be. 

6.3.2 Delays in Finite Buffers 

One point apparently overlooked by the authors of [125] is that the assumptions under 

which equation (6.41) is obtained can be exploited in order to extend the result to finite 

buffer queues as well. Importantly, the derivation in [125] proceeds without requiring 

that the arrivals be independent of the queue population. Consequently, it may be 

assumed that a finite buffer can be described using an infinite buffer, but with an 

arrival process which limits the number of arrivals occurring in any time slot so as not 

to exceed some ma:Ximum level in the queue buffer. This arrival process still conforms 

to the requirements of [125], and hence equation (6.41) still holds, but in the modified 

form of 

(6.45) 

where ~K is the loss probability for a finite buffer with a capacity of K waiting cells, so 

that (1 - ~K) .A represents the average number of successful arrivals to the queue per 

time slot. 

Applying this result to equations (6.42) and (6.43) for the average and variance of the 

queueing delay now gives 

and 

V; [D] = Var [Lq] 
ar q (1 - ~K) .A 

(1 - .A + .A~K) L~ 
(1 - ~K )2 ).2 

( 6-:46) 

(6.47) 

where Lq and Var [Lq] are the average and variance of the queue population for the 

finite buffer. 

To provide support for this conclusion, Table 6.4 presents results for the average and 

variance of the delay obtained from both numeric iteration and from simulation for 

an example queueing system using four identical IBP sources. The IBP sources have 

parameters given by Ai = 0.225, (h = 0.7, and /i = 0.5, providing an overall average 

arrival rate of .A = 0.9. Very small buffer sizes (K in Table 6.4) were used to provide 

high loss rates, and hence to make sure any deviations between the predicted and actual 

results were visible. 

The average and variance of the queueing delay obtained by combining the population 

results of the iterative solution with equations (6.46) and (6.47) agree very well with 

the simulation results, which supports the reasoning used to develop these equations. 
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Analytic Simulation 

K ~K Dq Var [Dq] ~K Dq Var [Dq] 
4 0.10572 1.4177 1.3586 0.10578 1.4179 ± 0.0012 1.3586 

8 0.04761 2.8819 5.5604 0.04766 2.8821 ± 0.0037 5.5604 

16 0.01427 4.9535 18.900 0.01429 4.9587 ± 0:0109 18.920 

32 0.00185 6.8143 46.550 0.00186 6.8253 ± 0.0273 46.669 

Table 6.4: Comparison of theoretical and simulation queueing delays for an example 

finite buffer queueing system involving four identical IBP sources. The 99% confidence 

interval is specified for the average queueing delay obtained from simulation. 

6.3.3 Delays for Individual Traffic Classes 

Obtaining queueing delays for an individual traffic class in a queueing system subject to 

arrivals from multiple classes of traffic is unfortunately not straightforward, and is very 

much dependent on service considerations. We will not go into this in detail here, but 

direct the reader to Appendix B, where a general approach and several examples are 

considered for infinite buffers without service priorities. The results suggest that there 

are definite limits to the 'best' and 'worst' average queueing delay that any traffic class 

can achieve, which has interesting impplications for the mixing of traffic in queueing 

systems. 

In the following section we will briefly consider some of the difficulties associated with 

calculating queueing delays for queueing systems subject to service interruptions, and 

look at an example problem. 

6.4 Delays for Interrupted Service Queues 

In a discrete-time dual buffer priority system, where arrivals to one buffer have head­

of-line (non pre-emptive) service priority over arrivals to the other buffer, the average 

and variance of the queueing delay for the high priority arrivals are easily found. Since 

this buffer has service priority, its queueing behaviour is unaffected by the presence or 

otherwise of low priority traffic. It can therefore be treated as if it receives uninterrupted 

service, and the results of the previous section applied to obtain the desired delay 

measures. 

Unfortunately the situation is not so simple for the arrivals to the low priority buffer 

because it receives interrupted service due to the presence of high priority traffic, and 

consequently Steyaert et al. 's result does not apply. Although Little's result can still 

yield the average queueing delay from the average queue population (found using Corol-
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lary 2.2), no corresponding solutions have been found in the literature for the variance 

of the delay. 

As we shall see below, the delay variance can be found fairly easily for the simplest case 

where both the arrivals and the service (or the interruptions) are purely random. This 

result, and the discussions relating to shared buffer delays in Appendix B, suggest that 

more general results for autocorrelated arrivals and/ or service should be obtainable. 

This is a topic for further research. 

6.4.1 Random Arrivals and Random Service 

Here we assume that the arrival process is completely described by its marginal prob­

ability distribution, so that the probability of receiving k arrivals in the current time 

slot is independent of the arrival process at any previous time. Similarly, the proba­

bility that the queue receives a visit from the server in the current time slot iS''also 

independent of both previous service behaviour and previous arrival behaviour. 

The time order of events within a time slot is assumed without loss of generality to 

be opportunity for service followed by acceptance of any new arrivals. The queue 

population is always observed immediately after the service opportunity. We assume 

that if the server visits the buffer and it is not empty, it removes a single queued cell. 

Delays are measured as the number of complete time slots that an arrival waits in 

the queue before receiving service, so that an arrival to an empty queue that receives 

service at the end of that time slot is considered to have zero queueing delay. 

As usual, we will denote the average number of arrivals to the queue in one time slot by 

A, with second and third moments denoted by M2 and M3. In addition, we denote the 

stationary probability that the queue receives service in any slot by f. Let en denote 

the probability that an arrival to the queue sees Cn cells queued ahead of it, and let dm 

denote the probability that an arrival experiences a queueing delay of m slot times. 

Consider an arrival that sees n cells queued ahead of itself. In order for it to reach the 

head of the queue, there must be n services. For the cell to then leave the queue (to be 

serviced itself) will then require a total of n + 1 services. Since only whole slot times 

are considered for the queueing delay, if the arrival receives service in the (m + l)th 

time slot after it arrived, it is considered to only have a queueing delay of m slot times. 

Thus the probability that this cell has a queueing delay of m slot times is given by the 

probability that there are n services in them time slots following its arrival, and there 
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is a further service in the (m + l)th time slot. That is 

Pr (delay= m In cells queue ahead) = { ~7:) (1 - nm-n r+l 

giving the probability of a delay of m slot times as 

with the first and second moments of the delay then given by 

ifm < n 

otherwise 

00 

l:ndn 
n=O 

I:o m ~ (:) (1 - nm-n r+1
cn 

~ Cnfn+l t, (n + i) C: n) (1 - !) 2 

J (~ ncn + 1 - f) 
and 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

respectively, where we have made use of Theorems F.2, F.5, and F.6. Thus we have 

derived the moments of the delay in terms of the probability that an arrival is queued 

behind so many previous arrivals. 

Assume that the buffer contains r cells waiting for service at the instant that the current 

arrivals are admitted to the queue. Let k be the number of new arrivals, and let s denote 

the position of any particular arrival within these k, where s = 0, 1, ... , k - 1. The 

probability that an arrival sees s + r cells queued ahead of is then given by 

1 00 

Pr (s + r cells ahead) = ~ L Pk 
k=s+l 

(6.52) 

where Pk denotes the probability of there being k arrivals in any time slot. From this 

we obtain 

(6.53) 
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where q~ denotes the probability that the queue population is i after all the arrivals 

have been accepted, which is given by 

i 

q~ = Lq1Pi-1 (6.54) 
J=O 

For n > 0 we can rewrite en in terms of Cn-1 as 

(6.55) 

In z-transform notation, this becomes 

1 - p(z) 
c(z) = ), (1 - z) q(z) (6.56) 

where c(z), q(z), and p(z) are the z-transforms of the Cn, qn, and Pn probability distri­

butions respectively, and where we note that the post-arrival distribution described by 

q~ is given by q(z)p(z). From the second and third derivatives of equation (6.56) we 

then obtain 

(6.57) 

and 
~ 2 _ v; L2 (M2 - .A) L 2M3 - 3M2 + >. 
L.., n Cn - q + q + >, q + 6.A 
n=O 

(6.58) 

Combining these results for the first two moments of the Cn distribution with equations 

(6.50) and (6.51) then gives 

1 ( M2 ->. ) 
Dq = f Lq + 2.A + 1 - f 

and 

Var[Dq] __!__ v; (M2 + 3.A - 4)..f) L (1 - !) (M2 - .A) 
J2 q + 2.AJ2 q + 2.Aj2 

(M2-.A)2 2M3-3M2+.A 
- 4),2 J2 + 6)..j2 (6.59) 

Substituting for the average and variance of the queue population, given by equations 

(2.66) and (2.69) using I = 0, finally yields 

and 

Var[Dq] 

D _ M2 + >. - 2.Af (6.60) 
q - 2.A (J - >.) 

4.Af M3 - 3 (J - .A) Mi + 6.Af (1 - !) M2 + 2f .A2 (1 + 3f - 6j2) 
12j2)..2 (f - >.) 

(M2 + f - 2f2)
2 

+ 4f2 (!- >.)2 
(6.61) 
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Figure 6.8: Variance of the queueing delay for Poisson arrivals to a queue with ran­

dom service. The analytic results are presented as dashed lines, while the vertical bars 

indicate the error range for the results obtain from simulation. 

To confirm this analysis, Figure 6.8 presents the variance of the queueing delay for an 

example problem having Poisson arrivals and random service, obtained from both the 

analysis and simulation. Relative utilisations of 903 and 803 were considered and the 

results plotted against the probability of service f. The simulation errors are indicated 

by vertical lines at each sample point and correspond to a 993 confidence interval of 

±0.53 for the average queue population. The results obviously support the accuracy 

of the analysis. 

6.5 Summary 

We began this chapter with a discussion of the geometric tail approximation for an 

infinite buffer queueing system, arriving at three methods for calculating the param­

eters of this curve. Since one of the primary measures of finite buffer performance is 

the average loss probability we then looked at how this measure might be predicted 

from knowledge of the tail distribution. For a queue subject to marginally distributed 

arrivals (no autocorrelation) we proved a simple relation between the tail probabili­

ties and the average loss probability. The solution shows that the commonly accepted 

approach, where the average loss is approximated by the probability that the infinite 

buffer population exceeds the finite buffer size, can result in a poor estimation. 
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Unfortunately this relationship between the loss and the tail distribution does not 

apply for queues subject to arrivals from autocorrelated sources. However, under the 

assumption that the relationship applies sufficiently well, the loss prediction accuracy of 

the three tail approximation methods was investigated. Consideration of three example 

problems suggested that the average loss probability also exhibits geometric behaviour 

as the buffer capacity increases. As expected for the marginal arrivals analysis, the 

geometric decay coefficient of the average loss was found to be equal to that of the 

population tail. A suitable method for examining the accuracy of the loss predictions 

was proposed using this observation, and a more exhaustive study using randomly 

generated sources was performed. 

The inexact nature of the geometric decay coefficient calculated by the second method 

excluded it from this part of the investigation, but results for the other two methods 

are encouraging. While both usually overestimate the average loss, the magnitude 

of the relative error is not high. In terms of estimating buffer sizes for a specified 

loss probability, the performance is similar with again only a relatively small mean 

overestimation observed. The accuracy of the first method, based on P.revious work 

by Xiong and Bruneel [141], is encouraging in particular because the computational 

complexity of the solution is small. Further work is required however to extend this 

approximation to include other arrival processes apart from geom-geom IBP sources. 

In addition to the loss behaviour, we have also considered the relation!'hip between 

queueing delays and queue populations in this chapter. For queues subject to uninter-
- J ~ 

rupted service, the average and variance of the queueing delay can be expressed simply 

in terms of the average and variance of the queue population, the average arrival rate, 

and for finite buffers, the average loss probability. The geometric tail property can also 

be applied to obtain an estimate for the 99th percentile of the queueing delay. Queue­

ing delays for individual traffic classes are not considered here, although Appendix B 

discusses some methods for calculating these results, and provides a few examples. 

The use of dual buffer queueing systems (where head of line priority is given to waiting 

cells in one buffer) complicates the calculation of both finite buffer losses, and queueing 

delays. For a dual buffer system, the overall average loss probability can be obtained 

from its single buffer equivalent in the case where the total buffer capacity is shared 

by both buffers (logically separate buffers rather than physically separate) and rough 

upper limits can then be placed on the individual buffer loss probabilities. Similarly, 

average queueing delays can be obtained for the dual buffer system using Little's result 

and Corollary 2.2 of Theorem 2.1, but higher moments of the delay for the lower priority 

queue are more complex. A relatively simple example was investigated to illustrate this 

point. 



Chapter 7 

Applications. 

In this chapter we will briefly describe some of the applications of the results presented 

in the rest of this thesis. In particular we will look at the analysis of a dual buffer 

priority queueing system in section 7.1, and identify the problem of correlation between 

sources for class or priority based traffic models. Simulation is used in section 7.2 to 

provide some insight into this problem for a dual buffer system when the high priority 

traffic class is described by a cyclic (or periodic) process. When the high priority 

process is a subclass of the overall arrival process, the correlation effect does not cause 

modelling problems. We look at an example scheme using random priority assignment 

for geom-geom IBP sources in section 7.3. 

Another aspect of the queueing process that has not yet been considered here is the 

identification or modelling of the output process of the queue. This characterises the 

merging process, and in section 7.4 we will look at how the parameters of an output 

model may be fitted using the population analysis. As an illustrative example, the 

output of a queue subject to arrivals from geom-geom IBP sources is modelled by a 

geom-geom IBP process in section 7.5. Finally in section 7.6 we show that the output 

of a queueing system with either marginal, or phase-geom binary arrivals, is a phase­

geom binary process, and determine the moments of the busy and idle periods of this 

process. 

7.1 Analysis of a Dual Buffer Queueing System 

Consider the dual buffer queueing system in Figure 7.1, which represents a single output 

port in a non-blocking ATM switching element. The switch is assumed to have equal 

speed input and output lines, and a discrete-time analysis is assumed, with one time 
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interval (or slot) equal to the time required to transmit an ATM cell on the output 

line. Each of the N sources in Figure 7.1 represent a possible source of arrivals from 

one of the N input ports of the switch after routing (splitting). Since the input lines 

are assumed to be the same speed as the output line, each source can generate at most 

one arrival in any time slot. The generated arrivals are then queued in either the high 

priority buffer (for delay sensitive traffic) or the low priority buffer (for loss sensitive 

traffic). 

1 
High Pnonty Buffer 

Inputs '('. ... Ouput 
11111111 

Low Pnonty Buffer 

N 

Figure 7.1: A representation of one of the dual buffer queueing systems present at each 

of the outputs of an output queueing, non-blocking ATM switch. The question mark 

represents the priority decision process which is discussed in the text. 

From an analysis point of view, the selection between high or low priority might be 

regarded as a second splitting process based on priority, so that the arrival processes to 

the two buffers form subclasses of the arrival processes represented by the N sources. 

The simplest method, used for example in [10, 12, 39, 88, 127, 144] is to assume that 

arrivals from source i have high priority with probability hi and low priority with 

probability (1 - hi), independent of the probabilities assigned at other times. The 

alternative is to assume that the priority selection exhibits some form of autocorrelation, 

such as in the three-state Markov priority arrival process of [16, 68]. 

Another approach that can be taken to the analysis of the dual buffer queueing system 

is to use separate models for the arrival processes to the high and low priority buffers, 

based on some characteristic of the traffics. For example, in Chapter 1 we proposed 

that low priority traffic could be described by the geom-geom IBP process, while the 

high priority processes might be better described by a periodic or cyclic process. In the 

literature there are similar examples where the arrival processes used in the queueing 

analysis are based on the particular traffic types being considered - voice sources are 

modelled as two-state Markov processes [55, 76, 81, 136], video sources are modelled by 

multi-state Markov processes [76, 136] or more complex models [55], and generic data 

sources are modelled by the ever present Poisson process [55, 81, 106, 136]. 

The problem with this approach is that in a real network switching element, the arrival 

processes on each input line will not be exclusively from a single traffic class (except 

possibly at the entry points to the network). That is, each of the switch input lines 
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may generate arrivals for several classes of traffic, and since each input line can only 

generate one arrival per time slot, the arrivals for each class will be negatively correlated 

with the arrivals of other classes. Consequently, the 'traditional' queueing analysis 

methods (as used in the above references for example) which assume that the sources 

belonging to the various traffic classes are independent, will tend to overestimate the 

queue population average and variance. 

In regard to the dual buffer problem, the priority splitting approach behaves more real­

istically in the sense that the arrivals to the two queue buffers are in fact anticorrelated 

(a high priority arrival from one source means that it did not generate a low priority 

arrival in the same time slot, and vice versa). We will consider the priority splitting 

approach in more detail in section 7.3. In the following section we will look at the dual 

buffer queueing system when the high priority traffic is described by a cyclic arrival 

process. 

7.2 Dual Buffer Analysis with a Cyclic Arrival Process 

In Chapter 1 we explained the fact that delay sensitive (high priority) traffic might have 

long burst periods or holding times, and therefore its periodic nature would not be as 

distorted by the succession of network queues as other traffic types. As a consequence 

the cyclic arrival process was suggested to describe the service interruption process of 

the low priority buffer. If such a model is to be used however, we need to consider· how 

the low priority traffic will be affected. As we have discussed in the above paragr~ph, 

the simple geom-geom IBP model considered in Chapter 5 will not accurately describe 

the low priority arrival process, since correlation with the high priority traffic was not 

considered. 

We are interested in the effect that ignoring this correlation has on the accuracy of the 

queue behaviour. To do this, the analytical results of Chapter 5 need to be compared 

with a 'correct' solution - one in which the high and low priority arrival processes 

exhibit the correct anticorrelation behaviour. Since no suitable analytical models are 

available that use such a mixture of periodic and autocorrelated random processes, a 

simulation study has been performed. In the following we will refer to the queueing 

system wherein each source is modelled independently as the independent queueing 

model, and the queueing system wherein the low priority arrivals are correlated with 

the high priority arrivals as the anticorrelated queueing model. 
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7.2.1 A Simulation Study 

The low priority arrival process needs to be as close to the independent geom-geom 

IBP model as possible in order for the analytical results to have any application to 

this queueing problem. To preserve this behaviour, it was decided that the b high 

priority arrivals every C slot times from the cyclic source were to be 'inserted' into 

the low priority arrival processes from selected sources. Any low priority arrival that 

would normally have occurred in the same time slot for the source would be delayed 

(along with subsequent arrivals as required) for transmission in subsequent slots. This 

insertion process means that the average arrival statistics of the low priority traffic 

are unaffected by the high priority arrivals, and during the silent periods of the cyclic 

source, the geom-geom IBP behaviour is largely unaffected. 

As an additional constraint, the high priority arrivals were required to cause b consecu­

tive service interruptions to the low priority buffer, followed by C - b services, as used 

in the theory of Chapter 5. Three arrangements for the insertion of the high priority 

arrivals were considered: 

l. The b cyclic arrivals come from just one source. 

2. The b cyclic arrivals come from b different sources in a consecutive fashion. 

3. The b cyclic arrivals come simultaneously from b different sources. 

Note that while the first two of these arrangements result in zero queueing delays for the 

high priority traffic (only one arrival per time slot) high priority arrivals in the third 

case will experience queueing delays. The theoretical treatment of the independent 

queueing model in Chapter 5 assumes that the b arrivals are all consecutive, and hence 

provides the low priority queue population only (using Corollary 2.3). By assuming that 

b < C, the maximum delay any high priority arrival will experience will be bounded 

simply by b. If a more exact treatment is necessary, the high priority queue can be 

analysed separately using one of many available methods (see for example [23] and the 

references therein). 

Figures 7.2 and 7.3 show the average and variance respectively of the queue population 

for the low priority buffer using these three arrangements (referred to as simulation 

methods 1 to 3) and the theoretical solution of the independent queueing model. The 

results are for b = 3 and C = 10, using 4 identical geom-geom IBP sources with 

parameters >-i = >./4, Oi = 0.4, and Ii = 0.7, where >. is the independent variable. 

The simulation results were obtained using the method of batch means [73] to establish 

simulation confidence. Using batches equal to observations of 106 service periods, all 



7.2 Dual Buffer Analysis with a Cyclic Arrival Process 189 

simulation results are accurate to within ±0.5% for the average queue population, with 

99% confidence. 

In order to make the overestimation of the analytical method clearer, Figures 7.4 and 

7.5 show the percentage error1 in the theoretical results, measured relative to the three 

simulation results. Although the error appears quite high when the arrival rate from 

the IBP sources is low, it should be noted that this corresponds to quite small queue 

populations, as indicated by Figures 7.2 and 7.3. 

Note that the percentage error in the theoretical result decreases as the average arrival 

rate to the queue increases. The reason for this is that the impact of short term 

differences in the arrival patterns of the two queueing models is less pronounced when 

the queue populations are large. Since the higher average arrival rate of the IBP sources 

yields larger queue populations, the decrease in the percentage error between the two 

models is therefore not unexpected. This indicates that the upper bounds on_ the 

average and variance of the queue population represented by the independent queueing 

model become tighter as the magnitude of the results increase. 

We also expect the error in the independent queueing model to decrease as the number 

of sources increases. The reason for this is that as the number of sources increases, the 

probability of an arrival being generated by any one particular source decreases. This 

reduces the probability that the independent queueing model generates more arrivals 

.in one time slot than its anticorrelated counterpart, and hence the arrival processes 

of the two models become more and more similar. Figure 7.6 shows the change in 

the percentage error for the average queue population of the low priority buffer as the 

number of IBP sources (or number of input lines) increases. Using b = 3 and C = 10, 

the IBP sources are all identical, with parameters Ai= 0.35/N, ei = 0.4, and Ii= 0.7. 

Lastly, to investigate the effect of changing the cyclic source parameters, simulation 

method 1 was repeated for b = 1, 2, 5, and 7 for the same IBP parameters as used to 

generate Figures 7.2 and 7.3. The percentage error in the average queue population 

of the low priority buffer for the three values of b is shown in Figure 7. 7. Since the 

possible range of IBP arrival rates varies between the five results, the average arrival 

rates used to obtain the simulation results have all been normalised to the available 

low priority capacity (1 - b/C) in order to show all the results on the same graph. 

Note that as b increases, the error curve approaches a straight line result with a slope 

1We will use the term 'percentage error' here instead of 'relative error' as used in the rest of this 

thesis because we are measurmg the performance of the theoretical result relative to the simulation 

result, which 1s inherently inaccurate. We will reserve the 'relative error' term for comparisons with 

exact measures. 
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Figure 7.4: Error in the theoretical average queue population of Figure 7.2 expressed as 

a percentage of the 3 simulation averages. 
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as a percentage of the three simulation variances. 
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(in this case) of -0.33. This result is interesting and it appears, from several other 

simulations investigated by the author, that the slope of this limiting line is given by 

-1/ (N - 1) where N is the number of input lines. How and why this straightline 

behaviour occurs is not understood, however it does provide an upper limit to the error 

in the independence assumption for the average queue population. Looking at Figure 

7.6 we see that 0.5/(N -1) is indeed an upper limit for all three simulation methods2 . 

This study has not been a particularly intensive one due to the long run times of the 

simulations. It has shown however that the independent source queueing model can 

provide reasonable upper bounds on the average and variance of the queue population 

for the low priority buffer, particularly when the queue load is high or the number of 

input lines is large. 

7.3 Dual Buffer Analysis with IBP Sources Only 

The Bernoulli arrival process for the active state of the geom-geom IBP' model arises 

partly from the assumption that the splitting process within a network switch can 

be reasonably well described by a random allocation of the incoming arrivals to the 

observed output [126, 142]. We have already mentioned that the assignment of high 

pr low priority to the arrivals of a dual buffer system is also equivalent to a splitting 

process. Given that the initial splitting was based on an independence assumption, it 

is natural to assume a corresponding random assignment of priority. We will look at 

such an analysis for a dual buffer queueing system subject to arrivals from geom-geom 

IBP sources in the following. 

Autocorrelated destination splitting and priority splitting require more than two states 

to describe the corresponding IBP processes. In this thesis we have considered only 

two state models, although three state models have been investigated in [16, 68, 124], 

and most recently by Steyaert and Xiong in [126]. 

7.3.1 Random Priority Splitting 

Consider a non-blocking, output queueing ATM switch with N input lines and N 

output lines, all having the same transmission speed. Arrivals on switch input line i 

(prior to passing through the interconnection network of the switching mechanism) are 

assumed to be described by a geom-geom binary process with average arrival rate Ai 
2We have mentioned that the slope of the limiting line is given by -1/ (N - 1) where the i_ndependent 

variable is the normalised average arrival rate. Since the example problems of Figure 7.6 all use an 

average arrival rate of half the available capacity, the upper limit of 0.5/ (N - 1) follows directly. 
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and autocorrelation parameter Ii· The switching mechanism directs incoming cells to 

each of the N output ports at random, according to a specific weighting scheme. Let ()i 

denote the probability that an arrival from input line i is directed to the output port of 

interest. The arrival process to this port from input line i will therefore be described by 

a geom-geom IBP process with an average arrival rate given by Ai = ()iAi, an average 

arrival rate in the active state of ()i, and the same3 autocorrelation parameter as the 

input line process of Ii· 

At each output port, arrivals from input line i are assumed to have a high priority with 

probability hi, independently of past or c?ncurrent arrivals. Thus the arrival process 

to the high priority queue can also be described by the superposition of N geom-geom 

IBP sources, where this arrival process from input line i has an average arrival rate of 

hi.Ai = hi()iAi, an average arrival rate in the active state of hi()i, and again the same 

autocorrelation parameter as for the entire input line of 'Yi· 

Thus we know exactly the parameters of the arrival process for both the entire output 

port, and for the high priority buffer of the output port. Since the high priority buffer 

is assumed to receive exhaustive priority service (i.e. arrivals to this buffer receive 

non pre-emptive head of line priority), its queue population statistics can be obtained 

directly from the high priority arrival process. Corollary 2.2 can the be applied to 

obtain the equivalent statistics for the low priority buffer from the total arrival process 

as 

L -L -L QJow - Qboth %1gh (7.1) 

and 

(7.2) 

where Lq10w denotes the average queue population of the low priority buffer, L%,gh the 

average for the high priority buffer, and L%ath the average queue population for a single 

buffer queueing system subject to arrivals from both the high and low priority arrival 

processes - which in this case is simply given by the arrival process to the output port 

prior to the priority splitting4 . The variance terms are similarly defined, but involve 

the covariance of the low and high priority buffer populations. Unfortunately, single 

buffer theory cannot give this covariance term directly, and hence for the low priority 

buffer we can only determine the average and an upper limit on the variance of the 

queue population. 

3 The definition used for the autocorrelation parameter (which is based on the eigenvalues of the 

state transition probability matrix m Chapter 3) means that it does not change under random sphttmg. 
4 Corollary 2.2 (and its associated theorem) does not rely on the high and low priority buffer arrival 

processes bemg independent. 
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Figure 7 .8: Average queue populations for the low and high priority buffers- as a function 

of the priority splitting probability hz. The simulation results confirm both the IBP 

theory of Chapter 3 and Corollary 2.2 as it applies to the average queue population. 

A Simple Example 

As an example we consider an ATM switch as described above, having 8 input and 

output ports, and using dual buffer priority queueing at the outputs. For simplicity 

we assume that the arrival processes at each input port are identical, as are all the 

splitting probabilities. Of course in practice this will rarely be the case, but the results 

apply equally well to both the homogeneous and heterogeneous cases, and the identical 

source assumption allows us to easily specify the arrival processes using the minimum 

of parameters. For this example we will use Az = 0.4, 'Yz = 0.8, and ei = 0.25 (resulting 

in each Az = 0.1), and will vary hz to observe the priority behaviour. 

Figure 7.8 shows the average queue population for the two buffers as a function of 

the hi value, obtained from both simulation and from the IBP theory of Chapter 3. 

The simulation results are all accurate to within ±0.5% with 99% confidence, and 

were obtained using a dual buffer arrangement - that is, they do not rely in any way 

on Corollary 2.2. Note that the low and high priority average queue populations are 

symmetric. 

In [144], Zhang performs the fluid flow analysis of a dual buffer queueing system using 

random priority splitting, proposing the equivalent of Corollary 2.2. In a numerical 
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Figure 7 .9: Queue population variance for the low and high priority buffers as a function 

of the priority splitting probability hi for the example problem. Although we can calculate 

the variance result for the high priority buffer using single buffer analysis, we can only 

approximate the result for the low priority buffer. 

example, Zhang observes that the sum of the low and high priority average queue 

populations appears to be invariant to the splitting probability, but does not recognise 

the reason for this. From Corollary 2.2, the sum of the av~rage queue populations of 

the two buffers will be equal to a single buffer with arrivals from the combined high 

and low priority arrival processes. Since the combined arrival process is simply the 

arrival process before the priority splitting, the average queue population of this single 

buffer equivalent must be invariant to the splitting probability, and hence we have the 

symmetrical nature of Figure 7.8. 

Figure 7.9 shows the corresponding queue population variances for this example prob­

lem. However, since we cannot obtain the exact value of the population variance of the 

low priority queue using single buffer analysis methods alone, we have instead included 

an analytical approximation for the variance by assuming that the low priority buffer 

receives service independently of the high priority buffer (zero covariance). Obviously 

this method overestimates the low priority buffer result by a considerable margin in 

some cases. 

In addition to the average and variance of the queue population (and in turn of the 

queueing delay) the other main parameter of interest is the loss probability expected 
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Figure 7.10: Loss probabilities for the high and low priority buffers obtained from simu­

lation as a function of the priority splitting probability hi for the example problem. The 

low priority traffic is implemented with push out priority over the high priority traffic, 

which gives it the better loss performance. 

from this queueing system for finite buffer capacities. In chapter 6 we discussed the 

fact that the overall loss performance for a dual buffer system could be estimated 

from its single buffer equivalent provided that the available buffer capacity was fully 

utilised5 . The individual buffer loss probabilities can only be estimated however when 

either there is no push out priority (equal loss probabilities), or when the high priority 

arrivals have push out priority over the low priority traffic. The alternative, where low 

priority arrivals can push out queued high priority arrivals precludes this individual 

buffer loss estimation. 

Figure 7.10 shows the loss probabilities for the low and high priority buffers obtained 

from simulation of the example problem using total buffer capacities of 8 and 16 cells. 

Low priority arrivals, representing loss sensitive traffic, are assumed to have push out 

priority over the high priority arrivals, resulting in better loss performance for this 

buffer. We have used these small buffer sizes to keep the loss probabilities large enough 

to be obtained accurately using simulation without requiring excessively long observa­

tion times. Larger buffer capacities would be available in actual switches however, with 

corresponding smaller loss probabilities. 

5 Cells are only lost from the system when there is no capacity available in either of the switch output 

buffers 
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Although we have not included it in the Figure, the relationship between the individual 

and combined buffer loss probabilities, given by equation (6.38) holds in this case as 

(7.3) 

where 6ow and eh1gh are the loss probabilities from the low and high priority buffers 

respectively, and eboth is the loss probability from the single buffer equivalent system, 

which is independent of hi. Thus at hi = 0 we have 6ow = eboth while at hi = 1 we 

have ehigh = eboth· In general however we cannot say what the individual buffer loss 

probabilities will be. 

7.4 Modelling the Outputs of Queues 

An important requirement for modelling networks of queues is being able to describe 

the merging and splitting processes of the carried traffic as it crosses the network. 

As we discussed in Chapter 1 the introductory chapters, the exact splitting process is 

the most difficult of these to describe analytically, and few results are available. The 

merging process is basically described by the queueing of input traffics at the buffers 

of the network switches, and we have looked at this in terms of queue populations and 

delays throughout this thesis. Another part of the merging process which we have not 

so far addressed though is the output traffic resulting from the queueing in the switch 

buffers. This output process is the aggregate of the individual traffic streams that are 

split again at the next switching element. 

In this section we will look at how this aggregate output process can be described 

using various traffic models. Although many studies have been devoted to statistical 

considerations of the behaviour of the output process [49, 50, 102, 119], here we are 

concerned only with how the parameters of a particular model can be matched to the 

output process resulting from a queueing system. The parameter matching technique 

investigated here is based on Theorem 2.1 and its associated corollaries, and provides 

a general numeric based approach. The number of parameters that can be matched 

depends on the complexity of the model and how much is known about the input 

processes and the queue behaviour. In one particular case, which we discuss in section 

7.6, the approach provides the moments of the idle and busy periods of the queue 

output process in analytic form. 

Once the aggregate or merged stream is modelled or described in this manner, the 

splitting process may be accommodated by applying a suitable operation to the merged 

stream (such as the independent splitting that is the basis of the two-state IBP model, 

or the correlated splitting process described in [124] for example). 
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Note that we will only deal with stable infinite buffer queues in this study. Some of the 

results may also apply to finite buffers, but the infinite buffer assumption will probably 

hold quite well in those situations where the loss probabilities are very low (such as 

recommended for the B-ISDN). 

7.4.1 The Parameter Matching Method 

The basic idea behind the following method is that the output process can be modelled 

by describing how it affects the behaviour of a queue subject to arrivals from this 

process. Since we are using discrete-time models in which the slot time is equal to 

the service period, a queue with arrivals from a previous queue only will have all its 

population moments equal to zero, which is not much help. Thus we introduce an 

additional arrival process to overcome this problem. This additional arrival process is 

called the test source although properly speaking it is not the one being tested. To 

avoid increasing the computational requirements by too much we keep the test soµrce 

to its simplest form by making it a Bernoulli process with parameter Atest. 

To avoid any confusion we will refer to the queue for which we wish to model the 

output process as the queue under study, or the target queue. The queue which is used 

to test the model is referred to as the test queue. We will assume that there are N 

sources generating arrivals to the target queue, and that the parameters of these sources 

are known in sufficient detail to determine the queue behaviour. For convenience the 

total average arrival rate from these N sources will be denoted by ,\. The model for 

the output of the target queue will be simply referred to as the output model, with 

parameters identified by a subscript 'model'. 

Suppose that the queue under study is actually the higher priority buffer of a dual 

buffer queueing system6 and that the lower priority buffer is the test queue, which is 

subject to arrivals from the test source only. From the way the dual buffer system is 

implemented, the test queue only receives service when the target queue is empty prior 

to the service instant. Similarly, since the target queue always receives service if it has 

queued arrivals, the presence of the lower priority buffer will be completely transparent 

to the target queue and will not affect its performance. 

From the point of view of the test queue it is unimportant whether its services are 

determined by the target queue or by a sufficiently accurate model of that queue. In 

either case its measurable queueing performance should be the same (see Corollary 

6 Although we have not discussed this here, 1t 1s possible to extend this approach to target queueing 

systems involving multiple buffers themselves All that is important is that the test queue is the lowest 

priority buffer. 
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2.3). The aim of this modelling approach then is to find the parameters of the model 

that provide the same average population for the test queue as the target queue causes. 

In many cases higher moments of the queue population may also be required in order 

to match all the parameters of the model. In the following procedural outline we only 

specify the average and variance of the queue population, but the same approach applies 

in general. 

1. Obtain the average Lqtest and variance Var [Lqtestl of the queue population for the 

test queue when the service interruptions are caused by the target queue. 

2. Assign initial parameters to the output model, and calculate the approximated 

values for the average and variance of the queue population for the test queue 

when the service interruptions are caused by the output model. We refer to this 

queue as the approximation queue to distinguish it from the actual test queue, 

and denote its population average and variance by Lqapprox and Var [LqapproJ re­

spectively. 

3. Adjust the model parameters (using some appropriate method) and return to 

step 2 until the difference between Lqapprox and Lqtest and between Var [LqapproJ 

and Var [Lqtestl is acceptably small. 

We have not so far specified how the average and variance of the population for the 

test queue are calculated. From Corollary 2.2 we have 

(7.4) 

for the average queue population, where the 'both' subscript indicates the population 

observed for a single buffer queue subject to arrivals from the N sources of the target 

queue and the test source as well. Calculation of the variance of the test queue popu­

lation is not quite so straightforward however due to the presence of a covariance term 

in the equivalent expression 

In this thesis we have not looked at how this covariance term can be calculated, leaving 

at as a topic for future research. A loose upper bound for the test queue variance can 

be obtained however by assuming the covariance term is zero (as was done in Figure 7.9 

for the random priority assignment example). Thus to calculate the average test queue 

population, and an upper bound for the corresponding variance, requires the solution 

of the population moments for the target queue, and for a combined arrival process 

queue involving a total of N + 1 sources. 

Calculation of the solutions using the output model are similar, but are simplified 

by the fact that high priority queue, which causes the service interruptions of the 
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approximation queue, has a population average and variance of zero ( cf. Corollary 

2.2). Hence 

Lqapprox = Lqtest+model (7.6) 

and 

(7.7) 

where the 'test+model' subscript indicates that the output model and the test source 

are treated as the two arrival processes to the queue. Thus each repetition of step 2 in 

the parameter matching process will involve the analysis of a queueing system subject 

to arrivals from just two sources, enabling this calculation to be performed very quickly. 

In order to choose an appropriate value of Atest we note that it should be large enough 

that the average and variance of the test queue are of significant magnitude. Noting 

that these measures will increase rapidly as (.\ + Atest) approaches 1, a good choice of 

Atest might be 

Atest = max [0.9 - A, 0.01] (7.8) 

so that the average arrival rate to the combined queue will be at least 0.9 when ,\ is 

small, but for A close to or greater than 0.9, Atest reduces to 0.01. As (.\ + Atest) gets 

very close to 1.0 (say when A ~ 0.99) the extreme sensitivity of the queue population 

statistics to variations in the average arrival rate also increases, and smaller values of 

Atest could be easily used. Note also that an appropriate output model should give 

the same performance regardless of the magnitude of Atest and this can be used as a 

measure of the accuracy of the model. 

Probably the hardest step in the matching process will be determining which parameters 

are to be adjusted in step 3, and by how much. Some model parameters can be 

calculated from the parameters of the N sources feeding the target queue (such as 

the average rate Amodei of the output model which will be equal to .\) but the rest 

must be calculated using a suitable search algorithm. If there is only one unknown 

parameter, with a specific range of possible values, a binary search might be used. For 

more than one unknown parameter however, multi-dimensional methods such as the 

Newton-Raphson will be required. 

As an example, and opportunity to discuss some specifics, the following section looks 

at a queueing system subject to arrivals from geom-geom IBP sources, modelling the 

output process by a geom-geom IBP also. 
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7.5 The Geometric-Geometric IBP as an Output Model 

In Chapter 3 we looked at queues fed by geom-geom IBP sources. If there is only a 

single source, then the queue output process will also be a geom-geom IBP process. 

In this section we will look at how well the geom-geom IBP performs as a model of 

the output process of this queueing system when the number of sources N is greater 

than one. Note that the example queueing problems we use here all involve identically 

distributed sources. This is merely for convenience of representation - the observations 

apply equally well to the more general heterogeneous case. 

The geom-geom IBP model is described by three parameters - its average arrival rate 

Amodei, peak arrival rate Omodeb and autocorrelation parameter /model· Of these the 

simplest to specify is Amodei which will be equal to the average departure rate of the 

target queue, which in turn is equal to its average arrival rate A. Thus only Omodel 

and /model need to be found to match Lqapprox to Lqtest and Var [Lqapprox] to Var [Lqtestl· 

Although this is a straightforward task when N = 1, we do not even know whether 

there is a solution for these two model parameters that will satisfy both the average 

and variance at the same time for N > 1. 

Figure 7.11 shows the average and variance parameter curves for an example queueing 

problem having 4 identical sources for two different values of Atest. The curves were 

generated by selecting a value of Omodel and then finding the value of /model (using a 

binary search) that matches either the average or the variance of the approximation 

queue to that of the test queue7 . Two facts are immediately apparent from the Figure 

- there is no Omodel and /model pair that matches both the average and the variance 

simultaneously, and the solutions vary considerably with Atest. Both of these observa­

tions indicate that the geom-geom IBP is a poor model for the output process of these 

types of queueing problems. 

In Chapter 4 we saw that the variance of the queue population when each Oi = 1 was 

determined by the first three moments of the active period of the autocorrelated sources, 

and we can surmise that the same is probably also true for the output process. Figure 

7.12 shows the autocorrelation coefficient function R(m) for the output process of an 8 

source example problem, as well as for two particular solutions of the geom-geom IBP 

model parameters. Obviously the actual output process consists of more than a single 

geometric component, which suggests that at least a three-state IBP model would be 

required to be able to match the variance. 

7In order to establish the exact parameter curves for the variance m Figure 7.11, simulat10n was 

used to obtain each Var [Lq,estl rather than using the loose upper bound values calculated from the 

single buffer theory under the zero covariance assumption. The simulation results were accurate to 

within ±0.253 with 993 confidence 
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Figure 7.11: Parameter curves for an example problem involving 4 identical sources 

(>.i = 0.15, Bi = 0.3, /i = 0.5) for two different values of >-test· The parameter curves 

describe those values of Bmodel and /model that match either the average or the variance 

(as specified) of the approximation queue to the test queue. 
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function is also shown for two geom-geom IBP models of the process with parameters 

as indicated by the legend. 
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curves for the average queue population. The results are for an example problem in­

volving 4 identical sources with Ai = 0.1, Oi = 0.2, /i = 0.5. Daley's result is given in 

this case by !model = 0.25 I ( emode1 - 0.15). 

If a geom-geom IBP is to be used as the output model however, we need to decide which 

combination of Omodel and /model is the 'best' one to use. From Figure 7.11 we see that 

there is one point at which the average population parameter curves for Atest = 0.1 and 

Atest = 0.3 cross. It would be convenient if the parameter curves for every value of Atest 

passed through this point, because it would imply that this solution for the IBP model 

parameters was invariant to Atest, which is desirable for an output model. There is no 

actual point that all these curves pass through, but instead there is a region where these 

curves intersect. The size of this region is determined partly by the average arrival rate 

to the target queue - if).. is close to 1, the region is quite small, while for small ).. 

the region can be quite large. Figure 7.13 illustrates this region effect for the average 

population parameter curve for an example queueing system involving 4 identical IBP 

sources with ).. = 0.4. 

We see that as Atest increases towards 1 - ).., the parameter curve approaches what we 

have termed Daley's result in Figure 7.13. This result is based on an observation by 

Daley in [19] which we will explain in more detail in the following section. It is not 

known why in particular Daley's result provides this upper limit on the behaviour of 

the average population parameter curve, but all our studies have shown this to be the 

case. 
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Another observation that can be made from Figure 7.11 is that the difference between 

the parameter curves for the average and variance decreases as >-test increases. In the 

limit as Atest tends towards 1 - >. (the approximation queue utilisation tends to unity) 

these two curves becomes equal, coinciding with the parameter curve described by 

Daley's result. In section 4.3.4 we investigated the use of a two-state binary model 

for describing the variance behaviour of three and four-state binary models. It was 

shown there that the difference in the variance between the two approaches could be 

roughly bounded by a quantity that was independent of the actual variance magnitude. 

The consequence of this was that the relative error in the two-state model decreased 

as the variance magnitude increased. In terms of the parameter curves then, as >-test 

tends towards 1- >., and the magnitude of the test queue population variance increases 

towards infinity, it is perhaps not surprising that the two parameter curves tend to 

coincide. 

7.5.1 Daley's Result 

Define the counting process N(t) to be the number of events (arrivals or departures) 

occurring in an arbitrary time interval of t slots. The asymptotic variance ratio of the 

process N(t) is defined as 

v = lim ! Var [N(t)] 
t--+Eoo t (7.9) 

for which it can be shown (using the well known result for the variance of the sum -

see [6] for example) that .-·· 

v = 0'
2 

( 1 + 28) (7~.10) 

where 0"
2 is the variance of the process and Sis the single-sided sum of the autocorre­

lation coefficient function R(m), given by 

00 

S= L R(m) (7.11) 
m=l 

In [19], Daley points out that the asymptotic variance of the net arrival process to an 

infinite buffer queue is equal to the asymptotic variance of the aggregate server process, 

or Vout = Vin 8 . In terms of the single-sided autocorrelation coefficient function sums, 

this becomes 
2 2 2 

(Jin - O' out O'm S 
Bout = 

2 
2 + -2 - in 

O'out O' out 
(7.12) 

where O"fn is the variance of the net arrival process and O"~ut = >. (1 - >.) is the variance 

of the server output process, where >. is the average arrival rate. 

8Daley actually discusses this result m terms of the index of dispersion of intervals (IDI), while the 

definition of the asymptotic variance ratio used here is closely related to the index of dispersion of 

counts (IDC). The IDC and IDI have the same limiting behaviour however (40] and so the result still 

holds. 
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Daley's result has been applied elsewhere in the literature for modelling output pro­

cesses. In [4], Addie and Zukerman used the result to obtain the parameters of a 

Gaussian output model for queues fed by Gaussian sources, constructing a solution for 

a tree type network (only merging, no splitting). Theimer [131] used the result to show 

that for a network of ATM switches with equally loaded inputs and outputs and ran­

dom path selection, the asymptotic variance of the internal network traffic approaches 

that of an M/D /1 queue as the number of switching stages passed through increases. 

An alternative approach used by Stavrakakis in [124] matches the short term autocor­

relation behaviour of the output process. Stavrakakis assumes that the output process 

of the queue can be modelled by a geom-geom binary process (so that Bmodel = 1) and 

then calculates /model from the probability that the system is empty in two consecutive 

time slots. This calculation requires the empty system probability vector to be known, 

which may present some difficulties when the number of sources is large. In addition, 

Stavrakakis' approach does not always provide 'legal' values of /model - for example, 

the queueing problem of Figure 7.13 results in a /model = 1.0802 using the calculation 

method in [124]. 

To apply Daley's result to the IBP arrivals and output model problem, we start by 

noting that the autocorrelation coefficient function for geom-geom IBP source i is given 

by 

f4(m) = (:i ~~ii) ,Jml (7.13) 

and similarly for the output model by 

R ( ) _ ((:}model - A) Jml 
model m - l _A 'Ymodel 

Combining these using equation (7.12) then yields 

(1 - A) Bout 
/model = n , (l ') S Umodel - I\ + - I\ out 

(7.14) 

where 
M2 -A 1 ~ Ii 

(1- A) Bout= 2A +":\~Ai ((;li -Ai)~ 
i=l 'Yi 

(7.15) 

and where A and M2 are the first and second moments of the combined arrival process. 

Thus we have a relationship between (:}model and /model based on matching the asymp­

totic variance of the target queue arrival process to the parameters of the output model 

using Daley's result. 

We have already noted that this result provides a limiting parameter curve for the 

average queue poJ?ulation, and as such passes through that region in which changes 

in Atest have the least effect on the model parameters. Thus, the intersection of the 

parameter curve described by Daley's result and any other parameter curve (say from 
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Figure 7.14: Comparison of the relative error in the average queue population of the 

approximation queue compared to the test queue as a function of Atest for three sets of 

model parameters. The arrival process to the target queue consists of 4 identical sources 

each with Ai,= 0.1, ()2 =.0.2, and [z = 0.5. 

a small value of Atest) will be a solution for the IBP model that will be largely invariant 

to Atest· That is, the parameters obtained from this intersection point provide anJBP 

model that will be fairly accurate, in terms of the average queue population, for any 

value of Atest· This intersection point is easily found by performing a linear search on 

()model such that, with [model calculated from equation (7.14), we obtain Lqapprox = Lqtest. 

To verify that this solution for Omodel and [model does provide the 'best' solution in 

terms of invariance to A test, Figure 7 .14 shows the average queue population for an 

example queueing system9 , where the target queue is fed by 4 identical IBP sources 

with ).. = 0.4, and where Atest is varied from 0.05 to 0.55. The three solutions for the 

geom-geom IBP output model were calculated from the average parameter curve using 

Atest = 0.3 (the midpoint of the range of Atest)· They correspond to points obtained 

from roughly halfway along the parameter curve (Omodel = 0.7, [model = 0.4867), the 

intersection with Daley's result (Omodel = 0.8606, [model = 0.3518), and the curve's 

endpoint (Omodel = 1.0, [model = 0.2836). 

Daley's result provides two points on the relative error curve for the average queue 

9We are using fairly small values of >. here because the effects we are trying to illustrate are less 

pronounced at higher utilisations. 
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population that are exact - one at the point at which the model is evaluated (in this 

case at Atest = 0.3) and the other at Atest = 1 - >. (an unreachable point only since we 

restrict ourselves to stable infinite buffers). This could be achieved in general for any 

solution by finding the intersection of the parameter curves for any two Atest values but 

Daley's result is computationally more efficient and a good deal easier to implement. 

Earlier we mentioned that it was best to choose Atest large enough to make the mag­

nitude of the test queue population significant. It was assumed that the model would 

not be susceptible to this choice explicitly - only indirectly due to round off errors if 

extreme values of Atest were used. The geom-geom IBP model is a poor one in the sense 

that its parameters are sensitive to Atest but we have shown that the use of Daley's 

result can improve the situation somewhat. In terms of-a suitable choice of Atest then, 

Figure 7.14 suggests that the midpoint between 0 and 1 - >. will probably be best in 

this case. 

7 .5.2 Some Trends in the Geometric-Geometric IBP Output Model 

We are interested in what general trends may be identifiable in the output modelling 

process - in particular for the Omodel parameter. Stavrakakis proposes in [124] that 

the output process can be well modelled by a geom-geom binary process, which would 

imply Omodel = 1. If we can make this assumption, then the problem of finding /model 

is considerably simplified. For example, Daley's result provides an immediate value 

for this quantity through equation (7.14) without actually requiring the evaluation of 

the target or test queue populations. Alternatively, since Atest is a marginal arrival 

process, the average queue population of the approximation queue will be given by the 

closed form equation (4.11), which can be easily rearranged to provide /model in terms 

of Lqtest. The difference in the /model value obtained from these two solution methods 

would indicate to some degree how well the assumption that Omodel = 1 applied to this 

problem. 

To understand when this assumption might be used, we will begin by studying the 

effect on the calculated value of Omodel of varying the input parameters of a queueing 

system fed by four identical geom-geom IBP sources. These Omodel values (and all those 

obtained in this section) are obtained from the intersection of Daley's result with the 

average queue population parameter curve, using a Atest value equal to the midpoint 

between 0 and 1 - >., as we suggested above. Figures 7.15 and 7.16 show Omodel as a 

function of the Oi and 'Yi values respectively. 

In Figure 7.15, we see that Omodel increases towards 1 as ei increases, but also increases 

towards one as Oi tends toward >.i from above. At both extreme values of ei, Omodel 
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Figure 7.15: Variation in the calculated value of Omodel as the (}i parameter of the four 

identical input sources of a queueing system is varied from its minimum value of Ai to 

its maximum value of 1. 
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Figure 7.16: Variation in the calculated value of Omodel as the Ii parameter of the four 
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Figure 7.17: Changes in the empty system probability vector for an example queueing 

problem involving 4 identical IBP sources with Ai = 0.1 and (Ji = 0.2 for the indicated 

/i values. 

takes on the value of one, as it does when /i = 0 in Figure 7.16. As (Ji tends towards 

Ai, the proportion of time that the source spends in its silent state decreases towards 

zero, meaning that the source behaviour approaches that of a Bernoulli process with 

parameter Ai, which is what happens when /i = 0 also. Thus the results indicate that 

when the inputs are all Bernoulli, or all geom-geom binary (with ()i = 1) then the 

output process is described by a model with parameter ()model = 1. The reason for this 

will be explained in section 7.6. 

From Figure 7.16 we see that ()model decreases as /i increases. The reason for this 

is not known exactly, but is probably related to the fact that increasing Ii increases 

the probability that there will a single source active with an empty queue available. 

This will cause a decrease in ()model because with only the one source active, once the 

queue empties, departures will be caused by arrivals from this one source, and hence 

for this interval, ()model will tend towards this (Ji only. We can provide some support 

for this claim by investigating the changes in the empty system probability vector as 'Yi 

increases. Figure 7.17 shows the entries of the empty system probability vector for two 

values of /i when Ai = 0.1 and (Ji = 0.2. We see that the probabilities at states 1, 2, 4, 

and 8 (which correspond to a single source being active) all increase as /i increases. 

The total load on the queue in Figures 7.15 and 7.16 is quite low (A= 0.4 and A= 0.6), 
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Figure 7.18: Scatter plot of Bmodel plotted against >. for 10, OOO randomly generated 

queueing problems involving 4 sources. The autocorrelation parameters for each source 

in each case were chosen from the range 0 ::; / i < 0.99. 

although it is readily apparent that the higher queue load results in Bmodel values closer 

to one. This is not unexpected , since higher average arrival rates will require larger 

values of ei , which as indicated by Figure 7.18, will result in larger Bmodel values. 

To explore this idea in more detail, Figure 7.15 presents the Bmodel values obtained 

from 10, OOO randomly generated queueing problems using 4 sources, plotted against 

the corresponding total average arrival rate. We see that for four sources, Bmodel is 

consistently near 1 only for average arrival rates greater than about 0.6 . 

As a final consideration, we will look at the change in Bmodel as the number of sources N 

increases. Again randomly generated queueing problems are used, but the total average 

arrival rates are restricted to>..= 0.4 and>.= 0.6. Figure 7.19 shows the average Bmodel 

values observed for 1000 problems for each N froin 1 to 7. As we have seen, the greater 

the arrival rate to the queue, the higher the value of Bmodel on average. In addition, 

the more sources generating arrivals to the queue, the higher the value of Bmodel also, 

although this trend in the average does not seem to increase much after 4 sources or 

so. 

The fact that Bmodel tends towards 1 as either the number of sources or the source 

activity increases lends support to Stavrakakis' assumption that the output process 

can be well modelled by a geom-geom binary process (at least as far as the average 
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Figure 7.19: Average value of Omodel observed for 1000 randomly generated queueing 

problems, as a function of the number of sources. The total average arrival rate from 

the sources is restricted to the values indicated, but otherwise the parameters of the 

individual sources are chosen at random, with the restriction that 0 ~ 'Yi < 0.99. 

queue population at following stages is concerned). We have not explicitly looked at 

the magnitudes of the errors in the average queue population predicted by assuming 

Omodel takes on the value of 1, but the results of Figure 7.14 suggest that these errors 

will most likely be small. 

7.6 Server Idle and Busy Periods for Phase-Geometric 

Binary Sources 

If the arrival processes to the target queue are all marginal (not autocorrelated) or 

alternatively if they are all phase-geom binary ( ei = 1) then closed form solutions for 

the average and variance of the population exist. Thus, for an appropriate model, these 

closed form solutions will allow us to obtain exact descriptions for the moments of the 

idle and busy periods of the queue output. 

Consider an infinite buffer, discrete-time G/D/1 queue with arrivals from an irreducible, 

time invariant Markov modulated process (a D-BMAP) having the property that all 

states except one generate at least one arrival per time slot. It is easy to see that 

the idle period distribution of the departure process from this queue will be geometric, 
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since only one state can generate zero arrivals per time slot. Furthermore, the durations 

of the idle period must be independent of those of the busy period because they are 

governed entirely by a single probability, and transitions from this state to other states 

must also have fixed probabilities. 

The development of the system population for this problem can be written in matrix 

geometric form [97] as an irreducible stochastic matrix with an infinite state space. 

The empty system state must therefore be reachable from every other system state, 

and further must have a non-zero stationary probability. Under these conditions the 

time to return of the empty state follows a phase-type distribution [95]. Since a non­

empty state corresponds to a single departure from the queue in each time slot, the 

output process has a phase-geom binary distribution 10 . 

The superposition of a number of phase-geom binary processes has only one state that 

generates no arrivals. Similarly, a marginal arrival process can be described by a D­

BMAP having a single state (which can generate zero arrivals). Thus, the output 

process for these types of queueing problems will be phase-geom binary,. which makes 

it the obvious choice for the output model. A phase-geom binary process with m 

distinct states requires m (m - 1) parameters to exactly describe its state transition 

parameters. Fortunately, it is not necessary to specify these probabilities explicitly in 

order to match the average and variance of the test queue - only the average arrival 

rate and the moments of the active state's phase-type distribution are reguired. 

More specifically, the idle period moments and the first moment of the busy pe~iod, 
which can be obtained without the use of a test queue, require the average arrivai"rate 

and the first moment of the active period of each input process to be known. The second 

moment of the server busy period is obtained from the average population of the test 

queue, which requires that the second moment of active period of each input process 

also be known. The third moment of the output process is calculated from the variance 

of the test queue population, which requires the third moment of the active periods 

of the input sources to be known. Unfortunately we do not yet have a closed form 

expression for this quantity, due to the covariance between the low and high priority 

buffer populations being unknown. 

An alternative is to describe each source by only three parameters - the average arrival 

rate, the ratio of the second moment of the active periods to the first, and similarly the 

ratio of the third moment to the first. These are the quantities required to calculate the 

average and variance of the queue population in the single buff er theory, and are the 

10If the discrete-time Markov arrival process has more than one state m which zero arrivals can be 

generated (such as when IBP sources axe used) a similar argument will show that the server idle periods 

also have a phase-type distribution, but the busy and idle periods will no longer be independent. 
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same parameters that can be obtained for the departure process given the test queue 

population statistics. The moments of the idle period (which are not actually required 

in the queue population calculations) will not be known in this case however since the 

first moments of the input active periods are not specified. 

For notation we will indicate the parameters of the ith phase-geom binary source ( i = 
1, 2, ... , N) by Ai for the source's average arrival rate, and 'r/i,r for the rth moment 

of the active period of this source. The moments of the idle period for source i are 

similarly denoted by -Oi,r· The autocorrelation parameter for source i introduced in 

Chapter 4 is defined by 
2 

T - 1 - ---~--~ 
i - (1 - Ai) (~ + 1) 

T/i, 1 

(7.16) 

which does not require 'r/i,1 or 'r/i,2 to be explicitly specified, only their ratio. The output 

process will be indicated by the subscript 'out' rather than by the 'model' term used 

previously because the model is exact, and the properties of the model are equal to the . 

properties of the output process. 

7.6.1 Idle Period Distribution and First Moment of the Busy Period 

In the following we will use some of the notation of Appendix C as it applies to phase­

geom binary processes. In addition, those results that are simply presented here without 

explanation can either be found in this appendix, or can be simply derived from results 

presented there. 

The phase-geom binary process describing the departures of the observed buffer has a 

state transition probability matrix defined as 

A _ [ Cout 
out - To 

out 

C~utO:out ] 

Tout 
(7.17) 

where c~ut = 1 - Cout and T~ut = (I - Tout) e for the phase type distribution charac- . 

terised by probability vector O:out and substochastic matrix Tout· 

The durations of the idle (or silent periods) of this process are given by 

l n-l I 
n = Cout Cout (7.18) 

where ln describes the probability that the process is idle for exactly n periods. The 

term Cout represents the probability that the queue will be empty immediately prior to 

a service, given that the queue was empty just before the previous service. Since this 

can only occur when each source stays in its silent state we have 

N 

Cout =IT Ci 
i=l 

(7.19) 
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where Ci represents the equivalent component of Aout but from source i instead of from 

the output process. Since, for source i we have 

rearranging gives 

and hence 

N ( )..2 
) Cout = n 1 - (l _ ).. ) 

i=l 'T/i,1 i 

where the first three moments of the idle process are given in terms of Cout by 

'!90,1 

'!90,2 

'!9o,3 = 

which follow a geometric development. 

1 ' 

1 - Cout 
1 + Cout 

(1 - Cout) 2 

1 + 4c0 ut + C~ut 
(1 - Cout) 3 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

Note that equation (7.21) applies equally well to the output process, giving on rear­

rangement 

'T/out,l = (1 - .A) (1 - Cout) (7.26) 

where ).. = Aout is the average arrival and departure rate from the queue. 

7.6.2 Second Moment of the Busy Period 

Let M2 and M 3 denote the second and third moments of the stationary arrival process 

from the N phase-geom binary sources feeding the target queue. From Appendix C we 

have 

and 

N 

M2 = .A + .A 2 
- L .>..7 

i=l 

N N 

M3 =).. + 3)..2 + )..3 
- 3 (1 + .>..) L .>..7 + 2 L )..~ 

i=l i=l 

(7.27) 

(7.28) 

When the contribution from the Bernoulli test source is added to the total arrival 

process we obtain 

M2both = M2 + Atest + 2.A.Atest (7.29) 

and 

M3both = Atest + 3.Atest (.Atest + M2) + M3 (7.30) 
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where Aboth =A+ Atest, and the 'both' subscript indicates that the queue is subject to 

arrivals from both the N binary sources and the single test source. 

The solution for the average queue population Lqtest of the test queue is given then as 

where the 'target' subscript indicates the queue being studied, which is subject to 

arrivals from the N phase-geom binary sources only. The closed form solution for the 

average queue population of these problems is given by equation (4.11) and results in 

M2 + 2AAtest - A 
2 (1 - A - Atest) 

M2-A 
2 (1 - A) 

N 

- -
1
-· L Ai (A - Ai) __:Ji_ 

1- A i=l 1 - Ii 
(7.31) 

The average population of the approximation to the test queue is given by the equivalent 

measure of a queue subject to arrivals from both the test source and the output process 

model. Thus from equation (4.11) we obtain 

L _ AAtest 
Qapprox - (1 - A - Atest) (1 - /out) (7.32) 

where /out is the autocorrelation parameter of the output model. For the output model 

to provide exactly the same behaviour as the target queue in terms of the average queue 

population we require Lqapprox = LQtest and hence 

/out 
1 - lout 

(7.33) 

which is independent of Atest as desired. 

Note that if the first moment of the active period for each source is known, then 77out,l 

can be obtained from equations (7.26) and (7.22). The second moment of the busy 

period of the output process is then given by 

( 
1 + A 2 ( lout ) ) 

77out,2 = 77out,l l _ A + l _ A l _ lout (7.34) 

7.6.3 Third Moment of the Busy Period 

The same method used to calculate the second moment of the busy period of the queue 

output process can be applied to the queue population variance to obtain the third 

moment of the busy period. Using equation (4.56) to calculate the variance of the 



7.6 Server Idle and Busy Periods for Phase-Geometric Binary Sources 217 

approximated test queue, and equating this result to the variance of the actual test 

queue yields 

where 

"7out,3 
"lout,l 

l _ 3 (1 - A - Atest + A.2) 3 (1 - A - Atest) V [L ] 
>.. (1 - >..) (1 - >.. - A.test) + >..>..test (1 - >.) ar Qtest 

3/out (1 - Atest) 6.X 
- Atest (1 - A - Atest) (1 - /out) + (1 - A.) 2 (1 - /out)2 

3/out (>. + 2Atest - >.2 
- 5>.A.test - 2>.rest) 

A.test (1 - >..) (1 - 'Yout)
2 

3/outA (1 - >..) 

A.test (1 - A - Atest) (1 - 'Yout) 2 (7.35) 

(7.36) 

which in general means that Var [LQtestl will be unknown, since although the variance 

terms on the right are known in closed form, we have not studied the covariance com­

ponent. 

We expect that further study of this problem will result in a closed form expression 

for this covariance term, possibly from a similar approach as used to obtain the single 

buffer variance expression. 

Given that such a solution becomes available, the resulting expression for equation 

(7.35) would be quite complicated, so that numeric evaluation and substitution of 

Var [Lqtestl becomes the most logical approach to use, particularly since it is likely 

that Var [Lqtarget] will be required anyway. This approach obviously requires a suitable 

choice of Atest in order to calculate Var [LQbothl although in fact the actual solution for 

the third moment must be independent of the value of Atest chosen. 

7.6.4 Implications for Phase-Geometric Binary Queues 

Since the merged output of a queueing system fed by some number of phase-geom 

binary processes is also a phase-geom binary process, the behaviour of a network of 

queues in which there is no splitting can be completely known. An example of this is a 

network structured as a directed tree, where all the network traffic is directed towards 

the head of the tree (see Figure 7.20). 

If the parameters >.., 772/771, and 773/771 are known for every phase-geom binary process 

entering the network, the equivalent parameters of all the internal network processes 

at the outputs of the various queues can be calculated as discussed in the preceding 

sections. Then since the average and variance of the population at each of the queues 

is known in closed form (chapter 4), the behaviour of the entire queueing system can be 
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Figure 7.20: An example of a tree-type network of queues. All traffic in the queueing 

system is directed towards the 'head' of the tree (the queue on the far right in the 

diagram} in such a way that only merging operations occur. 

described exactly based on knowledge of the input processes alone. Pieloor and Lewis 

presented an example of this is [107], although only for the population average. Addie 

and Zukerman also considered this type of problem in [4], although using a Gaussian 

traffic model rather than a phase-geom binary one. 

If the network edge processes are geom-geom IBP processes rather than phase-geom 

binary processes, then it will still be possible to construct the network solution in terms 

of the average queue populations, since we have shown that it is possible to construct 

an IBP model for the output of a queue fed by geom-geom IBP processes that is quite 

accurate in the average queue population. In addition, since Omodel for the output of the 

IBP queues will tend towards 1 as the number of queues traversed increases, only those 

queues subject to arrivals from network entry traffic will incur a high computational 

cost. The others can be treated as having only geom-geom (or phase-geom) binary 

arrivals. 

Unfortunately, directed tree networks of this sort are not very practical for solving 

general networking problems, which means that this particular property of the phase­

geom binary process is much more interesting than it is useful. 
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7.7 Summary 

This chapter has considered some of the issues relating to the application of the main 

queueing theory results developed in this thesis to the performance analysis of ATM 

switches. In particular we have looked at correlation effects in the arrival processes 

for prioritised output queueing systems. The arrival processes to the queue buffers 

within the switching system can be described either by identifying and describing the 

individual traffic types traversing this switch element, or by applying a splitting rule to 

some traffic model that describes the traffic on the inputs of the switching system. Of 

the two methods, the first is perhaps more common, but is essentially flawed in that it 

disregards the correlations between arrivals from each of the various traffic classes. 

In chapter 5 it was assumed that the cyclic process describing the high priority arrivals 

in a dual buffer system was independent of the low priority arrivals, described using 

geom-geom IBP sources. This is an example of the first method mentioned above, and 

in section 7.2 we looked at how this assumption leads to overestimation of the queueing 

performance when compared to a more realistic description of the arrival processes. By 

more realistic, we mean one where the presence of a high priority arrival on any input 

line to the switch precludes a low priority arrival on the same input line. 

In contrast, splitting and priority splitting models automatically incorporate this anti­

correlation behaviour by assigning an arrival on an input line to a single output buffer. 

As an example of this type of approach, a simple ATM switch using random splitting 

and random priority was investigated in section 7.3. The single buffer queueing theory 

developed in chapters 2 to 5 is applied using Corollary 2.2 of Theorem 2.1 to provide 

the average queue population of the high and low priority queues, but can only provide 

an exact result for the high priority queue population variance. For the low priority 

queue, only a loose upper bound on the variance is provided by the relevant single 

buffer theory. 

In the second part of this chapter we looked at how Corollaries 2.2 and 2.3 of Theorem 

2.1 can be used to help assign parameters to models for the aggregate output process 

of a single buffer queueing system. The basic assumption behind the approach is to 

match the effect on the average and variance of the population of 'test' queue subject 

to arrivals from the model to that of the actual output process. To describe possible 

mixing effects in this test queue and to avoid non-zero population results, a Bernoulli 

test source was superposed with the model and output process. 

For a suitable model of the output process, the model parameters obtained using this 

approach will be independent of the Bernoulli source parameters. As an initial example, 

in section 7.5 we consider a geom-geom IBP as a model for the output process of a 
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queue fed by a number of geom-geom IBP processes. The results show that the model 

parameters are effected by the Bernoulli source arrival rate, although use of a result by 

Daley [19] can minimise this effect as far as the average queue population is concerned. 

The geom-geom IBP model, having only two states was unable to provide a good 

matching for the variance except as this quantity became extremely large. Support for 

the use of a geom-geom Binary process as the output model was also provided. 

As a further example of the parameter matching technique introduced in this chapter, 

we obtained in section 7.6 the first three moments of the idle and busy periods for 

a server subject to arrivals from phase-geom binary processes. The first and second 

moments of the busy period were shown explicitly to be independent of the Bernoulli 

test source's arrival rate. 



Chapter 8 

Conclusion 

This thesis has presented numerous results relating to the discrete-time performance 

analysis of queueing systems with application to ATM based networks. In this brief 

chapter we present a summary of the content of the work, a few topics for future 

research, and some conclusions. 

8.1 Thesis Summary 

Chapter 1 provided a basic overview of the B-ISDN, and the ATM. In these networks, 

connection admission control mechanisms are used to maximise the utilisation of re­

sources, while guaranteeing that customers receive their negotiated service quality. In 

order to perform this function, the CAC requires a means of predicting the performance 

of the network in quality of service terms. Due to the nature of buffering within the 

ATM switching elements, this task is accomplished using queueing analysis. 

After a discussion of the some of the available analysis methods, some basic theory 

relating to the discrete-time queue population analysis of an infinite buffer queue was 

developed in Chapter 2. Consideration was also given to the analysis of dual buffer, 

and interrupted service queueing systems, showing how these were related to the single 

buffer analysis. 

In Chapter 3, the queueing theory developed in Chapter 2 was applied to a queue with 

arrivals from a heterogeneous mix of geom-geom IBP sources. The evaluation of the 

average and variance of the queue population requires the solution of a linear system 

of equations, with a number of unknowns that grows exponentially with the number of 

sources. The relevant calculations can be performed very quickly for a small number 
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of sources, however computation time and memory requirements limit the maximum 

number of sources to about 12 for practical purposes. As an alternative to the exact 

solution, several approximations based on methods proposed in the literature were dis­

cussed, and their accuracy investigated using queueing problems with randomly gener­

ated parameters, across a wide range of utilisations. Although a couple of the methods 

performed adequately at high utilisations, none of the approximations performed well 

at lower utilisations. A new approximation method was then proposed, which achieves 

excellent accuracy at all utilisations. In fact the new method can be used to provide 

'near exact' results in situations where the formally exact solution cannot be applied. 

Chapter 4 was concerned with the queueing behaviour of phase-geom Binary processes, 

for which a well known closed form solution for the average queue population exists. 

By making use of the solution method used to obtain this average value, and the theory 

developed in Chapter 2, a previously unknown, closed form solution for the variance 

was obtained. 

In response to an observation in Chapter 1 that high priority traffic sources within 

an ATM network that provides delay priority may exhibit cyclic behaviour, Chapter 

5 dealt with queues receiving cyclically interrupted service. Using the interrupted 

service result of Chapter 2, the average and variance of the cyclic service queue were 

actually obtained by considering a cyclic arrival process. Since numerical difficulties 

were encountered in establishing the solution to the system of linear equations required 

by the population results, an innovative adaptive technique was presented that allows 

accurate estimations for the average and variance to be obtained even when the exact 

solution method fails. Three approximation solution methods were also investigated, 

with the new approximation of Chapter 3 shown to provide the best result accuracy. 

Chapters 2 to 5 dealt only with the queue population of infinite buffer queueing systems. 

Since real systems have finite buffer capacities, and experience losses due to buffer over­

flow, Chapter 6 considered how the average loss probability for a finite buffer system 

could be calculated from knowledge of its infinite buffer behaviour. A simple relation­

ship was proven between the tail distribution of the population for an infinite buffer 

queue with marginal arrivals, and the loss experience by the equivalent finite buffer. 

Although the result does not hold exactly for queues with autocorrelated arrivals, ex­

perimental results suggested the error was acceptably small. The accuracy of several 

approximations to the tail distribution in terms of predicted losses was then investi­

gated, and an approximation method obtained from the literature shown to provide 

good performance. The relationship of the single buffer loss probability to the loss 

probabilities of each buffer in a dual buffer system was also discussed. 

Queueing delays are another measure of service quality, and the relationship between 
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the average and variance of the queueing delay and the equivalent queue population 

measures was also considered in Chapter 6. For a single buffer queueing system with 

uninterrupted service, the relationship is straightforward, and applies equally well to 

the finite buffer case. For the low priority buffer in a dual buffer system, or a queue 

with interrupted service, Little's result applies to the average queueing delay. However 

the relationship for the delay variance is not well defined. Chapter 6 concluded with 

an example calculation for the delay variance of a queue with marginal arrivals and 

marginal service. 

The last chapter of the main section of this thesis, Chapter 7, began with a consideration 

of the correlation effects due to splitting and priority splitting within the ATM switching 

element. For the case where the high priority arrival process in a dual buffer system 

are cyclic in nature, the theory of Chapter 5 was shown to cause an overestimation in 

the population average and variance by not taking these correlations into account. The 

same problem was shown not to arise when only the geom-geom IBP model is used. 

The role that modelling the output of a queueing system plays in developing inter­

connecting networks of queues was then discussed, and a new approach to matching 

the parameters of a model to the actual output process presented. The geom-geom 

IBP model was shown to provide a poor match for the output process of a queue fed 

by geom-geom IBP sources. However, when the sources are phase-geom Binary, the 

output process was shown to also be phase-geom Binary, with parameters that could 

be directly calculated from those of the arrival processes. 

8.2 Future Directions 

In any research work of this nature, there are topics and areas of investigation that 

are identified, but that lie beyond the scope of the current task. Three such topics are 

discussed below. 

8.2.1 Developing Multi-State IBP Arrival Models 

One of the limitations of the geom-geom IBP traffic models is that it is unable to 

adequately capture variance effects at the output of a queue (see Chapter 7), and 

hence may be misrepresenting the arrival process at the input of the next queue. To 

overcome this problem, IBP models with three or more states would be required. 

In [126], Steyaert and Xiong develop a probability generating function analysis for the 

population of a buffer subject to arrivals from a number of independent but identical 
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three-state IBP sources, from which they obtain an expression for the population av­

erage. Even in a homogeneous environment, this problem does not appear particularly 

tractable. An additional problem is the number of parameters required to describe each 

source - Steyaert and Xiong's model requires eight. 

The solutions for the average and variance of the queue population developed in Chapter 

2, can be easily adapted for queues with arrivals from heterogeneous three-state IBP 

sources. However the number of states in the empty system probability vector is 3N 

for N sources, which will restrict the maximum number of sources to only about 7 or 

8. An additional complication arises if the eigenvalues of the models become complex, 

although this can be avoided by modifying the structure of the model's transition 

matrix1 . 

To overcome or reduce these numerical difficulties, the approximation method proposed 

in Chapter 3 could be used to provide good approximations to the exact results. As in 

that chapter, an extensive investigation of the accuracy of the approximation could be 

performed to provide guidelines for practical application. Although this author expects 

somewhat reduced accuracy due to the possibility of long tailed autocorrelations, the 

improvement in calculation speed will be even more pronounced than for the geom­

geom IBP case - run times of approximately 0 ( 27N) for the exact solution versus 

0 (N2) or 0 (N3 ) for the approximation. 

In order to actually make use of the three-state model in a network of queues (as would 

be the case for CAC) it is important to be able to establish the parameters to model 

the queue output process, since this is the reason given above for making use of models 

with more than two states. Methods for doing this will need to be explored. 

8.2.2 Extending the Dual Buffer Analysis 

An ATM network will only be able to provide good service to delay sensitive and loss 

sensitive traffics at high levels of network utilisation if preferential service is available 

in the ATM switches. In Chapter 2 we saw how the single and dual buffer realisations 

of an output queueing switch are related in terms of their average queue population, 

but were unable to provide the equivalent result for the variance due to the presence 

of a covariance term. Further development is required here to complete the population 

relationship between the two queueing systems. The result is important in particular 

for the purpose of modelling the output process of a queueing system (see Chapter 7) 

The variance of the delay in an interrupted service queue is also an area for further 

1Which would have the additional benefit of reducing the number of parameters per model. 



8.3 Conclusions 225 

study. In Chapter 6 we obtained the solution for random arrivals and randomly inter­

rupted service (the simplest case) but more complicated arrival processes have not yet 

been investigated. In addition, use of the delay average and variance for estimating 

high percentiles of the delay can be considered, since it is likely that the geometric tail 

property will not apply to the delay in this situation. 

8.2.3 Implementing Performance Results into a CAC Framework 

The primary motivation for the queueing performance results developed in this thesis 

is the role that these play in connection admission control for ATM networks. The 

analytical approach has considered only a single queueing node however, and although 

solutions for quality of service parameters (delay and loss) have been presented, their 

implementation in a wider CAC framework has been not been investigated. 

The models of ATM traffic used here have been chosen on the basis of the use of similar 

models in the literature, computational tractability, and a somewhat less than thorough 

understanding of the merging and splitting processes occurring in the network. In order 

to establish the practical accuracy, or otherwise of these models, an investigation is 

required into the overall performance of a simulated or actual network that implements 

CAC using the results from these models. If the network is unable to consistently meet 

QoS requirements (too many connections are being accepted) or network utilisation 

requirements (too few connections accepted) then the traffic models will be known to 

be inadequate. In either event, compensation mechanisms could then be explo~ed. 

Such a CAC framework could also be used to explore the ability of other admission 

methods, such as peak !ate or equivalent bandwidth allocation schemes, to meet the 

quality and usage objectives of the network. 

8.3 Conclusions 

In this work we have presented exact numerical solutions for the population average 

and variance of two single buffer queueing systems, and exact closed form solutions for 

a third. Due to computational limits in the exact numerical solutions, a number of 

approximate methods, including a newly proposed method, were investigated for accu­

racy. We also discussed the relationship between the queue population and queueing 

delays, and considered methods for estimating loss probabilities in finite buffer sys­

tems. The application of these results to dual buffer queueing systems, which are able 

to provide delay priority service in an ATM network, was also investigated. 
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In the context of connection admission control, we found no means of accurately pre­

dicting queueing delays that could be performed within the time frame that might be 

required for on-line calculations. A fairly accurate method for calculating average loss 

probabilities, based on a result from the literature and suitable for on-line use, was 

presented however. For other applications where on-line calculation is not required, 

the new approximation method proposed in Chapter 3 is eminently suitable, since it 

provides accurate results for queue populations and delays to be obtained where exact 

numerical methods could not normally be used. In addition, the basic structure of 

the method suggests that it could be applied to the analysis of a wide range of arrival 

processes. 

Providing practical methods for implementing connection admission control for ATM 

networks has been the drivi'ng force for this research, and in this regard several impor­

tant contributions have been made. However, a great deal more investigation will be 

required before this target can be fully realised. 



Appendix A 

Application of the z-Transform to 

the Marginal Arrivals Problem 

In the body of this thesis, the z-transform is used to determine various queue pop­

ulation statistics for autocorrelated arrival processes. In this appendix we will show 

how the discrete-time z-transform is applied to analyse an infinite buffer queue fed 

by marginal arrivals - that is, where the probability distribution of the· number of 

arrivals occurring in the current time slot is fixed, and independent of the behaviour of 

any other component of the queueing system. 

A.1 The discrete z-transform 

The discrete z-transform of a random variable x = { xn} is given by [43] 

00 

x(z) = L XnZn 
n=O 

If x is a probability distribution, then 

x(l) 1 

x'(l) m1(x) 

x"(l) = m2(x) - m1(x) 

x 111 (l) m3(x) - 3m2(x) + 2m1(x) 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

where mr (x) is the rth moment of the distribution x. These very useful properties will 

be exploited in the application of the z-transform to discrete-time queueing problems 

as described below. 
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A.2 The Marginal Arrivals Queue 

We start by assuming that time is divided into equally sized units called slots. Each slot 

time is equal to the time required to service or remove from the queue one waiting arrival 

(called cells in the ATM nomenclature). The time ordering of events in the queueing 

system is such that service of the queue occurs at slot boundaries, while arrivals to 

the queue occur during the slot times. In this discussion we are only concerned with 

the number of cells awaiting service and not the cell (if any) that is currently receiving 

service. That is, we are interested in the queue population, not the entire system 

population. 

Let the distribution of the queue population at the start of a time slot be described 

by q = { qn} where qn denotes the stationary probability that the queue population is 

n. Similarly, let q+ = {q;t} describe the same quantity at the end of a time slot (after 

any arrivals have occurred, but before the next service). Additionally let p = {Pk} 

describe the stationary distribution for the arrival process, where Pk is the probability 

that there will be k arrivals to the queue in any time slot. For convenience we will 

denote the first three moments of the arrival process by >., M2, and M3 which are the 

notation used throughout this thesis. 

The relationship between q and q+ (the arrival relation) is given by 

n 

q;i° = LqiPn-i (A.6) 
i=O 

which, upon taking z-transforms of both sides and applying Theorem F.4, can also be 

written as 

q+(z) = q(z)p(z). (A.7) 

where q(z), q+(z), and p(z) are the z-transforms of q, q+, and p respectively. Due to 

the regular services of the queueing system we have a second relation between the q 

and q+ (the service relation) of 

or in z-transform notation, 

for n = 0 

otherwise 

zq(z) = q+(z) + (z - 1) q(j 

Combining equations (A.7) and (A.9) then gives 

(z-p(z))q(z) = (z- l)q;j 

(A.8) 

(A.9) 

(A.10) 

where q(j is the probability that the queue is empty immediately prior to service. 
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The first derivative of equation (A.10) evaluated at z = 1 gives 

qt= 1 - p'(l) (A.11) 

where p'(l) = >. is the average arrival rate to the queue. We can also arrive at this 

same conclusion from an equilibrium point of view by considering that the _probability 

that there is at least one queued arrival immediately prior to service is equal to the 

probability that there is a departure from the system in that time slot. That is, the 

average departure rate is equal to 1 - qt and since the queueing system is work con­

serving and has infinite capacity this must also be equal to the average arrival rate to 

the queue. Obviously from equation (A.11) the average arrival rate must also be less 

than or equal to 1, and for stationary behaviour to exist we must also have >. strictly 

less than 1. 

From the second and third derivatives of equation (A.10) we obtain (with some manip­

ulation) 

and also 

Var [Lq] 

Lq q'(l) 
M2 ->. 

2 (1 - >.) 

q"(l) + Lq - L~ 

4 (1 - >.) M3 + 3Mi - 6M2 + >.2 + 2>. 
12 (1 - >.) 2 

(A.12) 

(A.13) 

where Lq denotes the average queue population, and Var [Lq] denotes its variance. 

Equation (A.12) may also be written as 

0"2 + ).2 - >. 
Lq = 2 (1- >.) (A.14) 

where 0"2 represents the variance of the number of arrivals occurring per time slot. 



Appendix B 

Queueing Delays in a Shared 

Buffer Environment 

In this appendix we will show that, given knowledge of the distribution of the population 

of a shared buffer queueing system, upper and lower limits can be placed on the average 

queueing delays experienced by individual classes of traffic. That is, the best case and 

worst case average queueing delays can be established, with the actual queueing delay 

for a particular class falling midway between these two quantities. A brief discussion 

of limits for the variance of the queueing delays is also included. 

An infinite buffer is assumed for simplicity of the argument, but the same general 

approach could also be used to obtain limits in the case of a finite buffer. The other 

important assumption is that the queue receives uninterrupted service (at a rate of one 

queued arrival removed from the buffer at the beginning of each time slot). Thus an 

arrival that sees n previously queued arrivals ahead of it, will be at the head of the 

queue (ready for the next service) n time slots later, and hence has a queueing delay 

of n time slots. 

B.1 Marginal Arrival Processes 

Denote the probability that the buffer contains n queued arrivals immediately after the 

last service by qn. Let Pk,c denote the probability that there will be k arrivals from class 

c in the current time slot before the next service of the queue. The average number 

of arrivals per time slot of class c is denoted by Ac, with variance denoted by O"~. The 

average number of arrivals from all the classes is denoted by A and is given by the sum 

of the individual Ac-
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Denote the average delay for arrivals from traffic class c when the queue population is 

n by dc,n· The best queueing delay for class c traffic (or the minimum value of dc,n) 

occurs when all the new arrivals from that class are queued ahead of any new arrivals 

from the other classes. This is called giving the class arrival priority. All arrivals in 

the current time slot are queued behind those in the previous, so the arrival priority 

merely determines the position of a class amongst other simultaneous arrivals. Since 

the actual number of arrivals does not change, and since the service time of each class 

is equal, the use of arrival priority queueing will not change the steady state behaviour 

of the queue. 

Let kc denote the number of arrivals from traffic class c in the current time slot. Then 

assuming that class c has the highest arrival priority, these kc arrivals contribute a total 

of kc (kc - 1) /2 service periods in addition to the queueing delay required for the first 

of these new arrivals to reach the head of the queue. That is 

1 00 

min [dc,n] = n + 2A L k (k -1) Pk,c 
c k=l 

a-~ 1 - Ac 
n+----

2Ac 2 
(B.l) 

and so 
. [ ] L a-~ 1 - Ac 

mm Dq,c = q + 2Ac - -2- (B.2) 

where Dq,c denotes the average queueing delay for the class c traffic, and Lq is the 

average queue population. 

The worst case queueing delay for class c is when it has the lowest queueing arrival 

priority, and all new arrivals of this class are queued behind new arrivals from the other 

classes. Since, arrivals from each class are assumed to be independent of each other, 

this means that there will be on average A - Ac new arrivals to the queue ahead of the 

arrivals of class c. Thus 

[ l 
a-~ 1 +Ac 

max Dq,c = Lq +A+ 
2

Ac - -
2
- (B.3) 

This discussion requires that the arrival processes are marginal in the current time slot 

only. The reasoning therefore applies to cyclic service and arrival problems, and can be 

extended to the case of autocorrelated arrival processes, as discussed in the following. 

B.2 Autocorrelated Arrival Processes 

We consider here the special case where each traffic class generates arrivals according 

to a discrete-time Markov modulated arrival process (usually called a batch Markov 
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arrival process or D-BMAP) with countable states, wherein each state generates arrivals 

according to some state and class dependant marginal probability distribution.- The 

generating processes of each of the individual classes are then combined to create an 

overall arrival process which will also be a D-BMAP. These types of models can also 

describe peak rate limited sources. 

Without loss of generality, we assume that the time order of events within a time slot is 

such that the D-BMAP changes state, arrivals are generated according to the new D­
BMAP state, and the queue is then serviced. Denote the state transition probabilities 

of the combined arrival process by ar,s, which describes the probability that the D­

BMAP will change to state s in the current time slot, given that the last state was r. 

Let qn(r) denote the probability that the queue population was n immediately after 

the queue was serviced, when the last D-BMAP state that generated arrivals was r. 

Similarly, let xn(s) denote the probability that the D-BMAP changes to states in the 

current time slot from any previous state, and that the queue population immediately 

after the last service was n, so that 

m-1 

Xn(s) = L qn(r)ar,s (B.4) 
r=O 

where m is the number of states in the combined Markov arrival process. 

Let Pk,c( s) denote the probability that class c generates k arrivals in each time slot that 

the combined arrival process is in state s. The average and variance of the number 

of arrivals generated by class c in state s are denoted by Ac ( s) and er~ ( s) respectively. 

Over all of the states, as for the marginal case above, class c generates an average of 

Ac arrivals per time slot, with variance er~, where 

m-1 

Ac= L µs>.c(s) (B.5) 
s=O 

m-1 m-1 

er~= L µser~(s) + L µ8 A~(s) - A~ (B.6) 
s=O s=O 

and where µ 8 is the stationary probability that the arrival process is in state s. In 

addition, the quantities >.(s) and>. denote the average number of arrivals per time slot 

from all traffic classes, conditioned on the arrival process state, and independent of the 

arrival process state respectively. 

With~n each time slot, arrivals are generated according to a marginal process that is 

described by the current state of the combined D-BMAP, and hence the deductions 

of section B.1 can be applied. Assuming that class c traffic has the highest queueing 

arrival priority gives 

. [d ( )] _ er~ ( s) _ 1 - Ac ( s) 
mm c,n s - n + 2Ac(s) 2 

(B.7) 
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and hence 
. [ )] 1 ~ ( ) a~(s) 1 - Ac(s) 

mm Dq,c(s = - L.., nxn s + 2A (s) - 2 µs n=O c 
(B.8) 

In order to determine Dq,c we note that 

l m-1 
Dq,c =I"" L µ 8 Ac(s)Dq,c(s) 

c s=O 

(B.9) 

since Dq,c(s) represents the average delay seen by arrivals from class c in states, and 

there are proportionally µ8 Ac(s)/Ac arrivals generated by that state. Hence 

l m-1 (m-1 ) 2 1 _ A 
min [Dq,c] = Ac ~ ~ Ac(s)ar,s Lq(r) + ;;c -T (B.10) 

where Lq(s) denotes the average queue population observed immediately after service 

when the last state of the arrival process was s. The overall queue population Lq is 

given by the sum of the individual Lq(s). The maximum or worst case queueing delay 

is determined in a like fashion to the minimum case above, and yields 

1 m-1 (m-1 ) a~ 1 - Ac 
max[Dq,c] = Ac~ ~ Ac(s)ar,s Lq(r) + 2Ac - - 2-

l m-1 
+I"" L µsAc(s) (A(s) - Ac(s)) 

c s=O 

(B.11) 

The difficulty with the above limit expressions is that to evaluate them, the value of each 

Lq(r) is required. Some solution methods (such as the iterative numeric approach of 

Appendix E) will provide these individual Lq(r) and hence allow the limits to be found. 

However, the closed form solution for the average queue population using phase-geom 

Binary sources in Chapter 4 only provides the overall Lq value. 

B.3 Some Example Applications 

It is of interest to determine what parameters give a class of traffic the best average 

queueing delay (that is, the smallest upper limit) in a shared buffer environment. This 

is easily determined for marginal arrival processes, where the best performance goes to 

the source with the least (closest to -oo) value of 8c where 

(j _ a~ 1 +Ac 
c - 2Ac - --2- (B.12) 

which means qualitatively that the traffic class with largest average and smallest vari­

ance will receive the best average queueing delay performance. Also, if class c is a 
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binary source, Oc becomes equal to -.Xc which is the least for the traffic class with 

largest average number of arrivals per time slot. 

To investigate what parameters effect the average queueing delay of autocorrelated 

sources, we will consider three examples. The first example investigates the application 

of the closed form solution for a single geom-geom source mixed with marginal traffic. 

The second example uses the iterative numeric approach to investigate the performance 

seen by a single geom-geom binary source when it is mixed with several other geom­

geom binary sources. The third example is similar to the second, but replaces the single 

geom-geom source with a periodic one. 

Note that binary sources have easily exploited properties, resulting in simpler forms for 

the limit equations (B.10) and (B.11). 

B.3.1 Mixing a Geometric-Geometric Source with a Marginal So~rce 

Consider a shared infinite buffer in which arrivals from a total of N traffic classes are 

statistically multiplexed. Traffic class 1 is described by a geom-geom binary source, 

while the remaining N - 1 traffic classes are described by a simple Bernoulli arrival 

process. The average number of arrivals per time slot from all the traffic classes is 

denoted by .X with variance ()2 . 

From section B.2, the limits of the average queueing delay for traffic class 1 are obtajned 

from equations (B.10) and (B.11) using 

()? .X1 (1 - .X1) 

.X1 ( s) { ~ for s = 0 

otherwise 

.X(s) .X- .X1 + .X1(s) 

and also that m = 2 and µl = .X1, and Lq = Lq(O) + Lq(l), to give 

min [Dq,1] = :
1 

((1 - al,o) Lq + (a1,o - ao,o) Lq(O)) 

and 

max [Dq,1] = min [Dq,1] +).. - >..1 

In addition, note that ao,o and a1,o can be written as 

ao,o (1 - >..1) + >..n1 

a1,o (1 - >..1) (1 -11) 

(B.13) 

(B.14) 

where /l is the autocorrelation parameter for the geom-geom source (see section C.5). 



236 Queueing Delays in a Shared Buffer Environment 

From equation (4.11) in Chapter 4, we have that 

0"2 + >..2 - >.. 1 /1 
Lq = 2 (1 - >..) + 1 - >.. >..i(>.. - >..1) 1 -11 

and from equation (4.46) 

0"2 + >..2 - >.. 
Lq(O) = (>.. - >..1) (Lq - >..1) + 

2 

so that substitution and simplification yields 

min [Dq,1] = Lq + (>.. - >..1) -
1 

11 
-11 

(B.15) 

(B.16) 

(B.17) 

with the maximum being given simply in terms of min [Dq,1] by equation (B.14). 

From the form of equation (B.17) it is readily apparent that a geom-geom binary 

source with I > 0 will obtain worse queueing delay performance than an equivalent 

Bernoulli source, while I < 0 should provide better performance. To illustrate this 

result, consider an example shared buffer queueing problem having just 2 binary sources, 

each with an average arrival rate of p/2, where p is the utilisation of the queue. The 

first source is modelled as a geom-geom type binary process, while the other source 

is modelled as a simple Bernoulli process. The equations for the limits of the average 

queueing delay then become 

min [Dq,1] = Lq + 
2 

( P/l ) 
l -11 

where Lq is given by 

and 
p 

max [Dq,1] = Lq + 2 (l _ /l) 

p2 
Lq = -4 (-1---p-) (-l---,-1) 

(B.18) 

(B.19) 

Figure B.1 shows the theoretical limits and simulated average queueing delay of each of 

the two sources as a function of 11 for a utilisation of 0.9. The 99% confidence interval 

for the simulation results is less than ±0.5% in each case. Note that the range of the 

autocorrelation parameter includes an area where 11 < 0, in which the autocorrelated 

source sees better queueing performance than the Bernoulli one. This suggests that 

negatively autocorrelated binary processes (such as periodic sources) will 'see' better 

performance than Bernoulli or positively autocorrelated sources. The periodic case will 

be discussed as an example a little later. 

Because the queueing delays are also affected by the increase in the average queue pop­

ulation as 11 increases, it is difficult to see exactly where the actual queueing delays lie 

relative to the calculated limits. Figure B.2 shows the results of Figure B.l normalised 

with respect to the overall average queueing delay of Lq/ >... The simulation results are 

clearly at the midway point of the predicted upper and lower limits, which suggests 

that the actual queueing delay can be predicted accurately from the limits. This point 

will be discussed again later. 
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F igure B.l: Average queueing delay (theoretical limits and simulation results) for two 

equal rate binary sources, only one of which is autocorrelated with parameter 'YI given 

by the independent variable in the figure. Th e queue utilisation is 0.9. 
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Figure B.2: Queueing delay results of Figure B.1 normalised to the overall average 

queueing delay. 
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B.3.2 Mixing Geometric-Geometric Sources 

Consider a shared infinite buffer in which arrivals from a total of N traffic classes are 

statistically multiplexed, where each traffic class is described by a single geom-geom 

binary source. Under this condition we get 

1 m-1 (m-1 ) 
min[Dq,c] =Ac~ ~ Ac(s)ar,s Lq(r) (B.20) 

and 
l m-1 

max[Dq,c] = min[Dq,c] + -:X- 2:: µ5 Ac(s) (A(s)-Ac(s)) 
c s=O 

(B.21) 

where Ac(s) takes on the value of 1 when s E 8c and 0 otherwise, for a set 8c which 

specifies those states of the overall D-BMAP in which traffic class c is active (generates 

a single arrivals). In fact, using this set relation, its is possible to show that 

max [Dq,c] = min [Dq,c] +A - Ac (B.22) 

is a relation that always holds when using binary sources, regardless of their autocor­

relation structure. 

When a class is made up of some number Sc of identical binary sources, it is fairly 

straightforward to show that the lower limit on the average queueing delay becomes 

1 m-1 (m-1 ) A ( 1 ) 
min[Dq,c] =Ac~ ~ Ac(s)ar,s Lq(r) + 2c 1- Sc (B.23) 

where, with a little more difficulty we can also show that the upper limit is still given 

by equation (B.22). 

As an example, consider a buffer fed by 4 equal rate geom-geom binary sources, in two 

classes of 1 and 3 sources each. The binary source belonging to the first traffic class 

has A1 = 0.2, with an autocorrelation parameter 11 which is varied from -0.2 to 0.9 

in steps of 0.1. The other three sources are identically distributed with average arrival 

rates of 0.2 (giving A2 = 0.6) and autocorrelation parameters of 12 = 0.3. 

Figures B.3 and B.4 show the calculated limits for each of the two classes along with 

the actual average queueing delays obtained from simulation of the queueing problem. 

As before, the 99% confidence interval for the simulation results is less than ±0.53 

for each case. The upper and lower average queueing delay limits were calculated by 

performing an iterative solution to the queueing problem in order to obtain the Lq(s) 

values used in the equations above. These theoretically predicted limits were confirmed 

by simulation, by firstly giving traffic class 1 arrival priority, and then by giving the 

traffic class 2 arrival priority1 . 
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Figure B.3: Average queueing delay (theoretical limits and simulation results) for two 

classes of geom-geom binary sources. Th e first class has one source with )q = 0.2 and 

/l given by the independent variable in the figure . Th e second class has three identical 

sources, with each source contributing 0.2 arrivals per time slot, with autocorrelation 

parameter 0.3. The overall queue utilisation is 0.8. 
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Figure B .4: Queueing delay results of Figure B.3 normalised to the overall average 

queueing delay. 



240 

1.8 I 
;::.... I 

<!'. I 
......1 I w 1.6 I 
0 
0 
~ 
~ 1.4 
w 
::J 
Cl 1.2 w 
0 

~ 1.0 w 
> 
<!'. 
0 0.8 w 
Cl) ...... 
......1 
<!'. 

0.6 
~ 
0 z 

0.4 
0.0 

\ 

\ 

\ 

Queueing Delays in a Shared Buffer Environment 

' ' 

0.2 

Calculated limits for class I traffi c 
Calculated limits for class 2 1ra ffic 

-- Simula1ion result for clas I traffic 
- - - Simulation result for class 2 traffic 

0.4 0.6 
CLASS 2 A VERA GE ARRIVAL RA TE 

0.8 

Figure B .5: Normalis ed average queueing delay (theoretical limits and simulation re­

sults) for two classes of geom-geom binary sources. Th e first class has one source with 

.A.1 = 0.2 and /l = 0.3. The second class has three identical sources, each having 

I = 0.3 , with a total average arrival rate given by the figure's independent variable. 

The overall queue utilisation varies from 0.2 to 0.95. 

The difference between the upper and lower limits for a particular class is actually 

dependent on the average arrival rates of the remaining classes. This is well illustrated 

by the above example, where the two traffic classes have considerably different arrival 

rates. In order to investigate what other effect the average arrival rate of a class has 

on its queueing delay performance, the same arrangement of sources and traffic classes 

was considered , but this time all the sources had identical autocorrelation parameters 

of r = 0.3. The average arrival rate of the first class was kept constant at .A.1 = 0.2 

and the average arrival rate of the second traffic class was varied from 0 to 0. 75 (0 to 

0.25 per source). Only the normalised average queueing delay results are shown here, 

in Figure B.5. 

The graphed results show that the class having sources with the larger arrival rates 

receives the best queueing delay performance. That is , when the average arrival rate 

from traffic class 2 is below 0.6 (or below 0.2 per source) then traffic class 1 has a 

better average queuing delay. After this point , the class 2 traffic receives the better 

queueing performance, although the normalised delays of the two traffic classes seem 

1 This method was used to successfully confirm the theoretical limit results in all of the examples 

di cussed in this appendix. 
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to be converging to unity as the utilisation of the queue approaches 100%. 

B.3.3 Mixing a Periodic Source with Geometric-Geometric Sources 

Here we consider the shared infinite buffer with arrivals from just two classes. The first 

class is a single periodic source that generates a si~gle arrival every R service periods, 

while the second class consists of a number 82 of identical geom-geom binary sources. 

We will consider the problem presented previously, but with the geom-geom source of 

the first traffic class replaced by a periodic source with R = 5, so that the average 

arrival rate from this source is still 0.2. The remaining three identical geom-geom 

sources make up the second arrival class, and have an average arrival rate each of 0.2 

(giving .\2 = 0.6) and an autocorrelation parameter 12 which is varied from -0.2 to 0.9 

in steps of 0.1. 

As before, Figures B.6 and B.7 show the calculated limits for each of the two classes 

along with the actual average queueing delays obtained from simulation of the queueing 

problem. Simulation results again are accurate to ±0.5% with 99% confidence. 

The periodic source receives better queueing delays than the geom-geom sources for all 

of the 12 values investigated. Values of 12 below -0.25 cannot be used for geom-geom 

sources with arrival rates of only 0.2 without causing negative probability entries in 

their transition arrays. Thus it would appear that in this case, the periodic source is 

equivalent to a much more negatively autocorrelated source than the simpler two-§tate 

binary sources can achieve. 

B.4 Discussion of the Example Results 

Probably the first thing to note about the graphed results is that the simulation results 

all appear to fall exactly in the middle of the two limits. In fact, a comparison of the 

average of the theoretically calculated queueing delay limits with the simulation results 

shows that the difference between the two is less than the simulation accuracy in every 

case. 

This is perhaps not too surprising considering how the limits were obtained, and consid­

ering that normally arrivals from all classes will be placed in a random order at the end 

of the queue buffer. At least this is the assumption used in the simulations, although 

it may not always be exactly true in practice. In such cases however, the theory can 

be used to estimate the actual average queueing delay for various traffic classes in a 

shared buffer, entirely by numeric solution methods. 
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classes of traffic. The first is a periodic source with a fixed period of 5 service tim es. 
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Another result that is not quite so obvious as the midpoint one, but is perhaps more 

important, is that there appears to be overall limiting values to the average queueing 

delay that any traffic class can achieve in a shared buffer environment. Referring to 

Figures B.2, B.4, and B.7, it is apparent that as the/ term of the figure's independent 

variable tends towards one, the traffic class receiving the better queueing performance, 

has a normalised average queueing delay that approaches )., or an average queueing 

delay that approaches Lq. That is, it appears from the results that the best average 

queueing delay that any class can have is equal to the average queue population. We 

propose this as a conjecture, and shall tender a rough proof for the case where the class 

in question is a periodic or cyclic process. 

Conjecture B.1 In a discrete-time deterministic service queueing environment, where 

an infinite buffer queue is serving multiple independent classes of traffic without pref­

erences and without interruption, the smallest possible average queueing delay that any 

class can receive is equal to the average queue population. That is 

for any class c. 

Proof. No general proof for this result has yet been obtained. Consider however when 

the class in question is a cyclic process that generates b consecutive single arrivals within 

a period of R slot times. In the steady state, the average queue population after the 

cyclic process has generated an arrival will increase by ). - Ac over the value it had in 

the previous time slot, where >. is the overall average arrival rate to the queue, and Ac 

is the average arrival rate of the cyclic process (given by b/ R}. During the R - b time 

slots where the cyclic process generates no arrivals, the average queue population will 

decay to some value xo that will be the average queue population seen at the beginning 

of the next cycle. This change in the average queue population over one cycle time is 

illustrated in Figure B.8 for an example using b = 13, R = 32, and).= 0.9. 

The value of Lq is obtained by taking the mean over the entire cycle, of the average 

queue population after each service instant. There is no simple way to describe the 

decay part of the curve in Figure B.8 however, although an upper limit on Lq can be 

obtained by approximating this part of the curve by a straight line, giving 

L 
b(>.->.1) 

q S XQ + 
2 

The minimum average queueing delay seen by the arrivals from the cyclic traffic class 

is simply given by the mean of the average queue populations in the time slots preceding 

the cyclic arrivals. That is, 

. [D] (b-1)(>.->.c) 
mm qc =xo+------, 2 
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Figure B.8: Variation in the average queue population as seen from the point of view 

of the cyclic traffic class c. The shaded area indicates the average population over the 

entire cycle. 

and since Dq,c = min [Dq,c] + >.-/'c {the average of the minimum and maximum Dq,c 

limits} we obtain 
b(>..-A1) 

Dq,c = xo + 
2 

2 Lq 

which is the required result. • 

Corollary B.2 The largest possible average queueing delay that any traffic class can 

receive is (1 - A+ Ac) /Ac times the average queue population. That is 

1-A 
Dq,c ~ Lq + ---;:;-Lq 

for any class c. Thus conjecture B.1 might be rewritten as 

1-A 
Lq ~ Dq,c ~ Lq + ---;:;-Lq 

for any class c. 

Proof. The proof follows directly from conjecture B.1, and is deduced by assuming 

that the other traffic classes all receive the minimum average queueing delay. Then 

from the conservation law 

AcDq,c = ADq - L AiDq,i 
i::/:c 
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and the result follows. • 

B.5 A Brief Look at the Limits of the Queueing Delay 

Variance 

All of the above discussion has focused on defining the limits of the average queueing 

delay. Since knowledge of the variance is important, the issue of placing limits on the 

queueing delay variance also needs to be addressed. However, since a discussion of the 

shared buffer variance is not required in the rest of this thesis, we will restrict this 

discussion to a brief mention of the results for the marginal arrivals case. These limits 

are constructed in a manner similar to that used in section B.1 above, and are obtained 

as 
. [ [ ]] _ [ ] M3,c ( O"~ + A~) 

2 

mm Var Dq,c - Var Lq + ~ -
4

A2 
c c 

and 

max [Var [Dq,clJ = min [Var [Dq,c]] + 0"
2 

- O"~ 

1 
12 

(B.24) 

(B.25) 

where 0"2 and O"~ are the variance in the number of arrivals per time slot of the overall 

arrival process, and of traffic class c respectively, and M3,c is the third moment of the 

number of arrivals per time slot from traffic class c. For binary sources, these two 

equations become 

min [Var [Dq,c]] =.Var [Lq] (B.26) 

and 

max [Var [Dq,c]] = Var [Lq] + 0"
2 

- Ac (1 - Ac) (B.27) 

The autocorrelated arrivals case can be constructed in a manner similar to that used 

in the average queueing delay discussion above. 

We note here that, unlike the average queueing delays, the actual queueing delay vari­

ance is not the average of the minimum and maximum variance limits. 



Appendix C 

Eigensystem Analysis of Arrival 

Processes 

This appendix presents both a general eigensystem analysis, and the Perron-Frobenius 

eigensystem analysis, for the phase-geometric and the cyclic arrival processes, for a 

single source. The results are easily extendable to multiple sources. 

Additionally, results are also presented explicitly for the case where the phase-geometric 

arrival process can be represented by a geometric-geometric process. 

The analysis is based on a probability generating function approach, where z describes 

the parameter of the generating function. Each source is assumed to be modelled 

by a Markov process, with irreducible stochastic transition matrix A and probability 

generating matrix P(z). The process will have some number of eigenvalues wn(z) equal 

to the number of Markov states required to describe the process. Corresponding to 

the nth eigenvalue are the left (row) and right (column) eigenvectors, hn(z) and gn(z) 

respectively, given by the relations 

hn(z)AP(z) = Wn(z)hn(z) (C.l) 

and 

(C.2) 

where, from the basic properties of eigenvectors, hn(z)gn(z) = 1, and hn(z)gm(z) = 0 

for n ':Im. 

Although the eigenvalues can be arbitrarily assigned to the indices n, we require that 

the eigenvalue at z = 1 that takes the value of 1 will be described by index 0 - that 

is, we adopt the convention that wo(l) = 1. (It is a property of irreducible stochastic 

247 
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matrices that they have exactly one eigenvalue equal to 1 and all other eigenvalues with 

magnitudes less than or equal to one.) 

The Perron-Frobenius eigenvalue and eigenvectors for the source are a special case of 

the general eigensystem above. The particular Wn (z) corresponding to the Perron­

Frobenius eigenvalue is denoted by 8(z), with left and right eigenvectors u(z) and v(z) 

which satisfy 

u(z)AP(z) = 8(z)u(z) (C.3) 

and 

AP(z)v(z) = 8(z)v(z) (C.4) 

with the additional constraints that u(z)v(z) = 1 and u(z)e = 1, where e is the unit 

column vector. As will be discussed in section C.3, and shown for both arrival processes 

below, this second constraint requires that 8(1) = 1, implying that 8(z) = w0 (z). 

Note that some of the notation and part of the basic approach used in this appendix 

follows Neuts in [98] and [95], and Li in [79] and [83]. 

C.1 Phase-Geometric Random Processes 

In this section we consider a discrete time random process with active periods described 

by a phase type distribution1, and silent periods described by a geometric distribution. 

During the silent periods, the process generates no arrivals, while during the active 

periods, the process generates arrivals according to some marginal distribution {pk} 

where Pk denotes the probability that k arrivals are generated in the current time slot. 

The probability generating function for this distribution is denoted in the following by 

p(z). 

Define the irreducible stochastic state transition matrix A by 

A=[ c c'o:.l 
T 0 T 

(C.5) 

where c' = 1 - c, and where the row vector o:. and substochastic matrix T describe 

the irreducible form of a phase type distribution, with column vector T 0 given by 

(I - T) e, where e is a column vector with all components equal to 1. Denote the 

invariant probability vector of A byµ, so that µA=µ. 

The probability density of the active periods of the phase type distribution is given by 

an = o:.Tn-ITo (C.6) 

1For an elementary discussion of phase type distribut10ns, refer to Chapter 2 of [95]. 
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where an describes the probability that the source is active for exactly n periods, having 

a probability generating function 

with 

a(z) = za (I - zT)-1 T 0 

a' (z) 

a"(z) 

a"' (z) 

a (I - zT)-2 T 0 

2a (I - zT)-3 TT0 

60 (I - zT)-4 T 2T 0 

(C.7) 

(C.8) 

(C.9) 

(C.10) 

From these derivatives, the first, second, and third moments of ~he active period are 

denoted by 

'T/1 

'T/2 

'T/3 

a(I-T)-1 e 

a (I - T)-2 (I + T) e 

a (I -T)-3 (1+4T + T 2
) e 

respectively. We can also show that 

a (I-T)-2 e 

a (I-T)-3 e 

'T/2 + 'T/1 
2 

'T/3 + 3'T/2 + 2'T/1 
6 

Define the probability generating matrix P(z) by 

P(z) = [ ~ p(:)I l 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

where p(z) is the probability generating function for the arrival process during the 

active periods, with p(l) = 1, and where the boldface 0 indicate row or column vectors 

as appropriate, and I indicates the identity matrix. The overall dimension of this 

probability generating matrix is the same as that of the matrix A so that the matrix 

AP(z) represents the transition probability generating matrix, with AP(l) =A. 

Denote the nth eigenvalue of AP(z) by wn(z), with corresponding left and right eigen­

vectors hn(z) and gn(z), obeying the relations (C.l) and (C.2) respectively. The 

Perron-Frobenius eigenvalue o(z) is given by wo(z), and has left and right eigenvec­

tors u(z) and v(z), obeying the relations (C.3) and (C.4) respectively. For convenience 

of notation, let 

hn(z) = [ hn,o(z) hn,1(z) ] and 

as well as 

u(z) = [ uo(z) u1(z) ] and 

gn(z) = [ 9n,o(z) ] 
gn,1(z) 

v(z) = [ vo(z) l 
v1(z) 

where the boldface symbols indicate vector quantities. 

(C.17) 

(C.18) 
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C.1.1 Obtaining hn(z) and wn(z) 

From (C.l) we have 

chn,o(z) + hn,1(z)T0 = Wn(z)hn,o(z) (C.19) 

and 

c'p(z)hn,o(z)o:+p(z)hn,1(z)T = wn(z)hn,1(z) (C.20) 

Post-multiplying equation (C.20) by e, and making use of T0 =(I - T) e gives 

c'p(z)hn,o(z) - p(z)hn,1(z)T0 = (wn(z)-p(z)) hn,1(z)e (C.21) 

where from (C.19) 

hn,1(z)T0 = (wn(z) - c) hn,o(z) (C.22) 

and hence 
wn(z) - p(z) 

hn,o(~) = p(z) (l - Wn(z)) hn,1(z)e (C.23) 

From equation (C.20) we also get 

hn,1(z) = c'p(z)hn,o(z)o: (wn(z)I - p(z)T)-1 (C.24) 

so that, post-multiplying by T 0 gives, with some manipulation 

(C.25) 

which can be rewritten as 
/ ( p(z) ) 

wn(z) = c + c a Wn(z) (C.26) 

where a (z) is the probability generating function for the durations of the active periods. 

It is easy to see that w0 (1) = 1 is one solution to equation (C.26). 

C.1.2 Obtaining gn(z) 

From (C.2) we have 

cgn,o(z) + c'p(z)o:gn,1(z) = wn(z)gn,o(z) 

and 

gn,o(z)T0 +p(z)Tgn,1(z) = Wn(z)gn,1(z) 

Re-arranging equation (C.28) gives 

gn,1(z) = gn,o(z) (wn(z)I - p(z)T)-l T 0 

while the property hn(z)gn(z) = 1 yields 

hn,o(z)gn,o(z) + hn,1(z)gn,1(z) = 1 

(C.27) 

(C.28) 

(C.29) 

(C.30) 
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so that equations (C.24) and (C.29) give 

hn,o(z)gn,o(z) ( 1 + c'p(z)o: (wn(z)I - p(z)T)-2 T 0
) = 1 (C.31) 

or 

hn o(z)gn o(z) = ( ~r~') 
' ' wn(z) 2 + c'p(z)a' ~ 

(C.32) 

where a'(z) is the first derivative of the probability generating function a(z). Consid­

eration of the first derivative of equation (C.26) allows this to be further simplified, to 

give 
p(z)w~(z) 

hno(z)gno(z) = 1- '( ) ( ) ' ' p Z Wn Z 

For convenience, we will choose 9n,o (z) = 1 for all n, giving 

hn o(z) = 1 - p(z)w~(z) 
' p'(z)wn(z) 

and 

gn,1(z) = (wn(z)I - p(z)T)-1 T 0 

C.1.3 Simplifying hn(l)g0(1) 

(C.33) 

(C.34) 

(C.35) 

In the analysis of the variance of the queue population of a G /D /1 queue fed by phase­

geom sources, terms in hn(l)g0(1) for each source are encountered, where n -=f. 0. Since 

n -=f. 0 we have hn(z)go(z) = 0. Taking the first derivative of this relation gives 

h~(z)go(z) + hn(z)g0(z) = 0 (C.36) 

or at z = 1 

hn(l)g0(1) = -h~(l)e (C.37) 

using g0 (1) = e, which is obtained from equation (C.35) using the fact that w0 (1) = 1. 

Taking the first derivative of hn,o(z) as given by equation (C.23) yields 

(p(z)w~(z) (1- p(z)) - p'(z)wn(z) (1 - wn(z))) h ( ) 
h~,o(z) = p(z) (1 - wn(z)) (wn(z) - p(z)) n,O z 

wn(z) - p(z) 1 

+ p(z) (l -wn(z)) hn,1(z)e (C.38) 

so that at z = 1, we obtain with some manipulation 

h' (l)e = p' (l )wn (l) h (1) 
n 1 - Wn(l) n,O (C.39) 

hence 
h (l)g' (1) = - p' (l )wn (l) h (1) 

n 0 1-wn(l) n,O 
(C.40) 
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or, using equation (C.34) 

h (l)g' (l) = w~(l) - p'(l)wn(l) 
n O 1 - Wn(l) (C.41) 

which is the desired result. 

C.1.4 Obtaining u(z) and o(z) 

Expressions for u(z) and b"(z) can be derived in a similar manner as for hn(z) and 

wn(z), but with the additional constraint that u(z)e = 1. Writing equation (C.3) in 

expanded form gives 

cuo(z) + u1(z)T0 = b"(z)uo(z) (C.42) 

and 

c'p(z)uo(z)o:+p(z)u1 (z)T = b"(z)u1 (z) (C.43) 

from which we obtain 
b"(z) - p(z) 

uo(z) = b"(z) (1 - p(z)) (C.44) 

u1(z) = c'p(z)uo(z)o: (b"(z)I - p(z)T)-1 (C.45) 

and 

b"(z) = c + c' a (p(z)) 
b"(z) 

(C.46) 

Note that if b"(l) I= 1 in equations (C.44) and (C.45), then the expression for u(l) 
becomes infinite which violates the required condition that u(l)e = 1. Hence, by 

contradiction, we must have b"(l) = 1, which means that b"(z) is the same eigenvector 

as wo (z) according to the convention we have adopted. 

C.1.5 Obtaining v(z) 

Writing equation (C.4) in expanded form gives 

cvo(z) + c'p(z)o:v1(z) = b"(z)vo(z) 

and 

vo(z)T0 +p(z)Tv1(z) = b"(z)v1(z) 

from which, in a like manner to the derivation of gn(z) we obtain 

v1(z) = vo(z) (b"(z)I - p(z)T)-1 T 0 

while the property u(z)v(z) = 1 yields, with some manipulation 

p(z)b"'(z) 
uo(z)vo(z) = 1 - p'(z)b"(z) 

or 
vo(z) = (1 - p(z)) (p'(z)b"(z) - p(z)b"'(z)) 

p'(z) (b"(z) - p(z)) 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

(C.51) 
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C.1.6 Derivatives of 6(z) and v(z) 

Calculating the average and variance of the queue population for a G /D /1 queue fed by 

phase-geom sources requires the first three derivatives (with respect to z) of the Perron­

Frobenius eigenvalue, and the first two derivatives of the corresponding right-hand 

eigenvector, evaluated at z = 1. These derivatives are easily performed, particularly 

with the use of a symbolic mathematics program such as Mathematica [139]. In the 

equations below, the terms er = c'rtr where 'T/r is the rth moment of the period of the 

active periods, is used to simplify the expressions. 

For the eigenvalue 8(z) we have 

8(1) 

81 (1) 

811 (1) 

8111 (1) 

1 (C.52) 

~p'(l) (C.53) 
1 + c1 

c2 - c1 - 2ctp'(l)2 + _c_1 -p"(l) (c.54) 
(1 + c1)3 1 + c1 

2c1 +Ser+ 9d - 3c2 - 6c1c2 + 3ctc2 - 3c~ + c3 + c1c3 '(l)3 
(1 + c1) 5 p 

+ 3 (c2 - 2ct - c1) p'(l)p"(l) + ~p"'(l) (c.55) 
(1 + c1)3 1 + c1 

and for the eigenvector- v(z) 

vo(l) 1 (C.56) 
-811 (1) 8'(1) II 

,. 

vb(l) ' 
2 (p'(l) - 8'(1)) + 2p'(l) (p'(l) - 8'(1))p (l) 

(C.57) 

v~(l) 
-3p'(1)8"(1) - 28"'(1) 8"(1)2 

3 (p'(l) - 8'(1)) 2 (p'(l) - 8'(1))2 

+ 68"(1)p'(l) + 3 (28'(1)p'(l) + 8"(1)) (p'(l) - 8'(1)) "(1) 
6p'(l) (p'(l) - 8'(1)) 2 p 

- p'(l) + 2 (p'(l) - 8'(1)) 8;(1) "(1)2 
2p'(1)2 (p'(l) - 8'(1))2 p 

48' ( 1) Ill ( ) 

+ 6p'(l) (p'(l) - 8'(1))p 
1 (C.58) 

and 

v1(l-) e (C.59) 

v~ (i-) (vb(l) - p'(l)) e - (8'(1) - p1(1)) (I - T)-1 e (C.60) 

v~(l-) (v~(l) +2p'(1)2) e 

- (8"(1)1+2vb(1)8'(1)1 - p"(l)T - 2vb(l)p'(l)T) (I- T)-1 e 

- 4p'(l) (p'(l) - 81(1)) (I- T)-1 e 

+ 2 (8'(1) - p'(1)) 2 (I - T)-2 e (C.61) 
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We can also write the derivatives of the zero element of the eigenvector in terms of cr 

only, giving 

c1 - c2 + 2cI '(1) (C.62) 
2 (1 + c1) 2 p 

-2c1 + 6c2 - 4c3 - llci + l8c1 c2 + 9c~ - 4c1 c3 - 18d - 6cr c2 p' (1 )2 

6 (1 + c1)4 

+ 2cI + c1 - c2 ,, (l) ( C.63) 
6 (1 + c1) 2 p 

by substituting from the eigenvalue derivatives. 

C.2 Cyclic Processes 

In this section we consider a discrete time cyclic process with a period of C time slots. 

Within these C slots, the process is assumed to be silent for the first C - b time slots, 

and active for the remaining b slots of the cycle. As with the phase-geom process above, 

the cyclic process generates no arrivals during silent periods, while during the active 

periods, the process generates arrivals according to some marginal distribution {Pk} 

where Pk denotes the probability that k arrivals are generated in the current time slot. 

The probability generating function for this distribution is denoted in the following 

discussion by p(z). 

This process can be represented by a Markov process having C states. Define an 

irreducible stochastic matrix A to describes the state to state transition behaviour of 

the cyclic source, having the form 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

A= 0 0 0 0 1 0 (C.64) 

0 0 0 0 0 1 

1 0 0 0 0 0 

or in more compact form 

A= [ ~ Ic
0
-1 ] (C.65) 

where the boldface O's are row or column vectors of C - 1 elements each, and Ic-1 is 

an identity matrix of size (C - 1) x (C - 1). 
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Define the probability generating matrix P(z) by 

P(z) = [ lc-b O(c-b)xb l 
Obx(C-b) p(z)lb 

(C.66) 

where the boldface Obx(C-b) and O(c-b)xb represent zero matrices of the indicated 

dimensions. Thus the combined transition probability generating matrix is given by 

[ 

0 lc-b-1 O(c-b-l)xb l 
AP(z) = 0 Obx(C-b-l) p(z)Ib 

1 0 0 

(C.67) 

where the boldface O's without subscripts are column (or row where appropriate) vectors 

of zeros. 

The eigenvalues w(z) of the matrix AP(z) are derived simply owing to the diagonalised 

nature of the matrix, and are given by the C solutions of 

(C.68) 
,, 

or 
2n71" y'=I b 

wn(z) = eC: - p(z)c (C.69) 

where n = 0, 1, ... , C - 1. This expression for wn(z) represents an arbitrary allocation 

of the C eigenvalues to the indices n, but in particular it provides the result wo(l) = 1. 

C.2.1 Obtaining hn(z) and gn(z) 

' 

The left eigenvector hn(z) and right eigenvector gn(z) of AP(z) corresponding to wn(z) 

are as described for the phase-geom process, in equations (C.l) and (C.2). However, in 

order to simplify the derivation of these vectors, we will rewrite P (z) as 

Po(z) 0 0 0 0 0 

0 P1(z) 0 0 0 0 

0 0 P2(z) 0 0 0 

P(z) = 0 0 0 p3(z) 0 0 

0 0 0 0 p4(z) 0 

0 0 0 0 0 Pc-1(z) 

where 

Pi(z) = { l 
for 0 ~ i < C- b 

p(z) for C-b ~ i < C 

From equation (C.1) we obtain, for i 2: 1 

Pi(z) 
hni(z) = -(-)hni-1(z) 

' Wn Z ' 

(C.70) 

(C.71) 

(C.72) 
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where hn,i(z) denotes the element of eigenvector hn(z) corresponding to state i. Simi­

larly for the right-hand eigenvector gn(z) we obtain from equation (C.2) that 

Wn(z) 
9n,i(z) = -(-) 9n,i-1(z) 

Pi z 
(C.73) 

for i ~ 1. We choose 9n,o(z) = 1 for convenience, and in addition, from the relation 

hn(z)gn(z) = 1 we obtain hn,o(z) = 1/C, giving 

and 

1 i 

hn,i(z) = C ( )i II Pj(Z) 
Wn z J=l 

i 1 
9n,i(z) = Wn(z)i II ---:--(z) 

J=l P1 

C.2.2 Derivation of hn(l)g~(l) 

(C.74) 

(C.75) 

Again, we wish to obtain an expression for hn(l)g0(1) for n f= 0 to be used in the 

analysis of the queue population variance of a G /D /1 queue fed by cyclic sources, 

where terms in hn(l)g0(1) for each source are encountered. Since n f= 0 we have 

hn(z)g0 (z) = O. Taking the first derivative of this relation gives 

h~(z)go(z) + hn(z)g~(z) = 0 (C.76) 

or at z = 1 

hn(l)g~(l) = -h~(l)e (C.77) 

using go(l) = e, which is obtained from equation (C.75) using the fact that wo(l) = 1. 

Taking the first derivative of hn,o(z) as given by equation (C.74) yields 

(C.78) 

or at z = 1 

/ ( ) 1 (~ / ( ) iw~(l)) 
hn,i 1 = Cwn(l)i t:'i_Pk 1 - Wn(l)i (C.79) 

Thus 

hn(l)g~(l) 

(C.80) 
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where using relation (C.71) and expanding in the summation gives 

hn(l)g~(l) = 
w~(l) - ~wn(l)p'(l) 
Wn(l)C (1 - Wn(l)) 

p'(l)wn(1)2 (1-wn(l)b)-w~(l) (1-wn(l)C) 
+~~~~---'--~~~'---~~-=-'-~~~----'"-

Cwn(l)C (1 - Wn(1)) 2 

From the first derivative of equation (C.69) we can show that 

hence 

Finally, from equation (C.68) we obtain wn(l)c = 1, to give 

p1(1)wn(1) 2 (1 - wn(l)b) 
h (1) I (1) - -----~ 

n go - · C ( 1 - Wn ( 1)) 2 

which is the simplest form to which hn(l)g~(l) can be reduced. 

C.2.3 Obtaining u(z), v(z), and 6(z) 

257 

(C.81) 

(C.82) 

(C.83) 

(C.84) 

The relations for u(z) and v(z) are derived in a similar manner to hn(z) and gn(z) 

above, giving 

uo(z) rri 
Ui(z) = o(z)i J=l Pj(z) (C.85) 

where ui(z) represents the element of the vector u(z) corresponding to state i of the 

cyclic process. Similarly 
i 1 

vi(z) = vo(z)o(z)i II -(z) 
J=l P1 

In order to determine uo(z) and v0 (z) we note that u(z)v(z) = 1 yields 

and from u(z)e = 1 we obtain 

Let S(z) denote the sum 

1 
uo(z)vo(z) = G 

C-1 

:L Ui(z) = 1 
i=O 

C-1 l i 

S(z) = ~ o(z)i }1 Pj(z) 

(C.86) 

(C.87) 

(C.88) 

(C.89) 
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so that 

and hence 

1 
uo(z) = S(z) and vo(z) = S(z) 

G 
(C.90) 

(C.91) 

where ui(z) represents the element of the vector u(z) corresponding to state i of the 

cyclic process. Similarly 

vi(z) = S(z)o(z)i Il _1_ 
G i=l PJ(z) 

At z = 1 we obtain 
C-1 

s(1) = z= 0(1)-i 
i=O 

so that, if c5(1) = 1 we have S(l) = G, and if c5(1) =/= 1 we get 

S(l) = c5(1) - c5(1)cc5(1) 
o(l)C (1 - c5(1)) 

(C.92) 

(C.93) 

(C.94) 

but since c5(1)c = 1 from equation (C.68), this gives S(l) = 0 which would lead to an 

infinite u(z) and consequently u(z)e =!= 1. Therefore, as for the phase-geom case, we 

require c5(1) = 1, corresponding to o(z) = wo(z) by our choice of notation, or 

b 
o(z) =p(z)c (C.95) 

C.2.4 Derivatives of 6(z) and v(z) 

Again we require the first three derivatives of the eigenvalue o(z) and the first two 

derivatives of v(z), evaluated at z = 1, for use in the analysis of the queue population 

of a G /D /1 queue. The eigenvalue derivatives are given by 

c5(1) 

o' ( 1) 

o" (1) 

o"' (1) 

1 

~p'(l) 
!!_ (!!_ - 1) p'(1) 2 + !!_p"(l) 
G G C 

b(b )(b )' 3 G G - 1 G - 2 P (l) 

+ 3b (!!_ - 1) p'(l)p"(l) + !!_p"'(l) 
G C G 

while the derivatives of v(z) are given by 

v(l) 

v~(l) 

v:' (1) 

e 

v:_1(l) + o'(l) - p~(l) 

v:~ 1 (1) + 2 (p~(l) - c5'(1)) (p~(l) - v:_1(1)) + c5"(1) 

(C.96) 

(C.97) 

(C.98) 

(C.99) 

(C.100) 

(C.101) 

(C.102) 
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where 

vb(l) ~S'(l) c (C.103) 

v~(l) ~S"(l) c (C.104) 

with 

S(l) C (C.105) 

S'(l) ~ (t,p~(l) -iO'(l)) (C.106) 

or 

S" (1) ~ (t, i:/~(l)p:,. (1) - t, pk(l )2 
- 2i0' (1) t, p~ (1)) 

C-1 

+ :E (i (i + 1) 8'(1) 2 
- i811 (l)) 

i=O 

S(l) 

S'(l) 

S" (1) 

c 
_ b- b(C-b) 

2 
b (C - b) (3C - 6b + 2bC - 5 - 2b2) 

6C 

(C.107) 

(C.108) 

(C.109) 

(C.110) 

C.3 Perron-Frobenius and General Eigensystem results 

As already observed for the two arrival processes discussed above, the Perron-Frobenius 

eigensystem analysis is closely related to the general eigensystem analysis through the 

eigenvalue that takes on the value of 1 at z = 1. This requirement that 8(1) = 1 can 

be proved very simply by observing that from 

u(l)A = 8(1)u(l) (C.111) 

we have, on postmultiplication by e, that 

u(l)e = 8(1)u(l)e (C.112) 

which has only two solutions, 8(1) = 1 or u(l)e = 0. Since the Perron-Frobenius eigen­

system analysis explicitly requires u(z)e = 1, we have c5(1) = 1. Since this eigenvalue 

corresponds to the general eigenvalue wo(l) there must exist a non-zero scalar function 

s(z) such that 
1 

ho(z) = s(z) u(z) (C.113) 

and 

go(z) = s(z)v(z) (C.114) 
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giving, with a little manipulation 

and 

1 , s'(z) 
s(z) u (z) - s(z)2 u(z) 

1 ,, s'(z) , ( s'(z)2 s"(z)) 
= s(z) u (z) - 2 s(z)2 u (z) + 2 s(z)3 - s(z)2 u(z) 

g~(z) 

g~(z) 

s'(z)v(z) + s(z)v'(z) 

s"(z)v(z) + 2s'(z)v'(z) + s(z)v"(z) 

Note that, using c5(1) = 1 also allows us to easily prove that 

u(l) = µ 

whereµ is the invariant probability vector of the matrix A, and 

v(l) = e 

C.4 Perron-Frobenius Eigenvalue Derivatives for 

Multiple Sources 

(C.115) 

(C.116) 

(C.117) 

(C.118) 

(C.119) 

(C.120) 

In practice there will be a number of sources generating arrivals independently of each 

other. This overall Markov arrival process can be described by a transition probability 

generating matrix that is formed from the Kronecker product of the individual source 

transition probability generating matrices. That is 

N 

AP(z) = {8) AiPi(z) (C.121) 
i=l 

where the i subscript indicates the relevant matrix corresponds to the ith source, and 

N is the number of sources. From the properties of Kronecker products [34] it is then 

possible to also establish 
N 

b"(z) = II c5i(z) (C.122) 
i=l 
N 

u(z) = Q9 Uz(z) (C.123) 
z=l 

N 

v(z) = Q9 vi(z) (C.124) 
i=l 
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The derivatives of the overall eigenvalue 8(z) are then given on investigation by 

N 

8'(z) I: 8:(z) (C.125) 
i=l 

N N 
8"(z) L 8?(z) - L 8:(z) 2 + 8'(z) 2 (C.126) 

N N 

8"'(z) L 8:"(z) + 38'(z) L (8:'(z) - 8:(z)2
) 

i=l i=l 

N N 
- 3 L 8~(z)8~' (z) + 8' (z) 3 + 2 L 8:(z) 3 (C.127) 

The first derivative of bi (z) evaluated at z = 1- is equal to Ai - the steady state 

average number of arrivals generated by source i in each time slot. For binary sources 

(that generate either 0 or 1 arrivals in each time slot) it is a simple matter to show that 

8'(z) 

8"(1) 

A 
N 

L 8:'(1) + M2 - A 
i=l 

N N 

(C.128) 

(C.129) 

8"' (1) = L 8:" (1) + 3 L (A - Ai) 8:' (1) + M3 - A - 3 (M2 - A) (C.130) 
i=l i=l 

where A is the stationary average number of arrivals generated by all N sources in total 

in each time slot, and M2 and M3 are the second and third moments of this quantity 

respectively, given by 

(C.131) 
i=l 

M2 (C.132) 
i=l 

N N 
M3 A+ 3A2 + A3 

- 3 (1 +A) LA;+ 2 L Af (C.133) 
i=l i=l 

C.5 The Geornetric-Geornetric Special Case 

The geom-geom arrival process can be treated as a special case of the phase-geom 

process, where the active periods have only one phase, and hence can be described 

by a geometric process. These geom-gepm processes have the advantage that they 

have closed form expressions for their eigenvalues, and allow explicit representation of 

the eigenvectors. These results are presented below, both for the general and Perron­

Frobenius eigensystem analyses. 
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For notation, we represent the geom-geom Markov process by a state transition matrix 

of the form 

A=[ a 1-ai 
1-/3 f3 

The probability generating function matrix is 

giving 

P(z) = [ 1 0 l 
0 p(z) 

AP(z) = [ a (1- a)p(z) l 
1 - f3 f3p(z) 

(C.134) 

(C.135) 

(C.136) 

Denoting the average number of arrivals generated in each time slot by A, and the 

autocorrelation parameter of the source by/, gives 

f3 

where / = a + f3 - 1. 

.A 
1 - (1 - 1) p'(l) 

.A 
I+ (1 - 1) p'(l) 

(C.137) 

(C.138) 

C.5.1 Geometric-geometric expressions for wn(z), hn(z), and gn(z) 

We have for n = 0, 1 

with 
hn(z) = (-lt Wn(z) - {3p(z) [ -1 w1-n(z)-,Bp(z) 

w1(z) - wo(z) 1-,B 

and 

We also obtain 

[ 1 l gn(z) = l-(3 
Wn(z)-,Bp(z) 

-.A1 
h1(l)g~(l) = --

1 -1 

(C.139) 

(C.140) 

(C.141) 

(C.142) 

C.5.2 Geometric-geometric expressions for o(z), u(z), and v(z) and 

derivatives 

Here we have o(z) = wo(z) or 

o(z) = a+ ip(z) + (a+ ip(z)) 2 _:. /p(z) (C.143) 
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with 

( ) _ 8(z) - p(z) [ (1-a)p(z) J 
u z - 8(z) (1 - p(z)) 1 o(z)-(3p(z) 

(C.144) 

and 

v(z) = (1 - p(z~) (p(z)8'(z) - p'(z)8(z)) [ 1~13 l 
p (z) (p(z) - 8(z)) o(z)-(3p(z) 

(C.145) 

Substituting for a and /3, and simplifying, the first three derivatives of 8(z) become 

81 (1) >. (C.146) 

811 (1) - 2>. (p'(l) - >.) 1 =I+ p'~l)p"(l) (C.147) 

8111 (1) = 6>. (p'(l) _ >.) (p'(l) - >.) 1:- >.1 
(1 -1) 

+ 6>. (p'(l) - >.) 'Y p"(l) + _>._p"'(l) 
p'(l) (1 - 1) p'(l) 

(C.148) 

Similarly, the first two derivatives of the right-hand eigenvector become 

vb(l) 
-1>. 

(C.149) = 1- 'Y 

v~(l) 
2>.1 (>. - (1+1) (p'(l) - >.)) 1>. "( ) (C.150) -

(1 - 1)2 p'(l) (1 - 1)p 
1 

.~ 

and 

v~ (1-) 
(p'(l) - >.)I 

(C.151) ., = l -1 

v~ (1-) = 
21 (p'(l) - >.) (p'(l)'Y - 1>. - 2>.) (p'(l) - >.) 'Y "( ) 

(1 - 1)2 + p'(l) (1 - 1)p 
1 (C.152) 



Appendix D 

The Autocorrelation Sum of a 

Phase-Geom Binary Source 

In this appendix we show that the form of the autocorrelation parameter described 

by Neuts in [98] for phase-geom binary sources and adopted in this thesis has a direct 

physical relationship to the observable autocorrelation coefficient function. To be exact, 

we will prove that the single-sided infinite sum S of the autocorrelation coefficient 

function is given in terms of the autocorrelation parameter 'Y by 

00 

S= L R(m) = -
1-

1- 'V 
m=l I 

(D.l) 

where R(m) is the autocorrelation coefficient function (the autocovariance normalised 

to the variance of the process). 

Although this relationship is simple to prove, and indeed is well known, for geom­

geom binary sources, the fa~t that it might apply to the more general phase-geom 

binary model was first proposed only recently by Pieloor and Lewis in [107]. Although 

the authors were unable to prove this relation, they successfully used it to accurately 

predict simulation results in that paper. Previous attempts to prove the relation using 

matrix algebraic notation were unsuccessful, although they did allow the relation to be 

confirmed symbolically for transition matrices of size 3 x 3 and 4 x 4 using Mathematica 

[139]. In the following we present a formal proof of the relation. 

Theorem D.1 The single sided autocorrelation sum of a phase-geom binary process 

with an autocorrelation parameter 'Y descriPed by 

'Y = 1 - 2'T}1 
(1 - .\) (rJ2 + 'TJ1) 
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is given by 

The Autocorrelation Sum of a Phase-Geom Binary Source 

8= _I_ 
1 -1 

where A is the average generating rate of the process, 'f/r is the rth moment of its active 

period, and 8 is defined by 
00 

8= L R(m) 
m=l 

where R(m) is the autocorrelation coefficient function of the phase-geom binary process. 

Proof. Define the counting process N(t) to be the number of events (arrivals or 

departures) occurring in an arbitrary time interval oft time slots. The asymptotic 

variance ratio of the process N(t) is defined as 

. 1 
v = hm - Var [N(t)] 

t--+Eoo t 
(D.2) 

for which it can be shown (using the well known result for the variance of the sum -

see {6} for example) that 

v = a 2 (1+28) (D.3) 

where a 2 is the variance of the process. In {19}, Daley points out that the asymptotic 

variance of the net arrival process to an infinite buffer queue is equal to the asymptotic 

variance of the aggregate server process, or Vaut = Vzn 1 

Consider an infinite buffer, single server discrete-time queue with an input process 

formed from the superposition of N geom-geom binary arrival processes, with average 

arrival rates and autocorrelation parameters described respectively by Ai and Ii for 

i = 1, 2, ... , N. The stationary {or marginal) arrival process from these N sources 

has a combined average arrival rate denoted by A, with variance a 2
. From Chapter 7 

we know that the autocorrelation parameter I {no subscript) of the phase-geom binary 

process describing the output of this queue is given by 

I 
1 - 'Y 

(D.4) 

It is simple matter to show that the autocorrelation coefficient function of geom-geom 

binary process i is given by 

(D.5) 

iDaley actually discusses this result in terms of the index of dispersion of intervals (IDI), while the 

definition of the asymptotic variance ratio used here is closely related to the mdex of dispersion of 

counts (IDC) The IDC and IDI have the same limitmg behaviour however (40] and so the result still 

holds. 
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and hence the autocorrelation parameter of the combined arrival process will be described 

by 
1 N 

R(m) = _ '°' 0"2/'lml 
0"2 L....., i i 

i=l 

(D.6) 

where O"T = Ai (1 - Ai) since the sources are binary, and 0"2 = E~1 O";. Thus, the single 

sided sum of the autocorrelation function of the input process is given by 

(D.7) 

Rearranging Daley's result gives 

Bout = 
2 2 2 

O" - O" out O" S 
2 + -2- in 

20" out O" out 

0"2 + A 2 - A 1 N 'Yi 
2A (1 - A) + A (1 - A) ~Ai (1 - Ai) 1 - 'Yi (D.8) 

where O"~ut = A (1 - A) is the variance of the server output process. Compd~ing this 

result to equation (D.4} the desired relation is obtained, and the proof completed. • 



Appendix E 

Iterative Queueing Solutions 

One means of providing an independent source of confirmation for queue distribution 

results is to use iterative solution methods. We will outline this method here firstly 

for a general discrete-time Markov modulated arrival process, and then discuss some 

of the specifics of the IBP and cyclic service problems. 

E.1 Markov Modulated Arrival Processes 

We assume that time is slotted, and that service of the queue occurs at the slot bound­

aries. The state of the arrival process changes at the start of each time slot, and the 

arrivals for the current time slot are then generated. Let qn,s(t) denote the probability 

that the queue population observed at the beginning of the tth time slot (immediately 

after service) is n and that the state of the arrival process was s at the end of the last 

time slot. Similarly, let q;i 8 (t) denote the same quantity observed at the end of the tth , 
time slot for the current arrival process being s. In both cases, s denotes the state of 

the arrival process that generated the last arrivals to the queue. 

Let ar,s denote the probability that the next state of the combined arrival process will 

bes given that the last state was r, and let Ps,k denoted the stationary probability that 

there will be k arrivals generated by the combined arrival process when it is in state s. 

The buffer is assumed to be finite in capacity, with size K (we can hold K cells waiting 

for service in addition to the cell, if any, currently receiving service). For n < K we 

obtain 
n m-l 

q;!-,s(t) = L L qi,r(t)ar,sPs,n-i (E.l) 
i==O r==O 

where m is the number of states in the Markov chain describing the combined arrival 
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process. For n = K 
K m-1 oo 

q"j{,s(t) = L L qi,r(t)ar,s L Ps,k (E.2) 
i=O r=O k=K -i 

where q;i,8 (t) is of course equal to zero for n > K. These relations describe the effect 

of the arrival process on the development of the queue population. We can similarly 

summarise the service process as 

for n = 0 

for 1:::; n < K 

for n 2: K 

(E.3) 

This approach is ideal for the analysis of transient behaviour, since the slot to slot 

variation in the probability distribution of the queue population is described exactly 

by equations (E.1), (E.2), and (E.3). For stationary or steady state behaviour we 

are limited to iterating these relations until the change in some characteristic between 

iterations (or slots) is small enough to be acceptable. A common choice in this regard 

is the average queue population, where iteration of the queue problem proceeds until 

I 
Lq(t) - 11 < E 

Lq(t - 1) 

for some suitably small E, where 

K m-1 

Lq = L n L qn,s ( t - 1) 
n=O s=O 

is the average queue population. Other choices are the variance of the queue population 

(see Chapter 4) and the average loss probability (see Chapter 6 and the following). 

This iterative solution approach is many times slower than the probability generating 

function method discussed in Chapters 2, 3, and 5 when calculating solutions approx­

imating the infinite buffer (large K). It has the advantage however that it is very 

robust, and returns the entire probability distribution rather than just the average and 

variance. It is particularly well suited though to calculating loss probabilities for fi­

nite buffers, since it is by nature a finite buffer implementation. In this regard it is 

perhaps the best method available for finite buffer analysis, although matrix geometric 

techniques can also be applied to this purpose. 

Denote the loss probability for a buffer of size K by ~K, and denote the average number 

of cells departing the queueing system in each time slot by p. If there are an average 

of >. attempted arrivals per time slot, then we have 

(E.4) 
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where )..~K denotes the average number of cells per time slot lost due to overflow of the 

finite buffer. Additionally, since departures from the queueing system can only occur 

when the server visits a non-empty queue, we see that the probability that the system 

is empty is given by 1 - p. Hence, the steady state loss probability is obtained simply 

by 

1 ( m-1 ) 
~K = 1 - ~ 1- t~~ ~ qri,s(t) (E.5) 

where, for small K, the iteration process converges quite quickly to the steady state. 

E.2 Application to the Geometric-Geometric IBP 

Queueing Problem 

In this section we will present some C code fragments for implementing t4y numeric 

iterative solution method for queueing systems subject to geom-geom IBP so~;rces. The 

method used here represents only one of many possible ways to i:rpplement the same 

procedure, but is the one used by the author to generate the various results in this 

thesis. The details are reproduced here for the interested reader. 

C Code Implementation 

The following C code fragment performs a single iteration of the queueing system. 

The vectors1 q_vector and q_plus_vector describe the qn,s(t) and q;f:s(t) probability 

distributions respectively by amalgamating the population n and state s into a single 

index given by nm+s, where m is the number of states in the combined arrival process 

(2N in this case). The current slot number t is assumed to be dealt with elsewhere, 

since it has no bearing on the implementation of the iteration process. The array 

active_sources describes the number of active sources in the indexed state, while 

transi tion..lllatrix and arri vals..lllatrix describe the state transition and arrival 

probabilities respectively. Note that q_vector and q_plus_vector both have (K + 1) m 

elements. 
1Vectors are defined here as one dimensional arrays of double precision floating pomt numbers 

indexed from zero. Matrices are similarly defined, but for two dimensions. 
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for (i=O ; i<K*m+K ; ++i) q_plus_vector[i] 

for (i=O ; i<m ; ++i) { 

0.0; 

} 

for 

for 

for (J=O ; j<m ; ++j) { 

for (k=O ; k<K ; ++k) { 

} 

} 

(i=O 

(i=m 

x = q_vector[k*m+i]*transition_matrix[i] [j]; 

for (n=O ; n<=active_sources [j] ; ++n) { 

next_k = k + n; 

if (next_k > K) next_k = K; 

q_plus_vector[next_k*m+j] += x*arrivals_matrix[j] [n]; 
} 

i<m; ++i) q_vector[i] = q_plus_vector[i] + q_plus_vector[i+m]; 

i<K*m ; ++i) q_vector[i] = q_plus_vector[i+m]; 

For the above process to work of course, the relevant arrays of data must be defined. In 

the following we list the code for performing this operation under the assumption that 

Lambda, Theta, and Gamma are arrays of N elements containing Ai, ()i, and Ii for each 

of the N sources. In addition we require Alpha and Beta to contain ai and f3i where 

ai 1 - (1 - 1i) ~; (E.6) 

/3i Ii + (1 - Ii) ~; (E.7) 

We also assume that the state of the overall process describes the state of each of 

the individual IBP sources using a binary assignment. The order of the assignment is 

unimportant as long as it is consistent within the program. 

With these quantities defined, the m x m state to state transition probabilities matrix 

is calculated using 

for (i=O ; i<m ; ++i) { 

for (j=O ; j<m ; ++j) { 

x = 1.0; 

for (k=O ; k<N ; ++k) 

last = (i » k) f. 
next = (j » k) f. 
if ((last == 0) && 
if ((last == 0) && 
if ((last 1) && 
if ((last 1) && 

} 

{ 

2· , 
2; 

(next 

(next 

(next 

(next 

transi tion_matrix [i] [j] = x; 
} 

} 

0)) x *= Alpha[k]; 

1)) x *= (1.0 - Alpha[k]); 

0)) x *= (1.0 - Beta[k]); 

1)) x *= Beta [k] ; 

The entries in arri vals...matrix are calculated using the following fragment. This is 
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an m x N matrix describing the probability that a particular number of arrivals is 

generated when the arrival process is in each state. 

for (i=O; i<m; ++i) for (j=O; j<=N; ++j) arrivals_matrix[i][J] 0.0; 

arrivals_matrix[O][O] 1.0; 

for (i=1 ; i<m ; ++i) { 

k = O; 
for (j=O ; j<N ; ++j) { 

} 

if (i >> j I. 2 == 1) { 

temporary_vector[k] = Theta[j]; 

++k; 

} 

num = 1 << active_sources[i]; 

for (j=O ; j<num ; ++j) { 

n = 0; 

x = 1.0; 

for (k=O ; k<active_sources [i] ; ++k) { 

if (j >> k I. 2 == 1) { 

x *= temporary_vector[k]; 

++n; 

} 

else x *= 1.0 - temporary_vector[k]; 
} 

arrivals_matrix[i] [n] += x; 

} 

} 

The last component is the active_sources array, which is simply calc1:1lated due to 

the binary assignment approach. 

for (i=O ; i<m ; ++i) { 

active_sources[i] = 0; 

for (J=O ; j<N ; ++j) if (i >> j I. 2 
} 

Initialisation 

1) ++active_sources[i]; 

Before the first iteration is performed, the q_vector must be initialised to some appro­

priate set of values. Since this vector is the program implementation of the probability 

distribution q(t) = {qn,s(t)} its entries must all be greater than or equal to zero, with 

a sum of exactly 1. The most common initial state to use is the empty queue, which 

still leaves the problem of assigning the probabilities of the m states corresponding to 

a queue population of zero. 

We can of course assume that the starting state of the arrival process is also zero, so 

that qo,o(O) = 1 with all other entries equal to zero. Alternatively, inspection of the 

,, 
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arrival and service relations for qn,s(t) as t--+ oo shows that in the steady state 

K 

L qn,s(oo) = µs 
n=O 

(E.8) 

where µ 8 is the steady state probability that the combined arrival process will be in 

state s. Thus we use instead 

for n = r 

otherwise 
(E.9) 

where r is the starting queue population (i.e. we are not just restricting ourselves to 

r = 0). The µ8 quantities are calculated from the parameters of the geom-geom IBP 

sources as shown in the following code fragment. 

for (i=O ; i<m ; ++i) { 

mu_vector[i] = 1.0; 

} 

for (j=O ; j<N ; ++j) { 

} 

if (i >> j Y. 2 == 1) mu_vector[i] *= Lambda[j]; 

else mu_vector[i] *= 1.0 - Lambda[j]; 

Note that arbitrary assignments of values qn,s(O) can result in phantom convergence -

that is, the iterative process stops at an incorrect result even though the convergence 

criteria has been satisfied. The reason for this is that the observed convergence measure 

may not proceed from its starting value to its steady-state value in a smooth or direct 

manner, but may move from the starting point to some other point outside of the 

range between the starting and steady-state values before then proceeding towards the 

steady-state. If this happens there will be some point in the iterative process where 

the change in the observed quantity between iterations reverses sign (i.e. the measure 

begins to decrease instead of increase). If this reversal is 'slow' enough, it may appear 

that the observed quantity has converged. This is the main reason why a starting queue 

population of 0 is most often used. 

Other Considerations 

As the number of iterations increases, the sum of the probabilities in the q_vector will 

slowly diverge from 1 due to accumulation of round off errors. With double precision 

arithmetic this will very likely have a negligible effect for the first 105 or so iterations, 

and rarely will this many be required. If large numbers of iterations are going to be 

encountered the program should periodically correct for the error in the sum. 

Another problem that can occur is that the observed quantity of the iterative process 

does not continue to converge past a certain point. Combinations of round off errors and 
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other precision effects seem to be the cause of this problem. If the iteration program 

merely continues until the desired convergence is achieved, the program may iterate 

indefinitely. Consequently it is a good idea to periodically check that the process is 

still converging by confirming that the current relative change in the observed variable 

is less than the relative change observed at the last check time. 

E.3 Application to Cyclic Service Queueing Problems 

In Chapter 5 we considered the analysis of queueing systems subject to arrivals from 

both a single cyclic source with parameters b and C, and from N geom-geom IBP 

sources. Rather than attempt to model the cyclic source as another arrival process like 

the IBP sources (thereby increasing the number of Markov states from 2N to 2N C) 

we exploit the time periodic nature of the process. In those time slots for which the 

cyclic source is active, a single additional arrival to the queue is generatep., while for 

the remaining slots the iterative procedure is identical to that of the IBP sources alone. 

This results in an implementation of the iterative process itself as given by the following. 

for (position=O ; position<C ; ++position) { 

} 

for (i=O ; i<K*m+K ; ++i) q_plus_vector[i] = 0.0; 

for (i=O ; i<m ; ++i) { 

} 

for (j=O ; j<m ; ++j) { 

} 

for (k=O ; k<K ; ++k) { 

} 

x = q_vector[k*m+i]*transition_matrix[i] [j]; 

for (n=O ; n<=active_sources[J] ; ++n) { 

next_k = k + n; 

if (next_k > K) next_k = K; 

q_plus_vector[next_k*m+j] += x*arrivals_matrix[j] [n]; 
} 

if (position < C-b) { 

for (i=O ; i<m ; ++i) 

} 

q_vector[i] = q_plus_vector[i] + q_plus_vector[i+m]; 

for (i=m; i<K*m; ++i) q_vector[i] = q_plus_vector[i+m]; 

else { 

for (i=O ; i<K*m; ++i) q_vector[i] = q_plus_vector[i]; 

for (i=K*m-K ; i<K*m; ++i) q_vector[i] += q_plus_vector[i+m]; 
} 

The constant vectors and matrices are generated in the same manner as for the IBP 

only case, wit h the main difference in the implementations being one 'iteration' now 

·-~ ., 
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increases the time index by C rather than by 1 as in the previously discussed case. 



Appendix F 

Miscellaneous Mathematics 

Many of the derivations presented in the body of this thesis rely on standard or simple 

mathematical relations, particularly in regard to multiple sums of probabilities. For 

convenience, the more useful of these are presented here. 

F.1 Surns of Series 

Theorem F.1 For lrl < 1 

00 

2:iri 
i=l 
00 

2:i2ri 
i=l 
00 

2:i3ri 
i=l 

r 

1-r 

r 

(1 - r) 2 

r 
(1-r)3(1+r) 

r 2 
(l _ r)4 (1+4r + r ) 

Proof. Only the second case above is proved here, since the other cases are proved 

in a like fashion. 

S(n) 

S(n) - rS(n) 

S(n) 

S(oo) 

n . 
= I: iri = r + 2r2 + 3r3 + ... + nrn 

i=l 

= (r + 2r2 + 3r3 + ... + nrn) - (r2 + 2r3 + 3r4 + ... + nrn+l) 

= (r + r 2 + r3 + ... + rn) - nrn+l 

= 1 ("'n- ri _ nrn+l) 
(l-r) 6i-1 

1 oo . r 
= (l-r) i~l ri = (1 - r)2 
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• 
Theorem F.2 For lrl < 1, and letting G) denote the binomial coefficient function, we 

have 

1 
(1 - r)c+l 

r (c + 1) 
(1 - r)c+2 

r ( c + 1) (re + r + 1) 
(1- r)c+3 

Proof. As for Theorem F.1, we only present a proof for the second case - the other 

two are similar. We start by denoting 

then 

S~(n) 

S~(n) - rS~(n) 

therefore 

S~(oo) 

~x(x; c)rx 

~ x ( x ; c) rx _ ~ X ( x ; c) rx+l 

E ( x + 1) ( X + ~ + c) rx+l - E ( x + 1) ( X ; c) rx+l 

+ E ( x ; c) rx+l _ n ( n ; c) rn+l 

E ( x + 1) ( ( x + ~ + c) _ ( x ; c)) rx+l + r E ( X ; C) rx 

_ n(n; c)rn+l 

S~_1 (n) + rSc(n - 1) - n (n; c) rn+i 

l-r 

= 
Sb(oo) r ~ Bc-i(oo) 

---'-~___,, + -- L.,, 
(1-r)c 1-ri=l (1-r) 2 

(by inspection) 

1 00 r c 1 
(1 - r)c ~ xrx + 1 - r ~ (1 - r)c+l 

r (c + 1) 
(1 - r)c+2 
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• 
Theorem F .3 For some stochastic matrix X such that I - X is non-singular 

i=l 
00 

(I-X)-2 X 
i=l 

(I - X)-3 (I + X) X 
i=l 

Proof. Follows from the same approach as that used in Theorem F.1, keeping in 

mind the non-commutative nature of matrices. • 

Theorem F .4 For some an and bn 

K n K K-n 
L L aibn-i = L an L bi 
n=O i=O n=O i=O 

oon oo oo 

L Laibn-i =Lan L bn 
n=O i=O n=O n=O 

Proof. By inspection. • 

Theorem F .5 For some an and bn 

K n K K-n 
L L naibn-i = Lan L (n + i) bi 
n=O i=O n=O i=O 

oon oo oo oo oo 

L l:nazbn-i = L bn L nan+ Lan L nbn 
n=O i=O n=O n=O n=O n=O 

Proof. By inspection. • 

Theorem F .6 For some an and bn 

K n K K-n 
L L n 2

aibn-i = Lan L (n + i) 2 
bi 

n=Oi=O n=O i=O 

oon oo oo oo oo oo oo 

L l:n
2
aibn-i = L n

2
an L bn + 2 L nan L nbn +Lan L n 2bn 

n=O i=O n=O n=O n=O n=O n=O n=O 
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Proof. By inspection. • 

Theorem F. 7 For some an and bn 

K n K K-n 

L L n 3aibn-i =Lan L (n + i)3 
bi 

n=O i=O n=O i=O 

oon oo oo oo oo 

L L n3
aibn-i = L n 3an L bn + 3 L n 2

an L nbn 
n=O i=O n=O n=O n=O n=O 

00 00 00 00 

+3 2.:nan 2.:n
2
bn +Lan 2.:n

3
bn 

n=O n==O n==O n==O 

Proof. By inspection. • 

F .2 Moments of Sums of Binary Processes 

A binary random process Xi can take on one of two values (0 or 1) and is found to have 

a value of 1 with steady state probability Pi· As a consequence, all the moments around 

the origin mr(Xi) have the same value of Pi· Let m~(Xi) denote the rth moment of 

this arrival process around the mean m 1 (Xi)· Then it is straight forward to show that 

m~(Xi) 

m~(Xi) 

m~(Xi) 

0 

2 
Pi - Pi 

Pi - 3p; + 2p~ 

Consider now the sum of N independent binary processes, denoted by S = X1 + X2 + 
· · · + XN. Then it can be shown that 

so that, using 

N 

m1(S) LPi 

m~(S) 

i=l 

N 

L (Pi-Pn 
i=l 

N 

L (Pi - 3p~ + 2p~) 
i=l 

m~(S) + m~(S) 
m~(S) + 3m1(S)m2(S) - 2mf (S) 
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gives 

p 

i=O 
N-1 N-1 

p + 3p2 + p3 - 3 (1 + p) L:: p; + 2 L:: Pt 
i=O i=O 

where p = l:~1Pi· 

F .3 Binomial Arrival Processes 

For the binomial arrival process, the probability of there being i arrivals is given by 

where N is the number of sources making up the binomial process, and p is the indi­

vidual source probability, given by p = >../ N for identical sources and a total average 

number of arrivals per discrete-time interval of>... The first three moments of the arrival 

process are therefore given by 

m 1 =>.. 

m2=>..(1- ~+>..) 

m3 = >.. 1 + 3>.. - 3- + >..2 - 3- + 2-( 
>.. >._2 >._2) 
N N N2 
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