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ABSTRACT 

 

.11,61/ .417.4.7,417.47/41r// 	 
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The Kunwarara magnesite deposit, in Central Queensland was selected as 
a study site to evaluate the use of different resource calculation 
methodologies on tonnages and grades within the deposit. 

Initial appraisal consisted of classical statistics completed on 6 frequently 
analysed elements, magnesium, silica, manganese, iron, calcium and 
aluminium. Sample distribution was skewed, and indicative of mixed 
sample populations. This was attributed to a combination of factors, the 
most important being groundwater geochemistry in particular changes in 
pH. Samples were then split by lithology into sand, silt and clay fractions, 
and the statistics re-run. Again, the main factor controlling sample 
distribution was suggested to be groundwater geochemistry. 

Variography was completed for three dimensional and downhole 
orientations. Results showed that there were coherent ranges for 
magnesium, iron, aluminium, and manganese in the sand fraction. The silt 
lithology displayed better variograms from all elements, with only calcium 
returning unclear variogram ranges. In the silt fraction, iron and 
magnesium were not clear, while the remaining elements displayed clear 
ranges. A feature of all variograms was the "noise" displayed. This was 
attributed to the mixed sample populations of each element and the 
sampling technique employed on the minesite. 

Five resource calculation techniques were tested: inverse distance 
squared and cubed, ordinary kriging and indicator kriging on both 
composite and raw data. Tonnage and grade curves produced for each 
method indicated that there was relatively little difference between the 
methods in terms of tonnage or grade estimation. Generally, the inverse 
distance cubed method produced the highest tonnages and grades, while 
the indicator kriging (raw data) method returned the most conservative 
grades and tonnages. By evaluating the variance, mean and median 
returned from each block model, it was determined that indicator kriging 
was the most appropriate resource calculation method. 

Using the indicator kriging method on raw assay data, a number of block 
sizes were evaluated. The 100 x 100 x 3 metre block size showed the 
minimum sample variance and is of sufficient size to allow for easy mine 
planning in a 3 million tonne per annum operation. 
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CHAPTER 1 
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1.0 Introduction 

 

.4I/A,/■11/W 	 APYIP,AIMIVIKS 

 

Queensland Metals Corporation hold title to one of the largest known 
cryptocrystalline magnesite deposits in the world, at Kunwarara in central 
Queensland. Resources at the commencement of mining were some 500 
million tonnes of nodular magnesite. 

Kunwarara forms a case study for the evaluation of different computerised 
resource estimation techniques. This study attempts to document the 
effects of such calculations upon the tonnages and grades to be expected 
in the deposit, and also to determine the effects of changes in ore block 
size on the tonnage and grade curves produced by each evaluation 
technique. 

Resource calculations are the foundation stone of any successful mining 
operation. From the geological resource, the mining method, plant design, 
and eventual output are all designed. A poor selection of resource 
evaluation methodology can make the difference between a robust mining 
operation, and a break-even or sub-economic scenario. By evaluating 
computerised techniques, the study attempts to define the most accurate 
methodology for the current mining operation. 

1.1 Definition of Resource Estimation 

Resource estimation is a process used to determine the best possible 
geological assessment of the quality and quantity of a particular 
commodity, based on a given set of data points, so that the commodity can 
be profitably extracted. A mineable resource is where a commodity has 
been evaluated in terms of all known factors including geology, but where 
the mining method, extraction method, financial aspects and environmental 
aspects have all been considered. 

1.2 Background 

A number of processes lead to the mineable resource. The initial 
exploration program focuses on the "hypothetical", or the search for an 
economic commodity concentration. Steps in this process include targeting 
of a particular commodity, ground selection, regional reconnaissance, 
prospecting, and anomaly definition. Once located, an anomaly is 
subjected to verification by detailed mapping, geochemical and 
geophysical surveying, possibly costeaning or trenching, and initial drilling 
using rotary air blast, aircore or percussion drilling. 
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The next step involves deposit development. The mineralisation is more 
clearly defined using geological techniques such as reverse circulation 
percussion and diamond drilling, and the prospect advances to pre-
feasibility study stage. Engineering studies, preliminary metallurgical 
testwork, and environmental aspects of extraction are completed. If the 
resource and extraction techniques appear feasible, scoping studies and a 
full feasibility study are commissioned. At this point, factors such as cut-off 
grades, mineability and dilution are assessed. 

A feasibility study is the point at which project economics are fully 
evaluated. This consists of the best available resource estimate based on 
data available, full scale engineering and metallurgical studies, evaluation 
of environmental and heritage considerations, and a determination of the 
operating and capital costs, projected revenue, financial backing and social 
constraints of mine start-up. 

Assuming a positive, robust conclusion to the feasibility study, mine 
construction and exploitation of the defined resource then follow. The mine 
start-up comes with three inherent risks — financial, business and technical. 
Financial risk is related to interest rates, exchange rates and commodity 
prices. Business risks are those associated with the financing of an 
exploration effort, deposit development and mine exploitation. Technical 
risk is directly associated with exploration, deposit development and mine 
production costs. c' 

By far the largest contribution to any project's risk is the technical aspect, 
and this is also generally the simplest to reduce by increasing the 
knowledge about the deposit at the pre-mine stage. From a geological 
perspective, the most important factors are those which allow the resource 
to be quantified and the verification of methods used. The resource is the 
basis of the mine and the cornerstone for the evaluation of the correct 
mining method, plant and extraction techniques. 

The geologist's input involves determining mineralisation boundaries such 
as the extent of the deposit, mineralogy, grade, tonnage, density and 
controls on mineralisation such as folds, faults or lithology. In addition, the 
geologist is expected to provide information on the framework of the 
deposit — the regional and local geological environment. 

Once such factors have been documented, or at least considered, the 
resource estimate can be undertaken. The first step of a resource 
estimation process is to evaluate the known geology of a deposit. Are 
there lithological or structural controls? Is the genesis of the deposit likely 
to provide information as to higher grade mineralisation? What is the 
primary mineralogy? Is the mineralisation liable to require detailed 
metallurgical testwork due to its fine grained or refractory nature? 

The next step is to assess the shape, limits and dimensions of a deposit. 
The more regular a deposit shape, the less likelihood there is in a major 

1 1 
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error in estimation of size or grade. 	A second corollary is that 
mineralisation hosted in a more regular deposit shape can more readily be 
approximated by use of samples of limited size, such as one metre lengths 
of drill core or one metre intervals of drill chips. 

In addition, an evaluation of the assay distribution of the commodity and 
any "poisons" or deleterious elements must be made. Such an evaluation 
can determine if there is a natural, or statistical, cut-off for economic 
extraction, whether there are definite patterns to the mineralisation such as 
a normal distribution, or whether certain elements are preferentially related 
to a particular lithology. 

The final point, prior to the actual resource calculation, is to determine the 
specific gravity of the commodity, or its host rock. The resource calculation 
then uses the known deposit boundaries, geology, structure and 
mineralisation to estimate the tonnage and grade of the commodity, via ore 
blocks of defined thickness, width and grade. 

1.3 Review of Estimation Techniques 
1.3.1 Traditional Techniques 

Resource estimates can be completed using either traditional or non-
traditional methods. Traditional methods rely on estimating the volume of 
mineralisation in relation to known sample points, generally drillholes. 
Assay values are then assigned to the volumes via geometrical weighting 
techniques. Traditional methodologies include sections, contours, and 
polygons. 

Sections are produced from lines of drillholes preferably sited on standard 
grid patterns at right angles, or close to right angles to the mineralisation 
being evaluated. A section normally shows the trace of the drillhole, 
geology downhole and the assay values and intervals. For reasons of 
sampling accuracy, usually only reverse circulation percussion or diamond 
drillholes are utilised. 

Surfaces are drawn to approximate the boundaries of mineralisation, 
ensuring that each "block" outlined follows the assumed dip of the 
mineralisation. Each block's area is calculated, and a grade assigned by 
averaging the drillhole grades over the width of the block. A typical section 
example is shown in Figure 1-1. 

12 
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Figure 1-1 Sectional Calculation Method 
(reproduced from King, H., McMahon, D, and Bujtor, G. (1982), A guide to the understanding of 
Ore Reserve Estimation, Supplement to AusIMM Proceedings No. 281, March, 1982). 

Contour calculations involve assigning various grade weights between two 
samples on a regular, proportional basis, so that each grade weight is an 
equal proportion of the difference in grade between the two samples. 
Grade weights of the same value are joined up, and the area underlain by 
each grade weight calculated by using either a planimeter or a digitiser. 
The result is a contour plan, as shown in Figure 1-2 

Figure 1-2 Contour Calculation Method 
(reproduced from King, H., McMahon, D, and Bujtor, (1982), A guide to the understanding of Ore 
Reserve Estimation, Supplement to AusIMM Proceedings No. 281, March, 1982). 

Polygons use individual drillholes to calculate a grade and thickness value 
for the mineralisation intercepted by that hole. Polygon ore blocks may be 
truly polygonal, triangular, rectangular, or square in shape. Boundaries for 
each block are generally assumed to be half way between adjacent 
drillholes. Figures 1-3 and 1-4 give examples of polygonal and triangular 
resource calculation methodologies. 

13 
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Figure 1-3 Polygonal Resource Calculation Diagram 
(reproduced from Royle, A.G. (1980), Estimating Global Ore Reserves in a Single Deposit, Minerals 
Science and Engineering, Volume 12, No 1, pp 37-50) 

Figure 1-4 Triangular Resource Methodology Diagram 
(reproduced from Royle, AG. (1980), Estimating Global Ore Reserves in a Single Deposit, Minerals 
Science and Engineering, Volume 12, No 1, pp 37-50) 

In general, the traditional methods tend to overestimate volumes, 
particularly at the corners of surfaces or polygons, and more particularly, 
when the polygon volumes or surface volumes vary widely between 
adjacent sections (Snowden, 1995). Assumptions as to continuity, and 
trends are implicit in the calculations, and may lead to errors in estimation, 
particularly if the mineralisation plunges in an orientation which is not the 
same as the strike (Kim, 1993). 

A similar overestimation can occur with grade. Most traditional methods 
simply extend the area of influence of a sample to half the distance of the 
sampling grid, so that a series of samples taken 25 metres apart will have a 
radius of influence of 12.5 metres. This gives a disproportionately high 
weighting to isolated high grade drillholes. In the case of a polygonal 
estimate, the average grade of a polygon is based on the grade in a single 
drillhole, leading to biased grade estimates. 
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The overestimation is frequently countered by assigning various correction 
factors, such as cutting of high grade values, or superimposing a dilution 
factor on the ore block. Traditional methods also have two other 
drawbacks. The first being that they are time consuming, and being 
laboriously manually completed are subject to human vagaries in attention 
to detail and repeatability. The second problem relates to difficulties in 
determining the margin of error in the volume and grade calculations. 

1.3.2 Transitional Technique — Inverse Distance Weighting 

Inverse distance weighting was the initial response to the problems of 
overestimation. The technique allows assays which are closest to the 
defined ore block to have the most impact on the grades within the block. 
Generally, an orebody is divided up into blocks of equal area or volume. 

Each block is then subject to a pre-defined set of search parameters to 
determine which assay values are the closest in space to the block. Only 
assays from within the search radius are used to assign values to the 
individual block. Assay values are assigned a weighting dependent on the 
distance from the drillhole to the block, as shown in Figure 1-5. 

Figure 1-5 Weighting Factors, Inverse Distance Technique 
(reproduced from Snowden, V. (1995), Applied Mining Geostatistics. Shortcourse presented at 
University of Tasmania, November, 1995) 

Grade of block = [g1/(dl) m  + g2/(d2) m  + Q3/(d3) ml 
[1/(d1)111  + 1/(d2)111  + 1/(d3)-9 

DDH 1 to 3 are the drillholes, g1 to g3 are the grades to be used in the 
calculation, and dl to d3 are the distances from the block to the drillholes, 
and m is the selected power. 

15 
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The weight is inversely proportional to the distance to an arbitrary power 
"m", between the sample and the centre of the block. The most common 
"m" powers used are squared and cubed, and selection of the required 
power more an arbitrary decision than a function of the change in variation 
of mineralisation over the calculated distance. 

Although frequently presented as a "geostatistical" resource calculation 
method, inverse distance weighting is not a geostatistical method, and it 
cannot produce an estimation of the errors in the grade and volume 
calculations. 

1.3.3 Geostatistical Techniques 

Non-traditional techniques include ordinary kriging and conditional 
simulation, and various modifications of the kriging process such as 
multiple and indicator kriging. These techniques allow some precision into 
the mineralisation estimation procedure by assessing grade continuities 
along with mineralisation orientation trends. 

The major tool of a geostatistical estimate is the variogram. Variography 
allows an assessment of the continuity and direction of mineralisation, the 
variability of the assay results, and the range of influence of drillholes to be 
made. Each variogram can be assessed in terms of the nugget effect, 
range of influence, and sill. 

Two samples which are taken at exactly the same point may not have 
exactly the same assay value, and the difference between the two samples 
is the nugget effect. The nugget effect is most commonly a high value 
where small scale structures such as veining, or coarse gold distributions 
exist. In large, massive deposits, such as a nickel laterite, there may be a 
very small nugget effect, meaning that there is not much variation in assay 
values between sample values taken from the same location. 

By increasing the distance between the locations of individual sample 
pairs, variability may increase to the point where the samples simply have 
no relationship to each other. The point of no relationship is measured 
from the y-axis of the variogram, and represents the sill. The same point, 
on the x-axis gives the range of influence, or the last point at which 
samples can be correlated. An example of a variogram is shown in Figure 
1-6, with the sill, range and nugget values calculated. 
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Figure 1-6 Example of a Semi- Variogram 

Semi-variograms can be calculated for specific geological or structural 
directions, such as along strike, down dip, down plunge or across strike. 

Kriging uses the information gained from the variography to estimate the 
grade of an ore block by weighting surrounding assays on the basis of the 
magnitude of the assay, and the distance to the assay from the ore block. 
At the same time, the technique minimises the sample variance within the 
ore block. Figure 1-7 shows the relationship of the surrounding drillholes 
to the ore block being estimated. 

Figure 1-7 Weighting Factors, Kriging Techniques 

(reproduced from Snowden, V. (1995), Applied Mining Geostatistics. Shortcourse presented at 
University of Tasmania, November, 1995) 

17 
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In this instance, 

Grade of the Block = AA gl + X2g2 + X3g3 

assuming that X1+X2+X3 are all equal to I. X1 to X3 is the weighting factor 
assigned to minimise estimation variance. 

Which method of kriging to employ is dependent on the type of distribution 
revealed by the classical statistical evaluation of data undertaken. If data 
are normally distributed, and the variograms are robust, ordinary kriging is 
a useful tool. 

Indicator kriging is employed when the mineralisation under study has a 
complex distribution (highly skewed, for example), as the method allows 
the assignment of probabilities to an ore block independent of sample 
distribution types. Figure1-8 shows the application of an indicator kriged 
model to an ore block. 

Figure 1-8 Indicator Kriging Approach to Resource Estimation 
(reproduced from Dagbert, M. (1990), Approaches to Ore Reserve Estimation — Indicator Approach, 
in Snowden Associates Newsletter, May, 1990) 

Probability kriging involves assay values being sorted by increasing value, 
and then being assigned a cumulative frequency based on the assay 
value. More unusual kriging routines, such as disjunctive, multi-gaussian 
and rank order kriging have also been reported, e.g. Francois-Bongarcon 
(1986), Verly (1983) and Verly and Sullivan (1985). 
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In general, the following criteria should be used when selecting a kriging 
method for a deposit (Snowden, 1995) 

Normal distribution 	 Ordinary Kriging 
)%. Highly skewed distribution 	Indicator or Probability Kriging 

Conditional simulation as a resource estimation technique is a relatively 
new technique in the geostatistical inventory, but also relies on 
variography. A model of a deposit is built to reproduce all known values 
from drillholes, and to possess the same mean, variance and variography 
as the actual deposit itself. Generally, this is achieved by running a 
number of different conditions for the deposit model, and assessing the 
variability between models. The completed simulated model is able to 
provide a more complete picture of the uncertainty involved in the resource 
calculation. The methodology is normally employed for deposits which 
require careful modelling of short-scale variability, such as the assessment 
of blending requirements for mill feed, or evaluation of dilution effects. 

1.4 	Mining Units 

Selective mining is dependent on the standard mining unit, or the smallest 
block of ore capable of being mined. Selective mining units (SMUs) are 
frequently chosen to reflect the operational cut-off grade utilised in the 
mine plan. Thus, the SMU is the smallest volume which can be classified 
as ore or waste (Journel, 1985). If the grade estimated within the SMU is 
greater than the cut-off grade used, then the block is classified as ore. If 
less than the cut-off grade, the block is classified as either low grade or 
waste. 

Generally, the SMU is dependent on the type of deposit, with a high 
tonnage, low grade deposit having a larger SMU than a low tonnage, high 
grade or highly complex body. In practice, the upper limit of an SMU may 
be constrained by the size of the mining equipment used. In the case of an 
underground mine, the SMU may be directly related to the size of the 
bucket of the loader feeding the ore haulage system. In an opencut 
operation, this may equate to a dragline bucket, haul truck load capacity or 
the size of the excavator used. 

1.5 Estimation Bias 

One of the larger problems in calculating mineable reserves is that the 
majority of mining decisions and forward mine planning are based on small 
sample populations generated by exploration drilling. The resource figure 
generated from the exploration data is reported to the stock exchange, and 
forms the basis for annual reconciliation figures. 

In practice however, day to day mining decisions are not based on the 
exploration data, but on larger volumes of information generated by 
blasthole sampling or close spaced mine drilling. This allows a degree of 
selectivity of resource grade not available in the exploration data, to ensure 
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the mill receives the best possible grades, while low grade material or 
waste is sent to the appropriate stockpile. The use of the blasthole 
information to determine mill feed results in a difficulty with reconciliation of 
mill figures back to the original exploration data. 

For example, an ore reserve reported for a particular year will have a 
defined tonnage and grade, based on the exploration sampling. Figures 
kept by the mining operation in terms of tonnage mined and treated and 
grade recovered are then reconciled to the ore reserve, and the remaining 
ore in the ground is the basis for the following year's reserves. However, 
as the ore extracted has been based on better spaced information than the 
exploration drilling, the reconciliation is possible for either the tonnage 
extracted, or the grades treated. 

A partial explanation for this can be gained by evaluating the "regression 
effect" or the conditional bias involved in the resource calculation. 

The regression effect is caused by exploration or blasthole data 
overestimating the grade in higher grade areas, and underestimating the 
grade in designated low grade areas. This may result in higher than 
expected grades on the low grade stockpiles, or lower than expected 
grades being delivered to mill. The regression effect is illustrated 
graphically in Figure 1-9. The ellipse contains the variation of data points 
which result when block grades are plotted against the initial sample 
grades. 

Figure 1-9 Regression Effect 
(reproduced from Snowden, V. (1995), Applied Mining Geostatistics. Shortcourse presented at 
University of Tasmania, November, 1995) 
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The effect is caused by changes in the variability of a data set in relation to 
the amount of data used to calculate an ore block. If a deposit is mined as 
a single block of ore, it will have negligible block variance. As this is not 
practical in terms of mining and milling constraints, the assessment of 
variation within the SMU blocks is required. Figure 1-10 shows the 
relationship of ore blocks at the same cut-off grade to samples, where the 
blocks have more tonnes at a lower grade, than the samples do. In this 
instance, samples have a lower grade, but a higher tonnage, than do the 
corresponding ore blocks. 

Figure 1-10 Grade/Tonnage Regression Effect 
(reproduced from Snowden, V. (1995), Applied Mining Geostatistics. Shortcourse presented at 
University of Tasmania, November, 1995) 

Block variance for any size block can be calculated using Krige's 
Relationship (Kim, 1993), whereby 

2 	 2 	2 
(v/D) 

_ 	
(o/D) 	

_ a (o/v) - y(a,u) - y(v,v) 

2 
Y (v/D) 

2 	2 
a (o/D) a (o/v) 

is the assay value being assessed 
is the ore block 
is the entire deposit 
is the average dispersion variance 
is the block variance 
is the difference of two dispersion variance, 
and is generally equal to the sill, derived 

from the variography. 

21 



Resource Estimation andthe X-unwarara _Magnesite Deposit 

Estimation variance is the estimation of the variability of the error between 
the actual grade of an ore block, and that estimated during the resource 
calculation. It allows an estimate of how well (or poorly) the resource 
calculation is reflecting the mineralisation. The larger the variance, the 
worse the resource calculation is doing. 

From a combination of the estimation variance and the block variance, the 
conditional bias of the estimation process is reviewed, and adequate 
sample spacing for the mining operation can be determined. 

1.6 Kunwarara 

Kunwarara was selected as a case study to evaluate the impact of various 
geostatistical resource modelling techniques on tonnage and grade, and to 
determine whether changes in block sizes for the mining process affect 
resource tonnages and grades. 

As a result of well-documented biases, more traditional non-computer 
related resource methods were ignored in favour of the inverse distance 
weighting and geostatistical methods. At the same time, the experimental 
conditional simulation geostatistical technique has not been utilised due to 
the method complexity, and lack of readily available run-of-mine software. 

The following chapters outline the evaluation of Kunwarara in terms of 
regional and local geological reviews, assessment of the statistical 
variation of the six major elements in the deposit, calculation of three-
dimensional and downhole variograms, and completion of inverse distance 
weighted, ordinary and indicator kriged modelling to determine the most 
appropriate resource calculation technique for the deposit. 
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CHAPTER 2- PROJECT BACKGROUND 
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Any successful resource evaluation requires an assessment of the setting 
of the deposit to be modelled. In the case of an existing mining operation, 
the metallurgical process and mining process need to be outlined. Mining 
processes involve an idea of the capacity of the equipment to be utilised, 
the type of operation, location and trucking distance of stockpiles, for 
example. The metallurgical process route needs to be defined in terms of 
ore handling, blending requirements, possible contaminants, and the final 
end-product. 

Outlined below is a summary of the location details of the deposit, in 
addition to a précis of the mining and metallurgical processes. 

	

2.1 	Location 

The Kunwarara Magnesite Deposit is located some 70 kilometres 
northwest of the Central Queensland town of Rockhampton, close to the 
small township of Marlborough, see Figure 2-1. 

	

2.2 	Access 

The mine is accessed via the all weather Bruce Highway, the main north-
south highway in Queensland to the small township of Kunwarara north of 
Rockhampton, and thence by 6 kilometres of gravel roads. 

	

2.3 	Tenure 

The area of the deposit is held under Mining Lease 5868, and EPM's 4121 
and 4117. 

	

2.4 	Corporate Background 

Queensland Metals Corporation (QMC) is an Australian listed company 
with approximately 3000 shareholders. In 1985, the company discovered 
the Kunwarara magnesite deposit, the world's largest magnesium 
carbonate deposit (QMC Annual Report, 1997) and since that time has 
established a number of projects to utilise the resource. In 1998, the 
QMAG and Enviromag projects were in commercial operation. 

QMAG is a large magnesite processing and refractory magnesia 
operations, producing 120 000 tonnes per annum of deadburned magnesia 
and 30 000 tonnes per annum of electrofused magnesia. QMAG was 
formed as a joint venture in 1987 between Pancontinental Mining Limited 
and Radex Australia Pty Ltd, with initial construction of the mine and plant 
processing facilities in 1991. Enviromag was established in 1993 as a joint 
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venture between ICI Australia, QMC and CSIRO to produce calcined 
magnesia and magnesium hydroxide. 

Figure 2-1 	Location Plan, Kunwarara Magnesite Deposit 
(plan reproduced from Milburn, D. and Wilcock, S. (1994), The Kunwarara Magnesite Deposit, 
Central Queensland, in Holcombe, R.J., Stephens, C.J. and Fielding CR., editors, Capricorn 
Region Central Coastal Queensland, 1994 Field Conference Manual, Geological Society of 
Australia, Queensland Division) 
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The Kunwarara project was rationalised during 1997 firstly by QMC 
acquiring 100% ownership of QMAG and Enviromag, and secondly through 
the creating of the Australian Magnesium Corporation (AMC). As part of 
the formation of AMC, QMC sold all of its magnesium metal interests to 
AMC. This included the technology, a portion of the Kunwarara deposit, 
and all the relevant licences. AMC is designed to exploit research 
undertaken by CSIRO and QMC to convert Magnesia to magnesium metal. 
A full feasibility study into the Australian Magnesium process is expected to 
be completed by the end of 1998. 

2.5 	Mining Operation 

Ore is currently mined at the rate of approximately 3 million tonnes per 
annum, from 3 metre high benches in three separate open pits, using 100 
tonne excavators in the opencut mine and 50 tonne dump trucks for 
transport. The operation is free-dig and ore is stockpiled approximately 1 
kilometre from the pit and blended for processing. 

Following screening, and crushing if required, ore is placed into either a 
crushed or uncrushed stockpile, and then processed according to grade 
requirements. 

The first phase beneficiation plant is located on site, and this plant is fed 
from magnesite material which has been upgraded using a series of 
washers and screens. Beneficiation consists of both high grade and low 
grade gravity cyclones and drums respectively, which are used to separate 
components according to bulk density. Further washing and screening of 
the resultant separated product occurs to ensure no impurities remain. 

Prior to being transported to the Pankhurst Refractory plant in 
Rockhampton, the beneficiation product is stockpiled and subjected to 
stringent quality control approvals. 

2.6 Product 

At the Pankhurst plant, the raw magnesia undergoes heat treatment to 
produce calcined magnesia. This involves heating the raw product to 
approximately 1050 degrees Celsius to drive off carbon dioxide. 
Screening, crushing, magnetic separation and finally blending are then 
used to upgrade the calcined magnesia to a homogeneous mixture of 
known magnesium grade. A flowsheet for the magnesite calcination 
process is shown in Figure 2-2. 

The final product from the Pankhurst plant is deadburned and electrofused 
magnesia. The relatively stable non-reactive deadburned material results 
from the heating of calcined magnesia to temperatures over 1500 degrees 
Celsius, the process being documented in Figure 2-3. It is primarily used 
in furnaces, kilns and cement works, in the form of high density briquettes. 
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Electrofused magnesia results from taking the calcined magnesia to 
temperatures over 2800 degrees Celsius, and the product is more stable 
than deadburned magnesia. Its primary use is in nuclear reactors, rocket 
nozzles and high temperature furnaces. The process flowsheet for the 
electrofusing operation is shown in Figure 2-4. 

Figure 2-2 Parkhurst Operation Magnesite Calcination Circuit Flowsheet 
(reproduced from Hill, B.F. (1992), Magnesite and magnesia production by Queensland Magnesia 
(Operations) Pty Ltd at Kunwarara and Rockhampton, ad. In AusIMM Bulletin, July, 1992. 
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Figure 2-3 Parkhurst Operation Magnesite Briquetting and Deadburning 
Circuit Flowsheet 

(reproduced from Hill, B.F. (1992), Magnesite and magnesia production by Queensland Magnesia 
(Operations) Pty Ltd at Kunwarara and Rockhampton, Old. In AusIMM Bulletin, July, 1992. 
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Figure 2-4 Parkhurst Operation Magnesite Electro fusing Circuit 
Flowsheet 

(reproduced from Hill, B.F. (1992), Magnesite and magnesia production by Queensland Magnesia 
(Operations) Pty Ltd at Kunwarara and Rockhampton, Qld. In AusIMM Bulletin, July, 1992. 
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CHAPTER 3- GEOLOGY 
	 ............. 	 /l/APVAIMIY■974FAII/M217.4%97IZ 

A clear and concise understanding of the geological setting and genesis of 
a deposit is mandatory prior to any resource calculation being undertaken. 
The regional geological outline explains where the deposit is situated in 
relation to the development of a province as a whole, while the local 
geology provides an framework for the mineralisation setting. 

Unless these parameters have been evaluated, a resource model will 
simply be based on assay values, and local controls such as favourable 
stratigraphic units, faults or fractures ignored. This leads to a poorly 
informed resource model, and will probably result in a sub-economic 
mining operation. 

3.1 Exploration History 

Magnesite occurrences in the general vicinity of the Kunwarara deposit 
have been known since the early 1900s. References in the early literature 
of the region (e.g. Dunstan, 1913, Brooks 1964) are to magnesite veins 
and lenses, later noted as occurring in the vicinity of minor intrusions in 
weathered ultramafic rocks (Ridgway, 1948). 

Nodular magnesite was also known to occur in the Rockhampton district, 
although its origins remained unknown, due to the lack of exposure of the 
source material under soil cover. 

QMC personnel were approached by a prospecting syndicate in early 
1985, and recognised the sedimentary origin of a magnesite rich horizon 
exposed in a creek bank near the township of Marlborough (Burban, 1990). 

Subsequent research of open file data held by the Queensland Geological 
Survey and Queensland Department of Mines by QMC located references 
to intersections of sediment hosted magnesite in drillholes sunk by oil 
shale exploration companies. Twinning of these holes in early 1985 led to 
the recognition of the Kunwarara magnesite deposit (Burban, 1990). 

3.2 	Regional Setting 

The Kunwarara deposit is situated within the Yarrol Province of the New 
England Fold Belt or Orogen (Murray, et al 1987). This orogen constitutes 
the youngest, eastern-most portion of the Tasman Orogenic Zone (Day et 
at 1978), and probably developed between the Silurian at the earliest, and 
Triassic at the latest. Figure 3-1 depicts the structural units of the New 
England Orogen. The recognition of the Yarrol province as part of the New 
England Fold Belt is comparatively recent, and much of the current 
literature is devoted to the establishment of definitions of the belt based on 
terrane analysis. 
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Figure 3-1 	Units of the New England Orogen 
(Plan reproduced from Ferguson, C.L., Henderson, R.A. and Leitch, E. (1994) in Holcombe, R.J., 
Stephens, C.J. and Fielding, C.R, editors, Capricorn Region Central Coastal Queensland 1994 
Field Conference Guidebook. Note in original plan, the' lines A, B, C, D, represented regional cross-
sections not applicable to this thesis) 

Descriptions of rocktypes and definitions of sedimentary units from earlier 
work such as Day et at (1978), have not yet been fully incorporated into the 
latest understandings of the geological evolution of the area, and are 
beyond the scope of this review. 

Descriptions of the Yarrol province from the 1970's and early 1980's 
consisted of a terrane of structurally bounded sedimentary rocks in three 
distinct sub-provinces. The area was termed the Craigilee-Yarrol Province 
by Henderson, 1980, and the descriptions of the sub-terranes are 
summarised from this work. 

The Craigilee-Yarrol Province is a narrow strip of primarily marine 
sediments of Late Silurian, Devonian and Carboniferous age (Henderson, 
1980) lying parallel to the Central Queensland coastline. It is bounded to 
the west by the deformed margin of the Bowen Basin, of Permo-Triassic 
age, and to the east by the Proserpine Province, of Mesozoic age. Major 
fault systems, such as the Broad Sound, Tungamull, Boyne River and 
Yarrol Faults separate the Craigilee-Yarrol Province into three separate 
sub-provinces. The Craigilee Subprovince forms a dismembered 
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basement to the central Yarrol and eastern Coastal Sub-Provinces, see 
Figure 3-2. 
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Figure 3-2 	Craigilee-Yarrol Province 
(Plan reproduced from Henderson, R.A. (1980), Structural Outline and Summary Geological 
History for Northeastern Australia, in Henderson, R.A. and Stephenson, P.J. editors, The Geology 
and Geophysics of Northeastern Australia, Geological Society of Australia, Queensland Division, 
July, 1980) 

The Craigilee Subprovince consists of a thick, structurally complex 
sequence of marine sediments interbedded with acid to intermediate 
volcanics and volcaniclastics (Henderson, 1980) and are interpreted as 
tightly folded from the presence of a strongly developed slaty cleavage. 
Both age and stratigraphic relationships for the sub-province are not well 
understood, however fossils ranging in age from ?Late Silurian to Middle 
Devonian have been recorded (Henderson, 1980) 

The Yarrol Subprovince comprises Upper Devonian and Carboniferous 
marine sediments which unconformably overlie elements of the Craigilee 
Sub-Province, and acid to intermediate volcanic and volcaniclastic rocks of 
Late Devonian age (Henderson, 1980) of the Coastal Ranges Igneous 
Province. The sequence has a maximum thickness of 6 kilometres, 
thinning toward the structural contact with the Bowen Basin to the west. 
Predominant rocktypes are pelites, arenites, volcaniclastics, limestone and 
conglomerates. The sediments have been folded into open folds which are 
partially dismembered by faulting and disrupted by younger, post-
Carboniferous granitoid intrusions. 
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The Coastal Sub-Province which is postulated from fossil evidence 
(Fleming et al 1975) to be of probable Carboniferous age, comprises 
cleaved, structurally complex terrestrial to marine sediments. In the west of 
the province, are cherts, pelites, volcaniclastic arenites and limestones, 
which grade into immature greywackes with a minor volcaniclastic and 
detrital carbonate component in the centre of the terrain. The eastern 
portion of the sub-province consists of quartz greywackes and pelites, 
metamorphosed to schists and gneiss. 

The bounding fault system between the Yarrol and Coastal Sub-Provinces 
contains ultramafic bodies, associated with phyllites, schists and 
amphibolites (Henderson, 1980). Murray, (1974) regarded these bodies as 
being emplaced by thrusting during the Permian. 

Later regional interpretations of the geology of the area, such as Murray et 
al (1987) and Fergusson et at (1990) recognised the Yarrol Province as the 
northernmost portion of the New England Fold Belt. As in the southernmost 
New England Province, parallel belts were equated with volcanic arc, 
forearc basin and subduction complex assemblages, and were recognised 
as being originally continuous over the entire length of the fold belt. 

In the Rockhampton/Gladstone area, the New England Fold Belt consists 
of the Yarrol, Marlborough, Wandilla and Shoalwater terranes, refer Figure 
3-1. 

The Yarrol terrane comprises Devonian through to Permian sedimentary 
and volcanic rocks, which were deposited into a forearc basin. The island 
arc assemblage from which the volcanic component is derived is situated 
to the west of the terrane, and formed the Connors-Auburn Arch. During 
the Late Palaeozoic to early Mesozoic (Fergusson et al 1990), mafic to 
silicic plutons intruded the basin and volcanic arch. 

The contact between the Wandilla and Yarrol terranes is structural, and the 
two areas are separated by the Marlborough terrane. Discontinuous 
serpentinite bodies and a zone of undated ultramafics and metamorphic 
thrust sheets adjacent a major fault mark the Marlborough terrane. The 
metamorphics are of uncertain derivation, and comprise schists and 
gneisses. 

The Wandilla terrane is predominantly a tectonic melange, consisting of 
greenstones, cherts, mudstones, greywackes and tuffs, while the adjacent 
Shoalwater terrane consists of a variably metamorphosed Palaeozoic 
succession of quartzose turbidites and mudstones. 

Paleogeographic studies and the reconstruction of the evolutionary history 
of the northern Yarrol Province, such as that proposed by Murray et al 
(1987) are necessarily complex. The tectonic model for the area (Murray et 
al 1987) attributes the changes in deposition and stratigraphy to change 
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from a convergent continental margin to a dextral transform margin during 
the Middle Carboniferous as a results of a collision of a mid ocean ridge 
with the offshore trench. A brief evolutionary summary for the 
Rockhampton/Gladstone area is given below, and presented schematically 
in Figure 3-3. 

Figure 3-3 Cross-Section Through New England Fold Belt, Showing 
Evolution from (a) Late Carboniferous to (b) Early Permian and (c) Late 
Permian to Early Triassic. 

(Plan reproduced from Ferguson, C.L., Henderson, R.A. and Leitch, E. (1994) in Holcombe, R.J., 
Stephens, C.J. and Fielding, C.R, editors, Capricorn Region Central Coastal Queensland 1994 
Field Conference Guidebook) 

Initial wide-spread deposition in the Yarrol Province occurred during the 
Silurian to Middle Devonian, when calc-alkaline volcanics, volcaniclastics 
and limestones of the Calliope Island Arc were deposited (Murray et al, 
1987). The origin of the volcanics is somewhat equivocal. Published 
literature identifies the andesite and subordinate basalt flows as typical of 
volcanic island arcs (Marsden (1972)), while dissenting opinions e.g. Baker 
(1982) attribute the presence of localised silicic pyroclastics to a 
continental margin setting. The latest interpretations appear to favour the 
island arc setting for the volcanics, based on unusual Na20/K20 ratios of the 
rocks (Murray et al, 1987). 

Offshore from the active volcanic arc, debris and sediments collected 
downslope in a forearc basin. The western portion of the Wandilla Slope 
and Basin is possibly Silurian to Middle Devonian age (Murray et al, op cit.) 
Rocktypes in the Rockhampton region of the basin include altered basaltic 
flows, radiolarian cherts and jaspers, and local dacitic to andesitic tuffs. 
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At the end of the Middle Devonian, rocks of the Calliope Island Arc were 
folded with accompanying granite plutonism (Day et al 1978). Then, in the 
Late Devonian and Early Carboniferous, subaerial volcanics comprising 
thick andesite flows, and subordinate rhyolitic, dacitic and basaltic lavas 
were deposited. These volcanics form the Connors-Auburn Volcanic Arch. 

To the east of the volcanic arch, the Yarrol Forearc Basin formed. The 
southern portion of the Yarrol Forearc Basin was probably deposited 
unconformably over the folded elements of the Calliope Island Arc. Basin 
fill was predominately of volcaniclastic origin, sourced from the volcanic 
arcs to the west, with some primary volcanic flows (Marsden, 1972). In the 
Rockhampton area, the volcanics are intermediate to silicic in composition 
and are probably of Late Devonian to Carboniferous age. During periods 
of volcanic quiescence, ooliths and oolitic limestones developed. 

Further to the east, in the Wandilla Slope and Basin area, volcaniclastic 
flysch type sequences were deposited. In addition, oolitic limestones, 
probably sourced from the Yarrol Forearc Basin and transported via 
turbidity currents, were deposited as oolitic greywackes in the Wandilla 
Basin. 

During the Middle and Late Carboniferous, volcanism apparently waned, 
while marine sedimentation continued in the Yarrol Forearc Basin, as did 
deep water sedimentation in the Wandilla Slope and Basin. Granitoids, 
possibly relating to the waning of the volcanic arc, were emplaced in the 
Connors-Auburn Arch. 

Imbricate thrust slices, and regional melanges typical of subduction 
complexes then developed, causing a fundamental difference in 
deformational styles across the Yarrol fault system. In general, the strata 
of the Yarrol Forearc Basin are folded into gentle, open folds, with no 
regionally developed axial plane cleavage (Murray et al, 1987), whereas 
the Wandilla Slope and Basin sequences have been multiply deformed, 
and have at least one penetrative cleavage. 

3.3 	Deposit Geology 

Kunwarara is situated within a shallow, predominantly freshwater 
sedimentary basin surrounded by low relief hills of granite, metamorphosed 
sediments, and ultramafic serpentinites. 

3.3.1 Basement Geology 

In a regional context, the Kunwarara deposit is situated on the boundary 
between the Marlborough and Wandilla Terranes, and is located in a 
Tertiary basin developed adjacent a regional fault. The hills enclosing the 
basin consist of cherts, argillites, gabbros, dolerites and serpentinites. The 
basin floor is granite, and the deposit is developed primarily over the 
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granite portion of the basement, although the southeastern area has 
developed over serpentinite. 
3.3.2 Metasediments 

The metasediments belong to the Doonside Formation, part of the 
metasedimentary package which makes up the Wandilla Terrane. In the 
vicinity of Kunwarara, the Doonside Formation consists of red, green, 
white, grey and black cherts and argillites (Charlton, 1992). Outcrop is 
poor, and limited to exposures in dry creek beds. 
3.3.3 Serpentinites 

Serpentinite units at Kunwarara are predominantly massive, and contain 
chrysotile, antigorite, lizardite, magnetite and brucite. Table 3-1 details the 
main serpentinite types (after Charlton, 1992): 

. ' ERONSIME :,.:?.,______f_. ,•:=:::•::•:::::::::••4:::.,:•:::::**M::%::::::?:::M:"' 

arMTVO ,1:1; 

b.,,kc:kk, 	P•71•4;t% 
:•••>:•k:•S' 	.:‘`'. ':;::.'4.,  

•::::::;:. 	•••:****,:a.:::::::::&,,:s:::::.WOU 	 ,Z.,"" 

:•.•:::::.%•:::t...., k••••:. • ..• ..*. •:•.'•<::• • •'• 	• 	' 	• 

Massive 
Serpentinite 

Massive; no apparent structure; slickensided; 
slickenside infill of magnesite or chalcedony; 
magnesite veins common 

Blocky Serpentinite Massive, highly jointed; joint directions random 
Globular 
Serpentinite 

Confined to contact aureole of intrusions; relict 
calcic orthopyroxene pseudomorphed to 
bastite. 

Schistose 
Serpentinite 

Schist-like texture 

Sheared 
Serpentinite 

Lateritic to gossanous sheared and silicified 
serpentinite; chrysoprase to chalcedonic vein 
infill. 

Foliated 
Serpentinite 

Located parallel to, or adjacent fault zones; play 
appearance 

Brecciated 
Serpentinite 

Angular fragments of massive serpentinite in 
matrix of serpentinous minerals. 

Table 3-1 
	

Serpentinite Varieties in Deposit Area 

Intruding the serpentinites are a sequence of gabbroic sills and dolerite 
dykes. Dykes may very from 30 cm to over 20 metres in width. 

3.3.4 Granites 

Granite and granodiorite bodies have intruded along a north-westerly 
trending belt which runs sub-parallel to the main structural trends in the 
deposit area. In addition, two small micro-syenite plugs occur in the west 
of the mining lease. 
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3.4.2 Fine grained sandstone 

The transition from the unconsolidated ?river sands to the overlying 
sandstone is generally sharp. The sandstone unit is weakly indurated, 
reddish in colour at the base and grey toward the top. It has a thickness of 
between 5 and 20 metres. Sands are generally fine to medium grained, 
and composed of feldspars, quartz, minor magnetite and clay. 

Wispy manganese veinlets occur as dendritic veinlets and as small 
globules within the sandstone mass. Magnesite nodules are common, 
particularly in the upper portion of the sandstone. The majority of the 
magnesite is porcelainous in nature, and occurs in nodules up to 300 mm 
in size. 

Fluvial channels have been intersected, suggesting a fluvial flood plain 
environment of deposition. 
3.4.3 Green sandy siltstones 

Sandy, olive green to green, poorly cemented sandy siltstones overlie the 
fine grained sandstone horizon. Thickness of the unit varies between 3 
and 15 metres. 

The coarser, clastic component of the unit comprises quartz and feldspar 
grains, with matrix silts and smectites. Schmid (1987) noted that the silt is 
composed. mainly of finely crystalline illite, with "basket weave" textures. 
Manganese veinlets and globules are common. 

Magnesite occurs in the unit in the form of small, porous nodules to 40 mm 
in size. 

This unit is interpreted as being deposited in a low energy fluvial 
environment. 
3.4.4 Black clays and silts 

A zone of black clays overlie the darker sandy siltstones with a sharp 
contact, and form the ubiquitous black soil cover of the Kunwarara area. 

The clay unit is generally massive, but may contain localised layers of 
darker, manganiferous, silty material. Fine grained sands may be locally 
present. The unit is generally devoid of magnesite. 

The clays were probably deposited by low energy fluvial floodplain 
processes, or via sheet flooding. 
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3.4.5 Fluvial channel fill deposits 

Early channel fill deposits occur within the fine grained sandstone unit. 
They are between 1 and 2 metres thick, and up to 30 metres in width. 
Tabular in shape, the elongate bodies often taper at the ends. Channel 
sediments consist of fine grained sands, magnesite nodules and gravels. 

Fluvial wash-out channels cut across the fine grained sandstone, green 
siltstone and dark siltstone units. The channels are generally massive, 
steep sided, and U-shaped. Ranging between 1 and 20 metres thick, and 
up to 100 metres wide, the channels consist of fine sands, magnesite 
nodules and rare basal coarse sands. 

Fine-grained massive channel fill deposits of dark grey to black siltstones 
occur within the dark siltstone unit, and can be differentiated from it by a 
higher coarse clastic component, and rounded magnesite nodules. 

3.5 	Deposit Genesis 

The initial model for formation of the deposit was suggested by Schmid 
(1987), by analogy with Saida Lake in Turkey. 

The geological setting was interpreted as a small, closed basin rimmed by 
basement hills. In the vicinity of the magnesite deposit, the basement was 
overlain by wind blown sands, forming coastal dunes. River systems 
drained into this lacustrine environment from headwaters sourced within 
the enclosing basement hills. Silt and sand material was then deposited as 
broad sheets. Seasonal evaporation or draw down of the water level in the 
closed lake allowed evaporation to take place at or near the surface of the 
mud, resulting in chemical precipitation of magnesite in the form of nodules 
(Milburn and Wilcock, 1994) 

Charlton, 1992 suggested modifications to the initial method of formation, 
relating to changes in the course of the Fitzroy River. Following the 
formation of a half-graben associated with the Tungamulla Fault and 
associated erosion of the surrounding granites and granodiorites, the 
Fitzroy River flowed through the graben into Broadsound Bay. 

Deposition of the coarse gravels at the base of the Kunwarara sequence is 
a direct result of this. As the sediment load in the river channel built up, the 
river was diverted south, and finer grained sediments were deposited in the 
basin as a result of sheet flooding and crevasse splays. Formation of 
dolomite nodules (the precursor to the magnesite nodules of today) could 
be related to occasional interactions of the sediments with sea waters due 
to tidal incursions. 
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3.6 	Magnesite Nodules 

Mineralisation consists of a flat-lying, magnesite rich zone approximately 
11 metres thick, and defined by a 5% magnesite by mass cut-off (Milburn 
and Wilcock, 1994), stretching for approximately 15 square kilometres. 

The Kunwarara deposit includes four zones of higher grade magnesite in 
KG1, KG2, Oldman North and Oldman South, two of which, KG1 and KG2, 
are currently being mined and a prospect, Oldman West. The locations 
are shown in Figure 3-5. 

Figure 3-5 Location Plan, Higher Grade Magnesite Zones, Kunwarara 
(after Burban, B. (1990) Kunwarara Magnesite Deposit, in Hughes, F.E. , editor, Geology of the 
Mineral Deposits of Australia and Papua New Guinea, AusIMM Monograph 14) 

Magnesite is concentrated within the sandstone and siltstone intervals, in 
the form of 0.01 to 50 centimetre magnesite nodules. Thin interbeds of 
magnesite muds have also been logged in the sand lithology. The mined 
magnesia consists of two types, described below. 

3.6.1 Bone Magnesite 

Bone magnesite is a white, dense and compact porcelainous magnesite, 
with a rough surface and conchoidal fracture. It has a relatively high 
density, and is non-porous. Bone magnesite forms large nodules up to 50 
cm across, and aggregates of nodules to 1 metre across. Internal 
dehydration cracks are common, as are small "seed" nodules of magnesite 
encased in the larger nodules (Burban, 1990) 
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3.6.2 Porous Magnetite 

A more common nodule variety than the bone magnesite, the porous 
nodules are, as the name suggests, porous, softer, lighter and prone to 
inclusions of non-magnesite material. Burban (1990) notes that porosity 
may vary from low (10%) to high (20%) to extreme (>50%), where the 
magnesite nodule may have the appearance of volcanic scoria. 

3.7 Conclusions 

In terms of deposit modelling, the salient features of the geological review 
of Kunwarara are: 

• Flat-lying and laterally continuous deposit 
• Thin geological units 
> Nodular, and therefore irregular nature of mineralisation 
> Restriction of magnesite nodules to two lithologies, namely sandstone 

and siltstone 
> Development of two distinct nodule types, bone and porous magnesite 
> Strong influence of a shallow evaporative basin on the development 

and location of the deposit. 

The resource model to be constructed will require thus require careful 
modelling to take into account the thin lithologies, and the mixed nature of 
the magnesite nodule distributions. 
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Table 4-1 Magnesium Summary Statistics 

Using Gemcom software, a basic statistical evaluation was undertaken for 
each element on uncomposited, raw assay data. A total of 10014 data 
points were available for each element. 

4.1 	Magnesium 

Summary statistics for magnesium are given in Table 4-1. 

98.50 
0 

36 
10014 

92.63 92.69 
N/A 93.86 
N/A N/A 
N/A N/A 
7.09 7.14 

50.36 51.05 
N/A N/A 

0.076 0.077 
0 0 

50.36 51.05 

3071.77 -2944.81 

265921 250583 

-8.59 -8.07 

104.84 96.13 
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CHAPTER 4- CLASSICAL STA77STICS - ASSAYS 
r/M215%/0710.W4OVAr//4117D'7■7 	 ■121541//070,41 • APM/////.07AVAVII/Ir/I/ 	 .07.41/07.0/4/407.1%.7740IMVI/I7WAMMONI/47.1r/IVIMIAWIFIAMMI7/407 	 

Assay values were provided by Queensland Metals Corporation staff for 
the following elements: magnesium (MgO), calcium (CaO), silicon (S102), 
iron (Fe203), aluminium (Al203) and manganese (Mn304). 
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Figure 4-4 Normal Probability Plot, Magnesium 

Figure 4-5 Log Normal Probability Plot, Magnesium 
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4.2 	Silica 

The summary statistics for silica are presented in Table 4-2. The silica 
distribution is mildly positively skewed. Across the deposit, silica averages 
1.8%, but assays may reach as high as 24.8% silica. 

Table 4-2 
	

Silica Summary Statistics 

The normal data distribution, see Figure 4-6, is dominated by the number 
of null assay values. Null values represent areas which have silica below 
the assay detection limit 

The silica data was lower cut to edit the null values, and to focus in on the 
distribution of positive silica values, by top-cutting to 6% silica. The 
resulting histogram is shown in Figure 4-7. The silica population is highly 
mixed in the upper levels of the assay values. 

Figure 4-8 is a graphic representation of a log transform of the silica data. 
The distribution is obviously mixed, with a poorly sorted upper range, and a 
marked tail toward the lower silica grades. 

Figures 4-9 and 4-10 are normal and log normal probability plots 
respectively. Both indicate very mixed sample populations, and mildly 
skewed data 
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Figure 4-6 Normal Histogram, Uncut Silica Values 

Figure 4-7 Normal Histogram, Silica Lower Cut of 0% and Top-Cut of 6% 
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Figure 4-8 Log Normal Histogram, Silica 

Figure 4-9 Normal Probability Plot, Silica 
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Figure 4-10 
	

Log Normal Probability Plot, Silica 
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4.3 	Manganese 

Manganese data statistics are summarised in Table 4-3. The values are 
highly positively skewed, with an average value returned of between 0.12 
and 0.26% MnO. 

Table 4-3 
	

Manganese Summary Statistics 

Figure 4-11 shows the normal histogram data distribution for manganese, 
which is dominated by the number of zero assay values returned. No skew 
is apparent from the plot. 

Figure 4-12 is a zoomed example of the same histogram, with a lower cut 
of 0.01% and top cut of 6% applied to the assays. The distribution is 
clearly highly positively skewed, with a tail of higher grade values. 

When log transformed, Figure 4-13, manganese data begins to approach a 
log normal distribution, but still indicates that there are mixed sample 
populations. 

The normal and log normal probability plots are shown in Figures 4-14 and 
4-15 respectively. Again, both plots show mixed sample populations, and a 
skewed distribution of manganese assay values. 
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Normal Histogram, Lower Cut of 0.01%, Top-Cut  of 1.5% 
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Figure 4-13 Log Normal Histogram, Manganese 

Figure 4-14 Normal Probability Plot, Manganese 
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4.4 	Iron Oxide 

Iron data summary statistics are given in Table 4-4. Values are grouped 
around 0.2% Fe203, and the data display a slight positive skew. 

Table 4-4 
	

Iron Oxide Summary Statistics. 

Figure 4-16 shows the iron data, and illustrates the slight positive skew in 
the distribution. When top-cut to 1% iron, and null values removed, see 
Figure 4-17, there is clearly a mixed population of iron values. 

The log normal transformation, Figure 4-18, indicates that iron has an 
almost log normal distribution, but a strongly mixed sample population. 

Figures 4-19 and 4-20 display the normal and log normal probability plots 
for the iron samples. 
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Figure 4-16 Normal Histogram, Uncut Iron Values 

Figure 4-17 Normal Histogram, Lower Cut of 0.01%, and Top Cut to 1% 
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Log  Normal Histogram,  Iron  

Normal Probability  Plot,  Iron  

A
g4

.
0
7
/
0
$
0
5
4
:0

~
/
R

4
  

, 	
— 

f0
9:

G
1N

SV
A

M
M

X
5.

:1
49

=6
19

7:
91

:6
9.

W
..c

o'
 

.4
16

2M
.IN

251
4■M

S
M

4
rM

k
ic

v<
I,
 	

M
,X

65
0:

M
W

.X
.S

,5
59

.41
(2

~6
{Y

.. 

" 	
46

6.
M

M
R

'5
5,

..
4
1
N

M
,97

49
..:

SO
SS

P:
M

W
S.

= 



inna extractioR tRe, r w dat7 

Resource Estimation andthe Xunwarara _Magnesite Deposit 

Figure 4-20 Log Normal Probability Plot, Iron 

56 



10014 P  

35.90 
0 

3886 

3.05 3.29 
N/A 2.41 
N/A N/A 
N/A N/A 
4.04 3.88 
16.33 15.10 
N/A N/A 
1.32 1.18 

16.33 15.10 
170.54. 165.49 
418.17 3240.74 

2.58 2.81 
12.81 14.20 

........ 

.. 	 •••••• 

II 	 4 ..  .. ... . ' 	t • 
Coefficient .. . 

• • 

JON 
'''flott 	• 

iTflhrneI 1.1 

thme 
.... 

■ 1*- 	 4 	 m 	T 

Resource Estimation andthe Xunwarara Magnesite Deposit 

4.5 	Calcium 

Calcium assay values are statistically summarised in Table 4-5. Calcium 
averages between 3 and 3.3%, and shows a slight positive skew to the 
data distribution. 

Table 4-5 
	

Calcium Summary Statistics 

Figure 4-21 is a normal histogram plot of all the calcium data, and reflects 
the strong influence of the number of assays returned with no calcium 
values. 

When the data are top-cut to 13% , and the null values removed, the 
skewed nature of the calcium distribution is apparent, Figure 4-22. 

The log normal distribution, Figure 4-23 shows a positively skewed sample 
distribution, with a long assay tail toward the higher grade values. Given 
the alkaline environment of deposit formation, it is suggested that the 
higher values represent more calcareous nodules or actual samples of 
calcrete. 

Figures 4-24 and 4-25 display the normal and log normal probability plots 
respectively. 
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Normal Histogram,  Uncut Calcium  Values  

Normal Histogram,  Lower  Cut of 0. 01% and Top  Cut of 13% 
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Figure 4-25 
	

Log Normal Probability Plot, Calcium 
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4.6 	Aluminium 

The aluminium data was evaluated using 10014 sample points. Summary 
statistics are illustrated in Table 4-6. Aluminium averages 0.22%, with an 
assay high of 13%. 

Table 4-6 
	

Aluminium Summary Statistics 

Figure 4-26 shows a normal histogram of the aluminium distribution. The 
histogram is dominated by the null values. Figure 2-27 is a zoomed section 
of the histogram, with assays lower cut to 0.1% aluminium, and top-cut to 
1.6%. The distribution is positively skewed, shows the effect of mixed 
sample populations and also indicates that the distribution has a long tail of 
higher grade aluminium assays. 

The aluminium log normal histogram, Figure 4-28, shows a mixed sample 
population, and a distribution which is approaching log normal. 

Figures 4-29 and 4-30 show the normal and log normal probability plots for 
aluminium assay distribution, respectively. Both plots again show the 
mixed nature of the sample populations. 
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Figure 4-26 Normal Histogram, Uncut Aluminium Values 

Figure 4-27 Normal Histogram, Lower Cut to 0.01% and Top Cut to 1.6% 
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Figure 4-30 
	

Log Normal Probability Plot, Aluminium 

4.7 Discussion 

Evaluation of the raw assay values indicates that magnesium, calcium, 
iron, aluminium, manganese and silica all have mixed sample populations, 
and display variously skewed sample distributions. The mixed populations 
reveal that the raw assays have a distribution which may be controlled by 
distinct geological or mineralogical factors. The populations and 
distributions are suggested to be related to underlying basement geology, 
changes in position of redox fronts, changes in water table levels, and 
changing pH conditions, and this is discussed more fully below. 

Studies by Canterford et al (1987) indicated that the distributions of 
magnesium and calcium were related, as were iron and manganese, and 
lastly, silica and aluminium. The paired elements were reported to respond 
in a similar manner to changes in the chemical and weathering 
environment, and as a result, tend to show similar sample distribution and 
population patterns. 

The proposed genesis of Kunwarara has a normal drainage system of near 
neutral pH changing to strongly alkaline conditions in a closed basin, under 
arid weathering conditions. 

Weathering results from the contact of fresh rock to atmospheric 
conditions, and is controlled by the amount of water and oxygen interacting 
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with the rock. A complex system of oxidising and reducing conditions 
develops, where Eh and pH increase progressively toward the surface. 
Lower in a weathering profile, the environment is mildly reducing, due to 
the consumption of oxygen in weathering, while in the upper portion of the 
profile, more oxidising conditions prevail (Lawrance, 1995). 

Superimposed on this weathering profile is the effect of the alkaline water 
table. Magnesium in the weathering profile is probably derived from 
serpentine in the underlying basement lithologies, and surrounding 
basement hills. Serpentine is stable only in contact with solutions which 
are undersaturated in silica, and at temperatures at less than 500 degrees 
Celsius (Krauskopf and Davis, 1995). and given that the interpreted origin 
for Kunwarara is a drainage system, the major contributor of free 
magnesium cations is probably hydrolysis reactions. 

Primary, magnesium cations are produced by the hydrolysis of minor 
remnant olivine in the underlying ultramafic basement according to the 
reaction: 

((Mg, Fe)2SiO4) + 10H20 = 2Mg 2++2Fe(OH)3+H4SiO4 (aq)+401-1 .+6H++6e-

and by the hydrolysis of serpentine. 

A tendency of the hydrolytic reactions is to increase the pH toward more 
alkaline conditions, but this is to some extent countered by the formation of 
ferric iron, and the accompanying liberation of hydrogen ions, and thus the 
production of acid conditions. As slightly more hydrogen ions are 
produced than hydroxyl anions, the resulting pH would tend toward acid or 
neutral conditions. 

In the case of the hydrolysis of olivine, some of the silica may not remain in 
solution under acid to neutral conditions, but precipitate out as 
cryptocrystalline or opaline silica. At the same time, ferric oxide may either 
precipitate as amorphous masses or form goethite or haematite. 

A second source of magnesium cations can be from the transformation of 
serpentine into nickeliferous serpentine via the an ionic exchange reaction: 

Mg3Si205(OH)4 + Ni2+ = (Mg2Ni)Si205(OH) 4  + Mg2+  

as well as via the hydrolysis of serpentine. However, serpentine will only 
react when all of the olivine has been consumed (Trescases, 1992). The 
mixed magnesian population may thus be partially due to the difference in 
rate of production of magnesium cations from the two reactions above. 

More magnesium would be liberated from areas which have not undergone 
serpentinisation of the olivine groundmass, as olivine is generally less 
stable in a tropical environment (Trescases, 1992), than from serpentinised 
bedrock. 
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During evolution of the closed Tungamulla basin, more alkaline conditions 
prevailed, either as a result of seawater incursions, or as a direct result of 
development of a playa lake system. Under alkali pH conditions, 
magnesium may precipitate out as concretions or as calcrete equivalents 
(Trescases, 1992) in a solid solution series with calcium. 

Bulk chemical analyses of the magnesite nodules (Canterford et al, 1987) 
indicate that there are marked differences in grain size, nodule shape and 
porosity in nodules from different locations within the deposit. Nodules 
displayed different core and skin compositions, with samples ranging in 
composition from dolomite (CaMg(CO3)2) to magnesite (MgO). 

This chemical change will be reflected in the assay values, as the 
magnesium percentage returned will be dependent on which portion of a 
nodule is sent for assay, the mineralogy of the nodule and where the 
nodule is sourced in the deposit. 

It is suggested that the long tail on the magnesium distributions may relate 
to fluctuations in the alkaline water table in response to pH changes from 
dry to wet season conditions, and this resulting change is evidenced by the 
number of differing nodule types recognised by Canterford et al, 1987. 

Calcium in the weathering environment shows a similar behaviour to 
magnesium. Calcium ions were probably released as part of the 
breakdown of anorthite, which is a hydrolitic reaction producing hydroxyl 
anions, and a tendency toward more alkaline conditions. 

Calcium, in the saline lake conditions proposed for deposit formation, 
would have precipitated as nodules or calcrete in conjunction with 
magnesium. Mixed sample populations are probably a reflection of 
localised pH fluctuations at the time of precipitation. 

Manganese is generally present in rock forming minerals in several 
oxidation states (Trescases, 1992) including Mn24. , Mn3+  and Mn4+ , but most 
commonly as Mn 2+ . Oxidation in the weathering environment has the effect 
of converting Mn2+  to Mn species, with the resultant formation of 
manganite, pyrolusite and "wad" as oxidation minerals coating fractures 
and joints. Higher grade manganese samples may represent 
manganiferous fracture coatings. 

The position of the water table generally controls the location of 
oxidising/reducing fronts, and thus, the location of the transformation of 
Mn2+  species to Mn4+  ions. The redox front is the usually the point where 
water logged lithologies are in contact with drier lithologies. This location 
generally corresponds with the position of the watertable, but in a drainage 
channel, the redox front may be lower than the standing water table due to 
incorporation of oxygen in higher volume water discharges. 
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Manganese deposition therefore, is controlled by water table movement, 
and the related movement of the redox front (Lawrance, 1997). The mixed 
sample population and the skewed nature of the manganese assays 
probably reflects water table movement, and the effect of meandering 
drainage channels on manganese precipitation. 

As the production of Mn4+ ions releases acid, the manganese assays may 
also represent two distinct generations of formation. The first would be 
related to initial dissolution of manganese from the basement lithologies, 
and the second to groundwater movement after the main alkaline pH 
conditions which resulted in magnesium nodule formation. 

Manganese precipitation requires more acid to neutral pH conditions, and 
the mixed sample population may represent fluctuations in the water table, 
and in 

Iron gives one of the more problematic distributions. Like manganese, iron 
may be present in bedrock in different valency states, as Fe 2+  or Fe. 
During weathering, the ferrous iron is oxidised to ferric iron at the redox 
front, via the following reaction: 

Fe2+  + 31-120 = Fe(OH)3  + 3H+  + 3e 

with ferric iron becoming the only stable oxidation state. Minerals formed 
include goethite, haematite and amorphous iron oxides. Ferric iron is also 
produced from the hydrolysis of minerals such as olivine in the underlying 
basement ultramafic lithologies. The reaction is acid forming, and two 
generations of iron formation are probable, prior to, and after, the alkaline 
magnesian nodule forming event. 

The iron sample populations probably reflect changes in the local water 
table levels, changing redox front positions, and the generation of 
formation of the iron mineral. 

Silica and aluminium distributions are complex in that both elements are 
major rock-forming constituents. Significant variations in the silica 
histograms could in part be due to the changing rocktypes down the profile 
from low silica content clays at surface through to higher silica content 
sands and gravels at the base of the sequence. 

A second explanation is that the upper level silica values represent silica 
mobility in solution. In this instance, silica would be derived from the 
weathering of silicates in the underlying bedrock. Silica dissolution is pH 
dependent, and generally is the result of hydrolitic reactions, as shown 
above for olivine. As noted above, partial precipitation of silica as 
amorphous or opaline silica may have occurred during this phase of 
weathering. Morris and Fletcher (1987) noted that silica solubilities 
increased as a direct result of the oxidation of ferrous to ferric iron. As 
ferric iron is produced as part of the olivine weathering process, the silica 
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dissolution may have been increased, and amorphous silica precipitates 
may have been partially dissolved. 

During the forpation of the magnesium nodules, silica would have 
remained in solution, as the mineral is highly soluble in alkaline conditions 
(Trescases, 1992). With cessation of the saline nodule forming episode, 
silica re-precipitation would have resulted with a change back to more 
acid/neutral pH. As the silica would precipitate only when pH conditions 
were suitable, there would be scattered silica concentrations in the 
sequence reflecting the changing pH values. 

Canterford et al (1987) noted that in scanning electron microprobe 
analyses, the silica content of the skins of nodules tended to be higher 
than that measured at the nodule centre, suggesting that again, pH 
conditions were variable during nodule formation, and that the more acid 
requirements for precipitation of silica were met only toward the end of the 
nodule forming process. 

Aluminium rich minerals are generally relatively inert in the upper 
weathering environment, and not subject to hydrolysis in the same manner 
that the calcium and magnesian minerals are. In the pH range of hydrolitic 
reactions, three types of aluminosilicate hydrolysis reaction are possible, 
and may produce either gibbsite, kaolinite or smectite. 

As the pH conditions changed to reflect the formation of the magnesite 
nodules in a strongly alkaline environment, aluminium would have become 
highly soluble as an anionic species. 

Thus, the mixed sample populations recorded in the histogram distributions 
may be the result of fluctuating pH and water table conditions, varying 
hydrolitic reactions, and may also be due to underlying basement 
lithological variations. 

Overall, the sample distributions for the six main elements are skewed and 
represent mixed populations, which may not be directly related to 
lithologies. Based on this information, the most reliable evaluation 
technique would be an indicator kriging method. 
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CHAPTER 5 - CLASSICAL STATISTICS LITHOLOGY 

Each assay type was separated into lithological profile units, using the four 
logged lithologies supplied by QMC - sand, clay, silt and gravel. Upon 
extraction, it was found that gravel was never analysed for magnesium, and 
so the statistics are only evaluated for the first three rock types. 

51 Magnesium 

Table 5-1 shows the magnesium summary statistics for sand, clay and silt. 

Table 5-1 Magnesium Summary Statistics by Lithology 
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Magnesium typically shows a skewed assay distribution in each lithology 
code. Sand, in general, has larger standard deviation and shows more 
assay variance than the other two lithologies, and a slightly higher 
magnesian assay value. 

Figures 5-1 to 5-6 are normal histogram and log normal histogram plots 
respectively for magnesium in each lithology. 

Magnesium values in sand are highly skewed, and still represent mixed 
sample populations. The samples still display the long assay tail on the 
lower grade samples. A similar distribution is evident from magnesium in 
silt, although the silt distribution has a more marked tail. Clay magnesian 
values are also negatively skewed, although samples begin to approach a 
normal distribution toward 100% magnesium assays. 

Thus, the magnesium sample populations are apparently independent of 
host lithology, and are probably then related to a combination of basement 
lithology and weathering reactions. 

To model the magnesian sample population, an indicator kriging 
methodology should be used. 
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5.2 Silica 

Summary statistics for the silica assay results by lithology are shown in 
Table 5-2. 

SILT CLAY SAND 
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6.01 6.11 

Table 5.2 Silica Summary Statistics by Lithology 

The silica data distributions still display a slight positive skew, and a mixed 
sample population, as evidenced by Figures 5-7 to 5-12, which are normal 
and log normal histogram plots for sand, silt and clay lithologies 
respectively. 

Silica distribution is apparently independent of the lithology type. Given 
the interpreted deposit formation conditions, the silica would have been 
primarily in solution, precipitating only as isolated pockets of amorphous 
material when pH conditions were favourable, and the major control on the 
location of the silica would be the location of the water table. 
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Figure 5-7 Normal Histogram, Silica Distribution - Sand 

Figure 5-8 Log Normal Histogram, Silica Distribution - Sand 



2.325 	4.650 	6.975 	9.300 	11.625 	13.950 	16.275 	18.600 

Real Value 

Vrth me tp GOMM 

Normal Histogram 

Si vaiues &-itt 

Fr
eq

u
e
n

cy
  C

o
u

n
t 

1154 

770 

385 

1924 

1539 

.Akt. 

Resource Estimation and the Xunwarara _Magnesite Deposit 

Figure 5-9 Normal Histogram, Silica Distribution - Silt 

Figure 5-10 Log Normal Histogram, Silica Distribution - Silt 
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5.3 Manganese 

Summary statistics for the manganese assays are shown in Table 5-3. 

Table 5.3 Manganese Summary Statistics by Lithology 

Histogram and log normal histogram plots for manganese are shown in 
Figures 5-13 to 5-18. 

Manganese in silt and clay lithologies is again a mixed sample population, 
with a very small positive skew. The samples are approaching a log 
normal distribution in the sand component. 

78 



Normal Histogram 

Fr
eq

ue
nc

y  
Co

un
t 

it41: 

4,44* 

1.000 	2.000 	3.000 	4.000 	5.000 	6.000 	7.000 	8.000 

Real Value 

VC*AMII thin= m 

Resource Estimation and the Xunwarara Magnesite Deposit 

Figure 5-13 Normal Histogram, Manganese Distribution - Sand 

Figure 5-14 Log Normal Histogram, Manganese Distribution - Sand 
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Figure 5-15 Normal Histogram, Manganese Distribution - Silt 

Figure 5-16 Log Normal Histogram, Manganese Distribution - Silt 
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5.4 Iron 

Summary statistics for iron by lithology are shown in Table 5-4. 

Table 5-4 Iron Summary Statistics by Lithology 

The iron distribution has a very small positive skew in each lithology. 
Samples approach a log normal distribution in the sand fraction, but also 
strongly indicate two different sample populations. These may reflect two 
different mineral types, such as goethite or haematite. 
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Figure  5-20,  Log  Normal Histogram,  Iron  Distribution,  -  Sand 

Figure  5-19 Normal Histogram,  Iron  Distribution  -  Sand 
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Figure 5-22  Log Normal  Histogram, Iron Distribution - Silt  
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Figure 5-23 Normal Histogram, Iron Distribution - Clay 

Figure 5-24 Log Normal Histogram, Iron Distribution - Clay 
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5.5 Calcium 

Summary statistics for the calcium assays are presented in Table 5-5 by 
lithology. 

Table 5-5 Calcium Summary Statistics by Lithology 

The calcium distributions are positively skewed in each lithology, and have 
a long high grade assay tail. Sample distribution does not appear to be 
primarily related to lithology, and thus may reflect basement rocktype 
trends or fluctuations in pH during nodule and calcrete formation. 
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Figure  5-25 Normal Histogram,  Calcium  Distribution  -  Sand 

Figure  5-26 Log  Normal Histogram,  Calcium  Distribution  -  Sand  
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Figure 5-27 Normal Histogram, Calcium Distribution - Silt 

Figure 5-28 Log Normal Histogram, Calcium Distribution - Silt 
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Figur3 5-29 Normal Histogram, Calcium Distribution - Clay 

Figure 5-30 Log Normal Histogram, Calcium Distribution - Clay 
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5-6 Aluminium 
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Table 5-6 Aluminium Summary Statistics by Lithology 

The aluminium distribution shows a positive skew in all lithologies, and a 
mixed sample population. The samples are probably related to different 
clay types within the various lithologies. 
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Figure  5-33 Normal Histogram,  Aluminium  Distribution  -  Silt  

Figure  5-34 Log  Normal Histogram,  Aluminium  Distribution  - Sift  



Normal Histogram 

AL IN CLA Y 

Fr
eq

ue
nc

y  
Co

un
t 

1.000 	2.000 	3.000 	4.000 	5.000 	6.000 	7.000 	8.000 

Real Value 

,rtaria /2/ Grimm 

LOG Normal Histogram 

AL it4 CLAY 

257 

206 

"  	 %TO 

4- ‘ ', :,•,f,,n4 

,i,'Omkk:..... 
•• • '::‘,.'.;t::•s*.- 

	

MM... 	 -'.w 	- *•:.,4,...-,  t„... 
':::0:,: & 

*.a. *  • 154  
•x..... ,e4skei: - .F4 

S. 	
:-.-N, 

-,? 	.• 	% 	 ‘,.... X.'-•- 	` - .'" 

	

"<Wg.. 	 ...••••44:::-:,:,',%:. 
i:.,:-,:5; 	%,•••••*:?..:- 	 , 

4:. 	‘,..N. k..0.0,.. 	P.*,
1  
-,-; 	g:. 

	

103 -,.8.-:,•,,s +.4 	 *
T-W

*.-00-iV.. - :  
•- 	.1% 

7t.-04:\*- 
,-;:-., 

-4.-‘&>:"  

51-4:0,- 41 

'tv  "a* . 	Vi`Vii 	1 efili• 
0 	0.000 	0.001 	0.010 

Real Value 

Vrtians try Gone= no 

1 1 1 
0.100 	1.000 	10.000 

Fr
eq

ue
nc

y  
Co

un
t 

Resource Estimation and the Xun-warara Magnesite Deposit 

Figure 5-35 Normal Histogram, Aluminium Distribution - Clay 

Figure 5-36 Log Normal Histogram, Aluminium Distribution - Clay 
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1 000 90 
2 000 15 
3 030 15 
4 060 15 
5 090 15 
6 120 15 
7 150 15 
8 180 15 
9 080 45 
10 135 45 
11 045 45 
12 000 90 
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CHAPTER 6 VARIOGRAPHY 
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6.1 Standard Orientations, 3-D Variograms 

Three-dimensional variograms were calculated for all assay values, based 
on the various lithological categories. Each assay value and lithology were 
evaluated using Gemcom software, and a standard set of 12 orientations. 
The variogram orientations are indicated in Table 6-1, and presented in 
Appendix 1. 

Table 6-1 Three-Dimensional Variogram Orientations 

6.2 Magnesium 

	

6.2.1 	Sand 

All of the directions for magnesium in the sand lithology show a range of 
between 100 and 200 metres, and have two structures with an unusual dip 
between the structures. The first structure has a range of between 50 to 75 
metres, averaging 60 metres, and a sill ranging between 0.8 and 0.9. The 
second structure is longer, at 150 to 200 metres, with a sill of 0.1. The 
nugget effect is low, ranging from 0 to 0.1. Overall, the distribution is not 
quite anisotropic, as the east-west ranges tend to be slightly shorter than 
the north-south. 

	

6.2.2 	Silt 

The magnesium in silt has a very high nugget effect, and two ranges, one 
at 300 metres north-south, and the second at 250 metres, east-west. 
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Unfortunately, the variograms are noisy, and the level of distortion may 
indicate a high degree of element mobility in the silt layer. 

6.2.3 Clay 

Little real interpretation was returned from the variography. The 060 
direction shows a long range (600 metres) with considerable noise. The 
long range follows on from a shorter structure at 75 metres, which 
apparently equates to the sill. The nugget effect is low. 

6.3 Silica 

	

6.3.1 	Sand 

Silica in sand has no apparent structures, and the majority of the 
variography indicates sand is omnidirectional. There is a relatively high 
nugget effect. One structure is visible within a 50 metre range, at 120 
degrees azimuth. 

	

6.3.2 	Silt 

The distribution of silica in silt is possibly isotropic. In the 0 to 90 degree 
arc, the range is of the order of 75 to 125 metres. Several of the 
variograms do not reach the sill. All have only one structure visible, and 
that structure is apparently spherical. The nugget effect is not able to be 
discriminated, but may be high. In the 90 to 180 degree quadrant, no 
recognisable or interpretable variograms were returned, and the anisotropy 
of the system remains unknown. 

	

6.3.3 	Clay 

Silica in clay behaves in an isotropic manner, and the variography may be 
reflecting two different silica types, the first being mobile silica, the second 
the actual clay component. Mobile silica may be the source of the noise in 
the variograms. The 600 metre long range visible may simply be reflecting 
an individual clay type. The nugget effect is high, approximately 0.5. 

6.4 Manganese 

	

6.4.1 	Sand 

Manganese values in sand are almost isotropic. There is a range of 50 to 
100 metres, averaging 75 metres, with a single structure, and a nugget 
effect which approaches zero. 
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6.4.2 	Silt 

Manganese shows two separate ranges in the silt fraction. The first, and 
longer, in the 120 to 300 degree area is approximately 500 metres, while 
the second is a shorter range of 75 degrees, at a sill of 0.23, visible in the 
remaining variogram directions. The nugget effect was not clear from the 
variography, but is apparently low. 

	

6.4.3 	Clay 

Two structures are visible in the manganese in clay. One structure is at 
approximately 50 metres, with a sill of 0.7, and the second structure has a 
sill of 0.3, and a range of 225 metres, approximately. The nugget effect is 
low. 

6.5 Iron 

	

6.5.1 	Sand 

The sand component for iron has an isotropic nature between 300 and 060 
directions. The range is approximately 75 metres, and the variography 
suggests almost no nugget effect. 

	

6.5.2 	Silt 

The iron in silt variograms show two structures, one short range at 25 
metres, with a 0.72 sill, and the second a very long range, 600 metre 
structure. The longer range structure has a more gaussian distribution 
than the shorter, spherical range. 

	

6.5.3 	Clay 

The iron in clay variography indicates a consistent range of 300 metres for 
all of the directions except north-south. The omnidirectional variogram is 
not interpretable, while some of the variograms have two clear structures, 
and others only one, but all display considerable noise. 

6.6 Calcium 

	

6.6.1 	Sand 

None of the variograms run for calcium in the sand lithology produced 
definite ranges. If the approach of the curve to the sill is accepted, there is 
an omnidirection to the variogram, with a nugget of approximately 0.3, and 
a range of 120 metres for a single spherical structure. 
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6.6.2 	Silt 

Ranges from the calcium in silt variography are from 75 to 100 metres, with 
no clear directional focus. Only one of the variograms reaches the sill, 
which renders interpretation difficult. The nugget effect is very low, and 
there is an apparent hole effect directly beyond the interpreted range, 
which may be due to cross-cutting structures in the silt. 

	

6.6.3 	Clay 

Calcium in clay shows a highly directional nature. The range in the 045 
degree direction is 675 metres, and the orthogonal 150 degree direction is 
125 metres. The nugget effect at 0.4 is relatively high. 

6.7 Aluminium 

	

6.7.1 	Sand 

The aluminium in sand variograms are truly omnidirectional. There is a 
very low nugget effect, with two structures, and a sill approaching 1 at 
between 50 and 60 metres. The second structure is smooth to a range of 
400 metres, which suggests that interparticle relationships continue 
beyond the 200 metre intercept with the sill. 

	

6.7.2 	Silt 

Aluminium in silt shows two structures, and an isotropic behaviour. The 
total range is 600 metres in all directions. There is a very low nugget 
effect. The first structure comprises the majority of the sill at 0.8, and has a 
range of 50 metres. The second structure is at 600 metres. 

	

6.7.3 	Clay 

Aluminium in the clay lithology is isotropic in behaviour. The nugget is low, 
and the range is approximately 300 metres, with the first structure having a 
sill of around 0.7 and a range of 50 metres, and the second structure a sill 
of 0.1 and a range of 300 metres. 

Overall, aluminium displays a similar omnidirectional behaviour 
irrespective of lithology. 
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6.8 Downhole Variography. 

Using Medsystems, a number of downhole variograms were completed for 
the different elements. Each variogram was calculated with a lag distance 
of one, and then two metres. Results are included in Appendix 2. 

	

6.8.1 	Magnesium 

The magnesium variogram returned from 1 metre lags shows a downhole 
range of up to 11 metres. There is a hole effect visible, which may be due 
to lithological changes downhole. The 2 metre lag variogram has a similar 
11 metre range, and a slight hole effect. 

	

6.8.2 	Silica 

Silica values for both the 1 and 2 metre lags give clear variograms. The 
nugget effect is approximately 0.2, and the range is 6 metres, assuming a 
sill of 1. 

	

6.8.3 	Manganese 

Manganese values show clear and unambiguous downhole relationships 
for both the 1 and 2 metre lags. The nugget effect is 0, and the downhole 
range from 8 to 11 metres using 1 metre lags, and the range is 11 metres 
in the 2 metre lag. 

	

6.8.4 	Iron 

The iron variograms downhole indicate the data is too sparse for 
reasonable interpretation. Using the 2 metre lag , there is a high nugget 
effect of 0.8, and a range of 5 metres. The large difference resulting from 
the use of 1 or 2 metre lag samples indicates the variograms should be 
treated with caution. The 1 metre lag has a strong hole effect, and no clear 
range or nugget effect. This may be due to different lithologies strongly 
influencing the iron distribution. 

	

6.8.5 	Calcium 

Calcium displays a low nugget effect, and a range of 4 metres. There is a 
strong hole effect at a 1 metre lag, with a final range increase at 11 metres. 
The 2 metre lag indicates the 11 metre range is more typical. 

	

6.8.6 	Aluminium 

Both the 1 and 2 metre lags in the aluminium variograms show a moderate 
nugget effect. The 1 metre lag has a range of 6 metres, and displays a 
strong hole effect. The 2 metre lag has a range of 11 metres and shows no 
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hole effect. Thus, for aluminium, the 2 metre lag variogram parameters 
should be utilised. 

6.8. 7 	Magnesium by Lithology 

The magnesium assays were then separated by lithology, and downhole 
variograms using a 2 metre lag run for sand, clay and silt. The resulting 
variograms are included in Appendix Two. 

The magnesium in sand variogram shows a moderate nugget effect of 0.6, 
and a range of 10 metres. Extreme values shown at the end of the 
variogram are probably the result of low pair numbers in the variogram. 

The silt unit variogram shows a very low nugget effect, approximately 0, but 
does not reach the sill. This may be due to the range being longer than the 
actual thickness of the silt unit. 

In the clay fraction, the variogram is not capable of being interpreted. The 
unit thickness is possibly too small to allow enough data to be viewed 
across the deposit using a 2 metre lag, to produce a meaningful 
relationship. 

6.9 Discussion 

All of the variograms generated display considerable noise. This may be 
partly due to the basic sampling technique employed on site, which results 
in non-extractable variation in the samples. It is also probably due to the 
populations under examination being heterogeneous, giving multiple 
populations in each variogram which obscure subtle relationships within 
each individual population. 

Most of the variography was found to produce at the minimum, a range and 
direction. Few of the variograms are strongly anisotropic, but there is a 
considerable difference in the nugget effect between different elements 
and different lithologies. 

For modelling purposes, the following ranges are indicated, see Table 6-2. 
As the only commodity being mined is magnesia, the modelling described 
in the next chapter is only for the magnesium distribution. The ranges 
established for magnesium in sand will be used to inform the block model 
search ellipse and will also be used for sample weighting. 
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MAGNESIUM 11 
Sand 000 100 175 10 
Silt 000 250 300 
Clay 000 600 
SILICA 6 
Sand NA 
Silt 000 100 100 
Clay 000 600 600 
MANGANESE 11 
Sand 000 75 75 
Silt 000 500 75 
Clay 000 225 225 
IRON 5 
Sand 000 75 75 
Silt 000 600 600 
Clay 000 300 300? 
CALCIUM 11 
Sand 000 120? 120? 
Silt 000 100? 100? 
Clay 045 150 675 
ALUMINIUM 11 
Sand 000 200 200 
Silt 000 600 600 
Clay 000 300 300 

Resource Estimation and-  the Xun-warara Magnesite Deposit 

Table 6-2 Vanogram Ranges, All Elements 
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CHAPTER 7- RESOURCE CALCULATIONS 
I/I/IZIPare45107415,1"4"/It6I/AP/I70•441,7AVArWAV.4%..9%0/4 ,741%■":497.07.07■17.4"are07,517/AVArtIVAUPAINIP/IIVAIVIVIVARZI7   	1F411/07.10.W/41/ 	 /07.41•4 

7.1 Database 

The resource database was supplied by Queensland Metals Corporation, 
and consists of 4769 drillholes. Holes were drilled by QMC as exploration 
drilling, and Queensland Magnesia as run-of-mine assay holes. 

Drilling is completed using rotary air blast rigs, with samples collected in a 
tray which surrounds the rod string. Samples are deposited on the ground 
in one metre intervals. Sampling is frequently wet, which results in fines 
being washed into the vegetation cover on which the samples are dumped. 
Colour plates 7-1 to 7-3 show, in order, a completed drillhole undergoing 
geological logging, sample layout, and a close-up of a metre which has 
considerable magnesite nodules 

Assay samples are taken by "scooping" a sample from each one metre pile 
into predetermined composite lengths. Sample composites are determined 
on the basis of whether a hole is for exploration or run-of-mine 
requirements. 

Assay results are input with the lithological logging into an Access 
database. On receipt of the database from QMC, holes were checked on 
screen for azimuth and direction errors, and a validation process run using 
Gemcom software to locate technical errors such as inconsistent sample 
intervals. 

All data used for the modelling process was sourced directly from the QMC 
Access database. 

7.2 Compositing 

Orebody sampling at Kunwarara has been undertaken at many different 
sample intervals, producing a heterogeneous sample database. Normally, 
such data would be composited to standard one or two metre sample 
intervals. Compositing is generally used to combine individual samples of 
smaller lengths to standard longer lengths using weighted averages to give 
the grade of the longer sample. 

Two problems were identified with the Kunwarara data in compositing 
magnesium data. The first problem is related to the longer sample 
intervals, of up to 8 metres in the database. When such an interval is 
composited to one metre values, for example, the average for the entire 8 
metres is then assigned to each one metre interval. This leads to an 
artificial smoothing of the data. 
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Colour Plate 7-3 	Close-up of One Metre Sample Showing Typical 
Magnesite Nodule Intersection 
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If the opposite approach was taken, and longer composite lengths used, 
then many of the relatively narrow rocktype intersections would either not 
be represented at all, or be represented by a small fraction of the 
composite length. 

Unlike many gold deposits, the variation in sample lengths does not appear 
to be related to close-spaced sampling of high grade material. Sample 
intervals are irregular in both high and low grade magnesium zones. In 
addition, the sample lengths are relatively constant between adjacent 
holes, so that calculations based on adjacent holes are unlikely to be 
significantly biased. 

As a consequence, the resource evaluation was run using raw assay 
values, and the raw database sampling intervals, although a three metre 
composite model was included in the evaluation process as both a check 
and an aid to data interpretation. 

7.3 Three Dimensional Solid Modelling 

Gemcom software was used to wireframe model the geology of the 
Kunwarara deposit, using the lithological definitions from drillhole logging 
by site geologists. Four lithologies, gravel, sand, clay and silt, were used. 

The more usual process of linking sections of digitised interpretations was 
not utilised in the wireframe, due to the very thin nature of the lithologies, 
and the scale of the horizontal distances in the deposit. The perceived risk 
in the use of sections is in the difficulty of reproducing three-dimensional 
behaviour between sections using straight lines to connect points on one 
section with points on the next section. 

Instead, the upper surface of each lithology was modelled as an individual 
surface, using a Laplace algorithm. The smoothing factor in the algorithm 
was set to zero to avoid over-interpretation, and a grid of 100 x 100 metres 
used. The surfaces produced were validated for irregularities, and then 
used to cut a solid blank which covered the limits of drilling. 

By successive Boolian operations, in which the surfaces were used as 
cutting tools on a blank solid constructed around the outline of the limits of 
drilling, a model of each lithology was produced. The resultant solids were 
validated, and assigned rock code identifiers. 

The coded solids were then used to overstamp rockcodes into the block 
model, depending on the percentage of any given block which lay within 
the solid. A value of 50 percent was chosen as the criterion for assigning 
blocks with a particular rock code. Thus, a value of 51% silt would result in 
a block being assigned to the silt lithology. The overstannping was 
undertaken down the geological profile from surface, with clay written first, 
then silt and finally sand. 
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7.4 Block Modelling 

Block modelling for the deposit was undertaken using Gemcom's PCMine 
program. The initial evaluation was completed using 25 x 25 x 1 metre 
block sizes, which allowed an effective penetration rate of one drillhole to 
each block. Note that the longer length samples did result in an apparent 
high ratio of blocks to samples, however. 

The following resource methods were used on that block spacing: 

> Inverse distance squared 
> Inverse distance cubed 
> Ordinary kriging 
> Indicator kriging (raw data) 
> Indicator kriging (composite data) 

To ensure a meaningful comparison between techniques, the sample 
search parameters used were the same for each method, as were the 
number of samples used to inform a block. Ore block samples for the 
purposes of the evaluation were a standard 25 x 25 x 1 metre size. 

Where applicable, the limits of the indicators for the indicator kriging runs 
were drawn directly from the element by lithology distributions involved. 
Each of the three main lithologies, clay, silt and sand, was calculated in an 
independent run, and then combined into a single final model for each 
method. Results of the modelling process were used to produce 
grade/tonnage curves. 

The density of 1.9 tonnes per cubic metre used to calculate tonnages was 
supplied by QMC, and is the run-of-mine density figure. (S. Wilcock, pers 
comm.) 

7.5 Grade Tonnage Curves 

The grade tonnage curves for the individual lithologies and each 
calculation type are shown in Figures 7-1 to 7-15, in order of increasing 
complexity of resource calculation. 
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Figure 7-1 Inverse Distance Squared, Sand 

Figure 7-2 Inverse Distance Squared, Silt 

Figure 7-3 Inverse Distance Squared - Clay 
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Figure 7-4 Inverse Distance Cubed - Sand 
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Figure 7-5 Inverse Distance Cubed - Silt 

Figure 7-6 inverse Distance Cubed - Clay 
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Ordinary Kriged Model 
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Figure 7-7 Ordinary Kriging - Sand 

Figure 7-8 Ordinary Kriging - Silt 

Figure 7-9 Ordinary Kriging - Clay 
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Figure 7-10 Indicator Kriging, Raw Data - Sand 

Figure 7-11 indicator Kriging, Raw Data - Silt 

Figure 7-12 Indicator Kriging, Raw Data - Clay 
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Figure 7-13 Indicator Kriging, Composites - Sand 

Figure 7-14 Indicator Kriging, Composites - Silt 

Figure 7-15 Indicator Kriging, Composites - Clay 
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7.6 Discussion 

The grade tonnage curves show that the Kunwarara deposit is extremely 
unusual in its tonnage versus grade behaviours. The majority of the 
techniques give a relatively close approximation for tonnage and grade, as 
shown in Figures 7-16-18. 

In the sand fraction, inverse distance squared and ordinary kriging return 
similar grades and tonnages, whilst the indicator kriged composites and 
indicator kriged raw data return the most conservative tonnage and grade 
figures. Indicator cubed methodology gives the highest tonnages and 
grades. 

Figure 7-16 Composite Tonnage Grade Curves, Sand Fraction 

Values in the silt fraction indicate that the ordinary kriging and inverse 
distance squared results are similar, with the indicator kriging raw data and 
indicator kriging composite data returning comparable grades and 
tonnages, and the inverse distance cubed fraction again giving higher 
tonnages and grades. 

In the clay fraction, the indicator kriged composite samples are notably 
higher in both tonnage and grade. Inverse distance cubed and squared 
methods show the next highest grade and tonnage figures, while the 
ordinary and indicator kriging raw data values are the most conservative. 
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The clay fraction shows an unusual distribution in comparison to the silt 
and sand lithologies, for the indicator kriging composite method. This is 
attributed to a combination of a very narrow lithological horizon, and the 
compositing of samples to a 2 metre interval. In the raw dataset, a sample 
taken over an 8 metre interval might well straddle the clay/silt boundary, for 
example, but would be assigned to the thickest lithology, which would be 
silt. When the samples are composited, this 8 metre interval would 
become 4 separate 2 metre intervals, and the clay fraction would be given 
the same assay value as the silt layer. As a result, there are more blocks 
informing the clay layer in the composite indicator krige run, and thus, both 
a higher grade and higher tonnage results. 

A comparison of the original input data and the output grades different 
models is shown in Table 7-1, for the grouped data. 

Input and Output Grades Table 7- 1 

Key: 
> Raw 
> 102 	• = 
> 1D3 
> 0K 
> IKR 
> IKC 

input raw assay values 
inverse distance squared method 
inverse distance cubed method 
ordinary kriging method 
indicator kriging method, raw assay values 
indicator kriging method, composited assay values 

The datasets above show that the different resource calculation methods 
have not cut the upper sample values, with all of the highest grade 
samples from the different methods within 2% of the highest grade raw 
data value. The large change in mean values between the raw data set 
and the different methodologies is largely due to smoothing of the data 
because of the block to sample ratio, and the estimation processes 
involved. 

The comparison of the input and output grades clearly shows the indicator 
kriging method on the raw data to have a variance which most closely 
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approximates that of the input data (input data variance is 65.41, indicator 
kriging raw data variance is 92.97. The remaining techniques give a much 
wider block variance range, with the highest variance reached in the 
indicator kriging composite method and the inverse distance cubed 
method. 

In terms of grades, the following variations were noted, see Table 7-2. 

Method Mean Variation 
Mean % 

Median Variation 
Median % 

Raw 92.81 0 94.69 0 
1D2 72.24 22 92.58 2.2 
1D3 68.20 26 92.26 2.5 
OK 72.25 22 92.54 2.2 
IKR 72.04 22 92.97 1.8 
IKC 74.11 20 93.10 1.6 

Table 7-2 Grade Variations Between Methods. 

Key: 
> Raw 
> 1D2 
> 103 
> 0K 
> 1KR 
> IKC 

input raw assay values 
inverse distance squared method 
inverse distance cubed method 
ordinary kriging method 
indicator kriging method, raw assay values 
indicator kriging method, composited assay values 

The marked difference between the variations in mean and median, 
approximately a factor of 10, is a product of the mean being susceptible to 
extreme or outlier sample values, and the smoothing of the grade 
distribution in the block model which generates the outlier values. 

Overall, the examination of the tonnage and grade curves for the various 
lithologies, the variations in mean, median, and in particular, the variance 
values suggest that the most appropriate method of resource estimation is 
the indicator kriging technique, utilising raw data values. 

The assignment of a category to the resource is problematic. The mixed 
sample population, and skewed nature of the distribution suggest that the 
individual drillholes will not produce a representative grade sample of 
magnesium material. This is partially offset by the consistent high grade 
samples, which average between 80 and 96% magnesium. In addition, the 
number of random size samples submitted for assay is a concern, although 
again, the impact of the sampling is mitigated by the consistent grade. 
While the tonnage is generally very consistent between methodologies, the 
grade is inconsistent, and the indicated category is recommended for the 
tonnage and grade curves generated from this study. 
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CHAPTER 8- ORE BLOCK SIZES 
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8.1 Ore Block Sizes 

An evaluation of the impact of the change in block sizes on the Kunwarara 
deposit was investigated by varying block sizes in individual indicator 
kriging raw data resource estimations. The following block sizes were 
modelled, see Table 8-1. 

Table 8-1 Block Sizes 

The 3 metre bench height was chosen as a standard, as this is already in 
use in day-to-day mining operations. In the case of the second 25 metre 
block size, the one metre interval was the base for the previous chapter's 
evaluation of the different methodologies. 

The smallest block size was unfortunately not a standard 12.5 x 12.5 x 3 
metres, as the Gemcom software used in the modelling process was 
unable to interpret beyond a set number of blocks. As a result, the block 
size had to be modified to meet the limit of blocks in the software, and thus 
the 16 metre block length. 

8-2 Tonnage and Grade Curves 

Tonnage and grade curves were prepared for each lithology, for each 
block size, and these are shown in Figures 8-1 to 8-15. The curves for the 
indicator krige run for the 25 x 25 x 1 blocks have already been presented 
as Figures 7-10 to 7-12. 
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Figure 8-1 Block Size 200 metres, Sand 

Figure 8-2 Block Size 200 metres, Silt 

Figure 8-3 Block Size 200 metres, Clay 
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Figure 8-4 Block Size 100 metres, Sand 

Figure 8-5 Block Size 100 metres, Silt 

Figure 8-6 Block Size 100 metres, Clay 
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Figure 8-10 Block Size 25 metres, Sand 

Figure 8-11 Block Size 25 metres, Silt 

Figure 8-12 Block Size 25 metres, Clay 
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Figure 8-13 Block size 16 metres, Sand 

Figure 8-14 Block size, 16 metres, Silt 

Figure 8-15 Block size, 16 metres, Clay 
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8.3 Discussion 

The choice of block size has a significant impact on the resource at 
Kunwarara, as illustrated by the change in variances as very large or very 
small blocks are used. Overall, the smaller the block used, the higher the 
tonnage and grade in the resulting curve, see Figures 8-16 to 8-18, where 
the block tonnage and grade curves are plotted by lithology. 

Figure 8-16 Composite Tonnage and Grade, Sand Fraction 

Figure 8-17 Composite Tonnage and Grade, Silt Fraction 
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Figure 8-18 Composite Tonnage and Grade, Clay Fraction 

A comparison of the original input data and the output grades for the 
different models is shown in Table 8-2, for the grouped data. A data cut 
below 85% has been applied to prevent the behaviour of the lowest and 
most erratic vales in the populations obscuring the choice of block size. 

Table 8-2 Output Data, Various Block Sizes 

This table indicates that the majority of the block sizes are reflecting some 
minor variation away from the raw data distribution. Variation in terms of 
the mean and median sample values is of the order of less than one 
percent. 
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The ratio of block sizes to sample data is shown in Table 8-3. 

Table 8-3 Block Size Ratio 
Note all block samples and blocks have been rounded. 
The ideal sample versus output ratio for a block model is 1, as then the 
ratio of blocks to samples is not the cause of smoothing. The closest 
approximation from the data to 1 is the 100 x 100 x 3 metre block size, at 
0.4. The next closest is the 50 x 50 x 3 metre block size at 1.7. 

Given the requirement at Kunwarara for three million tonnes of material to 
be moved per annum, it is suggested that the 100 x 100 x 3 metre blocks 
be utilised in mine planning. The use of the larger block size also 
minimises any potential overestimation of tonnage in the resource process. 

A cautionary note would be in the use of such large blocks in the clay 
layer. The thin nature of that lithological unit makes the classification of 
blocks either in or out on the 50% rule more problematic. Comparatively 
small changes in thickness in the clay unit can lead to the exclusion of 
blocks with resultant significant tonnage variations. 
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The Kunwarara dataset supplied by Queensland Metals consisted of 4769 
drillholes in an Access database. Samples had been assayed for 
magnesium, silica, manganese, iron, calcium and aluminium. Four major 
rockcodes had been identified, namely sand, silt, gravel and clay. The 
gravel layer had not been assayed for magnesium. 

Orebody sampling at Kunwarara has been undertaken at many different 
sample intervals, producing a heterogeneous sample database. Normally, 
such data would be composited to standard one or two metre sample 
intervals. Two problems were identified with the Kunwarara data in relation 
to the magnesium data, one being the relatively long sample intervals 
which tend to smooth assay values, the second being the tendency for 
different rocktypes to be included in the one sample interval 

Unlike many gold deposits, the variation in sample lengths does not appear 
to be related to close-spaced sampling of high grade material. Sample 
intervals are irregular in both high and low grade magnesium zones. In 
addition, the sample lengths are relatively constant between adjacent 
holes, so that calculations based on adjacent holes are unlikely to be 
significantly biased. As a consequence, the resource evaluation was run 
using raw assay values, and the raw database sampling intervals. 

Initial evaluation consisted of a classical statistical review of the raw 
datasets for each element. The magnesium and calcium distributions were 
similar, as were iron and manganese, and lastly silica and aluminium. All 
elements showed mixed sample populations and skewed distributions. 
This was attributed to a combination of changing pH regimes, fluctuating 
redox fronts, weathering processes, and the formation of different minerals, 
for example in the case of iron, the formation of both goethite and 
haematite. 

When the samples were evaluated on the basis of lithology, the 
distributions remained strongly skewed for magnesium and calcium, but 
iron and manganese began to approach log normal distributions, 
suggesting that these elements were in part lithologically controlled. Silica 
and aluminium sample distributions displayed no correlation with lithology. 
As a result, it was apparent that indicator kriging was the most appropriate 
method for modelling the magnesium distribution. 

Variography was completed for the different elements, with twelve three-
dimensional variograms run and two downhole variograms completed for 
each element. In addition, magnesium was evaluated downhole by 
lithology. Results showed that there were coherent ranges for magnesium, 
iron, aluminium, and manganese in the sand fraction. The silt lithology 
displayed better variograms from all elements, with only calcium returning 
unclear variogram ranges. In the silt fraction, iron and magnesium were 
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not clear, while the remaining elements displayed clear ranges. A feature 
of all variograms was the "noise" displayed. This was attributed to the 
mixed sample populations of each element. 

Resource modelling was undertaken using inverse distance square, 
inverse distance cubed, ordinary kriging and indicator kriging techniques. 
A fifth model used a composite of the magnesium assays for comparison. 
Standard block sizes of 25 x 25 x 1 metres were employed for each 
technique, and a standard density of 1.9 tonnes per cubic metre. To 
ensure a meaningful comparison between techniques, the sample search 
parameters used were the same for each method, as were the number of 
samples used to inform a block. 

Tonnage and grade curves produced for each method indicated that there 
was relatively little difference between the methods in terms of tonnage or 
grade estimation. Generally, the inverse distance cubed method produced 
the highest tonnages and grades, while the indicator kriging (raw data) 
method returned the most conservative grades and tonnages. By 
evaluating the variance, mean and median returned from each block 
model, it was determined that indicator kriging was the most appropriate 
resource calculation method. However, the method is still smoothing the 
data from the skewed input distribution. 

Evaluation of the dataset and the tonnage and grade curves suggested 
that the assigment of a resource category to the deposit would be 
problematic, and that an indicated category best suited the dataset 

Using the indicator kriging method on raw assay data, a number of block 
sizes were evaluated. The 100 x 100 x 3 metre block size showed the 
minimum sample variance and is of sufficient size to allow for easy mine 
planning in a 3 million tonne per annum operation. 

Overall, Kunwarara displays some unusual geostatistical features, which 
are probably related to the deposit's origin as a chemical precipitate. 
Further work should include: 

> Reconciliation of mining and milling figures to further evaluate the block 
size question. The blocks will also need to take into account the 
haulage truck size, and the excavator bucket sizes. Similar deposits, in 
iron ore for example (Guibal et al 1996), have been modelled using a 
conditional simulation technique, which more closely mimics the small 
scale variability of the deposit. This may be the next required step to 
fully evaluate block sizes 

> A careful study of the distribution of magnesium nodules in the sand 
and silt lithologies to determine what is controlling the distribution, and 
to make a more careful evaluation of the sample population of the 
nodules. Are there different nodule types and compositions within the 
silt layer as opposed to the sand layer? 
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APPENDIX ONE 
Three Dimensional Variograms 
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