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Abstract 

The palaeobotanical record contains a wealth of information on the evolution 

and ecology of species, as well as the palaeoenvironment. However, 

accessing and analysing this information can be challenging. It is not 

possible to study the ecology of fossils directly, but there are two main 

inferential approaches to palaeoecology: nearest living relative (NLR) 

techniques, and physiognomic methods.  

In NLR techniques, the taxonomic identity of the fossil is key – once the 

nearest living relatives of a fossil have been identified, we can study the 

ecology of living species in order to make inferences about the fossil species. 

However, there are instances where the nearest living relatives of co-

occurring fossils are climatically incompatible, which suggests that some 

extant taxa inhabit different climates to their fossilised relatives. To date, no 

study has quantitatively analysed this phenomenon in fossils older than the 

Quaternary (the last 2.6 million years), possibly because of a lack of suitable 

methodologies.  

Alternatively, physiognomic methods seek to extract environmental signal 

that is encoded in the fossil morphology. This approach has been widely 

used for macroscopic leaf traits, but comparatively less for epidermal 

characters (in particular, the shape and arrangement of epidermal cells). The 

epidermis is the interface between the plant and its environment and is 

responsible for many functions, including gas exchange and mediation of 

transpiration (via stomata), so there is good reason to believe that there will 

be links between epidermal traits and environment. However, the calibration 

of epidermal physiognomic proxies has been hampered by the non-feasibility 

of undertaking large multivariate studies where each character is extremely 

time-consuming and laborious to measure, as well as the complex 

relationships between genetic and plastic variation.  

In this dissertation, I explore how we can use novel computational techniques 

(including machine learning) to glean new insights from the fossil record, with 

a focus on southern conifers (Podocarpaceae, Araucariaceae, Callitroideae). 



I present two new computational methods (with accompanying R packages) 

and their palaeoecological applications.  

In the first chapter, I provide an overview of some of the analytical 

challenges in palaeoecology and why machine learning techniques are well-

suited to solve these problems. I also provide a short review of existing 

machine learning approaches in palaeoecology.  

In the second chapter, I present ‘hyperoverlap’, an R package that uses a 

novel application of a machine learning classifier to evaluate multi-

dimensional overlap between point clouds (e.g. occurrence records in climate 

space). This chapter is published. 

In the third chapter, I use ‘hyperoverlap’ to quantitatively examine the fossil 

record of southern conifers and to identify no-analogue associations (those 

pairs of fossils for which the nearest living relatives inhabit disparate climatic 

conditions). By quantitatively analysing the climatic overlap in fossil 

communities, I found that there is significant lability in the thermal niches of 

southern conifers, but extreme stability in the precipitation niche, implying 

that future changes to rainfall regime may pose more of a threat to southern 

conifers than thermal shifts. This chapter is under review, after revision. 

In the fourth chapter, I present ‘epidermalmorph’, an R package that 

automates the extraction of leaf epidermal traits from images. As well as trait 

measurement, this package includes tools for pre-processing, estimations of 

trait reliability (for any study system) and optimising sampling effort.  

In the fifth chapter, I use ‘epidermalmorph’ to assess the degree of climatic 

adaptation in the epidermal cells of Podocarpaceae. I found some evidence 

for adaptive significance of stomatal index and cell wall undulation, but there 

were no viable proxies for either tree height or climatic conditions, suggesting 

that the functional variability in Podocarpaceae leaves is more likely to be 

plastic, rather than hard-coded.  



In the final chapter, I summarise this thesis, discuss the challenges and 

limitations to applying sophisticated computational techniques to the 

palaeobotanical record and suggest potential avenues for future research. 
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Chapter 1 : Introduction 

The palaeobotanical record is an invaluable source of information about the 

past, but accessing and interpreting this information is not always 

straightforward. Almost all macrofossils are mere fragments of the plants that 

produce them, so identification of fossil plants often relies on different 

characters to those used to identify extant species. Palaeobotany is 

unavoidably haphazard in sampling and fossil data are sparse and biased, 

making quantitative analyses challenging (Spicer, 1988). It is also not 

possible to directly measure the ecology of fossils, so we must use 

information from the fossils themselves to try to make inferences about the 

paleoenvironment (Wolfe, 1993).   

There are two main approaches to estimating palaeoenvironmental 

conditions from fossils. We can use the ecology of the nearest living relatives 

(NLRs) of fossils as a proxy (Mosbrugger & Utescher, 1997), under the 

assumption that the climatic tolerances of fossil species were similar to those 

of their extant counterparts. We can use the morphological/anatomical traits 

of the fossil in concert with known trait-climate relationships (physiognomic 

methods, Wolf, 1990; Yang et al., 2011), using the assumption that links 

between traits and climatic conditions in modern species can be applied to 

fossils. In this thesis, I explore the use of novel computational techniques to 

glean new insights from the palaeobotanical record from both these 

perspectives, with a focus on southern semisphere conifers.  
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Fossil record of the southern conifers 

The ‘southern conifers’ are a group of conifer lineages that are now mostly 

confined to the southern hemisphere: Podocarpaceae, Araucariaceae, 

Callitroideae (Cupressaceae) and Austrotaxus (Taxaceae).  They have an 

exceptionally rich and well-documented fossil record (see Hill & Brodribb, 

1999; Wilf, 2012; Macphail et al., 2013; Andruchow-Colombo et al., 2019) 

that extends into the Northern Hemisphere and as far back as the Jurassic 

(Stockey, 1982). The fossil record of southern conifers demonstrates 

extraordinary morphological stability – Eocene fossils of Papuacedrus 

prechilensis are indistinguishable from modern Papuacedrus foliage (Wilf et 

al., 2009) – and it is often assumed that this stability extends to ecology (Jin 

et al., 2021; Sundaram & Leslie, 2021).  

For many taxa (e.g. Microcachrys, Dacrycarpus, Lagarostrobos, Halocarpus), 

fossils are much more widespread than the extant species (Brodribb & Hill, 

2004; Pole, 2007; Carpenter et al., 2011), which has been interpreted as 

evidence for a widespread decline in range and diversity, particularly in the 

Neogene and Quaternary (Brodribb & Hill, 2004; Truswell & MacPhail, 2009). 

This decline coincides with a period of global cooling and drying (Westerhold 

et al., 2020), so it is often assumed that changes in climate are responsible 

(Hill, 1995; Kooyman et al., 2013). However, it is unclear whether 

temperature or precipitation are more likely to have affected southern 

conifers.  
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No-analogue fossils 

A curious aspect of the southern conifers is that their fossil record contains 

‘no-analogue associations’ – that is, the nearest living relatives of these fossil 

species inhabit dissimilar environmental conditions (Jordan, 1997b). One 

example of a no-analogue pair is the co-occurrence of Acmopyle and 

Microcachrys, which, according to fossil evidence, co-existed at Lake 

Cethana, Tasmania approximately 35 million years ago (Carpenter et al., 

1994). Today, Acmopyle is restricted to the tropical lowlands of Fiji and New 

Caledonia, while Microcachrys is restricted to the cold and open 

mountaintops of Tasmania (neither species is part of the extant community at 

Lake Cethana, Farjon & Filer, 2013). These kinds of anomalies have been 

noted for many southern conifers at several fossil sites (Jordan, 1997b; 

Macphail, 2007) but have not yet been quantitatively analysed beyond the 

site level (see Jordan, 1997). No-analogue associations challenge the key 

assumption for NLR approaches - that the ecology of the living taxon is the 

same as that of the fossil. They also seem at odds with the ideas that 

conifers are slow to evolve (Buschiazzo et al., 2012) and are ecologically 

conservative (Jin et al., 2021), as some no-analogue pairs are relatively 

recent (e.g. Jordan 1997). No-analogue associations thus merit further study, 

but quantifying them requires creative analytical approaches that can utilise 

sparse, multivariate data.  

Machine learning and the palaeobotanical record 

Machine learning is an integral aspect of many modern statistical methods, 

from linear regression through to highly sophisticated neural networks and 
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image processing. At the core of machine learning is the idea of a 

‘performance metric’ – this can be the proportion of correctly classified 

instances, the prediction error or some other, more complex metric – that is 

optimised by the machine (Jordan & Mitchell, 2015). Machine learning is 

typically associated with either classification or regression – given a set of 

training data with known classes (or values, in the case of regression), the 

aim is to construct a model that will accurately predict the class (or value) of 

future data. However, machine learning is not limited to purely predictive 

applications – unsupervised machine learning (where training data are 

unlabelled, e.g. clustering analyses) can expose patterns in datasets, and 

interrogation of predictive models can reveal new palaeobotanical insights 

(Wilf et al., 2016). Here, I provide a brief overview of some of the ways that 

fossil data has been analysed from three main perspectives: nearest living 

relative methods, physiognomic methods, and image processing. Although 

image processing typically forms part of a broader analytical workflow, it 

requires specialised approaches so I have considered it separately. I 

particularly focus on how machine learning has been employed in these three 

types of analyses. 

Nearest living relative methods 

Nearest living relative (NLR) methods assume that the climatic requirements 

of a fossil were similar to those of its NLRs (Mosbrugger & Utescher, 1997). 

Thus, by examining the NLRs of an entire fossil flora, the most parsimonious 

estimated palaeoclimate is the set of environmental conditions that would 

allow the greatest number of species to coexist (Jordan, 1997c; Mosbrugger 
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& Utescher, 1997). In practice, this usually involves using occurrence data to 

quantify the ecological range of each NLR, and then measuring the overlap 

between NLRs, often using machine learning algorithms (Broennimann et al., 

2012). The overlap between NLRs can be analysed in single climatic 

dimensions (e.g. Jordan 1997) or multi-dimensional space (Broennimann et 

al. 2012) and recent studies have incorporated more complex environmental 

niche models (ENMs) into the NLR approach (Harris et al., 2014). Still more 

methods use probability density functions (estimated via another class of 

machine learning algorithm) to estimate palaeoclimate from extant 

occurrences (e.g. CREST, Chevalier et al., 2014; Sniderman et al., 2016; 

CrACLE, Harbert & Baryiames, 2020), although these have not yet been as 

widely adopted as the coexistence approach of Mosbrugger and Utescher 

(1997). It should be noted that in all of these methods, no-analogue fossils 

are generally treated as outliers and either ignored or removed.   

 

Physiognomy 

Unlike NLR approaches, physiognomic methods do not rely upon the 

taxonomic identity of a fossil – instead, these methods rely on relationships 

between climate and traits that can be measured from the fossil directly. The 

key assumptions for these methods are that plants inhabiting a particular 

environment will converge on the optimum morphology for that environment 

(Peppe et al., 2018), and that relationships between traits and climate have 

remained constant over deep time (Spicer et al., 2020). Like NLR methods, 

physiognomic methods can be univariate or multivariate, and frequently use 
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machine learning algorithms.  One of the most frequently used is the Climate-

Leaf Multivariate Analysis Program (CLAMP, Wolf, 1990; Wolfe, 1993; Yang 

et al., 2011; Spicer et al., 2020), which uses canonical correspondence 

analysis to predict the values of up to ten environmental variables from a set 

of 31 leaf traits. More recently, Wei et al. (2021) compared different machine 

learning algorithms for palaeoclimatic estimation based on digital leaf 

physiognomy (e.g. DiLP, Huff et al., 2003; Royer et al., 2005; Peppe et al., 

2011; Li et al., 2016) and found that boosted trees and support vector 

machines performed significantly better than multilinear regression, 

highlighting the value of using more complex methods for this type of data.  

Physiognomic methods are fundamentally limited by our understanding of 

trait-climate relationships, and are further clouded by the uncertain effect of 

phylogeny on these traits (Little et al., 2010). One major criticism of 

physiognomic methods is that the mechanistic basis of many physiognomic 

proxies is unknown, which adds significant uncertainty to palaeoclimatic 

reconstructions based on these traits (Jordan, 1997a, 2011; Peppe et al., 

2018) Another is that many trait-climate relationships are based on either 

very broad or very narrow taxonomic systems, (e.g. the single extant species 

of Gingko; Jordan 2011). It is unclear how far back in time these 

physiognomic links can be extrapolated, and to what extant they are system-

specific – the widely utilised relationship between leaf margin shape and 

temperature is significantly different between Southern and Northern 

Hemisphere floras (Kennedy et al., 2014), highlighting the need to carefully 

consider how physiognomic methods are calibrated.  
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Physiognomic methods that use macroscopic leaf traits (e.g. CLAMP, DiLP) 

are largely inapplicable to conifers, where the gross leaf morphology is 

strongly constrained by phylogenetic history (Farjon, 2010). However, the 

physiognomic approach can be applied to micromorphological traits, where 

there is significantly higher variation within clades (e.g. Stark Schilling & Mill, 

2011). 

The plant cuticle retains an imprint of the epidermal cells that can be 

preserved for hundreds of millions of years (Blomenkemper et al., 2021). The 

epidermis forms the interface between the plant and its environment and is 

multifunctional (see Vőfély et al., 2019)), so it is not surprising that there are 

several documented links between epidermal morphology and climate (e.g. 

Rahim & Fordham, 1991; Beerling et al., 1998; Aasamaa et al., 2001; Torre 

et al., 2003; Thomas et al., 2004; Deccetti et al., 2008; Haworth et al., 2010; 

Dunn et al., 2015b; Okanume et al., 2017; Bidhendi et al., 2019). While some 

of these relationships have been used for physiognomic palaeoclimatic 

reconstructions (e.g. stomatal density, stomatal index and physiological 

models derived from these Beerling et al., 1998; McElwain et al., 2016; 

Steinthorsdottir et al., 2016; McElwain, 2018; Purcell et al., 2018; Li et al., 

2019; Porter et al., 2019), these studies have been largely univariate, and are 

complicated by the apparent clade specificity of many of the trait-climate 

relationships (Dunn et al., 2015a). It is likely that the dearth of multivariate 

physiognomic methods for epidermal traits is because of the labour-intensive 

nature of measuring epidermal traits from microscope images.  

 



8 

 

Image analysis  

In the context of data science, an image is a large matrix, where each pixel is 

an observation. Each pixel has coordinates (x and y values) and one or more 

variables to represent the colour (Fig. 1.1). The colour value of a pixel can be 

represented in a myriad of ways, including grayscale (a single value between 

0 and 255) and RGB colour (a value each for red, green and blue, ranging 

from 0 to 255; depicted in Fig. 1.1). Additionally, pixels are spatially 

autocorrelated – the value of a given pixel is not independent of its 

neighbours. This data structure (large sample size, spatial non-

independence) makes machine learning an ideal tool for image analysis. 

Typically, machine learning for images is either classification (‘what kind of 

cell is in this picture?’) or segmentation (‘which parts of this picture are 

stomata?’). In palaeobotanical studies, there has been a substantial amount 

of work done on using machine learning to automate the identification of 

fossil pollen from images (Holt et al., 2011; Johnsrud et al., 2013; Khanzhina 

et al., 2018), grass phytoliths from 3D models (Gallaher et al., 2020) and 

vegetative remains from images of cleared leaves (Wilf et al., 2016). 

Although machine learning is typically associated with a ‘black-box’ predictive 

result, careful interrogation of the algorithms can reveal new descriptive 

insights – Wilf et al. (2016) found that the angle between second-order veins 

can be used to identify which family the sample belongs to.  
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Figure 1.1. Example of how an image can be represented as data. The 

cuticle of Podocarpus coriaceus, showing the outlines of epidermal cells (a), 

enlargement of part of this image (red square) showing individual pixels (b), 

the same region showing the classification of each pixel (c), and these data 

in matrix form (d), where the coordinates of each pixel are given by x and y, 

the colour by R, G and B (red, green and blue values) and the classification 

by Class.  

 

Thesis structure and aims 

The aim of this thesis was to explore novel applications of machine learning 

to the fossil record of southern conifers with a focus on identifying possible 

explanations for no-analogue pairs. Given the two typical approaches to 

studying the fossil record (NLR methods and physiognomy), I centred this 

thesis around two main questions: 

1. What can no-analogue pairs tell us about the past, present and future 

ecology of the southern conifers?  
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2. Is it possible to identify changes in the bioclimatic envelope of 

southern conifers using epidermal physiognomy? 

These aims have been addressed in the following chapters: 

Chapter 2 – HYPEROVERLAP: detecting biological overlap in n-

dimensional space 

In this chapter I present HYPEROVERLAP, a novel application of support vector 

machines to detect overlap between point clouds in multi-dimensional space 

(e.g. climate space). I demonstrate the utility of this method compared to 

HYPERVOLUME, using global conifer occurrence records. This tool can 

therefore be used to detect and investigate no-analogue pairs in the fossil 

record. This chapter has been published (Brown et al., 2020) and the 

package is available on CRAN (https://cran.r-

project.org/web/packages/hyperoverlap/index.html).  

Chapter 3 – No-analogue associations in the fossil record of southern 

conifers reveal conservatism in precipitation, but not temperature axes 

In this chapter, I use HYPEROVERLAP to analyse the Cenozoic fossil record of 

southern conifers, to identify and examine no-analogue fossil associations. 

Further to this, I categorise each no analogue pair in terms of temperature 

and precipitation to determine which aspects of the climatic niche have been 

conserved, and which may be more labile. This chapter is published (Brown 

et al. 2021).  

Chapter 4 – No cell is an island: improving characterisation of 

epidermal cells by considering neighbours 

https://cran.r-project.org/web/packages/hyperoverlap/index.html
https://cran.r-project.org/web/packages/hyperoverlap/index.html
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In Chapter 4, I present EPIDERMALMORPH, an R package that automates trait 

measurements from images of epidermal cells. This tool includes several 

new cell shape descriptors and is the first software to automate 

measurement of cell arrangement. EPIDERMALMORPH can be used to 

undertake broad-scale studies of epidermal traits in order to identify 

palaeoclimatic proxies. This package is available on GitHub 

(https://github.com/matildabrown/epidermalmorph).  

Chapter 5 – The palaeoecological value of epidermal characters in the 

Podocarpaceae 

In this chapter, I use EPIDERMALMORPH to examine the epidermal morphology 

of Podocarpaceae. I compare the epidermal traits from greenhouse plants to 

look for climatic adaptation that could be used to identify adapted ecotypes or 

for palaeoclimatic estimation.  

Chapter 6 – General Discussion 

In the final chapter, I synthesise the key findings of my thesis and discuss the 

potential for and limitations of using machine learning in palaeobiological 

studies.  

Preface 

This PhD thesis is composed of two published papers in peer-reviewed 

international journals (Chapters 2 and 3), and two chapters that are formatted 

as papers (Chapters 4 and 5). To enhance the structure of the thesis, I have 

removed the author addresses, keywords and acknowledgements from each, 

but have retained the reference lists.   

https://github.com/matildabrown/epidermalmorph
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Chapter 2 : HYPEROVERLAP: detecting biological 
overlap in n-dimensional space 

This chapter has been published in Methods in Ecology and Evolution.  

Brown, M.J.M., Holland, B.R., Jordan, G.J. (2020). HYPEROVERLAP: Detecting 

biological overlap in n-dimensional space. Methods in Ecology and 

Evolution.; 11: 513– 523.  https://doi.org/10.1111/2041-210X.13363 

 

Introduction 

Many ecological and evolutionary questions revolve around the study of 

overlap: Do two species (or any other entity, Table 2.1) overlap in terms of 

climatic requirements? How have particular entities diverged (or converged) 

over evolutionary time? Under what conditions could two entities coexist? 

These questions of biological overlap are central to a broad range of studies 

including taxonomy (Rissler & Apodaca, 2007), investigating broad-scale 

evolution of climatic envelopes (Donoghue & Edwards, 2014), niche 

partitioning (Peterson et al., 2013), predicting the spread of invasive species 

(Guisan et al., 2014) and palaeoclimatic estimation (Mosbrugger & Utescher, 

1997). Many of these studies have been made possible because of the 

relatively recent development of large online databases such as the Global 

Biodiversity Information Facility (GBIF), the Plant Trait Database (TRY; 

Kattge et al. 2020) and WorldClim (Fick & Hijmans, 2017), which make large 

amounts of biological data publicly available.  

  

https://doi.org/10.1111/2041-210X.13363
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Table 2.1. Key terms in the hyperoverlap framework 

decision boundary The hypersurface that best separates the 
data of a pair of entities in n-dimensional 
space. May be linear or non-linear.  

entity Any group of individuals to be compared, as 
per Broennimann et al. (2012). Not limited to 
species; other examples may be genera, 
families, native or invasive populations or any 
other statistical population. 

explicit hypervolume 
method/model 

Any method or model which explicitly 
describes the geometry of the hypervolume. 
Examples include convex hulls (Habel et al. 
2015), dynamic range boxes (Schreyer et al. 
2015) and the HYPERVOLUME package 
(Blonder et al., 2014; Blonder et al., 2018). 

hyperplane An n-1-dimensional subspace of an n-
dimensional space.  

hypervolume A contiguous n-dimensional region in n-
dimensional space.  

kernel A function that transforms the original, n-
dimensional data into higher dimensional 
space in such a way that a hyperplane can 
be fitted to the data (see Scholkopf & Smola, 
2002). 

nested hypervolumes A qualitative relationship between two 
hypervolumes where one entity occurs 
entirely within the region of space occupied 
by the other entity.  

overlap The observed intersection in n-dimensional 
space of the hypervolumes occupied by two 
entities, where the dimensions represent 
biological variables. 

single-entity method An approach to overlap detection which 
constructs individual models for each entity, 
then measures overlap of these models. 

support vector machine 
(SVM) 

A machine learning classifier that finds the 
maximal-margin separating hyperplane within 
classes (see Scholkopf & Smola, 2002) 
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We can use hypervolume concepts to analyse patterns of overlap between 

sets of point data in multidimensional space (e.g. Blonder et al, 2018). 

Current hypervolume approaches first map each observation in an n-

dimensional space, where the dimensions are the chosen variables. These 

approaches then create a multidimensional object (a “hypervolume”) that 

encloses the observations, often allowing for error. The hypervolume is then 

assumed to represent the set of phenotypes or environments occupied by the 

entity. Hypervolume concepts were first used to describe the ecological niche 

(see Holt, 2009) but they are broadly applicable to any multidimensional 

space and have been utilised in several other fields (e.g. morphometry, 

Sidlauskas, 2008; functional traits, Díaz et al., 2016). However, such 

hypervolume-type studies typically seek to predict the distributions of entities, 

and require a priori assumptions about the distribution or shape of the 

hypervolume, so methods developed for this purpose may not be suited to 

answer questions which require qualitative inference of overlap.  

Many hypervolume-based algorithms in ecology model the occupied region 

of a single entity – overlap detection is a by-product of this application. In this 

paper, we use the term ‘single-entity method’ to refer to any which constructs 

individual models for each entity and then compares them to analyse overlap. 

Joint species models (e.g. Pollock et al., 2014; Ovaskainen et al., 2016) are 

an emerging tool to incorporate biotic interactions into niche models but 

require absence data as well as presence data so they are not considered 

further here.  

In this paper, we discuss the limitations of detecting biological overlap using 

single-entity methods and argue that all single-entity solutions to this problem 

share similar theoretical problems.  We present the ‘hyperoverlap’ framework 

– a novel application of a machine learning classifier to detect overlap 

between point data sets sampled from hypervolumes in n-dimensional space. 

We also present an R package that implements this analytical framework – 

HYPEROVERLAP (see https://github.com/matildabrown/hyperoverlap). To 

highlight the conceptual novelty of our approach, we compare the 

performance of HYPEROVERLAP with the most comparable single-entity 

https://github.com/matildabrown/hyperoverlap
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approach: Blonder’s ‘HYPERVOLUME’ algorithms (hereafter referred to as 

HYPERVOLUME to distinguish the R package from more general uses of the 

term hypervolume). We analyse a real-world example (the ecological ranges 

of genera of conifers) to demonstrate the advantages of our method and 

discuss the caveats that should be considered when using the hyperoverlap 

framework.   

Current approaches 

The geometry of the hypervolume may be measured in several ways, 

depending on a priori expectations about the shape of the hypervolume. A 

plethora of increasingly sophisticated algorithms have been developed to 

model this hypervolume, either directly or indirectly, and measure overlap 

between the estimated hypervolumes occupied by two entities. Although 

earlier approaches were computationally and/or conceptually limited to low-

dimensional analyses (e.g. Broennimann et al., 2012), several recent 

methods allow direct analysis in n-dimensional space.  

Machine learning methods are used extensively to analyse landscape-scale, 

multidimensional data. In explicit hypervolume models, machine learning 

classifiers are used to predict the habitat suitability of each pixel in a 

landscape (e.g. MaxEnt; Phillips et al., 2006); to classify points in ecological 

space as ‘in’ or ‘out’ of the modelled niche (e.g. 

‘hypervolume_exclusion_test’; Blonder et al., 2018); or to define the 

boundary of the niche in n-dimensional space (e.g. ‘hypervolume_svm’; 

Blonder et al., 2018). Once described by an appropriate model, two 

hypervolumes may be compared and the volumes of the overlapping and 

unique regions can be measured (see ‘hypervolume_set’, 

‘hypervolume_overlap_statistics’ functions; Blonder et al., 2018). 

Current methods of describing hypervolumes vary in the geometric model 

used. The simplest of these methods is the n-dimensional convex hull, 

implemented in the GEOMETRY R package (R Core Team, 2014; Habel et al. 

2015). However, many biological hypervolumes are not convex. Similarly, the 

hypervolumes simulated by NICHEA software (Qiao et al., 2016) are 
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constrained to ellipsoids, and so are not broadly applicable to the non-convex 

or irregular data common encountered in ecological problems. Dynamic 

range boxes (DYNRB PACKAGE; Schreyer et al. 2015) have the advantage that 

they do not assume normally or elliptically distributed data, but the authors 

acknowledge that correlated variables must be removed during pre-

processing (Junker et al. 2016). Because many biological variables are 

strongly correlated, this method is limited in the variables that can be 

analysed. Blonder’s HYPERVOLUME package (Blonder et al., 2014; Blonder et 

al., 2018) includes a range of functions for hypervolume modelling and 

comparison. In both HYPERVOLUME AND HYPEROVERLAP the shape of the 

hypervolume is not defined by a priori expectations, so we have used 

HYPERVOLUME as a standard to evaluate the performance of HYPEROVERLAP. 

Additionally, these methods use the same machine learning classifier (SVM), 

so conflicting results will be driven by conceptual rather than algorithmic 

differences.  

Weaknesses of using single-entity methods for detecting 
overlap in multidimensional space 

Reliable results from single-entity methods depend on meeting several 

assumptions, many of which are unlikely to hold for landscape-scale datasets 

(Jarnevich et al., 2015). The most commonly violated of these assumptions is 

that the records are an unbiased sample of the biological range. Satisfying 

this assumption requires even sampling from the entire geographic and 

ecological and/or phenotypic range of an entity. For almost all entities in 

GBIF, occurrence sampling is substantially biased in geographic space 

(Boakes et al., 2010; Beck et al., 2014), with strong biases towards roads 

and urbanised areas, and especially strong biases towards rare species 

(Stolar and Nielsen, 2015). 

Thus, real-world entities are often represented by sampled data that are 

irregular, holey, discontinuous, or include outliers (Blonder, 2016). Outliers 

are often treated as noise by modelling algorithms – which are designed to 

filter out noisy data – but sampling effort, habitat fragmentation, and the 



24 

 

geographical distribution of suitable habitat can each cause real occurrence 

records to appear as outliers. Highly restricted, often endangered entities 

with geographic outliers are often high priorities for conservation 

management but are also most likely to be misrepresented by these models. 

Adjusting the model-fitting parameters to ensure that every occurrence 

record is included in the model predictions (i.e. a 0% omission threshold) can 

result in severe extrapolation. In species distribution modelling, this means 

that conditions well outside the observed hypervolume are predicted to be 

suitable (Escobar et al., 2018). This means that the choice of omission 

threshold may falsely inflate or decrease observations of overlap between 

entities.  

These issues are unavoidable when attempting to resolve the complex 

problem of accurately modelling the hypervolume from sampled point data, 

and there is no universal best approach (Qiao et al., 2015). However, we 

suggest that the detection and description of the observed overlap between 

two hypervolumes can be achieved by comparing the point data for entities 

directly and is thus a simpler task than explicitly modelling the hypervolume.  

Hyperoverlap conceptual framework 

We propose a qualitative method for detecting multidimensional overlap. 

There are three possible qualitative relationships between points sampled 

from two hypervolumes: nested, overlapping, or non-overlapping (Figure 2.1). 

If the observations from each hypervolume can be perfectly separated by a 

decision boundary (Table 2.1), we cannot identify a shared region and the 

entities do not overlap. If this decision boundary does not exist, the entities 

overlap (with misclassified points occupying the shared region). If we assume 

that all observations of an entity are within the hypervolume, this principle 

can be applied to samples of point data (but see Caveats and Limitations).  
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Figure 2.1 There are three possible relationships between two hypervolumes. 

Points sampled from two hypervolumes (top panels) can be used to train a 

classifier, find the optimal decision boundary (dashed line) and identify 

misclassified points (highlighted in yellow). The possible relationships are: 

the hypervolumes do not intersect (a); the hypervolumes intersect (b) or one 

hypervolume is contained within the other (c). This concept can be easily 

visualized in two or three dimensions but can be generalized to any n-

dimensional space 

 

The HYPEROVERLAP algorithm finds the optimal separating hyperplane 

between two entities using SVMs based on point data and calculates the 

number of points belonging to each entity on either side of this boundary. If 

there are no misclassified points, we infer that the hypervolumes for the 

entities do not overlap (Figure 2.1a, but see Caveats and Limitations). If at 

least one point is misclassified (Figure 2.1b), the two entities overlap. If no 

boundary can be found (Figure 2.1c), one hypervolume is ‘nested’ within the 

other (see Terminology).  
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If there is a single hyperplane (of n-1 dimensions) which perfectly separates 

the observations from each hypervolume, the entities are linearly separable 

(Figure 2.2a). For entities which cannot be separated using a linear plane but 

occupy distinct regions of space (Figure 2.2b), a kernel function (Scholkopf & 

Smola, 2002) can be used to find a curvilinear decision boundary. Polynomial 

kernel functions are preferred because other functions (e.g. sigmoidal or 

Gaussian) can create complex decision boundary shapes that are likely to 

overfit the classifier (Figure 2.2c). The order of the polynomial kernel function 

constrains the complexity of the decision boundary. Potential concerns about 

the biological meaningfulness of this boundary may be addressed by 

visualisation (functions provided in the HYPEROVERLAP package).  

 

Figure 2.2. Decision boundaries generated using different kernel functions. A 

linear kernel (a) always produces a linear decision boundary, a polynomial 

kernel (b) may produce a curvilinear decision boundary and a Gaussian 

kernel (c) can produce a complex decision boundary which does not reflect 

the underlying biology 

 

Sketch of the HYPEROVERLAP algorithm 

Before implementing The HYPEROVERLAP workflow, it is important to pre-

process data to exclude duplicate, incomplete or erroneous records, and to 

ensure that the dimensions are comparable (see Blonder, 2018). A support 

vector machine (SVM) is then trained on the data using the E1071 package 

(Meyer et al., 2018). This creates a fitted linear model that is used to predict 



27 

 

the labels of the input data. If the model correctly classifies every point (i.e. 

the entities can be separated by the linear hyperplane) the function returns 

the result (non-overlap) and the coordinates of the decision boundary. If there 

are misclassified points, SVMs are trained using polynomial kernels of 

increasing complexity, each time evaluating the number of misclassified 

points until a separating hyperplane is found. If such a hyperplane is not 

found, the result (‘overlap’) is returned.  

Finding the decision boundary for non-overlapping entities is fast (typically 

milliseconds) but can be much slower if the entities overlap. To prevent 

excessive searching, the algorithm does not attempt a non-linear kernel if the 

linear result is that the two entities are nested, or if a certain number of points 

representing significant overlap are misclassified. This parameter is user-

defined (see stoppage.threshold; package documentation).  

Machine learning classifiers are typically trained with the aim to correctly 

predict the labels of unknown data. Various caveats about relative and 

absolute sample sizes apply to SVMs when they are used to automate 

identification in this way. However, these caveats are not relevant to 

HYPEROVERLAP, which does not use SVMs in a predictive fashion. Instead, 

HYPEROVERLAP uses the SVM classifier as a descriptive tool and so overfitting 

is prevented by setting constraints on the shape of the decision boundary. 

This can be verified using visualisation of the decision boundary (in three or 

fewer dimensions) or visualisation of the data using ordination (in four or 

more dimensions) using functions in the HYPEROVERLAP R package (see 

Figure S2.1 in Supporting Information for example).  

Theoretical advantages of HYPEROVERLAP 

Dimensionality and sample size 

The hyperoverlap algorithm considers the data for two entities 

simultaneously, unlike other hypervolume methods (e.g. HYPERVOLUME, 

BLONDER ET AL., 2018; NICHEA, Qiao et al., 2016 ). It is often difficult or 

impossible to use single-entity methods to fit models to very small samples, 

and thus to investigate many relevant problems (e.g. those involving threats 
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to endangered species). This problem affects all methods which fit individual 

models to entities. However, the most relevant sample size for 

HYPEROVERLAP is total sample size for the pair of entities. As a result, this 

approach can be effective with sample sizes as small as 1 for one of the 

entities –provided that the number of observations of the other entity is at 

least moderately large (see Evaluation: Results; Case Study 2).  However, 

care should be taken when analysing two very small entities, as discussed in 

Caveats and Limitations.  

Computational effort 

Conventional measurement of overlap from single-entity models require two 

phases; initial modelling, then pairwise comparison of models. Unless the 

number of entities is very small, conventional memory constraints demand 

that these models are written to disk and re-read for comparison, separating 

these two phases. Hyperoverlap builds models using the paired data, so 

does not require this storage step. Computational effort is further reduced by 

constraints on the shape of decision boundary; the decision boundary 

produced by HYPEROVERLAP is constrained to linear and low-degree 

polynomial kernels (unlike the edges of the hypervolumes modelled using 

HYPERVOLUME).  

Evaluation 

Methods  

To evaluate the performance of HYPEROVERLAP, we compared parallel results 

between HYPEROVERLAP and HYPERVOLUME for 71 conifer genera (2485 pairs). 

Conifers are an ideal group for this because the group is diverse with regard 

to ecological and distributional range (e.g. Pinus occurs across the Northern 

Hemisphere; Wollemia is only found in one gorge near Sydney, Australia; 

Farjon & Filer, 2013) and because species of conifers have well-defined 

bioclimatic ranges (Brodribb & Hill, 1999). The data are geographic point 

records for each genus of conifer used by Larcombe et al. (2018). We 

extracted climatic data for each point record from WorldClimV2 at 30” 
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(approximately 1km2) resolution and used DISMO (Hijmans et al., 2015) to 

build the values for three variables which are known to correlate to 

physiological stresses in conifers. These variables were mean minimum 

temperature of the coldest month (mint.cm) reflecting frost tolerance (Sakai & 

Larcher, 2012); mean temperature of the warmest quarter (at.warmq) 

reflecting growing season temperature (Prentice et al., 1992); and mean 

precipitation of the driest quarter (p.dryq) reflecting drought tolerance 

(Mackey, 1994). Although HYPEROVERLAP has been developed for n-

dimensional analyses, using only three dimensions for evaluation allowed the 

results to be inspected directly, without requiring ordination. We also 

conducted analyses using two additional variables (mean precipitation of the 

warmest and wettest quarters, respectively) to assess computational 

performance in higher dimensional space. 

Precipitation records (p.dryq) were transformed to an approximately normal 

distribution by taking the fourth root and all variables were z-transformed to 

the global (-90° to 90° latitude) mean and standard deviation of each 

variable. We compared the overlap/non-overlap results, computational time 

and stability of the two methods (HYPEROVERLAP and HYPERVOLUME). To 

evaluate stability, each overlap detection function was run ten times (a larger 

number of runs was not computationally feasible). We then compiled and 

compared the results from each method. For each entity pair that gave 

conflicting results, we visually inspected the data to assess the accuracy of 

each method.  

Runtimes are given for scripts run on an Intel i7-8700k CPU. 

Results 

Overlap detection 

HYPEROVERLAP detected 1134 non-overlapping pairs of entities (of 2485 

pairs;  Figure 2.3). Of these non-overlapping pairs, 1082 (95%) could be 

separated with a linear decision boundary, and only 52 (2.1%) required a 

curvilinear hyperplane (polynomial kernel function) to identify ecological non-

overlap. The number of non-overlapping pairs identified by HYPERVOLUME 
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Figure 2.3 Pairwise comparison of climatic distributions of conifer genera 

(grouped phylogenetically) using hyperoverlap. A fully labelled version of this 

figure is available in Figure S2.2). Phylogeny from Leslie et al. (2012).  

 

 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13363#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13363#mee313363-bib-0024
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varied with run, ranging from 1076 to 1092 (see Computational Time and 

Stability). 

 

There were differences in the results given by different methods. 

HYPEROVERLAP reported 133 non-overlaps (5.5% of the 2415 pairs excluding 

Wollemia) that were classified as overlaps by HYPERVOLUME (see Case Study 

1), and 33 overlaps (1.4% of total) where HYPERVOLUME reported non-overlap 

(see Case Study 2). Visualisation confirmed the status of all the non-overlaps 

identified by HYPEROVERLAP that were reported as overlaps by HYPERVOLUME. 

There was no discernible pattern in these conflicts; they do not cluster by 

taxonomic group or sample size ( 

Figure 2.4). In addition, while HYPEROVERLAP satisfactorily created models to 

compare Wollemia with each other genus, HYPERVOLUME could not produce a 

hypervolume for this taxon because, with only two unique points in ecospace, 

it was not possible to build a model in three dimensions. Although Wollemia 

cannot be included in comparisons of stability or computation times between 

HYPERVOLUME and HYPEROVERLAP, it should be noted that the small number of 

points for this entity is not an artefact of sampling effort. These data 

represent the entire range of this genus at this spatial resolution. 
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Figure 2.4 Conflicting results between hyperoverlap and hypervolume, with 
entities ordered phylogenetically (a) and by number of unique points in 
hyperspace (b) 
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Computational time & stability 

At the default parameters (cost = 1000, kernel = ”polynomial”, kernel.degree 

= 5, stoppage.threshold = 0.4), the mean total runtime (all pairwise 

comparisons) for HYPEROVERLAP was 228 minutes (range 212-239 minutes). 

The results from HYPEROVERLAP were exceptionally stable; the results for 

identifying overlap versus non-overlap, shape, polynomial order and number 

of misclassified points were identical in all 10 runs. When the algorithm was 

constrained to linear decision boundaries, the average runtime was 85 

minutes.  

At default parameters, computation of HYPERVOLUME results took 16 minutes. 

However, these results were less stable than those produced by 

HYPEROVERLAP. Qualitative results (overlap/non-overlap) were inconsistent for 

109 pairs of entities (4.5%). Increasing the samples.per.point parameter 

by a factor of 100 reduced this instability to 38 pairs (1.6%) but increased the 

average runtime to 327 minutes.  

Preliminary tests in five-dimensional ecospace (adding mean precipitation of 

the warmest and wettest quarters) emphasised the computational advantage 

of HYPEROVERLAP in higher dimensions; the average runtime at default 

parameters was 147 minutes for HYPEROVERLAP and 855 minutes for 

HYPERVOLUME.  

Case Study 1: Dacrycarpus and Cupressus  

The comparison of Dacrycarpus (555 unique points in ecospace) and 

Cupressus (133 points) illustrates the main reason for the observed 

conflicting results between HYPEROVERLAP and HYPERVOLUME (points in 

orange and red,  Figure 2.3). HYPERVOLUME finds that these entities overlap 

(Figure 2.5b; overlap shown in green), but HYPEROVERLAP finds that the points 

of each entity occupy distinct regions of ecospace. This can be verified by 

visualisation of the decision boundary (Figure 2.5a). The region of overlap 

found by HYPERVOLUME is the result of small but non-trivial extrapolation by 
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the model-building algorithm; none of the original observations are within this 

region of apparent overlap. This extrapolation effect was observed for all 

entity pairs for which HYPEROVERLAP detected non-overlap, but HYPERVOLUME 

reported overlap (80% of total conflicts). If our goal is to predict potential 

overlap, then this extrapolation may be sensible. However, if we are aiming 

to identify regions of multidimensional space occupied by both entities, we 

suggest that the result given by HYPEROVERLAP is more accurate.   

 

 

Figure 2.5 The ecological occupation of Dacrycarpus (blue) 

and Cupressus (red). These entities can be separated by a single linear 

hyperplane using hyperoverlap (a), but hypervolume predicts a region of 

overlap, shown in green (b) 

 

Case study 2: Metasequoia  

Metasequoia (representing the single species, M. glyptostroboides) is a 

narrowly endemic genus of conifers with only three unique points in 

ecospace at our sampling resolution. Its native range is limited to a small 

region of Hubei Province, China, although fossils indicate that it was 

previously widespread (LePage et al., 2005). This entity proved the most 

problematic for HYPERVOLUME; for over 20% of pairs involving Metasequoia 

(15 pairs) the results for HYPEROVERLAP and HYPERVOLUME were in conflict.  

Although the conflicting result for Metasequoia and Cathaya is a case of false 
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separation like those discussed in Case Study 1, all the other conflicts 

represent cases in which HYPERVOLUME finds a false separation between 

Metasequoia and the other entity. In these latter cases, HYPEROVERLAP 

identified overlap, and visualisation shows that the region occupied by 

Metasequoia is deeply nested within the hypervolume occupied by the other 

entity (Figure 2.6). It is not clear what is driving this anomalous result from 

HYPERVOLUME, but large differences in sample size may contribute.  

 

 

Figure 2.6 The ecological occupation of Metasequoia and Taxus. The 

occurrences of Metasequoia (position indicated by arrows) are nested within 

the region occupied by Taxus, but the models produced by hypervolume do 

not intersect, despite obvious visual overlap. 
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Caveats and limitations 

The first obvious limitation of the hyperoverlap framework is that while it 

effectively detects overlap or non-overlap, it does not measure the amount of 

overlap. The overlapping region may be studied by visualisation or inspection 

of misclassified points, but to measure its volume or calculate a similarity 

index between the two entities would require the edges of each entity to be 

defined. This would then invoke the assumptions and challenges associated 

with single-entity models that this framework was designed to circumvent. 

However, the shared hypervolume may be modelled based on misclassified 

points using existing methods.  

There are certain theoretical situations where entities do not overlap but 

cannot be separated using the HYPEROVERLAP algorithm (see Fig. 7 for 

examples). Although some of these situations may be biologically plausible, 

we did not find evidence of any in this study. However, such cases may be 

identified by using the visualisation functions in the HYPEROVERLAP package.  

 

Figure 2.7 Two possible relationships between two entities for 
which HYPEROVERLAP would be expected to falsely detect overlap. The 
pattern shown in (a) could be caused by a combination of biological 
thresholds (e.g. enzyme thermal tolerances) and competitive exclusion. In 
(b), biological, geographic or other factors could cause the hypervolume 
geometry to be holey or otherwise very complex. In both cases, 
the HYPEROVERLAP decision boundary (shown by dotted line in (a)) cannot 
separate the two entities when constrained to a polynomial kernel. However, 
these scenarios can be resolved using visualization.  
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HYPEROVERLAP is also subject to many caveats that apply to the use of 

hypervolume concepts. Incomplete records cannot be placed in hyperspace 

so must be excluded or otherwise augmented (see Blonder 2014). Although 

SVMs handle high dimensionality well, care should be taken when comparing 

entities that are both highly restricted in multidimensional space. The extreme 

case is that if the total number of unique points for a pair of entities is lower 

than n+1, where n is the number of dimensions, the two entities can always 

be separated perfectly with a linear hyperplane. Curvilinear separation is not 

recommended for small total sample sizes.  

It should also be noted that observations represent points in time as well as 

space; the occupation of morphological or ecological space by an entity is 

dynamic and is likely to change through time – the fossil record of conifers 

shows evidence of major changes in ecological occupation during the 

Cenozoic (Macphail, 2007). A significant caveat is that hyperoverlap does not 

directly identify overlap between pairs of hypervolumes, instead it identifies 

overlap between observations sampled from those hypervolumes. Thus, 

there will be a false identification of non-overlap if there are no observations 

from the true region of intersection. Other methods deal with this issue mainly 

by padding each point, in effect extrapolating the range of each entity. 

However, this solution is problematic, as discussed above (Case Study 1). In 

any case, no approach can fully overcome poor sampling. In particular, care 

should be taken when using databased occurrence records, which are likely 

to include some erroneous observations. Visualisation of results and expert 

knowledge of the entities concerned are both vital to using HYPEROVERLAP 

and to identify errors such as those illustrated in Fig. 2.7.   

Extensions to HYPEROVERLAP  

Here, we have focused on overlap versus non-overlap, rather than exploring 

the question of nested hypervolumes, but this type of relationship can also be 

explored using the hyperoverlap framework. This has several possible 

applications in studying recent changes in hypervolumes, including 

phenological shifts and detection of ecological range expansion in invasive 
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species. Although this conceptual extension has not been tested, it is a 

promising avenue for further research and potential inclusion in future 

versions of the HYPEROVERLAP R package.  

Conclusions 

The hyperoverlap framework presented here has potential applications in 

many disciplines – although the concepts underpinning this method have 

been used widely within ecology, they are not specific to this field. 

HYPEROVERLAP can be used to investigate ecological and evolutionary 

partitioning, palaeoclimatic conditions, taxonomy and historical changes in 

ecology or morphology. 

For many biological questions, it is not necessary to model the underlying 

hypervolume to evaluate overlap. By comparing the space occupied by 

entities without explicitly describing the geometry of the underlying 

hypervolumes, fewer assumptions are required to be met and results can be 

more accurate and reliable than existing methods, as demonstrated clearly 

for our real-world example (conifers). The approach is particularly effective 

when the set of entities to be compared is very large and includes entities 

with a small number of occurrences relative to the dimensionality of the 

analysis (e.g. species with highly restricted distributions), or when there are 

potential complex interactions between variables. The HYPEROVERLAP R 

package provides a user-friendly, intuitive machine-learning method to detect 

overlap in n-dimensional space, and is an additional tool to use in analyses of 

many biological datasets.  
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Chapter 3 : No-analogue pairs in the fossil 
record of southern conifers reveal 
conservatism in precipitation, but not 
temperature axes 

 

This chapter has been published in Global Ecology and Biogeography.  

Brown, M.J.M., Holland, B.R., Jordan, G.J. (2021). No-analogue pairs in the 

fossil record of southern conifers reveal conservatism in precipitation, but not 

temperature axes. Global Ecology and Biogeography (in press).  

 

Introduction 

No-analogue assemblages – fossil assemblages in which the nearest living 

relatives of some taxa occupy dissimilar climates to the nearest living 

relatives of other taxa from the same palaeocommunity – challenge the 

assumption that fossil species inhabited similar climatic conditions to their 

modern relatives. Such assemblages (also termed nonanalogue 

communities, disharmonious assemblages, mixed floras, intermingled, 

mosaic, anomalous assemblages and extraprovincial biotas) have been 

identified in the fossil records of vascular plants (Jordan, 1997; Macphail, 

2007; Williams & Jackson, 2007), marine and terrestrial invertebrates 

(Coope, 2000; Preece & Bridgland, 2012), birds (Brasso & Emslie, 2006), 

mammals (Graham et al., 1996). Although palaeoclimatic estimations often 

allow for such assemblages by excluding certain fossil taxa from analyses 

(Mosbrugger & Utescher, 1997), no-analogue assemblages can provide 

valuable insights into past changes in the climatic ranges of taxa. Previous 

studies of no-analogue assemblages have examined relatively recent fossil 

biota, with a focus on rapid community changes (e.g. in response to 

Pleistocene glaciation; Jackson & Williams 2004). To the best of the authors’ 
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knowledge, no ‘true’ no-analogue (i.e., not due to transport or other 

taphonomic mixing) assemblages from earlier than the Pleistocene have 

been quantitatively analysed. However, if the fossils can be attributed to 

living groups or species, it is possible to study no-analogue associations from 

much further back in time.  

One approach to understanding no-analogue assemblages is to partition 

them into pairs of co-occurring fossils. We can then identify no-analogue 

pairs as those pairs of fossil taxa for which their extant counterparts have 

non-overlapping bioclimatic envelopes. We can assemble these pairwise 

data to compare fossil assemblages in detail and consider trends in time and 

space. The results can then be interpreted based on an understanding of 

how no-analogue pairs form. 

Some no-analogue pairs may arise through misidentification of fossils, 

transport of the fossils from areas with different climates or inaccurate 

modelling of the bioclimatic envelopes of the fossils’ extant relatives (see 

Jordan, 1997; Stewart, 2009 for discussion). However, the most likely 

explanation for many no-analogue pairs is that the bioclimatic envelope 

occupied by the fossilised taxon was not the same as that occupied by its 

nearest living relatives.   

For two co-occurring fossil taxa to become a no-analogue pair, there must be 

a loss of part of the bioclimatic envelope of one or both members of the pair. 

This restriction can occur via several mechanisms (Figure 3.1). There could 

be environmental change leading to loss of available bioclimatic space 

(Figure 3.1b-c); this represents a change in the existing niche sensu 

Peterson et al. (2011). The bioclimatic envelope can also be restricted by 

non-climatic variables (e.g. biotic or anthropogenic factors; Figure 3.1e), 

these would typically involve changes in the realised niche (sensu Peterson 

et al. 2011), or extinction of ecotypes (including ecologically distinct taxa, 

Figure 3.1f); this can represent a change in the fundamental or scenopoetic 

niche (sensu Peterson et al., 2011). Adaptive evolution can create no-

analogue pairs (Figure 3.1g), but only if it involves a simultaneous loss of part 
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of the bioclimatic envelope (e.g. if the evolution involves an adaptive trade-

off). One important consideration is that the current bioclimatic envelope may 

be affected by earlier range restrictions (Figure 3.1d) –habitat suitable for 

both taxa may be currently available, but either or both taxa may be in 

climatic disequilibrium (Svenning & Skov, 2007), potentially obscuring the 

cause of no-analogue pairs. Importantly, these scenarios are not mutually 

exclusive, which can make it even more difficult to identify the mechanism 

causing a no-analogue pair to arise. 

The ‘southern conifers’ – Podocarpaceae, Araucariaceae, Callitroideae 

(Cupressaceae), Athrotaxis (Cupressaceae), and Austrotaxus (Taxaceae) – 

provide a good group for the study of no-analogue associations. This mostly 

southern hemisphere group has, with the exception of Austrotaxus, an 

exceptional Cenozoic fossil record (Hill & Brodribb, 1999). In a spectacular 

display of morphological stasis for 30 million years, the Eocene species 

Pherosphaera microfolia is almost indistinguishable from the extant P. 

hookeriana (Wells & Hill, 1989). There is significant evidence that conifer 

distributions are physiologically constrained by climatic factors (Enright & Hill, 

1995; Brodribb & Hill, 1999; Brodribb et al., 2014) and it is widely assumed 

that conifers show high levels of evolutionary niche conservatism, as has 

been demonstrated for southern hemisphere plants (Crisp et al., 2009). This 

assumption underpins the widespread use of taxonomic information in 

palaeoclimatic estimations (Jordan 2011). However, variation among closely 

related species in both climatic range and in physiology (see Larter et al., 

2017) shows that many taxa have changed their bioclimatic ranges.  

Furthermore, the presence of no-analogue assemblages in the fossil record 

as recently as the Pleistocene is clear evidence that some of these changes 

are both large, and relatively recent (Jordan 1997).  
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Figure 3.1 No-analogue pair formation via changes in bioclimatic envelope. The 
bioclimatic envelopes of two taxa (red, blue) are depicted here in two-dimensional 
climate space. The occupied bioclimatic envelope of a taxon (shaded red and blue) 
is limited by the set of climatic conditions that are favourable for that taxon (the 
potential bioclimatic envelope; red and blue outlines), as well as the availability of  
climate space (black outline). If two taxa co-occurred in the past, there must have 
been overlap between their occupied bioclimatic envelopes (a). If they no longer 
overlap, there must have been a change in either one or both of these bioclimatic 
envelopes. This could take place via changes in the available environment (b) that 
may also have a legacy effect leading to climatic disequilibrium (c, d), loss of the 
bioclimatic envelope via other biotic or abiotic factors (e, f), or even adaptive 
evolution (g), as long as there is a concomitant loss of part of the bioclimatic range. 
These processes are not mutually exclusive, and although we have only illustrated 
climatic disequilibrium with regard to climatic availability, other processes shown 
here can also have similar legacy effects.  
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Here, we use a recently developed method, HYPEROVERLAP (Brown et al., 

2020) to identify no-analogue pairs in the southern conifer fossil record, then 

consider the roles of temperature and precipitation in the incidence of these 

associations. We examined: (1) whether no-analogue associations are 

associated with a particular time period; (2) the relative importance of 

temperature and precipitation in these shifts by identifying no-analogue pairs 

that can be explained by changes in either temperature or precipitation 

requirements allowing us to estimate the specific climatic drivers of Cenozoic 

conifer extinctions. Given the well-documented importance of drought 

tolerance for southern conifer distributions (Brodribb et al., 2014; Larter et al., 

2017), we hypothesized that the fossil record will reflect greater conservatism 

in precipitation dimensions than in thermal dimensions – i.e., we expect that 

most of the implied changes in bioclimatic envelopes between fossil and 

extant conifers will be in thermal dimensions, rather than those related to 

rainfall.   

Methods 

Fossil assemblages and taxa 

We used species lists from 43 Cenozoic fossil sites from the southern 

hemisphere in which at least three coniferous taxa reliably attributed to extant 

genera have been identified (Figure 3.2). For each site, we assembled 

complete lists of seed plant fossils from these sites from the literature (see 

Supporting Information Table S3.1). The nearest living relative of each 

identified fossil was defined as the smallest extant clade to which the fossil 

can be attributed (for stem lineages, the nearest living relative was assigned 

as the nearest crown group). For some fossils, this was a single species (e.g. 

Microcachrys tetragona), for others it was necessary to use a genus or family 

as the nearest living relative (e.g. the extinct genus Willungia could only be 

attributed to Podocarpaceae; Hill & Pole, 1992). Where there was uncertainty 

in the extant affinity, we took a conservative approach (with the fossil taxon 

either being excluded or attributed to a higher taxonomic level, see Table 

S3.1). We included only fossils that were likely to have been derived from 
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plants close to the fossil site: macrofossils, highly abundant wind-dispersed 

pollen, and moderately abundant animal-dispersed pollen. Fossils were 

excluded if the authors indicated that were likely to have been reworked 

(deposited, unearthed and redeposited in younger sediments).  

 

 

Figure 3.2 Sites analysed in this study. Site details, including specific 

layers/core depths and sources, are available in Supplementary Information 

(Table S3.1). 
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Climatic occurrence records 

For each nearest living relative, we collated occurrence records for that taxon 

from the dataset used in in Larcombe et al. (2018) and Brown et al. (2020). 

These data represent individual species records and have been manually 

cleaned thoroughly to exclude cultivated, naturalised and duplicate records, 

as well as including latitudes and longitudes for sites supported by precise 

location descriptions as determined from Google Earth (see Larcombe et al., 

2018 for details). Cleaning involved careful assessment of all observations 

near the periphery of the apparent climatic range of each taxon. Potential 

outlier locations were also visually assessed using Google Earth to ensure 

that the habitat at that site was consistent with the known habitat for the 

species.  Unverified climatic outliers (e.g. where the coordinates listed on a 

vouchered specimen were not supported by a location description) were 

excluded. Occurrences that were deleted during this process were carefully 

compared to documented distributions of species (from Farjon & Filer, 2013) 

to avoid eliminating true records.  

For each occurrence of each nearest living relative, we extracted five 

contemporary environmental variables that are linked to physiological 

stresses in plants (Table 3.1) from WorldClim V2 (Fick & Hijmans, 2017) at a 

resolution of 30 seconds (approximately 1km2). Precipitation variables were 

fourth-root transformed to an approximately normal distribution to account for 

the non-linear physiological responses to precipitation (as per Blackman et 

al., 2012). The environmental variables (both temperature and transformed-

precipitation) were then normalised to the global means and standard 

deviations to ensure that axes were comparable (as per Blonder, 2018).  

Sampling effort for different taxa was reasonably even relative to area of 

extent of each taxon. Occurrence records for each taxon were downsampled 

to exclude duplicate points in climate space (approximately equivalent to a 

30” grid in geographic space). The number of unique climatic records varied 

markedly from 23 (Fitzroya) to 10778 (Cupressaceae) points per taxon. 

These differences are largely explained by differences in geographic extent 
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of the taxa, although some differences appear to be explained by high 

original sampling densities in some regions (e.g. Australia and New Zealand, 

compared to New Guinea, south-east Asia and South America). 

Table 3.1 Climatic variables used in analyses of the nearest living relatives of 

fossils 

Abbreviation Variable Biological importance 

mint.cm 
Mean minimum 
temperature of the 
coldest month 

Freezing tolerance  
(Sakai & Larcher, 2012) 

at.warmq Mean temperature of 
the warmest quarter 

Growing season heat availability  
(Prentice et al., 1992) 

p.drym Mean precipitation of 
the driest month 

Drought tolerance  
(Mackey, 1994) 

p.warmq Mean precipitation of 
the warmest quarter 

Growing season water 
availability;  
thermal-seasonal sites  
(Prober et al., 2012) 

p.wetq Mean precipitation of 
the wettest quarter 

Growing season water 
availability;  
rainfall-seasonal sites  
(Prober et al., 2012) 

 

No-analogue pair detection 

No-analogue pairs were identified using the HYPEROVERLAP package (Brown 

et al., 2020) in R (R Core Team, 2014), using default parameters. This 

method uses a machine learning classifier to attempt to find a dividing line (or 

plane/hyperplane in three or more dimensions) which separates two groups 

of points. Here, we have constrained the shape of the boundary to a third-

order polynomial kernel as recommended by Brown et al. (2020); see this 

work for a discussion of kernel choice and boundary shape. Because this 

method does not create a model of the environmental distribution of each 

taxon, it is relatively insensitive to sampling effort and sample size. It is 

sensitive to sampling near the periphery of the bioclimatic envelope of the 

taxa, but the distribution data used here were sampled to minimise errors 

from such sampling effects. Overall, this approach has been shown to be 

more accurate than niche-modelling methods for detecting bioclimatic 
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overlap (and therefore identifying no-analogue pairs), particularly for conifers, 

which are climatically and geographically well-sampled and have unequally 

sized geographic distributions (see Brown et al., 2020).  

 

Climatic factors relating to no-analogue pairs 

We performed detection of no-analogue pairs in the five-dimensional climate 

space defined by the variables in Table 3.1. No-analogue pairs were then re-

analysed under two additional scenarios. 

Scenario 1: Removal of thermal dimensions (including rainfall seasonality, 

which is inherently linked to temperature). If the pair is still a no-analogue pair 

in the remaining precipitation dimensions (p.drym and p.wetq), at least one of 

the fossil entities in the pair occupied a different precipitation niche to its 

extant counterpart.  

Scenario 2: Removal of precipitation dimensions. If the pair is still a no-

analogue pair in the remaining thermal dimensions (mint.cm, at.warmq), at 

least one of the fossil entities in the pair occupied a different thermal niche to 

its extant counterpart.  

Each no-analogue pair was then categorised as one of four types, depending 

on its persistence under these two scenarios (Figure 3.3). We can view each 

of these scenarios through the lens of ecological conservatism; if the thermal 

niche is highly conserved we would expect to see changes in the occupied 

precipitation niche (type ‘P’), and vice versa.  
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Figure 3.3 The four types of no-analogue pairs depending on whether or not the no-
analogue nature of the pair persisted when certain subsets of environmental 
dimensions were analysed. The text in each box describes the inferences we can 
draw from each type of no-analogue association in terms of the difference in 
bioclimatic envelope between the fossil taxon and its nearest living relative (NLR). In 
this conceptual figure, temperature and precipitation are each represented in one 
dimension, but in our analyses we used two temperature dimensions (mint.cm, 
at.warmq)  and two precipitation dimensions (p.drym, p.wetq). 
 

Temporal analyses 

To account for differences in assemblage diversity and non-independence of 

pairs we calculated no-analogue scores for each site as the square root of 

the proportion of no-analogue pairs relative to the total number of pairs 

(including the pairs of entities with themselves). The square root converts the 

score to be independent of sample size (i.e. number of species per sample) 

because the number of pairs increases as the square of the number of 

species. Generalised additive models (GAMs) were fitted to the median age 

for each assemblage and the no-analogue score using the gam function in 

the mgcv package (Wood, 2011). Because extant communities are 

assemblages without no-analogue pairs, we added a number of modern 
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pseudo-assemblages (points of age 0 and no-analogue score of 0) to the 

GAM-fitting dataset for each region for which we fitted GAMs (Australia, New 

Zealand, South America). We performed this analysis several times, using 

different numbers of points to anchor the GAM. We also fitted GAMS that 

were either unweighted or weighted by the total number of pairs in each 

assemblage (to reduce the leverage of depauperate assemblages). To 

account for uncertainty in fossil ages, we fitted 9999 GAMs with a uniformly 

randomly sampled age from the age range of the assemblages. To test for 

major changes in slope in the GAM we also fitted a segmented regression 

using the ‘segmented’ package (Muggeo, 2008) to obtain approximate p-

values for the approximately linear parts of the GAMs.  

Results 

We identified 240 no-analogue pairs (pairs of fossils that have nearest living 

relatives with non-overlapping climatic ranges) from 2407 co-occurring pairs 

of fossils (Supporting Information Table S3.2). These no-analogue 

associations were represented by 73 unique no-analogue pairs involving 27 

modern conifer taxa (from 41; Supporting Information Figure S3.1).  

Fourteen assemblages did not contain any no-analogue pairs (Table S3.2). 

All these sites are either recent (<1Ma), depauperate (<6 fossil conifer taxa), 

pollen-only assemblages, or some combination of the above. Four 

assemblages contained 15 or more no-analogue pairs: Monpeelyata, 

Pioneer, Little Rapid River and Cethana. These are all Oligocene or Early 

Miocene Tasmanian assemblages with notably high conifer diversity (12-16 

fossil taxa; Fig.S3.2).  

The no-analogue score for each assemblage (reflecting the proportion of no-

analogue pairs, corrected for assemblage size) increases with assemblage 

age (Figure 3.4). There was no trend in no-analogue scores from the 

beginning of the Paleocene (65 million years ago) to the middle Oligocene 

(~28Ma), but no-analogue scores decreased from that time onwards (Fig 4). 

This was the case for all GAMs, at all numbers of anchoring points, both 

weighted and unweighted (Fig S3.3). This was also confirmed by the results 



56 

 

of the segmented regression (Fig S3.4); all regions showed a significant 

relationship between no-analogue score and age in assemblages from the 

Late Oligocene onwards (respective p-values of 1.7 × 10-3, 1.54 × 10-6, and 2 

× 10-16 for each region). Uncertainty in the ages of the fossils had no effect; 

GAMs fitted to randomly sampled ages were not significantly different to 

those fitted to the median ages. Australian assemblages tended to contain 

more no-analogue pairs than South American assemblages (Figure 3.4, 

S3.2-3.4). 

  

Figure 3.4 Generalised additive models fitted to the no-analogue score and median 
age of each fossil site, plus or minus standard error (shaded). The grey dotted line is 
at 28Ma. This is the model fitted using 20 anchor points at 0Ma, with a gamma value 
of 3 and points weighted by the number of pairs in each assemblage. 
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Climatic types of no-analogue pairs 

Most (75.4%) no-analogue pairs can be explained by a change in 

temperature without a change in precipitation (types ‘T’, ‘T_or_P’;Table 3.2). 

Only 40.4% of no-analogue pairs can be explained by a change in 

precipitation without a change in temperature (types ‘P’, ‘T_or_P’; Table 3.2). 

A minority (20.4%) of no-analogue pairs require changes in both temperature 

and precipitation dimensions (type ‘T+P’; Table 3.2). Thus, most no-analogue 

pairs are associated with a past change in the thermal distribution of one or 

both taxa in the pair. In 50% of no-analogue assemblages (17 sites; Figure 

3.5), changes in thermal distribution could explain all observed no-analogue 

pairs (i.e. the no-analogue pairs were all of types “T” or “T_or_P”) and the 

proportion of temperature no-analogue pairs was higher than precipitation 

no-analogue pairs in all sites. No assemblages contained only pairs of type 

“P” – a change in precipitation was always associated with an accompanying 

change in temperature. There was no clear temporal or geographic pattern in 

no-analogue pairs that could be explained by temperature, when expressed 

as proportion of all no-analogue pairs (Figure 3.5). 

Table 3.2 No-analogue pair type frequency (see Figure 3.5). 
No-analogue pair type count percentage 

Temperature + precipitation (T+P) 49 20.4% 

Temperature (T) 94 39.2% 

Precipitation (P) 10 4.2% 

Temperature or precipitation 

(T_or_P) 

87 36.2% 

Total 240  
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Figure 3.5 Climatic aspects of no-analogue pairs. Each fossil site is represented by 
a vertical bar or point. Points denote assemblages with no no-analogue pairs. The 
coloured components of each bar show the proportion of no-analogue pairs of each 
type (from Fig. 3). Red shows the proportion of thermal no-analogue pairs (T); blue 
shows the proportion of precipitation no-analogue pairs (P), black shows the 
proportion of thermal and precipitation no-analogue pairs (T+P), and grey shows no-
analogue pairs that are ambiguous (T_or_P).  If the bar (red or grey) reaches 1, all 
no-analogue pairs can be explained by a change in temperature (i.e. without 
invoking a change in precipitation). If the bar (blue or grey) reaches -1, all no-
analogue pairs in that assemblage can be explained by change in precipitation (i.e. 
without invoking a change in temperature). 
 

Discussion 

Our results suggest that changes in the bioclimatic envelope of southern 

conifers have been largely thermal, rather than hydrological, and that this 

pattern does not vary significantly with assemblage age. This inference 

assumes that the patterns in no-analogue pairs observed here are due to 

past changes in bioclimatic envelopes (Figure 3.1). The main alternative 

causes – errors in reconstructing extant bioclimatic range and taphonomic 

biases – should apply more-or-less equally to all fossils, and therefore should 

not have created the systematic change through time observed here (Figure 

3.4).  

The overwhelming predominance of no-analogue pairs in which the non-

overlap is in thermal dimensions (“T” pairs; Figure 3.5) implies that the 

changes in bioclimatic ranges have mostly been in temperature. We argue 

that this is the result of much greater long-term stability in the hydro-climatic 

envelope than the thermal envelope in southern conifers. It is worth noting 
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that the physiological impacts of temperature and precipitation are interlinked 

(Jones, 2014) – this may be contributing to the reasonable proportion 

(20.4%) of no-analogue pairs that are both thermal and hydrological (T+P). 

We further argue that the temporal correspondence between no-analogue 

pairs (climatically incongruous pairs of fossils) and broad-scale climatic 

changes in both temperature and rainfall (Westerhold et al. 2021) suggests 

that the no-analogue associations in southern conifers are linked (either 

directly or indirectly) to climate change in the last 30 million years. These 

links may be direct, through the reduction in fundamental niche through loss 

of warm- or cold-adapted ecotypes or species, consistent severe range 

contraction and extinction of the relevant taxa through this time. They may 

also be indirect, through reduction in realised niche via competition with 

angiosperms (Condamine et al., 2020), including competition mediated by 

fire (Belcher et al., 2021).  

Regional and temporal patterns  

Australian assemblages tend to contain more no-analogue pairs than New 

Zealand and South America, and a high proportion of all the no-analogue 

pairs are due to cool-climate palaeoendemic genera now restricted to 

southern Australia (Microcachrys, Lagarostrobos, Athrotaxis, Diselma, 

Pherosphaera; Jordan et al., 2016) co-occurring with now tropical taxa. 

However, this does not mean that the processes considered here are due to 

idiosyncrasies of Australia’s history. No-analogue associations are common 

in assemblages outside Australia (Figure 3.4, S2) and include multiple taxa 

that are centred outside Australia (Fig S1). In particular, taxa now restricted 

to temperate regions outside Australia (e.g. Lepidothamnus from New 

Zealand and South America, Austrocedrus from South America) also co-

occur with tropical taxa. Overall, no-analogue associations are not restricted 

to any one region, habitat or taxon; this argues that the no-analogue pairs in 

southern conifers are better explained by hemisphere-scale processes than 

by local idiosyncrasies of history (e.g. local anthropogenic extinctions). It is 

worth noting that similar co-occurrences in the fossil record of now temperate 
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and tropical angiosperm taxa are well known from all the southern continents 

(Hill, 2004).  

It is possible that lower taxonomic resolution in identifying the living relatives 

of older fossils has artefactually suppressed the true numbers of no-analogue 

pairs in older assemblages. Older fossils are less likely to be attributable to 

an extant genus or species and thus, no-analogue pairs are less likely to be 

detected.  However, it is clear that no-analogue pairs have decreased in at 

least the last 20-30Ma (Figure 3.4); there are assemblages with no-analogue 

pairs in all regions at 20Ma, but none in assemblages younger than 1Ma (Fig. 

S2). This is consistent with the theory that conifers suffered extinctions during 

the cooling and drying of the Oligocene and Miocene (Hill 2004; Brodribb & 

Hill, 2004). The success of the drought-adapted Cupressaceae (e.g. Callitris) 

compared to their mesic relatives (e.g. Athrotaxis) also suggests that 

precipitation has been a dominant selection pressure acting on southern 

conifers (Pitterman et al., 2012; Larter et al., 2017). This contrasts with the 

northern conifers, which inhabit environments that extend into much more 

extreme thermal environments than their southern counterparts. Thus, a 

comparable study of northern conifer no-analogue fossils may reveal 

strikingly different climatic patterns to those found in this study, as predicted 

by Leslie et al., (2012).  

Limits on southern conifer distributions 

Four climate-related factors provide major limits on the distributions of most 

southern hemisphere conifer species– aridity and the need for tolerance of 

water deficit; freezing conditions and the need for freezing tolerance; climatic 

equability and the capacity to compete in tropical forests associated with 

warm, wet climates; and finally the frequency and intensity of fire (Brodribb & 

Hill, 2004; Bannister & Lord, 2006; Pittermann et al., 2012; Brodribb et al., 

2014; Kooyman et al., 2014; Eiserhardt et al., 2015). Of these factors, 

physiological evidence and current distributions suggest that intolerance of 

dry climates is critical, and our results imply that this has been the case 

throughout the Cenozoic. Brodribb and Hill (1999; 2002) found that xylem 
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vulnerability to damage under water deficit and water-use efficiency are 

closely correlated to dry season rainfall in conifers from across the southern 

hemisphere (although noting that fire sensitivity and frost tolerance may be 

important covariates in this relationship; Laughlin et al., 2020). Furthermore, 

the physiological limitations underpinning this relationship are well-studied 

and have strong evolutionary bases (Brodribb et al., 2014; Larter et al., 

2017). Although thermal distributional limits appear to be present in some 

Australian conifers, Bush et al., (2018) found that thermal disequilibrium (i.e., 

species not inhabiting their full range of thermal tolerances) is common in the 

Australian flora, suggesting that temperature does not directly limit the 

distributions of many tree species.  

The current distributions of conifers have also been influenced by factors 

other than current climates, including distributions in ecological disequilibrium 

due to past events, and these past events may have caused some of the no-

analogue pairs. At least some southern conifers are thought to be extremely 

dispersal-limited (Holz et al. 2015) and may be in a state of climatic 

disequilibrium, so that they do not fully occupy their potential bioclimatic 

envelope (or realised niche sensu Peterson et al. (2011). Recent work by 

Sundaram and Leslie (in press) showing that climatic stability affects conifer 

distributions is in accordance with our findings of conservatism, as taxa that 

are unable to adapt to climatic changes are most likely to persist in stable, 

climatically suitable environments.Overall, the effects of past climates on 

southern conifers may be smaller than observed in northern hemisphere 

conifers because the southern conifers have not been substantially affected 

by either severe freezing climates or extensive Pleistocene glaciation – two 

factors that are considered to have been critical in determining the 

distribution and composition of northern floras (Leslie et al., 2012). However, 

other historical processes or events may have contributed to the distribution 

of southern conifers. 

Past and present fires are likely to have affected the bioclimatic envelopes of 

many southern conifers (Enright & Hill 1995; Farjon & Filer, 2013) and 

evidence from charcoal in sediments indicates a major increase in fire from 
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the late Neogene onwards (Herring 1985). However, fire is intimately linked 

to both temperature and precipitation, as well as the abundance and type of 

angiosperms (Belcher et al., 2021).  Some no-analogue pairs may have been 

caused by disturbances that are decoupled from climate, but the strong 

preciptiation signal we observed implies that this is not the case for the 

majority of no-analogue pairs.  

Formation of no-analogue pairs 

Most of the no-analogue associations studied here represent changes in the 

thermal envelope of one or both members of the pair. These changes 

inevitably involve loss of part of the climatic ranges of one or both of the taxa 

involved in these associations. Although geographic and climate space are 

not perfectly correlated (see Peterson et al. 2011), loss of geographic range 

is strongly linked to loss of climatic range, and the fossil record of southern 

conifers demonstrates a massive loss of geographic range. For example, two 

genera in many of the no-analogue associations detected in this study 

(Microcachrys and Lagarostrobos; Table S2) were present on all southern 

hemisphere landmasses during the Cretaceous and Palaeogene, but are 

now restricted to Tasmania (Hill & Brodribb 1999). Many other southern 

conifer taxa, including taxa involved in almost all of the no-analogue pairs, 

have contracted from multiple continents to much more restricted ranges (Hill 

& Brodribb 1999; Wilf, 2012).  

Furthermore, the geographic and climatic range loss in southern conifers 

involved substantial extinction. Hill and Brodribb (1999) demonstrated very 

high diversity of southern conifers in the Cenozoic, including many extinct 

species and some extinct genera. Such estimates of fossil diversity may even 

be underestimates because species are often represented in the 

palaeobotanical record by pollen or vegetative fragments, so many fossils 

can only be referred to extant families or genera, rather than species. Even 

so, many currently species-poor genera are represented by multiple species 

in the fossil record – Microcachrys has one extant species, endemic to the 

alpine regions of Tasmania, but there is at least one additional species 
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described from New Zealand fossils, and there are at least five distinct pollen 

types which have been linked to the genus (Carpenter et al., 2011). Many 

authors have concluded that southern conifers suffered high levels of 

extinction during the Cenozoic (Jordan, 1995; Brodribb & Hill, 2004; 

Carpenter et al., 2011; Crisp & Cook, 2011), so we find it reasonable to 

assume that most no-analogue associations in the fossil record are the result 

of extinctions. However, it is unclear whether these extinctions were driven 

by aridification, temperature fluctuations, or other factors (e.g. fire, biotic 

interactions).  

However, these changes in bioclimatic envelopes implicit in the no-analogue 

pairs may well also include adaptation to novel climates. The fact that many 

of the southern conifers involved in no-analogue pairs now occupy climatic 

conditions that were absent or much more restricted in the Paleogene in the 

southern hemisphere (e.g. freezing temperatures; Pross et al., 2012; 

Westerhold et al., 2021) suggests that the thermal envelope of conifers has 

expanded in response to changes in the available climatic space. However, 

only one southern conifer clade (Callitris, Larter et al., 2017) has been able to 

expand its range into the drier climates that expanded during the Cenozoic, 

suggesting that the precipitation requirements of most of these plants are 

highly stable and unlikely to respond to future aridification. In this study, the 

other members of the no-analogue pairs involving Callitris are likely to be the 

driving members of those pairs: Microcachrys, Fitzroya and Diselma, and 

only the latter of these involves a change in the precipitation niche (Table 

S2). We suggest that the radiation of Callitris has not produced any no-

analogue associations because, although the genus is generally considered 

a specialist of arid environments, it has retained occupation of wet regions 

(e.g. C. macleayana), so no regions of climatic space have been lost. 

It is also possible that some fossil taxa co-occurred in no-analogue climates 

(combinations of climatic conditions that no longer exist; Williams & Jackson, 

2004). This could lead to no-analogue pairs via a reduction in available 

climate space (i.e. a reduction in the existing niche; Figure 3.1b), and can 

have long-term legacy effects even if suitable climatic conditions become 
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available once more (Figure 3.1c, d). It seems plausible that this may be the 

case for at least some no-analogue pairs, and could well be a major 

contributing factor to the extinctions described above. It may never be 

possible to disentangle the exact processes leading to no-analogue pairs, but 

all plausible explanations discussed here are consistent with high levels of 

niche conservatism, specifically of the precipitation niche.    

Implications 

In a remarkable display of ecological conservatism, our study suggests that 

the hydraulic limitations (sensitivity of the water transport system to water 

deficit) on current conifer distributions (see Brodribb & Hill 1999; Brodribb et 

al., 2014) have existed for at least the last 50 million years.  This 

conservatism may be linked to morphological constraints – Hill (2004) 

suggested that morphological changes in the leaves of Dacrycarpus were 

adaptations to a drying climate, shortly before the genus became extinct in 

Australia.  Recently, Condamine et al., (2020) found that an angiosperm-

driven extinction model was a better fit to extant conifer diversity patterns 

than climate-driven models, and suggested that competition with 

angiosperms was the main cause of Cenozoic extinctions. However, our 

results highlight the importance of including water availability in studies of 

palaeoecological changes – precipitation was not included in the model set 

evaluated in Condamine et al. (2020) – so while our findings support the 

conclusions of these authors with regard to the limited influence of 

temperature, we find evidence for the role of changing precipitation regimes 

in directly or indirectly driving Cenozoic contraction of southern conifers. This 

is consistent with observations that the most hydraulically vulnerable conifers 

(e.g. Acmopyle) also have the earliest last appearances in the fossil record of 

Australia (Brodribb & Hill, 2004).  

Studies on the effect of climate on deep-time biodiversity patterns have been 

largely centred on temperature both in marine (Yasuhara et al., 2012; 

Yasuhara et al., 2020) and terrestrial systems (e.g., Shiono et. al, 2018), but 

our results emphasise the need to consider changes in precipitation regime 
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as long-term drivers of change in terrestrial systems. Furthermore, our results 

highlight the potential for using fossils as proxies for precipitation. We show 

that the nearest living relatives of fossils of southern conifers provide reliable 

indicators of palaeoprecipitation, but – for pre-Quaternary sites – are less 

reliable indicators of palaeotemperatures.  In this context it is worth noting 

that palaeoprecipitation is more difficult to estimate than palaeotemperature 

using other methodologies, including foliar physiognomy (leaf size and 

shape; Wolfe, 1993; Wei et al., 2021), marine fossils and biochemistry. 

Although there is some risk in making inferences from negative results (the 

absence of precipitation no-analogue pairs), conservatism remains the most 

parsimonious explanation for our observations. It may thus be possible to 

assess other palaeoproxies using no-analogue pairs to identify which aspects 

of the niche have remained stable through geological time.  

Here, we show that analysis of no-analogue pairs in the fossil record can be 

used to infer changes in the evolutionary and ecological history of taxa. The 

pair-oriented approach employed here also has the advantage of detecting 

changes in climatic envelopes without the need to reconstruct past climates. 

While the focus of this study is restricted to southern conifers, our novel 

analyses using no-analogue pairs in multidimensional environmental space 

are applicable to any sets of fossil assemblages. Of particular interest for 

future study are northern hemisphere conifers – Leslie et al., (2012) reported 

hemisphere-scale evolutionary differences in conifers that may be driven by 

the differences between the largely continental northern environment and the 

more oceanic southern hemisphere. Additionally, we highlight the utility of 

southern conifers for palaeoprecipitation estimation. 

Although our evidence is consistent with very high levels of evolutionary 

conservatism in climatic niches of conifers, this conservatism is largely in 

dimensions related to water, not to temperature. This emphasises current 

and future threats to many southern conifers posed by drying climates 

(Brodribb et al 2020).   
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Chapter 4 : No cell is an island: characterising 
the epidermis using EPIDERMALMORPH, a new R 
package 

 

Abstract 

The leaf epidermis is the interface between the plant and its environment, 

and is highly variable in morphology. This diversity shows links to both 

phylogeny and environment, and is relevant to several fields; the epidermis is 

important in physiology, functional traits, palaeobotany, taxonomy, and 

developmental biology.   

However, describing and measuring leaf epidermal traits remains 

challenging. Current approaches are either extremely labour-intensive and 

not feasible for large studies, or are limited to measurements of individual 

cells.  

Here, we present a method to characterise individual cell shape, cell 

arrangement and the effect of neighbouring cells on shape from light 

microscope images of the cuticle. We have implemented this method in an R 

package, EPIDERMALMORPH and provide an example workflow using this 

package, which includes functions to evaluate trait reliability and optimal 

sampling effort for any given group of plants. We demonstrate that our new 

metrics of cell shape are independent of gross cell shape, unlike existing 

metrics.  
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EPIDERMALMORPH provides a broadly applicable method for quantifying 

epidermal traits that we hope can be used to disentangle the fundamental 

relationships between form and function in the leaf epidermis.  

Introduction 

The plant epidermis controls transpiration and gas exchange via stomata, 

protects the plant from both environmental stressors and biological invasions, 

and can even act as a mechano-sensory organ (Hamant et al. 2008). There 

is extreme diversity in epidermal traits that can be observed from light 

microscopy – the size, shape, arrangement and number of pavement cells, 

stomatal and other specialised cells (e.g. trichomes) – but the physiological 

function of each of these traits under different environmental conditions 

remains unclear, despite extensive study (Sharma, 1972; Royer, 2001; Dunn 

et al., 2015a). The functions of epidermal traits may also vary among groups 

of plants, highlighting the need for broad-scale studies of epidermal traits (as 

noted by Vőfély et al., 2019), and thus the need for a universally applicable 

approach to quantifying and comparing the epidermis.  

Leaf epidermal traits are easy to observe in fresh or dried material, and cell 

imprints are readily preserved via the cuticle, which can retain epidermal 

information for hundreds of millions of years (Blomenkemper et al., 2021). 

This means that we have a record of epidermal traits spanning deep time that 

can provide a wealth of evolutionary and palaeoecological information. These 

traits are used widely in the identification of fossil plants (Dilcher, 1974; Deng 

et al., 2017) as well as estimating past climate, vegetation structure and 

atmospheric carbon dioxide, through either nearest-living-relative or 
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physiognomic approaches (Mosbrugger & Utescher, 1997; Dunn et al., 

2015b). The epidermis has also been studied in developmental (Bidhendi et 

al., 2019) and functional trait contexts (e.g. Osunkoya et al., 2014), as some 

epidermal traits have been linked to life-history strategies. However, the 

physiological significance of many epidermal traits is unclear – some traits 

appear to have contrasting relationships with climate in different groups of 

plants (Thomas et al., 2004; Dunn et al., 2015a). It is possible that these 

contradictory results could be explained by differences in methodology – 

there are many metrics that can be used to quantify the epidermis, ranging 

from very simple and intuitive (e.g. cell area) to extremely complicated (e.g. 

Fourier analysis, Sánchez-Corrales et al., 2018).  

Most current methods of quantifying the epidermis fall into one of two 

categories:  

1) High-throughput measurements of individual cells (e.g. PACEQANT, 

Möller et al., 2017; GRAVIS, Nowak et al., 2021). These methods 

employ sophisticated algorithms to describe cell shape, but do not 

consider either the effect of neighbouring cells or measure the 

arrangement of cells. Some of these methods have been shown to 

accurately distinguish subtle differences in the cell shape between 

genotypes (Nowak et al., 2021), but the result can difficult to interpret 

in terms of functional traits.  

2) Manual description of epidermal measurements (e.g. Stark Schilling & 

Mill, 2011). These methods take into account a wider range of traits 

(e.g. how cells are arranged, stomatal spacing) but are slow, labour 
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intensive and suffer from subjectivity in terms of choice of 

measurements. The low-throughput nature of these methods means 

that there is a significant compromise between sample size of both 

taxa and cells, which limits the scope of interpretations that can be 

made from such studies.   

Furthermore, both types of approach tend to suffer from a common limitation 

– cell shape is measured on individual cells, without considering the effect of 

neighbours. The shape of an individual cell is strongly affected by that of its 

neighbours. Stomata and underlying venation also affect the shapes of cells 

(Vőfély et al., 2019) so we propose that a) the epidermis should be measured 

as a mosaic of connected cells and b) that measurement of epidermal cells 

should include metrics of both cell shape and the relationships among cells. It 

is also unclear how many epidermal cells are needed to get a reliable 

estimate of trait values for an individual. Most authors take the mean value 

for 25-30 cells (Carins Murphy et al., 2016; Vőfély et al., 2019), though some 

values are based on as few as seven cells (Bush et al., 2017), which is 

unlikely to be a reliable estimate for species, or even individual plants 

(Clugston et al., 2017). 

Here we present a new R package ‘EPIDERMALMORPH’, which contains a wide 

range of cell descriptors including cell area, aspect ratio and angle as well as 

several novel shape descriptors, a unique set of cell arrangement 

descriptors, and functions to optimise sampling effort. We also compare 

some of these descriptors to those from other algorithms, and provide an 

example workflow for using EPIDERMALMORPH.   
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Description of epidermalmorph 

The input image format should be a tracing of the cells such that the cell 

walls, interiors of pavement cells, stomata and subsidiary cells are each 

represented by a single value (colour; Figure 4.1). Our package does not 

explicitly include tracing functions, but we recommend using the Ridge 

Detection function in ImageJ (Steger, 1998; Thorsten Wagner, 2017) as a 

form of semi-automation. Tracings produced by this method normally need to 

be manually edited before use. EPIDERMALMORPH also includes a pre-

processing function to coerce images into the appropriate form 

(‘image_preprocess’). The group of pixels for each cell are then converted 

into a single, spatial polygon object.  

 

 

Figure 4.1  An example of the input required for EPIDERMALMORPH. The cell walls 
are shown in black, the pavement cells in white, stomata in red and the subsidiary 
cells in orange. This image has been cropped for clarity – the field of view should 
include at least 20-30 stomata. 
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At the core of the EPIDERMALMORPH package is the automated measurement 

of epidermal traits, using the ‘extract_epidermal_traits’ function. These traits 

include metrics of size, shape and alignment of epidermal cells (Figure 4.2) 

and stomata (Figure 4.3), as well as measurements of cell arrangement 

(Figure 4.4). Neighbouring cells are identified, so that the shortest paths 

between cell types can be calculated (e.g. mean number of cells between 

stomata, Figure 4.4). Cells on the edge of the image are excluded from 

shape measurements, but cells on the top and left edges are counted to 

calculate stomatal index (as per Kubínová, 1994). 

Because the orientation of the image relative to the original leaf is uncertain 

in many cases, we used the mean angle of the stomata as a proxy for leaf 

axis (stomata are arranged parallel to the leaf axis in many plants). To 

identify stomatal north, we fit ellipses to each stomate and extract the mean 

angle of the long axis. The angles of pavement cells and individual stomata 

are calculated relative to this angle. This can be disabled if the leaf axis is 

known (see package documentation). Other measurements for which 

EPIDERMALMORPH provides novel automation are the arrangement and 

spacing of stomata and subsidiary cells (Figure 4.4). 

For shape measurements, the pixelated outlines of each cell are smoothed 

using the SMOOTHR package (Strimas-Mackey, 2021) and the cell junctions 

are used to define the simplified shape of the cell (Figure 4.2). This use of 

the junction points is a novel way to describe the shape of the cell that has 

advantages over existing methods (see Comparison to other approaches). 

Where other methods try to exclude cell junctions, we use them to 
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disentangle gross cell shape from wall undulation. Given the junction points, 

we can define the simplified cell, and can then compute three main measures 

of undulation (Figure 4.2): the number of times that the cell wall crosses the 

simplified perimeter per millimetre (analogous to frequency), the maximum 

distance between the cell wall and the simplified perimeter (the size of the 

undulations, analogous to wavelength), and the ratio between the minimum 

perimeter and actual perimeter (complexity).   

We implemented EPIDERMALMORPH in R, because it is a widely used program 

by biologists and we wanted to make this method accessible. The R package 

is available on GitHub (https://github.com/matildabrown/epidermalmorph).  

 

 

 

https://github.com/matildabrown/epidermalmorph
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Figure 4.2 Graphical description of the individual pavement cell metrics that can be 
measured using epidermalmorph. 



79 

 

 

Figure 4.3 Graphical description of individual stomatal metrics that can be 
measured using EPIDERMALMORPH. 
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Figure 4.4 Graphical description of the cell arrangement metrics that can be 
measured by EPIDERMALMORPH. Pavement cells are categorised as being in the 
‘pavement zone’, ‘stomatal zone’ or ‘polar’, depending on how far they are from the 
nearest stomate. Stomatal arrangement is measured in terms of both row 
characteristics, as well as spacing. 
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Sampling effort 

Tracing epidermal cells can be laborious, despite attempts to automate this 

process (see Segmentation in Discussion), so finding a balance between 

effort and information is crucial. We have included a workflow to identify 

optimum sampling effort in the EPIDERMALMORPH package that employs 

subsampling of cells within images.  

For each image, a set of random, contiguous patches of cells are sampled, 

then measured. This is implemented using the patch_sampler() function for 

patches of varying sizes (e.g. 50, 100, 200, 400 cells). This function finds a 

random, contiguous patch of cells as follows: a single cell is randomly 

selected, then the neighbours of that cell are added to the patch, then the 

neighbours of those cells, and so forth until the patch exceeds the required 

size. Where part of a stomatal complex is encountered, all cells from that 

complex are automatically added to the patch. This process is illustrated in 

Figure 4.5 below.  

The variance in measured trait values from patches can then be used to 

identify a minimum number of cells, either by using an arbitrary threshold 

(e.g. the number of cells required to achieve less than 10% variance in 

samples) or some other measure of convergence (see package 

documentation for details). We also recommend carrying out a pilot study for 

any group of plants to evaluate trait reliability, as not all traits that can be 

measured using EPIDERMALMORPH are useful for all plants (see Trait 

Reliability in Example Workflow).  
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Figure 4.5 Example of cell patch sampling. From a starting cell, the region is grown iteratively by 
including neighbouring cells. If part of a stomatal complex is included, the algorithm automatically 
includes all other cells from that complex. If an edge is reached, the cell that is broken by the edge is 
removed and not included in future iterations. 
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Comparison with existing methods 

To the best of our knowledge, this is the first piece of software that describes 

the spatial distribution of stomata on the leaf surface. EPIDERMALMORPH 

measures six traits describing the arrangement of stomata (Figure 4.4), 

including the spacing of both individual complexes and rows of stomata, as 

well as whether these rows are discontinuous (row.consistency) and 

straight/crooked (row.wiggliness). These traits can be distinctive in certain 

groups of plants and have been used to identify fossils (Hill, 1992; 

Andruchow-Colombo et al., 2019) so we envisage that one application of 

EPIDERMALMORPH may be in the automated identification of plants from cuticle 

fragments. (Wilf et al., 2016) demonstrated that automated identification of 

leaf fossils has significant potential, but epidermal cells have not yet been 

utilised in this way – possibly because the individual shapes of fern, 

angiosperm and conifer cells overlap considerably (despite significant 

differences in mean trait values; Vofely et al., 2019), making identification at 

even such a coarse taxonomic resolution impossible. By integrating individual 

cell measurements with stomatal arrangement traits, we expect to find that 

there is more clear separation between these groups.  

While there is some overlap between EPIDERMALMORPH and other ways of 

quantifying the size and shape of cells (e.g. cell area, aspect ratio), our 

method describes the shape in the context of the cell’s neighbours. The 

polygon formed by the tri-cell junctions defines the hypothetical shape of the 

cell if there were no undulations in the shared wall between cells (here 

termed the simplified cell). We can then measure certain traits from this 
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simplified cell (aspect ratio, endwall angles), but the key advantage this 

provides is in measuring the undulation of the cell. The degree and type of 

undulation of the cell wall is one of the most obvious differences between 

epidermal cells from different plant groups or environments, and unlike other 

traits (e.g. cell area) there is no obvious single measurement to describe 

these differences. As such, numerous approaches to measuring undulation 

have been proposed (Table 4.1). Good undulation metrics should have the 

following properties: 

1. A cell with straight cell walls will have the lowest possible value of the 

metric, regardless of aspect ratio or gross cell shape.  

2. The metric value/s should increase with both the size and number (or 

frequency) of undulations. 

3. The metric/s should be applicable to cells with very slight undulations 

as well as those with very large undulations (e.g. the puzzle-shaped 

cells of Arabidopsis).  

4. If undulation is to be described by multiple metrics, they should be 

readily interpretable (not requiring principal component analysis to 

compare cells). 

5. Ideally, the metric should be able to be implemented easily across a 

wide range of platforms (should not require specialised software).  

To identify the limitations of existing metrics and illustrate the advantages of 

EPIDERMALMORPH, we simulated 1200 cells of varying shapes and degrees of 

undulation (see Figure S4.1) then compared the measured values of 

undulation. The cells from Vofely et al., (2019) and used by Nowak et al. 
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(2021) could not be used to evaluate EPIDERMALMORPH, which requires the 

cell junction coordinates, which were not captured in that dataset. Most 

existing methods of describing undulation (Table 4.1) compare the perimeter 

or area of the cell to some baseline, usually either the convex hull of the cell 

or a circle with the same area. Circle-based measurements are extremely 

sensitive to changes in the gross cell shape – elongated, straight-walled cells 

can have the same undulation index as isodiametric, undulated cells (Figure 

S4.2). Convex hull measurements are affected by non-convex cells (e.g. 

boomerang or crescent shape), and none of the single-value metrics can 

differentiate between many small undulations and few large undulations 

(Vofely et al., 2019, though see Figure S4.3)  
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Table 4.1 Current measurements of cell undulation and their 
limitations 
Measurement 
name 

Description Implemented 
in/by 

Limitations 

Undulation 
index, 
Circularity,  
Form factor 

Ratio of cell perimeter 
compared to the 
perimeter of a circle 
with the same area 
 

Andriankaja et 
al. (2012), Bai 
et al. (2010) 
Thomas et al. 
(2004) 
 

Affected by aspect ratio 

Solidity Ratio of cell area to 
area of convex hull 
 

Vőfély et al. 
(2019); similar 
but not identical 
to that used by 
Dunn et al. 
(2015a) 

Affected by non-convex 
(e.g. crescent shaped) 
cells 

Convexity, 
Lobeyness,  

Ratio of cell perimeter 
to perimeter of convex 
hull 
 
 

PaCeQuant 
(Möller et al., 
2017); Sapala 
et al. (2019) 

Affected by non-convex 
(e.g. crescent shaped) 
cells, though much less 
than Solidity 

Margin 
roughness 

The average angle 
between points on the 
cell wall compared to 
the average angle 
between the same 
number of points on a 
circle 

McLellan and 
Endler (1998); 
PaCeQuant 
(Möller et al., 
2017) 

Difficult to implement for 
large numbers of cells,  
Does not behave as 
expected with amplitude 
and or frequency 

Completeness of 
visibility graph 

Related to the direct 
‘lines of sight’ 
between points on the 
perimeter of the cell; 
see Nowak et al. 
(2021) for details.  

GraVis (Nowak 
et al., 2021) 

Likely to be affected by 
non-convex cells; 
downloaded software 
(GraVis, github link) does 
not work for all cell 
shapes 

Skeleton 
measurements, 
lobe 
measurements  

Numerous (15) 
measurements 
including: average 
basal lobe width, non-
lobe area, average 
branch length. See 
supporting information 
of Möller et al. (2017)  
for details.  

PaCeQuant 
(Möller et al., 
2017) 

Large number of metrics 
not linked to traits, limited 
applicability outside of 
Arabidopsis 

Elliptical Fourier 
Analysis 

Based on the Fourier 
Series.  

Sapala et al. 
(2019) 

Good at picking up 
aspect ratio but performs 
poorly for undulation 
description (Vofely et al. 
2018). Cannot deal with 
cells where the lobes 
‘double back’ on 
themselves (non-
holomorphic) 

Lobe 
Contribution 
Elliptical Fourier 
Analysis 
(LOCO-EFA) 

Modification of 
Elliptical Fourier 
analysis, see 
Sánchez-Corrales et 
al. (2018) for details 

Sánchez-
Corrales et al. 
(2018) 

Different shapes use 
different numbers of Ln 
metrics, difficult to relate 
to traits 
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Other measures are indifferent to gross cell shape, but produce a large set of 

variables that can be difficult to interpret in a trait framework  – e.g. GraVis, a 

recently developed method that uses visibility graphs to describe the cell 

(Nowak et al., 2021). GraVis generates a graph for each cell by placing a 

number of nodes along the cell wall, then joining pairs of these nodes with 

edges if they can ‘see’ each other (without being occluded by the cell wall). 

These edges can then be weighted according to their distance and cell shape 

can be described as an n × n visibility matrix (where n is the number of 

nodes). This can be compared between cells using distance metrics, or 

condensed to a single value (the graph density). GraVis performs extremely 

well when classifying different genotypes or identifying cell lobes of 

Arabidopsis, and is able to reproduce cell shapes, but cannot be applied to 

all of our simulated cells so may be of limited utility for analysing broad-scale 

relationships between form and function.  

Another relatively recent method is PaCeQuant (Pavement Cell Quantifier), 

developed by Möller et al. (2017). This can be run as a plugin through 

ImageJ and quantifies cell shape in 27 variables, including skeleton-based 

and contour-based measurements. Cell undulation is captured by several of 

these measurements, including circularity, solidity, convexity and margin 

roughness (Table 1). Margin roughness (described by McLellan et al., 1998) 

represents an alternative approach to measuring undulation as it compares 

the angles between points to the expected angle if they were on a circle 

(rather than area or perimeter). PaCeQuant has largely been used to study 

the cells of Arabidopsis, possibly because many of the features measured 
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are specific to the extreme lobing displayed by the model species (but that is 

uncommon in other plants).  

Our method separates gross cell shape (e.g. aspect ratio) from undulation by 

using the junction points with neighbouring cells to define the shape of the 

cell if all cell walls were straight (the simplified cell). From this, we introduce 

the ‘complexity’ metric - the ratio of the cell perimeter to the perimeter of the 

simplified cell. This is conceptually similar to undulation index, convexity and 

lobeyness but is not affected by the underlying shape of the cell (Fig. S4). To 

further characterise the pattern of undulation, we also introduce two 

additional new measurements: maximum undulation amplitude 

(undulation.amp; Figure 4.2, S4.5) and undulation frequency (undulation.freq, 

Figure 4.2, S6). A few, large undulations will be represented as high 

maximum undulation amplitude, but low undulation frequency, while the 

opposite will be true for cells with many small undulations. These 

measurements are approximately analogous to the ‘pitch’ and ‘amplitude’ of 

Sánchez-Corrales et al. (2018).  

On our simulated cells, we found that existing methods performed poorly on 

elongated or non-convex cells (Figures S4.2-S4.3), but that the metrics from 

EPIDERMALMORPH were not affected (Figures S4.4-S4.6) As a single metric, 

complexity fulfills all of the requirements for a good undulation metric, but the 

addition of undulation amplitude and frequency improve the characterisation 

of undulation patterning. 

Unlike other methods of stomatal quantification (e.g. Song et al., 2020) we do 

not directly measure the guard cells – our ‘stomate’ cell class is similar to the 
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‘internal stomatal apparatus’ described by Stark Schilling and Mill (2011). 

This avoids many of the issues associated with measuring sunken stomata, 

where guard cells are obscured by subsidiary cells or lie in a different plane 

to the rest of the epidermis.   

Example workflow  

Example image dataset: Podocarpaceae 

To demonstrate the implementation of EPIDERMALMORPH, here we present an 

example workflow using the Podocarpaceae, a conifer family with a largely 

southern hemisphere distribution comprising 20 genera and 196 species 

(Farjon, 2010; Page, 2019). Podocarps occupy a wide range of environments 

from alpine (e.g. Podocarpus lawrencei), tropical (e.g. Acmopyle pancheri) to 

understorey shrubs in fire-prone environments (e.g. P. drouynianus). They 

also have a strong fossil record (Hill & Brodribb, 1999), and several 

epidermal studies have been carried out (Stark Schilling & Mill, 2011; 

Clugston et al., 2017), so it is possible to verify that our interpretation of light 

photomicrographs is consistent with images captured using a scanning 

electron microscope.  

There is significant variation in the epidermal characters in the 

Podocarpaceae (Figure 4.6). Although stomata generally have two lateral 

subsidiary cells in a paracytic arrangement, extra divisions often result in 

additional subsidiary cells. Polar subsidiary cells may be present or absent, 

and the epidermal cell wall may be straight or strongly sinuous. Gross cell 

shape ranges from more or less isodiametric (e.g. Acmopyle), to rectangular 

(e.g. P. dispermus) to irregular (e.g. P. drouynianus). Epidermal traits are 
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known to vary between species in the Podocarpaceae (e.g.Stark Schilling & 

Mill, 2011), and there are well-resolved phylogenies of this family (Kelch, 

2002; Biffin et al., 2011; Leslie et al., 2018; Page, 2019).  

 

Figure 4.6 Cuticle diversity in the Podocarpaceae. Phyllocladus aspleniifolius (a), 
Sundacarpus amarus (b), Afrocarpus gracilior (c) and Podocarpus costalis (d). Scale 
bar is 0.1 mm; same scale for all images. 
 

Image preparation  

We collected, prepared and imaged cuticles from 26 individual greenhouse-

grown plants (spanning 20 species and seven genera, see Table S4.1). For 

each plant, we captured between three and five images from 2-4 leaves, 

which were then traced using a combination of the Ridge Detection plugin 

from ImageJ (based on the method described by Steger, 1998) and manual 

tracing. Stomata and subsidiary cells were manually annotated using a flood 

fill (using different values for different cell types, see Figure 4.1 for example).  



91 

 

Trait reliability 

We then used EPIDERMALMORPH to convert these images to polygons using 

the ‘image_to_poly’ function and extracted values for all measurements using 

the ‘extract_epidermal_traits’ function. We scaled and centred these 

measurements using a z-transformation, then calculated the mean within-

plant standard deviation for each trait (Figure 4.7). We removed all variables 

that had a mean within-plant standard deviation greater than 0.2 (i.e., where 

the average within-plant standard deviation exceeded 20% of the total 

standard deviation for that trait).  
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Figure 4.7 Within-plant trait reliability scores. The reliability score is calculated as 
the standard deviation of the standardised trait values measured from the same 
plant. A reliability score of 1 means that the variation in the plant is equal to the 
variation across plants, a score of 3 means that the within-plant variation is three 
times higher than that of the whole dataset (red; unreliable), while a reliability score 
of 0.2 means that the within-plant variation is 20% of the variation across plants 
(blue; reliable). In this dataset, the traits at the top of the figure (endwall.angle.mean, 
pavezone.angle.median) are the least reliable (i.e. most variable) when averaged 
across all plants. Similarly, the plants towards the right of the figure tend to be less 
reliable (Falcatifolium taxoides 2, Podocarpus forrestii 1). See Figs 2, 3, 4 for 
illustrations of each measured trait.   
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To calculate optimum sampling effort, we re-measured our metrics on sub-

regions of each image. Measurements were then extracted from each patch 

as for the whole image, and scaled using the mean and standard deviations 

of the trait across the whole-image dataset.  We repeated this 100 times for 

each image at each minimum patch size (50, 100, 200 and 400 cells) and 

recorded the number of cells of each cell type (pavement, stomata, 

subsidiary) for each iteration. We then calculated the difference between the 

patch and whole-image value (the delta-value) to allow us to compare 

measurement error between images. From this, we calculated the standard 

deviation of the delta-values (see Figure 4.8) at various patch sizes. Low 

standard deviations of delta-values indicate that all patch measurements 

were similar to each other (i.e. convergent), and high values indicate that the 

measurements varied depending on which cells were included in the patch 

(i.e. the patch size was too small to provide a consistent measurement). For 

Podocarpaceae, 100-200 pavement cells and 30-40 stomata are required to 

get a reliable estimate of trait value (Figure 4.8). We provide a function that 

runs these steps on a set of images (‘cell_resample’).  
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Figure 4.8 The convergence of measurements taken from subsamples of images. 
Cells from each image were sampled 100 times at a minimum patch size of 50, 100, 
200 and 400 cells. Each of these samples were measured, and the difference 
between the sample and the whole image was calculated for each trait (the 
Δvalues). We then calculated the standard deviation of the Δvalues to evaluate 
convergence, to determine the optimal number of cells to sample. From these plots, 
we can infer that for Podocarpaceae, a minimum of 100 pavement cells and 30-50 
stomatal complexes should be measured to allow estimation of all traits; smaller 
numbers may be adequate for some traits. 
 

Discussion 

EPIDERMALMORPH is the first software to synthesise the low-throughput 

measurements used by palaeobotanists and the quantitative, big-data 

approach that has been widely adopted to study individual cell traits. Our new 

metrics of cell wall undulation are unaffected by gross cell shape, and can be 

easily interpreted in a functional trait context. Our method is open-source, 
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modular and can be applied to a wide range of plants, which is vital to 

understanding the functional significance of leaf epidermal traits.  

Part of the problem with untangling the functionality of epidermal traits seems 

to be that traits are under the control of different factors in different groups of 

plants. Some traits are controlled by evolutionary history (e.g. monocot 

stomatal shape), and there is evidence of phylogenetic signal in pavement 

cell shape (Vőfély et al., 2019), but environment can also have significant 

direct effects on epidermal traits – one example of this is the difference 

between sun and shade leaves of the same individual (e.g. Bruschi et al., 

2000). Another widely-utilised trait-environment relationship is the correlation 

between stomatal index and atmospheric carbon dioxide concentration in 

Ginkgo (McElwain et al., 2016), though this is not without controversy 

(Jordan, 1997, 2011).  

It may be that trait-climate relationships are not simple and universal because 

they are clade-specific. Undulation in the periclinal walls of pavement cells is 

a prime example; it has been linked to light environment in many 

angiosperms (Metcalfe & Chalk, 1979; Kürschner, 1997; Thomas et al., 

2004), but not in grasses (Dunn et al., 2015a). Furthermore, some species 

have deeply lobed cells regardless of environment (e.g. Arabidopsis), while 

others show significant plasticity in this trait (e.g. Quercus; Bruschi et al., 

2000). Several functions of undulation have been hypothesised, including 

increased support for larger cells (Sapala et al., 2019), leaf flexibility (Sotiriou 

et al., 2018), biomechanical integrity (Jacques et al., 2014) and increased 

surface area for cell-cell transport (Galletti & Ingram, 2015), but none of 
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these explanations explain undulation at a broad phylogenetic scale (Vőfély 

et al., 2019). Cell elongation (aspect ratio) is another example – it can be 

used to predict the leaf aspect ratio (length to width) in monocots, ferns and 

gymnosperms, but not in angiosperms (Vőfély et al., 2019). These findings 

demonstrate the limitations of generalising trait-function relationships in 

closely related species and the need to account for phylogenetic scope and 

structure in analyses of epidermal traits, something that we hope 

EPIDERMALMORPH will facilitate.  

The limiting step in using EPIDERMALMORPH is tracing and annotating the cells. 

Automating this process is an exercise in semantic segmentation (see 

Marmanis et al., 2016), and it may be possible to train a machine learning 

algorithm to perform this step. However, as noted by Vofely et al., (2019), 

accurate segmentation of images is non-trivial, and poses a significant 

obstacle to high-throughput studies (though see recent work on stomatal 

detection by Fetter et al, 2019; Aono et al., 2021; Li et al., 2022). We found 

that the automated segmentation method implemented in PaCeQuant (Möller 

et al., 2017) performed poorly on our image set (Figure S4.7). However, we 

found that complete segmentation of an image using our hybrid approach 

took between 10 minutes and 2 hours, and this can be substantially reduced 

by a) maximising the quality of the image (avoiding areas where the cuticle is 

folded/creased or where residual mesophyll is visible beneath the epidermis) 

and b) using only the optimal minimum number of cells as described above 

(Sampling Effort). Our dataset of fully annotated images is a valuable source 

of training data for future endeavours in this area. However, fully automated 
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segmentation may also introduce or amplify sampling biases; many species 

have epidermal cells that, regardless of preparation, are difficult to image 

with a high enough quality for automation (but are clear enough be traced 

manually). While automatic segmentation remains a promising avenue for 

epidermal image processing (e.g. Berg et al., 2019; Aigouy et al., 2020), we 

suggest that all images should be manually checked before trait extraction, 

as cell measurements could be significantly affected by poor segmentation.  

Future development 

We envisage that the EPIDERMALMORPH package will remain in active 

development and welcome suggestions for future trait inclusions.  

This version of EPIDERMALMORPH is compatible with paracytic stomatal 

morphologies found in most Podocarpaceae. Because subsidiary cells are 

manually annotated, this version of EPIDERMALMORPH will still be able to 

process non-paracytic stomata. However, not all traits can be accurately 

measured for species that have stomata with a double layer of subsidiary 

cells (e.g. pericytic, polocytic stomata; Van Cotthem, 1970). We aim to 

include this functionality in future versions of the package.  

We were unable to design an algorithmic approach to identifying and 

annotating hypoplastic (non-functional) stomata; this presents an opportunity 

for further development as the presence of hypoplastic stomata is a 

distinctive feature of some taxa (e.g. Acmopyle; Hill & Carpenter, 1991)) and 

quantification of non-functional stomata has not, to the best of our 

knowledge, been studied.   
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Conclusions 

The leaf epidermis contains a wealth of information that is affected by both 

taxonomic identity and the growing environment. It can be studied in both 

living and fossil plants to provide insights into plant ecology, physiology and 

evolution, as well as being useful for palaeoclimatic estimation, but 

interpretations of epidermal traits remain clouded by convoluted relationships 

between form, function and ecology. It is our hope that taking a big-data 

approach to epidermal traits may help to reveal the evolutionary and 

physiological signals in the epidermis, and here we provide a suitable method 

to do so. Our novel approach to separating gross cell shape from undulation 

provides more robust measures of undulation that are not affected by cell 

elongation or non-convexity. This R package provides a fast and thorough 

method of quantifying epidermal traits that, with modification, can be applied 

both universally and to targeted groups of plants.  
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Chapter 5 : Nature or nurture: Investigating the 
basis of variation and palaeoecological value 
of epidermal traits in Podocarpaceae  

Introduction 

Characteristics of the leaf epidermis are frequently preserved in the fossil 

record and thus can provide a potential wealth of information on both the 

fossil species and the palaeoenvironment; however, the basis of many of the 

relationships between traits, climate and evolutionary history is poorly 

understood. The links between adaptation and plasticity in macroscopic leaf 

traits have been studied extensively (Wilf et al., 1998; Rehfeldt et al., 2001; 

Wright et al., 2004; Franks et al., 2014; Moreira et al., 2014; Yiotis et al., 

2017; Mizutani & Kanaoka, 2018, Milligan et al., 2021), resulting in both 

univariate and multivariate tools for palaeoclimatic estimation (e.g. CLAMP; 

Wolfe, 1993; Spicer, 2009; Spicer et al., 2020), but the epidermis has 

received comparatively little attention in this context.  

The cuticle of leaves can preserve an imprint of the epidermal cells for tens 

or even hundreds of millions of years (Vajda et al., 2017), and fragments of 

cuticle often survive where complete leaves do not (Blomenkemper et al., 

2021). Various epidermal traits can be measured from the cuticle, especially 

size, shape and arrangement of the major epidermal cell types: guard cells, 

subsidiary cells, trichome cells and epidermal pavement cells (see Chapter 4 

of this thesis). Many of these traits have well-studied links with environment 

and phylogeny in living plants (see Chapter 4 of this thesis; Thomas et al., 

2004; Carins Murphy et al., 2014, 2016), and these can be used to glean 

information from the fossil record. Fossil traits can be used to estimate the 

palaeoenvironmental conditions directly (physiognomy; e.g. Royer et al., 

2007) or to identify the fossil and then apply nearest living relative (NLR) 

techniques (e.g. Mosbrugger & Utescher, 1997). Both these approaches 

have advantages and limitations (see Spicer et al., 2020), but understanding 

the genetic and environmental control of traits is crucial to understand the 
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limitations of each technique. It may also be possible to use epidermal traits 

to better understand no-analogue fossils (co-occurring fossils for which the 

nearest living relatives inhabit different climatic conditions, Jordan, 1997; 

Brown et. al. 2021). If we can identify differences in functional traits between 

the fossil and its extant counterpart, we can link these to differences in 

ecology between the two taxa and quantify these differences in terms of 

climate.  

Identifying functional traits and the mechanisms that underpin them can be 

challenging because traits can be under the control of environment or 

genetics (‘nature vs nurture’). Standard quantitative genetics approaches 

divide the variation in a trait or phenotype in a given system into three 

components: the pure effects of environment (E), in which the plastic 

response to environment is the same for all genotypes; the pure effects of 

genotype (G), in which the trait varies according to genotype but shows no 

plasticity; and the effects of interactions between genotype and environment 

(G x E), in which there are plastic responses to environment but these 

responses vary among genotype (Falconer, 1996). These components are 

typically expressed as proportions of the total variation within the system. 

Traits under 100% genotypic control will be expressed regardless of growing 

environment – for this reason, they are particularly useful for taxonomic 

identification and nearest living relative methods. Some functional traits are 

under strong genetic control; plants with certain adaptations to aridity (e.g., 

succulence, small leaves) will still display these traits even when grown in a 

well-watered environment. Theoretically, traits under 100% environmental 

control are plastic; stomatal index in Gingko has been cited as an example 

because of its documented correlation with atmospheric CO2 concentration in 

extant plants (Beerling et al., 1998; Haworth et al., 2012; McElwain & 

Steinthorsdottir, 2017), though it is not clear whether this is a true example of 

a pure environmental effect (Jordan 2011). Environment (E) and genotype by 

environment (GxE) effects both involve plasticity, but the difference is that E 

is the plastic response to environment independent of genotypes and G x E 

reflects the way that the plastic response varies with genotype (e.g. plastic 
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responses to light intensity that depend on taxonomic identity Thomas et al., 

2004; Dunn et al., 2015). Here, we use ‘G-traits’ and ‘E-traits’ to refer to traits 

that have high (c.100%) genotypic and environmental components of 

variation, respectively.  

For palaeoclimatic estimation, E-traits and adaptive G-traits have the greatest 

utility as proxies, but the categorisation of these traits is highly system-

specific: an E-trait in one group of plants may be a G-trait or G x E-trait in 

another group, or vice-versa. In general, expansion of the system will 

increase the likelihood that any given trait is under G x E control (Figure 5.1) 

because no trait is infinitely plastic. This is an important consideration when 

applying these concepts to the fossil record, because it is nearly impossible 

to be sure that the fossil falls within the same system that was used to 

calibrate the proxy (Jordan, 2011). 

 

 
Figure 5.1 Effect of system on trait control. In both Species A and Species B, all 
variation in this trait is under environmental control; this is an ‘E-trait’. However, in 
the system containing both these species (Species A + Species B), variation is no 
longer explained by environment; it is explained by the interaction between 
genotype and environment (G x E). In general, adding taxa to a system will 
decrease the pure G- and E-components of trait variation, and increase the G x E-
component. 
 

 

Traits with strong G x E components are challenging proxies, as they 

challenge the assumptions of both NLR approaches and physiognomic 

approaches (see Spicer et al. 2020).  This poses problems for using traits in 

a palaeoecological setting as it is difficult to be confident that predictions 
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calibrated on a modern system hold for a palaeontological system. This is 

particularly fraught for relationships that are calibrated on a single extant 

species (e.g. Ginkgo; Jordan 2011), or where clades have suffered high 

levels of extinctions. However, if we can identify consistent trait-climate 

relationships in relatively large and diverse clades, we can be more confident 

that fossil species are within, rather than adjacent to these clades, so we can 

thus be more confident in predictions derived from these models. One clade 

that is large, diverse and abundant in the fossil record is the Podocarpaceae, 

making it an ideal group in which to search for good palaeoecological 

proxies.  

The Podocarpaceae is the largest of the ‘southern conifer’ families, with 17-

20 genera and 156 species (Farjon, 2010; Page, 2019). Species of 

Podocarpaceae (podocarps) inhabit a wide range of environments across the 

southern hemisphere (and parts of the northern hemisphere), including 

lowland tropical rainforests, alpine shrubberies, and even seasonally dry 

regions, although this is not typical for the family (Farjon & Filer, 2013). 

Podocarps also display a wide range of leaf morphologies, ranging from the 

appressed, imbricate scale leaves in Lagarostrobos to the broad multi-veined 

leaves of Nageia, and this diversity is reflected in their anatomical variation 

(Stockey & Frevel, 1997; Stockey et al., 1998; Mill & Stark Schilling, 2009; 

Carpenter et al., 2011; Stark Schilling & Mill, 2011). Podocarps are 

ubiquitous in the Mid-Mesozoic to Cenozoic palaeobotanical record of the 

southern hemisphere (Hill & Brodribb, 1999), and their leaf epidermal traits 

are a key part of studying these fossils (Jordan et al., 2011; Andruchow-

Colombo et al., 2019). These traits include characters from both epidermal 

pavement cells, which can be rectangular, elongated or irregularly shaped, 

with straight or undulated walls ranging in in size from 500um2 to over 

3000um2 (this chapter); and stomata, which are generally paracytic or 

paratetracytic (two lateral subsidiary cells with or without polar subsidiary 

cells), and in most genera form bands parallel to the leaf axis, although these 

bands can be irregular or discontinuous. Some traits are taxonomically 

informative (indicating genetic control; Wells & Hill, 1989), and there is 
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evidence for the effect of environment (Clugston et al., 2017), but there has 

not yet been a family-level examination of the extent and relative contribution 

of each of these components across a broad suite of epidermal traits. This is 

probably due to the labour-intensive nature of measuring epidermal traits 

(though see Chapter 4, this thesis) and also because disentangling the 

genetic and environmental controls on variation can be challenging for slow-

growing conifers.  

The ‘gold standard’ for studying genotypic versus environmental control of 

traits is to undertake multiple common garden experiments, where species or 

genotypes are cultivated in a range of environmental conditions to distinguish 

plastic from genotypic responses. Coniferous common garden experiments 

are uncommon because of the generally slow-growing nature of these plants 

– there are long-term conifer common gardens in Poland (Wyka et al., 2012) 

and Canada (Depardieu et al., 2020), but these are usually planted with 

specific hypotheses in mind and are limited to a few taxa and environmental 

variables. For studies of conifers, it is not impossible to find natural common 

garden experiments – by sampling species across their environmental 

ranges – but in most cases it would be unfeasible to collect fresh material or 

would require a significant amount of destructive sampling of herbarium 

specimens. A more common approach for conifers is to use a simplified 

common garden – where data are collected from plants that have been 

cultivated in identical or similar environmental conditions (e.g. Fig. 3; 

Pittermann et al., 2012). This reduces the effect of plasticity so that genotypic 

control of traits can be isolated.  

Here, I analysed variation in the leaf epidermal traits of Podocarpaceae using 

a simplified common garden approach to identify adaptive, genotypically-

controlled traits. To do this, I identified traits that can be reliably measured for 

an individual (i.e. are constant within a genotype), and compared these traits 

to the climatic conditions that these species inhabit in their native ranges. I 

constructed machine learning models to predict suitable climatic conditions 

from epidermal traits, then assessed the performance of these models to 

evaluate the potential of these traits to be used as proxies.  
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Figure 5.2 Example of trait-climate relationships for a simplified common garden 
experiment, depending on the dominant control of the trait. Note that in this 
experimental design, a pure E-trait cannot be distinguished from a trait that is fixed 
within a system – this is a limitation of the simplified common garden experiment.  
 

Methods 

Sample preparation and image capture 

We sampled 56 individual greenhouse-grown plants spanning 45 species 

and seven genera (see Table 5.1). Only genera with dorsiventrally or 

bifacially flattened leaves were included – taxa with scale-like or awl-like 

leaves were excluded because I could not obtain a field of view 
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(approximately 1mm) that did not include the edge of the leaf in these 

species. Fully expanded adult leaves were collected from healthy plants 

grown at the University of Tasmania and the Royal Botanic Gardens 

Edinburgh (Table 5.1). These plants were all growing in shaded, frost-free 

greenhouses. For species with a wide geographic distribution, I sampled 

leaves from individuals with multiple provenances (where this was possible).  

For large leaves, pieces of approximately 1cm2 were cut from either side of 

the midrib in the middle third of the leaf; for smaller leaves, the base, apex 

and, if practicable, the margins were removed. These samples were soaked 

in commercial household bleach (50 gL-1 sodium hypochlorite and 13 gL-1 

sodium hydroxide) until the cuticle separated from the mesophyll. Bleach was 

removed by thoroughly rinsing in water and remaining mesophyll tissue was 

removed using a fine paintbrush. Sections were stained with 1% crystal violet 

or safranin solution for 1 minute, then mounted in phenol glycerine jelly. I 

targeted the surface of the leaf that bore more stomata – usually the abaxial 

surface – and selected fields of view that contained at least 30 stomata, as 

suggested by Brown et al (Chapter 4, this thesis). Where stomata were 

concentrated in distinct regions (particularly where there were <3 pavement 

cells between each stomatal complex), fields of view were oriented to capture 

a balance of both stomata and pavement cells (see Figure S1.5 for example). 

Several fields of view at ×10 magnification (field of view area, 0.56mm2) were 

photographed from each section using a Nikon Digital Sight DS-L1 camera 

(Melville, NY, USA) mounted on a Leica DM 1000 microscope (Nussloch, 

Germany). The best image (identified as the clearest, without damage or 

obvious distortion) for each individual plant was selected for analyses.  
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Table 5.1 Plants sampled in this study. Plants were sampled from the Royal 
Botanical Gardens, Edinburgh (RBGE) or the University of Tasmania, Hobart 
(UTAS). 

PLANT ID SPECIES COLLECTED 

FROM 

ACCESSION 

# 

Acmopyle_pancheri1 Acmopyle pancheri RBGE 19842681 

Acmopyle_pancheri2 
 

RBGE 19842747 

Acmopyle_pancheri3 
 

UTAS - 

Acmopyle_sahniana1 Ac. sahniana RBGE 20001736 

Acmopyle_sahniana2 
 

UTAS - 

Afrocarpus_falcatus1 Afrocarpus falcatus RBGE 20001613 

Afrocarpus_falcatus2 
 

UTAS - 

Afrocarpus_gracilior1 Af. gracilior RBGE 19820027 

Afrocarpus_mannii1 Af. mannii RBGE 19960587 

Dacrycarpus_imbricatus1 Dacrycarpus imbricatus UTAS - 

Dacrycarpus_kinabaluensis1 D. kinabaluensis RBGE 19801226 

Falcatifolium_taxoides1 Falcatifolium taxoides UTAS - 

Falcatifolium_taxoides2 
 

UTAS - 

Halocarpus_biformis1 Halocarpus biformis UTAS - 

Halocarpus_kirkii1 Halocarpus kirkii UTAS - 

Nageia_formosensis1 Nageia formosensis UTAS - 

Nageia_nagi1 N. nagi RBGE 19963671 

Nageia_nagi2 
 

UTAS - 

Pectinopitys_ferruginea1 Pectinopitys ferruginea RBGE 19842376 

Pectinopitys_ladei1 Pe. ladei UTAS - 

Phyllocladus_aspleniifolius1 Phyllocladus 

aspleniifolius 

UTAS - 

Phyllocladus_toatoa1 Ph. toatoa UTAS - 

Phyllocladus_trichomanoides1 Ph. trichomanoides UTAS - 

Podocarpus_affinis1 Podocarpus affinis RBGE 20091132 

Podocarpus_angustifolius1 Po. angustifolius RBGE 200316 

Podocarpus_brassii1 Po. brassii UTAS - 

Podocarpus_chingianus1 Po. chingianus RBGE 19951686 

Podocarpus_coriaceus1 Po. coriaceus RBGE 20030490 

Podocarpus_costalis1 Po. costalis RBGE 19763956 

Podocarpus_dispermus1 Po. dispermus UTAS - 
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Podocarpus_dispermus2 
 

RBGE 20110038 

Podocarpus_drouynianus1 Po. drouynianus UTAS - 

Podocarpus_forrestii1 Po. forrestii RBGE 19915024 

Podocarpus_gnidioides1 Po. gnidioides UTAS - 

Podocarpus_lambertii1 Po. lambertii UTAS - 

Podocarpus_latifolius1 Po. latifolius UTAS - 

Podocarpus_longefoliolatus1 Po. longefoliolatus RBGE 19842738 

Podocarpus_lucienii1 Po. lucienii RBGE 20010205 

Podocarpus_matudae1 Po. matudae RBGE 19972324 

Podocarpus_nakaii1 Po. nakaii RBGE 19763844 

Podocarpus_neriifolius1 Po. neriifolius UTAS - 

Podocarpus_neriifolius2 
 

RBGE 19681468 

Podocarpus_novae-

caledoniae1 

Po. novae-caledoniae UTAS - 

Podocarpus_pilgeri1 Po. pilgeri RBGE 20022521 

Podocarpus_purdieanus1 Po. purdieanus RBGE 20011344 

Podocarpus_sellowii1 Po. sellowii RBGE 20071743 

Podocarpus_sylvestris1 Po. sylvestris UTAS - 

Podocarpus_trinitensis1 Po. trinitensis RBGE 20030491 

Podocarpus_urbanii1 Po. urbanii RBGE 20011359 

Podocarpus_urbanii2 
 

RBGE 20011364 

Retrophyllum_minus1 Retrophyllum minus UTAS - 

Retrophyllum_rospigliossii1 R. rospigliossii RBGE 19951953 

Retrophyllum_rospigliossii2 
 

UTAS - 

Saxegothaea_conspicua1 Saxegothaea conspicua UTAS - 

Sundacarpus_amarus1 Sundacarpus amarus RBGE 20030752 

Sundacarpus_amarus2 
 

UTAS - 

 

Image processing and feature extraction 

Cell outlines were traced using a combination of Ridge Detection (based on 

the method described by Steger, 1998) in ImageJ and manual tracing. Cell 

walls were set to 3 pixels (approximately 1 um) wide. Stomata (pore + guard 

cell pair) and lateral subsidiary cells were manually annotated using the flood 

fill tool. I then used the EPIDERMALMORPH package (Chapter 4 of this thesis) to 
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extract 26 measurements from each image (detailed explanations and 

illustrations given in Chapter 4 of this thesis), then centred and scaled these 

measurements using a z-transformation.  

To align the rotation of images, I used the mean angle of the stomata as a 

proxy for leaf axis (stomata are arranged parallel to the leaf axis in the 

Podocarpaceae taxa studied here). The angles of pavement cells and 

individual stomata are calculated relative to this angle.  

Trait reliability 

To select only reliable traits, I used the dataset described in Chapter 4 of this 

thesis, which was collected from a subsample of plants used in this study. I 

removed all variables that had a within-plant standard deviation greater than 

0.2 (i.e., where the standard deviation for that plant exceeded 20% of the 

total standard deviation for that trait), leaving 26 variables that I included in 

these analyses.  

Environmental variables 

I examined the relationships between epidermal traits and five 

palaeoecological predictors: maximum tree height, mean annual precipitation 

(MAP), precipitation of the driest month, mean temperature of the warmest 

quarter, minimum temperature of the coldest month. For the climatic 

variables, I used the distributional extremes (e.g. the minimum and maximum 

MAP for a species), which have been shown to be more closely correlated to 

functional trait values than the mean or median of the climatic niche (Stahl et 

al., 2014). I included maximum tree height as an environmental variable 

because of its potential utility for palaeovegetation reconstruction; the 

vegetation structure of a community is dictated by the height of the plants, so 

a method of estimating maximum tree height from fossilised cuticle would be 

extremely valuable for fossil sites where plant form is not preserved. I 

collated tree height data from Farjon (2010), Eckenwalder (2009) and climate 

data from the dataset used by Larcombe et al. (2018). These climate data 

are based on the same occurrence records that I used in previous chapters 
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of this thesis (Brown et al., 2020; Brown et al.) and have been cleaned 

extensively to exclude erroneous, naturalised or cultivated records. For 

species with uncertain taxonomic status (Nageia formosensis, Podocarpus 

forrestii) I used data for the synonym (Nageia nagi) or from the eFlora of 

China (http://www.efloras.org/). All nine variables used in analysis and their 

abbreviations are given in Table 5.2.  

Table 5.2 Palaeoecological variables of interest. 
Variable Linked to Minimum Maximum 

Tree height 

Shade 

tolerance & 

vegetation type 

- max.height 

Mean annual 

precipitation 

Drought 

tolerance 
map.min map.max 

Precipitation of the 

driest month 

Drought 

tolerance 
pdryq.min pdryq.max 

Mean temperature 

of the warmest 

quarter 

Growing 

season length  
meantwmq.min meantwmq.max 

Minimum 

temperature of the 

coldest month 

Freezing 

tolerance 
mintcm.min mintcm.max 

 

Statistical analysis 

All analyses were performed in R (R Core Team, 2021). I performed 

correlation checks using the ‘cor’ function and used the ‘princomp’ function 

for Principal Components Analysis (PCA). I also fitted Random Forest 

regression models using the ‘caret’ package (Kuhn 2021). I tuned the ‘mtry’ 

parameter (the number of variables to be sampled at each split of the 

decision tree) by fitting models with values of mtry between two and 30, 

assessed by 10-fold cross-validation (three repeats). I used Random Forest 

regression because this ensemble learning approach is a powerful way of 

finding non-linear responses to high numbers of predictors (Jordan & 

Mitchell, 2015).  
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Results 

Correlations between epidermal traits and climate 

Unsurprisingly, there are strong correlations between climatic variables 

(Figure 5.3a). Although several epidermal traits are correlated with each 

other (e.g. stomatal index and stomatal density, Figure 5.3b, Table S5.1), 

principal component analysis revealed that 11 principal component axes are 

required to capture 90% of the variation, with the first two capturing 25% and 

19%, respectively (Table S5.2). Individuals of the same genus tended to 

display similar trait values (Figure 5.4a, c). The first two principal components 

mainly reflected variation in pavement cell size and shape traits (Figure 

5.4b), while the third and fourth mainly reflected variation in stomatal traits 

(Figure 5.4d).  

There were no strong single-trait correlations between epidermal morphology 

and environment (Figure 5.3c, Table S5.3). There were some weak links – 

maximum height was correlated with stomatal index (correlation coefficient of 

-0.41; Table S5.3) and the complexity (undulation) of pavement cells 

(correlation coefficient of 0.35; Table S5.3). Scatterplots of each trait versus 

each palaeoecological variable are available in the Supporting Information 

(Fig S1-9).  
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 Figure 5.3 Correlations between climatic variables and epidermal traits. The 
Pearson correlation coefficient between climate-climate variables (a), trait-trait 
correlations (b) and trait-climate correlations (c). The colour of each tile shows the 
strength of the correlation, where weak correlations (close to 0) are lighter, and 
strong correlations are darker. Positive correlations are shown in blue and negative 
correlations are shown in red.  
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Figure 5.4 Principal components analysis of epidermal traits. The first two principal 
components (a,b) mainly reflect variation in pavement cell size and shape traits (b), 
the third (c-d) in stomatal distribution (density, index, distance to first and second 
nearest neighbours) and shape (aspect ratio, symmetry), while the fourth (c-d) in 
stomatal complex size (guard cell length, subsidiary cell area) and number of 
subsidiary cells. Plants from the same genus tended to display similar trait values (a, 
c). Only the first ten contributing variables for each plot (b,d) are shown.  
 

Random forest analyses 

It was not possible to accurately predict the value of any environmental trait 

(including maximum tree height) from epidermal characters (Table 5.3). The 

best predictive model was for the lower limit of mean temperature of the 

warmest quarter (meantwmq.min), which had an r2 value of 0.34.  
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Table 5.3 Results of Random Forest regression models fitted to each 
environmental variable, along with the best mtry parameter (the best number 
of variables to sample at each split of the decision tree), the r2 values and the 
most important variables in the best model. 

Environmental 
variable 

Best 
mtry r2 Most important variables 

max.height 4 0.30 polar.area.median, 

polar.undulation.freq.mean, 

pavezone.complexity.median,  

map.min 28 0.19 polar.undulation.freq.mean, stom.angle.sd, 

stom.gclength.mean 

map.max 28 0.21 pavezone.undulation.amp.median, 

polar.AR.median, 

pavezone.njunctionpts.mean 

meantwmq.mi

n 

4 0.34 stom.nsubcells.mean, stomzone.AR.median, 

stom.AR.mean 

meantwmq.ma

x 

5 0.26 dist.between.stom.rows, 

stom.nsubcells.mean, stom.AR.mean 

mintcm.min 23 0.23 polar.undulation.freq.mean, 

stom.spacingNN.mean, stom.symmetry.mean 

mintcm.max 9 0.25 pavezone.njunctionpts.mean, 

dist.between.stom.rows 

pavezone.angle.median 

pdq.min 5 0.22 dist.between.stom.rows, 

polar.complexity.median, 

pavezone.complexity.median 

pdq.max 14 0.30 pavezone.undulation.amp.median, 

polar.AR.median, stom.butterfly.mean,  

 

Discussion 

Most variation in epidermal traits appears to be related to taxonomic identity, 

rather than adaptation to the environmental characteristics I studied here. 

Although there were some weak correlations between traits and distribution, 

they could not be used to reliably predict the distributional limits of species. 

The variation that I observed was greater than one would expect for traits 
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that are under environmental control (where I would expect to see 

convergence on optimum trait values; Figure 5.1). Thus, it seems likely that 

most variation in epidermal traits in this family has a high G x E component, 

so calibrating epidermal physiognomic proxies will require characterisation of 

both the genotypic and plastic components of variation. Epidermal traits are 

routinely used to identify fossil podocarps (e.g. Hill & Carpenter, 1991; Mill & 

Stark Schilling, 2009; Stark Schilling & Mill, 2011), and indeed I found that 

individuals from the same genus tended to have similar traits (Figure 5.4), so 

there is likely to be a strong taxonomic or phylogenetic signal in these traits.  

Our restriction of sampling to plants that were grown in greenhouses severely 

limited the sample size and capacity to directly test for phylogenetic and 

plastic environmental signal in our results. However, related species have 

similar traits, suggesting that species are constrained by their evolutionary 

history. It is widely accepted that morphology and ecology tend to be 

phylogenetically conserved in podocarps (Brodribb & Hill, 1999; Hill & 

Brodribb, 1999; Brodribb & Hill, 2004), so although it is outside the scope of 

this thesis, it seems likely that future research into the taxonomic significance 

of epidermal traits, using a wider range of plants and employing e.g.  

phylogenetic generalised linear mixed models (Pearse et al., 2014) may 

prove fruitful.  

Although this study was limited by the availability of suitable plants, our 

results show significant variation in the epidermal traits of species that inhabit 

similar native environments (Figs S5.1-9). This means that while additional 

data collection may improve the statistical significance of some of the trends 

we observed, it is unlikely to reveal useful predictive relationships based on 

adaptive genotypic variation alone. It may not be possible to use epidermal 

traits to predict the climatic ranges of species, but many physiognomic 

methods use plastic responses to reconstruct the environment – multiple 

common garden trials (or ‘natural’ equivalents) may yet identify traits that are 

useful for physiognomy. However, the apparent phylogenetic signal that I 

observed highlights the importance of incorporating the effects of both 

evolutionary history and plasticity when calibrating physiognomic proxies.  
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I found a relationship between maximum tree height, pavement cell 

undulation (pavezone.complexity.median and stomzone.complexity.median) 

and stomatal index (Figure 5.3c, S1b,q,w). It is well-documented that the 

epidermal cells of many plants are more undulated in shaded conditions 

(Bruschi et al., 2000; Thomas et al., 2004) and this response appears to be 

plastic, exemplified in the differences between sun and shade leaves of the 

same individual (Bruschi et al., 2000). However, our result – that taller trees 

(more likely to be canopy emergents in Podocarpaceae; Farjon, 2010) have 

more undulated cells – needs careful consideration in this context. One 

potential explanation is that in taller trees, increased undulation is a plastic 

response to being grown in shaded conditions (i.e. in a greenhouse), as has 

been demonstrated to occur in saplings of boreal conifers (Claveau et al., 

2002). In this dataset, the tallest species (which also possessed the most 

undulated cells) was Sundacarpus amarus (Figure 5.4a); wild-collected 

specimens of this species have similarly extreme epidermal undulation 

(Stockey & Frevel, 1997), so it seems unlikely that this is a plastic response 

to greenhouse conditions. Another possibility is that although taller trees are 

more likely to be in full sun at maturity, they tend to germinate and grow 

under the canopy. Coupled with the notoriously slow growth rates of conifers 

compared to angiosperms (Bond, 1989; Brodribb & Hill, 2004), tall trees may 

actually spend a good portion of their life in the shade, and thus need to be 

able to tolerate these conditions. On the other hand, shorter trees and shrubs 

can either inhabit the understorey of forests (low light levels), or can form the 

canopy in more open vegetation (high light levels). The shorter species in this 

study generally fall into the latter category (e.g. Podocarpus gnidioides), and 

some understorey podocarps (Podocarpus drouynianus) tend to inhabit 

open, rather than closed forests, so tree height may even be positively 

correlated with shade tolerance in the Podocarpaceae, in contrast to other 

plant groups (e.g. Poorter et al., 2003). This idea is supported by the gross 

leaf morphology – rainforest podocarps (which tend to be tall trees) possess 

the broadest leaves, increasing light harvesting capacity in low light 

conditions (Hill & Brodribb, 2003).  
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Increased shade tolerance in taller trees could also explain the moderate 

correlation we observed between tree height and stomatal index (-0.41; Fig 

S5.3). This relationship is of particular interest in a palaeoproxy context 

because stomatal index is already used as a proxy for atmospheric carbon 

dioxide, volcanism (via sulphur dioxide) and altitude (Van Cotthem, 1970; Xie 

et al., 2009; Haworth et al., 2010b; Hu & Zhou, 2012; Steinthorsdottir et al., 

2016; McElwain & Steinthorsdottir, 2017; Wang et al., 2018; Porter et al., 

2019). The extreme physiological importance of stomata for moderating gas 

exchange and water loss means that the optimal stomatal index for a leaf is 

likely dependent on many climatic factors. Thus, any calibration of stomatal 

index as a proxy for palaeoenvironmental conditions could be easily 

perturbed by changes in other factors, and is likely to be extremely system-

specific (Jordan, 2011). These results suggest that in the Podocarpaceae, 

variation in stomatal index is caused by both genotype and environment (i.e. 

stomatal index is a G x E-trait). Interestingly, I did not find the stomatal size 

vs stomatal density trade-off that has been reported by many authors (e.g. 

Franks & Beerling, 2009; Brodribb et al., 2013). In this study, these traits 

seemed largely decoupled (Fig. 5d), though I note that it is possible that this 

trade-off operates mostly within species, whereas our results are driven more 

strongly by between-species variation. I also did not account for amphistomy, 

so did not compare size to the total number of stomata – this may be another 

reason that I did not observe a trade-off between size and abundance of 

stomata.  

It is not impossible to use G x E-traits to calibrate physiognomic methods, but 

it is vital that the effect of phylogenetic history is considered when using 

these characters (Little et al., 2010; Hinojosa et al., 2011). Although 

consistent, family-wide epidermal proxies of climatic tolerances remain 

elusive, or results do not rule out the use of epidermal traits for 

palaeoclimatic estimation. The development of new high-throughput methods 

to quantify the epidermis (e.g. Brown et al., this thesis) means that large 

studies of epidermal traits are much more feasible, and are limited by the 

availability of source material, rather than labour-intensive measurement of 
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traits. We anticipate that future research into the genetic and environmental 

basis of epidermal variation may yet produce viable palaeoclimatic proxies.    

Conclusion 

It is no small task to disentangle the complex multivariate relationships 

between morphology, environment, and phylogenetic history. Conifers are 

ubiquitous in the fossil record but are not well suited to common garden 

experiments, so calibrating physiognomic relationships for palaeoclimatic 

estimation in a sufficiently broad study system (e.g. a diverse family) is 

extremely challenging, unless we can identify traits that are directly linked to 

a species climatic range. Here, we found no evidence for such traits; it is 

likely that phylogenetic and plastic control of variation predominates over any 

adaptive signal. Future studies into epidermal trait-climate relationships 

(particularly in Podocarpaceae) should explicitly incorporate both tests for 

plasticity and phylogenetic signal (despite the methodological challenges in 

doing so) and it is vital that any predictions made from epidermal traits are 

adjusted to account for these factors.  
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Chapter 6 General Discussion 

Fossil data are extremely useful, but are also complex and sparse, making 

traditional statistical approaches challenging to apply (Spicer, 1988). Machine 

learning techniques are powerful tools to analyse these sorts of data and are 

increasingly being used for palaeoecological studies (Li et al., 2016; Wilf et 

al., 2016; Berg et al., 2019; Wei et al., 2021). However, machine learning 

algorithms are not a panacea and cannot be applied indiscriminately, nor do 

they remove the need for careful consideration of assumptions. Moreover, 

the sheer diversity of machine learning algorithms (including methods for 

classification, regression, unsupervised learning and image processing; 

Ayodele, 2010) means that identifying the appropriate method for a particular 

problem can be difficult.  

The aim of this thesis was to explore the potential for novel applications of 

machine learning algorithms in palaeoecology, using southern conifers as a 

study system. Southern conifers are overrepresented in the fossil record, 

show exceptional preservation of the epidermis via the cuticle, and are 

generally assumed to be ecologically conservative (Jin et al., 2021), making 

them ideal for palaeoecological studies. However, their utility is complicated 

by the presence of no-analogue fossils – instances where the bioclimatic 

envelopes of fossil species are not the same as those of their nearest 

relatives, leading to incongruous associations.  

In particular, I investigated no-analogue fossils – how to quantify them, what 

aspects of the bioclimatic envelope have changed, if we can detect these 

changes via the anatomy, and what no-analogue fossils mean for the future 

of southern conifers in a changing climate. I addressed this aim in two 

sections that correspond to the two major classes of palaeoecological 

estimation: nearest living relative methods and physiognomy.  
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What can no-analogue pairs tell us about the past, present 
and future ecology of the southern conifers?  

No-analogue pairs (pairs of fossil taxa for which the nearest living relatives 

occupy non-overlapping climates)  indicate that species bioclimatic ranges 

are not constant over geological timescales, violating the key assumption of 

nearest living relative approaches (Jordan, 1997; Mosbrugger & Utescher, 

1997). Thus, it is imperative to understand the prevalence and processes that 

have driven this phenomenon, but quantifying these differences and 

disentangling the climatic factors that are involved required a novel approach. 

I developed HYPEROVERLAP (Chapter 2) for this purpose, using support 

vector machines to detect overlap between multi-dimensional point clouds. 

This allowed me to analyse the Cenozoic record of southern conifers to 

identify instances of climatic non-overlap (i.e. no-analogue pairs; Chapter 3). 

I found that no-analogue pairs are frequent (10% of all pairs) across the 

southern hemisphere, and involve 27 different taxa (forming 73 unique pairs), 

suggesting that no-analogue pairs are the result of broad-scale processes. I 

further analysed these no-analogue pairs to identify which aspects of the 

bioclimatic range had changed and found that while the thermal niche 

appears to have changed in many taxa, the precipitation niche has remained 

stable for the majority of southern conifers over the Cenozoic. This result is 

important for both the future management of biodiversity and for 

palaeoclimatic estimation.  

The southern conifers are thought to be generally limited in their geographic 

distributions by water and disturbance, either climatic or otherwise (Brodribb 

& Hill, 1999; Hill & Brodribb, 1999; Brodribb & Hill, 2004; Sundaram & Leslie). 

The results from Chapter 3 provide evidence that this has been the case over 

geological timescales, thus highlighting the threat of current and future 

aridification (rather than warming) for southern conifers.  

Palaeoprecipitation is difficult to estimate using physiognomic methods (Wei 

et al., 2021), so evidence of stability in the precipitation niche of southern 

conifers is promising for their use as precipitation indicators in nearest living 
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relative analyses. This could be further strengthened if we can identify 

particular traits that are linked to climate, and compare these traits between 

fossil and extant species.   

Is it possible to identify changes in the bioclimatic envelope 
of southern conifers using epidermal physiognomy? 

The use of morphological traits of a fossil for palaeoecological inference is 

well-established (Wolfe, 1993; Spicer, 2009; Spicer et al., 2020) but much of 

this work (especially multivariate methods) has focused on gross leaf 

morphology rather than epidermal traits. Leaf form in conifers is strongly 

constrained by evolutionary history (Hill & Carpenter, 1991; Hill & Brodribb, 

2003) and fossils are often recovered as incomplete fragments (Spicer, 1988; 

Blomenkemper et al., 2021), so current physiognomic methods are generally 

unsuitable for conifers. However, conifer fossils frequently preserve the 

cuticle (and thus the outlines of the epidermal cells); these layers form the 

interface between plant and environment and show significant variation in cell 

shape, size and arrangement (which is routinely used for identification; 

Jordan & Hill, 1995; Hill & Paull, 2003; Jordan et al., 2011). Epidermal traits 

are known to be linked to climate in conifers (Haworth et al., 2010a; Clugston 

et al., 2017) so it is likely that some features of the epidermis can be used as 

proxies for the palaeoenvironment. If we can identify these proxies, we can 

compare the anatomy of fossil and extant species to identify bioclimatic 

changes between the two, and thus provide further insights into no-analogue 

associations.  

To use epidermal anatomy to investigate the climatic aspects of no-analogue 

pairs, the following steps are required:  

1) Quantify epidermal traits; 

2) Link these epidermal traits to climate; 

3) Apply these links to the comparative anatomy of fossils versus their 

extant relatives.  
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The epidermis has not been studied extensively from a physiognomic 

perspective, and so current methods of quantifying epidermal traits tend to be 

specific in terms of traits, taxon and purpose (Stark Schilling & Mill, 2011; 

Möller et al., 2017; Nowak et al., 2021). To remedy this, I developed 

EPIDERMALMORPH, an R package that quantifies epidermal traits from 

images of the leaf cuticle (Chapter 4). This software not only integrates 

measurement of several existing metrics (e.g. cell size), but also includes 

several new metrics, and is the first method to automate the description of 

stomatal arrangement. The software also includes functions to pre-process 

images, estimate trait reliability and calculate optimum sampling effort for a 

given group of plants. This software brings together high-throughput 

measures of cell shape with the holistic approach to epidermal 

characterisation that is used to identify fossils (e.g. Andruchow-Colombo et 

al., 2019) and represents a major step towards a unified framework for 

epidermal cell studies across all fields.  

The next step is to link these epidermal traits to climatic variables, and 

determine whether trait-climate relationships are the result of adaptation 

(genetic), acclimation (plastic), or some interaction between the two. Conifers 

are not well suited to reciprocal common garden experiments, and sampling 

from ‘natural’ common gardens is extremely costly, so we conducted a 

preliminary study using plants grown in a simple common garden (Chapter 

5). This design, while cost-effective and logistically straightforward, limited 

our scope to finding adaptive proxies – genetically controlled traits that are 

linked to the environmental conditions of the native range of a species. Thus, 

our null result highlights the need for further physiognomic calibrations that 

explicitly include phylogenetic, plastic and adaptive components of trait-

climate relationships, before we can apply epidermal physiognomy to the 

study of no-analogue pairs.  
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Challenges of using machine learning for palaeoecology 

Machine learning methods can vastly outperform traditional algorithms in 

certain tasks (e.g. Jordan & Mitchell, 2015; Wilf et al., 2016; Jayakody et al., 

2017; Berg et al., 2019; Wei et al., 2021), but these approaches are not 

without caveats and limitations.  

For example, HYPEROVERLAP (Chapter 2) outperforms niche modelling 

approaches (e.g. hypervolume; Blonder et al., 2014; Blonder et al., 2017) 

when evaluating shared regions of ecospace from point clouds, but will 

produce erroneous results if the edges of a species’ range are not sampled 

(niche modelling methods can handle this by adding a buffer to each point, 

but this is problematic for taxa where we can be confident that the species 

range has been well sampled; Fig. 2.4). Similarly, if images of epidermal cells 

are not accurately segmented (e.g. if sections of cell walls are missing or 

cells are erroneously divided by debris) then traits measured from this image 

will be inaccurate (although many of our metrics in EPIDERMALMORPH use the 

median rather than the mean value of cells in an image to mitigate this). As 

with any statistical method, thorough consideration of the underlying 

assumptions is crucial for the use of machine learning algorithms (Jordan & 

Mitchell, 2015).  

Implementation of machine learning methods is usually more time-consuming 

than traditional algorithms because of the increased computational 

requirements (although this is largely being matched by concomitant 

upgrades to hardware) and the need to tune these models  (Jordan & 

Mitchell, 2015). In some cases (as in Chapter 4), it may be more time-

efficient to partially automate a process and manually correct the errors, 

rather than developing an accurate end-to-end machine learning model. 

There has been significant progress in developing GUI (rather than scripted) 

functionality, in particular for image processing (e.g. Arganda-Carreras et al., 

2017; Berg et al., 2019), but machine learning continues to be regarded as 

inaccessible by many scientists.  
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The bewildering range of machine learning algorithms, each with their own 

advantages and disadvantages, makes identifying the most appropriate 

method for any given task difficult. Machine learning is a dynamic and rapidly 

evolving field of computing, so new algorithms are rapidly appearing in the 

literature, further bamboozling the novice. However, this diversification is a 

boon as well as a curse; many recent publications describe machine learning 

methods that are tailored to particular scientific fields and focus on 

accessibility as well as accuracy (Ayodele, 2010; Willcock et al., 2018; 

Sullivan, 2020; Rolf et al., 2021).  

Potential for future applications of machine learning in 
palaeoecology 

As we generate increasingly large amounts of data from the fossil record, 

machine learning techniques will continue to be developed and applied to 

palaeoecological questions.  

Machine learning for physiognomic methods is particularly promising – there 

has been significant recent work in this area (Li et al., 2016; Wei et al., 2021), 

although multivariate physiognomy is generally focused on the entire leaf, so 

the epidermis remains a source of untapped potential. Chapters 4 and 5 of 

this thesis represent the first steps in developing a new framework for 

epidermal physiognomy – fully disentangling the genetic and environmental 

components of variation in epidermal traits in southern conifers is beyond the 

scope of this thesis but is a promising avenue for future research. In 

particular, future studies of epidermal traits should use experimental designs 

that can incorporate both genetic (G) and environmentally (E) controlled 

variation, as well as the interaction between these two factors (G x E) – either 

by a reciprocal common garden experiment or by sampling from across 

species native ranges.  

The pixel data generated in these studies also represents an exciting source 

of training data for future automation – as noted in Chapter 4, image 

segmentation (i.e. pixel classification) remains a limiting step for high-

throughput analysis of the leaf epidermis. Automating this step would allow 
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us to elevate studies of epidermal traits into the realm of ‘big data’; there are 

over 3,000 images of cuticle preparations (of the kind suitable for 

EPIDERMALMORPH) that are already publicly available (e.g. Vőfély et al., 2019), 

and this number is likely to increase rapidly as open science and publicly 

available data become a standard part of publishing scientific results. One 

major repository for these images is the Cuticle Database (Barclay et al., 

2007), which provides open access to nearly two thousand images of cuticle 

preparations. Databases such as these vastly increase the potential sample 

size for epidermal studies, but because epidermal traits can be 

environmentally plastic it is vital that appropriate metadata is attached to 

these entries (as for herbarium specimens).  

Machine learning is not only becoming more commonplace in science, but 

much more accessible – most computers possess hardware capable of 

performing basic machine learning analyses, and cloud computing platforms 

facilitate access to supercomputers for many users. Here, I demonstrated the 

potential for machine learning to be used for palaeoecological studies from 

multiple perspectives, and published the two new methods that I developed 

as part of this thesis as R packages so that they can be easily utilised by the 

scientific community. I believe that creatively applying machine learning to 

the plant fossil record will continue to provide new insights and contributions 

to our understanding of plants in the past, present and future.   
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Figure S2.1 An example of the visualisation produced by the 

hyperoverlap_lda function in the HYPEROVERLAP package. Created using 

two species and five variables of the iris dataset (Anderson, 1935). 
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Figure S2.2 Pairwise comparison of climatic distributions of conifer genera 

(grouped phylogenetically) using HYPEROVERLAP.  

 

 

Supporting references 
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Figure S3.1. Matrix showing no-analogue associations by taxon.  
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Figure S3.2. No-analogue score (the square root of the number no-analogue pairs 
divided by the total number of pairs; a) and total number of no-analogue pairs (b) for 
each site versus age of fossil site.  
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Figure S3.3. Effect of adding anchor points at (0,0) to GAM-fitting datasets. The models 
fitted without anchor points (dark lines) predict demonstrably incorrect values for recent 
or extant assemblages, particularly for South American assemblages. Models fitted with 
either 10, 20, 50, 100 or 1000 points (light lines) all produce very similar predictions. All 
combinations of parameters produce similar estimates at 20-30Ma.   
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Figure S3.4. Segmented analysis of the no-analogue score for each region. Dotted lines 
represent the estimated breakpoint (dark) and 95% confidence interval for the location of 
the breakpoint (light). The estimated slope of each segment is given by a line, and the 
95% confidence interval of each section is shaded; p-values shown are for the first 
segment only.  
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Figure S4.1 Graphical description of cell simulation algorithm. 

Figure S4.2 Measured values of undulation index (UI; see Table 1) on 
simulated cells. 
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simulated cells. 

Figure S4.7 Automatic cell segmentation of a high-quality image of 
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______________________________________________ 

Supporting Methods – Image preparation for trait reliability 

Fully expanded adult leaves were collected from healthy plants grown at the 

University of Tasmania and the Royal Botanic Gardens Edinburgh (Table 

S4.1). These plants were all growing in shaded, frost-free greenhouses. For 

species with a wide geographic distribution, we sampled leaves from 

individuals with multiple provenances (where this was possible).  

For large leaves, pieces of approximately 1cm2 were cut from either side of 

the midrib in the middle third of the leaf; for smaller leaves, the base, apex 

and, if possible, the margins were removed. These samples were soaked in 

commercial household bleach (50 gL-1 sodium hypochlorite and 13 gL-1 

sodium hydroxide) until the cuticle separated from the mesophyll. Bleach was 

removed by thoroughly rinsing in water and remaining mesophyll tissue was 
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removed using a fine paintbrush. Sections were stained with 1% crystal violet 

or safranin solution for 1 minute, then mounted in phenol glycerine jelly. 

Several fields of view at ×10 magnification (field of view area, 0.56mm2) were 

photographed from each section using a Nikon Digital Sight DS-L1 camera 

(Melville, NY, USA) mounted on a Leica DM 1000 microscope (Nussloch, 

Germany). The best 3-5 images (identified as the clearest, without damage 

or obvious distortion) for each individual plant were selected for analyses.  
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_____________________________________________________________ 

Table S4.1 Plants sampled for trait reliability analyses. Plants were sampled 

from the Royal Botanical Gardens, Edinburgh (RBGE) or the University of 

Tasmania, Hobart (UTAS). 

PLANT ID SPECIES COLLECTED FROM ACCESSION # 

Acmopyle_pancheri1 Acmopyle pancheri RBGE 19842681 

Afrocarpus_falcatus1 Afrocarpus falcatus RBGE 20001613 

Afrocarpus_gracilior1 Afrocarpus gracilior RBGE 19820027 

Afrocarpus_mannii1 Afrocarpus mannii RBGE 19960587 

Falcatifolium_taxoides1 Falcatifolium taxoides UTAS - 

Falcatifolium_taxoides2 Falcatifolium taxoides UTAS - 

Pectinopitys_ladei1 Pectinopitys ladei UTAS - 

Phyllocladus_aspleniifolius1 Phyllocladus aspleniifolius UTAS - 

Phyllocladus_trichomanoides1 Phyllocladus trichomanoides UTAS - 

Podocarpus_brassii1 Podocarpus brassii UTAS - 

Podocarpus_coriaceus1 Podocarpus coriaceus RBGE 20030490 

Podocarpus_costalis1 Podocarpus costalis RBGE 19763956 

Podocarpus_dispermus1 Podocarpus dispermus UTAS - 

Podocarpus_dispermus2 Podocarpus dispermus RBGE 20110038 

Podocarpus_forrestii1 Podocarpus forrestii RBGE 19915024 

Podocarpus_lucienii1 Podocarpus lucienii RBGE 20010205 

Podocarpus_matudae1 Podocarpus matudae RBGE 19972324 

Podocarpus_nakaii1 Podocarpus nakaii RBGE 19763844 

Podocarpus_neriifolius1 Podocarpus neriifolius UTAS - 

Podocarpus_neriifolius2 Podocarpus neriifolius RBGE 19681468 

Podocarpus_pilgeri1 Podocarpus pilgeri RBGE 20022521 

Podocarpus_sellowii1 Podocarpus sellowii RBGE 20071743 

Podocarpus_trinitensis1 Podocarpus trinitensis RBGE 20030491 

Retrophyllum_rospigliossii1 Retrophyllum rospigliossii RBGE 19951953 

Retrophyllum_rospigliossii2 Retrophyllum rospigliossii UTAS - 

Sundacarpus_amarus1 Sundacarpus amarus RBGE 20030752 
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Figure S4.1. Simulated cell generation. We generated cells with 3,4,5 and 6 

sides, with aspect ratios of 1,2 and 5. These formed the ‘straight-walled’ 

cells. Each of these cells was then undulated with a frequency of 1, 2 and 3, 

and an amplitude of 0.2, 1 and 2, although for some shapes the maximum 

amplitude was not reached because of dampening effects.  
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Figure S4.2. Measured values of undulation index (UI; see Table 4.1) on 

simulated cells. On straight-walled cells (highlighted with white dotted line), 

UI increases with aspect ratio.  
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Figure S4.3. Measured values of solidity (see Table 4.1) on simulated cells. 

Solidity values are inflated for non-convex cells (highlighted with white dotted 

lines).  
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Figure S4.4. Measured values of complexity, a new metric presented here 

(see Figure 4.2), on simulated cells. Increases with undulation size and with 

undulation frequency. Note that the highlighted cells have exceptionally high 

values – this is due to the non-linear relationship between undulated and 

simple perimeter.  
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Figure S4.5. Measured values of maximum amplitude, a new metric 

presented here (see Fig. 4.2), on simulated cells. Increases with undulation 

size. Note that for some cells (e.g. those highlighted), the shape of the cell 

precludes the maximum amplitude from being reached – this is a quirk of the 

cell generation, not of the metric.  
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Figure S4.6. Measured values of undulation frequency, a new metric 

presented here (see Fig. 4.2), on simulated cells. Increases with undulation 

frequency. Note that for some cells (e.g. those highlighted), the frequency is 

lower than expected – this is a quirk of the cell generation (specifically the 

rounding of the wavelength to fit an integer number of undulations along a 

side), not of the metric.  
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Figure S4.7. Automatic cell segmentation of a high-quality image of 

Podocarpus coriaceus. The raw image (a), PaCeQUant segmentation (b), 

segmentation after ridge detection (c).   

 

 
 
 

  

a b 

c 
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Table S5.1 Correlation matrix between environmental variables 

 
max.height map.min meantwmq.min mintcm.min pdq.min 

max.height 1 -0.44131 -0.29417 -0.20446 -0.52708 

map.min -0.44131 1 0.274781 0.583954 0.745511 

meantwmq.min -0.29417 0.274781 1 0.590471 0.127852 

mintcm.min -0.20446 0.583954 0.590471 1 0.410408 

pdq.min -0.52708 0.745511 0.127852 0.410408 1 

map.max 0.207435 0.169402 -0.32985 -0.10423 0.044274 

meantwmq.max 0.279846 -0.13763 0.572236 0.2733 -0.41355 

mintcm.max 0.38464 0.190872 0.244657 0.587654 -0.09099 

pdq.max 0.26703 -0.00463 -0.51607 -0.2194 0.043227 
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Table S5.2 Correlation matrix between epidermal traits 

 

 st
om

at
al

.d
en

si
ty

.p
x2

 

st
om

at
al

.in
de

x 

di
st

.b
et

w
ee

n.
st

om
.ro

w
s 

st
om

.a
ng

le
.s

d 

st
om

.d
is

tN
N

.m
ea

n 

st
om

.d
is

t2
N

N
.m

ea
n 

st
om

.s
pa

ci
ng

N
N

.m
ea

n 

st
om

.n
su

bc
el

ls
.m

ea
n 

st
om

.s
ub

sa
re

a.
m

ea
n 

st
om

.g
cl

en
gt

h.
m

ea
n 

stomatal.density.px2 1.00 0.68 -0.47 0.21 -0.68 -0.79 0.00 0.09 -0.23 -0.19 

stomatal.index 0.68 1.00 -0.27 0.15 -0.55 -0.62 -0.11 -0.10 0.28 0.26 

dist.between.stom.rows -0.47 -0.27 1.00 -0.25 0.43 0.55 -0.03 -0.11 0.14 0.00 

stom.angle.sd 0.21 0.15 -0.25 1.00 -0.34 -0.32 -0.01 -0.08 -0.06 -0.20 

stom.distNN.mean -0.68 -0.55 0.43 -0.34 1.00 0.95 0.04 -0.05 0.24 0.20 

stom.dist2NN.mean -0.79 -0.62 0.55 -0.32 0.95 1.00 0.08 -0.10 0.23 0.12 

stom.spacingNN.mean 0.00 -0.11 -0.03 -0.01 0.04 0.08 1.00 -0.06 -0.07 -0.13 

stom.nsubcells.mean 0.09 -0.10 -0.11 -0.08 -0.05 -0.10 -0.06 1.00 0.16 0.22 

stom.subsarea.mean -0.23 0.28 0.14 -0.06 0.24 0.23 -0.07 0.16 1.00 0.88 

stom.gclength.mean -0.19 0.26 0.00 -0.20 0.20 0.12 -0.13 0.22 0.88 1.00 

stom.AR.mean -0.17 -0.21 -0.02 -0.48 0.13 0.04 -0.06 0.06 -0.11 0.29 

stom.butterfly.mean 0.20 0.07 -0.33 -0.24 -0.27 -0.28 -0.10 -0.19 -0.52 -0.31 

stom.symmetry.mean -0.31 -0.30 0.27 -0.28 0.48 0.46 -0.05 -0.18 -0.03 -0.03 

pavezone.angle.median -0.22 0.01 -0.01 0.35 0.04 0.06 0.07 -0.20 0.25 0.23 

pavezone.AR.median 0.03 0.06 0.05 -0.24 -0.22 -0.23 -0.15 0.00 -0.26 -0.06 

pavezone.area.median -0.32 0.38 0.31 -0.02 0.20 0.27 -0.14 -0.31 0.53 0.39 

pavezone.complexity.median -0.26 -0.08 0.08 0.19 0.36 0.44 0.11 -0.18 0.24 0.02 

pavezone.njunctionpts.mean -0.07 -0.12 0.14 0.23 0.08 0.12 -0.09 -0.11 -0.06 -0.20 

pavezone.undulation.amp.median -0.31 0.19 0.21 0.05 0.32 0.41 0.06 -0.25 0.43 0.23 

pavezone.undulation.freq.mean 0.10 -0.28 -0.07 0.34 0.05 0.04 0.02 0.06 -0.16 -0.25 

stomzone.AR.median 0.08 0.24 -0.05 -0.43 -0.17 -0.20 -0.14 0.09 -0.10 0.19 

stomzone.area.median -0.41 0.28 0.40 -0.10 0.28 0.35 -0.15 -0.28 0.53 0.43 

stomzone.complexity.median -0.34 -0.03 0.19 0.16 0.37 0.46 0.01 -0.23 0.29 0.06 



164 

 

stomzone.undulation.amp.median -0.36 0.26 0.30 0.09 0.21 0.32 -0.05 -0.30 0.46 0.27 

stomzone.undulation.freq.mean 0.27 -0.31 -0.15 0.18 -0.10 -0.13 0.05 0.14 -0.46 -0.52 

polar.AR.median -0.09 0.26 0.34 -0.29 -0.04 -0.03 -0.24 0.03 0.08 0.27 

polar.area.median -0.03 0.52 0.13 -0.05 -0.12 -0.08 -0.13 0.05 0.63 0.61 

polar.complexity.median -0.37 -0.27 0.08 0.01 0.53 0.51 0.10 0.01 0.21 0.10 

polar.undulation.amp.median -0.36 -0.02 0.06 -0.03 0.51 0.51 0.06 0.00 0.50 0.38 

polar.undulation.freq.mean 0.19 0.52 0.10 0.04 -0.45 -0.38 -0.17 -0.03 0.11 0.17 

 

(continues over page)  
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stomatal.density.px2 -0.17 0.20 -0.31 -0.22 0.03 -0.32 -0.26 -0.07 -0.31 0.10 

stomatal.index -0.21 0.07 -0.30 0.01 0.06 0.38 -0.08 -0.12 0.19 -0.28 

dist.between.stom.rows -0.02 -0.33 0.27 -0.01 0.05 0.31 0.08 0.14 0.21 -0.07 

stom.angle.sd -0.48 -0.24 -0.28 0.35 -0.24 -0.02 0.19 0.23 0.05 0.34 

stom.distNN.mean 0.13 -0.27 0.48 0.04 -0.22 0.20 0.36 0.08 0.32 0.05 

stom.dist2NN.mean 0.04 -0.28 0.46 0.06 -0.23 0.27 0.44 0.12 0.41 0.04 

stom.spacingNN.mean -0.06 -0.10 -0.05 0.07 -0.15 -0.14 0.11 -0.09 0.06 0.02 

stom.nsubcells.mean 0.06 -0.19 -0.18 -0.20 0.00 -0.31 -0.18 -0.11 -0.25 0.06 

stom.subsarea.mean -0.11 -0.52 -0.03 0.25 -0.26 0.53 0.24 -0.06 0.43 -0.16 

stom.gclength.mean 0.29 -0.31 -0.03 0.23 -0.06 0.39 0.02 -0.20 0.23 -0.25 

stom.AR.mean 1.00 0.15 0.25 -0.05 0.39 -0.16 -0.34 -0.26 -0.31 -0.22 

stom.butterfly.mean 0.15 1.00 -0.15 -0.24 0.32 -0.17 -0.21 -0.21 -0.12 -0.24 

stom.symmetry.mean 0.25 -0.15 1.00 -0.23 0.20 0.11 0.19 0.01 0.11 -0.06 

pavezone.angle.median -0.05 -0.24 -0.23 1.00 -0.11 0.18 0.17 0.14 0.15 0.07 

pavezone.AR.median 0.39 0.32 0.20 -0.11 1.00 0.02 -0.34 -0.13 -0.23 -0.46 

pavezone.area.median -0.16 -0.17 0.11 0.18 0.02 1.00 0.41 0.02 0.77 -0.46 

pavezone.complexity.median -0.34 -0.21 0.19 0.17 -0.34 0.41 1.00 0.34 0.83 0.31 

pavezone.njunctionpts.mean -0.26 -0.21 0.01 0.14 -0.13 0.02 0.34 1.00 0.07 0.64 

pavezone.undulation.amp.median -0.31 -0.12 0.11 0.15 -0.23 0.77 0.83 0.07 1.00 -0.15 

pavezone.undulation.freq.mean -0.22 -0.24 -0.06 0.07 -0.46 -0.46 0.31 0.64 -0.15 1.00 
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stomzone.AR.median 0.59 0.33 0.10 -0.12 0.70 0.08 -0.42 -0.23 -0.24 -0.48 

stomzone.area.median -0.15 -0.10 0.06 0.13 0.00 0.85 0.20 -0.15 0.61 -0.48 

stomzone.complexity.median -0.38 -0.20 0.18 0.12 -0.24 0.54 0.95 0.35 0.87 0.22 

stomzone.undulation.amp.median -0.34 -0.13 0.07 0.14 -0.07 0.85 0.60 0.00 0.89 -0.30 

stomzone.undulation.freq.mean -0.10 -0.09 0.00 -0.12 -0.13 -0.67 0.06 0.51 -0.43 0.81 

polar.AR.median 0.41 0.12 -0.05 0.05 0.42 0.30 -0.23 -0.21 0.06 -0.44 

polar.area.median -0.13 -0.03 -0.32 0.22 -0.01 0.55 -0.03 -0.25 0.35 -0.40 

polar.complexity.median -0.10 -0.27 0.17 0.04 -0.30 0.12 0.66 0.27 0.48 0.38 

polar.undulation.amp.median -0.18 -0.22 0.18 0.13 -0.33 0.40 0.68 0.07 0.71 0.08 

polar.undulation.freq.mean 0.04 0.15 -0.38 0.06 0.24 0.32 -0.22 -0.10 0.07 -0.34 

 

(continues over page)  
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stomatal.density.px2 0.08 -0.41 -0.34 -0.36 0.27 -0.09 -0.03 -0.37 -0.36 0.19 

stomatal.index 0.24 0.28 -0.03 0.26 -0.31 0.26 0.52 -0.27 -0.02 0.52 

dist.between.stom.rows -0.05 0.40 0.19 0.30 -0.15 0.34 0.13 0.08 0.06 0.10 

stom.angle.sd -0.43 -0.10 0.16 0.09 0.18 -0.29 -0.05 0.01 -0.03 0.04 

stom.distNN.mean -0.17 0.28 0.37 0.21 -0.10 -0.04 -0.12 0.53 0.51 -0.45 

stom.dist2NN.mean -0.20 0.35 0.46 0.32 -0.13 -0.03 -0.08 0.51 0.51 -0.38 

stom.spacingNN.mean -0.14 -0.15 0.01 -0.05 0.05 -0.24 -0.13 0.10 0.06 -0.17 

stom.nsubcells.mean 0.09 -0.28 -0.23 -0.30 0.14 0.03 0.05 0.01 0.00 -0.03 

stom.subsarea.mean -0.10 0.53 0.29 0.46 -0.46 0.08 0.63 0.21 0.50 0.11 

stom.gclength.mean 0.19 0.43 0.06 0.27 -0.52 0.27 0.61 0.10 0.38 0.17 

stom.AR.mean 0.59 -0.15 -0.38 -0.34 -0.10 0.41 -0.13 -0.10 -0.18 0.04 

stom.butterfly.mean 0.33 -0.10 -0.20 -0.13 -0.09 0.12 -0.03 -0.27 -0.22 0.15 

stom.symmetry.mean 0.10 0.06 0.18 0.07 0.00 -0.05 -0.32 0.17 0.18 -0.38 

pavezone.angle.median -0.12 0.13 0.12 0.14 -0.12 0.05 0.22 0.04 0.13 0.06 

pavezone.AR.median 0.70 0.00 -0.24 -0.07 -0.13 0.42 -0.01 -0.30 -0.33 0.24 

pavezone.area.median 0.08 0.85 0.54 0.85 -0.67 0.30 0.55 0.12 0.40 0.32 

pavezone.complexity.median -0.42 0.20 0.95 0.60 0.06 -0.23 -0.03 0.66 0.68 -0.22 

pavezone.njunctionpts.mean -0.23 -0.15 0.35 0.00 0.51 -0.21 -0.25 0.27 0.07 -0.10 

pavezone.undulation.amp.median -0.24 0.61 0.87 0.89 -0.43 0.06 0.35 0.48 0.71 0.07 

pavezone.undulation.freq.mean -0.48 -0.48 0.22 -0.30 0.81 -0.44 -0.40 0.38 0.08 -0.34 

stomzone.AR.median 1.00 0.09 -0.36 -0.14 -0.28 0.54 0.16 -0.30 -0.28 0.36 

stomzone.area.median 0.09 1.00 0.40 0.81 -0.76 0.42 0.74 0.07 0.40 0.40 
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stomzone.complexity.median -0.36 0.40 1.00 0.75 -0.06 -0.09 0.11 0.66 0.70 -0.06 

stomzone.undulation.amp.median -0.14 0.81 0.75 1.00 -0.61 0.21 0.52 0.32 0.60 0.26 

stomzone.undulation.freq.mean -0.28 -0.76 -0.06 -0.61 1.00 -0.43 -0.66 0.20 -0.22 -0.37 

polar.AR.median 0.54 0.42 -0.09 0.21 -0.43 1.00 0.50 -0.14 -0.06 0.66 

polar.area.median 0.16 0.74 0.11 0.52 -0.66 0.50 1.00 -0.10 0.27 0.67 

polar.complexity.median -0.30 0.07 0.66 0.32 0.20 -0.14 -0.10 1.00 0.80 -0.25 

polar.undulation.amp.median -0.28 0.40 0.70 0.60 -0.22 -0.06 0.27 0.80 1.00 -0.16 

polar.undulation.freq.mean 0.36 0.40 -0.06 0.26 -0.37 0.66 0.67 -0.25 -0.16 1.00 
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Table S5.3  Correlation matrix between epidermal traits and environmental 

variables 
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stomatal.density -0.23 0.07 0.04 0.02 0.16 -0.17 -0.09 -0.22 -0.09 

stomatal.index -0.41 0.15 0.10 0.16 0.18 -0.03 -0.03 -0.10 0.04 

dist.between.stom.rows 0.17 0.07 0.24 0.25 -0.18 0.06 0.31 0.38 -0.07 

stom.angle.sd -0.05 0.00 0.29 0.05 0.04 0.00 0.22 0.06 -0.04 

stom.distNN.mean 0.26 -0.11 -0.03 -0.08 -0.15 0.09 -0.01 0.08 0.05 

stom.dist2NN.mean 0.28 -0.08 -0.01 -0.05 -0.15 0.11 0.03 0.12 0.05 

stom.spacingNN.mean 0.23 -0.08 -0.04 -0.07 -0.05 -0.11 0.05 -0.02 -0.06 

stom.nsubcells.mean -0.14 0.01 0.16 -0.05 -0.09 -0.09 0.05 -0.11 -0.14 

stom.subsarea.mean -0.26 0.01 0.20 0.14 -0.01 0.05 0.08 0.05 0.05 

stom.gclength.mean -0.23 0.06 0.08 0.09 0.06 0.08 -0.03 0.03 0.10 

stom.AR.mean 0.16 0.01 -0.34 -0.17 -0.03 0.08 -0.24 -0.06 0.09 

stom.butterfly.mean 0.04 0.03 -0.28 -0.04 0.11 0.01 -0.09 -0.01 0.12 

stom.symmetry.mean 0.23 -0.09 -0.29 -0.07 -0.06 0.16 -0.11 0.12 0.18 

pavezone.angle.median 0.09 0.03 0.00 -0.03 -0.06 0.18 0.14 0.17 0.14 

pavezone.AR.median -0.02 -0.03 -0.26 -0.04 -0.05 -0.10 -0.08 0.10 -0.03 

pavezone.area.median -0.05 0.13 0.06 0.20 0.06 0.16 0.15 0.23 0.17 

pavezone.complexity.median 0.35 -0.02 -0.02 -0.10 -0.20 0.26 0.22 0.19 0.20 

pavezone.njunctionpts.mean 0.15 -0.05 0.14 -0.13 -0.11 0.12 0.27 0.17 0.02 

pavezone.undulation.amp.median 0.17 0.08 0.01 0.07 -0.10 0.28 0.21 0.23 0.26 

pavezone.undulation.freq.mean 0.17 -0.10 0.21 -0.28 -0.17 0.01 0.17 -0.09 -0.14 

stomzone.AR.median -0.16 0.10 -0.30 -0.07 0.09 -0.01 -0.28 -0.09 0.07 

stomzone.area.median -0.19 0.17 0.19 0.28 0.13 0.12 0.09 0.20 0.10          
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stomzone.complexity.median 0.24 0.01 0.08 -0.02 -0.19 0.24 0.25 0.22 0.15 

stomzone.undulation.amp.median 0.00 0.14 0.17 0.24 -0.02 0.16 0.23 0.28 0.12 

stomzone.undulation.freq.mean 0.17 -0.21 0.01 -0.35 -0.22 -0.10 0.06 -0.20 -0.19 

polar.AR.median -0.14 0.28 0.01 0.23 -0.01 0.16 -0.07 0.16 0.06 

polar.area.median -0.38 0.30 0.30 0.38 0.22 0.09 0.08 0.16 0.04 

polar.complexity.median 0.25 -0.09 0.06 -0.09 -0.33 0.08 0.12 0.06 0.00 

polar.undulation.amp.median 0.13 -0.01 0.07 0.04 -0.15 0.14 0.11 0.13 0.12 

polar.undulation.freq.mean -0.43 0.43 0.21 0.36 0.26 0.10 -0.01 0.09 -0.02 
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Figure S5.1 Cuticle of Podocarpus gnidioides, showing region of 
concentrated stomata (red) and non-stomatal region (blue). 
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Figure S5.2 Scatterplots between each epidermal trait and mean 

annual precipitation – maximum. Linear relationships between variables 

with a correlation coefficient >0.2 are shown.  
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Figure S5.3 Scatterplots between each epidermal trait and mean 

annual precipitation – minimum. Linear relationships between variables 

with a correlation coefficient >0.2 are shown. 
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Figure S5.4 Scatterplots between each epidermal trait and maximum 

tree height. Linear relationships between variables with a correlation 

coefficient >0.2 are shown. 



175 

 

 
Figure S5.5 Scatterplots between each epidermal trait and mean 

temperature of the warmest quarter – minimum. Linear relationships 

between variables with a correlation coefficient >0.2 are shown. 
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Figure S5.6 Scatterplots between each epidermal trait and mean 

temperature of the warmest quarter – maximum. Linear relationships 

between variables with a correlation coefficient >0.2 are shown. 
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Figure S5.7 Scatterplots between each epidermal trait and minimum 

temperature of the coldest month - maximum. Linear relationships between 

variables with a correlation coefficient >0.2 are shown. 
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Figure S5.8 Scatterplots between each epidermal trait and minimum 

temperature of the coldest month – minimum. Linear relationships 

between variables with a correlation coefficient >0.2 are shown. 
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Figure S5.9 Scatterplots between each epidermal trait and precipitation of 

the driest quarter – maximum. Linear relationships between variables 

with a correlation coefficient >0.2 are shown. 
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Figure S5.10 Scatterplots between each epidermal trait and 

precipitation of the driest quarter – minimum. Linear relationships 

between variables with a correlation coefficient >0.2 are shown. 
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