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Abstract

This paper evaluates the real-time forecast performance of alternative Bayesian

Vector Autoregressive (VAR) models for the Australian macroeconomy. To this end,

we construct an updated vintage database and estimate a set of model specifications

with different covariance structures. The results suggest that a large VAR model

with 20 variables tends to outperform a small VAR model when forecasting GDP

growth, CPI inflation and unemployment rate. We find consistent evidence that

the models with more flexible error covariance structures forecast GDP growth and

inflation better than the standard VAR, while the standard VAR does better than

its counterparts for unemployment rate. The results are robust under alternative

priors and when the data includes the early stage of the COVID-19 crisis.
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1 Introduction

Forecasting key macroeconomic variables, such as output growth, inflation and unemploy-

ment is an important but difficult task for policy makers. To obtain accurate and timely

forecasts of such indicators, forecasters have to deal with uncertainty around forecasting

models and data. The accurate forecasts would only be obtained under a model that is

able to capture the salient feature of macroeconomic data. Producing timely forecasts,

on the other hand, requires a forecasting approach that can handle with data that have

been just released and subject to revisions in the future.

In this paper, we take the aforementioned issues into account. We contribute to

the literature by, for the first time, investigating real-time data for Australia. Much of

literature has looked at forecasting using the latest available vintage of data at the time

of investigation. However, as highlighted in Clements and Galvão (2013) and Clements

(2017), among others, using truncated series from such a single vintage would lead to an

inaccurate assessment. One of the main reasons is that most macroeconomic variables

are subject to data revisions and these revisions are often not small and random. Using

a single vintage of data implies that the data used in model estimation have been revised

many times, while the forecast is conditioned on data that have been just released. As a

result, data revisions have a major impact on forecasts (Croushore, 2011a,b). To minimize

these potential forecasting problems, we employ a real-time database that includes all

possible data vintages for the Australian macroeconomy. To that end, we collect data

vintages from various sources and construct an updated and comprehensive real-time

dataset of key macroeconomic variables for Australia.1

In addition to constructing and utilizing real-time data, we also exploit the usefulness

of non-standard Vector autoregressive (VARs) in the context of the Australian macroecon-

omy. VARs have been a successful tool in the forecasting literature since the mid-1980s.

Starting with the early work by Doan et al. (1984) and Litterman (1986) which exploited

Bayesian methods and focused on VARs with a small number of dependent variables.

Because VARs tend to have a great number of parameters, Bayesian approach offers a

formal way to shrinking parameters and improves forecast performance. The family of

priors that they used is commonly called Minnesota prior and one of the most popular

priors in the Bayesian VAR (BVAR) literature. This approach was followed by the sem-

inal work of Bańbura et al. (2010), who considered larger BVAR models with more than

20 variables. With a slight modification of the Minnesota prior, Bańbura et al. (2010)

found that large BVAR models even forecast better than small BVARs and factor models.

Similar conclusions are also found in Carriero et al. (2009), Koop (2013) and Carriero

1This dataset is available at https://sites.google.com/site/nguyenhoaibao.

2



et al. (2015). Recently, a variety of extensions of the standard VAR with conventional as-

sumptions of error disturbances (e.g., homoscedastic, Gaussian and serially independent)

has been proposed, including alternative model specifications that can feature flexible

covariance structures (Cross et al., 2020; Chan, 2020a,b). For example, in the context

of large BVARs and using US macroeconomic data, Chan (2020b) shows that one can

further improve the forecast performance of VARs by replacing the standard covariance

structure with a more flexible structure, such as non-Gaussian, heteroscedastic, and se-

rially dependent innovations. These extensions are crucial because they can take into

account salient features of macroeconomic time series and thus enhance the forecasting

power of BVARs (Carriero et al., 2015; Clark and Ravazzolo, 2015).

In light of this emerging literature, we evaluate the forecast performance of a set of

small and large BVAR models for the Australian economy. To this end, we first consider

a small VAR with three core macroeconomic variables, including GDP growth, CPI in-

flation and unemployment rate as a benchmark model. We then compare the forecast

performance of this benchmark model with those associated with a larger VAR model.

As in Chan (2020a), we consider a set of VAR models combining three error covariance

structures: common stochastic volatility, serial dependence moving error and t innova-

tions. While these features are found to be important in forecasting for many economies

(Chan, 2020b; Zhang et al., 2020), evidence for the Australian economy has been limited.

Recent work by Cross and Poon (2016) considers a wide range of univariate and small

multivariate models and points out that models with heavy-tailed error distributions, such

as the t distribution, provide the most accurate forecasts for Australian GDP. With this

idea in mind, along with the t distribution, we also consider heteroscedastic and serially

dependent errors. Our approach therefore takes into account all possible combinations

of non-standard error assumptions. In addition, other than a small VAR considered in

Cross and Poon (2016), this paper evaluates the forecast performance of a relative larger

model with 20 variables. The number of variables considered in this paper is motivated

by recent evidence found by Panagiotelis et al. (2019), who show that a VAR model that

is not beyond 20 variables tends to generate more accurate macroeconomic forecasts for

Australia.

Our out-of-sample forecasting experiment delivers the following results. We find that

a large VAR model with 20 variables tends to outperform a small VAR model when

forecasting GDP growth, CPI inflation and unemployment rate. Specifically, we find

consistent evidence that the models with more flexible error covariance structures forecast

GDP growth and inflation better than the standard VAR, whereas the standard VAR

using non-standard priors does better than its counterparts for unemployment rate. These

findings are found to remain unchanged under alternative priors and when the data
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includes the early stage of the Covid-19 crisis.

The rest of the paper is organized as follows. In Section 2 we describe how we collect

the real-time dataset and their sources. We then introduce in Section 3 alternative

covariance structures that incorporate into BVARs. Forecast results and discussion are

presented in Section 4. We report the sensitivity analysis in Section 5 and Section 6

concludes the paper.

2 Data

In this paper, we use a dataset that includes a variety of standard macroeconomic and

financial variables, such as GDP and its components, prices, unemployment and money

supply. These variables are similar to variables that commonly include in a large-size

VARs in the macroeconomics forecasting literature (Bańbura et al., 2010; Koop, 2013;

Chan, 2020a). To capture the fact that the Australian economy is a small open economy

and relies on commodity resources, we also include a real exchange rate measure, terms

of trade and commodity prices. While Eickmeier and Ng (2011) find that adding interna-

tional predictors can improve forecast for New Zealand GDP, Panagiotelis et al. (2019)

and Bjørnland et al. (2017) highlight that such predictors do not add much value to pre-

dicting GDP growth for Australia. With this idea in mind, we only consider a medium

number of predictors that consists of 20 variables and runs from 1982Q3 to 2020Q1. Se-

ries which are originally observed at a monthly frequency are transformed to quarterly

by averaging over the 3 months in a quarter. Table A1 in Appendix A provides a brief

description of each variable, along with the methods of transformation.

Except for financial variables that are not subject to revision, we use real-time data

for the remaining variables. Data vintages before 2017Q1 are taken from the Australian

Real-Time Macroeconomics Database maintained by the University of Melbourne.2 These

data vintages are collated from various sources, which are originally published by the

Australian Bureau of Statistics (ABS) and the Reserve Bank of Australia (RBA). The

construction of this database is described in Lee et al. (2012) and the reader is referred to

that paper for further details about the data. To update the dataset, we collected data

vintages from 2017Q2 to the most recent release from ABS and RBA website. The real-

time data used in this paper therefore consists of vintages for 1995Q1 through 2020Q2,

each covering data extending back to 1982Q3. The starting date of 1995Q1 for the first

vintage was chosen because data for some of the variables of interest are only available

2The database is publicly available for download at https://fbe.unimelb.edu.au/economics/macrocentre

/artmdatabase#databases-and-documentation
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until 1982.3 Starting with vintage 1995Q1 makes our first sample of evaluation period long

enough to allow reasonable estimation inference. The models are first estimated with data

from 1982Q3 to 1995Q1, and then recursively estimated with expending sample windows

starting in 1982Q4 and ending in 1995Q2, 1995Q3, ..., 2019Q1. Due to reporting lags,

the real-time data vintage released at time t contains observations only up to time t− 1.

We report results for horizons of current quarter nowcasts as well as one-quarter-ahead,

two-quarter-ahead and one-year-ahead forecasts.

Aside from the evaluation period, another issue is what vintage to be taken as actual

data in calculating forecast errors. In real-time forecasting literature, either the first

release following the forecast date or the most recent vintage can be used. As discussed in

Lee et al. (2012), the Australian real-time data has been revised multiple times for various

reasons, reflecting “definitional changes” and “revisions”. In this case, data released in

the latest vintage is presumably closer to the underlying “true” value of the time series.

Thus, we decided to take the latest vintage as actuals in evaluating forecast accuracy, as

in Garratt et al. (2009), Schorfheide and Song (2015), Carriero et al. (2015) and Chan

(2020a).

3 Flexible Bayesian VARs

BVARs with flexible covariance matrix assumptions are considered as the main specifi-

cations of the competing models in our forecast exercise. In the following sections, we

first introduce BVARs with conventional error assumptions and then common stochastic

volatility (CSV), heavy tailedness (e.g., Student’s t distribution), and serial dependence

moving average error (MA).

3.1 Standard VARs with Conventional Error Assumptions

We start from an expression of the standard VAR model, which can be written in a

reduced form of VAR with order p as below:

yt = b + B1yt−1 + · · ·+ Bpyt−p + εyt , εyt ∼ N (0,Σ), (1)

where yt = (y1t, · · · , ynt)′ denote an n×1 vector of endogenous variables in a BVAR, b is

an n× 1 vector of intercepts, and B1, · · · , Bp are n× n coefficient matrices, and Σ is an

n× n cross-sectional covariance matrix of VAR. In a standard VAR, εyt can be assumed

3For example, from the Australian Real-Time Macroeconomics database, the first vintage for real

GDP is 1971Q3 and the sample collected begins in 1959Q3, while commodity prices for Australia is only

available from 1982Q3.
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to be independent and identically Gaussian distributed (iid). In practice, Equation 1 can

be rewritten as below for parameter estimation:

yt = Xtβ + εyt , (2)

where Xt = In ⊗ [1, y′t−1, · · · , y′t−p] in which notation ⊗ denotes the Kronecker product,

and β is stacked by rows of [b,B1, ...,Bp]
′ with the size of (1 + np)n× 1.

Let x′t = (1, y′t−1, · · · , y′t−p) be a 1 × (1 + np) vector, when stacking the observations

over time T , we get X which is a T × (1 + np) matrix. Then we have:

Y = XB + E, (3)

where Y is yt stacked over time T , B = (b,B1, ...,Bp)
′ with a size of (1 + np) × n,

E = (εy1, · · · , ε
y
T )′, so that

vec(E) ∼ N (0,Σ⊗Ω), (4)

where Ω is the serial covariance matrix of VAR model.

As mentioned, in improving model fitness and forecastability, the standard BVAR

model with iid Gaussian innovations can be extended in different ways in order to capture

important features of macroeconomic time series. In what follows, we introduce these

extensions in details and consider those proposed models as flexible BVARs.

3.2 VARs with a Common Stochastic Volatility

One of the most useful extensions of VARs is the adoption of a common stochastic

volatility (CSV) factor. There has been recognized that the volatilities of a wide ranges

of macroeconomic variables are time-varying and tend to move together (Carriero et al.,

2016; Mumtaz and Theodoridis, 2018; Poon, 2018). However, standard VARs with ho-

moscedastic error, would not be able to capture this feature. The inclusion of CVS error

specification allows VARs to capture any common structural shifts in the macroeconomic

time series. In the modeling framework of VARs with CSV, we firstly consider time-

varying volatility. Suppose εyt ∼ N (0, ehtΣ), where h is the stochastic volatility parame-

ter and eht is the common stochastic volatility (Carriero et al., 2016). More specifically,

h follows an AR(1) process:

ht = φhht−1 + εht , εht ∼ N (0, σ2
h), (5)

where |φh| < 1. In this assumption, the variances of all the variables share the

same stochastic volatility parameter which is a restrictive assumption. There is empirical

evidence that the volatilities of macroeconomic time series have a comovement (Carriero

et al., 2016), thus it is also a parsimonious assumption for parameter estimation.
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3.3 VARs with a CSV and t Errors

Recent empirical studies also show that the forecast performance of macroeconomic vari-

ables can be improved when normal distribution is replaced by heavy-tailed distribution,

e.g. Student’s t distribution, in covariance matrix of VARs. The importance of this

extension is that when the model accounts for t-disturbances, this specification of heavy-

tailed innovations turns out to present good features, such as reducing the variation of

estimates, dealing well with outliers, such as the Great Recession, and thus providing

good model fitness (e.g., Clark and Ravazzolo, 2015; Cross and Poon, 2016; Chiu et al.,

2017). In modelling VARs that can capture such fat tail events, the distribution of error

terms εyt has one more hyperparamter λt for t innovations:

εyt ∼ N (0, λte
htΣ), (6)

where λt ∼ IG(νλ/2,νλ/2) following an inverse-gamma distribution with degree of free-

dom parameter νλ, and λ1, ..., λT are independent from each other.

3.4 VARs with a CSV and MA(1) t Errors

Another property of macroeconomic variables that has been recognized is serially de-

pendent (Chan, 2013). To handle this property, the conventional assumption of serially

independent innovations can be replaced by a moving average of error terms. Following

Chan (2020b), for the serial dependence of covariance matrix over time, suppose the error

term εyt follows a heteroscedastic moving average innovation process. More precisely, we

assume εyt has an MA(1) stochastic volatility process:

εyt = ut +ψεut−1, ut ∼ N (0, λte
htΣ). (7)

Here, the covariance matrix Ω in Equation 4 has ((1 + ψ2
ε)λ1e

h1 , ..., (1 + ψ2
ε)λT e

hT )

along its main diagonal, (ψελ1e
h1 , ...,ψελT−1e

hT−1) above and below the main diagonal,

and 0 elsewhere.

Table 1 summarizes specifications considered in our main analysis. For our forecasting

exercise, we start with a small BVAR model with conventional error assumptions and

consider this model as a benchmark. We then include a larger BVAR model and augment

the aforementioned features of the covariance structure into the standard BVAR.
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Table 1: A list of competing models.

Model Description

Small BVAR 3-variable VAR with standard error assumptions

BVAR 20-variable VAR with standard error assumptions

BVAR-CSV 20-variable VAR with a common stochastic volatility

BVAR-CSV-t 20-variable VAR with a CSV and t errors

BVAR-CSV-t-MA 20-variable VAR with a CSV and MA(1) t errors

All models are estimated using Markov chain Monte Carlo method (MCMC), see

Appendix B for details on simulation. The estimation results in our empirical studies are

all based on 5000 posterior samples obtained after a burn-in period of 1000. With regard

to priors, for the comparison purposes, whenever possible we choose exactly the same

priors for the common parameters across models. In particular, the Minnesota prior and

the natural conjugate prior is used for the standard VARs and flexible VARs respectively.

Details of values of the hyperparameter of these prirors are reported in Appendix C.

4 Forecast Results

In this section, we perform a recursive out-of-sample forecasting exercise to evaluate the

performance of the proposed VARs in terms of both point and density forecast. For ex-

pository purposes, in the analysis below we focus on the performance of the models listed

in Table 1. Additional results under other possible combinations of CSV, t innovations

and MA, such as BVAR-t, BVAR-t-MA, ..., can be found in Appendix D.1.

4.1 Forecast Evaluation Metrics

To evaluate the forecast performance of each of the Baysian VAR models listed in Table 1,

we perform a recursive out-of-sample forecasting exercise to obtain both point and density

forecast. The recursive exercise will involve using data available up to time t− 1 released

in vintage t to forecast at time t+ k for k = 0, 1, 2 and 4. Thus, the forecast horizons are

nowcasts, one-quarter-ahead, two-quarter-ahead and one-year-ahead. We focus on three

target variables: real GDP growth, CPI inflation and unemployment rate. Following

standard practice, we set the lag length to p = 4.

The accuracy of the point forecast is assessed by root mean square forecast error

(RMSFE). RMSFE is a commonly used scale dependent measure for each time series

with the same unit. For RMSFE, a smaller value comes from a smaller forecast error and
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stands for a better forecast performance. The value of RMSFE for the target variable i

(i = 1, 2, 3) at forecast horizon k (k = 0, 1, 2, 4) is calculated as:

RMSFEi,k =
1

T − k − T0

T−k−1∑
t=T0−1

√
(yoi,t+k − E(yi,t+k |yt1:t−1))2,

where T0 is the start of the evaluation period, yoi,t+k is the observed value of the interested

variable in the latest vintage, and E(yi,t+k |yt1:t−1) is the sample mean of forecasts given

information of the variable up to time t− 1 in vintage t.

As point forecast ignores the predictive distribution of forecast results, we also evaluate

the forecast performance from predictive distribution of density forecast by the average

of log predictive likelihood (ALPL). For the estimation yi,t+k in vintage t, the predictive

likelihood is obtained by the predictive density evaluated at the observation yoi,t+k. More

specifically, the ALPL is defined as:

ALPLi,k =
1

T − k − T0

T−k−1∑
t=T0−1

log p(yi,t+k = yoi,t+k |yt1:t−1),

where p(yi,t+k = yoi,t+k |yt1:t−1) is the predictive likelihood with information of the inter-

ested variable up to time t − 1 in vintage t. Given the predictive distribution, a larger

value of predictive likelihood means that the observation yoi,t+k is more likely under the

predicted density forecast. In other words, a larger value of ALPL indicates better fore-

cast performance.

4.2 Forecasting Results

In this section we discuss the forecast performance of the proposed BVAR models for

GDP growth, CPI inflation and unemployment rate. We report the point and density

forecast results of these models for each variable in Table 2, 3 and 4, respectively. For easy

comparison, we report the ratios of RMSFEs of a given model to those of the benchmark

BVAR using the three core variables. Hence, values smaller than unity indicate better

forecast performance than the small BVAR. For ALPLs, we report differences from that

of the small BVAR. In this case, positive values indicate better forecast performance than

the benchmark.

Overall, the results suggest the covariance structure that the forecaster chooses to

embed to the BVAR model, along with the model size, effectively impacts the forecast

performance. In particular, for the case of the Australian macroeconomy, we find three

consistent patterns. First, the large BVAR models tend to outperform the small BVAR

for all three core variables, especially for horizons after nowcasts. These findings are con-

sistent with the results in Koop (2013), Panagiotelis et al. (2019) and Chan (2020b). For
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example, using real-time dataset for the US, Chan (2020b) finds that a BVAR model with

20 variables tend to forecast real variables better than a small BVAR. In the Australian

context, our results further reveal that the large VAR models also do well for norminal

variables. A similar conclusion is also found in Panagiotelis et al. (2019). Using truncated

series from a single vintage, this study finds that a large model that is not beyond 20

variables tends to provide better forecasts for Australia.

Second, the results also show that the models with more flexible error covariance

structures can improve the forecast accuracy of GDP growth and CPI inflation. For

GDP growth, BVAR-CSV and BVAR-CSV-t forecast relatively better than the bench-

mark for both point and density forecasts. For example, BVAR-CSV does better in all

horizons in terms of point forecast and BVAR-CSV-t is found to be the best model in

terms of density forecasts. More interesting, we find BVAR-CSV-t-MA, the most flexible

covariance structure among our proposed models, forecasts CPI inflation substantially

better than the benchmark model for both point and density forecasts. This model re-

duces the RMSFE of BVAR about 7% for all horizons. Our results for Australia further

confirm those in recent forecasting literature, such as Clark (2011), D’Agostino et al.

(2013), Clark and Ravazzolo (2015), and Chan (2020a). Investigating real-time dataset

for the US, these studies consistently find that BVAR models with stochastic volatility

tend to outperform their counterparts with constant variance. Other than that, as high-

lighted in Cross and Poon (2016) and Chan (2020a), forecasting results for Australia also

suggest, in many instances, the forecasting accuracy can be further improved by adding

more features, such as t error distribution and MA component, to the covariance of the

VAR model.

Table 2: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR 0.982 0.965 0.991 0.988 -0.015 -0.028 -0.051 -0.057

BVAR-CSV 0.978 0.988 0.998 0.985 0.059 0.034 0.027 -0.004

BVAR-CSV-t 0.983 0.990 1.000 0.989 0.070 0.055 0.048 0.082

BVAR-CSV-t-MA 0.988 0.992 1.000 0.988 0.061 0.049 0.044 0.078

Note: Values in bold indicate the best relative RMSFE and ALPL. Gray cells indicate the

significant difference of the predictive accuracy between an alternative models and the benchmark

small BVAR, at 1% level of significance using the related asymptotic test introduced by Diebold

and Mariano (1995).
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Table 3: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR 0.936 0.945 0.960 0.971 0.019 0.018 0.006 0.007

BVAR-CSV 0.932 0.922 0.923 0.918 0.116 0.152 0.153 0.192

BVAR-CSV-t 0.925 0.925 0.925 0.921 0.182 0.195 0.197 0.206

BVAR-CSV-t-MA 0.920 0.917 0.919 0.912 0.188 0.203 0.198 0.209

Note: see Table 2.

Table 4: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR 0.892 0.928 0.884 0.842 0.215 0.301 0.335 0.348

BVAR-CSV 1.014 0.969 0.934 0.888 0.167 0.229 0.258 0.582

BVAR-CSV-t 0.998 0.963 0.925 0.875 0.184 0.249 0.283 0.310

BVAR-CSV-t-MA 1.001 0.969 0.934 0.885 0.182 0.218 0.252 0.290

Note: see Table 2.

Third, while the flexible BVAR models with more general error distribution produce

better forecasts for GDP growth and CPI inflation than other standard models, we find

that the BVAR models with standard error assumption provide the most accurate fore-

casts for unemployment rate. As reported in Table 4, both RMSFE and ALPL indicate

that the first four proposed models perform substantially better than the others for all

forecast horizons. As described in Section 3, these models fall within a class of standard

BVAR model embodying the conventional assumption of homoscedastic, Gaussian and

serially independent errors. Our findings for Australia also reflect results observed for

the US. Indeed, considering a range of large BVAR models, Chan (2020a) finds that no

models can consistently outperform the standard VAR model when forecasting the US

unemployment rate. This finding is important because it reflects the natural property

of macroeconomic time series that inflation tends to be much more volatile than output

growth and unemployment rate. Therefore, BVAR-CSV-t-MA, the most flexible model,

is likely the best model to forecast inflation, while the standard model retains enough

flexibility to forecast unemployment rate.
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5 Sensitivity Analysis

To examine whether our findings are sensitive to the choice of prior and the unprecedented

shock caused by the Covid-19 crisis, we ran the models using a set of alternative priors

and with the pre-crisis data. The main conclusions of the paper are robust to all of these

sensitivity checks. Below we provide a brief summary.

5.1 Prior Sensitivity

Recently, there have been a number of studies, such as Jochmann et al. (2010), Chan

(2020b) and Cross et al. (2020), highlighting that the forecast performance might be

sensitive to alternative prior choices. Motivated by these empirical observations, aside

from the Minnesota prior, we also consider three other priors for the standard VARs:

the natural conjugate prior, the independent normal and inverse-Wishart prior and the

stochastic search variable selection (SSVS) prior as a sensitivity analysis. Details about

these priors are described in Appendix C. A list of competing models with different priors

for this exercise are described in Table 5 and the corresponding results are presented in

Table 6-8. For easy comparison, we also report the results performed by the standard

VAR with the Minnesota prior. Similar to the comparison method used in the main

analysis, we use RMSFEs and ALPLs of the small BVAR as a benchmark.

Table 5: A list of competing large VAR models with alternative priors.

Model Description

BVAR-Minn 20-variable VAR with the Minnesota prior

BVAR-NCP 20-variable VAR with the natural conjugate prior

BVAR-IP 20-variable VAR with the independent prior

BVAR-SSVS 20-variable VAR with the SSVS prior

Overall, our main conclusions are robust to these sensitivity checks. In line with our

main findings, for GDP growth and inflation, none of the standard VARs with these

proposed priors outperforms the flexible VARs considered in the main analysis. For un-

employment, the results suggest the standard VAR remains the best model. Interestingly,

we find that the forecast performance of the standard VAR model can be slightly improved

under a particular prior class. This is, for the point forecast, it is likely that the BVAR

model with independent prior can slightly enhance forecast accuracy for unemployment

rate. For density forecasts, the model with the natural conjugate prior relatively does

better than its counterparts. As reported in Appendix D.2, we also observe a similar

results for data up to vintage 2020Q1, excluding the period of the Covid-19 crisis. We
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further discuss this event and its potential impacts on our forecast performance in the

next section.

Table 6: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.982 0.965 0.991 0.988 -0.015 -0.028 -0.051 -0.057

BVAR-NCP 1.026 0.989 1.015 1.005 0.004 0.014 -0.011 -0.003

BVAR-IP 0.987 0.950 0.982 1.002 0.022 0.035 0.014 0.006

BVAR-SSVS 0.961 0.929 1.007 1.071 0.035 0.035 -0.016 -0.050

Note: see Table 2.

Table 7: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.936 0.945 0.960 0.971 0.019 0.018 0.006 0.007

BVAR-NCP 0.998 1.008 1.001 1.017 0.021 0.017 0.014 0.015

BVAR-IP 0.945 0.965 0.978 0.974 0.061 0.045 0.051 0.054

BVAR-SSVS 1.016 1.010 1.030 0.975 -0.011 0.005 -0.007 0.034

Note: see Table 2.

Table 8: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.892 0.928 0.884 0.842 0.215 0.301 0.335 0.348

BVAR-NCP 0.869 0.914 0.869 0.851 0.279 0.403 0.404 0.342

BVAR-IP 0.851 0.914 0.862 0.808 -0.040 0.289 0.374 0.411

BVAR-SSVS 0.854 0.913 0.862 0.821 0.035 0.345 0.396 0.391

Note: see Table 2.
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5.2 The COVID-19 Crisis

By the time of writing this paper, the COVID-19 outbreak has disrupted the world and

produced extremely large variation in many key marcoeconomic variables of its economies

and the Australian economy is not an exception. This unprecedented shock thus creates a

tremendous challenge for macroeconomic forecasting as it demands unusual assumptions

(Schorfheide et al., 2020; Primiceri and Tambalotti, 2020; Lenza and Primiceri, 2020).

With that in mind, we conduct the sensitivity analysis of our forecasts by re-estimating

the models using pre-crisis data up until the end of 2019. The point and density forecast

results for GDP, CIP inflation and unemployment rate are reported in Table 6, 7 and 8,

respectively. We find that the main results remains unchanged. This is, a large BVAR

model remains a better choice for forecasting the Australian macroeconomy. In particular,

models with flexible covariance structures are still competitive models when forecasting

GDP and CPI inflation, while standard large BVAR models are useful when forecasting

unemployment rate.

Table 9: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR 0.982 0.966 0.988 0.985 -0.016 -0.029 -0.050 -0.056

BVAR-CSV 0.979 0.988 0.998 0.983 0.053 0.036 0.028 -0.009

BVAR-CSV-t 0.982 0.991 0.998 0.986 0.066 0.056 0.052 0.086

BVAR-CSV-t-MA 0.988 0.990 0.997 0.985 0.058 0.053 0.048 0.081

Note: see Table 2.

Table 10: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

L-BVAR 0.940 0.944 0.959 0.970 0.017 0.018 0.011 0.001

BVAR-CSV 0.933 0.923 0.923 0.918 0.108 0.145 0.157 0.197

BVAR-CSV-t 0.927 0.926 0.927 0.924 0.186 0.192 0.194 0.194

BVAR-CSV-t-MA 0.923 0.917 0.919 0.912 0.186 0.197 0.198 0.202

Note: see Table 2.
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Table 11: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR 0.893 0.931 0.888 0.847 0.216 0.300 0.333 0.345

BVAR-CSV 1.012 0.969 0.934 0.889 0.170 0.230 0.262 0.588

BVAR-CSV-t 0.997 0.964 0.925 0.877 0.187 0.248 0.283 0.308

BVAR-CSV-t-MA 1.005 0.971 0.937 0.888 0.180 0.217 0.250 0.285

Note: see Table 2.

6 Conclusion

In this paper, we have studied the forecast performance of a set of BVARs for the Aus-

tralian macroeconomy. In light of the recent development in BVAR models, we considered

a wide range of BVAR modifications that is equipped with alternative priors and allow

for various flexible error covariance structures. In addition, we also constructed and for

the first time we utilized the real-time data in forecasting core indicators for Australia.

We focused on three core variables, including GDP growth, CPI inflation and unemploy-

ment rate and found that a large BVAR model with 20 variables tends to outperform a

small BVAR model. Specifically, we find consistent evidence that the models with more

flexible error covariance structures forecast GDP growth and CPI inflation better than

the standard VAR, whereas the standard VAR using conventional covariance assumptions

does better than its counterparts when forecasting unemployment rate. These findings

are found to remain unchanged under alternative priors and when we examine the early

stage of the Covid-19 crisis.
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Appendix A Data

Table A1: Description of variables used in the recursive forecasting exercise.

Variable Data revision Frequency Transformation

Three main variables using in the small VAR and large VAR

Real GDP Y Q 400∆log

CPI Y Q 400∆log

Unemployment Rate, seasonally adjusted Y M no

Remaining variables using in the large VAR

Real Household Final Consumption Y Q 400∆log

Real Gross Fixed Capital Formation Y Q 400∆log

Real General Government Final Expenditure Y Q 400∆log

Real Exports of Goods and Services Y Q 400∆log

Real Imports of Goods and Services Y Q 400∆log

Manufacturing Production Index Y Q 400∆log

Industrial Production Index Y Q 400∆log

Employed Persons, seasonally adjusted Y M 400∆log

M3, seasonally adjusted N M 400∆log

Broad Money, seasonally adjusted N M 400∆log

90 Days Bank Accepted Bills N M no

Interbank Overnight Cash Rate N M no

Real Exchange Rate Measure N Q 400∆log

10 Year Australia Government Security N M ∆

Commodity price index N M 400∆log

SP ASX AllOrds N M 400∆log

Terms of Trade N M 400∆log

Notes: As mentioned in Section 2, the real-time data taken the Australian Real-time Macroe-

conomics Database (ARMD) are only available up to 2017Q1. We extended the database from

2017Q2 to the latest vintages by collecting data from ABS and RBA.
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Appendix B Estimation

The posterior estimation for parameters of the BVAR models can be obtained by sampling

sequentially by Markov chain Monte Carlo (MCMC) methods. Here, we take the estima-

tion of parameters in BVAR-CSV-MA-t as an example. There are seven steps in one loop

of posterior draws for each parameter. Specifically, the posterior draws are obtained for

the coefficients of VAR B, the cross-sectional covariance matrix Σ, the hyperparameter

λt and ν of t distribution, the stochastic volatility parameter h and the related trun-

cated normal parameter ρ and variance σ2
h, and the moving average coefficient ψ. The

simulation can be implemented as below:

1. p(B,Σ |Y, λt,h, σ
2
h, ρh, ψε, νλ);

2. p(λt |Y,B,Σ,h, σ2
h, ρh, ψε, νλ);

3. p(νλ |Y,B,Σ, λt,h, σ
2
h, ρh, ψε);

4. p(h |Y,B,Σ, λt, σ
2
h, ρh, ψε, νλ);

5. p(σ2
h |Y,B,Σ, λt,h, ρh, ψε, νλ);

6. p(ρh |Y,B,Σ, λt,h, σ
2
h, ψε, νλ);

7. p(ψε |Y,B,Σ, λt,h, σ
2
h, ρh, νλ);

In the first step, given that the coefficients and covariance matrix are the natural

conjugate prior, the joint posterior distribution of (B,Σ) is a normal-inverse-Wishart

distribution, so the posterior draws can be obtained from their posterior distribution

directly.

The second and third steps draw the parameter λt and νλ for t distribution which can

be written as a scale mixture of Gaussian distribution. This multivariate t distribution

has a mean vector 0, scale matrix Σ and degree of freedom ν, and (λt | νλ) follows an

inverse-gamma distribution. Then we have Ω = diag(λ1, ..., λT ). The hyperparameter

νλ in the inverse-gamma distribution of λt can be sampled by an independence-chain

Metropolis-Hastings step described in Chan and Hsiao (2014).

The following three steps are related to the common stochastic volatility parameter

h and its hyperparameter σ2
h and ρh. The simulation of common stochastic volatility

can follow Carriero et al. (2016) and the models are assumed to have a stationary AR(1)

stochastic volatility. We assume that σ2
h has an inverse-gamma prior and ρh has an

independent truncated normal distribution. Then the posterior distribution of parameter

h can be obtained by implementing Newton-Raphson algorithm and the acceptance-

rejection Metropolis-Hastings step.
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Lastly, the posterior distribution of moving average parameter ψε can be sampled

by an independence-chain Metropolis-Hastings step, while the related estimation method

and efficient algorithm are discussed in Chan (2013).

Appendix C Priors

The selection of priors is a crucial step in BVAR estimation, as the number of coefficients

which needs to be estimated can be a great amount. This overparameterization problem

can be eliminated by using informative priors or regularization. In the setup of coefficient

prior, the Minnesota Prior is considered in the standard VARs, and the natural conjugate

prior is used in the VARs with various flexible covariance structures. We also present the

forecast results of models with other prior settings for sensitivity analysis (e.g., the in-

dependent normal and inverse-Wishart prior, and the stochastic search variable selection

prior. The aim of these priors are the same, which is try to shrink the BVAR to a more

parsimonious structure so that the estimation is applicable.

C.1 Minnesota Prior

The Minnesota prior is firstly introduced with small VARs by Doan et al. (1984). It

uses an approximation σ̂2 for error covariances in each VAR equation by OLS estimation,

so it is not limited by the size of VAR and can be applied to a large BVAR. In the

prior distribution of the coefficients, the means and the variances imposed distributions

associated with the lag length l of variable’s own lag and the lag of another variable.

Specifically, a modified version is used which is discussed in Koop and Korobilis (2010):

β ∼ N (βMinn,VMinn), (8)

VMinn =


b1 for intercept,

b2/l
2 for own lags,

b3σ̂2
i /(l

2σ̂2
j ) otherwise,

(9)

where βMinn = 0 indicates that growth rate data are used and they are stationary time

series. V is the variance operator, b1, b2 and b3 are hyperparameters of VMinn.

The shrinkage degree of VMinn is consistent with the variable’s own lag with l2 for

parameters with either own or cross lag. In other words, more reliable information is

provided by more recent lags which should be given more weight in the estimation. In

practise, the value of VMinn is smaller when the lag length l turns larger. In addition,

the value of VMinn is also controlled by the ratio of prior variance from two variables.
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For the cross lags, it is supposed that the lags of other variables can not explain more

variation of one variable than its own lags, so the VMinn of cross lags should be smaller

than that of own lags.

In the application part, for the small standard BVAR with the Minnesota prior, the

hyperparameters of the variance operator are set to be b1 = 102, b2 = 0.22 and b3 = 0.12,

where b2 is bigger than b3 indicating that variables’ own lags are more important than their

cross lags. With the Minnesota prior, the BVARs are models with constant variances,

then a two-step Gibbs sampler can be used to estimate the models. The VAR coefficients

β are drawn from a conditional posterior distribution that is multivariate normal in the

first step, and the covariance matrix Σ is simulated from an inverse Gamma distribution

in the second step. The additional detail on algorithms and priors can be found in Koop

and Korobilis (2010). For the 20-variable BVAR with the Minnesota prior, the prior

settings and the estimation of the model are the same as those of the standard BVAR.

The setting of Minnesota prior provides a way of shrinkage for the standard VARs with

considerable amount of coefficient, but the parameters of Minnesota prior are restricted

to be fixed and the covariance matrix is a diagonal matrix. To cover these concerns,

alternative priors in the sensitivity analysis section introduce hyperparameters or other

flexible specifications on the covariance matrix to the VAR models.

C.2 The Natural Conjugate Prior

The natural conjugate prior (NCP)is used as the prior of VARs with flexible covari-

ance structures, which assumes that the error covariance matrix of VARs is an unknown

symmetric matrix. It can be considered as the Minnesota prior with a normal-inverted-

Wishart assumption on the error covariance matrix Σ instead of a fixed diagonal matrix.

This prior takes into account of the uncertainty of the error covariance matrix. Moreover,

it is computational tractable and has a closed form of the marginal likelihood comparing

with the Minnesota prior. The normal-inverted-Wishart prior takes the following form:

B|Σ ∼ N (B0,Σ⊗VB), Σ ∼ IW(ν0,S0), (10)

where B0,VB,ν0 and S0 are prior hyperparameters of Normal distribution and inverted

Wishart distribution, parameters with the subscript 0 stand for those of the prior distri-

butions. Equation (10) can be written as:

(B,Σ) ∼ NIW(B0,VB,ν0,S0). (11)

In NCP, parameters of larger lag lengths are conducted higher degree of shrinkage.

However, there is no difference between the prior variances of variables’ own lags and
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other lags comparing with the feature of Minnesota prior. NCP gives the same degree

of shrinkage of variables’ own lags and other lags, thus, they share the same tightness

hyperparameter on variables’ lags.

In the application part, We set β0 = 0, the hyperparameters for the covariance matrix

V0 are b1 = 102, b2 = 0.22 (so that the parameters with larger lag lengths are conducted

higher degree of shrinkage, which is consist with the setting of the Minnesota prior),

ν0 = n + 3 and S0 = diag(s21, ..., s
2
n) (where s21, ..., s

2
n are obtained from the standard

OLS estimates of the error variance for each equation). To estimate the models with

NCP, the Kronecker structure of the posterior covariance matrix can be considered for

fast simulation. This approach is based on the algorithm of drawing posteriors from

the matrix normal distribution. As the posterior distributions of the VAR coefficients β

and the covariance matrix Σ have the same distributions of the priors, Σ can be drawn

marginally from an inverse gamma distribution, then β can be simulated from a normal

distribution.

The detailed algorithm for BVAR with NCP is described in Giannone et al. (2015)

and Carriero et al. (2009). When conducting forecast, one-step-ahead forecast can be

obtained from the analytical form of the predictive density, but there is no analytical

formula for forecasting over one period ahead. In other word, direct forecast method

needs to be used when forecast is more than one-step-ahead.

C.3 Independent Normal and Inverse-Wishart Prior

The independent normal and inverse-Wishart prior does not have any restriction on the

prior covariance matrix of coefficients V. Thus, it is more flexible on the assumption of

prior parameters. By assumption, the priors of β and Σ are independent, and they have

normal and inverse-Wishart distributions, respectively:

β ∼ N (β0,Vβ), Σ ∼ IW(ν0,S0), (12)

The posteriors of β and Σ with independent normal and inverse-Wishart prior do not have

an analytical expression. They need to be simulated from their conditional distributions

p(β|y,Σ) and p(Σ|y,β). In the simulation of posterior distributions, forward-backward

substitution and precision-based algorithm should be considered for rapid computation

(see Chan (2020b)). For the independent normal and inverse-Wishart prior, the values

of β0 and V0 are set the same as those in the Minnesota prior, and the values of ν0 and

S0 are set as those in the natural conjugate prior. The posterior distributions of β and

Σ are drawn from a two-step Gibbs sampler. In the simulation, the forward-backward

substitution and the precision-based algorithm can be considered for rapid computation

(see Chan (2020b)).
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C.4 Stochastic Search Variable Selection Prior

The stochastic search variable selection prior (SSVS) is also a shrinkage prior for VAR

coefficients which is introduced firstly by George et al. (2008). The hierarchical structure

of parameter’s prior is consisted with the independent normal and inverse-Wishart prior.

The difference between SSVS and priors in the previous sections is that the restriction on

coefficients of a variable’s lags to be zero needs to follow a selection procedure. Comparing

with the Minnesota prior, SSVS is also a data-based prior, but parameters of variables’

cross lags are not restricted to be zero or close to zero when using SSVS.

In its prior selection procedure, the parameters of VAR conduct “stochastic search”

and do “variable selection” from two groups with a probability qs and 1 − qs in an

independent Bernoulli distribution during simulation. In one of these two groups, the

priors of coefficients are strongly shrunk to zero with small variances σ2
s1, while in the

other group, the priors are relative non-informative. More specifically, the SSVS can be

writen in a mixture distribution as below:

βs,j|qs ∼

{
N (0, σ2

s1,j), with prob. qs,

N (0, σ2
s2), with prob. 1− qs,

(13)

where βs,j stands for coefficients estimated by SSVS. In the application part, σ2
s1,j are

estimated by the Minnesota prior and are the elements of the diagonal of VMinn. For

the other group, the non-informative prior of σ2
s2 is set to be 10 in the estimation. The

weight of mixture distribution qs reflect the information from the prior that whether the

parameter is different from zero, so it can be set to any value between 0 and 1 or estimated

by hyperparameters. Here, it is set to be 0.5 for equal chances for simplicity.

For the covariance matrix Σ, we assume it has the inverse-Wishart prior:

Σ ∼ IW(ν0,S0), (14)

where ν0 and S0 are prior hyperparameters of inverted Wishart distribution.

The estimation of models with SSVS prior can use a three-step Gibbs sampler for

parameter simulation. The first two steps of β and Σ are the same of those in the

independent normal and inverse-Wishart prior. In the step of β posterior distribution,

the hyperparameter σ2
s1,j are estimated by the Minnesota prior and are the elements of the

diagonal of VMinn, while the non-informative prior of σ2
s2 is set to be 10 in the estimation

for the other group. The third step is to simulate the success rate of probability qs in the

mixture Gaussian distribution. More details can be seen in George et al. (2008).
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Appendix D Additional Results

D.1 Results under other Covariance Structure Combinations

Table D1.2-D1.7 below present additional results obtained under a large VAR model when

we consider other covariance structure combinations. A long with the specifications

examined in the main analysis, this extension provides a full possible combination of

non-standard error assumptions. As described in Table D1.1, these specifications include

BVAR-t, BVAR-MA, BVAR-t-MA and BVAR-CSV-MA. The point and density forecast

results for GDP, CPI inflation and unemployment rate for data up to vintage 2020Q2

are reported in Table D1.2, D1.3 and D1.4 respectively. The corresponding results for

data up to vintage 2020Q1 are presented in Table D1.5, D1.6 and D1.7. Overall, these

results support our main conclusion that models with flexible covariance structure tend to

forecast better than a small VAR with standard error covariance assumptions. Although

these specifications tend to forecast well, none of them are found to perform better than

the selected specifications discussed in our main analysis.

Table D1.1: A list of other competing models.

Model Description

BVAR-t 20-variable VAR with t errors

BVAR-MA 20-variable VAR with MA(1) errors

BVAR-t-MA 20-variable VAR with MA(1) t errors

BVAR-CSV-MA 20-variable VAR with a common SV and MA(1) errors

Table D1.2: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 1.007 1.009 1.020 1.004 0.062 0.032 0.013 -0.017

BVAR-MA 1.033 0.999 1.016 1.015 -0.004 0.007 -0.014 -0.009

BVAR-t-MA 1.013 1.016 1.027 1.005 0.053 0.011 0.000 -0.029

BVAR-CSV-MA 0.985 0.994 1.002 0.983 0.048 0.031 0.024 -0.008

Note: see Table 2.
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Table D1.3: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 0.934 0.949 0.949 0.952 0.236 0.277 0.279 0.267

BVAR-MA 0.992 1.014 1.014 1.029 0.034 -0.006 0.003 -0.001

BVAR-t-MA 0.932 0.947 0.963 0.952 0.238 0.293 0.296 0.283

BVAR-CSV-MA 0.926 0.919 0.932 0.917 0.124 0.156 0.145 0.199

Note: see Table 2.

Table D1.4: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q2.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 0.943 0.942 0.903 0.865 0.212 0.439 0.501 0.583

BVAR-MA 0.869 0.916 0.869 0.845 0.279 0.398 0.413 0.365

BVAR-t-MA 0.944 0.943 0.903 0.857 0.208 0.445 0.516 0.603

BVAR-CSV-MA 1.019 0.972 0.936 0.882 0.163 0.225 0.262 0.617

Note: see Table 2.

Table D1.5: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 1.006 1.010 1.019 1.004 0.063 0.033 0.010 -0.015

BVAR-MA 1.033 1.002 1.019 1.006 -0.004 0.005 -0.014 -0.009

BVAR-t-MA 1.011 1.016 1.024 1.002 0.052 0.008 -0.008 -0.033

BVAR-CSV-MA 0.983 0.994 1.001 0.981 0.047 0.034 0.027 -0.012

Note: see Table 2.
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Table D1.6: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 0.937 0.952 0.953 0.953 0.239 0.277 0.278 0.264

BVAR-MA 0.996 1.013 1.012 1.022 0.021 0.016 0.007 0.007

BVAR-t-MA 0.936 0.948 0.963 0.955 0.239 0.290 0.292 0.279

BVAR-CSV-MA 0.928 0.919 0.933 0.916 0.114 0.148 0.142 0.210

Note: see Table 2.

Table D1.7: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-t 0.943 0.945 0.906 0.866 0.215 0.432 0.504 0.586

BVAR-MA 0.870 0.919 0.873 0.849 0.278 0.401 0.414 0.359

BVAR-t-MA 0.946 0.946 0.906 0.861 0.211 0.445 0.523 0.612

BVAR-CSV-MA 1.018 0.972 0.937 0.885 0.165 0.231 0.265 0.620

Note: see Table 2.

D.2 Results under alternative priors with pre-crisis data

Table C2.1: Relative root MSFE and average log likelihood for nowcasts, one-, two-, and

four-step-ahead GDP forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.982 0.966 0.988 0.985 -0.016 -0.029 -0.050 -0.056

BVAR-NCP 1.023 0.992 1.016 1.003 0.004 0.010 -0.010 -0.002

BVAR-IP 0.987 0.949 0.981 1.000 0.021 0.035 0.014 0.007

BVAR-SSVS 0.949 0.944 1.001 1.062 0.042 0.026 -0.015 -0.045

Note: see Table 2.
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Table C2.2: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead CPI inflation forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.940 0.944 0.959 0.970 0.017 0.018 0.011 0.001

BVAR-NCP 0.999 1.010 1.002 1.017 0.019 0.015 0.005 -0.004

BVAR-IP 0.947 0.965 0.978 0.973 0.059 0.045 0.051 0.053

BVAR-SSVS 1.018 1.009 1.027 0.978 -0.022 0.006 0.009 0.031

Note: see Table 2.

Table C2.3: Relative root MSFE and average log likelihood for nowcast, one-, two-, and

four-step-ahead unemployment rate forecasts for data up to vintage 2020Q1.

relative RMSFE relative ALPL

nowcast k = 1 k = 2 k = 4 nowcast k = 1 k = 2 k = 4

BVAR-Minn 0.893 0.931 0.888 0.847 0.216 0.300 0.333 0.345

BVAR-NCP 0.868 0.918 0.873 0.853 0.281 0.396 0.404 0.342

BVAR-IP 0.852 0.917 0.866 0.812 -0.046 0.286 0.371 0.406

BVAR-SSVS 0.855 0.918 0.866 0.825 0.027 0.339 0.391 0.388

Note: see Table 2.
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