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Abstract

The paper analyses the importance of supply versus demand shocks on the global oil

market from 1974 to 2017, using a parsimonious structural vector autoregressive mov-

ing average (SVARMA) model. The superior out-of-sample forecasting performance

of the reduced form VARMA compared to VAR alternatives advocates the suitabil-

ity of this framework. We specifically account for the changes in the oil market over

three distinctive sub-periods - pre moderation, great moderation and post moderation

periods, to provide a means of identifying the changing nature of shock transmission

mechanism across times. The findings shed some light on the effects of supply versus

demand related oil shocks under different economic environment. Oil supply shocks

explain large fraction of the movements in the global oil market in the pre and post

moderation periods, i.e. during the slower economic growth periods. The importance

of global activity shock on oil price movements is obvious during the 2003-2008 boom

period. The oil specific shock has an interesting transmission path on the global eco-

nomic activity, where the global activity responded positively and negatively during the

global economic expansion and contraction respectively, emphasising the precautionary

nature of the shock.
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1 Introduction

The movement of global oil prices since early 1970s could be attributed to the interaction

of supply and demand for oil, much like other industrial commodity prices. Following the

seminal paper by Kilian (2009), the vector autoregressive (VAR) models are largely used

in the oil market analysis, to generate impulse response functions of oil prices to demand

and supply driven shocks. Figure 1, highlights the relative importance and timing of the

fluctuations in the global oil production and economic activity and their differing dynamic

effects on the real price of oil. This could be broadly summarised as the disruption to

crude oil production arising from political events in oil-producing countries, followed by

changing demand for crude oil associated with the global business cycle, the discovery of

new fields and improvements in the technology of extracting crude oil and the changing

expectations about future shortfalls of supply relative to demand in the global oil market.

This implies, the conventional VAR tools of impulse response analysis and forecast error

variance decompositions can be misleading if constant parameters are assumed throughout

the samples. Bataa et al. (2016) carried out various sub-sample analysis of the oil market

and found the parameters of oil market variables are subject to change over different time

periods.

The oil market variables, just like the economic and financial time series involve for

example seasonal adjustment, de-trending, temporal and contemporaneous aggregation.

Such time series include moving average dynamics even if one assumes its constituents

being generated by a VAR. Applied researchers, tend to estimate a VAR model of order

that is much higher than that selected by AIC or BIC, to describe the system adequately and

to obtain reliable impulse responses.1 For example, Kilian (2009)and the papers thereafter

have used a VAR(24) to capture the dynamics in the oil market. The use of a long order

VAR however, could be problematic for shorter sample period analyses due to limited

number of observations. Bataa et al. (2016) overcome this issue by using a structural

heterogeneous VAR model. In this paper, we propose the parsimonious structural vector

autoregressive moving average (VARMA) model to examine the global oil market over

different sub-periods.2

The objectives of this paper are to: (i) build a global oil market structural VARMA

model and establish the necessary identification conditions to uncover the independent oil

supply and demand shocks; (ii) assess whether a parsimonious SVARMA model is able to

produce impulse responses that are consistent with the sign restrictions adopted by Kilian

and Murphy (2012); (iii) carry out various sub-period analyses to examine changes in the

transmission of supply and demand driven oil shocks across periods.

In our empirical modelling, we use a similar set of three variables as Kilian (2009);

Lutkepohl and Netsunajev (2014); Bataa et al. (2016) who, among others have used global

crude oil production, global economic activity index and global real oil price to analyse

1In a simulation study, Kapetanios et al. (2007) show that a sample size of 30,000 observations and a
VAR of order 50 are required to sufficiently capture the dynamic effects of some of the economic shocks.

2According to Fry and Pagan (2005), a subset of variables coming from a multivariate VAR process could
be modelled using a vector autoregressive moving average (VARMA) model rather than a VAR.
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the global oil market. However, in contrast to these papers, we have used the recently

corrected and updated global economic activity index by Kilian (2018). Our period of study

is longer, i.e. from January 1974 to December 2017 and we carry out sub-period analysis of

the oil market using the parsimonious SVARMA model. These studies excludes the 2008

global financial crisis while in Bataa et al. (2016) the period covers from December 1972 to

February 2014, which excludes the recent 2014 oil crisis. Though our period of study covers

variety of events, it can be broadly categorised into three main periods - pre-moderation

period which covers the mid-70s up to the mid-80s and it includes the great inflation period;

this followed by the great moderation period which covers the tranquil period of the mid-

80s to 2007, just before the global financial crisis (GFC) and the post-moderation period

which begins from 2008, and it includes the GFC and the recent oil crisis. More on this are

discussed under Section 2.

We apply the VARMA methodology of Athanasopoulos and Vahid (2008a) to capture

the dynamics of a long lag structure to assess the effects of changes in the oil market. The

impulse responses are derived by appealing to Wold’s decomposition theorem and a finite

order VARMA model would provide a better approximation to the Wold representation

than a long finite order VAR model. Hence, VARMA models are expected to produce more

reliable impulse responses than the VAR models. Athanasopoulos and Vahid (2008b) also

show that VARMA models forecast macroeconomic variables more accurately than VARs

and they demonstrate that the forecast superiority comes from the presence of moving

average components. In this paper we provide further empirical evidence supporting these

claims by comparing the two classes of models for modelling the oil market.

The use of the parsimonious SVARMA(2,1) enable us to carry out the analysis for

shorter periods. As in Bataa et al. (2016), we infer parameters vary across these sub-

periods but are constant within each period. This not only allow us to assess each sub-

period separately but also enable us to construct confidence intervals for impulse response

functions and forecast error variance decompositions for each sub-periods. To identify the

contemporaneous structure of the model, we employ identification restrictions similar to

Kilian (2009). Shocks to global crude oil production could be arising from political events,

the discovery of new fields and improvements in the technology while shocks to the demand

for crude oil depends on the changes to the global economic activity. Any shocks not

associated with supply and demand, is defined as oil specific shock, reflecting shifts in

expectations about future shortfalls of supply relative to demand in the global oil market.

Relative to the responses by a SVAR, the responses generated by the SVARMA conform

to the sign restrictions reported in Kilian and Murphy (2012). The superior out-of-sample

forecasting performance of the reduced form VARMA compared to VAR alternatives further

advocates the suitability of this framework for global oil market analysis. We document the

evolution of the oil market over the three sub-periods and the empirical results provide some

valuable insights into the transmissions of supply and demand driven oil shocks over time.

Historical decomposition and variance decomposition allow contrast of shocks propagating

under different sub-periods.

3



Broadly, the time path of the three shocks implied by our SVARMA model appear to

be in line with that reported in Baumeister and Kilian (2016), who analysed the oil price

fluctuations for the last forty years. Both global oil production and global economic activity

are important sources of fluctuations for oil price, but their relative contribution varies

across sub-periods. During the great moderation period, which includes the global economic

boom period, the oil market is driven by demand related shocks originating from global

activity and or oil-specific shocks. On the other hand, during the pre and post moderation

periods, the market is mainly driven by oil supply related shocks. The pre-moderation

supply shock could be associated with geopolitical tension while the post-moderation shock

is associated with the discovery of new fields and improvements in the technology. The

oil specific shock has an interesting transmission path to the global economic activity,

where the global activity responded positively during the global economic expansion and

negatively in the current sluggish economic environment. The different dynamic effects of

supply and demand related shocks, highlight the changing nature of the shock transmissions

in the global oil market. Therefore it is important for policymakers, financial analyst and

economists alike to understand these changes and their implications on the global economy

under different economic environment.

The paper is organized as follows: Section 2 briefly reviews the evolution of the global

oil market. Section 3 describes the VARMA methodology and illustrates the identification

of the oil market SVARMA model and the choice of variables. In Section 4, we compare

the performance of SVARMA and SVAR models. In particular, we evaluate the impulse

responses and out-of-sample forecasting performances. Section 5 reports and discusses the

empirical findings for the three sub-periods and Section 6 concludes this paper.

2 The Global Oil Market

The movement of global oil prices since mid-1970s could be attributed to the interaction

of various factors. Among them, the obvious two factors are global oil production and

global economic activity. Figure 1, highlights the relative importance and timing of the

fluctuations in these two variables and their differing dynamic effects on the real oil price.

Figure 1: Oil Production, Global Activity and Oil Price
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As shown in Figure 1, between mid-70s to mid-80s, the real oil price is above trend. The

period is characterized as a period that witnessed the oil price rises caused by the OPEC,

growing geopolitical tensions in the middle-east, low spare capacity in oil production and

easy monetary policies aimed to stimulate the economic growth (Baumeister and Kilian,

2016). In this period, high oil price volatility was leading to a period known as the great

inflation period.

The period between mid-1980s to 2007 is described as tranquil period and the oil price

is below trend. During this period, inflation was low and relatively stable, while the period

contained the longest global economic expansion. This period also witnessed the 2003-

2008 oil price boom. The most noticeable observation in Figure 1 is the rise in the real

price of oil since early 2002, which is almost synonymous to the surge in global economic

activity that started around 2001. Oil price increases are connected with strong global

economic growth until 2008, mostly driven by surge in the demand for oil from emerging

economies, particularly China and India (Hamilton, 2009; Kilian and Hicks, 2013). During

these periods, there is no clear evidence to suggest that the increase in oil price was driven

by any disruption in oil supply. In fact between the periods 2002 to 2005, the global oil

production actually increased. The observation that the oil price movement is driven by

business cycle fluctuations, is consistent with that reported in Hamilton (2009), Kilian

(2009) and Kilian and Murphy (2014).

The period between 2008 and 2017 is commonly known as the post Global Financial

crisis (GFC) period. In this period up to 2014, oil price appear to be above trend, In

Figure 1 we can observe that from 2010 onwards, the oil price kept rising despite the

weakening of global economic activities and with no disruption in global oil production. In

fact, according to Kilian and Zhou (2018) the boom in global economic activity between

2003 to mid-2008 was largely transitory rather than permanent. This raises the question of

what has been driving the oil price after 2010. Kilian and Murphy (2014) identifies a third

factor, speculative demand associated with inventory building that could cause a hike in oil

prices while others such as Ratti and Vespignani (2013), attributed the rise to expansion

in global liquidity and Hesary and Yoshino (2014) attributed it to expansionary monetary

policy. Since 2014, a sharp decline in oil price was observed and it is largely attributed to

not only to the unexpected growth of US shale oil production, but also due to increased oil

production in other countries including Canada and Russia and the slowing down of the

global economy (see for example Baumeister and Kilian, 2016; Kilian and Zhou, 2018).

In view of the above discussion, the period under study is divided into three sub-periods

as described in Table 1. The pre-moderation period is defined as a period with high oil price

with weak global economy and contained oil production. The great moderation represents

a calm period with continuous growth in global activity and the expansion of demand for

oil. The post-moderation period represents a period with weak global economy and rising

global oil production. The identified sub-periods overlaps with those reported in Sadorsky

(1999), Peersman and Van Robays (2012) and Mohaddes and Pesaran (2017). Sadorsky

(1999) and Peersman and Van Robays (2012) identified a change in the oil market around
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early 1986 and Mohaddes and Pesaran (2017) around January 2008.3 The identified post-

moderation period is also consistent with Kilian and Zhou (2018), who demonstrate the

slowing down of the global economy since 2008. These three sub-periods are considered in

this study primarily to assess the impact of the changes in the supply and demand driven

oil shocks within each period. The responses of the oil market variables to supply shocks

will be different compared to demand shocks and these responses are also expected to vary

across time.

Table 1: Breakdown of the period of study
Description Period

Full period 1974:1–2017:12
Pre-moderation period 1974:1–1985:12
Great moderation period 1986:1–2007:12
Post-moderation period 2008:1–2017:12

3 VARMA modeling

In this section, we discuss the VARMA methodology and its application to the global oil

market analysis. In what follows, we first provide a brief discussion of the Athanasopoulos

and Vahid (2008a) methodology for identifying and estimating a VARMA model. Then we

discuss the identification of the SVARMA model for the oil market.

3.1 A VARMA methodology

Athanasopoulos and Vahid (2008a) proposed a complete methodology for identifying and

estimating canonical VARMA models by extending the work of Tiao and Tsay (1989). They

established necessary and sufficient conditions for exactly identifying a canonical VARMA

model so that all parameters can be efficiently identified and estimated simultaneously using

full information maximum likelihood (FIML). A detailed exposition of the methodology can

be found in Appendix A and in what follows we provide a brief discussion of the methodology

for identifying and estimating a parsimonious VARMA model.

A K dimensional VARMA(p, q) process can be written as

Xt = Φ1Xt−1 + . . .+ ΦpXt−p + υt −Θ1υt−1 − . . .−Θqυt−q, (1)

where Φj represent the autoregressive coefficients while Θi represent the moving average

(MA) coefficients. A non-zero linear combination zi,t = β′iXi,t, follows a SCM(pi, qi) if βi

has the following properties:

β′iΦpi 6= 0T where 0 ≤ pi ≤ p,

β′iΦl = 0T for l = pi + 1, . . . , p,

β′iΘqi 6= 0T where 0 ≤ qi ≤ q,

β′iΘl = 0T for l = qi + 1, . . . , q.

3Bataa et al. (2016) identified a break in the oil market around early 1988.
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The scalar random variable zi,t, depends only on lags 1 to pi of all variables and lags 1 to

qi of all innovations in the system. To represent the K-dimensional VARMA(p, q) process

in terms of K-SCMs, K linear transformation are preformed via the transformation matrix

resulting in

zt = BXt (2)

where B = (β1, β2, . . . , βk)
′

is a (K ×K) invertible matrix while zt = (z1,t, z2,t . . . , zK,t)
′

is

a transformed process associated with K-SCM(pi, qi) for i = 1, 2, . . . ,K.

The identification of embedded scalar component models is done through a series of

canonical correlation tests. Let the estimated squared canonical correlations between

Ym,t ≡
(
X′t, . . . ,X

′
t−m

)
and Yh,t−1−j ≡

(
X′t−1−j , . . . ,X

′
t−1−j−h

)′
be λ̂1 < λ̂2 < . . . < λ̂K .

Tiao and Tsay (1989) test sequentially for s zero canonical correlations. The test statistic

for at least s SCM(pi, qi), i.e., s insignificant canonical correlations, against the alternative

of less than s scalar components is

C (s) = − (n− h− j)
s∑
i=1

ln

{
1− λ̂i

di

}
a∼ χ2

s×{(h−m)K+s} (3)

where di is a correction factor that accounts for the fact that the canonical variate could

be moving averages of order j and it is calculated as follows:

di = 1 + 2

j∑
v=1

ρ̂v
(
r̂′iYm,t

)
ρ̂v
(
ĝ′iYh,t−1−j

)
(4)

where ρ̂v (.) is the vth order autocorrelation of its argument and r̂′iYm,t and ĝ′iYh,t−1−j

are the canonical variate corresponding to the ith canonical correlation between Ym,t and

Yh,t−1−j . Let, Γ(m,h, j) = E(Yh,t−1−jY
′
m,t).

The identification of VARMA(p, q) process are carried out in three stages and they

are described in more detail in Appendix A. First, by strategically choosing Ym,t and

Yh,t−1−j , we identify the overall tentative order of the VARMA(p, q). Conditional on the

overall tentative order (p, q) we then repeat the search process but this time searching for

individual components. The test results from identifying the overall tentative order and

the individual SCMs are tabulated in what are referred to as Criterion and Root tables.

We demonstrate the reading of these tables in Subsection (3.2).

3.2 Identifying an oil market VARMA model

In this study we use a similar set of three variables as Kilian (2009) for modelling the

global oil market. These variables, as listed in Table 8 in Appendix B are monthly global

oil production, global economic activity and the real oil price index. Herein, we have used

the recently corrected and updated global economic activity index by Kilian (2018), and

is expressed as percentage deviation from trend.4 The benefits of using the Kilian index

as proxy for global economic activity, instead of the world GDP or the production index

can be found in Kilian and Zhou (2018). To obtain the real oil price, the oil price variable

4Hamilton (2018) found the Kilian index developed by Kilian (2009) to be misleading. Hence, recently,
the Kilian index has been corrected and the details can be found in Kilian (2018).
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is deflated by US seasonally adjusted consumer price index (CPI). Both the real oil price

and oil production are expressed in logarithms and detrended. The vector of variables is

represented as

Xt = [OSt,GAt,OPt]
′ (5)

The sample period of our study is from January 1974 to December 2017.5 We illustrate

the application of the complete VARMA methodology outlined in Section (3.1) on the

selected three variables of the global oil market as listed in 5.

In Stage 1 of the identification process, we identify the overall VARMA order and the

orders of embedded scalar component models (SCMs). In Table 2, we report the results of

all canonical correlations test statistics divided by their χ2 critical for the full period. This

table is known as the “Criterion Table”. If the entry in the (m, j)th cell is less than one, it

shows that there are three SCMs of order (m, j) or lower in this system.

Table 2: Stage I of the identification process of a VARMA model

PANEL A: Criterion Table PANEL B: Root Table
Full Period (Jan 1974–Dec 2017)

j j
m 0 1 2 3 4 m 0 1 2 3 4
0 273.33a 33.19 17.69 11.88 8.88 0 0 0 0 0 1
1 10.76 1.42 0.51 0.55 0.88 1 0 2 3 3 3
2 1.41 0.78 0.67 0.83 0.79 2 2 3 5 6 6
3 0.44 0.45 0.85 0.83 0.89 3 3 4 7 8 9
4 0.71 0.93 0.58 1.04 0.89 4 3 6 7 9 11

aThe statistics are normalized by the corresponding 5% χ2critical values

From Panel A in Table 2, we infer that the overall order of the system is VARMA(2, 1).

Conditional on this overall order, canonical correlation tests are performed to identify the

individual orders of embedded SCMs. The number of insignificant canonical correlations

found are tabulated in Panel B of Table 2. This is referred as the “Root Table”. For

example, the figures in bold in the Root Table show that two SCMs of order (1, 1) is

initially identified in position (m, j) = (1, 1). Then, there are three SCMs of order (2, 1)

at position (m, j) = (2, 1). From these, one is a new component of order (2, 1), as two

are carried over from the SCM(1, 1). Hence, the identified VARMA(2, 1) consists of two

SCM(1, 1) and one SCM(2, 1).

Among the variables, as defined in equation (5), OS and GA are found to be loading

as SCM(1, 1), and OP loaded as SCM(2, 1). Implementing Stage II of the Athanasopou-

los and Vahid (2008a) identification process described in Appendix A leads to additional

zero restrictions on the matrix containing the contemporaneous relationships between the

variables and the canonical SCM representation of the identified VARMA models.

The specified VARMA(2, 1) model is given by

5The period of study in Kilian (2009) was from January 1973 to December 2007, which excludes the 2008
global financial crisis while in Bataa et al. (2016) the period covers from December 1972 to February 2014,
which excludes the 2014 oil crisis. These two studies have used the previously generated global economic
activity index which Hamilton (2018) claimed to be misleading.
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 1 0 0
0 1 0
0 0 1

Xt = c +

 φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

φ
(1)
31 φ

(1)
32 φ

(1)
33

Xt−1 +

 0 0 0
0 0 0

φ
(2)
31 φ

(2)
32 φ

(2)
33

Xt−2

+υt −

 θ
(1)
11 θ

(1)
12 θ

(1)
13

θ
(1)
21 θ

(1)
22 θ

(1)
23

θ
(1)
31 θ

(1)
32 θ

(1)
33

 υt−1.
3.3 Impulse response function, variance decomposition and historical de-

composition

Impulse response functions, variance decomposition and historical decomposition are de-

rived and estimated to assess the persistence and dynamic effects of various oil shocks on

the oil market variables.

The VARMA(p, q) in (1) can be written as

Φ(L)Xt = Θ(L)υt, (6)

where Φ(L) = Φ0−Φ1L−Φ2L
2− . . .−ΦpL

p and Θ(L) = Θ0−Θ1L−Θ2L
2− . . .−ΘqL

q.

The effects of global oil market shocks are analysed from impulse response functions

which are derived from pure vector moving average representations (VMA) of the model.

The VMA representation of (6) is given by

Xt = Ψ(L)υt = υt +

∞∑
i=1

Ψiυt−i (7)

where

Ψi = Θi +
i∑

j=1

ΦjΨi−j

and Ψ0 = Ik, Φj = 0 for j > p and Θi = 0 for i > q while υt is a (K × 1) multivariate

white noise error process with the following properties of E(υt) = 0 and E(υtυ
′
t) = Συ.

However, the VMA processes in (7) does not allow us to attribute the responses oil

market variables to an economically interpretable shock.6 One way to circumvent this

problem is to transform these exogenous shocks into a new set of orthogonal shocks, with

each element independent of one another. As in Kilian (2009), the Choleski decomposition

is applied where Συ is given by Συ = SS′. The reduced form errors υt can be decomposed

according to (8) where ut represents the standardised structural shocks.

υt = Sut (8)

where

υt =

 υ1,t
υ2,t
υ3,t

 =

 s11 0 0
s21 s22 0
s31 s32 s33

 uost
ugat
uop3,t


6This is because υt is the combination of all fundamental oil market shocks rather than featuring a

particular oil shock such as the oil supply shock or global activity shock.
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The restrictions imposed are similar to those imposed by Kilian (2009). The global oil

supply is assumed not to respond to global economic activity and global real oil price within

the same month but do respond with a lag. These restrictions are realistic considering that

the oil-producing countries will be slow to respond to any changes in oil price or global

demand due to uncertainty associated with the state of the crude oil market and the time

and costs needed for adjusting the oil production. The global economic activity is assumed

to be contemporaneously affected by the global oil supply but not immediately by the oil

price. This restriction is in line with the sluggish behavior of global economic activity after

each of the major oil price movements (see Kilian, 2009). The oil price on the other hand

is assumed to respond immediately to changes in oil supply and global economic activity.

The identified, three structural shocks, ut = [uost , u
ga
t , u

op
t ] are oil supply shock, global

activity shock and oil specific shock respectively. As in Kilian (2009), oil supply shock is

defined as unpredictable innovations to global oil production, associated with geopolitical

events, the discovery of new fields and improvements in the technology, while global activity

shock is defined as shocks to the global demand for industrial commodities, associated

with global business cycle movements. Oil specific shock is defined as reflecting shifts in

expectations about future shortfalls of supply relative to demand in the global oil market,

driven by uncertainty about future oil market and or financial conditions. This could

include precautionary demand, speculative demand, global liquidity and or the effects of

monetary policy.

Using (8) to substitute υt in (7) gives

Xt = Sut +
∞∑
i=1

ΨiSut−i. (9)

The parameters on current and lagged ut represent one standard deviation orthogonalised

impulse response functions.

The variance decomposition in terms of the separate contributions of the three shocks

on the system to the h-step ahead is

VDh =
h−1∑
i=0

ΨiS1S
′
1Ψi +

h−1∑
i=0

ΨiS2S
′
2Ψi +

h−1∑
i=0

ΨiS3S
′
3Ψi, h = 1, 2, . . . , (10)

Historical decomposition of a variable utilizes a representation of any variable in terms

of the product of its impulse responses with estimates of the structural shocks. It allows

one to assess the contribution of each shock to the variable over time. The structural VMA

representation of (9) is given by

Xt =

∞∑
i=0

Ξiut−i (11)

where Ξi = ΨiS and the historical decompositions can be derived by simply recognizing

that the VARMA form allows for any variable to be written as a weighted sum of previous

shocks plus the effects of an initial condition, that is

Xt = initial conditions +

t∑
i=0

Ξiut−i (12)
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and the contribution of the kth structural shock to the jth variable can be represented as

x
(k)
jt = initial conditions +

t∑
i=0

ξjk,iuk,t−i (13)

Ideally plotting the x
(k)
jt for k = 1, 2, ...,K, throughout the sample period, we could

interpret and analyze the relative contributions of the different structural shocks to the jth

variable.

4 SVARMA versus SVAR

In this section we compare the performance of the VARMA framework with its VAR coun-

terpart in terms of forecasting ability and impulse responses. In Table 3, all three model

selection criteria would select the VARMA model over any of the VAR alternatives. If we

were only to choose a VAR model, VAR(2), VAR(3) and VAR(24) are selected by the SBIC,

HQ and AIC respectively.

Table 3: Model selection criteria for the estimated VARMA and VAR models.

AIC HQ BIC

VARMA(2,1) −9.85 −9.63 −9.54

VAR(2) -9.68 -9.61 −9.53
VAR(3) -9.70 −9.61 -9.48
VAR(24) −9.81 -9.13 -8.07

4.1 An out-of-sample forecast evaluation

Baumeister and Kilian (2012) demonstrate that the VAR model produce more accurate

short-run forecast of the real oil price compared to the AR or ARMA models. In this

section, we examine the forecast accuracy of VARMA compared to VAR models. In order

to perform a robust out-of-sample forecast evaluation of the VARMA(2,1) we include as

alternatives VAR(2), VAR(3) and VAR(24).7 We split our data into an in-sample period

with 408 observations, covering January 1974 to December 2007 and an out-of-sample

period with 120 observations, covering January 2008 to December 2017.8 We re-estimate

all models using the in-sample period and forecast 1 to 12-steps-ahead. We then role all

models forward and generate 1 to 12-steps-ahead forecasts until the end of the out-of-sample

period. This generates 120 1-step-ahead forecasts, 119 2-steps ahead forecasts up to 109

12-steps-ahead forecasts, which are used for forecast evaluation.

In Table 4 we present the percentage gains (losses for negative entries) in RMSFE (Root

Mean Squared Forecast Error) from forecasting with the VARMA(2,1) model compared to

the alternative VARs. We present the results for the oil price (OP) as well as for all the three

7The forecasting exercise carried out in this section is not directly comparable to that reported in
Baumeister and Kilian (2012), as the choice of variables and the estimation techniques applied are dif-
ferent.

8In-sample period represent closely to Kilian (2009) period of study and it also covers the first two
sub-periods described in Table 1 while the hold-out period represents the third sub-period.
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variables together. The results show that the VARMA(2,1) model forecasts the oil price

considered in the multivariate system more accurately than the VAR counterparts. This

is reflected by the gains in RMSFE from the VARMA model compared to the alternative

VARs. The times that one of the VAR alternatives was more accurate were very few

and the loss from using the VARMA(2,1) instead of the VAR alternative were very small

in comparison to the gains. The averages across the series presented at the last row of

each panel indicate that VARMA(2,1) outperforms the alternative VARs for all forecast

horizons. In particular, the VARMA(2,1) forecast tend to have a percentage gain around

60% to 80% in RMSFE compared to VAR(24). These findings are consistent with those in

previous studies such as Athanasopoulos and Vahid (2008b), Dufour and Pelletier (2011)

and Raghavan et al. (2016) which also evaluate the forecasting accuracy of VARMA models

versus VARs.

Table 4: Out-of-sample percentage gains in RMSFE from forecasting h-steps-ahead with a
VARMA instead of the VAR alternatives. Negative entries correspond to a percentage loss.

h
1 2 4 6 8 12 Average

VARMA(2,1) vs VAR(2)

OP -2.47 3.09 7.88 8.66 8.21 6.07 7.48
All variables 3.20 6.95 6.86 4.28 4.28 1.52 4.43

VARMA(2,1) vs VAR(3)

OP -0.53 3.06 5.91 5.93 5.39 4.58 5.27
All variables 3.63 4.86 3.10 1.81 1.51 1.05 1.27

VARMA(2,1) vs VAR(24)

OP 59.17 58.83 70.75 81.98 84.41 79.09 78.55
All variables 58.93 52.53 69.84 83.76 91.90 89.88 83.31

4.2 SVARMA versus SVAR impulse responses

The main focus of this paper is to analyse the responses of oil market variables to various

oil related shocks. Following Kilian (2009), many similar studies in the literature selected a

VAR(24) for capturing all the dynamics in the data. In this section, therefore we compare

the performance of our identified SVARMA(2,1) with the commonly used SVAR(24).

To assess the performance of each model, we refer to its ability to produce impulse

responses that are consistent with the sign restrictions related studies in the oil market.

Table 5 below shows Kilian and Murphy (2012) sign restrictions for impact responses in the

oil market. The oil-supply shock, which represents the unexpected disruption of the global

crude oil production is expected to raise the real oil price and lower global economic activity

on impact. An unanticipated increase in global activity shock is expected to raise the real

oil price and stimulate global oil production. The real oil price jumps, associated with

oil-specific shock is expected to have a positive impact on global oil production. Although

there is no direct effect of such a shock on global real activity within the month, it is

12



however expected to lower the global real activity indirectly.

Table 5: Sign restrictions for impact responses in the oil market
Oil supply shock Aggregate demand shock Oil-market specific shock

OS - + +
GA - + -
OP + + +

The sizes of the shocks, measured by one-standard deviation of the orthogonal errors

of the SVARMA and SVAR models are presented in Table 6 and the sizes vary slightly

between the two models. Therefore, to aid comparison, the impulse responses of the oil

market variables across the two models are normalized by dividing them with the standard

deviations estimated using SVARMA. We observe the behavior of these responses over a

period of 24 months. 68% confidence bands are computed via bootstrapping 10000 sam-

ples, using the bootstrap-after-bootstrap method of Kilian (1998). SVARMA and SVAR

impulse responses are shown in Figure 2 as unbroken green and black lines respectively

with confidence bands shown as dashed lines.

Table 6: Magnitude of one standard deviation shocks from the VARMA and VAR models

Model OS GA OP

SVARMA(2,1) 0.315 0.245 0.125

SVAR(24) 0.266 0.223 0.119

Figure 2: VARMA versus VAR responses
 Oil Supply (OS) Shock Global Activity (GA) Shock Oil Specific Demand (OP) Shock 
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In many cases, SVARMA and SVAR models generate qualitatively similar impulse-

response functions which are consistent with that reported in Kilian (2009).9 This indicates

that the use of the newly corrected and updated global economic activity index by Kilian

(2018) and the longer sample period have relatively little effect on the responses. Com-

pared to SVAR, SVARMA are more consistent with the sign restrictions reported in Table

5, adopted from Kilian and Murphy (2012). In the SVAR model, the responses of global ac-

tivity to OS and OP shocks appear to be problematic. The global activity is non-responsive

to disruption to oil production and a similar result is also reported by Bataa et al. (2016),

using a structural heterogeneous VAR. On the contrary, SVARMA model generated the

expected negative response and is consistent with the results generated by Lutkepohl and

Netsunajev (2014), who used a sign restrictions VAR with Markov switching mechanism.

As shown via SVARMA model, the real oil price’s response to oil supply disruption is pos-

itive but short lived, lasting for about six months. This implies an oil supply disruption

shock may have a greater effect on the US price level than on the oil price, leading to an

eventual fall in the real price of oil.10

Broadly speaking, a comparison of the results of the two alternative models indicates

the benefits from using the SVARMA model over its SVAR counterpart. Compared to a

SVAR model which requires long lag structure, a parsimonious SVARMA(2,1) model is able

to capture the empirical dynamics of the data in order to produce plausible results that are

consistent with expected sign restrictions and stylized facts. The confidence bands around

the SVARMA responses appear to be narrower than those around the SVAR responses. This

indicates that the parsimonious SVARMA model provides more precise impulse response

functions compared to the SVAR model. Further, the benefit of applying the parsimonious

SVARMA model is that it will enable us to analyse the oil market for various shorter sample

periods.

5 The Changing Dynamics of Global Oil Market

As discussed in Section 2, the nature of the oil market has changed over the four decades

following the oil price shocks of the mid-1970s. This section presents our main results,

assessing the changing dynamics of the oil market for the three sub-periods identified in

Table 1. First we generate the historical decomposition, derived using the SVARMA model

for the full sample. Then we carry out the sub-period analysis by generating the impulse

response functions and forecast error variance decomposition for each sub-period. Impulse

responses and variance decomposition are estimated using the SVARMA model, under the

assumption that there is no break within each sub-period.

9Lutkepohl and Netsunajev (2014) and Bataa et al. (2016) also produce similar results where the for-
mer used a sign restrictions VAR with Markov switching mechanism while the latter used a structural
heterogeneous VAR

10Lutkepohl and Netsunajev (2014) and Bataa et al. (2016) found oil price to be non-responsive to oil
supply disruption.
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5.1 Historical Decomposition

In this section we undertake a historical decomposition analysis of the relative contributions

of the three oil related shocks to examine the evolution of the oil price over the sample

from 1974 to 2017. The SVARMA model is used to decompose the real oil price into its

component shocks. As shown in Figure 3, notable differences are observed in the way the

various oil related shocks impact the global real oil price over time. The solid black line

represents the demeaned real oil price over the sample period. The contribution of the oil-

supply (OS) shock, global-demand shock (GA) and oil-specific (OP) shock are represented

in green, red and blue bars respectively. The time path of the three shocks implied by the

SVARMA(2,1) appear to be consistent with that reported in Baumeister and Kilian (2016).

Figure 3: Historical Decomposition of real oil price

 

During the pre-moderation period , the demeaned real oil price appear to be positive.

Figure 3 shows the positive movement was largely contributed by OS and OP shocks. This

is not surprising as the period covers the “official price”regime, when the oil price was

set by Organization of the Petroleum Exporting Countries (OPEC).11 However between

1978 to 1980, oil price declines, contributed by negative movements in GA and OP shocks.

According to Baumeister and Kilian (2016), this could be attributed to Paul Volckers

decision to raise US interest rates. The resulting move in the global monetary policy

regimes towards contractionary policy, resulted in a global recession which lowered the

demand for oil and hence the price of oil. In addition, the expected decline of future

economic growth in conjunction with higher interest rates made it less attractive to hold

stocks of oil, causing OP shocks to drive the oil price down. Our empirical oil market

model confirm the OS shock, caused by the disruption in oil production played a role in

increasing the oil price between early 1980s to mid-1980s. The cumulative price increase was

also precipitated with increased OP shock. According to Baumeister and Kilian (2016), this

can be associated with inventory demand in anticipation of future oil shortages, presumably

11See Mabro (2006) for a detailed account of the oil market pricing regimes.
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reflecting geopolitical tensions between the US and the middle-east. Kilian (2009) classifies

any movements in oil price that are not accounted for by global oil production and economic

activity as precautionary demand for oil, driven by fear of future oil supply shortfalls due

to war or excessive demand.

During the great moderation period, the demeaned real oil price appear to be negative.

According to Figure 3, between mid-1980s to early 1990s, the negative movement is mainly

from OS shock. A sharp fall in the price of oil in 1986 could be caused by the resumption of

Saudi Arabia oil production where the resulting losses of oil revenue forced Saudi to reverse

its policy of restricting oil production (Kilian and Murphy, 2014). Between early 1990s

to late 1990s, the decline appeared to be caused by a combination of OS and OP shocks.

During this period, given the abundance of crude oil supplies in the world relative to oil

demand, the price of oil weakened further. This reflects a reduction in inventory demand

for oil, given that OPEC was unable to sustain a higher price of oil. By December 1998,

the oil price reached an all time low associated with reduced demand for crude oil, caused

by the Asian Financial Crisis of mid-1997. As observed in Figure 3, between 2003 to 2008,

the recovery in the price reflected a combination of factors including higher demand for

oil from a recovering global economy, some cuts in oil production, and increased inventory

demand in anticipation of tightening oil markets. During this period, oil price increases

are connected with strong global economic growth until 2008 mostly driven by surge in the

demand for oil from emerging economies, particularly China and India (Hamilton, 2009;

Baumeister and Peersman, 2013; Kilian and Hicks, 2013; Kilian and Murphy, 2014).

In the post-moderation period, the oil price kept rising despite the weakening of global

economic activities and with no disruption in global oil production. This raises the question

of what is actually driving the oil price after 2010. Figure 3 shows the positive contribution

is coming from OP shocks. Kilian and Murphy (2014) classifies this as speculative demand

driven by fear of future oil supply shortfalls due to excessive demand. This type of demand

is typically associated with inventory building with the expectation of selling later at a

profit. Ratti and Vespignani (2013) on the other hand highlights that the rise in oil price

between 2009-2010 was caused by global liquidity, particulary due to the rise in China’s real

M2. Hesary and Yoshino (2014) argues that expansionary monetary policy stimulates oil

demand through interest rate channels and this combined with a rigid global oil production,

creates a surge in oil price. Since 2014, a sharp decline in oil price was observed. All three

shocks are contributing to this decline. A negative contribution from OS shock can be

attributed to unexpected growth in US shale production and the increased oil production

from countries like Canada and Russia. A negative contribution from OP shock is associated

with declined storage demand for oil while a negative contribution from GA shock is due

to unexpected weakening of the global economy (Baumeister and Kilian, 2016).

The historical decomposition analysis allows us to have a clearer understanding of what

was driving the changing dynamics of the global oil market over the last four decades. We

observe the contribution of the three oil related shocks varied across the three sub-periods

and this implies the parameters of oil market variables are subject to change under each
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sub-period.

5.2 Impulse Responses

Impulse response functions estimated for each sub-period provide a quantitative compar-

ison of time-variation in the responses of the oil market variables to the three oil related

shocks. To aid comparisons, shocks of the same magnitude are applied across sub-periods,

with these equal to one standard deviation of the corresponding shock estimated using the

full sample, as reported in Table 6 for SVARMA(2,1). Each of the three columns in Figures

4 to 6 represents a sub-period. The unbroken black lines show estimated impulse responses

associated with each of the sub-periods. The green lines provide impulse responses gener-

ated for the full period, similar as that shown in Figure 2. It should be noted that different

vertical scales are employed across sub-periods.

Figure 4 traces the impact of oil supply shock (OS). The negative responses of oil

production to one standard deviation OS shock across the three sub-periods appear to be

similar and consistent with the full sample. In contrast to Bataa et al. (2016), we observe

interesting differences in the responses of global activity. In the first and third sub-periods,

the negative response of global activity after 12 months is respectively 2 and 4 times larger

than that for the full sample. The OS shocks however have relatively little effect on global

activity during the great moderation period. The responses of real oil price to an OS shock

in the first sub-period is positive but short lived, lasting for less than three months. As

stated in Lutkepohl and Netsunajev (2014), it could mean an oil supply disruption shock

lead to greater rise in the US price level compare to the oil price, leading to a fall in the

real price of oil. Real price of oil was also non-responsive to OS shock during the great

moderation period. According to Bataa et al. (2016), due to excess capacity being at a

record high, a production disruption can be quickly replaced and thus lead to minimal

effects on oil price. In the post moderation period, a distinctive positive and persistent

price responses compared to full period is observed. Given the sticky US price level, any

effect on oil price is reflected directly on real oil price. Overall, OS shock plays an important

role during the pre and post moderation periods.

Figure 5 presents the responses to global activity (GA) shock over time. The responses of

global economic activity to a GA shock is similar across time while the same cannot be said

about the other two variables. In the great moderation period, oil production responded

positively and persistently to a GA shock, indicating during this period oil production was

based on market consideration. The responses however, appear to be more muted in the

first and third sub-periods, implying that during these periods the production was set in

the light of political and technological consideration respectively (Baumeister and Kilian,

2016). Though the GA shock appear to have positive and persistent effects on real price of

oil, the intensity of the shock varies across all sub-periods. The largest effect was observed

during the great moderation period, when the global economy was experiencing strong

growth driven by surge in the demand for oil from emerging economies. In contrast to OS

shock, GA shock appears to play an important role during the great moderation period.
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Figure 4: Oil supply (OS) shock
 Great Inflation Period Great Moderation Period Post-Moderation Period 
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Note: Each of the three columns represents a sub-period. The green line provide impulse responses generated
for the full period, similar as in Figure 2 while the black line provide the responses generated for each sub-
period. The confidence bands shown as dashed lines.

Figure 5: Global activity shock
 Great Inflation Period Great Moderation Period Post-Moderation Period 
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Note: See Figure 4.
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Figure 6, shows the transmission mechanism for the effects of oil specific (OP) shocks.

After having a short lived positive effect, the OP shock depresses the oil production in

the first and third sub-periods. This can be associated with the rise in inventory capacity

and weakening of global economic growth. In the second period, oil production responded

positively, largely attributed to the increased inventory demand in anticipation of tightening

oil markets due to strong global economic growth. The responses of global activity to an

OP shock, varies over time. The global activity responded positively during the great

moderation period and negatively during the post moderation period. In this regards the

OP shock can be attributed as speculative shock, where during global economic expansion,

this shock contributes positively to global activity while during weaker global environment

it contributes negatively. The real oil price response positively across the three sub-period,

however the responses are less persistent in the last two sub-periods.

Figure 6: Oil specific demand shock
 Great Inflation Period Great Moderation Period Post-Moderation Period 
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Note: See Figure 4.

5.3 Variance Decomposition

In Table 7, the forecast error variance decomposition of the three oil market variables, for

the pre moderation, great moderation and post moderation periods are presented. Results

are reported for forecast horizons 6, 12, 24 and 60 months ahead. The results appear to

have a varied path between the three sub-periods and illustrates how the dynamics of the

oil market have altered between 1974 and 2017.

Focussing first on the pre-moderation period, the decompositions of the global activity

and real oil price show that over a six months horizon, more than 90% of the variances are
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Table 7: Forecast error variance decomposition of the oil market variables

Period Pre-Moderation Great Moderation Post-Moderation
(1974:1–1985:12) (1986:1–2007:12) (2008:1–2017:12)

Shocks OS GA OP OS GA OP OS GA OP
Horizon Global Oil Production

6 99.33 0.55 0.12 98.17 0.28 1.55 98.29 1.34 0.38
(0.99) (0.77) (0.22) (0.38) (0.76) (0.39) (1.85) (1.68) (0.17)

12 99.39 3.39 0.22 91.11 1.71 7.18 97.54 1.37 1.10
(0.88) (0.29) (1.18) (5.56) (2.56) (3.00) (0.57) (2.13) (2.71)

24 97.32 1.17 1.51 74.82 9.16 16.02 96.01 1.31 2.68
(8.16) (1.31) (6.85) (11.36) (6.31) (5.05) (5.47) (1.85) (7.31)

60 92.18 3.56 4.25 49.02 26.82 24.15 95.42 1.30 3.28
(18.37) (3.93) (14.44) (16.98) (10.88) (6.10) (9.08) (1.16) (10.24)

Global Economic Activity
6 1.47 97.88 0.65 2.44 93.72 3.85 1.84 96.07 2.09

(1.40) (2.85) (1.46) (1.76) (3.80) (2.04) (1.23) (0.55) (0.68)
12 8.52 90.20 1.28 1.80 87.09 11.11 6.42 89.82 3.76

(4.42) (7.19) (2.77) (1.54) (5.73) (4.20) (7.35) (11.40) (4.06)
24 24.22 74.21 1.57 2.16 80.17 17.67 9.21 81.91 8.88

(8.20) (11.24) (3.03) (1.59) (7.18) (5.60) (12.40) (23.41) (11.01)
60 34.94 63.30 1.77 4.98 71.47 23.49 9.07 79.27 11.66

(13.58) (11.08) (2.50) (2.76) (9.71) (6.94) (12.56) (27.34) (14.78)
Real Oil Price

6 1.62 5.41 92.97 1.00 1.01 97.99 3.08 17.56 79.36
(2.21) (3.29) (5.5) (0.97) (2.04) (3.01) (4.66) (5.91) (1.25)

12 4.58 8.90 86.52 2.30 7.36 90.33 12.70 18.32 68.98
(5.18) (5.61) (10.79) (2.02) (5.59) (7.61) (10.97) (9.11) (5.86)

24 16.53 12.93 70.55 7.73 20.24 72.03 22.48 17.82 59.70
(11.66) (6.18) (17.84) (4.20) (8.42) (12.61) (14.66) (12.36) (12.30)

60 36.18 11.46 52.37 10.46 34.87 54.67 24.90 17.67 57.43
(18.09) (10.90) (18.28) (5.43) (10.55) (15.98) (18.09) (13.42) (14.67)

Note: Standard errors are reported in the parentheses.

attributable to their own shocks. There is evidence that in the longer horizon of five years,

OS shock is an important source of fluctuations for these two variables (i.e. its contribution

is around 34.94% and 36.18% respectively). Interestingly, over the five year horizon, OP

shock has relatively a minimal effect on global oil production and global activity while

GA shock contributed around 11.46% of the variation in real oil price. According to our

SVARMA model, oil supply shocks play a large role during this sub-period and a similar

conclusion is also drawn by Bataa et al. (2016).

Different results are projected during the great moderation period. The decompositions

of the oil market variables show that over a twelve months horizon, between 87.09% to

91.11% of the variances are attributable to their own shocks. Over a five horizon, the GA

and OP shocks are important source of fluctuations. The contribution of GA and OP shocks

to global oil production increases from 3.56% and 4.25% in the pre-moderation period to

26.82% and 24.15% in the great moderation period respectively. On the other hand the

contribution of OS shock to global activity and oil price decline from 34.94% and 36.18% to

4.98% and 10.46%. This dramatic change is part of the narrative of recovery of the global

economy and the discovery of new fields and improvements in the technology

The decomposition of global oil production in the post-moderation period is very similar

to pre-moderation period, where over the five year horizon, more than 90% of the variation

is dependent on its own shock. The contribution of demand driven shocks are minimal.

Unlike the other periods, close to 80% of the variation in global activity is attributable

to its own shock, while OS and OP contributed around 9% and 11% respectively. As for

the real oil price the contribution of the OS (25%) has increased while GA (16.67%) has
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decreased compared to the previous sub-period.

Across the three sub-periods, over the five year horizon, close to 50% of the oil price

variation are attributable to the combination of OS and GA shocks. This reflects, both

global oil production and global activity are important source of fluctuations for oil price.

During the pre and post moderation period, OS shocks played an important role while

during the great moderation period GA shock was important.

6 Conclusion

This paper builds a SVARMA model for investigating the evolution of the oil market for the

last four decades. We observe over time, the fluctuations in the global oil production and

economic activity have different dynamic effects on the real price of oil. To assess the impact

of the changes in the supply and demand driven oil shocks, we document the evolution of

the oil market over three distinctive sub-periods - pre-moderation, great moderation and

post-moderation periods. This implies the parameters of oil market variables are subject

to change under each sub-period and thus it can be misleading if constant parameters are

assumed throughout the samples. Applied researchers tend to estimate a VAR model of

order that is much higher than that selected by AIC or BIC; usually 24 lags to describe the

oil market adequately and to obtain reliable impulse responses. The use of long order VAR

however could be problematic for the sub-period analysis due to limited observations. In

this regard, the use of a more parsimonious SVARMA model is deemed suitable.

To demonstrate the benefits of using a SVARMA model we compare the impulse re-

sponses generated by a SVARMA model with those generated by a SVAR. We find that

the SVARMA model produces impulse responses that are consistent with the expected

sign restrictions for impact responses in the oil market. SVARMA produce more accurate

out-of-sample forecasts compared to the SVAR.

Historical decomposition, impulse responses and variance decomposition allow contrast

of shocks propagating under different sub-periods. Both oil production and global activity

are important source of fluctuations for oil price, but their relative contribution varies across

sub-periods. During the great moderation period, the oil market is driven by demand related

shocks originating from global activity and or oil-specific shocks. On the other hand, during

the pre and post moderation periods, the market is mainly driven by oil supply related

shocks. Broadly, the time path of the three shocks implied by our SVARMA model appear

to be in line with that reported in Baumeister and Kilian (2016), who analysed the oil price

fluctuations for the last forty years.

The empirical results based on the SVARMA methodology show notable differences

in the supply and demand shock transmission under different sub-periods. Therefore, we

concur with Bataa et al. (2016), that policymakers, financial analyst and economists who

are interested in the movements of oil price and to understand the effects of various oil

related shocks need to recognize that the nature of the world oil market has changed over

the last four decades. The successful construction and implementation of the SVARMA

model for oil market analysis, along with its promising impulse responses indicates the
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suitability of this framework for studying the effects of oil market shocks on small open

economies and transitional economies, especially for those economies that are not currently

investigated due to limited data availability.
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Appendix

Appendix A: Identification and Estimation of a VARMA Model

We present the modelling of VARMA(p, q) process in three stages and they are briefly

described in the following subsections.12

Stage I: Identification of the SCMs of the VARMA process

First, by strategically choosing Ym,t and Yh,t−1−j , we identify the overall tentative order of

the VARMA(p, q). The identification process, begins by searching for K SCMs of the most

parsimonious possibility, i.e., SCM(0, 0), which is a white noise process by testing for the

rank of Γ(0, 0, 0) = E(Y0,t−1Y
′
0,t); where Ym,t = Y0,t and Yh,t−1−j = Y0,t−1. If we do not

find K linearly independent white noise scalar processes, we set m = h and by incrementing

m and j we search for the next set of K linearly independent scalar components.

Conditional on the overall tentative order (p, q) we then repeat the search process but

this time searching for individual components. So starting again from the most parsimo-

nious SCM(0,0), we sequentially search for K linearly independent vectors (α1, . . . , αK) for

m = 0, . . . , p, j = 0, . . . , q and h = m+ (q − j) as for a tentative order of (p, q) each series

is serially uncorrelated after lag q.

The test results from identifying the overall tentative order and the individual SCMs are

tabulated in what are referred to as Criterion and Root tables. Reading from the Criterion

table allows us to identify the overall tentative order of the model, while reading from the

Root table allows us to identify the individual orders of the scalar components.

Suppose we have identified K linearly independent scalar components characterized by

the transformation matrix B = (β1, β2, . . . , βk)
′
, the system in (1) can be rotated to obtain

zt −Φ∗1zt−1 − . . .−Φ∗pzt−p = ut −Θ∗1ut−1 − . . .−Θ∗qut−q, (14)

where ut = Bυt, Φ∗j = BΦjB
−1 and Θ∗j = BΘjB

−1 for j = 1 to p(or q).

This rotated model incorporates whole rows of zero restrictions in the AR and MA pa-

rameter matrices on the RHS, as each row represents one identified SCM(pi, qi). However,

note that obtaining the orders of SCMs does not necessarily lead to a uniquely identified

system. For example, if two scalar components were identified such that zr,t = SCM (pr, qr)

and zs,t = SCM (ps, qs), where pr > ps and qr > qs, the system will not be identified as we

need to set min {pr − ps, qr − qs} autoregressive or moving average parameters to zero. This

process is known as the “general rule of elimination”, and in order to identify a canonical

VARMA model we set the moving average parameters to zero.

Stage II: Identification of the transformation matrix B

The space spanned by zt−1 to zt−p is the same as the space spanned by Xt−1 to Xt−p. So,

for the transformed model (14), the right hand side of the equation can be written in terms

of Xt−1 to Xt−p instead of zt−1 to zt−p without affecting the restrictions imposed by the

scalar component rules.13 Hence, if we rotate the system by replacing zt−1, . . . , zt−p with

12For further details, refer to Athanasopoulos and Vahid (2008a) and Tiao and Tsay (1989).
13A detailed explanation on this can be found in Athanasopoulos and Vahid (2008a).
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BXt−1, . . . ,BXt−p, the system can be represented in terms of the original series as follows:

BXt = Γ1Xt−1 + . . .+ ΓpXt−p + ut −Θ∗1ut−1 − . . .−Θ∗qut−q, (15)

where Γi = Φ∗1B for i = 1, . . . , p and with Γ1, . . . ,Γp and Φ∗1, . . . ,Φ
∗
p satisfying the same

restrictions as the right hand side of equation (14).

Some of the parameters in B are redundant and can be eliminated. A brief description

about the rules of placing restrictions on the redundant parameters are as follows:

1. Each row of the transformation matrix B can be multiplied by a constant without

changing the structure of the model; i.e, one parameter in each row can be normalized

to one as long as this parameter is not zero. To make sure of this tests of predictability

using subsets of variables are performed.

2. Any linear combination of a SCM(p1, q1) and a SCM(p2, q2) is a

SCM(max {p1, p2} ,max {q1, q2}). For all cases where there are two SCMs with weakly

nested orders, i.e., p1 ≥ p2 and q1 ≥ q2, if the parameter in the ith column of the

row of B corresponding to the SCM(p2, q2) is normalized to one, the parameter in the

same position in the row of B corresponding to SCM(p1, q1) should be restricted to

zero.

Detailed explanations on these issues, together with examples, can be found in Athana-

sopoulos and Vahid (2008a).

Stage III: Estimation of the uniquely identified system

The identified model is estimated using FIML and is given by

ln  L(A,Σ) = −N − p
2

(− ln |B|+ ln |Σε| − ln |B′|)− 1

2
ε′tΣ

−1
ε εt (16)

thus

ln  L(A,Σ) ∝ (N − p) ln |B| − N − p
2

ln |Σε| −
1

2
ε′tΣ

−1
ε εt (17)

where A = [B : Φ1, . . . ,Φp : Θ1, . . . ,Θq] and Σ = var(Xt/Xt−1, . . . ,X1). As in Hannan

and Rissanen (1982), a long VAR is used to obtain initial values of the parameters.
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Appendix B: Oil Market Variables

Table 8: Data Descriptions and Sources
Variable Description Source

OSt Global Oil Production Crude Oil Production (Thousand Barrels per day)
(US Energy Information Website)

GAt Global Economic Activity Real Bulk Dry Cargo Freight Rates
(Kilian - UM Personal Website)

OPt World Oil Price Index U.S. Crude Oil Imported Acquisition
Cost by Refiners (Dollars per Barrel)
(US Energy Information Website)
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