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Abstract

We develop a theoretical and empirical framework for the connections be-
tween global �nancial and sovereign CDS markets. The transmission of
shocks is shown to a¤ect the systemic default probability of the interna-
tional network. The network is found to be "robust but fragile", meaning
that a shock can result in the propagation of crises. Between 2003 and
2013, the probability of default in the network in the face of potentially
poor investment outcomes and/or sovereign bond haircuts changes sub-
stantially. The results suggest that it is the interconnectedness of the
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1 Introduction

International connections between banks and sovereign debt markets are impor-

tant for �nancial and economic stability. However, the complex nature of these

connections and the direction of in�uence remains a matter of debate; see, for

example, discussions in Reinhart and Rogo¤ (2009) and Kallestrup et al (2016).1

Theoretical arguments can be made for poor macroeconomic policy weakening

the state of the economy and transferring stress to the banking sector. Alterna-

tively, an abrupt interruption of private credit growth may weaken the banking

market to the extent that it requires government support, in turn undermining

sovereign creditworthiness. A spiral of weakening banks and weakening sov-

ereign credit may result when banks have signi�cant holdings of sovereign debt.

These network e¤ects can spill over to the real economy; see Carvahalo (2010),

Acemoglu et al (2012), Anufriev and Panchenko (2015).

This paper develops a theoretical and empirical framework for analyzing the

network of connections between �nancial institutions and sovereign debt, focus-

ing on evidence of changes in the network structure during periods of market

stress. The framework provides a mechanism by which �robust-but-fragile�net-

works may emerge in the face of an unexpected shock to the system through

poor investments and/or poor government policies.

Our theoretical framework consists of two sectors: �nancial institutions

(banks) and sovereigns. Banks are engaged in capital lending with one an-

other without a requirement to borrow all available funds. Each bank has an

opportunity to invest in the real economy with an uncertain return. Financial

institutions that choose to retain (some) funds in the sovereign debt market face

the risk of a haircut. In this case, both sectors experience a potential underin-

vestment problem caused by an external shock. The volatility of this shock has

nonlinear e¤ects on the network, and illustrates how the default of a �nancial

institution and/or sovereign can potentially increase the probability of other

1Other relevant literature includes Kalbaska and Gatowski (2012), Alter and Schuler
(2012), Ureche-Rangau and Burietz (2013), Bruyckere et al (2013).
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entities defaulting.

By generalizing the results of Acemoglu et al (2015), we show that the default

of a sovereign or �nancial institution as a result of the unexpected shock leads

to multiple equilibria de�ned by a collection of mutually consistent payments

between entities. To analyze the continuum of equilibria, we show how to assess

the sensitivity of the counterparty to default. This quantity measures how

counterparty default in�uences the ability of an entity to meet obligations.

Given the existence of multiple equilibria, systemic default probabilities oc-

cur in di¤erent scenarios related to normal or poor investment outcomes. In

particular, we consider the following scenarios: Good times, in which returns

in the real economy are good and there are no sovereign defaults, in which

case the network is relatively robust; Poor investment, in which returns in the

real economy are poor but there are no sovereign defaults; Poor government,

in which retuns in the real economy are good but government policy leads to

sovereign bond haircuts; and Stress conditions, in which both poor returns in

the real economy and sovereign haircuts stress the network2 . These scenarios

permit identi�cation of the e¢ cient equilibrium as the state that minimizes the

aggregate loss of all creditors.

Empirically, we provide evidence on three speci�c hypotheses regarding the

changing nature of a global network comprising 67 �nancial sector institutions

and 40 sovereigns via the CDS market over the period 2003 - 2013. Speci�-

cally, our framework provides evidence for (i) changes in link strength between

nodes, consistent with existing tests of contagion; (ii) changes in the number

of connections between nodes, that is, the network may become more or less

dense, as evidenced in existing network literature; and (iii) changes in network

completeness weighted by the strength of linkages, combining information on

the existence of linkages and their relative importance. We test for potential

changes in the network from September 15, 2008, consistent with the global

�nancial crisis initiated by the collapse of Lehman Brothers, and from April 1,

2010, consistent with the period of the Greek and subsequent sovereign debt

2The �rst two cases are consistent with the original Acemoglu et al (2015) analysis.
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crises in Europe.

Our evidence supports a high degree of network completeness, consistent

with the major role played by common factors in Longsta¤ et al (2011). The

empirical framework is based on a network of edges assessed by Granger causal-

ity tests; see also Billio et al (2012) and Merton et al (2013). Drawing on Diebold

and Yilmaz (2009, 2014, 2016) and weighting the existence of linkages by their

strength, we show that �nancial network completeness falls; see also Atil et al

(2016) and Fabozzi et al (2016). The number of links and the completeness

of the network incorporating �nancial institutions and sovereigns may increase

across certain crises, as in Billio et al (2012), or fall, as in Caporin et al (2014).

Net declines in network completeness may, for example, represent the removal of

a large number of weaker linkages and their replacement with a small number of

stronger linkages, resulting in di¤erences in network topology between periods.

This is important because policymakers may wish to react quite di¤erently to

a larger, more loosely connected network than to a more concentrated strongly

connected one; see, for example, the literature on bank concentration during

crises, Beck et al (2006).

Our approach nests tests for contagion in a systemic risk assessment through

the removal and formation of new linkages during periods of �nancial stress.

Contagion is de�ned as the formation of new linkages, such as new common-

alities between formerly unrelated assets, see Bekaert et al (2014) and Dungey

and Martin (2007), or the breakdown of linkages between counterparties (Gai

and Kapadia, 2010) and di¤erences in the transmission mechanisms for tail-

shocks, as in Boyson et al (2010) and Busetti and Harvey (2011). By using

the Granger causality framework, we are methodologically associated with the

contagion literature; see Longsta¤ (2010), Marais and Bates (2006) and Sander

and Kleimeier (2003).3

3Acemoglu et al (2015) use the term contagion to denote the transmission of shocks across
their networks based on the known lending relationships between banks. Their usage is more
consistent with spillovers, where spillovers are ex ante known linkages between nodes; con-
tagion is usually used to refer to transmission of shocks beyond that indicated by the usual
linkages. For an overview, see Dungey et al (2005).
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Evidence of changes in the network structure around the timing of the global

�nancial crisis supports shifts in relationships between �nancial institutions and

sovereign debt markets. One form of these shifts is consistent with both a global

�ight from markets with heavily increased risk during the crisis �notably source

markets from European sovereigns and US �nancial institutions �represented

by the breakdown of network linkages. The other form represents seeking new

markets, consistent with a shift in relative risk/return trade-o¤s globally �no-

tably increased linkages with Africa �represented by the formation of new links

in the network.

We calculate the expected number of defaults for the network in di¤erent

sample phases in four di¤erent scenarios (Good times, Poor investment, Poor

government and Stress) to illustrate the di¢ culties inherent in �nancial regula-

tion. In the period prior to the Lehman Brothers collapse, the expected number

of defaults for all entities in the Poor government and Good times scenarios is

relatively low. In this case, even a large shock is expected to cause only a small

number of defaults. The combined network is more fragile in the Poor invest-

ment scenario. However, in crisis periods, the expected number of defaults in

the combined network is almost the same in the Poor government and Poor

investment scenarios, indicating feedback e¤ects between banks and sovereigns.

Default risk is highest in the second phase, equivalent to the global �nancial

crisis period, when it is almost �ve-fold that of the pre-crisis period. During

the period of the Greek and European sovereign debt crises, the third phase,

default risk returns to previous levels in the case of Poor government, while

under Stress conditions and Poor investment, the expected number of defaults

is lower than before. An immediate practical outcome of these results is to sup-

port the calls for regulators to recognize the need for non-zero risk weightings

on sovereign debt in bank capital assessment; see Hannoun (2011) and, for evi-

dence on the potential importance of the so-called zero risk practice, Korte and

Ste¤en (2015).

The paper proceeds as follows. Section 2 discusses the theoretical framework

for modelling a network incorporating �nancial institutions (banks), real econ-
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omy �rms and sovereign debt. Section 3 explores the data set used for empirical

analysis. The econometric methodology for establishing edges is outlined in

Section 4, and Section 5 presents results for our sample of 107 entities (�nancial

institutions and sovereigns). Section 6 concludes.

2 Theoretical Framework

Papers by Gai and Kapadia (2010) and Acemoglu et al (2015) propose a theoret-

ical framework for modeling networks between banks and simulate the transmis-

sion of shocks through banking networks. We extend the framework of Acemoglu

et al (2015) to consider that banking network connections are susceptible to po-

tential defaults on sovereign debt. Acemoglu et al (2015) speci�cally include the

possibility that banks do not take full advantage of all possible borrowing op-

tions available within their bank counterparty network and instead �hoard funds�

as a form of cash reserve. In particular, they identify this component of a bank�s

portfolio decision as representing investment in sovereign debt, which provides

a standard riskless return, R, thus acting as cash in their model. Our extension

speaks strongly to outcomes for banking networks when the return on sovereign

debt is uncertain. Speci�cally, we show that the results in Acemoglu et al (2015)

regarding the stability and fragility of banking networks transfer directly to the

extended network between sovereign debt markets and banking. This combined

network is highly interconnected, demonstrating a robust-yet-fragile structure,

Haldane (2009), which is at risk when exposed to a large enough single shock,

or su¢ ciently proximate contemporaneous small shocks.

2.1 The model of banks and sovereigns

Banks are in the business of lending for projects with uncertain returns. As

in Diamond (1982) banks cannot fund their lending activities from their own

balance sheets and need to engage in inter-bank relationships. This creates

networks of liabilities between banks, where the edges are determined by re-

payments required between pairs of �nancial institutions. Banking networks
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become highly interconnected as banks can hold assets and liabilities with any

number of other banks in the network, as in Allen and Babus (2009).

Consider a risk-neutral bank, operating in a three-period time frame as in

Acemoglu et al (2015). Each bank has capital to lend and a pre-determined

individual credit limit with each other bank in the network (total available

loans to bank i from bank j may not match the corresponding �gure available

to bank j from bank i). No bank is required to borrow the total credit available,

but they are all required to settle all interbank liabilities at each t = 1; 2.

Each bank has the opportunity in period t = 0 to pursue an investment

opportunity in the real economy, zi, with an uncertain return in period t = 1

but a certain, non-pledgable return at t = 2. If the bank needs to redeem its

investment at t = 1 the fraction of the loan it may recover is assumed to be

small.

Our extension concerns funds that banks choose not to invest. In Acemoglu

et al (2015) these funds, denoted ci; are considered equivalent to a sovereign

bond, bearing a certain return, R, with no risk. We extend the analysis to

consider not only the investment project having an uncertain payo¤ but also a

haircut risk to the sovereign bond. In this case, in period t = 1; the values of

returns zi and ci are in�uenced by an external shock, ui, which is a random

variable drawn from a given distribution with mean zero and variance one, and

its standard deviation4 is �i. The joint probability distribution p(u1; :::; un) for

n entities5 is assumed to be known.

De�nition 1 Network G is the pair (N ,E), where N is a set of nodes repre-

senting entities (banks or sovereigns), and a set of edges E represents contracts

between two entities from lender to borrower.

After making investment decisions in the initial period, at time t = 1; the

4Shock ui contains uncertainty about sovereigns and �nancial institutions and can be seen
as an aggregated shock. However, it is trivial to separately analyse disaggregated shocks.
Acemoglu et al (2015) and Glasserman and Young (2015) imply that shocks have a negative
impact on returns. In this paper, the shock ui; takes a value between -1 and 1, which permits
positive shocks.

5 In the following discussion, the term entity means bank (�nancial institution) or sovereign.
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bank has to settle counterparty liabilities with other banks in the network, yj ,

and meet its unavoidable contractual obligations, such as wages, and required

payments to investment projects, vj . We assume that vj is senior to counter-

party payments. Resources available to make these repayments, �j , consist of

the funds the bank placed in sovereign bond investments, cj , uncertain �rst-

period returns on the investment project, zj ; and repayments from counterpar-

ties,
P

i 6=j xj;i.

De�ne a default indicator dj , with dj = 1 if entity j defaults at time t = 1

and dj = 0 otherwise. If all entities are assumed to default, xj;i(dj) = 1,

8i; j. An entity j defaults if its assets, �j ; at time t = 1 are smaller than total

liabilities lj = vj+yj . That is the entity will not be able to meet its �rst-period

obligations in the case in which

�j = cj + zj + �juj +
X
i 6=j

xj;i < vj + yj : (1)

The default condition, de�ned in equation (1), is expressed as a function of

the stochastic shock, uj ; that impacts both sovereign and bank returns6 , which

permits us to rewrite (1) as

uj <
cj + zj +

P
i 6=j xj;i � vj � yj
��j

= qj ; (2)

in which qj de�nes the threshold value for shock uj . If uj < qj , the shock causes

the default of entity j. In this case, sign and magnitude of shock uj impact

the default probability of entity j and its obligations, potentially increasing the

default probability of other entities. Moreover, the default probability also de-

pends on the volatility of shock �j that nonlinearly a¤ects the network. It is

unlikely that an absolute threshold value can be established across multiple mar-

kets (for example, banking sectors of individual economies), as the variability

of shocks may vary across di¤erent networks.

Equation (2) can be used to express the default condition of n entities in

6This implication is di¤erent from Acemoglu et al (2015), who assume that cj is certain,
which means that risk arises entirely from the uncertainty a¤ecting zj . Note that uj can be
easily expressed as a combination of independent shocks a¤ecting the di¤erent entities.
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terms of the default indicators, dj ; as

dj = 1(qj � uj); (3)

in which 1 denotes the step function, which is equal to one if the argument is

positive and zero otherwise7 . A solution of the system (3) is represented by

vector bd = (d1; :::; dn).
De�nition 2 An equilibrium is de�ned by a vector of default indicators, d =

(d1; :::; dn); that is a solution of equation (3).

In general, a solution of equation (3) can be represented by multiple equi-

libria, which have two sources. First, an interdependence of entity liabilities

might imply more than one vector bd. Second, there can be multiple values of
shocks uj that solve equation (3). While a typical approach in the literature8 is

to focus on the best-case equilibria, in which as few entities as possible default,

we show in the following section that a multiplicity of equilibria can be useful

for analyzing di¤erent scenarios of the changing international network.

As every counterparty can have only two states (default, dj = 1, or no

default, dj = 0). De�nition 2 implies that qj for every entity j can take a �nite

number of values, 2nj , where nj is the number of counterparties borrowing from

entity j. Given that shock uj is a random variable taking values on the interval

[�1; 1], it is important to identify conditions under which the value of uj has an

impact on the default of entity j.

Proposition 1 Under the mapping ~qj = minfmaxfqj ;�1g; 1g the default is a

function of shock uj.

Proposition 1 implies that when �1 < qj < 1, shock uj a¤ects network G.

It unnecessary to constrain the values of qj ; however, this range is of interest

in default scenarios, a primary focus of this paper. When the values of qj lie

outside [�1; 1]; the results become independent of shock uj .
7This notion is similar to Roukny, Battiston and Stiglitz (2016). An alternative formulation

of the default condition counts losses in dollars related to the insolvency of entities of the
network rather than the number of defaults (Glasserman and Yong, 2016), which is consistent
with the SRISK approach promoted by the NYU Stern Volatility Laboratory project.

8 see, e.g., Elliott et al. (2014)
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2.2 Multiple equilibria

The main task now is to identify how the network structure leads to unique or

multiple solutions of system (3). Following default condition (2), a collection

of mutually consistent payments between entities at t = 1 de�ne the network

structure, also de�ned by an entity�s borrowing counterparties�default state.

This setting implies that a shock to an entity might not only lead to that

entity�s default, but might also initiate a cascade of creditor defaults, permitting

�nancial contagion in the system.

De�nition 3 A walk Pj1;jk is a sequence of entities (j1; :::; jk) such that the

pairs (j1; j2), (j2; j3),...,(jk�1; jk) 2 E are edges of the network. A walk is

closed if the �rst and the last institution in the sequence are the same, and open

if they are di¤erent. The length of the walk Pj1;jk is given by the number of

edges, k; contained in it. A cycle Cn is a closed walk represented by n entities

and n� 1 edges.

Following De�nition 3, in a network of banks and sovereigns, a cycle is an

arrangement of contracts that can be represented by a circle in which an entity

j borrows from one neighbor and lends to another neighbor.

De�nition 4 The sensitivity of entity j to the default of counterparty i is

scdj;i = ~qj(Hk
i=1)� ~qj(Hk

i=0);8i 6= j (4)

in which Hk
i=1 is the realization of defaults of k entities subject to di = 1.

Entity j may also fail if counterparties fail to pay their debts, providing

another source of multiple equilibria. Inability to pay is closely related to the

sensitivity of the counterparties of entity j, as de�ned in (4). In particular, the

sensitivity of counterparties to default measures how the inability of entity j to

meet its obligations in�uences entity i, which implies that more fragile entities

have a higher sensitivity to default. The presence of cycles in the network

and dependencies between the liabilities of entities are important conditions for

generating multiple equilibria, as formalized in the following proposition.
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Proposition 2 Consider a network of n institutions with xdj =
P

i 6=j x
d
j;i, in

which xdj;i is the amount of money that institution j recovers from the default of

institution i. Suppose that xdj < 1, unavoidable contractual obligations vj > 0,

and the shock variance �j > 0 is �nite. Multiple equilibria exist if and only if

(a) a cycle Ck of contracts along k >= 2 institutions exists;

(b) for each entity in cycle Ck, the sensitivity to default scdj;i 6= 0.

Necessary condition (a) in proposition 2 relates the existence of multiple

equilibria to the network structure. In particular, the network contains at least

two entities with interdependent default conditions. Su¢ cient condition9 (b)

speci�es how defaults in�uence entities belonging to cycle Ck. If for a given

shock uj , the default condition of institution j does not change, regardless of

whether the borrowing counterparties of j default, there are no multiple equi-

libria for institution j. Formally, realizations Hk
j are identical for j = 1 and

j = 0.

An important implication of proposition 2 is that �nancial network equi-

libria are de�ned by the default indicators, dj , dependent on shock uj . In

fact, condition (b) implies there is a large shock, u�j , triggering institutions

in cycle Ck. This �nding motivates incorporating unexpected shocks into the

empirical framework, as proposed in the following section. Variance decomposi-

tions capture the impacts of shocks on the network, relating our methodological

framework to the approach of Diebold and Yilmaz (2014). Proposition 2 also

suggests that an acyclical network, such as a tree, will have a unique equilibrium

for all possible realizations of shocks. Moreover, if the nodes of a network are

represented by only outgoing or incoming links, there is only one equilibrium.

In other words, if entities either only borrow from or only lend money to their

counterparties, a continuum of equilibria does not exist; networks need at least

one bivariate linkage to generate multiple equilibria in this framework.

9 If shock uj = 0 for all institutions, the su¢ cient condition (b) is similar to the unique
payment equilibrium condition of Acemoglu et al (2015), which is

P
j(zj + cj) 6= nv. This

condition restrict banks to default due to "coordination failures".
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De�nition 5 Given a distribution p(u), the expected number of defaults is rep-

resented by
Pn

i=1 scd
2
j;i=n.

As follows from De�nition 5, the expected number of defaults in the network

is de�ned by sensitivity indicators scdj;i aggregated across all entities. This

measure depends not only on the size of the realized shocks, uj , but also on

the variance of shocks, �j , and the network structure. Moreover, the expected

number of defaults measure is closely related to a variance decomposition. This

result motivates the proposed econometric framework, which will be discussed

in greater detail in the following sections.

2.3 Systemic default probability

Given the solution of system (3) and a joint probability density function of

shocks p(u), following Roukny et al (2016), a systemic default indicator dsys

can be de�ned as

dsys = 1f
P

j dj�n�g; (5)

in which threshold n� de�nes how many entities initiate systemic default. If

n = n�, systemic default is a situation in which all entities cannot meet their

obligations. If there is a unique equilibrium for the default state, d, the systemic

default probability can be de�ned as

P sys =

Z
dsys(u)p(u)du; (6)

in which dsys is estimated from equation (5), where d is a solution of equation

(3). Note that any possible correlation structure across shocks can be incorpo-

rated in p(u).

In the case of multiple equilibria, the systemic default probability cannot

be estimated directly from equation (6), as dsys(u) can take several values.

However, for a given shock, multiple equilibria can be analyzed according to

di¤erent scenarios related to di¤erent values of qj de�ned in equation (2).

Di¤erent states of nature are related to each of the project investments, zj ,

and the sovereigns, cj . In good (or normal) times, banks and sovereigns will
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achieve standard returns z+j and c+j , respectively; in a poor outcome period

they are subject to a haircut, receiving z�j and c
�
j . In this case, there are four

separate potential scenarios that the entity network may face at t = 1 to meet

its liabilities.

Good times: Investments achieve payo¤ z+j , and there are no haircuts in

sovereign debt markets, which is equivalent to the good case in Acemoglu et

al (2015). Bank networks should function normally - all sources of income are

available to meet liabilities.

c+j + z
+
j +

X
i 6=j

xj;i > vj + yj :

Stress: Investments do not perform, providing payo¤ z�j , and there is poor

performance in the sovereign debt market that necessitates haircuts, which pro-

vides a sovereign with negative return c�j . An entity�s incoming counterparty

payments need to exceed outside obligations owing due to the investment, the

entity�s own outgoing counterparty requirements, investment losses and the hair-

cut.

X
i 6=j

xj;i > vj + yj � c�j � z
�
j :

Poor investment: Investments do not perform, and a bank receives pay-

o¤ z�j . However, sovereign debt markets perform normally with no haircuts

required, which yields c+j . Bank bond holdings and incoming counterparty pay-

ments need to exceed outside obligations owed, the bank�s own owed counter-

party requirements and the loss due to the poor investment outcome. This is

equivalent to the bad case in Acemoglu et al (2015).

c+j +
X
i 6=j

xj;i > vj + yj � z�j :

Poor government: Investments perform well and provide payo¤ z+j . How-

ever, there is poor performance in the sovereign debt market entailing negative

returns, c�j . An entity�s income from successful investments and incoming coun-
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terparty payments needs to exceed outside obligations due to the investment,

the entity�s own outgoing counterparty requirements and the haircut.

z+j +
X
i 6=j

xj;i > vj + yj � c�j :

These scenarios permit the estimation of the systemic default probability in

the case of multiple equilibria. Consider the set 
 � fIi[ Ig [ Isg of all possible

solutions of equation (3) for a given shock u, in which Ii is a set of equilibria in

the poor investment case, Ig is a similar set for the poor government case, and

Is is assigned to the stress scenario. Moreover, for set 
, the best-case equi-

librium can be de�ned as dsys(u) = infk2
d
sys
k (u), while the worst equilibrium

is dsys(u) = supk2
d
sys
k (u). These de�nitions select the best (worst) solutions

according to smallest (largest) number of defaults in the entity network. The

systemic default probability in the worst and best scenarios, respectivly, can be

de�ned as

P sys =

Z
dsys(u)p(u)du: (7)

P sys =

Z
dsys(u)p(u)du: (8)

Note that if maximal and minimal values P sys and P sys are received for indices

k1, k2 2 Ii, systemic default is caused by poor investments from banks. If k1, k2
2 Ig, systemic default is related to unsuccessful governmental policy10 . When

k1 2 Ii [ Is and k2 2 Ig [ Is mixed strategies from sovereigns and institutions

are required to minimize systemic default probability in the network.

Given the systemic default probabilities de�ned for di¤erent scenarios, the

risk on the systemic default probabilities can be de�ned as

RISK = P sys � P sys: (9)

The risk measure, RISK, de�ned in equation (9), de�nes the uncertainty of

systemic default in the presence of multiple equilibria. The level of RISK

depends on the network structure, bank returns, z�j , and sovereigns, c
�
j .

10Acharya et al. (2014a) investigated how a government implementing a bailout triggers
credit spreads and found a positive relationship between the level of government debt and
credit risks.

14



De�nition 6 A pair of equilibria d� = fdsys(u); dsys(u)g is e¢ cient if and only

if RISK(d�) is the lower bound across all possible equilibria dsys(u).

RISK depends on network topology, meaning that is can be used to identify

e¢ cient equilibria (see De�nition 6). In the optimistic scenario, when all entities

can meet their liabilities and there are no defaults, there exists a trivial solution

of system (3) and RISK = 0.

Alternatively, the e¢ cient equilibrium state minimizes all creditors�aggre-

gate loss. Given a realization of shocks uj , the losses of creditors caused by a

default of entity j are equal to total liabilities, lj . The expected loss su¤ered by

the network as a result of entity j defaulting, ELj , is computed by aggregating

the loss over the range of shocks in the case in which entity j defaults. Total

expected systemic losses are

ELsys =

Z X
j

ljdj(u)p(u)du: (10)

Taking into account that several values of expected loss can exist in the case

of multiple equilibria, we may analyze di¤erent scenarios. Hence, the Risk of

Expected Loss (REL) can be de�ned as the di¤erence between the highest and

lowest expected losses:

REL = ELsys � ELsys: (11)

E¢ cient equilibria are identi�ed by minimizing REL for a given probability

distribution of shocks, p(u).

The proposed framework makes evident how combinations of events in pri-

vate investment and sovereign debt markets may place additional stress on bank-

ing networks. There may be less heterogeneity in sovereign debt market options

available to the banks than in investments. That is, although the failure of a

relatively small investment opportunity can cascade and cause �nancial stress

in the Acemoglu et al (2015) model, there are in practice fewer sovereign bond

investment opportunities available for banks. Thus, a haircut in the sovereign

debt market is likely to cause a simultaneous common shock to a number of enti-

ties, providing a further means of amplifying a crisis via the network. Moreover,
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the stochastic shock and its variance are important quantities that impact both

sovereign and bank returns and may cause cascades of defaults in the network.

This motivates the development of the novel econometric framework presented

in Section 4.

3 Data and Summary Statistics

Modeling the interconnections between �nancial institutions is hampered by

data availability. On the one hand, many of the theoretical frameworks are

expressed in terms of inter-entity �ows. However, these data are exceedingly

di¢ cult to obtain, particularly outside the o¢ cial family; a good example is

the UK interbank network in Giraitis et al (2016), who use data available to

the Bank of England. On the other hand, there is a strand of literature that

takes advantage of market-based data as proxies to develop an understanding

of the interconnectedness of networks, as in, for example, Billio et al (2012)

and Merton et al (2013). A recent work by van de Leur and Lucas (2016) �nds

that these interconnectedness networks based on market data produce valuable

information that is not o¤ered by alternative approaches. The work in this

paper draws on the market-based data tradition in this literature.

Five-year CDSs are the most commonly issued and traded asset in this

class and are the most liquid (Duca and Peltonen 2013, Pan & Singleton 2008,

Kalbaska and Gatkowsi 2012); data on these contracts were extracted from

Markit over the period from January 1, 2003, to November 21, 2013. Over the

full period, there are 2842 end-of-day CDS spread prices for each sovereign and

institution. The combined dataset contains 40 individual sovereigns and 67 in-

stitutions, for a total of 107 nodes used in the analysis, as listed in Tables 1 and

2.

The sample is divided into three separate phases; Phase 1 represents the non-

crisis period from January 1, 2003, to September 14, 2008. This is typical of

dating conventions used in literature to separate the pre-crisis and crisis periods;

see the review of dates extant in the literature in Dungey et al (2015). Phase 2
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represents the period from September 15, 2008, to March 31, 2010, consistent

with the global �nancial crisis (GFC) and period following. The end of March

2010 represents the period prior to which the Greek debt crisis became critical

in April 2010. Phase 3, from April 1, 2010, to November 21, 2013, represents

the period of the Greek and European sovereign debt crises.

The �rst panel of Table 3 shows summary statistics for Phase 1. Phase 1

is the longest of the three exogenously chosen time periods, containing 1488

observations per entity. Latin America displays a higher mean spread during

Phase 1, while �nancial institutions and insurance companies exhibit relatively

higher kurtosis than other groups.

The GFC period, Phase 2, is the shortest of the sub-sample phases, with 403

observations per entity. There is an increase in spread means for most groups of

institutions and sovereigns, re�ecting the perceived increase in risk during this

turbulent period in international debt markets. The �nancial institution group

has the largest mean, standard deviation and kurtosis during Phase 2.

The third phase, associated with the Greek debt crisis and subsequent Euro-

pean debt crisis, involves a small decline in spread means; however the Eurozone

group�s mean spreads increase from Phase 2, potentially due to the transforma-

tion of the Greek debt crisis into the European debt crises during the third

phase. Insurance companies and Latin American sovereigns exhibit high levels

of kurtosis compared with other groups.

CDS spreads were found to be non-stationary, I(1), with a maximum of

one unit root according to KPSS and ADF tests. Moreover, the presence of

heteroskedasticity in daily spreads was con�rmed by applying Breusch-Pagan

and White tests.

4 Econometric Framework and Hypotheses

4.1 Establishing network edges via Granger causality

Banks and sovereign debt issuers form network nodes linked by edges. The use

of Granger causality tests on CDS spreads to establish edges between nodes has
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a number of advantages in this framework. It is directly comparable to existing

empirical networks of Billio et al (2012) and Merton et al (2013). It establishes

directional edges, allowing for an examination of the causation from sovereign

debt to banking markets. Granger causality established edges map clearly to the

existing empirical frameworks for measuring and testing contagion during �nan-

cial crises via the formation and breaking of linkages (the overarching framework

for this is provided in Dungey et al., 2005).

To take into consideration the common stochastic trend(s) between the I(1)

CDS series, a Vector Error Correction Model (VECM) is used:

�Yt = ��
0
Yt�1 +

k�1X
j=1

�j�Yt�j + "t; (12)

where Yt = [Y1;t,..., Yn;t]0, �Yt�j = Yt�j�Yt�j�1 and �; �;� are the parameters

of the model11 . The rank of the matrix � = ��
0
is estimated applying Johansen

test and imposing the triangular restrictions of Phillips (1991). The parameters

of model (12) are obtained by applying OLS.

CDS spread data used to motivate the Granger causality testing e¤ectively

represent a premium for insurance against the default of a third party. CDS

spread prices re�ect a perceived risk of default; favorable news decreases the

value of the CDS spread, while unfavorable news increases the value. Signi�-

cant Granger causality from entity i to entity s indicates that Yi has at least

one signi�cant lag predicting the value of Ys. Thus, perceived risk of entity i

defaulting predicts the perceived risk of default of entity s. The edges of the

network constructed from these Granger causality links represent predictors of

each node�s perceived risk of default.

Once a VECM in (12) is estimated12 , it can be represented as a VAR

Yt =
kX
j=1

�jYt�j + "t; (13)

with cross-equation restrictions �1 = ��
0
+ �1 + In, and �j = �j � �j�1,

j = 2; 3; :::; p. Granger causality between CDS spreads Yi and Ys can be assessed
11A constant term is suppressed for simplicity.
12The VECM is estimated using three lags, based on the AIC.
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using the Wald test

WT = [e � vec(b�)]0 [e(bV 
 (Y 0
Y )�1)e

0
]�1[e � vec(b�)]; (14)

in which Y is the matrix of independent variables from (13), vec(b�) denotes the
row vectorized coe¢ cients of b� = [�1; :::;�k], bV = T�1

PT
t=1 "̂t"̂

0

t and e is the

k � 2(2k + 1) selection matrix

e =

2666664
0 1 0 0 : : : 0 0 : : : 0 0
0 0 0 1 : : : 0 0 : : : 0 0
...
...
...
...

...
. . .

...
...

...
...

0 0 0 0 : : : 1 0 : : : 0 0

3777775 :
Each row of e selects one of the coe¢ cients to set to zero under the non-causal

hypothesis Yi ! Ys.

The empirical contagion literature typically focuses on changes in the struc-

ture of short-term relationships across two periods. Consider, for example, the

�rst-period interaction matrix estimated for a non-crisis period, denoted �nc1 ,

and a crisis period, denoted �cr1 , as follows:

�nc1 =

�
�ncii;1 �ncis;1
�ncsi;1 �ncss;1

�
;

�cr1 =

�
�crii;1 �cris;1
�crsi;1 �crss;1

�
:

Tests for changes in the network �nance literature (and related tests for conta-

gion) can be characterized as tests of whether �ncis;k = �
cr
is;k and �

nc
si;k = �

cr
si;k for

all k.

In this paper, the focus is on the formation of new links:

new link from Yi to Ys H0 : �
j�1
si;k = 0;�

j
si;k 6= 0 (15)

new link from Ys to Yi H0 : �
j�1
is;k = 0;�

j
is;k 6= 0 (16)

and the breaking of existing links

broken link from Yi to Ys H0 : �
j�1
si;k 6= 0;�

j
si;k = 0 (17)
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broken link from Ys to Yi H0 : �
j�1
is;k 6= 0;�

j
is;k = 0 (18)

where index j is assigned to a phase; non-crisis, GFC or European sovereign

debt crisis.

The results of the Wald test indicating Granger causality are recorded as

binary entries in matrix A as

A = [ais];

where

ais =

�
0; if Yi does not Granger cause Ys
1; if Yi Granger causes Ys

Matrix A is used to construct the directional edges between sovereigns and

banks.

4.2 Network connectedness

Once linkages between institutions and sovereigns, represented by matrix A are

established, the strength of these linkages can be quanti�ed by assigning weights

W = [wij ] to network edges13 . Using the VAR from equation (13) as an ap-

proximating model, weights wij can be obtained from variance decompositions,

as proposed by Diebold and Yilmaz (2009). Suppose that j�s contribution to

entity i�s H-step-ahead generalized forecast error variance, �gij(H), is

�gij(H) =
V �1jj

PH�1
h=0 (e

0

iBhV ej)
2PH�1

h=0 (e
0
iBhV B

0
hej)

; H = 1; 2; 3; :::;

in which V is the variance-covariance matrix for the error vector "t, Vjj is the

standard deviation of error term j, and ei is the selection vector with one as the

ith element and zero otherwise. The coe¢ cient matrices, Bi, obey the recursion

Bi = �1Bi�1 +�2Bi�2 + :::+�kBi�k, with B0 being an n� n identity matrix

and Bi = 0 for i < 0. Note that the generalized variance decomposition allows

for correlated shocks and does not depend on the ordering of the variables.

13 In this case, the network is de�ned as a weighted directed graph. A weighted �nancial
network is also used by Demirer, Diebold, Liu and Yilmaz (2015) and Glasserman and Young
(2015) to model connectedness between �nancial institutions.
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In the original generalized framework of Koop, Pesaran and Potter (1996)

and Pesaran and Shin (1998), variance shares do not necessarily sum to 1, that is,Pn
j=1 �

g
ij(H) 6= 1. Hence, each entry of the generalized variance decomposition

matrix is normalized by the row sum as

wij =
�gij(H)Pn
j=1 �

g
ij(H)

:

Now, by construction,
Pn

j=1 wij = 1 and
Pn

i;j=1 wij = n.

Given the estimates of matrix A and weighting matrix W 14 , the structure

of the weighted network can be characterized by matrix

eA = A�W;
where � is the Hadamard product. Elements of adjacency matrix eA capture

the connectedness between institutions and sovereigns conditional on signi�cant

casual linkages between them15 . The network de�ned by adjacency matrix eA
shows the predictors of the risk of default subject to a shock captured by matrix

W . Using the entries of matrix eA, system-wide completeness is measured as
C =

Pn
i;j=1
i6=j

~aijPn
i;j=1
i6=j

wij
: (19)

This measure is used in the following sections to analyze the system-wide con-

nectedness between the �nancial institutions and sovereigns16 . The proposed

econometric framework permits us to formalize the following empirical hypothe-

ses.

Hypothesis 1 The strength of links between nodes changes during periods of

stress. This hypothesis relates to the test of whether new links form or links are

removed due to the forces of contagion described in equations (12) to (15).
14Matrix W is not necessarily symmetric, in contrast to the partial correlation network of

Anufriev and Panchenko (2015), which is symmetric by construction.
15This approach extends the spillover index of Diebold and Yilmaz (2009). While the

spillover index contains all elements of a variance decomposition matrix, here, the elements
that are not linked causally are equal to zero. The importance of disentangling the network
strength from the network structure is also highlighted by Scida (2015) in a di¤erent context.
16The completeness measure can be computed for sub-networks (e.g., the completeness of

a speci�c geographical region) in the same way by summing up the speci�c elements aij and
wij .
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Hypothesis 2 The number of links changes during a period of stress. This test

is compatible with the results in papers such as Billio et al (2012), who observe

that networks increase in density during stressful periods.

Hypothesis 3 The completeness of the weighted network increases during stress-

ful periods. This hypothesis will distinguish the results of the role of changes in

both the number and strength of linkages to determine whether networks are in

fact more intertwined during periods of stress.

Formally, we use results from the Granger causality tests in each sub-period

between each of the nodes to assess whether the strength of links between nodes

has changed. Given the estimates of matrices A and eA, hypotheses 1 and 2 can
be tested formally by applying the statistical test of Mantel (1967). The null

hypothesis that networks in two di¤erent phases are identical is tested using the

following statistic

eZ = nX
i;k=1
i6=k

~ajik~a
j�1
ik for Hypothesis 1; (20)

Z =
nX

i;k=1
i6=k

ajika
j�1
ik for Hypothesis 2; (21)

in which index j > 1; 2; 3 is assigned to designate the phases. The null distrib-

ution of Z or eZ is obtained by a �nite population approach outlined by Mantel
(1967).

5 Results

To illustrate the degree of connectivity in the �nancial network, Figure 1 repre-

sents the network of signi�cant Granger causality links between pairs of �nancial

institutions in Phase 1. This network is extremely dense, making it di¢ cult to

derive any meaningful analysis of these results other than con�rming the high

degree of connectivity in these markets. (Note these networks include the US

- to counter the possibility that a common market factor is driving our result
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we conducted the same analysis using US spreads as a control variable in the

Granger causality tests, with no discernible di¤erence. Consequently, we analyze

the speci�cation including the US as a node to provide a comparable analysis

for all geographic sources of connectivity.) The high level of connectedness is

consistent with the discovery of a major common global factor in CDS spreads

in Longsta¤ et al (2011) and Eichengreen et al (2012). Due to the di¢ culty of

analyzing highly interconnected nodes, we do not present the combined network

of �nancial institutions and sovereigns. In both cases, the degree of connectivity

is relatively high - the potential number of links is 67!/65!(=4355) links in the

�nancial sector network, and 107!/105!(=11342) in the combined network.

We �rst consider the results for the �nancial network then those for the

combined �nancial and sovereign network. For brevity, we record �rst that in

each case, Hypotheses 1 and 2 are accepted by the empirical tests at standard

signi�cance levels - there is no evidence the networks are unchanged between

di¤erent phases of the sample.

5.1 Financial Institutions network

To aid analytical tractability, we condense the network shown in Figure 1 to �ve

nodes. The 67 �nancial institutions in our sample are grouped into institutional

types: banks, insurance companies, investment banks, real estate �rms and

other �nancial institutions. The constituents of these groups are shown in Table

1. The dispersion of these institutions by country is not conducive to undertaking

a geographic-institutional breakdown; as we are considering institutions involved

in the CDS market we make the relatively safe assumption these institutions are

globally active investors.17 Institutions may invest in almost any sovereign debt

market and be involved in cross-border counterparty arrangements and have

sophisticated currency hedging mechanisms in place. A potential limitation of

our approach is home bias or incomplete currency hedging distorting the results.

17An analysis of the changing connections between �nancial institutions in Europe and the
US using equity market data may be found in Diebold and Yilmaz (2016) and for global banks
in Demirer et al (2015). Moreover, a number of papers consider the detailed relationships for
CDSs within these regions. For example, see Fabozzi et al (2016) for the Eurozone.
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Figure 2 presents the same information as Figure 1 using the institutional

types as nodes, displaying the same high degree of completeness. The width and

shade of the edges indicate the strength of links between two nodes, representing

the proportion of signi�cant linkages among potential linkages, as explained in

Sections 4.1 and 4.2. Figure 2 illustrates the strength of the links involving

banks, �nancial institutions and insurance companies, while links to real estate

and investment �rms are less strong. Arrows on the ends of edges provide

evidence on direction of transmission - the results suggest bidirectional linkages.

Table 4 documents that 2795 of the 4355 potential links exist in Phase 1,

decreasing to 2583 in Phase 2, con�rming Hypothesis 2. Between Phase 1 and

Phase 2, the net reduction in links is due to the loss of 1118 links, overwhelming

the formation of 906 slightly stronger links (the average strength of the new

links is 0.0142 compared with that of the removed links of 0.0127). Thus,

between Phases 1 and 2, the completeness of the weighted network of �nancial

institutions falls from 71.41% to 64.21%, primarily through a reduced number

of links. (See also Eichengreen et al (2012), who �nd that spillovers from US

to European banks decrease during the GFC period.) The further removal

of 1718 (stronger) links and formation of 579 (weaker) links between Phase 2

and Phase 3 means that the net loss of 1139 links results in weighted network

completeness falling to 36.15%, again primarily due to a decreased number of

links. Overall the Phase 3 network has 1351 fewer links than Phase 1, and

the average strength of links has increased. This important �nding con�rms the

fragility of the �nancial sector during the GFC; see also Alter and Shuler (2012).

Another important conclusion is that once both the existence and strength of

linkages are taken into account, the completeness of the �nancial network is

lower in Phase 2 compared with Phase 1, which di¤ers from the �ndings of

Diebold and Yilmaz (2016), and lower in Phase 3, which is consistent with

Caporin et al (2014).

Figure 3 illustrates the location and strength of newly formed and removed

linkages for each phase. The reduction in links is distributed relatively evenly

across �nancial institutions in Phase 1 and Phase 2 (Figure 3 a), re�ecting the
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general market conditions, rather than a speci�c institutional type common to

the global sample. The removal of links between banks and insurance companies

is also indirectly observable through an investment channel by unravelling the

strong direct connections from banks to investment institutions and from in-

vestments to insurance. This pattern is part of the complex debate surrounding

whether insurers were causal in generating the systemic risk of this period; see

Biggs and Richardson (2014).

Between Phase 2 and Phase 3, there is evidence of disconnection between

investment �rms and real estate companies. Banks and �nancial institutions

are the focus of a substantial number of disconnections during the crisis, and

this may re�ect new international risk assessments and domestic regulatory

environments whereby �nancial companies are recognized as contributing to

systemic risk. However, the removed links from �nancial companies to insurers

highlight the further propagation of systemic risks. Insurers favor self-regulation

and insurance as a recipient of shocks from banks; see Cummins and Weiss

(2014), which constrasts with the view of the Financial Stability Board, and

Acharya et al (2014b), who report that insurers may propagate systemic risk.

As a proportion of total links, there are relatively few new links forming

during Phase 2 (Figure 3c). As institutions attempt to manage their portfo-

lios, and risk appetite generally decreases, the �nancial system becomes less

interconnected. Regulators around the globe have more carefully monitored �-

nancial institutions since 2008, and formed new bodies to address segments of

the �nancial sector, which may have been a contributing factor.

5.2 Combined �nancial institutions and sovereign debt
network

The combined �nancial institutions and sovereign network has potentially 107!/105!

(=11342) links. The number of links in Phase 1 is 5886, increasing to 8862 in

Phase 2 and falling to 4184 in Phase 3; see Table 4. The intertwining of these

two sectors is relatively incomplete in the pre-crisis period (at 62.61%) but rises

substantially during the �rst crisis sample. In this manner, the Phase 1 network
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is robust according to the de�nitions of Gai and Kapadia (2010) and Acemoglu

et al (2015). The crisis periods also re�ect the increases in linkages found in

Billio et al (2012) and Merton et al (2013). Network link changes seem relatively

large but must be seen in the context of total number of links; in total 2567

(22.85% of all possible links) were unchanged in the unweighted network during

the sample period, 1647 (14.66%) links remained present and intact, and 920

(8.19%) links did not exist at any point in the sample. However, between Phase

1 and Phase 2, the network lost 1422 and gained 4198 links, a net gain of 2776.

The average strength of the formed links in the weighted network was 0.0088,

weaker than that of the lost links of 0.0092. That is, the increased completeness

between Phases 1 and 2 is due to the formation of more weaker links in the

presence of declining strong links. In the transition from Phase 2 to Phase 3, a

further 5479 links, of average strength 0.0091, were lost and 1001 formed, of av-

erage strength 0.0102. The net loss of 4478 links were of lower average strength

than those gained, such that overall the number of links fell, contributing to the

decline in weighted network completeness.

Not only do the proportions of links change between phases, supporting Hy-

pothesis 2, but the taxonomy of these changes is highly revealing. Categorizing

nodes into geographic sovereign debt markets and �nancial institution types, as

in the previous sub-section, Figure 4 provides the schematic for links that are

broken and formed from Phases 1 to 2, and from Phases 2 to 3.

The results in Figure 4(a) show that the CDS premia for insurance com-

panies became disconnected from North American sovereign debt CDS premia

during the �rst crisis phase. There is a concentration of lost connections be-

tween the North American and Euro sovereign nodes and with investment sector

links. The Eurozone�s disconnection from Europe and Asia is less evident in the

link changes. However, there is some evidence of disconnection between bank

CDS premia and sovereign debt, perhaps speaking to the intimate connection

that US sovereign debt has with bank balance sheets, the US Federal Reserve�s

liquidity provisions, and feedback e¤ects between sovereigns and banks posited

in Acharya et al (2014a).
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Relatively more links are formed between Phase 1 and Phase 2, as shown

in Figure 4(c). Most pronounced are the new links between North American,

African, Asian and Latin American sovereign bond markets, suggesting an in-

creasing importance of developing markets in global risk determination during

this phase. There are also considerable increases in investment �rm linkages

with European and North American sovereign markets.

During Phase 3, the links previously established between North American,

African, Asian and Latin American sovereigns are largely undone; see Figure

4(b). There is less evidence of a retraction of links with �nancial sector nodes,

although the reduction of linkages with �nacial �rms is relatively strong. Newly

formed links in this phase, as shown in Figure 4(d), relate to North America,

re�ecting new in�uences on investments and Eurozone from North American

entities; this may re�ect increasing market involvement by non-European insti-

tutions, including Goldman Sachs and Metlife. Further in�uences on new con-

nections may include asset write-downs, increased premia, regulator scrutiny of

sovereign debt exposure and feedback e¤ects between sovereign debt markets

and banks (and, by extension, the �nancial sector).

The combined network is characterized by highest completeness during crisis

Phase 2, originating from �nancial institutions. Moreover, the net number of

new links is positive for Phase 2 and negative for Phase 3, consistent with results

reported by Diebold and Yilmaz (2014) for the global equity market; they show

that system-wide connectedness is signi�cantly higher during the GFC. The

di¤erence between our work and existing network papers based on Granger

causality is the use of weighted networks, revealing that although the number

of unweighted links may increase during a crisis, when the links are weighted

by their relative strength, the completeness of the network may not decline by

as much as in an unweighted system (and in some cases, the weights may be

su¢ cient to induce an increase in network completeness).18

18Recent work by Pesaran et al (2016) shows how a network can be characterized by �i,
the estimated degree of pervasiveness, based on the weighted column sums of the adjacency
matrix (normalized by row). The most dominant node in the network has the largest value
of �i; subject to the caveat that �i > 0:5 for the existence of a valid network e¤ect. The

27



5.3 Identifying the networks in di¤erent scenarios

In the previous discussion, the sensitivity of sovereigns and banks to defaults

was found to be a key characteristic for identifying the structure of the network.

Following De�nition 5, the sensitivity of entities to default de�nes the expected

number of defaults in the network, which in turn can be used to uncover the

network structure.

Clearly, the sensitivity of a counterparty to default indicator scdj;i from

equation (4) is closely related to an impulse response function. If the direction

of shock uj is positively correlated with the number of defaults (i.e., a large neg-

ative shock increases the probability of an entity to be insolvent), measured by

vector uj , impulse responses can be used as empirical measures of scdj;i. In this

case, the expected number of defaults can be estimated from signi�cant Granger

causality linkages and the respective variance decompositions, as discussed in

Section 4.

De�nition 7 A network G1 is more fragile than G2 if for each entity i, the

expected number of defaults introduced in De�nition 5 is higher under G1 than

under G2.

As follows from De�nition 719 , the fragility of the network can be assessed

based on the expected number of defaults, which is in turn de�ned by signi�cant

Granger causality linkages and the respective variance decompositions. Given

an external shock uj , the expected number of defaults can be estimated under

the di¤erent scenarios related to di¤erent values of qj (see Section 2).

To investigate the fragility of the network in the three phases, probabilities of

the di¤erent scenarios posited in our theoretical framework (Good times, Stress,

Poor investment, Poor government) are estimated. We use estimates from equa-

tion (13) for each phase to generate recursively one-step ahead forecasts. The

application of this framework to our network provides evidence of weakly dominant banking
and insurance sectors in the �rst phase (�bank;1 = 0:67; �insurance;1 = 0:59) and weakly
dominant banking in the following two phases (�bank;2 = 0:56; �bank;3 = 0:74): None of the
sovereign nodes become dominant in any phase, although the value of �i for European and
Euro located sovereigns approaches 0:5 in Phase 3. Consequently, the results of this approach
are aligned with the results presented in the paper.
19This de�nition is similar to Zhou (2016).
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predicted values of the CDS spreads are used to estimate the probabilities of

di¤erent scenarios. In particular, in each phase, probabilities Pr+ = m+=m and

Pr� = m�=m, where m+=� is a number of predicted values for a higher/lower

than an average predicted CDS spread, can be interpreted as probabilities of

high and low default risks, respectively. These probabilities can be used in each

phase to obtain an aggregated shock conditional on a speci�c scenario:

Good times: uj = Pr
+(S) � uj(S) + Pr+(F ) � uj(F );

Stress : uj = Pr
�(S) � uj(S) + Pr�(F ) � uj(F );

Poor investment: uj = Pr
+(S) � uj(S) + Pr�(F ) � uj(F );

Poor government: uj = Pr
�(S) � uj(S) + Pr+(F ) � uj(F ):

where S is assigned to sovereigns and F to �nancial institutions. These aggre-

gated shocks are used to obtain weights, wij , of variance decompositions that

allow us to identify the structure of the combined network.

The expected number of defaults for the combined network conditional on

the size of the aggregated shock, u, are presented in Figure 5 for each of the

scenarios. Figures 5(a) to (c) show the impact of scenarios based on Good times,

Stress, Poor investment, and Poor government shocks of increasing magnitude

(up to 3 standard deviations) across the horizontal axis. Although stress sce-

narios always produce the largest number of expected defaults and good times

the lowest, the degree of expected defaults varies considerably across the phases.

In Phase 1, good times result in a probability of fewer than 5 defaults, rising

to almost 50 in Phase 2 and returning to approximately 5 in Phase 3. However

stress conditions see expected defaults go from over 25 in Phase 1 to more than

100 in Phase 2, before reducing to a smaller number of fewer than 10 in Phase 3.

The third phase represents a rebound to a lower default probability than Phase

1 in stress conditions � perhaps representing the loss of already non-resilient

entites.

A further feature is that during Phase 1, shocks due to poor investment

outcomes are more likely to result in default than those due to poor government.
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Both of these increase dramatically to approximately 80 defaults in Phase 2

in either case. By Phase 3, we have a slightly higher probability of default

outcomes anticipated for the entities in the face of poor government shocks

than for poor investment shocks. Whether this is a pattern, emerging in the

aftermath of other major crises because of post-crisis risk reassessment, is a

topic worthy of further investigation. It implies that recent experience with

private investment sector shocks may reduce the likelihood of future large private

investment shocks generating large numbers of defaults. These results shed light

on debate in the literature over whether bank or sovereign default precedes the

other in an orderly manner - the results of this work suggest that it is the

intertwining of these markets that provides protection against �nancial fragility.

This supports the vital importance of adopting a combined approach to systemic

risk as, particularly during periods of stress.

The empirical work in this paper provides strong evidence of the changing

strength of linkages between nodes in the network of �nancial institutions and

sovereigns during periods of stress, consistent with the existence of contagion,

as argued in Hypothesis 1. The number of links between nodes changes from

between Phases 1 and 2, increasing the density of the unweighted combined net-

work, which is consistent with �ndings in the existing literature and supports

Hypothesis 2. The completeness of the weighted �nancial network decreases

between Phases 1 and 2 but declines dramatically in Phase 3. Our evidence

suggests that in these markets completeness was reduced for all networks be-

tween Phase 1 and 3. The changing completeness of the combined network

in the di¤erent phases and under di¤erent scenarios represents changes in the

structure and combination of what Acemoglu et al (2015) classify as a 
-convex

combination of networks. Overall, less diversi�ed patterns of linkages are more

fragile during crisis times but could be more robust when normal times prevail.
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6 Conclusion

This paper investigates international connections between �nancial institutions

and sovereign debt markets with both a theoretical framework and an empiri-

cally tractable implementation. We extend the model of Acemoglu et al (2015),

which shows how �nancial institutions facing shocks generated from real econ-

omy investments may demonstrate a robust-but-fragile network subject to in-

creased risk of default when faced with either a su¢ ciently large shock (or con-

temporaneous small shocks). Our innovation is to extend uncertainty a¤ecting

returns to sovereign bond markets as the alternative investment option to the

risk modelled for the real economy investments. By including potential haircuts

on sovereign debt investment, we address the debate on the importance of links

between �nancial institutions and sovereign debt under crisis conditions.

The results reinforce the �robust-but-fragile� nature of networks of �nan-

cial institutions facing real economy shocks and emphasize that sovereign debt

market haircuts may additionally cause simultaneous shocks to a number of in-

stitutions, providing a means of amplifying uncertainty via the network. This

uncertainty implies di¤erent scenarios for network changes: Good times, in which

both returns in the real economy are good and there are no sovereign defaults in

which case the network is relatively robust; Poor investment, in which returns

in the real economy are poor but there are no sovereign defaults, consistent

with potential stress under the �robust-but-fragile�analysis of Acemoglu et al

(2015); Poor government, in which returns in the real economy are good but

poor government policy leads to sovereign bond haircuts, these may lead to �-

nancial system fragility; and Stress conditions, in whcih both poor returns in

the real eocnomy and sovereign haircuts place stress on the �nancial network.

These scenarios permit identi�cation of the sources of changes to the network�s

systemic default probability and estimate the expected number of defaults in

the combined network. Our �ndings speak strongly in favor of the necessity

of mixed strategies by sovereigns and �nancial institutions to minimize the ex-

pected number of defaults in the network during the GFC and European crisis.
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The paper speci�cally examines the transition of a combined network of sov-

ereigns and �nancial institution and one of �nancial institutions during the pe-

riod 2003-2014 through three phases. In the transition between Phase 1 (repre-

senting non-crisis conditions) and Phase 2 (which corresponds to the GFC), the

network shows evidence of changing linkages between nodes - both the removal

of existing links and the formation of new links, consistent with the contagion

literature. Between Phases 1 and 2, the net number of links in the combined

network increases; the sheer growth in the number of linkages is enough to

increase weighted network completeness, consistent with the greater density of

links observed in much of the existing work on �nancial networks during periods

of crisis. Between Phases 2 and 3, corresponding to the European sovereign debt

crisis, the number of links declines signi�cantly, demonstrating recovery from the

GFC. The disentangling of the strength and existence of linkages between nodes

reveals that the completeness of the weighted network may decrease, consistent

with the existence of contagion and increasing numbers of links. It provides

con�rmatory evidence of the robust-but-fragile nature of the network during

periods of crisis.

Examining changes in the networks by geographical region and type of insti-

tution reveals that during the transition from the pre-crisis Phase 1 to Phase 2

of the GFC, there is a signi�cant formation of links, which mainly centers on the

Eurozone, North and Latin America and investment companies. This follows

expectations, as the GFC was closely linked to the collapse of the United States

subprime mortgage market. In the transition from Phase 2 to Phase 3, the

Greek/European debt crisis, most link changes are centered on North America

and the Eurozone. A large number of links are formed from North America to

investment companies and to the Eurozone.

The next step in this agenda is to test for evidence of key links between

sovereigns and �nancial institutions in terms of �-dependency, Acemoglu et al

(2013), which identi�es whether there are critical sets of links that in�uence the

�nancial fragility of the system.
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7 Appendix

7.1 Proofs

Proof of Proposition 1 .

This trivially follows from the de�nition of ~qj :(�1;+1)! [�1; 1].

Proof of Proposition 2. Condition (a)

Suppose that the network G does not contain any cycles. In this case the

set of all nodes is

N = fNl [Nbg; (22)

? = fNl \Nbg; (23)

where Nb contains entities that only borrow money from their counterparties,

and Nl is a set of lenders. If entities from Nb do not lend to anyone, for any

realization of shock u, there exists a unique threshold value, ~q�j , for all j 2 Nb.

Therefore, the set Nl contains all creditors of entities from set Nb. The default

conditions for all i 2 Nl are determined by the borrowers and for this reason are

also unique. This implies that the existence of a continuum of equilibria is only

possible when there is at least one entity that simultaneously lends and borrows

money, which contradicts (23). Hence, multiple equilibria can exist only in the

cyclical network.

Condition (b)

Assume that there exists at least one cycle Ck in the network G. It is

su¢ cient to show that for a speci�c realization of shock u, the network G has

at least two equilibria. Consider the sensitivity to default measure, scdk;k�1,

de�ned in (4). If scdk;k�1 6= 0, then there exists a non-empty interval

[ai; bi] = [min(~qk(dk�1 = 0); ~qk(dk�1 = 1));max(~qk(dk�1 = 0); ~qk(dk�1 = 1))];

which implies di¤erent values for the default conditions.

Consider two vectors of payments (x̂1; :::x̂k) and (�x1; :::; �xk), that are asso-
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ciated with the threshold values

~q1(x1 = x̂1) = a1

::: =

~qk(xk = x̂k) = ak

and

~q1(x1 = �x1) = b1

::: =

~qk(xk = �xk) = bk

In this case each of k entities are linked by mutual liabilities. However, in this

case shock ui takes values on the interval [ai; bi], which implies two equilibria,

d̂ and �d.
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Table 1: Financial institutions grouped by broad type.

Banks Financials Insurance

Aust & New Zld Bkg ACOM CO LTD ACE Ltd
Amern Express Co John Deere Cap Corp Aegon N.V.
Barclays Bk plc MBIA Inc. American Intl Gp Inc
BNP Paribas Natl Rural Utils Coop Allstate Corp
Cap One Finl Corp Aiful Corp Aon Corp
Citigroup Inc ORIX Corp Assicurazioni Generali
Ctrywde Home Lns Gen Elec Cap Corp CHUBB CORP
Kookmin Bk Goldman Sachs Gp Inc CNA Finl Corp
Commerzbank AG Morgan Stanley Legal & Gen Gp PLC
Deutsche Bk AG SEARS ROEBUCK MBIA Ins Corp
Hana Bank Toyota Mtr Cr Corp MetLife Inc
HSBC Bk plc Swire Pac Ltd Munich Re
ING Bk N V Old Mut plc
Korea Dev Bk Safeco Corp
Merrill Lynch & Co Mitsui Sumitomo Ins
Mizuho Corporate Bk Sompo Japan Ins Inc
Macquarie Bk Ltd HARTFORD FIN INC
Natl Aust Bk Ltd Loews Corp
Oversea Chinese Bkg
Rabobank Nederland
Royal Bk of Scotland
Resona Bk Ltd
Societe Generale
Std Chartered Bk
Sumitomo Mitsui Bkg
UBS AG
Wells Fargo & Co
Westpac Bkg Corp

Investment Real Estate

Daiwa Secs Gp EOP Oper Ltd Pship
Bombardier Hammerson PLC
Nomura Secs Hongkong Ld Co

Mitsubishi Estate Co
Simon Ppty Gp L P
Simon Ppty Gp Inc
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Table 2: Sovereigns grouped by region. Groups are
intentionally broad to minimize the total number.

Europe Asia Latin America

Bulgaria Australia Argentina
Czech Republic China Brazil
Denmark Indonesia Chile
Norway Japan Colombia
Poland Malaysia Mexico
Sweden Philippines Panama
Russia South Korea Peru
Turkey Thailand Venezuela
Ukraine Vietnam

Africa Euro Zone North America

Israel Belgium USA
Morocco Finland
South Africa France
Qatar Germany

Ireland
Italy
Netherlands
Portugal
Spain
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Table 3: Summary statistics are reported for all sovereign and
�nancial institution CDS spread data used in this paper.

Obs. Mean Std dev Skewness Kurtosis

Phase 1 01/01/2003 - 14/09/2008
Banks 1488 0.4253 0.6634 6.2252 73.1315
Financials 1488 0.7426 1.4386 9.2843 131.738
Insurance 1488 0.5413 1.1174 10.551 146.240
Investment 1488 1.0126 1.6023 3.5076 19.9933
Real Estate 1488 0.5737 0.5135 2.5807 11.3350
Latin America 1488 3.3274 5.0302 4.3823 24.8403
Asia 1488 1.0935 1.3470 1.4863 4.1704
Euro Zone 1488 0.0698 0.0759 2.8669 11.6775
Europe 1488 0.9062 1.5211 2.8717 13.9841
Africa 1488 0.8038 0.7205 2.5980 11.9358
North America 1488 0.0262 0.0311 2.9249 11.0294

Phase 2 15/09/2008 - 31/03/2010
Banks 403 1.6490 1.2574 2.1977 8.4938
Financials 403 12.719 32.619 6.6554 58.383
Insurance 403 3.6890 5.1029 2.4613 9.2081
Investment 403 1.9650 1.1711 1.0721 2.8133
Real Estate 403 2.6080 2.4492 1.4525 4.1223
Latin America 403 6.3541 8.8135 2.2891 7.7371
Asia 403 2.0159 1.5864 1.7696 7.0876
Euro Zone 403 0.8250 0.5597 1.5966 6.8034
Europe 403 3.4588 6.4693 3.8884 20.298
Africa 403 1.9245 0.9750 1.3394 4.5551
North America 404 0.4169 0.1834 1.1935 3.9374

Phase 3 01/04/2010 - 21/10/2013
Banks 951 1.3971 0.6334 1.6584 6.8687
Financials 951 6.3933 10.211 2.0464 5.9045
Insurance 951 1.8314 2.1538 3.7857 20.033
Investment 951 1.4738 1.0772 0.5886 2.2274
Real Estate 951 1.1053 0.4586 0.6091 2.8172
Latin America 951 3.7769 5.6733 3.1106 14.840
Asia 951 1.3284 0.7275 1.6687 6.1909
Euro Zone 951 2.5872 2.5487 1.9267 7.1373
Europe 951 1.6592 1.9220 2.2460 7.9880
Africa 951 1.4990 0.5059 0.5376 2.5000
North America 951 0.3067 0.0801 -0.2616 2.3762
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Table 4: This table contains statistics used in the analysis of network structures.
The average link strength is estimated from the connectedness of each respective network.
The number of edges was calculated using bivariate Granger causality tests
between network nodes (entities). Completeness is calculated via equation (19).

Formed Removed
Phase 1 Phase 2 Phase 3 1 to 2 2 to 3 1 to 2 2 to 3

Average strength 0.0146 0.0150 0.0153 0.0142 0.0130 0.0127 0.0148
No. of edges 2795 2583 1444 906 579 1118 1718
Completeness 0.7141 0.6421 0.3615 0.2129 0.1236 0.2483 0.4215
Combined
Average strength 0.0100 0.0092 0.0099 0.0088 0.0102 0.0092 0.0091
No. of edges 5886 8662 4184 4198 1001 1422 5479
Completeness 0.6261 0.7694 0.4127 0.3586 0.1018 0.1400 0.4847
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Figure 1: This �gure displays the network of �nancials in Phase 1
(01/01/2003 - 14/09/2008). Edges were calculated with bivariate
Granger causality tests between �nancial institutions (nodes)
at the 5% level of signi�cance.
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Figure 2: This �gure shows a condensed version of the Phase 1 �nancial
network from Figure 1. The changes are performed by grouping
�nancial institutions/nodes into industries.
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(a): Removed links Phase 1 to 2 (b): Removed links Phase 2 to 3
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(c): Formed links Phase 1 to 2 (d): Formed links Phase 2 to 3

Figure 3: This group of �gures displays changes in the �nancial network
between Phase 1 (01/01/2003 - 14/09/2008), Phase 2 (15/09/2008 -
31/03/2010) and Phase 3 (01/04/2010 - 21/10/2013). Changes are
calculated using matrix eA.
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(a): Removed links Phase 1 to 2 (b): Removed links Phase 2 to 3
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(c): Formed links Phase 1 to 2 (d): Formed links Phase 2 to 3

Figure 4: This group of �gures displays the combined sovereign and �nancial
network changes. Changes between Phase 1 (01/01/2003 - 14/09/2008),
Phase 2 (15/09/2008 - 31/03/2010) and Phase 3 (01/04/2010 - 21/10/2013)
are calculated from matrix eA.
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Figure 5: This set of �gures shows expected number of defaults in the combined
network for a shock size by multiples of standard deviations under the di¤erent
scenarios. The logarithm of the CDS spreads is used for calculation.

(a): Phase 1 (01/01/2003 - 14/09/2008)
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(b): Phase 2 (15/09/2008 - 31/03/2010)
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(c): Phase 3 (01/04/2010 - 21/10/2013)
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