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Abstract

Until recently, there has been a growing research focusing on how to predict systemic risks to minimise
the recurrence of financial crises, while the importance of understanding how network exposure con-
tributes to the spread of financial distress in the financial system has been largely underestimated. This
paper investigates whether network exposure contributes to both shock transmission and absorption.
We utilise data from 45 economies and our findings show that both network intensity and interconnect-
edness in the financial system have impact on increasing network exposure. We also demonstrate how
to estimate network intensity in the financial system. Our results indicate that an increased network
intensity parameter is associated to period when the financial system is under stress.
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1 Introduction

The occurrence of the 2007 —2009 global financial crisis still raises concerns to policy makers, regulators
and academic researchers. The main focus has been to find ways and mechanisms to develop measures
to predict distress in financial institution so as to limit further destabilisation of the global economy.
Motivated with increasing uncertainty of the stability of the financial markets, this paper aims at
investigating the effect of network exposure to common factors.

With the advances in both technology and globalization in recent years, there has been an increase in
size, complexity, interconnectedness and concentration of the financial system. These factors combined
make the financial system more vulnerable to a collapse. To ensure stability in the entire financial
system, it is important to study how the global financial system is interconnected. In a nutshell,
interconnectedness (the key source of systemic risk) helps to assess systemic risk and financial stability
(Billio et al., 2010; Cai et al., 2014). To enable effective monitoring conditions, there is need to quantify
and measure these financial linkages.

This paper focuses on identifying the effect of interconnectedness in the financial system. This is
achieved through examining the cross-border financial linkages using real data. The paper aims to
identify the impact of interconnectedness in either absorbing or spreading risks in the financial system.
It focuses on the cross-border exposure, aiming at identifying the role played by interconnectedness in
propagating shocks across countries, in the period of 1999 — 2018. The sample period covers different
crisis periods which include the global financial crisis of 2007-2009, the European sovereign debt crisis
of 2010 and the Chinese stock market crash of 2015.

Recent studies on measuring systemic risk show that it was not only the size of the institution that led
to the distress in the financial system but also the interconnectedness between institutions (Billio et al.,
2012; Dungey et al., 2012).! Contagion rapidly spread the crisis through financial linkages, leading
to severe disruption of financial stability in both the United States and globally. The recent financial
crisis emphasized the importance of using interconnectedness (defined as a set of relationships and
interactions among the financial markets participants) as a proxy in measuring systemic risk. Hautsch
et al. (2014) note that both size and interconnectedness of financial institutions determine its systemic
relevance.

Although currently there is on going research focusing on the interconnectedness of institutions (Diebold
and Yilmaz, 2009, 2013; Tonzer, 2015; Glasserman and Young, 2015), there is still need to understand
whether an increase of financial linkages affect the stability (either weakening or strengthening) of the
financial system and the impact of financial interconnectedness to both common factors and contagion.
It is also important to assess the resilient nature of financial networks to shocks (both exogenous and
endogenous).

The key findings of this paper highlight the role of network exposure in increasing vulnerability, with
both interconnectedness and network intensity playing key roles in monitoring these exposures. We
find high network intensity coefficient to be associated with extreme events. This suggest that high
network intensity parameter relates to crisis period. We also find that both interconnectedness and
network intensity increase exposures in the financial system.

The remainder of this paper is organized as follows. Section 2 reviews related literature and develops
key hypotheses which form the basis for empirical testing. It also introduces the spatial econometric
concept. Section 3 discusses the mechanism underlying network exposure to common factors. Section
4 presents the results and the effect of network exposures. Section 5 discusses various methods of
estimating the network intensity parameter. Section 6 presents empirical evidence of the network
intensity parameter. Section 7 outlines the implications of our results, and Section 8 concludes.

nterconnectedness address the Too Interconnected To Fail (TITF) paradigm.



2 Literature review

Recent studies have shown that a major contributor to the transmission of shocks during crisis such as
the GFC (2007 — 2009) was not only the institution size, but also the institution interconnectedness.
Different interpretations of interconnectedness have resulted in the development of various measurement
methods. All these measures aim to assess the role and impact of interconnectedness during financial
distress.

Recent findings indicate that interconnectedness acts as a channel through which shocks and losses
spread to other financial institutions (Glasserman and Young, 2015, 2016). Other findings show that
interconnectedness acts as a ‘double edge’ by being able to absorb shocks up to certain point and also
transmitting them to the financial system after a given threshold is reached (Acemoglu et al., 2015;
Cohen-Cole et al., 2012; Tonzer, 2015; Gai and Kapadia, 2010). Gai and Kapadia (2010) suggested
that an increase in connectivity may lower the chance of contagion, but conditional on a default by a
given node, an increase in interconnectedness may trigger defaults to other nodes, making the financial
system more sensitive to defaults.

With increasing growth in the cross-border financial activities, interconnectedness poses threats to the
financial system via increased vulnerability to shocks spreading globally. Minoiu and Sharma (2014)
supported the fact that a high degree of interconnectedness triggered the breakdown of financial system
during the 2007 — 2009 GFC. This implies that the more interconnected an institution, the higher the
likelihood of risk amplification to the entire system threatening the stability of the economy.

Markose et al. (2012) referred to institutions that are ‘too interconnected’ as ‘super-spreaders’ of shocks
in the financial system. This means that interconnectedness of financial institutions tends to spread
shocks extensively across links, causing instability in the financial system. Gai and Kapadia (2010)
showed that degree of interconnectedness has an impact on contagion by acting as a channel through
which contagion spreads and shocks amplify. Greater interconnectedness aids in lowering the likelihood
of contagion but increases shocks transmission when the financial system experiences difficulties.?
Using spatial modeling, Tonzer (2015) assessed whether cross-border linkages have any impact on the
stability of interconnected institutions. Though interconnectedness is beneficial in stable conditions,
Tonzer (2015) showed that interconnection of financial institution to foreign entities provided a channel
for propagating shocks when the system experienced difficulties.

Assessing interconnectedness in financial institutions could serve as an early warning indicator for dis-
tress in financial systems. Econometric measures based on Granger causality and principal components
analysis proposed by Billio et al. (2012) measure interconnectedness. These measures show that an
increase in links in a financial institution before a crisis signal an early warning. In addition, Minoiu
et al. (2015) focused on determining whether interconnectedness in financial institution is a possible
source of systemic risk that could serve as an early warning of crisis. Their findings suggested that
interconnectedness has early warning indicator properties for a crisis. Diebold and Yilmaz (2009, 2012)
proposed new measures of interconnectedness by measuring risk and management in financial institu-
tions based on variance decomposition. Their results showed that global financial interconnectedness
is time-varying, implying that network exposure within financial institutions varies over time.

Minoiu et al. (2015) showed that an increase in linkages within a country and a decrease in cross-
border linkages are associated with a high chance of financial crisis. This is consistent with the results
of Peltonen et al. (2019) which indicated that more interbank linkages increase the chance of banking
crises. The increase in cross-border transactions led to more interactions and relationships between
different markets, leading to the formation of international ‘robust-yet-fragile’ financial networks. A
financial network is ‘robust-yet-fragile’ when it serves as a shock absorber (promoting financial stability)
up to a certain point, beyond which it amplifies shocks (leading to financial instability) in the whole
financial system. While financial markets benefit through the formation of more robust and stronger
interconnections beyond a certain point, they also create potential channels of shock transmission.

Several studies have explored roles that financial networks play in good and bad periods. The first

2See Acemoglu et al. (2015), Gai and Kapadia (2010) and Glasserman and Young (2015) for more details.



strand of literature relates interconnectedness to risk diversification, cross-border investment opportu-
nities and availability of different financial products in the market. A financial network is robust when
it absorbs shocks, enhancing the stability and health of a financial system (Allen and Gale, 2000).
Having more interconnections implies more risk-sharing and diversification, so shocks hitting the net-
work will be shared among the various interconnected institutions building a resilient financial system
(Glasserman and Young, 2016). This mechanism is supported by Vitali et al. (2016), who found that
an increase in interconnections makes the financial system more resilient and increases shock diver-
sification. Other studies show that formation of these interlinkages helps absorb shocks to a certain
point before contributing to their spread (Acemoglu et al., 2015; Cohen-Cole et al., 2012; Tonzer, 2015;
Gai and Kapadia, 2010). Kubelec and Sa (2012) argued that financial interconnectedness increases
due to countries becoming more open, therefore causing the entire network to collapse. While Gai and
Kapadia (2010) determined that stronger connectivity in the financial sector would improve absorption
of shocks, they also suggested that conditional on the default of an institution, an increase in network
connectivity propagates shocks from one institution to others.

The second strand of literature focuses on how interconnectedness enhances the channels through which
shocks spread and intensify to the broader financial system (Battiston and Caldarelli, 2013; Glasserman
and Young, 2015, 2016). That is, financial networks tend to be fragile when they amplify shocks rather
than contain them. This may destabilise the entire financial system by increasing systemic risk, leading
to financial instability. Many studies show the extent to which interconnectedness could have a negative
effect on financial stability. For instance, Battiston and Caldarelli (2013) demonstrated that although
individual institutions benefit from increased interlinkages, this could be a channel through which
contagion and distress spread to the entire financial system. Battiston et al. (2012) found that an
increase in financial interconnections increased credit exposure which increases systemic risk. Amini
et al. (2016) argued that institutions with more interconnections contribute more to financial instability.
Further, Acemoglu et al. (2015) stated that more interconnections can make the financial system more
fragile due to increased shock propagation when shocks are either large or coincidental. These findings
are supported by Markose et al. (2012), who referred to institutions that are ‘too interconnected’ as
‘super-spreaders’ of shocks. Minoiu and Reyes (2013) analysed the global banking network using 184
countries andreported that connectivity in the banking network tends to increase particularly when the
market is under stress. This aligns with the findings of Glasserman and Young (2015), which asserted
that interconnectedness among different markets were key contributors to the GFC of 2007 — 2009.
Yellen (2013) regarded interconnectedness as a financial stability concern after the occurrence of the
global crisis while Sun and Chan-Lau (2017) argued that interconnectedness was the source of systemic
risk.

The third strand of literature shows that specific institutions or markets play a key role in spreading
shocks in the network. For instance, by investigating the patterns of international trade and financial
integration, Schiavo et al. (2010) demonstrated a cause of the global crisis was shocks spreading from
advanced economies to other markets, leading to network-wide distress. Kubelec and Sa (2012) found
the US and UK to be the key players in the global financial network, with high interconnections
compared to the rest of the world.

2.1 Spatial econometric concept

Introduction of spatial econometric techniques into financial application can be useful in modelling
spillovers. The spatial econometric technique has been used recently in finance. For example, Eder
and Keiler (2015) used it to model contagion risk among financial institutions; Fernandez (2011)
employed it to measure risk premium propagation among firms; Asgharian et al. (2013) used it to
investigate stock market co-movements while Catania and Billé (2017) applied it to advancements in
score-driven models typically used in time series econometrics.

Spatial dependence parameter (network intensity parameter) captures the strength of the spatial de-
pendent units; thus, it is a key component in investigating the structure of the spatial autoregressive
process. Network intensity parameter falls within the range of 0 and 1, where 0 (1) is the minimum



(maximum) estimate. A robust-yet-fragile financial system is associated with high (greater than 0 and
approaching 1) network intensity. Financial systems benefit from high network intensity through risk-
sharing and diversification. Conversely, increasing intensity beyond certain limits will increase the rate
at which shocks propagate, leading to financial instability (Eder and Keiler, 2015). As a consequence,
the financial system benefits from relative high network intensity (especially when there is no shock
hitting the system), which allows for effective absorption of shocks rather than their amplification
them to the entire system (Affinito and Pozzolo, 2017). Restricting network intensity parameters may
improve stability leading to a more robust financial system (Gofman, 2017).

In addition, since estimation of network intensity depends on the connection matrix, the structure of
the connection matrix will have an impact on the estimation of network intensity. Let d € [d, d] be the
degree of network connectivity, where d and d are the minimum and maximum degree of connectivity
respectively; then, a robust-yet-fragile network is associated with degree of connectivity close to d.
The network is robust in the sense that the risk-sharing and diversification are higher in the absence of
large shocks and fragile when large shocks hit the network. High connectivity with shocks hitting the
financial system imply more shocks being propagated in the network causing a fragile financial system
(Glasserman and Young, 2015).

Consider a full or complete network with equivalent row-normalised weighted connection matrix, an

example represented as: 0 095 025 095 095

025 0 025 025 0.25
W=10.00 050 0 0.00 0.50

025 025 025 0 0.25

025 025 025 025 O

A shock hitting the above network will be proportionally shared among the nodes in the network
depending on the weights of the edges. The shock will either be equally shared or proportionally
shared across the entire system depending on the size of the shock. Thus, a robust network exists
when shocks are equally distributed to all institutions since the network is more resilient to small
shocks (Hiiser, 2015). Conversely, when weights are beyond a certain threshold, the risk-sharing effect
is endangered by larger shocks being amplified in the financial system rather than being contained.
This implies that shocks will affect nodes that are strongly interconnected.

Generally, financial institutions benefit from high connectivity in the absence of shocks, while high
connectivity can lead to financial instability when large shocks hit the system. This argument is
supported by various studies. For example, Haldane (2009) asserted that high connectivity in the
financial system leads to greater risk-sharing and diversification; above certain connectivity thresholds,
it will propagate shocks to the entire system. In addition, Vitali et al. (2016) argued that high
connectivity beyond certain threshold leads not only to large systemic events, but also to more frequent
occurrence of distress events. Acemoglu et al. (2015) also found that highly connected institutions are
more resilient to small shocks that pose a high chance of contagion in the presence of large shocks. This
is also supported by Silva et al. (2016), who identified a high potential for a default to be triggered,
especially in a dense interconnected network since risk-sharing effects vanish when large shocks hit
this network. Schiavo et al. (2010) suggested that the structure of the connection determines how the
financial system responds to shocks.

Estimates of network intensity are dependent on the interaction of the endogenous spatial lag (Wy);
thus, increasing interactions (a denser weighting matrix) leads to greater amplification of shocks rather
than sharing shocks across these networks. This is supported by various studies. For example, using
European CDS spread data, Blasques et al. (2016) showed that high time-varying spatial coefficients
are associated with credit riskiness, which leads to fragility and potential collapse of financial system.
Battiston et al. (2012) found that financial systems can be more resilient when the financial accelerator
is low; when it is at a maximum, adverse effects are inflicted via spreading shocks. This suggests that
when shocks hit the financial system, a high network intensity estimate signifies a higher probability
that the financial system will be fragile (Vitali et al., 2016).



2.2 Motivation and hypotheses development

Financial integration is a process through which either financial markets, countries or regions become
interconnected in different ways. This process includes cross-border lending and borrowing and is an
important phenomenon in financial markets. Increasing integration is often associated with a more
complex financial sector. Financial integration is beneficial to markets in terms of efficient capital
allocation, higher investment and growth opportunities and risk-sharing. Risk-sharing improves the
resilience of the global financial system (Gonzalez-Paramo, 2010).3

Financial integration also serves to spread shocks to the entire financial system. According to Schiavo
et al. (2010), it is through integration that advanced economies become more interconnected with
other markets, thereby spreading shocks to these markets. This leads to global distress and increased
cross-border exposure threatening financial system stability. Hiiser (2015) showed that an increase in
the integration of the interbank network poses an increased risk of contagion, and as a consequence
increases systemic risk. Asgharian et al. (2013) argued that cause of the Asian crisis was trade inte-
gration (measured by cross-border flows of imports and exports) between Asian countries, especially
those emanating from Thailand and spreading rapidly to its neighbours (Indonesia, Malaysia and even
Korea). In this context, we consider financial integration a contributory factor to increased network in-
tensity. As countries engage in cross-border activities, financial integration expands potentially making
financial markets more volatile.

Based on these motivation and related literature, we outline four hypotheses:

Hypothesis 1: Network intensity increases during periods of stress. This hypothesis tests whether
network intensity estimate changes over time. It will determine whether it tends to increase or decrease
when the market is under stress. We would expect network intensity to increase when shocks hit the
network.

Hypothesis 2: Degree of connectivity affects estimation of network intensity. This aims to investigate
whether greater interconnectedness among different markets influences estimation of network intensity
parameter. This will provide an insight into how the connection matrix makes the financial network
robust-yet-fragile.

Hypothesis 3: Financial integration affects the estimation of network intensity. This tests whether
financial integration can explain why network intensity increases or decreases during different peri-
ods. With increasing cross-border activities, markets have become more integrated forming a possible
channel through which shocks can spread in financial systems.

Hypothesis 4: Advanced economies have a greater impact in spreading shocks. This tests whether
developed economies have a greater impact in the estimation of network intensity. This test is in line
with Schiavo et al. (2010), who found that advanced economies were the key spreaders of shocks during
the GFC.

3 Financial network and exposure to common factors

We now consider the impact of exposure to common factors in financial networks. This involve ex-
amination of how the structural model (which incorporates both systematic and idiosyncratic shocks)
behaves in the presence of network exposure.

The starting point focus on the structural model, capturing exposures to common factors as considered
in Billio et al. (2015). According to Sharpe (1964) and Lintner (1965), the traditional capital asset
pricing model (CAPM) is given by:

Tit — T = it + Bit(Pmt — 7pe) + €t (1)

where r;; is the return on stock ¢ at time ¢, rp,; is the market return at time ¢, ry; is the risk-free rate

3See Conzalez-Paramo (2010) for more details on the benefit of financial integration in the global financial system.



and g;; is a vector capturing the idiosyncratic shocks of stock ¢ at time ¢. a;; and §;; are the parameters
of the model.

The traditional CAPM model can be extended to the Fama—French three-factor linear model. Consid-
ering the pricing perspective, the Fama-French three-factor for a set of risk asset returns, r;; at time ¢
is given by:

it — 1Tt = O + Bit(tme — 1) + hig HM Ly + 534t SM By + €34 (2)

where HM L is the book-to-market factor of stock ¢ at time ¢, SM B;; is the size factor of stock i at
time t. h; and s; are additional parameters of the model; € is a vector capturing the idiosyncratic
shocks of stock 7 at time t¢.

The main focus of this approach is on both network exposures (endogenous) and exposures to common
factors (structural exposure, which is exogenous). Equation (2) can be rewritten in a structural form
as:
S(rit — Elrie)) = Buriy + Basrrif ™" + Bsnsri™P + mit (3)
rit — Elriel = ST (Buriy + B ™M + Bsarsri™P + mit) (4)
The spatial matrix S in Equation (4) captures the contemporaneous relations associated with inter-
connections between different assets, while 7, is the structural idiosyncratic risk at time ¢.

Our aim is to construct a structural model that contains contemporaneous relationships driven by links
across assets, andsystematic and idiosyncratic shocks. Thus, the spatial matrix .S can be parametrised
as S = I,— pW, where I,, is n x n identity matrix, |p| < 1 is the spatial dependence parameter (network
intensity parameter) indicating the strength of the network exposure. It monitors the network impact
while W represents relationships across assets.*

Equation (4) into a spatial autoregressive framework (SAR) as:

(I, — pW)(rie — Elre)) = Barr! + Berarrr M + Bsnpri™M B + iy (5)
rie — Elra] = (In — pW) " Barr M + BrarrrT™E + Boarpri™P +ny) (6)

If we let ﬁMr%—kﬂHMLrgML—i—/BSMBTftMB = 7, using a geometric series expansion to the first degree®,
the above model can be represented as:

o0 [ee]
ri —Elral = Z_+ i +Y_ pWIZ+Y o Winy (7)
i Jj=1

ii J=1

iii iv
where

i. structural exposure to common factors

ii. structural impact to idiosyncratic component

—-

iii. network exposure to common factors

iv. network impact to idiosyncratic component

Equation (7) captures the impact of exposures (both structural and network exposures) of both sys-
tematic and idiosyncratic shocks. Therefore, we conclude that both idiosyncratic and systematic
components are influenced by the presence of interconnections across assets/institutions.

4See Anselin (1988) for more details on spatial econometrics. For simplicity, we refer to p as the network intensity
parameter.

®By geometric expansion, we have (I, — pW)™ ! = I, + pW + p*W? 4 ..., where pW represent the influence of
neighbours on each unit while p?W? second neighbourhood influences each unit and so on.



4 Dataset and effect of network exposure

The empirical analysis of this paper uses different datasets. We use daily return constructed from daily
equity market indices obtained from Thompson Reuter’s Datastream. We also used the liability, market
value and 90 days treasury bill (T-Bill) rates data. Other datasets that include foreign exchange (FX),
interest rate (IR), S&P 500 volatility index - US (VIX), Euro STOXX 50 volatility index - Europe
(VSTOXX) and trade were also considered in the second part of the analysis.

We chose our sample of markets based on the availability of: (i) closing values, (ii) closing hours, and
(iii) changes in closing prices, listed by region in Table 1. Our analysis of equity return spillovers is
based on local currencies to avoid blurring the extent of market co-movements with fluctuations in the
foreign exchange market (Mink, 2015).

The daily return (r;) for all markets are calculated as the log differences of the total daily equity market
indices of a given economy at time ¢. This can be expressed as:

re = In(Py/Pi—q) x 100 (8)

Where 7 is the return at time ¢, P; is the closing stock price of a given financial institution at time ¢,
P,_1 is the lagged price and In is the natural logarithm.

We study 42 stock markets in three categories: developed, emerging, and frontier. We extended the
previous research that primarily focused on a few developed or emerging markets (e.g. the G7 [Canada,
France, Germany, Italy, Japan, the UK and the US| stock markets investigated by Apostolakis and
Papadopoulos (2014), the 10 developed and 11 emerging markets in Asia studied by 2016, and Asian
markets examined by Narayan et al. (2014) and did not consider all possible interconnectedness across
different stock markets).

Table 2 presents the descriptive statistic of the daily returns for each market. The mean returns are
positive for all economies with standard deviation ranging from 0.0096 — 0.0237. The kurtosis results
suggest that the daily return would be ‘peaked’ and have ‘fat-tailed’ distribution. Unit root tests
revealed the usual characteristics of stationary returns in each series. The analysis was conducted
using de-meaned returns (as the mean is usually extremely close to 0 and, as we are focused on
variance decompositions, this assumption is innocuous). Analysis of the complete network, consisting
of 42 nodes, formed the initial benchmark for the study.

To construct our network, we used the data with its recorded local closing time date. The choice of
time-zone treatment can have dramatic effects; no single choice is dominant due to the complications
of wanting to test for two-way causality. Other researchers have used the dates as provided with
the data (Wang et al., 2018), averaged data over consecutive days (Forbes and Rigobon, 2002) or
used time-matched data series (Kleimeier et al., 2008). Although the last of these is arguably the
most appropriate, it is difficult to obtain these data for the markets examined here and to control
for problems associated with out-of-local trading time liquidity effects (most markets have different
price-impact effects during local and non-local trading). The averaging procedure used by Forbes and
Rigobon (2002) introduced a moving average bias into the problem, and, with Granger-causality testing,
created additional problems with the performance of the statistic. Further, it is debated whether the
use of lagged or non-lagged samples introduces or reduces noise in the process. Sensitivity analysis
to different choices of date-lagging produced important differences; the most pronounced of these is
that when the US data are lagged, there is virtually no evidence of transmission from the US to Asia,
which seems at odds with our understanding of international financial markets and the transmission
of shocks. Consequently, this chapter uses the convention of actual day dating in its analysis.

We first examine the evolution of the unweighted and weighted networks over the sample period and
augmented this analysis with scenarios based on alternative clustering of markets, as per the Asian
Development Bank member countries and the role of regional groupings, including the Association of
Southeast Asian Nations (ASEAN) with other regions across the globe.

The sample period considered is January 1999 — December 2017 because our focus is to observe the
dynamics of the network exposure in the twenty-first century. By taking advantage of the long horizon



Table 1: List of country-specific stock indices and their corresponding Thomson Reuters Datastream

codes

Country code

Country name

Stock index

Datastream code

European

AT Austria ATX — AUSTRIAN TRADED INDEX ATXINDX
BE Belgium BEL 20 BGBEL20
CZ Czech Republic PRAGUE SE PX CZPXIDX
DK Denmark OMX COPENHAGEN (OMX(C20) DKKFXIN
FI Finland OMX HELSINKI 25 (OMXH25) HEX25IN
FR France FRANCE CAC 40 FRCAC40
DE Germany DAX 30 PERFORMANCE DAXINDX
GR Greece ATHEX COMPOSITE GRAGENL
HU Hungary BUDAPEST (BUX) BUXINDX
1E Ireland IRELAND SE OVERALL (ISEQ) ISEQUIT
IT Italy FTSE MIB INDEX FTSEMIB
NL Netherlands AMSTERDAM MIDKAP AMSMKAP
PL Poland WARSAW GENERAL INDEX 20 POLWG20
PT Portugal PORTUGAL PSI-20 POPSI20
ES Spain IBEX 35 IBEX351
SE Sweden OMX STOCKHOLM 30 (OMXS30) SWEDOMX
CH Switzerland SWISS MARKET (SMI) SWISSMI
TR Turkey BIST NATIONAL 100 TRKISTB
UK United Kingdom FTSE ALL SHARE FTALLSH
Americas

CA Canada S&P/TSX COMPOSITE TTOCOMP
UsS United States S&P 500 COMPOSITE S&PCOMP
AR Argentina ARGENTINA MERVAL ARGMERV
BR Brazil BRAZIL BOVESPA BRBOVES
CL Chile CHILE SANTIAGO SE GENERAL (IGPA) IGPAGEN
MX Mexico MEXICO IPC (BOLSA) MXIPC35
Asia

AU Australia S&P/ASX 200 ASX200I
CN China SHANGHAI SE COMPOSITE CHSCOMP
JP Japan NIKKEI 225 STOCK AVERAGE JAPDOWA
IN India S&P BSE NATIONAL 200 IBOM200
ID Indonesia IDX COMPOSITE JAKCOMP
HK Hong Kong HANG SENG HNGKNGI
MY Malaysia DJGL MALAYSIA DJTM MALAYSIA DJMALYL
NZ New Zealand S&P/NZX 50 NZ50CAP
PK Pakistan KARACHTI SE 100 PKSE100
PH Philippines PHILIPPINE SE I(PSEi) PSECOMP
SG Singapore STRAITS TIMES INDEX SNGPORI
KR South Korea KOREA SE KOSPI 200 KOR2001I
LK Sri Lanka COLOMBO SE ALL SHARE SRALLSH
™ Taiwan TAIWAN SE WEIGHED TAIEX TAIWGHT
TH Thailand BANGKOK S.E.T. BNGKSET
Africa

EG Egypt MSCI EGYPT MSEGYTL
ZA South Africa FTSE/JSE ALL SHARE JSEOVER




Table 2: Descriptive statistics of daily return for each market

Country  Mean Min Max  Std. dev Kurtosis Skewness ADF test No. obs.

AT 0.0002 -0.0974 0.1277  0.0135 10.7384  -0.2140  -71.1573** 9739
BE 0.0003 -0.0829 0.1087  0.0111 9.9523 0.0112  -70.3872** 5739
CZ 0.0002 -0.1494 0.1316 0.0132 14.8753  -0.1718  —69.4570** 9739
DK 0.0004 -0.1091 0.0986  0.0113 9.7303 -0.2713  -71.1096** 5739
FI 0.0004 -0.0897 0.0973  0.0152 6.5627 -0.1113  -73.8211** 5739
FR 0.0003 -0.0904 0.1118 0.0143 7.8396 0.0829  —77.0792** 5739
DE 0.0004 -0.0849 0.1140 0.0147 7.5954 -0.0077  —76.5194** 5739
GR 0.0000 -0.1902 0.1327  0.0189 10.6342  —0.1824  —68.5693** 5739
HU 0.0007 -0.1650 0.1459  0.0166 13.5187  —0.2345  -T71.7532** 5739
IE 0.0003 -0.1303 0.1022  0.0129 11.3909  —0.5090  —71.4974** 9739
IT 0.0001 -0.1272 0.1161  0.0149 7.8602 —-0.0388  -76.8145** 5739
NL 0.0003 -0.0950 0.0830  0.0124 7.4651 -0.4448  —68.6160"* 9739
PL 0.0003 -0.1320 0.1469  0.0168 7.4476 0.0083  —74.4086** 5739
PT 0.0001 -0.0986 0.1073  0.0118 9.9042 -0.2103  —68.3531** 9739
ES 0.0003 -0.1235 0.1443  0.0146 8.9329 0.0124  -74.0971** 5739
SE 0.0004 -0.0842 0.1165 0.0147 7.2704 0.1721  —77.0466** 5739
CH 0.0003 -0.0867 0.1139  0.0118 9.5391 -0.0438  -73.2515** 5739
TR 0.0013 -0.1768 0.1856  0.0237 9.3668 0.3075  —73.9692** 5739
GB 0.0002 -0.0834 0.0921  0.0108 9.3767 -0.0988  —75.9863** 9739
AR 0.0006 -0.1684 0.1775  0.0224 9.3782 0.1776 ~ —70.0926** 5739
BR 0.0006 -0.1312 0.2796  0.0188 18.5465 0.7545  —72.1713** 9739
CL 0.0002 -0.0710 0.1475  0.0106 14.8593 0.4589  —63.2493** 5739
MX 0.0006 -0.1334 0.1292  0.0146 10.6563 0.2751  —68.8651"* 9739
CA 0.0003 -0.0932 0.0982  0.0105 12.5107  -0.5306  —74.9890** 5739
US 0.0003 -0.0903 0.1158  0.0117 11.6484  —0.0660  —80.9848** 9739
AU 0.0002 -0.0834 0.0589  0.0096 8.5885 —-0.3593  —77.1427** 5739
CN 0.0004 -0.1639 0.3099  0.0175 25.8061 0.7424  —73.9442** 5739
IN 0.0005 -0.1187 0.1631  0.0149 10.0010  -0.1242  —69.1956** 5739
ID 0.0005 -0.1195 0.1403  0.0151 11.8284 0.0327  —65.6407** 5739
JP 0.0001 -0.1141 0.1415 0.0149 8.7971 -0.1237  -78.7296™* 5739
HK 0.0003 -0.1370 0.1882  0.0160 14.7057 0.3911  -76.4475** 5739
MY 0.0002 -0.2071 0.2344 0.0127  65.9316 1.8058  —69.8174* 9739
NZ 0.0001 -0.1507 0.1179  0.0104 159717  -0.3705  -76.3666"* 5739
PK 0.0007 -0.1238 0.1361  0.0147 9.9650 -0.1841  —69.2419** 9739
PH 0.0002 -0.1278 0.1769  0.0148 15.0100 0.5099  —66.7017** 5739
SG 0.0001 -0.0936 0.1160  0.0126 9.9460 0.1695  —71.7193** 9739
KR 0.0003 -0.1196 0.1572  0.0180 9.3491 0.2213  —72.4785** 5739
LK 0.0004 -0.1297 0.2007  0.0105 42.2018 0.9596  —61.2101** 5739
TH 0.0001 -0.1484 0.1202 0.0152 10.9150 0.2835  —70.1885** 5739
™ 0.0001 -0.0980 0.0961  0.0149 6.0186 0.0605  —74.3705** 5739
ZA 0.0005 -0.1278 0.0816  0.0118 9.5149 -0.4721  —69.8633** 5739
EG 0.0007 -0.1552 0.1385  0.0162 10.0429 0.0050  —68.2147** 5739

Notes: The sample period is January 1995 — December 2016. The augmented Dickey-Fuller (ADF)
statistic tests for unit root.** indicate statistical significance at a 5% level.
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with a large number of observations (4,956), we subdivided the sample into four phases, as represented
in Table 3: Phase 1 is the pre-crisis (1 January 1999 — 14 September 2008) period, Phase 2 is the
GFC (15 September 2008 — 31 March 2010) period, Phase 3 is the European debt crisis (EDC) (1
October 2010 — 21 November 2013) and phase three is the most recent period (22 November 2014 —
29 December 2017). We followed Dungey et al. (2015) and Dungey and Renault (2018) when choosing
these dates.

Table 3: Phases of the sample

Phase Period Representing Number of observations
All phases 01.01.1999 — 29.12.2017 Entire period 4,956

Phase 1 01.01.1999 — 14.09.2008 Pre-crisis 2,631

Phase 2 15.09.2008 — 31.03.2010  Global financial crisis 403

Phase 3 01.04.2010 — 21.11.2013 European debt crisis 951

Phase 4 22.11.2013 — 29.12.2017 Recent period 1,071

We use the BIS database to obtain liabilities data to construct the weighting matrix. The BIS bilateral
locational banking statistics provided a comprehensive cross-border data set of international banking
transactions. This included aggregate international cross-border claims and liabilities of a set of both
reporting and non-reporting countries. We use cross-border liabilities of reporting countries, measured
on a quarterly basis from 1999Q1 — 2017Q4 to construct the connection matrix. The weighting matrix
is obtained using the combined Granger causality and DY approach (See Chowdhury et al., 2019). Each
country is represented by direct liability towards all the other countries in all financial sectors (central
banks, banks, non-bank financial institutions and non-financial sectors). We consider 45 (mature and
emerging markets) countries in our sample (see Table 4), for which the data were complete and reliable.
We also use different specifications of the connection matrix in our empirical analysis. Particularly, we
randomly generated sparse (fewer interconnections) and denser (more interconnections) matrices for
the markets in our sample.®

Figure 1 displays the average cross-border liability flow, measured in US billion dollars, for the countries
in our sample. Liability defined as what a country or company owes to others (including loans,
bonds and other debts), plays a significant role in propagating shocks in the financial system. Having
unsecured lending and borrowing could increase cross-border liability within the financial system.
There was a change in the average liability between the entire period of our sample. As shown in
Figure 1, the average liability drastically changed during crises, implying that on average, countries in
our sample paid more than required by a liability. This may be a contributory factor to the collapse
of the financial system, because the failure of these countries to pay liabilities could lead to defaults
for their counter-parties. Therefore, liability within countries serves as a major contributory factor to
crises. The higher the liability, the greater the chance of system exposure to distress. These findings
concur with those of Gai and Kapadia (2010), who found that liability from defaulting banks led to
the spread of contagion, which in turn increased the vulnerability of interconnected institutions.

4.1 Effect of financial network to common factor model

This subsection investigates whether network exposure affects common factors. This enable greater
understanding of the importance of financial networks in both spreading and absorbing financial shocks
in the system. Our investigation focuses on the individual countries in our sample. Following Billio
et al. (2015), we estimated both systematic and idiosyncratic components in the structural model. Our
analysis relied on estimating these parameters because the Fama-French factors available in Kenneth
French’s data library were limited to few countries. Since the idiosyncratic component is unobservable

5Sparse connection matrix will be used to investigate the effect of network exposures with decreased interconnectedness
while denser connection matrix will be used to investigate the effect of network exposure with increased interconnected-
ness.
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Figure 1: Average liability for all countries. The figure displays average liability over time. It reports
the average liability of all countries in our sample is 1999Q1 and 2017Q4.

and model-dependent, we used indirect estimation proposed by Campbell et al. (2001) to estimate it.

4.1.1 Estimating beta and idiosyncratic volatilities

To estimate idiosyncratic volatility for an individual stock in our sample, we assumed the return of
each country ¢ to be driven by a common factor and country-specific shock €;. To be precise, we
followed Sharpe (1964) and Lintner (1965), who assumed a single factor return generating process and
estimated the market model using Equation (1).

In this analysis, we computed the excess returns of individual countries as the log return on the global
market index (r,,;) minus absolute change of 90 days’ T-Bill rates (7.), which we considered the risk-
free rate. The 90 days’ T-Bill rates and market value data were obtained from Thompson Reuter’s
Datastream for January 1999 — December 2017.

The return on the global market index (7,,:) was computed as the value of weighted excess return of
each country over the 90 days T-Bill rates r; of each country:

n
Tmi = Z Wit * T'it 9)
i=1

where w;; is the ratio of country’s ¢ market value to the total market value of the entire market m in
time ¢t and n is the total number of countries.

The beta and residual estimates for each market were obtained by running the regression for each
market index in the sample using Equation (1).

Following Bali and Cakici (2008), we estimated country-specific idiosyncratic volatility as the standard
deviation of the residuals of each individual country given by:

IVOLy =/ var(gy) (10)
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Table 4: Structural betas for countries in our sample

Country All phases Phase 1 Phase 2 Phase 3 Phase 4
Austria 0.9090 0.8274 0.9694 1.0169 0.9924
Belgium 0.0422 0.0134 0.8190 0.9975 0.9809
Czech Republic 0.5767 0.5701 0.8952 0.2423 0.3125
Denmark 0.0271 0.0145 0.9037 0.1605 0.5133
Finland 0.5594 0.5234 0.9620 0.5400 0.2193
France 0.0352 0.0676 0.9956 1.0077 0.9762
Germany 0.8195 0.5882 0.9779 1.0063 0.9054
Greece 0.0033 0.0032 0.0024 0.0570 0.0083
Hungary 0.6966 0.6444 0.8784 0.7639 0.3745
Ireland 0.3212 0.5090 0.0875 0.7248 0.9697
Italy 0.1926 0.0663 0.9905 0.9991 0.9333
Netherlands 0.8997 0.9320 0.8402 0.8932 0.9464
Norway 0.8838 0.7685 0.9929 0.9766 0.8878
Poland 0.0510 0.0316 0.9387 0.9882 0.9883
Portugal 0.9515 0.8766 0.9958 0.9775 0.9806
Romania 0.3757 0.3440 1.0007 0.9377 0.9911
Spain 0.9295 0.8406 0.9951 0.9459 0.9805
Sweden 0.1073 0.0308 0.9594 0.9977 0.9584
Switzerland 0.1837 0.0420 0.9967 0.9978 0.9968
Turkey 0.1006 0.1005 0.9740 0.9856 0.9654
United Kingdom 0.4765 0.1825 0.9918 0.9810 0.9833
Argentina 0.4963 0.2596 0.6725 0.9745 0.9940
Brazil 0.7767 0.5681 0.9534 0.7994 0.8971
Chile 0.9786 0.9900 1.0264 0.9822 0.8356
Mexico 0.7463 0.7059 0.9603 0.7001 0.9993
Canada 0.8965 0.9078 0.6805 0.9878 0.9823
United States 0.2102 0.0383 0.9776 1.0006 0.9968
Australia 0.4424 0.0911 0.8300 0.9899 0.9881
China 0.0302 0.0040 0.8010 1.0001 0.9122
India 0.7825 0.6903 0.9681 0.9860 1.0012
Indonesia 0.8583 0.8606 0.7730 0.9007 0.8730
Japan 0.0373 0.0076 0.8250 0.8125 0.9451
Hong Kong 0.0195 0.0167 0.9617 0.3539 0.8560
Malaysia 0.8413 0.8380 0.7939 0.9454 0.9828
New Zealand 0.0448 0.0055 0.9888 0.9819 0.9933
Pakistan 0.0033 0.0025 0.1978 0.8878 0.9124
Philippines 0.6169 0.7677 0.0608 0.9821 0.9436
Singapore 0.9806 0.9819 0.8075 0.8190 0.8837
South Korea 0.0004 0.0002 0.7882 0.7543 0.7782
Sri Lanka 0.8996 -0.0014 -0.0256 0.9792 0.9869
Thailand 0.2956 0.2913 0.9771 0.1056 0.9502
Taiwan 0.2038 0.1772 0.5884 0.8109 0.6233
South Africa 0.9806 0.9791 0.9834 0.9785 0.9839
Egypt 0.8001 0.7772 0.2363 0.9202 0.9857
Israel 0.0816 0.0744 0.9789 1.0065 0.9684

The period covered in the sample is 1 January 1999 to 31 December 2017. All coefficients are at a 5%
level of significance.
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Effect of financial network on betas

The beta estimate for each country was estimated by running separate regressions. Table 4 displays the
structural betas for individual countries in our sample. We estimated betas using Equation (1) for all
phases categorised in Table 3. Our results clearly show that beta coefficients are different in all phases.
In most countries, the structural betas were lower in the pre-crisis period, while increased in the GFC
with the exception of some emerging markets (Indonesia, Malaysia, Philippines, Singapore, Sri Lanka
and Egypt) in which estimates decreased during the global financial crisis period. The structural betas
remain high in Phase 3, associated with the European debt crisis. Country-specific betas changed with
the introduction of many factors. For instance, using Fama—French three-factor model might result in
different estimates. Since our main focus was the effect of network exposure on structural betas, we
did not focus on discussing each country’s specific betas.

Using beta coefficients obtained from the regression model, we investigated how they changed with
the increase in network exposure. First, we examined the effect of the connection matrix (W) on the
structural beta. Figure 2a displays how the structural beta (3;) changed with the interaction of the
connection matrix, given by:

Bf =Bi+Y W (11)

i=1

where 37 is the new (augmented) beta obtained from the interaction with the connection matrix while
fB; is the country-specific structural beta. The results show that the structural beta changes with the
interaction with the connection matrix. The connection matrix is based on liability linkages obtained
using the combined Granger causality and DY measure (Chowdhury et al., 2019). This suggests that
the increased interconnection between various market participants leads to change in the structural
beta of a given country. The results also revealed the role of the weighting matrix in spreading shocks
in a financial system. For example, the connection matrix increased the values of structural betas by
more than 50% for countries whose beta values were small. Countries with low betas included Greece,
Philippines and Poland. The size of the augmented betas varied depending on the strength of the
connections a country has with others. In Figure 2a, we noted that beta values of countries (including
Denmark, Greece, Sri Lanka Malaysia and the Philippines) tend to be 0 but are greatly influenced by
the weighting matrix. The beta values increased depending on the level of shock one country receives
from others. These results depict the role of interconnections in spreading risk. This observation is
consistent with Glasserman and Young (2016), who showed that countries with high connectivity tend
to suffer more when shocks hit the financial system.

For countries (including Greece, Sri Lanka and the Philippines) with lower beta estimates due to
stronger links with other countries, we observed that the structural beta was amplified. This implies
that these countries are strongly affected by other countries, leading to amplification of shocks.

It is important to understand whether using a different weighting matrix has a different impact on
structural betas. Figure 2b shows how betas changed using a sparse matrix.” We randomly generated
a sparse matrix. From the results, we noted that the contribution of the weighting matrix changed
depending on the strength of connections between countries. This is depicted using orange bars in
Figures 3.2a and 3.2b. For example, the Philippines had stronger links in Figure 2a, leading to greater
change in exposure, while in Figure 2b, it had weak links, leading to a smaller change in structural
betas.

The impact of the different network intensity parameters on the structural betas can be estimated as:

B =Bi+> phi (12)

i=1

where ;" is the new beta obtained from the interaction with the different network intensity parameters.

"We can define sparse matrix as a connection matrix with few interconnected institutions/assets.
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Figure 2: Structural betas for all the phases under different scenarios. The figures exhibit how the
structural beta for all phases changed under different scenarios. We used country’ abbreviations from
BIS. Figure 2a displays changes in betas with and without the presence of the connection matrix. This
was obtained by multiplying the betas with the corresponding liability weighted matrix. Figure 2b
shows how betas changed using sparse weighting matrix. Figure 2c¢ shows how betas changed across
different network intensity parameters. Figure 2d shows the effect of network exposure on betas. The
period covered in the sample is 1 January 1999 — 31 December 2017.
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Figure 2c¢ shows how structural betas changed across the different network intensity parameters (we
assumed network intensity parameters to take quartiles values [i.e. 0.25, 0.5 and 0.75]). It is clear
from these that structural betas tend to increase across different network intensity parameters. This
is an indicator that as the network intensity increases, the level of risk in the financial system also
tends to increase. Unlike the connection matrix, whose effect is severe to all countries with stronger
connections including countries whose beta values are small, the network intensity parameters have
more influence on the countries whose beta values are large. Countries with small values of beta
(Greece, Sri Lanka and the Philippines) are less affected by network intensity parameters. Conversely,
countries with high beta estimates (e.g. South Korea) are more affected by larger network intensity
parameters. This explains the role of network intensity parameters in spreading and reducing shocks.
Our finding indicate that network intensity parameters have a greater impact in spreading risk than
absorbing it.

Next, we investigated the effects of network exposure on structural betas. This involved combining the
connection matrix and network intensity parameters. This is because both coefficients have a great
impact on betas. We used the following equation to gauge the role of network exposure on structural
betas:

n
B =B+ ZPW@‘ (13)
i=1
where 5;** is the new beta obtained from the interaction with the changing network exposure.

Figure 2d shows how the structural betas change across the changing network exposure. These results
show that both the weighting matrix and the network intensity parameters have effects on the structural
beta.

Effect of W, spatial coefficient and network exposure on structural beta
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Figure 3: Change in structural betas due to network exposures. The figure reports contribution of
connection matrix, network intensity parameters and network exposures on structural betas. Blue
represents % change of betas due to the connection matrix, orange due to network intensity coefficient
and yellow due to the network exposures. The period covered in the sample is 1 January 1999 — 31
December 2017.

To obtain a clear insight into how structural beta changed, we calculated the percentage change
in betas in 8, 8" and B;**. Figure 3 summarises the contribution of connection matrix, network
intensity parameters and network exposure to structural betas. The height of the bar represents the
percentage change of betas. These results revealed stronger connections between markets increases
network exposure. This is consistent with Silva et al. (2016) who found that high connectivity triggers
a greater probability of default in the financial system. It also shows that network intensity parameter
has an amplifying effect on shocks. It is clear from the bar size that both the weighing matrix and the
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network intensity parameters have different effects. Although the contribution of the connection matrix
is similar, it varies depending on the strength and number of the connections. Thus, our main finding
from Figure 3 is that both network intensity parameters and connection matrix are key ingredients in
either increasing or decreasing network exposure.

Network exposure to common factors

To investigate the effect of network exposure on common factors, we used slope coefficient betas as the
systematic risk of specific country’s market portfolios. This is useful to examine the effect of network
exposure on both systematic and idiosyncratic volatility. Bali and Cakici (2010) used beta coefficients
as the systematic risk of a country’s market portfolio to determine whether country-specific risk are
priced into the intertemporal capital asset pricing model (ICAPM). They found that country-specific
risks are significantly priced into the ICAPM framework.

Table 5 reports country-specific idiosyncratic volatility in all sample periods, estimated in Equation
(10). Asnoted by Hueng and Yau (2013), these estimates may vary depending on the data used because
they are model-dependent. Notably, the country-specific idiosyncratic volatility of emerging markets
as greater than those of developed economies is consistent with the findings of Bali and Cakici (2008,
2010) and Hueng and Yau (2013). We also observed, on average, that Turkey had high idiosyncratic
volatility in the full sample period and also in Phase 1. These results are consistent with Bali and
Cakici (2010) and Hueng and Yau (2013), who determined that Turkey had a higher estimate than
other countries in their sample. Interestingly, most countries had greater idiosyncratic estimates in the
crisis period. This could be explained by higher uncertainty in the market during the GFC.
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Figure 4: Network exposures on systematic and idiosyncratic shocks in the entire period. The figure
reports both the structural and network contribution to systematic risk and idiosyncratic volatilities
for entire period. The period covered in the sample is 1 January 1999 — 31 December 2017.

Therefore, we will not discuss country-specific idiosyncratic volatilities because our aim is to determine
the role of network exposure on both systematic and idiosyncratic components. By assuming the
first order neighbourhood in Equation (7), we investigated the effect of network exposure on the
structural model. We used the network intensity parameter to capture the strength of the network
exposure (network intensity). This coefficient lies between 0 and 1, where close to 0 implies lower
network intensity and close to 1 signifies higher network intensity. The existence of network exposure
is captured by the weighting matrix which was row-normalised. The weighting matrix takes the values
between 0 and 1 as representing exposure from other markets, where values close to 0 imply less
exposure, while close to 1 implies high exposure. We used the weighting matrix constructed from
combined Granger causality and DY approach by using the cross-border liabilities. Based on simple
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Table 5: Estimates of idiosyncratic volatilities

Country All phases Phase 1 Phase 2 Phase 3 Phase 4
Austria 0.0179 0.0185 0.0275 0.0151 0.0110
Belgium 0.0359 0.0281 0.0324 0.0114 0.0098
Czech Republic 0.0201 0.0235 0.0273 0.0131 0.0083
Denmark 0.0280 0.0279 0.0266 0.0148 0.0127
Finland 0.0180 0.0198 0.0225 0.0158 0.0110
France 0.0352 0.0288 0.0217 0.0145 0.0110
Germany 0.0219 0.0234 0.0225 0.0128 0.0146
Greece 0.0219 0.0552 0.0224 0.0214 0.0240
Hungary 0.0559 0.0701 0.0643 0.0201 0.0156
Ireland 0.0296 0.0261 0.0441 0.0259 0.0115
Italy 0.0352 0.0283 0.0237 0.0180 0.0156
Netherlands 0.0176 0.0141 0.0332 0.0219 0.0108
Norway 0.0201 0.0221 0.0284 0.0123 0.0115
Poland 0.0983 0.1125 0.0285 0.0155 0.0131
Portugal 0.0147 0.0142 0.0168 0.0166 0.0124
Romania 0.4326 0.5782 0.0620 0.0239 0.0084
Spain 0.0177 0.0174 0.0212 0.0211 0.0119
Sweden 0.0493 0.0356 0.0238 0.0131 0.0157
Switzerland 0.0651 0.0404 0.0184 0.0104 0.0102
Turkey 2.4059 3.3873 0.0321 0.0169 0.0205
United Kingdom 0.0429 0.0336 0.0190 0.0134 0.0110
Argentina 0.1950 0.1980 0.0595 0.0290 0.0417
Brazil 0.0450 0.0491 0.0562 0.0265 0.0179
Chile 0.0122 0.0106 0.0118 0.0116 0.0143
Mexico 0.0283 0.0366 0.0217 0.0143 0.0089
Canada 0.0219 0.0150 0.0541 0.0107 0.0098
United States 0.0734 0.0410 0.0416 0.0121 0.0081
Australia 0.0525 0.0312 0.0602 0.0138 0.0089
China 0.0672 0.0398 0.0363 0.0155 0.0222
India 0.1183 0.1525 0.0767 0.0234 0.0087
Indonesia 0.0418 0.0546 0.0392 0.0180 0.0148
Israel 0.0980 0.1307 0.0194 0.0116 0.0068
Japan 0.0487 0.0324 0.0358 0.0380 0.0151
Hong Kong 0.0572 0.0686 0.0252 0.0128 0.0106
Malaysia 0.0149 0.0173 0.0253 0.0066 0.0055
New Zealand 0.0696 0.0345 0.0235 0.0177 0.0110
Pakistan 0.0714 0.0851 0.0702 0.0216 0.0136
Philippines 0.0854 0.0844 0.0737 0.0208 0.0158
Singapore 0.0227 0.0295 0.0224 0.0087 0.0093
South Korea 0.0334 0.0367 0.0359 0.0141 0.0092
Sri Lanka 0.0562 0.0125 0.0132 0.0521 0.0201
Thailand 0.0627 0.0685 0.0300 0.0463 0.0131
Taiwan 0.0250 0.0315 0.0241 0.0115 0.0081
South Africa 0.0216 0.0216 0.0275 0.0243 0.0162
Egypt 0.0632 0.0534 0.0877 0.0409 0.0245

The table reports the idiosyncratic volatilities for all countries in all phases. The period covered in the
sample is 1 January 1999 — 31 December 2017.
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continuity, we assumed that the network intensity parameters exert a similar effect on each country.
To be precise, we assume this network intensity parameter to be 0.5, which is related to the mean
estimate obtained in Section 6. Other studies, including Blasques et al. (2016), found the estimate to
be higher (approximately 0.7). Figure 4 shows how the structural model responds to network exposure
across the entire sample period. The blue bar represents the structural systematic component, and
the yellow bar is the idiosyncratic component. The orange bar is the absolute contribution of network
exposure to change in the systematic component while the purple bar is the absolute contribution of
network exposure to change in the idiosyncratic component.

Turkey, Romania and Argentina had greater values of idiosyncratic volatility than other economies with
smaller estimates. We observed that the systematic component was predominant in most economies
compared to the idiosyncratic volatility. The effect of network exposure on systematic component was
higher (represented by the size of the orange bars in Figure 4) than on idiosyncratic component, with
the exception of Turkey, Argentina and Romania.
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Figure 5: Network exposures on systematic and idiosyncratic shocks in all the phases. The figures show
the contribution of network exposure to both systematic and idiosyncratic volatility in each phase. The
period covered in the sample is 1 January 1999 — 31 December 2017.

Figure 5 show the contribution of network exposure on the structural model in different periods. On
average, the idiosyncratic volatility of Turkey was still dominant in Phase 1 but reduced in all other
phases. We can relate Turkey’s high idiosyncratic volatility to the banking crisis that led to capital
flight and recession in the economy at the end of 2000. This demonstrates that Turkey’s banking
crisis was largely idiosyncratic even though it could have been triggered by other external factors.
Higher idiosyncratic volatility also explains the ability of Turkey’s investors (who are mostly foreign) to
diversify their portfolios. Turkey’s idiosyncratic volatility seemed to diminish in Phase 2. Surprisingly,
we expected it to increase due to the GFC. This may have happened due to Turkey’s restructure of its
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financial system after the banking crisis in 2001.

The results in Phase 1 for all other countries shows that the network contribution to the idiosyncratic
component is almost irrelevant. A possible suggestion is that the network exposure has a diversifying
effect on the idiosyncratic component. The network contribution to the systematic component was
large; thus, it has an amplifying effect on the systematic component. The results in all other phases
indicate that network exposure has a greater impact on the systematic component and less impact
on idiosyncratic volatility. These results support the notion that network exposure contributes to
spreading and diversifying risks.
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Figure 6: Effect of network exposures with decreased interconnectedness. The figures show how the
contribution of network exposure to both systematic and idiosyncratic volatility changed with reduced
interconnections between markets. This involved using a sparse weighting matrix. The period covered
in the sample is 1 January 1999 — 31 December 2017.

In general, our contribution highlights the distinction between the spreading and sharing of sharing.
From Figure 5, it can be observed that the presence of network exposure increases systematic risk
and reduces idiosyncratic risk. Institutions with increased unsecured borrowing and lending have a
higher chance of receiving and spreading shocks to other institutions. Figure 5 also reveals the changing
nature of interconnections in the different phases. This is because we used a constant network intensity
parameter while changing the connection matrix. Billio et al. (2015) reported similar results in which
the presence of network effect increased the systematic component and decreased the idiosyncratic
component. With the increase in network intensity parameters (from 0.5 to 0.75), the financial system
became more vulnerable to shocks and benefited more from diversification. If the network intensity
parameter is decreased from 0.5 to 0.25, there will be a decrease in shock spreading and a reduced
diversification effect. These results are consistent with recent studies that showed that the presence

20



of interconnection increases vulnerability in the financial system while also helping to diversify risks.®
The results also indicate that network exposure had greater impact in Phases 2, 3 and 4 than Phase
1. This is attributable to the GFC in Phase 2, EDC in Phase 3 and Chinese market crash in Phase 4.
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Figure 7: Effect of network exposures with increased interconnectedness. The figure shows how the
contribution of network exposure to both systematic and idiosyncratic volatility changed with increased
interconnections between markets. This involved using a denser connection matrix. The period covered
in the sample is 1 January 1999 — 31 December 2017.

We also investigated the effect of network connectivity on the structural model. For our case, we used a
sparse matrix to determine whether a decrease in network connectivity increased or decreased network
exposure. We randomly generated the sparse matrix. As shown in Figure 6, fewer interconnections
in the financial system led to a reduction in the size of the bars. This suggests that having fewer
interconnections reduces the magnitude of the spread of absorption of shocks .

We also used dense matrix to determine its effect on the structural model. Figure 7 shows the con-
tribution of using denser weighting matrix in all sample periods. This weighting matrix was based
on trade linkages. Trade linkages are denser because countries are more interlinked through bilateral
trade. This figure shows that more interconnection in the financial system increases the systematic risk
and reduces the idiosyncratic component. This implies that using a denser weighting matrix increases
the network exposure and amplify shocks as well as diversify some shocks. Overall, our approach shows
that an increase in network exposure significantly increases systematic shocks through risk spreading,
and reduces idiosyncratic risk through diversification. Further, these results signify that a large degree
of connectivity does not necessarily dampen risk exposure, but amplifies shocks in the financial system.
This is consistent with Amini et al. (2016), who affirmed that an increase in network connection may
lead to systemic instability.

5 Optimal value of the network intensity parameter

The next question to address is the estimation of the network intensity parameter (p), which captures
the strength of the network exposure. This coefficient is also important, as it plays a key role in
monitoring network exposure (section 4). Different estimation methods have been proposed to estimate
network intensity parameter, including ordinary least squares (OLS), maximum likelihood estimation
(MLE), method of moments (MoM), two-stage least squares (2SLS) and the generalised method of
moments (GMM).

8See Acemoglu et al. (2015); Tonzer (2015); Gai and Kapadia (2010).
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5.1 Static network intensity parameter

We introduce the spatial autoregressive (SAR) model to measure network intensity parameter. We
begin by considering a simple first-order (pure) SAR model, where ‘pure’ refers to the absence of
exogenous regressors (X,,) as proposed by Anselin (1988) and is defined as:

y=pWy-+e (14)

where n is the number of observations, y = (y1, y2, ..., Yn)’ is a vector of observations on the dependent
variable, W is n X n exogenous connection matrices, p is a scalar representing the network intensity
coefficient and € = (e1, €9, ...,6,) as a vector of residuals assumed to be independent and identically
distributed.

By rearranging Equation (14), the error term yields:

e=y—pWy (15)

LeSage and Pace (2009) describes the vector Wy as spatial lag representing a linear combination of
the neighbouring values to each observation. This is supported by Lee (2007), who shows that the
influence in the neighbouring asset is due to spatial effects.

Our first estimate of p is based on OLS. However, the OLS estimate of p is considered biased and
inconsistent. Following Anselin (1988), the OLS estimate of p is denoted by p and given by,

p=WWy) YWy (16)
An estimate of p is unbiased if E(p) = p. We prove below that E(p) = p.

E(p) = E[(yW'Wy) 'y W (pWy +¢)] a7
= p+ E[(yW'Wy) lyW'e]

Therefore, the OLS estimate is biased since the second term in Equation (17) does not equal 0,
E(p) # p. To show that the OLS estimate is inconsistent, Anselin (1988) demonstrated that the
probability limit (plim) for the term y'W'e is not 0 except in trivial cases when e = 0.2 Since the OLS
estimate is biased and inconsistent, we had to consider alternatives to estimate the network intensity
parameter.

We first consider the MLE method because of its simplicity. According to LeSage and Pace (2009),
the MLE for p requires identification of the value of the SAR coefficient that maximises the likelihood
function, given by:

N 1 ,
L(U ,{—j) - 21o2(n/2) 83)]9{-202 (y - IOWy) (y - IOWy)} (18)
1 1
L(ylp,o*) = Gy (Dexr{ =55y = pWy)'(y = o)}

The Jacobian function can be obtained through the differentiation of Equation (15) with respect to
the dependent variable y yielding:

Oe
= =|I, — pW 1

where I, is n x n identity matrix. Substituting Equation (19) for Equation (18) gives:

1 1
L(y|p,o?) = W’In - PW|€$p{—ﬁ(y — pWy) (y — pWy)} (20)

9 Anselin (1988) shows that plimN " (y'W'e) = plimN ~te'W (I — pW) te.
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Lee (2002) asserts that deriving the eigenvalue () of the connection matrix W simplifies the compu-
tation problem. The natural logarithm of Equation (20) is:

1
InL = —g In(2Mo?) + I |1, — pW| - 552 = PWy)'(y = pWy)
(21)
n n 1
=—5 ) -5 n(0?) + 1[I, — pW| — 252 W~ pPWy)'(y — pWy)

The natural logarithm can be further restructured by eliminating the residual parameter, o2. This is
achieved by substituting with the error term, given by:

L1
6% = —(y = PWy)'(y = pWy) (22)
This yields to:
In L = = In(211) = S In(y — pWy)'(y = pWy) + In|L, — pWV| (23)

The parameter space of p requires that the determinants of I,, — pW to be strictly positive. A univariate
optimisation problem can be used to maximise the above expression with respect to p. This implies
that the optimal search of p estimates take feasible values within the range:

1/ Amin < p > 1/Amax (24)
where \,,i, is the minimum eigenvalue of the standardized matrix W while A4, is the largest eigen-
value of the same matrix.

Equation (14) can be extended to investigate how network intensity changes with the presence of
exogenous variables. The mixed-SAR model (see LeSage and Pace (2009)) can be written as:
y=pWy+pX +¢
e~ N(0,021,) (25)

where X = (X1, X9, ..., X;,) a vector (n x k, and where k is the number of variables) of observations
on the exogenous variables having g = (81, B2, ..., Br) coefficients.

Rewriting Equation (25) repeatedly yields:

y=pWy+pBX +¢
= pWy(pWy + X +¢)+ X +¢
= pWy(pWy(pWy + X +e)+ X +¢e)+ X + ¢ (26)

= > [PWI"(BX +¢)
n=1

Equation (26) clearly shows the effect of the weighting matrix in spreading shocks from one entity to
the other until it diminishes leading to a steady-state.

Equation (25) can also be written in a more compact way as:
(I—pW)y=pBX+e¢ (27)

which provides a structure to the contemporaneous relationship based on the spatial proximity in
association with the SAR model. Thus, the model includes contemporaneous relationships, driven
by interconnections across different assets (markets), exogenous regressors and asset (market) specific
shocks. Equation (27) is conveniently expressed in compact because our focus is to estimate the network
intensity parameter, p which captures the endogenous effect of network exposure.
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The general idea is to first construct a univariate optimisation problem for the parameter p. Following
Anselin (1988) and LeSage and Pace (2009), this is done by maximising the full likelihood function of
the dependent variable with respect to the unknown parameters. This is given by:

1
L(31p,5,0%) = s—gimy T — pWleap{—5 5y~ pWy — XBY (y — pWy ~ X)) (29)

= 90002

The natural logarithm function in Equation (28) can be specified as:
1
InL = —g In(2Mo?) 4 In |I,, — pW| — ﬁe'e

1
= —21n(2I0) — 2 n(0?) + 1|1, — pW| — ——¢'e

where
e=(y—pWy—XB)
p € (min(w) ™!, max(w) ™)
where w is the eigenvalue constructed from matrix W. The value of p is assumed to be bounded

between 0 and 1. Next, we estimate each parameter in Equation (29). This is done by solving the
first-order derivatives of equation (29) with respect to the individual parameters.

e Estimate of
By differentiating Equation (29) with respect to 5. We obtain:

oln(L)
o5 "
dln(L) 3(#(.@ —pWy—XB)(y — pWy — XB))
o BR;
O( 5k y — pWy — XBY (y — pWy — XB)) (30)
0= 5
0= 2fig(ﬁf/(y —pWy) - X'Xp)

B=(X'X)"'X"(In — pW)y
From Equation (30), the estimate of f is:
B = (X'X)'X'(I, — pW)y (31)
For simplicity, this can be written as:
B=(X'X)"X"y - p(X'X)' X' Wy (32)

e Estimate of o2
We differentiate Equation (29) with respect to o2 to yield:

dln(L)

=0
Oo?
dln(L) 3( — 5In(0?) + 5= (y — pWy — XB) (y — pWy — XB))
do2 D02
n 1 ,
OZ—@ﬂLW(Q—ﬂWZ/—Xﬁ) (y — pWy — Xp) (33)

0=—-n+ %(y—pWy - XB)(y— pWy — Xp3)
2 (y —pWy — XB) (y — pWy — X3)

n
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Thus, the estimate of o2 is given by:

g2 W= pWy—XB)'(y — pWy — X0)
n

(34)

o Estimate of p
Unlike 8 and o2, which have closed form solutions, p needs to be estimated using optimisation
problem that maximises Equation (29) with respect to p. By replacing estimates of 3 and o2 in
Equation (29) and letting dy = (X'X)"'X"y, bq = (X'X) "1 X'Wy in Equation (32), we have:

y:XSQ—i—éo and Wy:XSd-f—éd (35)
which can be estimated by OLS. Thus, Equation (32) can be rewritten as:
B=(X'X)"'X"y - p(X'X)' X' Wy

. (36)
= dp — pda
The error term from Equation (35) can be given by: éy =y — X6y and é4 = Wy — X6
Substituting to o? yields
52 (eo = pea)'(eo — pea) (37)

n

Using the results of 3 and o2, Equation (29) becomes:

_ Mo _
L= —"1n@) -2 n ((60 pea)' (eo — pea)
2 2 n
= —ﬁ — 2 _ / o . ﬁ _ B 1
=3 In(21I) 5 In ((eo peq) (eo ped)> 5 In(n) + In|L, — pW| S

1
)+l — pW| - 2

which can be written as:
n
=c—3 In ((eo — peq) (e — ped)) +In|L, — pW|
1
c= —g In(21T) — gln(n) ~3
(38)

Thus, to obtain the estimates of p, we need to simplify the log-likelihood with respect to the
scalar p and optimise the following equation:

F(p1) c—5In( (e — pieq)'(eo0 — preq) ) +n|l, — p1W|
flon) | | ¢ =5 In((e0 — p2ea)’(e0 — p2ea) ) + |l — paW| (30)
f(pr)

c—5n ((60 — preq) (eo — pred)) +In|l, — p,W|

5.2 Dynamic network intensity parameter

The static SAR model specified in Equation (25) can be further extended to a dynamic SAR. This
allows estimation of a time-varying network intensity parameter (p;). This is useful in understanding
how the spatial parameter changes over time. As pointed out by Blasques et al. (2016), time-varying
network intensity parameters indicate how the spillover changes over time. We considered the case
when we have constant volatility.

A time-varying SAR model with constant disturbances is defined as:

yr = peWye + BXy + ¢
e~ N(0,%), t=1,2,..,T (40)
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Where ¥ is constant over time.

Assuming constant disturbances allows us to investigate how the spatial parameter changes over a
specific point in time. This is an important aspect of examining financial systems in which the volatility
of returns is known to vary considerably between non-crisis and crisis periods (Blasques et al., 2016;
Catania and Billé, 2017). The diagonal elements represent the time-conditional variances of the cross-
sectional independent innovation at any given point in time. We impose diagonality assumption as the
standard constant conditional correlation (CCC) and dynamic conditional correlation (DCC) model
proposed by Engle (2002).

The generalised log-likelihood function of the constant (Lc;) variance models becomes:
n n d 1
In Le; = =2 In(200) — 2 In(3) + ;m I, — pW| — 5622_1@

where (41)
et = (yr — ptWyr — Xi8)
pi € (min(w) ™!, max(w) ™)
Allowing for time-varying variance in the shocks led to the following:

yr = ptWye + X + &4

where
e~ N(0,%), t=1,2,..,T (42)
¥ ~ diag(ol, 03, ,0?)
The generalised log-likelihood function of the time-varying (Lwv;) variance models becomes:
n n ! 1
In Lv, = ) In(21T) — 3 In(%;) + tz_;ln |1, — pW | — 56;2;1615
where (43)

et = (yr — pcWyr — XiB)

pt € (min(w)_l, max(w)_l)

6 Empirical analysis

We use the MLE method to estimate the values of p. MLE is preferred over OLS because of the
limitations of OLS as discussed in subsection 5.1. Despite the known limitations of OLS in estimating
p, Elhorst (2010) stated that the OLS estimate of p could serve as a guide of the expected true value.
The initial OLS estimate of p for our data was 0.5327. Therefore, it is expected that the optimal value
of the estimate of p will be within this range. Next, we estimate p using the MLE and allow the search
to be within the range 1/Amin — 1/Amaz. The y vector is the average return of each country in our
sample over the entire sample period, while we constrained W to lie within the interval {0,1} through
the process of row standardisation; using the row-normalised contiguity matrix of weights ensures that
each row of the matrix sums to unity. The row-normalised matrix represents the portion of total
liability that the source country /institution shares among its target nodes.

By estimating static network intensity parameter using a pure SAR model (Equation 21), we ensure
consistency with the extant spatial literature (Asgharian et al., 2013; Fernandez, 2011). The static
network intensity parameter (which captures the endogenous effect of network exposure) is estimated
at each phase. We begin the estimation by excluding additional explanatory variables. Table 6 contains
the static network intensity estimates with their corresponding standard errors in parentheses. The
estimate for the whole sample was 0.5072 with a small standard error of 0.0043. This is close enough
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to the estimate obtained using OLS (0.5327) and represents the potential impact of the parameter on
the entire network. Comparing estimates in the different phases, the network intensity parameter was
higher in Phase 2 (0.6134). From Figure 8, we observed a more than 30% increase in the estimate from
Phase 1 to 2. It only increased by 16% in Phase 3 which is approximately half the increase reported
for Phase 2.

Table 6: Network intensity estimates and their robust standard errors

All Phases Phase 1 Phase 2 Phase 3 Phase 4

Whole sample 0.5072 0.4727 0.6134 0.5495 0.5110
(0.0043) (0.0059)  (0.0142)  (0.0099)  (0.0091)
Advanced 0.5292 0.5014 0.5919 0.5664 0.5378
(0.0042) (0.0059)  (0.0144)  (0.0097)  (0.0089)
Emerging 0.3125 0.2804 0.4232 0.3379 0.3236
(0.0040) (0.0054)  (0.0147)  (0.0095)  (0.0084)
Europe 0.5281 0.5018 0.6196 0.5651 0.5232
(0.0043) (0.0059)  (0.0147)  (0.0099)  (0.0092)
All America 0.3497 0.3327 0.4447 0.3758 0.3321
(0.0040) (0.0056)  (0.0149)  (0.0098)  (0.0081)
Asia 0.3515 0.3132 0.4466 0.4068 0.3569

(0.0041)  (0.0055)  (0.0148)  (0.0097)  (0.0084)

The table reports the estimated network intensity and their robust standard errors in parentheses for
the static SAR model. The period covered in the sample is 1 January 1999 — 31 December 2017.

From the static network intensity results in Table 6 and Figure 8, it is evident that network intensity
increased drastically in Phase 2 (corresponding to the GFC), followed by in phase 3 (associated with
the EDC) compared to the other two phases. This is consistent with the finding of Blasques et al.
(2016), who used the CDS data of big players in Europe to show that network intensity is higher when
the financial system is under stress, suggesting higher spillover in the financial system. Our results
also reveal that the GFC, which is associated with large network intensity, had a severe impact on the
entire financial system compared to the EDC. The GFC spread throughout the entire network while
the EDC severely affected only European countries.

Overall, we can conclude that increases in network intensity estimate could be associated with periods
when the financial system is under stress. This is in line with Hypothesis 1, which states that higher
network intensity could be associated with crises. For instance, higher estimates in Phase 2 corre-
sponded to GFC; in Phase 3, they could be associated with the EDC. Finally,in Phase 4, they could
correspond to the Chinese market crash of 2015 (Alter and Beyer, 2014; Black et al., 2016; Yu et al.,
2017).

The increase in the estimate during times of stress could have an economic effect. Large network
intensity estimates are assumed to signify higher propagation strength of a shock to the entire system.
This is because of high interconnectedness, which increases network exposure, and thus, may increase
fragility in the financial system (Minoiu and Reyes, 2013). We can relate this to the findings of Tonzer
(2015) and argue that high network intensity is associated with increased cross-border exposures.'’
Our findings are also similar to those of Cao et al. (2017), who found that cross-border linkages tend
to increase during crises. This could be a signal of greater propagation of shock when institutions are
under distress.

To capture the dynamics of the network intensity parameter, we conduct an estimation using a 251-day
(one-year horizon) rolling window. We investigate how network intensity changed over time. A one-year
period is assumed to be adequate to capture any significant change in economies. Before estimating the

%Tonzer (2015) argue that the foreign exposure during the GFC increased in the banking sector, leading to risk
spreading through the interconnected links in the financial system.
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Figure 8: Change in network intensity estimates in subsequent phases. The figure reports the percent-
age change of network intensity estimates in the subsequent phases. The entire period covered in the
sample is 1 January 1999 — 31 December 2017.

parameter, it would be interesting to determine if the estimates differed using a constant initial value
of p and a changing initial value of p at each point in time (the initial value will be used as the starting
values in search of the real values in our optimisation problem). To proxy the initial changing values of
p, we assume the pattern of the network intensity parameter to be same as those used by Blasques et al.
(2016).'! Specifically, we assumed the following: constant (p; = 0.5), sine (p; = 0.540.4%cos(2mt/200),
fast sine (pr = 0.5+ 0.4 % cos(27t/20) and step (p = 0.9 — 0.5 % (k > 500)). We estimate the network
intensity parameters by both excluding and including the additional explanatory regressors.

The evolution of the network intensity parameter for the whole sample with the 95% confidence intervals
are presented in Figures 3.9a to 3.9c. In terms of whether using the different initialisation of p within
the range of 0 and 1 leads to different estimates, our results indicate that dynamic network intensity
estimates are identical when using any specification of p within (0,1). Next, we investigate whether
using varying initial values of p would result in different estimates of the network intensity coefficient.
The results in Figures 3.9a and 3.9b show that both initialisations of p produce similar plots. The
implication here is that dynamic network intensity estimates does not necessarily depend on the initial
value of p.

Figures 3.9a and 3.9b clearly show that the network intensity parameter changes over time. This is
consistent with other studies, such as Forbes and Rigobon (2002), who stated that spillover is time
variant. We also observed that estimates oscillated between 0.2 and 0.8, which signifies a higher
variation of propagation chance of shock hitting specific nodes in the network. There is a notable
repetition of similar trends of network intensity estimates in that estimates were lower before a crisis
and increased during the crisis. This is an indicator of higher propagation of shocks to the system.
This finding supports Hypothesis 1, which associates high network intensity to periods of stress, which
could be due to increased interconnectedness resulting in fragility of the entire financial system.

In general, higher network intensity estimates in Figures 3.9a and 3.9b coincide with past major events
in the financial sector that include:

e the dot-com bubble in 2002

1See Appendix A.4 for more details on the patterns of the network intensity parameter.

28



(a) Netwark intensity estimates obtained using constant initial value
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(c) Network intensity estimates obtained using sparse matrix
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Figure 9: Network intensity estimates for the entire period. The figures display the network effect
for the whole sample period without regressors. The light areas are the 95% confident intervals with
the horizontal line representing average estimate in the whole period. Figure 9a presents the dynamic
estimates obtained with an assumption of constant (p = 0.5) initial value while Figure 9b displays the
estimates obtained using changing initial value (it follows p; = 0.5 + 0.4 % cos(27t/200)). Figure 9c
presents network intensity estimates using sparse matrix. The period covered in the sample is 1 January
1999 — 31 December 2017.

the second war in Iraq in 2003

the GFC between 2007 and 2009

the EDC in May 2010

the rapid fall of prices of gold in early 2013

Chinese stock market turbulence in 2015.

These results imply that network intensity tends to increase during times of stress, which could be
associated with an increase in interconnectedness in the financial system (Geraci and Gnabo, 2018).
These findings are supported by Blasques et al. (2016) , who related high network intensity to increased
spillover in the financial system. These findings are similar to Cao et al. (2017), who reported that
cross-border linkages tend to increase during crisis periods. Conversely, larger network intensity—
especially during times of stress—are associated with increased cross-border lending, which results in
transmission of stronger shocks between markets. Previous research by Tonzer (2015) and Sun and
Chan-Lau (2017) supports this reasoning. They found that foreign exposures play a significant role in
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spreading risk. This implies that countries are exposed more to more risks due to large exposure from
trading partners. The high network intensity across markets signifies the strong exposure of a shock
to the entire financial system (Forbes and Rigobon, 2002).

(a) Network intensity estimates for phase 1
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(b] Network intensity estimates for phase 2
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(c) Network intensity estimates for phase 3
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(d) Network intensity estimates for phase 4

P Ml | N T L 1140 A ll“ﬁu LI“'I ll“ l \.l‘ i .ll N | |4 ‘a‘l‘ll
B LR e I ]r"fllf!‘ﬂ'fll '

\ \ \ | |
12013 QB2014 (62015 032016 122018 0az017
Years

Figure 10: Network intensity estimates in different phases. The plots display the network effect for the
whole sample period in each phase. The light areas are the 95% confident intervals while the horizontal
line is the is the average estimate in the entire period. The period covered in the sample is 1 January
1999 — 31 December 2017.

To check Hypothesis 2, we use an alternative sparse matrix to estimate network intensity parameter.
The sparse matrix provide us with an idea of how the degree of interconnection in a financial system
affects estimation of network intensity parameter. We use a randomly generated sparse network matrix
with the exception of main diagonal taking zeros. Figure 9¢ shows the dynamic estimates of the network
intensity parameter obtained using sparse matrix with 95% confidence intervals. From this figure, we
observe that network intensity estimates shift downwards when sparse weighting matrix is used. The
dynamics of network intensity in Figure 9c differ from those in Figure 9a. The results also indicate
that interconnectedness among financial markets changes the patterns of network intensity over time.
A more stable economy with higher network connectivity would beneficial in shock absorption, leading
to a more resilient financial system. The converse is also true. Further, these results imply that
as the degree of connectivity increases (decreases), then network intensity parameter shifts upwards
(downwards). As a result, the degree of interconnection plays a key role in the estimation of network
intensity parameters. These findings are consistent with previous studies. For instance, Silva et al.
(2016) found that shocks spread from highly interconnected networks, leading to financial distress in
the entire financial system. This is also supported by Amini et al. (2016), who showed that a financial
market with larger connections is associated with spreading shocks in the network, leading to financial
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instability. As Minoiu and Reyes (2013) described the financial network as volatile, we expect this to
have an impact on the estimation of network intensity parameters.

To obtain a clearer picture of the evolution of network intensity, we obtain the values of the estimates
at each phase. Figure 10 displays the dynamic network intensity coefficients at each phase. From
these, we draw a similar conclusion those drawn from the static estimates. On average, these estimates
are lower in Phase 1 than in other phases, and increase in Phase 2. The network intensity parameter
remains higher in Phase 3 (after the crisis and during the EDC). This suggests that network intensity
tends to be higher when the market is under stress. Blasques et al. (2016), who used European CDS
data, arrived at a similar conclusion.

6.1 Impact of exogenous factors on the estimation

Next, we investigate the marginal effects of the explanatory variables on the estimation of network
intensity (Equation 28). The beta coefficient of the model represents the exogenous exposure to the
common factors, while the network intensity parameter captures the endogenous effect of the network
exposure in the model. All these external regressors are country-specific. They include volatility
index, FX and IR. Volatility index captures the change in risk appetite, which gauges the overall
market sentiment. It is measured using the implied volatility of the world index. We considered
implied volatilities of two major stock indices, VIX and VSTOXX, because of the unavailability of
individual country data.

Implied volatilities
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Figure 11: Volatility estimates. The figures display the implied volatilities for VIX and VSTOXX
indices during the entire period. The period covered in the sample is 1 January 1999 — 31 December
2017.

Figure 11 shows the trend of the implied volatility of these stock indices. We use these two major
implied volatility indices to investigate the impact on network intensity estimation. It can be observed
in Figure 11 that the implied volatility depicts similar patterns. For example, during the GFC of
2007 — 2009, the two indices reached their peak over the whole period. We also observe a comparable
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shift in the magnitude of volatility at different points in time. High spikes in the implied volatility were
associated with periods when financial markets were under stress. For instance, the spikes in 2002 are
associated with the dot-com bubble, those in 2003 are associated with war in Iraq (Degiannakis et al.,
2018), 2007 — 2009 spikes were associated with the GFC, 2010 spikes with the EDC, 2013 with the
rapid fall of prices of gold and 2015 with turbulence in the Chinese stock market.

The country-specific regressors include IR and FX. Local market returns measures the growth of the
economy of any country; this measures the stability of a country’s economic outlook. IR affects the cost
of borrowing; higher IRs are associated with increases in borrowing costs. In addition, IR measures
financial integration because it reflects capital movement between countries (Asgharian et al., 2013).
We use the absolute changes of 90 days’ T-Bills as a proxy for IRs. FX involves trading currencies
across the global market. This may affect international trade and capital flows, thereby affecting
the economy. Research has found that sudden change in exchange rates have implications for the
entire financial system (Krugman, 1979; Salant and Henderson, 1978; Flood and Garber, 1984). This
fluctuation in exchange rate is associated with currency crisis (Frankel and Rose, 1996). Following the
approach used in Asgharian et al. (2013), we use exchange rate volatility, which is computed as the
standard deviation of daily log changes in bilateral exchange rates. All these variables are indicators of
financial integration and thus may either directly or indirectly have an effect on estimating the network
intensity parameter. Daily data for these explanatory variables were obtained from Thompson Reuters’
Datastream. The sample consists of 45 countries and the period is January 1999 — December 2017; we
exclude the weekends.

Table 7: Comparison of network intensity estimates with and without regressors

Base IR FX VIX All regr. VSTOXX

Liability matrix

Est. Par. 0.5149 0.5117 0.5166 0.1055 0.1933 0.0978
(0.0042) (0.0042) (0.0042) (0.0027)  (0.0039) (0.0025)

Trade matrix

Est. Par. 0.5698 0.5669 0.5718 0.1781 0.2000 0.1617
(0.0041) (0.0042) (0.0041) (0.0038)  (0.0040) (0.0036)

The table reports the comparison in network intensity parameter with and without regressors. These
estimates are obtained using a dynamic SAR model and they represent the mean values of the whole
sample period. The estimates represent the average value of the estimate in the whole sample period.
Base are the estimates obtained without including external regressors, All regr. are estimates obtained
with inclusion of all other regressors, excluding the VSTOXX index. The other estimates are based on
individual regressors.

The estimates shown in Table 7 represent the mean value of the network intensity parameter in the
whole sample period. Both liability and trade weighting matrix were used to estimate the static
network intensity parameter. These results show that the estimate is greater (0.5149) when additional
regressors are excluded than when they are included (0.1933). This is an approximately 62% change
(decrease) in the estimate when all additional regressors are included in the estimation. Therefore, the
presence of explanatory variables has a discernible effect on the estimation of the network intensity
parameter. This suggests that each additional regressors may have either positive or negative effects on
the estimation. We observe that the introduction of each variable separately has an effect on network
intensity estimate.

Although there is no significant difference between the network intensity estimates with and without
inclusion of IR and FX, it is worth discussing their impact on the estimation. IRs across countries
may fluctuate due to the FX. Higher IR fluctuations may have a greater impact on network intensity
estimates. This is because increases in IR volatility increases uncertainty, which create a channel
through which shocks can spread in financial markets (Edwards et al., 1998). This may lead to an
increase or decrease in network intensity parameter. Our results reveal that the IR fluctuations lead
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(a) Network intensity estimates without regressors

(b) Network intensity estimates with addition of IR mgressnr

087 ‘ ‘

B N 1L ! 11MA L“JJMIJU.H.“.. ‘hLm. IL:II_\‘_Nli.JW“L ol LA
T TR M ”!”“"“ i | il

" \ \
1999 m 2005 08 a1 s 07

=
=

(c) Network intensity estimates with addition of VIX regressor
U \ \ \ \ \ I

:T_ |“L l .«“J (L L ‘HIH‘_: | ..\m F||l L LAWY hl ” '
'F‘T[ ]mlm”'l ‘ W”'”””‘ H'p{ PRI [ HM ‘ i\

1999 2002 2005 2008 il 214 a1

(d) Network intensity estimates with addition of FX regressor

08
06
04y
02

() Network intensfty estimates with addition of all regressors

© | ‘nlhhihl H‘“uh IMIIJ l. M i.“.l i A “u. 1}
il ”’ W WI' l"”ﬂ""m' TRy T TRV

\ \ \
0
199 e zoos zoc:a w1 wi bufl

Years

Figure 12: Network intensity estimates with and without regressors. The figures display network
effect for the entire sample period with the addition of external regressors. The horizontal line is the
average estimate in the entire period. Figure 12a displays network intensity estimates without external
regressors. Figures 3.12b, 3.12c¢ and 3.12d display network intensity estimates with IR, VIX and FX
respectively being the external regressors. Figure 12e displays network intensity estimates with all
external regressors.

to decrease in network intensity of 0.6%. FX rates differ from country to country and this may affect
the borrowing rates of each country (Bruno and Shin, 2014). A more volatile exchange rate increases
currency risk premium, and thereby effecting financial market co-movements (Asgharian et al., 2013).
This suggests that FX may have a greater impact on estimation. From the static results, we observe
that, on average, the volatility in exchange rate leads to an increase in network intensity parameter of
0.3%.

Volatility (the amount of uncertainty regarding change in each stock market index) has a greater impact
on network intensity estimation. As displayed in Figure 11, fluctuations in the implied volatility index,
especially during periods of stress, cause shifts in network intensity. High fluctuations in volatility
result, on average, in a decrease in network intensity parameter by approximately 80% in the case of
VIX and 81% for VSTOXX. Both VIX and VSTOXX have almost similar effects on network intensity
parameter. Based on these results, we conclude that implied volatility has a major impact on the
estimation of the network intensity parameter and would have discernible effects on the financial
system. This is supported by Antonakakis et al. (2013), who showed that implied volatility, for instance
VIX, dampens returns, which could result in lower network estimates. Therefore, among the external
regressors, the volatility of stock market index has a greater impact on the estimation of the network
intensity parameter, resulting in a 62% decrease in the estimate.
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Figure 12 shows dynamic network intensity parameter, including and excluding explanatory regressors.
The estimates were obtained using the dynamic SAR model specification using a 251 rolling window
size.

Figure 12a displays a time-varying trend of estimate without the external regressors. The horizontal
line represents the average estimate of the whole sample period. Figures 3.12a, 3.12b and 3.12d display
similar patterns, while Figures 3.12¢ and 3.12e show varying patterns. This is because while the IR
and FX fluctuations either increased or decreased estimates, implied volatility (we used VIX as a proxy
of implied volatility since VSTOXX provided almost identical results) of stock index had discernible
effect on the estimation of network intensity parameter. Higher volatility changes the trend of network
intensity estimates. These effects are clearly observed during the global crisis, for which the trends of
Figures 3.12a and 3.12c of Figure 12 differ.

Although we can observe a similar trend in Figure 12 (which excluded the explanatory variables),
reduction of the estimated values (previously presented in Table 7) can be observed. The estimates
fluctuate between 0.3 and 0.75. This led to the same conclusion as previously discussed. The spikes
in the estimates are associated with periods when the market was under stress. This is in line with
Hypothesis 1. For example, the spike before 2002 is associated with the dot-com bubble, 2007 — 2009
with the GFC, post-2010 with the European debt crisis and 2015 with the Chinese market crash.

We now introduce additional regressors to support Hypothesis 3. Our preliminary findings showed
that external factors (integration measures) have an effect on estimation. This may suggest that the
financial market is highly integrated in terms of cross-border activities.

As stated in Hypothesis 2, increased interconnectedness between different markets results in increased
network intensity estimates. Let us relate the horizontal line (mean value) to the period of financial
system stability (robust network intensity estimate) while periods when there are spikes above the line
correspond when the financial system is under stress (fragile network intensity estimate). Figure 12
depict a robust-yet-fragile network intensity estimate. A robust-yet-fragile network would diversify
small shocks, while propagating large shocks to the entire financial system, leading to distress (Gai and
Kapadia, 2010; Acemoglu et al., 2015; Tonzer, 2015). Although the network intensity was robust-yet-
fragile between 2002 and 2006 (as shown in Figure 12), the financial system benefited from risk-sharing
effect. During the GFC, shocks were amplified in the financial system, causing financial instability.

Network intensity estimates for the advanced and emerging economies
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Figure 13: Network intensity estimates for developed and emerging markets
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6.2 Developed versus emerging markets

There is increasing involvement of emerging markets in enhancing financial growth and stability. There-
fore, it is important to estimate the network intensity parameter for these markets and compare them
with those of developed economies. The countries in our sample were classified as developed (54%) or
emerging (46%) based on IMF 2017 classification.!?

In Table 6, we observe that developed economies have higher network intensity estimates than emerging
markets. This could be due to their high inter-linkage with other markets. Schiavo et al. (2010) stated
that developed economies are more interconnected to the other countries, and thus, spread shocks
to other economies. Although developed markets have higher estimates than the emerging markets,
emerging markets experience high fluctuations in different periods (see Figure 8). We observe that
emerging markets experienced more than a 50% change in the estimate in Phase 2. This implies that
they are largely exposed to and affected by external shocks, originating from developed economies,
especially in times of GFC (Aizenman et al., 2016a).

Figure 13 displays the dynamics of network intensity parameters for both developed and emerging
markets. Figure 13 suggests that the dynamics of estimates for both economies differ. While the
estimates of the developed markets are identical to those of the entire sample, estimates of emerging
markets have different patterns. Emerging markets exhibit higher fluctuations than developed markets.
This is in line with Hypothesis 4. From these results, it can be theorised that developed markets with
stable economies tend to experience high network exposure, but less fluctuation. Conversely, network
exposure for emerging economies varies more. Harvey (1995) suggested that this could be due to
segmentation from global markets.

Our results concur with those of Aizenman et al. (2016a)-that developed markets have greater influence
with higher network intensity than do emerging markets. This greater influence can be associated to
developed economies being the key contributors to the GFC. That is, when a shock hit these economies
through their network links, it had a greater effect on the entire economy. This finding is supported by
Schiavo et al. (2010), who showed that one of the contributors of the GFC was shocks from developed
markets spreading to other markets. Kubelec and Sa (2012) suggested that shocks from the US and UK
(being big players in developed markets) propagated to the entire financial system during the global
crisis. We identified developed economies as having many interconnections with other markets, making
them more prone to risk in terms of spreading shocks to other markets. This is supported by Amini
et al. (2016), who argued that institutions with large connections have a higher chance of affecting the
stability of the entire system due to their link structures. Aizenman et al. (2016b) also argued that
emerging markets were more resilient during and after the GFC. Thus, developed markets played a
significant role in propagating shocks to the entire financial system. This is a clear indication that
policy makers should be more concerned when network intensity estimates are greater for developed
markets.

Although emerging markets have lower network intensity estimates, they may also have the greatest in-
fluence in propagating shocks. We observed that emerging markets had having greater spikes especially
when the market was under stress. This finding shows that emerging markets are not immune during
the GFC. This suggests that emerging markets serve as hubs through which shocks from developed
economies spread to the entire financial system. Aizenman et al. (2016a) also found that emerging
markets were also exposed to external shocks during the GFC, especially to shocks originating in de-
veloped markets. These findings indicate that emerging markets increasingly play a role in the world
economy by engaging in cross-border relationships with developed and emerging economies (Bekaert
and Harvey, 2017).

In terms of integration, we observe that developed economies with high network intensity have more
cross-border activities, making the estimate higher than those of emerging markets. These results
suggest that developed economies that are more stable benefit from higher network intensity. However,
in the presence of shocks, these economies might have a great impact on financial stability. These

2Most countries in our sample are developed economies.
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findings are similar to those ofChevallier et al. (2018), who showed that developed markets play a
dominant role in propagating shocks to the entire system while emerging markets are becoming more
integrated with other markets. This means they can transmit shocks to other economies. These
results are also supported by Schiavo et al. (2010), who found that developed economies tend to be
more integrated and more clustered, resulting in larger estimates of network intensity parameters.

Finally, developed economies network intensity estimates exhibit a robust-yet-fragile feature. The
financial system could benefit more from risk-sharing and diversification when small shocks hit the
system. There is also a danger of large shocks being amplified throughout in the entire system, making
the financial system more susceptible to collapse.

Generally, the findings suggest that developed markets are dominant in terms of high propagation of
shocks to other markets compared to emerging markets (Arnold et al., 2013). This could be a result of
large cross-border transactions to other markets. Although emerging markets are less dominant, they
still contribute to global propagation of shocks.

Ratio of subregion representation

= Europe = All America = Asia Africa

Figure 14: Ratio of the regional representation of the financial markets

6.3 Region specific network intensity

We investigate the evolution of network intensity parameters in different regions. From Figure 14, all
America (include both North and Latin America) represents 13% of the total sample, Asia represents
35% and Europe represents 48%. The liability weighting matrix for each region was obtained using the
combined DY and Granger causality approach. These analyses aid in investigating the extent to which
network intensity parameter differs among these regions. This is in line with Hypothesis 3. Hypothesis
3 aims to investigate whether regional integration has an impact on the estimation of network intensity
parameters.

Network intensity estimates in Table 6 differ for each region. On average, America has the lowest
(0.3497) estimate with low standard error than all other regions. The estimate is 31% lower than the
original average estimate of 0.5072. The network intensity estimate of Asia is also lower (0.3515) than
the original estimate, representing a 30% decrease. Europe has the highest estimate (0.5281) in the
whole period, representing a 4% increase in estimate as compared from the original estimate. From
Figure 8, these estimates changed (increased or decreased) from one phase to another. For instance,
these estimates increased when moving from Phase 1 to Phase 2 by more than 24% in all regions.
Asia experienced a significant increase in estimates (40% change). The estimates slightly changed
(decreased) moving from Phase 2 to 3. They also changed (decreased) moving from Phase 3 to 4.
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(a) Network intensity estimates for all the sub-regions
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Figure 15: Network intensity estimates for each region

With the increasing development in the financial sector and globalisation, there has been a high degree
of both regional and global integration, which may be depicted in the results (Chevallier et al., 2018).
The increase of cross-border transactions has led countries to become more interconnected, leading to
increased financial integration between these markets. An increase in integration is be associated with
increased network exposure, which tends to increase network intensity estimates (Hiiser, 2015). Higher
network intensity estimates in Europe signify greater integration in the European market.

Figure 15 shows the dynamic network estimates for each region. Figure 15a presents the network
intensity estimates for all regions. The horizontal line is the average network intensity parameter in
the whole sample. According to Figure 15a, Europe has higher estimates than other regions. The
estimates for the European market fluctuated above the mean, while other regions, they fluctuated
above and below the mean.

All America and Europe produced different patterns, suggesting that the two regions have different
exposures. This could be due to different banking systems across regions, making cross-border banks
from large countries (mostly the US) pose the ‘too big to fail’ problem. Propagation of shocks led to
financial dislocation and tensions especially in the Euro areas (Belke and Gros, 2016). Additionally,
network exposure for the US and Europe would differ because the equity returns of these markets
react differently to shocks. Previous literature has shown that the US had problems in banking and
sovereign debt, thereby establishing a diabolical loop (Chan-Lau et al., 2015; Dufrénot and Keddad,
2014).

For all America, we observe that network intensity estimates were higher at the beginning of the
sample period and continued to decline until 2007, when the estimate fluctuate upwards. There were
spikes in mid—-2008, implying that propagation strength increased suddenly. The estimates fluctuated
at around 0.4 before increasing to 0.6 in 2014. The presence of Latin American countries (Argentina,
Brazil, Chile and Mexico) affected network intensity estimates. These emerging markets exhibited
higher fluctuations in return over time.

For Europe, the opposite was true. Network intensity estimates were lower at the beginning of the
sample period and then increased. Before 2012, there were spikes (the propagation strengths are
higher) in network intensity estimates. They are associated with the onset of the EDC in 2010 (Mink
and De Haan, 2013). The estimates then fluctuated in an increasing trend in 2012. This suggests that
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European markets became more interconnected, increasing their exposures in the financial system.
The propagation strength was higher during crisis periods and remained higher during the sovereign
debt crisis. This could indicate a larger impact of shock propagation, especially when a shock hits the
financial system.

Conversely, the Asian region depicted a different pattern from other regions. There was a spike in 2002,
and it remained higher until 2003 before dropping then fluctuates again. The estimate declined at the
beginning of the crisis period before spiking in 2007. Thereafter, there is a declining trend of network
intensity until hit its lowest point in 2014. The estimate remained low after 2013. These results are
similar to the static estimates in Table 6. These results are consistent to those of Guimaraes-Filho and
Hong (2016) ,who argued that Asian markets are more exposed to shocks from other region, thereby
increasing their exposure during crises.

Overall, the results from the regional network intensity show that exposures are high especially during
crisis periods. This suggests that the fragility of the financial system tends to increase during time of
stress (Sun and Chan-Lau, 2017). This leads to financial instability.

Our findings indicate the possibility that regional network intensity estimates have an implication
for policies that affect economic growth and stability. A high network intensity estimate may imply
higher propagation effects from shocks to the financial system, leading to financial instability (Sun
and Chan-Lau, 2017). This aligns with Tonzer (2015), who showed that regional integration might be
beneficial to stable economies. Therefore, by having higher network intensity, a region might benefit
from diversification of shocks.

The estimates of network intensity using alternative weighting matrix are discussed in Appendix A.1.
The comparison of MLE with other approaches is discussed in Appendix A.3.

7 Implication of empirical study

From our empirical results, we highlight why the network intensity estimate is important, especially
to the financial system. We do so in an attempt to answer the questions posed below.

7.1 Do high network intensity estimates signify spillover in the financial system?

The changing nature of network intensity parameters raises the question of whether high or low network
intensity estimates are associated with return spillover in the markets. Transmission of shocks across
the financial system through different channels is known to cause financial distress. This transmission
of shocks can be a result of many factors, not limited to the increasing growth of cross-border activities
in the financial system.

With increasing cross-border activities over recent years, there has been a tendency for increased
exposures throughout the financial system. This is depicted from our results, in which we observed
that the network exposure tends to increase when the financial system is under stress. This can signify
a spillover in the financial system. Moreover, increasing interactions between different markets imply
high exposure to these markets in terms of risk, thereby posing a threat to the stability of the financial
system. Network intensity is also affected by financial integration through cross-border flows. This in
itself creates a channel of increasing spillovers in the financial system.

In general, network intensity parameters capture the strength of exposure, which relates to spillovers.
We conclude, based on our results, that network intensity evolves over time and during important
events. When network intensity is high, it implies that spillover is increasing in the financial system. It
is worth noting that with increasing cross-border financial activities, financial institutions have become
more interconnected. This has resulted in high exposure of the financial system to shocks. These
results confirm that a high network intensity parameter is associated with high interconnectedness in
the financial system.
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7.2 Does network intensity respond to different market conditions?

Ever changing market conditions have led to greater complexity in the financial sector. Recent studies
have revealed increased co-movements of cross-border activities. This means that with favourable
market conditions the financial market has become more integrated. A natural question to ask is
whether the different market conditions increase the chance of vulnerability in the financial sector.

For example, FX volatility may have a positive influence on network intensity estimate. This is reflected
in our results, in which we observed high network intensity corresponding to periods of high volatility
in FX rates.

Implied volatility used to capture overall market riskiness is expected to have a positive influence
on network intensity estimates. With increasing uncertainty in the market, financial sectors are at
a higher risk of failure. Our results show the considerable impact of implied volatility on network
intensity estimates. All this suggests that with changing market conditions, there is an increased
possibility of high network intensity, and thus, a possibility of stress in the financial system.

8 Conclusion

This paper investigates the dynamics of the network intensity parameter that monitors network expo-
sure. To be specific, this paper produce two empirical findings on how network exposure contribute
to increasing vulnerability in the financial system. The first part examines the impact of network
exposure on common factors. Our findings show that both the network intensity coefficient and inter-
connectedness increase exposure to common factors.

The second part aims to estimate the network intensity coefficient. Interconnectedness is estimated
using existing measures, particularly the combined Granger causality and DY approach. Our initial
aim is to estimate a static network intensity parameter. OLS and MLE approaches are used in these
estimations. We also extended our work to estimate a dynamic network intensity parameter to de-
termine whether a high network intensity is associated with period of extreme events. Our findings
suggest that a high network intensity coefficient is associated with extreme events that are related to
period of distress in the financial system. The size of the network intensity coefficient serves as an
indicator of stress events and could be useful in monitoring the financial system, ultimately promoting
financial stability. This paper highlights the importance of network exposure by showing the extent
to which financial systems are exposed to shocks from existing linkages. Caution must be taken to
monitor these exposures to reduce the transmission impact of these shocks.
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A Appendix

A.1 Network intensity using alternative weighting matrix

Here, we investigate the role of weighting matrix in estimating network intensity parameters. We
consider the first difference of trade data to construct an alternative weighting matrix. This matrix
is then used to estimate network intensity coefficients. Our data comprise of quarterly export and
import data from the international monetary fund (IMF), world economic outlook (WEQO) database
for the selected economies. Both indirect and direct trade linkages acted as channels through which
shock was transmitted in the financial system. Trade linkages represent high trade exposures in the
financial system. For instance, Kali and Reyes (2010) reported that a shock is amplified in the system
when financial institutions are more integrated in terms of trade linkages. Asgharian et al. (2013)
found that linkages through bilateral trade capture dependencies between stock markets. This is due
to feedback effects among financial markets. This suggests that trade concentration is one of the
important channels through which shocks spread in the financial system.

In Figure 16b, we present the network intensity estimates based on trade weighting matrix. The
horizontal red line represents the mean value (0.5698) in the whole sample period while the shaded
area is the 95% confident interval. These results show that higher network intensity estimates were
associated with periods when financial systems were under stress. For instance, higher network intensity
in 2002 corresponded with the dot-com bubbles while there was sharp decrease in the estimate in 2003.
The estimate then fluctuate upwards and decreased just before the global crisis. There is a sharp
increase in the estimate during the GFC. The estimates remain higher after the global financial crisis.
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A network intensity above 65% at the end of the sample period signifies a high risk of collapse when
a shock hit the financial system. As can be observed in Figure 16b, network intensity increases when
a shock hit the financial system and decreased in normal periods. This supports our conclusion that
a sharp increase in network intensity signals that the financial system is in distress. This observation
would help regulators and policy makers monitor these financial institutions.

(a) Network intensity estimates for all economies using liability and trade weights
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Figure 16: Network intensity estimates based on trade and liability matrix. The figures compare the

network effect using both liability and trade connection matrices for the whole sample period.

A.2 Comparison of estimates using both liability and trade weights

Figure 16a depicts the role of the weighting matrix in estimating the network intensity parameter.
The horizontal line is the mean value of the estimate obtained using both trade and liability weighting
matrix in the whole sample. These results reveal that the trade weighting matrix contributed to the
upwards shift of the weighting matrix from 0.5149 — 0.5698. This also implies that the mean value
of the estimate is 0.5698 using trade weight matrix and 0.5149 when the liability weighting matrix is
used.

The connection matrix play an important role in the estimation of the network intensity parameter.
From Figure 16a, it is clear that although the weighting matrix results in estimates with almost similar
trends, their sizes differ in both cases. The network intensity estimates based on trade weights were
higher than those obtained using the liability weighting matrix. This suggests that shocks through
trade linkages would be more sensitive to the economy compared to those from liability linkages. This
supports the fact that the strength of trade linkages increase due to bilateral trade among different
markets. The patterns of network intensity estimate also differed at different points in time. For
example, the network intensity obtained using trade weights increased before the dot-com bubbles,
while network intensity estimated using liability data decreased.

A.3 Comparison of MLE with other approaches

Although we used the dynamic MLE approach to estimate the network intensity parameter, we also
explored a state-space approach. A state-space model describes the dynamics of a latent state and
how the data relate to this state. A general SAR model can be represented in a state-space form with
observation and state evolution respectively as:
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Network intensity estimates using Kalman filter
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Figure 17: Network intensity estimates using Kalman filter

Observation equation:

Y = CoeWys + DXy + vy, v ~ N(0,V)) (44)

State equation:
pr=c1+Api 1+ BXy 1 w1, w1 ~N(O,Wiq) and t=1,2,..,T (45)

where A;, B; and D; are the input variables and C; is the state loading matrix. v; and w; are
measurement and state space process errors respectively, X; is the exogenous variables. The observation
equation can be expressed in matrix form as

Xt 0 0 Xi 0
- + 46
[yt] [Dt Ct] [PtWyt] [UJ (46)
while the state equation can be represented as
Xy 0 0 Wi—1 0
- + 47
I P R o

Figure 17 shows the network intensity estimates obtained using a Kalman filter. These estimates
support our previous findings in Figure 9a, which showed that the network intensity remained higher
during periods of stress. This explains the high exposure of financial markets during difficult times.
Caution is required to correctly monitor markets during periods of stress, which correspond with
increased fragility in the financial system (Sun and Chan-Lau, 2017).

A.4 Dynamics of network intensity parameter
We simulate 4,956 daily data (the estimate choice is based on the number of sample size in our analysis)

using different specifications of the spatial coefficient. These patterns are similar to Brownlees and
Engle (2016) and follow:
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constant: p; = 0.5

e sine: p; == 0.5+ 0.4 % cos(2 * pi x k/200)

fast sine: py = 0.5+ 0.4 * cos(2 * pi * k/20)

e step: p = 0.9 — 0.5 (k > 500)

All these specifications give different patterns of the network intensity parameter. Using these different
specifications will help to investigate whether the initial values of the network intensity parameter
matter in the estimation. Figure 18 shows these forms of network intensity parameters. The results
shows that network intensity parameters have different forms of changes. The constant shows a constant
trend, Sine shows exhibit gradual change, and the fast sine has rapid change while step changes in
different steps.

a) Sine
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Figure 18: Simulated network intensity dynamics
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