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Abstra
t

The spillover e�e
ts of inter
onne
tedness between �nan
ial assets is de
omposed into

both sour
es of sho
ks and whether they amplify or dampen volatility 
onditions in the

target market. We use histori
al de
ompositions to rearrange information from a VAR

whi
h in
ludes sour
es, dire
tion and signs of e�e
ts building on the unsigned fore
ast error

varian
e de
omposition approa
h of Diebold and Y�lmaz (2009). A spillover index based

on histori
al de
ompositions has simple asymptoti
 properties, permitting the derivation of

analyti
al standard errors of the index and its 
omponents. We apply the methodology to a

panel of CDS spreads of sovereigns and �nan
ial institutions for the period 2003-2013 and

identify how these entities 
ontribute to global systemi
 risk.
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1 Introdu
tion

Determining the ultimate sour
e of sho
ks in a 
omplex system of intera
ting entities is a poli
y-

making nirvana. If the sour
e(s) 
an be qui
kly identi�ed with 
ertainty, then poli
y 
an be

e�e
tively aimed at nudging or alleviating desired or non-desired out
omes. The agenda of

understanding the 
omplex intera
tions in the e
onomy is part of the expanding literature on

both e
onomi
 and �nan
ial networks; see for example, A
emoglu et al. (2012), A
emoglu et al.

(2015), Pesaran and Yang (2016), and Diebold and Y�lmaz (2016).

A 
on
ept of inter
onne
tedness, playing a key role in understanding �nan
ial networks, is

elusive and requires more attention. To estimate network spillovers empiri
ally the method of

Diebold and Y�lmaz (2009), hen
eforth DY, for measuring the relative 
ontribution of sho
ks

from alternative sour
es spilling over to a�e
t others is 
ommon in the literature. In this method

inter
onne
tedness of the network is de�ned from a fore
ast error varian
e de
omposition based

on a standard ve
tor auto-regression framework between endogenous variables (see Diebold and

Y�lmaz (2014)). This approa
h has gained popularity, with the advantages of being easy to

implement and interpret, seemingly ni
e fore
asting properties, simple extensions to varying

time horizons and appli
able a
ross many di�erent types of appli
ation; see for example Yilmaz

(2010), Alter and Beyer (2014) and the range of appli
ations presented in Diebold and Y�lmaz

(2015) and Demirer et al. (2015).

This paper proposes a further development whi
h has the additional advantage of signing the 
on-

tribution of the sour
es of volatility into those whi
h augment observed volatility and those whi
h

dampen it. We do this by rearranging the information in the standard ve
tor auto-regression

to take advantage of the so-
alled histori
al de
omposition statisti
s. This de
omposition fol-

lows from the VARMA form of the residuals in the VAR to attribute the estimated value of an

observation to its 
omponent sho
ks. Histori
al de
ompositions have been used previously in

the ma
roe
onomi
 VAR literature, su
h as Dungey and Pagan (2000), Sims (1992) but to our

knowledge have not been applied in the way proposed in this paper. The histori
al de
ompo-

sition approa
h to de
omposing the sour
es of sho
ks and measuring inter
onne
tedness does

not require normalization assumptions nor (ne
essarily) a 
hoi
e of window length to obtain a

time-varying spillover index as in DY method - although this 
an be a

ommodated if desired.

Assuming asymptoti
 normality the histori
al de
omposition elements have additive properties

so that we 
an obtain not only the total histori
al de
omposition spillover index from a parti
-

ular sour
e to a given entity, but also 
ontributions of subsets of histori
al de
ompositions, and


on�den
e bands for both.

We provide further insight into the role of sho
ks that is not evident from unsigned de
om-

positions. The appli
ation in this paper is to a set of 107 
redit default swap (CDS) spreads

for as sele
tion of �nan
ial institutions and sovereigns issuing 5 year debt denominated in US

dollars over the period 2003-2013. The results tra
k the time-varying 
ontribution of subse
tors

of the data to overall spreads. For example, we show that the banking se
tor generally a
ts

to exa
erbate spreads during the period of the global �nan
ial 
risis. Finan
ial institutions are

the major re
ipients of "bad" sho
ks during the GFC and the European debt 
risis. Emerging
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and frontier markets are strongly inter
onne
ted, while the transmissions from these markets

to developed markets are relatively small. Global systemi
ally important banks are the most

in�uential entities using other banks as a 
riti
al link in the 
ombined network. We also show

that higher order moments of the spillovers 
ontain di�ering information about the evolution of

the spillover index over time.

The remainder of the arti
le is organized as follows. Se
tion 2 introdu
es a novel inter
onne
ted-

ness measure whi
h takes into a

ount the sho
ks and whether these sho
ks amplify or dampen

volatility in the target market and provides asymptoti
 properties of this measure. Se
tion 3 out-

lines the dataset 
onsisting of daily CDS spreads for sovereign nations and �nan
ial institutions.

Se
tion 4 dis
usses the empiri
al results. Se
tion 5 
on
ludes.

2 Measuring inter
onne
tedness from a histori
al de
omposition

The methodology proposed here provides a new measure of inter
onne
tedness by modifying

the Diebold and Y�lmaz (2009) approa
h. By fo
using on histori
al de
ompositions rather than

fore
ast error varian
e de
ompositions we provide the signs of 
ontributory sho
ks, adding in-

formation on whether transmissions augment or dampen the out
omes in the target market.

2.1 Network of sovereigns and �nan
ial institutions

Consider N entities indexed by i, N1 of these entities are �nan
ial institutions whi
h lend for

proje
ts with un
ertain returns as in Diamond (1982), and N2 are sovereign borrowers, where

N=N1+N2. The �nan
ial institutions 
annot fund their lending a
tivities from their own balan
e

sheets and establish inter-institutional �ows with ea
h other. Following A
emoglu et al. (2015)

ea
h �nan
ial institution has the opportunity to invest in the real e
onomy with an un
ertain

return r1,it in period t and/or invest in sovereign bonds with r2,it. In
orporating the extension

proposed by Dungey et al. (2017a), a sovereign bond return, r2,it, is also risky and the values of

returns r1,it and r2,it are in�uen
ed by an external sho
k, uit, whi
h is a random variable drawn

from a given distribution with mean zero and varian
e one.

1

The joint probability distribution

p(u1t, ..., uNt) for N entities is assumed to be known. The liabilities between entities 
reates a

network, where the edges are determined by repayments required between pairs of entities.

De�nition 1 Network G is the pair (N ,E), where N is a set of nodes representing entities

(banks or sovereigns), and a set of edges E represents 
ontra
ts between two entities from lender

to borrower.

De�nition 2 A walk Pj1,jk is a sequen
e of entities (j1, ..., jk) su
h that the pairs (j1, j2),

(j2, j3),...,(jk−1, jk) ∈ E are edges of the network. The length of the walk Pj1,jk is given by

1

Sho
k uit 
ontains un
ertainty about sovereigns and �nan
ial institutions and 
an be seen as an aggregated

sho
k. However, it is trivial to separately analyze disaggregated sho
ks. A
emoglu et al. (2015) and Glasserman

and Young (2015) imply that sho
ks have a negative impa
t on returns. In this paper, the sho
k uit 
an have

either a positive and negative, or indeed insigni�
ant, in�uen
e on CDS spreads.
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the number of edges k 
ontained in it. The minimal length of the walk Pj1,jk 
orresponds to the

distan
e Dj1,jk .

A distan
e Dij , introdu
ed in De�nition 2, is a measure between two nodes i and j that 
an be

assessed for ea
h entity of a network. The network is 
hara
terized by an N×N adja
en
y matrix

A that 
ontains all information about the network. The adja
en
y matrix A is a key ingredient

de�ning 
onne
tedness of the network. To illustrate this idea suppose that the distan
e Dij is

asso
iated with the length of the 
ontinuous fun
tion y = f(x) de�ned for any i and j. Then

the distan
e Dij 
an be de�ned by l subintervals ea
h of width ∆x. In this 
ase the distan
e

Dij 
an be approximated by a series of intervals Dk, k = 1, ..., l as

L ≈
l∑

k=1

|Dk−1 Dk|, (1)

whi
h is for large l equivalent to

L = lim
l→∞

l∑

k=1

|Dk−1 Dk|. (2)

Now applying the mean value theorem, the length L 
an be written as

L =

ˆ j

i

√
1 +

(
dy

dx

)2

dx. (3)

Equation (3) implies that the distan
e Dij , de�ning the adja
en
y matrix A, is fully 
hara
terized

by the derivative

(
dy
dx

)2
that should be 
al
ulated to obtain the 
onne
tedness measure of the

network. This derivative 
an be estimated via fore
ast error varian
e de
ompositions, whi
h is


onsistent with the DY approa
h

2

.

We distinguish two types of 
onne
tions from our histori
al de
omposition approa
h: amplify-

ing or dampening. A positive weight represents an amplifying 
onne
tion whereas a negative

weight represents an dampening 
onne
tion.

3

Taking into a

ount that CDS spread pri
es re-

�e
t a per
eived risk of default, favorable news de
reases the value of the CDS spread, while

unfavorable news in
reases the value; thus positive weights Aij identify entities that in
rease

systemi
 probability of default, while entities asso
iated with negative values Aij redu
e the risk

of default in the network. This idea 
an be formally linked to equation (3) implying that the

weights assigned to edges of the network 
an take both positive and negative values. In this

instan
e a generalized length metri
 GL is de�ned as

GL =

ˆ j

i
sgn

(
dy

dx

)√
1 +

(
dy

dx

)2

dx, (4)

in whi
h sgn is a signum fun
tion.

2

An alternative approa
h, as in Billio et al. (2012) is to de�ne an adja
en
y matrix A from Granger 
ausality

tests, in whi
h 
ase Aij = 1 if i and j are 
onne
ted, or Aij = 0 otherwise ∀i, j.
3

Jorion and Zhang (2007) emphasize the importan
e of positive and negative transfer e�e
t in the CDS

market - they assign positive 
orrelations a
ross CDS spreads as 
ontagion e�e
ts, and negative 
orrelations as


ompetition e�e
ts.
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De�nition 3 In a dire
ted weighted network, ea
h node has two degrees. The out-degree δouti =∑N
j=1Aji is the number of outgoing edges emanating from a node i, and the in-degree δini =∑N
j=1Aij is the number of in
oming edges to a node. The total degree of the node is de�ned as

δtot = δin + δout −Aii.

On
e an adja
en
y matrix, A, is estimated, its degree distribution is the probability distribution

of degrees a
ross node, and the overall network 
onne
tedness is de�ned as the mean of the degree

distribution (following Diebold and Y�lmaz (2014)).

4

This 
onne
tedness measure fa
ilitates

understanding of the dampening and ampli�
ation me
hanisms of systemi
 risk in more detail.

For example, ‘robust-but-fragile' networks (see Haldane (2009); A
emoglu et al. (2015)) may

emerge in the fa
e of small unexpe
ted sho
ks to the systemati
 fa
tor that 
auses losses for

many entities. The fragility of a network is 
hara
terized by the total size of 
umulated small

negative sho
ks whi
h in
rease network 
onne
tedness, and the systemi
 default probability,

whi
h depends only on the absolute value of sho
ks. We permit elements of the adja
en
y

matrix, Aij , to be negative and 
onsequently allow for dampening: a small negative sho
k

strongly a�e
ting the entity with high systemi
 risk exposure 
an be o�set by another positive

sho
k.

We use the approa
h to assess the time-variability of network 
onne
tedness, whi
h requires

assessing higher moments of the degree distribution. Oh and Patton (2016) highlight the sig-

ni�
an
e of modeling 
ovariation and 
oskewness in CDS spreads. In this paper the �rst four


entral moments of the degree distribution are dire
tly evaluated from an adja
en
y matrix A.

We 
onstru
t the mean of the degree distribution, estimated ignoring signs of spillovers, whi
h


orresponds to the DY aggregate spillover index and 
onveys similar information. The varian
e,

skewness and kurtosis of signed spillovers may un
over shifts in di�erent phases of a 
risis. Su
h

timing di�eren
es open an avenue for the 
onstru
tion of early warning measures of 
ontagion

and the propagation of systemi
 risk.

2.2 A weighted dire
ted network of histori
al de
ompositions

We propose to measure 
onne
tedness elements, Aij , from shares of histori
al de
ompositions

for various entities due to external sho
ks. The histori
al de
omposition explains the fra
tion of

variable i's variation at time t due to sho
ks in variable j. Following Diebold and Y�lmaz (2014),

system wide 
onne
tedness at time t is de�ned as a sum of all pairwise 
onne
tedness measures

ex
luding self-loops in a network.

To take into 
onsideration the possibility of 
ommon sto
hasti
 trend(s) between the I(1) CDS

series, a Ve
tor Error Corre
tion Model (VECM) is used:

∆Yt = αβ
′

Yt−1 +
k−1∑

i=1

Γi∆Yt−i + εt, (5)

4

Alternative 
onne
tedness measures su
h as network diameter Dmax = maxi,jDij 
an be also used in these

settings.
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where Yt = [Y1,t,..., Yn,t]
′
, ∆Yt−i = Yt−i − Yt−i−1 and α, β,Γ are the parameters of the model.

5

The rank of the matrix Π = αβ
′
is estimated by the Johansen test and imposing the triangular

restri
tions of Phillips (1991). The parameters of model (5) are obtained by applying OLS.

A VECM in (5) 
an be represented as a VAR(k)

Yt =

k∑

i=1

ΦiYt−i + εt, (6)

with 
ross-equation restri
tions Φ1 = αβ
′
+ Γ1 + In, and Φi = Γi − Γi−1, i = 2, 3, ..., k.

The redu
ed form VAR(k) from equation (6) 
an be rewritten in terms of disturban
es and

initial 
onditions by applying the moving average representation as

Yt = initial values+

∞∑

i=0

Siεt−i, (7)

where Sj = Φ1Φj−1 +Φ2Sj−2 + ... for j = 1, 2, ... with S0 = IN and Sj = 0 for j < 0 and Sj are


ausal and square-summable. Any individual element Yj,t 
an be represented by 
ontributions

of all variables as

Yj,t = initial values+
t−1∑

i=0

S
(j)
i ε

(j)
t−i, (8)

whi
h represents the histori
al de
omposition of variable j at time t. Ignoring initial 
onditions6,

equation (8) 
an be rewritten in a matrix form as

HDt+j =
∞∑

i=0

IRFi ◦Υt+j−i =

j−1∑

i=0

IRFi ◦Υt+j−i +
∞∑

i=j

IRFi ◦Υt+j−i, (9)

where ◦ is a Hadamard produ
t, Υt+j−i = [εt+j−i, ..., εt+j−i] is the n×n matrix 
ontaining resid-

uals, IRFi are non-orthogonalized one unit impulse response matri
es and HDt is a histori
al

de
omposition matrix at time t. While other de�nitions of impulse responses in
luding orthog-

onalized or generalized IRFs of Koop et al. (1996) and Pesaran and Shin (1998) are possible,

they do not permit individual 
omponents of HDt to add up to Yt,∀t. This additive property
allows interpretation of the elements of histori
al de
ompositions HDt as shares of CDS spreads,

measured in basis points, 
ontributing to the total systemi
 default probability.

Another important impli
ation of equation (9) is that the histori
al de
omposition HDt is a

fun
tion of impulse responses weighted by residuals εt, 
onsistent with the view that 
onne
t-

edness is a weighted measure of sho
ks spreading through the network. Moreover, the histori
al

de
omposition HDt 
ontains two di�erent terms. The far right term represents the expe
tation

of Yt+j given information available at time t, whi
h is the base proje
tion of Y . The �rst term

on the right-hand side shows the di�eren
e between the a
tual series and the base proje
tion due

to innovations subsequent to period t. In parti
ular, it shows that the gap between an a
tual

series and its base proje
tion is the sum of the weighted 
ontributions of the innovations to the

5

A 
onstant term is suppressed for simpli
ity.

6

Initial values will be ignored in the forth
oming empiri
al se
tions following Hualde and Robinson (2010),

with the 
onsequen
e that a �rst part of the data do not provide empiri
ally analyti
al de
ompositions.

6



individual series. This reveals the dynami
 properties of the network as a system that evolves

over time by deviating from its long run state. Elements of the histori
al de
omposition matrix

HDt,ij lay a foundation of 
onne
tedness measures from j to i denoted by cti←j . It is 
onvenient

to analyze a 
onne
tedness matrix Ct = [HDt,ij ] where o�-diagonal entries measures pairwise

dire
ted 
onne
tedness. In general cti←j 6= ctj←i as in- and out-degrees are not restri
ted to be

identi
al. This allows us to de�ne net pairwise dire
tional 
onne
tedness as ctij = ctj←i − cti←j ,

whi
h is not restri
ted to be positive. Taking into a

ount that the sum of o�-diagonal elements

of the j-th row of Ct
gives the signed share of the histori
al de
omposition 
oming from sho
ks

related to other variables, total dire
tional 
onne
tedness from others to i is de�ned as

cti←others =

n∑

j=1,j 6=i

HDt,ij , (10)

and total dire
tional 
onne
tedness from j to others as

ctothers←j =

n∑

i=1,j 6=i

HDt,ij . (11)

Furthermore, net total dire
tional 
onne
tedness 
an be 
al
ulated for n variables as cti =

ctothers←i − cti←others, ∀t. To summarize pairwise dire
tional 
onne
tedness for the sample T ,

we de�ne

cij =
1

T

T∑

t=1

HDt,ij ∀i 6= j, (12)

whi
h 
an be interpreted as a stati
 measure of 
onne
tedness

7

between entities i and j.

The total of the o�-diagonal entries in Ct
de�nes the aggregate spillover index measuring total


ompleteness at time t as

HDSt =
1

n
(e′Cte− tra
e(Ct)). (13)

where e is the sele
tion ve
tor of ones.

2.3 Asymptoti
 properties of a signed spillover index

The main obje
tive now is to provide expressions for the asymptoti
 standard errors of the signed

spillover index. For this purpose suppose γ is a ve
tor of parameters and γ̂ is an estimator su
h

that √
T (γ̂ − γ)

d−→ N(0,Σγ), (14)

where

d−→ is assigned to 
onvergen
e in distribution and N(0,Σγ) denotes the multivariate normal

distribution. Let F (γ) = (F (γ1), ..., F (γm))
′
be a di�erentiable fun
tion with values in m-

dimensional Eu
lidean spa
e and ∂Fi/∂γ
′
= (∂Fi/∂γj) is nonzero at γ for i = 1, ...,m. Then,

following Lütkepohl (1990),

√
T [F (γ̂)− F (γ)]

d−→ N(0,
∂F

∂γ′ Σγ
∂F

′

∂γ
). (15)

7

Stati
 
onne
tedness 
an be also de�ned as an expe
tation of ctij over the whole sample.
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This general result provides the form of an asymptoti
 
ovarian
e matrix for the signed spillover

index derived from the partial derivatives of F and the varian
e 
ovarian
e matrix Σγ .

Proposition 1 Suppose

√
T

[
η̂ − η
σ̂ − σ

]
d−→ N

(
0,

[
Ση 0
0 Σσ

])
.

Then √
T ve
(ĤDi −HDi)

d−→ N(0,ΨiΣηΨ
′

i), i = 1, 2, ...,

where

Ψi = ∂ve
(HDi)/∂η
′

=
i−1∑

m=0

Ri−1−mGm,

in whi
h Gi =
∑i−1

m=0 J(Φ
′
)i−1−m ⊗ Sm, η = ve
(Φ1, ...,Φk), σ = ve
h(Σε), J = [In 0...0], Ri is

the diagonal n2
-variate matrix 
ontaining residuals ve
(εi, ..., εi) on the main diagonal and

Φ =




Φ1 Φ2 . . . Φk−1 Φk

In 0 . . . 0 0
0 In 0 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . In 0



.

Here ve
 denotes the 
olumn sta
king operator and ve
h is the 
orresponding operator that sta
ks

only the elements on and below the diagonal and ⊗ is the Krone
ker produ
t.

Proof: Appendix

Proposition 1 shows that an asymptoti
 varian
e-
ovarian
e matrix of the histori
al de
omposi-

tion HDi is 
hara
terized by residuals, parameters of the model and one unit impulse responses.

Matrix Ση 
an be estimated as Ση = (ZZ
′
/T )−1 ⊗Σε, Zt = [Yt, ..., Yt−k+1]

′
, Z = (Z0, ..., ZT−1)

for VAR models and as

Σco
η = T

[
Y−1Y

′

−1 Y−1∆X
′

∆XY
′

−1 ∆X∆X
′

]−1
⊗ Σco

ε

for VECMs. In this 
ase Y−1 = [Y0, ..., YT−1] and ∆Xt−1 = [∆Yt−1, ...,∆Yt−k+1] and Σco
ε is

a varian
e-
ovarian
e matrix from VECM (see e.g. Lütkepohl (2005)). In the forth
oming

empiri
al study CDS spreads are I(1) series and for this reason the VAR with 
ross equation

restri
tions, de�ned in equation (6), is 
hosen as a ben
hmark model. The asymptoti
 varian
es

from Proposition 1 do not go to zero, but 
onverge to the respe
tive long run values with

the sample size. An impli
it 
onvenient assumption of equation (6) is that Yt has zero mean.

The results of Proposition 1 remain valid if a nonzero mean term, a polynomial or a seasonal


omponent is removed prior to estimating the VAR parameters. Equivalently, polynomial or

seasonal trends 
an be in
luded in the model (6) and estimated jointly with other 
oe�
ients

without a�e
ting Proposition 1. This follows from the fa
t that the asymptoti
 varian
es in

Proposition 1 only depend on parameters Φi and a varian
e-
ovarian
e matrix Ση.

8



While Proposition 1 has been stated for individual histori
al de
omposition 
oe�
ient matri
es,

one 
an extend these results for the 
ase where the elements of ĤDi and ĤDj , i 6= j, are not

independent asymptoti
ally. If elements of two or more HDi matri
es are in
luded in the null

hypothesis the joint distribution of all the matri
es 
an be estimated using Proposition 1. In

parti
ular, the 
ovarian
e matrix of the joint asymptoti
 distribution of ve
(ĤDi, ĤDj) is

∂ve
(HDi,HDj)

∂η
′ Ση

∂ve
(HDi,HDj)
′

∂η
,

in whi
h

∂ve
(HDi,HDj)

∂η
′ =

[
∂ve
(HDi)/∂η

′

∂ve
(HDj)/∂η
′

]
.

Now the results of Proposition 1 
an be used to obtain the asymptoti
 distribution of the

inter
onne
tedness index based on histori
al de
ompositions.

Proposition 2 Suppose Qi = diag(ΨiΣηΨ
′

i/T ) is a ve
tor of parameter varian
es and HDSi
is

a spillover index de�ned from a histori
al de
omposition in (13). Then

√
T (ĤDSi −HDSi)

d−→ N(0, (e′Wie− tra
e(Wi))/n), i = 1, 2, ..., (16)

where Wi = unve
(Qi) and operator unve
 is the inverse of the ve
 operator su
h that Wi =

unve
(ve
(Wi)).

Proof: Appendix

Proposition 2 permits the estimation of the standard error of HDSi
as a square root of varian
e

de�ned in (16). An important assumption for Proposition 2 is that a histori
al de
omposition is

a unique transformation of data. Moreover, non-diagonal elements of a histori
al de
omposition

matrix HDj are orthogonal by 
onstru
tion, whi
h allows us to obtain the 
on�den
e bounds for

the histori
al de
omposition spillover index by taking average a
ross the non-diagonal elements

of Wi. A similar approa
h 
an not be applied to the DY spillover index as appropriate nor-

malization restri
tions that ensure fore
ast error varian
e 
omponents sum up to 1 are required.

These restri
tions make the derivation of the asymptoti
 distributions of varian
e de
omposition


omponents di�
ult. Thus, the asymptoti
 distribution of the DY index 
an not be obtained in

the usual way for setting up 
on�den
e intervals.

3 Data

Modeling the inter
onne
tions between �nan
ial institutions is hampered by data availability.

On the one hand, many of the theoreti
al frameworks are expressed in terms of inter-entity �ows.

However, these data are ex
eedingly di�
ult to obtain, parti
ularly outside the 
ommer
ially

available data sets; a good example is the UK interbank network in Giratis et al. (2016), who use

data available to the Bank of England. On the other hand, there is a strand of literature that

takes advantage of market-based data as proxies to develop an understanding of the inter
on-

ne
tedness of networks, as in, for example, Billio et al. (2012) and Merton et al. (2013). Re
ent

9



work by van de Leur et al. (2017) �nds that inter
onne
tedness networks based on market data

produ
e valuable information that is not o�ered by alternative approa
hes. The work in this

paper draws on the market-based data tradition in this literature.

Table 1: Sovereigns in
luded in CDS sample data. D-Developed, E-

Emerging, F-Frontier markets a

ording to the MSCI 
lassi�
ation.

Europe Asia Latin Ameri
a

Bulgaria (F) Australia (D) Argentina (F)

Cze
h Republi
 (E) China (E) Brazil (E)

Denmark (D) Indonesia (E) Chile (E)

Norway (D) Japan (D) Colombia (E)

Poland (E) Malaysia (E) Mexi
o (E)

Sweden (D) Philippines (E) Panama (F)

Russia (E) South Korea (E) Peru (E)

Turkey (E) Thailand (E) Venezuela (F)

Ukraine (F) Vietnam (F)

Afri
a Euro Zone North Ameri
a

Israel (D) Belgium (D) USA (D)

Moro

o (F) Finland (D)

South Afri
a (E) Fran
e (D)

Qatar (F) Germany (D)

Ireland (D)

Italy (D)

Netherlands (D)

Portugal (D)

Spain (D)

The dataset 
onsists of daily �ve-year CDS spreads for 40 sovereign nations and 67 �nan
ial

institutions as listed in Tables 1 and 2. Five-year CDS 
ontra
ts are the most 
ommonly issued

and traded asset in this 
lass and are the most liquid (Du
a and Peltonen (2013), Pan and

Singleton (2008), Kalbaskaa and Gatkowskib (2012)). The data are sour
ed from Markit and

run for the period January 1, 2003 to November 21, 2013.

8

The sample has 107 nodes and

potentially 11342 (= 67!/65!) links.

The sample 
ontains three di�erent phases; Phase 1 represents the non-
risis period from January

1, 2003, to September 14, 2008. This is typi
al of dating 
onventions used in literature to separate

the pre-
risis and 
risis periods; see the review of dates extant in the literature in Dungey et al.

(2015). Phase 2 represents the period from September 15, 2008, to Mar
h 31, 2010, 
onsistent

with the global �nan
ial 
risis (GFC) and period following. The end of Mar
h 2010 represents

the period prior to whi
h the Greek debt 
risis be
ame 
riti
al in April 2010. Phase 3, from

April 1, 2010, to November 21, 2013, represents the period of the Greek and European sovereign

debt 
rises. Summary statisti
s, reported in Table 3, show an in
rease in spread means for

8

Our data �nished in November 2013 for the initial drafts of this paper. On updating the dataset we found

that there were signi�
ant 
hanges in later data due to the Dodd-Frank A
t and the implementation of the

so-
alled Volker rule whi
h a�e
ted new-issuan
e of US dollar denominated CDS for many of the institutions in

our sample.
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most groups of institutions and sovereigns, re�e
ting the per
eived in
rease in risk during this

turbulent period in international debt markets. Skewness in Phases 2 and 3 are both lower than

in phase 1, ex
ept Asia and Europe (phase 2), whi
h implies less asymmetry. Moreover, kurtosis

is mu
h higher before the GFC for most of the entities. Some of these results might re�e
t

a
tions taken by the authorities that were more aggressive in the US than in Europe (see Borio

and Zabai (2016)).

CDS spreads were found to be non-stationary, I(1), with a maximum of one unit root a

ording

to KPSS and ADF tests.

Table 2: Finan
ial institutions grouped by broad type. SIB - Global Systemi
ally Important Banks.

Banks Finan
ials Insuran
e

Aust & New Zld Bkg ACOM CO LTD ACE Ltd

Amern Express Co John Deere Cap Corp Aegon N.V.

Bar
lays Bk pl
 (SIB) MBIA In
. Ameri
an Intl Gp In


BNP Paribas (SIB) Natl Rural Utils Coop Allstate Corp

Cap One Finl Corp Aiful Corp Aon Corp

Citigroup In
 (SIB) ORIX Corp Assi
urazioni Generali

Ctrywde Home Lns Gen Ele
 Cap Corp CHUBB CORP

Kookmin Bk Goldman Sa
hs Gp In
 CNA Finl Corp

Commerzbank AG (SIB) Morgan Stanley Legal & Gen Gp PLC

Deuts
he Bk AG (SIB) SEARS ROEBUCK MBIA Ins Corp

Hana Bank Toyota Mtr Cr Corp MetLife In


HSBC Bk pl
 (SIB) Swire Pa
 Ltd Muni
h Re

ING Bk N V (SIB) Old Mut pl


Korea Dev Bk Safe
o Corp

Merrill Lyn
h & Co Mitsui Sumitomo Ins

Mizuho Corporate Bk (SIB) Sompo Japan Ins In


Ma
quarie Bk Ltd HARTFORD FIN INC

Natl Aust Bk Ltd Loews Corp

Oversea Chinese Bkg

Rabobank Nederland

Royal Bk of S
otland (SIB)

Resona Bk Ltd

So
iete Generale (SIB)

Std Chartered Bk (SIB)

Sumitomo Mitsui Bkg (SIB)

UBS AG (SIB)

Wells Fargo & Co (SIB)

Westpa
 Bkg Corp

Investment Real Estate

Daiwa Se
s Gp EOP Oper Ltd Pship

Bombardier Hammerson PLC

Nomura Se
s Hongkong Ld Co

Mitsubishi Estate Co

Simon Ppty Gp L P

Simon Ppty Gp In
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Table 3: Summary statisti
s are reported for all sovereign CDS spread data used in this paper. The

sele
ted phases are respe
tively 
onsistent with the pre-GFC, the GFC and the European debt 
risis.

Obs. Mean Std dev Skewness Kurtosis

Phase 1 01/01/2003 - 14/09/2008

Banks 1488 0.4253 0.6634 6.2252 73.1315

Finan
ials 1488 0.7426 1.4386 9.2843 131.738

Insuran
e 1488 0.5413 1.1174 10.551 146.240

Investment 1488 1.0126 1.6023 3.5076 19.9933

Real Estate 1488 0.5737 0.5135 2.5807 11.3350

Latin Ameri
a 1488 3.3274 5.0302 4.3823 24.8403

Asia 1488 1.0935 1.3470 1.4863 4.1704

Euro Zone 1488 0.0698 0.0759 2.8669 11.6775

Europe 1488 0.9062 1.5211 2.8717 13.9841

Afri
a 1488 0.8038 0.7205 2.5980 11.9358

North Ameri
a 1488 0.0262 0.0311 2.9249 11.0294

Phase 2 15/09/2008 - 31/03/2010

Banks 403 1.6490 1.2574 2.1977 8.4938

Finan
ials 403 12.719 32.619 6.6554 58.383

Insuran
e 403 3.6890 5.1029 2.4613 9.2081

Investment 403 1.9650 1.1711 1.0721 2.8133

Real Estate 403 2.6080 2.4492 1.4525 4.1223

Latin Ameri
a 403 6.3541 8.8135 2.2891 7.7371

Asia 403 2.0159 1.5864 1.7696 7.0876

Euro Zone 403 0.8250 0.5597 1.5966 6.8034

Europe 403 3.4588 6.4693 3.8884 20.298

Afri
a 403 1.9245 0.9750 1.3394 4.5551

North Ameri
a 404 0.4169 0.1834 1.1935 3.9374

Phase 3 01/04/2010 - 21/10/2013

Banks 951 1.3971 0.6334 1.6584 6.8687

Finan
ials 951 6.3933 10.211 2.0464 5.9045

Insuran
e 951 1.8314 2.1538 3.7857 20.033

Investment 951 1.4738 1.0772 0.5886 2.2274

Real Estate 951 1.1053 0.4586 0.6091 2.8172

Latin Ameri
a 951 3.7769 5.6733 3.1106 14.840

Asia 951 1.3284 0.7275 1.6687 6.1909

Euro Zone 951 2.5872 2.5487 1.9267 7.1373

Europe 951 1.6592 1.9220 2.2460 7.9880

Afri
a 951 1.4990 0.5059 0.5376 2.5000

North Ameri
a 951 0.3067 0.0801 -0.2616 2.3762
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4 Empiri
al results

4.1 Stati
 
onne
tedness

Figure 1 shows the average histori
al de
omposition of the sho
ks 
ontributing to observed CDS

spreads for ea
h of the sovereign nations in the sample. That is, the verti
al axis indi
ates the

re
ipient issuing 
ountry, and the horizontal axis gives the 
ontributing sho
ks measured as the

sample average of those sho
ks a
ross the histori
al de
omposition. Lighter 
olours indi
ate a

positive transmission - that is the sho
k in
reases the CDS spread in the re
ipient market. Darker


olours indi
ate a negative transmission - the sho
k de
reases the CDS spread in the re
ipient

market. The table is primarily shaded approximately at average of zero re
ipient/transmission

sho
ks - on average the e�e
ts are largely 
an
elled out over the sample.
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Figure 1: Heat map for sovereigns. E�e
ts from 
olumns to rows represent averages of histori
al

de
ompositions over the whole sample. Dark 
olors show negative 
ontributions to CDS spreads,

bright 
olors - positive 
ontributions.
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It is 
riti
al to di�erentiate negative in-sho
ks from positive out-sho
ks in the �gure - a
ross the

rows gives the sour
es and signs of in-sho
ks to the target listed in a parti
ular row; down the


olumns gives the e�e
t of out-sho
ks sour
ed from the 
ountry listed for that parti
ular 
olumn

to ea
h of the potential re
ipients listed down the 
olumn.

Reading a
ross rows the there are a few 
ountries whi
h show some variety in their sour
es of

sho
ks. Consider, the row labelled Argentina whi
h exhibits both amplifying and dampening

sho
ks sour
ed from its partners. Sho
ks from Peru and Columbia are strongly negative, de-


reasing the CDS spreads for Argentina. However, sho
ks from Venezuela, Moro

o and Turkey

on average in
rease the CDS premium for Argentina. In a network framework ea
h of these

dire
tionally represents an in-sho
ks from the 
ontributing markets but they are signed as to

whether they amplify or dampen the e�e
ts of those sho
ks on Argentina. Other interesting

examples of markets whi
h display skew in their sour
es of sho
ks (a
ross the rows) are Ireland,

Portugal, Spain, Italy, Ukraine and Venezuela, that is they in
lude members of the so-
alled

GIIPS group, experien
ed 
ivil unrest or were lo
ated in South Ameri
a.

Figure 2 shows the same heat map for the �nan
ial institutions network. Reading a
ross rows it

is apparent that AIF, AIG, MBI, MBC and to some extent SHC re
eive a diverse set of sho
ks.

9

Looking at the 
olumns for the sour
es of sho
ks, we 
an see that AIG, MBI and MBC are not

distin
tly di�erent to other 
ompanies. These institutions are subje
t to diverse sho
ks, but do

not emit sho
ks whi
h strongly impa
t in one way or the other.

Thus insurers are performing the role of absorbing and smoothing sho
ks 
oming from other

institutions and emitting sho
ks with little signed e�e
t on other �nan
ial institutions. From this

point of view these insurers are a
ting to stabilise the �nan
ial system, rather than potentially

disrupt it. This result supports arguments that the role of insurers in they system is distin
t to

that of 
redit 
reating institutions; see Biggs and Ri
hardson (2014).

There are also two distin
tly di�erent verti
al lines in Figure 2; from BOM (Bombardier Capital

In
orporated) and SWI, a Hong Kong based 
onglomerate. Both of these �rms are heavily in-

vested in the transport and asset �nan
ing se
tor. The result that transport �nan
e is important

in spreading sho
ks is interestingly paralleled by the re
ent �nding of Pesaran and Yang (2016)

that the transport and wharehousing se
tor of the US e
onomy is routinely the most important

se
tor of the US e
onomi
 network.

To illustrate how the distribution of sho
k e�e
ts 
hanges over the sample period, Figure 3

presents the histograms of the sizes of the sho
ks in ea
h of the three phases of the sample:

pre-GFC, GFC and European debt 
risis. The top panel shows the distribution of the sho
ks in

the �nan
ial 
ompanies 
omponent of the network and the lower panel the distribution for the

sovereigns. In the pre-
risis period, the mode of 0 is pronoun
ed and tails are relatively small

for both panels. During the GFC and European debt 
rises we see that the distribution moves

to the right - that is there are more positive (amplifying) sho
ks present than pre-
risis. The

distribution is more leptokurti
, implying a greater proportion of larger signed sho
ks. These

9

MBI and MBC are the insuran
e and �nan
ial arms of the same 
ompany (MBIA), and represent the largest

bond insurer in the market.The Aiful Corporation (AIF) is a Japanese �nan
ial servi
es provider.
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hanging higher-order moments of our sho
ks are 
onsistent with the �ndings in Fry et al. (2010)

that 
ontagion and 
risis are evident in higher-order moments of returns and volatilities.
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Figure 2: Heat map for �nan
ial 
ompanies. E�e
ts from 
olumns to rows represent averages

of histori
al de
ompositions over the whole sample. Dark 
olors show negative 
ontributions to

CDS spreads, bright 
olors - positive 
ontributions.
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Figure 3: Densities for 3 phases (pre-GFC, GFC and European debt 
risis). Dates of these

phases are presented in Table 3.

4.2 Dynami
 
onne
tedness

As well as the average e�e
ts dis
ussed in the previous se
tion we also 
ompile spillover indi
es

based on the DY methodology (with 10 day ahead fore
ast period) and using the proposed

histori
al de
omposition method. These are shown in Figure 4. The nature of the 
onstru
tion of

these indi
es means that the s
ales are quite di�erent - the HD method has a dire
t interpretation

of the average size of the spillovers to CDS spreads from all sour
es in the system, and it 
an

be seen that this is typi
ally quite small, and often insigni�
ant in the early part of the analysis

via the 68% error 
on�den
e bands. The DY index has larger (always positive) values due

to normalization between 0 and 1 dis
ussed in the previous se
tions. The DY spillover index

in
reases dramati
ally in mid-2007, probably asso
iated with the events of Bear-Stearns and

hedge funds in the middle of that year. The HD model pi
ks up at that point, but pi
ks up
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mu
h more substantially at a date 
loser to the stress asso
iated with Lehman Bros 
ollapse and

the subsequent problems in the remainder of the system. Interestingly, the DY spillover index

does not fall dramati
ally with the introdu
tion of TARP or the NBER dating of the ending

of the US re
ession as often used elsewhere in the literature (see Dungey et al. (2005) for a

review) but remains elevated. The DH index, however shows some redu
tion in the e�e
t of the

spillovers on CDS spreads post the GFC, but a resurgen
e of positive e�e
ts around the period

of un
ertainty surrounding the future of Gree
e in late 2009 - early 2010 and the re-emergen
e

of un
ertainty again around European debt markets in 2011 and 2012.

Figure 5 presents the HDS indi
es for the �nan
ial institutions and the sovereigns separately

extra
ted from the 
ombined network. It is immediately apparent that the spillover e�e
ts

from the two sour
es have dramati
ally di�erent time paths. Prior to the GFC from mid-2008,

�nan
ial institutions were in fa
t behaving in a way whi
h redu
ed the average CDS spread. Only

when the GFC be
ame well-established did the 
ontribution of �nan
ial institutions peak, and

even then, the greatest 
ontributions were observed in 2009, rather than around the time of the


ollapse of Lehman Bros. The error bands shown in the diagram widen substantially around early

2010 when the Greek 
risis, subsequent IMF programs and European debt problems unfolded.

During the period from 2009 the 
ontribution to spillovers in the CDS markets from sovereigns

has been unerringly positive, and on average more than 4 times greater than during the GFC.

This pattern di�ers from Bostan
i and Yilmaz (2015) who found that 
onne
tedness of the global

sovereign market by the end of 2013 returned ba
k to the same level as it was before the GFC.
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Figure 4: DY and HDS indi
es estimated from equation (13) for 107 spreads. Shaded areas

represent 68% 
on�den
e intervals.
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Figure 5: HDS indi
es for �nan
ial institutions and Sovereigns. Shaded areas represent 68%


on�den
e intervals.

4.3 Contributions by sour
e type

As the 
ontributions of ea
h of the sour
es of sho
k are additive in our approa
h we 
an 
ompile

sub-series whi
h illustrate the 
ontribution of parti
ular groupings on the spread. For ea
h of

the types of �nan
ial institutions Figure 6 shows their HDS spillover indi
es as both re
ipients

of sho
ks (left hand panels) and as spreaders of sho
ks (right hand panels). It is useful to point

out that the s
ales for ea
h sub-�gure di�er, sometimes substantially.

10

The main result from Figure 6 is that the largest spreaders of sho
ks is the banks (top right

hand panel). Other spreaders have a substantially smaller impa
t on the rest of the system. As

re
ipients, however, the banks do not re
eive a great deal of impa
t from others (top left hand

panel). With the ex
eption of the �nan
ial institutions 
ategory all other types spread sho
ks

more than they re
eive them. When re
eiving sho
ks, ea
h of the left hand panels of Figure 6

shows that the sho
ks re
eived ampli�ed volatility (that is were positive e�e
ts) during the 2008-

2009 
risis, although the 
on�den
e bands do not indi
ate signi�
an
e in all 
ases. However, in

the spreading of sho
ks, during the 
risis of 2008-2009 and through to 2010 it is very apparent that

ea
h 
ategory of institution had a di�erent role. Banks were 
ontributing to dampening sho
ks in

the system prior to the GFC, but rapidly be
ame ampli�ers and have largely remained that way

sin
e. However, insurers had a dampening e�e
t during 2009-2011, the period prior to the largest

10

Using the same s
ales is analyti
ally intra
table.
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disruptions in European markets. That is, the insurers were at this time re
eiving amplifying

sho
ks and distributing dampening ones. The other parti
ularly interesting spreader 
ategory

is real industry (bottom right panel) where industry sho
ks were dampening sho
ks prior to the

GFC. During the build up to the GFC and its initial stages industry sho
ks were amplifying,

but this was reversed during late 2008, 
onsistent with the breaking of linkages between the real

e
onomy and �nan
ial se
tor noted in Dungey et al. (2017b) due to the introdu
tion of TARP

and res
ue of AIG.

Figure 6: Inter
onne
tedness between di�erent groups of �nan
ial institutions with 95% 
on�-

den
e intervals estimated from equation (16).
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Figure 7: Inter
onne
tedness between di�erent groups of �nan
ial institutions with 95% 
on�-

den
e intervals estimated from equation (16). Eurozone is not presented as the respe
tive HDS

index is not informative and 
lose to zero.

Figure 7 represents the geographi
al in�uen
es of re
eiving and spreading of sho
ks. Ea
h

panel represents the average e�e
t of a sho
k from the spreading region to the re
ipient region

(this s
ales the sho
ks for 
omparison, given that there are, for example, many more issuers

in Europe than North Ameri
a for example). Europe is the re
ipient of the largest impa
t of

sho
ks, although these were experien
ed during the problems of the period of late 2008 during

the post-Lehman Bros turmoil, and during the remainder of the sample the e�e
ts from the rest

of the world markets were quite subdued

11

. The largest analyti
al di�eren
e is that prior to

2009 the majority of the re
eived sho
ks dampened European CDS spreads, whilst after 2009

11

Note that 80% of �nan
ing 
omes from banks in Europe and only 20% in the US, see Gamba
orta et al.

(2014).
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they largely ampli�ed them (although in neither 
ase are these e�e
ts statisti
ally signi�
ant).

The spreading of sho
ks from Europe shows a di�erent pi
ture, during the period prior to mid-

2010 Europe largely spread e�e
ts whi
h subdued CDS spreads elsewhere, that is they 
almed

per
eptions of risk elsewhere. However, during the period of 2011 parti
ularly they 
ontributed

(insigni�
antly) to amplifying sho
ks.

The region whi
h spreads on average the largest 
ontributions is Asia, where during 2008-2009

Asia 
ontributed to the ampli�
ation of spreads in CDS markets substantially, and signi�
antly.

For the majority of the rest of the period Asia mainly 
ontributed dampening e�e
ts on other

markets - although these were almost uniformly insigni�
ant. In 
ontrast, Asia was not re
ipient

of a large dampening or amplifying e�e
ts from anywhere in the rest of markets - tying with

analysis that sees Asian markets as largely end-point nodes, or in a separated market, from other

markets.

Latin Ameri
an re
eives relatively larger (insigni�
ant) e�e
ts from the rest of the world, whi
h

as with Europe, were dampening prior to the 2008-09 
risis, and with largest amplifying impa
t

during the 
risis period and then a redu
ed e�e
t thereafter. The pro�le is similar for Afri
a.

North Ameri
a, whi
h was at the 
entre of the GFC, and often regarded as the generating

market in the literature, reveals that as a re
ipient it sees very small e�e
ts from other regions

on its own CDS spreads. There is a slight period at the height of the turmoil around Lehman

Bros where the impa
t of transmission from other markets was statisti
ally amplifying North

Ameri
an CDS premia, and eviden
e that thereafter that the average (insigni�
ant) e�e
t is

positive. In 
ontrast, the average e�e
ts spread from North Ameri
a are statisti
ally signi�
ant

and relatively large. Prior to 2008, the transmissions originating in the US had been dampening

CDS spreads sin
e mid-2005. The �rst eviden
e of amplifying sho
ks o

urs in late 2007 and

early 2008 and from the third quarter of 2008 until approximately the period asso
iated with

the end of the NBER dated re
ession in mid 2009 the e�e
ts of US originated sho
ks 
learly

amplify CDS premia elsewhere. A brief intermission of neutral to dampening sho
ks pre
edes

a further period of ampli�
ation in 2010-2011 asso
iated with the debt 
risis, before the US

transmissions be
ome a stabilizing for
e from mid-2011 to mid-2012. This parti
ular example


learly demonstrates how mu
h in�uen
e the US, as a 
entral world market has on the rest of

the world, and how 
learly the transmission 
hannels 
an 
hange in whether they amplify or

dampen the transmission of sho
ks. Clearly it is not su�
ient to know whi
h markets are on

average amplifying or dampening spreaders to ea
h re
ipient, one needs also to keep tra
k of

these e�e
ts over time.

4.4 Developed vs emerging markets

We segment the results on spillovers by stage of market development using the IMF 
lassi�
ation

of developed, emerging and frontier markets, see Table 1. The 
ontribution of sho
ks sour
ed

from markets at di�erent stages of development to the re
ipient markets are illustrated in Figure

8.
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Figure 8: HDS indi
es for developed and emerging markets with 95% 
on�den
e intervals esti-

mated from equation (16).

The transmissions to developed markets from emerging and frontier markets (the top panel of

Figure 8) are relatively small. Emerging markets were a net sour
e of dampening for developed

markets prior to the GFC, and have remained a sour
e of in
reased premia sin
e, although

this peaked during late 2008. The e�e
ts from frontier markets on developed markets are more


onsistently positive, although less volatile. Emerging markets have re
eived little in
rease in

CDS premia as a result of sho
ks from developed markets

12

(in 
ontrast to the 
entre and

12

This �nding is 
onsistent with Chen et al. (2016) who found that emerging markets be
ame e
onomi
ally
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periphery arguments of Kaminsky and Reinhart (2003), while sho
ks in frontier markets redu
ed

CDS premia in emerging markets prior to 2009 for a period until 2012. In the other dire
tion,

however, frontier markets re
eived substantial premium ampli�
ation from developed markets

after 2009, and parti
ularly post the 2012 problems in European sovereign debt markets. Frontier

markets re
eived more volatile e�e
ts from emerging markets - prior to 2009, emerging market

sho
ks were dampening frontier market spreads, possibly attra
ting investors to these markets

- but the risks were rapidly reassessed in late 2008, early 2009, and frontier markets su�ered a

dramati
 ampli�
ation of sho
ks until early 2010.

Figure 9: Systemi
ally important banks vs other banks and the rest of the world. A detailed


lassi�
ation is presented in Table 2.

more resilient after the GFC.
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4.5 Global systemi
ally important banks

Figure 9 provides spillover indi
es between banks whi
h have been designated as globally system-

i
ally important (SIBs), other banks and other types of �nan
ial institutions. It is immediately


lear that the largest e�e
ts are apparent in sho
ks spreading from SIBS to Banks and other

types of institutions. The SIBs are 
learly an import sour
e of sho
k ampli�
ation, 
onsistent

with the literature whi
h supports regulating banks for systemi
 risk reasons. However, the

in�uen
e of sho
k ampli�
ation from SIBS to other entities is not more signi�
ant than ampli-

�
ation from other banks to other parts of the network. That is, while SIBs are important it is

not 
lear that to non-banks there is a huge distin
tion between SIBs and non-SIB institutions.

While SIBs were generally a sour
e of amplifying sho
ks from 2008 onwards, the non-bank se
-

tor transmissions were dampening the transmissions to the banks. This may be an indi
ation

of the su

essful appli
ation of poli
y whi
h aimed to prevent 
redit restri
tions from redu
ing

e
onomi
 a
tivity in the GFC period, but without a 
lear 
ounterfa
tual it is di�
ult to be 
on-


lusive. The 
learest message from the SIB and non-SIB distin
tion is that SIBs have a larger

and more 
ertain amplifying e�e
t on other banks than other banks do on SIBs.

4.6 Index distribution and moments

While the mean bilateral spillover, de�ned in (13), provides a summary of network a
tivity,

it may obs
ure a great deal of relevant information, parti
ularly if the degree distribution is

asymmetri
 and has signi�
ant kurtosis. This information is parti
ularly valuable during the


risis when banks with greater upper tail dependen
e have higher CDS spreads (see e.g. Meine

et al. (2016)). A more 
omplete summary of spillover a
tivity must take a

ount not only of

the lo
ation but also of the shape of the spillover density. For a given moment t, one may

approximate the empiri
al distribution of pairwise spillover e�e
ts via kernel density estimation

(see e.g. Greenwood-Nimmo et al. (2017)).

Consider an h × 1 ve
tor of grids z = (z1, ..., zh)
′
, whi
h 
overs the range of pairwise spillovers

in matrix Ct
. The density of pairwise spillovers is estimated from

ĝt(zk) =
1

bt

( 1

n(n− 1)

) n∑

i,j=1;i 6=j

K
(zk − ctij

bt

)
, k = 1, ..., h, (17)

where K is a kernel and bt is a bandwidth at time t. To ensure that ĝt(zk) integrates to unity

over the sele
ted range of grid points, the following standard normalization is employed as

f̂t(zk) =
ĝt(zk)

RIE
(
ĝt

) , (18)

where RIE
(
ĝt

)
denotes a numeri
al Riemann sum of ĝt = (ĝt(z1), ..., ĝt(zh))

′
. Following Silver-

man (1986), a Gaussian kernel with the rule-of-thumb bandwidth bt = 1.06τ̂t(n(n − 1))−0.2, is


onsidered as a ben
hmark, where τt is the 
ross-se
tional standard deviation of ctij . However,

given that the spillover density exhibits departure from normality when working with CDS data,
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right and left skew might be pronoun
ed.

13

In this se
tion we 
ombine the information on pairwise 
onne
tedness, Ct
, with the Granger-


ausality approa
h to dete
ting network dire
tion and signi�
an
e of Billio et al. (2012) and

Merton et al. (2013). This approa
h redu
es the dimensionality of the problem, by removing

all non-Granger 
aused links. Billio et al. (2012) propose that Granger-
ausality links have

an advantage over dire
t 
orrelation in providing a lead-lag dimension. Signi�
ant Granger


ausality from entity i to entity s indi
ates that Yi has at least one signi�
ant lag predi
ting

the value of Ys, indi
ating that the per
eived risk of entity i defaulting predi
ts the per
eived

risk of default of entity s. The edges of the network 
onstru
ted from these Granger 
ausality

links represent predi
tors of ea
h node's per
eived risk of default. Moreover, Granger 
ausality

established edges map 
learly to the existing empiri
al frameworks for measuring and testing


ontagion during �nan
ial 
rises via the formation and breaking of linkages (the overar
hing

framework for this is provided in Dungey et al. (2005)).

On
e a VAR form of the model is estimated from (6), Granger 
ausality between CDS spreads

Yi and Ys 
an be assessed using the Wald test

WT = [e · η̂]′ [e(V̂ ⊗ (Y
′

Y )−1)e
′

]−1[e · η̂], (19)

in whi
h Y is the matrix of independent variables represented by CDS spreads, η̂ denotes the

row ve
torized 
oe�
ients of VAR dis
ussed earlier, V̂ = T−1
∑T

t=1 ε̂tε̂
′

t and e is the k×2(2k+1)

sele
tion matrix

e =




0 1 0 0 . . . 0 0 . . . 0 0
0 0 0 1 . . . 0 0 . . . 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 . . . 1 0 . . . 0 0



.

Ea
h row of e sele
ts one of the 
oe�
ients to set to zero under the non-
ausal hypothesis

Yi → Ys.

The results of the Wald test indi
ating Granger 
ausality are re
orded as binary entries in matrix

Ã as

Ã = [ãis],

where

ãis =

{
0, if Yi does not Granger 
ause Ys

1, if Yi Granger 
auses Ys
.

Matrix Ã is used to 
onstru
t the dire
tional edges between sovereigns and banks.

Given the estimates of the matrix Ã and the spillover matrix C, the stru
ture of the weighted

matrix 
an be 
hara
terized as

˜̃
A = Ã ◦ C,

where ◦ is the Hadamard produ
t. The elements of the adja
en
y matrix

˜̃
A now 
apture the


onne
tedness between entities 
onditional on the signi�
ant 
ausal linkages between them. The

13

An original DY spillover index often has a right skew and is bi-modal in some 
ases - requiring a 
areful

robustness 
he
k in
luding alternative kernels and bandwidths.
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network de�ned by the adja
en
y matrix

˜̃
A shows the predi
tors of the risk of default subje
t to

a sho
k 
aptured by the matrix C. Using the entries of the matrix
˜̃
A, system-wide 
ompleteness

is measured as

C̃ =

∑n
i,j=1
i6=j

˜̃aij

∑n
i,j=1
i6=j

cij
. (20)

The index distribution 
onditional on the Granger 
aused linkages between entities is obtained

by applying equations (17) and (18) to the non-diagonal entries of the matrix

˜̃
A, ∀t.
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Figure 10: Moments of the spillover density obtained from equations (17) and (18). Bla
k line

- all 107, red - �nan
ial institutions, green - sovereigns.
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The �rst four moments of the HD spillover index estimates 
onditional on the Granger 
aused

linkages for all 107 nodes are shown in Figure 10, with the moments for the �nan
ial 
ompanies

and sovereigns indi
es given separately as the red and green lines respe
tively. Three things

are immediately apparent. First, both skewness and kurtosis of the 
ombined and �nan
ial

institution networks are positive and 
o-move during the GFC, whi
h implies signi�
ant default

risk premia in the �nan
ial industry. An interesting pattern in the skewness of these networks is

observed on the �rst day of the GFC (15th of September 2008) when the third moment jumped

up by more than 5 basis points. This �nding is 
onsistent with Fry et al. (2010) who argue that

higher moments are informative in predi
ting 
ontagion. Se
ond, the spillover varian
e for all

three networks in
reases a
ross the sample. Moreover, there is a distin
tly observable shift from

pre-2008 to post-2008 in the level and volatility of ea
h of the indi
es. Third, while before and

during the GFC volatility of the 
ombined network is mainly driven by �nan
ial institutions

- after the European debt 
risis of 2010 the varian
e of the 
ombined network emanates from

both �nan
ial institutions and sovereigns. Overall, the sovereigns 
an be distinguished from the

�nan
ial institutions in that the in
rease in varian
e, skewness and kurtosis 
omes later in the

sample, 
loser to the problems asso
iated with the Greek and subsequent European sovereign

debt 
risis.

To summarize the evolution of the whole degree distribution for ea
h time t we 
onstru
t a

sequen
e of t = 1, ..., T spillover densities. The pre-
risis period is 
onsidered as a ben
hmark


hara
terized by a density fnc, whi
h is 
ompared with fcr, a density during a 
risis. Using the

following 
ommon divergen
e 
riteria, an evolution of the spillover density from a non-
risis to

a 
risis phase 
an be assessed as

DH(f̂cr, fnc) = supz|f̂cr − fnc|/supzfnc(z), (21)

DM(f̂cr, fnc) =

ˆ

|f̂cr(z)dz − fnc(z)|dz, (22)

where f̂cr is the estimated density during the 
risis, DH is the Hilbert norm and DM is the

distribution mass di�eren
e. Ea
h of these quantities is non-negative and takes the value zero

if f̂cr = fnc. Moreover, DM ∈ [0, 2], with DM = 2 when f̂cr and fnc do not overlap at all over

the sele
ted range of grid points.

Using the same spillover densities for the 
ombined network as in Figure 10, we estimate DH

and DM quantities for ea
h day t. A non-
risis density fnc is obtained from the histori
al

de
omposition spillovers in De
ember 2004. As follows from Figure 11 both DH and DM

measures show similar patterns, namely between 2005 and 2007 the di�eren
e between the 
risis

and non-
risis spillover distributions in
reases and a
hieves its peak in July 2011. This peak


on
urs with the beginning of the se
ond e
onomi
 adjustment programme when Euro area

leaders agreed to extend Greek (as well as Irish and Portuguese) loan repayment periods from 7

years to a minimum of 15 years and to 
ut interest rates to 3.5%. After July 2011 the divergen
e

stays at the same level a sign of a deep 
risis in the �nan
ial and sovereign CDS markets,


on�rming the results of Oh and Patton (2016) that the joint probability of distress (a measure

of systemi
 risk) is substantially higher after 2011 than in the pre-
risis period. This �nding is
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also 
onsistent with the pattern of in
reasing varian
e from Figure 10, whi
h allows to 
onsider

volatility in the CDS market as the main sour
e of systemi
 risk. Overall, the analysis of the

spillover density a
ross a range of moments permits a deeper understanding of the 
hanging

inter
onne
tedness of the global CDS market.
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Figure 11: Hilbert norm and Distribution mass di�eren
e estimated from equations (21) and

(22) respe
tively for all entities.

5 Con
lusion

This paper has shown how an alternative de
omposition of the information available in a VAR

representation of the strength of network linkages between markets 
an provide information on

sour
es, dire
tion and whether links amplify or dampen the transmission of sho
ks a
ross a

network. We show how the work relates to the popular (unsigned) Diebold and Yilmaz spillover

index, and the extra information whi
h 
an be obtained by knowing not only the sour
e, dire
tion

and relative size of sho
ks, but also the sign (amplifying or dampening) of their impa
t. We

emphasise that this is a di�erent �nding from dire
tion. The dire
tion of a sho
k indi
ates the

�ow of a 
ausal event in one node to the other node. The 
ontribution of signing indi
ates

whether that transmission has a positive or negative impa
t on the volatility of the target node.

This is important for poli
ymakers as not all transmissions ne
essarily in
rease volatility, and it

may be advantageous during periods of stress to be able to identify and target 
hannels whi
h
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exa
erbate 
onditions whilst allowing those whi
h 
alm them to remain. An example of where

these me
hanisms are debated in the literature 
on
erns the role of short-sales restri
tions.

The proposed inter
onne
tedness measure based on histori
al de
ompositions is easy to imple-

ment sin
e it does not require a rolling window estimation or any normalization s
heme (although

these 
an be imposed if desired). The distribution of our index is asymptoti
ally normal. The

orthogonality of elements of histori
al de
ompositions permits us to obtain analyti
al standard

errors of the proposed index.

Our empiri
al �ndings 
on�rm that both sovereigns and �nan
ial institutions signi�
antly 
on-

tribute to systemi
 risks of the global CDS market. During the GFC both sovereigns and �nan
ial

institutions indu
ed high 
onne
tedness asso
iated with positive variations in CDS spreads, while

after the European debt 
risis high spreads were also present for sovereign issuers. Banks are

found to be the largest spreaders of sho
ks, while �nan
ial institutions mainly re
eive systemi


risk from others. Developed and emerging 
ountries spread a signi�
ant amount of risk whi
h

was absorbed by frontier markets. Systemi
ally important global banks used 
onne
tions with

other banks as a 
riti
al link in the 
ombined network.
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Appendix A: Asymptoti
 distribution for the spillover index based on histori
al

de
ompositions

The following result from Lütkepohl (1990) is used to prove propositions 1 and 2:

(i) Let γ be a ve
tor of parameters and γ̂ be its estimate. Then

√
T (γ̂ − γ)

d−→ N(0,Σγ), (23)

where T is the sample size. Let F (γ) = (F (γ1), ..., F (γm))
′
be a ve
tor-valued 
ontinuously

di�erentiable fun
tion with ∂Fi/∂γ
′
= (∂Fi/∂γj) 6= 0 at γ. Then

√
T [F (γ̂)− F (γ)]

d−→ N(0,
∂F

∂γ
′ Σγ

∂F
′

∂γ
). (24)

The partial derivative of the histori
al de
ompositions HDi are 
omputed as

Ψi =
∂ve
(HDi)

∂η
′ =

∂ve
(
∑i−1

m=0Υi−m−1 ◦ IRFm)

∂η
′

=

i−1∑

m=0

∂ve
(Υi−m−1 ◦ IRFm)

∂η′

=

i−1∑

m=0

DIAG(Υi−m−1)
∂ve
(IRFm)

∂η′ (25)

=

i−1∑

m=0

DIAG(Υi−m−1)Gm , (26)

where DIAG(Υi−m−1) denotes the diagonal matrix displaying the elements of ve
(Υi−m−1) along

its diagonal. A derivation of Gm is presented by Lütkepohl (1990). To obtain equations (25)

and (26) the following results from Magnus and Neude
ker (1985) are used:

∂ve
(Υ ◦ IRF )

∂η
′ = DIAG(IRF )

∂ve
(Υ)

∂η
′ +DIAG(Υ)

∂ve
(IRF )

∂η
′ . (27)

The �rst term of equation (27) vanishes asymptoti
ally as Υ goes to zero due to E(εt) = 0. This

proves Proposition 1.

For proving Proposition 2 noti
e that elements of a histori
al de
omposition matrix HDi are

orthogonal by 
onstru
tion and for this reason the elements of this matrix are independent

normal random variables. Consequently equation (13) 
an be used to obtain an asymptoti



ovarian
e matrix of HDSi
. In parti
ular, for i = 1, 2, ..., standard errors are 
omputed as

diag(ΨiΣηΨ
′

i/T )
1/2,

whi
h proves Proposition 2.
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