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Abstract

The spillover effects of interconnectedness between financial assets is decomposed into
both sources of shocks and whether they amplify or dampen volatility conditions in the
target market. We use historical decompositions to rearrange information from a VAR
which includes sources, direction and signs of effects building on the unsigned forecast error
variance decomposition approach of Diebold and Yilmaz (2009). A spillover index based
on historical decompositions has simple asymptotic properties, permitting the derivation of
analytical standard errors of the index and its components. We apply the methodology to a
panel of CDS spreads of sovereigns and financial institutions for the period 2003-2013 and
identify how these entities contribute to global systemic risk.
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1 Introduction

Determining the ultimate source of shocks in a complex system of interacting entities is a policy-
making nirvana. If the source(s) can be quickly identified with certainty, then policy can be
effectively aimed at nudging or alleviating desired or non-desired outcomes. The agenda of
understanding the complex interactions in the economy is part of the expanding literature on
both economic and financial networks; see for example, Acemoglu et al. (2012), Acemoglu et al.
(2015), Pesaran and Yang (2016), and Diebold and Yilmaz (2016).

A concept of interconnectedness, playing a key role in understanding financial networks, is
elusive and requires more attention. To estimate network spillovers empirically the method of
Diebold and Yilmaz (2009), henceforth DY, for measuring the relative contribution of shocks
from alternative sources spilling over to affect others is common in the literature. In this method
interconnectedness of the network is defined from a forecast error variance decomposition based
on a standard vector auto-regression framework between endogenous variables (see Diebold and
Yilmaz (2014)). This approach has gained popularity, with the advantages of being easy to
implement and interpret, seemingly nice forecasting properties, simple extensions to varying
time horizons and applicable across many different types of application; see for example Yilmaz
(2010), Alter and Beyer (2014) and the range of applications presented in Diebold and Yilmaz
(2015) and Demirer et al. (2015).

This paper proposes a further development which has the additional advantage of signing the con-
tribution of the sources of volatility into those which augment observed volatility and those which
dampen it. We do this by rearranging the information in the standard vector auto-regression
to take advantage of the so-called historical decomposition statistics. This decomposition fol-
lows from the VARMA form of the residuals in the VAR to attribute the estimated value of an
observation to its component shocks. Historical decompositions have been used previously in
the macroeconomic VAR literature, such as Dungey and Pagan (2000), Sims (1992) but to our
knowledge have not been applied in the way proposed in this paper. The historical decompo-
sition approach to decomposing the sources of shocks and measuring interconnectedness does
not require normalization assumptions nor (necessarily) a choice of window length to obtain a
time-varying spillover index as in DY method - although this can be accommodated if desired.
Assuming asymptotic normality the historical decomposition elements have additive properties
so that we can obtain not only the total historical decomposition spillover index from a partic-
ular source to a given entity, but also contributions of subsets of historical decompositions, and
confidence bands for both.

We provide further insight into the role of shocks that is not evident from unsigned decom-
positions. The application in this paper is to a set of 107 credit default swap (CDS) spreads
for as selection of financial institutions and sovereigns issuing 5 year debt denominated in US
dollars over the period 2003-2013. The results track the time-varying contribution of subsectors
of the data to overall spreads. For example, we show that the banking sector generally acts
to exacerbate spreads during the period of the global financial crisis. Financial institutions are

the major recipients of "bad" shocks during the GFC and the European debt crisis. Emerging



and frontier markets are strongly interconnected, while the transmissions from these markets
to developed markets are relatively small. Global systemically important banks are the most
influential entities using other banks as a critical link in the combined network. We also show
that higher order moments of the spillovers contain differing information about the evolution of

the spillover index over time.

The remainder of the article is organized as follows. Section 2 introduces a novel interconnected-
ness measure which takes into account the shocks and whether these shocks amplify or dampen
volatility in the target market and provides asymptotic properties of this measure. Section 3 out-
lines the dataset consisting of daily CDS spreads for sovereign nations and financial institutions.

Section 4 discusses the empirical results. Section 5 concludes.

2 Measuring interconnectedness from a historical decomposition

The methodology proposed here provides a new measure of interconnectedness by modifying
the Diebold and Yilmaz (2009) approach. By focusing on historical decompositions rather than
forecast error variance decompositions we provide the signs of contributory shocks, adding in-

formation on whether transmissions augment or dampen the outcomes in the target market.

2.1 Network of sovereigns and financial institutions

Consider N entities indexed by i, N1 of these entities are financial institutions which lend for
projects with uncertain returns as in Diamond (1982), and N are sovereign borrowers, where
N=Nj+N,. The financial institutions cannot fund their lending activities from their own balance
sheets and establish inter-institutional flows with each other. Following Acemoglu et al. (2015)
each financial institution has the opportunity to invest in the real economy with an uncertain
return ry ;; in period ¢ and/or invest in sovereign bonds with rg ;. Incorporating the extension
proposed by Dungey et al. (2017a), a sovereign bond return, ry ;, is also risky and the values of
returns r1 ; and 794 are influenced by an external shock, wu;, which is a random variable drawn
from a given distribution with mean zero and variance one.! The joint probability distribution
p(u1, ..., unt) for N entities is assumed to be known. The liabilities between entities creates a

network, where the edges are determined by repayments required between pairs of entities.

Definition 1 Network G is the pair (N,E), where N is a set of nodes representing entities
(banks or sovereigns), and a set of edges E represents contracts between two entities from lender

to borrower.

Definition 2 A walk Pj, j, is a sequence of entities (ji,...,jx) such that the pairs (ji,J2),
(52:73),---,(Jk—1,Jk) € E are edges of the network. The length of the walk P;, j, is given by

!Shock wu;; contains uncertainty about sovereigns and financial institutions and can be seen as an aggregated
shock. However, it is trivial to separately analyze disaggregated shocks. Acemoglu et al. (2015) and Glasserman
and Young (2015) imply that shocks have a negative impact on returns. In this paper, the shock w; can have
either a positive and negative, or indeed insignificant, influence on CDS spreads.



the number of edges k contained in it. The minimal length of the walk P;, j, corresponds to the

distance Dy, j, .

A distance D;j, introduced in Definition 2, is a measure between two nodes 4 and j that can be
assessed for each entity of a network. The network is characterized by an N x N adjacency matrix
A that contains all information about the network. The adjacency matrix A is a key ingredient
defining connectedness of the network. To illustrate this idea suppose that the distance D;; is
associated with the length of the continuous function y = f(x) defined for any ¢ and j. Then
the distance D;; can be defined by [ subintervals each of width Az. In this case the distance

D;; can be approximated by a series of intervals Dy, k =1,...,1 as

l
L~ |Di1 Dy, (1)
k=1
which is for large [ equivalent to
!
L= lllglo]; |Di—1 Dyl (2)

Now applying the mean value theorem, the length L can be written as

L= /ij,h + (j—i)zdas. 3)

Equation (3) implies that the distance D;;, defining the adjacency matrix A, is fully characterized

2
by the derivative (g—g) that should be calculated to obtain the connectedness measure of the

network. This derivative can be estimated via forecast error variance decompositions, which is

consistent with the DY approach?.

We distinguish two types of connections from our historical decomposition approach: amplify-
ing or dampening. A positive weight represents an amplifying connection whereas a negative
weight represents an dampening connection.® Taking into account that CDS spread prices re-
flect a perceived risk of default, favorable news decreases the value of the CDS spread, while
unfavorable news increases the value; thus positive weights A;; identify entities that increase
systemic probability of default, while entities associated with negative values A;; reduce the risk
of default in the network. This idea can be formally linked to equation (3) implying that the
weights assigned to edges of the network can take both positive and negative values. In this

instance a generalized length metric GL is defined as
GL /j WY 1y (W g (4)
= sgn | — — | dx
; I\ dz dx '

in which sgn is a signum function.

2An alternative approach, as in Billio et al. (2012) is to define an adjacency matrix A from Granger causality
tests, in which case A;; =1 if 4 and j are connected, or A;; = 0 otherwise Vi, j.

3Jorion and Zhang (2007) emphasize the importance of positive and negative transfer effect in the CDS
market - they assign positive correlations across CDS spreads as contagion effects, and negative correlations as
competition effects.




Definition 3 In a directed weighted network, each node has two degrees. The out-degree 57" =
Z;V:1 Aj; is the number of outgoing edges emanating from a node i, and the in-degree o =
Z;V:l A;j is the number of incoming edges to a node. The total degree of the node is defined as
5tot — 5m + 5out o A”

Once an adjacency matrix, A, is estimated, its degree distribution is the probability distribution
of degrees across node, and the overall network connectedness is defined as the mean of the degree
distribution (following Diebold and Yilmaz (2014)).* This connectedness measure facilitates
understanding of the dampening and amplification mechanisms of systemic risk in more detail.
For example, ‘robust-but-fragile’ networks (see Haldane (2009); Acemoglu et al. (2015)) may
emerge in the face of small unexpected shocks to the systematic factor that causes losses for
many entities. The fragility of a network is characterized by the total size of cumulated small
negative shocks which increase network connectedness, and the systemic default probability,
which depends only on the absolute value of shocks. We permit elements of the adjacency
matrix, A;;, to be negative and consequently allow for dampening: a small negative shock
strongly affecting the entity with high systemic risk exposure can be offset by another positive
shock.

We use the approach to assess the time-variability of network connectedness, which requires
assessing higher moments of the degree distribution. Oh and Patton (2016) highlight the sig-
nificance of modeling covariation and coskewness in CDS spreads. In this paper the first four
central moments of the degree distribution are directly evaluated from an adjacency matrix A.
We construct the mean of the degree distribution, estimated ignoring signs of spillovers, which
corresponds to the DY aggregate spillover index and conveys similar information. The variance,
skewness and kurtosis of signed spillovers may uncover shifts in different phases of a crisis. Such
timing differences open an avenue for the construction of early warning measures of contagion

and the propagation of systemic risk.

2.2 A weighted directed network of historical decompositions

We propose to measure connectedness elements, A;;, from shares of historical decompositions
for various entities due to external shocks. The historical decomposition explains the fraction of
variable ¢’s variation at time ¢ due to shocks in variable j. Following Diebold and Yilmaz (2014),
system wide connectedness at time ¢ is defined as a sum of all pairwise connectedness measures

excluding self-loops in a network.

To take into consideration the possibility of common stochastic trend(s) between the I(1) CDS
series, a Vector Error Correction Model (VECM) is used:

k—1
AY; =af Y+ TiAYi i +ey, (5)
i=1

*Alternative connectedness measures such as network diameter Dynq. = max; jD;; can be also used in these
settings.



where Y; = [Yi 4,y Youl', AYi; =Y; — Yi—;—1 and o, 3, T are the parameters of the model.?
The rank of the matrix II = a8’ is estimated by the Johansen test and imposing the triangular

restrictions of Phillips (1991). The parameters of model (5) are obtained by applying OLS.
A VECM in (5) can be represented as a VAR(k)

k
Vi=Y &Y +e, (6)
=1

with cross-equation restrictions ®; = 04,3' +0y+1,,and &; =1, —1';,_1,1=2,3,..., k.

The reduced form VAR(k) from equation (6) can be rewritten in terms of disturbances and

initial conditions by applying the moving average representation as

o0
Y; = initial values + » _ Sie_;, (7)

i=0
where Sj = (1)1(1)]'_1 + (IDQS]'_Q +...for j =1,2,... with Sy = Iy and Sj =0 for j < 0 and Sj are
causal and square-summable. Any individual element Y}; can be represented by contributions

of all variables as

t—1
Y;: = initial values + Z Si(])egj—)z” (®)
i=0

6

Y

which represents the historical decomposition of variable j at time t. Ignoring initial conditions

equation (8) can be rewritten in a matrix form as

oo 7j—1 00
HDypj=» IRF;oYiyj ;=Y IRFoYy i+ Y IRF0Te (9)
1=0 =0 =7

where o is a Hadamard product, Yi4j—; = [e44j—i, ..., €44j—i) IS the n X n matrix containing resid-
uals, T RF; are non-orthogonalized one unit impulse response matrices and H Dy is a historical
decomposition matrix at time ¢. While other definitions of impulse responses including orthog-
onalized or generalized IRFs of Koop et al. (1996) and Pesaran and Shin (1998) are possible,
they do not permit individual components of HD; to add up to Yy, Vt. This additive property
allows interpretation of the elements of historical decompositions H D; as shares of CDS spreads,

measured in basis points, contributing to the total systemic default probability.

Another important implication of equation (9) is that the historical decomposition H Dy is a
function of impulse responses weighted by residuals €;, consistent with the view that connect-
edness is a weighted measure of shocks spreading through the network. Moreover, the historical
decomposition H Dy contains two different terms. The far right term represents the expectation
of Y;1; given information available at time ¢, which is the base projection of Y. The first term
on the right-hand side shows the difference between the actual series and the base projection due
to innovations subsequent to period ¢. In particular, it shows that the gap between an actual

series and its base projection is the sum of the weighted contributions of the innovations to the

A constant term is suppressed for simplicity.
®Initial values will be ignored in the forthcoming empirical sections following Hualde and Robinson (2010),
with the consequence that a first part of the data do not provide empirically analytical decompositions.



individual series. This reveals the dynamic properties of the network as a system that evolves
over time by deviating from its long run state. Elements of the historical decomposition matrix

HD; ;; lay a foundation of connectedness measures from j to ¢ denoted by cZ —j It is convenient

to analyze a connectedness matrix C* = [H D, ;;] where off-diagonal entries measures pairwise

directed connectedness. In general cf<_j #* cz .; as in- and out-degrees are not restricted to be

identical. This allows us to define net pairwise directional connectedness as c’;j = cz- i c;?(_j,

which is not restricted to be positive. Taking into account that the sum of off-diagonal elements
of the j-th row of C? gives the signed share of the historical decomposition coming from shocks

related to other variables, total directional connectedness from others to ¢ is defined as

z<—others: Z Hthy, (10)
J=Llj#

and total directional connectedness from j to others as

others<—] Z HDt ,2J (11)
i=1,j#i

Furthermore, net total directional connectedness can be calculated for n variables as ¢! =

i
Cothers«i

we define

i others: Vl. To summarize pairwise directional connectedness for the sample T,

T
1 e
Cij = — t; HDy;; Yi#j, (12)

which can be interpreted as a static measure of connectedness’ between entities i and j.

The total of the off-diagonal entries in C* defines the aggregate spillover index measuring total
completeness at time ¢ as
1
HDS' = —(¢/C'e — trace(C")). (13)
n

where e is the selection vector of ones.

2.3 Asymptotic properties of a signed spillover index

The main objective now is to provide expressions for the asymptotic standard errors of the signed
spillover index. For this purpose suppose 7 is a vector of parameters and % is an estimator such
that

VI(y=7) % N(0,5,), (14)

where % is assigned to convergence in distribution and N (0, ¥,) denotes the multivariate normal
distribution. Let F(v) = (F(71),.... F(ym)) be a differentiable function with values in m-
dimensional Euclidean space and 0F;/0y = (9F;/dv;) is nonzero at 7 for i = 1,...,m. Then,
following Liitkepohl (1990),

OF _, OF

VTIF(3) — F(7)] % N(0, 2%

"Static connectedness can be also defined as an expectation of cﬁj over the whole sample.



This general result provides the form of an asymptotic covariance matrix for the signed spillover

index derived from the partial derivatives of F' and the variance covariance matrix X,.

Proposition 1 Suppose

Then
VTvee(HD; — HD;) % N(0,U,%,0}),i = 1,2, ...,
where
i—1
\I/i = aUGC(HDZ‘)/a’I’] = Z Ri—l—me7
m=0

in which G; = qu;:lo J(@) 1" @ S, = vee(®q, ..., By,), 0 = vech(X.), J = [I, 0..0], R; is

the diagonal n*-variate matriz containing residuals vec(e;, ...,&;) on the main diagonal and

[ d, Dy ... By Py ]

I, O 0 0
P = 0 I, 0 0

0 0 ... I, 0 |

Here vec denotes the column stacking operator and vech is the corresponding operator that stacks

only the elements on and below the diagonal and ® is the Kronecker product.

Proof: Appendix

Proposition 1 shows that an asymptotic variance-covariance matrix of the historical decomposi-
tion H D; is characterized by residuals, parameters of the model and one unit impulse responses.
Matrix ¥, can be estimated as ¥, = (ZZ' /T) "' @ %, Zy = (Y4, o, Yicgs1] s Z = (Zoy - Z7—1)
for VAR models and as

1

Y Y, Y AX ] o 500

Yy =T AXY', AXAX'

for VECMs. In this case Y_;1 = [Yp,...,Yr_1] and AX;_1 = [AYi—1, ..., AY;_41] and X is
a variance-covariance matrix from VECM (see e.g. Liitkepohl (2005)). In the forthcoming
empirical study CDS spreads are I(1) series and for this reason the VAR with cross equation
restrictions, defined in equation (6), is chosen as a benchmark model. The asymptotic variances
from Proposition 1 do not go to zero, but converge to the respective long run values with
the sample size. An implicit convenient assumption of equation (6) is that Y; has zero mean.
The results of Proposition 1 remain valid if a nonzero mean term, a polynomial or a seasonal
component is removed prior to estimating the VAR parameters. Equivalently, polynomial or
seasonal trends can be included in the model (6) and estimated jointly with other coefficients
without affecting Proposition 1. This follows from the fact that the asymptotic variances in

Proposition 1 only depend on parameters ®; and a variance-covariance matrix .



While Proposition 1 has been stated for individual historical decomposition coefficient matrices,
one can extend these results for the case where the elements of ﬁbz and @j, i # j, are not
independent asymptotically. If elements of two or more H D; matrices are included in the null
hypothesis the joint distribution of all the matrices can be estimated using Proposition 1. In

particular, the covariance matrix of the joint asymptotic distribution of VeC(f/IT),’, @]) is

dvec(HD;, HD;) . dvec(HD;, HD;)'
/ ET] 9
an an
in which )
Ovec(HD;, HD;) [ dvec(HD;)/dn
on’ ~ | dvec(HD;)/on' |-

Now the results of Proposition 1 can be used to obtain the asymptotic distribution of the

interconnectedness index based on historical decompositions.

Proposition 2 Suppose QQ; = diag(\IJiEn\I/;/T) is a vector of parameter variances and HDS® is

a spillover index defined from a historical decomposition in (13). Then
VT(HDS — HDSY) % N(0, (¢ Wie — trace(W;))/n),i = 1,2, ..., (16)

where W; = unvec(Q;) and operator unvec is the inverse of the vec operator such that W; =

unvec(vec(W;)).

Proof: Appendix

Proposition 2 permits the estimation of the standard error of HDS? as a square root of variance
defined in (16). An important assumption for Proposition 2 is that a historical decomposition is
a unique transformation of data. Moreover, non-diagonal elements of a historical decomposition
matrix HD; are orthogonal by construction, which allows us to obtain the confidence bounds for
the historical decomposition spillover index by taking average across the non-diagonal elements
of W;. A similar approach can not be applied to the DY spillover index as appropriate nor-
malization restrictions that ensure forecast error variance components sum up to 1 are required.
These restrictions make the derivation of the asymptotic distributions of variance decomposition
components difficult. Thus, the asymptotic distribution of the DY index can not be obtained in

the usual way for setting up confidence intervals.

3 Data

Modeling the interconnections between financial institutions is hampered by data availability.
On the one hand, many of the theoretical frameworks are expressed in terms of inter-entity flows.
However, these data are exceedingly difficult to obtain, particularly outside the commercially
available data sets; a good example is the UK interbank network in Giratis et al. (2016), who use
data available to the Bank of England. On the other hand, there is a strand of literature that
takes advantage of market-based data as proxies to develop an understanding of the intercon-

nectedness of networks, as in, for example, Billio et al. (2012) and Merton et al. (2013). Recent



work by van de Leur et al. (2017) finds that interconnectedness networks based on market data
produce valuable information that is not offered by alternative approaches. The work in this

paper draws on the market-based data tradition in this literature.

Table 1: Sovereigns included in CDS sample data. D-Developed, E-
Emerging, F-Frontier markets according to the MSCI classification.

Europe Asia Latin America
Bulgaria (F)  Australia (D)  Argentina (F)
Czech Republic (E) China (E) Brazil (E)
Denmark (D)  Indonesia (E) Chile (E)
Norway (D) Japan (D) Colombia (E)
Poland (E)  Malaysia (E) Mexico (E)
Sweden (D) Philippines (E)  Panama (F)
Russia (E) South Korea (E) Peru (E)
Turkey (E)  Thailand (E) Venezuela (F)
Ukraine (F)  Vietnam (F)
Africa Euro Zone North America
Israel (D)  Belgium (D) USA (D)
Morocco (F) Finland (D)
South Africa (E) France (D)
Qatar (F)  Germany (D)

Ireland (D)
Italy (D)
Netherlands (D)
Portugal (D)
Spain (D)

The dataset consists of daily five-year CDS spreads for 40 sovereign nations and 67 financial
institutions as listed in Tables 1 and 2. Five-year CDS contracts are the most commonly issued
and traded asset in this class and are the most liquid (Duca and Peltonen (2013), Pan and
Singleton (2008), Kalbaskaa and Gatkowskib (2012)). The data are sourced from Markit and
run for the period January 1, 2003 to November 21, 2013.® The sample has 107 nodes and
potentially 11342 (= 67!/65!) links.

The sample contains three different phases; Phase 1 represents the non-crisis period from January
1, 2003, to September 14, 2008. This is typical of dating conventions used in literature to separate
the pre-crisis and crisis periods; see the review of dates extant in the literature in Dungey et al.
(2015). Phase 2 represents the period from September 15, 2008, to March 31, 2010, consistent
with the global financial crisis (GFC) and period following. The end of March 2010 represents
the period prior to which the Greek debt crisis became critical in April 2010. Phase 3, from
April 1, 2010, to November 21, 2013, represents the period of the Greek and European sovereign

debt crises. Summary statistics, reported in Table 3, show an increase in spread means for

80ur data finished in November 2013 for the initial drafts of this paper. On updating the dataset we found
that there were significant changes in later data due to the Dodd-Frank Act and the implementation of the
so-called Volker rule which affected new-issuance of US dollar denominated CDS for many of the institutions in
our sample.
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most groups of institutions and sovereigns, reflecting the perceived increase in risk during this
turbulent period in international debt markets. Skewness in Phases 2 and 3 are both lower than
in phase 1, except Asia and Europe (phase 2), which implies less asymmetry. Moreover, kurtosis
is much higher before the GFC for most of the entities. Some of these results might reflect
actions taken by the authorities that were more aggressive in the US than in Europe (see Borio
and Zabai (2016)).

CDS spreads were found to be non-stationary, I(1), with a maximum of one unit root according
to KPSS and ADF tests.

Table 2: Financial institutions grouped by broad type. SIB - Global Systemically Important Banks.

Banks Financials Insurance
Aust & New Zld Bkg ACOM CO LTD ACE Ltd
Amern Express Co John Deere Cap Corp ~ Aegon N.V.

Barclays Bk plc (SIB)
BNP Paribas (SIB)

Cap One Finl Corp
Citigroup Inc (SIB)
Ctrywde Home Lns
Kookmin Bk
Commerzbank AG (SIB)
Deutsche Bk AG (SIB)
Hana Bank

HSBC Bk plc (SIB)

ING Bk N V (SIB)

Korea Dev Bk

Merrill Lynch & Co
Mizuho Corporate Bk (SIB)
Macquarie Bk Ltd

Natl Aust Bk Ltd

Oversea Chinese Bkg
Rabobank Nederland
Royal Bk of Scotland (SIB)
Resona Bk Ltd

Societe Generale (SIB)

Std Chartered Bk (SIB)
Sumitomo Mitsui Bkg (SIB)
UBS AG (SIB)

Wells Fargo & Co (SIB)
Westpac Bkg Corp

MBIA Inc.

Natl Rural Utils Coop
Aiful Corp

ORIX Corp

Gen Elec Cap Corp
Goldman Sachs Gp Inc
Morgan Stanley
SEARS ROEBUCK
Toyota Mtr Cr Corp
Swire Pac Ltd

American Intl Gp Inc
Allstate Corp

Aon Corp
Assicurazioni Generali
CHUBB CORP

CNA Finl Corp

Legal & Gen Gp PLC
MBIA Ins Corp
MetLife Inc

Munich Re

Old Mut plc

Safeco Corp

Mitsui Sumitomo Ins
Sompo Japan Ins Inc
HARTFORD FIN INC
Loews Corp

Investment

Real Estate

Daiwa Secs Gp
Bombardier
Nomura Secs

EOP Oper Ltd Pship
Hammerson PLC
Hongkong Ld Co
Mitsubishi Estate Co
Simon Ppty Gp L P
Simon Ppty Gp Inc

11



Table 3: Summary statistics are reported for all sovereign CDS spread data used in this paper. The
selected phases are respectively consistent with the pre-GFC, the GFC and the European debt crisis.

Obs. Mean Std dev Skewness Kurtosis

Phase 1 01/01/2003 - 14/09/2008
Banks 1488 0.4253 0.6634 6.2252 73.1315
Financials 1488 0.7426  1.4386 9.2843 131.738
Insurance 1488 0.5413 1.1174 10.551 146.240
Investment 1488 1.0126 1.6023 3.5076 19.9933
Real Estate 1488 0.5737 0.5135 2.5807 11.3350
Latin America 1488 3.3274  5.0302 4.3823 24.8403

Asia 1488 1.0935 1.3470 1.4863 4.1704
Euro Zone 1488 0.0698  0.0759 2.8669 11.6775
Europe 1488 0.9062  1.5211 2.8717 13.9841
Africa 1488 0.8038  0.7205 2.5980 11.9358

North America 1488 0.0262  0.0311 2.9249 11.0294

Phase 2 15/09/2008 - 31/03/2010
Barks 103 1.6490 1.2574  2.1977  8.4938
Financials 403 12.719 32.619  6.6554  58.383
Insurance 403  3.6890 5.1029  2.4613  9.2081
Investment 403 1.9650 11711  1.0721  2.8133
Real Estate 403  2.6080 2.4492 14525  4.1223
Latin America 403 6.3541 88135  2.2891  7.7371

Asia 403  2.0159 1.5864 1.7696 7.0876
Euro Zone 403  0.8250  0.5597 1.5966 6.8034
Europe 403  3.4588  6.4693 3.8884 20.298
Africa 403  1.9245 0.9750 1.3394 4.5551
North America 404 0.4169 0.1834 1.1935 3.9374
Phase 3 01/04/2010 - 21/10/2013
Banks 951 1.3971 0.6334 1.6584 6.8687

Financials 951 6.3933 10.211 2.0464 5.9045
Insurance 951 1.8314 2.1538 3.7857 20.033
Investment 951 14738 1.0772 0.5886 2.2274
Real Estate 951 1.1053  0.4586 0.6091 2.8172
Latin America 951  3.7769 5.6733 3.1106 14.840

Asia 951 1.3284 0.7275 1.6687 6.1909
Euro Zone 951  2.5872  2.5487 1.9267 7.1373
Europe 951 1.6592  1.9220 2.2460 7.9880
Africa 951 1.4990 0.5059 0.5376 2.5000

North America 951  0.3067  0.0801 -0.2616 2.3762
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4 Empirical results
4.1 Static connectedness

Figure 1 shows the average historical decomposition of the shocks contributing to observed CDS
spreads for each of the sovereign nations in the sample. That is, the vertical axis indicates the
recipient issuing country, and the horizontal axis gives the contributing shocks measured as the
sample average of those shocks across the historical decomposition. Lighter colours indicate a
positive transmission - that is the shock increases the CDS spread in the recipient market. Darker
colours indicate a negative transmission - the shock decreases the CDS spread in the recipient
market. The table is primarily shaded approximately at average of zero recipient/transmission

shocks - on average the effects are largely cancelled out over the sample.
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Figure 1: Heat map for sovereigns. Effects from columns to rows represent averages of historical
decompositions over the whole sample. Dark colors show negative contributions to CDS spreads,
bright colors - positive contributions.
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It is critical to differentiate negative in-shocks from positive out-shocks in the figure - across the
rows gives the sources and signs of in-shocks to the target listed in a particular row; down the
columns gives the effect of out-shocks sourced from the country listed for that particular column

to each of the potential recipients listed down the column.

Reading across rows the there are a few countries which show some variety in their sources of
shocks. Consider, the row labelled Argentina which exhibits both amplifying and dampening
shocks sourced from its partners. Shocks from Peru and Columbia are strongly negative, de-
creasing the CDS spreads for Argentina. However, shocks from Venezuela, Morocco and Turkey
on average increase the CDS premium for Argentina. In a network framework each of these
directionally represents an in-shocks from the contributing markets but they are signed as to
whether they amplify or dampen the effects of those shocks on Argentina. Other interesting
examples of markets which display skew in their sources of shocks (across the rows) are Ireland,
Portugal, Spain, Italy, Ukraine and Venezuela, that is they include members of the so-called

GIIPS group, experienced civil unrest or were located in South America.

Figure 2 shows the same heat map for the financial institutions network. Reading across rows it
is apparent that AIF, AIG, MBI, MBC and to some extent SHC receive a diverse set of shocks.”
Looking at the columns for the sources of shocks, we can see that AIG, MBI and MBC are not
distinctly different to other companies. These institutions are subject to diverse shocks, but do

not emit shocks which strongly impact in one way or the other.

Thus insurers are performing the role of absorbing and smoothing shocks coming from other
institutions and emitting shocks with little signed effect on other financial institutions. From this
point of view these insurers are acting to stabilise the financial system, rather than potentially
disrupt it. This result supports arguments that the role of insurers in they system is distinct to

that of credit creating institutions; see Biggs and Richardson (2014).

There are also two distinctly different vertical lines in Figure 2; from BOM (Bombardier Capital
Incorporated) and SWI, a Hong Kong based conglomerate. Both of these firms are heavily in-
vested in the transport and asset financing sector. The result that transport finance is important
in spreading shocks is interestingly paralleled by the recent finding of Pesaran and Yang (2016)
that the transport and wharehousing sector of the US economy is routinely the most important

sector of the US economic network.

To illustrate how the distribution of shock effects changes over the sample period, Figure 3
presents the histograms of the sizes of the shocks in each of the three phases of the sample:
pre-GFC, GFC and European debt crisis. The top panel shows the distribution of the shocks in
the financial companies component of the network and the lower panel the distribution for the
sovereigns. In the pre-crisis period, the mode of 0 is pronounced and tails are relatively small
for both panels. During the GFC and European debt crises we see that the distribution moves
to the right - that is there are more positive (amplifying) shocks present than pre-crisis. The

distribution is more leptokurtic, implying a greater proportion of larger signed shocks. These

MBI and MBC are the insurance and financial arms of the same company (MBIA), and represent the largest
bond insurer in the market.The Aiful Corporation (AIF) is a Japanese financial services provider.
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changing higher-order moments of our shocks are consistent with the findings in Fry et al. (2010)

that contagion and crisis are evident in higher-order moments of returns and volatilities.

Figure 2: Heat map for financial companies. Effects from columns to rows represent averages
of historical decompositions over the whole sample. Dark colors show negative contributions to
CDS spreads, bright colors - positive contributions.
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Figure 3: Densities for 3 phases (pre-GFC, GFC and European debt crisis). Dates of these
phases are presented in Table 3.

4.2 Dynamic connectedness

As well as the average effects discussed in the previous section we also compile spillover indices
based on the DY methodology (with 10 day ahead forecast period) and using the proposed
historical decomposition method. These are shown in Figure 4. The nature of the construction of
these indices means that the scales are quite different - the HD method has a direct interpretation
of the average size of the spillovers to CDS spreads from all sources in the system, and it can
be seen that this is typically quite small, and often insignificant in the early part of the analysis
via the 68% error confidence bands. The DY index has larger (always positive) values due
to normalization between 0 and 1 discussed in the previous sections. The DY spillover index
increases dramatically in mid-2007, probably associated with the events of Bear-Stearns and

hedge funds in the middle of that year. The HD model picks up at that point, but picks up
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much more substantially at a date closer to the stress associated with Lehman Bros collapse and
the subsequent problems in the remainder of the system. Interestingly, the DY spillover index
does not fall dramatically with the introduction of TARP or the NBER dating of the ending
of the US recession as often used elsewhere in the literature (see Dungey et al. (2005) for a
review) but remains elevated. The DH index, however shows some reduction in the effect of the
spillovers on CDS spreads post the GFC, but a resurgence of positive effects around the period
of uncertainty surrounding the future of Greece in late 2009 - early 2010 and the re-emergence

of uncertainty again around European debt markets in 2011 and 2012.

Figure 5 presents the HDS indices for the financial institutions and the sovereigns separately
extracted from the combined network. It is immediately apparent that the spillover effects
from the two sources have dramatically different time paths. Prior to the GFC from mid-2008,
financial institutions were in fact behaving in a way which reduced the average CDS spread. Only
when the GFC became well-established did the contribution of financial institutions peak, and
even then, the greatest contributions were observed in 2009, rather than around the time of the
collapse of Lehman Bros. The error bands shown in the diagram widen substantially around early
2010 when the Greek crisis, subsequent IMF programs and European debt problems unfolded.
During the period from 2009 the contribution to spillovers in the CDS markets from sovereigns
has been unerringly positive, and on average more than 4 times greater than during the GFC.
This pattern differs from Bostanci and Yilmaz (2015) who found that connectedness of the global
sovereign market by the end of 2013 returned back to the same level as it was before the GFC.

Diebold-Yilmaz spillover index
T T

1 1 1 1 1 1 1 1 1
Jan-2005 Jan-2006 Jan-2007 Jan-2008 Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013

0.86

Spillover index based on historical decompositions
T T T T

-0.05 = =

1 1 1 1 1 1 1 1 1
-0.
Jan-2005 Jan-2006 Jan-2007 Jan-2008 Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013

Figure 4: DY and HDS indices estimated from equation (13) for 107 spreads. Shaded areas
represent 68% confidence intervals.
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Figure 5: HDS indices for financial institutions and Sovereigns. Shaded areas represent 68%
confidence intervals.

4.3 Contributions by source type

As the contributions of each of the sources of shock are additive in our approach we can compile
sub-series which illustrate the contribution of particular groupings on the spread. For each of
the types of financial institutions Figure 6 shows their HDS spillover indices as both recipients
of shocks (left hand panels) and as spreaders of shocks (right hand panels). It is useful to point

out that the scales for each sub-figure differ, sometimes substantially.”

The main result from Figure 6 is that the largest spreaders of shocks is the banks (top right
hand panel). Other spreaders have a substantially smaller impact on the rest of the system. As
recipients, however, the banks do not receive a great deal of impact from others (top left hand
panel). With the exception of the financial institutions category all other types spread shocks
more than they receive them. When receiving shocks, each of the left hand panels of Figure 6
shows that the shocks received amplified volatility (that is were positive effects) during the 2008-
2009 crisis, although the confidence bands do not indicate significance in all cases. However, in
the spreading of shocks, during the crisis of 2008-2009 and through to 2010 it is very apparent that
each category of institution had a different role. Banks were contributing to dampening shocks in
the system prior to the GFC, but rapidly became amplifiers and have largely remained that way

since. However, insurers had a dampening effect during 2009-2011, the period prior to the largest

0Using the same scales is analytically intractable.
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disruptions in European markets. That is, the insurers were at this time receiving amplifying

shocks and distributing dampening ones. The other particularly interesting spreader category

is real industry (bottom right panel) where industry shocks were dampening shocks prior to the

GFC. During the build up to the GFC and its initial stages industry shocks were amplifying,

but this was reversed during late 2008, consistent with the breaking of linkages between the real

economy and financial sector noted in Dungey et al. (2017b) due to the introduction of TARP

and rescue of AIG.
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Figure 6: Interconnectedness between different groups of financial institutions with 95% confi-

dence intervals estimated from equation (16).
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dence intervals estimated from equation (16). Eurozone is not presented as the respective HDS
index is not informative and close to zero.

Figure 7 represents the geographical influences of receiving and spreading of shocks. Each
panel represents the average effect of a shock from the spreading region to the recipient region
(this scales the shocks for comparison, given that there are, for example, many more issuers
in Europe than North America for example). Europe is the recipient of the largest impact of
shocks, although these were experienced during the problems of the period of late 2008 during
the post-Lehman Bros turmoil, and during the remainder of the sample the effects from the rest
of the world markets were quite subdued!'!. The largest analytical difference is that prior to

2009 the majority of the received shocks dampened FEuropean CDS spreads, whilst after 2009

UNote that 80% of financing comes from banks in Europe and only 20% in the US, see Gambacorta et al.
(2014).
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they largely amplified them (although in neither case are these effects statistically significant).
The spreading of shocks from Europe shows a different picture, during the period prior to mid-
2010 Europe largely spread effects which subdued CDS spreads elsewhere, that is they calmed
perceptions of risk elsewhere. However, during the period of 2011 particularly they contributed

(insignificantly) to amplifying shocks.

The region which spreads on average the largest contributions is Asia, where during 2008-2009
Asia contributed to the amplification of spreads in CDS markets substantially, and significantly.
For the majority of the rest of the period Asia mainly contributed dampening effects on other
markets - although these were almost uniformly insignificant. In contrast, Asia was not recipient
of a large dampening or amplifying effects from anywhere in the rest of markets - tying with
analysis that sees Asian markets as largely end-point nodes, or in a separated market, from other

markets.

Latin American receives relatively larger (insignificant) effects from the rest of the world, which
as with Europe, were dampening prior to the 2008-09 crisis, and with largest amplifying impact

during the crisis period and then a reduced effect thereafter. The profile is similar for Africa.

North America, which was at the centre of the GFC, and often regarded as the generating
market in the literature, reveals that as a recipient it sees very small effects from other regions
on its own CDS spreads. There is a slight period at the height of the turmoil around Lehman
Bros where the impact of transmission from other markets was statistically amplifying North
American CDS premia, and evidence that thereafter that the average (insignificant) effect is
positive. In contrast, the average effects spread from North America are statistically significant
and relatively large. Prior to 2008, the transmissions originating in the US had been dampening
CDS spreads since mid-2005. The first evidence of amplifying shocks occurs in late 2007 and
early 2008 and from the third quarter of 2008 until approximately the period associated with
the end of the NBER dated recession in mid 2009 the effects of US originated shocks clearly
amplify CDS premia elsewhere. A brief intermission of neutral to dampening shocks precedes
a further period of amplification in 2010-2011 associated with the debt crisis, before the US
transmissions become a stabilizing force from mid-2011 to mid-2012. This particular example
clearly demonstrates how much influence the US, as a central world market has on the rest of
the world, and how clearly the transmission channels can change in whether they amplify or
dampen the transmission of shocks. Clearly it is not sufficient to know which markets are on
average amplifying or dampening spreaders to each recipient, one needs also to keep track of

these effects over time.

4.4 Developed vs emerging markets

We segment the results on spillovers by stage of market development using the IMF classification
of developed, emerging and frontier markets, see Table 1. The contribution of shocks sourced
from markets at different stages of development to the recipient markets are illustrated in Figure
8.
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Figure 8: HDS indices for developed and emerging markets with 95% confidence intervals esti-
mated from equation (16).

The transmissions to developed markets from emerging and frontier markets (the top panel of
Figure 8) are relatively small. Emerging markets were a net source of dampening for developed
markets prior to the GFC, and have remained a source of increased premia since, although
this peaked during late 2008. The effects from frontier markets on developed markets are more
consistently positive, although less volatile. Emerging markets have received little increase in

CDS premia as a result of shocks from developed markets'? (in contrast to the centre and

2This finding is consistent with Chen et al. (2016) who found that emerging markets became economically
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periphery arguments of Kaminsky and Reinhart (2003), while shocks in frontier markets reduced
CDS premia in emerging markets prior to 2009 for a period until 2012. In the other direction,
however, frontier markets received substantial premium amplification from developed markets
after 2009, and particularly post the 2012 problems in European sovereign debt markets. Frontier
markets received more volatile effects from emerging markets - prior to 2009, emerging market
shocks were dampening frontier market spreads, possibly attracting investors to these markets

- but the risks were rapidly reassessed in late 2008, early 2009, and frontier markets suffered a
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Figure 9: Systemically important banks vs other banks and the rest of the world. A detailed
classification is presented in Table 2.

more resilient after the GFC.
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4.5 Global systemically important banks

Figure 9 provides spillover indices between banks which have been designated as globally system-
ically important (SIBs), other banks and other types of financial institutions. It is immediately
clear that the largest effects are apparent in shocks spreading from SIBS to Banks and other
types of institutions. The SIBs are clearly an import source of shock amplification, consistent
with the literature which supports regulating banks for systemic risk reasons. However, the
influence of shock amplification from SIBS to other entities is not more significant than ampli-
fication from other banks to other parts of the network. That is, while SIBs are important it is
not clear that to non-banks there is a huge distinction between SIBs and non-SIB institutions.
While SIBs were generally a source of amplifying shocks from 2008 onwards, the non-bank sec-
tor transmissions were dampening the transmissions to the banks. This may be an indication
of the successful application of policy which aimed to prevent credit restrictions from reducing
economic activity in the GFC period, but without a clear counterfactual it is difficult to be con-
clusive. The clearest message from the SIB and non-SIB distinction is that SIBs have a larger

and more certain amplifying effect on other banks than other banks do on SIBs.

4.6 Index distribution and moments

While the mean bilateral spillover, defined in (13), provides a summary of network activity,
it may obscure a great deal of relevant information, particularly if the degree distribution is
asymmetric and has significant kurtosis. This information is particularly valuable during the
crisis when banks with greater upper tail dependence have higher CDS spreads (see e.g. Meine
et al. (2016)). A more complete summary of spillover activity must take account not only of
the location but also of the shape of the spillover density. For a given moment ¢, one may
approximate the empirical distribution of pairwise spillover effects via kernel density estimation

(see e.g. Greenwood-Nimmo et al. (2017)).

Consider an h x 1 vector of grids z = (21, ..., 2)’, which covers the range of pairwise spillovers

in matrix C?. The density of pairwise spillovers is estimated from
1 1 - 2k — ¢
G () = — (———— K(ij) k=1,..h, 17
Ge(2) by (n(n — 1)) , Z , b (1)
i,j=1;i#]

where K is a kernel and b; is a bandwidth at time t. To ensure that §:(zx) integrates to unity

over the selected range of grid points, the following standard normalization is employed as

2 o Gi(z)
fe(zr) = 7RIE(gt) ) (18)

where RIE (gt) denotes a numerical Riemann sum of g; = (g4(21), ..., §:(21))’. Following Silver-
man (1986), a Gaussian kernel with the rule-of-thumb bandwidth b; = 1.067(n(n — 1))7%2, is
considered as a benchmark, where 7; is the cross-sectional standard deviation of cﬁj. However,

given that the spillover density exhibits departure from normality when working with CDS data,
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right and left skew might be pronounced.'?

In this section we combine the information on pairwise connectedness, C?, with the Granger-
causality approach to detecting network direction and significance of Billio et al. (2012) and
Merton et al. (2013). This approach reduces the dimensionality of the problem, by removing
all non-Granger caused links. Billio et al. (2012) propose that Granger-causality links have
an advantage over direct correlation in providing a lead-lag dimension. Significant Granger
causality from entity ¢ to entity s indicates that Y; has at least one significant lag predicting
the value of Yj, indicating that the perceived risk of entity ¢ defaulting predicts the perceived
risk of default of entity s. The edges of the network constructed from these Granger causality
links represent predictors of each node’s perceived risk of default. Moreover, Granger causality
established edges map clearly to the existing empirical frameworks for measuring and testing
contagion during financial crises via the formation and breaking of linkages (the overarching

framework for this is provided in Dungey et al. (2005)).

Once a VAR form of the model is estimated from (6), Granger causality between CDS spreads
Y; and Y; can be assessed using the Wald test

WT =[e-i] [e(Ve (YY) )] e-il, (19)

in which Y is the matrix of independent variables represented by CDS spreads, 7 denotes the
row vectorized coefficients of VAR discussed earlier, V = T Zle £:¢, and e is the k x 2(2k+1)

selection matrix

0100 ... 0 0 ...00]

0 0 01 0 O 0 0
e= :

00 0O 1 0 0 0

Each row of e selects one of the coefficients to set to zero under the non-causal hypothesis
Y, > Y.

The results of the Wald test indicating Granger causality are recorded as binary entries in matrix
A as

A= [&is]a

where
- { 0, if Y; does not Granger cause Y
18 —

1, if Y; Granger causes Y
Matrix A is used to construct the directional edges between sovereigns and banks.

Given the estimates of the matrix A and the spillover matrix C, the structure of the weighted

matrix can be characterized as

E:EOC,

where o is the Hadamard product. The elements of the adjacency matrix A now capture the

connectedness between entities conditional on the significant causal linkages between them. The

'3 An original DY spillover index often has a right skew and is bi-modal in some cases - requiring a careful
robustness check including alternative kernels and bandwidths.
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network defined by the adjacency matrix A shows the predictors of the risk of default subject to

a shock captured by the matrix C'. Using the entries of the matrix fT, system-wide completeness

is measured as 5
n =
Zi,j:l Qij
=~ i#j
N >y
i,j=1 Cij
i#j

(20)

The index distribution conditional on the Granger caused linkages between entities is obtained

by applying equations (17) and (18) to the non-diagonal entries of the matrix fT, Vt.
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Figure 10: Moments of the spillover density obtained from equations (17) and (18). Black line

- all 107, red - financial institutions, green - sovereigns.
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The first four moments of the HD spillover index estimates conditional on the Granger caused
linkages for all 107 nodes are shown in Figure 10, with the moments for the financial companies
and sovereigns indices given separately as the red and green lines respectively. Three things
are immediately apparent. First, both skewness and kurtosis of the combined and financial
institution networks are positive and co-move during the GFC, which implies significant default
risk premia in the financial industry. An interesting pattern in the skewness of these networks is
observed on the first day of the GFC (15th of September 2008) when the third moment jumped
up by more than 5 basis points. This finding is consistent with Fry et al. (2010) who argue that
higher moments are informative in predicting contagion. Second, the spillover variance for all
three networks increases across the sample. Moreover, there is a distinctly observable shift from
pre-2008 to post-2008 in the level and volatility of each of the indices. Third, while before and
during the GFC volatility of the combined network is mainly driven by financial institutions
- after the European debt crisis of 2010 the variance of the combined network emanates from
both financial institutions and sovereigns. Overall, the sovereigns can be distinguished from the
financial institutions in that the increase in variance, skewness and kurtosis comes later in the
sample, closer to the problems associated with the Greek and subsequent European sovereign

debt crisis.

To summarize the evolution of the whole degree distribution for each time t we construct a
sequence of t = 1,...,T spillover densities. The pre-crisis period is considered as a benchmark
characterized by a density f,., which is compared with f.., a density during a crisis. Using the
following common divergence criteria, an evolution of the spillover density from a non-crisis to

a crisis phase can be assessed as

DH(fcra fnc) = SuPz‘fcr - fnc|/3upzfnc(z)a (21)

DM(for, fre) = / o2z — Fuel(2)ld, (22)

where fcr is the estimated density during the crisis, DH is the Hilbert norm and DM is the
distribution mass difference. Each of these quantities is non-negative and takes the value zero
if fcr = fne- Moreover, DM € [0,2], with DM = 2 when fcr and f,. do not overlap at all over
the selected range of grid points.

Using the same spillover densities for the combined network as in Figure 10, we estimate DH
and DM quantities for each day t. A non-crisis density fn. is obtained from the historical
decomposition spillovers in December 2004. As follows from Figure 11 both DH and DM
measures show similar patterns, namely between 2005 and 2007 the difference between the crisis
and non-crisis spillover distributions increases and achieves its peak in July 2011. This peak
concurs with the beginning of the second economic adjustment programme when Euro area
leaders agreed to extend Greek (as well as Irish and Portuguese) loan repayment periods from 7
years to a minimum of 15 years and to cut interest rates to 3.5%. After July 2011 the divergence
stays at the same level a sign of a deep crisis in the financial and sovereign CDS markets,
confirming the results of Oh and Patton (2016) that the joint probability of distress (a measure
of systemic risk) is substantially higher after 2011 than in the pre-crisis period. This finding is
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also consistent with the pattern of increasing variance from Figure 10, which allows to consider
volatility in the CDS market as the main source of systemic risk. Overall, the analysis of the
spillover density across a range of moments permits a deeper understanding of the changing

interconnectedness of the global CDS market.

Hilbert norm
0.7 T T

o
Jan-2005 Jan-2006 Jan-2007 Jan-2008 Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013

Distribution mass difference
T

| I I I I I I I I
o
Jan-2005 Jan-2006 Jan-2007 Jan-2008 Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013

Figure 11: Hilbert norm and Distribution mass difference estimated from equations (21) and
(22) respectively for all entities.

5 Conclusion

This paper has shown how an alternative decomposition of the information available in a VAR
representation of the strength of network linkages between markets can provide information on
sources, direction and whether links amplify or dampen the transmission of shocks across a
network. We show how the work relates to the popular (unsigned) Diebold and Yilmaz spillover
index, and the extra information which can be obtained by knowing not only the source, direction
and relative size of shocks, but also the sign (amplifying or dampening) of their impact. We
emphasise that this is a different finding from direction. The direction of a shock indicates the
flow of a causal event in one node to the other node. The contribution of signing indicates
whether that transmission has a positive or negative impact on the volatility of the target node.
This is important for policymakers as not all transmissions necessarily increase volatility, and it

may be advantageous during periods of stress to be able to identify and target channels which
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exacerbate conditions whilst allowing those which calm them to remain. An example of where

these mechanisms are debated in the literature concerns the role of short-sales restrictions.

The proposed interconnectedness measure based on historical decompositions is easy to imple-
ment since it does not require a rolling window estimation or any normalization scheme (although
these can be imposed if desired). The distribution of our index is asymptotically normal. The
orthogonality of elements of historical decompositions permits us to obtain analytical standard

errors of the proposed index.

Our empirical findings confirm that both sovereigns and financial institutions significantly con-
tribute to systemic risks of the global CDS market. During the GFC both sovereigns and financial
institutions induced high connectedness associated with positive variations in CDS spreads, while
after the European debt crisis high spreads were also present for sovereign issuers. Banks are
found to be the largest spreaders of shocks, while financial institutions mainly receive systemic
risk from others. Developed and emerging countries spread a significant amount of risk which
was absorbed by frontier markets. Systemically important global banks used connections with

other banks as a critical link in the combined network.
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Appendix A: Asymptotic distribution for the spillover index based on historical

decompositions
The following result from Liitkepohl (1990) is used to prove propositions 1 and 2:

(i) Let v be a vector of parameters and 4 be its estimate. Then
VI(3—7) % N(0,3,), (23)

where T is the sample size. Let F(7) = (F(71), ..., F(vm))" be a vector-valued continuously
differentiable function with 0F;/0y" = (9F;/dv;) # 0 at v. Then

d OF _ OF
TF(®)—F N0, =—X,—). 24
VTIF(§) = F(7)] = (,a,y “/87) (24)
The partial derivative of the historical decompositions H D; are computed as
U — Ovec(HD;) aveC(Zf;:lO Yi-m-10IRF,)
T 8"7/ - 67’]/
B i Ovec(Yi_m—1 0 IRFy,)
m=0 677
i—1
= DIAG(Ti_ ) YR m) (25)
m=0 87"
i—1
= > DIAG(Yi-m-1)Gm, (26)
m=0

where DIAG(Y;_,,—1) denotes the diagonal matrix displaying the elements of vec(Y;_,,—1) along
its diagonal. A derivation of G,, is presented by Liitkepohl (1990). To obtain equations (25)
and (26) the following results from Magnus and Neudecker (1985) are used:

dvec(Y o IRF)
on’

Ovec(Y)

= DIAGURF) =5 =+ prac(r) 2eUEE),

(27)

The first term of equation (27) vanishes asymptotically as T goes to zero due to E(e;) = 0. This

proves Proposition 1.

For proving Proposition 2 notice that elements of a historical decomposition matrix HD; are
orthogonal by construction and for this reason the elements of this matrix are independent
normal random variables. Consequently equation (13) can be used to obtain an asymptotic

covariance matrix of HDS?. In particular, for i = 1,2, ..., standard errors are computed as
diag(W; %, ¥;/T)"/?,

which proves Proposition 2.
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