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Abstract 

Using January 2005 – June 2007 trading data for all NYSE stocks we identify the 

informational patterns and impact of exogenous shocks in short sales and option trades 

upon stock price changes.  We find that short sales have more predictive power than put 

option trades. However, if short selling volume is low put options trading does have 

predictive power and thus may be a substitute used by informed investors.    
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1. Introduction 

Two major venues that mostly informed investors use, short sales and put options 

trading, are both found to contain privileged and negative information (e.g. Chakravarty, 

Gulen, and Mayhew, 2004; Cao, Chen, and Griffin, 2005; Diether, Lee, and Werner, 

2009; Hao, Lee, and Piqueira, 2013; and etc). Nevertheless, whether short sellers and put 

option traders are equally informed is not clear. Further, whether or not informed trading 

in short sales and put option trades are essentially substitutes is also an open question. We 

provide answers to these questions.  

Early theory (Black, 1975; Easley, O’Hara, and Srinivas, 1998) suggested that 

informed traders participate in both option and short equity markets. Subsequent 

empirical studies supported to varying degrees the presence of informed trading in both 

markets, which then in turn may be revealed in the equity market. However, the evidence 

regarding which market is the primary venue for the most informed traders is still mixed. 

Anthony (1988) analyzed the relationship between option and stock markets and shows 

that call option trading volume predicts trading in the stock market on the next day. But 

Chan, Chung, and Fong (2002) found that informed investors prefer to trade directly in 

the stock market. Studies directly comparing the informativeness of option traders and 

short sellers are few.  

Short sales are driven by public and private information. However, put option 

trades can be driven not only by information but also by liquidity shocks and hedging 

needs (Chesney, Crameri, and Mancini, 2015). For this reason, we expect that a number 

of short sales and put option trades are not made by the same group of investors. 

Compared to put options trades, short sales, in turn, should contain different information 
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content. Moreover, as short sales are mostly information driven, and put options trades 

are driven by different reasons, we conjecture that short selling contains more 

information, i.e. predictive power, than put option trades, i.e. causality flows form short 

selling to put option trading and stock price changes. We find this to be true in general, 

but under certain circumstances put option trading has more predictive power. We 

quantify the contribution to price discovery for these two groups of informed investors.  

Using January 2005 – June 2007 trading data for all NYSE stocks, we determine 

the information precedence of short sales and put option trading. We extend Hasbrouck’s 

(1991) bivariate VAR model of stock market trades to also include put option trades and 

short sales, and determine the optimal model by lag length tests on the independent 

variables, and Wald tests of the vector of coefficients of each independent variable rather 

than t-tests of individual coefficients. This approach confirms Granger causality tests and 

combined, determines the direction of information flows, or predictability. Then, with 

these orderings we specify a Choleski decomposition which allows us to identify the 

VAR and calculate impulse response functions (IRFs). These responses to shocks in short 

sales and put option trades and their persistence in each market allow us to compare the 

informational patterns of short sales and put option trades.  We repeat this for subsamples 

based on short and put option trading intensity. 

In general, the VAR results suggest short sales can predict future stock returns, yet 

options cannot. This is consistent with the recent finding that option trades do not contain 

as much information as short sales (see, Hao, Lee, and Piqueira, 2013; Muravyev, 

Pearson, and Broussard, 2013). The impulse response functions indicate that stock prices 

respond negatively to a shock in short sales for one to two days, and do not exhibit any 
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statistically significant response to the shock in put option trades. This then suggests that 

short sales contain information that takes longer to incorporate into stock prices than put 

option trading.  

According to our finding and the empirical evidence from the recent literature (e.g. 

Hao, Lee, and Piqueira, 2013), short sales contain more information. However, the 

literature suggests put options can be informed under some circumstances, such as when 

selling stock is expensive or there are some other restrictions to sell stocks short1. To test 

whether market conditions influence whether put options and short sales can be 

substitutes, we analyze several subsamples.  We partition our sample by volume of short 

sales and put option trades, re-estimate the VAR and IRFs.  For heavily-shorted stocks, 

short sales always have predictive power for future stock returns. However, we do not 

find that put option trades of also heavily-shorted stocks has any significant predictive 

power for future stock returns, regardless of the amount of put options traded on the same 

underlying stocks. However, an important finding is that for lightly-shorted stocks, put 

option trades show predictive power for future stock returns. This can be due to short 

sales constraints so that most of informed traders reroute to put option trading venue 

(Figlewski and Webb, 1993). This finding holds only when put option trading is intensive 

and short selling is not.  

The impulse responses further confirm that short sales contain more information. 

The impulse responses for subsamples show the similar subsample variations. For 

heavily-shorted stocks, stock returns to the shock in short sales exhibit a negative 

                                                           
1 Non-comprehensive list includes Figlewski and Webb (1993), Danielsen and Sorescu (2001), and Blau 

and Wade (2011).  
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response. Stock returns to the shock in put option trades exhibit no significant response 

regardless of the amount of put options are traded. For lightly-shorted stocks, the stock 

returns show a temporary negative response to the shock in put option trades for about a 

day, conditional on the fact that put option trading is intensive (high put-to-stock ratio). 

When put option trading is not intensive, stock returns show no response to option trades. 

However, the stock returns still exhibit significant and negative responses to the shock in 

short sales regardless of the amount of shares sold short. These results combined suggest 

that short sales contain more information in general and expedites the price discovery 

process,2 and put option trading is an alternative channel for informed investors to trade 

under certain conditions, i.e., if short selling is limited.  

The effect of option trading on price discovery is less clear. Easley, O’Hara, and 

Srinivas (1998), Chakravarty, Gulen, and Mayhew (2004) and Cao, Chen, and Griffin 

(2005) find evidence to support Black’s (1975) thesis that option trading contains 

information, while a more recent study by Muravyev, Pearson, and Broussard (2013) uses 

disagreement events in which the stock and options markets disagree about the stock 

price, and argue that option trading doesn’t provide an economically meaningful 

contribution to price discovery. Another recent work by Johnson and So (2012) find that 

the option to stock volume ratio (O/S) reflects private information; Hu (2014) find that 

stock order imbalance induced by option order imbalance predicts future stock returns in 

a cross section model.  Our finding that put option trading contains information only 

when short selling is limited supports and complements the literature discussed above as 

to whether this effect exists.  

                                                           
2  See, e.g. Boehmer, Jones, and Zhang (2008), Diether, Lee, and Werner (2009) and Boehmer and Wu 

(2013). 
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Our results extend and complement both streams of literature, by providing 

evidence that short sales have predictive power for stock price revisions, the temporal 

pattern of that predictive and under certain conditions put options trading does as well. 

The VAR and IRF results suggest that the role short selling plays in the price discovery 

process is much more important than put option trading.  

The next section of the paper presents data and sample selection. Section 3 presents 

our methodology. Section 4 discusses main empirical results. Section 5 analyzes the 

subsamples and the cases in which put option trading may substitute for short selling. 

Section 6 concludes.  

 

2. Data and sample 

The empirical analysis in this study employs several different data sources. 

Because we are interested in how the markets adjust to shocks in fundamentals and the 

equilibrating process may be lengthy, especially for smaller companies, we use daily data 

rather than intra-day data.  We employ 4 variables to proxy trading activity: daily short 

ratio, daily stock turnover, daily stock returns, and daily put option volume scaled by 

stock volume (P/S ratio). In order to calculate the daily short ratio, we first obtain 

intraday short selling data from Reg SHO. The Reg SHO dataset provides intraday short 

volume for all stocks traded on NYSE during January 3, 2005 to July 6, 2007. We 

aggregate intraday short volume into daily volume for each stock in our sample, then we 

calculate the daily short ratio as the daily short volume scaled by stock trading volume. 

Daily stock returns and turnover are obtained from CRSP. Daily put option volume is 

retrieved from Option Metrics, which contains data on all US exchange-listed equities 
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and market indices, as well as all US listed index and equity options. We require every 

underlying stock in our sample to have at least 100 active trading days in any of the 

venues, and our sample covers 442 NYSE listed stocks that have active trading in both 

markets. Our sample is one of the largest in most relevant studies (comparable to 467 

stocks in Grundy, Lim, and Verwijmeren (2012) and much larger than 45 NYSE stocks in 

Hao, Lee, and Piqueira (2013) and 39 stocks in Muravyev, Pearson, and Broussard 

(2013)). All the variables are defined in Appendix 1. 

Table 1 provides a summary of descriptive statistics of all variables in our sample. 

Panel A presents the summary statistics with a balanced sample, in which all the 

observations are dropped if any variable is missing3. Panel B presents the summary 

statistics for an unbalanced sample setting, in which each variable has its actual number 

of observations during the sample period. The summary statistics in both panels provides 

similar statistics. Consistent with prior literature, the average daily stock trading volume 

is larger than the highest option daily put volume. In addition, the average daily short 

volume is about 15.6% (15.2% for the balanced sample) of the average daily stock 

trading volume, also as found in the prior literature (e.g. Hao, Lee, and Piqueira, 2013).  

[Insert Table 1 about here] 

3. Methodology and model  

While existing studies have discussed the informational ordering of multiple 

markets, they do not quantify the size or duration of adjustments to new information, and 

do not provide formal Granger causality tests on the informational ordering of multiple 

                                                           
3 All variables in our study are truncated at 1% and 99% levels.  
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markets and the optimal lag length tests when employing the VAR model. Thus, our first 

task in determining the informational ordering is to calculate pair-wise Granger causality 

tests and block exogeneity tests on daily stock returns and daily trading volume of stock, 

options, and short markets. The prerequisite for calculating the impulse response 

functions is to identify the model, either with structural constraints or alternatively a 

recursive ordering. Because theory does not provide guidance on structural constraints, 

we identify the model via Choleski decomposition based on the recursive ordering 

determined by the series of Granger causality tests. Given these, we then determine the 

optimal lag length, estimate the VAR, and calculate the impulse response functions. We 

present the model and the sample characteristics step by step in the following subsections.  

3.1. Pre-analysis 

3.1.1. Stationarity 

Before all formal tests, it is important to understand the statistical properties of all 

variables in our sample. Stationarity rules out spurious correlation and is a desirable 

characteristic for the variables in a VAR model.  

Therefore, for each of the four series we conduct panel unit root tests including 

Levin; Lin; Chu, Pesaran and Shin; ADF-Fisher; and PP-Fisher unit root tests on all 4 

variables. All unit root tests reject the null hypothesis of the existence of a unit root, 

suggesting that all series in our sample are stationary (results are presented in Appendix 

2).       

3.1.2. Granger causality   
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After confirming the mean stationarity of all 4 variables, we conduct a series of 

pair-wise Granger causality tests, a block exogeneity test and Wald tests to determine the 

informational ordering of the equity trading, put option trades, and short sales. 

Pair-wise Granger causality tests are presented in Appendix 3, and Table 2 reports 

the results of the block exogeneity test. From pair-wise Granger causality tests, there is 

bi-directional causality between all variables except P/S ratio. In addition, the exogeneity 

tests reported in Table 2 suggests, at best, a weak linkage between put option and equity 

trading. Therefore, we order the variables based on the relative significance of the 

causality tests. According to the causality tests statistics, the informational ordering is 

stock return, stock turnover, short ratio, and put ratio.  

[Insert Table 2 about here] 

3.2. The model 

In effect, we expand Hasbrouck’s (1991) bivariate VAR model to a four variable 

VAR, identified via a Choleski decomposition and then estimate the impulse response 

functions4. We may write the structural VAR as:  

𝐵𝑥𝑡 = 𝛾0 + ∑ 𝛾1
𝑝. 𝑥𝑡−𝑝

𝑝
𝑖=1 + 𝜀𝑡                                                              (1) 

To identify the model we define the restricted B matrix as: 

𝐵 = [

1 𝑏12 𝑏13 𝑏14

0 1 𝑏23 𝑏24

0 0 1 𝑏34

0 0 0 1

] ; and 

                                                           
4 Note we may also employ generalized IRFs which are invariant with respect to the ordering.  But, to the 

extent we can employ information from the Granger causality tests and the Wald Tests the Choleski 

decomposition is preferred. We order variables based on the significance of the Granger causality statistics. 
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 𝛾0 = [

𝑏10

𝑏20

𝑏30

𝑏40

] ;                𝑥𝑡 = [

𝑥1𝑡

𝑥2𝑡

𝑥3𝑡

𝑥4𝑡

] ; 

 𝛾1
𝑝 = [

𝛾11 ⋯ 𝛾14

⋮ ⋱ ⋮
𝛾41 ⋯ 𝛾44

]

𝑝

𝑎𝑛𝑑   𝜀𝑡 = [

𝜀1𝑡

𝜀2𝑡

𝜀3𝑡

𝜀4𝑡

] ;   where 

𝑝 is the lag length and  𝑥1𝑡 is daily P/S ratio, 𝑥2𝑡 is daily short ratio, 𝑥3𝑡 is daily 

stock turnover, and 𝑥4𝑡 is daily stock return for a particular stock on day t. (See variable 

definitions in Appendix 1).   

The order of the individual variables in this vector is determined as above and 

correspondingly, we then impose the restrictions of the Choleski decomposition that 

defines the individual elements of the B matrix: 

          𝑏21 = 𝑏31 = 𝑏32 = 𝑏41 = 𝑏42 = 𝑏43 = 0.   

Multiplying by 𝐵−1 provides the reduced form VAR 

𝑥𝑡 = 𝐴0 + ∑ 𝛾1
𝑖𝑥𝑡−1

𝑝
𝑖=1 + 𝑒𝑡                                                                                (2), 

where  

          𝐴0=𝐵−1 𝛾0, 𝐴𝑖=𝐵−1𝛾1
𝑝
, and 𝑒𝑡 = 𝐵−1𝜀𝑡. 

From Enders (2009), equation (2) can be estimated by OLS.  The results confirm 

the Granger causality tests, and we can then determine the system optimal lag length.  By 

employing optimal lag length tests and comparing AIC (Akaike Information Criterion) 
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and SIC (Schwartz Information Criteria), we find that the optimal lag length for 

estimating our VAR is 10.  

Impulse response functions allow us to examine the dynamic response of 𝑥𝑡 to the 

shock in 𝜀𝑡. Assuming the stability conditions are met we can rewrite equation (2), the 

VAR, as a vector moving average equivalent (e.g. Swanson and Granger, 1997): 

𝑥𝑡 = �̅� + ∑ 𝐴𝑖
𝑝
𝑖=0 𝑒𝑡−𝑖                                                                                            (3), 

and since 𝑒𝑡 = 𝐵−1𝜀𝑡 we can write  

          𝑥𝑡 = �̅� + ∑ 𝐴𝑖
𝑝
𝑖=0 𝐵−1𝜀𝑡                                                                                         (4). 

          Letting ∅𝑖 = 𝐴𝑖𝐵−1 we can write 

          𝑥𝑡 = �̅� + ∑ ∅𝑖
𝑝
𝑖=0 𝜀𝑡                                                                                                (5). 

The sixteen elements of ∅0  are the impact multipliers of a shock, or the 

instantaneous responses to a change in 𝜀𝑡 , and the elements of ∅1  are the one period 

response of a change in 𝜀𝑡. Similarly, for i = 2, 3, …, p.  Plotting these provides the 

impulse response functions, which depict the response of any element of 𝑥𝑡 to a shock in 

any of the other elements. We assume analytic standard errors to calculate the +/-2s 

bounds for the impulse response functions.  

4. Empirical results 

4.1. Baseline results 
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The estimated coefficients of the VAR with an optimal lag length of 10 lagged 

trading days confirm the Granger causality tests and the informational roles of short 

selling and put option trading. Then, and more importantly, by identifying the VAR via 

Choleski decomposition we can calculate the impulse response functions and know the 

magnitude, statistical significance, and duration of the impact of an informational or 

unexpected shock in one market on the others. In the following subsections, we provide 

the VAR results, the identified VAR, and impulse response functions. 

From the prior literature (e.g., Diamond and Verrecchia, 1987; Boehmer, Jones, 

and Zhang, 2008; Diether, Lee, and Werner, 2009; inter alia) and our Granger causality 

and block exogeneity test results, short sales have greater predictive power for stock 

returns, i.e., contain more information, than put options. Regarding the informational role 

of put option markets, the pair-wise Granger causality tests, and block exogeneity tests 

above do not provide clear evidence of predictive power.  Now we provide additional 

evidence as to whether informed trading is present in put options markets.    

Table 3 presents the VAR results of estimating equation (2) with optimal lag length 

of 10 days. Panel A presents the estimates of the VAR model, and Panel B reports the 

Wald tests of coefficients in the daily stock returns equation.  

[Insert Table 3 about here] 

In Panel A, each column presents a model of each variable in the VAR as the 

dependent variable.  For space reasons the coefficients of only the first three lags are 

reported even though our Wald tests are for 10 lags.5 In column 1, we find that the lagged 

                                                           
5 Full results are reported in Appendix 4.  
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short ratios have predictive power for future returns to the extent that the coefficients of 

some individual lags are statistically significant. However, lagged put ratios are not 

statistically significant. This is consistent with the previous Granger causality tests.  

While examining individual coefficients is informative, a more appropriate test of 

an individual variable’s predictive power in any equation is the Wald test for the vector 

of lagged coefficients.  These results are presented in Panel B.  We find that in the daily 

stock returns equation the vectors of coefficients of daily stock returns, daily stock 

turnover, and daily short ratio lagged 10 periods are statistically significantly different 

than 0, confirming the presence of informed trading in the short selling market. However, 

the vector of coefficients for put option trades 10 lagged periods is not significantly 

different from zero, consistent with Panel A results. The combined results in this 

subsection suggest that the information content of short selling is greater than put options 

trading to the extent that short selling has significant predictive power for future stock 

prices and put options does not.   

 To summarize, the identified VAR together with Wald test results in this 

subsection indicate the presence of informed trading in short selling market, which is 

consistent with prior research (see, e.g. Chan, Chung, and Fong, 2002; Boehmer, Jones, 

and Zhang, 2008; Diether, Lee, and Werner, 2009; Boehmer and Wu, 2013; Hao, Lee, 

and Piqueira, 2013; and etc). However, baseline results in this subsection do not find 

evidence of informed trading in the option markets (strong evidence as defined by the 

Wald test). To examine the nature of informed trading in short selling and put option 

trading, we now calculate impulse response functions based on the identified VARs in the 

following subsection. 
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4.2. Impulse response functions  

To better understand the strength and significance of the informational flows 

between both markets we now examine the effect of exogenous informational shocks that 

occur in one market upon all other markets, i.e., the impulse response functions. These 

provide an explicit measure of the magnitude and duration of the responses to the 

informational shocks.  The results illustrate the temporal nature of the market adjustments 

and the significance of short selling are important to the price discovery process.  The 

role of put options trading on price discovery is negligible. 

 Figure 1 reports the impulse responses of stock returns to a one standard deviation 

shock in short selling and put option trading. We find that stock prices exhibit a 

statistically significant and negative response to the shock in short selling around the first 

two trading days, and then becoming statistically insignificant. This is consistent with the 

finding of Diether, Lee, and Werner (2009) that increased short selling activities can 

predict negative abnormal future returns. The persistence of the response is evidence that 

short sellers have access to superior information ahead of the market.  

[Insert Figure 1 about here] 

In contrast to the response of stock prices to the shock in short selling, the response 

to the shock in put option trades does not show any significant response. The literature 

relating informational flows from options markets to the stock market is not conclusive. 

Easley, O’Hara, and Srinivas (1998) shows that informed traders trade in both equity and 

option markets. Several empirical studies such as Chakravarty, Gulen, and Mayhew 

(2004), and Cao, Chen, and Griffin (2005) also find supporting evidence on the presence 
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of informed trading in option markets. However, Chan, Chung, and Fong (2002) do not 

find evidence that option trading volume has predictive power on future returns.  The 

more recent study from Muravyev Pearson and Broussard (2013) finds that the option 

trading does not contribute to the equity price discovery process. So far our findings, in 

general, support the latter stream of literature.  

Together with the results in previous sections, it appears that short selling contains 

more information, and the information content of put options seems negligible. We 

understand that informed trading might happen at an intra-daily frequency. While it 

might be the case, it cannot change our general findings as our findings suggest that short 

selling still has predictive power for future stock returns for days.6 In the next section, we 

qualify our general results by examining subsamples defined by trading intensity in short 

selling and put options.     

5. Can put option trading substitute for short selling in price discovery? 

So far we find no evidence that put options have significant predictive power for 

future stock prices, but as noted above many authors suggest put options can be informed 

under some circumstances such as when selling stock is expensive or there are 

restrictions to short selling. Yet Grundy, Lim, and Verwijmeren (2012) find evidence that 

the short selling ban in 2008 restricts put option trading, suggesting that put options may 

not provide a substitute for short sales in the transmission of information to stock price 

revisions.  

                                                           
6 We also include contemporaneous variables in our model to control the intraday effect of informed 

trading, and the results don’t change. 
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To examine this possibility we partition our sample by short selling (short ratio) 

and put option trades (put ratio), and we conduct the same analysis for different 

subsamples. We assign stocks with average daily short ratio above median short ratio to 

high short group, and those stocks below median to low short group. We employ the 

same approach to assign stocks to high and low put group. Table 4 reports the VAR 

results for different subsamples. Panel A reports one-way sorting VAR results for four 

different sample:  stocks with high put ratios, stocks with low put ratios, stocks with high 

short ratios, and stocks with low short ratios. The coefficients of lagged short ratios are 

statistically significant for all subsamples, but the coefficients of lagged put ratios are 

significant only for the low short group. Thus in most cases short sales contain more 

information than put options regardless whether put option buyers are involved or not. 

However, when short sales are not heavily present, put options trading may serve as a 

substitute for short selling.  

Double sorting results from Panel B are consistent with this finding. In Panel B, 

lagged put options variables are not significant for most subsamples but are significant 

for the high put/low short sample, and the magnitude of the coefficients are larger than 

those for lagged short sales. This further explains the interaction between informed short 

selling and put options, as put options have no predictive power for future returns even if 

a stock is lightly shorted when put options are low for a particular stock.  

[Insert Table 4 about here] 

The impulse response functions for each put/short subsamples formed by double 

sorting are depicted in Figure 2. As expected, stock prices exhibit a statistically 
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significant response to the shock in short sales for all subsamples although the persistence 

differs for different subsamples. The only case in which stock prices exhibit a statistically 

significant response to the shock in put options is the high put/low short subsample, 

which reflects the VAR results. In Panel B of Figure 2, stock prices exhibit a statistically 

significant response to the shock in put options trading on about the fifth day after the 

shock and then dissipate permanently. Compared to the response to the shock in short 

sales lasting more than a few days for all subsamples, the response to the shock in put 

options is only significant conditional on lightly shorted stocks.  

[Insert Figure 2 about here] 

In sum, the results in this section provide one explanation for the different 

findings in the literature regarding the substitutability of short selling and put option 

trading. For the full sample we find that put options trading is not a substitute for short 

sales regardless of short selling constraints, which is consistent with Grundy, Lim, and 

Verwijmeren (2012). However, under certain circumstances, when put options traders are 

heavily involved but short sellers are not7, put options do have predictive power for 

future stock prices and thus likely contribute to the price discovery process (consistent 

with Figlewski and Webb, 1993; Danielsen and Sorescu, 2001; and Blau and Wade, 

2011).8 

6. Summary and conclusion 

                                                           
7  This can be due to short selling constraints or stock characteristics, and we are not examining the 

underlying reason for these. 
8 As shown in IRFs results for low short/high put subsample, the response of stock prices to the shock in 

put option trading is only significant for one day.  
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In this paper we use January 2005 – June 2007 trading data on short selling and 

option markets to identify (1) the presence of informed trading across markets, (2) the 

size and significance of the length of time that specific information shocks prevail in each 

market, and (3) how two trading venues and informed traders interact with each other in 

each market..  

Existing studies find mixed evidence on the presence of informed trading in short 

selling and options markets.  By employing Granger causality and block exogeneity tests 

and a VAR, we find evidence of informed trading in short selling and evidence of 

informed trading in the put options market when short ratio is low.  The impulse response 

functions show the exact magnitude and length of time for the responses to exogenous 

hypothetical shocks to dissipate. In general, we find that stock prices respond negatively 

to the shock in short selling for the first one to three days and then become insignificant.  

Our results suggest that put options trading may play a role in stock price discovery 

process to the extent that short selling is limited.  Options are mostly used as hedging 

purposes rather than arbitrage for both companies and institutional traders. While noise 

traders might use options to arbitrage as if they have the private information on the 

underlying stocks, our results suggest informed investors do trade in both short selling 

and the put options market. Informed trading present in short selling is more pervasive 

vis-a-vis trading in the put options markets.   
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Tables  

Table 1: Descriptive statistics 

This table reports summary statistics for all traded call/put options volume, the underlying stock 

return, the underlying stock trading volume, and short volume across all trading days during 

January 2005 – June 2007. Panel A reports the summary statistics for the variables with a 

balanced sample. Panel B reports the summary statistics for the variables with an unbalanced 

sample.  

 

Panel A: Balanced sample 

Variables N Unit  Mean  Median  Max  Min STD 

Rt 184,924 basis points 4.751 2.309 400.0 -376.5 135.8 

STOCKVOLt 184,924 1,000 shares 2,021 1,318 13,497 39.69 2,039 

SHORTVOLt 184,924 1,000 shares 315.6 216.4 1,789 13.20 292.5 

PUTVOLt 184,924 1,000 shares 1.053 0.236 14.26 0.002 1.950 

TURNt 184,924 

 

0.009 0.007 0.467 0.000 0.008 

PUTt 184,924 

 

0.001 0.000 0.196 0.000 0.003 

SHORTt 184,924 

 

0.156 0.164 0.133 0.333 0.143 

Panel B: Unbalanced sample 

Rt 191,997 basis points 4.854 2.262 400.0 -376.5 136.0 

STOCKVOLt 195,385 1,000 shares 2,096 1,346 13,497 39.69 2,153 

SHORTVOLt 197,050 1,000 shares 325.8 221.1 1,789 13.20 305.2 

PUTVOLt 200,723 1,000 shares 1.142 0.251 14.26 0.002 2.094 

TURNt 200,723 

 

0.010 0.007 0.467 0.000 0.010 

PUTt 195,385 

 

0.001 0.000 0.196 0.000 0.003 

SHORTt 195,385 

 

0.155 0.164 0.133 0.333 0.142 
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Table 2: Block Exogeneity Wald Test 

This table reports the Block exogeneity Wald test results for daily stock return, stock turnover, 

short ratio, call to stock ratio, and put to stock ratio. Each column represents the results when 

dependent variables are daily stock returns, stock turnover, short ratio, call to stock ratio, and put 

to stock ratio. *, **, and *** indicate significance at the 1%, 5%, and 10% levels. 

 

  Rt TURNt SHORTt PUTt 

 
Chi-sq Chi-sq Chi-sq Chi-sq 

Rt 

 

185.3*** 114.8*** 81.32*** 

TURNt 77.32*** 

 

139.0*** 35.36*** 

SHORTt 43.70*** 50.15***   70.15*** 

PUTt 8.68 49.09*** 75.60*** 
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Table 3: Vector autoregressive results  

This table reports the results of VAR model for daily stock return, stock trading turnover, put 

ratio, and short ratio. The results are estimated with 10 lags. Panel A reports the estimates of first 

3 lags. Panel B reports the Wald test of coefficients for the full ten lags on all independent 

variables. *, **, and *** indicate significance at 10%, 5%, and 1% level. 

Panel A: VAR results 

Lagged Variables 

1 2 3 4 

Rt TURNt SHORTt PUTt 

    
Rt-1 -0.009*** -0.006*** 0.13*** -0.001** 

Rt-2 -0.022*** -0.004*** 0.233*** 0.000 

Rt-3 -0.001 -0.004*** -0.083* 0.000 

TURNt-1 0.037*** 0.355*** 0.718*** 0.001 

TURNt-2 -0.022*** 0.118*** -0.396*** -0.001 

TURNt-3 0.002 0.066*** -0.224* -0.001 

SHORTt-1 -0.001** -0.000 0.357*** 0.001*** 

SHORTt-2 0.000 -0.001*** 0.059*** 0.000 

SHORTt-3 0.000 0.000 0.145*** 0.001*** 

PUTt-1 -0.009 0.045*** 1.431*** 0.175*** 

PUTt-2 -0.033 0.014 3.496*** 0.130*** 

PUTt-3 -0.026 0.012 -7.449*** 0.056*** 

  

    
Adj R-squared 0.002 0.548 0.682 0.525 

F-statistic 6.495 3,038 5,380 2,768 

Akaike AIC -5.917 -7.882 -0.288 -10.30 
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Panel B: Wald tests of coefficients 

  Null Hypotheses Chi-sq P-value 

Rt-i  (i=1,2,…,10) 

all coefficients of daily stock return from lag 

1 to lag 10 are zero. 

247.7 0.000 

TURNt-i (i=1,2,…,10) 

all coefficients of daily stock trading volume 

from lag 1 to lag 10 are zero. 

58.17 0.000 

SHORTt-i (i=1,2,…,10) 

all coefficients of daily short volume from 

lag 1 to lag 10 are zero. 

34.71 0.000 

PUTt-i (i=1,2,…,10) 

all coefficients of daily put volume from lag 

1 to lag 10 are zero. 

10.15 0.427 

Note: the optimal lag length for VAR is between 10 and 15 based on the optimal lag length tests 

and AIC/SIC test statistics. The results are similar when we employ the VAR when the lag length 

is allowed to vary between 10 and 15.    
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Table 4: Vector autoregressive results portioned by short selling and put option 

trading  

This table reports the results of VAR model for daily stock return, stock trading turnover, put 

ratio, and short ratio partitioned by short ratio and put ratio with the dependent variables as daily 

stock return. Panel A reports the results based on one-way sorting on short selling and put option 

trading, and Panel B reports the results based on two-way sorting on short selling and put option 

trading. The results are estimated with 10 lags and we report the estimates of first 3 lags. *, **, and 
*** indicate significance at 10%, 5%, and 1% level. 

 

Panel A: One-way sorting results 

Lagged variables High put Low put High short Low short 

  

  

  Rt-1 0.003 -0.022*** -0.005 -0.023*** 

Rt-2 -0.012*** -0.032*** -0.015*** -0.038*** 

Rt-3 0.000 -0.002 0.002 -0.009** 

TURNt-1 0.015 0.076*** 0.012 0.061*** 

TURNt-2 -0.011 -0.033*** -0.015 -0.044*** 

TURNt-3 -0.021* 0.028** -0.009 0.014 

SHORTt-1 -0.001* -0.001* -0.001*** -0.013*** 

SHORTt-2 0.000 0.000 0.000 -0.002** 

SHORTt-3 0.000 0.000 0.000 -0.001 

PUTt-1 0.002 0.002 -0.022 -0.198*** 

PUTt-2 -0.014 -0.035 0.001 -0.227*** 

PUTt-3 -0.038 0.139 -0.013 -0.127 

  

    
Adj R-squared 0.002 0.005 0.004 0.019 

F-statistic 3.817 7.758 5.533 32.27 

Akaike AIC -5.827 -6.013 -5.822 -6.064 
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Panel B: Two-way sorting results 

Lagged variables High put Low put 

 

High short Low short High short Low short 

Rt-1 0.004 -0.004 -0.015** -0.039*** 

Rt-2 -0.008 -0.025*** -0.021*** -0.049*** 

Rt-3 -0.001 -0.004 0.007 -0.014*** 

TURNt-1 -0.002 0.032* 0.043*** 0.094*** 

TURNt-2 -0.004 -0.040** -0.023 -0.049*** 

TURNt-3 -0.029* -0.014 0.013 0.046** 

SHORTt-1 -0.001** -0.016*** -0.005*** -0.011*** 

SHORTt-2 0.000 -0.002* -0.001 -0.002** 

SHORTt-3 0.000 0.000 -0.001 -0.003** 

PUTt-1 0.023 -0.167* -0.123 0.255 

PUTt-2 -0.000 -0.166* 0.023 -0.001 

PUTt-3 -0.021 -0.167* 0.155 0.229 

  

 

  

  
Adj R-squared 0.003 0.017 0.007 0.024 

F-statistic 3.051 13.43 5.844 21.36 

Akaike AIC -5.738 -5.983 -5.926 -6.141 
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Figures 

Figure 1: Accumulated impulse responses of stock return to a Choleski one standard 

deviation shocks in the activities of short selling/put options  

 

 
This figure exhibits the impulse responses of daily stock return to one standard deviation shocks 

in daily short ratio and put to stock ratio based on the VAR estimation in Table 3. The solid line 

denotes the impulse-response function and the dotted lines are +/- 2s  bands. 
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Figure 2: Impulse responses of stock return to a Choleski one standard deviation 

shocks in the trading activities of short selling/put options: partitioned by shorts 

selling and put option trading 

 

 
Panel A: Impulse responses for the stocks with both high put and high short ratios 
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Figure 2, cont’d  

 
Panel B: Impulse responses for the stocks with both high put and low short ratios 
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Panel C: Impulse responses for the stocks with both low put and high short ratios 
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Panel D: Impulse responses for the stocks with both low put and low short ratios 

This figure exhibits the impulse responses of daily stock return to one standard deviation shocks 

in daily short ratio and put to stock ratio based on the VAR estimation in Table 4, partitioned by 

put-to-stock ratio and short ratio. Panel A exhibits the responses for the stocks with both high put 

and short ratios, Panel B exhibits the responses for the stocks with high put and low short ratios, 

Panel C exhibits the responses for the stocks with low put and high short ratios, and Panel D 

exhibits the responses for the stocks with low put and low short ratios. The solid line denotes the 

impulse-response function and the dotted lines are +/- 2s  bands. 
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Appendix 

Appendix 1: Variable Definitions 

Variable name Definition Data source 

Rt Daily return (basis point) CRSP 

STOCKVOLt Daily stock trading volume CRSP 

SHORTVOLt Daily short volume NYSE Reg SHO 

PUTVOLt Daily put option trading volume Option Metrics 

PUTt 

Put to stock ratio, defined as daily put volume  

scaled by daily stock trading volume 

 

SHORTt 

Short ratio, defined as aggregate daily short 

volume scaled by daily stock trading volume 

 TURNt Daily stock turnover 
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Appendix 2: Panel unit root tests 

This appendix presents the results of panel unit root tests for all key variables used in VAR 

estimation. Each row presents the results of the unit root tests for the indicated variable. Levin, 

Lin,  Chu test is used for testing common unit root processes; Pesaran and Shin, ADF-Fisher, and 

PP-Fisher tests are used for testing the individual unit root processes. The numbers in parentheses 

are p-values.   

 

  
Levin, Lin  

Chu t-stats 

Pesaran and 

Shin W-stat  

ADF-Fisher 

Chi-sq 

PP-Fisher Chi-

sq 

Rt -165.1 -236.7 41,126 63,318 

p-value (0.000) (0.000) (0.000) (0.000) 

STOCKVOLt -159.4 -125.2 25,199 51,648 

p-value (0.000) (0.000) (0.000) (0.000) 

SHORTVOLt -156.8 -117.1 24,149 50,490 

p-value (0.000) (0.000) (0.000) (0.000) 

PUTVOLt -119.5 -124.8 28,657 50,993 

p-value (0.000) (0.000) (0.000) (0.000) 

Note: The null hypothesis for each unit root test here is the data follows a unit root process. For 

each variable every test can reject the null hypothesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 
 

Appendix 3: Pair-wise Granger causality tests 

This appendix presents the results of Pair-wise Granger causality tests for all key variables used 

in VAR. The first column states the null hypothesis of the underlying Granger causality of each 

pair of variables. Test statistics and p-value are reported in the last two columns.  

 

Null hypothesis Obs F-Statistic Prob.  

    
TURN does not Granger Cause R  190,787  8.950 <0.001 

R does not Granger Cause TURN    22.06 <0.001 

SHORT does not Granger Cause TURN  235,861  5.221 <0.001 

TURN does not Granger Cause SHORT    84.32 <0.001 

SHORT does not Granger Cause R  179,769  7.055 <0.001 

R does not Granger Cause SHORT    25.59 <0.001 

PUT does not Granger Cause R  93,356  0.674 0.749 

R does not Granger Cause PUT    2.714 0.003 

PUT does not Granger Cause STOCKVOL  124,061  32.82 <0.001 

STOCKVOL does not Granger Cause PUT    45.05 <0.001 

PUTVOL does not Granger Cause SHORT  123,246  40.94 <0.001 

SHORT does not Granger Cause PUT    47.37 <0.001 
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Appendix 4: Vector autoregressive results  

This appendix reports the results of VAR model for daily stock return, stock trading turnover, put 

ratio, and short ratio. The results are estimated with 10 lags. *, **, and *** indicate significance at 

10%, 5%, and 1% level. 

 

  1 2 3 4 

  Rt TURNt SHORTt PUTt 

Lagged Variables 

    
Rt-1 -0.009*** -0.006*** 0.13*** -0.001** 

Rt-2 -0.022*** -0.004*** 0.233*** 0.000 

Rt-3 -0.001 -0.004*** -0.083* 0.000 

Rt-4 -0.014*** -0.003*** -0.073 -0.000 

Rt-5 -0.015*** -0.001 -0.081* 0.000 

Rt-6 -0.016*** -0.001* 0.174*** 0.001*** 

Rt-7 -0.009*** -0.000 -0.117** -0.000 

Rt-8 0.007** 0.001 -0.064 -0.000 

Rt-9 0.009*** -0.000 -0.240*** -0.000 

Rt-10 0.016*** -0.001 -0.184*** -0.000 

TURNt-1 0.037*** 0.355*** 0.718*** 0.001 

TURNt-2 -0.022*** 0.118*** -0.396*** -0.001 

TURNt-3 0.002 0.066*** -0.224* -0.001 

TURNt-4 -0.006 0.073*** -0.030 0.001* 

TURNt-5 -0.001 0.058*** 0.015 0.000 

TURNt-6 0.019** 0.047*** 0.016 -0.000 

TURNt-7 0.003 0.034*** 0.175 -0.001 

TURNt-8 -0.012 0.047*** 0.092 0.000 

TURNt-9 0.003 0.036*** -0.315** -0.001* 

TURNt-10 0.012* 0.057*** 0.066 0.003*** 

SHORTt-1 -0.001** -0.000 0.357*** 0.001*** 

SHORTt-2 0.000 -0.001*** 0.059*** 0.000 

SHORTt-3 0.000 0.000 0.145*** 0.001*** 

SHORTt-4 -0.000 -0.000 0.072*** -0.000** 

SHORTt-5 0.000*** -0.000 0.034*** -0.000*** 

SHORTt-6 0.000 0.000* 0.005 -0.000 
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Appendix 4, cont’d 

  1 2 3 4 

  Rt TURNt SHORTt PUTt 

Lagged Variables 

    SHORTt-7 -0.002 0.000** 0.046*** 0.000*** 

SHORTt-8 -0.001 -0.000 0.088*** -0.000*** 

SHORTt-9 -0.001 -0.000** 0.051*** 0.000*** 

SHORTt-10 -0.001 0.000* 0.083*** -0.000*** 

PUTt-1 -0.009 0.045*** 1.431*** 0.175*** 

PUTt-2 -0.033 0.014 3.496*** 0.130*** 

PUTt-3 -0.026 0.012 -7.449*** 0.056*** 

PUTt-4 -0.001 -0.021** -2.569*** 0.068*** 

PUTt-5 0.013 0.007 0.053 0.066*** 

PUTt-6 -0.032 0.002 3.355*** 0.048*** 

PUTt-7 0.031 0.024** 1.861*** 0.064*** 

PUTt-8 -0.030 -0.030*** 2.548*** 0.048*** 

PUTt-9 -0.009 -0.001 1.201*** 0.087*** 

PUTt-10 0.037 -0.004 0.398 0.037*** 

  

    Adj R-squared 0.002 0.548 0.682 0.525 

F-statistic 6.495 3,038 5,380 2,768 

Akaike AIC -5.917 -7.882 -0.288 -10.30 
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