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A State Space Approach to Evaluate Multi-horizon Forecasts

Summary

We propose a state space modeling framework to evaluate a set of forecasts that target

the same variable but are updated along the forecast horizon. The approach decomposes

forecast errors into three distinct horizon-specific processes, namely, bias, rational error

and implicit error, and attributes forecast revisions to corrections for these forecast er-

rors. We derive the conditions under which forecasts that contain error that is irrelevant

to the target can still present the second moment bounds of rational forecasts. By eval-

uating multi-horizon daily maximum temperature forecasts for Melbourne, Australia, we

demonstrate how this modeling framework analyzes the dynamics of the forecast revision

structure across horizons. Understanding forecast revisions is critical for weather forecast

users to determine the optimal timing for their planning decision.

JEL classification: C32; C53

Keywords: Rational forecasts, implicit forecasts, forecast revision structure, weather fore-

casts
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1 Introduction

Forecasts for the same target are often provided multiple times before the target is realized.

One of the most familiar examples relevant to everyday life is weather forecasts. The maximum

and minimum temperatures and precipitation for a given day are forecast a few days in

advance, and the public receives updates of these forecasts at least once each day before the

target day. These multi-horizon weather forecasts play a significant role in decision-making

processes related to a wide range of economic activities Dell et al. (2014). For instance,

agricultural practices, such as irrigation schedules and timing for harvest operations, rely on

updated weather forecasts. Electricity generators receive electricity demand forecasts multiple

times before dispatch, and these demand forecasts are often updated as weather forecasts

are updated. To maximize the contribution of multi-horizon weather forecasts to planning

decisions, it is critical that forecast users understand the forecast revision structure across

horizons. Wang and Cai (2009) show that incorporating 7-day weather forecasts may increase

crop net profit by 20%, but that “perfect” two-week weather forecasts in the form of actual

weather data can achieve a 42% profit increase. Their study acknowledges the economic

significance of using longer-horizon weather forecasts in planning but also suggests that the

consequent economic benefits may depend on the trade-offs between the length of the forecast

horizon and the amount of relevant information contained in long-horizon forecasts. Therefore,

knowledge of whether forecast revisions contain information and how that information evolves

in a sequence of forecast revisions is crucial for forecast users to determine the optimal timing

for their decision making.

This paper provides a framework for forecast users, who may have little knowledge about

how forecasts are generated, to improve their understanding of the structure of forecast errors

and revisions across forecast horizons. Our modeling approach describes a general form of

multi-horizon forecast errors with three distinct horizon-specific processes: rational forecast
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error based on Muth’s (1961) rational expectation hypothesis, implicit forecast error based on

Mill’s (1957) implicit expectation hypothesis, and systematic forecast bias. Under this general

forecast error structure, we show that forecast revisions along horizons involve reducing the

rational forecast error by incorporating newly available information, adjusting for implicit

forecast error that is uncorrelated with the target, and correcting for systematic bias.

In the literature, the quality of multi-horizon forecasts is often assessed through rationality

tests. Nordhaus (1987) introduce the concept of weak forecast efficiency to evaluate whether

forecasts for the same target are rational. Weak-form efficiency requires that multi-horizon

forecasts have revisions that are independent of past revisions and past forecast errors. A

number of testing approaches have been built on this definition. Clements (1997) considers

the scenario where only a small number of fixed-events forecasts are made available and

proposes pooling series of multi-horizon forecast across multiple target variables to conduct

more powerful tests of weak-form efficiency. Clements and Taylor (2001) extend this approach

to allow for non-normally distributed forecast revisions. Davies and Lahiri (1995, 1999);

Davies et al. (2011) focus on a three-dimensional panel data approach where multi-horizon

forecasts are produced by multiple forecasters and develop tests of rationality in a generalized

method of moments framework.

In addition to forecast efficiency, rational multi-horizon forecasts also imply second mo-

ment bounds on the forecasts and forecast revisions. Patton and Timmermann (2012) propose

a suite of inequality tests based on ten monotonic patterns of second moments implied by the

rationality of multi-horizon forecasts. For example, mean squared rational forecasts should

weakly increase as the forecast horizon shrinks because the conditional expectation on a larger

information set at a shorter horizon has higher variance. Empirically, only a subset of the sec-

ond moment bounds could be rejected, suggesting irrational multi-horizon forecasts, whereas

the other bounds are retained, supporting the claim of rational forecasts. While the size and

power properties of the inequality tests might play a role, we argue that rationality tests are
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limited in gaining insight about the quality of multi-horizon forecasts from a mixed testing

outcome.

Deviating from the commonly used testing approach for rationality, this paper proposes

a modeling framework for evaluating a sequence of revised forecasts of the same target. We

address the benefits of utilizing our modeling approach from the following aspects.

First, because the specifications of forecasts subject to a single type of error are nested by

the specifications of multiple sources of error, model selection methods, such as information

criteria and log likelihood tests, can be employed to identify the best fitted error structure

of a given set of multi-horizon forecasts. When rational forecast error is estimated to be

effectively the sole error type, the multi-horizon forecasts are seen to be rational since revisions

are made purely for the purpose of adopting newly available information. Therefore, our

modeling approach provides an alternative method to rationality tests to evaluate the overall

performance of multi-horizon forecasts.

Second, the modeling approach helps to explain empirically why multi-horizon forecasts

may present only a subset of the monotonic properties of the second moments of rational

forecasts. We show that forecasts specified to contain only rational error satisfy all the second

moment bounds addressed in Patton and Timmermann (2012). When a substantial amount of

the forecast error is unrelated to the target (as opposed to future news that is relevant to the

target), some of the monotonic patterns of rational forecasts, such as those of the covariances

between the revised forecasts and the covariances between the revised forecasts and revisions,

always hold. However, the upper variance bounds of the revisions and the monotonicity of

the variances of the revisions may no longer be valid. We also derive the conditions under

which all the monotonic properties of the rational forecasts hold for multi-horizon forecasts

that contain implicit error components.

Furthermore, the estimation of our state space model that explicitly specifies an error

structure provides the estimated magnitude of each source of forecast revision at all horizons.
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Exploring the revision structure across horizons reveals the dynamics of how information

contained in the forecast revisions evolves when approaching the target time. Forecast users

are then able to identify the timing of the arrival of the largest amount of new information,

which may help them to evaluate the trade-offs between early planning and information in

long-horizon forecasts and to choose the optimal horizon forecast for making their planning

decisions.

We demonstrate our model-based multi-horizon forecast evaluation approach using a real-

time dataset of daily maximum temperature forecasts for Melbourne, Australia. Our results

suggest that the weather forecasts revised at a daily frequency up to 14 days before the

target day contain both rational and implicit errors. The composition of the sources for

forecast revisions changes along the forecast horizon, and the incorporation of newly available

information becomes the dominant attribute to revisions within a 7-day horizon. We find that

the largest amount of information arrives in the revised forecasts at 6 days out, indicating

that 6 days before the target may be the ideal time to consider temperature forecasts in

planning decisions. We also illustrate the value of the upgrade of NCEP’s Numerical Weather

Prediction model on May 22, 2012. The upgrade provides more relevant information in the

long-horizon forecasts and shifts the timing of the largest information arrival one day earlier

in the forecasts made 7 days before the target.

The remainder of this paper is structured as follows. In Section 2, we propose a model of

multi-horizon forecasts that contains multiple sources of forecast errors. In Section 3, we cast

our models of various error structures in a state space form. Section 4 studies the internal

consistency of the multi-horizon forecasts specified by our state space models. We evaluate

multi-horizon weather forecasts as an empirical illustration of our approach in Section 5, and

Section 6 concludes this paper.
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2 Multifarious errors in multi-horizon forecasts

In this section, we develop a model of multi-horizon forecasts that contain multiple sources

of error. We begin by outlining our assumptions and describing our most general model

specification. In the subsections that follow, we explain how the target variable and three

different types of forecast errors can be modeled as unobserved components.

2.1 A model of multi-horizon forecasts

Suppose forecast users are interested in evaluating multi-horizon forecasts of a stochastic

univariate process ỹ ≡ {ỹt; t = 1, 2, . . .}, where ỹt belongs to a general class of stochastic

processes and may be non-stationary. Let the forecasts of ỹt made at h periods earlier, i.e., at

time t−h, be denoted by ŷt|t−h. Suppose that the longest-horizon forecasts of ỹt are observed

at horizon h = H, where H > 1. As the target date approaches, forecast users observe a

sequence of forecast revisions, dt|h−1,h = ŷt|t−h+1 − ŷt|t−h, for the same target ỹt.

Our aim is to characterize a sequence of multi-horizon forecasts
(
ŷt|t−H , ŷt|t−H+1, ..., ŷt|t−1

)′
with a model that specifies one or more sources of forecast error. The target variable ỹt may

be observed at time t, for instance, weather variables such as the maximum temperature. In

this case, we assume the observed value yt = ỹt. The target also may not be observed at the

target time t. For example, GDP series are typically published after the target time and are

subject to data revisions during a long period after the target time.

We decompose forecasts ŷt|t−h as

ŷt|t−h = ỹt + βh + νt|t−h + ζt|t−h. (1)

Equation 1 indicates that the forecasting errors ỹt−ŷt|t−h nest three types of error: horizon

specific bias, −βh; accumulated unanticipated shocks during the forecast horizon after the

forecasts are made, −νt|t−h; and the error component unrelated to the target, −ζt|t−h. We
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discuss each type of error in the following subsections.

2.2 Rational forecast errors

The rational expectations hypothesis of Muth (1961) suggests that rational forecasters form

their expectations by effectively using all the available information; hence, the only source

of error is unanticipated information received after the forecasts are made. Let ωt−i with

i = h− 1, . . . 0 denote the unanticipated shocks that occur at each time point t− i after the

forecasting time t−h and before the target time t. Then, the target value of ỹt can be written

as

ỹt = ỹ∗t,h +

h−1∑
i=0

ωt−i, (2)

where ỹ∗t,h takes the target value at time t if there are zero unanticipated shocks over the

forecast horizon. A rational forecaster who is able to correctly use all the available information

at forecast time t−h and has no bias in forming expectations will produce a rational forecast

that is identical to ỹ∗t,h. Thus, the rational forecast

ŷt|t−h = ỹt −
h−1∑
i=0

ωt−i = ỹt + νt|t−h, (3)

and the rational forecast error is the accumulation of shocks ωt−i over the horizon, that is,

−νt|t−h.

We now analyze the properties of the rational forecast error. Assume each unanticipated

shock ωt−i = σωiηωi,t, where ηωi,t ∼ i.i.d.N(0, 1). Then, νt|t−h has a zero expectation and

possesses a number of distinct properties. First, equation (2) indicates that rational forecast

error is correlated with the target value, i.e., cov(ỹt, νt|t−h) 6= 0. Second, the unanticipated

shocks that occur after the forecasts are made are future information yet to be incorporated

into the rational forecasts; therefore, cov(ŷt|t−h, νt|t−h) = 0. Moreover, the variance of the
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rational forecast error, computed as E(−ν2
t|t−h) =

∑h−1
i=0 σ

2
ωt−i , is non-decreasing as the forecast

horizon h increases. This last property is intuitively appealing as we expect there to be

less relevant information available to forecasters at longer horizons. A decline in relevant

information will cause an increase in forecast uncertainty and an associated increase in the

variation of rational forecast errors. Lastly, on the basis of the first two properties, the variance

of the target exceeds the variance of the rational forecast.

2.3 Implicit forecast error

Forecasts may deviate from rational forecasts. Mills (1957) introduces the concept of “im-

plicit” expectation to describe the motivation of firms to hold inventories that deviate from

rational expectations of demand. This hypothesis was empirically tested by Lovell (1986). In

the scenario where rational forecasts of future demand are declining, a firm may still face a

relatively high demand forecast and hold inventories in order to reduce fluctuations in produc-

tion. Such forecast errors are formed due to consideration of the high costs associated with

rapid changes in production. They are uncorrelated with the actual demand but correlated

with the demand forecasts (as they are introduced by forecasters). The covariance properties

of implicit forecast error are opposite to those possessed by rational forecast error.

Implicit forecast error ζt|t−h is horizon specific but is typically not a function of horizon

h. It is modeled by

ζt|t−h = σζhηζh,t, (4)

where ηζh,t ∼ i.i.d. N(0, 1). The following covariance assumptions enable us to differentiate

them from the rational forecast error: 1) Cov(ŷt|t−h, ζt|t−h) 6= 0 and 2) cov(ỹt, ζt|t−h) = 0. If

multi-horizon forecasts are only subject to implicit forecast error, the variance of the target

must be less than the variance of the implicit forecasts. In contrast to the monotonic pattern

of rational forecast error, the variance of implicit forecast error, E(ζ2
t|t−h) = σ2

ζh
, may either
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increase or decrease as the forecast horizon shortens.

Forecasters may introduce implicit error into their forecasts with or without intention.

For instance, information used by forecasters may contain measurement error, which prevents

forecasters from using the information efficiently (Lovell, 1986). Depending on their experi-

ence, some forecasters may underreact or overreact to the arrival of new information without

intention (Isiklar and Lahiri, 2007). Nordhaus (1987) discusses a scenario in which forecast-

ers may wish to cultivate a reputation for producing stable forecasts and hence intentionally

introduce errors that are irrelevant to the target.

2.4 Bias

Both rational and implicit forecast errors have zero expectations; however, a large body of

research has empirically found non-zero bias in a wide range of forecasts, such as financial

analysts’ earning forecasts, gross debt forecasts and inflation forecasts. It is now well accepted

that forecasts can remain rational in the presence of bias if the forecasters’ loss function is

asymmetric (See Christoffersen and Diebold (1997), Lim (2001) and Patton and Timmermann

(2007)).

Therefore, we allow for a non-zero systematic bias as the third type of forecast error. We

assume that the bias βh is time-invariant but horizon specific 1 so that empirically, bias can

easily be distinguished from rational and implicit forecast errors.

1Note that although the forecasters’ learning process may indicate time-varying bias, in this paper, we
restrict the bias to be constant to avoid identification issues in the state space model estimation. The time-
invariant feature of bias is also consistent with Davies and Lahiri (1995).
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3 A state space representation of multi-horizon forecasts

3.1 A general structure

We cast the model for multi-horizon forecasts that contain multiple sources of error in a state

space form. The time-invariant state space model consists of a set of measurement equations

and a set of transition equations, that is,

yt = Zαt (5)

αt = Tαt−1 +Rηt. (6)

The measurement vector, yt = [ŷt|t−H , ŷt|t−(H−1), . . . , yt]
′
, stacks observed multi-horizon

forecast variables on the observed target variable, assuming H is the longest horizon at which

forecast users are provided forecasts for yt. In our most general model, the state vector is

partitioned as follows

αt =

[
ỹt Φ

′
t βh

′ ν ′t|t−h ζ′t|t−h

]′
, (7)

where Φt is related to the dynamics of the target, which will be explained in detail in sub-

section 3.3. Suppose the dimensions of Φt are b × 1 and that the state vector αt has length

(1 + b+H +H +H). The associated measurement equation is

yt =

[
Z1 Z2 Z3 Z4 Z5

]
·



ỹt

Φt

βh

νt|t−h

ζt|t−h


, (8)

where Z = [Z1 Z2 Z3 Z4] is a partitioned matrix conforming to the unobserved compo-
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nents of the state vector; Z1 = 1(H+1) (which is an (H + 1)× 1 vector of ones) is related to

the target variable component; and Z2 is 0(H+1)×b for the dynamic component of the target.

Z3, Z4 and Z5 are each [IH ,0
′
1×H ]′ (an H ×H identity matrix, atop a conformably defined

vector of zeros) and are related to the bias component, the rational error component and

the implicit error component, respectively. This measurement equation reflects the forecast

decomposition of equation (1) and also equates the observed value of the target variable yt

with the “true” unobserved target value ỹt
2.

Transition equations describe the dynamics of the unobserved components in terms of the

state vector



ỹt

Φt

βh

νt|t−h

ζt|t−h


=



T11 T 12 0 0 0

T 21 T 22 0 0 0

0 0 T 3 0 0

0 0 0 T 4 0

0 0 0 0 T 5


·



ỹt−1

Φt−1

βh

νt−1|t−1−h

ζt−1|t−1−h



+



R11 R12 0 R4 0

R21 R22 0 R24 0

0 0 R3 0 0

0 0 0 −U · diag(R4) 0

0 0 0 0 diag(R5)


·



ηξ,t

ηΦ,t

ηβh,t

ηωh,t

ηζh,t


, (9)

where U is an H ×H matrix with zeros below the main diagonal and each of the remaining

elements equal to one, and [ηξ,t,η
′
Φ,t,η

′
βh,t

,η′ωh,t,η
′
ζh,t

]′ ∼ i.i.d.N(0, I). Looking at the parti-

tions of the transition coefficient T , T11 is a scalar; T 12, T 21 and T 22 are 1×b, b×1 and b×b,
2In a scenario where the target value is unobserved, such as GDP series, the last row of the measurement

equation related to yt can be removed. This measurement equation can also be modified by adding measurement
error to ỹt in the last row to accommodate the scenario in which the observed target value is known to be
greatly affected by measurement error.
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respectively; and T 3, T 4 and T 5 are all H ×H. 0 is an H ×H null matrix. The partitions

of the loading coefficients R have similar dimensions to those in T , and R24,R4 and R5 are

all 1×H.

3.2 Specifications for forecasting errors

We first explain the blocks for the unobserved forecast errors. Since the bias is a horizon-

specific constant that does not vary over time, we set T 3 as an H × H identity matrix and

R3 as an H ×H null matrix. On the basis of the discussion in section 2.2, at each horizon

νt|t−h =
∑h−1

i=0 ωt−i =
∑h−1

i=0 σωiηωi,t; therefore, we let T 4 be an H × H null matrix and

R4 = [σωH−1 , . . . σω0 ]. The rational forecast error component is then given by

νt|t−h = −U · diag(R2) · η′ν,t =



−σωH−1 −σωH−2 . . . −σω1 −σω0

0 −σωH−2 . . . −σω1 −σω0

...
. . .

. . . −σω1 −σω0

0 . . . . . . 0 −σω0


·



ηωH−1t

ηωH−2t

...

ηω1

ηω0t


. (10)

Jacobs and Van Norden (2011) use this restricted specification of the loading matrix to model

the rational data revision process.

The implicit forecast error is horizon specific and uncorrelated across horizons. Thus,

the matrix T 5 is a null matrix, and the dynamics of the implicit component are completely

described by diag(R5), whereR5 is a row vector of standard deviations of the implicit forecast

error, i.e., [σζH , σζH−1
, ..., σζ1 ]. The equation below describes the process of implicit forecast

13



error:

ζt|t−h = diag(R5) · η′ζ,t =



σζH 0 . . . 0

0 σζH−1

. . .
...

...
. . .

. . . 0

0 . . . 0 σζ1


·



ηζH t

ηζH−1t

...

ηζ1t


. (11)

The most general model represented by equations (8) and (9) nests several simpler forecast

error structures. For example, by removing the blocks for bias βh, multi-horizon forecasts

that contain both rational and implicit errors are represented by

yt =

[
Z1 Z2 Z4 Z5

]
·



ỹt

Φt

νt|t−h

ζt|t−h


, and (12)



ỹt

Φt

νt|t−h

ζt|t−h


=



T11 T 12 0 0

T 21 T 22 0 0

0 0 T 4 0

0 0 0 T 4


·



ỹt−1

Φt−1

νt−1|t−1−h

ζt−1|t−1−h


+



R11 R12 R4 0

R21 R22 R24 0

0 0 −U · diag(R4) 0

0 0 0 diag(R5)


·



ηξ,t

ηΦ,t

ηω,t

ηζ,t


.

(13)

A state space form for multi-horizon forecasts subject purely to rational forecast error can

then be obtained by further restricting Z5 and R5 to be null matrices, that is,

yt =

[
Z1 Z2 Z4

]
·


ỹt

Φt

νt|t−h

 , and (14)
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ỹt

Φt

νt|t−h

 =


T11 T 12 0

T 21 T 22 0

0 0 T 4

 ·


ỹt−1

Φt−1

νt−1|t−1−h

+


R11 R12 R4

R21 R22 R24

0 0 −U · diag(R4)

 ·

ηξ,t

ηΦ,t

ηω,t

. (15)

Alternatively, in the absence of unanticipated new information over the forecast horizon,

multi-horizon forecasts may only consist of forecast error uncorrelated with the target. In this

case, we set Z4 in equation (12) to be a null matrix, and let R4 be a 1×H vector of zeros in

equation (13). The pure implicit forecasts are then given by

yt =

[
Z1 Z2 Z5

]
·


ỹt

Φt

ζt|t−h

 , and (16)


ỹt

Φt

ζt|t−h

 =


T11 T 12 0

T 21 T 22 0

0 0 T 5

 ·


ỹt−1

Φt−1

νt−1|t−1−h

+


R11 R12 0

R21 R22 0

0 0 diag(R5)

 ·

ηξ,t

ηΦ,t

ηζ,t

. (17)

3.3 Specifications for the target variable

We now discuss the dynamics of the target ỹt. Starting from equation (2) in section 2.2,

we specify the value of the target under zero unanticipated shocks over the longest forecast

horizon H as

ỹ∗t,H = ỹt−H + ξt, (18)
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where ξt = σξηξ,t. Since ξt is a part of the rational forecast of every horizon, it can be

interpreted as the anticipated change in ỹt compared with ỹt−H . Equation (2) can be rewritten

as

ỹt = ỹt−H + ξt +
H−1∑
i=0

ωt−i. (19)

Note that this equation is analogous to a random walk process. For forecast users who have

no knowledge of the true data generating process of the target variable, it is natural to expect

that the target value at time t is the same as the target value at the time when the forecasts

are made and that the actual deviations are driven by the accumulation of unanticipated

shocks that occur over the forecast horizon.

We specify the unobserved state variable Φt to be ỹt−H+1, which similarly to equation (19),

is equal to the value of the target variable in the previous period t−H plus an unanticipated

shock relevant to the target during the current period t − H + 1, as well as a remainder,

namely, εt−H+1. The blocks for the target variable in equation (9) are hence given as

 ỹt
Φt

 =

 ỹt

ỹt−H+1

 =

0 1

0 1

·
 ỹt−1

ỹt−H

+

σξ 0 σωH−1 σωH−2 . . . σω1 σω0

0 σε σωH−1 0 . . . 0 0

·


ηξ,t

ηε,t−H+1

ηω,t

 .

Specifically, the transition coefficients T11 = T 21 = 0 and T 12 = T 22 = 1, the loading coeffi-

cients R11 = σξ, R22 = σε, and R12 = R21 = 0 and R24 is a 1×H vector of [σωH−1 , 0, ..., 0].

3.4 Estimation and analysis of the forecast revision structure

We check the various state space representations of multi-horizon forecasts against the suf-

ficient conditions of controllability and observability provided by Harvey (1989) and Jacobs

and van Norden (2007). The parameters in the models discussed in the previous subsection

are identified.
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The maximum likelihood estimator with the Kalman filter is used to estimate the un-

observed component models. Since the specifications of the multi-horizon error structure

are nested, model selection methods, such as log likelihood ratio tests and the conventional

information criteria, may be implemented to determine the best fitted error structure.

The estimation of multifarious error models helps to gain insight into the sources of forecast

revisions across horizons. Suppose that the multi-horizon forecasts consist of all three types of

forecast errors and are modeled by equations (8) and (9). The differences between ŷt|t−(h−1)

and ŷt|t−h, namely, the marginal revisions made between two updating points t− (h− 1) and

t− h, are derived as follows,

dt|h−1,h = ŷt−(h−1) − ŷt|t−h

= βh−1 − βh + σωh−1
ηωh−1,t + ζt|t−(h−1) − ζt|t−h.

(20)

Therefore, the mean squared forecast revisions (MSFR) can be decomposed as

MSFRt|h−1,h = E(d2
t|h−1,h)

= (βh−1 − βh)2 + σ2
ωh−1

+ σ2
ζh−1

+ σ2
ζh
.

(21)

Equation (21) indicates that marginal revisions are made to correct bias (first term), to adopt

newly available information (second term) and to adjust implicit errors that are uncorrelated

with the target (the last two terms).

4 Internal Consistency

In this section, we discuss the internal consistency of the multi-horizon forecasts specified

by our state space representations. We focus on the monotonicity properties of the second

moment across forecast horizons. Patton and Timmermann (2012) analyze ten monotonic

patterns of the second moments of rational multi-horizon forecasts and utilize them to design
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inequality constraints to test rationality. Empirically, some of these inequality constraints are

often retained while others are rejected. Although a joint testing procedure, such as a Bon-

ferroni bound, can provide a pragmatic solution, rationality tests in general have limitations

for gaining insights into why forecasts empirically may only present a subset of the properties

for rational forecasts.

In the following subsections, we show that by decomposing forecast errors and revisions

into multiple types, our modeling approach for evaluating multi-horizon forecasts helps to

explain the mixed rationality testing outcomes of Patton and Timmermann (2012). We focus

on three specifications (assuming no bias 3), namely, rational forecasts (see equations (14) and

(15)), rational and implicit forecasts (see equations (12) and (13)), and implicit forecasts (see

equations (12) and (13)). We investigate whether each type of forecast satisfies the mono-

tonicity properties of the second moments of rational forecasts, and if not, what conditions

are required to validate the patterns. The results are summarized in Table 1, and the proofs

related to rational forecasts, rational and implicit forecasts, and implicit forecasts are included

in Appendices A.1, A.2 and A.3, respectively.

[Insert Table 1]

The first column of Table 1 lists the second moment bounds for rational multi-horizon

forecasts in relation to forecasts, forecast errors and forecast revisions. The first three rows

present the monotonicity of the variances. Rows four to six include the monotonicity for the

covariance between forecasts, the covariance between the target and forecast errors, and the

covariance between the target and forecasts. The covariance patterns and the upper variance

bounds related to forecast revisions are listed in the last four rows. The symbol “
√

” indicates

that the internal consistency presented in a particular row holds for the forecasts specified by

the state space representation named in the columns. We use the symbol “X” if a particular

3The assumption of no bias simplifies the proofs, and since we specify the bias to be horizon specific but
time-invariant, the internal consistency defined by the second moments is not affected.
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aspect of internal consistency does not hold.

4.1 For rational forecasts

The second column, titled “ Rational”, is for the multi-horizon forecasts that consist of only

rational forecast error. We have checked against each of Patton and Timmermann’s second

moment bounds for rational forecasts and conclude that the multi-horizon forecasts specified

by our rational forecast model possess all of the internal consistency properties defined by the

forecast rationality tests of Patton and Timmermann (2012).

4.2 For rational and implicit forecasts

For unbiased multi-horizon forecasts that have both rational and implicit forecast errors, we

report the results in the third column, titled “Rational & Implicit”. Regardless of the relative

sizes of the rational and implicit forecast errors, some of the monotonic patterns, such as

those for the covariances between forecasts, the two covariances related to the target and the

covariance between forecasts and revisions, always hold. This result indicate that even when

multi-horizon forecasts contain a substantial amount of forecast error irrelevant to the target,

some inequality constraints featuring rational forecasts can be retained by the rationality tests

of Patton and Timmermann (2012).

Furthermore, Table 1 indicates that when the compositions of the rational and implicit er-

rors satisfy certain conditions, multi-horizon forecasts that contain both types of error present

all the second moment bounds of the rational forecasts. With the exception of the upper vari-

ance bound for forecast revisions, these conditions compare the variances of the newly acquired

information between two updating points with the differences in the variances of the implicit

forecast errors. The following analysis of the compositions of the mean squared forecast errors

(MSFE) may help to understand these conditions.
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The MSFE of the rational and implicit forecasts made at a long horizon h = l is given by

MSFEt|t−l = E(e2
t|t−l) =

l−1∑
i=0

σ2
ωi + σ2

ζl
, (22)

and similarly, for the rational and implicit forecasts made at a shorter horizon h = s, we have

MSFEt|t−s =
s−1∑
i=0

σ2
ωi + σ2

ζs . (23)

The changes in MSFE thus take the form

∆MSFEt|s,l = MSFEt|t−s −MSFEt|t−l = −
l−1∑
i=s

σ2
ωi + σ2

ζs − σ
2
ζl
. (24)

This equation explicitly shows that the changes in MSFE are due to a reduction in the

rational forecast error (the first term) and correction of the implicit forecast error (the last

two terms). The relative size of these two sources determines whether MSFE can be lowered

by forecast revisions, specifically, when
∑l−1

i=s σ
2
ωi ≥ σ

2
ζs
− σ2

ζl
.

There are two possible forecast error structures that imply the rational component of

revisions dominates the implicit component of revisions and hence smaller MSFE values in

shorter horizon forecasts. First, if the rational forecast error outweighs the implicit error across

all forecast horizons, the variance of revisions dt|s,h increases and the variance of forecasts

ŷt|t−h decreases as the forecast horizon h extends further from the target date. Alternatively,

if revisions introduce more implicit error or fail to reduce the variance of the implicit error

in the previous long-horizon forecasts, then the differences in the variance of implicit error

between a short horizon and a long horizon must be no greater than zero, and hence less than

the (positive) variance of the rational component of the revisions.

In the last two rows, we report that the upper variance bound of the forecast revisions

for rational forecasts can also be applied to rational and implicit forecasts if and only if the

20



variance of the newly available information is no less than the sum of the variances of the

implicit forecast errors made at the two forecast times. This inequality condition relates to

the compositions of the MSFR. For example, comparing the forecasts made at point t− l and

t− s, we have

MSFRt|s,l = E
[
(ŷt|t−s − ŷt|t−l)2

]
=

l−1∑
i=s

σ2
ωi + σ2

ζs + σ2
ζl
. (25)

The first term in MSFRt|s,l, i.e.
∑l−1

i=s σ
2
ωi , is the same as the left side of the inequality

condition for the variance bound of dt|s,l. It measures the portion of MSFR due to utilizing

the new information available between two updating points. The right side of the inequality

condition σ2
ζs

+σ2
ζl

measures the MSFR due to adjustment for implicit errors that are irrelevant

to the target. This inequality restriction implies that if the new information accounts for more

than 50% of the overall MSFR, the variance bounds of the revisions for rational forecasts are

still valid, even if the forecasts contain implicit error.

Note that by using equation (24) and (25), we are certain that MSFRt|s,l > −∆MSFEt|s,l

as long as the short-horizon forecasts ŷt|t−s consist of implicit errors, i.e., σζs 6= 0. The

magnitude of MSFRt|s,l can be interpreted as the amount of effort that forecasters made

in the revision process, and −∆MSFEt|s,l measures the reward of the forecast revisions in

terms of forecast accuracy. Isiklar and Lahiri (2007) compare the effort and reward to assess

whether rational forecasters react to news in an optimal way. By allowing for an implicit

error component contained in the multi-horizon forecasts, we extend their interpretation of

the comparison. If the revised forecasts still contain error unrelated to the target, the revision

effort is always greater than the revision reward, and the revisions are seen to be suboptimal.

The revision effort can be fully compensated for if revisions eliminate the implicit errors; in

this case, the forecast revisions are optimal.
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4.3 For implicit forecasts

The last column of Table 1 shows that multi-horizon forecasts subject purely to implicit

forecast error can possess some second moment bounds for rational forecasts, despite the fact

that forecast revisions do not incorporate any new information. We derive the conditions

required and find that the monotonic pattern in the variance of implicit forecast error plays

the key role.

For example, the third row indicates that if the variance of the implicit forecast error

decreases as the forecast horizon shrinks, the variance of the revisions, and hence the value

of MSFRt|s,h, also decreases. This property implies that even when multi-horizon forecasts

fail to reject the rationality tests based on MSFE and MSFR, we cannot conclude that the

forecasts are rational across horizons or that the forecast revisions are optimal.

Note that the conditions for monotonicity in the first two rows are opposite to each other.

This result has a clear intuition. The non-increasing variance of rational forecasts builds upon

the fact that the conditional expectations using a larger information set at a shorter forecast

horizon are associated with larger variance. Implicit forecasts, however, are not formed based

on relevant information and hence are subject to only irrelevant errors. Therefore, if the

variance of the implicit forecast error increases with the forecast horizon, the variance of the

forecasts must also increase. This difference in the monotonicity of forecast variance is key to

distinguishing between implicit forecasts and rational forecasts.

The two covariances related to the target, i.e., the covariance between the target and the

forecast errors and the covariance between the target and the forecasts, are constant across

forecast horizons for pure implicit forecasts. In practice, when the target values are observable,

these two covariance bounds may help to differentiate implicit forecasts from rational forecasts.

When the target is unobservable, we can focus on the constant covariance between forecasts

at different horizons and the constant covariance between forecasts and revisions made at two

22



forecast dates (see the fourth row and the eighth row). Since these constant covariances are

subsets of the inequality constraints under the null hypothesis of Patton and Timmermann

(2012), pure implicit forecasts that have errors that are entirely irrelevant to the target can

still lead to retaining the monotonicity of these covariances featured by rational forecasts.

The last two rows of Table 1 show that the upper variance bounds for revisions are

likely to be invalid for implicit forecasts (when there exists non-zero implicit forecast error)

because the covariance between the target and the revisions and the covariance between

the short-horizon forecasts and previous revisions are both zero. The only scenario where

var(dt|s,h) = cov(ỹt, dt|s,h) or var(dt|m,l) = cov(ŷt|t−s, dt|m,l) is when the implicit forecast

error ζt|t−h is the same across horizons. Consequently, there is no revision; therefore, the

variance of the revisions is zero.

To summarize, the internal consistency discussed by Patton and Timmermann (2012) can

be observed in multi-horizon forecasts that consist of implicit forecast error irrelevant to the

target. The practical implication is that forecasts that fail to reject the rationality tests based

on the monotonicity of the second moments may not be rational forecasts. In other words,

multi-horizon forecasts may be internally consistent but not rational, and revisions deviate

from being optimal. The state space approach proposed in this paper decomposes forecast

errors into multiple types at each forecast horizon and hence is able to provide greater insight

into the composition of the forecast errors as the forecasting horizon approaches the target

time.

5 Evaluating Multi-horizon Weather Forecasts

In this section, we evaluate multi-horizon forecasts of the daily maximum temperature (degrees

Celsius) for Melbourne, Australia to demonstrate how our model-based evaluation approach
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extracts the various types of forecast errors and forecast revision components and to suggest

how these results could assist decision makers in planning.

During the past few decades, meteorological services in Australia have produced increas-

ingly accurate weather forecasts at ever increasing forecast horizons (Stern, 2008; Stern and

Davidson, 2015). For decision makers who rely on weather conditions, the technological im-

provement of weather forecasts provides an opportunity to choose between using long-horizon

weather forecasts and short-horizon weather forecasts. We aim to provide insight into the

revision process for daily maximum temperature forecasts over 14-day horizons so that deci-

sion makers can optimally time their planning decisions conditional on the weather forecast

revision process.

5.1 Data

We retrieve the data from http://www.weather-climate.com, which consists of an experi-

mental daily maximum temperature forecast series generated at multiple 14-day horizons and

an observed maximum daily temperature series for Melbourne, Australia. The sample period

runs from February 1, 2009 to December 31, 2014, comprising a total of 2159 days, with

forecasts available at 14,13,...,2,1 days out from each observation date.

These experimental daily maximum temperature forecasts were produced in real-time us-

ing a forecast combination algorithm, as documented in Stern (2007) and Stern and Davidson

(2015). A number of data sources are used to produce the combined forecasts, including

the official forecasts from the Australian Bureau of Meteorology (BOM), the previous day’s

maximum temperature forecasts, statistical forecasts,4 and climatological forecasts 5. Table

2 describes the forecast combination weightings used to generate the daily maximum tem-

4Stern and Davidson (2015) provide a brief explanation of the statistical forecasts. These forecasts are com-
puted for local weather based on the output of the long-range numerical weather prediction (NWP) models pro-
vided by the National Center for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric
Administration (NOAA). See Wilks (2011) for examples of statistical forecast methods for meteorological
variables.

5Climatological forecasts are the averages of historical observations over many years.
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perature forecasts. The combination weights vary depending on the length of the forecast

horizon. For example, BOM does not publish forecasts of maximum temperature for more

than 7 days out from the target date; hence heavier weights are imposed on the statistical

and climatological forecasts that are based on long-run and large-scale weather forecasts.

[Insert Table 2]

Figure 1 plots the daily maximum temperature observations (black line) and the corre-

sponding meteorological forecasts generated 7 days (blue line) and 14 days (red line) out

from the target observation date, spanning the whole sample. This figure presents three main

features. First, the observed maximum temperature series is more volatile than both forecast

series, and the forecasts made 7 days before the target are more volatile than the forecasts

made 14 days before the target. These observations meet Patton and Timmermann (2012)’s

necessary conditions for rational forecasts, that is, the variance of short-horizon forecasts is

no less than the variance of long-horizon forecasts and is bounded by the variance of the

realization. However, as discussed in Section 4, other than the accumulation of new informa-

tion as the forecast horizon shrinks, the inclusion of error irrelevant to the target could also

increase the variance of the forecasts. Second, there is a permanent increase in the variations

of the two forecast series beginning from mid-2012. Stern and Davidson (2015) discuss an

improvement in forecast skill beginning from mid-2012, which they attribute to a major up-

grade of the NWP models on 22 May, 2012. In addition, the observed temperature series and

the two forecast temperature series exhibit more variability on warmer days than on cooler

days. Stern and Davidson (2015) note that the competing influence of warm dry winds from

the Australian interior and cool moist winds from the Southern Ocean make temperature

forecasting for Melbourne particularly challenging, and this influence is strongest during the

warmer months.

[Insert Figure 1]
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We report both whole-sample and sub-sample means and the standard deviations of the

maximum daily temperature observations and all fourteen horizon forecasts in Table 36. The

statistics confirm our observations regarding Figure 1.

[Insert Table 3]

5.2 Results

5.2.1 Forecast decomposition

We focus on three model specifications: the rational model that specifies unanticipated

new information over the forecast horizon as the only source of forecast error; the ratio-

nal and implicit model that allows some forecast errors to be unrelated to the target; and the

bias+rational+implicit model that adds a horizon-specific but time-invariant systematic bias

7.

Table 4 reports the estimation results of the three alternative models. The top panel

presents the estimated values of σωh−1
, which represents the marginal increase in information

content owing to forecast revisions made at a shorter horizon h− 1 compared to the forecast

of horizon h. The estimated standard deviations of the implicit errors at each horizon h,

denoted by σζh , are reported in the middle panel. These values capture the size of the noise

uncorrelated with the targeted maximum daily temperature. The bottom panel shows the

Kalman smoothed estimates of the horizon-specific forecast bias. We also report the log

likelihood values and the Akaike and Baysian Information Criteria for each model.

[Insert Table 4]

6For the Southern hemisphere, we denote the period from September 21 to March 20 as warm days and
the period from March 21 to September 20 as cool days.

7The estimation results of other alternative models, including the pure implicit model, the bias and rational
model, and the bias and implicit model, can be provided upon request. The log likelihood values suggest
that these three models are less preferred to the rational model, the rational and implicit model and the
bias+rational+implicit model reported here.
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Since the rational model is nested by both multiple-error models, we can apply either log

likelihood ratio tests or information criterion to identify the empirically preferred model(s).

Both approaches reach the conclusion that multi-horizon forecasts of the maximum daily

temperature for Melbourne up to 14 days out are subject to multiple types of forecast errors.

Between the two multiple-error models that have different state variables but the same number

of unknown parameters, we can simply compare the maximum values of log likelihood. Since

the rational and implicit model achieves a higher log likelihood value than that of the model

with systematic bias, we prefer this bi-error structure and continue our further analysis based

on the estimates of the rational and implicit model 8.

The estimated value of σωh−1
starts low in the revised forecast at the horizon of 13 days

and then gradually increases in the subsequent revisions until it peaks at the horizon of 6

days. Afterwards, as the horizon shrinks further, the estimated σωh−1
declines, suggesting

decreasing marginal information content adoption within 5 days before the target day.

The estimated standard deviation of the implicit forecast error σζh exhibits a different

pattern. It is highest at the longest forecast horizon and gradually declines as the forecast

time approaches 7 days before the target day. Revisions of the maximum temperature forecasts

within a week of the target day leads to trivial implicit errors.

We use Figure 2 to depict the dynamics of the forecast revision structure across forecast

horizons. With a modification of equation (21) for the rational and implicit forecasts by re-

moving the bias term, we can decompose the value of MSFRt|h−1,h into σ2
ωh−1

plus σ2
ζh

and

σ2
ζh−1

. Figure 2 shows how the sizes of these components for the revised daily maximum tem-

perature forecasts evolve from from 13 days to 1 day before the realization. The total length

of each bar represents the size of MSFRt|h−1,h. Within each bar, the red color represents the

8Note that for the bias+rational+implicit model, the estimated biases over all 14 horizons are significantly
negative, but the estimates related to the rational revision and implicit forecast errors are virtually the same
as those from the rational and implicit model. Therefore, our following analysis, specifically the change in
marginal information content in the revisions over forecast horizons, is not affected by our modeling choice.
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variation of newly adopted information in the updated forecast made at horizon h − 1, and

the blue and green colors represent the variations of irrelevant implicit error made at horizons

h− 1 and h, respectively.

[Insert Figure 2]

In general, the MSFR between two adjacent horizons decreases as the forecast day ap-

proaches the target day. Furthermore, the proportional contribution of each source of forecast

revision varies over horizons. For example, at horizons longer than 8 days before the target

date, adjusting for irrelevant noise accounts for most of the MSFR values. When the forecast

day is within a week of the target day, more than 90% of the MSFR values is accounted for

by the incorporation of newly available information. This alteration of the main source of

forecast revisions can be explained by how the multi-horizon maximum temperature forecasts

for each horizon are constructed. The weighting structure reported in Table 2 shows that at

horizons longer than 7 days out, forecasts are a combination of statistical and climatological

forecasts derived from long-run and large-scale mathematical models. The large amount of

variation in the combination forecasts that is irrelevant to the target reflects the inaccuracy of

these sourcing forecasts for local maximum daily temperature when made more than 7 days

out from the target day. For horizons within a week of the target, BOM’s official forecasts

contribute 50% of the combination forecasts. The fact that information adoption becomes the

sole source of short-term forecast revisions indicates BOM’s very high short-term prediction

skill for maximum daily temperature.

An understanding the forecast revision structure across horizons can potentially help de-

cision makers to choose an optimal horizon forecast for their planning decisions. As analyzed

above, the daily maximum temperature forecast revisions made in the second week before the

target day are associated with minimal information content and hence are less likely to result

in significant economic benefits for the forecast users. If early planning is preferred, they may
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be better off using 12-day-out revised forecasts rather than 9-day-out revised forecasts. By

waiting for a few days longer and bearing the opportunity costs of delayed planning, decision

makers are provided with revised weather forecasts that incorporate a substantially larger

amount of information. Since the information content reaches its highest level in the 6-day-

out revised forecasts and then decreases as the forecast horizon shrinks, the value added by

using 6-day-out forecasts may be higher than that using forecasts at horizons shorter than 6

days.

5.2.2 Rationality tests

We now compare the evaluation results of our modeling approach with the rationality testing

approach proposed by Patton and Timmermann (2012). Table 5 reports the p-values of seven

second moment bound tests for forecasts up to 7 days out and up to 14 days out from the

target day. The null hypothesis of the monotonic properties in the second moments for rational

multi-horizon forecasts are listed in the first column. The p-values in all inequality tests are

large, so the null hypothesis that the maximum temperature forecasts at both 1-week and

2-week horizons are rational is retained.

[Insert Table 5]

The discussions in Section 4.2 suggest that it is possible for multi-horizon forecasts that

consist of errors that are irrelevant to the target to fail to reject the rationality properties.

We check the results against the conditions for which the rational and implicit forecasts can

be identified as rational forecasts. We focus our discussion on the daily maximum tempera-

ture forecasts made in the second week out (when h is 8 to 14 days) since these long-horizon

forecasts contain a substantial amount of implicit error that is irrelevant to the target. The es-

timated variance of the implicit forecast error is non-decreasing with increasing horizon h, and

the difference in these variances across horizons is smaller than the difference in the variances
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of the rational errors. The estimation results guarantee that long-horizon daily maximum

temperature forecasts have non-increasing mean squared forecasts MSFt|t−h, non-decreasing

MSFEt|t−h, non-decreasing MSFRt|s,h and non-decreasing covariance cov(et|t−h, dt|s,h) (see

rows 1,2,3 and 7 of Table 1). The accumulation of newly relevant information arriving be-

tween the forecast dates must be larger than the total variance of the irrelevant implicit error

made in the forecasts so that the variance of the revisions is bounded by the covariance of

the revisions and the target or the covariances of the revisions and the subsequently updated

forecasts (see rows 9 and 10 in Table 1). Our estimation results show that when two up-

dating points are close, there is little relevant new information but large irrelevant noise in

the revisions; hence the above condition does not hold. As the forecasts are further revised,

information accumulation increases and the implicit error component declines. The upper

variance bounds may still hold for forecasts made in the second week out.

5.3 Subsample evaluations

5.3.1 Effects of the NWP upgrade

The difference in forecast variabilities before and after May 22, 2012 is evident in Figure

1. On May 22, 2012, the NCEP’s operational system, including the long-range numerical

weather prediction models that serve as an input for the maximum temperature forecasts,

were upgraded. In this section, we examine the effect of the upgrade on the forecast and

revision structure.

We estimate the rational and implicit model while allowing the values of σωh−1
and σζh in

matrix R to be different in the subsamples pre- and post-May 22, 2012. We then calculate the

estimated MSFRt|h−1,h and its components in the two subsamples over the forecast horizons

and present the results in Figure 3.

[Insert Figure 3]
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The sizes of MSFRt|h−1,h at horizons longer than 7 days after the NWP model upgrade are

approximately four times larger than those prior to the upgrade. However, the upgrade does

not have much impact on the MSFRt|h−1,h at short horizons within 5 days before the target

day is reached. The increase in MSFRt|h−1,h for long horizons is associated with higher σ2
ωh−1

and higher σ2
ζh

and σ2
ζh−1

, suggesting that following the NWP model upgrades, the forecast

revisions contain more relevant information but also more irrelevant noise. The upgrade does

not affect the composition of the forecast revisions across horizons, and information adoption

becomes the dominant source of revisions for forecasts made within 7 days of the target.

Before the NWP model upgrade, the MSFRt|h−1,h peaks at 6 days out, where new in-

formation adoption between two adjacent updating points is also the highest. After the

upgrade, the highest marginal information adoption occurs one day earlier, at 7 days out, and

the MSFRt|h−1,h again exhibits a declining pattern as forecasts are made closer to the target.

The NWP model upgrade provides users of maximum daily temperature forecasts an optimal

forecast horizon one day earlier than the optimal horizon prior to the upgrade. Given the

same amount of information adoption in forecast revisions, since both optimal horizon fore-

casts contain a similar amount of newly available information, incorporating longer-horizon

forecasts in planning may result in higher profits.

5.3.2 Effects of seasons

The geographical location of Melbourne leads to wide variation in the maximum temperature

during warm months, making it difficult to forecast. In this section, we study whether the

composition of forecast revisions across horizons is consistent over seasons. We estimate a

rational and implicit model allowing for different σωh−1
and σζh between warm months and

cool months. Figure 4 illustrates the values and the compositions of MSFRt|h−1,h over the

forecast horizons, with the top panel for the warm months and the bottom panel for the cool

months.
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[Insert Figure 4]

The MSFRt|h−1,h values across all horizons in warm months are much higher than those

in cool months, consistent with the fact that the forecast volatilities at all horizons are higher

in warmer months. In general, the values of MSFRt|h−1,h decrease as the forecast horizon

shrinks, regardless of the season, except that the marginal forecast revisions made at 6 days

out provides the highest MSFRt|h−1,h.

The shares of the sources for forecast revisions are consistent between seasons. Regardless

of whether the target days are in the warm or cool season, the long-horizon forecast revisions

(made in the second week before the target date) are mainly due to adjustment of implicit

forecast errors that are irrelevant to the target, suggesting inefficiencies in the long-horizon

maximum temperature forecasts. Starting from 7-day-out forecasts, newly available infor-

mation becomes the dominant attribute of the revisions, and these short-horizon maximum

temperature forecasts are effective rational forecasts.

6 Conclusion

The availability of multi-horizon forecasts of the same target offers forecast users an oppor-

tunity to investigate the revision structure across forecast horizons. This paper proposes a

state space modeling approach that decomposes multi-horizon forecast errors into several un-

observed components, including 1) rational forecast errors that occur due to unanticipated

information related to the target, 2) implicit sources of forecast errors that are irrelevant to

the target, and 3) horizon-specific bias that captures systematic under- or over-forecasts. By

using this modeling approach, forecast users can explore the best fitted forecast error structure

for the whole set of multi-horizon forecasts and study the key attributes of forecast revisions at

each horizon. Understanding the dynamics of forecast revision structure across horizons may

help forecast users to identify the most desirable horizon forecast for their planning decisions.
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We investigate the internal consistency of the multi-horizon forecasts specified by various

unobserved component models. Focusing on the monotonicity properties of the second mo-

ment proposed by Patton and Timmermann (2012), we derive the conditions under which

forecasts that consist of implicit error irrelevant to the target can posses the internal consis-

tency of rational forecasts. For instance, when multi-horizon forecasts are subject to implicit

error with substantially large variance, as long as the variance of implicit error increases with

increasing forecast horizon, the mean squared forecast errors must be an increasing function

of the forecast horizon. This monotonicity is a well-known property for rational forecasts.

Our approach may be used to provide an explanation for potential mixed testing outcomes

from the suite of Patton and Timmermann (2012) inequality tests.

In our application, we use the state space modeling approach to evaluate maximum daily

temperature forecasts for Melbourne, Australia. Using the forecasts up to 14 days before the

target, which ranges from February 1, 2009 to December 31, 2014, we find that these multi-

horizon weather forecasts contain both rational forecast error and implicit forecast error. The

variance of each type of forecast error changes along the forecast horizon, with the short-

horizon revised forecasts (made up to 7 days before the target) containing more information

and less irrelevant noise, than the long-horizon forecasts (made in the second week before the

target).

An important application of our modeling approach is to analyze the sources of forecast

revisions and how the composition of these sources changes along the forecast horizon. By de-

composing the value of the mean squared temperature forecast revisions between two adjacent

updating points into a rational component due to adopting newly available information and

an implicit component due to adjusting irrelevant noise, we show that marginal information

adoption accounts for a similarly small proportion of forecast revisions made from 13 days to

9 days before the target. Information adoption becomes (effectively) the single attribute of

the forecast revisions as the forecast horizon shrinks to within 7 days. The largest amount of
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information adoption in MSFR over the whole sample period is achieved at the horizon of 6

days before declining as the target date is approached.

Our state space modeling approach provides a means to select the best decision-making

point. Early planning is beneficial but generally suffers from little relevant information being

incorporated in revised forecasts made at long horizons. Our results of the forecast revision

structure of the maximum daily temperature show that the forecast horizon of 6 days, when

the highest amount of information is found in the revisions (using the whole sample period),

could be the ideal horizon for decision making. We also find that the upgrade of the NWP

models moves the occurrence of the highest marginal information adoption to the 7 day

horizon and hence shifts the best decision-making time one day earlier. This improvement

shows the value of investment to upgrade weather prediction systems since early planning of

economic activities related to future weather conditions, including crop irrigation and harvest

and energy supply, results in potential profits for the decision makers.
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(ŷ
t|t
−
s
,d
t|m

,l
)

√
√

iff
∑ l−

1
i=
m
σ

2 ω
i
≥
σ

2 ζ m
+
σ

2 ζ l
X

iff
σ
ζ m
6=

0
an

d
/o

r
σ
ζ l
6=

0,
or
ζ t
|t−

m
6=
ζ t
|t−

l

N
o
te

s:
W

e
u

se
h

to
re

p
re

se
n
t

a
g
en

er
ic

fo
re

ca
st

h
or

iz
on

an
d
h

=
H
,H
−

1,
..
.,
l,
l−

1,
..
.,
m
,m
−

1,
..
.s
,s
−

1,
..
.,

0,
w

h
er

e
H

is
th

e
lo

n
ge

st
fo

re
ca

st
h

or
iz

on
,

an
d

h
o
ri

zo
n

s
l
≥
m
≥
s.

T
h

e
se

co
n

d
m

om
en

t
b

ou
n

d
s

li
st

ed
in

th
e

fi
rs

t
co

lu
m

n
ar

e
p

ro
p

er
ti

es
p

os
se

ss
ed

b
y

ra
ti

o
n

al
m

u
lt

i-
h

o
ri

zo
n

fo
re

ca
st

s
(s

ee
P

at
to

n
an

d
T

im
m

er
m

an
n

(2
01

2)
).

T
h

e
sy

m
b

ol
√

in
d

ic
at

es
th

at
fo

re
ca

st
s

sp
ec

ifi
ed

b
y

a
p

a
rt

ic
u

la
r

ty
p

e
o
f

m
u

lt
i-

h
or

iz
on

er
ro

r
st

ru
ct

u
re

sa
ti

sf
y

th
e

se
co

n
d

m
om

en
t

b
ou

n
d

li
st

ed
in

th
e

ro
w

.
T

h
e

sy
m

b
ol
X

in
d

ic
at

es
th

e
o
p

p
o
si

te
.

W
e

u
se
co
v

to
m

ar
k

th
e

co
n

st
an

t
co

va
ri

an
ce

s.

38



Table 2: Forecast combination weightings for the multi-horizon daily maximum temperature
forecasts in Melbourne, Australia

Horizon h Official Previous Statistical Climatology

1 to 7 days 0.50 0.25 0.25
8 to 13 days 0.25 0.50 0.25
14 days 0.50 0.50

Notes: This table lists the weightings of the multi-horizon real-time forecasts of the daily maximum
temperature of Melbourne. The weightings are provided by Stern and Davidson (2015), which explains that
the forecast combination is based on official forecasts from the Australian Bureau of Meteorology, previous
day’s forecasts, statistical forecasts, and climatological forecasts.

Table 3: Descriptive statistics of daily maximum temperature observations and
multi-horizon forecasts for Melbourne, Australia

Full sample Pre-NWP upgrade Post-NWP upgrade Warm months Cool months

Horizon h Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
14 20.53 4.64 20.79 4.51 20.19 4.79 24.07 3.11 17.13 3.06
13 20.57 4.72 20.79 4.50 20.30 4.98 24.14 3.29 17.17 3.08
12 20.60 4.79 20.78 4.52 20.37 5.10 24.21 3.37 17.15 3.09
11 20.61 4.82 20.78 4.53 20.40 5.17 24.24 3.42 17.14 3.12
10 20.62 4.84 20.81 4.54 20.38 5.18 24.27 3.41 17.13 3.10
9 20.60 4.79 20.83 4.55 20.31 5.07 24.20 3.40 17.15 3.09
8 20.62 4.77 20.82 4.54 20.36 5.05 24.18 3.40 17.21 3.13
7 20.74 4.95 20.82 4.59 20.65 5.37 24.31 3.78 17.33 3.23
6 20.88 5.30 21.04 5.06 20.68 5.58 24.53 4.40 17.39 3.38
5 20.93 5.45 21.11 5.24 20.70 5.69 24.57 4.71 17.45 3.47
4 20.96 5.56 21.12 5.37 20.75 5.78 24.62 4.90 17.46 3.52
3 20.97 5.62 21.11 5.44 20.79 5.85 24.62 5.04 17.48 3.56
2 20.98 5.70 21.10 5.54 20.84 5.89 24.66 5.16 17.48 3.59
1 20.99 5.76 21.13 5.62 20.81 5.93 24.67 5.28 17.47 3.60
0 21.11 6.01 21.24 5.89 20.94 6.15 24.71 5.73 17.66 3.86

Notes: This table reports the means and standard deviations of daily maximum temperature observations
and their multi-horizon forecasts for Melbourne, Australia. The full sample covers 2159 target days from
February 1, 2009 to December 31, 2014. The pre-NWP upgrade period spans February 1, 2009 to May 21,
2012 before the Numerical Weather Prediction models experienced a major upgrade on May 22, 2012. The
post-NWP update period is from May 22, 2012 to December 31, 2014. For the southern hemisphere, we
denote the days from September 21 to March 20 as warm months, and the cool months cover March 21 to
September 20. The horizon h indicates the number of days before the target day that the forecasts are made.
The last row, h = 0, represents the observed daily maximum temperature.

39



Table 4: Estimation results of the multi-horizon forecasts of daily maximum temperature for
Melbourne, Australia between February 1, 2009 and December 31, 2014

Alternative models
Bias

Rational +Rational
Rational + Implicit + Implicit

Forecast Errors Estimate Std err Estimate Std err Estimate Std err

Rational revision σω13 1.568 (0.037) 0.373 (0.062) 0.374 (0.061)
σω12 1.654 (0.040) 0.551 (0.063) 0.549 (0.063)
σω11 1.564 (0.039) 0.496 (0.066) 0.499 (0.065)
σω10 1.534 (0.039) 0.583 (0.056) 0.584 (0.056)
σω9 1.472 (0.037) 0.633 (0.053) 0.634 (0.053)
σω8 1.421 (0.037) 0.981 (0.043) 0.979 (0.043)
σω7 1.416 (0.036) 1.315 (0.037) 1.308 (0.037)
σω6 1.560 (0.037) 1.560 (0.037) 1.554 (0.035)
σω5 1.095 (0.036) 1.095 (0.035) 1.094 (0.035)
σω4 0.973 (0.023) 0.973 (0.024) 0.973 (0.024)
σω3 0.820 (0.022) 0.820 (0.022) 0.820 (0.022)
σω2 0.728 (0.020) 0.728 (0.020) 0.727 (0.020)
σω1 0.697 (0.019) 0.697 (0.019) 0.697 (0.019)
σω0 1.690 (0.032) 1.691 (0.032) 1.687 (0.032)

Implicit error σζ14 1.193 (0.032) 1.192 (0.032)
σζ13 1.223 (0.030) 1.224 (0.030)
σζ12 1.134 (0.032) 1.134 (0.032)
σζ11 1.078 (0.036) 1.077 (0.036)
σζ10 1.040 (0.035) 1.039 (0.035)
σζ9 0.891 (0.036) 0.892 (0.036)
σζ8 0.524 (0.059) 0.527 (0.058)
σζ7 0.027 (0.010) 0.026 (0.011)
σζ6 0.018 (0.005) 0.017 (0.005)
σζ5 0.014 (0.003) 0.013 (0.003)
σζ4 0.016 (0.006) 0.016 (0.005)
σζ3 0.011 (0.003) 0.011 (0.003)
σζ2 0.010 (0.002) 0.010 (0.002)
σζ1 0.017 (0.005) 0.017 (0.006)

Bias β14 -0.581 (0.082)
(smoothed states) β13 -0.531 (0.082)

β12 -0.506 (0.081)
β11 -0.494 (0.080)
β10 -0.487 (0.078)
β9 -0.509 (0.076)
β8 -0.489 (0.072)
β7 -0.361 (0.065)
β6 -0.226 (0.056)
β5 -0.176 (0.050)
β4 -0.148 (0.046)
β3 -0.138 (0.042)
β2 -0.121 (0.039)
β1 -0.118 (0.036)

Log likelihood -53,621 -51,583 -51,717
Akaike Info Criterion 107,275 103,226 103,493
Baysian Info Criterion 107,366 103,397 103,663

Notes: The sample covers 2159 target days from February 1, 2009 to December 31, 2014. For the daily
maximum temperature of each target date, meteorological forecasts are made at a daily frequency at horizons
from 14 days to 1 day before the target date. The standard errors of the estimates are in parentheses.
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Table 5: Results of the rationality tests proposed by Patton and Timmermann (2012).

Horizons
Test h = 1 to h = 7 h = 8 to h = 14
Var(ŷt|t−s) ≥ Var(ŷt|t−l) 0.96 0.85
Var(et|t−s) ≤ Var(et|t−l) 0.95 0.85
Var(dt|s,m) ≤ Var(dt|s,l) 0.91 0.95
Cov(ŷt|t−s, ỹt) ≥ Cov(ŷt|t−l, ỹt) 0.95 0.93
Cov(ŷt|t−m, ŷt|t−s) ≥ Cov(ŷt|t−l, ŷt|t−s) 0.93 0.95
Var(dt|s,l) ≤ 2Cov(ỹt, dt|s,l) 0.78 0.50
Var(dt|m,l) ≤ 2Cov(ŷt|t−s, dt|m,l) 0.77 0.13

Notes: We use h to represent a generic forecast horizon and
h = H,H − 1, ..., l, l − 1, ...,m,m− 1, ...s, s− 1, ..., 0, where H is the longest forecast horizon, and horizons
l ≥ m ≥ s. The inequality relations in the first column are the null hypotheses of the Patton and
Timmermann (2012) tests for forecast rationality. The values reported in this table are p-values from each
test. We use Matlab code provided by Andrew Patton for the inequality tests, and partition the forecast
horizon into h = 1 to h = 7 and h = 8 to h = 14 and test each partition separately.
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Figure 1: Daily maximum temperature observations and multi-horizon forecasts for
Melbourne, Australia from Feb 01, 2009 to Dec 31, 2014
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Figure 2: MSFRt|h−1,h and the components
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(a) Before the NWP model was upgraded on May 22, 2012
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(b) After the NWP model was upgraded on May 22, 2012
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Figure 3: MSFRt|h−1,h and the components before and after May 20, 2012
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(a) In warm months from Sept 21 to Mar 20

13 12 11 10 9 8 7 6 5 4 3 2 1

Forecast Horizon

0

1

2

3

4

5

6

2

h-1

2

h

2

h-1

(b) In cool months from Mar 21 to Sept 20
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Figure 4: MSFRt|h−1,h and the components in warm and cool months
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A Appendix: Proofs for Internal Consistency

This appendix provides a formal connection between two approaches to multi-horizon forecast

evaluation: our model-based approach and the variance bound test approach proposed by

Patton and Timmermann (2012). We list the variables defined by our models, which will be

used in the proofs in the following subsections, in Table 6.

Table 6: Expression of the multi-horizon forecasts, forecast errors and revisions (with no bias)

Variable Expression

Target ỹt = ỹt−H + ξt +
∑H−1
i=0 σωi

ηωi,t

Rational forecasts ŷt|t−h = ỹt −
∑h−1
i=0 σωiηωi,t

Rational+implicit forecasts ŷt|t−h = ỹt −
∑h−1
i=0 σωiηωi,t + σζhηζh,t

Implicit forecasts ŷt|t−h = ỹt + σζhηζh,t

Rational forecast errors et|t−h =
∑h−1
i=0 σωi

ηωi,t

Rational+implicit forecast errors et|t−h =
∑h−1
i=0 σωi

ηωi,t − σζhηζh,t
Implicit forecast errors et|t−h = −σζhηζh,t
Rational forecast revisions between h = m and h = s dt|s,m =

∑m−1
i=s σωi

ηωi,t

Rational forecast revisions between h = l and h = s dt|s,l =
∑l−1
i=s σωi

ηωi,t

Rational+implicit forecast revisions between h = m and h = s dt|s,m =
∑m−1
i=s σωi

ηωi,t + σζsηζs,t − σζmηζm,t
Rational+implicit forecast revisions between h = l and h = s dt|s,l =

∑l−1
i=s σωiηωi,t + σζsηζs,t − σζmηζm,t

Implicit forecast revisions between h = m and h = s dt|s,m = σζsηζs,t − σζmηζm,t
Implicit forecast revisions between h = l and h = s dt|s,l = σζsηζs,t − σζlηζl,t

Notes: We use h to represent a generic forecast horizon and h = H,H − 1, ..., l, l− 1, ...,m,m− 1, ...s, s− 1, ..., 0, where

H is the longest forecast horizon, and horizons l ≥ m ≥ s. For rational-implicit forecasts ŷt|t−h, the rational error

component νt|t−h = −σh−1
i=0 σωiηωi,t where ηωi,t ∼ i.i.d.N(0, 1), and the implicit error component ζt|t−h = σζhηζh,t

where ηζh,t ∼ i.i.d.N(0, 1).
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A.1 Rational Forecasts

A.1.1 Proof for the monotonicity of the variances of the forecasts, forecast errors

and revisions

Given that rational forecasts ŷt|t−h = ỹt−
∑h−1

i=0 σωiηωi,t, the variance of the target is var(ỹt) =

var(ŷt|t−h) +
∑h−1

i=0 σ
2
ωi . For two forecast horizons h = l and h = s, var(ỹt) = var(ŷt|t−l) +∑l−1

i=0 σωi = var(ŷt|t−s) +
∑s−1

i=0 σωi ; thus, var(ŷt|t−s) − var(ŷt|t−l) =
∑l−1

i=s σωi ≥ 0. Note

that since the mean squared forecasts MSFt|t−h = var(ŷt|t−h) + (E[ỹt])
2, the MSF is non-

increasing as the forecast horizon increases, that is MSFt|t−s ≥MSFt|t−l.

Given the expression of the rational forecast errors in Table 6, var(et|t−s)− var(et|t−l) =

−
∑l−1

i=s σωi ≤ 0, and the mean squared forecast errors MSFEt|t−s ≤MSFEt|t−l.

Using the expressions of the rational forecast revisions, we have var(dt|s,m) =
∑m−1

i=s σωi ≤

var(dt|s,l) =
∑l−1

i=s σωi for m ≤ l. As E[dt|t−h] = 0, the mean squared forecast revisions

MSFRt|s,m ≤MSFRt|s,l.

A.1.2 Proof for the monotonicity of the covariance between the forecasts, the

forecasts and the target and the forecast errors and the target

The covariances between the forecasts for the same target at different horizons can be written

as cov(ŷt|t−m, ŷt|t−s) = cov(ŷt|t−m, ŷt|t−m + dt|s,m) = var(ŷt|t−m) since cov(ŷt|t−m, dt|s,m) = 0.

Similarly, we derive cov(ŷt|t−l, ŷt|t−s) = var(ŷt|t−l). Therefore, cov(ŷt|t−m, ŷt|t−s) ≥ cov(ŷt|t−l, ŷt|t−s).

The covariances between the forecasts and the target cov(ỹt, ŷt|t−h) = cov(ŷt|t−h+
∑h−1

i=0 σωiηωi,t, ŷt|t−h) =

var(ŷt|t−h). Since var(ŷt|t−h) weakly decrease as h increases, cov(ỹt, ŷt|t−s) ≥ cov(ỹt, ŷt|t−l).

The covariances between the forecast errors and the target cov(ỹt, et|t−h) = cov(ŷt|t−h +

et|t−h, et|t−h) = var(et|t−h) =
∑h−1

i=0 σ
2
ωi . Therefore, cov(ỹt, et|t−s) ≤ cov(ỹt, et|t−l).
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A.1.3 Proof for the monotonicity of the covariances with forecast revisions

We first check the monotonicity of the covariances between the revised forecasts at a short hori-

zon and the amount of forecast revision, i.e., cov(ŷt|t−s, dt|s,h). For h = m, cov(ŷt|t−s, dt|s,m) =

cov(ŷt|t−m + dt|s,m, dt|s,m) = var(dt|s,m) since cov(ŷt|t−m, dt|s,m) = 0. Similarly, for h = l,

cov(ŷt|t−s, dt|s,l) = cov(ŷt|t−l + dt|s,l, dt|s,l) = var(dt|s,l). Because var(dt|s,m) ≤ var(dt|s,l),

cov(ŷt|t−s, dt|s,m) ≤ cov(ŷt|t−s, dt|s,l).

Given the expressions for rational forecasting errors and rational forecasting revisions pro-

vided in Table 6 , cov(et|t−m, dt|s,m) =
∑m−1

i=s σ2
ωi and cov(et|t−l, dt|s,l) =

∑l−1
i=s σ

2
ωi . Therefore,

cov(et|t−m, dt|s,m) ≤ cov(et|t−l, dt|s,l).

To prove the covariance bound, i.e., var(dt|s,l) ≤ 2cov(ỹt, dt|s,l), we follow Patton and

Timmermann (2012), starting from var(et|t−l) ≥ var(et|t−s). We then have var(ỹt − ŷt|t−l) ≥

var(ỹt − ŷt|t−s), and

var(ỹt)− 2cov(ỹt, ŷt|t−l) + var(ŷt|t−l) ≥ var(ỹt)− 2cov(ỹt, ŷt|t−s) + var(ŷt|t−s)

−2cov(ỹt, ŷt|t−l) + var(ŷt|t−l) ≥ −2cov(ỹt, ŷt|t−l + dt|s,l) + var(ŷt|t−l + dt|s,l)

−2cov(ỹt, ŷt|t−l) + var(ŷt|t−l) ≥ −2cov(ỹt, ŷt|t−l)− 2cov(ỹt, dt|s,l) + var(ŷt|t−l) + var(dt|s,l)

var(dt|s,l) ≤ 2cov(ỹt, dt|s,l).

We can write cov(ŷt|t−s, dt|m,l) as cov(ỹt−
∑s−1

i=0 σ
2
ωi , dt|m,l) = cov(ỹt, dt|m,l) since cov(−et|t−s, dt|m,l) =

0. Therefore, based on the covariance bound proved above, var(dt|m,l) ≤ 2cov(ỹt, dt|m,l) =

2cov(ŷt|t−s, dt|m,l).

A.2 Rational and Implicit Forecasts

A.2.1 Patterns in the variances of the forecasts, forecast errors and revisions

The variance of rational and implicit forecasts is given by var(ŷt|t−h) = var(ỹt)+var(νt|t−h)+

var(ζt|t−h)+2cov(ỹt, νt|t−h). Since cov(ỹt, νt|t−h) = −var(νt|t−h), assuming that cov(ỹt−H , νt|t−h) =
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0, var(ŷt|t−h) = var(ỹt) − var(νt|t−h) + var(ζt|t−h). When h = s, var(ŷt|t−s) = var(ỹt) −∑s−1
i=0 σ

2
ωi+σ

2
ζs

, and when h = l, var(ŷt|t−l) = var(ỹt)−
∑l−1

i=0 σ
2
ωi+σ

2
ζl

. Therefore, var(ŷt|t−s)−

var(ŷt|t−l) =
∑l−1

i=s σ
2
ωi + σ2

ζs
− σ2

ζl
. If and only if

∑l−1
i=s σ

2
ωi ≥ σ

2
ζl
− σ2

ζs
, we have var(ŷt|t−s) ≥

var(ŷt|t−l), and MSFt|t−s ≥MSFt|t−l.

Using the expression of the rational+implicit forecast errors in Table 6, the variances of

forecasting errors var(et|t−h) =
∑i=h−1

i=0 σ2
ωi +σ2

ζh
. For two forecasts made at horizons s and l,

var(et|t−s)−var(et|t−l) = −
∑l−1

i=s σ
2
ωi+σ

2
ζs
−σ2

ζl
. Therefore, if and only if

∑l−1
i=s σ

2
ωi ≥ σ

2
ζs
−σ2

ζl
,

var(et|t−s) ≤ var(et|t−l), and MSFEt|t−s ≤MSFEt|t−l.

Using the expressions of the rational+implicit forecast revisions in Table 6, var(dt|s,m) =∑m−1
i=s σ2

ωi +σ2
ζs

+σ2
ζm

, and var(dt|s,l) =
∑l−1

i=s σ
2
ωi +σ2

ζs
+σ2

ζl
. The differences in two variances

var(dt|s,m) − var(dt|s,l) = −
∑l−1

i=m σ
2
ωi + σ2

ζm
− σ2

ζl
. Therefore, if and only if

∑l−1
i=m σ

2
ωi ≥

σ2
ζm
− σ2

ζl
, var(dt|s,m) ≤ var(dt|s,l), and MSFRt|t−s ≤MSFEt|t−l.

A.2.2 Patterns in the covariances between the forecasts, the forecasts and the

target and the forecast errors and the target

The covariances between two forecasts cov(ŷt|t−m, ŷt|t−s) = cov(ŷt|t−m, ŷt|t−m + dt|s,m) =

var(ŷt|t−m)+cov(ŷt|t−m, dt|s,m). Using the expressions in Table 6, we have cov(ŷt|t−m, dt|s,m) =

−σ2
ζm

. Therefore, cov(ŷt|t−m, ŷt|t−s) = var(ŷt|t−m) − σ2
ζm

. Similarly, cov(ŷt|t−l, ŷt|t−s) =

var(ŷt|t−l)−σ2
ζl

. Comparing with these two covariances, cov(ŷt|t−m, ŷt|t−s)−cov(ŷt|t−l, ŷt|t−s) =

var(ŷt|t−m)− σ2
ζm
− var(ŷt|t−l) + σ2

ζl
. Using the derivation of the variances of forecasts in sec-

tion A.2.1, we then have cov(ŷt|t−m, ŷt|t−s) − cov(ŷt|t−l, ŷt|t−s) = −
∑m−1

i=0 σ2
ωi +

∑l−1
i=0 σ

2
ωi =∑l−1

i=m σ
2
ωi ≥ 0.

The covariances between the forecasts ŷt|t−h and the target ỹt are given by cov(ỹt, ŷt|t−h) =

var(ỹt) + cov(ỹt, νt|t−h) = var(ỹt) − var(νt|t−h) = var(ỹt) −
∑h−1

i=0 σ
2
ωi . As h increases,

cov(ỹt, ŷt|t−h) weakly decreases, and cov(ỹt, ŷt|t−s) ≥ cov(ỹt, ŷt|t−l).

The covariances between the target and forecasting errors cov(ỹt, et|t−h) =
∑h−1

i=0 σ
2
ωi .
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Therefore, cov(ỹt, et|t−s) ≤ cov(ỹt, et|t−l).

A.2.3 Patterns in the covariances of the forecast revisions

We first derive cov(ŷt|t−s, dt|s,m) using the expression of dt|s,m in Table 6.

cov(ŷt|t−s, dt|s,m) = cov(ŷt|t−m + dt|s,m, dt|s,m)

= cov(ŷt|t−m, dt|s,m) + var(dt|s,l)

= −var(ζt|t−m) + var(dt|s,m)

= −σ2
ζm

+
∑m−1

i=s σ2
ωi + σ2

ζs
+ σ2

ζm

=
∑m−1

i=s σ2
ωi + σ2

ζs
.

Similarly, cov(ŷt|t−s, dt|s,l) =
∑l−1

i=s σ
2
ωi+σ

2
ζs

. Therefore, cov(ŷt|t−s, dt|s,m) ≤ cov(ŷt|t−s, dt|s,l).

When h = m, the covariances between forecast errors and forecasting revisions cov(et|t−m, dt|s,m) =

cov(
∑m−1

i=0 σωiηωi,t − σζmηζm,t,
∑m−1

i=s σωiηωi,t + σζsηζs,t − σζmηζm,t) =
∑m−1

i=s σ2
ωi + σ2

ζm
. Addi-

tionally, cov(et|t−l, dt|s,l) =
∑l−1

i=s σ
2
ωi + σ2

ζl
. Therefore, cov(et|t−m, dt|s,m) − cov(et|t−l, dt|s,l) =

−
∑l−1

i=m σ
2
ωi +σ2

ζm
−σ2

ζl
, and if and only if

∑l−1
i=m σ

2
ωi ≥ σ

2
ζm
−σ2

ζl
, we have cov(et|t−m, dt|s,m) ≤

cov(et|t−l, dt|s,l).

The variance of rational and implicit forecast revisions between h = s and h = l is

var(dt|s,l) =
∑l−1

i=s σ
2
ωi+σ

2
ζl

+σ2
ζs

. The covariance between the target and dt|s,l is cov(ỹt, dt|s,l) =∑l−1
i=s σ

2
ωi . Therefore, if and only if

∑l−1
i=s σ

2
ωi ≥ σ

2
ζl

+ σ2
ζs

, the covariance bound of Patten and

Timmermann (2012) holds, that is, var(dt|s,l) ≤ 2cov(ỹt, dt|s,l).

A.3 Implicit Forecasts

A.3.1 Patterns in the variances of the forecasts, forecast errors and revisions

Given that implicit forecasts ŷt|t−h = ỹt+ζt|t−h and cov(ỹt, ζt|t−h) = 0, we have var(ŷt[|t−h) =

var(ỹt)+σ
2
ζh

. Therefore, if and only if σζs ≥ σζl , then var(ŷt|t−s) ≥ var(ŷt|t−l) andMSFt|t−s ≥
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MSFt|t−l.

The variance of the implicit forecast errors is var(et|t−h) = σ2
ζh

, and if and only if σζs ≤ σζl ,

we will have var(et|t−s) ≤ var(et|t−l) and MSFEt|t−s ≤MSFEt|t−l.

To check any monotonicity pattern in the mean squared forecasting revisions, we compare

var(dt|s,m) and var(dt|s,l). The variance of the implicit forecast revisions var(dt|s,m) = σ2
ζs

+

σ2
ζm

and var(dt|s,l) = σ2
ζs

+ σ2
ζl

. Therefore, if and only if σζm ≤ σζl , var(dt|s,m) ≤ var(dt|s,l)

and MSFRt|s,m ≤MSFRt|s,l.

A.3.2 Patterns in the covariances between the forecasts, the forecasts and the

target and the forecast errors and the target

Since cov(ỹt, ζt|t−h) = 0 and implicit forecast errors are uncorrelated across horizons, we

have cov(ŷt|t−m, ŷt|t−s) = cov(ŷt|t−l, ŷt|t−s) = var(ỹt), cov(ỹt, et|t−s) = cov(ỹt, et|t−l) = 0, and

cov(ỹt, ŷt|t−s) = cov(ỹt, ŷt|t−l) = var(ỹt).

A.3.3 Patterns in the covariances of the forecast revisions

Now we derive for cov(et|t−m, dt|s,m) and cov(et|t−l, dt|s,l). Using the expressions in Table 6,

we have cov(et|t−m, dt|s,m) = cov(−ζt|t−m, ζt|t−s − ζt|t−m) = var(ζt|t−m) = σ2
ζm

, and similarly

cov(et|t−l, dt|s,l) = σ2
ζl

. Therefore, cov(et|t−m, dt|s,m) ≤ cov(et|t−l, dt|s,l) if and only if σζm ≤ σζl .

To see the pattern in the covariances of short-horizon forecasts ŷt|t−s and forecast revisions

dt|s,h, we first let h = m, and then cov(ŷt|t−s, dt|s,m) = cov(ỹt + ζt|t−s, ζt|t−s − ζt|t−m) =

var(ζs) = σ2
ζs

. Letting h = l, cov(ŷt|t−s, dt|s,l) = σ2
ζs

. We see that these covariances between

forecasts at short horizons and revisions are always constant for all forecast horizons.

We now prove that the upper variance bound for revisions as a function of covariances

between the target and revisions does not hold for implicit multi-horizon forecasts. Since

var(dt|s,l) = var(ζt|t−s − ζt|t−l) = σ2
ζ,s + σ2

ζ,l and cov(ỹt, dt|s,l) = 0, we have var(dt|s,l) >

2cov(ỹt, dt|s,l) if σζh 6= 0.
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Lastly, var(dt|m,l) = σ2
ζm

+ σ2
ζl

, and cov(ŷt|t−s, dt|m,l) = cov(ỹt + ζt|t−s, ζt|t−m − ζt|t−l) = 0.

Therefore, var(dt|m,l) > 2cov(ŷt|t−s, dt|m,l) if σζh 6= 0.
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