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1. INTRODUCTION 

Eucalypts are amongst the most planted hardwoods in the world (Doughty 2000). 

They are native to Australia and islands to its north (Ladiges et al. 2003) where they 

occupy diverse ecological habitats ranging from sea level to the alpine tree line, 

from high rainfall to semi-arid zones, and from the tropics to latitudes as high as 43° 

south (Williams and Woinarski 1997).  In habit they vary from shrubs and multi-

stemmed mallees, to giant trees (Hickey et al. 2000; Nicolle 2006), and include the 

tallest flowering plants on earth (Eucalyptus regnans – 99.6 metres, 

http://www.gianttrees.com.au/).  They are generally sclerophyllous, and adapted to 

low nutrient soils and fire (Ashton 2000; Eldridge et al. 1993; Florence 1996).  In 

the broad-sense, eucalypts encompass species of the genera Eucalyptus L‟Hérit., 

Corymbia Hill and Johnson and Angophora Cav. (Ladiges 1997; Appendix 1).  A 

key feature of the majority of Eucalyptus (sensu stricta) and Corymbia 

(bloodwoods) is the fusion of either the petals and/or sepals to form an operculum 

from which the eucalypts derive their name (Eldridge et al. 1993; Ladiges 1997).  

The latest formal taxonomic revision of eucalypts (Brooker 2000) recognizes just 

over 700 species that belong to 13 main evolutionary lineages (subgenera/genera; 

Appendix 1), and EUCLID (Euclid 2006 - an important electronic resource for 

practitioners) lists 894 eucalypt taxa.  The major subgenera exhibit different 

ecological and reproductive characteristics (Florence 1996; Ladiges 1997; Harwood 

2011 this volume) and closely related species are usually ecologically differentiated 

(Florence 1996; Williams and Woinarski 1997). 

 
Most eucalypt species belong to the subgenus Symphyomyrtus, and it is mainly 

species from three sections of this subgenus that are used in plantation forestry 

world-wide (Appendix 1; see Hardwood this volume).  This is certainly the case in 

Australia where there has been a major expansion of the eucalypt plantation estate in 

the last two decades.  This eucalypt plantation estate reached 0.92 million ha in 2010 

and is approaching the area of softwoods (Gavran and Parsons 2011).  Most 

Australian eucalypt plantations occur in temperate regions and the estate is 

dominated by Eucalyptus globulus (58.4%; i.e. 538,000 ha) and E. nitens (25.5%, 

i.e. 235,000 ha) (Gavran and Parsons 2011).  There are breeding and deployment 

programs in Australia and overseas for both Eucalyptus globulus (Potts et al. 2004) 

and E. nitens (Hamilton et al. 2008).  These species are mainly grown for pulpwood.  

http://www.gianttrees.com.au/


BRAD POTTS, MATHEW HAMILTON & DAVID BLACKBURN 

 

 
2 

However there is increasing interest in producing solid wood products (e.g. sawn 

timber, veneer, composites) from these plantations (Nolan et al. 2005; Beadle et al. 

2008; Wood et al. 2009; Washusen 2011; Welsford and Henson 2011). At least 7% 

of the broadleaf plantations are managed for this purpose (Gavran and Parsons 

2011), which includes Forestry Tasmania‟s solid wood estate of approximately 

19,655 ha of E. nitens and 5,462 ha E. globulus (Wood et al. 2009).  We here 

overview some of the key genetic issues associated with the breeding and 

deployment of these industrial plantation species and recent research aimed at 

understanding the genetic opportunities for growing these species for solid wood 

products.   

2. BREEDING OBJECTIVES 

Tree breeding programs aim to improve the profitability and competitiveness of 

forest growers/processors through the genetic improvement of economically-

important harvest-age traits.  To maximize economic gains made though breeding it 

is important to i) identify the breeding objective (i.e. what you are breeding for), ii) 

identify the most important harvest-age traits affecting this objective (i.e. the 

objective traits) and iii) apply appropriate weights to each of these traits.  This is 

best achieved through bioeconomic modeling of costs (land, establishment, 

management, silvicultural, harvesting, transport, processing) and revenues 

(potentially from different product classes of varying value) of production systems 

(Ponzoni and Newman 1989; Raymond and Apiolaza 2004).  Traits such as pest and 

disease resistance, adaptability traits (e.g. frost resistance, drought resistance) and 

survival are only important as far as they impact on one or more objective traits and 

their incorporation into breeding programs requires an understanding of the 

frequency, intensity and impact of the associated biotic and abiotic threats across the 

plantation estate (Dutkowski et al. 2007). 

 

Breeding objectives, objective traits and economic weights evolve with changes in 

understanding of production systems and harvest-age traits, silviculture (e.g. 

seedling to coppice [Whittock et al. 2004], pulpwood to long-rotation solid-wood), 

processing techniques/technology (e.g. backsawn vs quartersawn, changes in 

sawmilling and drying technology - Washusen 2011), environment (e.g. expansion 

into marginal zones prone to frost, drought, climate change - ABARES 2011; 

exhaustion of historic water and nutrient reserves; new pests/diseases [e.g. Myrtle 

rust] or changed frequency/intensity of outbreaks), markets and products (e.g. solid-

wood, carbon trading, bioenergy - Whittock et al. 2007).  Some organizations have 

multiple objectives, reflecting the diversity of their estate and/or targeted products 

(e.g. cold and mild sites, disease-prone and less disease-prone sites, pulpwood and 

solid-wood silviculture).  In such cases, targeted deployment is often preferred, as a 

lower cost alternative to maintaining multiple breeding populations, particularly in 

cases where objectives are closely aligned (i.e. favorably and strongly genetically 

correlated) or where some objectives are only relevant to a small proportion of the 

estate (i.e. it is not unusual for enterprises to have multiple „deployment objectives‟, 
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while maintaining only one breeding objective and population) (Dutkowski et al. 

2007). 

 

Bio-economic modeling has identified volume production per hectare, wood 

density and pulp yield as key objective traits for vertically integrated enterprises 

producing eucalypt kraft pulp (Borralho et al. 1993; Greaves et al. 1996; Dutkowski 

et al. 2007).  The economic weight placed on each of these traits varies amongst 

Australian growers.  For example, some wood chip exporters do not place an 

economic weight on pulp yield as a premium is generally not paid for high pulp 

yield (Whittock et al. 2007), although it may become a threshold trait affecting 

market access in the future.  However, in Australia where E. nitens and E. globulus 

breeding may involve joint evaluation (McRae et al. 2004a; Hamilton et al. 2008) or 

cooperative breeding  (e.g. through the Southern Tree Breeding Association - 

McRae et al. 2004b), such differences in objectives amongst growers are often 

applied at deployment.  Secondary wood property traits of interest to pulp producers 

include the quantity or quality of extractives or lignin in the wood that affect the 

economic and/or environmental cost of pulping (Raymond and Apiolaza 2004; 

Stackpole et al. 2011).   

 

Defining breeding objective traits and economic weights is more problematic for 

solid wood systems than for pulpwood systems, due to:  

i) a lack of an established plantation-eucalypt solid-wood processing 

industry in Australia,  

ii) the array of products (e.g. sawn timber, veneer, residues), silvicultural 

regimes, processing systems, and product values to be accounted for, and  

iii) longer rotation intervals and associated uncertainty (Greaves et al. 2004a; 

Greaves et al. 2004b; Greaves et al. 2004a; Shield 2004; Washusen 2011).   

In the face of such difficulties, eucalypt growers targeting solid wood products have, 

initially at least, focused on generic traits (adaptability, form, etc), although 

numerous wood properties are known to affect the recovery and value of sawn 

timber, veneer and composite wood products (Table 1).  Wood properties can impact 

multiple products in a favorable or adverse manner.  For example, improvement in a 

trait such as wood density is likely to be favorable for multiple product types, at 

least in E. nitens (Kube and Raymond 2005).   

 

The yield of plantation logs suitable for solid-wood processing is strongly dependent 

upon silviculture (Washusen 2004; Nolan et al. 2005; Beadle et al. 2008) and there 

are few genetics trials of E. globulus and E. nitens that have been managed using 

solid-wood silvicultural regimes (e.g. thinning, pruning).  This has restricted most 

genetic studies of potential solid wood traits to closely-spaced, unpruned trials 

(Hamilton et al. 2007; Hamilton et al. 2010c; Blackburn et al. 2010), which raises 

the possibility of genetic by silvicultural interactions for some traits (e.g. wood 

shrinkage and collapse - Hamilton et al. 2009).  While key traits affecting the yield 

of logs suitable for a given processing system (e.g. survival, growth rate, forking, 

stem straightness, branch size, log taper) are usually under some degree of genetic 
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control (Hamilton and Potts 2008; Callister et al. 2011; Blackburn et al. 2010), their 

impact on profitability will in part depend on whether adverse genetic effects are 

alleviated through routine silvicultural treatments such as thinning and pruning.  

Green recovery, drying defects and product value from logs are, in turn, affected by 

wood properties (Table 1), many of which are also known to be under some genetic 

control  (Kube and Raymond 2005; Greaves et al. 2004b; Hamilton et al. 2007; 

Hamilton et al. 2009; Hamilton et al. 2010a; Blackburn et al. 2010).   

 

Table 1. Wood properties affecting recovery and value for different product 

types (see also Raymond 2002). 

 

 

Pulp and paper 

 

 

Sawn timber 

 

 

Veneer, plywood and 

laminated veneer lumber 

(LVL) 

 

 

Basic density, pulp 

yield/cellulose content, 

lignin content and 

composition, extractives 

content, fiber dimensions,  

 

Green recovery (growth 

stress, log end splits, 

decay) 

 

Dried recovery and value 

(knot size, checking, 

shrinkage, collapse, board 

distortion, strength and 

stiffness, density, 

hardness, dimensional 

stability, durability, 

sapwood-heartwood ratio, 

colour and colour 

variation)  

 

 

Green recovery (growth 

stress, log end splits, 

decay)  

 

Dried recovery and value 

(knot size, veneer 

splitting, shrinkage and 

shrinkage variation, 

density, strength and 

stiffness, bond strength 

and glue usage, 

roughness, colour and 

colour variation) 
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3. CHOICE OF SPECIES  

Choice of species based on breeding objectives and breeding objective traits (Table 

2) may have a major impact on breeding and deployment.  There are large 

differences in reproductive biology, potential for vegetative propagation and 

silvicultural options between E. globulus and E. nitens (Table 2).  For example, as E. 

globulus coppices well, many plantations are not replanted but are managed as a 

coppice crop (Whittock et al. 2004).  This option is not available with E. nitens 

which does not coppice as well (Little and Gardner 2003), and plantations are 

normally re-established using seedlings. Extensive studies of the reproductive 

biology and mating systems of these two species have been undertaken in order to 

optimise breeding and deployment (see E. globulus - Potts et al. 2008; E. nitens - 

Hamilton et al. 2008).  

 

As with most eucalypts, E. globulus and E. nitens are animal pollinated, but the type 

and efficiency of pollinators may vary (Hingston et al. 2004c; Hingston et al. 2004b; 

Hingston et al. 2004a).  For example, the large-flowered E. globulus is pollinated by 

both birds and insects, and the pollination behaviour of birds is thought to result in 

higher outcrossing in the upper canopies of both native and seed orchard trees in 

Tasmania.  Birds were not observed feeding from the small flowers of E. nitens in 

Tasmanian seed orchards, and despite suggestions that the introduction of honey bee 

hives would increase outcrossing rates and seed set, honey bees were rarely 

observed feeding from small flowers of E. nitens in a study by Hingston et al. 

2004a. Flowers however were consistently well pollinated by the suite of small 

native insects visiting the flowers.  

 

Both E. globulus and E. nitens have a mixed mating system, but are generally 

preferential outcrossers.  While average seed set is reduced following self 

pollination compared to unrelated outcrossing, open pollinated seed collected from 

native stand and seed orchard trees still contain significant proportions of self-

pollinated seed.  Averaged across 23 species the outcrossing rate in eucalypts in the 

wild is 0.74 (Byrne 2008), and recent native population estimates for E. globulus 

range from 65-89% (Mimura et al. 2009) and seed orchard estimates from 60 to 

92% (Potts et al. 2008).  Only seed orchard estimates of outcrossing rates have been 

published for E. nitens but these range from 0.75 to 0.87 (reviewed in Grosser et al. 

2010).  Both species exhibit severe inbreeding depression for growth and survival 

(Hardner and Tibbits 1998; Costa e Silva et al. 2010b; Costa e Silva et al. 2010a; 

Costa e Silva et al. 2011a).  Virtually all E. globulus and E. nitens plantations in 

Australia are established using seed-derived plants and minimising the levels of self 

pollination has been an important objective.  The cost of artificial pollination of E. 

globulus has been markedly reduced through the development of single-visit cut-

style techniques (single-visit pollination, SVP  - Williams et al. 1999; one-stop 

pollination, OSP - Harbard et al. 1999) which has allowed most breeding to be done 

through control pollination to provide full pedigree control. These techniques have 

also allowed the development of manual pollination techniques (e.g. mass 
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supplementary pollination; MSP) for large-scale seed production to minimise selfing 

and to allow deployment of elite full-sib or mixed families (Potts et al. 2008).  

Despite numerous attempts, the cut style technique has not been successful with E. 

nitens (Williams et al. 1999), making it relatively expensive to control pollinate.  

While improved E. globulus seed is produced from open-pollinated (OP) seedling or 

grafted seed orchards as well as mass supplementary pollination, the later option is 

not available with E. nitens.   

 

Table 2. Characteristics which favour the planting of E. nitens or E. globulus in 

Tasmania. 

 

 

Eucalyptus globulus 

 

Eucalyptus nitens 

 

 

Adaptive 

 More drought resistant
1
 

 Greater water use efficiency
2
 

 More resistant to Phytophthora 

cinnamomi
3
 

 Less prone to copper deficiency
3
 

 

 

 

 Generally more rapid site 

occupancy
4
 

 Greater frost resistance and cold 

hardiness
5
 

 Less prone to gum leaf 

skeletonizer
3
 

 Greater resistance to 

Mycosphaerella leaf disease
6
 

 

Pulping and paper making* 

 Generally greater kraft pulp 

yield
7,8,9,10

 

 Higher wood basic density
8,9,10,11

  

 

 

 

Solid-wood, veneer and composite 
 Less internal checking in sawn 

boards
12,13 

 Greater wood strength, stiffness 

and hardness
11

 

 Better shedding of dead branches
14

 

 

 

 

 Less prone to tension wood 

formation and associated drying 

defects
13

 

 Better early-age stem 

straightness
4,15

 

Reproductive and deployment 

 Easier and quicker to grow 

seedlings in container nurseries 

(larger seed, easier to sow, grows 

 

 Easier to graft and less graft 

incompatibility
14,22

 

 Open-pollinated seed orchards 
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larger seedlings in a shorter time)
14

 

 Stronger coppicing ability
16,17

 

 Easier to artificially pollinate
18,19 

but exhibits unilateral cross 

incompatibility with smaller 

flowered taxa
20

 

 Can be mass pollinated for 

deployment
18

 

 Easier to propagate by hardwood 

cuttings 
21

 

easier to manage
14

: 

- More flowers and seed per tree 

or hectare
14

 

- More overlap in flowering 

time
23,24

 

  
 

1
White et al. 1996; 

2
Honeysett et al. 1996; 

3
Wardlaw 2010 (but see Potter and 

Stephens 2005); 
4
pers. comm. D. Williams;

 5
Hallam et al. 1989; 

6
Mohammed et al. 

2003; 
7
Beadle et al. 1996 

8
Downes et al. 2006; 

9
Kibblewhite et al. 2000; 

10
Williams et al. 1995; 

11
McKinley et al. 2002; 

12
Innes et al. 2008; 

13
Washusen 

2011; 
14

pers. comm. K. Joyce;
 15

pers. comm. C. Harwood;
 16

Little and Gardner 

2003; 
17

Whittock et al. 2003; 
18

Venter and Silvlal 2007 
19

Williams et al. 1999; 
20

Gore et al. 1990; 
21

de Little 2004; 
22

pers. comm. R. Griffin; 
23

Jones et al. 2011; 
24

Barbour et al. 2006.   

* Other pulp and paper qualities of E. globulus and E. nitens are compared in 

Cotterill and Brolin (1997). While not cited as a consideration in Tasmania, 

overseas experience (pers. com. R. Griffin) suggests that E. globulus produces 

paper with higher tear strength and better porosity, whereas E. nitens is easier to 

refine and consumes less energy (see also Cotterill and Brolin 1997).   

 

4. DEFINING THE GENEPOOL  

The main breeding strategies used for genetic improvement of both E. globulus and 

E. nitens in Australia (McRae et al. 2004b; Li et al. 2007; Hamilton et al. 2008) and 

overseas (Griffin 2001) exploit genetic variability through single-species population 

genetic improvement.  However taxonomically defining the base population used for 

genetic improvement is important (see for example Shepherd this volume) but has 

proved problematic in both species.  Within species, marked genetic differentiation 

between populations is the norm rather than the exception (Pryor and Johnson 1971; 

Pryor and Johnson 1981; Potts and Wiltshire 1997).  Genetic variation between 

populations in quantitative traits is often continuous and clinal, paralleling 

environmental gradients associated with changes in, for example, latitude, continent 

or altitude (Pryor and Johnson 1981; Potts and Wiltshire 1997; Dutkowski and Potts 

1999; Butcher et al. 2009).  Many recognized eucalypt species intergrade resulting 

in complexes of closely related species where no clear morphological discontinuity 

is apparent (see Shepherd this volume).  This is the case with E. globulus which is 

part of a complex of four closely related taxa (E. globulus, E. pseudoglobulus, E. 

bicostata and E. maidenii - Brooker 2000) variously given species or subspecies 
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status (Jordan et al. 1993). The cores of these taxa are morphologically and 

geographically distinct, but linked by morphologically and geographically 

intermediate (intergrade) populations (Jordan et al. 1993; Jones et al. 2002).  The 

main populations sampled for breeding programs around the world are core E. 

globulus and E. globulus intergrades (Jordan et al. 1993).  Intergrade populations 

which are difficult to assign to a specific taxa caused problems in early seed 

collections where, for example, one collection locality was classified as E. bicostata, 

E. globulus and E. pseudoglobulus by different seed collectors (Jones et al. 2002).  

This issue is confounded by the fact that morphology often does not reflect 

underlying molecular affinities (Jones et al. 2002; Jones 2009).  Three main 

molecular lineages have now been identified within the founder base population 

germplasm used in E. globulus breeding programs that strongly reflect geographic 

proximity (Jones et al. 2006; Steane et al. 2006).  In the case of both E. globulus and 

E. nitens the broad-scale variation in the native gene pools has now been 

summarised using a hierarchy of geographic races, subraces and collection locality 

information based on quantitative genetic and geographic information (Dutkowski 

and Potts 1999; Hamilton et al. 2008).   

In the case of E. nitens, two issues have complicated the exploitation of the base 

populations used for E. nitens breeding.  Firstly, the founder native trees sampled in 

earlier collections encompassed phenotypes initially classified as E. nitens var 

errinundra by Pederick (1979), but subsequently classified as a separate taxon E. 

denticulata (Cook and Ladiges 1991).  This taxon is mainly confined to the 

Errinundra region in eastern Victoria but some phenotypes are interspersed within 

predominantly E. nitens populations in central Victoria (Hamilton et al. 2008).  

More recent seed collections have avoided E. denticulata-like phenotypes 

(Dutkowski et al. 2001b), but their separation from E. nitens seed lots in data 

collected or reported from older trials has not always been possible (Hamilton et al. 

2011).  Secondly, further to characterising E. denticulata, Cook and Ladiges (1991), 

defined three genetically distinct races of E. nitens (i) Central and Northern NSW, 

(ii) Southern NSW and Mt Kaye, and (iii) Central Victoria.  Dutkowski et al. (2001), 

later separated the Central Victorian race into three additional races - Northern, 

Southern and Connnor‟s Plain.  The boundaries of these new races do not 

correspond neatly to those of the previous provenance classification of the same area 

(Pederick 1979), making exact comparisons across studies challenging.    

Experience with the base populations of E. globulus and E. nitens has emphasised 

the importance of maintaining information on founder tree morphology as well as 

precise geographic origin.  Such information is now easily collected and maintained 

with digital photographs (of tree habit and morphology) and accurate GPS 

information.  Given the costs of field sampling and reducing costs of DNA studies, 

the collection and storage of foliar samples from trees sampled for seed collection is 

also warranted for assessing relationships (Shepherd this volume), future quality 

control (Vaillancourt et al. 1998; Faria et al. 2010) and potential use in molecular 

breeding (Section 8). 
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5. CHOICE OF PROVENANCE   

Base populations for breeding E. globulus and E. nitens have been established from 

large-scale single-tree, open-pollinated seed collections from many localities within 

their native ranges (Eldridge et al. 1993; Potts et al. 2004; Hamilton et al. 2008).  In 

many cases, these collections have been distributed across breeding organisations 

leading to numerous trials with shared pedigrees, and possibilities for joint analyses 

(Costa e Silva et al. 2006), cooperative breeding (McRae et al. 2004b) and/or joint 

evaluation (McRae et al. 2004a; Kerr et al. 2008).  Genetic evaluations of base 

populations account for spatial genetic structure in the founder generation using 

genetic groups.  Genetic groups are traditionally reported as “provenances” in forest 

tree studies, but in the case of both E. globulus and E. nitens where the native gene 

pools have been extensively studied, it is the race or subrace classification which is 

usually used (see Section 4). 

  

Numerous studies of the quantitative genetic variation within E. globulus and E. 

nitens have been published from base-population trials (reviewed for E. nitens by 

Hamilton and Potts 2008 and for E. globulus by Dutkowski and Potts 1999; Potts et 

al. 2004; see also Stackpole et al. 2010b; Stackpole et al. 2011; Hamilton et al. 

2010b).  These studies provide information on the genetic architecture of the native 

forest gene pools as well as the basic information required for genetic improvement.  

As with most eucalypt species studied (Potts and Wiltshire 1997), there is 

considerable provenance (race/subrace) variation within E. globulus and E. nitens 

which impact on all stages of breeding and deployment from reproduction to product 

value.  For example, during the rapid expansion of the E. globulus estate in Australia 

in the 1990‟s large amounts of seed were obtained directly from native forest due to 

the shortage of improved seed-orchard seed.  As the subraces differ significantly in 

breeding objective traits for pulpwood production, Apiolaza et al. (2005) estimated 

that choice of subrace could alter Net Present Value (NPV) of plantations by as 

much as AU$2129 per hectare, effectively the difference between profit and loss.  

Notable examples of where genetic-based difference amongst native stand races or 

subraces impact the forest production system are given below. 

5.1. Reproduction 

Studies of the reproductive biology (including pollination ecology) and breeding 

systems have been important for understanding the limits to genetic evaluation using 

open-pollinated seed lots as well as development of efficient pollination and 

deployment systems for these species (see Hamilton et al. 2008 and Potts et al. 2008 

for references prior to 2008).  These include studies of the pollination ecology, 

breeding system (outcrossing rates and gene flow - Grosser et al. 2010; Mimura et 

al. 2009), self-incompatibility (McGowen et al. 2010), flowering time (Jones et al. 

2011) and abundance, pollination techniques, as well as seed production (Suitor et 

al. 2008; 2009a; Suitor et al. 2009b; Suitor et al. 2010) and seed germination (Nair 

et al. 2009; Rix et al. 2011). 
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While flowering time in E. nitens orchards is relatively synchronous, this is not the 

case for E. globulus.  There may be up to 8 months difference in the peak flowering 

time amongst E. globulus genotypes, largely due to genetic-based differences 

between subraces (Gore and Potts 1995; Jones et al. 2011).  This asynchrony has the 

potential to significantly reduce mating opportunities within open-pollinated seed 

orchards.  A classic example relates to the two Bass Strait island races, King Island 

and Furneaux, which in early trials were grouped together into the same subline 

(Orme 1988) with a view to conversion to open-pollinated seedling orchards.  These 

races have subsequently been found to differ in numerous traits (Dutkowski and 

Potts 1999) and the peak flowering of the King Island race is nearly 100 days later 

than Furneaux (Gore and Potts 1995).  Genetic information is now available on 

flowering time which has subsequently been used to better synchronize flowering 

within seed orchards.  Flowering time limitations to cross pollination are one of the 

advantages of mass supplementary pollination as opposed to relying on open-

pollination in E. globulus.  There is also evidence to suggest that subraces of E. 

globulus may differ in their degree of inbreeding depression (Costa e Silva et al. 

2011a), which may differentially affect their performance under open pollination.  

Choice of provenance may also affect propagation costs.  The subraces of E. 

globulus differ in flower and capsule size, as well as their reproductive output and 

seed characteristics in seed orchards. For example, one of the more favoured 

subraces - Strzelecki Ranges –has the smallest flowers and capsules, and in a seed 

orchard studied produced the smallest seed and lowest whole tree seed output 

(McGowen et al. 2004).  This subrace has also been reported to be amongst the 

more difficult to propagate by hardwood cuttings (Cañas and Toval 2004).  

5.2. Adaptability 

Growth and survival are fundamental to successful plantations, regardless of the 

product objective (Teulières et al. 2007).  The longer the rotation and the greater the 

investment in plantation silviculture, the more important it will be to have well 

adapted germplasm.  Often genetic effects may take several years to become evident 

following plantation establishment (Lopez et al. 2003; Costa e Silva et al. 2010b).  

While adaptive differences may be manifest early in the life cycle (e.g. frost 

susceptibility - Tibbits and Hodge 2003; Tibbits et al. 2006), there is increasing 

evidence of their ongoing expression, particularly with increasing competition 

following canopy closure and the onset of genetic-based size-dependent mortality 

(Chambers et al. 1996; Stackpole et al. 2010a; Costa e Silva et al. 2011a). Key pests 

and disease have been shown to impact growth and survival of both E. nitens and/or 

E. globulus (Battaglia et al. 2011), and when severe defoliation occurs their impacts 

will be embodied in later growth and survival measures both at a phenotypic 

(Rapley et al. 2009) and even genetic (Raymond 1995; Milgate et al. 2005; Jordan et 

al. 2002) level.   
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5.2.1 Abiotic threats 

Large differences exist amongst the races of E. globulus and E. nitens traits 

associated with adaptation to the aboitic environment, and differences in 

susceptibility to factors such as frost and drought are evident.  In E. nitens the more 

frost sensitive northern NSW races (Tibbits and Hodge 2003) grow better in summer 

rainfall zones, whereas the Victorian races perform better in winter rainfall zones 

(Hamilton et al. 2011).  The races of E. globulus differ in drought resistance 

(Dutkowski 1995), which in part explains their differential performance in trials 

across southern Australia (Costa e Silva et al. 2006). 

5.2.1 Pests and diseases 

Variation in pest (insect and mammals) and disease risk occurs both temporarily and 

spatially across the plantation estates of E. globulus and E. nitens in Australia (e.g. 

Mohammed et al. 2003; Pinkard et al. 2010), as well as following silvicultural 

treatments such as pruning (Pinkard et al. 2004; Wiseman et al. 2006).  Many of the 

Australian pests of these species have also become established overseas, including 

the brushtail possum in New Zealand (O'Reilly-Wapstra and Cowan 2010). 

Plantations within Australia are also at risk from introduced pests and diseases, no 

better exemplified by the recent introduction and spread of Myrtle Rust (Uredo 

rangelii) in Australia (http://www.dpi.nsw.gov.au/biosecurity/plant/myrtle-rust).  

This newly described pathogen of the family Myrtaceae has close links to the 

eucalypt guava rusts of South America which affects plants belonging to the family 

Myrtaceae, including eucalypts. 

 

Provenance differences in susceptibility to pests (e.g. insects - Jordan et al. 2002, 

mammals - O'Reilly-Wapstra et al. 2002; Miller et al. 2011), diseases (e.g. 

Mycosphaerella leaf disease (MLD) caused by Teratosphaeria species - Milgate et 

al. 2005; Carnegie and Ades 2005) and susceptibility to wood decay have been 

reported in E. globulus (Poke et al. 2006; Hamilton et al. 2007).  Decreased wood 

decay in one study (Poke et al. 2006) was associated with increased wood 

extractives at the provenance level (Stackpole et al. 2011).  At an holistic 

community level, genetic-based differences between races of E. globulus have been 

shown to affect the composition of insect and fungal communities that develop on 

canopy foliage (Barbour et al. 2009c), under trunk bark (Barbour et al. 2009b) and 

even in decaying litter beneath trees (Barbour et al. 2009a).  

 

Adverse genetic effects arising from such biotic factors can potentially contribute to 

genotype by site interactions and make some provenances unsuitable for planting in 

high risk areas.  For example, the low defensive chemistry of the St. Helens 

provenance of E. globulus appears to account for its atypically high susceptibility to 

marsupial browsing (O'Reilly-Wapstra et al. 2002; O'Reilly-Wapstra et al. 2004; 

O'Reilly-Wapstra et al. 2005) and unsuitability for growth in southern Tasmania 

(Volker and Orme 1988).  Several approaches are being used to reduce marsupial 

http://www.dpi.nsw.gov.au/biosecurity/plant/myrtle-rust


BRAD POTTS, MATHEW HAMILTON & DAVID BLACKBURN 

 

 
12 

browsing damage in plantations, including seedling protection with stockings or 

repellent (Miller et al. 2008).  However, genetic based differences in susceptibility 

are more persistent and there are direct and indirect (defensive chemistry) screening 

approaches for genetic improvement (Miller et al. 2009; Miller et al. 2011).   

5.3. Pulpwood traits  

There are numerous studies demonstrating significant variation between the races of 

E. globulus and E. nitens in wood property traits affecting the pulpwood breeding 

objective.  The key breeding objective traits related to wood properties are basic 

density and percentage pulp yield for both species.  A review of published results 

from 11 trials (Hamilton et al. 2011) indicated that the significant differences in 

basic density between the E. nitens races were mainly due to the extreme low and 

high basic density of southern and northern NSW races, respectively.  There was no 

consistent difference in basic density between the three Victorian races which are 

the focus of E. nitens breeding for the winter rainfall zones in Australia.  In E. 

globulus there is significant subrace variation within the base population for basic 

density with the mainland subraces tending to have higher basic density than King 

Island and most Tasmanian subraces (Dutkowski and Potts 1999; Stackpole et al. 

2010a; Stackpole et al. 2010b).  This has led to a focus on the mainland subraces of 

E. globulus for breeding (Jones et al. 2006).  There are few published studies of the 

genetic variation in pulp yield in either species (e.g. E. nitens - Williams et al. 1995; 

Tibbits and Hodge 1998; Hamilton et al. 2011; E. globulus - Williams et al. 1995; 

Stackpole et al. 2010b).  However, a recent study of an E. globulus base-population 

trial has shown significant variation in pulp yield between subraces with the highest 

pulp yield observed in the King Island and southern Tasmanian subraces (Stackpole 

et al. 2010b).  Such large-scale information has not been previously available and if 

shown to be consistent at other sites will mean that the economic value of 

germplasm from these subraces may have been underestimated.  This finding 

demonstrates the importance of large-scale studies, the potential changes in the 

economic value of germplasm which can occur as more information is obtained, and 

the value in long-term maintenance of base population trials. 

5.4. Solid-wood traits  

There are few studies of the genetics of traits in E. globulus and E. nitens which are 

specific to a solid wood objective.  Nevertheless, the few available suggest that the 

choice of provenance will not only affect solid wood product recovery but also 

quality. Recovery from trees or logs will be affected by stem straightness, forking, 

branchiness and taper.  The three key Victorian races of E. nitens (Northern, 

Southern and Connors Plains) differ in stem straightness, log taper and predicted 

green board recovery, with the Southern race best on all traits (Blackburn et al. 

2011a). A processing study also showed that the Connors Plain race produced 

boards of lower stiffness (Blackburn et al. 2010). While no significant race 

differences were detected for basic density, or board checking in Blackburn et al. 



DEVELOPING A EUCALYPT RESOURCE: LEARNING FROM AUSTRALIA AND ELSEWHERE 

 

 
13 

(2010), studies of cores suggest that the E. nitens races do differ in the propensity 

for shrinkage (total volumetric) and collapse (McKimm 1985; Hamilton et al. 2011).  

Tension wood is one of the main factors believed to cause drying defects in E. 

globulus boards (Washusen 2011), and a study of 10-year old trees reported a higher 

proportion of tension wood and collapse in the Jeeralangs, one of the races with high 

basic density that is most favoured for pulpwood plantations, compared with the low 

density King Island race (Washusen and Ilic 2001).  Board properties are altered by 

sawing pattern and in a study of 15-year old trees, Hamilton et al. (2010c) showed 

significant differences among races in the internal checking observed in quartersawn 

but not backsawn boards.  Nevertheless, these genetic studies have been undertaken 

on unpruned and unthinned trials and the repeatability of observed differences in 

collapse, shrinkage and checking remain to be determined on other sites and under 

different silviculture regimes.   

 

6. EXPLOITING VARIATION WITHIN PROVENANCES   

While large and rapid genetic gains can often be made from exploiting the natural 

genetic variation which exists amongst provenances of a species (e.g. subraces/races  

- the genetic groups used in statistical analyses), substantial genetic variation also 

resides within provenances which can also be exploited for genetic improvement 

(Eldridge et al. 1993).  From a quantitative genetics perspective, this variation may 

include both additive and non-additive genetic components.  Only the additive 

genetic component can be exploited for ongoing population improvement but the 

non-additive genetic component in any one generation can be captured for 

deployment, along with the additive component, by cloning or use of full sib-

families (e.g. mass supplementary pollination) (Eldridge et al. 1993).  For base 

populations, the additive component of genetic variation is usually assessed from the 

pooled within-provenance variation amongst open-pollinated families and is 

assumed to represent the additive genetic variation which exists within a random 

mating population in the wild.  The narrow-sense heritability (h
2
) of a trait derived 

from such a partition represents the proportion of the phenotypic variation within 

provenances which is under additive genetic control.  When the narrow-sense 

heritability has been estimated based on open-pollinated progeny the symbol h
2
op is 

used to indicate that the calculations make assumptions regarding the average 

relationship amongst open-pollinated sibs (i.e. they are not all unrelated half-sibs).    

 

The reported heritabilities for a given trait may vary depending upon numerous 

factors, but meta-analyses are revealing a generalised picture of h
2

op within base 

population trials of both E. globulus (Potts et al. 2004) and E. nitens (Hamilton and 

Potts 2008).  While most traits and most trials tend to exhibit statistically significant 

h
2

op , on average the heritability of growth, survival, animal browsing and tree 

architecture traits tend to be lower than that of wood property, reproductive and 

developmental traits.  For example, in E. nitens the average heritabilities for growth 

traits (e.g. average h
2
op= 0.26 for diameter) were generally lower than those for 
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wood property traits (e.g. average h
2

op = 0.51 for basic density) (Hamilton and Potts 

2008).  Breeders also need knowledge of the stability of this genetic variation across 

ages (age-age correlations) and across sites (genotype x environment interactions – 

GxE) as well as an understanding of the genetic association amongst traits (Eldridge 

et al. 1993; Callister et al. 2011).  This knowledge is usually obtained from 

calculating the additive genetic correlations (ra) for the same trait measured at 

different ages or on different sites as well as between different traits.  Age-age 

correlations for growth and wood density are relatively high (Borralho et al. 1992; 

Stackpole et al. 2010a; Hamilton et al. 2010c) and four-year DBH is commonly 

used as an early selection trait (Borralho et al. 1992).  Additive genetic correlations 

across sites estimated from open-pollinated families also tend to be relatively high in 

both E. globulus – (MacDonald et al. 1997; Costa e Silva et al. 2006; Callister et al. 

2011) and E. nitens (reviewed in Hamilton and Potts 2008), arguing that selections 

undertaken on one site will be reasonably suited for another site.  However, in E. 

globulus lower genetic correlations have been reported for growth at the subrace 

level suggesting significant genotype by environment interaction (see section 4.2).  

 

Large-scale assessments are required to obtain robust genetic parameter estimates, 

particularly for genetic correlations.  While this is feasible with many traits 

obtaining large sample sizes for traits which are technically difficult or expensive to 

assess is problematic and often leads to relatively imprecise estimates (see 

discussions in Stackpole et al. 2010b; Hamilton and Potts 2008).  Nevertheless, this 

situation is rapidly changing with the advances in phenotyping, such as near-infrared 

(NIR) spectroscopy (Downes et al. 2010a; Downes et al. 2010b) and acoustic 

(Blackburn et al. 2010) technologies that can now be used non-destructively on 

standing trees to predict traits relevant to pulpwood and solid-wood value (e.g. 

Blackburn et al. 2010; Stackpole et al. 2010b).  For example, NIR models have 

recently allowed large-scale non-destructive studies of genetic variation in pulp 

yield (Stackpole et al. 2010b) and wood chemical traits (lignin, cellulose, 

extractives, lignin and its syringil to guacin ratio [S/G] – Stackpole et al. 2011) in E. 

globulus.  Technologies for assessing wood colour have also been tested with E. 

nitens (Raymond and Bradley 2002).  In addition, despite increasing efficiencies in 

sampling wood cores for density and other measurements (Raymond et al. 1998; 

Stackpole et al. 2010a), Pilodyn penetration is still being used as a rapid, indirect 

measure of wood density (MacDonald et al. 1997; Raymond and MacDonald 1998; 

Callister and England 2010). 

 

Sample size has certainly limited genetic studies of solid-wood objective traits.  

Nevertheless, efficiencies have been made in tracking tree and log identities through 

processing systems (Blackburn et al. 2011b), allowing board and veneer properties 

to be linked to tree pedigrees and potential selection traits.  Already, a recent study 

of 496 trees has shown the stiffness and checking of E. nitens boards are under 

strong genetic control and amenable to genetic improvement (Blackburn et al. 

2010).  Wood stiffness and checking traits were more-or-less genetically 

independent, surface and internal checking were only moderately positively 
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correlated, but while basic density was positively correlated with stiffness it was 

adversely correlated with surface check length.  NIR models for predicting specific 

solid wood traits from standing tree samples are yet to be developed.  Nevertheless, 

in E. nitens, standing tree acoustic wave velocity is proving useful.  It is strongly 

genetically correlated with board stiffness and moderately positively genetically 

correlated with basic density (Blackburn et al. 2010).  While associations with non-

destructive techniques are yet to be identified, a strongly positive genetic correlation 

between internal board checking and checking in wedges taken from disks removed 

from felled trees has been shown in E. nitens (Blackburn et al. 2010).  However in 

E. globulus, board checking has yet to be shown to be significantly genetically 

correlated with potential selection traits assessed from standing trees (Hamilton et 

al. 2010c).   

 

As is typical of eucalypt species, most reported estimates of genetic parameters in E. 

globulus and E. nitens are derived from base population trials.  Base population 

trials tend to be more numerous, and have large numbers of individuals and founder 

parents than trials comprising control pollinated families.  However, there are 

inaccuracies associated with parameter estimates from the open-pollinated families 

due to the unknown male parentage. Open-pollinated families may comprise 

variable levels of selfing, biparental inbreeding and unrelated outcrosses  (Eldridge 

et al. 1993; Hardner et al. 1998).  The performance of open-pollinated families may 

thus be affected not only by the additive genetic worth of the female, but also the 

outcrossing rates and patterns, and the females‟ inherent propensity for inbreeding 

depression (Costa e Silva et al. 2010a; Bush et al. 2011).  In E. globulus, outcrossing 

rates tend to be higher in seed collected from the upper canopy compared with the 

lower canopy (Patterson et al. 2001; Hingston and Potts 2005).  There is also 

marked tree-to-tree variation in outcrossing rates (Patterson et al. 2004), which tend 

to be lower in fragmented (low density) than continuous forest (Mimura et al. 2009).  

Self-incompatibility (McGowen et al. 2010) is likely to be a key determinant of tree-

to-tree variation in outcrossing rates, and assessing self-compatibility through 

controlled pollination and collecting seed from self-sterile trees is one option to 

avoid inbreeding in deployment seed lots.  While progress has been made in terms 

of accounting for average selfing rates in genetic evaluation of open-pollinated 

progenies of eucalypts (Dutkowski et al. 2001a), it is difficult to account for variable 

outcrossing rates without parentage analysis (Burgess et al. 1996; Gea et al. 2007; 

Bush et al. 2011).  Even then the impacts of variable inbreeding depression at the 

individual level will be difficult to predict (Costa e Silva et al. 2010a; Costa e Silva 

et al. 2010b).  In addition, there is some evidence to suggest that inbreeding 

depression may induce site stability in open-pollinated family performance that has 

resulted in an underestimation of the importance of environment x genotype 

interaction from an additive genetic perspective (Costa e Silva et al. 2011a).  

However, the effects of inbreeding depression appear to be more an issue for growth 

and survival traits (e.g. Costa e Silva et al. 2010a) and more reliable predictions of 

genetic parameters and breeding values are likely with other traits of economic 

interest (e.g. wood properties, disease susceptibility – Potts et al. 2004). 
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The non-additive (dominance, epistasis and maternal) components of genetic 

variation can only be captured through family or clonal deployment and estimation 

of these effects requires crossing designs with full-pedigree control.  Understanding 

the relative importance and nature of non-additive genetic effects is now possible, 

particularly with E. globulus where control-pollinated (CP) trials are increasing in 

number and size.  This information is required, for example, to help decide whether 

to shift from open-pollinated seed orchards to more expensive clonal and full-sib 

family deployment strategies.  For growth traits, studies of control-pollinated trials 

in E. globulus have indicated that open-pollinated heritability estimates are inflated 

compared with control-pollinated estimates (Hodge et al. 1996; Volker 2002; Costa 

e Silva et al. 2010a), but to date this trend is not evident in E. nitens (Hamilton and 

Potts 2008).  In E. globulus, breeding values for growth traits are poorly correlated 

between control- and open-pollinated populations (Hodge et al. 1996; Volker 2002; 

Costa e Silva et al. 2010a).  Significant dominance variation has also been reported 

within many (Volker 2002; Li et al. 2007; Callister et al. 2011), but not all (Lopez et 

al. 2003; Costa e Silva et al. 2004), E. globulus populations studied.  Non-additive 

effects for growth have also been reported for inter-provenance F1 crosses of E. 

globulus which are positive, ranging from mid-parent (Volker et al. 2008) to better 

parent (Lopez et al. 2003) heterosis, and may partly reflect mild levels of inbreeding 

in local populations (Hardner et al. 1998).  However the pattern of expression of 

inter-provenance F1 heterosis needs to be better understood.  It is also unclear 

whether these positive effects of inter-provenance crossing will persist in subsequent 

generations due to the possibility of outbreeding depression (see Shepherd this 

volume).  

 

7. HYBRIDISATION 

 

The major eucalypt subgenera do not hybridise but barriers to hybridization between 

species within subgenera are often weak (Griffin et al. 1988; Potts et al. 2003).  

Natural hybridization and introgression between recognized taxa is relatively 

common (Griffin et al. 1988; Potts and Wiltshire 1997; Butcher and Williams 2002; 

Field et al. 2011), and in some cases only detectable at the molecular level 

(McKinnon et al. 2001; McKinnon et al. 2004). 

 

Artificial hybridisation has been widely used as a breeding strategy in eucalypts in 

subtropical and tropical regions of the world but to a lesser extent in temperate 

regions (Potts and Dungey 2004; see also Harwood this volume).  While there has 

been extensive research on artificial hybridisation of E. nitens and E. globulus in 

Australia (Potts et al. 2000; Potts and Dungey 2004; Tibbits 2000; Meddings et al. 

2003; Lopez et al. 2000), high costs of development and clonal propagation have 

meant that such germplasm has generally not been developed commercially in 
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Australia. An exception is the „Saltgrow‟ hybrids involving E. globulus, which have 

been developed for environmental plantings (Dale and Dieters 2007; Hardner et al. 

2011).   

 

While F1 hybrid clones between E. globulus and E. nitens have been developed in 

Chile (Griffin 2001), attempts to develop such hybrids in Australia have not come to 

fruition, partly due to difficulties in clonal propagation (Tibbits 2000).  However the 

genetics of this hybrid combination have been well-studied.  In the early 1990‟s 

large crossing programs were undertaken by both CSIRO and North Forest Products 

Ltd (now part of Gunns Ltd) to develop hybrids between these two species with the 

aim of developing germplasm with the pulpwood qualities of E. globulus which 

could be planted on higher altitude colder sites.  The first generation hybrids were 

expensive to produce as the cross could only be obtained using the small-flowered 

E. nitens as the female parent.  This unilateral barrier appeared to be physical and 

due to the pollen tubes of E. nitens being unable to grow the full length of the large 

E. globulus style (Gore et al. 1990).  The set of F1 hybrid seed was low, high levels 

of abnormalities were observed in the nursery, the F1‟s exhibited increased 

susceptibility to possum browsing and poor survival in the field, although the 

success of hybridisation varied between the two E. globulus provenances tested 

(Dungey and Potts 2001; Volker et al. 2008). This crossing program is noteworthy 

as it used a relatively large number of parents of each species, and compared the 

performance of the hybrids against selfs, open-pollinated and unrelated outcrosses of 

the parental species.  However, as the hybrids and pure species were planted in 

separate plots within each replicate of the field trial, high mortality of the hybrids 

resulting in a lower competitive environment for survivors biased later-age cross-

type comparisons. Second generation hybrids (backcrosses and outcrossed F2‟s) 

which were later produced and planted along with F1 and pure species crosses at two 

sites, but using a single-tree plot design to avoid survival biasing cross-type means.  

At both sites the F2‟s exhibited poor mean survival compared to the pure species and 

the backcrosses were intermediate (Potts et al. 2003; Costa e Silva et al. 2011b) and 

at both sites the top families at age 14 were from the pure species (B. Potts unpubl. 

data).  These hybrid populations exhibited severe outbreeding depression which 

increased with age, and appeared to be mainly due to adverse additive x additive 

epistasis (Costa e Silva et al. 2011b). 

 

Another attempt to develop hybrid germplasm to extend the planting of E. globulus 

into colder areas involved crossing with the frost resistant species, E. gunnii (Potts et 

al. 2000). In this case trials were established along an elevation gradient. The F1 

hybrids in this case exhibited less abnormality and survival problems than the E. 

nitens x globulus hybrids but only outperformed E. globulus at the highest altitude 

site where the pure species was heavily damaged by frost.  However at this highest 

altitude site, the performance of the F1 hybrids were well below the routine E. nitens 

plantation seedlings included as a control.   
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8. MOLECULAR BREEDING 

There have been major advances in eucalypt genomics and marker technologies in 

the last year which are leading to a rapid increase in our understanding of the 

eucalypt genome and opportunities to link genes to phenotypic variation of adaptive 

and economic significance (Poke et al. 2005; Grattapaglia and Kirst 2008; Myburg 

et al. 2008; Mamani et al. 2010).  Following acceptance of a proposal from the 

international eucalypt genetics network EUCAGEN (http://web.up.ac.za/eucagen/), 

an assembled genome of E. grandis was generated and released into the public 

domain by the US Department of Energy‟s Joint Genome Facility in April 2011 and 

an E. globulus genome has been re-sequenced (see http://web.up.ac.za/eucagen/).  

There has simultaneously been increasing release of other genomic resources for 

eucalypts into the public domain (e.g. Rengel et al. 2009; Mizrachi et al. 2010; Faria 

et al. 2011; Neves et al. 2011; Paiva et al. 2011).  This expansion has been coupled 

with the recent development of the Diversity Arrays Technology (DArT) for 

eucalypts (Sansaloni et al. 2010; Steane et al. 2011).  DArT has allowed cost-

effective generation of high-density linkage maps (Kullan et al. 2011) to provide a 

framework for comparative mapping (Hudson et al. 2011), generation of a multi-

species concensus map (C. Hundson unpubl. data), and the expansion and 

integration of quantitative trait loci (QTL) studies (Thumma et al. 2010) across 

multiple species.  The sequenced DArT markers allow QTL to be linked to the E. 

grandis genome sequence to help identify candidate genes for association genetic 

and other genomic studies.  Association genetic studies aiming to identify the 

molecular change (e.g. single nucleotide polymorphisms – SNP) underlying the 

phenotypic variation in many wood property traits are well advanced in both E. 

nitens and E. globulus (Thumma et al. 2009; Southerton et al. 2010; 

Thavamanikumar et al. 2011), although the stability of marker trait associations 

across pedigrees and environments is becoming a key research issue (Southerton et 

al. 2010).  We are at the threshold of major advances which will see an increasing 

number of validated markers/trait associations available for traits of interest to 

breeders, and potentially the development of genome-wide strategies for selection 

(Grattapaglia and Resende 2011).  An important challenge ahead will be to integrate 

this molecular information into current breeding programs in a manner which is cost 

efficient and competitive with advances in phenotyping technologies ({Kerr, 2011 

#11540}).  The near absence of non-destructive tests and high costs of phenotyping 

breeding objective traits associated with solid-wood products (e.g. board checking- 

Sexton et al. 2010) combined with the longer rotation time of such plantations, 

would no doubt make solid-wood objective traits prime targets for molecular 

breeding. 

9. SUMMARY 

In summary, clearly defined breeding objectives are required to efficiently exploit 

the vast amount of genetic diversity which resides within eucalypts at multiple 

levels.  While such objectives and associated traits are relatively well defined for 

http://web.up.ac.za/eucagen/
http://web.up.ac.za/eucagen/
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pulpwood production, technological changes in solid-wood products and production 

systems argues for an initial focus on the more generic objectives and traits.  Species 

and provenance choices offer key opportunities for gains in the early phase of 

domestication, impacting on not only product quantity and quality, but breeding and 

propagation options. Understanding the genetic architecture and economic weights 

of traits is important for breeding, but requires assessment under appropriate 

silvicultural regimes.    
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11. APPENDICES 

12.1. Appendix 1: Major evolutionary lineages within the eucalypts (modified from 

Myburg et al. 2007).  The alignment of Pryor and Johnson‟s (1971)
 
genera and 

subgenera with Brooker‟s (2000)
 
subgenera. Pryor and Johnson‟s classification was 

informal, but widely used for 30 years.  The number of species in each of Brooker‟s 

subgenera is indicated and examples of well-known forestry species are given. Most 

species used in plantation forestry (see Harwood this volume), particularly outside 

Australia are from Brooker‟s sections Maidenaria (e.g. E. dunnii, E. globulus, E. 

nitens), Exsertaria (e.g. E. camaldulensis, E. tereticornis) and Latoangulatae (e.g. 

E. grandis, E. pellita, E. saligna, E. urophylla) in the subgenus Symphyomyrtus. 

 

Pryor & Johnson‟s 

subgenera/genera 

Brooker‟s 

subgenera 

No. of 

species    

Examples of well-known 

forestry species 

Angophora (genus)

  

Angophora
1
 7  

Blakella Blakella
1
 15  

Corymbia Corymbia
1
 67 C. torelliana, C. citridora,  

C. variegata, C. maculata
 
 

Eudesmia Eudesmia 19  

Gaubaea Acerosa 1  

Gaubaea Cuboidea 1  

Idiogenes Idiogenes 1 E. cloeziana 

Monocalyptus Primitiva 1  

Monocalyptus Eucalyptus 110 E. regnans, E. delegatensis,  

E. obliqua, E. marginata,  

E. fastigata 

Symphyomyrtus Cruciformes 1 E. guilfoylei 

Symphyomyrtus Alveolata 1 E. microcorys 

Symphyomyrtus Symphyomyrtus 474 E. camaldulensis, E. dunnii,  

E. exserta, E. globulus,  

E. grandis, E. nitens,  

E. paniculata, E. pellita,  

E. robusta, E. saligna,  

E. tereticornis,E. urophylla,  

E. viminalis, 

Telocalyptus Minutifructus
2
 4 E. deglupta 

1
The subgenera Blakella and Corymbia had previously been treated as a separate 

genus Corymbia Hill and Johnson and the subgenus Angophora treated as a genus 

(Hill and Johnson 1995) and this approach has been adopted in the text
 

2
A recent molecular study suggests that these species belong within subgenus 

Symphyomyrtus (Whittock 2003) 
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