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Abstract

The recent advent of high-frequency data has given rise to the notion of realized

skewness and realized kurtosis. Unlike sample skewness and sample kurtosis which

is normally computed from long samples of low-frequency return series (daily,

weekly, monthly return series, and so on), realized skewness and realized kurto-

sis is computed from high-frequency return series (1-second, 1-minute, 5-minute

return series, and so on). The relevance of high-frequency return data has been

extensively documented in the extant financial literature. Researchers have shown

that with high-frequency return data, realized variance converges to the sample

variance and is an efficient estimator of the quadratic variation. However, realized

skewness and realized kurtosis do not converge to the sample skewness and sam-

ple kurtosis values. This is because the second realized moments depend on both

the diffusion and jump components of the observed price, whereas, the third and

fourth realized moments depend exclusively on just the jump component. This

implies that information embedded in realized skewness and realized kurtosis is

different from that of sample skewness and sample kurtosis.

This thesis contributes to the body of literature by adopting, deducing, and fol-

lowing various theoretical methodologies, simulation techniques and empirical pro-

cedures to offer a new perspective, which cautions researchers to be observant of

the optimal sampling frequency for their country of investigation when using high-

frequency return series. Primarily, researchers should also be aware of the effects

of sampling-interval and holding-intervals on the estimated realized skewness and

realized kurtosis and its implication to high-frequency finance. Researchers need
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to be critical of the type of volume used for information flow, and its relationship

with realized skewness and realized kurtosis. Finally, it is important to note the

significance of high-order moment pricing models in capturing the cross-section

of asset returns under various market conditions (upturn and downturn markets)

and sample-periods (pre-crisis, crisis, and post-crisis period).

The second chapter of this thesis investigates the optimal sampling frequency

for computing realized variance for the DJI30 index and its component stocks,

and also whether the obtained sampling frequency could be extended to the Aus-

tralian framework. To the best of my knowledge, this study is the first to in-

vestigate the preferred sampling frequency with a focus on the Australian stocks,

and not naively extending the 5-minutes rule of thumb from the US framework.

Using 1-second (high-frequency) raw prices downloaded from Thomson Reuters

Tick History/Securities Industry Research Centre of Asia-Pacific (TRTH/SIRCA)

database from 2010 to 2015, this study computes daily RVs and find that the stan-

dard 5-minute interval for the US market holds, a ‘10-’ to ‘30-minute’ sampling

frequency is the preferred interval for the Australian framework.

The third chapter of this thesis investigates theoretically and empirically, how real-

ized skewness and realized kurtosis are affected by holding-interval and sampling-

interval. In particular, before any computations of realized skewness and real-

ized kurtosis are carried out, one often predetermines the holding-interval and

sampling-interval and thus implicitly influencing the actual magnitudes of the

computed values of the realized skewness and realized kurtosis (i.e. they have

been found to be interval-variant). To-date, little theoretical or empirical studies

have been undertaken in the high-frequency finance literature to properly investi-

gate and understand the effects of these two types of intervalings on the behaviour

of the ensuring measures of realized skewness and realized kurtosis. This chap-

ter fills this gap by theoretically and empirically analyzing as to why and how

realized skewness and realized kurtosis of market returns are influenced by the

selected holding-interval and sampling-interval. Using simulated and price index

data from the G7 countries, this study then proceeds to illustrate via count-based
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signature plots, the theoretical and empirical relationships between the realized

skewness and realized kurtosis and the sampling-intervals and holding-intervals.

The fourth chapter of this thesis investigates empirically volume-higher order mo-

ment relationship by employing various proxies of information flow. The rela-

tionship between volume and realized volatility has been extensively documented

in the extant financial literature. However, minimal attention has been accorded

to volume-realized skewness and volume-realized kurtosis relationships. The in-

sight in this chapter is that these additional higher-order realized moments hold

volume-dependent relationships that have been neglected. The empirical analy-

sis employs 142 Australian stocks from 2003 to 2017 downloaded at 15-minute

sampling-intervals from the TRTH/SIRCA database and compute their weekly

and monthly realized high-order moments. It is found that the volume proxy

influences the signage of the ensuring volume-higher-order realized moment re-

gression coefficients. This study then attempts to explain the empirical findings

via three common volume-related hypotheses cited in the extant volume litera-

ture and conclude that the DOH (Difference of Opinion) hypothesis implicitly

encompasses or nests both the SIAH (Sequential Information Arrival) and MDH

(Mixture of Distribution) hypotheses. These two subtle but significant findings

have yet to be reported in extant volume or trading-related studies.

The fifth chapter follows a set of methodologies documented in the extant litera-

ture for investigating the higher-order co-moment risk-return relationship for the

Australian stock market. Using 142 stocks from 2003 to 2017 downloaded from

TRTH/SIRCA database. For this study, monthly realized return and monthly

higher-order co-moment estimates are computed from 15-minute series. The high-

frequency return data will ensure robust estimates for the empirical analysis. The

empirical results show that the average return for standard beta and kappa risks

are asymmetric and diametrically opposite in upmarket and downmarket peri-

ods, while gamma risks yield significant gains to the investor regardless of the

market condition (the results are consistent for the three methodologies consid-

ered: (i) the single sorting of excess return on risk measures, (ii) double sorting

xii



of excess returns on risk measures, and (iii) the Fama-MacBeth cross-sectional

regression). Additional results from the Fama-MacBeth cross-sectional regression

shows that gamma and kappa risk factors remain priced, even in the presence

of continuous beta and jump beta. It is found that not only the normalized co-

variance risk factor is important in asset pricing but also normalized co-skewness

and co-kurtosis risk factors are also priced separately. This study further splits

the full-sample data into sub-periods and observes that the level of significance

of the risk premium varies across the sub-periods. The results contribute to the

debate on whether systematic realized higher-order co-moments can explain the

cross-sectional Australian stock returns.

To conclude, this thesis brings to light some research questions and answers related

to realized skewness and realized kurtosis that are yet to be considered in the

existing high-frequency finance literature and hence contributes to the body of

knowledge in field of finance.
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Chapter 1

Introduction

The multi-moment capital asset pricing model (CAPM) has received considerable

attention in the existing financial literature (see Adcock, 2010; De Athayde and

Flôres Jr, 2004; Jondeau and Rockinger, 2003, etc.). Several researchers have

shown that the notion of asset return being normally distributed should be re-

laxed because asset returns are affected by skewness and kurtosis (see Greene and

Fielitz, 1977; Cowan and Sergeant, 2001; Chen et al., 2001; Chung et al., 2006;

Desmoulins-Lebeault, 2012, etc.). Such arguments hold that financial models like

CAPM, which depend on the normality of the asset returns may neglect relevant

risk components.1 As such, the standard CAPM does not converge to the total

higher-order systematic co-moment risk in the marketplace, and it may, there-

fore, represent an imperfect measure of risk.2 Rubinstein (1973); Ingersoll (1975);
1The standard CAPM, which was proposed by Sharpe (1964); Lintner (1975); Mossin (1966),

can be regarded as one of the most important theories in modern finance. The CAPM suggests
that the expected return of an asset depends entirely on the asset’s systematic risk and that for
this reason, the only relevant metric is co-variance risk. The model implies a linear relationship
between expected returns and systematic risk (beta). For this relationship to hold, the CAPM
places strong restrictions on (i) the asset return distribution (assuming Gaussian distribution)
and (ii) the agent’s utility function (by employing the quadratic utility function), which does
not correspond to rational agent behavioural characteristics. The assumption of Gaussian dis-
tribution is normally made for reasons of convenience in theoretical models; however, it is less
likely to hold in the high-frequency paradigm.

2Fama and French (1992, 1995); Carhart (1997) has shown that fundamental variables, such
as size, value and momentum, can explain the cross-sectional variation in expected returns. Ang
et al. (2006) shows that asymmetric betas explain the cross-section of asset returns, while Amihud
(2002); Pástor and Stambaugh (2003); Acharya and Pedersen (2005) show that liquidity risk
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Kraus and Litzenberger (1975) were the first to consider relaxing the normality

assumption of the CAPM, whereby several aspects of the model fall short in the

context of realistic settings. The authors incorporated a higher-order moment into

the pricing model by considering the unconditional asymmetric characteristics of

asset return distributions. Kraus and Litzenberger (1975) shows the significance of

positive skewness to investors even in circumstances in which risk aversion did not

increase. Consequently, researchers and practitioners have focused on implement-

ing the higher-order pricing model as an appropriate tool for capturing systematic

co-moment risk (see Harvey and Siddique, 2000a; Dittmar, 2002; Lambert and

Hübner, 2013; Poti and Wang, 2010; Moreno and Rodríguez, 2009; Kostakis et al.,

2012, for more details).3

Harvey and Siddique (2000a) outlines the economic significance of incorporating

the co-skewness risk factor into the two-moment CAPM. Barone Adesi et al. (2004)

shows that accounting for co-skewness causes the three-factor model of Fama and

French (1993) to lose its predictive power. Chung et al. (2006) suggests that higher-

order co-moments are relevant to risk-averse investors who are wary of ‘extreme

events’. The same authors also show that for low-frequency return data, the Fama

and French (1993) risk factors converge to higher-order co-moment risk measures.

Vanden (2006) suggests that the three-factor model of Fama and French (1993)

are an imperfect proxy of co-skewness risk. Consequently, Smith (2007) shows

the predictive power of co-skewness risk factor over the conditional two-moment

CAPM and the conditional Fama and French (1993) three-factor model. Brunner-

meier et al. (2007); Barberis and Huang (2008) shows that a security’s skewness

factors explain the cross-section of asset returns. Roll and Ross (1994); Kandel et al. (1995) show
that even minor deviations in efficiency could lead to an insignificant risk-return relationship.
Breen and Korajczyk (1993); Kothari et al. (1995) states that the presence of survivorship bias
in empirical data could lead to measurement errors during asset pricing testing. Amihud et al.
(1992); Kim (1995) find that the predictive power of the empirical asset pricing test is conditional
on the effects of the errors-in-variables problem.

3Fang and Lai (1997); Dittmar (2002) were the first to present a pricing model framework that
accounted for both the asymmetric and leptokurtic characteristics of asset return distributions.
Prior research has shown that high-order moment risk premiums are priced separately across
various stock markets, market conditions and sample periods. Such heterogeneity indicates that
the results from one particular market may not apply to other markets. This finding forms the
motivation for the empirical investigations undertaken in this thesis.
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could also impact on investors’ decisions concerning their portfolio. This is in line

with the theory of cumulative prospect and consistent with the empirical findings

of (Mitton and Vorkink, 2007; Boyer et al., 2010).4 Scott and Horvath (1980)

shows that rational investors are averse to negative skewness and excess kurto-

sis. Similarly, Ranaldo and Favre (2005); Liow and Chan (2005); Sharpe (1964);

Jurczenko and Maillet (2006) note that investors display a preference for odd mo-

ments (i.e., mean and skewness) and an aversion to even moments (i.e., variance

and kurtosis). Investors also tend to display a preference for positive skewness and

an aversion to negative skewness (Do et al., 2014). Jurczenko and Maillet (2006)

shows that investors must consider not only the mean-variance decision criterion

of their portfolios but also the mean-variance-skewness-kurtosis decision criterion.

This is indicative of the importance of skewness and kurtosis in asset allocation

and asset pricing models. This mean-variance-skewness-kurtosis decision criterion

is achieved through the Taylor series expansion of the utility function, which is

contrary to the quadratic utility function of the mean-variance space proposed by

Markowitz and Todd (2000). Campbell et al. (2002) shows that the quadratic util-

ity function does not accurately depict investors’ preferences, while Jurczenko et al.

(2005) proposes a nonparametric portfolio optimization criterion for the portfolio

selection problem in the mean-variance-skewness-kurtosis space. The same authors

constructed a general approach for obtaining an efficient portfolio in a nonconvex

mean-variance-skewness-kurtosis framework that outperforms the mean-variance

approach. Also, Sears and Wei (1988) shows that ignoring co-skewness risk may

bias the results obtained when investigating the risk-return relationship trade-off.

Skewness and kurtosis play a key role in various fields of finance (i.e. asset pric-

ing, portfolio management, derivatives market, mutual funds, etc.) and can offer

new perspectives on the way data is approached in empirical research, as well as
4Barberis and Huang (2008) argue that the positive skewness of a firm could be overpriced

and could, therefore, decrease the expected returns. Elsewhere, using a model of optimal beliefs,
Brunnermeier et al. (2007) shows that investors are attracted to highly right-skewed assets that
tend to have lower subsequent expected returns. However, the authors highlight the limitations
of their model when the rationality of the investor is questioned. Mitton and Vorkink (2007)
modelled a rational investor’s heterogeneous preference for skewness and show that idiosyncratic
skewness significantly impacts marketplace prices.
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help form new theories that rely on the distributional properties of return data.

In the context of derivatives pricing, Corrado and Su (1996, 1997); Brown and

Robinson (2002) employ skewness and kurtosis to relax the restrictive Gaussian

distribution assumption of the popular Black and Scholes (1973) option pricing

model. Xing et al. (2010) find a positive relationship between option-implied skew-

ness and future returns, while Conrad et al. (2013) finds a negative relationship

between option-implied skewness and future returns. Additionally, Conrad et al.

(2013) finds a strong relationship between individual firms’ risk-neutral volatility,

skewness and kurtosis to future returns. Chang et al. (2013) shows that market

skewness risk premium is priced in the presence of other common risk factors,

including market excess returns, volatility, size, value and momentum. In relation

to mutual funds, Klemkosky (1973); Ang and Chua (1979) show that ignoring the

third moment of the return distribution in performance evaluation bias the con-

clusions drawn, which could impact investors directly in their portfolio creation

and asset allocation strategies. Similarly, Prakash and Bear (1986); Leland (1999)

also developed performance measures by incorporating skewness. Stephens and

Proffitt (1991) went one step further to generalize the performance measure to in-

corporate any number of higher-order moments. The authors show that ignoring

higher-order moments could impact a fund’s performance ranking test. Moreno

and Rodríguez (2006) argues that co-skewness is priced, even when size, value and

momentum risk factors are controlled for. Liu et al. (1992); Vines et al. (1994);

Liow and Chan (2005); Lee et al. (2008) show the importance of co-skewness in the

pricing of real estate. Christie-David and Chaudhry (2001) shows that the second,

third and fourth moments are important in explaining returns in the futures mar-

ket. The authors also investigate the relevance of co-skewness and co-kurtosis in

explaining the return-generating process in futures markets. Knif et al. (2020) em-

ploys higher-order co-moments to characterize the returns of hedge fund indices.

They find that co-skewness and co-kurtosis are priced at the tail distribution of

returns, which implies that co-skewness and co-kurtosis risk measures capture sig-

nificant tail risks.
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High-frequency data have given rise to the notion of realized skewness and real-

ized kurtosis. Unlike sample skewness and sample kurtosis, which are normally

computed from long samples of low-frequency return series (e.g., daily, weekly

and monthly return series), realized skewness and realized kurtosis are computed

from high-frequency return series (e.g., 1-second, 1-minute and 5-minute return

series, etc.).5 The relevance of high-frequency return data has been discussed at

length in the financial literature on the subject. It has been shown that with high-

frequency return data, realized variance converges to sample variance and is an

efficient estimator of quadratic variation. However, Amaya et al. (2015); Ahadzie

and Jeyasreedharan (2020) show that the values of realized skewness and realized

kurtosis do not converge to the values of sample skewness and sample kurtosis

because the second realized moment depends on both the diffusion and jump com-

ponents of the observed price, while the third and fourth realized moments depend

exclusively on the jump component. This suggests that information embedded in

the realized skewness and realized kurtosis differs from that of the sample skewness

and sample kurtosis.

As information embedded in realized skewness and realized kurtosis differs from

that of sample skewness and sample kurtosis, employing high-frequency return

data could offer new perspectives on the following questions: (i) Does the optimal

sampling frequency differ between the US and Australian equity markets? Could

the 5-minute rule of thumb be extended from US markets to Australian markets?

(ii) How do the sampling-interval and holding-interval affect the estimated realized
5Sample skewness is the third normalized higher-order moment, while sample kurtosis is

the fourth normalized higher-order moment of the probability distribution. Sample skewness
measures the asymmetry of a distribution, while sample kurtosis measures the heavy tails (i.e.,
elongation) of a distribution. A positive (negative) sample skewness indicates a distribution with
an asymmetric tail extending towards more positive (negative) values, while sample kurtosis
characterizes how steep or flat a return distribution is. The combination of sample skewness
and sample kurtosis with mean and standard deviation are used to describe the overall shape
of the probability distribution of a variable. The relevance of sample skewness and sample
kurtosis has been extensively documented in the financial literature as it can help measure the
full characteristics of the asset return behaviour (see Samuelson, 1975; Kirchler and Huber,
2007). Hwang and Satchell (1999) suggests that the skewness and kurtosis in asset returns could
be due to non-stationarity or non-economic factors. Damodaran (1985) shows that the skewed
distribution of asset returns mirrored investors’ asymmetrical responses to good and bad news
from firms. According to Rubinstein (1973); Ingersoll (1975); Kraus and Litzenberger (1975),
the significance of the higher-order moment in asset pricing models cannot be ignored.
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variance, realized skewness and realized kurtosis, and what are the implications

for investors’ trading strategies? (iii) Can the signals from information flow (trad-

ing volume) be explained by realized high-order moments as a means of observing

the dynamics of this relationship across holding periods and sample periods? (iv)

How should realized higher-order co-moment risk be measured and priced to cap-

ture the differences between systematic co-variance, co-skewness and co-kurtosis

risks? Further, are the risk premia the same across different market conditions and

sample periods? This thesis adopts various theoretical methodologies, simulation

techniques and empirical procedures to address these questions.

In Chapter 2, we explore the optimal sampling frequencies for realized variance of

US and Australian stocks and indices. While prior research focuses predominately

on the US framework, in this study, an empirical approach that cautions against

blindly extending the standard and preferred 5-minute sampling frequency of the

US market to other markets (i.e., the Australian equity framework) is outlined.

Unlike other developed countries, such as the US and UK, the Australian equity

market is unique in both its size and characteristics (see Alles and Murray, 2017).

This means that the Australian equity market should be specifically investigated,

rather than assuming that certain rules and relationships that hold in US or UK

translate linearly to the Australian market. Indeed, estimating realized variance

from very high-frequency return series could bias the estimated realized variance.

However, such a problem could be resolved by either sampling the return series

at a finer sampling-interval (see Bandi and Russell, 2008; Bollerslev et al., 2008;

Oomen, 2006; Aït-Sahalia et al., 2005; Lahaye et al., 2011; Hansen and Lunde,

2006; Andersen et al., 2003) or by employing any of the various error-reduction

techniques documented in the extant financial literature (see Hansen and Lunde,

2004, 2003; Zhang et al., 2005; Ebens et al., 1999; Andersen et al., 2001). Although

the 5-minute rule has been theoretically and empirically justified by Bandi and

Russell (2008), the empirical results in the financial literature are conflicting. As

suggested by Bandi and Russell (2008), when estimating realized variance with

intra-day return series, it is necessary to sample at an interval at which autocorre-
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lation is less of an issue to ensure that an unbiased estimate of realized volatility

is obtained. The same authors also recommend that when sampling very illiquid

stocks, a 15-minute interval may constitute a preferred sampling frequency for

computing realized variance, which should be lowered for very high liquid stocks.

Consequently, in this study, the optimal sampling frequency for Australian stocks

is expected to differ significantly from the 5-minute sampling rule of thumb.

This study aims to determine whether the 5-minute optimal unbiased sampling

frequency rule of thumb employed in the US framework for realized variance also

holds for all DJI30 stocks and DJI30 index (US equity framework). We further

determine whether this rule of thumb could be extended to S&P/ASX20 stocks and

S&P/ASX20 index (Australian equity framework). We use 1-second raw prices to

estimate the daily realized variance at different sampling-intervals. The frequency-

based signature-plot of Andersen et al. (2000) is used to report the empirical

results. The results showed that, for the US framework, both the DJI30 index and

stocks realized variance can be sampled at 30-seconds; therefore, the 5-minute rule

of thumb holds. In the case of S&P/ASX20 index and stocks, we observe that the

30-second and 5-minute rule of thumb of the US framework cannot be extended to

the Australian market. We note a ‘10-’ to ‘30-minute’ sampling frequency is the

preferred interval for the Australian framework. The present study contributes

to the existing finance literature, which lacks detailed research on the preferred

sampling frequency for the Australian equity market.

Chapter 3 tests the effects of the sampling-interval (e.g., 1-minute, 5-minute, 30-

minute) and holding-interval (e.g., daily, weekly, monthly) on the estimated real-

ized higher-order moments, and their implications to asset pricing. The chapter

argues that unlike sample skewness and sample kurtosis, which is a function of

the holding-interval over which returns are estimated (see Hawawini, 1980; Smith,

1978; Francis, 1975; Fogler and Radcliffe, 1974), realized skewness and realized

kurtosis is a function of both the sampling-interval and the holding-interval (see

Amaya et al., 2015; Mei et al., 2017). We investigate these two intervaling effects

(i.e., the holding effect and the sampling effect) and expect differing effects on

7



the estimated realized skewness and realized kurtosis. We show analytically, theo-

retically, and empirically, the relationship between realized skewness and realized

kurtosis and the two types of intervals. To present and discuss the results we mo-

tive and justify a new type of signature-plot (i.e., the count-based signature-plot).

Our empirical findings provide graphical evidence for the analytical findings of

Amaya et al. (2015) that realized skewness and realized kurtosis do not converge

to the sample skewness and the sample kurtosis. This chapter contributes to the

body of literature as the previous literature on this subject focus on the effects of

the holding-interval using low-frequency return data. We focus on both interval-

ing effects on realized skewness and realized kurtosis by employing high-frequency

return data.

Further, Chapter 3 also determines the theoretical limits of the expected values

of realized skewness and realized kurtosis for the high-frequency paradigm, and

highlights the contribution of diffusion and the jump component. Using a Monte

Carlo simulation of an assumed independently and identically distributed (iid)

jump-diffusion price generation process, we estimate the realized skewness and

realized kurtosis for three holding-intervals (i.e., days, weeks and months) and a

number of sampling-intervals (i.e., 1-, 2-, 3-, 4-, 5-minute return series, and so on).

We note that the features of these signature plots differ for diffusion processes and

jump-diffusion processes. In the empirical testing, we use 1-minute market index

data for the G7-countries. The results for the simulated estimates are comparable

to the empirical results but are not identical. It is shown that the central limit the-

orem for realized skewness and realized kurtosis of high-frequency data only holds

at the limit when jumps are few and far between or are implicitly assumed away,

such as when the size of the sampling-interval approaches the holding-interval. For

pure diffusion processes, we observe that all realized moments implicitly converge

to their corresponding sample moments as asymptotically indicated by the limiting

realized moment equations and simulations. However, the presence of jumps in the

price series at high-frequency influences the estimated realized skewness and real-

ized kurtosis, hence they do not converge to the sample moments. Such findings
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imply that high-frequency pricing models are conditional on the holding-interval

and sampling-interval and that the relevance of high-frequency pricing models is

driven by the direction and magnitude of jumps in the price process. This un-

derscores why the predictive power of asset pricing models tends to vary across

holding-intervals. In-short, the choice of sampling-interval and holding-interval af-

fects the relevance of high-frequency pricing models and influence the conclusions

that can be drawn.

Having obtained the preferred sampling-interval for the Australian equity market,

Chapter 4 uses a 15-minute return series to investigate the relationship between

information flow (trading volume) and realized higher-order moments. Although

the trading volume-volatility relationship has been the subject of considerable

attention in prior literature, research on the relationships between the volume-

realized skewness and volume-realized kurtosis is scarce. Ideally, the arrival rate

of information flow to the marketplace and its relationship with volatility can be

highly beneficial to investors’ trading strategies. This has motivated researchers to

formulate theoretical hypotheses that aim to explain the volume-volatility relation-

ship. The popular mixture of distribution hypothesis (MDH) of Clark (1973) was

the first hypothesis proposed. It explained the contemporaneous positive volume-

volatility relationship reported in the financial literature. According to Chan and

Fong (2006), the positive relationship is driven by the rate of information flow

into the marketplace. Apart from the MDH hypothesis, the sequential informa-

tion arrival hypothesis (SIAH) of Copeland (1976) was also proposed to explain

the volume-volatility relationship. The SIAH hypothesis assumes that all traders

receive new information in sequential time. This implies that the sequential nature

of the information arrival process creates time-asymmetric trading. Finally, the

difference of opinion hypothesis (DOH) by Shalen (1993); Harris and Raviv (1993)

also helps explain the positive volume-volatility relationship. This hypothesis sug-

gests as investors trade based on their subjective belief’s volatility will increase as

trade increases.

The SIAH and DOH seek to explain not only the volume-volatility relationship
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but also the relationships between the volume-skewness and volume-kurtosis. The

main purpose of Chapter 4 is to empirically investigate the relationship between

the volume-skewness and volume-kurtosis and examine to what extent the SIAH

and DOH can be used to explain these relationships. Do et al. (2014) attempts to

investigate volume-realized higher-order moments. However, the authors focused

on the spillover effects of higher-order realized moment risks and trading volume

across 18 countries considered for stock and FX markets and used the number of

trades as their only proxy of information flow. The investigations in this present

study go beyond the number of trades proxy as various proxies of information flow

are considered. Do et al. (2014) also generalizes the US-specific 5-minute optimal

sampling frequency to the other 17 countries. As shown in Chapter 2, this narrow

approach to sampling high-frequency return series can yield inaccurate results.

In Chapter 4, we compute high-order realized moments (i.e., realized variance,

realized skewness and realized kurtosis) for weekly and monthly holding periods.

Using various proxies of information flow, we show that the volume proxy influ-

ences the sign of the volume-higher-order realized moment regression coefficients.

We then attempt to relate our empirical findings to the MDH, SIAH and DOH

hypotheses and note that the DOH hypothesis implicitly encompasses or nests

both the SIAH and MDH hypotheses. The dynamic and significant link between

volume and higher-order moments is shown by highlighting the significance of the

regression coefficients across holding periods and various market conditions.

In Chapter 5, we also use the 15-minute return series for Australian stocks to

examine the relationship between monthly realized return and monthly realized

higher-order moment risk, as well as to determine how investors price systematic

co-skewness and systematic co-kurtosis according to different market conditions

and sample periods. The particular approach incorporated in the analysis stems

from criticisms of the standard CAPM of (Sharpe, 1964; Lintner, 1975; Mossin,

1966). The CAPM reinforces the notion that co-variance risk (systematic co-

variance) is the only metric that matters in the asset pricing model and that

asset returns are normally distributed. This limitation of the CAPM has led re-
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searchers to develop alternative theoretical methodologies or to extend the original

CAPM model to improve its predictive capacity (see Fama and French, 1992, 1995;

Carhart, 1997; Bollerslev et al., 1988; Jagannathan and Wang, 1996; Shalit and

Yitzhaki, 1984; Okunev, 1990, just to mention a few). Rubinstein (1973); Inger-

soll (1975); Kraus and Litzenberger (1975) were the first to propose higher-order

moment pricing models. Since then, the predictive power of the high-order mo-

ment pricing model over the CAPM model has been extensively documented in

financial literature (see Harvey and Siddique, 2000a; Dittmar, 2002; Lambert and

Hübner, 2013; Poti and Wang, 2010). However, investigations into the realized

higher-order co-moment risk-return relationship are comparably scarce in relation

to the Australian equity framework specifically. In addition, we believe that using

high-frequency return data will yield more robust empirical results. The present

study aims to explain how Australian stock returns are influenced by normalized

realized higher-order co-moment risks. We anticipate that the realized higher-

order co-moment risks to be priced separately across different market conditions

and sample periods.

We begin the empirical test in Chapter 5 by employing the single sorting of excess

realized returns on the risk measures approach. We construct 10-decile equally

weighted portfolios sorted on the risk measures. Using the high-minus-low spread

of the portfolio averages, we find the strength and significance of the risk-return

relationships. In addition, the monotonic relation outlined by Patton and Tim-

mermann (2010) is utilized to identify monotonic relationships across the entire

portfolio, as knowledge of such relationships can benefit investors’ trading strate-

gies. While the single sorting approach has some value, it does not control for

other variables that may explain the cross-section of the asset return. The double

sorting approach seeks to address this limitation and shows that the risk premium

can be priced when explicitly controlling for other variables. A cross-sectional

Fama–MacBeth regression, which is capable of accounting for more than one con-

trol variable is also employed at the firm level to further investigate the predictive

power of the risk measures. In the analysis, we test the predictive power of the

11



two-, three- and four-moment CAPM models documented in the literature. A

unique feature of these models is that they can capture investors’ risk arising from

the volatility, skewness and kurtosis of the marketplace. Additionally, the pre-

dictive power of the higher-order co-moment risk is examined in the presence of

continuous and jump beta.6 As a result, we are able to estimate the various risk

exposures of the different risk factors and their respective risk premiums. We also

identify the most important systematic risk components (i.e., the systematic co-

variance, co-skewness and co-kurtosis) that explains the Australian stock returns.

The empirical testing conducted in this chapter shows that the realized higher-

order co-moment pricing model is superior to both the standard CAPM model

and the jump-diffusive two-beta CAPM model.

Lastly, Chapter 6 summarizes the implications of the research findings of this

thesis, outlines the limitations of the research and provides suggestions for further

research. The results of the present thesis show that researchers utilizing the high-

frequency return data must be cognisant of the optimal sampling frequency for the

country under investigation. Primarily, researchers in the field of high-frequency

finance should note the effects of the sampling-interval and holding-intervals on

the estimated realized skewness and realized kurtosis. In addition, they should be

cautious of the type of proxy used for information flow and its relationship with

realized skewness and realized kurtosis. Researchers should also not neglect asset

pricing models that account for the non-normality of the asset return distribution

when investigating the risk-return relationship across asset returns. The findings

outlined in this thesis contribute to the body of financial research that examines

the high-frequency finance paradigm.

6The continuous and jump beta are estimated by splitting the standard beta into diffusive and
jump components (see Todorov and Bollerslev, 2010; Dungey and Yao, 2013; Bollerslev et al.,
2016; Chowdhury et al., 2018).
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Chapter 2

Optimal Sampling Frequencies for

Realized Variance of American

and Australian Stocks and Indices

2.1 Introduction

Realized variance (RV) has been extensively documented in the financial forecast-

ing literature as an empirical and theoretical measure of realized volatility. Under

ideal conditions, the RV approaches the integrated variance (IV; see Andersen and

Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002; Meddahi, 2002, for more

details). According to Andreou and Ghysels (2002), this consistency is based on an

assumption that does not hold in practice. They infer that the RV is biased, and

hence inconsistent, for the IV. The main drawback of the RV is that of an error-in-

variables problem (see Hansen and Lunde, 2004). Preferably, one should construct

the RV from high-frequency intra-day return data of the true price process (p∗).

However, p∗ is unobservable, and hence, the RV is obtained from observed prices,

which are contaminated with market microstructure noise. The contamination of

the observed prices can be attributed to serial correlation generated by bid-ask
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bounce, price discreteness and price reporting error. Therefore, using the ob-

served price instead of the true price in computing the RV makes the RV biased

and inconsistent for the IV (Andreou and Ghysels (2002); Oomen Roel (2002)).

The biased nature of the RV constructed from intra-day return data offsets any ef-

ficiency gains that could have been derived from sampling at such high frequencies.

This phenomenon has been well documented in financial time series literature (see

Ebens et al., 1999; Bai et al., 2001; Oomen Roel, 2002). Nevertheless, comput-

ing the RV from daily squared-return data (low frequency) is not the solution for

obtaining an efficient measure of volatility, because at a low frequency, valuable

information is lost. Consequently, some researchers have come up with techniques

aimed at reducing the measurement error of the RV. For example, Zhang et al.

(2005) employs a sub-sampling technique that generates a more efficient estima-

tor for the RV. Oomen (2006) propose alternative sampling schemes (calendar-,

business- and transaction-time sampling), and show that transaction time sam-

pling is superior to the popular practice of calendar time sampling. Hansen and

Lunde (2004) shows that a bias correction of the RV is a more efficient estima-

tor for the RV. They use a weighting scheme that corrects the qm autocorrelation

terms in the intra-day returns. Hansen and Lunde (2003) shows that a Newey-

West modified RV is an unbiased estimator for the IV. Finally, Ebens et al. (1999)

and Andersen et al. (2001) construct RV from first-order moving average filtered

returns.

The stylized procedure of estimating RV by summing intra-day return series in

the holding period relative to employing any of the error-correction techniques

documented in the extant literature may result in obtaining biased RVs. However,

the following advantages could still be derived from RVs constructed from high-

frequency data without employing the aforementioned techniques: (i) RV is a good

proxy for the unobserved conditional variance when evaluating the predictability

of autoregressive conditional heteroskedasticity (ARCH)-type models (Hansen and

Lunde (2004)), (ii) estimations based on RVs are more precise compared to squared

daily returns in an out-of-sample forecast of ARCH-type models (Andersen and
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Bollerslev (1998)), (iii) time series analysis of RVs yields useful information about

the dynamic model of RV (Andersen et al. (2003)) and (iv) RVs constructed from

intra-day returns possess strong predictive power in comparison to using squared

daily returns (Hansen and Lunde (2003); Andersen et al. (2004)). This is consistent

with Amaya et al. (2015), who shows that RV converges to the total quadratic

variation, and using higher-frequency returns in computing RV yields more efficient

estimates of quadratic variation. According to Bandi and Russell (2008), it is

paramount to compute RV with intra-day return data where autocorrelation is

less of an issue, since computing RV with contaminated return data results in the

significant accumulation of noise. Therefore, one can obtain a good estimate of RV

by using the stylized approach when a favourable sampling frequency is known.

The nonparametric nature of the stylized approach gives an added advantage when

compared with error-reduction techniques.

In the US framework, it is typical to construct RV using returns sampled at a 5-

minute frequency. The rationale is that this can partially offset the bias of the RV

(Andersen and Bollerslev, 1997). The theoretical and empirical justification for

this approach is formally presented by Bandi and Russell (2008), who derive the

optimal sampling frequency under a mean squared error criterion. Liu et al. (2015)

show that it is difficult to significantly beat the 5-minute RV. However, the 5-

minute optimal sampling frequency creates a dichotomy in the existing literature:

some researchers find the optimal sampling frequency for computing RV to be

at a lower frequency than the standard 5-minute frequency. Bandi and Russell

(2008) recommend that, when sampling very illiquid stocks, a 15-minute sampling

frequency could be preferred for computing RV, which should be lowered for very

high liquid stocks. Bollerslev et al. (2008), using signature plots, shows that the

optimal sampling frequency for 40 US equities is 17.5 minutes. Oomen (2006)

shows that the optimal sampling frequency for realized volatility for IBM stock

to be 20 minutes, while it changes to about 3 minutes with a first-order bias

correction. Aït-Sahalia et al. (2005) observe the optimal sampling interval for

computing RV for the day to be 22 minutes. Hansen and Lunde (2006), using
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DJI30 stocks, show that the noise in RV may be ignored when intra-day returns

are sampled at low frequencies, such as 20 minutes. Lahaye et al. (2011) using

signature plots show that RV starts to stabilize at about 15 minutes. Andersen

et al. (2003) employs a 30-minute return series to compute RV.

The objective of this study is twofold. The first is to determine whether the 5-

minute optimal unbiased sampling frequency rule of thumb, employed in the US

framework for RVs (as reported by Bandi and Russell (2008)) holds for all DJI30

stocks and the DJI30 index. The second is to determine if this can be extended

to S&P/ASX20 stocks and the S&P/ASX20 index.1

The motivation of the extension to the Australian framework stems from Alles and

Murray (2017), who have shown that, although Australia is a developed country,

its equity market requires separate investigation, as some aspects differ from ma-

jor international equity markets. They show that, relative to the US and UK

market, the trading volume for the Australian equity market is less than 5% of

that recorded on the New York Stock Exchange. The Australian equity market is

concentrated in a small number of sectors, with the materials sector dominating,

making the market highly weighted in one sector. Alles and Murray (2017) also

report that the Australian equity market is mainly represented and weighted by

domestic firms, with less than 2% being overseas companies. This leads to in-

vestors not having a wide range of investment opportunities, which in turn might

result in cyclical economic patterns. We emphasize that the illiquidity effects in

the Australian framework have a significant probability of determining the ob-

served optimal sampling frequency. This is in line with the findings of Bandi and

Russell (2008); thus, we expect the 5-minute optimal sampling frequency to hold

for liquid markets (such as the US equity market) while illiquid markets (such as

Australia) to have an optimal sampling frequency less than the standard 5 minute.

The Australian equity market is unique, and its share market behaviour/patterns

might be different from that of the major international equity markets (e.g., the
1We use signature plots employed by Andersen et al. (2000) to evaluate the optimal unbiased

sampling frequency of RV. The nonparametric nature of the signature plots makes it a significant
tool used in the literature.
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US). Mujtaba Mian and Adam (2001) show that volatility estimated at different

sampling frequencies behave differently, and one should be aware of when to use

high- or low-frequency return data in estimating volatility.

The second motivation arises from the fact that most researchers blindly em-

ploy the so-called 5-minute optimal sampling frequency, popularly used in the US

framework, without investigating whether the said frequency is country-specific

or extendable to their country of investigation. For example, Do et al. (2014),

in investigating volume-realized higher-order moment relationships, generalize the

standard US 5-minute unbiased sampling frequency to the other 17 countries they

consider, which includes Australia. This naive approach of using high-frequency

return series has the potential to result in significant accumulation of noise, which

might impact the results and conclusions obtained. We contribute to the debate

on whether the 5-minute sampling frequency for the US holds for other interna-

tional markets, specifically Australia. To the best of our knowledge, we are the

first to investigate preferred sampling frequency with a focus on the Australian

share market. We aim to obtain a sampling interval where the autocorrelation is

relatively less of an issue, to prevent estimating RV with contaminated intra-day

return series.

Thus, in this study, we use 1-second raw prices from 2010 to 2015, downloaded from

the Thomson Reuters Tick History/Securities Industry Research Centre of Asia-

Pacific (TRTH/SIRCA) database, in computing the relevant daily RVs at various

sampling frequencies. Our empirical results show that, for the US framework, both

the DJI30 index and stock RVs can be computed with the intra-day return series

sampled at 30 seconds. It is worth mentioning that the standard 5-minute sampling

frequency also holds for the results of the DJI30 index and stocks. However, for

S&P/ASX20 index and stocks, we note that the observed 30 seconds and the 5-

minute rule thumb cannot be extended to the Australian framework. We observe

that, for the S&P/ASX20 index, 10 minutes is the preferred sampling frequency.

However, when we take a closer look at the constituent stocks of the index, we

observe a 20-minute sampling frequency to be favourable for computing RV. We
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infer that, perhaps on an average, a 10- to 30-minute window could be the preferred

sampling frequency for the Australian equity framework.2 This creates a 10-minute

lower bound and a 30-minute upper bound, within which researchers can carefully

select a frequency where there is a reasonable trade-off between the number of

observations and microstructure noise. Consequently, researchers in the high-

frequency finance paradigm must be observant and wary of extending US rules of

thumb to other financial markets, such as the Australian share market.

The remainder of this chapter is organized as follows. Section 2.2 contains a

brief review of relevant theory used in estimating realized variance. Section 2.3

describes the high-frequency data and the sampling procedure employed. The

signature plots and empirical findings are discussed in Section 2.4 and Section 2.5

concludes.

2.2 Realized variance

We begin a concise review of the theory relating to estimating realized variance

from high-frequency return series. As mentioned earlier, suppose p∗t is the latent

price in a continuous time and pt is the observed price.3 We construct pt≡[0,∞)

artificially from the observed price using previous tick method that was proposed

by Wasserfallen and Zimmermann (1985). Let a = t0 < · · · < tm = b be the

time at which raw prices pt,i are observed, where i = 0, 1, ...,m, then the artificial

continuous time process at any point in time τ ∈ [t0, tm) can be defined as,

pτ ≡ pt,i, [ti, ti+1) (2.1)
2S&P/ASX20 comprises the 20 largest ASX-listed stock and accounts for about 47% of the

Australian equity market capitalisation. The constituent stocks are highly liquid. Perhaps, the
preferred sampling frequency for constituent stocks of S&P/ASX200, ASX300 and All Ordinaries
indices, which are less liquid than ASX20, would be 15 minutes; this is consistent with the findings
of Bandi and Russell (2008).

3The noise process can be defined as ut ≡ pt − p∗
t . The noise component ut may be attributed

with microstructure noise that arise from bid-ask bounce, price discreteness, rounding errors and
price reporting error during trading of the asset and documentation of the price process (see Bai
et al., 2001; Andreou and Ghysels, 2002; Oomen Roel, 2002, for more details).
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The artificial prices enable us to construct equidistant intra-daily returns for com-

puting the realized variance at any frequency. We define the discrete-time intra-day

returns on trading day t by;

rt,i = Pt,i − Pt,i−1, i = 1, 2, ..,m; t = 1, 2, ..., T (2.2)

where Pt,i is the i-th intra-day log price for day t, T is the total number of days in

the sample and m is the number of equally spaced intra-day returns over trading

day t partitioned into equal length 4m ≡ (b − a)/m and [a, b] ⊂ t. Suppose the

observed price follows a semi-martingale process on some filtered probability space

(Ω, F , (Ft)t≥0,P) in a frictionless market where there are no arbitrage opportuni-

ties (see Back, 1991). Then in the presence of jumps, the observed price can be

modelled as a continuous time semi-martingale jump-diffusion process;

pt =
∫ t

0
µDdt+

∫ t

0
σDdWt +

N(t)∑
k=1

J(Qk), (2.3)

where µD is the diffusive mean, σD is a diffusive volatility process and dWt is the

increments to a Brownian motion Wt, N(t) is a counting process and J(Qk) are

the non-zero jump increments (see Fleming and Paye, 2011, for more details). The

quadratic variation for the jump-diffusion process is defined as,

QVt =
∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), (2.4)

the first term on the right-hand side of Equation 2.4 is the integrated variance

and the second term is the sum of the squared jumps (variance of the jump com-

ponent). We observe that Equation 2.4 reduces to a ‘pure’ diffusion model with

continuous sample paths when there are no jumps in the price process (i.e. the

jump component is set to zero). For this jump-diffusion process to hold, it is

assumed that µD and σD are jointly independent of Wt. The integrated variance

(IV) for this type of process is defined IVt ≡
∫ t

0 σ
2
Ddt and equals to the quadratic

variance (QV).
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In high-frequency finance, the proxy for sample variance is the realized variance

(RV); replacing the traditional use of squared returns at low frequencies. It is

well documented that realized variance is a more robust estimate of volatility (see

Andersen and Bollerslev, 1998; Andersen et al., 2003; Hansen and Lunde, 2004,

2003; Barndorff-Nielsen and Shephard, 2004; Andersen et al., 2007). The RV is

defined as the sum of squared high-frequency returns as given by;

RVt,i = RM(2)t,i ≡
N∑
i=1

r2
t,i →

∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), as N →∞ (2.5)

The RV is an efficient estimator of the quadratic variation, it converges to the QV

as the number of observations (N) goes to infinity (RV (N)
[a,b] → QV[a,b] as N → ∞

(see Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). It is

also apparent from Equation 2.5 that in the absence of jumps, RV converges to

the IV.

2.3 Data

The data consist of high-frequency (intra-day) asset prices of DJI30 and

S&P/ASX20 indices and stocks. We download the raw price with a 1-second

sampling frequency from the TRTH/SIRCA database. Our data sample is from

4 January 2010 - 31 December 2015, and between 10 am and 4 pm of each trading

day. The 1-second sampling frequency results in 21,600 sample points in a day;

this translates into 32.62 million sample points over the 5 years considered (the

span of the data sample yields 1,510 trading days for the 5 years).

The true price is unobservable; this implies that the downloaded data may be

contaminated with market microstructure noise. It is easy to recognise prices

that are recorded as 0, but the same cannot be said for other misrecorded prices.

To deal with 0 values, the previous-tick method proposed by Wasserfallen and

Zimmermann (1985) is used. The data was filtered for outliers, and we winsorise

the data at 99.995% and 0.005% for the upper and lower percentiles, respectively.
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This ensures that extreme outliers are dealt with without any significant loss

of information. We also exclude weekends and overnight returns from the data

before estimating the intra-day returns. The intra-day returns are computed as

the change in the logarithm of the closing prices of successive days, as shown in

Equation 2.2.

Suppose we want to compute daily RVs for any of the stocks or indices relative

to a specific sampling frequency; we employ the procedure adopted in Ahadzie

and Jeyasreedharan (2020). We carefully select values of the sampling intervals

to prevent the length of the intra-day returns being a fraction. For example, to

construct daily RVs with 5-minute return series, we divide the holding period of

data points (360—1 minute each trading day) by 5 minutes, and the number of

observations will be 72 (thus 4m ≡ (b − a)/m, 45−minute = 360/5, where a =

10 am, and b = 4 pm). Following Hansen and Lunde (2003, 2004, 2006), we use a

30-minute sampling frequency estimate as the benchmark.

2.4 Empirical Results

In this section, we discuss the behaviour of RVs across sampling intervals using

time-based signature plots. From the 1-second price data, we construct various

daily RVs at different sampling frequencies (e.g., 30 seconds, 1 minute, 30 minutes

and so on).

Figure 2.1 is the signature plot of the RV of the DJI30 price-weighted index com-

puted with 1-second to 60-minute return series. The horizontal red line is the RV

computed with 30-minute return series (thus σ̂2 ≡ RV
30min). Following Hansen

and Lunde (2003, 2004, 2006), the RV computed with the 30-minute return series

is the benchmark to which the RVs at different sampling frequencies are compared.

Using RVs computed with the 30-minute return series, with 1000 bootstrapping

replication, we compute the 95% confidence interval for the preferred sampling

frequency. The average RVs are reported on the vertical axis, and the sampling
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frequency on the horizontal axis.

In Figure 2.1, we observe that, at higher frequencies, such as 1 second and 15

seconds, the average RVs deviate from the target RV, which is depicted by the red

horizontal line. According to Hansen and Lunde (2004), this deviation may be due

to the presence of significant serial correlation at such sampling frequencies. This

is consistent with the autocorrelation plot in Figure A.4. By visual inspection, the

popular 5-minute sampling frequency widely used for US high-frequency return

series seems to hold. This suggests that one can safely sample US equity returns

at 5-minute sampling, as is the norm.

Figure 2.1: Average daily realized variance for US (DJI30 index)

From Figures 2.2 and 2.3, we take a closer look at each stock of the DJI30. We ob-

serve that the standard 5-minute sampling frequency still holds for all constituent
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stocks. However, considering the challenges with visual inspection, we employ the

two-sample t-test for equal means to verify the results obtained for the time-based

signature plots. Here, we compare the RVs computed at each sampling frequency

to our target RV. The results are reported in Table 2.1, where ‘1’ means the com-

puted RV diverges from our target RV, and ‘0’ otherwise. We note that stocks

such as General Electric Company (GE), Nike Inc. (NKE) and Pfizer Inc. (PFE)

can be even sampled as high as a 1-second frequency. Additionally, we observe

that about 53% (16 out of 30 stocks converge to the target RV) of the constituent

stocks of DJI30 can be sampled at a 15-second sampling frequency—such stocks

include Apple Inc. (AAPL), Coca-Cola Company (KO) and Intel Corporation

(INTC), just to name a few. At 30 seconds, all stocks can be sampled without the

result generating a biased estimate. This is consistent with Amaya et al. (2015),

who use Monte Carlo techniques and 1-second data to show that estimates of the

realized higher moments (RV inclusive) are reliable in finite samples and that, at

1-minute return series are robust to the presence of market microstructure noise.

The results for the two-sample t-test are consistent with the results from the time-

based signature plots reported earlier and suggest that, in the US framework, the

standard 5-minute sampling frequency is robust to market microstructure noise

and ideal for computing RVs.
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Table 2.1: Two-sample t-test for equal means for DJI 30 stocks-RV
Stocks 1s 15s 30s 45s 1m 2m 3m 4m 5m 6m 8m 10m 12m 15m 20m 24m 30m 36m 40m 60m
DJI 30 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AAPL 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AXP 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BA 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CAT 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CSCO 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CVX 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DD 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HD 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IBM 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INTC 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JNJ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JPM 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MCD 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MMM 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MRK 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSFT 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NKE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PFE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PG 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRV 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UNH 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
UTX 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VZ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WMT 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XOM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The table above reports the test decision for the null hypothesis that the RV at each frequency comes from the same population with equal
mean to that of RV computed at 30 minute sampling frequency at 0.001 significance level for U.S. equities we consider. A ‘1’ indicates
rejection of the null hypothesis of equal means at 0.001 significance level, and ‘0’ otherwise. This is consistent with the results of the
signature-plots. Note s denotes second and minute as m.

Figure 2.4 reports the result for the S&P/ASX20 value-weighted index. Here,

we observe that the observed 30-second sampling frequency, preferred for the US

equity framework, does not hold, indicating that the microstructure noise does not

disappear at this sampling interval for the Australian framework. Additionally, the

standard 5-minute frequency, popularly employed for US high-frequency return

data does not hold either. This suggests that researchers who blindly extend the

so-called 5-minute optimal sampling frequency of the US framework to other equity

markets have the potential to obtain biased estimates, which might impact their

results and conclusions. We note that RV values below the 10-minute sampling

frequency have an increasing trend and lie outside the confidence band, which

suggests that the RVs at those frequencies are biased and do not approach our

proxy for the quadratic variation (target RV).

We observe that, from 10 minutes and above, the average RV values fall within

the confidence band and converge to our target RV. We infer that the preferred

26



sampling frequency for the Australian equity framework should be less than stan-

dard 5-minute rule of thumb, and hence, we advocate a minimum bound of 10

minutes. This is in line with Bandi and Russell (2008), who show that, for illiquid

stocks, 15 minutes should be the preferred sampling frequency for intra-day data.

Figure 2.4: Average daily realized variance for Australia (S&P/ASX20 index)

Figure 2.5 reports the signature plot for the RV for each constituent of the

S&P/ASX20 index. Similar to the index itself, the 10-minute sampling frequency

holds for some stocks, such as Australia and New Zealand Banking Group (ANZ),

National Australia Bank (NAB) and Macquarie Group (MQG). However, this

does not hold for others, like AMP Limited (AMP), Insurance Australia Group

(IAG), Transurban Group Stapled (TCL) and Scentre Group Stapled (SCG),

where the preferred sampling frequency seems to be around 15 to 20 minute. This

implies that, for individual stocks, the 10-minute frequency may not necessarily

hold; this could be due to effects of illiquidity. Clearly, our results show that
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Australian equities are different from that of the US share market.

We also note that, in some of the RV plots, such as BHP Group (BHP), Common-

wealth Bank of Australia (CBA), CSL Limited (CSL), Rio Tinto Limited (RIO)

and Woodside Petroleum Limited (WPL), the graph depicts an upward sloping.

This suggests the presence of significant negative serial correlation at high sam-

pling frequencies (e.g., at 1, 15, 30 and 45 seconds; see Andersen et al. (2017) for

more details). In contrast, stocks with downward sloping RVs are accompanied by

positive serial correlation. According to Avramov et al. (2006), high-liquid stocks

do tend to exhibit negative serial correlation. Hence, we can infer that the up-

ward slope of the RVs of BHP, CBA, CSL, MQG, RIO and WPL might be due to

significant negative serial correlation, as suggested by (Andersen et al., 2017).

In Table 2.2, we report the two-sample t-test. As expected, the preferred sampling

frequency for the index remains at 10 minutes. For individual stocks, the standard

5 minutes used in the US framework still does not hold: about 35% (7 out of 20) of

the constituent stocks do not converge at the target RV. This number will increase

for less liquid constituents such as the S&P/ASX200. We note that 20% (4 out of

20) of the stocks remain biased at a 10-minute sampling frequency. However, this

disappears completely at a 20-minute frequency. From the results, we observe that,

as the sampling frequency increases, the number of divergent stocks also decreases.

This is not surprising, as the microstructure noise stabilizes when return series are

sampled at a relatively finer frequency (see Figures A.4 and A.5 in Appendix A).4

4The results obtained for the S&P/ASX20 index is consistent with those of the S&P/ASX200
index reported in Figure A.3 of Appendix A.
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Table 2.2: Two-sample t-test for equal means for S&P/ASX20 stocks-RV
Stocks 1s 15s 30s 45s 1m 2m 3m 4m 5m 6m 8m 10m 12m 15m 20m 24m 30m 36m 40m 60m
S&P/ASX20 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
ANZ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BHP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NAB 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CBA 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WBC 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AMP 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
BXB 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
CSL 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IAG 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
MQG 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
QBE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RIO 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUN 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
TCL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
TLS 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
WES 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
WOW 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SCG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
WFD 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
The table above reports the test decision for the null hypothesis that the RV at each frequency comes from the same population with equal mean
to that of RV computed at 30 minute sampling frequency at 0.001 significance level for Australian equities we consider. A ‘1’ indicates rejection
of the null hypothesis of equal means at 0.001 significance level, and ‘0’ otherwise. This is consistent with the results of the signature-plots. Note
s denotes second and minute as m.

2.5 Concluding Remarks

In this study, we empirically investigate the optimal sampling frequency for high-

frequency return data for the US equity framework (DJI30 index and constituent

stocks) and determine whether the obtained optimal sampling frequency can be ex-

tended to that of Australian equities (S&P/ASX20 index and constituent stocks).

Using 1-second raw prices from January 2010 to December 2015 downloaded from

the TRTH/SIRCA database, we compute daily RVs for various sampling frequen-

cies. The results are reported with the nonparametric time-based signature plots

popularly documented in the extant literature.

We observe that, for the US framework, both the DJI30 index and stock RVs can

be computed with the intra-day return series sampled as frequently as 30-seconds.

Additionally, we note that the standard 5-minute rule of thumb sampling frequency

also holds. In the case of the Australian framework, we note that the observed

30-second and 5-minute standard sampling frequencies cannot be extended to the

S&P/ASX20 index and stocks. Here, we observe that 10 minutes is the preferred

sampling frequency for the S&P/ASX20 index, and 20 minutes is preferred for
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computing RVs for its consistent stocks. In short, we conclude that, perhaps on

an average, a 10- to 30-minute sampling window could be the preferred sampling

frequency for the Australian framework.
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Chapter 3

Effects of Intervaling on High-

Frequency Realized Higher-Order

Moments

Published in ‘Quantitative Finance’, available at DOI: 10.1080/14697688.2020.1725100

3.1 Introduction

Sample skewness and sample kurtosis (i.e. normalized third and fourth moments)

of low-frequency financial asset returns have long been shown to display significant

variations as a function of the holding-interval (i.e. daily, weekly, monthly, etc.)

over which the returns are computed. This inherent variation in the computed

sample moment values has been traditionally referred to in the financial literature

as the ‘intervaling effect’ (see Hawawini, 1980; Smith, 1978; Francis, 1975; Fogler

and Radcliffe, 1974). The recent advent of high-frequency data has given rise

to the notion of realized skewness (RS) and realized kurtosis (RK), which have

also shown to display significant variations as a function of not only the holding-

intervals (as in days, week, months, etc.) but also the sampling-intervals (see

32

https://doi.org/10.1080/14697688.2020.1725100


Amaya et al., 2015; Mei et al., 2017).1 In this study, we investigate both these

two intervaling effects i.e. the holding-effect and the sampling-effect. We show

both theoretically and empirically, that not only the holding-interval, but also

the sampling-interval directly conditions the realized higher-order moments and

consequently, the normalized realized skewness and realized kurtosis estimates.

Hawawini (1980) was the first to investigate the effects of intervaling on sample

skewness and kurtosis by showing analytically that ‘the higher the moment’s order,

the more sensitive it is to the length of the holding-interval over which securities’

returns are measured. However, the empirical evidence on the effects of holding-

intervals on the normalized higher-order moments of asset returns was polarized in

the then extant literature. For example, Fogler and Radcliffe (1974), Francis (1975)

and Neuberger (2012) observed that as the holding-interval increases skewness also

increases whilst Lee et al. (1985) and Fogler et al. (1977) found that increasing the

holding-interval decreases the skewness of the return data. Subsequently, Lau and

Wingender (1989) showed that Hawawini’s formulas for computing the normalized

third and fourth higher moments were incorrect and consequently contributed to

unintended errors and misinterpretations. After deriving the correct formulations,

Lau and Wingender (1989) showed that, for logarithmic returns, as the holding-

interval increases the sample skewness and kurtosis approaches zero and three

asymptotically.

Amaya et al. (2015), decades later, was the first to investigate the effect of in-

tervaling on realized skewness and kurtosis by employing intra-day returns data.

They showed that at high sampling-intervals the effects of jumps dominate in the

limit and concluded that for the associated third and fourth realized moments one

‘can expect very different estimates of [realized] skewness and kurtosis depending

on the frequency of the data used to estimate these moments’.
1The holding-intervals and the sampling-intervals in high-frequency finance are generally

not equivalent. Holding-intervals are commonly daily, weekly or monthly intervals; whereas
sampling-intervals are the intraday-intervals at which the high-frequency data is being sampled;
for example at 1-minute, 5-minute or 30-minute intervals and so on. The holding-interval effect
in low-frequency finance has also been called the interval effect, the investment interval problem,
the holding period problem, etc.
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The extant literature provides two main explanations for the occurrence of jumps

in stock markets. Firstly, jumps reflect the market reaction to unexpected infor-

mation, which indicates that news announcements are the primary source of price

jumps (see Lahaye et al., 2011; Lee and Mykland, 2012). Hence jumps serve as

an ideal proxy for information arrival and can be utilized as tools for studying

market efficiency (see Malkiel and Fama, 1970) or phenomena like information-

driven trading; see for example (Cornell and Sirri (1992); Kennedy et al. (2006);

Hanousek et al. (2014)). Secondly, Bouchaud et al. (2006) and Joulin et al. (2008)

advocate that jumps are mainly caused by a local lack of liquidity in the mar-

ket, an event they term ‘relative liquidity’. In addition, an inefficient provision of

liquidity can also be caused by an imbalanced market micro-structure mechanism

(see Madhavan, 2000).

In this study, we link the works of Hawawini (1980), Lau and Wingender (1989)

and Amaya et al. (2015) to derive the analytical relationships between realized

skewness and realized kurtosis and the two types of intervals: holding-interval

and sampling-interval; thus investigating the two distinct and separate effects in

combination. To illustrate the effects of intervaling on the realized skewness and

realized kurtosis, we motivate and justify the use of a new type of signature-plot:

the count-based (as opposed to the sampling-interval based) signature-plot, to

highlight any non-trivial relationship(s) between normalized realized higher-order

moments and the number of infill observations (i.e. the holding-interval divided

by the sampling-interval).

Our empirical findings and count-based signature-plots provide graphical evidence

for the analytical findings of Amaya et al. (2015) wherein the average values of

the realized skewness and realized kurtosis do not correspond nor converge to the

sample skewness and sample kurtosis values for high-frequency data. This is in

contrast to the correspondence and asymptotic convergence in the realized variance

to the sample variance, ‘where using higher-frequency returns yields more and

more efficient estimates of quadratic variation’. This is consistent with equations

(3.4)-(3.7), where the second moments depend on both the diffusion and jump
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components, on the other hand, the third and fourth moments depend exclusively

on just the jump component. Hence, the realized variance converges to the total

quadratic variation of the process due to the dominance of the diffusion component,

whereas the realized skewness and realized kurtosis estimates do not converge to

the total cubic and quartic variations correspondingly due to the dominance of the

jump component (see Amaya et al., 2015).

It is also worth emphasizing here that the previous literature on this subject fo-

cuses on the effects of the holding-interval (or equivalently the sampling-interval)

on the normalized higher-order moments using low-frequency return data. To

the best of our knowledge, we are the first to investigate both the effects of the

holding-intervals and the non-equivalent sampling-intervals on realized skewness

and realized kurtosis using high-frequency return data. Using 1-minute raw index

data downloaded from the Thompson Reuters Tick History provided by SIRCA

database for the G7-countries, we compute and investigate the realized variance,

realized skewness and realized kurtosis for several holding-intervals and sampling-

intervals.2 Our results show that both the holding-interval and the sampling-

interval have distinct and dissimilar effects on the ensuring higher-order realized

moments. We simulate and illustrate that the central limit theorem for skew-

ness and kurtosis only holds when no jumps are present in the sampled price

series. However, these intervaling effects are found to be analytically tractable

and present some valuable insights for a deeper understanding of the implications

of these effects for future studies in high-frequency finance.

The remainder of this chapter is organized as follows. Section 3.2 contains a brief

review of the background theory. Section 3.3 presents a Monte Carlo simulation

of an assumed jump-diffusion price generation process; with and without jumps

and their corresponding count-based signature-plots. Section 3.4 describes the

empirical data and the high-frequency sampling procedure used. Further, count-
2The G7-countries consist of Canada (GSPTSE index), France (CAC 40 index), Germany

(GDAXIP index), Italy (FTMIB index), Japan (N500 index), United Kingdom (FTSE 100 In-
dex), and United States (S&P 500 Index). Shown in parenthesis are Reuters instrument codes
for the indexes.
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based signature-plots and findings based on the empirical data are presented and

discussed in Section 3.5. Section 3.6 concludes with a summary of the findings

and some implications for future research.

3.2 Theory

Suppose the observed price follows a semi-martingale process on some filtered

probability space (Ω, F , (Ft)t≥0,P) in a frictionless market where there are no

arbitrage opportunities (see Back, 1991). Then in the presence of jumps, the

observed price can be modeled as a continuous time semi-martingale jump-diffusion

process;

pt =
∫ t

0
µDdt+

∫ t

0
σDdWt +

N(t)∑
k=1

J(Qk), (3.1)

where µD is the diffusive mean, σD is a diffusive volatility process and dWt is the

increments to a Brownian motion Wt, N(t) is a counting process and J(Qk) are

the non-zero jump increments (see Fleming and Paye, 2011, for more details). The

quadratic variation for the jump-diffusion process is defined as,

QVt =
∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), (3.2)

where the first term is the integrated variance and the second term is the sum of

the squared jumps (variance of the jump component).

Equation 3.2 reduces to a ‘pure’ diffusion model with continuous sample paths

when there are no jumps in the price process (i.e. the jump component is set to

zero). In the ensuring diffusion process, it is assumed that µD and σD are jointly

independent ofWt. The integrated variance (IV) for this type of process is defined

IVt ≡
∫ t

0 σ
2
Ddt and equals to the quadratic variance (QV).

In high-frequency finance the proxy for sample variance is the realized variance
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(RV); replacing the traditional use of squared returns at low frequencies (see

Andersen and Bollerslev, 1998; Andersen et al., 2003; Hansen and Lunde, 2004;

Barndorff-Nielsen and Shephard, 2004; Lunde et al., 2004; Andersen et al., 2007).

The discrete time high-frequency returns over the holding-interval h is defined as;

ri,h = pi,h − pi−1,h, i = 1, 2, .., N (3.3)

where h is the holding-interval (for instance, a trading day, week or month), pi,h
is the i-th high-frequency log price for holding-interval of h, and N the number

of infill observations for each sampling-interval, τ , partitioned into equal length

such that τ ≡ (b− a)/N and [a, b] ⊂ h. The RV is defined as the sum of squared

high-frequency returns as given by;

RVi,h = RM(2)i,h ≡
N∑
i=1

r2
i,h →

∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), as N →∞ (3.4)

The RV is an efficient estimator of the quadratic variation, it converges to the QV

as the number of observation (N) goes to infinity (RV (N)
[a,b] → QV[a,b] as N → ∞

(see Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). It is

also apparent from Equation 3.4 that in the absence of jumps RV converges to the

IV.

In contrast to realized variance, realized skewness and realized kurtosis have to-

date received minimal attention in the financial time series literature. To the best

of our knowledge, Amaya et al. (2015) is the first published paper to investigate

realized skewness and realized kurtosis. Following Amaya et al. (2015), the RS is

formally defined as the cubic intra-day returns normalized by the square-root of

RV cubed and the RK as the sum of the quartic high-frequency returns normalized

by RV squared;

RSi,h =
√
N

∑N
i=1 r

3
i,h

RV
3/2
i,h

(3.5)
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RKi,h =
N

∑N
i=1 r

4
i,h

RV 2
i,h

(3.6)

We next derive and define the limits of realized skewness and kurtosis of a jump-

diffusion process in the context of the holding- and sampling-intervals. Following

Amaya et al. (2015), the third and fourth realized moments can be defined as;

RM(3)i,h ≡
N∑
i=1

r3
i,h →

N(t)∑
k=1

J3(Qk), as N →∞

RM(4)i,h ≡
N∑
i=1

r4
i,h →

N(t)∑
k=1

J4(Qk), as N →∞
(3.7)

where the third realized moment converges to the sum of cubic jumps and the

fourth realized moment converges to the sum of the quartic jumps. In other words,

the realized third higher-order moment captures the sum of the cubic jumps and

the realized fourth higher-order moment captures the sum of the quartic jumps.

Consequently, for RM(4), only the magnitude of the jumps are relevant and not

the direction (Amaya et al., 2015, see). These jump-driven convergences conform

to the findings of Kim and White (2004), who find that estimates of the higher

moments of distributions of high-frequency data are heavily influenced by the

presence of jumps (and outliers).

The limits of realized second moment LRM(2), realized third moment LRM(3)

and realized fourth moment LRM(4) as found in Hanson and Westman (2002),

Matsuda (2004) and Amaya et al. (2015) are as follows:

LRM(2) = (σ2
D + λ(µ2

J + σ2
J))τ,

LRM(3) = λ(µ3
J + 3µJσ2

J)τ,

LRM(4) = λ(µ4
J + 6µ2

Jσ
2
J + 3σ4

J)τ,

(3.8)

where τ ≡ h/N , µJ , and σ2
J are the mean and variance of the jump component,
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σ2
D is the variance of the diffusive component, λ is the jump arrival rate (or jump

rate). The limits of the second realized moments consist of both the diffusion and

jump parameters while the third and fourth realized moment comprises of only

the jump parameters. We can then define the limits for realized variance (LRV ),

realized skewness (LRS) and realized kurtosis (LRK) as follows:

LRV = N × τ(σ2
D + λ(µ2

J + σ2
J))

= N × h

N
(σ2

D + λ(µ2
J + σ2

J))

= h(σ2
D + λ(µ2

J + σ2
J))

(3.9)

LRS = LRM(3)
(LRM(2))3/2 = λ(µ3

J + 3µJσ2
J)τ

((σ2
D + λ(µ2

J + σ2
J))τ)3/2

=
√
N

h

λ(µ3
J + 3µJσ2

J)
(σ2

D + λ(µ2
J + σ2

J))3/2

(3.10)

LRK = LRM(4)
(LRM(2))2 = λ(µ4

J + 6µ2
Jσ

2
J + 3σ4

J)τ
(σ2

D + λ(µ2
J + σ2

J))τ)2

= N

h

λ(µ4
J + 6µ2

Jσ
2
J + 3σ4

J)
(σ2

D + λ(µ2
J + σ2

J))2

(3.11)

From equations 3.10 and 3.11, it can be seen that both the numerators only consist

of the jump parameters whereas the denominators include both the diffusion and

jump parameters. As such the information content embedded within realized

skewness and realized kurtosis is analytically different from that embedded within

the sample skewness and sample kurtosis computed using low-frequency return

data.3 This finding is corroborated by Amaya et al. (2015) who find that the

sample skewness and sample kurtosis using long samples of low-frequency return
3The central limit theorem states that the skewness goes to zero and the kurtosis approaches

three, as the number of observation approaches infinity. We observe that this only holds for
stock prices generated from a pure diffusive process with no jumps.
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data implicitly include both the diffusive and jump components. This subtle gloss

over is seldom explicitly highlighted in the extant high-frequency finance literature.

In addition, equations 3.10 and 3.11 also delineate the relationships between the

normalized realized higher-order moments and the holding- and sampling-intervals

i.e. the effects of the two types of intervaling. Hence, from Equation 3.10, for

any stationary jump-diffusion data generating process, there is a non-linear re-

lationship between realized skewness and the number of infill observations for a

given holding-interval. On a similar note, from Equation 3.11, a linear relation-

ship holds for realized kurtosis and the number of infill observations for a given

holding-interval.

Assuming that the jump-diffusion parameters are stationary, the above two equa-

tions basically characterize the shape (i.e. curvatures and slopes) of the ensuring

realized skewness and realized kurtosis relationships with the number of infill ob-

servations in count-based signature-plots (conditioned on the holding-intervals).

The effects of any non-stationary jump parameters (i.e. jump means, variances,

and intensities) on the slope and curvature of the count-based signature-plots are

not investigated in this study. This is left for future research.

3.3 Simulation

Any simulated price process for a typical price series should accommodate the fol-

lowing stylized properties: (i) jumps or large random fluctuations; both positive

and negative; (ii) asymmetries or skewness; both negative and positive (iii) elon-

gations or kurtosis. To encapsulate above the three properties, we follow Hanson

and Westman (2002) and Synowiec (2008) and define an independent identically

distributed (iid) price generation process pt that satisfies a Markov, continuous-

time, geometric, jump-diffusion stochastic differential equation:

dpt = pt((µD − λκ)dt+ σDdWt + J(Q)dNt), p0 = 0 pt > 0 (3.12)
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where µD is the diffusive mean return rate, σD is the diffusive volatility, Wt is

a continuous, one-dimensional Brownian motion process, J(Q) is a log-return

mean µJ and variance σ2
J random jump amplitude and Nt is a discontinuous,

one-dimensional Poisson process with arrival rate λ, κ = exp(µJ + σ2
J

2 )−1. Similar

to Matsuda (2004), we allow an adjustment of λκ in the drift term to ensure that

the jump component is an unpredictable process. We assume µD, σ2
D, µJ , σ2

J and

λ are constant. The source of randomness, Wt and Nt and J(Q) are assumed to be

independent. The discontinuous space-time jump process is defined as a Poisson

process: ∫ t2

t1
J(Q)dNt =

Nt2−t1∑
k=1

J(Qk),

where Qk is a sequence of independent identically distributed random variables

with the assumption that ∑0
k=1 J(Qk)=0. For a filtered probability space (Ω, F ,

(Ft)t≥0,P) we have P(Nt = x) = (λt)x
x
e−λt. Given that Q(J) > −1 ensures that

a single jump does not make the asset worthless, therefore, selecting Q =ln(1

+J(Q)) so that the constraints of J(Q) above holds. With the help of Itô’s lemma

[6] one can simplify Equation 3.12 to obtain Equation 3.13 below (see Synowiec,

2008),

d(ln(pt)) =
µD − 1

2σ
2
D − λκ

dt+ σDdWt +QdNt, (3.13)

Integrating both sides of Equation 3.13 over (0,t), yields the general formula for

the stock price at time t as

pt = p0exp

µD − 1
2σ

2
D − λκ

t+ σDWt +
Nt∑
k=1

Qk

. (3.14)

The distribution of the price process above is depended on the distribution of

the log-return jump amplitude Q, there are several distributions that could be

considered, for simplicity we stick to the normal distribution, we let Q follow a

normal distribution of N(µJ , σ2
J).

Using Equation 3.14, we undertake a Monte Carlo simulation of a typical price

series to illustrate graphically the effects of the two types of intervaling men-
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tioned previously. Figure 3.1 displays the signature-plot for realized higher-order

moments computed from a jump-diffusion prices process with the following param-

eters: µD=6.0125e-07, the mean of the diffusion component; σD=2.405e-06, the

volatility of the diffusion component; µJ=6.0125e-05 the mean of the jump compo-

nent; σJ=6.0125e-05, the volatility the jump component and λ = 0.1, the arrival

rate or jump intensity. We generate a total of 1,000,000 observations at a sampling-

interval of τ=1 minute. The above sample size and parameters are chosen to reflect

the average sizes and properties of the sampled dataset downloaded for the empiri-

cal section. We construct daily, weekly and monthly realized higher-order moment

from 1-minute simulated return data, with different sampling-interval.

Figure 3.1: Average RV, RS and RK values (jump-diffusion simulation)

From Figure 3.1, we observe that realized skewness and kurtosis exhibit a positive

(negative) relationship with the number of infill observations (sampling-frequency).

For realized skewness, the relationship is non-linear while for kurtosis the relation-

ship is linear. However, the corresponding magnitudes at a given sampling-interval
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for all holding-intervals are the same. This suggests that for an iid jump-diffusion

process with constant parameters, holding-intervals do not influence the average

realized skewness and kurtosis. In addition, increasing the number of infill obser-

vations (or increasing the sample-frequency or decreasing the sampling-intervals)

results in an increase in realized skewness and kurtosis for all holding-intervals.

A 1-minute sampling-interval has a higher average realized skewness and kurto-

sis than for a 60-minute sampling-interval. In addition, the larger (smaller) the

number of infill observations (or sampling-frequency) for a given holding-interval

the greater (lesser) the likelihood of jumps. Thus, the holding-intervals and the

sampling-intervals have distinct effects on realized skewness and kurtosis.

Figure 3.2: Average RV, RS and RK values (pure-diffusion simulation)

In Figure 3.2, we show the count-based signature-plot of the realized higher-order

moments for a pure diffusion process, where there are no jumps and with the mean

and standard deviation set to µD=6.0125e-07 and σD=2.405e-06 as before. We

observe, as per the central limit theorem, that the realized skewness converges to
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zero and the realized kurtosis converges to three as the number of infill-observations

increases or the sampling-interval decreases (see Lau and Wingender, 1989).4

From Figures 3.1 and 3.2 it is clear that the realized skewness and kurtosis of

an iid jump-diffusion process with stationary parameters is primarily influenced

by the presence of jumps, the holding-intervals, and the sampling-intervals. In

addition, the sampling-intervals influence the magnitudes of the ensuring values

for a given holding interval and for a given sampling-interval the magnitude of the

values are the same for all holding-intervals. Another point to note is that, as the

sampling-interval tends to the holding-interval i.e. at low frequencies, both the

magnitudes of the realized skewness and realized kurtosis tends to the asymptotic

sample skewness and kurtosis values of zero and three accordingly (as clearly shown

near and at the origins of the second (RS) and third (RK) panels in Figure 3.1).

In other words, as one increases the sampling-interval over which the returns are

calculated i.e at low frequencies, the sample distribution looks more and more like

a normal distribution. In particular, ‘the shape of the distribution is not the same

at different time scales’ (see Cont, 2001).

3.3.1 Annualization/Projection

The annualization or projection of variance (volatility) to alternative holding-

periods is easily carried out using the ‘multiplicative’ (‘square-root’) rule (see

Meucci, 2010; Wong and So, 2003; Meucci, 2007). As the projected variances and

volatilities are interval-invariant one can project the volatility of the estimated

return series by multiplying by the square root of the ratio of projected holding

period to the estimated holding period. The daily volatility is usually annualized

by multiplying the volatility by
√

250 (i.e.
√

250σ) thus assuming there are 250

trading days per year. This is because realized variance (realized volatility) is a

dimensional measure and hence the multiplicative (square-root) rule holds when
4In the case of realized variance, the greater the holding-interval the higher the variations

and hence the realized variance increases. However, the estimates of realized variance become
more efficient (and converges) as the sampling-interval decreases i.e at higher frequencies.
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projected onto different horizons. As expected the annualized signature plots of

the various holding period variances are bound to be horizontal with coincident

estimates for all intervals. We can observe this in the first panel in Figure 3.3,

which is consistent with Meucci (2010); Wong and So (2003); Meucci (2007).

The second panel in Figure 3.3 displays the signature plots of annualized realized

skewness versus the number of observations. We observe that when respective

holding-interval realized skewness are annualized, as per RSyearly = 1√
250RSdaily,

= 1√
52RSweekly, = 1√

12RSmonthly, the annualized/projected realized skewness mea-

sures are neither coincident nor horizontal. All the annualized RS estimates fall

onto a common quadratic curve as a direct consequence of the multiplier
√
N .

However, the individual realized skewness estimates at each of the holding-interval

are not coincident (e.g. the 1-minute daily, weekly and monthly estimates all differ)

unlike the realized variance estimates. Thus, there is a clear non-linear relation-

ship between the annualized values and the number of infill observations, clearly

indicating that the annualized values are directly dependent on the number of

observations used i.e. the values are not holding-interval invariant.

The third panel in Figure 3.3 displays the average excess realized kurtosis, XRK.

The annualization is obtained by setting XRKyearly = 1
250XRKdaily, 1

52XRKweekly,
1
12XRKmonthly. This also shows that realized kurtosis relationship is not horizontal

(i.e. not interval-invariant) when the daily, weekly and monthly estimates are

annualized to a common horizon or holding period. The realized kurtosis when

annualized have differing values and consequently are not interval-invariant i.e.

the annualized values are linearly dependent on the number of infill observations

(N) and conditional on the holding-interval.

From Figure 3.3, we note that the projection rule only holds for the expected

values and covariances and not for the normalized higher order moments (i.e.

realized skewness and realized kurtosis). Consequently, realized variance is interval

invariant but the subsequent two higher order moments i.e. realized skewness and

realized kurtosis, are not.5

5See the errata in the online Technical Appendices to Chapter 3 of Meucci (2007), where the
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Figure 3.3: Annualized average RV, RS and RK values (jump-diffusion simulation)

3.4 Empirical Data

In the above simulation, we assumed that the supposedly 1-minute returns were

stationary and identically and independently distributed (iid). In reality, the ac-

tual returns are generally not stationary nor iid and might even be autocorrelated

(see Hansen and Lunde (2003, 2004, 2006) and Zhou (1996)) and consequently,

the ensuring empirical signature-plots will differ in some ways from the simulated

signature-plots.

Hence, in this section we undertake an empirical investigation, using high-

frequency price index data from the G7-countries.6 To minimize the effects

author has explicitly stated that ‘the multiplicative relation does not hold for all raw moments
and all central moments, but only holds for the projection of expected values and covariances’.
The online Technical Appendices is available at https://www.arpm.co/symmys-articles/
AMeucciRiskAndAssetAllocationTechnicalAppendices.pdf.

6The sample period for US, UK, Japan, and Canada starts from 1 May 2002 - 15 November
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of market microstructure effects, the raw prices were downloaded at 1-minute

intervals (and not at the 1-second intervals commonly used).7 The data was

also truncated by sampling only the raw price for each index 30-minutes after

the relevant market opened and 30-minutes before it closed. This ensured that

any extreme outliers due to illiquidity are removed, without any significant loss

of information. We also delete overnight prices from the data before estimating

the returns. We next construct the infilled price series {p(t)}t≡[0,∞) artificially

from the raw price data using the previous tick method that was proposed

by Wasserfallen and Zimmermann (1985).8 The sampled prices enable us to

construct an equidistant (or regular) return series for computing the realized

higher-order moment at any suitable sampling-interval.

We next compute the daily, weekly and monthly normalized realized higher-order

moments from the high-frequency data series (i.e. realized skewness and kurtosis).

The returns for each market index were obtained by taking the log differences of

the high-frequency prices. Our weekly and monthly realized higher-order moments

are different from the daily averaging method commonly used in estimating weekly

observations in the literature (see Amaya et al., 2015).9

2017. For France, Germany, and Italy due to the fact that the data with the same length as those
mentioned earlier was not available from the Thompson Reuters Tick History, the data sample
for France starts 2 May 2002 - 15 November, 2017, Germany from 6 May 2002 - 15 November
2017 and Italy from 1 June 2009 - 15 November 2017.

7Using Monte Carlo techniques and 1-second data, Amaya et al. (2015) verified that estimates
of the realized higher moments are reliable in finite samples and that at 1-minute return series
are robust to the presence of market microstructure noise.

8Ideally, one should construct realized higher-order moments from high-frequency intra-day
return data of the true price process, p∗(t). However, p∗(t) is unobservable and hence the
realized higher-order moment are computed from observed prices p(t) which are contaminated
with market microstructure noise (Hansen and Lunde, 2004). The observed price is defined
as p(t) ≡ p∗(t) + u(t), where u(t) is the noise component that may arise from the bid-ask
bounce, price discreteness, rounding errors and price reporting error (see Bai, 2000; Andreou
and Ghysels, 2002; Oomen, 2004b). In this study, we assume there are no market microstructure
noise effects and consequently, for our empirical work, we download raw data at the 1-minute
sampling frequency and not at the higher 1-second frequency. As such our findings are confined
to ‘high’ frequency data and not to ‘very high’ frequency data; this being left for a subsequent
study and paper.

9In order to obtain weekly observations, Amaya et al. (2015) first construct daily realized
moments and then take the average in a 5-days window to obtain their weekly realized moments.
These so-called weekly observations are just an average of daily realized moments. Our weekly
and monthly data are computed using the relevant full holding-interval.
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The number of infill-observations (or the sampling-frequency) is given by N=h/τ ,

where h is the holding-interval (hday, hweek, and hmonth) and τ is the sampling-

interval as defined above. Normalizing the holding-interval by dividing with the

sampling-interval enables the higher-order moments to be compared across differ-

ent holding periods because N is a measure of the number of infill observations

within each holding-interval relative to the sampling-interval. Suppose we want

to compute the daily realized variance, skewness, and kurtosis, for example, the

UK (FTSE 100 index) from 08:30 am to 4:00 pm, we set hday=450 (1-minute

each trading day). We divide h by τ to obtain the number of infill-observations

at each sampling-interval for each τ . The values of τ are carefully selected, in

order to prevent the length of the returns from being fractions. Therefore, at the

τ = 10-minutes sampling-interval, the number of infill-observations will be 45 (Nτ

= 450/10). For the weekly realized moments, we have hweek = 450 minutes×5 days

= 2,250 infill-observations. The τ = 10 minutes sampling-interval has 225 weekly

observations (Nτ = 2, 250/10). The monthly realized moments has hmonth=450

minutes×5 days×4 weeks = 9,000 observations as such consists of 900 (Nτ =

9, 000/10) infill-observations. The span of the data sample for UK index yields

3,916 trading days, 784 trading weeks and 196 trading months. We repeat this

process to compute realized higher-order moments at the various holding-intervals

and sampling-intervals.

3.5 Empirical Results

In this section, we discuss the various count-based signature-plots generated using

the raw 1-minute price data of the seven market indexes that comprise the ‘G7’

countries.

Figure 3.4, is the signature-plot for the normalized realized higher-order moments

for the US (S&P 500 index). In Figure 3.4, the realized variance for S&P500

fluctuates at the lower infill observation numbers and then stabilizes as the number

of infill increases. An increase in the holding-interval results in an increase in
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Figure 3.4: Average RV, RS and RK values for US (S&P 500 index)

the realized variance. The realized skewness and realized kurtosis signature-plots

are symptomatic of the simulated jump-diffusive process (see Figure 3.1). This

augurs well with our premise that high-frequency price processes are essentially

jump-diffusion processes. However, an increase in holding-interval for realized

skewness and realized kurtosis results in a non-equivalence in the corresponding

magnitudes computed at the same sampling-interval. This is in agreement with

the reported observation that the ‘realized skewness of the market index actually

increases with the horizon’ (see Neuberger, 2012). The non-equivalence of the RS

and RK values at each sampling-interval across different holding-intervals (see for

instance in the bottom panel of Figure 3.4, the terminal RK values at the top

end of the holding-interval lines where the sampling-interval is 1-minute) indicate

either non-stationarities in the jump-diffusion parameters or auto-correlations in

the observed price generation process.

In addition, as the number of infill observations increases (or sampling-interval
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decreases) the realized skewness and realized kurtosis increases. However, there

are subtle differences between the realized skewness and realized kurtosis. Real-

ized skewness has a non-linear relationship with the number of infill observations,

whereas realized kurtosis has a linear relationship. On average, a positive realized

skewness is observed across all holding periods, which is consistent with existing

financial literature that asset market returns are mostly positively skewed (see

Arditti, 1967, 1971; Beedles, 1979; Fielitz, 1976; Singleton and Wingender, 1986;

Jurczenko and Maillet, 2006).

Figure 3.5: Average RV, RS and RK values for Canadian (GSPTSE index)

Figure 3.5 reports the signature-plot for the Canadian (GSPTSE index), the real-

ized variance exhibits download sloping as the sampling-interval decreases. This

pattern is associated with the realized variance being an inefficient estimate of

volatility at small sampling-intervals with the noise component dying off at large

sampling-intervals. In addition, as one would expect, an increase in holding-

interval leads to an increase in realized variance.
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The realized skewness is positive and increases for the daily, weekly and monthly

moments, with few aberrant negatives values at lower sampling-intervals for the

monthly holding-interval. However, the positive skewness dominates in this case

as well. For the realized kurtosis, we observe that it monotonically increases as

the sampling-interval decreases. Both the realized skewness and kurtosis at the 1-

minute sampling frequency is relatively much higher for the weekly holding-interval

than the daily-holding interval. This non-equivalence of the RS and RK values at

each sampling-interval (at the terminal ends of each line) for the different holding-

intervals, in Figure 3.5, indicate either non-stationarities in the jump-diffusion

parameters or possible auto-correlations in the observed price generation process.

In other words, intensity and magnitude of the jumps are much larger over the

weekly (holding) horizon as compared to the daily or monthly (holding) horizons.

Figure 3.6: Average RV, RS and RK values for UK (FTSE 100 index)

Figure 3.6, reports the signature-plot for the UK (FTSE index) realized higher-

order moments. The realized variance exhibits a decreasing pattern as the
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sampling-interval increases. Its size differs with each holding-interval. Interesting,

the monthly realized skewness is relatively flat in comparison to its daily and

weekly counterparts as the sampling-interval decreases. This subtle pattern

is similarly repeated for the realized kurtosis. This indicates that jumps are

highly prevalent over daily holding horizon and then quickly settle down over the

weekly and monthly horizons. Possibly the FTSE market is able to immediately

disseminate any new information over the short term via jumps and then stabilize

over the long term.

Figure 3.7: Average RV, RS and RK values for Japan (Nikkei 500 index)

Figure 3.7 represents the signature-plots for Japan (i.e. Nikkei 500 index). The re-

alized variance seems to decrease for each holding-interval as the sampling-interval

decreases. On another hand, the realized skewness is positive and upward increas-

ing. The realized kurtosis for Nikkei index also exhibits similar patterns to that

of the stock-markets discussed earlier, with the exception of the FTSE. As before,

both the realized skewness and kurtosis at the 1-minute sampling frequency is
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relatively much higher for the weekly holding-interval than the daily-holding pe-

riod. Once again, the non-equivalence of the RS and RK values at each sampling-

interval (at the terminal end of each line) for the different holding-intervals, in

Figure 3.6, indicate either non-stationarities in the jump-diffusion parameters or

possible auto-correlations in the observed price generation process.

Lastly, we discuss the signature-plots of Germany, Italy, and France (as shown in

Figure 3.8, Figure 3.9, Figure 3.10) as a sub-group since they are from the Euro-

pean countries and consequently have the same trading hours. Realized variance

and realized kurtosis in the case of Germany and Italy indexes are very similar.

However, the realized skewness differs specifically for the monthly realized skew-

ness. The realized skewness for Italy has a distinct negative slope and negative

values for the monthly interval as the sampling-interval decreases. However, the

German realized skewness increases for all holding-intervals as sampling-interval

decreases.

France, on the other, hand shows realized skewness to be constant for the monthly

holding-interval as sampling-interval decreases. The realized kurtosis for France is

similar to its counterparts realized kurtosis in the European group. France’s real-

ized variance seems to decrease for each holding-interval as the sampling-interval

decreases. The signature-plots for realized kurtosis for these three European mar-

kets are very similar to that of the UK market, indicating the same dominance

of jumps in the daily horizons as compared to the weekly horizons. The realized

skewness signature-plot for Italy, particularly the monthly (longer term) holding

horizon is able to capture the downturn in the Italian market over the recent

decade.
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Figure 3.8: Average RV, RS and RK values for Germany (GDAXIP index)

Figure 3.9: Average RV, RS and RK values for Italy (FTMIB index)
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Figure 3.10: Average RV, RS and RK values for France (FCHI index)

The differences between the realized higher-order moments for various G7 equity

markets considered in this study highlight a ‘stylized’ fact that though the equity

markets are similar in many aspects of their higher-order moment characteristics,

they differ subtly and substantially individually. Having presented the results of

the G7 countries individually, we here discuss the findings as a group to highlight

these subtle yet substantial differences, if any, in their higher-order moments i.e.

realized skewness and realized kurtosis.

Figures 3.11 and 3.12 show respectively the RS and RK signature-plots with all the

G7 countries overlaid in one plot with a scaled-up inset-plot. The shorter (longer)

the holding-interval i.e. days, the steeper (flatter) the slopes of the plotted lines

by construct. However, there is much variation in the actual realized skewness

and realized kurtosis values between the different markets. Both panels display a

stylized fanning-out trace with one obvious difference: the RS lines are non-linear

and the RK lines are linear; thus conforming with the equations 3.10 and 3.11.
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Figure 3.11: Average RS values for G7 Countries. The inset RS signature-plot
highlights the asymptotic convergence of the RS values to zero near the origin.

In Figure 3.11, the daily and weekly averaged realized skewness values are all pos-

itive whereas the monthly averaged values are mixed, with Italy being clearly neg-

ative across all sampling-intervals for the monthly holding-period. There is a ten-

dency for all holding horizons to be ‘relatively more skewed’ as we increase the in-

fill observations or as we decrease the sampling-intervals and/or holding-intervals.

This is in accordance with the high-frequency sampling asymptotics as implied by

the equations 3.10 and 3.11 above. Individually, for the G7 countries, Japan has

the highest RS values and Italy has the lowest RS values for all three holding-

intervals. As a group, Japan, Canada, and the USA RS-dominate the other coun-

tries sampled and Italy, France and the UK are RS-dominated by the others. In

addition, France and Italy display RS values with sign changes i.e. from positive
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RS to negative in going from daily and weekly holding-horizons to monthly-holding

horizons, indicating strong auto-correlations and/or non-stationarities (see Lau

and Wingender, 1989). Germany’s RS lines sit in the middle of the G7 sample for

all three holding-periods studied.

Finally, the RS signature-plot inset at the bottom right of Figure 3.11 clearly

shows that as the number of infill observations tends to zero, the RS values tend

to zero for all holding-intervals concerned i.e. for low sampling-intervals the RS

values are lower in absolute values than the corresponding RS values at higher

sampling-frequencies for all holding-intervals.

Figure 3.12: Average RK values for G7 Countries. The inset RK signature-plot
highlights the fact that as the number of infill observations tends to zero, the RK
values tends to three (or even lower) for all holding-intervals.

In Figure 3.12, the non-equivalent nature of the RK values at the 1-min sampling-
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interval (at the end of each line) for different holding-intervals further indicates

non-constant or non-stationary jump-diffusion parameters within and between the

G7-countries. This non-constancy in the parameters could be caused by an overall

change in jump intensities over time or by an overall change in market volatility

without necessarily an increase or decrease in the jump intensity (see Hanousek

et al., 2014). Alternatively, it could be due to a combination of changes in all

the jump-diffusion parameters: time-varying jump intensities, time-varying jump,

and diffusion volatilities and drifts. In addition, it is also common knowledge that

in financial markets not only volatilities but also jumps are frequently clustered

i.e. the occurrence of a jump in price immediately increases the probability of

observing new jumps and consequently their long-run frequency (see Hainaut and

Moraux, 2017). This will further condition the jump-diffusion process and affect

the characteristics of the observed signature-plots. Individually, for the G7 coun-

tries, Japan has the highest RK values and France has the lowest RK values for

the same number of infill observations. As a group Japan, Germany and Canada

RK-dominate the other countries and Italy, France and UK are RK-dominated by

the others. US falls in the middle of the signature-plot.

Finally, the RK signature-plot inset at the bottom right of Figure 3.12 highlights

the premise that as the number of infill observations tends to zero, the RK values

tends to three (or even lower) for all holding-intervals i.e. at low sampling-

frequencies the realized kurtosis values are lower than the corresponding RK

values at higher sampling-frequencies for all holding-intervals.

3.6 Concluding Remarks

In this study, we investigate, theoretically and empirically, how the normalized

realized higher-order moments of high-frequency returns are affected by these two

types of intervaling. We first determine the theoretical limits of the expected

values of the realized skewness and realized kurtosis for a (high-frequency) jump-
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diffusion process. We then simulate an iid jump-diffusion process and generate

count-based signature-plots for latter comparisons with the empirical data. We

note that the stylized features of these signature-plots are quite different for a

diffusion process and a jump-diffusion process. Finally, using 1-minute market-

index data from the G7-countries (from Thompson Reuters Tick History/SIRCA

database), we compute the realized skewness and realized kurtosis values for three

holding-intervals (i.e. days, weeks and months) and a number of sampling-intervals

and showcase the ensuring signature-plots.

Our simulated and empirical findings are similar but not identical. For the sim-

ulated iid jump-diffusion data, we find that realized skewness and kurtosis ex-

hibit a positive relationship with the number of infill observations (or sampling-

frequencies). For realized skewness the relationship is non-linear and for kurtosis

the relationship is linear. In addition, the corresponding magnitudes at a given

sampling-interval for all holding-intervals are asymptotically equivalent. Also, in-

creasing the number of infill observations (or decreasing the sampling-intervals)

increases the realized skewness and kurtosis for all holding-intervals. For the em-

pirical data, we also find that for a given holding-period, as the number of infill-

observations increases, both the realized skewness and kurtosis increases. However,

for a given number of infill observations, as the holding-interval increases, the real-

ized skewness has mixed outcomes (i.e. positively and negatively sloped) whereas

the realized kurtosis increases i.e is positively sloped). In other words, there is

a greater degree of variability in realized skewness than in realized kurtosis over

sampling-frequencies and holding intervals.

The central limit theorem for realized skewness and realized kurtosis of high-

frequency data only holds at the limit when jumps are few and far in-between or are

implicitly assumed away as when the size of the sampling-interval approaches the

holding-interval. For such pure diffusion processes, all realized moments implicitly

converge to their corresponding sample moments as asymptotically indicated by

the limiting realized moment equations and in our simulations. However, for high-

frequency returns data, realized moments converge to sample moments only for the
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‘variance’ measure but not for the corresponding ‘skewness and kurtosis’ measures.

This is directly due to the presence of ‘jumps’ in the underlying price generation

process at high-frequencies, which determine the computed values of RS and RK.

Finally, the implications of the two intervaling effects on realized skewness and

realized kurtosis in high-frequency finance, particularly for asset pricing, are as

follows:

• high-frequency pricing models using higher-order moments will be condi-

tioned by the holding-intervals and sampling-intervals adopted.

• high-frequency pricing models will be driven by the direction and magni-

tude of jumps present on the price generation process. At low sampling-

frequencies the higher-order moments will not play a significant role. This

clearly would explain why pricing models tend to be driven by varying num-

ber of factors across different holding-intervals.

• any asset pricing differences between short-term, medium-term and long-

term trading and/or investments are likely to be due to the implicit transition

from a jump-diffusion process at high frequencies to a pure diffusion process

at low frequencies. In other words, sampling-intervals and holding-intervals

matter.

Consequently, researchers in high-frequency quantitative finance must be obser-

vant and wary of these two intervaling effects i.e. holding-interval effect and the

sampling-interval effect, on computed values of realized skewness and kurtosis. In

addition, these same effects will also be useful from a practitioner’s standpoint.

For example, does the presence of these intervaling effects imply any possibilities

or forecasting? If it does, can this be put to use to implement an effective risk mea-

surement and management strategy? Can one exploit the relationships depicted by

the count-based signature plots to implement a skewness and/or kurtosis trading

strategy? We leave these questions for future research.

60



Chapter 4

Trading Volume and Realized

Higher-Order Moments in the

Australian Stock Market

Published in ‘Journal of Behavioral and Experimental Finance’, available at

doi.org/10.1016

4.1 Introduction

The relationship between volatility and trading volume has received considerable

attention in the extant literature for different financial markets. In a seminal re-

view paper, Karpoff (1987) referenced a number of papers that showed a positive

relationship between volatility and trading volume, detailing the empirical and

theoretical contributions in the then extant literature.1 Further investigations of
1According to Karpoff (1987), the benefits of investigating the volume-volatility relationship

includes: (i) it provides insight into the structure of financial markets, (ii) it is beneficiary to event
studies that employ volume and volatility for inferences and (iii) have significant implications
for research into futures markets. Thus price variability/volatility affects the volume of trade in
futures contract.
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the volume-volatility relationships by others enabled researchers to better under-

stand the behaviour of traders (i.e. both informed and uninformed traders) (see

Kyle (1985); Jones et al. (1994); Chan and Fong (2000); Giot et al. (2010); Do

et al. (2014)).

To-date, three distinct theoretical hypotheses have been proposed to explain the

observed contemporaneous positive volume-volatility relationship. The first being

the mixture of distribution hypothesis (MDH). The formulation of the MDH hy-

pothesis was mooted by Clark (1973) and later extended by Epps and Epps (1976);

Tauchen and Pitts (1983); Harris (1986) and Andersen (1996). A key insight of

the MDH hypothesis is that trading volume and price volatility are both driven by

the same latent (or hidden) mixing variable i.e. the rate of information flow. This

implies that trading volume reacts to changes in the arrival rate of new informa-

tion to the marketplace, and to changes in the dispersion of traders’ opinion based

on the content of the received information; Carroll and Kearney (2015). Chan and

Fong (2006) also find that the arrival rate of new information to the market is

the common factor that jointly drives trading volume and volatility. In short, the

MDH hypothesis suggests a contemporaneous and instantaneous positive relation

between trading volume and volatility conditional on the rate of information flow

into the market.2

The second hypothesis is the sequential information arrival hypothesis (SIAH)

by Copeland (1976). The SIAH hypothesis assumes that all traders receive new

information in sequential time. Although traders change their opinions instanta-

neously when receive new and relevant information, the sequential nature of the

information arrival process means that not all traders receive the same informa-

tion contemporaneously; Celik (2013). The informed traders will trade with the

uninformed traders in quantities as per the time-asymmetric information at hand.

As these informed investors trade based on their ‘advanced’ information, volatility
2Kalev et al. (2004) using firm-specific announcements as proxy for information flow, inves-

tigate the information-volatility relation for Australian high-frequency data. They observe a
positive and significant relationship between volatility and arrival rate of information, even after
controlling for trading volume and high open volatility. Their results are consistent with the
positive volume-volatility relationship proposed by MDH hypothesis.
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will be affected positively; Chan and Fong (2000).3

The third hypothesis is the difference of opinion hypothesis (DOH) by Shalen

(1993) and Harris and Raviv (1993). According to the DOH hypothesis, investors

tend to trade based on their subjective beliefs; this happens when they form

different opinions about the valuation of their traded assets or portfolios. This

often occurs when public or market-wide information switches from favourable to

unfavourable or vice versa. As these diversely opined investors trade based on

their subjective beliefs, volatility is bound to increase. The DOH hypothesis was

then further utilized by Hong and Stein (2003) to explain the effect of short-sales

constraints on stock prices and the associated asymmetric downward distribution

of returns. In addition, these authors suggested and showed that negative skewness

tends to be more pronounced during high trading volumes.

The SIAH and DOH hypotheses both embed the volume-volatility relationship as

special cases when there are no information (time- or space-) asymmetries present

i.e. information is instantaneously and symmetrically absorbed into the trading

markets. What is not apparent is that, under the SIAH hypothesis, the time-

asymmetric objective beliefs of informed and uninformed traders are also embed-

ded and can be proxied by skewness (i.e. good news/positive skewness or bad

news/negative skewness) and under the DOH hypothesis, space-asymmetric sub-

jective beliefs arising from difference of opinion between traders are additionally

incorporated and can be proxied by kurtosis (as kurtosis implicitly measures addi-

tional dispersion over and above the standard dispersion or volatility). Thus both

the later two hypotheses i.e. the SIAH and DOH hypotheses, are not only capable

of depicting the relationship between volume and volatility (or variance), but also

have the capability to depict the accompanying volume-skewness (a SIAH driven

time-asymmetric effect) and volume-kurtosis (a DOH driven space-asymmetric ef-

fect) relationships as implied by the second and third hypothesis. Hence, the

primary motivation for this study to use the higher-order realized moments to
3Shen et al. (2016, 2018) investigates the volume-volatility relationship by using Baidu News

as the proxy of information flow for the Chinese stock market. They find that their empirical
results support the SIAH hypothesis and reject the MDH hypothesis.
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empirically find support for both the two latter hypotheses.

Another approach followed by a sub-group of volume-volatility relationship in-

vestigators was to decompose the observed (realized) volatility into continuous

and jump components based on the seminal high-frequency work of Andersen and

Bollerslev (1998); Barndorff-Nielsen and Shephard (2002); Meddahi (2002); An-

dreou and Ghysels (2002). Giot et al. (2010) investigated the relationship between

continuous and jump components of realized volatility with the number of trades,

absolute order imbalance, and average trade size. They found that only the contin-

uous component of the realized volatility exhibited positive and significant relation-

ships. Shahzad et al. (2014) similarly investigated the volume-realized volatility

relation by splitting the realized volatility into continuous and jump components;

their volume variable was further categorized into individual and institutional vol-

umes. Although their results and significance were mixed, the authors showed

that the number of trades of individual investors has a higher explanatory power

in explaining the volume-realized volatility relationship in comparison to that of

the institutional traders. Unfortunately, these researchers did not investigate the

accompanying volume-skewness and volume-kurtosis relationships implied by the

jumps components. In the extant literature, it is well documented that jumps

reflect the market reaction to unexpected information, which implies that unex-

pected news is the primary driver of price jumps (see Lahaye et al. (2011); Lee

and Mykland (2012)). This implies that jump-related measures might act as an

ideal proxy for information arrival and can be utilized as tools for studying market

behaviour (see (Fama and Malkiel, 1970)) or other phenomena like information-

driven trading; see for example (Cornell and Sirri (1992); Kennedy et al. (2006);

Hanousek et al. (2014)).

Our second motivation, thus arises from the fact that the third realized moment

(realized skewness) converges to the sum of cubic jumps, and the fourth realized

moment (realized kurtosis) converges to the sum of the quartic jumps Amaya et al.

(2015). Hence, realized skewness captures the normalized direction and magnitude

of cubic jumps, while realized kurtosis captures the normalized magnitude of quar-
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tic jumps (the jump directions are ignored here). As such, realized skewness and

realized kurtosis capture additional relevant information that is not captured by

splitting realized volatility into continuous and jump components. In the extant

literature, Do et al. (2014) investigated the volume-higher-order realized moment

relationship and showed that directional reactions towards good or bad news are

captured by realized skewness and the magnitude of such reactions are captured

by realized kurtosis. However, the volume-realized skewness results reported in

the literature tend to be polarized. Hong and Stein (2003) show via the DOH

hypothesis, that asset returns are more negatively skewed conditional on higher

trading volume. This suggests the possibility of information asymmetries; arises

from investors having differing information or opinions, resulting in different asset

valuations.

The results of Hong and Stein (2003) are consistent with those of Chen et al.

(2001); Hutson et al. (2008) but are inconsistent with the findings of Charoenrook

and Daouk (2004); Hueng and McDonald (2005).4 These findings of mixed results

for the volume-realized skewness relationship may be attributed to the type of

financial markets/assets considered, the arrival rates of information to the mar-

ket, and/or differing opinions of investors relative to the information available.

Albuquerque (2012) further suggests that the contradictory results obtained for

skewness could be due to the different nature of firm-level skewness relative to

that of the market-level skewness. For kurtosis, Do et al. (2014) observe a neg-

ative volume-realized kurtosis relationship, which can be explained by the DOH

hypotheses.

To the best of our knowledge Do et al. (2014), are the only published paper that

investigates volume-realized higher-order moments. However, the authors’ focus

on the spillover effects of higher-order realized moment risks and spillover effects of
4Chen et al. (2001) find that negative skewness is more pronounce in stocks that have ex-

perienced an increase in trading volume relative to trend over the prior six months. Hutson
et al. (2008) shows that trading volume is associated with future negative skewness. Charoen-
rook and Daouk (2004) show that conditional skewness of daily aggregate market returns has no
predictability with trading volume. Hueng and McDonald (2005) finds that negative skewness
is not pronounced under high trading volume using daily NYSE and AMEX data.
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trading volume across the 18 countries considered for stock and FX markets. They

use the number of trades as their only proxy for information flow and construct

daily higher-order realized moments from 5-minute return data for all countries.

The key point to note is that generalization of the standard U.S. 5-minute unbiased

sampling frequency to the rest of the 17 countries has a potential of resulting in

significant accumulation of noise, which might impact the results and conclusion

obtained.5 It is well documented that the 5-minute sampling frequency does not

hold for all markets/stocks.6 This forms the motivation for employing the 15-

minutes high-frequency return data instead of the 5-minutes.7 Alles and Murray

(2017) further stress that although Australia is a developed country, it’s equity

market requires a separate investigation as it differs in certain aspects from the

other major international equity markets.8

Thus in this study, we investigate the volume-higher-order realized moment rela-

tionships by employing 142 Australian stocks downloaded at a 15-minute frequency

from the Thompson Reuters Tick History/SIRCA database from 2003 to 2017. We

compute all the high-order realized moments (i.e. realized variance, realized skew-

ness and realized kurtosis) for two (i.e. weekly and monthly) holding periods.
5Bandi and Russell (2008) show that it is paramount to compute realized volatility with

unbiased intra-day return data since computing realized volatility with contaminated return
data results in significant accumulation of noise.

6Bandi and Russell (2008) recommend that when sampling very illiquid stocks, 15-minutes
could be the preferred sampling frequency for computing realized volatility, which should be
lowered for very high liquid stocks. Bollerslev et al. (2008) shows that the optimal sampling
frequency for 40 U.S. equities is 17.5-minutes. Oomen (2006) shows that the optimal sampling
frequency for realized volatility for IBM stock to be 20-minutes while it increases to about 3
minutes with a first-order bias correction. Hansen and Lunde (2006) using DJI30 stocks show
that the noise in realized volatility may be ignored when intra-day returns are sampled at low
frequencies, such as 20-minutes. Andersen et al. (2003) employ a 30-minute return series to
compute the realized variance.

7In addition, the evidence of this is in Chapter 2, which is currently under review at ‘The
Quarterly Review of Economics and Finance’.

8Alles and Murray (2017) show that relative to the U.S and U.K. market, the trading volume
for the Australian equity market is less than 5% of that recorded on the New York stock exchange.
The Australian equity market is concentrated in a small number of sectors, with the materials
sector dominating and makes the market highly weighted in one sector. They also report that
the Australian equity market is mainly represented and weighted by domestic firms, with less
than 2% being overseas companies. This leads to investors not having a wide range of investment
opportunities, which in turn might result in cyclical economic patterns. The unavailability of
alternative investment options may impact the extent of reward available to taking up downside
risk.
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We then download and compute the corresponding trading volumes, the number

of trades, order imbalances, average trade sizes and ‘vol-trades’ (defined as the

product of trading volume and number of trades) as our proxies of information

flow. These high-frequency data should enhance the robustness of our estimates

and help us capture any volume-higher-order moment relationships and subtle

differences based on the proxy for information flow being tested.

Our empirical findings confirm the contemporaneous positive (realized) volume-

volatility relation suggested by the MDH hypothesis when trading volume, number

of trades, and vol-trade are used as proxies of information flow. The traditional av-

erage trade size results in an inverse relationship, this contradicts predominately

positive volume-volatility relationship documented in the extant literature. We

next observe that realized skewness has no significant relationship with any of

the information flow proxies for both weekly and monthly holding periods. As

such, we investigate the volume-‘negative’ realized skewness relationship, which is

consistent with Do et al. (2014) and also the volume-positive realized skewness re-

lationship, which is ignored in the literature due to the fact that most researchers

are biased towards a loss-oriented (negative) skewness research. In this study,

we consider negative and positive realized skewness as proxies for bad and good

news respectively. This suggests that the directional (negative or positive) realized

skewness relationship with volume reflects investors’ reaction to bad or good news.

The changing directional realized skewness indirectly also reflects investors chang-

ing positive and negative opinions over time. We then observe that the number

of trades has a negative and significant relationship with realized kurtosis. This

phenomenon could also be explained by DOH hypothesis (see Do et al. (2014)).

However, we also observe that trading volume has a positive and significant rela-

tionship with realized kurtosis, which contradicts the results of Do et al. (2014).

Additionally, we find that our new measure of information flow ‘vol-trade’ is also

important in explaining not only the volume-realized volatility relation but also

the volume-directional realized skewness and volume-realized kurtosis relation. We

also observe that order imbalance has no significant relationship with the higher-
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order realized moments for both holding periods. However, when we consider the

buyer/seller-initiated trades separately, we observe that buy/sell-initiated trades

have a significant relationship with realized higher-order moments.9 The insignif-

icant order imbalance relationship is consistent with the findings of Chan and

Fong (2006) and Giot et al. (2010), who obtained insignificant relationships be-

tween order imbalance and realized variance, and its jump component for the daily

holding period. Contrary to that, Chan and Fong (2000) find that daily order im-

balances drive the volume-volatility relation in comparison to that of average trade

sizes. We infer that the significance of order imbalance may be dependent on the

market and/or the holding period under study. Overall, we find that the signif-

icance of most of the volume-realized higher moments relationships disappear as

the holding period is changed from weekly to monthly intervals. This outcome is

not surprising and is consistent with a recent intervaling study by Ahadzie and

Jeyasreedharan (2020) who prove theoretically and show empirically that, for a

given high-frequency sampling-interval (i.e. 15-mins in our case), the estimates of

higher-order moments will be conditional on the holding-interval considered (i.e.

weekly and monthly in our case).

Finally, we run four separate robustness checks. Firstly, we employ the absolute

residuals test of Jones et al. (1994) in investigating the volume-volatility relation-

ship. Secondly, we investigate the relationship between trading volume and the

natural logarithms of the realized higher-order moments similar to that of Shahzad

et al. (2014), who studied the relationship between natural logarithms of realized

variance and trading volume. Thirdly, we split the data into three sub-periods fol-

lowing the categorization of Dungey and Gajurel (2014). For this, only the weekly

holding period is utilized since most of the monthly results tend to be insignificant

for the full sample period. Fourthly, we test the significance of the volume-higher-
9The inclusion of buyer/seller-initiated trades to our study was carried out in response to the

following a query from Associate Professor Wing Wah Tham, the discussant for our conference
paper (with the same title) presented by the first author at the 2nd FIRN Ph.D. Symposium
(2019), Byron Bay, New South Wales, Australia: How can unsigned ’trading volume’ be a better
measure of information content and/or its arrival rate as compared to ’order-imbalance’? Our
answer: Separately, the buyer/seller-initiated trades have significant relationships with realized
higher-order moments. However, when taken together, the net difference between two types of
trades i.e. order imbalance, is found to have less an impact and no significance.
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order realized moment relationship for the weekly post-crisis period by controlling

for the market rate of information flow by including the S&P/ASX200 volume data

as a control variable. We observe that in the presence of a market rate of informa-

tion flow, the volume-higher-order realized moment relationship is still significant.

Overall, the results are robust and consistent.

The remainder of this chapter is organized as follows: Section 4.2 gives a brief re-

view of relevant theory for estimating higher-order moments. Section 4.3 presents

the empirical data used in constructing the higher-order moments and subsequent

estimates of information flow proxies. We report the descriptive statistics of the

variables used in this section. The empirical results are discussed in Section 4.4,

and Section 4.5 concludes.

4.2 Higher-order realized moments

We discuss a concise review of the theory relating to estimating higher-order re-

alized moments. Suppose the observed price follows a semi-martingale process on

some filtered probability space (Ω, F , (Ft)t≥0,P) in a frictionless market where

there are no arbitrage opportunities (see Back (1991)). Then in the presence of

jumps, the observed price can be modelled as a continuous time semi-martingale

jump-diffusion process;

pt =
∫ t

0
µDdt+

∫ t

0
σDdWt +

N(t)∑
k=1

J(Qk), (4.1)

where µD is the diffusive mean, σD is a diffusive volatility process and dWt is the

increments to a Brownian motion Wt, N(t) is a counting process and J(Qk) are

the non-zero jump increments (see Fleming and Paye (2011) for more details).

The quadratic variation for the jump-diffusion process is defined as,

QVt =
∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), (4.2)
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the first term on the right-hand side of Equation 4.2 is the integrated variance

and the second term is the sum of the squared jumps (variance of the jump com-

ponent). We observe that Equation 4.2 reduces to a ‘pure’ diffusion model with

continuous sample paths when there are no jumps in the price process (i.e. the

jump component is set to zero). For this jump-diffusion process to hold, it is

assumed that µD and σD are jointly independent of Wt. The integrated variance

(IV) for this type of process is defined IVt ≡
∫ t

0 σ
2
Ddt and equals to the quadratic

variance (QV).

In high-frequency finance, the proxy for sample variance is the realized variance

(RV); replacing the traditional use of squared returns at low frequencies. It is

well documented that realized variance is a more robust estimate of volatility

(see Andersen and Bollerslev (1998); Andersen et al. (2003); Hansen and Lunde

(2004, 2003); Barndorff-Nielsen and Shephard (2004); Andersen et al. (2007)). The

discrete time high-frequency returns over the holding-interval h is defined as;

ri,h = pi,h − pi−1,h, i = 1, 2, .., N (4.3)

where h is the holding-interval (thus trading week or month), pi,h is the i-th high-

frequency log price for holding-interval of h, andN the number of infill observations

for each sampling-interval, τ , partitioned into equal-length such that τ ≡ (b−a)/N

and [a, b] ⊂ h. The RV is defined as the sum of squared high-frequency returns as

given by;

RVi,h = RM(2)i,h ≡
N∑
i=1

r2
i,h →

∫ t

0
σ2
Ddt+

N(t)∑
k=1

J2(Qk), as N →∞ (4.4)

The RV is an efficient estimator of the quadratic variation, it converges to the QV

as the number of observations (N) goes to infinity (RV (N)
[a,b] → QV[a,b] as N → ∞

(see Andersen and Bollerslev (1998); Barndorff-Nielsen and Shephard (2002)). It

is also apparent from Equation 4.4 that in the absence of jumps RV converges to

the IV.
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Following Amaya et al. (2015), the third and fourth realized moments can be

defined as;

RM(3)i,h ≡
N∑
i=1

r3
i,h →

N(t)∑
k=1

J3(Qk), as N →∞

RM(4)i,h ≡
N∑
i=1

r4
i,h →

N(t)∑
k=1

J4(Qk), as N →∞
(4.5)

According to Amaya et al. (2015), the third realized moment converges to the

sum of cubic jumps and the fourth realized moment converges to the sum of the

quartic jumps. In other words, the realized third higher-order moment captures

the sum of the cubic jumps and the realized fourth higher-order moment captures

the sum of the quartic jumps. Consequently, for RM(4), only the magnitude of

the jumps are relevant and not the direction. These jump-driven convergences are

consistent with the findings of Kim and White (2004), who find that estimates of

the higher moments of distributions of high-frequency data are heavily influenced

by the presence of jumps.

As mentioned earlier, realized skewness (RS) and realized kurtosis (RK) have

received minimal attention in the financial time series literature in comparison to

realized variance (RV). Following Amaya et al. (2015), the RS is formally defined

as the cubic intra-day returns normalized by the square-root of RV cubed and the

RK as the sum of the quartic high-frequency returns normalized by RV squared;

RSi,h =
√
N

∑N
i=1 r

3
i,h

RV
3/2
i,h

(4.6)

RKi,h =
N

∑N
i=1 r

4
i,h

RV 2
i,h

(4.7)

Amaya et al. (2015) show that realized skewness and realized kurtosis do not

converge to the sample skewness and sample kurtosis. The sample skewness and

kurtosis include diffusive skewness and diffusive kurtosis component. Hence, the
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normalized third realized moment (realized skewness) captures the normalized

direction and magnitude of the cubic jumps. The normalized fourth realized mo-

ment (realized kurtosis) captures the normalized magnitude of the quartic jumps.

This means that information embedded in realized skewness and realized kurtosis

is different from that of sample skewness and sample kurtosis which is normally

computed from long samples of low-frequency return data (thus daily, weekly or

monthly return series).

4.3 Data

In the high-frequency literature, it is typical to use returns sampled at 5-minute

sampling frequency as a proxy for unbiased high-frequency return data in the

U.S. framework (Andersen and Bollerslev, 1997; Andersen et al., 2007; Huang and

Tauchen, 2005). The rationale is that this is a trade-off between microstructure

noise and variance-bias. As mentioned earlier, we observe that the 5-minute unbi-

ased sampling frequency does not hold for the Australian stock returns. According

to Bandi and Russell (2008), it is paramount to compute realized variance with

unbiased intra-day return data because computing realized variance with contam-

inated return data results in significant accumulation of noise, which may result

in obtaining biased estimates. As such, this study uses intra-day 15-minutes last

traded prices of 142 stocks listed on the ASX stock market.

The data was obtained from Thompson Reuters Tick History/SIRCA database.

We initially download the 249 constituent stocks of the S&P/ASX200 index. How-

ever, 107 of the stocks were removed due to the unavailability of data for our

sample period. The analysis in this study is carried out using the remaining 142

stocks. Our data sample is from 6 January 2003 - 29 December 2017 and be-

tween 10 am to 4 pm of each trading day, giving us a sample of 24 intra-day

prices. We exclude weekends and overnight returns from the data. The 15-minute

sampling-interval adopted results in 94,350 sampled points over the 15 years (with

754 weekly or 180 monthly holding-intervals). Our present sample is the longest
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data set used so far to investigate the relationship between the volume-realized

high-order moments relationships and employing high-frequency data. The near-

est contenders to our sample size were Shahzad et al. (2014), who used a sample of

5-years, from January 2006 to December 2010 (at 5-minute sampling-intervals and

daily holding-intervals), of 216 Australian stocks to investigate volume-volatility

relationship.

The intra-day returns were computed as the change in the logarithm of the closing

prices of successive days. We compute weekly and monthly realized higher-order

moments from the 15-minutes high-frequency returns data. We do not consider a

daily holding-interval because 15-minutes intraday data spans only 24 observations

in a day. The 24 data points in the daily holding-interval will not be enough for

estimating higher-order moments with any statistical precision. Our selection of

the alternative proxies i.e. trading volume, number of trades, order imbalance,

and average trade size are consistent with the proxies for information flow found

in the extant literature (Chan and Fong, 2000, 2006; Giot et al., 2010; Shahzad

et al., 2014).

Table 4.1: Descriptive Statistics (Jan 2003 - Dec 2017)

RV RS RK TV NT ATS OI VT
Panel A: Weekly data
Mean 0.0065 0.0666 18.9733 1.0145E+07 9.0954E+03 4.7957E+03 8.1898E+01 1.6886E+11
Standard Deviation 0.0142 0.6829 3.2239 3.0482E+06 6.1355E+03 2.7587E+03 9.4284E+02 1.1641E+11
Skewness 15.1843 -0.4682 0.8637 0.7033 0.1403 1.4027 0.2246 0.5556
Kurtosis 282.7418 3.5654 4.9886 3.2878 1.8468 5.5807 7.1418 3.8661
Coefficient of Variation 2.1813 10.2539 0.1699 0.3005 0.6746 0.5752 11.5123 0.6894
Panel B: Monthly data
Mean 0.0273 -0.0158 32.5290 4.2542E+07 3.8155E+04 4.8053E+03 3.4563E+02 2.8905E+12
Standard Deviation 0.0338 0.5338 5.7365 1.1606E+07 2.5638E+04 2.7027E+03 2.6404E+03 1.9065E+12
Skewness 7.0257 0.0489 0.4527 0.4855 0.1172 1.2157 0.8654 0.3121
Kurtosis 58.8606 2.6077 2.7728 2.9560 1.8335 3.8524 6.9628 3.2162
Coefficient of Variation 1.2412 -33.7267 0.1763 0.2728 0.6720 0.5624 7.6395 0.6596
Note: Realized Variance (RV), Realized Skewness (RS), Realized Kurtosis (RK), Trading Volume (TV), Number of Trades (NT), Average
Trade Size (ATS=TV/NT), Order Imbalance (OI) and Vol-Trade (VT=TV×NT).

Table 4.1 summarizes the descriptive statistics for the eight variables used in our

study. Panel A presents the results for the weekly holding period for the 142 firms

used while Panel B reports on the monthly holding period statistics. The average

weekly and monthly volume is almost 10 and 42 million shares respectively. The

number of trades has a mean of 9,095 trades per week and 38,155 trades per

month, which is roughly 1,800 to 1,900 trades per day and shows enough liquidity
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for the S&P/ASX200 index. Following Wong and So (2003); Meucci (2010), the

square root of time rule can be used to obtain the annualized realized variance.

The mean weekly and monthly realized variance of 0.0065 and 0.0273 translates

into an annualized realized variance of 32.76% (annualized weekly (RV)=252
5 ×

0.0065=32.76% and annualized monthly (RV)=12 × 0.0273=32.76%). This is

feasible since realized variance is interval-invariant, and as such daily, weekly, or

monthly realized variance would results in the same value of annualized variance

(see Ahadzie and Jeyasreedharan (2020)). This variance estimate is close to 33.92%

reported by Shahzad et al. (2014) for Australian data. Chan and Fong (2006)

obtained 27.5% annualized realized variance for the 30 stocks on the Dow Jones

Industrial Index (DJI30) and 24.6% reported by Giot et al. (2010) for the 100

largest stocks on the New York Stock Exchange (NYSE).

We observe that the average weekly and monthly realized skewness when an-

nualized will be annualized weekly (RS)= 1√
252

5
× 0.0666=0.0094 and annualized

monthly (RS)= 1√
12 × -0.0158=-0.0046. In the case of annualized realized kur-

tosis, we obtain annualized weekly (RK)= 1
252

5
× 18.9733=0.3765 and annualized

monthly (RK)= 1
12 × 32.5290=2.7107. It is clearly seen that the annualized re-

alized skewness and kurtosis are not interval-invariant. Realized skewness and

realized kurtosis do not converge to their corresponding sample skewness and kur-

tosis, unlike realized variance which is interval-invariant. Realized skewness and

kurtosis captures the normalized cubic and normalized quartic jumps. Thus, apart

from the popular jump decomposition technique in the extant literature, realized

skewness and realized kurtosis as defined by Amaya et al. (2015) is an alternative

formulation for indirectly but implicitly capturing the direction and magnitude of

jumps respectively. Trading volume, number of trades, average trade size (num-

bers of shares traded divided by the number of trades), order imbalance (defined as

the number of buyer-initiated trades minus the number of seller-initiated trades)

and vol-trade (defined as the product of trading volume and the number of trades)

are used as proxies for information flow.
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4.4 Empirical Results

4.4.1 Volume-realized volatility relationship

In Table 4.2, we investigate the volume-realized volatility relationship by regressing

realized variance on 12 lagged values of realized variance and each information flow

proxy (thus trading volume, number of trades, and average trade size). The 12

lagged realized variances used in the regression controls for any serial dependence

that might be present. The trading volume, number of trades, and average trade

size captures the total information flow, frequency of information flow, and size

of information flow respectively. The volume-volatility relationship is tested by

running the generalized method of moments (GMM), as carried out by Huang and

Masulis (2003); Giot et al. (2010). However, Giot et al. (2010) includes the robust

(ROB) and median (MED) regression techniques in their analysis. The authors

believe that this deal with any non-normality present in the data that might result

in obtaining biased estimates. This suggests that the ROB and MED techniques

produce more robust estimates. We employ GMM, ROB, and MED regression

techniques for the analysis in this study. The results of the GMM are the main

results discussed while ROB and MED are treated as alternative measures. Panel

A reports the results for the weekly holding period, while panel B is the results for

the monthly holding period. Both weekly and monthly estimates are computed

from 15-minutes returns series. In the literature, the realized variance is mostly

referred to as realized volatility.

In Panel A of Table 4.2, we find a positive relationship between trading volume

and realized variance. The GMM shows an average coefficient of 9.2E-10, which

is significant at a 5% level. The positive relationship between trading volume and

realized variance is consistent with MDH hypothesis (MDH) in the extant liter-

ature (see Andersen (1996); Clark (1973); Epps and Epps (1976); Tauchen and

Pitts (1983); Choi et al. (2012); Celik (2013); Do et al. (2014) just to mention a

few). We also observe that the coefficient of trading volume and realized variance
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Table 4.2: Trading volume, number of trades, average trade size and realized vari-
ance

Trading Volume and RV Number of trades and RV Average trade size and RV
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient 9.52E-10** 9.26E-11*** 1.66E-10*** 1.07E-07* 4.07E-07*** 4.38E-07*** -1.80E-08 -9.08E-09** 1.71E-08
t-Values ≥1.96 55.63% 69.72% 64.79% 29.58% 45.07% 47.18% 7.75% 18.31% 14.79%
t-Values ≤-1.96 0.00% 2.82% 1.41% 4.23% 9.15% 10.56% 4.93% 21.83% 10.56%
Average R2 24.65% 60.58% - 20.57% 59.71% - 20.11% 59.98% -
Panel B: Monthly data
Coefficient 7.28E-10** 1.22E-10*** 1.74E-10* 9.71E-08 4.24E-07 3.17E-07 -3.30E-06 2.09E-08 1.27E-07
t-Values ≥1.96 42.96% 54.93% 44.37% 11.97% 18.31% 15.49% 6.34% 15.49% 11.27%
t-Values ≤-1.96 0.00% 0.70% 2.11% 4.93% 5.63% 5.63% 5.63% 4.93% 2.82%
Average R2 33.99% 65.93% - 30.68% 64.26% - 30.79% 64.50% -
This table reports the regression results for the relationship between realized variance and trading volume, number of trades and average trade size for the 142
stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the
weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiTVit + ϑit

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiNTit + ϑit

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiATSit + ϑit

where TVit is the trading volume, NTit is the number of trades and ATSit is the average trade size for stock i on week/month t. The regressions above are
estimated by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the
median regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average
R2’ are the averages of the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms
that have t-value statistically significant at the 5% level.

for all three regression techniques are positive and statistically significant. The

ROB regression shows that, on an average 69.72% (thus 99 out 142 of the com-

panies in our sample) are statistically significant at the 5% level. The number of

trades also exhibits a positive relationship with the realized variance, with 45.07%

of the firms significantly above the critical value. This is consistent with the MDH

hypothesis. All things being equal, the mean trading volume (10,145,163 shares)

in Panel A of Table 4.1 and the GMM coefficient of trading volume in Table 4.2

indicates that an increase of 10% of the average trading volume (thus an increase

of 1,014,516 shares) will result in an increase of 9.6582E-04 in realized variance

on average. According to Shahzad et al. (2014), the (realized) variance-volatility

relationship is paramount to an investor, since volatility-timing trading strategies

may be employed by investor in order to maximize their pay-offs and minimize

their risks. Consequently, the potential for the use of skewness-kurtosis-timing

strategies to further optimise investors’ risks and pay-offs should not be ignored.

In the case of the average trade size, we observe a negative relationship with real-

ized variance, which is only significant for the ROB regression. This negative rela-

tionship between average trade size and realized variance contradicts the suggested
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positive relationship by MDH hypothesis. Thus, we observe subtle differences be-

tween the (realized) variance-volume relationship depending on the information

proxy being employed.

In Panel B of Table 4.2, the significance of the relationship between realized vari-

ance and trading volume is persistent, although we observe a decline in the number

of firms that are significantly above the critical value. For the number of trades

and realized variance, the statistical significance of the relationship disappears

completely. The coefficients are statistically insignificant for the average trade

size. The relationship between average trade size and realized variance tends to

be mixed depending on the regression technique in the monthly holding period. In

conclusion, our results suggest a contemporaneous positive relationship between

trading volume/number of trades and realized variance that is extensively doc-

umented in the literature and per the MDH hypothesis. We also find that the

relationship between average trade size and realized variance is negative in the

weekly holding period.

4.4.2 Volume-realized skewness relationship

Table 4.3 reports the results for the volume-realized skewness relationship. Ac-

cording to Do et al. (2014), this relationship captures investor’s reactions to good

or bad news. We investigate this relationship by regressing realized skewness as

a dependent variable on 12 lags of realized skewness and one of the proxies of

information flow. We find an insignificant relationship between realized skewness

and all the proxies for information flow with mixed directions. The insignificant

relationship may be attributed to positive and negative skewness cancelling out

each other. Do et al. (2014) focus on the negative of realized skewness and use

the number of trades as their only proxy for the information flow. Apart from

the Asian Pacific emerging region, the authors find no significant relationship be-

tween negative realized skewness and the number of trades. This contradicts Hong

and Stein (2003) who show that the theory of investor heterogeneity explains why
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the number of trades has a positive relationship with negative realized skewness.

The positive relationship between negative skewness and the number of trades is

therefore explained by the DOH hypothesis of Shalen (1993); Harris and Raviv

(1993).

Subsequently, in Tables 4.4 and 4.5 we display the regression results for negative

and positive realized skewness respectively. We observe a positive and significant

coefficient for negative realized skewness and the number of trades for the weekly

holding period in Table 4.4, which is consistent with Hong and Stein (2003). The

investor heterogeneity theory which states that difference of opinion among in-

vestors leads to negative asymmetries that is consistent with difference of opinion.

We employ this in explaining the positive and significant relationship between

negative realized skewness and the number of trades. This implies the higher the

degree of difference of opinion, higher level of number of trades will lead to an

increase in negative realized skewness. In other words, an increase in difference of

opinion coupled with a higher level of number of trades results in high levels of

negative realized skewness (normalized negative jumps). However, negative real-

ized skewness has a negative relationship with trading volume and average trade

size, which is contrary to the results of Hong and Stein (2003). In short, low nega-

tive realized skewness (normalized negative jumps) is accompanied by high levels

of trading volume or average trade size. The average trade size shows mixed di-

rection for the results depending on the regression technique that is employed. In

Panel B, we observe that the significance disappears during the monthly holding

period. In the case of trading volume and negative realized skewness, the results

show a negative and significant relationship at 10% level. The level of significance

of the coefficients disappears as the holding period increases.

Table 4.5 reports the results when the regression is run on positive realized skew-

ness and the three proxies of information flow. It is worth mentioning that the pre-

vious literature on this subject focuses on the effects of negative realized skewness

on trading volume. The investor heterogeneity theory of Hong and Stein (2003)

used in explaining the positive relationship between negative skewness and number
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of trades, could be extended to explain the negative relationship between positive

realized skewness and number of trades. Thus in the presence of asymmetric-

opinion, low levels of positive realized skewness (normalized positive jumps) is

conditional on high levels of number of trades. When the trading volume and

average trade size are used as a proxy for information flow, we observe a posi-

tive relationship with positive realized skewness, which is significant in the weekly

holding period. This means that trading volume and average trade size increases

positive skewness. For the monthly holding period, although the directions of the

coefficients remain the same as those for the weekly holding period, we observe

that the significance of the coefficients disappears.

Table 4.3: Trading volume, number of trades and average trade size and realized
skewness

Trading Volume and RS Number of trades and RS Average trade size and RS
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient -1.47E-08 1.23E-08 -6.12E-09 -5.20E-05 -5.57E-05 -2.04E-05 4.74E-05 5.15E-05 4.59E-05
t-Values≥1.96 4.93% 17.61% 8.45% 2.11% 4.23% 6.34% 11.27% 18.31% 15.49%
t-Values ≤-1.96 15.49% 13.38% 8.45% 22.54% 18.31% 16.90% 2.82% 1.41% 2.82%
Average R2 2.76% 3.06% - 2.68% 2.83% - 2.52% 2.80% -
Panel B: Monthly data
Coefficient -6.33E-09 1.59E-08 9.07E-09 -4.11E-05 -1.47E-05 -2.6E-05 9.97E-05 7.46E-05 7.39E-05
t-Values ≥1.96 7.04% 9.86% 4.93% 0.70% 4.93% 3.52% 12.68% 11.97% 6.34%
t-Values ≤-1.96 15.49% 11.27% 11.97% 12.68% 11.97% 18.31% 1.41% 4.23% 0.70%
Average R2 9.73% 11.43% - 8.95% 11.10% - 8.71% 10.81% -
This table reports the regression results for the relationship between realized skewness and trading volume, number of trades and average trade
size for the 142 stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel
A presents the results for the weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RSit = αi0 +
12∑
j=1

ρijRSit−j + βiTVit + ϑit

RSit = αi0 +
12∑
j=1

ρijRSit−j + βiNTit + ϑit

RSit = αi0 +
12∑
j=1

ρijRSit−j + βiATSit + ϑit

where TVit is the trading volume, NTit is the number of trades and ATSit is the average trade size for stock i on week/month t. The regressions
above are estimated by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative
re-weighted least squares and the median regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks
being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average of βi) and the R2 across the
stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.
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Table 4.4: Regression condition on negative realized skewness: Trading volume,
number of trades, average trade size and negative realized skewness

Trading Volume and RS− Number of trades and RS− Average trade size and RS−
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient -1.29E-07*** -8.88E-08*** -1.07E-07** 5.18E-04*** 4.84E-04*** 3.62E-04*** -1.67E-05* 1.55E-05* 9.17E-06*
t-Values ≥1.96 3.52% 0.70% 2.82% 19.01% 19.72% 19.72% 14.08% 14.79% 19.72%
t-Values ≤-1.96 59.86% 53.52% 52.11% 47.89% 45.07% 44.37% 20.42% 21.83% 16.90%
Average R2 10.29% 7.94% - 8.08% 7.34% - 5.97% 6.45% -
Panel B: Monthly data
Coefficient -7.54E-08* -2.40E-08 -4.42E-08 1.29E-04 8.85E-05 8.59E-05 -1.02E-04 -4.22E-05 -5.28E-05
t-Values≥1.96 3.52% 0.70% 1.41% 8.45% 7.75% 7.04% 9.15% 6.34% 3.52%
t-Values ≤-1.96 37.32% 20.42% 18.31% 23.24% 21.13% 13.38% 7.75% 13.38% 3.52%
Average R2 25.03% 24.77% - 21.65% 24.26% - 20.24% 22.88%
This table reports the regression results for the relationship between realized skewness conditioned on negative values and trading volume, the number of trades, and
average trade size for the 142 stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A
presents the results for the weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiTVit + ϑit , given RS < 0

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiNTit + ϑit , given RS < 0

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiATSit + ϑit , given RS < 0

where TVit is the trading volume, NTit is the number of trades and ATSit is the average trade size for stock i on week/month t. The regressions above are estimated by
generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression
(MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of
the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically
significant at the 5% level.

Table 4.5: Regression condition on positive realized skewness: Trading volume,
number of trades, average trade size and positive realized skewness

Trading Volume and RS+ Number of trades and RS+ Average trade size and RS+

GMM ROB MED GMM ROB MED GMM ROB MED
Panel A: Weekly data
Coefficient 9.83E-08*** 8.19E-08*** 1.00E-07** -4.69E-04*** -3.89E-04** -3.46E-04*** 4.34E-05* 1.44E-05** 2.71E-05*
t-Values ≥1.96 59.15% 54.23% 46.48% 34.51% 34.51% 33.80% 28.87% 26.76% 20.42%
t-Values ≤-1.96 1.41% 2.11% 2.82% 23.94% 21.13% 21.83% 9.15% 16.20% 14.79%
Average R2 7.55% 7.28% - 6.76% 6.40% - 5.87% 6.69% -
Panel B: Monthly data
Coefficient 5.13E-08 2.68E-08 3.88E-08 -1.99E-04 -1.05E-04 -1.20E-04 1.66E-04 4.47E-05 7.41E-05
t-Values ≥1.96 28.87% 24.65% 14.08% 14.79% 13.38% 9.86% 16.90% 19.72% 11.27%
t-Values ≤-1.96 1.41% 1.41% 2.11% 16.90% 10.56% 10.56% 8.45% 6.34% 5.63%
Average R2 18.73% 20.06% - 17.40% 19.83% - 17.32% 20.32% -
This table reports the regression results for the relationship between realized skewness conditioned on positive values and trading volume, the number of trades and
average trade size for the 142 stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A
presents the results for the weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiTVit + ϑit , given RS > 0

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiNTit + ϑit , given RS > 0

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiATSit + ϑit , given RS > 0

where TVit is the trading volume, NTit is the number of trades and ATSit is the average trade size for stock i on week/month t. The regressions above are estimated by
generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression
(MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of
the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically
significant at the 5% level.
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4.4.3 Volume-realized kurtosis relationship

Table 4.6 reports the results for realized kurtosis and volume. From the weekly

panel, the number of trades has a negative and significant relationship with realized

kurtosis. The negative relationship between the number of trades and realized

kurtosis can be explained by the DOH hypothesis which is consistent with Do

et al. (2014). Thus asymmetric-opinion inherent in the DOH hypothesis also enable

one to explains the observed negative relationship between number of trades and

realized kurtosis. As mentioned earlier, realized kurtosis measures the normalized

magnitude of jumps. Hence the results obtained could also be compared with

Giot et al. (2010). Giot et al. (2010) find a negative and significant relationship

between the number of trades and jumps for the daily holding period. Our results

show that in the presence of a high difference of opinion, a higher number of

trades results in a decrease in the magnitude of jumps. For the trading volume

and average trade size, we observe that high trading volume or average trade

size increases realized kurtosis which can be accommodated by SIAH and DOH

hypotheses. Thus information-asymmetry and asymmetric-opinions result in an

increase in trading volume and/or average trade size to an increase in realized

kurtosis (normalized magnitude of jumps). For the monthly period, the level of

significance decreases, and the directional impact remains unchanged.
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Table 4.6: Trading volume, number of trades, average trade size and realized kur-
tosis

Trading Volume and RK Number of trades and RK Average trade size and RK
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient 6.24E-07*** 1.29E-07*** 2.90E-07** -2.16E-03** -2.09E-03*** -1.85E-03*** 3.47E-04 8.82E-05** 1.12E-04**
t-Values ≥1.96 51.41% 41.55% 41.55% 40.85% 38.03% 39.44% 19.72% 28.87% 22.54%
t-Values ≤-1.96 1.41% 11.27% 5.63% 17.61% 39.44% 33.80% 3.52% 19.72% 14.79%
Average R2 15.56% 19.12% - 13.03% 18.81% - 12.17% 18.37% -
Panel B: Monthly data
Coefficient 8.24E-07* 1.25E-07** 3.02E-07 -1.93E-03 -1.91E-03** -1.66E-03* 2.71E-03 4.25E-04** 8.05E-04
t-Values ≥1.96 38.73% 28.87% 26.76% 16.20% 28.17% 21.13% 14.79% 24.65% 15.49%
t-Values ≤-1.96 2.11% 14.08% 4.93% 10.56% 35.21% 17.61% 2.11% 14.08% 7.04%
Average R2 17.80% 27.30% - 14.38% 26.73% - 14.11% 26.83% -
This table reports the regression results for the relationship between realized kurtosis and trading volume, the number of trades, and average trade size for the 142
stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the
weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiTVit + ϑit

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiNTit + ϑit

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiATSit + ϑit

where TVit is the trading volume, NTit is the number of trades and ATSit is the average trade size for stock i on week/month t. The regressions above are estimated by
generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression
(MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of
the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically
significant at the 5% level.

4.4.4 Order imbalance-realized moments relationship

Following Chan and Fong (2006), we compute order imbalance as buyer-initiated

trades minus the number of seller initiated trades. Table 4.7 reports the results

when the realized higher-order moments are regressed on the order imbalance. We

observe that for both weekly and monthly periods, the order imbalance remains

statistically not significant for realized variance, skewness, and kurtosis. Panel A of

Table 4.7 shows that realized variance has a negative and insignificant relationship

with order imbalance, which is consistent with the findings of Giot et al. (2010).

For realized kurtosis, the relationship is positive and insignificant. The relationship

between realized skewness and order imbalance is positive and insignificant as well.

In the case of the monthly holding period, there is no distinct direction between

the realized higher-order moments and order imbalance. The insignificant order

imbalance relationship is consistent with the findings of Chan and Fong (2006),

however, it differs from the findings of Chan and Fong (2000), who find that for

random daily 295 NYSE stocks and 231 Nasdaq stocks, the order imbalance drives

the volume-volatility relation. We infer that the significance of order imbalance
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may be dependent on the market and/or holding period being considered.

Table 4.7: Order imbalance-realized moments relationship
Realized Variance Realized Skewness Realized Kurtosis

GMM ROB MED GMM ROB MED GMM ROB MED
Panel A: Weekly data
Coefficient -9.91E-08 -1.25E-08 -1.87E-08 6.89E-05 2.85E-05 2.66E-05 1.32E-04 6.55E-05 2.72E-05
t-Values ≥1.96 0.70% 1.41% 3.52% 28.87% 30.99% 27.46% 3.52% 1.41% 4.93%
t-Values ≤-1.96 9.15% 13.38% 16.90% 2.11% 1.41% 0.70% 4.23% 5.63% 10.56%
Average R2 20.00% 60.38% - 2.77% 2.99% - 11.85% 17.51% -
Panel B: Monthly data
Coefficient 1.65E-07 -6.86E-08 -9.44E-08 3.56E-05 -3.17E-06 8.74E-06 -1.59E-04 4.15E-04 3.08E-05
t-Values ≥1.96 0.70% 0.00% 0.70% 19.72% 13.38% 15.49% 3.52% 4.93% 5.63%
t-Values ≤-1.96 11.97% 7.04% 6.34% 1.41% 1.41% 3.52% 4.93% 4.23% 7.75%
Average R2 30.58% 64.38% - 8.93% 10.79% - 13.52% 24.92% -
This table reports the regression results for the relationship between realized high-order moments and order imbalance for the 142 stocks from
our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results
for the weekly holding period while panel B reports the monthly results. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiOIit + ϑit

RSit = αi0 +
12∑
j=1

ρijRSit−j + βiOIit + ϑit

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiOIit + ϑit

where OIit is the order imbalance (buyer-initiated trades minus seller-initiated trades) for stock i on week/month t. The regressions above are
estimated by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted
least squares and the median regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being
considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average of βi) and the R2 across the stocks.
‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

In table 4.8, we report the results for realized higher-order moments with the

buyer-initiated trades, seller-initiated trades, order of imbalance, and the absolute

order of imbalance for the 142 stocks. For this test, we only focus on the post-crisis

period from 1 June 2009 - 29 December 2017.

Panel A shows the regression results for realized variance; in the case of the

buyer/seller-initiated trades, the ROB regression shows a positive and significant

relationship. Almost 50% of the firms have t- value greater than or equal to the 5%

level of significance. This implies that when buyer/seller-initiated trades increase

volatility is bound to increase as well. This relationship satisfies the expected

symmetric relationship between realized variance and buyer/seller-initiated trades

information. Order imbalance has a negative relationship with realized variance,

which is insignificant. Similarly, absolute order imbalance also has an insignificant

relationship with realized variance, although the direction differs for both GMM

and ROB regression techniques.

Panel B reports the results for negative realized skewness, in-here both
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buyer/seller-initiated trades have a positive relationship with negative realized

skewness. This relationship is significant at the 5% level of significance. The

DOH hypothesis (i.e. investor heterogeneity) can be used to explain this

relationship. This implies that in the presence of asymmetric-opinion, high

buyer/seller-initiated trades increases negative realized skewness. However, the

order of imbalance has a negative relationship with negative realized skewness,

which is statistically insignificant. This suggests when negative realized skew-

ness/bad news increases, the variation between buyer and seller-initiated trades

decreases. In the case of absolute order imbalance, the relationship is positive

and insignificant.

In Panel C, positive realized skewness has a negative relationship with buyer/

seller-initiated trades; this relationship on an average is significant at the 10%

level of significance. Once again, the DOH hypothesis (i.e. investor heterogene-

ity) can be extended to explain this relationship. In short, high buyer/seller-

initiated trades decreases positive realized skewness. The result of the order of

imbalance is positive, which is insignificant. This suggests when positive realized

skewness/good news increases, the variation between buyer and seller-initiated

trades also increases. For absolute order imbalance, the relationship is negative

and insignificant.

Finally, in Panel D, we observe a negative relationship between realized kurtosis

and buyer/seller-initiated trades; this relationship can be explained by DOH hy-

pothesis, which is consistent with Do et al. (2014). This relationship suggests high

buyer/seller-initiated trades decreases realized kurtosis. The variation difference

of buyer and seller-initiated trades and its absolute value have an insignificant

relationship with realized kurtosis.

In conclusion, we observe that individually buyer/seller-initiated trades have sig-

nificant relationships with realized higher-order moments. However, the order im-

balance and absolute order imbalance captures no significance, but the directional

impact does reveal the asymmetry nature of the relationship.
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Table 4.8: Buyer/seller-initiated trades and realized higher-order moments relationship
Buyer-initiated trades Seller-initiated trades Order imbalance Absolute order imbalance

GMM ROB MED GMM ROB MED GMM ROB MED GMM ROB MED
Panel A: Realized variance
Coefficient 6.17E-08** 3.66E-07*** 3.94E-07*** -3.85E-07** 1.40E-07*** 1.77E-07*** -1.86E-07 -1.20E-08 2.44E-08 -7.98E-07 1.43E-08 -2.86E-08
t-Values ≥1.96 40.14% 50.00% 47.18% 38.73% 49.30% 47.89% 2.11% 2.11% 2.82% 7.04% 9.15% 11.27%
t-Values ≤-1.96 4.93% 6.34% 7.04% 4.23% 6.34% 6.34% 9.15% 12.68% 14.08% 5.63% 3.52% 6.34%
Average R2 16.59% 43.84% - 16.86% 44.68% - 15.04% 43.15% - 15.00% 43.14% -
Panel B: Negative realized skewness
Coefficient 5.02E-04** 5.29E-04* 4.74E-04** 3.33E-04** 3.76E-04** 3.21E-04** -2.29E-05 -3.89E-05 -3.45E-05 3.18E-04 3.05E-04 2.86E-04
t-Values ≥1.96 18.31% 17.61% 17.61% 14.79% 12.68% 12.68% 13.38% 10.56% 18.31% 13.38% 6.34% 10.56%
t-Values ≤-1.96 32.39% 26.06% 31.69% 42.96% 36.62% 38.73% 5.63% 1.41% 2.11% 11.27% 12.68% 13.38%
Average R2 9.94% 9.25% - 10.27% 9.59% - 7.78% 7.78% - 8.08% 8.15% -
Panel C: Positive realized skewness
Coefficient -3.77E-04** -4.58E-04* -3.26E-04* -4.12E-04* -3.89E-04* -3.48E-04 1.14E-04 1.06E-04 1.13E-04 -2.12E-04 -1.83E-04 -1.82E-04
t-Values ≥1.96 28.87% 26.76% 26.76% 24.65% 20.42% 20.42% 9.15% 7.04% 9.15% 8.45% 7.04% 8.45%
t-Values ≤-1.96 18.31% 16.90% 16.20% 14.79% 14.08% 14.79% 0.70% 1.41% 3.52% 10.56% 6.34% 6.34%
Average R2 8.48% 8.54% - 8.24% 8.31% - 6.71% 7.09% - 6.98% 7.33% -
Panel D: Realized kurtosis
Coefficient -2.29E-03** -2.08E-03*** -1.90E-03** -1.83E-03** -1.71E-03*** -1.53E-03** 4.21E-05 -8.13E-05 1.10E-04 -1.03E-03 -8.74E-04 -6.11E-04
t-Values ≥ 1.96 40.14% 40.85% 40.14% 43.66% 41.55% 40.14% 4.23% 2.11% 3.52% 9.86% 14.79% 8.45%
t-Values ≤ -1.96 18.31% 28.87% 26.06% 11.27% 23.24% 19.01% 3.52% 4.93% 7.04% 9.15% 4.23% 6.34%
Average R2 10.09% 14.04% - 10.17% 13.82% - 8.82% 12.34% - 8.99% 12.65% -
This table reports the regression results for the relationship between weekly realized higher-order moment and the buyer-initiated trades, seller-initiated trades, order of imbalance, and the absolute order of imbalance
for the 142 stocks. We only focus on the post-crisis period from 1 June 2009 - 29 December 2017. This is due to the fact that for the sub-period results, the post-crisis period results were more significant. Significance
levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly realized variance and the three proxies of information flow (trading volume, number of trades and vol-trade), panel B reports the results
for negative skewness, panel c reports the results when positive realized skewness is used, and panel D is that of realized kurtosis. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiBITit + ϑit, RVit = αi0 +
12∑
j=1

ρijRVit−j + βiSITit + ϑit, RVit = αi0 +
12∑
j=1

ρijRVit−j + βiOIit + ϑit, RVit = αi0 +
12∑
j=1

ρijRVit−j + βiAOIit + ϑit, Panel A

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiBITit + ϑit, RS−it = αi0 +

12∑
j=1

ρijRS
−
it−j + βiSITit + ϑit, RS−it = αi0 +

12∑
j=1

ρijRS
−
it−j + βiOIit + ϑit, RS−it = αi0 +

12∑
j=1

ρijRS
−
it−j + βiAOIit + ϑit, Panel B

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiBITit + ϑit, RS+

it = αi0 +
12∑
j=1

ρijRS
+
it−j + βiSITit + ϑit, RS+

it = αi0 +
12∑
j=1

ρijRS
+
it−j + βiOIit + ϑit, RS+

it = αi0 +
12∑
j=1

ρijRS
+
it−j + βiAOIit + ϑit, Panel C

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiBITit + ϑit, RKit = αi0 +
12∑
j=1

ρijRKit−j + βiSITit + ϑit, RKit = αi0 +
12∑
j=1

ρijRKit−j + βiOIit + ϑit, RKit = αi0 +
12∑
j=1

ρijRKit−j + βiAOIit + ϑit, Panel D

where BITit is the buyer-initiated trades, SITit is the seller-initiated trades, OIit is the order of imbalance (buyer-initiated trades minus seller-initiated trades) and AOIit is the absolute order of imbalance for stock i on
week t. The regressions above are estimated by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares, and the median regression
(MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average of βi) and the
R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

4.4.5 Vol-trade-realized moments relationship

Having investigated the relationship between higher-order moments and the four

proxies of information flow (trading volume, number of trades, average trade size,

and order imbalance). We test the relationship between higher-order moments and

a new measure of information flow, which we defined as the systematic general-

ization of scaling the trading volume by the number of trades. The motivation for

this measure stems from the derivation of the average trade size, which is defined

as trading volume divided by the number of trades, in-here the new measure of

the information flow is termed vol-trade (VT), computed as the product of trading

volume and the number of trades.

Table 4.9 reports the regression results for the realized higher-order moments on

vol-trade. In Panel A1, the realized variance has a positive and significant re-

lationship with vol-trade. We find that approximately 93 out of our 142 stocks

are significant at the 5% level for ROB regression. This positive and significant

relationship is consistent with the MDH hypothesis, similar to the results obtained
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for trading volume and the number of trades in Table 4.2. For the weekly holding

period, we find a positive and significant relation between vol-trade and negative

realized skewness, and this relationship can be explained by the DOH hypothesis,

this is similar to Hong and Stein (2003). This implies that a high vol-trade in-

creases negative realized skewness. The same argument of difference of opinion is

employed in explaining the results for positive realized skewness and vol-trade. We

observe a negative and significant relationship between positive realized skewness

and vol-trade. This suggests that low levels of positive realized skewness is depen-

dent on a high level of vol-trade. In the case of realized kurtosis, the significant

and negative relationship with vol-trade is observed, can similarly be explained by

the DOH hypothesis. For the monthly holding period, we observe that the level

of significance decreases.

Vol-trade (VT) does behave like the squared measure of information flow. This is

in line with Campbell et al. (1993) who use volume squared to capture any nonlin-

earity between volume and autocorrelation. In the same token, vol-trade captures

any nonlinearity between information flow and realized higher-order moments.

The high significant regression coefficients of vol-trade proxy in our weekly period,

when compared with other proxies of volume, highlight the nonlinear relationship

between information flow and realized higher-order moment.
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Table 4.9: Vol-trade-realized moments relationship

Realized Variance Realized Skewness < 0
GMM ROB MED GMM ROB MED

Panel A1: Weekly data
Coefficient 2.65E-13** 1.18E-13*** 1.75E-13*** 3.29E-11*** 2.97E-11*** 9.07E-02**
t-Values ≥1.96 49.30% 65.49% 64.79% 5.63% 8.45% 2.82%
t-Values ≤-1.96 0.70% 4.93% 1.41% 58.45% 56.34% 52.11%
Average R2 24.12% 60.46% - 10.06% 9.07% -
Panel B1: Monthly data
Coefficient 2.60E-14 3.30E-14** 4.55E-14 8.33E-12* 4.14E-12* 4.27E-12
t-Values ≥1.96 27.46% 40.85% 26.06% 5.63% 2.11% 1.41%
t-Values ≤-1.96 0.70% 2.82% 1.41% 32.39% 29.58% 24.65%
Average R2 32.34% 64.70% - 24.72% 26.87% -

Realized Skewness >0 Realized Kurtosis
GMM ROB MED GMM ROB MED

Panel A2: Weekly data
Coefficient -1.58E-11*** -8.89E-12*** 2.37E-11** -1.35E-11*** -8.05E-11*** -6.05E-11**
t-Values ≥1.96 47.18% 47.18% 40.85% 55.63% 45.77% 41.55%
t-Values ≤-1.96 9.15% 6.34% 9.15% 3.52% 17.61% 6.34%
Average R2 7.05% 7.09% - 15.36% 20.00% -
Panel B2: Monthly data
Coefficient -1.86E-12 1.15E-12 2.14E-12 -3.16E-11* 1.37E-11** 3.85E-12
t-Values ≥1.96 23.94% 18.31% 11.27% 32.39% 31.69% 25.35%
t-Values ≤-1.96 5.63% 2.82% 5.63% 2.82% 16.90% 7.04%
Average R2 17.95% 20.43% - 16.95% 27.25% -
This table reports the regression results for the relationship between realized high-order moments and our new volume measure
(vol-trade (VT) which is defined as the product of trading volume and the number of trades) for the 142 stocks from our sample
starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A’s presents the re-
sults for the weekly holding period while panel B’s reports the monthly results. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiV Tit + ϑit

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiV Tit + ϑit , given RS < 0

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiV Tit + ϑit , given RS > 0

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiV Tit + ϑit

where VTit is the vol-trade for stock i on week/month t. The regressions above are estimated by generalized method of moments
(GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median
regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The
‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average of βi) and the R2 across the stocks.
‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

4.4.6 Robustness Checks

4.4.6.1 An alternative measure of volatility

The first robustness test we consider in this study is to employ the absolute residual

approach proposed by Jones et al. (1994). The absolute residual procedure involves
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a two-stage regression methodology. In the first stage, we run returns for each stock

on 12 return lags to account for any movements in conditional expected returns.

Rit =
12∑
j=1

βijRit−j + ε̂it

where Rit is the return of stock i on week/month t. The 12 lagged returns are used

to control for any serial dependence that might be present in the return series.

The second stage regresses the absolute residuals for each stock from the first stage

on 12 lags of absolute residuals, trading volume, number of trades, average trade

size, and vol-trade. The models used are presented in Equations (4.8), (4.9), (4.10)

and (4.11). The volatility is measured as absolute residual (| ε̂it |). To examine the

relationship between the volatility and trading volume, we estimate the following

regressions for each stock:

| ε̂it |= αi0 +
12∑
j=1

ρij | ε̂it−j | +βiTVit + ϑit (4.8)

| ε̂it |= αi0 +
12∑
j=1

ρij | ε̂it−j | +βiNTit + ϑit (4.9)

| ε̂it |= αi0 +
12∑
j=1

ρij | ε̂it−j | +βiNTit + γiATSit + ϑit (4.10)

| ε̂it |= αi0 +
12∑
j=1

ρij | ε̂it−j | +βiV Tit + ϑit (4.11)

where TVit, NTit, ATSit and VTit are trading volume, number of trades, average

trade size and vol-trade for stock i on week/month t, the lagged values of | ε̂it |

used to control for persistence in volatility. According to Jones et al. (1994), ρij
captures the persistence of volatility shocks at lag j. This procedure is extensively
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documented in the literature, and various researchers employ the methodology for

testing volatility and trading volume relationship.

Table 4.10 Panel A1 reports the results for weekly trading volume in (Equation

(4.8)), regardless of the regression technique used, we observe a positive and sig-

nificant coefficient of trading volume, number of trades and vol-trade, which is

consistent with the MDH hypothesis. For Equation (4.9), the number of trades

has a positive coefficient, but the significance level drops to 10% level in compari-

son to the trading volume and the vol-trade where the significance is at 1% level

for the weekly holding period. Jones et al. (1994); Chan and Fong (2006) show

that for daily holding period, the number of trades dominates the trading volume

in explaining the volume-volatility relationship. Our results suggest that perhaps

as the holding period increase from daily to weekly, it’s the trading volume/vol-

trade that drives the volume-volatility relationship significantly. In model (4.10),

average trade size is added to the number of trades in the regression model. It

is observed that the significance level of the number of trades improves from 10%

level (Equation (4.9)) to 5% level (Equation (4.10)) for the weekly period. We also

find that the coefficient of average trade size in Equation (4.10) is insignificant, and

as such, is not reported in this study. The regression was also run separately for

average trade size. However, the results remained insignificant and not reported

in this study. This is consistent with the findings of Jones et al. (1994); Chan

and Fong (2000, 2006); Shahzad et al. (2014) who show that daily average trade

size is not as significant as the daily number of trades in explaining the volume-

volatility relationship. Vol-trade has more explanatory power than the average

trade size and number of trades in the weekly holding period. The significance of

the regression models disappears in the monthly period.
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Table 4.10: Robustness test: An alternative measure of volatility

Model 4.8: Trading Volume Model 4.9: Number of trades
GMM ROB MED GMM ROB MED

Panel A1: Weekly data
Coefficient 3.21E-09*** 1.52E-09*** 2.12E-09*** 2.87E-06* 1.35E-06* 1.96E-06
t-Values ≥1.96 73.24% 73.24% 66.20% 38.03% 32.39% 35.21%
t-Values ≤-1.96 0.00% 0.00% 0.00% 2.82% 0.70% 0.70%
Average R2 12.94% 12.07% - 8.83% 9.38% -
Panel B1: Monthly data
Coefficient 9.14E-10 6.53E-10 7.40E-10 6.63E-08 3.66E-07 4.78E-07
t-Values ≥1.96 24.65% 23.24% 16.90% 4.23% 7.0% 10.56%
t-Values ≤-1.96 2.11% 0.70% 0.70% 3.52% 0.70% 2.11%
Average R2 11.72% 13.28% - 10.42% 12.47% -

Model 4.10: Number of trades Model 4.11: Vol-trade
GMM ROB MED GMM ROB MED

Panel A2: Weekly data
Coefficient 3.49E-06** 1.71E-06** 2.55E-06* 1.09E-12*** 7.35E-13*** 1.05E-12***
t-Values ≥1.96 53.52% 43.66% 39.44% 69.72% 69.72% 60.56%
t-Values ≤-1.96 2.11% 0.70% 0.70% 0.00% 0.00% 0.00%
Average R2 9.76% 9.99% - 11.99% 12.27% -
Panel B2: Monthly data
Coefficient 9.95E-08 5.34E-07 5.68E-07 9.62E-14 9.25E-14 1.67E-13
t-Values≥1.96 11.27% 11.97% 13.38% 14.79% 19.72% 14.08%
t-Values ≤-1.96 2.82% 0.70% 0.00% 1.41% 0.70% 0.70%
Average R2 11.31% 13.26% - 11.54% 13.77% -
This table reports the regression results for the relationship between realized volatility and the trading volume for the 142
stocks from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01".
Panel A presents the results for the weekly holding period while panel B reports the monthly results.

4.4.6.2 Natural logarithm of realized moments

In the second robustness test, we use the natural logarithm of realized volatility

and realized kurtosis, the ‘sign’ times the natural logarithm of realized skewness.

The ‘sign’ addresses the right direction of the realized skewness after taking its

natural logarithm. In Table 4.11, we report the results for the natural logarithm

of the higher-order realized moments and trading volume. This examines the rela-

tionship between trading volume and higher-order realized moments. As always,

Panel A gives the results for the weekly holding period, and we observe a signifi-

cant and positive relationship between trading volume and the natural logarithm

of realized variance, which supports the MDH hypothesis. A positive and signifi-

cant relationship is observed for log realized kurtosis and the trading volume. This

implies that high trading volume increases the natural logarithm of realized kur-

tosis. For the monthly horizon, the significance for realized variance and kurtosis

remains statistically significant. The ‘sign’ log of realized skewness has a negative
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but not significant relationship with trading volume for the weekly period. The

monthly period remains insignificant but with mixed directions depending on the

regression technique.

Table 4.11: Robustness test: using the natural logarithm of the realized moment
and trading volume

Log Realized Variance sign× Log Realized Skewness Log Realized Kurtosis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient 5.04E-08*** 4.77E-08*** 4.38E-08*** -1.85E-08 -2.25E-08 -1.74E-08 2.39E-08*** 2.12E-08*** 1.89E-08***
t-Values ≥1.96 73.24% 76.76% 68.31% 2.82% 4.22% 4.93% 55.63% 48.59% 42.25%
t-Values ≤-1.96 0.00% 0.70% 0.00% 10.56% 14.09% 11.27% 2.82% 3.52% 2.82%
Average R2 43.02% 46.66% - 2.69% 2.38% - 20.00% 21.09% -
Panel B: Monthly data
Coefficient 1.03E-08** 8.73E-09*** 8.15E-09** -1.62E-10 9.85E-10 4.16E-09 1.37E-08** 9.19E-09** 1.03E-08*
t-Values ≥1.96 53.52% 54.23% 52.11% 2.82% 2.11% 4.23% 42.25% 32.39% 30.99%
t-Values ≤-1.96 2.11% 1.41% 0.70% 7.75% 8.45% 9.86% 2.82% 5.63% 4.93%
Average R2 48.62% 53.11% - 7.48% 8.00% - 23.62% 26.28% -
This table presents the regression results for the relationship between the natural logarithm of realized moments and the trading volume for the 142 stocks from
our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly holding
period while panel B reports the monthly results. The results are based on the following regressions:

LogRVit = αi0 +
12∑
j=1

ρijLogRVit−j + βiTVit + ϑit

sign× LogRSit = αi0 +
12∑
j=1

ρijsign× LogRSit−j + βiTVit + ϑit

LogRKit = αi0 +
12∑
j=1

ρijLogRKit−j + βiTVit + ϑit

where TVit is the trading volume, LogRVit is the natural logarithm of realized variance, ‘sign′ × LogRSit is the natural logarithm of realized skewness taking into
account the ‘sign’ of the skewness and LogRKit is the natural logarithm of realized kurtosis for stock i on week/month t. The regressions above are estimated
by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median
regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the
averages of the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value
statistically significant at the 5% level.

Table 4.12 reports the results of the log higher-order realized moments and the

number of trades. The results of the weekly panel show that the coefficient of

the regression between the number of trades and natural log of realized variance

is positive and significant, as desired per the MDH hypothesis. In the case of

log realized kurtosis, a negative and significant relationship is obtained with the

number of trades, this can be explained by DOH hypothesis. This suggests a

decrease in log realized kurtosis is dependent on high number of trades, which is

consistent with the results discussed earlier in Table 4.6. The results for the ‘sign’

log realized skewness is negative and insignificant in both holding periods.
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Table 4.12: Robustness test: using the natural logarithm of the realized moment
and number of trades

Log Realized Variance sign× Log Realized Skewness Log Realized Kurtosis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient 1.30E-04*** 1.08E-04** 9.14E-05** -3.88E-05 -2.49E-05 -4.02E-05 -5.50E-05** -7.38E-05*** -6.80E-05**
t-Values ≥1.96 58.45% 45.77% 40.85% 1.41% 3.52% 4.93% 40.14% 40.85% 37.32%
t-Values ≤-1.96 0.70% 3.52% 4.23% 14.08% 16.90% 14.79% 12.68% 26.06% 19.72%
Average R2 41.03% 45.21% - 2.69% 2.38% - 18.65% 20.25% -
Panel B: Monthly data
Coefficient 2.62E-05 2.34E-05 2.55E-05 -1.67E-05 -1.10E-05 -1.6E-05 -2.92E-05 -4.44E-05* -4.20E-05*
t-Values ≥1.96 19.72% 16.20% 20.42% 1.41% 2.82% 3.52% 26.76% 23.24% 24.65%
t-Values ≤-1.96 1.41% 1.41% 2.82% 7.75% 7.04% 11.27% 7.75% 22.54% 12.68%
Average R2 46.21% 51.57% - 7.49% 7.88% - 21.43% 25.32% -
This table presents the regression results for the relationship between the natural logarithm of realized moments and the number of trades for the 142 stocks
from our sample starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly
holding period while panel B reports the monthly results. The results are based on the following regressions:

LogRVit = αi0 +
12∑
j=1

ρijLogRVit−j + βiNTit + ϑit

sign× LogRSit = αi0 +
12∑
j=1

ρijsign× LogRSit−j + βiNTit + ϑit

LogRKit = αi0 +
12∑
j=1

ρijLogRKit−j + βiNTit + ϑit

where NTit is the number of trades, LogRVit is the natural logarithm of realized variance, sign×LogRSit is the natural logarithm of realized skewness taking into
account the ‘sign’ of the skewness and LogRKit is the natural logarithm of realized kurtosis for stock i on week/month t. The regressions above are estimated
by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median
regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are
the averages of the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have
t-value statistically significant at the 5% level.

Table 4.13 reports the results for vol-trade, we observe a positive and significant

relation between log of realized variance and vol-trade consistent with the MDH

hypothesis in Panel A. It is interesting that with the vol-trade the percentage of

firms that are significantly above the 5% level is 80.99% (115 out of 142 of our

sample). This is higher than that of trading volume and the number of trades.

The significance is persistent during the monthly period, although the number

of significant firms reduces. For log realized kurtosis, a negative and significant

relationship is obtained, which can be explained by difference of opinion. The

monthly values are also negative and significant at the 5% level for GMM and

ROB regressions. The ‘sign’ log of realized skewness remains insignificant in the

scenario as well. We conclude that the vol-trade variable has a more explanatory

power than the traditional proxy (average trade size).
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Table 4.13: Robustness test: using the natural logarithm of the realized moment
and vol-trade

Log Realized Variance sign× Log Realized Skewness Log Realized Kurtosis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Weekly data
Coefficient 3.61E-11*** 3.30E-11*** 3.53E-11*** -1.62E-11 -4.11E-11 -3.22E-11 -3.20E-12*** -7.83E-12*** -5.82E-12***
t-Values ≥1.96 80.99% 80.28% 70.42% 2.82% 2.11% 2.82% 59.15% 57.75% 45.77%
t-Values ≤-1.96 0.00% 0.00% 0.70% 19.01% 25.35% 16.90% 2.11% 6.34% 2.82%
Average R2 42.73% 46.16% - 2.71% 2.47% - 19.84% 21.18% -
Panel B: Monthly data
Coefficient 1.12E-12** 1.30E-12* 1.90E-12* 3.42E-13 5.74E-13 -3.34E-13 -7.59E-13** -1.28E-12** -3.53E-13*
t-Values ≥1.96 48.59% 44.37% 40.14% 2.11% 0.70% 3.52% 41.55% 33.80% 30.99%
t-Values ≤-1.96 0.00% 0.00% 0.70% 9.15% 10.56% 14.08% 2.82% 8.45% 6.34%
Average R2 47.53% 52.27% - 7.61% 8.16% - 23.09% 26.28% -
This table presents the regression results for the relationship between the natural logarithm of realized moments and the vol-trade for the 142 stocks from our sample
starting from 6 January 2003 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly holding period while
panel B reports the monthly results. The results are based on the following regressions:

LogRVit = αi0 +
12∑
j=1

ρijLogRVit−j + βiV Tit + ϑit

sign× LogRSit = αi0 +
12∑
j=1

ρijsign× LogRSit−j + βiV Tit + ϑit

LogRKit = αi0 +
12∑
j=1

ρijLogRKit−j + βiV Tit + ϑit

where V Tit is the vol-trade, LogRVit is the natural logarithm of realized variance, sign × LogRSit is the natural logarithm of realized skewness taking into account
the ‘sign’ of the skewness and LogRKit is the natural logarithm of realized kurtosis for stock i on week/month t. The regressions above are estimated by generalized
method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression (MED) with
robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient
estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at
the 5% level.

4.4.6.3 Sub-periods

Our data sample cover extensively 15 years span (from 6 January 2003 - 29 Decem-

ber 2017). Following Dungey and Gajurel (2014) we split the full-sample period

into pre-crisis (from 6 January 2003 - 29 June 2007), crisis-period (from 2 July

2007 - 29 May 2009) and post-crisis period (from 1 June 2009 - 29 December 2017).

In this section, we investigate the volume-higher-order realized moment relation

for only the weekly holding period since we observe that the significance of most

of the average coefficient disappears in the monthly holding period for the results

discussed earlier.

Table 4.14 presents the results for volume-volatility relation. Panel A reports

the results for trading volume and realized variance. We observe positive and

significant relation for pre-crisis, crisis, and post-crisis periods in accordance with

the MDH hypothesis. In Panel B and C, a similar result is obtained when the

number of trades and vol-trade are used as proxies for information flow. We

conclude that the contemporaneous positive volume-volatility relation holds for
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Table 4.14: Robustness test: realized variance, trading volume, number of trades
and vol-trade using sub-periods

Pre-Crisis Crisis Post-Crisis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Trading Volume
Coefficient 7.21E-10** 1.78E-10*** 2.42E-10** 1.26E-09** 4.93E-10*** 6.27E-10* 1.04E-09*** 8.58E-11*** 1.69E-10***
t-Values≥1.96 46.48% 54.23% 42.96% 40.85% 54.93% 35.21% 58.45% 66.20% 61.27%
t-Values ≤-1.96 1.41% 1.41% 2.11% 2.11% 2.11% 1.41% 1.41% 2.82% 2.11%
Average R2 20.95% 30.31% - 37.32% 59.39% - 23.29% 45.79% -
Panel B: Number of trades
Coefficient 8.30E-06** 4.38E-06*** 5.40E-06** 7.30E-06** 4.54E-06*** 6.05E-06** 2.58E-07** 4.19E-07*** 4.79E-07***
t-Values ≥1.96 59.15% 69.01% 61.97% 55.63% 64% 42.25% 46.48% 50.70% 50.00%
t-Values ≤-1.96 0.00% 0.70% 0.00% 0.70% 0.70% 0.00% 3.52% 7.04% 7.04%
Average R2 18.49% 31.77% - 36.20% 59.47% - 17.98% 44.42% -
Panel C: Vol-trade
Coefficient 1.65E-12** 6.25E-13*** 6.36E-13* 9.85E-13*** 1.03E-12*** 8.96E-13* 4.38E-13*** 7.38E-14*** 1.14E-13***
t-Values ≥1.96 50.00% 64.08% 41.55% 54.23% 61.27% 40.85% 58.45% 69.72% 59.15%
t-Values ≤-1.96 0.70% 0.70% 0.00% 0.70% 1.41% 0.00% 0.70% 2.11% 1.41%
Average R2 23.25% 33.37% - 39.18% 60.42% - 25.32% 46.89% -
This table reports the regression results for the relationship between realized variance, trading volume, number of trades and vol-trade for the 142 stocks. We split the
full-sample period into pre-crisis from 6 January 2003 - 29 June 2007, crisis-period from 2 July 2007 - 29 May 2009 and the post-crisis period from 1 June 2009 - 29 December
2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly realized variance and trading volume while panel B reports the results
for the weekly realized variance and number of trades. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiTVit + ϑit Panel A

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiNTit + ϑit Panel B

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiV Tit + ϑit Panel C

where TVit is the trading volume, NTit is the number of trades, V Tit is the vol-trade for stock i on week t. The regressions above are estimated by generalized method of
moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression (MED) with robust standard
errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average
of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

weekly holding-period during all sub-periods for trading volume, the number of

trades, and vol-trade.

Table 4.15 reports the results for the relationship between negative realized skew-

ness and information flow across the sub-periods. The results for trading volume

show a negative and significant relationship in all periods. Although, the signifi-

cance level increases in the post-crisis period in comparison to other sub-sample

periods. In the case of the number of trades, a positive relation is obtained, which

is only significant during the post-crisis. The significant positive relationship, as

discussed earlier, could be explained by DOH hypothesis. For vol-trade and nega-

tive realized skewness, we observe a negative relationship in the pre-crisis period.

However, this tends into a positive and significant relation during the crisis period.

In the post-crisis period, the result of vol-trade is mixed. However, considering

over half of the firms have significant t-value ≤ -1.96, this suggests negative re-

lationship dominates; as such, an increase vol-trade decreases negative realized

skewness.
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Table 4.15: Robustness test: negative realized skewness, trading volume, number
of trades and vol-trade using sub-periods

Pre-Crisis Crisis Post-Crisis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Trading Volume
Coefficient -1.77E-07** -1.32E-07* -1.84E-07 -7.72E-08* -4.91E-08* -5.52E-08 -1.87E-07*** -1.40E-07** -1.77E-07**
t-Values ≥1.96 3.52% 0.70% 2.11% 4.23% 2.11% 0.70% 2.11% 1.41% 2.11%
t-Values ≤-1.96 37.32% 28.87% 24.65% 34.51% 27.46% 15.49% 64.08% 50.70% 47.89%
Average R2 20.35% 21.26% - 33.16% 37.80% - 13.55% 10.95% -
Panel B: Number of trades
Coefficient 1.09E-03 1.01E-03 1.12E-03 1.07E-03 1.30E-03 1.01E-03 3.96E-04*** 4.20E-04** 3.84E-04**
t-Values ≥1.96 9.15% 6.34% 7.75% 14.79% 7.75% 3.52% 14.79% 14.08% 11.97%
t-Values ≤-1.96 23.24% 21.13% 17.61% 21.13% 14.08% 7.04% 50.70% 41.55% 41.55%
Average R2 18.13% 18.93% - 31.19% 34.86% - 11.87% 10.31% -
Panel C: Vol-trade
Coefficient -1.80E-10** -2.78E-10** -2.93E-10 3.18E-10** 4.90E-10* 3.22E-10 2.48E-11*** -3.60E-12*** -7.56E-12**
t-Values ≥1.96 5.63% 0.70% 2.11% 7.75% 4.23% 1.41% 7.04% 2.11% 3.52%
t-Values ≤-1.96 35.92% 29.58% 23.94% 30.99% 26.06% 16.20% 64.08% 57.75% 46.48%
Average R2 20.05% 22.31% - 33.30% 37.11% - 14.43% 12.86% -
This table reports the regression results for the relationship between negative realized skewness, trading volume and number of trades for the 142 stocks. We split the
full-sample period into pre-crisis from 6 January 2003 - 29 June 2007, crisis-period from 2 July 2007 - 29 May 2009 and the post-crisis period from 1 June 2009 - 29
December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly negative realized skewness and trading volume while panel
B reports the results for the weekly negative realized skewness and number of trades. The results are based on the following regressions:

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiTVit + ϑit, given RS < 0 Panel A

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiNTit + ϑit, given RS < 0 Panel B

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiV Tit + ϑit, given RS < 0 Panel C

where TVit is the trading volume, NTit is the number of trades, V Tit is the vol-trade for stock i on week t. The regressions above are estimated by generalized method
of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression (MED) with robust
standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate
(thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

Table 4.16 reports the results for weekly positive realized skewness and trading

volume. In Panel A, we observe that positive realized skewness has a positive

relationship with trading volume across all sub-periods. Although this relation-

ship isn’t highly significant, the significance level improves during the post-crisis

period. This means high trading volume increases positive realized skewness and

consistent with the results from the full sample period in Table (4.5). The signifi-

cance level improves in the post-crisis period. In the case of the number of trades,

an insignificant negative relationship is observed for pre-crisis and crisis periods.

However, the coefficients during the post-crisis period are significant. The nega-

tive relationship is explained by differing of opinion of the investors as discussed

earlier. For the vol-trade, a positive relationship is obtained in the pre-crisis pe-

riod. Although, this relationship is only significant at the 10% level. The crisis

and post-crisis period exhibit a negative relationship, and we observe that the

significance of the negative relationship between positive skewness and vol-trade

increases during the post-crisis period.
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Table 4.16: Robustness test: positive realized skewness, trading volume, number
of trades and vol-trade using sub-periods

Pre-Crisis Crisis Post-Crisis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Trading volume
Coefficient 1.09E-07* 6.82E-08* 5.59E-08 2.72E-08* 3.21E-09 4.94E-08 1.30E-07** 9.50E-08** 1.30E-07*
t-Values ≥1.96 33.80% 32.39% 25.35% 31.69% 20.42% 11.27% 48.59% 45.77% 35.92%
t-Values ≤-1.96 2.82% 1.41% 1.41% 3.52% 3.52% 0.00% 2.82% 1.41% 2.11%
Average R2 16.88% 16.71% - 33.26% 39.42% - 10.30% 10.46% -
Panel B: Number of trades
Coefficient -6.81E-04 -5.94E-04 -6.79E-04 -1.72E-03 -1.53E-03 -1.56E-03 -4.12E-04** -3.98E-04* -4.21E-04*
t-Values ≥1.96 21.13% 19.01% 14.79% 9.15% 6.34% 6.34% 35.21% 30.99% 33.80%
t-Values ≤-1.96 11.97% 4.93% 8.45% 8.45% 7.04% 4.93% 16.20% 14.79% 14.79%
Average R2 15.01% 15.74% - 31.60% 37.34% - 9.23% 8.91% -
Panel C: Vol-trade
Coefficient 1.09E-11* 7.48E-12* -8.39E-11 -5.28E-10* -4.84E-10 -2.08E-10 -2.96E-11*** -4.62E-11** 1.85E-11*
t-Values ≥1.96 34.51% 31.69% 19.72% 25.35% 19.72% 7.75% 45.77% 38.73% 35.21%
t-Values ≤-1.96 4.93% 2.11% 1.41% 5.63% 2.82% 0.00% 7.75% 4.23% 4.23%
Average R2 16.58% 17.18% - 32.92% 38.79% - 10.38% 10.24% -
This table reports the regression results for the relationship between positive realized skewness, trading volume and number of trades for the 142 stocks. We
split the full-sample period into pre-crisis from 6 January 2003 - 29 June 2007, crisis-period from 2 July 2007 - 29 May 2009 and the post-crisis period from 1
June 2009 - 29 December 2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly realized skewness conditioned on
positive realized skewness and trading volume while panel B reports the results for the weekly positive realized skewness and number of trades. The results are
based on the following regressions:

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiTVit + ϑit, given RS > 0 Panel A

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiNTit + ϑit, given RS > 0 Panel B

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiV Tit + ϑit, given RS > 0 Panel C

where TVit is the trading volume, NTit is the number of trades for stock i on week t. The regressions above are estimated by generalized method of moments
(GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression (MED) with robust
standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient
estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant
at the 5% level.

In Table 4.17, we observe a positive relationship between realized kurtosis and

trading volume. In Panel A, the coefficients are more significant during the post-

crisis period. In short, high trading volume lead to an increase in realized kurtosis,

which is consistent with the results discussed in Panel A of Table 4.6. The number

of trades, on the other hand, has an insignificant negative relationship with realized

kurtosis during the crisis period. This negative relationship can be explained by

the DOH hypothesis as already discussed earlier. This suggest high number of

trades decreases realized kurtosis, similar result is obtained in the case of vol-trade.

Although in this case, the crisis period is significant. We conclude that the trading

volume and realized kurtosis relationship is dominated by a positive relationship,

while the number of trades has a negative relation with realized kurtosis. For

vol-trade, the result is mixed.
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Table 4.17: Robustness test: realized kurtosis, trading volume, number of trades
and vol-trade using sub-periods

Pre-Crisis Crisis Post-Crisis
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Trading Volume
Coefficient 7.90E-07* 8.34E-08* 3.21E-07 3.44E-07* 2.17E-07* 5.75E-07 1.13E-06*** 2.73E-07** 5.11E-07**
t-Values ≥1.96 36.62% 28.17% 25.35% 38.03% 29.58% 23.94% 60.56% 41.55% 45.77%
t-Values ≤-1.96 4.23% 7.04% 4.23% 5.63% 2.11% 0.70% 2.82% 10.56% 5.63%
Average R2 15.70% 17.25% - 21.66% 22.07% - 13.69% 13.90% -
Panel B: Number of trades
Coefficient -7.25E-03* -8.13E-03** -7.60E-03** -7.86E-03 -6.07E-03 -6.86E-03 -2.12E-03*** -2.36E-03*** -1.71E-03***
t-Values ≥1.96 23.94% 22.54% 23.94% 20.42% 14.79% 12.68% 55.63% 48.59% 48.59%
t-Values ≤-1.96 13.38% 23.94% 25.35% 18.31% 14.79% 13.38% 12.68% 27.46% 24.65%
Average R2 13.27% 17.47% - 18.38% 20.15% - 11.50% 14.70% -
Panel C: Vol-trade
Coefficient -3.04E-10** -7.17E-10** -4.55E-10 -2.18E-09** -1.27E-09* -6.69E-10 8.93E-11*** -7.69E-11*** 1.33E-11***
t-Values ≥1.96 34.51% 33.10% 27.46% 35.21% 28.17% 18 22/71 60.56% 52.82% 49.30%
t-Values ≤-1.96 5.63% 6.34% 5.63% 8.45% 4.93% 4.93% 3.52% 11.27% 4.93%
Average R2 15.71% 19.39% - 21.36% 21.86% - 14.50% 15.99% -
This table reports the regression results for the relationship between realized kurtosis, trading volume, number of trades and vol-trade for the 142 stocks. We split the
full-sample period into pre-crisis from 6 January 2003 - 29 June 2007, crisis-period from 2 July 2007 - 29 May 2009 and the post-crisis period from 1 June 2009 - 29 December
2017. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly realized kurtosis and trading volume while panel B reports the results for
the weekly realized kurtosis and number of trades. The results are based on the following regressions:

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiTVit + ϑit Panel A

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiNTit + ϑit Panel B

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiV Tit + ϑit Panel C

where TVit is the trading volume, NTit is the number of trades, V Tit is the vol-trade for stock i on week t. The regressions above are estimated by generalized method of
moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative re-weighted least squares and the median regression (MED) with robust standard
errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average R2’ are the averages of the coefficient estimate (thus average
of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically significant at the 5% level.

4.4.6.4 Controlling for the market rate of information flow

For the final robustness test, we use the post-crisis period data since, in this

sub-period, the volume-higher-order realized moment relationship is more signifi-

cant per the third robustness test in the previous section. Table 4.18 reports the

weekly regression results for the volume-higher-order realized moment relationship

accounting for the market rate information flow (thus the trading volume, number

of trades, and vol-trade of the S&P/ASX200 index). In Panel A, we investigate

the relationship of realized variance/volatility with trading volume, number of

trades and vol-trade. We observe the contemporaneous and instantaneous posi-

tive volume-volatility relationship is. The relationship is statistically significant

and consistent with the MDH hypothesis, even after controlling for market trading

volume, market number of trades, and market vol-trade.

For Panel B, negative realized skewness has a negative relationship with trading

volume conditional on market trading volume. This implies that high trading

volume decreases negative realized skewness/bad news. In the case of the number
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of trades, the relationship is positive can be explained by the DOH hypothesis

as seen in previous section. This suggests higher levels of the number of trades

increases negative realized skewness/bad news (see Hong and Stein (2003)). In

order words, higher liquidity increases fear and bad news. For vol-trade, the results

tend to be mixed for GMM and ROB. However, considering over half of the firms

have significant t-value ≤ -1.96, this suggests negative relationship dominates; as

such, an increase in negative realized skewness is conditional on a decrease in

vol-trade.

In Panel C, positive realized skewness has a positive relationship with trading

volume. Hence high trading volume increases positive skewness/good news. In the

case of number of trades and vol-trade, we observe a negative relationship with

positive realized skewness. The asymmetric-opinion can be extended to explain

this relationship. This means lower levels of number of trades or vol-trade will

increase positive realized skewness/good news (thus lower liquidity will increase

greed and good news).

Finally, in Panel D, we observe a positive relationship between realized kurtosis

and trading volume, thus trading volume increases realized kurtosis. In the case

of number of trades, we observe that number of trade decreases realized kurtosis

which is consistent with the results of Do et al. (2014) and our previous results

discussed. For vol-trade, the results are mixed for GMM and ROB. Since over

half of the firms have significant t-value ≥ 1.96, this suggests positive relationship

dominates, and hence an increase in realized kurtosis is conditional on an increase

in vol-trade for the post-crisis period. To conclude, we observe that when we

control for the rate of market information flow, the volume-higher-order realized

moment relationship remains statistically significant.
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Table 4.18: Robustness test: controlling for market information flow for post-crisis
periods

Trading volume Number of trades Vol-trade
GMM ROB MED GMM ROB MED GMM ROB MED

Panel A: Realized variance
Coefficient 1.02E-09*** 9.51E-11*** 1.74E-10*** 2.46E-07** 4.18E-07*** 4.81E-07*** 3.74E-13*** 7.17E-14*** 1.07E-13***
t-Values ≥ 1.96 58.45% 69.01% 61.27% 47.18% 50.00% 51.41% 60.56% 74.65% 62.68%
t-Values ≤-1.96 1.41% 2.82% 1.41% 3.52% 7.04% 7.04% 0.70% 2.11% 0.00%
Average R2 23.92% 45.66% - 18.10% 43.98% - 26.29% 45.85% -
Panel B: Negative realized skewness
Coefficient -1.84E-07*** -1.34E-07** -1.54E-07** 4.05E-04*** 4.31E-04** 3.84E-04** 1.25E-11*** -2.17E-12*** 9.66E-13**
t-Values ≥1.96 2.11% 1.41% 1.41% 14.79% 14.08% 14.08% 4.93% 1.41% 3.52%
t-Values ≤-1.96 64.79% 51.41% 44.37% 51.41% 41.55% 40.14% 64.08% 54.23% 47.89%
Average R2 15.41% 12.44% - 12.23% 10.87% - 16.22% 14.88% -
Panel C: Positive realized skewness
Coefficient 1.25E-07** 9.31E-08** 1.27E-07* -4.14E-04** -4.04E-04** -4.21E-04** -2.42E-11*** -4.59E-11** 7.79E-12*
t-Values ≥1.96 48.59% 45.07% 36.62% 35.92% 30.99% 34.51% 47.18% 42.25% 40.14%
t-Values ≤-1.96 2.11% 0.70% 1.41% 16.20% 14.79% 14.08% 3.52% 1.41% 2.11%
Average R2 12.10% 11.81% - 9.73% 9.45% - 11.97% 11.97% -
Panel D: Realized kurtosis
Coefficient 1.19E-06*** 3.36E-07** 5.72E-07** -2.14E-03*** -2.37E-03*** -1.75E-03*** 1.01E-10*** -6.22E-11*** 2.40E-11**
t-Values ≥1.96 61.97% 44.37% 47.18% 55.63% 48.59% 50.00% 61.97% 54.93% 49.30%
t-Values ≤-1.96 2.82% 7.04% 3.52% 12.68% 28.17% 23.24% 2.11% 9.15% 2.82%
Average R2 14.43% 14.98% - 11.70% 14.96% - 15.13% 16.64% -
This table reports the regression results for the relationship between weekly realized higher-order moment and trading volume, the number of trades, vol-trade for the 142 stocks conditional
on the market information flow. We only focus on the post-crisis period from 1 June 2009 - 29 December 2017. This is due to the fact that for the sub-period results, the post-crisis period
results were more significant. Significance levels:“ *: 0.10, **: 0.05, ***: 0.01". Panel A presents the results for the weekly realized variance and the three proxies of information flow (trading
volume, number of trades and vol-trade), panel B reports the results for negative skewness, panel c reports the results when positive realized skewness is used, and panel D is that of realized
kurtosis. The results are based on the following regressions:

RVit = αi0 +
12∑
j=1

ρijRVit−j + βiTVit + λmTVmt + ϑit, RVit = αi0 +
12∑
j=1

ρijRVit−j + βiNTit + λmNTmt + ϑit, RVit = αi0 +
12∑
j=1

ρijRVit−j + βiV Tit + λmV Tmt + ϑit, Panel A

RS−it = αi0 +
12∑
j=1

ρijRS
−
it−j + βiTVit + λmTVmt + ϑit, RS−it = αi0 +

12∑
j=1

ρijRS
−
it−j + βiNTit + λmNTmt + ϑit, RS−it = αi0 +

12∑
j=1

ρijRS
−
it−j + βiV Tit + λmV Tmt + ϑit, Panel B

RS+
it = αi0 +

12∑
j=1

ρijRS
+
it−j + βiTVit + λmTVmt + ϑit, RS+

it = αi0 +
12∑
j=1

ρijRS
+
it−j + βiNTit + λmNTmt + ϑit, RS+

it = αi0 +
12∑
j=1

ρijRS
+
it−j + βiV Tit + λmV Tmt + ϑit, Panel C

RKit = αi0 +
12∑
j=1

ρijRKit−j + βiTVit + λmTVmt + ϑit, RKit = αi0 +
12∑
j=1

ρijRKit−j + βiNTit + λmNTmt + ϑit, RKit = αi0 +
12∑
j=1

ρijRKit−j + βiV Tit + λmV Tmt + ϑit, Panel D

where TVit is the trading volume, NTit is the number of trades, V Tit is the vol-trade for stock i on week t. TVmt, NTmt, V Tmt are the trading volume, number of trades and vol-trade of
the market index respectively. The regressions above are estimated by generalized method of moments (GMM) with Newey-west standard errors, robust regression (ROB) using iterative
re-weighted least squares and the median regression (MED) with robust standard errors. The regressions are run separately for every 142 stocks being considered. The ‘coefficient’ and ‘Average
R2’ are the averages of the coefficient estimate (thus average of βi) and the R2 across the stocks. ‘t-value≥1.96’ (‘t-value ≤-1.96’) shows the percentage of firms that have t-value statistically
significant at the 5% level.

4.4.7 Summary of volume-higher-order realized moment

relationships

Intuitively, the MDH hypothesis is conditional on public information, with the

volume and volatility responding to the changes in the arrival rate of this publicly

available information. The MDH hypothesis implicitly assumes the market is effi-

cient, and all information is absorbed instantaneously by all market participants

and is immediately reflected in the price generation process via market trading.

The ensuring positive (but symmetric) volume-volatility relationship have been

extensively documented in the extant literature (Epps and Epps, 1976; Clark,

1973; Tauchen and Pitts, 1983; Harris, 1986; Andersen, 1996; Chan and Fong,

2006; Carroll and Kearney, 2015). Researchers also have investigated the volume-
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volatility relationship via alternative models i.e. by decomposing the volatility

into continuous and jump components and have reported that only the continuous

component has a positive and significant relationship with trading volume (Giot

et al., 2010; Shahzad et al., 2014). This is not surprising since the realized variance

converges to the total quadratic variation and is dominated by the normally dis-

tributed continuous component which is implicitly information-symmetric; Amaya

et al. (2015).

The SIAH hypothesis allows for asymmetric-formation via the sequential arrival

of information, in which not all traders receive and absorb the same information

at the same time and consequently they will hold heterogeneous objective beliefs

or expectations. This means that the informed traders with ‘lead-’ or advanced-

information would find it profitable to trade with uninformed traders with ‘lag-’ or

retarded-information. Trade occurs because of differences of information amongst

market participants i.e. investors will not trade with each other if they hold the

same information and objective beliefs about an asset (Copeland, 1976; Chan

and Fong, 2000; Celik, 2013). The information-asymmetry implied by the SIAH

hypothesis also accommodates the observed asymmetry or realized skewness in the

marketplace. If information arrives sequentially, then differences in information

may actualise as asymmetric jumps especially when coupled with low number of

trades i.e. low liquidity.

The DOH hypothesis goes one-step further by allowing for differences in opinions

i.e. asymmetric-opinions and the formation of subjective beliefs. Trade occurs

because of differences of opinion amongst market participants i.e. investors will

not trade with each other if they hold the same opinions or subjective beliefs

about an asset (Shalen, 1993; Harris and Raviv, 1993). The asymmetric-opinion

inherent in the DOH hypothesis also enable one to explain the observed asymmetry

or skewness in asset prices. As differences in opinion can also be symmetrically

polarised at the tails, some researchers have also used the DOH hypothesis in

explaining the observed negative relationship between volume (i.e. number of

trades) and kurtosis; Do et al. (2014).
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Table 4.19: Sign Matrix of Volume-Higher-order Realized Moments

TV NT ATS VT
RV +** +* − +**
RS− −*** +*** −* +***
RS+ +*** −*** +* −***
RK +*** −** + −***

Note: Realized Variance (RV), Negative Realized Skewness (RS−), Positive Real-
ized Skewness (RS+), Realized Kurtosis (RK), Trading Volume (TV), Number of
Trades (NT), Average Trade Size (ATS=TV/NT) and Vol-Trade (VT=TV×NT).
The signs (+, -) and significance levels (*(0.10), **(0.05), ***(0.01)) based on
Weekly data and Generalized Method of Moments (GMM).

Table 4.19 is a summary matrix of the signs of the coefficients as found between

the four realized higher moments (negative realized skewness (RS−), positive re-

alized skewness (RS+) are taken separately) and the four-volume proxies used in

this study for volume. From Table 4.19, we note the following: trading volume

(TV) and number of trades (NT) are primary proxies with average trade size

(ATS=TV/NT) and vol-trade (VT=TV×NT) being secondary proxies. Consid-

ering the primary proxies first, realized variance has a positive relationship with

both trading volume and number of trades. However, the other higher-moments

have not only positive and negative relationships with trading volume and number

of trades but trading volume and number of trades have opposite signs for neg-

ative realized skewness, positive realized skewness and realized kurtosis. Trading

volume decreases negative skewness and increases positive skewness. Number of

trades increases negative skewness and decreases positive skewness. Trading vol-

ume increases kurtosis and number of trades decreases kurtosis. Trading volume

and number of trades have similar effects on realized variance. Trading volume and

number of trades have opposite effects on realized skewness and realized kurtosis.

High trading volumes means high realized variance, low negative realized skew-

ness, high positive realized skewness and high realized kurtosis and vice versa.

High trades means high realized variance, high negative realized skewness, low

positive realized skewness and low realized kurtosis and vice versa. The secondary

volume proxies, average trade size and vol-trade, mirror the primary proxies trad-
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ing volume and number of trades respectively with the exception of the negative

coefficient for average trade size when regressed with realized variance; but it is

not significant.

Another point of note is that even though, trading volume and number of trades

are commonly used primary proxies for volume, they are by definition related

via trading volume (TV=NT×ATS) and hold opposing regression estimates with

signed realized skewness and realized kurtosis. Increasing number of trades im-

plicitly reflects more traders and more liquidity with a wider spread of trade sizes

(i.e. less jumps present). Increasing trading volume embeds two possibilities; in-

creasing number of trades or increasing average trade size or both. If it is driven

by increasing average trade size then the ‘effective’ liquidity must be decreasing

(i.e. more jumps present). This explains the equivalence of trading volume and

average trade size in Table 4.19 (i.e. trading volume mirrors average trade size

more than number of size). Hence trading volume increases realized kurtosis and

number of trades decreases realized kurtosis. Trading volume decreases negative

skewness and increases positive skewness and number of trades increases nega-

tive skewness and decreases positive skewness. In short, high trading volume (or

high average trade size) coincides with the presence of more up-jumps and less

down-jumps (positive skewness or good news or greed or lower liquidity) and high

number of trades (or high vol-trade) coincides with more down-jumps and less

up-jumps (negative skewness or bad news or fear or higher liquidity).

Thus from Table 4.19, we note that volume has a positive relationship with re-

alized variance (with the exception of average trading size which is statistically

insignificant), in that as the each of the volume proxies (with statistical signifi-

cance) increases the volatility also increases. Thus the realized variance results are

consistent with the variance claims of all three hypotheses i.e. MDH, SIAH and

DOH hypotheses. The information-asymmetry implicit in the SIAH hypothesis

and the opinion-asymmetry inherent in the DOH hypothesis both independently

and jointly address the observed relationships between volume and the higher-

order moments. Thus, the MDH hypothesis (symmetric-information) is implicitly
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nested within the SIAH hypothesis (asymmetric-information) which is then nested

within the DOH hypothesis (asymmetric-opinion).

We also undertook four separate robustness checks, first of these using the abso-

lute residuals. We observe that trading volume, number of trades, and vol-trade

have positive and significant explanatory power for the weekly holding period (see

Table 4.10). The second robustness test employs natural logarithms of the realized

higher-order moments. We observe a positive and significant relationship between

log realized variance and trading volume, number of trades, and vol-trade. In the

case of log realized kurtosis, a significant negative relationship is observed for the

number of trades and vol-trade, while that of trading volume exhibits a positive

relationship. The ‘sign’ of natural logarithm of realized skewness has no explana-

tory power (see Tables 4.11, 4.12 and 4.13). For the third robustness test, we split

the data into three sub-periods. For this test, only the weekly holding period is

considered since most of the monthly results tend to be insignificant for the full

sample period. The contemporaneous positive (realized) volume-volatility relation

for trading volume, number of trades, and vol-trade are persistent across all sub-

periods. The directional (negative/positive) realized skewness relationship with

volume reflects investors’ reactions to good and bad news across the sub-periods.

However, the significance of realized skewness improves in the post-crisis period.

The trading volume has a positive and significant relationship with realized kur-

tosis. The number of trades and vol-trade have a negative and significant relation

with realized kurtosis across all sub-periods (see Tables 4.14, 4.15, 4.16 and 4.17).

As the fourth robustness test, we test the significance of the volume-higher-order

realized moment relationship for the weekly post-crisis period by controlling for

market information flow. We observe that in the presence of a market rate of

information flow, the volume-higher-order realized moment relationship is still

significant (see Table 4.18).
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4.5 Concluding Remarks

In this study, we focus on the volume-realized skewness and volume-realized kur-

tosis relationship by considering various proxies of information flow and capture

the various volume-higher order moment relationships dependent on the proxy

adopted. Accordingly, we investigate the volume-realized higher-order moments

relationships for 142 constituent stocks of the S&P/ASX200 index downloaded

from the TRTH/SIRCA. Using 15-minutes return data spanning from January,

2003 to December, 2017 we compute weekly and monthly realized variance, re-

alized skewness, and realized kurtosis. We also download trading volume, the

number of trades, order imbalance, and average trade size as alternative proxies

for information flow. In addition to these proxies, we also test the volume-realized

higher-order moments relation using a new proxy for information flow: vol-trade

(i.e. trading volume×number of trades).

We also observe that the order imbalance has an insignificant relationship with

the higher-order realized moments for both weekly and monthly holding periods.

However, when we condition the orders on buyer/seller-initiations, we observe that

the buyer/seller-initiated orders had a statically significant relationships with the

realized higher-order moments. Our results highlight the effectiveness of trading

volume and the number of trades as the primary proxies for capturing the volume-

higher-order realized moments relationships. However, the proxy used determines

signs of the coefficient estimates and hence differing explanations may be drawn

regarding the effects of the underlying factors i.e. the number of trades or trading

volumes on the higher-order realized moments. The secondary volume proxies,

average trade size and vol-trade, mirror the primary proxies trading volume and

number of trades respectively with the exception of the negative coefficient for

average trade size when regressed with realized variance; but it is not significant.

We also note that the level of significance of the said relationships is affected by

the holding periods, with the weekly holding periods having higher statistical sig-

nificance than the monthly holding periods. This is not surprising, as the linkages
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between volume and realized higher-order moments tend to be more representative

at smaller holding-intervals i.e. weekly rather than monthly. This subtle fact has

not been reported and highlighted explicitly in the extant literature.

We show that whilst the MDH hypothesis is able to explain the observed volume-

realized volatility relationship, the SIAH hypothesis additionally accounts for the

observed volume-realized skewness relationship and the DOH hypotheses not only

accounts for the realized-variance and realized-skewness relationships but also is

able to account for the observed volume-realized kurtosis relationship. Thus the

DOH hypothesis implicitly encompasses or nests both the SIAH and MDH hy-

potheses.

In addition, we also argue that, apart from volume-volatility, volume-skewness and

volume-kurtosis can provide additional information that could benefit investors’

trading strategies. For example, event studies that employ volume and volatility in

making inferences could extend their models to account for volume-skewness and

volume-kurtosis to capture relevant information that would otherwise be neglected.

The relevance of realized skewness and realized kurtosis to high-frequency finance

can not be ignored.
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Chapter 5

Higher-Order Moments and Asset

Pricing in the Australian Stock

Market

5.1 Introduction

The capital asset pricing model (CAPM) of Sharpe (1964); Lintner (1975); Mossin

(1966) was the first model developed for explaining the risk-return relationship.

According to Black (1993); Jagannathan and Wang (1996), the CAPM is a sem-

inal contribution to finance theory, and it forms the cornerstone of asset pricing

techniques. However, in the past decade, the CAPM has received numerous theo-

retical and empirical criticisms. These criticisms stem from the model’s simplistic

nature; indeed, its stylized assumption that only co-variance risk should be consid-

ered important in the asset pricing model has been its major shortcoming.1 Con-
1The CAPM model implies a linear relationship between expected returns and systematic

risk (beta). For this relationship to hold, the CAPM places strong restrictions on (i) the asset
return distribution (assuming Gaussian distribution) and (ii) the agent’s utility function (by em-
ploying the quadratic utility function), which does not correspond to rational agent behavioural
characteristics. The assumption of Gaussian distribution is normally made for reasons of con-
venience in theoretical models; however, it is less likely to hold in the high-frequency paradigm.
This suggests that high-frequency results that depend on the normality of asset returns can be
misleading.
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sequently, these criticisms have inspired several researchers to propose alternative

methodologies that aim to improve the model’s theoretical consistency and em-

pirical performance. For example, the multifactor CAPM models allow the stan-

dard CAPM model to be improved by incorporating additional factors (see Fama

and French, 1992, 1995; Carhart, 1997). Bollerslev et al. (1988); Jagannathan and

Wang (1996) employ a time-varying CAPM to account for the autoregressive com-

ponent of the conditional variance. Employing financial risk measures, Shalit and

Yitzhaki (1984); Okunev (1990) developed the mean Gini-CAPM, which addresses

investors’ behaviour when facing uncertainty for a wide category of probability dis-

tributions. The lower-moment CAPM of Price et al. (1982); Hwang and Pedersen

(2002) requires fewer restrictions in comparison to the standard CAPM model.

Ang et al. (2006) estimates CAPM with asymmetric betas and finds that a cross-

section of stock returns reflects a downside risk premium. Chan et al. (1991);

Fama and French (1992) show that firm size, book-to-market (B/M) ratio and

price-to-earnings (P/E) ratio also explain the cross-sectional variation in the ex-

pected returns. Pedersen and Hwang (2007) find that downside beta outperforms

the standard CAPM beta for a set of United Kingdom (UK) equity returns.

Rubinstein (1973); Ingersoll (1975); Kraus and Litzenberger (1975) were the first

to consider relaxing the normality assumption of the CAPM, the authors incor-

porated a higher-order moment into the pricing model by considering the uncon-

ditional asymmetric characteristics of asset return distributions. Fang and Lai

(1997); Dittmar (2002) presented a pricing model framework that accounted for

both the asymmetric and leptokurtic characteristics of asset return distributions.

Consequently, several researchers advocated employing higher-order moment pric-

ing models (see Harvey and Siddique, 2000a; Dittmar, 2002; Lambert and Hübner,

2013; Poti and Wang, 2010; Moreno and Rodríguez, 2009; Kostakis et al., 2012, for

more details). In light of their observations, they note that the higher-order mo-

ment pricing model outperforms the standard CAPM. The predictive power of the

higher-order moment pricing model may be attributed to the simple notion that

it accounts for the non-normality of the asset return distribution. Therefore, the
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higher-order moment pricing model’s main objective is to estimate a linear equi-

librium relationship between any risky asset’s expected returns and its systematic

higher-order moment risk measures (i.e. systematic co-skewness and co-kurtosis).

This approach realistically deals with the investors’ preferences and captures the

actual shape of the asset return distribution better than that of the standard

CAPM. For example, Harvey and Siddique (2000a) find that conditional system-

atic skewness helps explain the cross-sectional variation of expected returns across

assets even when control variables are included in their model for monthly United

States (US) equity returns using CRSP NYSE/AMEX and Nasdaq data.2 Dittmar

(2002) finds that the four-moment CAPM pricing model prices the cross-section of

returns better than the standard CAPM, and outperforms the multifactor CAPM

models for a set of 20 industry-sorted portfolios estimated with monthly return se-

ries obtained from CRSP.3 Lambert and Hübner (2013) find that co-moment risks

have significant explanatory power even when firm size and B/M factors are in-

cluded in the regression for monthly stock returns from NYSE, AMEX and Nasdaq.

Poti and Wang (2010) employing monthly return series from the CRSP database,

find that with co-skewness and co-kurtosis risks, one could price several stocks

and portfolios strategically. Moreno and Rodríguez (2009) show co-skewness to

be economically and statistically significant in US mutual fund performance eval-

uation by using monthly return data from CRSP. Kostakis et al. (2012) find that

co-skewness and co-kurtosis risk premiums are priced in the UK equity market.

In the Australian equity framework, the analysis of risk factors that yield extra

returns for investors has received little documentation in the high-frequency fi-

nance domain. In contrast, using low-frequency Australian equity return data,

Faff (2001); Gaunt (2004) find that the three-factor model outperforms the stan-

dard CAPM. Gharghori et al. (2007) state that the reason why Fama and French

(1993) factors can explain cross-sectional variation in equity return is because the
2The centre for Research in Security Prices (CRSP), New York Stock Exchange (NYSE),

American Express (AMEX) and National Association of Securities Dealers Automated Quota-
tions (Nasdaq).

3The four-moment CAPM pricing model is the addition of systematic co-skewness and co-
kurtosis risk measures to the standard CAPM pricing model.
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Small-Minus-Big (SMB) and High-Minus-Low (HML) factors are proxy for default

risk. However, they conclude that the default risk is not priced and that Fama

and French (1993) factors do not proxy default risk. Limkriangkrai et al. (2008)

find that the three-factor model captures the return of the largest company shares

while that for the premium of smaller-company shares is not priced. Gharghori

et al. (2009) find that the size, B/M, earnings-to-price, and cash-flow–to-price

factors are priced. Galagedera and Maharaj (2008) show that with wavelength

multi-scaling decomposition, normalized co-kurtosis risk is not priced in the pres-

ence of beta risk in the upmarket and downmarket conditions for daily Australian

industry portfolio returns.

Similarly, Alles and Murray (2013) investigate the effects of downside beta and

co-skewness exposure on the returns to investors by employing daily data from

emerging Asian markets. They find that both downside beta and co-skewness

are priced separately in the upmarket and downmarket state. Alles and Murray

(2017) subsequently investigate the effects of downside beta and co-skewness on

returns by using daily constituent data of S&P/ASX 200 index, and their findings

are consistent with those of Alles and Murray (2013). Doan et al. (2014) find

that a significant relationship exists between the higher-order risk preferences and

systematic skewness and kurtosis of weekly stock returns and financial data for all

ASX-listed firms (Australian stocks). Galagedera et al. (2003) observe that the

systematic variance and skewness are priced in both upmarket and downmarket

conditions, while the systematic kurtosis is not for 128 daily return series of Aus-

tralian stocks. Lee et al. (2008) find that investors only require a premium for

downside risk, and in the presence of co-kurtosis, downside beta loses its signifi-

cance for monthly Australian-listed property trust return data. Vendrame et al.

(2016) investigate why the empirical results for the four-moment CAPM reported

in the extant literature are conflicting. They test whether conditional models or

models that employing individual stocks rather than portfolio returns improves the

standard CAPM. The authors also examine whether models that extend moment-

based CAPM approach and those that incorporate Fama and French risk factors
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improves the standard CAPM. They note that the four-moment CAPM improves

the performance of the standard CAPM in the presence of SMB factor.

To the best of our knowledge, Hurlin et al. (2009) is the only paper to investigate

realized higher-order moment risk-return relationship. Employing 5-minute (high-

frequency) return series for 43 French stocks, the authors estimate the realized

moments for 1-month holding-period. For their analysis, they focus on extending

the standard CAPM model by incorporating realized co-skewness risk measure.

Their results show that realized co-skewness is priced and neglecting realized co-

skewness can result in misleading conclusions. In this study, we investigate a set of

realized higher-order co-moment risk-return relationships by employing 142 Aus-

tralian stocks downloaded at a 15-minute frequency from the Thomson Reuters

Tick History/Securities Industry Research Centre of Asia-Pacific (TRTH/SIRCA)

database from 2003 to 2017 to estimate the monthly realized risk factors.4 The

primary motivation of this study is to contribute to the debate regarding whether

systematic realized higher-order co-moments can explain the cross-sectional Aus-

tralian stock returns. Our second motivation is based on the notion that using

high-frequency return data will yield substantially more robust empirical esti-

mates than using low-frequency return data where valuable information may be

lost. Consequently, sample moments are normally computed from long samples of

low-frequency return series (e.g., daily, weekly and monthly return series) while

realized moments are computed from high-frequency return series (e.g., 1-second,

1-minute and 5-minute return series, etc.). Additionally, we investigate the realized

higher-order co-moment risk-return relationship in the upmarket and downmarket

conditions to identify the true nature of the relationship. We follow a set of sound
4Specifically, we compute monthly standard CAPM beta, the continuous and jump beta

of Todorov and Bollerslev (2010); Bollerslev et al. (2016); Alexeev et al. (2017) and the un-
conditional normalized higher-order co-moment of (Homaifar and Graddy, 1988; Athayde and
Flôres Junior, 1997; De Athayde and Flôres, 2000; Hwang and Satchell, 2001; Hwang and Peder-
sen, 2002). Additionally, we construct the upside and downside normalized realized higher-order
co-moment by using the zero rate of return as the truncation point (Ang et al., 2006). We include
individual firm characteristics to determine whether the obtained risk premiums are robust in
the presence of such control variables. For these control variables, we consider the illiquidity
factor of Amihud (2002), the size factor (log(size)) of Fama and French (1993), the B/M ratio of
Fama and French (1992), the value at risk (VaR) at a 1% level of significance and past returns
of Amaya et al. (2015).
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methodology documented in the extant literature for investigating the realized

higher-order co-moment risk-return relationship.

The first empirical test employs single sorting of excess realized return on the risk

measures. We construct 10-decile equally weighted portfolios that are sorted by

a set of firm characteristics. We then investigate the realized higher-order co-

moment risk-return relationship across the sorted decile portfolios. The results for

all market periods show that the average return on the high-beta stocks exceeds

that of the low-beta stocks, although the high-minus-low spread is statistically

insignificant. Regarding the downside beta, downside kappa and log(size), the

average return on the lower-ranked stocks are relatively higher than that of the

higher-ranked stocks. This implies that lower-ranked stocks of downside beta,

downside kappa and log(size) portfolios offer relatively higher returns to the in-

vestor. Conversely, higher-ranked gamma and B/M offer positive and statistically

significant excess returns to investors (for more details, see Table 5.3). We also

observe that gamma yields significant gains to investors who bear gamma risk

regardless of the market state. We note that the average excess returns for the

conditional co-moments risk tend to be robust. The monotonic relation of Patton

and Timmermann (2010) reveals some pertinent patterns regarding the possible

presence of any monotonic relationship (MR) in the entire sorted portfolio.5 This

knowledge of the monotonic increasing pattern may be beneficial to investors’

trading strategies.

The second empirical test employs double sorting of excess returns on both down-
5Over the years, financial theories have hypothesized that expected returns should either in-

crease or decrease monotonically in firms’ risk or liquidity characteristics. Patton and Timmer-
mann (2010) states that expected returns on treasury securities should increase monotonically to
maturity with time and that the pricing kernel should be monotonically decreasing in investors’
ranking of future states. Consequently, the CAPM hypothesis implies that the expected return
of stocks that are ranked by their market betas should increase monotonically. It is common
to form portfolios of stocks that are ranked by their beta when testing for the CAPM. Most
researchers test the mean spread between portfolios’ highest and lowest sorted beta and report
its significance by employing the t-test statistic. For example, Ang et al. (2006) employs this
approach for both their single and double-sorted portfolios. Alles and Murray (2013, 2017) ob-
tained significant t-test statistics for the high-minus-low returns sorted on downside beta and
gamma risk in both the upmarket and downmarket states. This approach ignores any MR that
may exist in the entire set of securities/portfolios.
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side beta and gamma risk measures.6 This process aims to capture asymmetric

higher moments and downside risk. In the double-sorting procedure, the method-

ology measures the reward for the exposure of downside beta risk by explicitly

controlling for gamma risk measure and vice versa.7 Our results show that the

downside beta and gamma risks are different and priced separately. Furthermore,

we observe that investors experience significant gains for bearing gamma risk when

we control for downside beta risk regardless of the market conditions.

Finally, we employ a cross-sectional Fama-MacBeth regression at the rm level to

further investigate the predictive power of the risk measures. Using the Fama-

MacBeth regression, researchers can undoubtedly account for more than one pa-

rameter that could explain the cross-section of the stock returns. The results

show that the average excess return of the standard beta and kappa risk mea-

sures are asymmetric and diametrically opposite in upmarket and downmarket

periods, which is consistent with the results obtained from the single-sorted port-

folios. Kappa captures any dispersion in the return data that is ignored by beta

and is sensitive to tail distributions (i.e., the magnitude of jumps). Additionally,

we observe that gamma risk generates significant excess returns regardless of the

market conditions. This is unsurprising since the sign of gamma depends on the

sign of the skewness of market return distribution and the sign of the investor’s

marginal risk-preference for skewness. Therefore, gamma can either be positive

or negative. Our results obtained are consistent with those of Ranaldo and Favre

(2005); Liow and Chan (2005); Sharpe (1964); Jurczenko and Maillet (2006), who

find that investors have a preference for odd moments (mean and skewness) and an

aversion towards even moments (variance and kurtosis). Indeed, investors expect a

premium for beta and kappa risks in the upmarket and a discount in downmarket

conditions. The findings of this study suggests that investors will find gamma risk

attractive due to the significant reward that it generates. We also note that the
6The double-sorting approach addresses the limitation of single-sorted portfolios. Notably,

single-sorted portfolios do not control for any other known patterns in the cross-section of stock
returns.

7Although double sorting has an advantage over single sorting, it is limited to accounting
for only one parameter at a time. To overcome this limitation we employ the Fama-MacBeth
regression.
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upside and downside risk measures retain their direction and level of significance

when we control for a set of firm characteristics.

Due to the extensive nature of our sample size, we split the data into three sub-

periods following the categorization of Dungey and Gajurel (2014). For the sub-

periods, only the Fama-MacBeth regression analysis is employed. We observe that

the reward for gamma exposure is robust in models that incorporate gamma risk

while the predictive power of kappa risk tends to vary depending on the market

conditions.

The remainder of this chapter is organized as follows: Section 5.2 gives a brief

review of relevant theory for estimating standard beta, continuous beta, jump

beta, and (un)conditional realized higher-order co-moments. Section 5.3 presents

the empirical data used in constructing the realized higher-order moments and

subsequent estimates of risk measures. We report the descriptive statistics of the

variables used in this Section as well. The empirical results are discussed in Section

5.4, and Section 5.5 concludes.

5.2 Methodology

5.2.1 Estimating Systematic Risks: Continuous and Jump

Betas

The CAPM model of Sharpe (1964); Lintner (1975); Mossin (1966) is an important

model in the finance literature for assessing the performance of portfolios and the

cost of investments, as well as for choosing portfolio strategies and many more

actions. The CAPM relates the expected return of individual stock returns (ri,t)

to a benchmark market return (rm,t) and is formally defined as:8

ri,t = αi + βirm,t + εi,t, i = 1, 2, .., N and t = 1, 2, .., T (5.1)
8The stock return series ri,t = pi,t − pi,t−1, where pi,t is the i th log price for period t.
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where stock i = 1, 2, ..., N and t = 1, 2, .., T is time period in months. The βi
is a measure of systematic (co-variance) risk, which can also be defined as the

normalized co-variance of the individual stock returns and market returns.9 Post

the inception of high-frequency data, several researchers have shown that market

return can be decomposed into two main components: one that captures the

continuous price movement and another that captures jumps (see Todorov and

Bollerslev, 2010; Bollerslev et al., 2016; Alexeev et al., 2017). Relative to the

standard beta that is estimated with low-frequency return series (daily, weekly,

monthly and quarterly return series), beta that is estimated with high-frequency

return series (tick-by-tick, seconds and minutes return series) leads to a statistically

superior beta estimate (see Andersen et al., 2005, 2006; Bollerslev and Zhang, 2003;

Barndorff-Nielsen and Shephard, 2004). Suppose that the observed price follows a

semi-martingale process on some filtered probability space (Ω, F , (Ft)t≥0,P) in a

frictionless market in which there are no arbitrage opportunities (see Back, 1991).

Then, in the presence of jumps, the observed price can be modelled as a continuous

time semi-martingale jump diffusion process:

pi,t =
∫ t

0
µi,tdt+

∫ t

0
σi,tdWi,t +

N(t)∑
k=1

J(Qi,k), (5.2)

where µi,t is the diffusive mean, σi,t is a diffusive volatility process, dWi,t is the

increments to a Brownian motion, Wi,t, N(t) is a counting process and J(Qi,k) is

the non-zero jump increments (for more details, see Fleming and Paye, 2011). We

observe that Equation (5.2) reduces to a ‘pure’ diffusion model with continuous

sample paths when no jumps are present in the price process (i.e., the jump com-

ponent is set to zero). For this jump diffusion process to hold, it is assumed that

µi,t and σi,t are jointly independent of Wi,t.

Todorov and Bollerslev (2010); Bollerslev et al. (2016); Alexeev et al. (2017) have

shown that the log price of any asset i, pi,t in Equation (5.2) follows a continuous-
9The standard CAPM beta, βi = Cov(ri,t,rm,t)

V ar(rm,t) , captures the sensitivity of the expected return
on the i-th asset to that of the market return.
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time jump diffusion process, so the return series evolves as follows:

ri,t ≡ dpi,t = µi,tdt+ σi,tdWi,t + JdQi,t, (5.3)

In the case of market returns we have:

rm,t ≡ dpm,t = µm,tdt+ σm,tdWm,t + Jm,tdQm,t, (5.4)

Hence the standard quadratic variation for high-frequency return data is the real-

ized variance and can be defined as:

[ri,t, rm,t]2 ≡ QVt =
∫ t

0
σ2
t dt+

N(t)∑
k=1

J2(Qk), (5.5)

where the first term on the right-hand side of Equation (5.5) is the integrated

variance (IV) and the second term is the sum of the squared jumps (i.e. the

variance of the jump component). We note that Equation (5.5) reduces to a ‘pure’

diffusion model with continuous sample paths when no jumps are present in the

price process (i.e., the jump component is set to zero). The IV for this type of

process is defined as IVt ≡
∫ t

0 σ
2
t dt and equals to the quadratic variance (QV), since

the jump component is set to zero. From Equation (5.5), the quadratic variation

between ri,t and rm,t in terms of continuous and jump beta is expressed as:

[ri,t, rm,t]2 = βci

∫ t

0
σ2
m,tdt+ βji

N(t)∑
k=1

J2(Qm,k), (5.6)

Following Todorov and Bollerslev (2010); Alexeev et al. (2017), the continuous

beta is defined as (βci ) = [rci,t,r
c
m,t]2

[rcm,t,rcm,t]2
. Thus, the ratio of the intra-day co-variance

between the asset return and the market return is normalized by the variance of the

market using high-frequency return series. Generally, the market may experience

jumps according to this definition, as the jump component is not restricted to zero.

To account for the possible occurrence of jumps, as the number of observations
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approaches infinity (thus T/∆, where T is the total number in the trading day

and ∆ is the sampling frequency) the sample estimate is employed. This restricts

the jump component, and the continuous beta is thus expressed as:

β̂ci,t =
∑T/∆
j=1 ri,j,trm,j,t1{|rt,j |≤θ}∑T/∆
j=1 (rm,j,t)21{|rt,j |≤θ}

, for i = 1, 2, ..., N (5.7)

where 1 is the indicator function and θ the truncation level for the continuous

component

1{|rt,j |≤θ} =

 1 if |rt,j| ≤ θ

0 if otherwise

For the jump beta, we have [rji,t, r
j
m,t]2τ=(βji )τ

∑N(t)
k=1 J

2τ (Qk)=(βji )τ [r
j
m,t, r

j
m,t]2τ ,

where τ ≥1. By raising the high-frequency returns to powers, if the order is greater

than two, then the continuous component can be ignored, and the jump component

dominates asymptotically as the number of observations approach infinity. The

parameters for the truncation threshold θ = αi∆$
n , where $ = 0.49, τ = 2, αi

varies among individual stocks and is set to 3
√
BVi,t. The estimate of the jump

beta is:

β̂ji = sign


T/∆∑
j=1

sign{ri,j,trm,j,t}|ri,j,trm,j,t|τ


×

∑T/∆
j=1 sign{ri,j,trm,j,t}|ri,j,trm,j,t|τ∑T/∆

j=1 r
2τ
m,j,t

 1
τ

(5.8)

where τ ≥ 2, this ensures that the continuous prices movement do not matter

asymptotically (for more details, see Todorov and Bollerslev, 2010; Alexeev et al.,

2017). The ‘sign’ in Equation (5.8) accounts for the jump beta signs that are

ignored when taking the absolute values of the return series. In the presence

of at least one systematic jump beta, β̂ji converges to βji . Barndorff-Nielsen and

Shephard (2006) propose a test statistic for jump detection in the market portfolio,
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of which detail documentation can be found in (Todorov and Bollerslev, 2010;

Alexeev et al., 2017). The realized variance (RV) and bipower variation (BV) for

the market return using high-frequency data is defined as:

RVm,t =
T/∆∑
j=1

r2
m,j,t

P−→
∫ T

0
σ2
t dt+

N(t)∑
k=1

J2(Qm,k), as ∆→ 0.

BVm,t =
T/∆−1∑
j=1
|rm,j,t||rm,j+1,t|

P−→ µ2
1

∫ T

0
σ2
t dt, as ∆→ 0.

(5.9)

The RV efficiently estimates the quadratic variation. It converges to the QV as

the number of observations (N) approaches infinity (RV (N)
[a,b] → QV[a,b] as N → ∞

(see Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002)). It

is also apparent from Equation (5.9) that in the absence of jumps, RV converges

into the IV. Given that µ1 =
√

2/π, Barndorff-Nielsen and Shephard (2004) show

that the BV estimates the true IV when the number of observations approaches

infinity. From Equation (5.9), we have:

RVm,t − µ−2
1 BVm,t

P−→
N(t)∑
k=1

J2(Qm,k), as ∆→ 0. (5.10)

Therefore, the difference between the RV and BV captures the contribution from

the jump component. Barndorff-Nielsen and Shephard (2006); Alexeev et al.

(2017) show that Equation (5.10) can be used to detect the jumps by employ-

ing the feasible test statistic as expressed by Equation (5.11) below:

=̂ = 1√
∆
× 1√

(π2

4 + π − 5) max(1/T,DVm,t/BV 2
m,t)

×

µ−2
1 BVm,t −RVm,t

RVm,t

 j−→ N(0, 1).
(5.11)
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where DVm,t is the realized quad-power variation:

DVm,t =
T/∆−3∑
j=1
|rm,j,t||rm,j+1,t||rm,j+2,t|rm,j+3,t| (5.12)

In light of the discussion regarding how to compute the continuous and jump

beta presented above, we decompose the high-frequency return data into both

continuous and jump components. The standard CAPM beta in Equation (5.1) is

then redefined as:

ri,t = αi + βci r
c
m,t + βji .r

j
m,t + εi,t, (5.13)

where rm,t is the market return defined as the combination of the continuous (rcm,t)

and jump component (rjm,t).10 The total effect of the systematic beta or standard

beta (βi) in Equation (5.1) can be attributed to the combination of the effects of

the continuous beta (βci ) and jump beta (βji ). Intuitively, when the systematic risk

that is associated with continuous and jump components differs (thus βci 6= βji ),

then a cross-sectional regression could be employed to determine the components’

separate pricing. When the continuous beta and jump beta is different, it signifies

that the asset and market move separately during the ‘normal’ and ‘jump’ market

movement. If the continuous and jump beta are the same, then the model reduces

to the standard beta (thus βci = βji ) (Todorov and Bollerslev, 2010; Alexeev et al.,

2017). Under this restriction, the asset and market co-move in the same direction

in both the ‘normal’ and ‘jump’ market movement. It is extensively documented

in the literature that the continuous and jump betas are not the same and that

they capture different effects.

We employ high-frequency returns to estimate continuous and jump beta as dis-

cussed above and examine whether the realized higher-order co-moment risk mea-

sures will remain priced in the presence of continuous and jump betas. The pre-

dictive power of the jump beta has been extensively documented in the extant
10The market return is rm,t = rc

m,t + rj
m,t.
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high-frequency literature. Consequently, some researchers have shown that the

continuous and jump betas are priced separately (e.g., see Todorov and Boller-

slev, 2010; Dungey and Yao, 2013; Bollerslev et al., 2016; Chowdhury et al., 2018;

Chowdhury and Jeyasreedharan, 2019).

5.2.2 Asset pricing and realized higher-order co-moments

Post the initial studies by Rubinstein (1973); Ingersoll (1975); Kraus and Litzen-

berger (1975), several researchers have shown that the standard CAPM beta alone

cannot adequately capture the total systematic risk.11 The CAPM’s main short-

coming is that it assumes that the asset returns are normally distributed and the

characteristics of the agent’s utility function (by employing the quadratic utility

function). However, the normality assumption can be rejected since it is well doc-

umented in the existing literature that stock returns are skewed and kurtotic (see

Fama, 1965; Mandelbrot, 1997; McNeil and Frey, 2000; Bali, 2003). Therefore,

one cannot ignore the systematic skewness and kurtosis when investigating the

cross-sectional relationship between asset returns and market movements. The

CAPM model has been extended to account for the asymmetric and elongation

characteristics of the asset return distribution.12 The main goal of this extended

model is to obtain a linear relationship between excess/expected returns and sys-

tematic higher-order moment risk measures. Unlike the simple quadratic utility

function of the standard CAPM, the extended higher-order moment model uses

fourth-order Taylor series expansions to justify a four moments–based decision cri-

terion (Ranaldo and Favre, 2005; Liow and Chan, 2005; Sharpe, 1964; Jurczenko

and Maillet, 2006). This approach assumes explicitly that a rational investor has
11Banz (1981); Reinganum (1981) find that smaller firms have higher risk-adjusted returns on

average than larger firms. This evidence suggests that the size effect is significant and that the
CAPM is incorrectly specified. Rosenberg et al. (1985); Lakonishok et al. (1994) shows that the
standard CAPM beta does not capture the significance of the B/M value. Fama and French
(1993) shows that the three-factor model which is the extended CAPM beta model with an
additional two risk factors (size and B/M) is priced. This suggests that the CAPM beta is not
enough to explain the total systematic risk.

12Rubinstein (1973) was the first to account for the asymmetric characteristics of the asset
return distribution.
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a preference for (aversion to) the mean and positive skewness (variance, negative

skewness and kurtosis) of the stock returns.

The theoretical framework that justifies the four-moment CAPM is extensively

documented in (Ranaldo and Favre, 2005; Liow and Chan, 2005; Jurczenko and

Maillet, 2006). They consider the pricing model for the unconditional co-variance,

co-skewness and co-kurtosis of the stock return distribution. By definition, co-

skewness can be interpreted as the individual stock’s contribution to the market

portfolio’s skewness, while co-kurtosis is the individual stock’s contribution to the

market portfolio’s kurtosis.

The four-moment CAPM model is used in the pricing model for beta (volatility),

gamma (skewness) and kappa (kurtosis). Suppose that ri,t and rm,t represent the

stock i return, and m is the market return at time t. The investment problem

for an investor is to maximize the expected utility at the end of the period. The

investor’s expected utility can be represented as a Taylor expansion of order n:

E[U(ri,t)] = U [E(ri,t)] + 1
2!U

(2)[E(ri,t)]E[ri,t − E(ri,t)]2+
1
3!U

(3)[E(ri,t)]E[ri,t − E(ri,t)]3 + 1
4!U

(4)[E(ri,t)]E[ri,t − E(ri,t)]4

+
∞∑
n

1
n!U

(n)[E(ri,t)]E[ri,t − E(ri,t)]n

(5.14)

where Un is the nth derivative of the utility function U and σ={E[ri,t−E(ri,t)]2}
1
2 ,

s={E[ri,t − E(ri,t)]3}
1
3 , k={E[ri,t − E(ri,t)]4}

1
4 and m={E[ri,t − E(ri,t)]n}

1
n are,

respectively, the volatility, third moment, fourth moment and nth centred higher-

order moment of the investor’s portfolio return distribution. The skewness and

kurtosis are obtained when the third and fourth higher-order moments (s and k)

are normalized with the cubic and quartic volatility (σ), respectively.

Harvey and Siddique (2000a,b); Dittmar (2002); Galagedera et al. (2003) show

that conditional skewness and kurtosis help explain the cross-sectional variation

of expected returns across assets and remain significant even when they control

for size and B/M effect. Following Jurczenko and Maillet (2012), we define the
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co-skewness and co-kurtosis as:

Cos(ri,t, rm,t) = E

[ri,t − E(ri,t)][rm,t − E(rm,t)]2


Cok(ri,t, rm,t) = E

[ri,t − E(ri,t)][rm,t − E(rm,t)]3
 (5.15)

where co-skewness (Cos(ri,t, rm,t)) can be considered a measure of the co-variance

between the asset i return and the volatility of the market return m, while co-

kurtosis (Cok(ri,t, rm,t)) represents the co-variance between asset i return and mar-

ket skewness m. Jurczenko and Maillet (2012) state that an asset that exhibits

a positive (negative) co-skewness and a negative (positive) co-kurtosis with the

market tends to perform the best (worst) when the market becomes more volatile

and experiences substantial losses. The co-skewness and co-kurtosis between asset

i return and the market return provide a measure of the asset’s ability to protect

the investor from unexpected shocks of the market variance and skewness (Racine,

1998).

Assuming an indirect utility function, Jurczenko and Maillet (2012) show that the

financial market equilibrium for the four-moment CAPM between asset i and mar-

ket portfolio m can be set by maximizing equation (5.14), which can be expressed

as:

ri,t − rf = λi,1βi,t + λi,2γi,t + λi,3κi,t (5.16)

where ri,t− rf represents monthly excess realized returns and λi,1, λi,2 and λi,3 are

the systematic market risk premiums. Due to the investors’ utility function and

preference for or aversion to higher-order moment risk, we expect the λi,1 to be

positive (since variance is positive), the λi,2 to have an opposite sign to that of

the skewness of the market (since skewness can be positive or negative) and the

λi,3 to be positive (since kurtosis is positive), which is consistent with Galagedera
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et al. (2003).13 βi,t is the CAPM beta (systematic beta) that has already been

defined in a previous section. We also define γi,t as the normalized co-skewness

(systematic skewness) and κi,t as the normalized co-kurtosis (systematic kurtosis).

We assume that the systematic beta, systematic skewness and systematic kurtosis

in the four-moment CAPM are all priced separately, with the systematic skewness

and kurtosis being defined as:

γi,t = E([ri,t − E(ri,t)][rm,t − E(rm,t)]2)√
V ar(ri,t)V ar(rm,t)

= gamma

κi,t = E([ri,t − E(ri,t)][rm,t − E(rm,t)]3)√
V ar(ri,t)V ar(rm,t)3/2

= kappa

(5.17)

According to Ranaldo and Favre (2005); Liow and Chan (2005), for an increase in

beta, a decrease in gamma, and an increase in kappa, the systematic risk premia

(λ(s)) in Equation (5.16) are given by:

λi,1 = dE(ri,t)
dσ2(ri,t)

σ2(rm,t), λi,2 = dE(ri,t)
dS3(ri,t)

S3(rm,t), λi,3 = dE(ri,t)
dK4(ri,t)

K4(rm,t)

(5.18)

Hence, the four-moment CAPM in Equation (5.16) is a combination of the system-

atic beta, systematic skewness and systematic kurtosis with the respective market

price (λ(s)). If the investor prices the co-moments of βi,t, γi,t and κi,t, then the

risk premium values of λi,1, λi,2 and λi,3 should be significantly different from zero.

λi,1 can be treated as the marginal investor risk-aversion to variance multiplied

by the market variance (σ2(rm,t)); λi,2 is the marginal investor risk-preference for

skewness multiplied by the market skewness (S3(rm,t)); and λi,3 is the marginal

investor risk-aversion to kurtosis multiplied by the market kurtosis (K4(rm,t)).
13The CAPM implies that stocks that covary strongly with the market have contemporaneously

high average returns over the same period. Thus, CAPM suggests that an increasing relationship
exists between realized average returns and market betas.
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5.2.2.1 Downside and Upside systematic risk

Several studies in the financial literature have documented that investors care

differently about downside losses and upside gains. Therefore, risk-averse investors

will demand greater compensation for holding stocks with a high level of downside

risk. This implies that downside and upside risk may be priced separately (Roy,

1952; Ang et al., 2006; Kahneman and Tversky, 2013). Ang et al. (2006) shows that

aversion to downside risk (i.e., downside beta) is significantly priced in comparison

to upside risk (i.e., upside beta). To construct downside and upside beta, one must

define a truncation point for capturing the downside and upside states. Bawa and

Lindenberg (1977); Ang et al. (2002); Lee et al. (2008); Botshekan et al. (2012);

Alles and Murray (2013, 2017) use the average market return as the cut-off point

for the benchmark, while Doan et al. (2014) use a lower and higher quartile of the

stock market return distribution as the cut-off for downside beta and upside beta,

respectively. In contrast, Ang et al. (2006) argues that their empirical results did

not depend on which truncation point used in capturing the downside and upside

betas. They show that their results are robust when average market returns, the

risk-free rate, or zero rates of return are used as cut-off points for computing

downside and upside beta.14

In this study, the zero rate of return is used as a cut-off point for computing the

downside beta (β−i,0) and upside beta (β+
i,0):

β−i,0 = Cov(ri,t, rm,t|rm,t < 0)
V ar(rm,t|rm,t < 0) & β+

i,0 = Cov(ri,t, rm,t|rm,t > 0)
V ar(rm,t|rm,t > 0) (5.19)

Considering that investors generally consider all forms of downside risks, it can

be inferred from the above discussion that gamma and kappa could also be

computed with both downside and upside states. Hence defined as:
14Employing the rational disappointment aversion utility function of Gul (1991), Ang et al.

(2006) shows that downside risk is priced in an equilibrium setting.
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γ−i,0 = E([ri,t − E(ri,t)][rm,t − E(rm,t)|rm,t < 0]2)√
V ar(ri,t)V ar(rm,t|rm,t < 0)

κ−i,0 = E([ri,t − E(ri,t)][rm,t − E(rm,t|rm,t < 0)]3)√
V ar(ri,t)V ar(rm,t|rm,t < 0)3/2

γ+
i,0 = E([ri,t − E(ri,t)][rm,t − E(rm,t)|rm,t > 0]2)√

V ar(ri,t)V ar(rm,t|rm,t > 0)

κ+
i,0 = E([ri,t − E(ri,t)][rm,t − E(rm,t|rm,t > 0)]3)√

V ar(ri,t)V ar(rm,t|rm,t > 0)3/2

(5.20)

The sign expected for the coefficients of the conditional systematic risk is inferred

from Galagedera et al. (2003), we expect the risk premium of upside beta to be

positive, downside beta to be negative. For upside gamma and downside gamma,

the sign will be conditional on the sign of the market skewness. Upside kappa to

be positive and downside kappa to be negative.

Table 5.1 reports the correlation matrix for all variables that are used for analysis

in this study. The standard CAPM beta is observed to capture different effects

in comparison to the downside and upside beta estimates. The correlations of

standard CAPM beta with downside beta and upside beta is 0.713 and 0.858, re-

spectively. This indicates that the downside and upside betas capture different risk

components. A correlation coefficient of 0.302 is observed for both downside and

upside betas, which suggests that a high downside exposure does not necessarily

imply a high upside exposure. These results are consistent with those of Ang et al.

(2006). The correlation coefficients for standard CAPM beta with continuous and

jump betas is 0.111 and 0.699, respectively. However, the correlation between

continuous and jump betas is 0.079; this affirms the notion that continuous and

jump betas capture different aspects of risk. The correlations between downside

gamma and upside gamma is –0.358, that of downside kappa and upside kappa is

0.255. This implies that systematic risk factors capture different effects.
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Table 5.1: Correlation matrix of variables, full-sample period (Jan 2003 - Dec 2017)
β β− β+ βc βj γ γ− γ+ κ κ− κ+ B/M Illiq log(size) PRet VaR

β 1 0.713 0.858 0.111 0.699 0.009 -0.443 0.508 0.455 0.373 0.434 0.003 -0.030 0.291 0.006 -0.021
β− 1 0.302 0.049 0.448 -0.192 -0.521 0.271 0.373 0.435 0.228 -0.001 -0.034 0.270 -0.015 0.096
β+ 1 0.116 0.613 0.188 -0.209 0.522 0.321 0.169 0.446 0.003 -0.016 0.219 0.020 -0.083
βc 1 0.079 -0.002 -0.073 0.085 0.070 0.058 0.066 0.001 -0.004 0.094 0.004 0.004
βj 1 0.022 -0.236 0.283 0.249 0.203 0.245 0.001 -0.008 0.081 0.003 -0.040
γ 1 0.625 0.433 -0.291 -0.652 0.447 0.002 0.003 -0.010 -0.009 0.007
γ− 1 -0.358 -0.803 -0.960 -0.309 -0.004 0.020 -0.394 0.006 -0.088
γ+ 1 0.632 0.292 0.961 0.008 -0.017 0.436 -0.019 0.097
κ 1 0.837 0.629 0.007 -0.018 0.381 -0.013 0.080
κ− 1 0.255 0.004 -0.017 0.320 -0.005 0.070
κ+ 1 0.007 -0.015 0.367 -0.018 0.076
B/M 1 0.004 0.064 0.077 -0.020
Illiq 1 -0.006 -0.031 -0.001
log(size) 1 0.030 0.201
PRet 1 0.009
VaR 1
This table reports the correlation of firm characteristics of the variables used in the analysis of this study. The full sample period starts 6 January
2003 - 29 December 2017. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ),
downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq),
natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

5.2.3 Cross-sectional regression

To investigate the relationship between asset i excess realized monthly returns and

systematic risk components, we employ firm-level data and run a cross-sectional

regression as proposed by Fama and MacBeth (1973). The cross-sectional regres-

sion for each month t = 1, 2, .., T, and all stocks i = 1, 2, ..., N can be expressed in

the following models:

ri,t − rf = λi,0 + λi,1βi,t + εi,t, Model 1

ri,t − rf = λi,0 + λi,1βi,t + λi,2γi,t + εi,t, Model 2

ri,t − rf = λi,0 + λi,1βi,t + λi,2γi,t + λi,3κi,t + εi,t, Model 3

ri,t − rf = λi,0 + λi,1βi,t +
p∑

k=2
λkZi,k,t + εi,t, Model 4

ri,t − rf = λi,0 + λi,1βi,t + λi,2γi,t +
p∑

k=3
λkZi,k,t + εi,t, Model 5

ri,t − rf = λi,0 + λi,1βi,t + λi,2γi,t + λi,3κi,t

+
p∑

k=4
λkZi,k,t + εi,t, Model 6 (5.21)

ri,t − rf = λi,0 + λci,1β
c
i,t + λji,2β

j
i,t + λi,3γi,t + λi,4κi,t + εi,t, Model 7
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ri,t − rf = λi,0 + λci,1β
c
i,t + λji,2β

j
i,t + λi,3γi,t + λi,4κi,t

+
p∑

k=5
λkZi,k,t + εi,t, Model 8

ri,t − rf = λi,0 + λi,1β
−
i,t + λi,2β

+
i,t + λi,3γ

−
i,t + λi,4γ

+
i,t + λi,5κ

−
i,t

+λi,6κ+
i,t + εi,t, Model 9

ri,t − rf = λi,0 + λi,1β
−
i,t + λi,2β

+
i,t + λi,3γ

−
i,t + λi,4γ

+
i,t + λi,5κ

−
i,t + λi,6κ

+
i,t

+
p∑

k=7
λkZi,k,t + εi,t, Model 10

where ri,t − rf denotes the excess realized monthly return for stock i with the

explanatory variables on the right-hand side of Equation (5.21), Zi,k,t is a vector

of characteristics and controls for the ith firm observed at month t. The illiquidity

factor (Illiq) of Amihud (2002), the size factor (log(size)) of Fama and French

(1993), book-to-market ratio (B/M) of Fama and French (1992), and value at risk

(VaR) at 1% level of significance and past-returns (PRet) of Amaya et al. (2015)

are the control variables. Pettengill et al. (1995) and Hung et al. (2004) show

the effects of using realized returns as a proxy for expected returns in regard to

the Fama-MacBeth two-stage regression procedure. We run the cross-sectional

regression with Newey and West (1987) heteroskedastic-robust standard errors, as

such the significance levels are assessed with Newey-West correct t-statistics. The

average coefficient (λ) depicts the premium awarded for one unit of exposure of

each explanatory variable. We focus on contemporaneous relationships between

excess realized monthly returns and the explanatory variables similar to that of

Ang et al. (2006); Lewellen and Nagel (2006); Alles and Murray (2013). This

approach avoids any assumption that risk exposures are not time varying. Doan

et al. (2014) showed that beta asymmetry is driven by time-varying higher-order

risk preferences across different market states. It is worth emphasizing that the

realized higher-order moment estimates employed in our analysis are time-varying.

In the existing financial literature, Models 1–3 of Equation (5.21) are popularly

126



known as the two-, three- and four-moment CAPM models, respectively.

5.3 Data

In the US framework, it is typical to use return series sampled at a 5-minute sam-

pling frequency as a proxy for unbiased high-frequency return data (Andersen and

Bollerslev, 1997; Andersen et al., 2007; Huang and Tauchen, 2005). The under-

lying rationale for this is that it is a trade-off between microstructure noise and

variance bias. We observe that the 5-minute unbiased sampling frequency does not

hold for the Australian stock return series but rather a 10 to 30-minutes sampling

frequency maybe preferable.15 Bandi and Russell (2008) affirm the importance

of computing RV with unbiased intra-day return data, since computing RV with

contaminated return data results in the significant accumulation of noise, which

may result in obtaining biased estimates.16 This study uses intra-day 15-minute

last traded prices of 142 stocks listed on the ASX stock market. The data sample

starts from January 2003 to December 2017 from 10 am to 4 pm of each trading

day, giving us a sample of 24 intra-day price series. We exclude weekends and

overnight return series from the data. Our sample period results in 94,350 price

series over 15 years (180 months). The number of stocks that used in the analysis

is solely dependent on the availability of the data for the calendar period that was

considered. The 90-day accepted bill rate is used as the proxy for the risk-free rate,

and the intra-day returns are computed as the change in the logarithm of the last

prices of successive days. We compute the monthly normalized (un)conditional

realized higher-order co-moments from high-frequency return data.
15The evidence for this is in Chapter 2 of this thesis, which is currently under review at ‘The

Quarterly Review of Economics and Finance’.
16Bandi and Russell (2008) recommend that when sampling very illiquid stocks, a 15-minute

frequency could be the preferred sampling option for computing realized volatility (which should
be lowered for very high liquid stocks). Bollerslev et al. (2008) shows that the optimal sampling
frequency for 40 US equities was 17.5 minutes. Oomen (2006) shows that the optimal sampling
frequency for realized volatility for IBM stock to be 20 minutes, while it changes to about 3
minutes with a first-order bias correction. Using DJI30 stocks, Hansen and Lunde (2006) shows
that the noise in realized volatility might be ignored when intra-day returns are sampled at
low frequencies (e.g., 20 minutes). Andersen et al. (2003) employs a 30-minute return series to
compute the RV.
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Alles and Murray (2017) have shown that although Australia is a developed coun-

try, its equity market requires separate investigation, as some aspects differ from

those of major international equity markets. They show that relative to the US and

UK markets, the trading volume for the Australian equity market is less than 5%

of that recorded for the New York stock exchange. The Australian equity market

is concentrated in a small number of sectors, with the materials sector dominat-

ing and rendering the market highly weighted in one sector. Alles and Murray

(2017) also report that the Australian equity market is mainly represented and

weighted by domestic firms, with less than 2% representing overseas companies.

This subsequently entails that investors do not have a wide range of investment

opportunities, which in turn might result in cyclical economic patterns. The un-

availability of alternative investment options may affect the extent of reward that

is available for assuming downside risk in the Australian equity market. It is worth

emphasizing that the Australian equity market is unique and that its risk exposure

might be different from those of major international equity markets.

In addition to the realized higher-order co-moments, we also consider explanatory

variables (Zi,k,t) from Equation (5.21), these include the book-to-market ratio

(B/M) of Fama and French (1992) which is measured as the ratio of the book

value of common equity to the market value of equity for the stock i. Illiquidity of

stock i is measured as the average ratio of the absolute stock return to the dollar

trading volume for that month (Amihud, 2002). A firm’s size is measured as

the natural logarithm of its market capitalization (log(size)) of Fama and French

(1993). Past-return is the lagged return over previous month and value-at-risk

(VaR) at 1% significance level by Amaya et al. (2015). Apart from the B/M

and log(size) which was computed with data from DataStream, the remaining

variables were computed with data from Thompson Reuters Tick History provided

by SIRCA database.

Table 5.2 presents summary statistics for our various risk measures used for the

analysis in this study. The statistics include the mean, standard deviation, skew-

ness, kurtosis, minimum, and maximum of values of the variables for the full-
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sample period. The standard CAPM beta, continuous beta, jump beta, and kappa

display positive returns over the studied period (6 January 2003 to 29 December

2017), while the cross-sectional average of gamma is negative. We observe that

the average standard CAPM beta is low when compared with that of upside and

downside betas, which is similar to Alles and Murray (2017). This could be at-

tributed to the constituents of the S&P/ASX200 index being large and mid-size

firms with relatively lower betas. In comparison, the average for the jump beta

slightly increases. In the case of the normalized conditional co-moments, apart

from downside gamma, the rest of the estimates depicts positive return.

Table 5.2: Summary statistics, full-sample period (Jan 2003 - Dec 2017)

Mean Std. Dev Min Max Skewness Kurtosis
β 0.6410 0.7565 -2.1381 3.6388 0.0358 11.4408
γ -0.0799 0.8236 -2.3428 2.2518 0.0587 3.5009
κ 9.1531 8.9347 -16.1289 30.2714 -0.0913 3.0453
Illiq 1.58E-05 0.0001 7.15E-11 0.0014 8.5979 86.4208
log(size) 6.9847 1.9964 0.2391 11.5866 -0.1776 3.0960
PRet 0.0053 0.1333 -0.5704 0.6724 0.3481 24.1345
B/M 0.0042 0.0101 -0.0055 0.0904 5.1230 41.2669
VaR -0.0129 0.0090 -0.0729 -0.0038 -3.0759 21.6454
βc 0.4678 1.5678 -5.7007 7.3960 0.1344 8.2395
βj 0.9273 1.9456 -8.0259 10.5459 -0.2959 21.7421
β+ 0.7470 1.0581 -3.0605 5.4173 0.1897 12.4047
β− 0.7464 1.0658 -4.0060 4.4671 -0.3692 12.2085
γ+ 1.1201 1.3225 -2.7247 4.3797 -0.0672 3.2713
γ− -1.2853 1.4061 -4.7540 2.9670 0.1406 3.4587
κ+ 10.6166 13.1549 -29.9428 44.4020 -0.0923 3.6206
κ− 14.2700 16.1457 -37.0612 56.0004 -0.1516 3.8540
This table reports the cross-sectional averages of the descriptive statistics of the
variables used in the analysis of this study. The full sample period start 6 January
2003 - 29 December 2017. The standard CAPM beta (β), downside beta (β−),
upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside
gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa
(κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’
market capitalization (log(size)), lagged return over previous month (PRet), value-
at-risk (VaR).
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5.4 Empirical Results

5.4.1 Single ranking

We investigate the relationship between Australian firms’ returns and each ex-

planatory variable. Inhere, we compute 10-decile equally weighted portfolios that

are sorted by each firm characteristic. We separately consider a full sample (all

periods), an upmarket period (when the monthly excess realized market return

exceeds the risk-free monthly rate) and the downmarket period (when the excess

market return fall below the risk-free rate). The results are reported in Table 5.3.

In Panel A of Table 5.3, we report the average portfolio return for each decile.

We also report the difference in average returns between portfolio 1 (lowest) and

portfolio 10 (highest); its t-test statistics and p-values are used to determine the

significance of the high-minus-low portfolio spread. The MR p-value of Patton

and Timmermann (2010) is used to determine the presence of any monotonically

increasing relationship within the entire sorted portfolio. When the p-value is less

than or equal to 0.05, the test is in favour of the alternative hypothesis, which sup-

ports the presence of a monotonically increasing pattern in the entire portfolio.

The average return on the high-beta stocks (i.e., 0.006) is observed to exceed that

of the low-beta stocks (i.e., 0.001). The high-minus-low mean spread (i.e., 0.005)

of the beta portfolio indicates a direct relationship between beta and excess re-

turns. This suggests that high-ranked portfolios offer higher returns in comparison

to lower-ranked portfolios, though the t-test and p-value on the high-minus-low

spread are statistically insignificant. Alles and Murray (2017); Bilinski and Lyssi-

machou (2014) states that the insignificant high-minus-low beta–sorted average

return can be attributed to the notion that the actual relationship between high-

minus-low investments are obscured when large positive and negative returns are

combined. Therefore, this study aims to capture the desired relationship when

considering upmarket and downmarket periods separately. For downside beta, the

average return on the low downside beta stocks is positive (i.e., 0.039), while the
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average return on the high-downside beta stocks is negative (i.e., -0.028). This sug-

gests that any investor who bears lower-ranked downside-beta risk may experience

relatively higher returns. This is confirmed by the negative average return (i.e.,

-0.067) that is observed for the difference between the high-ranked and low-ranked

portfolios. We find that the high-minus-low spread for the downside beta portfolio

to be statistically significant at 1% level. In regard to the upside beta, we observe

that the mean spread for the highest and lowest portfolios to be positive (i.e.,

0.072) and statistically significant at 1% level, which implies that higher-ranked

upside beta portfolios will offer relatively higher returns than the lower-ranked

upside beta portfolios. Concerning gamma, downside and upside gamma, upside

kappa, B/M and illiquidity, we observe that the high-minus-low spreads are posi-

tive and statistically significant. This implies that the higher-ranked portfolios of

these variables lead to a higher return to the investor. However, downside kappa

and log(size) have a significant and inverse relationship with excess returns. Hence,

investors investing in a higher-ranked portfolio of downside kappa and log(size)

would experience relatively lower returns. We observe that gamma, downside

(upside) gamma, upside kappa and illiquidity exhibit monotonically increasing

patterns within the entire portfolio, according to the MR p-value results obtained.

In Panel B of Table 5.3, the results for the upmarket periods indicate that the

high-minus-low beta spread is positive (i.e., 0.024) and significant; this aligns with

our expectations for higher-ranked beta risk yielding higher returns to the investor

in the upmarket period. For the portfolio sorted by downside beta, the difference

between the high-ranked and low-ranked is negative (i.e., -0.023) and significant.

This may be explained by excess exposure to the downside risk measures in the

upmarket condition. In this scenario, although the market is in an up-state, invest-

ing in higher-ranked downside betas results in investors experiencing lower excess

returns. Conversely, a sizeable positive (i.e., 0.057) and significant value of excess

return is generated from upside beta investments. We also observe that jump

beta, gamma, downside and upside gamma, kappa, upside kappa, B/M and illiq-

uidity have positive and significant high-minus-low mean spreads which suggest
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that their investments also leads to higher excess realized returns while downside

kappa and VaR exhibit significant losses. The monotonicity test shows that beta,

upside beta, jump beta, gamma, upside gamma, upside kappa, B/M and illiquidity

have a monotonically increasing relationship in the whole portfolio.

Finally, the results for the downmarket period in Panel C reveals that the high-

minus-low beta spread is negative (i.e., -0.019) and significant. This is unsurpris-

ing, as higher-ranked beta investments should yield lower excess realized returns

in a bear market. In regard to portfolios being sorted by downside beta, we ob-

serve that the difference between the high-ranked and low-ranked downside betas

is negative (i.e., -0.045) and significant. For the upside beta portfolio, we note

a positive (i.e., 0.015) and significant value for the high-minus-low spread, which

implies that higher-ranked upside beta investments yields significantly higher ex-

cess realized returns. Further, we also observe that gamma, downside and upside

gamma, upside kappa, B/M, illiquidity and VaR have positive and significant high-

minus-low mean spreads. Such investments generate higher excess realized returns

to the investors. Conversely, continuous beta, jump beta, kappa, downside kappa

and log(size) exhibit significant losses or lower excess realized returns to investors.

Only gamma and downside gamma are observed to have had a monotonically

increasing relationship in the entire portfolio for the downmarket period.

In short, Table 5.3 outlines the single sorting of excess realized return on our

risk measures. The results are also pertinent and robust in the upmarket and

downmarket periods. The findings in this section are consistent with the results of

Table C1, which reports the Fama-MacBeth regression run separately for each risk

measure we consider. It is worth mentioning that the single-sorting approach does

not control for any other known patterns in the cross-section of stock returns. The

double-sorting approach and Fama-MacBeth regression are employed to address

this limitation.
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Table 5.3: Estimates of realized returns for equally-weighted decile portfolio sorted
on firm characteristics, full-sample period (Jan 2003-Dec 2017)

Portfolio 1(L) 2 3 4 5 6 7 8 9 10(H) H-L (H-L) t-stat (H-L) p-value MR p-value
Panel A: All periods

β 0.001 0.002 -0.001 0.003 -0.002 0.004 0.004 0.001 0.002 0.006 0.005 0.529 0.298 0.698
β− 0.039 0.014 0.002 0.007 0.001 0.002 -0.003 -0.003 -0.011 -0.028 -0.067*** -8.907 0.000 0.850
β+ -0.029 -0.008 -0.007 0.000 -0.002 0.001 0.004 0.008 0.010 0.043 0.072*** 9.460 0.000 0.065
βc 0.005 0.001 -0.002 0.000 0.001 -0.003 -0.001 0.001 0.003 0.000 -0.005 -1.173 0.120 0.178
βj -0.002 -0.002 0.002 0.002 0.004 0.001 0.004 0.001 0.001 0.007 0.009 0.985 0.162 0.509
γ -0.051 -0.025 -0.017 -0.012 0.003 0.005 0.012 0.020 0.030 0.055 0.106*** 19.736 0.000 0.000
γ− -0.025 -0.015 -0.002 -0.004 -0.002 0.000 0.005 0.005 0.021 0.037 0.062*** 14.359 0.000 0.024
γ+ -0.040 -0.010 -0.003 0.001 0.002 0.005 0.006 0.013 0.016 0.030 0.070*** 14.707 0.000 0.000
κ -0.003 0.005 0.006 -0.001 0.002 0.001 0.002 0.004 0.001 0.003 0.006 1.234 0.109 0.600
κ− 0.032 0.015 0.009 0.001 0.005 -0.002 -0.002 -0.003 -0.011 -0.024 -0.056*** -13.505 0.000 0.218
κ+ -0.033 -0.011 0.001 -0.001 0.001 0.006 0.005 0.010 0.013 0.030 0.063*** 14.140 0.000 0.002
B/M -0.004 -0.013 -0.009 -0.010 0.000 -0.001 0.001 0.014 0.017 0.023 0.027*** 4.779 0.000 0.517
Illiq -0.040 -0.010 -0.003 0.001 0.002 0.005 0.006 0.013 0.016 0.030 0.070*** 14.707 0.000 0.000
log(size) 0.011 0.010 0.002 0.000 0.002 -0.002 0.002 -0.001 -0.002 -0.003 -0.014*** -2.755 0.003 0.366
Pret 0.005 0.002 0.001 -0.002 0.004 0.006 -0.001 0.002 0.003 0.001 -0.004 -0.782 0.217 0.894
VaR 0.012 -0.004 -0.002 0.002 0.001 0.004 0.001 0.001 0.004 0.001 -0.011 -0.961 0.168 0.860

Panel B: Upmarket periods
β 0.010 0.009 0.009 0.012 0.012 0.016 0.018 0.018 0.023 0.033 0.024*** 4.200 0.000 0.002
β− 0.035 0.017 0.011 0.015 0.013 0.015 0.013 0.015 0.012 0.013 -0.023*** -3.627 0.000 0.885
β+ -0.006 0.004 0.005 0.011 0.013 0.016 0.019 0.023 0.025 0.051 0.057*** 8.522 0.000 0.000
βc 0.019 0.013 0.001 0.003 0.009 0.013 0.013 0.017 0.018 0.022 0.003 1.226 0.110 0.993
βj 0.008 0.007 0.008 0.012 0.015 0.016 0.018 0.020 0.022 0.034 0.025*** 3.998 0.000 0.026
γ -0.013 0.001 0.007 0.010 0.017 0.019 0.025 0.026 0.029 0.045 0.058*** 11.798 0.000 0.000
γ− 0.005 0.010 0.015 0.013 0.016 0.015 0.020 0.015 0.025 0.033 0.028*** 6.486 0.000 0.632
γ+ -0.011 0.006 0.012 0.016 0.017 0.019 0.020 0.023 0.028 0.036 0.047*** 11.368 0.000 0.000
κ 0.007 0.013 0.017 0.014 0.014 0.016 0.019 0.021 0.022 0.023 0.016*** 4.820 0.000 0.077
κ− 0.031 0.021 0.017 0.018 0.017 0.015 0.014 0.015 0.012 0.005 -0.026*** -6.120 0.000 0.075
κ+ -0.006 0.005 0.015 0.016 0.015 0.019 0.019 0.022 0.026 0.035 0.041*** 11.437 0.000 0.014
B/M 0.005 0.009 0.011 0.010 0.016 0.014 0.019 0.022 0.025 0.025 0.020*** 4.355 0.000 0.029
Illiq -0.011 0.006 0.012 0.016 0.017 0.019 0.020 0.023 0.028 0.036 0.047*** 11.368 0.000 0.000
log(size) 0.014 0.019 0.017 0.017 0.017 0.015 0.016 0.016 0.014 0.013 -0.001 -0.371 0.355 0.488
PRet 0.021 0.017 0.016 0.014 0.015 0.018 0.013 0.017 0.014 0.016 -0.005 -1.253 0.105 0.909
VaR 0.030 0.017 0.016 0.017 0.016 0.018 0.014 0.013 0.012 0.006 -0.024*** -3.066 0.001 0.498

Panel C: Downmarket periods
β -0.008 -0.007 -0.010 -0.009 -0.014 -0.012 -0.014 -0.018 -0.021 -0.027 -0.019*** -3.305 0.000 0.520
β− 0.004 -0.004 -0.009 -0.008 -0.012 -0.013 -0.017 -0.018 -0.023 -0.041 -0.045*** -6.750 0.000 0.117
β+ -0.023 -0.012 -0.012 -0.011 -0.015 -0.015 -0.016 -0.015 -0.016 -0.008 0.015*** 4.001 0.000 0.899
βc -0.014 -0.012 -0.004 -0.003 -0.008 -0.016 -0.014 -0.016 -0.015 -0.022 -0.008*** -2.851 0.002 0.969
βj -0.010 -0.009 -0.006 -0.010 -0.011 -0.016 -0.014 -0.019 -0.021 -0.026 -0.016*** -2.954 0.002 0.940
γ -0.038 -0.026 -0.023 -0.022 -0.014 -0.014 -0.013 -0.006 0.000 0.010 0.048*** 8.041 0.000 0.001
γ− -0.030 -0.025 -0.017 -0.017 -0.018 -0.014 -0.014 -0.009 -0.004 0.004 0.033*** 8.421 0.000 0.006
γ+ -0.029 -0.017 -0.015 -0.015 -0.015 -0.013 -0.014 -0.010 -0.012 -0.005 0.024*** 5.937 0.000 0.147
κ -0.010 -0.008 -0.011 -0.015 -0.012 -0.014 -0.016 -0.017 -0.021 -0.020 -0.010*** -2.855 0.002 0.711
κ− 0.001 -0.006 -0.008 -0.017 -0.012 -0.017 -0.016 -0.018 -0.023 -0.029 -0.030*** -7.799 0.000 0.503
κ+ -0.027 -0.016 -0.014 -0.017 -0.014 -0.013 -0.014 -0.012 -0.013 -0.005 0.022*** 5.817 0.000 0.352
B/M -0.009 -0.022 -0.020 -0.020 -0.016 -0.016 -0.017 -0.008 -0.008 -0.002 0.007** 2.177 0.015 0.996
Illiq -0.029 -0.017 -0.015 -0.015 -0.015 -0.013 -0.014 -0.010 -0.012 -0.005 0.024*** 5.937 0.000 0.147
log(size) -0.003 -0.009 -0.016 -0.017 -0.015 -0.017 -0.015 -0.017 -0.016 -0.015 -0.012*** -3.168 0.001 0.265
PRet -0.016 -0.014 -0.015 -0.016 -0.011 -0.012 -0.014 -0.015 -0.012 -0.015 0.001 0.387 0.349 0.467
VaR -0.018 -0.021 -0.018 -0.015 -0.015 -0.014 -0.013 -0.012 -0.009 -0.005 0.013* 1.651 0.049 0.084
This table reports the estimates of expected returns for equally-weighted 10-decile portfolio sorted on firm characteristics for the 142 Australian stocks from our
sample starting 6 January 2003 - 29 December 2017. Panel A presents the full sample (all periods), Panel B is the upmarket period which is defined as when
the monthly excess realized market return exceeds the risk-free rate and Panel C is the downmarket period is when the excess market return falls below the
risk-free rate. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−),
upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market
capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR) and H-L is high-minus-low portfolio.

5.4.2 Double ranking

In the literature, it is well documented that downside beta and gamma both

capture asymmetric higher moments and downside risk. Following Ang et al.

(2006); Alles and Murray (2017), we measure the magnitude of the reward for
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exposure to downside beta, while explicitly controlling for the effect of gamma.

The results are reported in Table 5.4.

Table 5.4: Realized returns of stocks sorted by realized downside beta and realized
gamma

Panel A1: Gamma (All period) Panel A2: Downside Beta (All period)
Portfolio 1 Low 2 3 4 5 High Average Portfolio 1 Low 2 3 4 5 High Average

D
ow

ns
id
e
Be

ta

1 Low -1.76% 2.22% 2.23% 3.48% 5.93% 2.42%

G
am

m
a

1 Low -2.29% -2.29% -2.81% -3.75% -6.14% -3.46%
2 -2.32% -0.20% 0.85% 1.76% 3.65% 0.75% 2 -0.31% -1.31% -0.84% -1.65% -3.36% -1.50%
3 -2.18% -0.71% 0.26% 0.91% 3.05% 0.27% 3 1.97% 1.05% 0.19% 0.09% -1.41% 0.38%
4 -2.47% -1.65% 0.07% 0.66% 2.73% -0.13% 4 3.06% 1.29% 0.96% 1.12% 1.06% 1.50%

5 High -5.79% -2.99% -1.67% -0.42% 1.60% -1.86% 5 High 5.30% 3.67% 3.25% 2.87% 4.49% 3.92%

High-Low -4.03% -5.21% -3.90% -3.91% -4.33% -4.28% High-Low 7.59% 5.96% 6.06% 6.62% 10.63% 7.37%
t-stat -6.55 -7.86 -6.25 -6.30 -5.25 -6.44 t-stat 13.01 14.91 15.20 15.55 12.34 14.20

Panel B1: Gamma (upmarket period) Panel B2: Downside Beta (upmarket period)
Portfolio 1 Low 2 3 4 5 High Average Portfolio 1 Low 2 3 4 5 High Average

D
ow

ns
id
e
Be

ta

1 Low -3.34% 4.08% 5.25% 5.71% 8.62% 4.06%

G
am

m
a

1 Low -3.38% -0.05% -0.18% -0.59% -1.39% -1.12%
2 -0.38% 1.73% 3.17% 3.83% 5.98% 2.86% 2 2.43% 1.40% 1.55% 1.08% 0.25% 1.34%
3 -0.41% 1.73% 2.61% 3.60% 5.49% 2.61% 3 4.79% 3.25% 2.73% 2.58% 2.78% 3.22%
4 0.02% 1.41% 2.48% 3.83% 5.63% 2.67% 4 6.23% 3.71% 3.38% 3.64% 4.61% 4.31%

5 High -1.63% 0.90% 2.19% 3.68% 6.10% 2.25% 5 High 7.95% 6.15% 5.25% 5.25% 6.63% 6.25%

High-Low 1.71% -3.18% -3.06% -2.04% -2.52% -1.82% High-Low 11.32% 6.20% 5.44% 5.85% 8.02% 7.37%
t-stat 3.21 -3.55 -3.94 -3.28 -2.66 -2.04 t-stat 21.25 13.16 11.98 12.40 7.52 13.26

Panel C1: Gamma (downmarket period) Panel C2: Downside Beta (downmarket period)
Portfolio 1 Low 2 3 4 5 High Average Portfolio 1 Low 2 3 4 5 High Average

D
ow

ns
id
e
Be

ta

1 Low 2.70% -0.31% -1.90% 0.44% 2.24% 0.63%

G
am

m
a

1 Low 2.69% -5.35% -6.42% -8.05% -12.67% -5.96%
2 -4.98% -2.85% -2.29% -1.07% 0.45% -2.15% 2 -4.06% -5.03% -4.13% -5.40% -8.32% -5.39%
3 -4.60% -4.06% -2.96% -2.78% -0.28% -2.94% 3 -1.88% -1.96% -3.27% -3.30% -7.16% -3.51%
4 -5.89% -5.83% -3.25% -3.65% -1.24% -3.97% 4 -1.29% -2.03% -2.32% -2.37% -3.79% -2.36%

5 High -11.48% -8.30% -6.97% -5.99% -4.60% -7.47% 5 High 1.67% 0.30% 0.49% -0.39% 1.57% 0.73%

High-Low -14.19% -7.99% -5.07% -6.43% -6.83% -8.10% High-Low -1.02% 5.66% 6.91% 7.66% 14.24% 6.69%
t-stat -25.20 -8.72 -5.41 -5.68 -4.96 -9.99 t-stat -1.82 8.90 10.68 10.94 10.61 7.86

This table examines the relation between downside beta and gamma. In Panel A1, we first rank stocks into quintiles (1-5) based-on gamma. Then, we rank
stocks within each first-sort quintile into additional quintiles according to downside beta. For each 5×5 grouping, we form an equal-weighted portfolio. In Panel
A2, we reverse the order so that we first sort on downside beta and then on gamma. The sample period is 6 January 2003 - 29 December 2017 for 142 Australian
stocks. The row labelled “High-Low” reports the difference between the returns of portfolio 5 and portfolio 1. The entry labelled t-stat is the t-statistic of the
High-Low value. For the column labelled “Average,” we report the average return of stocks in each second sort quintile. This controls for gamma (downside
beta) in Panel A1 (A2). The procedure is repeated for upmarket period in Panels B1 and B2. Panel C1 and C2 report the results for downmarket period.

We control for the effect of gamma before assessing the return to downside beta.

First, all realized stock returns are ranked into quintile portfolios using realized

gamma. Each gamma quintile stock is then sorted into five equally weighted

portfolios based on downside beta and then average the excess returns of each

downside beta quintile over the five gamma portfolios. This procedure ensures

that the stocks that are allocated to each quintile have relatively similar levels

of gamma. Hence, we effectively control for the differences in gamma for each

portfolio. In controlling for gamma exposure, the investor’s reward for downside

beta can be obtained.

Panel A1 of Table 5.4 reports the average realized excess returns of 25 gamma ×

downside beta portfolios. The column labelled ‘Average’ outlines the average real-

ized excess returns of the downside beta quintiles while controlling for the gamma
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risk for the full-sample period (all periods). We also highlight the differences in

the average returns between the highest and lowest-ranked portfolios (high-minus-

low) and the significance of the high-minus-low portfolio reported at ‘t-stat’. We

note that controlling for gamma enables the relationship between investors’ ex-

cess returns and downside beta to be investigated explicitly. The average realized

excess return of –4.28% in the bottom right of Panel A1 represents the differ-

ence in average excess returns between the fifth and first downside beta quintile

portfolios that control for gamma risk. This difference has a t-statistic of –6.44

and suggests that gamma risk cannot account for the losses of bearing downside

beta risk. Additionally, the high-minus-low values for each quintile indicate that

investors who accept higher levels of downside beta risk experience significantly

poorer performance, although the relationship is not always monotonic across the

gamma quintile. This implies that realized excess returns and losses to investors

who accept downside beta are not explained by a premium for gamma. The aver-

age realized excess returns of the downside beta quintiles that control for gamma

have a monotonically decreasing pattern across the portfolio. We also observe that

lower-ranked downside beta portfolios in positive (higher) gamma quintiles offers

excess positive returns and vice versa. This suggests that all portfolios in the

higher gamma quintiles experience gains while those in the lower gamma quintile

portfolios experience losses. Ang et al. (2006) shows that gamma is effectively

the co-variance of a stock’s returns with the volatility of the market. They also

show that stocks with negative (low) gamma result in low returns when market

volatility is high.

In Panel A2 of Table 5.4, we repeat the same procedure as Panel A1 to investigate

the reward for the gamma while controlling for downside beta in the all-period

category. In this panel, we control for downside beta before accessing the return

to gamma investment. The average realized excess return of 7.37% in the bottom

right of Panel A2 represents the difference in the average excess returns between

the fifth and first gamma quintile portfolios that controls for downside beta risk.

This difference has a t-statistic of 14.20, which suggests that downside beta risk
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cannot account for the gains obtained for bearing gamma risk. The high-minus-low

portfolio values for each quintile indicate that investors who accept higher levels of

gamma experience significant and better performance, though the relationship is

not always monotonic across the downside beta quintile. Additionally, we observe

the pattern within the average column to exhibit a monotonically increasing pat-

tern. We also note that higher-ranked gamma portfolios in higher downside beta

quintiles offer excess positive returns and vice versa and that gamma risk yields

significant positive excess returns when downside beta is controlled for.

Panel B1 of Table 5.4 repeats the process in Panel A1, with the estimation per-

formed for the upmarket condition rather than the full-sample period. Similarly,

the average realized excess return of –1.82% in the bottom-right entry of Panel B1

represents the difference in the average excess returns between the fifth and first

downside beta quintile portfolios when we control for gamma risk. This difference

has a t-statistic of –2.04, which suggests that downside beta risk is priced sep-

arately. The high-minus-low values for each quintile indicate that investors who

accept higher levels of downside beta will experience significant losses. Although

the low-ranked portfolio is an exception with an excess return of 1.71% (thus the

‘high-minus-low of column 1 low’ of Panel B1 of Table 5.4), this suggests that, on

average, the realized excess returns and losses to investors who accept downside

beta risk are not explained by a premium for gamma. We observe a decreasing

pattern for the average column, which is not always monotonic. We also note

that lower-ranked downside beta portfolios in higher gamma quintiles offer excess

positive returns and vice versa.

Panel B2 of Table 5.4 outlines the results we obtain from investigating the reward

for gamma by controlling for downside beta in the upmarket condition. The aver-

age realized excess return of 7.37% in the bottom right of Panel B2 represents the

difference in the average excess returns between the fifth and first gamma quintile

portfolios that control for downside beta risk and is statistically significant, with

a t-stat of 13.26. The high-minus-low portfolio values for each quintile indicate

that investors who accept higher levels of gamma risk experience significant and

136



better performance. However, the relationship is not always monotonic across the

downside beta quintile. The average column displays a monotonically increasing

pattern, which can be beneficial to the investors’ trading strategy. We also note

that higher-ranked gamma portfolios in lower downside beta quintiles offer excess

positive returns and vice versa.

Panel C1 of Table 5.4 repeats the process that is performed in Panel A1, but for the

downmarket period. In this panel, the average realized excess return is –8.10%

(as shown in the bottom-right entry of Panel C1). In comparison to the losses

in all periods and the upmarket periods, the downmarket losses had the highest

magnitude and significance. This implies that downside beta losses cannot be

ignored regardless of controlling for gamma risk. The high-minus-low values for

each quintile indicate that investors who accept higher levels of downside beta

experience significant losses across the sorted portfolios.

Finally, Panel C2 of Table 5.4 reports the results of the downmarket period when

we investigate the reward for gamma by controlling for downside beta. We control

for downside beta before the return to gamma investment is accessed. The average

realized excess return of 6.69% is shown in the bottom-right entry of Panel C2.

This value is significant at 7.89 and suggests that downside beta risk cannot ac-

count for the gains that are obtained from bearing gamma risk. The high-minus-

low portfolio values for each quintile indicate that investors who accept higher

levels of gamma risk experience significant and better performance, although the

low-ranked portfolio is an exception, as it has an excess return of –1.02% (thus the

high-minus-low of column 1 low). The average column displays a monotonically

increasing pattern. We note that gamma risk results in a significant and positive

excess return to the investor when we control for the downside beta. We also

observe a small –1.02% spread for the gamma quintiles for the lowest downside

beta, while the difference in average returns between the high gamma and high

downside beta is 14.24%. This shows the presence of a large spread in the average

excess returns across the gamma quintiles for stocks with high gamma.
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In summary, downside beta and gamma risks are different and priced separately

under various market conditions. We observe high significant returns for gamma

risk when controlling for downside beta risk and vice versa. We also note signif-

icant differences in the magnitude of the gains and losses relative to the market

conditions (all periods, the upmarket period and the downmarket period). The

reward for taking gamma risk and the losses that are obtained from downside

beta risk are consistent with the results obtained for the single-sorted portfolios

on gamma and downside beta in Table 5.3.

5.4.3 Fama-MacBeth regressions (full period)

We run a cross-sectional Fama-MacBeth regression at the firm level to further

investigate the predictive power of the risk measures (explanatory variable) con-

sidered in this study. The realized monthly excess return for each firm is the

dependent variable, λ’s from Equation (5.21) are the risk premiums. Table (5.5)

reports the regression results for the full sample period (all period) starting 6 Jan-

uary 2003 - 29 December 2017, where tables (5.6) and (5.7) are the results for the

upmarket period and downmarket period of the full sample period, respectively.

The Fama-Macbeth regression aims to capture any contemporaneous relationship

between realized excess returns and the related risk measures.

In Table (5.5), Model 1, which is commonly referred to as the traditional two-

moment CAPM shows that the standard realized beta has a negative relationship

with realized excess return, this implies losses on standard beta investments. Nev-

ertheless, these losses are not statistically significant for this model. Model 2

is the three-moment CAPM; for this model, gamma is added to standard beta.

We observe that the beta coefficient remains negative and insignificant (-0.0010),

while gamma has a significant and positive relationship with realized excess re-

turns (0.0345). This suggests that gamma investments yield significant gains to

the investor and is consistent with the excess realized return gamma relationships

that we observed in previous section. The four-moment CAPM of Model 3, shows
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that in the presence of standard beta and kappa, only gamma investment leads to

significant gains to the investor.

In Model 4, we assess the two-moment CAPM by controlling for a set of firm

characteristics. We observe that the beta becomes positive, but still insignificant

in this scenario. However, we expect stocks with high book-to-market (B/M)

value to have high levels of excess return. As such, we observe a substantial and

highly significant positive coefficient (1.0169) on the firm’s B/M value, which is

consistent with the results of (Fama and French, 1992; Ang et al., 2006). Model

5 shows that when the three-moment CAPM is combined with control variables,

both gamma and B/M value have a highly significant and positive coefficient of

0.0361 and 0.8861, respectively. This implies high gamma and high B/M stock

generate high excess returns for the investor. Model 6 is when the four-moment

CAPM accounts for the firm characteristics, in which we note that gamma and

B/M investments yield gains. For the other control variables, the coefficient of

illiquidity is positive (0.006) while that of firm size is (-0.013) are significant at a

10% level. The negative relationship between firm size and excess return suggests

that larger companies are associated with lower excess returns.

Following the methodology of Todorov and Bollerslev (2010); Bollerslev et al.

(2016); Alexeev et al. (2017), we decompose the standard beta into continuous

beta and jump beta. In Model 7, we note that both continuous beta and jump

beta have a negative relationship with excess returns and that the jump beta

is insignificant, while the continuous beta is significant at a 10% level. We find

that gamma generates significant excess returns, while kappa has an insignificant

negative relationship with excess returns. For Model 8, accounting for additional

measures of risk does not eliminate the direct significance of gamma and B/M. In

short, we observe a robust gain for holding stocks with gamma risk and controlling

for a set of firm characteristics. Continuous and jump beta remain insignificant

with positive and negative relationships, respectively. The coefficient of -0.0013

for the firm size and excess return still suggests larger companies are associated

with lower excess returns at 10% significance level.
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In Model 9, we replace the standard beta with upside and downside beta, gamma

with upside and downside gamma, kappa with upside and downside kappa. We

note that both upside and downside risk measures are priced. This is unsurprising

as we expect conditional high-order co-moments to have predictive power. There-

fore, upside beta, upside gamma, downside gamma, and downside kappa have

a highly significant positive relationship with excess returns. We also note that

downside beta and upside kappa result in substantial losses for investors’ holding

such risks; this is consistent with the portfolio sort in Table (5.3). Model 10 shows

that both upside and downside beta, gamma, and kappa risk are robust when we

control for a set of firm characteristics. The level of significance and directional

impact remains almost the same as that of Model 9. In Model 10, we note that

stocks with high B/M value tend to have high excess returns, and stocks with high

past returns experience significant low returns.

Table 5.5: Fama-MacBeth cross-sectional regressions, full sample (All period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0013 -0.0010 -0.0079 0.0035 0.0035 -0.0015
γ 0.0345*** 0.0608*** 0.0361*** 0.0555*** 0.0573*** 0.0535***
κ -0.0007 -0.0005 -0.0006 -0.0003
Illiq 0.0042 0.0053 0.0060* 0.0050 0.0060*
log(size) -0.0006 -0.0011 -0.0013* -0.0013* -0.0011
Pret -0.0127 -0.0128 -0.0119 -0.0123 -0.0180**
B/M 1.0169*** 0.8861*** 0.8777*** 0.9082*** 0.8540***
VaR 0.2243 0.2931 0.2062 0.1616 0.2739
βc -0.0021* 0.0004
βj -0.0037 -0.0011
β+ 0.0258*** 0.0226***
β− -0.0351*** -0.0272***
γ+ 0.0797*** 0.0803***
γ− 0.0704*** 0.0631***
κ+ -0.0079*** -0.0078***
κ− 0.0070*** 0.0060***
Intercept 0.0024 0.0046 0.0024 0.0055 0.0117 0.0102 0.0019 0.0097 0.0021 0.0090
Avg. R-squared 0.0738 0.143 0.186 0.241 0.300 0.319 0.230 0.343 0.287 0.392
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks, the full-sample period; starting 6
January 2003 - 29 December 2017 (all period). Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−),
upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−),
upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over
previous month (PRet), value-at-risk (VaR).

We follow Ang et al. (2006) approach in interpreting the economic magnitude of

the risk premia obtained in the Fama-MacBeth regression. Since the time-series

averages reported in Table 5.2 are for the full sample period, we focus on the

interpretation of Table 5.5. The cross-sectional standard deviation of gamma is

0.8236, which implies that for gamma risk-reward of 6.08% in Model 3, given a

two standard deviation move across stocks in terms of gamma will correspond
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to a change in expected excess return of 0.4461% per month.17 In the case of

downside beta in Model 9, the cross-sectional standard deviation is 1.0658, hence

a two standard deviation move across downside beta will change expected excess

returns by -0.0148% per month.18 This confirms our results that significant gains

accompany gamma investments, while downside beta is associated with losses.

From figure 5.1, we report the economic magnitudes for the regression result in

Table 5.5. We observe that the reward for bearing gamma risk in the models (2,

3, 5, 6, 7, and 8) are quite significant and cannot be ignored, even in the presence

of a set of firm characteristics.

Figure 5.1: The economic magnitude of the monthly risk premia for the full-sample
period (all period)

Consequently, the conditional gamma exhibits an even higher excess returns in

models 9 and 10. This suggests that for a two standard deviation move across

stocks in terms of upside (downside) gamma will result in about 1% increase in
17Ahadzie and Jeyasreedharan (2020) show that estimating realized higher-order moments

from high-frequency returns to various holding periods, the magnitude of the moment is con-
ditional on the number of observations. Therefore, the change is 2×0.0608×0.8236 = 10.01%
divided by

√
504 = 0.4461% (thus adjusting for the scaling effect from estimating monthly gamma

from 15-minutes return series.)
18Similarly, for downside beta, 2×-0.0351×1.0658 = -7.48%, thus -0.0148%= -7.48%/504.
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the excess returns while downside beta results in almost -0.015% losses for the

monthly holding. Perhaps the significant high reward for gamma risk measures

may be associated with investors’ preference for bearing gamma risks.

Table (5.6) reports the Fama-MacBeth regression for the upmarket period (58% of

the full sample period is the upmarket period, while 42% of the full sample span

is downmarket period). For this table, we observe that in Model 1, the traditional

two-moment CAPM shows that standard beta has a highly significant positive

(0.0064) relationship with realized excess return. This suggests that when the

market is in the upmarket period bearing standard beta risk leads to significant

gains to the investor, which is consistent with the findings of (Lambert and Hübner,

2013; Alles and Murray, 2017). In Model 2, we observe that the beta-excess

return relationship remains positive, but the significance disappears entirely in

the presence of gamma risk measure. The coefficient of gamma is 0.0189 and

significant at 1% level, this implies that gamma investments yield significant gains

to the investor. For the four-moment CAPM of Model 3, we note that the standard

beta is positive and significant at 10% level, while gamma has a high significant

direct relationship with excess returns. However, kappa has a significant negative

relationship with excess returns (with a coefficient of -0.0021). The results suggest

that standard beta and gamma investments generate significant gain to investors,

while kappa investments lead to substantial losses.

Similarly, in Model 4, we assess the robustness of the two-moment CAPM when

combined with a set of firm characteristics. We note that the standard beta re-

mains significant and positive in the presence of the control variables. Additionally,

B/M value has a significant positive coefficient of 0.5126, which is consistent with

the results in Table (5.5). We also observe a highly significant negative relation-

ship between firm’s past returns and excess returns (with a coefficient of -0.0193).

For Model 5, the standard beta, gamma, and B/M value all have a significant

and positive coefficients of 0.0051, 0.0204, and 0.4450 (respectively) at 1% level

of significance. This suggests high levels of standard beta, gamma, and B/M in-

vestments generate high excess returns for the investor. In this Model, exposure
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to stock’s past return remains negative and significant. Model 6 results show that

standard beta, gamma, and B/M value have a positive and significant relationship

with excess returns at 1% level, while kappa and past return risk have a negative

and significant relationship with excess returns at 1% significance level.

Model 7 shows that both gamma and kappa are significantly priced in the presence

of continuous beta and jump beta. However, the coefficients of the continuous and

jump beta are insignificant. In Model 8, accounting for additional measures of risk

does not eliminate the directional impact and significance of gamma and kappa.

We note that the significance of the continuous and jump beta improves to 5%

and 10%, respectively. Additionally, B/M value and past returns retain their signs

and significance as in previous models.

For Model 9, we note that both upside and downside risks are priced, but with

a lesser magnitude in comparison to the results of Table (5.5). We also observe

that upside beta, upside gamma, downside gamma, and downside kappa have a

significant and positive relationship with excess returns. In the case of downside

beta and upside kappa, a significant and negative relationship is obtained. Model

10 shows that both upside and downside beta, gamma, and kappa risk are robust to

the inclusion of firm size, illiquidity, VaR, past returns, and B/M value. Although

the level of significance and directional impact is robust, the magnitude of the

coefficient is almost half of what was observed for Table (5.5). Similarly, stocks

with high B/M value tend to have high excess returns than those with high past

returns.
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Table 5.6: Fama-MacBeth cross-sectional regressions, full sample (Upmarket pe-
riod)
Model 1 2 3 4 5 6 7 8 9 10
β 0.0064*** 0.0030 0.0057* 0.0097*** 0.0051*** 0.0076***
γ 0.0189*** 0.0361*** 0.0204*** 0.0326*** 0.0341*** 0.0312***
κ -0.0021*** -0.0016*** -0.0016*** -0.0013***
Illiq 0.0023 0.0034 0.0037 0.0022 0.0040
log(size) 0.0002 -0.0005 -0.0001 0.0003 0.0000
Pret -0.0193*** -0.0202*** -0.0193*** -0.0212*** -0.0235***
B/M 0.5126*** 0.4387*** 0.4450*** 0.4507*** 0.4366***
VaR -0.4809 -0.5411 -0.4744 -0.5850* -0.3310
βc 0.0004 0.0014**
βj 0.0020 0.0019*
β+ 0.0186*** 0.0156***
β− -0.0129*** -0.0104***
γ+ 0.0443*** 0.0451***
γ− 0.0451*** 0.0356***
κ+ -0.0045*** -0.0044***
κ− 0.0047*** 0.0035***
Intercept -0.0026 -0.0035 -0.0040 -0.0141* -0.0117 -0.0126* -0.0040 -0.0163** -0.0044 -0.0128*
Avg. R-squared 0.0419 0.0822 0.103 0.141 0.177 0.187 0.133 0.201 0.166 0.231
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks, for full-sample period starting 6 January
2003 - 29 December 2017 (upmarket period). The upmarket period which is defined as when the monthly excess realized market return exceeds the risk-free
rate. Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump
beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value (B/M),
illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

Table (5.7) reports the regression results for the downmarket period. In Model

1, we observe that the standard beta has a significant and negative (-0.0077) re-

lationship with realized excess return. This suggests that investors experience

substantial losses for holding standard beta risk during the downmarket period,

which is consistent with the findings of (Lambert and Hübner, 2013; Alles and Mur-

ray, 2017). This confirms the notion that the insignificant standard beta observed

in Model 1 of Table 5.5 is indeed attributed to the significant positive (0.0064)

and negative (-0.0077) coefficients of the upmarket and downmarket periods can-

celling out each other. For Model 2, we note that beta remains negative, but is

insignificant when gamma risk is included in the model. The coefficient of gamma

is 0.0156 and significant at 1% level, which implies that gamma investments yield

significant excess returns. In the four-moment CAPM of Model 3, we observe that

the standard beta is still negative and significant at 5% level, while gamma and

kappa have a significant and positive relationship with the excess returns at 1%

level. One may argue that kappa risk in the downmarket yield gains for investors

since they require a reward for taking up additional dispersion over and above the

standard dispersion (beta).

Model 4 shows that beta remains significant and negative (-0.0062) in the pres-
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ence of the control variables. We also note that high B/M value and VaR have

high excess return with significant coefficients of 0.5043 and 0.7052, respectively.

For Model 5, the significance of the beta disappears but remains negative, while

gamma, B/M value, and VaR have a significant and positive coefficient of 0.0156,

0.4474, and 0.8341, respectively, at 1% level. This suggests that beta, gamma,

and B/M investment generate high excess returns for the investor. In Model 6,

we note that gamma, kappa, B/M, and VaR have a positive and significant re-

lationship with excess returns. However, beta and past returns have a negative

and significant relationship with excess returns. In short, standard beta, gamma,

and kappa do not lose their explanatory power after accounting for individual firm

characteristics.

In Model 7, we note that gamma and kappa have a positive and significant re-

lationship with excess returns. The coefficients of the continuous and jump are

(-0.0025) and (-0.0057), respectively, which are significant at 5% level. The mag-

nitude of the jump beta is twice that of the continuous beta, suggesting investors

are worse off holding jump beta risk during market downmarket periods. In Model

8, accounting for additional measures of risk has no directional and significant im-

pact on gamma and kappa investment. Although the significance of the continuous

beta does disappear, the coefficient remains negative while jump beta remains still

significant at 5% level. As discussed earlier, B/M value and VaR have a positive

and significant relationship with the average excess returns. The highly signifi-

cant negative coefficient (-0.0015) for the firm’s size of excess returns confirms that

smaller companies have high excess returns.

Model 9 show that the magnitude of the gains for upside beta, upside and downside

gamma, downside kappa are far lower than the level of gains observed in the

upmarket period. For downside beta and upside kappa, the magnitude of the

losses in the downmarket period is far greater than the losses observed in the

upmarket period, which is unsurprising. In Model 10, upside and downside beta,

gamma and kappa risk are robust to the inclusion of firm characteristics and the

level of significance and magnitude did not change that much relative to those of
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Model 9. We observe that stocks with high B/M value and VaR tend to have

high excess returns. The high significant negative coefficient (-0.0012) of firm size

implies that large companies tend to have low excess returns in the downmarket

period and vice visa.

Table 5.7: Fama-MacBeth cross-sectional regressions, full sample (Downmarket
period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0077*** -0.0041 -0.0135** -0.0062*** -0.0016 -0.0091***
γ 0.0156*** 0.0246*** 0.0156*** 0.0228*** 0.0232*** 0.0223***
κ 0.0013*** 0.0011*** 0.0010*** 0.0010***
Illiq 0.0018 0.0020 0.0023 0.0028 0.0020
log(size) -0.0008 -0.0006 -0.0012** -0.0015*** -0.0012***
Pret 0.0066 0.0074 0.0075 0.0088 0.0055
B/M 0.5043*** 0.4474*** 0.4328*** 0.4575*** 0.4174***
VaR 0.7052** 0.8341*** 0.6806*** 0.7466*** 0.6049**
βc -0.0025** -0.0011
βj -0.0057** -0.0029**
β+ 0.0071*** 0.0070***
β− -0.0222*** -0.0168***
γ+ 0.0354*** 0.0352***
γ− 0.0253*** 0.0275***
κ+ -0.0034*** -0.0034***
κ− 0.0023*** 0.0025***
Intercept 0.0069** 0.0100*** 0.0083** 0.0215*** 0.0252*** 0.0247*** 0.0078** 0.0279*** 0.0084** 0.0237***
Avg. R-squared 0.0319 0.0604 0.0826 0.0998 0.123 0.132 0.0967 0.141 0.120 0.161
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks, full-sample starting 6 January 2003 - 29
December 2017 (downmarket period). The downmarket period is when the excess market return falls below the risk-free rate. Significance levels:‘ *: 0.10,
**: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside
gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm
of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

Overall, the results of Tables (5.5), (5.6) and (5.7) have shown that the excess

return of beta and kappa are asymmetric in upmarket and downmarket peri-

ods. Perhaps the directional (positive or negative) impact can be explained by

investor’s general dislike for bearing second- and fourth-moment risk measures

(see Jurczenko and Maillet, 2012). It is worth noting that regardless of the market

state, gamma risk always leads to positive and significant returns to the investors.

We also observe that all upside and downside risk premium retain their direction

and level of significance when the control variables are included in the models. To

conclude, market does price upside and downside normalized realized higher-order

co-moments risk measures for all market conditions.
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5.4.4 Fama-MacBeth cross-sectional regressions (sub-

periods)

The extant financial literature has associated the period 2007-2009 with a drastic

decline in stock prices worldwide. This historical period commonly known as the

global financial crisis, which began as a result of the US real estate bubble bursting

in 2007. The phenomena significantly affected advance, emerging, and developing

countries and destabilized the world’s financial markets. This suggests that any

results obtained during the crisis period could be biased or entirely driven by

the crisis’s destabilising patterns. As such, since this study’s full-sample period

extensively covers 15 years span (6 January 2003 - 29 December 2017), which

includes the financial crisis period. We follow Dungey and Gajurel (2014) and we

split the full-sample period into three sections: the pre-crisis (6 January 2003 -

29 June 2007), the crisis-period (2 July 2007 - 29 May 2009) and the post-crisis

period (1 June 2009 - 29 December 2017). For each sub-sample period, we run the

Fama-MacBeth regression aimed at investigating the dynamic behaviour of the

risk measures across cycles.

5.4.4.1 Pre-crisis period (6 January 2003 - 29 June 2007)

Table (5.8) reports the regression results for all periods in the pre-crisis period.

In Model 1, beta has a negative relationship with excess return, which is con-

sistent with the results of Table 5.5. Similarly, we observe that beta investment

yield insignificant losses. For Model 2, we note that gamma has a significant posi-

tive relationship with excess returns (0.0359). We observe that gamma retains its

significance and positive relationship at a coefficient of (0.0628) for Model 3. Con-

trary to the results shown in Table 5.5, the negative relationship between kappa

risk measure and excess return is significant at 5% level.

In Model 4, controlling for a set of firm characteristics for the two-moment CAPM

shows that the standard beta becomes positive (0.098) and significant at 5% level.
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The B/M value has a positive and significant relationship with excess returns.

For Model 5, the three-moment CAPM shows that gamma and B/M value have

a significant and positive coefficient of 0.0358 and 0.4680, respectively. This sig-

nifies that high levels of gamma and B/M stocks increase excess returns for an

investor. Model 6 shows that for the four-moment CAPM, when combined with

firm characteristics; gamma, B/M value, beta have a positive relationship with

excess returns, although beta and illiquidity are only significant at 10% level. In

contrast, kappa has a significant negative relationship with excess return at 5%

level.

In relation to Model 7, we note that gamma (kappa) have a positive (negative)

relationship with excess returns. Model 8, controls for the firm characteristics

of Model and continuous and jump betas. We note that accounting for the firm

characteristics does not eliminate the direct significance of gamma and B/M value

(thus 0.0587 and 0.4242, respectively) while the coefficient of -0.0016 for kappa

indicates a significant loss of excess returns at 5% level.

In Model 9, we note that the upside beta, upside gamma, downside gamma, and

downside kappa have a highly significant positive relationship with excess returns,

while downside beta and upside kappa have a negative and significant relationship

with excess returns. Model 10 the results for the conditional co-moments are

robust and stocks with high B/M value tend to have high excess return and vice

versa.

148



Table 5.8: Fama-MacBeth cross-sectional regressions, pre-crisis period (All period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0015 -0.0072 -0.0040 0.0098** 0.0053 0.0077*
γ 0.0359*** 0.0628*** 0.0358*** 0.0589*** 0.0620*** 0.0587***
κ -0.0019** -0.0020** -0.0019** -0.0016**
Illiq 0.0105 0.0125* 0.0121* 0.0100 0.0131**
log(size) -0.0006 -0.0011 -0.0008 -0.0006 -0.0000
Pret -0.0047 -0.0108 -0.0144 -0.0121 -0.0254**
B/M 0.5617*** 0.4680*** 0.4237*** 0.4242*** 0.3901***
VaR -0.9732 -0.9286 -0.8451 -0.8165 -0.5844
βc -0.0005 0.0006
βj -0.0031 0.0009
β+ 0.0373*** 0.0346***
β− -0.0356*** -0.0312***
γ+ 0.0425*** 0.0483***
γ− 0.0482*** 0.0393***
κ+ -0.0052*** -0.0056***
κ− 0.0055*** 0.0044***
Intercept 0.0143** 0.0136** 0.0122** -0.0009 0.0027 0.0026 0.0112** 0.0027 0.0102** -0.0001
Avg. R-squared 0.0982 0.170 0.213 0.259 0.323 0.346 0.256 0.367 0.348 0.444
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the pre-crisis sample period starting
6 January 2003 - 29 June 2007 (all period). Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−),
upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−),
upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over
previous month (PRet), value-at-risk (VaR).

Table (5.9) reports the results for the upmarket period during the pre-crisis period.

We note that the beta has an insignificant and positive (0.0030) relationship with

excess return, which is contrary to that of Table (5.6). For Model 2, we observe

that the beta-excess return relationship becomes negative and still insignificant.

As in previous cases, the gamma coefficient remains positive and significant at 1%

level. Model 3 also shows that gamma yields significant gains, while kappa yields

significant losses at 1% level.

Model 4 shows that beta in the presence of firm characteristics has a positive

and significant relationship with excess returns. We also observe that high B/M

value investment has a high rate of significant excess return. In Model 5, gamma

and B/M value have a significant and positive coefficient of 0.0276 and 0.3273

respectively at 1% level of significance implying that high gamma and B/M stocks

generate a high excess return for the investor while exposure to stock’s VaR results

in losses. For Model 6, beta, gamma, and B/M value have a positive relationship

with excess return. Whereas, kappa, past returns, and VaR have a negative and

significant relationship with excess returns, although the only kappa is significant

at 1% level.

Model 7 shows that gamma and kappa are significantly priced when beta is re-
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placed with continuous beta and jump beta. The robustness of the significant pos-

itive gamma relationship with excess returns and the significant negative kappa

relationship with excess returns is quite interesting. Accounting for the additional

measures of risk does not eliminate the significant positive (negative) relationship

of gamma (kappa) with excess returns in Model 8. Also, B/M value, past returns,

and VaR retain their directional impact and significance at 5% level.

Both upside and downside risks are robust for Model 9. Thus upside beta, up-

side gamma, downside gamma, and downside kappa have significant and positive

relationships with excess return while downside beta and upside kappa have a sig-

nificant and negative relationship with excess return. This suggests that investors’

holding downside beta and upside kappa risks experience substantial losses and

vice versa. In Model 10, we note that both upside and downside beta risk mea-

sures are robust when a set firm characteristics are included in the model. The

B/M value and illiquidity have a positive relationship with excess return, while

past returns exhibit a negative and significant relationship with excess return.

Table 5.9: Fama-MacBeth cross-sectional regressions, pre-crisis period (Upmarket
period)
Model 1 2 3 4 5 6 7 8 9 10
β 0.0030 -0.0035 0.0010 0.0115*** 0.0052 0.0091**
γ 0.0279*** 0.0469*** 0.0276*** 0.0439*** 0.0465*** 0.0440***
κ -0.0027*** -0.0026*** -0.0023*** -0.0021***
Illiq 0.0097 0.0104 0.0101 0.0080 0.0123*
log(size) 0.0003 -0.0004 0.0003 0.0003 0.0010
Pret -0.0136 -0.0185 -0.0191* -0.0216** -0.0256**
B/M 0.4104*** 0.3273*** 0.2849** 0.2824** 0.2503***
VaR -1.2475* -1.2862* -1.2017* -1.2123** -0.8952
βc -0.0006 0.0006
βj -0.0018 0.0010
β+ 0.0295*** 0.0267***
β− -0.0227*** -0.0198***
γ+ 0.0336*** 0.0383***
γ− 0.0382*** 0.0311***
κ+ -0.0041*** -0.0044***
κ− 0.0044*** 0.0036***
Intercept 0.0117* 0.0095 0.0091 -0.0109 -0.0087 -0.0104 0.0084 -0.0101 0.0073 -0.0121
Avg. R-squared 0.0712 0.132 0.159 0.191 0.243 0.257 0.199 0.273 0.263 0.331
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the pre-crisis sample period starting 6
January 2003 - 29 June 2007 (upmarket period). The upmarket period which is defined as when the monthly excess realized market return exceeds the
risk-free rate. Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta
(βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market
value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

Table (5.10) reports the regression results for the downmarket period in pre-crisis

period. In Model 1, we observe that the beta has a negative (-0.0045) relation-

ship with excess return at 10% level of significance. Model 2, shows that the
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relationship between beta and excess returns remains negative but insignificant

when gamma risk is included in the model. For gamma, we observe that gamma

generate significant rewards to investors who bear gamma risk. Model 3 shows

that gamma and kappa have a direct relationship with the excess returns at 1%

and 10% level of significance, respectively.

In Model 4, shows that the beta remains insignificant and negative (-0.0017) when

a set of firm characteristics are included in the model. We also note that the

significance of the B/M value decreases to 10% level of significance in comparison

to those of Model 4 in Tables (5.8) and (5.9). Model 5 shows that gamma and B/M

have a positive relationship with excess return, although the B/M coefficient is not

that significant. Model 6 shows that gamma and B/M risk measures continue to

yield significant excess returns to investors.

Model 7 shows that only gamma is priced when combined with continuous and

jump beta. In the case of Model 8, the results obtained did not change much from

that of Model 7. Accounting for additional measures of risk has no directional or

significant effect on gamma investment.

For Model 9, we note that upside and downside gamma lose their significance in

comparison to previous results discussed. The level of significance of kappa also

reduces from 1% level to 5% level. Upside beta investments yield gains at 1% level

of significance, while downside beta leads to highly substantial losses. The results

obtained in Model 10 show that the direction and significance of the upside and

downside risk measures are robust akin to Model 9.

In light of these points, the results of Tables (5.8), (5.9) and (5.10) have shown

that the risk measure-excess return relationship has a relatively lower level of sig-

nificance in the pre-crisis period in comparison to that of the full-sample period.

Generally, the reward for gamma risk exposure is robust in all models that incor-

porate gamma risk, while kappa risk significance tends to vary depending on the

sub-period or market condition.
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Table 5.10: Fama-MacBeth cross-sectional regressions, pre-crisis period (Downmar-
ket period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0045* -0.0037 -0.0049 -0.0017 0.0001 -0.0014
γ 0.0080*** 0.0159*** 0.0082*** 0.0150*** 0.0155*** 0.0147***
κ 0.0008* 0.0006 0.0005 0.0005
Illiq 0.0008 0.0021 0.0020 0.0020 0.0008
log(size) -0.0009 -0.0007 -0.0010 -0.0009 -0.0010
Pret 0.0090 0.0077 0.0047 0.0096 0.0003
B/M 0.1513* 0.1407* 0.1387* 0.1419* 0.1398*
VaR 0.2743 0.3576 0.3566 0.3958 0.3107
βc 0.0001 0.0000
βj -0.0013 -0.0002
β+ 0.0078*** 0.0079***
β− -0.0129*** -0.0115***
γ+ 0.0089* 0.0100**
γ− 0.0100 0.0081
κ+ -0.0010** -0.0011**
κ− 0.0010** 0.0008*
Intercept 0.0168*** 0.0183*** 0.0173*** 0.0242*** 0.0256*** 0.0272*** 0.0170*** 0.0270*** 0.0171*** 0.0262***
Avg. R-squared 0.0270 0.0387 0.0546 0.0678 0.0796 0.0886 0.0567 0.0935 0.0843 0.113
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the pre-crisis sample period starting
6 January 2003 - 29 June 2007 (downmarket period). The downmarket period which is defined as when the monthly excess realized market return
falls below the risk-free rate. Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+),
continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+),
book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet),
value-at-risk (VaR).

5.4.4.2 Crisis-period (2 July 2007 - 29 May 2009)

Table (5.11) reports the Fama-MacBeth regression results for the crisis-period (2

July 2007 - 29 May 2009). In Model 1, the two-moment CAPM shows that the

standard beta has a negative and insignificant relationship with realized excess re-

turn, which is consistent with the results of Table 5.5 and Table 5.8. Model 2 shows

that gamma has a highly significant coefficient of (0.0473) in the three-moment

CAPM. We also note that gamma remains positive (0.0735) and significant for

the four-moment CAPM of Model 3, as already discussed, this significant posi-

tive coefficient of gamma suggests that investors bearing gamma risks experience

significant gains.

Model 4 shows beta remains negative (-0.0052) and insignificant when combined

with a set of firm characteristics. Additionally, the coefficient of the VaR shows

that stocks with high VaR value have a direct relationship with excess returns,

which is significant at 10% level. Model 5 shows that gamma and VaR have

a positive relationship with excess returns, which is significant at 1% and 10%

level (respectively), hence high levels of gamma and VaR stocks increase excess

return. Model 6 shows that only gamma and kappa have a significant positive
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relationship with excess returns, which highlights the relevance of realized higher-

order co-moment pricing.

In Model 7, we note that both gamma and kappa retain their predictive power

in the presence of continuous and jump beta. Inhere, gamma, and kappa have a

significant and positive coefficient of 0.0730 and 0.0030, respectively. In contrast,

continuous and jump betas have a negative and insignificant relationship with

excess returns. Additionally, Model 8 access the robustness of Model 7 when we

control for a set of firm characteristics, we note that the results for both gamma

and kappa are stable and robust. The coefficient of -0.0105 for VaR, indicates a

significant loss of excess returns at a 10% level.

For Model 9, we observe that the significance level of the conditional normalized

co-moments for the financial crisis period decrease relative to that of the full-

sample period results. The directional impact of the upside and downside risks

remain the same. In Model 10, we note that the significance of downside gamma

improves. Both upside and downside risks are priced, though none of the control

variables displayed any predictive power.

Table 5.11: Fama-MacBeth cross-sectional regressions, crisis period (All period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0148 -0.0088 -0.0439 -0.0052 0.0033 -0.0205
γ 0.0473*** 0.0735*** 0.0515*** 0.0686*** 0.0730*** 0.0706***
κ 0.0034* 0.0030** 0.0030** 0.0033**
Illiq -0.0058 -0.0049 -0.0039 -0.0079 -0.0040
log(size) -0.0006 -0.0005 -0.0015 -0.0026 -0.0012
Pret -0.0196 -0.0267 -0.0221 -0.0122 -0.0217
B/M 0.4912 0.3574 0.3009 0.3110 0.3553
VaR 2.0277* 2.1378* 1.7157 1.7319 1.2375
βc -0.0039 0.0019
βj -0.0223 -0.0105*
β+ 0.0317** 0.0250***
β− -0.0811*** -0.0522***
γ+ 0.0991*** 0.0923***
γ− 0.0472* 0.0694***
κ+ -0.0088*** -0.0076***
κ− 0.0045** 0.0059***
Intercept -0.0236* -0.0183* -0.0249* 0.0157 0.0237 0.0174 -0.0244* 0.0274 -0.0246 0.0077
Avg. R-squared 0.0458 0.122 0.168 0.199 0.267 0.288 0.197 0.304 0.247 0.345
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the crisis sample period starting
2 July 2007 - 29 May 2009 (all period). Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−),
upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−),
upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over
previous month (PRet), value-at-risk (VaR).

Table (5.12) reports the Fama-MacBeth regression for the upmarket period (crisis

period). We observe that the beta has a significant positive (0.0157) relationship
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with excess return, which is similar to that of Table (5.6). In Model 2, the re-

lationship between beta and excess return remain positive but insignificant when

gamma risk is included in the model. The coefficient of gamma is 0.0168, which is

highly significant at 1% level. Model 3 shows that the beta and gamma coefficients

are positive and significant at 10% level, while kappa has an insignificant negative

relationship with excess returns.

In Model 4, we note that the significance level of beta improves, with beta ex-

hibiting a positive relationship with excess returns when the two-moment CAPM

model is combined with a set of firm characteristics. We observe that past returns

has an inverse relationship with excess returns, which is significant at 10% level.

For Model 5, the significance of the beta disappears, while gamma has a positive

and significant coefficient (0.0177) at the 5% level. The results show that stocks

with high past returns experience losses at 5% significance level. While account-

ing for a set of firm characteristics for the four-moment CAPM of Model 6, we

note that only gamma and kappa are priced. The positive (0.0218) relationship

between gamma and excess returns suggest significant gains, while the negative

(-0.009) coefficient of kappa implies substantial losses.

For Model 7, we note that only gamma is significantly priced when combined with

continuous beta and jump beta. In the presence of a set of firm characteristics,

Model 8 shows that gamma remains positive (0.0219) and significant. Apart from

the past return that is significant at 10% level, none of the control variables have

predictive power.

In Model 9, we observe that both upside and downside risk measures; the statistical

significance decreases significantly in comparison to that of Table 5.6 and Table 5.9

which capture upmarket periods for full-sample and pre-crisis periods, respectively.

However, the directional sign of the upside and downside risks remains the same.

Model 10 shows that accounting for a set of firm characteristics does not improve

the significance of the upside and downside risk measures. Similarly, for the control

variables, only past return has a significant relationship with excess returns.
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Table 5.12: Fama-MacBeth cross-sectional regressions, crisis period (Upmarket pe-
riod)
Model 1 2 3 4 5 6 7 8 9 10
β 0.0157** 0.0090 0.0187* 0.0127** 0.0048 0.0127
γ 0.0168*** 0.0249* 0.0177** 0.0218** 0.0252** 0.0219**
κ -0.0020 -0.0009** -0.0012 -0.0004
Illiq -0.0036 -0.0035 -0.0027 -0.0042 -0.0035
log(size) 0.0005 0.0004 0.0009 0.0014 0.0011
Pret -0.0414* -0.0495** -0.0476** -0.0409* -0.0458**
B/M 0.2553 0.1572 0.1589 0.1423 0.1753
VaR -0.1531 -0.2852 -0.1497 -0.3372 -0.3256
βc -0.0014 0.0006
βj 0.0047 0.0015
β+ 0.0215* 0.0121
β− -0.0103* -0.0053
γ+ 0.0302** 0.0322**
γ− 0.0356* 0.0263**
κ+ -0.0027** -0.0025*
κ− 0.0027 0.0017**
Intercept -0.0438** -0.0432** -0.0410** -0.0522** -0.0536** -0.0529** -0.0400** -0.0583*** -0.0385** -0.0564**
Avg. R-squared 0.0183 0.0467 0.0583 0.0943 0.119 0.125 0.0801 0.132 0.0947 0.147
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the crisis sample period starting
2 July 2007 - 29 May 2009 (upmarket period). The upmarket period which is defined as when the monthly excess realized market return exceeds
the risk-free rate. Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+),
continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa
(κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous
month (PRet), value-at-risk (VaR).

Table (5.13) reports the regression results for the downmarket period (financial

crisis period). Model 1 shows that the beta has a significant negative (-0.0036)

relationship with excess returns, which is unsurprising. Model 2 shows that gamma

has a significant positive (0.0305) relationship with excess returns. In Model 3,

we observe that the risk measures for the four-moment CAPM are priced. In-

here, gamma and kappa have a highly significant positive coefficient of 0.0485 and

0.0054, respectively. The coefficient of the beta remains negative (-0.0626) and

significant at 5% level.

Model 4 shows that accounting for firm characteristics, the two-moment CAPM

is robust. The beta has a significant negative (-0.0180) relationship with excess

returns. We also note that VaR has a positive and significant relationship with

excess returns. This implies that stocks with high value at risk offer a significant

reward to investors’ bearing such risk during market downmarket period. From

Model 5, we note that in the presence of gamma risk, the significance of the beta

disappears. The results show that gamma and VaR yield significant positive excess

returns, while the rest of the explanatory variables lack any form of predictability.

In Model 6, we note that gamma, kappa, and VaR have a positive relationship
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with excess return. For this model, investing in beta risk leads to substantial

losses.

For Model 7, we observe that both gamma and kappa have a positive and signif-

icant relationship with excess returns, which suggests the presence of significant

gains from gamma and kappa investments. However, the jump beta has a sig-

nificant negative (-0.0270) relationship with excess returns suggesting substantial

losses for jump beta investments. Model 8 shows that the results of gamma,

kappa, and jump beta are robust in the presence of firm characteristics. For the

control variables, we note that VaR and past returns have a positive and signif-

icant relationship with excess returns, while substantial losses accompany larger

firm size.

Model 9 also shows that downside beta and upside kappa exhibit a significant and

negative coefficient of -0.0708 and -0.0061, respectively. However, upside gamma

investments yield significant gains to the investor. In Model 10, the significance of

upside beta, downside gamma, and downside kappa improves and maintains their

directional impact.

Table 5.13: Fama-MacBeth cross-sectional regressions, crisis period (Downmarket
period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0306** -0.0178 -0.0626** -0.0180** -0.0015 -0.0332**
γ 0.0305*** 0.0485*** 0.0338*** 0.0468*** 0.0478*** 0.0488***
κ 0.0054*** 0.0039*** 0.0042*** 0.0036**
Illiq -0.0022 -0.0013 -0.0012 -0.0037 -0.0006
log(size) -0.0011 -0.0009 -0.0024 -0.0040** -0.0023
Pret 0.0217 0.0228 0.0255 0.0287* 0.0241
B/M 0.2359 0.2002 0.1421 0.1687 0.1800
VaR 2.1808** 2.4230*** 1.8654** 2.0691** 1.5630*
βc -0.0025 0.0013
βj -0.0270** -0.0121***
β+ 0.0101 0.0129*
β− -0.0708*** -0.0469**
γ+ 0.0689*** 0.0601**
γ− 0.0116 0.0431**
κ+ -0.0061** -0.0051*
κ− 0.0018 0.0042**
Intercept -0.0141 -0.0094 -0.0182 0.0337 0.0430* 0.0361 -0.0187 0.0515** -0.0204 0.0299
Avg. R-squared 0.0275 0.0754 0.110 0.104 0.148 0.163 0.117 0.172 0.152 0.198
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the crisis sample period starting 2
July 2007 - 29 May 2009 (downmarket period). The downmarket period is when the excess market return falls below the risk-free rate. Significance
levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump beta (βj),
gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value (B/M), illiquidity
(Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

In summary, we notice that in comparison to the full-sample and pre-crisis period
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the significance of most of the coefficients decreased significantly during the crisis

period. In addition, we also observe that the reward for bearing gamma risk remain

priced, and robust across different market periods, with the significance varying

across sub-periods.

5.4.4.3 Post-crisis period (1 June 2009 - 29 December 2017)

In Table (5.14), we report the Fama-MacBeth regression results for the post-

crisis period (all period), starting 1 June 2009 - 29 December 2017. Here, Model

1 shows that beta for the two-moment CAPM has a positive and insignificant

relationship with realized excess return. Similarly, Model 2 shows that beta remain

positive and insignificant when combined with gamma risk, while the coefficient of

gamma is positive (0.0310) and highly significant. In Model 3, we note a negative

and insignificant relationship between standard beta, kappa, and excess returns.

However, the gamma risk measure exhibits a positive coefficient of 0.0568 which is

significant at 1% level. Undoubtedly, this implies that in the presence of realized

higher-order moment risk measures (in the four-moment CAPM), gamma yields

significant gains for investor.

Furthermore, Model 4 shows that when the two-moment CAPM is combined with

a set of firm characteristics, beta remains positive (0.0022) and insignificant. De-

spite this, the coefficient (1.3730) of the B/M value implies that stocks with high

B/M value yield significant gains for investors. Model 5 also shows that gamma

has a positive and significant relationship with excess returns when we account

for control variables. In this model, the B/M value is still positive and significant.

Additionally, Model 6 combines a set of firm characteristics to the four-moment

CAPM. We observe that gamma and B/M value stocks have a positive and sig-

nificant relationship with excess returns. Conversely, beta and kappa have no

explanatory power.

Model 7 shows that only gamma retains its explanatory power in the presence of

continuous beta and jump beta risks. Consequently, Model 8 shows that not only

157



gamma is robust metric when we control for a set of firm characteristics, but also

the B/M value is also robust.

However, unlike the financial crisis period, the level of significance of the coeffi-

cients obtained for upside and downside risk measures in Model 9 is significant

at 1% level. Furthermore, Model 10 shows that the upside and downside risk

measures retain their directional signs and significance when we account for the

control variables, which is consistent with the results of the full-sample period of

table 5.5. Overall, the B/M value remains positive and highly significant.

Table 5.14: Fama-MacBeth cross-sectional regressions, post-crisis period (All pe-
riod)
Model 1 2 3 4 5 6 7 8 9 10
β 0.0018 0.0040 -0.0019 0.0022 0.0026 -0.0020
γ 0.0310*** 0.0568*** 0.0328*** 0.0507*** 0.0513*** 0.0470***
κ -0.0010 -0.0004 -0.0007 -0.0004
Illiq 0.0031 0.0039 0.0050 0.0053 0.0045
log(size) -0.0005 -0.0012 -0.0016 -0.0013 -0.0017*
Pret -0.0153 -0.0107 -0.0082 -0.0125 -0.0134
B/M 1.3730*** 1.2234*** 1.2446*** 1.2953*** 1.2085***
VaR 0.4494 0.5216 0.4203 0.3237 0.5088
βc -0.0026 -0.0001
βj 0.0002 0.0001
β+ 0.0184*** 0.0157***
β− -0.0245*** -0.0196***
γ+ 0.0949*** 0.0945***
γ− 0.0872*** 0.0741***
κ+ -0.0092*** -0.0090***
κ− 0.0084*** 0.0069***
Intercept 0.0019 0.0050 0.0034 0.0066 0.0137 0.0126 0.0030 0.0094 0.0038 0.0141
Avg. R-squared 0.0673 0.133 0.176 0.240 0.295 0.312 0.224 0.339 0.264 0.375
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the post-crisis period starting 1
June 2009 - 29 December 2017 (all period). Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−),
upside beta (β+), continuous beta (βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−),
upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over
previous month (PRet), value-at-risk (VaR).

Table (5.15) reports the Fama-MacBeth regression for the upmarket period during

the post-crisis period. We note that the traditional two-moment CAPM shows that

beta has a positive (0.0062) and significant relationship with excess return, which

is consistent with the results of Table (5.6). Similarly, Model 2 shows that both

beta and gamma have a positive and significant relationship with excess returns.

Interestingly, in Model 3, we find that the significance of the beta disappears when

kappa is included in the regression. Additionally, gamma exhibits a significant

positive (0.0330) relationship with the excess return. Contrarily, kappa shows a

significantly negative (-0.0017) relationship with excess returns.
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In Model 4, we note that beta has a positive (0.0081) and significant relationship

with excess returns when a set of firm characteristics are combined with the beta.

We also observe that the B/M value has a direct and significant relationship with

excess returns, with a coefficient of 0.6236. This signifies the generation of gains

to the investor who bear beta and B/M risks. Furthermore, Model 5 shows that

the beta, gamma, and B/M value have a positive and significant relationship with

the excess returns. Similarly, the significant gains of beta, gamma, and B/M value

investments prevail in model 6, while kappa investment leads to substantial losses.

Model 7 investigates when the beta in the four-moment CAPM, is replaced with

continuous and jump betas. Consequently, we note that gamma and jump beta

investments lead to significant gains, while kappa investment leads to substantial

losses. When a set of firm characteristics are added to model 7, we note that the

relationship of excess returns and gamma, kappa, jump beta remains the same

in Model 8. However, the significance of jump beta reduces to 10% significance

level. Meanwhile, B/M value (past returns) have a significant direct (inverse)

relationship with excess returns.

In Model 9, we note that both upside and downside risk measures are significantly

priced, which is consistent with the results of Table 5.6. Finally, Model 10 shows

that accounting for a set of firm characteristics does not change the significance of

the upside and downside risk measures. For the additional explanatory variables,

B/M value investments generate significant gains, while investments based on past

returns result in substantial losses.
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Table 5.15: Fama-MacBeth cross-sectional regressions, post-crisis period (Upmar-
ket period)
Model 1 2 3 4 5 6 7 8 9 10
β 0.0062*** 0.0052** 0.0052 0.0081*** 0.0051** 0.0057**
γ 0.0147*** 0.0330*** 0.0173*** 0.0291*** 0.0295*** 0.0266***
κ -0.0017** -0.0012*** -0.0014** -0.0011**
Illiq -0.0002 0.0012 0.0017 0.0006 0.0012
log(size) 0.0001 -0.0007 -0.0006 0.0000 -0.0007
Pret -0.0174* -0.0145 -0.0131 -0.0165** -0.0174**
B/M 0.6236*** 0.5600*** 0.5928*** 0.6077*** 0.5926***
VaR -0.1521 -0.2076 -0.1656 -0.3115 -0.0365
βc 0.0013 0.0020**
βj 0.0034** 0.0023*
β+ 0.0123*** 0.0105***
β− -0.0083*** -0.0067***
γ+ 0.0531*** 0.0516***
γ− 0.0508*** 0.0400***
κ+ -0.0051*** -0.0048***
κ− 0.0052*** 0.0039***
Intercept -0.0009 -0.0014 -0.0026 -0.0072 -0.0039 -0.0047 -0.0024 -0.0102 -0.0029 -0.0034
Avg. R-squared 0.0319 0.0642 0.0846 0.125 0.155 0.164 0.110 0.179 0.132 0.196
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the post-crisis period starting 1
June 2009 - 29 December 2017 (upmarket period). The upmarket period is defined as when the monthly excess realized market return exceeds the
risk-free rate. Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta
(βc), jump beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market
value (B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

Table (5.16) reports the regression results for the downmarket period (post-crisis

period). Model 1 shows that beta has a negative (-0.0043) insignificant relation-

ship with excess returns. Model 2 shows that gamma has a significant positive

(0.0163) relationship with excess returns, while the standard beta has an insignifi-

cant negative (-0.0012) relationship with the excess returns. For the four-moment

CAPM of Model 3, the results suggest gamma and kappa investments generate

positive excess returns to the investor.

Model 4 shows that accounting for a set of firm characteristics, we note that beta

has a significant negative (-0.0059) relationship with excess returns. In addition,

high B/M stocks have a significant positive relationship with excess returns. From

Model 5, we note that gamma, B/M value, and value-at-risk stocks have positive

relationships with excess returns. The coefficients of gamma (0.0155) and B/M

value (0.6634) are significant at 1% level, while the VaR is significant at 10% level.

Model 6 shows that the four-moment CAPM risk measures are priced with the

inclusion of firm characteristics. The results show that gamma, kappa, and B/M

value stocks yield significant gains to the investor while beta investments result in

substantial losses.

Regarding Model 7, we note that gamma and kappa have a positive and significant
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relationship with excess returns. However, the continuous beta has a significant

negative (-0.0039) relationship with excess returns. This suggest that investing

continuous beta during the downmarket period results in the investor experiencing

substantial losses, which contradicts the results obtained in Table 5.14. Model 8

shows that the results obtained for gamma and kappa are robust when we control

for the firm characteristics. We observe that high B/M value yields significant

gains.

For Model 9, we observe that upside and downside risk measures are priced and

statistically significant. In Model 10, the significance of upside and downside risk

measures are robust in the presence of the firm characteristics. Additionally, B/M

value has a positive and significant relationship with excess return, while firm size

has an inverse relationship with excess returns.

Table 5.16: Fama-MacBeth cross-sectional regressions, post-crisis period (Down-
market period)
Model 1 2 3 4 5 6 7 8 9 10
β -0.0043 -0.0012 -0.0071 -0.0059*** -0.0025 -0.0077**
γ 0.0163*** 0.0239*** 0.0155*** 0.0216*** 0.0218*** 0.0204***
κ 0.0007* 0.0008*** 0.0006** 0.0007***
Illiq 0.0033 0.0027 0.0033 0.0047* 0.0032
log(size) -0.0006 -0.0005 -0.0010 -0.0013* -0.0011**
Pret 0.0020 0.0038 0.0049 0.0040 0.0040
B/M 0.7493*** 0.6634*** 0.6518*** 0.6875*** 0.6160***
VaR 0.6016 0.7292* 0.5858 0.6352* 0.5453
βc -0.0039** -0.0022
βj -0.0032 -0.0023
β+ 0.0061** 0.0052***
β− -0.0163*** -0.0129***
γ+ 0.0418*** 0.0429***
γ− 0.0365*** 0.0341***
κ+ -0.0041*** -0.0042***
κ− 0.0032*** 0.0030***
Intercept 0.0064 0.0100*** 0.0096*** 0.0173* 0.0211** 0.0209** 0.0090*** 0.0231*** 0.0102*** 0.0210***
Avg. R-squared 0.0355 0.0685 0.0913 0.116 0.140 0.148 0.113 0.159 0.132 0.178
This table reports the monthly Fama-MacBeth cross-sectional regression results for the 142 Australian stocks for the post-crisis period starting
1 June 2009 - 29 December 2017 (downmarket period). The downmarket period is when the excess market return falls below the risk-free rate.
Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’. The standard CAPM beta (β), downside beta (β−), upside beta (β+), continuous beta (βc), jump
beta (βj), gamma (γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−), upside kappa (κ+), book-to-market value
(B/M), illiquidity (Illiq), natural logarithm of firms’ market capitalization (log(size)), lagged return over previous month (PRet), value-at-risk (VaR).

Overall, the results discussed for the post-crisis period are robust in both the

upmarket and downmarket conditions. The significance and directional signs of

the risk measures suggest that the post-crisis results predominately drives the

results obtained for the full-sample period. In general, we note that the beta and

kappa risk measures are asymmetric in upmarket and downmarket period, while

gamma yields significant gains to the investor regardless of the market conditions.
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Similarly, investors who hold stocks with high B/M value experience significant

excess returns, which is consistent with the findings in the existing literature.

5.5 Concluding Remarks

In this study, we investigate some realized higher-order co-moment risk-return re-

lationships for 142 stocks that are constituents of the S&P/ASX200 index down-

loaded from the TRTH/SIRCA database. Using 15-minute return data spanning

from January 2003 to December 2017, we compute monthly realized returns and

risk measures. We follow a set of rigorous methodologies (i.e., the single sort-

ing of excess return on risk measures, the double sorting of excess returns on

risk measures, and the Fama-MacBeth cross-sectional regression), which are well

documented in the extant literature. This study contributes to the discussion re-

garding whether systematic realized co-skewness (gamma) and systematic realized

co-kurtosis (kappa) can explain Australian stock returns.

The empirical results from the three methods as employed are consistent and ro-

bust. We find that the average returns for standard beta and kappa risks are

both asymmetric and diametrically opposite in upmarket and downmarket peri-

ods. Specifically, standard beta and kappa have a positive (negative) relationship

with realized excess returns in the upmarket (downmarket) condition. This sug-

gests that the average gain or loss for standard beta and kappa risks depends

on bullish or bearish market states. Furthermore, we observe that gamma risk

yields significant gains for investors regardless of the market conditions. This can

be explained by Equation (5.18), which highlights that the directional impact of

gamma coefficient is conditional on both the marginal investor risk-preference for

skewness and the skewness of the market, while that of beta and kappa coeffi-

cients is conditional on just the marginal investor risk-aversion to variance and

kurtosis respectively. The gains obtained from gamma risk remain robust even

with models that incorporate other risk measures. However, the significance of

the reward or loss for bearing kappa risk tends to vary depending on the market
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condition or the sample period that is being considered. This insight highlights

the attractive nature of gamma risk to investors, relative to that of kappa risk. In

short, this finding is consistent with the investor’s preference for (or aversion to)

gamma (kappa) risk that is predominately documented in the existing literature.

Additionally, it is critical to note that gamma and kappa risk remain priced even

in the presence of continuous and jump betas, presumably because of the orthogo-

nal differences in their explicit asymmetries. We also observe that the upside and

downside beta, gamma, and kappa retain their direction and level of significance.

This remains the case even when we control for a set of firm characteristics for the

full-sample and post-crisis periods by employing Fama-MacBeth cross-sectional

regression. Our findings indicate that realized higher-order co-moment risks do

matter.
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Chapter 6

Conclusion

The presence of skewness and kurtosis in asset returns has been extensively docu-

mented in the literature on empirical asset pricing, and the relevance of these fac-

tors to investors’ portfolio allocation and asset pricing strategies has been demon-

strated. It has been shown that not only the systematic co-variance risk factor

but also the systematic co-skewness and co-kurtosis risk factors can explain the

cross-section of asset returns. As such the higher-order co-moment risk is priced,

and skewness and kurtosis help improve the theoretical consistency and empirical

performance of financial models such as the standard CAPM. The present the-

sis adopts various theoretical methodologies, simulation techniques and empirical

procedures to provide new perspectives on the following questions using high-

frequency return data: (i) Does the optimal sampling frequency differ between

the US and Australian equity markets? Could the 5-minute rule of thumb applied

in US markets be extended to Australian markets? (ii) How do the sampling-

interval and holding-interval affect the estimated realized variance, realized skew-

ness and realized kurtosis, and what are the implications on investors’ trading

strategies? (iii) Can the signals from information flow (trading volume) be ex-

plained by realized high-order moments as a means of observing the dynamics

of this relationship across holding periods and sample periods? (iv) How should

realized higher-order co-moment risk be measured and priced to capture the differ-

ences between systematic co-variance, co-skewness and co-kurtosis risks? Further,
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are the risk premia the same across different market conditions and sample peri-

ods? The high-frequency return data utilized in the present thesis enables us to

obtain robust empirical estimates. We observe that the answers to these questions

have a direct or indirect impact on both investors’ decision-making criterion and

trading strategies.

Chapter 2 examines the optimal sampling frequencies for the realized variance of

American and Australian stocks and indices. We determine whether the 5-minute

optimal unbiased sampling frequency rule of thumb employed in the US frame-

work for realized variance holds for all DJI30 stocks and DJI30 index (US equity

framework). We note that the observed preferred sampling frequency for com-

puting realized variance in the US framework cannot be extended to S&P/ASX20

stocks and S&P/ASX20 index (Australian equity framework). We infer that per-

haps a ‘10-’ to ‘30-minute’ window could be the preferred sampling frequency for

the Australian equity framework. We argue that researchers in the high-frequency

finance paradigm should consider the preferred sampling frequency for the country

under investigation, rather than generalizing the 5-minute US rule to other equity

markets. Therefore, this study contributes to the body of existing literature as the

preferred sampling frequency for the Australian equity market is predominately

ignored.

In Chapter 3, we determine analytically, theoretically and empirically, the rela-

tionship between realized skewness and realized kurtosis and the sampling-interval

and holding-interval. We employ a count-based signature-plot in the presentation

and discussion of the results. Our results show that both the holding-interval and

the sampling-interval have distinct and dissimilar effects on the realized skewness

and realized kurtosis. The central limit theorem for skewness and kurtosis is sim-

ulated and shown to hold when no jumps are present in the sampled price series.

However, these intervaling effects are found to be analytically tractable, which has

implications for future research in the area of high-frequency finance. This chapter

contributes to the literature on high-frequency finance, as previous literature on

the subject focuses on the effects of the holding-interval on skewness and kurtosis
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using low-frequency return data.

Chapter 4 investigates the relationship between information flow (trading volume)

and realized higher-order moments. The results of the present thesis go beyond

the number of trade proxy documented in prior research by considering various

proxies of volume. We find that the type of volume proxy influences the signs of

the volume higher-order realized moment regression coefficients. We attempt to

relate our empirical findings to the MDH, SIAH and DOH hypotheses, noting that

the DOH hypothesis implicitly encompasses or nests both the SIAH and MDH hy-

potheses. The dynamic and significant link between volume and higher-order mo-

ments is shown by highlighting the significance of the regression coefficient across

holding periods and various market conditions. In addition, we show that, apart

from volume-volatility, volume-skewness and volume-kurtosis can provide addi-

tional information that could benefit investors’ trading strategies. For example,

event studies that employ volume and volatility in making inferences could extend

their models to account for volume-skewness and volume-kurtosis to capture rele-

vant information that would otherwise be neglected. We note that, whether asset

returns that are conditional on volume have superior trading strategy benefits is

worthy of future exploration. If this is shown to be the case, it raises the ques-

tion of whether an improved trading/portfolio allocation performance could be

achieved with conditional returns? We also wonder if the ability of risk models to

predict return distribution using volume-related variables (for volume-based VaR

models) could be improved? A further question that remains to be explored is

whether the co-dependence of volume is related to co-variance, co-skewness and

co-kurtosis. We acknowledge that the sub-sampling technique proposed by Zhang

et al. (2005) can be employed to estimate higher-order moments, rather than the

single 15-minute grid. However, as to whether the sub-sampling approach signifi-

cantly outperforms the 15-minute sampling frequency is left for future research.

In Chapter 5, we examines the relationship between monthly realized returns and

monthly realized higher-order co-moment risk factors to determine how investors

price systematic co-skewness and systematic co-kurtosis under different market
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conditions and sample periods. We estimate the various risk exposures of the

different risk factors and their respective risk premiums and identify the most

important systematic risk components (systematic co-variance, co-skewness, co-

kurtosis) associated with Australian stock returns. We find that realized higher-

order moment risk factors are superior to both the standard CAPM model and the

jump-diffusive two-beta CAPM model. According to Tibiletti (2012), higher-order

moments fall short in preserving the marginal asset properties under a portfolio.

The authors argue that higher moments are not ‘coherent measures of risk’ and,

therefore, could be the cause of the above-mentioned shortcoming. Instead, they

propose one-sided higher-order moments as an alternative approach to overcome

this problem. We admit that it will be fruitful to test the validity of this claim

in an empirical setting across other financial assets and markets in future studies.

Prior literature has also documented models and empirical results that show the

significance of higher-order moments as they affect stochastic discount factors.

Conrad et al. (2013) finds that stochastic discount factors produce similar results

to those of higher-order moments. We question whether a similar approach could

be applied to our empirical setup. However, we leave this for future research.

In summary, this thesis provides an insight into the dynamic behaviour of higher-

order moments in high-frequency finance. This research contributes to the body

of literature on high-frequency finance in its finding that the preferred 5-minute

sampling frequency popularly used in sampling US high-frequency data should

not be extended to all markets, particularly the Australian equity market. We

show that estimates of realized skewness and realized kurtosis are subject to the

effects of the holding-interval and sampling-interval, which has a variety of impor-

tant implications for high-frequency finance. It is shown that the direction and

magnitude of volume-realized skewness and volume-realized kurtosis relationship

are conditional on the type of volume proxy, holding-period and sample-period

under consideration. Our higher-order pricing model reveals the relevance of real-

ized systematic co-skewness and co-kurtosis in explaining the cross-section of asset

returns even in the presence of the diffusive and jump risk factors.
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Appendix for chapter 2

A.1 Appendix A: Data set
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Table A.1: List of stocks used in the analysis of Chapter 2

No. Symbol DJI 30 stocks Symbol S&P/ASX20 stocks

1 MMM 3M AMP AMP Limited
2 AXP American Express ANZ Australia And New Zealand Banking
3 AAPL Apple BHP BHP Billiton Limited
4 BA Boeing BXB Brambles Limited
5 CAT Caterpillar CBA Commonwealth Bank of Australia
6 CVX Chevron CSL SL Limited
7 CSCO Cisco IAG Insurance Australia Group Limited
8 KO Coca-Cola MQG Macquarie Group Limited
9 DIS Disney NAB National Australia Bank Limited
10 DD EI du Pont. QBE QBE Insurance Group Limited
11 XOM Exxon Mobil RIO RIO Tinto Limited
12 GE General Electric SCG Scentre Group Stapled
13 GS Goldman Sachs SUN Suncorp Group Limited
14 HD Home Depot TLS Telstra Corporation Limited
15 IBM IBM TCL Transurban Group Stapled
16 INTC Intel WES Wesfarmers Limited
17 JNJ Johnson & Johnson WFD Westfield Corporation Stapled
18 JPM JPMorgan Chase WBC Westpac Banking Corporation
19 MCD McDonald’s WPL Woodside Petroleum Limited
20 MRK Merck WOW Woolworths Limited
21 MSFT Microsoft
22 NKE Nike
23 PFE Pfizer
24 PG Procter & Gamble
25 TRV Travelers Companies Inc.
26 UTX United Technologies
27 UNH United Health
28 VZ Verizon
29 V Visa
30 WMT Wal-Mart

The data was obtained from Thompson Reuters Tick History provided by SIRCA database. Our data
sample starts from 4 January 2010 - 31 December 2015 between 10 am to 4 pm of each trading day,
giving us a sample of 21,600 intra-day price series. We use 1-second high frequency price series which
results in 32.62 million price series over 5 years (1,510 trading days).
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A.3 Daily realized variance for S&P/ASX200 in-

dex from 2010 to 2015

Figure A.3: Average daily realized variance for Australia (S&P/ASX200 index)
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A.4 Autocorrelation plots of DJI30 and

S&P/ASX20 indices

Figure A.4: This figure reports the autocorrelation for U.S. (DJI30 index) return
series.
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Figure A.5: This figure reports the autocorrelation for Australia (S&P/ASX200
index) return series.
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Appendix B

Appendix for chapter 4

B.1 Data-set
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Table B1: List of stocks used in the analysis of Chapters 4 and 5
No. RIC code Firm Name No. RIC code Firm Name No. RIC code Firm Name
1 AAC.AX Australian Agricultural Company Ltd 51 DOW.AX Downer EDI Ltd 101 RKN.AX Reckon Ltd
2 AAD.AX Ardent Leisure group Ltd 52 ELX.AX Ellex Medical Lasers Ltd 102 RMD.AX Resmed Inc
3 ABC.AX Adelaide Brighton Ltd 53 ERA.AX Energy Resources Of Australia Ltd 103 SBM.AX St Barbara Ltd
4 ABP.AX Abacus Property Group 54 FAR.AX FAR Ltd 104 WPP.AX WPP Aunz Ltd
5 AGG.AX AngloGold Ashanti Ltd 55 FBU.AX Fletcher Building Ltd 105 SGP.AX Stockland Corporation Ltd
6 AGI.AX Ainsworth Game Technology Ltd 56 FKP.AX FKP Property Group 106 SHL.AX Sonic Healthcare Ltd
7 AGL.AX AGL Energy Ltd 57 FLK.AX Folkestone 107 SHV.AX Select Harvests Ltd
8 AHD.AX Amalgamated holdings Ltd 58 FLT.AX Flight Centre Travel Group Ltd 108 SOL.AX Washington H Soul Pattinson and Company Ltd
9 ALK.AX Alkane Resource 59 FXJ.AX FAIRFAX Media 109 SRV.AX Servcorp Ltd
10 ALL.AX Aristocrat Leisure Ltd 60 GNC.AX Graincorp Ltd 110 SRX.AX Sirtex Medical Ltd
11 AMC.AX Amcor PLC 61 GPT.AX GPT Group 111 STO.AX Santos Ltd
12 AMP.AX AMP Ltd 62 HVN.AX Harvey Norman Holdings Ltd 112 SUN.AX Suncorp Group Ltd
13 ANN.AX Ansell Ltd 63 IAG.AX Insurance Australia Group Ltd 113 TAH.AX Tabcorp Holdings Ltd
14 AOG.AX Aveo GROUP 64 IFM.AX Infomedia Ltd 114 TCL.AX Transurban Group
15 APA.AX APA Group 65 IGO.AX Independence Group NL 115 TLS.AX Telstra Corporation Ltd
16 APE.AX AP Eagers Ltd 66 ILU.AX Iluka Resources Ltd 116 TNE.AX TechnologyOne Ltd
17 API.AX Australian Pharmaceutical Industries Ltd 67 IMF.AX IMF Bentham Ltd 117 TOX.AX Tox Free Solutions
18 APN.AX APN Property Group 68 IOF.AX Investa Office Fund 118 SXY.AX Senex Energy Ltd
19 ASB.AX Austal Ltd 69 IRE.AX Iress Ltd 119 VRL.AX Village Roadshow Ltd
20 ASX.AX ASX Ltd 70 IRI.AX Integrated Research Ltd 120 SWM.AX Seven West Media Ltd
21 AVG.AX Australian Vintage Ltd 71 HLO.AX Helloworld Travel Ltd 121 WBC.AX Westpac Banking Corp
22 AVJ.AX Avjennings Ltd 72 JHX.AX James Hardie Industries PLC 122 WEB.AX Webjet Ltd
23 AWC.AX Alumina Ltd 73 KSC.AX K&S Corporation Ltd 123 WES.AX Wesfarmers Ltd
24 AWE.AX AWE Ltd 74 LLC.AX LendLease Group 124 WOW.AX Woolworths Group Ltd
25 BBG.AX Billabong International Ltd 75 MAH.AX Macmahon Holdings Ltd 125 WPL.AX Woodside Petroleum Ltd
26 BEN.AX Bendigo and Adelaide Bank Ltd 76 SYD.AX Sydney Airport Holdings Pty Ltd 126 WTP.AX Watpac Ltd
27 BHP.AX BHP Group Ltd 77 MAQ.AX Macquarie Telecom Group Ltd 127 AIA.AX Auckland International Airport Ltd
28 BKW.AX Brickworks Ltd 78 MGR.AX Mirvac Group 128 ALU.AX Altium Ltd
29 BLD.AX Boral Ltd 79 MGX.AX Mount Gibson Iron Ltd 129 ASL.AX Ausdrill Ltd
30 BNO.AX Bionomics Ltd 80 MND.AX Monadelphous Group Ltd 130 BKL.AX Blackmores Ltd
31 BOQ.AX Bank of Queensland Ltd 81 NAB.AX National Australia Bank Ltd 131 COE.AX Cooper Energy Ltd
32 BPT.AX Beach Energy Ltd 82 NBL.AX Noni B Ltd 132 EWC.AX Energy World Corporation Ltd
33 BSL.AX BlueScope Steel Ltd 83 NCM.AX Newcrest Mining Ltd 133 EZL.AX Euroz Ltd
34 BWP.AX BWP Trust 84 NUF.AX Nufarm Ltd 134 FPH.AX Fisher & Paykel Healthcare Corporation Ltd
35 CAB.AX Cabcharge Australia Ltd 85 ORG.AX Origin Energy Ltd 135 HTA.AX Hutchison Telecommunications (Australia) Ltd
36 CBA.AX Commonwealth Bank of Australia 86 ORI.AX Orica Ltd 136 LYC.AX Lynas Corporation Ltd
37 CCL.AX Coca-Cola Amatil Ltd 87 OSH.AX Oil Search Ltd 137 MLB.AX Melbourne IT
38 CCP.AX Credit Corp Group Ltd 88 PME.AX Pro Medicus Ltd 138 RHL.AX Ruralco Holdings
39 CCV.AX Cash Converters International Ltd 89 PMP.AX PMP Ltd 139 SDG.AX Sunland Group Ltd
40 CIM.AX CIMIC Group Ltd 90 PPT.AX Perpetual Ltd 140 SKC.AX Skycity Entertainment Group Ltd
41 CLH.AX Collection House Ltd 91 PRY.AX Primary Health Care 141 SPL.AX Starpharma Holdings Ltd
42 CNI.AX Centuria Capital Group 92 QAN.AX Qantas Airways Ltd 142 WOR.AX Worley Ltd
43 COH.AX Cochlear Ltd 93 QBE.AX QBE Insurance Group Ltd
44 ALQ.AX ALS Ltd 94 RCR.AX RCR Tomlinson
45 CPH.AX Creso Pharma Ltd 95 RCT.AX Reef Casino Trust
46 CPU.AX Computershare Ltd 96 REA.AX REA Group Ltd
47 CSL.AX CSL Ltd 97 REH.AX Reece Ltd
48 CSR.AX CSR Ltd 98 RHC.AX Ramsay Health Care Ltd
49 CTX.AX Caltex Australia Ltd 99 RIC.AX Ridley Corporation Ltd
50 CWP.AX Cedar Woods Properties Ltd 100 RIO.AX Rio Tinto Ltd

The data was obtained from Thompson Reuters Tick History provided by SIRCA database. Our data sample starts from 6 January 2003 - 29 December 2017 between 10 am to 4 pm of each trading
day, giving us a sample of 24 intra-day price series. We use 15-minute high frequency price series which results in 94,350 price series over 15 years. This data-set is used for the analysis in Chapters 4
and 5 of this thesis.
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B.2 Granger causality test for realized higher-

order moments

Table B2 reports the Granger causality test for realized higher-order moments

and trading volume. Panel A reports the results for the weekly holding period

and Panel B the monthly holding period for our full sample period. The VAR(p)

model can be found in equation B2.1 and B2.2. We use five lags based on the

Schwarz criterion. The null hypothesis in equation B2.1 tests if the realized higher-

order moment does not Granger cause trading volume. While equation B2.2, tests

the null hypothesis that trading volume does not Granger cause realized higher-

order moments. From Panel A, we observe a uni-direction relationship for realized

variance, realized skewness, positive realized skewness, and trading volume. The

uni-directional causality result of realized variance and trading volume is consistent

with Fung and Patterson (1999); Tse (1999). Do et al. (2014) find a bi-directional

relationship between trading volume and realized volatility in FX markets and for

the stock markets in nearly most cases apart from the Western European region,

which they observe a uni-directional relationship. We observe a bi-directional

causality effect exists for negative realized skewness, realized kurtosis, and trading

volume. For the monthly period, we observe that realized variance, realized skew-

ness, negative realized skewness have a uni-directional causality relationship with

trading volume. In this period, the positive realized skewness and realized kur-

tosis tends to have a bi-directional causality. The bi-directional effect of realized

kurtosis is persistent from weekly to monthly period.

In Table B3, we report the Granger causality test between the number of trades and

realized higher-order moments. Similar to the results above, five lags were used in

estimating the VAR(p) model in equations B3.1 and B3.2. The results suggest uni-

directional Granger causality between realized variance and the number of trades

in both weekly and monthly holding period. For realized skewness, negative and

positive realized skewness, realized kurtosis, and the number of trades, we observe

a bi-directional Granger causality. This bi-directional causality is persistent across
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holding periods.

Table B2: Granger causality test between trading volume and realized higher-
order moments

Granger causality test F-Statistic P-Value
Panel A: Weekly data
Realized Variance does not Granger cause trading volume 3.5100 0.0036
Trading Volume does not Granger cause realized variance 0.0000 1.0000

Realized Skewness does not Granger cause trading volume 5.0963 0.0001
Trading Volume does not Granger cause realized skewness 0.4826 0.7895

Negative realized Skewness does not Granger cause trading volume 7.1372 0.0000
Trading Volume does not Granger cause negative realized skewness 46.8560 0.0000

Positive realized Skewness does not Granger cause trading volume 0.8978 0.4814
Trading Volume does not Granger cause positive realized skewness 60.5190 0.0000

Realized kurtosis does not Granger cause trading volume 28.5400 0.0000
Trading Volume does not Granger cause realized kurtosis 43.2060 0.0000
Panel B: Monthly data
Realized Variance does not Granger cause trading volume 5.0464 0.0001
Trading Volume does not Granger cause realized variance 0.0000 1.0000

Realized Skewness does not Granger cause trading volume 9.5297 0.0000
Trading Volume does not Granger cause realized skewness 2.3165 0.0548

Negative realized Skewness does not Granger cause trading volume 8.2920 0.0000
Trading Volume does not Granger cause negative realized skewness 2.0588 0.0834

Positive realized Skewness does not Granger cause trading volume 4.1991 0.0008
Trading Volume does not Granger cause positive realized skewness 2.3835 0.0491

Realized kurtosis does not Granger cause trading volume 12.0700 0.0000
Trading Volume does not Granger cause realized kurtosis 7.7029 0.0000
This table reports the Granger causality test between trading volume and realized higher-order
moments. We use the 142 stocks from our sample starting from 6 January 2003 - 29 December 2017.
Panel A presents the results for the weekly holding period while panel B reports the monthly results.
The following VAR (p) model is estimated:

RMt =
p∑

k=1
ψ1kRMt−k +

p∑
k=1

ϕ1kTVt−k + ε1t (B2.1)

TVt =
p∑

k=1
ψ2kRMt−k +

p∑
k=1

ϕ2kTVt−k + ε2t (B2.2)

where TVt is the trading volume, RMit is realized higher-order moments (realized variance, realized
skewness and realized kurtosis). Using the Schwarz criterion, we obtain the optimal lag of p=5.
In Equation (B2.1), we test the null hypothesis that the realized higher-order moments does not
Granger cause trading volume against the alternative that the realized higher-order moments does
Granger cause trading volume. Equation (B2.2) also tests the null hypothesis that the trading
volume does not Granger cause realized higher-order moments against the alternative hypothesis
that the trading volume does Granger cause realized higher-order moments. This is to capture the
feedback effect between realized higher-order moments and trading volume.
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Table B3: Granger causality test between the number of trades and realized
higher-order moments

Granger causality test F-Statistic P-Value
Panel A: Weekly data
Realized Variance does not Granger cause number of trades 2.3356 0.0395
number of trades does not Granger cause realized variance 0.8092 0.5428

Realized Skewness does not Granger cause number of trades 25.1250 0.0000
number of trades does not Granger cause realized skewness 9.6495 0.0000

Negative realized Skewness does not Granger cause number of trades 13.3640 0.0000
number of trades does not Granger cause negative realized skewness 4.5538 0.0004

Positive realized Skewness does not Granger cause number of trades 18.6500 0.0000
number of trades does not Granger cause positive realized skewness 4.4325 0.0005

Realized kurtosis does not Granger cause number of trades 23.1010 0.0000
number of trades does not Granger cause realized kurtosis 19.1390 0.0000
Panel B: Monthly data
Realized Variance does not Granger cause number of trades 3.3000 0.0056
number of trades does not Granger cause realized variance 0.8749 0.4968

Realized Skewness does not Granger cause number of trades 19.0460 0.0000
number of trades does not Granger cause realized skewness 8.2392 0.0000

Negative realized Skewness does not Granger cause number of trades 6.2753 0.0000
number of trades does not Granger cause negative realized skewness 7.2213 0.0000

Positive realized Skewness does not Granger cause number of trades 15.8740 0.0000
number of trades does not Granger cause positive realized skewness 4.1837 0.0008

Realized kurtosis does not Granger cause number of trades 25.4000 0.0000
number of trades does not Granger cause realized kurtosis 7.4429 0.0000
This table reports the Granger causality test between the number of trades and realized higher-order
moments. We use the 142 stocks from our sample starting from 6 January 2003 - 29 December 2017.
Panel A presents the results for the weekly holding period while panel B reports the monthly results.
The following VAR (p) model is estimated:

RMt =
p∑

k=1
ψ1kRMt−k +

p∑
k=1

ϕ1kNTt−k + ε1t (B3.1)

NTt =
p∑

k=1
ψ2kRMt−k +

p∑
k=1

ϕ2kNTt−k + ε2t (B3.2)

where NTt is the number of trades, RMit is realized higher-order moments (realized variance, realized
skewness and realized kurtosis). Using Schwarz criterion, we obtain the optimal lag of p=5, in Equation
(B3.1) we test the null hypothesis that the realized higher-order moments does not Granger cause the
number of trades against the alternative that the realized higher-order moments does Granger cause
the number of trades. Equation (B3.2) also tests the null hypothesis that the number of trades does
not Granger cause realized higher-order moments against the alternative hypothesis that the number
of trades does Granger cause realized higher-order moments. This is to capture the feedback effect
between realized higher-order moments and the number of trades.
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Appendix C

Appendix for chapter 5

C.1 Fama-MacBeth cross-sectional regression

run separately for each risk measure
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Table C1: Fama-MacBeth cross-sectional regression, full-sample period

Risk measure All period Upmarket period Downmarket period
β -0.0013 0.0064*** -0.0077***
γ 0.0372*** 0.0204*** 0.0168***
κ 0.0002 0.0006*** -0.0004***
Illiq 0.0031 -0.0005 0.0036
log(size) -0.0020*** -0.0012** -0.0008**
PRet 0.0074 -0.0081 0.0155*
B/M 1.2187*** 0.4862*** 0.7325***
VaR -0.1056 -0.5671* 0.4615*
βc -0.0017 0.0012 -0.0029***
βj -0.0013 0.0032*** -0.0045**
β+ 0.0178*** 0.0145*** 0.0032**
β− -0.0207*** -0.0068*** -0.0138***
γ+ 0.0134*** 0.0089*** 0.0045***
γ− 0.0131*** 0.0070*** 0.0062***
κ+ 0.0014*** 0.0009*** 0.0005***
κ− -0.0013*** -0.0007*** -0.0006***
This table reports the monthly Fama-MacBeth cross-sectional regression results for
the 142 Australian stocks for the full sample period starting from 6 January 2003 - 29
December 2017. For this table, we run the regression separately on each risk measure.
The upmarket (downmarket) period are defined as when the monthly excess realized
market return exceeds (less than) the risk-free rate. The standard CAPM beta (β),
downside beta (β−), upside beta (β+), continuous beta (βc), jump beta (βj), gamma
(γ), downside gamma (γ−), upside gamma (γ+), kappa (κ), downside kappa (κ−),
upside kappa (κ+), book-to-market value (B/M), illiquidity (Illiq), natural logarithm
of firms’ market capitalization (log(size)), lagged return over previous month (PRet),
value-at-risk (VaR). Significance levels:‘ *: 0.10, **: 0.05, ***: 0.01’.
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