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ABSTRACT 

Many eye diseases have a distinct genetic etiology and collectively, these account for a 

large proportion of blindness, worldwide. Despite advances in molecular diagnostics and 

our understanding of genetic etiology, there are no definitive treatments available for many 

genetic eye diseases. Emerging technologies — such as gene augmentation therapy or 

stem cell-based replacement therapy — could help restore vision in a number of patients. 

Recently developed gene-editing techniques also hold great potential for treating blinding 

or potentially even life-threatening ocular diseases. 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-

associated system (Cas) is an adaptive, prokaryotic immune defense system that 

coordinates against viral intrusion; it has since been repurposed in a programmable 

fashion that allows us to very specifically target a gene locus via a user-specified guide 

RNA. Due to the ease of designing guide RNAs, CRISPR holds great potential for the 

study or treatment of inherited diseases. There have been a handful of in vivo 

CRISPR/Cas studies demonstrating the potential of not only modeling various diseases, 

but also treating genetic disorders or labeling live cells. Crucial considerations regarding 

somatic gene editing include adequate delivery to target cells in vivo, elimination of off-

target effects and improved gene-editing efficacy via different CRISPR/Cas systems. As 

a proof-of-concept study, the overall aim of my PhD project was to use fluorescent proteins 

as a model to explore the efficacy of in vivo CRISPR editing in the retina. Based on our 

previous study using adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas to modify 

genes in retinal cells in yellow fluorescent protein (YFP) transgenic mice, my PhD study 

first focused on developing and validating a self-destructive AAV2-mediated CRISPR/Cas 

system to improve the biosafety of genome editing in vivo. Next, I performed a direct head-

to-head comparison of the in vivo gene-editing efficacy of different CRISPR/Cas systems. 
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My last aim was to use in vitro genome-scale CRISPR screens to identify critical genes 

underlying the ocular cancer, uveal melanoma. 

To eliminate the possibility of inadvertent off-target effects of CRISPR/Cas9, we designed 

a novel self-destructing CRISPR/Cas system that disrupts the Cas enzyme itself with an 

extra guide targeting SpCas9 along with the original YFP-targeting guide. After validation 

in a YFP-expressing cell line, I tested it in Thy1-YFP transgenic mouse retina using a dual 

AAV2 vector delivery system: one vector to deliver the SpCas9 transgene, and the other 

to deliver their cognate sgRNAs against SpCas9 and the target locus (YFP), as well as an 

mCherry transgene to validate retinal penetration of the AAV. After 8 weeks, the 

expression of SpCas9 and the efficacy of YFP gene disruption was quantified. SpCas9 

messenger RNA (mRNA) was reduced in retinas treated with dual AAV2-mediated-

YFP/SpCas9 targeting CRISPR/Cas compared to those treated with YFP-targeting 

CRISPR/Cas alone. We also showed that AAV2-mediated delivery of YFP/SpCas9 

targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among 

mCherry-expressing cells (~85.5% reduction compared to LacZ/SpCas9-targeting 

CRISPR/Cas) in the transduced retina of Thy1-YFP transgenic mice. Our data suggest 

that a self-destructive "kamikaze"-CRISPR/Cas system can be used as a robust tool for 

genome editing in the retina, without compromising on-target efficiency.  

To determine the most efficacious CRISPR/Cas endonucleases for retinal editing in vivo, 

I designed and constructed YFP-targeting guide RNAs for different CRISPR/Cas systems, 

followed by in vitro validation and sgRNA selection in YFP-expressing cells. I then 

performed knockout tests across a range of different conditions, using the AAV2-based 

pseudotype AAV7m8 (single or dual vector delivery system) to deliver CRISPR/Cas 

constructs into retinal cells in CMV-Cre::Rosa26-YFP transgenic mice. For in vitro 

validation, SpCas9 and Cas12a achieved better knockout efficiency than SaCas9 (single 

and double vector) and CjCas9 in YFP-expressing cells. AAV7m8-mediated delivery of 
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CRISPR/Cas constructs achieved effective transduction into the outer retinal layer, and 

we found that SpCas9 achieved the highest knockout efficacy among all Cas 

endonucleases in vivo, which was consistent with the in vitro result. Other Cas 

endonucleases were observed to have low editing efficacy or variation in knockout efficacy. 

Just as CRISPR/Cas can be applied to target a single gene, it is also possible to 

interrogate every possible gene in the genome. This genome-scale CRISPR/Cas 

screening approach can be used to identify novel gene targets in different cancers. I 

sought to then identify genes that are essential for uveal melanoma (UM), which is the 

most common malignant ocular cancer in adults. I employed a GeCKO (genome-wide 

CRISPR knockout) screening strategy in the UM cell line, OCM-1. By identifying the 

missing guide-RNA library after 12 passages using next-generation sequencing and 

bioinformatics analysis tools CRISPRAnalyzeR, we found 15 genes with three or more 

targeted sgRNA deletions during selection that are involved in critical biological pathways. 

By checking these 15 candidate genes based on open-access data from the Cancer 

Genome Atlas datasets, we found that there was elevated expression of the SLC3A2 gene 

in UM patients in a pan-cancer view setting, and that the expression levels of three genes, 

COQ2, MRPL22 and POLR3K, are associated with UM patient survival. Our work provides 

new insights into the molecular mechanisms of UM and may reveal new therapeutic 

targets for this deadly disease. 

In summary, we developed a novel self-destructive CRISPR/Cas that can be used as a 

robust tool for genome editing in the retina of a YFP-expressing transgenic mice model. 

Moreover, we found that SpCas9 achieved the most efficient gene modification among the 

four CRISPR/Cas endonucleases that we tested in AAV7m8-transduced retinas. With a 

human UM cell line, we identified some novel gene targets using a genome-wide 

CRISPR/Cas9 library screening approach. These studies add new insight to the in vivo 

applications of CRISPR/Cas gene editing in the retina, which is crucial for optimizing the 
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"clinic ready" profile of CRISPR/Cas for impending application in the treatment of blinding 

eye diseases. 
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1 LITERATURE REVIEW 

1.1 Introduction 

Inherited retinal diseases are disabling disorders of visual function that affect millions of 

people worldwide. With the development of next-generation sequencing and better 

molecular diagnostic techniques, numerous genetic variants across many loci have been 

definitively associated with inherited retinal diseases1,2. Despite this increase in our 

understanding of the genetic etiology and potential therapeutic targets, there remains no 

effective treatment for the majority of inherited retinal diseases.  

Although significant progress in gene therapy has been achieved over the last two 

decades, there are few sustained, safe and effective ocular gene therapy for inherited 

retinal diseases3–5. Despite the reported improved visual function in certain Leber 

congenital amaurosis patients treated with RPE65 gene replacement therapy6–8, several 

significant obstacles hinder its clinical translation, including the limits of viral vector 

capacity. 

Advances in genome-editing techniques, particularly in CRISPR/Cas, has renewed 

excitement in ocular gene-based therapy. This literature review summarizes in vivo 

applications of CRISPR/Cas gene editing in the retina, including an overview of current 

progress and diversity of CRISPR system; in vivo delivery vectors and methods; and 

CRISPR-based gene editing as a potential therapeutic in various ocular disease models. 

It highlights the main challenges of CRISPR-based retinal-genome editing and potential 

ways to tackle these concerns. 

1.2 Retinal degeneration 

Retinal degeneration underlies a group of blinding diseases, including hereditary diseases 

such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt’s disease, 

choroideremia, and Usher syndrome, and non-hereditary ocular diseases such as age-

https://paperpile.com/c/PbOHNG/gVwzY+YOQzU
https://paperpile.com/c/PbOHNG/1LMn3+Fsega+T6khz
https://paperpile.com/c/PbOHNG/0OSrH+naOXy+Ag6W4
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related macular degeneration (AMD). To date, over 250 genes (Figure 1.1) have been 

implicated in retinal diseases. However, treating these ocular disorders remains 

challenging.  

Figure 1.1 Mapped and identified retinal disease genes 1980-2019 (from RetNet). 

Up to now, much gene therapy work has been focused on bringing an ectopic functional 

gene into cells via viral or non-viral vectors to restore loss-of-function caused by mutations. 

The limitation of gene replacement therapy is that its efficacy may decrease over time. 

What is more, it is not feasible to package certain large-sized genes using currently 

available viral vectors. A recently developed CRISPR-based gene-editing approach holds 

great potential to tackle these challenges and treat these blinding eye diseases. 

1.3 Overview of CRISPR-based gene editing 

The CRISPR/Cas system was discovered as part of a prokaryotic bacterial immune 

system and has anti-viral activity9,10. It has been repurposed as a potent tool for gene 

editing in mammalian cells11,12. CRISPR/Cas systems are diverse; the system with the 

most utility consists of two main components—a Cas endonuclease that can act as 

molecular scissors to cut or nick the DNA strands, and its programmable guide RNA 

sequence (referred to as sgRNA), which can localize the Cas endonuclease protein to the 

exact genomic region of interest. Recently CRISPR/Cas systems have been categorized 

https://paperpile.com/c/PbOHNG/kEqIN+IVJKL
https://paperpile.com/c/PbOHNG/Tc5PL+IPNKQ
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as Class 1 or Class 213–16. The Class 1 CRISPR/Cas system is subdivided into types I, VI, 

III, and Class 2 is subdivided into types II, V, VI. While Class 1 systems involve multiple 

Cas endonucleases, Type II and Type V in Class 2 have been engineered to perform 

robust RNA-guided gene editing in eukaryotic cells, which have simpler components with 

a single Cas endonuclease.   

1.3.1 SpCas9 for genome editing 

In Type II systems, Cas 912,17,18, the sole DNA endonuclease, is guided by two RNAs: a 

specificity determining CRISPR RNA (crRNA), complementary to the target DNA 

sequence, and an auxiliary trans-activating crRNA (tracrRNA), complementary to crRNA 

sequence. The protospacer-adjacent motif (PAM) is an essential targeting component, 

which differs among many different Type II systems. The most commonly engineered 

system, CRISPR/SpCas9 (from Streptococcus pyogenes), requires a PAM with sequence 

5’-NGG-3’, where N represents any nucleotide. Cas9 contains two domains: the HNH 

domain cleaves the complementary DNA strand, while the RuvC-like domain cleaves the 

non-complementary DNA strand18. Target DNA is cut 3-5 bases upstream of the PAM 

sequence, generating blunt ends. The crRNA and tracrRNA duplexes can also be fused 

into a chimeric single guide RNA (sgRNA) that can not only mimic the natural crRNA-

tracrRNA hybrid but also make this system simpler in the experimental setting (Figure 1.2). 

Due to its high efficiency and simplicity, the CRISPR-Cas9 system has become the most 

widely used genome-editing tool.  

https://paperpile.com/c/PbOHNG/kAJpC+JxhcP+bvPsO+QxlIN
https://paperpile.com/c/PbOHNG/HVEoz+kj71u+IPNKQ
https://paperpile.com/c/PbOHNG/kj71u
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Figure 1.2 Targeted DNA cleavage by CRISPR/Cas9. 

Cas programmed by crRNA and tracrRNA duplex (A), Cas9 programmed by single 

chimeric RNA (sgRNA) (B). The cleavage occurs near a PAM site with the sequence of 

5’-NGG-3’.  

1.3.2 Cas12a for genome editing 

Cas12a (originally called cpf1), classified as a Type V CRISPR system14, is a single RNA-

guided endonuclease lacking tracrRNA and recognizing a T-rich PAM. Unlike Cas9, Cas 

12a has only one domain, RuvC domain, which cleaves both DNA strands at the distal 

end of the PAM in a staggered pattern13. Among Cas12a families, two Cas proteins, 

AsCpf1 (from Acidaminococcus) and LbCpf1 (from Lachnospiraceae), have shown 

efficient genome editing in human cells14. The major characteristics of Cas9- and Cas12a-

based gene editing are shown in Figure 1.3 based on published papers14.  

https://paperpile.com/c/PbOHNG/JxhcP
https://paperpile.com/c/PbOHNG/kAJpC
https://paperpile.com/c/PbOHNG/JxhcP
https://paperpile.com/c/PbOHNG/JxhcP
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Figure 1.3 Main characteristics of CRISPR/SpCas9- and CRISPR/Cas12a-based DNA 

cleavage.   

1.3.3 CRISPR/Cas9 orthologs and variants for gene editing 

1.3.3.1 Main Cas9 orthologs for in vivo gene editing 

Apart from SpCas9, several Cas9 orthologs have been discovered from different origins 

with distinct features. Out of hundreds of currently available Cas9 orthologs, a few of them, 

e.g. SaCas9 (Staphylococcus aureus), CjCas9 (Campylobacter jejuni) and NmCas9 

(Neisseria meningitidis), have been developed for in vivo ocular genome engineering. The 

differences between these Cas9 orthologs lies in the size of Cas endonuclease, PAM 

requirements, editing efficacy, crystal structure, etc. The main Cas endonucleases for in 

vivo genome editing in the retina are compared in Table 1.1. 
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Table 1.1 Comparison of main Cas orthologs for in vivo retinal gene editing 

application 

 

Cas 
orthologs origins 

PAM 

(5’-3’) 
Size (Kb) 

In vivo retinal 
gene editing 
application Ref 

SpCas9 Streptococcus pyogenes  NGG  ~4.2 19–27 

SaCas9 Staphylococcus aureus  NNGRRT  ~3.2 28 

CjCas9 Campylobacter jejuni 
 NNNNRYAC, 

 NNNNACA 
 ~2.9 29,30 

Cas12a 

(Cpf1) 

Acidaminococcus, 
Lachnospiraceae  TTTN 

 ~3.9 (AsCpf1)  

 ~3.7 (LbCpf1) 
31 

NmCas9 Neisseria meningitidis 
 
NNNNGATT        
  

 ~3.2 32 

 

1.3.3.2 Cas9 variants 

To address customizable experimental needs and expand CRISPR-based application, a 

handful of engineered Cas9 variants have been developed based on natural Cas 

nucleases. Those that have been used for in vivo applications are listed below. 

i D10A Cas9 nickase 

D10A Cas9 was created by mutating the catalytic domains of Cas9 while retaining its 

specificity, so it can nick a single DNA strand without creating double-strand break (DSB). 

A pair of nickases targeting opposite DNA strands33 improves genome editing specificity 

and reduces off-target activity.  

https://paperpile.com/c/PbOHNG/MclRr+HlBFs+srvS6+Y0I0e+eMBjG+WrwKT+t47Rw+URpXO+TIofq
https://paperpile.com/c/PbOHNG/3RAin
https://paperpile.com/c/PbOHNG/aOedx+tkJHd
https://paperpile.com/c/PbOHNG/B5c9D
https://paperpile.com/c/PbOHNG/LO7sp
https://paperpile.com/c/PbOHNG/N0XGt
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ii SpCas9 VQR 

The D1135V/R1335Q/T1337R triple SpCas9 mutant protein (referred to as Cas9-VQR) 

was engineered to recognize the novel PAM site 5’-NGA-3’ instead of 5’-NGG-3' in wild-

type SpCas9. Serena G et al34 employed Adeno-Associated Virus 9 (AAV9) delivery of 

CRISPR/SpCas9-VQR to target P23H mutation in murine retina and effectively disrupt the 

P23H Rho mutant.  

iii Catalytically dead Cas9 (dCas9) 

The dCas9 was created by inactivating the catalytic nuclease domains while maintaining 

the recognition domains of Cas9 that allow RNA-guided targeting without cleavage 

ability35. It can be used to activate or repress gene expression (CRISPRa and CRISPRi) 

by fusing to gene activators or inhibitors. Alternatively, combined with sgRNA scaffolds 

binding fluorescent protein, dCas9 can be used to label living cells36.

iv CRISPR Base Editors 

Two types of base editors have also been developed based on dCas9: Cytosine base 

editors (CBEs)37 and Adenine base editors (ABEs)38. Base editing allows for single 

nucleotide exchange in the genome without DSB. In CBEs, a cytidine deaminase such as 

APOBEC1 was fused with dCas9, which enabled cytosine (C) to thymine (T) conversion 

at target sites with high specificity37. Another ABEs system was further developed to allow 

A/T to C/G conversion, expanding the scope of precise genome engineering of point 

mutations. In vivo base editing has been demonstrated in preclinical animal models39–41, 

and the same approach could be potentially applied to retinal disease associated with 

point mutation in future studies.  

1.3.4 Mechanisms of CRISPR/Cas gene editing 

1.3.4.1 DNA repair pathways 

Despite the differences between CRISPR/Cas systems, when the CRISPR/Cas complex 

https://paperpile.com/c/PbOHNG/Z53W9
https://paperpile.com/c/PbOHNG/mKtRE
https://paperpile.com/c/PbOHNG/YbrpC
https://paperpile.com/c/PbOHNG/llYeJ
https://paperpile.com/c/PbOHNG/7eHaB
https://paperpile.com/c/PbOHNG/llYeJ
https://paperpile.com/c/PbOHNG/J9FkF+a6l8h+tRS5r
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makes targeted breaks, the resulting DSB is then repaired by one of the two general repair 

pathways (Figure 1.4): the efficient but error-prone non-homologous end joining (NHEJ) 

repair pathway or the less efficient but precise repair homology directed repair (HDR) 

pathway42,43. NHEJ results in random insertions or deletions (indels), and indel formation 

leads to the disruption of the open reading frame of the gene (frameshift mutation), which 

can be used to create gene knockout. On the other hand, precise modification through 

HDR can be activated with a DNA repair template containing the desired sequence 

provided. The efficiency of HDR is usually low, as HDR occurs primarily during the S/G2 

phase, thus limiting its use to actively dividing cells. For postmitotic cells such as retinal 

cells, NHEJ is the major repair pathway involved and HDR efficiency is usually low.  

Figure 1.4 CRISPR/Cas mediated DSB followed by two repair pathways: NHEJ and 

HDR. 

1.3.4.2 CRISPR-based NHEJ approach to disrupt gene in retinal cells in vivo  

Overall, reported CRISPR/Cas-mediated gene disruption efficiencies through NHEJ in the 

retina are high, with variation in different studies or individual animals. Kim et al. reported 

indels in retinal pigment epithelium (RPE) cells reached 25±3% three days after subretinal 

injection of Cas9 ribonucleoprotein (RNP)44. The same group29 reported a single AAV-

CjCas9:Vegfa achieved indels with frequencies 22%~30% in a period of 14 to 42 days 

post-intravitreal injection, and they found the indels were lasting and increased in the 

https://paperpile.com/c/PbOHNG/aupHp+5f0Q9
https://paperpile.com/c/PbOHNG/xVLkq
https://paperpile.com/c/PbOHNG/aOedx
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mouse retina for up to 14 months after injection30. With different lentiviral vectors, up to 

84% of indel formation efficacy was achieved in mouse RPE cells45. Some groups didn’t 

directly use indel rates but rather the phenotype change to indicate high genome-editing 

efficacy. Our group observed a reduction of YFP-positive cells of approximately 84.0% 

(95% CI: 81.8–86.9) in Thy1-YFP transgenic mouse 5 weeks after administration of a dual 

AAV CRISPR/Cas9 construct20. This level of gene modulation in vivo is similar to that 

reported for other tissues, such as brain (~ 68% using AAV)46 and liver (80–90% using 

adenovirus)47. 

1.3.4.3 CRISPR-based HDR approach in retinal cells in vivo 

Although studies have illustrated a high efficiency of CRISPR/Cas-mediated NHEJ repair 

in retinal cells, this gene repair pathway is error-prone. The HDR repair pathway is 

preferable in order to correct gene mutations precisely. As the occurrence of HDR is 

largely restricted to the dividing stage of cells, applying this strategy in non-dividing 

postmitotic cells, such as neurons or retinal cells, remains challenging. As the retina is 

part of the central nervous system, reported methods to improve HDR in the brain could 

be potentially applied to genome editing in the retinal. Nishiyama and colleagues48 

achieved around 15% knockin efficiency in the brain by CRISPR-based HDR delivered by 

single AAV-CRISPR in Cas9 mice or dual AAV-CRISPR in wild-type adult mice. Suzuki 

and colleagues49 demonstrated the efficiency of a NHEJ-based homology-independent 

targeted integration method to correct Mertk mutations in a mouse model of retinitis 

pigmentosa (RP). Both groups reported comparable efficiency of precise sequence 

insertion in postmitotic cells, using different strategies. The only in vivo study addressing 

a CRISPR-based HDR approach in the retina was reported by Xue’s group50, which 

developed a Cas9/bacteria recombinase A (RecA) system to precisely correct a pde6b 

gene mutation with increased HDR efficiency in a RP mouse model (rd1 mouse).   

https://paperpile.com/c/PbOHNG/tkJHd
https://paperpile.com/c/PbOHNG/3wkBJ
https://paperpile.com/c/PbOHNG/HlBFs
https://paperpile.com/c/PbOHNG/c09wd
https://paperpile.com/c/PbOHNG/lbDoo
https://paperpile.com/c/PbOHNG/1brPX
https://paperpile.com/c/PbOHNG/q1x3R
https://paperpile.com/c/PbOHNG/c0sm7
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1.3.4.4 CRISPR-based gene knockdown in retinal cells in vivo 

Engineered dCas9 variants fused with a gene repressor protein (i.e., the KRAB protein) 

or a gene transcription activator (i.e., VP16), could shut down or up-regulate target genes. 

Xia et al.32 used AAV-nuclease null NmCas9-mediated knockdown of the Slc9a8 gene in 

the mouse eye by subretinal injection to study the function of sodium/proton exchange 8 

(NHE8) in RPE and photoreceptor cells. 

1.4 In vivo delivery to the retina 

Although CRISPR-based editing has proven to be robust in a variety of eukaryotic cells in 

vitro11,12, in vivo gene editing cannot be applied unless efficient in vivo delivery of 

CRISPR/Cas constructs into the target cells in an organism is achieved. Using various 

packaging formats, advances in the in vivo delivery of CRISPR/Cas system are key to the 

clinical translation of CRISPR-based therapy. 

Theoretically, current techniques used for gene delivery could be used to deliver 

CRISPR/Cas components to the retina. The eye has unique structures and is immune-

privileged, making local delivery not only feasible but also more effective than systemic 

delivery. In vivo gene editing requires local viral or non-viral vector delivery of 

CRISPR/Cas constructs via intravitreal injection or subretinal injection. Sometimes, 

electroporation is used along with subretinal injection to enhance retinal intake, especially 

in newborn animals.   

A handful of viral and non-viral vectors have been developed to deliver CRISPR/Cas 

components to retinal cells in vivo. Overall, viral vectors have better transduction efficacy 

to the living organism and relatively longer expression time while non-viral vectors 

stimulate less immune response and are easier to scale up but have a lower transduction 

rate. With these distinct advantages as well as drawbacks, a combination of both vectors 

or the development of novel vectors with improved features are still needed to deliver 

https://paperpile.com/c/PbOHNG/LO7sp
https://paperpile.com/c/PbOHNG/Tc5PL+IPNKQ


11 

CRISPR/Cas tools safely and effectively to allow efficient editing in the retinal cells in vivo. 

1.4.1 Electroporation to enhance CRISPR/Cas delivery to the retina 

Before the application of viral vector for CRISPR/Cas delivery to the retina, Wang et al. 

applied CRISPR/Cas9 genome editing in neonatal mice retina by subretinal injection 

followed by electroporation, thereby identifying the Blimp1 gene as essential for rod-

bipolar function. Later, this approach was applied by other groups19,21,34,51 for efficient 

genome editing in the retina in mouse or rat models. As a single plasmid with both Cas 

endonuclease and sgRNA cassettes, the transduction efficiency to the retina is relatively 

high. The limitation of this approach is that it is only applicable in newborn animals with 

retinal cells at the mitotic stage and therefore is not practical for editing the adult retina. 

Moreover, electroporation is not a clinically feasible treatment as it can negatively affect 

retinal integrity34. Considering that most retinal diseases develop gradually in childhood or 

as an adult, studies of in vivo genome editing in adult animals via different delivery 

methods will be more relevant for future clinical application.  

1.4.2 Viral vector-mediated CRISPR delivery to the retina 

Viral vectors have been widely used in gene therapy clinical trials and also show great 

promise in preclinical in vivo gene editing for the treatment of various retinal diseases. 

Among these different viral vector types, adenoviral vectors, adeno-associated viral (AAV) 

vectors and Lentiviral vectors are the leading platforms for gene therapy delivery, with 

different features fit for different target tissues/cells and diseases.  

AAVs are the leading platform for in vivo gene therapy delivery. As AAVs can transduce 

both dividing and non-dividing cells efficiently with rare genomic DNA integration, it is a 

clinical safer vehicle for ocular gene therapy. Nearly 70% of ocular gene therapy uses 

AAVs5,52 . Also, the most widely used viral vector for in vivo CRISPR/Cas delivery to the 

retina is AAV (Table 1.2).  

https://paperpile.com/c/PbOHNG/MclRr+srvS6+Z53W9+SRx61
https://paperpile.com/c/PbOHNG/Z53W9
https://paperpile.com/c/PbOHNG/T6khz+tL3A3
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Lentiviral vectors, on the other hand, may not be ideal for many gene therapy applications 

in the clinical setting, mainly due to the risks associated with random genome integration. 

Instead of in vivo application, Lentiviral vectors have been applied for ex vivo use to treat 

diseases such as β-thalassemia, in which lentiviral delivered modified cells are reinfused 

intravenously and engraft in the bone marrow to eventually express functional β-globin 

gene53. As for in vivo ocular gene therapy, Lentiviral vector-mediated delivery only 

accounts for around 10% of total clinical trials5,54.  

Adenoviral vectors are derived from Adenoviruses and have limited application in ocular 

therapy, mostly due to its transient expression as well as higher immune response.  

These viral vectors have been widely reviewed previously55,56 as gene therapy tools and 

the main features and their application for in vivo CRISPR/Cas delivery are listed in Table 

1.2 

Table 1.2 Viral vectors for in vivo CRISPR/Cas delivery in the eye 

Viral vector Packaging 
capacity 

Dividing 
or non-
dividing 
cells 

Integration 
to host 
genome 

immunogenicit
y 

Duration of 
expression 

References of in 
vivo ocular 
CRISPR 
application 

AAV ~5 Kb both rare low  long 20,22–24,26,28–31,51,57

Lentivirus ~9 Kb both yes low prolonged 45

Adenovirus ~8 Kb both no high transient 25

1.4.2.1 AAV-mediated CRISPR/Cas delivery to the retina 

AAV-mediated CRISPR delivery to the mouse brain was first reported by Swiech et al.46. 

With a dual AAV delivery system delivery SpCas9 and sgRNA targeting single gene 

(Mecp2) as well as multiple genes (Dnmt1, Dnmt3a and Dnmt3b), a high co-transduction 

https://paperpile.com/c/PbOHNG/NgSPx
https://paperpile.com/c/PbOHNG/T6khz+WrdAr
https://paperpile.com/c/PbOHNG/r8CEG+SXmHO
https://paperpile.com/c/PbOHNG/HlBFs+Y0I0e+eMBjG+WrwKT+URpXO+3RAin+aOedx+tkJHd+B5c9D+SRx61+zdKC7
https://paperpile.com/c/PbOHNG/3wkBJ
https://paperpile.com/c/PbOHNG/t47Rw
https://paperpile.com/c/PbOHNG/c09wd
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efficiency (~75%) and efficient gene editing in the adult mouse brain was achieved. Our 

group first adopted a similar approach for CRISPR/Cas9 genome editing in adult retina20. 

By delivering SpCas9 and YFP-targeting sgRNA in a dual AAV2 system through 

intravitreal injection, we achieved high CRISPR/SpCas9-mediated gene editing in the 

inner retina, indicated by 84% reduction of YFP-expressing cells compared with LacZ-

targeting control CRISPR constructs. A number of applications of AAV vectors for 

CRISPR/Cas delivery are listed in Table 1.2. 

The advantages of AAV vectors as a gene delivery tool are not limited to high in vivo 

efficiency, but also a wide range of tissue or cell tropism with different serotypes, making 

CRISPR/Cas tissue/cell specific delivery and targeting possible. A variety of serotypes 

have been used in retinal CRISPR/Cas genome editing, including AAV124, AAV220,57, 

AAV522,28, AAV823, AAV930–32,34,44 AAV2/8 hybrid26. AAV2 delivery of CRISPR/Cas9 

constructs mainly infect the inner layer of retina, especially in the ganglion cells through 

intravitreal injection20,57 while AAV9-mediated CRISPR/Cas achieved efficient gene 

editing in RPE or photoreceptors with intravitreal injection30–32,34,44, indicating AAV9 has 

better retinal transduction. Apart from serotype and injection method, different tissue-

specific promoters have been used to achieve tissue- or cell-specific genome editing in 

the retina. Photoreceptor-specific promoters, such as photoreceptor-specific human 

rhodopsin kinase (RK) promoter23, hRho promoter32, and GRK1 promoter28, have been 

used to limit CRISPR/Cas-mediated genome editing to photoreceptors, which are the main 

therapeutic target for inherited retinal diseases. Huang et al. adapted an endothelial-

specific promoter of intercellular adhesion molecule 2 (pICAM2) to drive SpCas9 

expression in vascular endothelial cells in the retina24.  

To overcome the limited packaging capacity of AAV vectors, a dual delivery system was 

used to deliver SpCas9 and sgRNA cassettes in two separate vectors. Even though 

efficient gene disruption in the retina was reported20,22–24,26,51,57, this dual vector delivery 

approach requires co-transduction, which may reduce gene-editing efficiency. Some Cas9 

orthologs with smaller size facilitate an all-in-one AAV vector to package both Cas 

https://paperpile.com/c/PbOHNG/HlBFs
https://paperpile.com/c/PbOHNG/WrwKT
https://paperpile.com/c/PbOHNG/HlBFs+zdKC7
https://paperpile.com/c/PbOHNG/Y0I0e+3RAin
https://paperpile.com/c/PbOHNG/eMBjG
https://paperpile.com/c/PbOHNG/xVLkq+Z53W9+B5c9D+LO7sp+tkJHd
https://paperpile.com/c/PbOHNG/URpXO
https://paperpile.com/c/PbOHNG/HlBFs+zdKC7
https://paperpile.com/c/PbOHNG/xVLkq+Z53W9+B5c9D+LO7sp+tkJHd
https://paperpile.com/c/PbOHNG/eMBjG
https://paperpile.com/c/PbOHNG/LO7sp
https://paperpile.com/c/PbOHNG/3RAin
https://paperpile.com/c/PbOHNG/WrwKT
https://paperpile.com/c/PbOHNG/HlBFs+Y0I0e+eMBjG+WrwKT+URpXO+SRx61+zdKC7
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endonuclease and sgRNA together. CjCas929,30, Cas12a31, SaCas928 and their respective 

sgRNA was used in a single viral vector for in vivo gene knockout in the retina.  

1.4.2.2 Lentivirus-mediated CRISPR/Cas delivery to the retina 

The major limitation of AAV for in vivo CRISPR delivery is its cargo capacity is less than 

5 kb. Lentivirus, on the other hand, can deliver exogenous DNA up to 9 Kb to both dividing 

and non-dividing cells, making it a versatile tool for packaging both SpCas9 and its sgRNA 

together in one vector. Andreas et al.45 demonstrated a single subretinal injection of 

lentivirus-delivered SpCas9 and Vegfa-targeting sgRNA resulted in robust knockout (indel 

formation up to 84%) of expression of Vegfa in mouse retina.  

Potential risks associated with random genome integration of Lentiviral vectors limit its 

clinical application in CRISPR-based gene editing in the eye. However, the feature of long-

lasting gene expression via Lentiviral delivery can be used for CRISPR/Cas screen, 

another important application of CRISPR/Cas system. Because lentivirus can deliver DNA 

stably into the genome of host cells, which can express for a long time and pass down to 

the next passage, a CRISPR/Cas screen library can be delivered using lentivirus. This 

lentivirus-mediated CRISPR/Cas screen has been used to study cancer genetics and has 

potential applications in ocular cancer research (Chapter 5).  

1.4.2.3 Adenovirus-mediated CRISPR/Cas delivery to the eye 

Because adenovirus has transient expression and provokes relatively higher immune 

response, it is not widely used for CRISPR/Cas delivery in the retina. Adenoviral vector-

mediated CRISPR/Cas gene editing has been applied mainly in liver diseases47,58–61 , lung 

cancer62, and pancreatic cancer63. Ranran Cheng et al. 58 developed an adenovirus-

delivered CRISPR/Cas9 system, with transient expression and rapid decay of Cas protein, 

that demonstrated persistent genome editing in the liver of adult mice. Jain et al.25 used 

adenovirus to deliver MYOC-targeting CRISPR assembly to mouse trabecular meshwork 

via intravitreal injection. They noticed mild self-limiting anterior segment inflammation even 

https://paperpile.com/c/PbOHNG/aOedx+tkJHd
https://paperpile.com/c/PbOHNG/B5c9D
https://paperpile.com/c/PbOHNG/3RAin
https://paperpile.com/c/PbOHNG/3wkBJ
https://paperpile.com/c/PbOHNG/iLCLX+RVSSE+lbDoo+SJPKK+T5vv8
https://paperpile.com/c/PbOHNG/fWLMK
https://paperpile.com/c/PbOHNG/vonBL
https://paperpile.com/c/PbOHNG/iLCLX
https://paperpile.com/c/PbOHNG/t47Rw
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with Ad5-null vector, indicating the inflammation arose from Adenovirus rather than from 

the CRISPR constructs. No further detrimental effect to the eye was observed. 

1.4.3 Non-viral vector-mediated CRISPR delivery to the retina 

Non-viral vectors have been used in gene therapy clinical trials and have the potential for 

lower immunogenicity, larger packaging payloads, and greater scale-up capacity for 

clinical use64. Compared to viral vectors, non-viral vectors have lower delivery efficiency65 

as they are synthesized rather than evolving via natural selection.  

Non-viral vectors have also been successfully used to deliver CRISPR/Cas constructs to 

various cells in vivo. The anionic nature of sgRNA allows Cas9 protein–sgRNA complexes 

to be integrated into cationic liposomes, a commonly used tool for DNA, RNA, and protein 

delivery. Lipid-mediated Cas9 protein-sgRNA complexes have been successfully 

delivered to achieve efficient gene editing in the mouse ear66,67, with the goal of developing 

a treatment for inherited hearing loss.  

Cationic lipid-mediated Cas9 RNPs44 was delivered to the mouse eye via subretinal 

injection in a laser-induced choroidal neovascularization model. Promoted genome editing 

in the RPE cell was observed, with Cas9 protein degraded three days post-injection. This 

“hit and go” approach can minimize the expression of SpCas9 and thereby the off-target 

effect or the immune response caused by overexpression of Cas endonuclease. 

In summary, there are still challenges and limitations for currently available viral and non-

viral vectors for in vivo CRISPR/Cas delivery. The development of novel viral serotypes 

with retinal tropism, advances in nanotechnology, and the combined application of both 

viral and non-viral vectors will tackle the challenges for in vivo delivery of CRISPR/Cas to 

the retina for future clinical success. 

1.4.4 Surgical procedure to deliver CRISPR to the retina 

CRISPR/Cas constructs packaged by different vectors or naked plasmid DNA can be 

delivered to the retinal cells either via intravitreal or subretinal injection (Figure 1.5), with 

differing advantages and disadvantages. 

https://paperpile.com/c/PbOHNG/Crhj5
https://paperpile.com/c/PbOHNG/XHgdl
https://paperpile.com/c/PbOHNG/VcRMi+jRJBT
https://paperpile.com/c/PbOHNG/xVLkq
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1.4.4.1 Intravitreal injection 

In a clinical setting, intravitreal injection is a common approach to deliver therapeutic 

agents to patients with eye diseases, maximizing therapeutic local delivery and minimizing 

systemic complications. Intravitreal injection is one of the most commonly performed 

procedures in ophthalmology at present. It has also been used to deliver therapeutic 

vectors in gene replacement therapy. The procedure is easier and probably has fewer 

surgical complications compared with subretinal injection. The drawback, however, is that 

for this purpose, transduction to the outer layer of the retina is limited as vectors degrade 

along the transduction, in part due to the inner limiting membrane. As observed before, 

AAV2-mediated CRISPR transduces mainly to the inner layer of the retina, mostly within 

the ganglion cells20. Therefore, it has been used mainly to treat diseases affecting the 

inner retina, such as ganglion in Leber's hereditary optic neuropathy. Other AAV serotypes 

or AAV2-based variants, such as AAV9 or AAV7m8, however, have better transduction in 

the retina. Our group used AAV7m8 to deliver CRISPR/Cas construct via intravitreal 

injection and found sufficient transduction to the outer layer of the retina (Figure 4.7, 4.8, 

Chapter 4).  

1.4.4.2 Subretinal injection 

AAV vector-packaged CRISPR/Cas constructs or naked CRISPR plasmid DNA can be 

administered into the potential space between the PRE layer and the photoreceptor outer 

segments via subretinal injection. Compared with intravitreal injection, therapeutic vector 

delivery via subretinal injection has better photoreceptor transduction efficiency and 

triggers less immune response, especially in inherited retinal diseases in which the 

photoreceptors or the RPE cells are involved. This procedure, however, is technically 

challenging, with potentially more complications including retinal detachment and vitreous 

hemorrhage. Although no severe complications of subretinal injection were reported with 

in vivo CRISPR/Cas studies in the retina, an optimized delivery procedure with minimum 

invasion, high safety and reproducibility would be preferred for future clinical application. 

https://paperpile.com/c/PbOHNG/HlBFs
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Figure 1.5 In vivo delivery of CRISPR/Cas9 to the mouse retina by intravitreal 

injection or subretinal injection. 

1.5 Preclinical studies of CRISPR/Cas genome editing in the eye 

1.5.1 Using CRISPR to model diseases and study gene function in the eye 

CRISPR/Cas gene editing is a useful tool for modelling ocular diseases and studying gene 

function. Congenital cataract rabbit models68,69, a retinal disease rat model70 and a corneal 

dystrophy mouse model71 were created via injection of CRISPR/Cas animal zygotes. 

One of the ways to study gene function is by germline disruption or conditional knockout 

of a specific gene. Germline gene knockout sometimes causes embryo death; conditional 

knockout based on the Cre/loxP system is feasible but also time-consuming and 

complicated. Therefore, in vivo gene disruption using CRISPR is an alternative way to 

study functional genetics. Genes playing a critical role in photoreceptors have been 

studied this way. To study the role of the regulators of the Blimp1 gene, which may 

determine rod versus the cone fate, Wang et al.72 caused deletion of a small element B108 

(a cis-regulatory module of Blimp1 gene) using CRISPR/Cas9 in a neonate mouse retina 

by electroporation. Knockout of B108 led to more bipolar cell formation, similar to Blimp1 

conditional knockout by Cre. This study revealed that B108 is crucial for Blimp1 expression, 

https://paperpile.com/c/PbOHNG/y4D4q+MfdXB
https://paperpile.com/c/PbOHNG/t4RSt
https://paperpile.com/c/PbOHNG/Q0lcC
https://paperpile.com/c/PbOHNG/BMJ7L
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providing a deeper understanding of the development of rodent retina. Gong’s group32 

illustrated the role of sodium/proton exchange 8 (NHE8), with nuclease null NmCas9-

mediated knockdown of the Slc9a8 gene in the mouse eye retina. Campla and 

colleagues73 showed CRISPR-based deletion of the binding site of NRL and CRX, two 

rod-specific differentiation factors of Frmpd1 gene, eliminated or significantly reduced 

Frmpd1 gene expression in rods or rod bipolar cells, respectively. These studies 

demonstrate the feasibility of studying gene function in the retina using CRISPR/Cas 

genome editing in vivo. 

1.5.2 Using CRISPR to treat Retinitis pigmentosa 

RP is one of the most common of the inherited retinal diseases, affecting about 2.5 million 

people world-wide74. For recessive RP with a mutated gene such as RPE65, gene 

replacement therapy via AAV vector-delivered healthy copy of RPE65 could be used 

although it likely wouldn’t be long-lasting and treatment may need to be repeated. Gene 

replacement therapy is not applicable for autosomal dominant RP, which would require 

both allele-specific knockout of mutated gene and restoration of wild-type gene to produce 

functional protein.  

Mutations in Rhodopsin (RHO) account for 30% of dominant RP. CRISPR/Cas system 

was applied to target mutated RHO genes in rodent RP model, as a treatment strategy for 

adRP. The challenge in CRISPR-based treatment for RHO-related adRP is to design 

sgRNA that targets the mutated allele but not the wild-type allele. Bakondi et al.19 designed 

sgRNA targeting a PAM unique to the mutation, with a single nucleotide difference from 

the wild-type sequence. Through subretinal delivery of CRISPR/Cas9 by in vivo 

electroporation in a S334ter-3 rat model of RP allele-specific disruption of S334ter was 

achieved, which prevented RP and improved visual function in the rat. Another group21 

reported non-allele-specific gene editing of CRISPR/Cas9 in P23H (p.Pro23Hist)-mutant 

PHO transgenic mice, with the designed sgRNA recognizing both the mutant and the wild-

type allele. Nonetheless, significant reduction of the mutant RHO protein was observed, 

https://paperpile.com/c/PbOHNG/LO7sp
https://paperpile.com/c/PbOHNG/gykTE
https://paperpile.com/c/PbOHNG/4OcEc
https://paperpile.com/c/PbOHNG/MclRr
https://paperpile.com/c/PbOHNG/srvS6
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and this level of reduction was sufficient to prevent photoreceptor degeneration. Allele-

specific CRISPR/Cas gene editing was achieved by different research groups34,51 in a 

P23H mutation mouse model. CRISPR-mediated “ablate-and-replace” strategy has been 

developed by Tsai and colleagues26, using a dual AAV2/8 vector system — one vector to 

carry SpCas9 and the other to package double sgRNAs and also human RHO cDNA to 

create a large deletion of mutated RHO gene and compensate for the lost endogenous 

RHO protein simultaneously. This approach could potentially be used to treat other 

autosomal dominant ocular diseases. Yu and colleagues23 used a different approach to 

treat RP. They disrupted the neural retina leucine zipper (Nrl) gene, a rod fate determinant 

gene, by AAV-mediated CRISPR/Cas9 delivery via subretinal injection in three different 

retinal degeneration mouse models. NRL expression was significantly reduced in rods in 

mouse retina following AAV8-mediated CRISPR/Cas delivery, resulting in partial loss of 

rods function and gain of cone function, consequently preserving cone function and 

improving cone survival. 

1.5.3 Using CRISPR to treat Leber congenital amaurosis 

Leber congenital amaurosis (LCA) represents the most severe form of inherited retinal 

dystrophy, affecting vision as early as childhood. The most common form of LCA, LCA10 

is an autosomal recessive disorder caused by CEP290 loss-of-function mutations in both 

alleles. Currently, there is no effective treatment for LCA10. Gene replacement therapy 

for LCA10 has been hindered partly due to the large size of CEP290, which is around 

7440 bp and makes in vivo delivery challenging. One of the most common forms of 

CEP290 mutation in many western countries, is an adenine to guanine point mutation in 

intron 26 of the CEP290 gene referred as “IVS26 splice mutation” of CEP290 gene75–77. 

Zhang and colleagues managed to use a truncated version of CEP290 cDNA78 packaged 

by AAV in neonatal Cep290rd16 mice and reported marked improvement in photoreceptor 

survival and function. Although this mini-transgene delivery method can partly mitigate 

CEP290-associated retinal disease, the treatment effect was transient and partial. 

https://paperpile.com/c/PbOHNG/Z53W9+SRx61
https://paperpile.com/c/PbOHNG/URpXO
https://paperpile.com/c/PbOHNG/eMBjG
https://paperpile.com/c/PbOHNG/5gLZs+6vQIw+xn7AR
https://paperpile.com/c/PbOHNG/GrARn
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Similarly, therapeutic benefit of an antisense oligonucleotides (AONs)-based approach is 

effective but transient79,80. 

Therefore, a direct CRISPR-based gene-editing approach is particularly intriguing for 

treating LCA10. Ruan et al.22 used a dual AAV system to deliver SpCas9 and a specific 

pair of sgRNAs in a LCA cellular model. The two cleavages upstream and downstream of 

the mutation resulted in a reduction of mutant CEP290 expression, precise excision in the 

intronic fragment flanking the IVS26 mutation, and rescue of the expression of wild-type 

CEP290. Interestingly, with a single AAV-SaCas9 system, although the expression of 

mutant CEP290 mRNA was reduced, rescue of wild-type CEP290 wasn’t achieved as with 

SpCas9. In addition, the researchers demonstrated that this dual AAV system with 

SpCas9 could effectively delete an intronic fragment of the CEP290 gene in the wild-type 

mouse retina, providing hope that CRISPR/Cas9-based treatment strategies could be 

used for patients with LCA10. More recently, Maeder and colleagues28 moved one more 

step further by testing similar CRISPR/SaCas9-mediated CEP290 gene editing in human 

cells, retinal tissues, and a humanized CEP290 mouse model as well as in non-human 

primates. Subretinal injection of AAV5-packaged CRISPR/SaCas9 editing (referred as 

EDIT-101) in both species showed rapid and long-term CEP290 editing rates in more than 

10% of photoreceptors, which proved to be sufficient for near-normal vision in early 

studies81,82. A Phase I/II clinical trial of EDIT-101 for the treatment of LCA10 is now 

ongoing, the first ever in vivo study of CRISPR-based genome editing in patients 

(ClinicalTrials.gov; identifier: NCT03872479).  

1.5.4 Using CRISPR to treat age-related macular degeneration  

Unlike RP, Age-Related Macular Degeneration (AMD) is a multifactorial retinal disease 

that affects a larger population83–85. Risk factors for AMD include aging, family history, 

smoking and genetic factors. In neovascular AME (nAMD) or wet AMD, pathological 

choroidal neovascularization is involved and results in bleeding and severe vision loss. A 

number of factors including vascular endothelial growth factor (VEGF), platelet-derived 

https://paperpile.com/c/PbOHNG/OfKeT+AvGXI
https://paperpile.com/c/PbOHNG/Y0I0e
https://paperpile.com/c/PbOHNG/3RAin
https://paperpile.com/c/PbOHNG/ioMRD+V2aq3
https://paperpile.com/c/PbOHNG/U03EG+KkwRl+HybfQ
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growth factor (PDGF), and hypoxia-induced factor (HIF) play an important role in ocular 

neovascularization and therefore are promising therapeutic targets for these blinding 

diseases. In fact, anti-VEGF drugs have been the standard treatment for AMD for a long 

time. However this approach requires ongoing invasive injections.  

Disruption of Vegf gene (vegfa) or receptor gene (vegfr2) using CRISPR/Cas provides an 

alternative and longer-lasting treatment strategy for AMD. Huang et al.24 reported that 

rAAV1-mediated CRISPR/SpCas9 genome editing depleted the expression of vegfr2 by 

30% in vivo in the retina, reducing angiogenesis in the mouse models of laser-induced 

choroidal neovascularization or oxygen-induced retinopathy. In line with Huang’s study, 

Kim’s group showed efficient in vivo disruption of Vegfa or hif1a gene by Cas9 orthologs 

(CjCas929 and Lbcpf131), resulting in a reduced area of neovascularization in a mouse 

model. In addition to viral vector-mediated CRISPR editing in ocular neovascularization, 

a non-viral vector delivery of Cas9 RNPs was developed by the same group44 to initiate 

immediate genome editing in the RPE cells in vivo.  

These studies demonstrate the potential clinical application of CRISPR/Cas gene editing 

in nAMD, and a broader application in other neovascular ocular diseases including 

retinopathy of prematurity, diabetic retinopathy and corneal neovascularization.  

1.5.5 Using CRISPR to treat glaucoma 

Like AMD, primary open-angle glaucoma (POAG) is a complex, blinding eye disease 

triggered by both environmental and genetic risk factors. MYOC, which encodes for 

myocilin, was the first among many glaucoma genes identified and mutations in MYOC 

may play a causative role in some forms of POAG86.  

Jain et al.25 performed CRISPR-Cas9-mediated genome editing in primary human 

trabecular meshwork cells, a transgenic MYOC mouse model and also ex vivo human 

eyes. They used adenovirus-delivered CRISPR/Cas to knock down MYOC gene in a 

transgenic mouse model with the human mutant MYOC gene, resulting in reduced mutant 

protein expression in the trabecular meshwork, lowered intraocular pressure and improved 

ganglion cell function. Mild inflammation in the anterior chamber was noticed due to the 

https://paperpile.com/c/PbOHNG/WrwKT
https://paperpile.com/c/PbOHNG/aOedx
https://paperpile.com/c/PbOHNG/B5c9D
https://paperpile.com/c/PbOHNG/xVLkq
https://paperpile.com/c/PbOHNG/bSXda
https://paperpile.com/c/PbOHNG/t47Rw
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adenovirus injection, without any negative effect on the iridocorneal angle, intraocular 

pressure, or the aqueous humor drainage system.  

1.5.6 Off-target detection of CRISPR/Cas genome editing in the retina 

Reducing the potential off-target mutation associated with CRISPR/Cas genome editing 

is critical for translating CRISPR/Cas from bench to bedside. Therefore a sensitive method 

for detecting off-target effects in vivo is crucial. In most studies of in vivo CRISPR/Cas 

genome editing in the retina, sgRNAs were designed and selected by online tools based 

on optimal off-target and on-target scores, and no significant off-target mutagenesis was 

reported on predicted top ranking off-target sites in each study. However, most studies 

either used a cell-based off-target detection method or applied an in vitro method such as 

Digenome-seq28–30 or GUIDE-Seq28 along with Cas-OFFinder, which is not sensitive 

enough to identify off-target mutations with frequencies less than 0.1%. Other more 

sensitive in vitro off-target tools, like CIRCLE-seq87, or recently developed in vivo off-target 

detection methods referred as VIVO88 and DISCOVER-Seq89 could be applied for 

detecting genome-wide CRISPR/Cas off-targets in the retina in future studies. 

1.5.7 Retinal integrity and function change with CRISPR/Cas genome editing 

Safety is one of the major concerns in translating CRISPR/Cas genome engineering into 

clinical application. Multiple factors, such as immune response, off-target effect or delivery 

method, may contribute to functional or morphological change in the retina. To assess the 

effect of in vivo CRISPR/Cas gene editing in the retina, optical coherence tomography 

(OCT), histological assessment and electroretinography (ERG) can be performed.  

Our group and another team20,24 showed no statistically significant change in retinal 

morphology or function confirmed by ERG 4-5 weeks after intravitreal injection of AAV-

delivered CRISPR/Cas9 constructs. To evaluate the relatively long-term effect of self-

destructive CRISPR/Cas constructs57 on retinal function and structure, our group recorded 

ERG and OCT in Thy1-YFP mice at Week 8 post-intravitreal injection. Although retinal 

structure was not negatively affected, unexpected reduction in retinal function was 

https://paperpile.com/c/PbOHNG/3RAin+aOedx+tkJHd
https://paperpile.com/c/PbOHNG/3RAin
https://paperpile.com/c/PbOHNG/RlaqE
https://paperpile.com/c/PbOHNG/IEb5T
https://paperpile.com/c/PbOHNG/PSpMe
https://paperpile.com/c/PbOHNG/HlBFs+WrwKT
https://paperpile.com/c/PbOHNG/zdKC7
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observed 8 weeks after injection of self-destructive YFP-targeting CRISPR/Cas9 and 

conventional YFP-targeting CRISPR/Cas9, the same CRISPR/Cas9 constructs we used 

previously but which hadn’t shown any detrimental impact on retinal function 5 weeks after 

intravitreal injection20.  

Partial restoration of retinal function in a retinal degeneration or glaucoma animal model 

following CRISPR/Cas treatment was reported. Yu et al.23 reported high efficiency of AAV-

mediated CRISPR/Cas9 disruption of Nrl gene in three different mouse models of retinal 

degeneration, and found CRISPR-Nrl treated eyes had better ERG waveforms and higher 

outer nuclear layer (ONL) cell density compared with CRISPR-EGFP-treated control. 

Giannelli and colleagues34 also showed that the ONL and outer segment (OS) of retina 

were partially preserved in Cas9-VQR-treated eyes 3 months after subretinal injection, 

despite the damage to retinal integrity and function due to electroporation. Similarly, 

another group50 reported improvement in ERG a-wave by ex vivo ERG recording in rd1 

mouse 14 days after Cas9/RecA treatment. Jain et al. 25 demonstrated improved retinal 

ganglion cell function in eyes treated by adenovirus-delivered MYOC-targeting 

CRISPR/Cas in a myocilin-associated glaucoma mouse model. These studies showed 

that therapeutic CRISPR/Cas gene editing could partially improve retinal integrity or 

function with the disruption of a disease-causing mutation.  

The longer-term effect of CRISPR/CjCas9 genome editing in the mouse retina was 

assessed 8 weeks29 or 14 months 30 after intravitreal injection. At 8 weeks post-injection, 

ERG showed no significant decrease in cone function represented by b-wave of photopic 

response whether in AAV-CjCas9:Hif1a or AAV-CjCas9:Vegfa-treated mice. At 14 months 

it was observed that while disruption of Hif1a gene by AAV-CjCas9:Hif1a didn’t induce any 

change in retinal integrity or retinal function, administration of AAV-CjCas9:Vegfa caused 

a serious change in retinal morphology, indicating that AAV-CjCas9-mediated gene 

editing in Hif1a rather than Vegfa might be a safer strategy for treating ocular angiogenesis 

diseases.  

https://paperpile.com/c/PbOHNG/HlBFs
https://paperpile.com/c/PbOHNG/eMBjG
https://paperpile.com/c/PbOHNG/Z53W9
https://paperpile.com/c/PbOHNG/c0sm7
https://paperpile.com/c/PbOHNG/t47Rw
https://paperpile.com/c/PbOHNG/aOedx
https://paperpile.com/c/PbOHNG/tkJHd
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Overall, current studies illustrate that in vivo CRISPR/Cas gene editing in the retina does 

not affect retinal function or integrity within a period of 4 to 5 weeks; the long-term effect 

may be different and must be investigated further. The negative effect on retinal function 

or structure may arise from electroporation34 or mutated proteins resulting from 

CRISPR/Cas editing57 or directly from the disruption of certain genes that are essential to 

the retina, such as Vegfa30.  

1.5.8 Summary of CRISPR/Cas genome editing in the retina  

The majority of in vivo studies have focused on developing therapies for retinal 

degenerative diseases including RP, LCA10, AMD and glaucoma, while some groups 

adopted the CRISPR/Cas genome editing tool to study gene function in the retina. Among 

the currently available Cas endonucleases, SpCas9 remains the most commonly used 

CRISPR/Cas system for in vivo genome editing in the retina, with minimal studies 

examining the in vivo application of other Cas orthologs, such CjCas9, SaCas9, NmeCas9 

and Cas12a (LbCpf1). High efficiency genome editing with different CRISPR/Cas systems 

has been reported, without direct comparison to determine which works best in the retina. 

Although current in vivo studies have addressed potential off-target cleavage with 

CRISPR-based retinal genome editing, more sensitive in vivo off-target detection methods 

need to be further investigated and the long-term effects of gene editing observed. 

1.6 Challenges and future perspective 

1.6.1 Safe and efficient in vivo delivery 

Currently, viral vectors, especially AAV, are the most widely used for in vivo delivery of 

CRISPR/Cas in ocular gene therapy. The major limitation of AAV vectors is their cargo 

capacity, and a dual vector system is required to deliver Cas endonuclease, especially 

SpCas9, and sgRNA separately. A single AAV delivery of other smaller Cas9 orthologs 

including CjCas9, Cas12a and SaCas9 has been applied to in vivo genome editing in 

rodent retina. As the PAM sequence of some Cas9 orthologs is not as prevalent in the 

https://paperpile.com/c/PbOHNG/Z53W9
https://paperpile.com/c/PbOHNG/zdKC7
https://paperpile.com/c/PbOHNG/tkJHd
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human genome as SpCas9, in vivo retinal genome editing with other smaller and novel 

Cas9 orthologs or engineered Cas9 variants urgently need to be applied more broadly. 

Non-viral vectors are not extensively used for in vivo CRISPR delivery to the adult retina, 

partly due to their lower transfection in the retina compared with viral vectors. The only 

tested non-viral delivery of CRISPR/Cas constructs to the retina is lipid-mediated Cas9 

RNPs; other vectors like nanoparticles, or a combined viral and non-viral delivery of 

CRISPR/Cas system to the retina, require further investigation before this gene-editing 

tool can be applied to the clinical treatment of ocular diseases. 

1.6.2 Reducing off-target 

Several strategies have been employed in an attempt to avoid off-target cleavage, 

including improved guide-RNA design33,90 or modification of Cas9 enzymes91,92, e.g. the 

high-fidelity variant, SpCas9-HF1. Limiting the Cas9 expression could be achieved via 

chemical93,94 and biophysical95 modulation of Cas9, which were extensively reviewed by 

Doudna et al.96. Alternatively, our group57 and some others22,97–99 applied a self-destructive 

CRISPR/Cas system that disrupts the CRISPR/Cas enzyme itself after the active protein 

has been expressed. Developing ways to minimize unwanted off-target cut remains critical 

for therapeutic application in the future.  

1.6.3 Improving precise repair  

At present, using the NHEJ pathway following CRISPR-mediated gene knockout is the 

more commonly used approach in in vivo CRISPR application in the retina. As gene 

disruption can only address a limited number of retinal diseases with specific disease-

causing mutations, the broad application of CRISPR-based in vivo genome editing 

requires improved precision in repair efficiency through HDR. As HDR is restricted to 

actively dividing cells, HDR efficiency is usually low in post-mitotic cells such as the retina. 

Small molecules might be used to improve HDR in the retina, including SCR7-Pyrazine, a 

potent DNA ligase IV inhibitor100; L755507, a β3-adrenergic receptor partial agonist101; RS-

https://paperpile.com/c/PbOHNG/N0XGt+mp3oD
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1, a RAD51 stimulator102, and i53, an inhibitor of 53BP1103. Tests of their efficacy, delivery 

methods and safety in the retina in animal models are needed. 

Base editing is a recently developed dCRISPR-based approach for precise repair in 

inherited diseases with point mutations. Although this recently developed base-editing 

approach has only been used for a limited number of in vivo studies39,40,104, it provides an 

attractive alternative therapeutic as it is associated with little or no off-target or indels 

compared to CRISPR/Cas gene editing. Ocular diseases with a point mutation, such as 

LCA10 (with A>G mutation in the intron 26 of CEP290 gene) or RP with a proline to 

histidine substitution at codon 23 (P23H), could be good candidates to test in vivo base-

editing efficiency in the retina.    

In summary, with ongoing rapid breakthroughs in this area and challenges and concerns 

fully addressed, CRISPR/Cas-based gene editing tools hold great potential in treating 

inherited retinal diseases.  

1.7 Aims of PhD thesis 

Prior to CRISPR/Cas being used in the clinical setting, the following principal issues need 

to be fully addressed regarding somatic retinal gene editing: efficient and efficacious 

CRISPR/Cas editing in the retina, elimination of potential off-target effects and cellular 

immune responses and improvement in HDR precise repair in retinal cells. 

My whole PhD focuses on the optimization and validation of a “clinic ready” in vivo 

CRISPR/Cas system for impending application in treatment of ocular diseases. The main 

aim of this thesis is to validate the feasibility and efficacy of AAV-mediated CRISPR/Cas 

gene editing in the retina, and a minor aim is to use CRISPR screen tool to look for 

potential therapeutic target in an ocular cancer, uveal melanoma, which could lead to more 

translational application in the future.  

As the CRISPR/Cas system can be used to target any sequence with a relevantly 

designed PAM site, rather than focusing on any particular single gene related to inherited 

retinal diseases, we chose, as proof-of-concept, yellow fluorescent protein transgenic 

https://paperpile.com/c/PbOHNG/yf3bu
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https://paperpile.com/c/PbOHNG/mTQVZ+J9FkF+a6l8h
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mice models as a rapidly quantifiable method to assess in vivo CRISPR/Cas gene editing, 

as it has an easily identifiable phenotype. 

Three specific aims with were included in my PhD study: 

1. To improve efficiency and reduce off-target: to validate a self-destructing 

CRISPR/Cas construct to reduce potential off-target effects delivered by AAV2.  

2. To compare gene editing efficacy of currently available CRISPR/Casy 

systems: to compare and find out the most efficacious CRISPR/Cas endonucleases in 

retinal genome editing. 

3. To apply CRISPR/Cas screening to identify novel therapeutic targets for 

uveal melanoma:  to use a Genome-Scale CRISPR Knockout (GeCKO) screen to identify 

essential genes that are involved in the survival of uveal melanoma. 
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2 GENERAL MATERIALS AND METHODS 

2.1 Methods 

2.1.1 Guide RNA design 

Websites used for guide design are listed in Appendix 2, Table 8.16. Initially, we used the 

Zhang lab CRISPR tool to design YFP sgRNA for SpCas9 (http://crispr.mit.edu/, the 

website was shut down). Alternatively, Benchling was used. The following factors were 

considered for guide RNA design: the availability and difference of PAM sequencing in 

different CRISPR/Cas systems, the homology of the target sequence to other genes as it 

may cause off-target effects, and the orientation of the target locus, i.e. whether it encodes 

the sense or the antisense sequence.  

The specific guide-RNA design is listed Results. Briefly, the designing procedure using 

Benchling was as follows: the sequence of the target gene was imported, guide 

parameters (target region, guide length, PAM) were set and the results provided guide 

RNA sequence along with an on-target and off-target score. The top three of four guides 

with higher on-target and off-target scores were selected, and oligonucleotides were 

ordered from IDT.  

2.1.2 DNA/RNA quantification 

2.1.2.1 Measurement by NanoDrop spectrophotometer 

DNA/RNA was measured by NanoDrop 1000 spectrophotometer. The purity of the sample 

DNA/RNA was assessed by calculating the ratio of absorbance at 260 nm and 280 nm.  

2.1.2.2 Measurement by Qubit assay 

The Qubit dsDNA BR assay kit was used to measure DNA concentration, following 

manufacturer’s instructions. Briefly, master mix was prepared as 199 µL of Qubit buffer+1 

µL of Qubit reagent per sample and two standards. Samples were prepared in Qubit assay 

http://crispr.mit.edu/
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tubes and incubated at room temperature for 2 min. Tubes were then loaded into the Qubit 

fluorometer to be read.  

Sample Master mix (µL) DNA (µL) 
Standard 1 190 10 
Standard 2 190 10 
DNA sample 198 2 

 
2.1.3 CRISPR/Cas plasmid cloning 

Different plasmid-cloning strategies were applied for insert-DNA cloning, including cloning 

by restriction enzyme digest, cloning by PCR and plasmid modification by annealed oligo 

cloning or gBlocks. Insert DNA was then ligated with digested vector backbone by the T4 

DNA ligase enzyme. Plasmid DNA was then introduced into competent cells through 

transformation. 5-10 colonies were picked and cultured. The correct plasmid cloning was 

identified by restriction digest or Sanger sequencing. Plasmid-cloning methods and 

procedures are listed below. 

2.1.3.1 Vector/Insert digest, purification and ligation 

i Plasmid cloning by restriction enzyme digest 

a. Restriction enzyme digest 

Component 50 µL reaction 
Plasmid DNA ~2 µg 
Restriction enzyme A 1 µL 
Restriction enzyme B* 1 µL 
10 x buffer 5 µL 
Nuclease-free water Add to 50 µL 

 

Only one restriction enzyme was needed in certain cases. Both recipient and donor 

plasmids were digested by the same restriction enzyme(s). 

The digest was incubated at the enzyme’s active temperature for 3 h or overnight. 1 µL 

CIP was added to the recipient plasmid digest and incubated at 37ºC for 1 h. 
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b. Gel purification for insert and vector 

Digested DNA was loaded onto a 0.8% Tris-acetate (TAE) gel to run at 80 V for 1 h. The 

desired band with the right size was cut under UV visualization and purified using a 

commercial gel purification kit following the manufacturer's protocol. DNA was eluted in 

30 µL nuclease-free water and DNA concentration was measured by nanodrop. 

c. Ligation 

Component 20µL reaction 
Purified vector backbone DNA 100 ng 
Purified insert DNA * 
T4 DNA ligase  1 µL 
10 x T4 ligase buffer 2 µL 
Nuclease-free water Add to 20 µL 

 

Required mass insert was calculated using NEBioCalculator (insert: vector ratio=3:1 

unless otherwise specified) 

Ligation was incubated at 16ºC overnight.  

The list of plasmids cloned by the restriction enzyme digest method is presented in 

Appendix 1 (Table 8.1) 

ii Plasmid cloning by PCR 

Polymerase chain reaction (PCR)-based cloning was used to introduce restriction sites 

when no restriction enzyme digest sites could be found in donor plasmid. 

PCR reaction: 

Component 50 µL reaction 
10 x KOD Buffer 5 µL 
2 mM dNTPs 5 µL 
Template DNA ~10 ng 
10 µM forward primer 1.5 µL 
10 µM reverse primer 1.5 µL 
KOD Hot start DNA Polymerase 1 µL 
Nuclease-free water Add to 50 µL 

 
Thermal cycle varied depending on the length of PCR fragment, CG% of primers, etc.  
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PCR product was purified by gel purification kit according to the manufacturer’s protocol. 

PCR product and recipient plasmid were then digested by restriction enzymes, followed 

by gel purification as mentioned above. DNA ligation was performed as described 

previously. The list of plasmids cloned by PCR and PCR primer sequences is presented 

in Appendix 1 (Table 8.2, Table 8.5).  

iii Plasmid cloning by annealed oligo 

a. Insert oligo anneal

Component 10 µL reaction 
Forward oligo (100 µM) 1 µL 
Reverse oligo (100 µM) 1 µL 
T4 PNK 1 µL 
10 x T4 DNA ligase buffer 1 µL 
Nuclease-free water 6 µL 

Thermal cycle: 37ºC 30min, 95ºC 5 min ramp down to 25ºC (hold). 

b. Recipient plasmid DNA digestion and purification

Recipient plasmid DNA was digested by restriction enzymes and purified as described 

above. 

c. Ligation

Component 20 µL reaction 
Purified linearized vector 25 ng 
Annealed oligo (1:50 dilution) 1 µL 
T4 DNA ligase 1 µL 
10 x T4 DNA ligase buffer 1 µL 
Nuclease-free water Add to 20 µL 

Ligation was incubated at 16ºC overnight. 
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A list of plasmids cloning by oligo annealing and oligo sequences are presented in 

Appendix 1 (Table 8.3, Table 8.6). 

iv Plasmid cloning by gBlocks gene fragments 

a. Resuspension of gBlocks

gBlock fragment was centrifuged at 3000 g for 3-5 sec, and TE buffer was then added to 

reach a final concentration of 10 ng/µL. Diluted gBlock was incubated at 50ºC for 20 min 

following a brief spin. 

b. gBlocks digest

Component 30 µL reaction 
gBlock fragment (10 ng/µL) 10 µL 
Restriction enzyme A 1 µL 
Restriction enzyme B* 1 µL 
T4 DNA ligase 1 µL 
10 x CutSmart buffer 3 µL 
Nuclease-free water 15 µL 

*Digest separately if active temperatures were different.

gBlock digest was incubated for 3 h or overnight. 

c. gBlocks purification

Following digestion, the gBlock DNA fragment was purified using PCR purification kit and 

eluted in 30 µL nuclease-free water.  

d. Ligation

Component 20 µL reaction 
Purified linearized vector 50 ng 
Purified digested gBlocks fragment 3:1 ratio to vector 
T4 DNA ligase 1 µL 
10 x T4 DNA ligase buffer 2 µL 
Nuclease-free water Add to 20 µL 

Ligation of purified linearized vector plasmid and digested gBlock fragment was incubated 

at room temperature for 5 min.  
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gBlocks gene fragments were ordered from IDT. Plasmid cloning by gBlcoks method and 

gBlocks sequences are listed in Appendix 1 (Table 8.4, Table 8.7) 

v Plasmid cloning by Gibson assembly method 

pX551-miniCMV-CjCas9 was cloned using Gibson assembly method. CjCas9 (template 

using pX404-CMV-CjCas9) was PCR amplified and inserted into pX551-miniCMV-

SpCas9 backbone using Gibson assembly method according to manufacturer’s protocol. 

2.1.3.2 Transformation 

Competent cells (DH5a) were transformed with plasmid cloning using the heat shock 

method according to manufacturer’s protocol. Briefly, 10 µL of ligation reaction was added 

to 50 µL DH5a cells and incubated on ice for 30 min. The cells were heat shocked at 42ºC 

for 20 seconds in a digital dry bath and then incubated on ice for 2 min. 500ul of pre-

warmed SOC medium was added to the cells, followed by incubation in a 37ºC shaking 

incubator for 1 h. The cells were spread on Luria broth (LB) agar plates (ampicillin) and 

incubated at 37ºC overnight. 5-10 single colonies were picked and cultured in 5mL liquid 

LB supplemented with ampicillin for miniprep. The correct plasmids were identified by 

restriction enzyme digest, Sanger sequencing, or in vitro validation in Human Embryonic 

Kidney 293A (HEK293A) cells. Plasmids were stored in two forms for longer-term use: 

glycerol stock of overnight bacterial culture and purified high concentration plasmid from 

Maxiprep or Megaprep. 

2.1.3.3 Plasmid purification 

i Small-scale plasmid DNA purification 

Plasmid DNA was isolated using the Qiaprep spin miniprep kit according to the 

manufacturer’s instructions. In brief, single bacterial colonies were picked and cultured in 

5 mL of LB supplemented with ampicillin (100 µg/mL) in 14 mL round-bottom 

polypropylene, loosely capped tubes. Cultures were incubated at 37ºC in a shaker for 

around 12~14 h. 3 mL of bacteria culture was centrifuged in Eppendorf tube at 10000 g 
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for 3 min. The bacteria pellet was resuspended, lysed, neutralized and finally eluted in 30 

µL of nuclease-free water. The plasmid DNA concentration was measured and recorded. 

ii Large-scale plasmid DNA purification 

Plasmid DNA was isolated using the Qiagen Maxiprep or Megaprep Kit according to the 

manufacturer’s instructions. Single bacterial colonies were picked and cultured in 5mL of 

LB media with ampicillin as described previously. For Maxiprep, 500 µL of the culture was 

inoculated in 500 mL LB supplemented with ampicillin (100 µg/mL), and a total of 4 flasks 

of 500 mL bacteria culture were used for Megaprep. The bacterial culture was incubated 

overnight in a shaker at 37ºC (except pXX6 at 32ºC) at 225 rpm. The culture was 

centrifuged at 3,000 g for 30 min at 4ºC. The bacteria pellet was then resuspended, lysed, 

and neutralized and eluted in elution buffer. Plasmid DNA concentration was measured 

and recorded. 

2.1.3.4 Plasmid verification by Sanger sequencing 

Plasmids were verified by Sanger sequencing after cloning at Australian Genome 

Research Facility (AGRF, Melbourne) or in-house at Menzies Institute for Medical 

Research. 

Component 12 µL reaction 
Plasmid DNA ~1000 ng 
Sequencing primer (10 µM) 1 µL 
Nuclease-free water Add to 12 µL 

A list of sequencing primers is presented in Appendix 1 (Table 8.5). 

2.1.3.5 Glycerol stock 

To make a glycerol stock, 500 µL LB with plasmid was mixed with 500 µL 50% sterile 

glycerol and stored at -80ºC. 

2.1.4 In situ testing for SpCas9 sgRNAs 

CRISPR/Cas in situ testing was carried out by incubating the individual synthetic SpCas9 

sgRNA or LacZ sgRNA alone with the recombinant SpCas9 protein and the pX551 
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plasmid. Samples were loaded to run on a 0.8% TAE agarose gel to visualize their 

cleavage efficiency for SpCas9. AgeI enzyme digested pX551 plasmid was used as a 

positive control. 

2.1.5 Cell culture and plasmid DNA transfection 

Cells were maintained in sterile cell culture flasks or petri dishes in a humidified 37ºC 

incubator with 5% CO2. Cells were maintained in 75 cm2 flasks. For large-scale cell 

expansion, 175 or 225 cm2 flasks were used. 

2.1.5.1 Thawing cells 

A vial of frozen cells was taken from the liquid nitrogen tank. A "QUICK THAW" method in 

37ºC water bath was applied by shaking the vial rapidly in water till approximately 3/4 

thawed. Fresh complete growing medium was added into the vial, and the cell suspension 

was transferred into a 15 mL centrifuge tube filled with 5-8 mL complete medium. The cell 

suspension was centrifuged at 300 g at room temperature for 3 min. Supernatant was 

aspirated, and the cell pellets were resuspended in 10 mL fresh culture medium and 

transferred into a tissue culture treated flask by adding medium up to 15mL. Cells were 

placed into a cell culture incubator and maintained on a regular basis. 

2.1.5.2 Passaging cells 

Old culture medium was aspirated, and the cells were washed with ~10 mL phosphate-

buffered saline (PBS). 2mL of 0.25% Trypsin-EDTA was added and cells were incubated 

at 37°C for 1-2 min. Cells were checked periodically under a microscope. The plate was 

tapped to loosen cells. 8 mL of complete growing medium was added to neutralize trypsin. 

Cell suspension was transferred to a sterile 15 mL centrifuge tube and the cell pellet was 

formed by centrifuging at 300 g for 3 min at room temperature. Cells were seeded at 

1:4~1:5 ratio (for a specific amount of cells, count cells before seeding), and passaged 

again every two to three days before reaching 95% confluence.  
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2.1.5.3 Cell counting 

Cell suspension (20 µL) was mixed well with equal volume of trypan blue solution and 10 

µL was transferred to Cell Counting Chamber Slides and read by an Automated Cell 

Counter. The cell suspension was diluted and cell density calculated accordingly when the 

original cell density exceeded the counting range of the cell counter.  

2.1.5.4 Making frozen stocks for cells 

Cells were harvested in the same way as described previously. Cells were counted and 

suspended in freezing medium with a final concentration of 1x106 cells/mL. Cryovial tubes 

with cell suspension were placed in a Mr. Frosty freezing container at -80ºC temporally 

and transferred to a freezing box in a liquid nitrogen tank. 

2.1.5.5 Plasmid DNA transfection 

2.5x105 cells per well were seeded onto a 6-well plate one day prior to transfection. The 

following day, cell culture medium was replaced with 1 mL Dulbecco's Modified Eagle 

Medium (DMEM)/10% fetal bovine serum (FBS) per well. The transfection complex was 

prepared as follows. 

Component For 6-well plate per well 
Plasmid DNA* 1.5 µg 
OptiMEM 150 µL 
Fugene HD transfection reagent Add to 12 µL 

*750 ng/plasmid was used in dual plasmid transfection

Transfection complex was added to cells. Cells were maintained and collected for further 

analysis at certain time points after transfection. 

2.1.6 Western blot 

2.1.6.1 Sample preparation and protein assay 

Cells or retinal tissues were lysed in 100~200 µL of cell lysis buffer on ice, followed by 

sonication for 5-10 sec by an ultrasonic cell disruptor. The cell lysate was centrifuged at 

12000 rpm at 4ºC for 15 min, and the supernatant was collected. The concentration of 
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protein was measured in a microplate reader using Pierce™ BCA Protein Assay Kit 

according to the manufacturer’s protocol.  

Component Volume per sample (µL) 
Sample lysate 65 
4 x NuPAGE LDS Sample Buffer 25 
500 mM DTT 10 

Sample was heated at 85ºC in a heat blocker for 10 min. 

2.1.6.2 Protein blotting, membrane blotting and antibody incubation 

15 µL of sample and 10 µL of prestained molecular weight marker (Novex® sharp pre-

stained protein standard) were loaded onto NuPAGE™ Novex™ 4-12% Bis-Tris Protein 

Gels and run at 160 V for 1 h. Gels with protein were then transferred to polyvinylidene 

fluoride membranes using the XCell II™ Blot Module. Membranes were blocked with 5% 

skim milk in TBS-T at room temperature for 1 h and then incubated with mouse monoclonal 

SpCas9 antibody (1:1000 dilution) or HA-probe (F-7) (1:1000 dilution) at room temperature 

for 1 h. Membranes were washed and further incubated with horseradish peroxidase-

conjugated goat anti-mouse secondary antibody (1:5000 dilution) at room temperature for 

1 h. For detection of housekeeping protein, mouse monoclonal β-actin antibody (1:2000 

dilution) was used. 

2.1.6.3 Detection of protein and western blot analysis 

Membrane was incubated in chemiluminescence buffer (a mixture of 500 µLreagent A with 

500 µL reagent B, Amersham ECL Prime Western Blotting Detection kit). Images were 

captured by Amersham Imager 600. For in vitro SpCa9 time course analysis, the relative 

levels of SpCas9 protein of each sample were quantified using Image J with normalization 

to β-actin.  

2.1.7 Genomic DNA extraction from cells 

For less than 5x106 cells, genomic DNA was extracted using the Quick-DNA Miniprep Plus 

Kit (Zymo Research) according to the manufacturer’s instructions. Genomic DNA was 

eluted in 30~50 µL nuclease-free water and concentration was measured using nanodrop. 
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For larger sample volumes, the Quick-DNA Midiprep Plus Kit (Zymo Research) was used. 

DNA was eluted in 200 µL DNA elution buffer.  

2.1.8 Gene-editing efficiency with Sanger sequencing and T7E1 assay 

Briefly, HEK293A-YFP cells were transfected with CRISPR/Cas plasmids and cells were 

collected as described previously. Genomic DNA was extracted and used as a direct PCR 

template for amplification with primers specific to the targeted region in the YFP gene. The 

PCR product was purified and sequenced for indel analysis, or alternatively the PCR 

product was denatured and reannealed to produce heteroduplex mismatches, which were 

recognized and cleaved by T7 Endonuclease I (T7E1), and the cleavage was detected by 

gel analysis. 

A detailed protocol follows. 

2.1.8.1 Genomic DNA amplification by PCR 

Component Master mix (10x) 
Nuclease-free water 55.5 µL 
10 µM Forward primer (CMV Seq-FWD) 10 µL 
10 µM Reverse primer (EYFP SURVEYOR 
REV) 

10 µL 

KAPA HiFi Fidelity Buffer 20 µL 
dNTPs 3 µL 
KAPA HiFi HotStart DNA Polymerase (1U/µL) 1.5 µL 
Total volume 100 µL 

Sequence of primers: 

CMV Seq-FWD CGCAAATGGGCGGTAGGCG
TG 

EYFP SURVEYOR REV CTGGTAGCTCAGGTAGTGGT
TG 

9 µL of master mix was mixed with 1µL genomic DNA sample or water as negative control. 

Thermal cycles: 

Step Temperature (ºC) Time (min:sec) Cycles 
Denature 95 5:00 1 
Denature 98 0:20 30 
Anneal 67 0:15 
Extend 72 0:30 
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Extend 72 2:00 1 

9 µL of master mix was mixed with 1 µL genomic DNA sample or water as negative control. 

2.1.8.2 Sanger sequencing for indel analysis 

Genomic DNA was extracted from HEK293A-YFP cells transfected with mismatch-

containing guide RNAs. PCR amplification from genomic DNA was purified using a DNA 

Clean & Concentrator kit and was sequenced in-house on the Applied Biosystems 3500 

Genetic Analyzer (Thermo Fisher Scientific) using YFP reverse sequencing primer. 

Sanger files were analyzed for insertions and deletions using the inference of CRISPR 

edits (ICE) tool. 

2.1.8.3 Form heteroduplexes for T7EI digestion 

Component Amount per sample (µL) 
PCR product 10 
10X NEBuffer 2 1.5 
Nuclease-Free Water 1.5 
Total volume 13 

Thermal conditions: 

Step Temperature (°C) Time 
Denature 95 10 min 
Ramp 1 95 to 85 Ramp rate -2°C /sec 
Ramp 2 85 to 25 Ramp rate -0.3°C/sec 

2.1.8.4 T7E1 digestion 

Component Amount per sample (µL) 
PCR heteroduplexes from above 13 
T7 Endonuclease I (diluted to 1 U/μL in 
NEBuffer 2) 

 2 

Total volume 15 

T7E1 digestion was performed at 37°C for 1 h. 

2.1.8.5 T7E1 results visualization 

Digested samples were loaded on 2% TAE agarose gel and run at 100 V for 1 h. The 

cleavage was further quantified by gel analysis using Image J. 
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2.1.9 AAV production and titration 

2.1.9.1 AAV2 production 

Recombinant AAV2 viruses were produced in HEK293D cells packaging desired plasmid 

as described previously 105 

i Seeding HEK293D cells 

A week before AAV production, a sufficient amount of HEK293D cells were maintained 

and passaged in T175 flasks. One day prior to transfection, HEK293D cells were 

harvested and seeded into 50 dishes (100 x 20mm) at 7 × 106 cells/dish in growing 

medium (DMEM/10% FBS). 

ii Producing AAV2 utilizing calcium phosphate transfection 

2 h before transfection, old growing medium was aspirated leaving around 1 mL to cover 

the cells and around 9 mL transfection medium (IMDM/10%FBS) was added to each dish 

of HEK293D cells. Triple plasmid transfection was then performed using the Calcium 

Phosphate method. For each dish, a total of 25 μg DNA was used including 5 μg 

packaging/capsid plasmid (pXX2), 15 μg helper plasmid (pXX6) and 5 μg AAV construct 

(SpCas9 or guide RNA). Transfection solutions A and B were prepared in 50 mL falcon 

tubes, respectively, as listed below. 

Order of adding 
reagents 

Reagents Amount for 50 dishes 

Transfection solution A 
1 2 x HBS 24.75 mL 
2 NaH2PO4 0.25 mL 
Transfection solution B 
1 10% TE Add to 25 mL 
2 AAV construct 250 μg 
3 pXX2 250 μg 
4 pXX6 750 μg 
5 2M CaCl2 3.125 mL 

2 mL of transfection solution A and B were aliquoted to separate 14 mL poly-propylene 

round-bottom tubes, respectively. Then solution B was added dropwise to solution A to 

https://paperpile.com/c/PbOHNG/Ln4QL
https://paperpile.com/c/PbOHNG/Ln4QL
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form a transfection cocktail. The cocktail was incubated at room temperature for 20–30 

min and 1 mL was added to each of the 50 dishes of HEK293D cells. 

iii Change medium with maintenance medium  

One day after transfection, old medium was aspirated leaving around 1 mL to cover the 

cell and 11 mL of maintenance medium (DMEM/2%2 FBS) was added to each dish. 

iv AAV2 vector extraction, purification and concentration 

TaKaRa AAVpro Purification Kit (AAV2) was used for AAV2 extraction, purification and 

concentration using modified manufacturer's instructions. Briefly, transfected HEK293D 

cells were harvested and centrifuged at 3000 g for 10 min at 4ºC. Supernatant was 

removed and cell pellets were collected into one tube. Cells were resuspended in 10 mL 

AAV Extraction Solution A and incubated at room temperature for 5 min. Extracts were 

centrifuged at 3000 g for 10 min at 4ºC and supernatant was transferred to a new falcon 

tube. 1 mL AAV Extraction Solution B was added to the supernatant. 1 mL of SD Solution 

was added and the mixture was incubated for 30 min at 37ºC, and then centrifuged at 

3000 g for 10 min at 4ºC. Supernatant was collected as crude AAV2 vector solution. Then 

the crude viral vector was purified in AAV purification column and further concentrated in 

the Filter Device by centrifuging. The final solution recovered in a sterile collection tube 

was purified and concentrated rAAV2 particles in 200~250 µL suspension buffer.  

2.1.9.2 AAV7m8 production 

Recombinant AAV2-based variant AAV7m8 was produced in HEK293D cells packaging 

desired plasmid in a similar way as AAV2 production, with the following modifications 

regarding packaging/capsid plasmid and viral purification. 

For triple plasmid transfection, 5 µg of 7m8 was used per dish instead of pXX2. TaKaRa 

AAVpro Purification Kit (All Serotypes) was used for AAV7m8 extraction, purification and 

concentration. After AAV Extraction Solution B step, 1/100 volume of Cryonase Cold-

active Nuclease was added and then incubated at 37ºC for 1 h. 1/10 volume of Precipitator 
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A plus and 1/20 volume of Precipitator B were added, respectively. The mixture solution 

was centrifuged, and the supernatant was filtered using a Millex-HV 0.45 μm filter. The 

filtrate containing AAV vector was then concentrated using an Amicon Ultra-15 (100 kDa 

filter) and transferred to a new sterile tube. 

2.1.9.3 AAV titration 

i Preparation for standard 

1 µg of linearized vector plasmid was prepared by restriction enzyme digest and purified 

with a purification kit (Promega gel and PCR clean-up systems). The concentration was 

measured by nanodrop. 1 x 109 vg/5 µL of the standard in 500 µL of TE buffer was 

prepared following the formula below. 

The amount of linearized plasmid in 500 µL TE buffer 

= 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑋𝑋 660
6.022 𝑋𝑋 1000  

 

A total of eight dilutions in TE buffer were prepared as shown below. 

ii AAV titration by quantitative PCR (qPCR) 

1/104 and 1/105 virus were prepared, and qPCR was set using SYBR green. 
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Component Volume (µL) 
Nuclease-free water 7.3 
Fast SYBR green master mix 12.5 
Forward primer (100 µM) 0.1 
Reverse primer (100 µM) 0.1 
Template (Standards or diluted vectors)* 5.0 

*Four replicates for diluted vectors, duplicates for standards and negative control (water)

Thermal cycles: 

Cycle number Denature Anneal/extend 
1 95ºC, 10 min 
40 95ºC, 15 s 60ºC, 60 s 

List of AAV and titration were presented in Appendix 3. 

2.1.10 Animal ethics, maintenance, anesthetics and intravitreal injection 

2.1.10.1 Animal ethics and maintenance 

All procedures were conducted according to the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research and 

the requirements of the National Health and Medical Research Council of Australia 

(Australian Code of Practice for the Care and Use of Animals for Scientific Purposes). 

Ethics approval was obtained from the Animal Ethics Committees of the University of 

Tasmania (A14827) and St. Vincent’s Hospital Melbourne (AEC 014/15). Animals were 

housed under standard conditions (20°C, 12/12-hour light/dark cycle) with ad libitum 

access to food and water.  
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2.1.10.2 Anesthetics 

For intravitreal injection or electrophysiological assessment, mice were anesthetized by 

intraperitoneal injection of ketamine (60 mg/kg) and xylazine (10 mg/kg). 0.5% 

proxymetacaine was applied for corneal anesthesia. Animals were sacrificed under CO2 

euthanasia according to approved animal ethics.  

2.1.10.3 Intravitreal injection 

Intravitreal injection was performed under a surgical microscope. A small puncture was 

made at the superior-temporal quadrant behind the limbus using a 30-gauge needle. A 

hand-pulled glass micropipette was inserted into the vitreous cavity, which was connected 

to a 10 μL Hamilton (Bio-Strategy, Broadmeadows, VIC, Australia) and the injection rate 

was controlled by a UMP3-2 Ultra Micro Pump. Based on AAV titration by qPCR, AAV 

vectors were diluted to include similar viral genome. A total of 1 µL dual-viral suspension 

(AAV-Cas endonuclease: AAV-guide RNA=1:1) was injected into the mouse eye. A list of 

animal groups with injection detail is provided in Appendix 4. 

2.1.11 Electroretinography (ERG)  

Mice were kept under overnight dark-adaptation conditions for 12 h prior to ERG 

assessment. ERG was performed following the protocol outlined previously105–107. In brief, 

mouse pupils were dilated with 0.5% tropicamide. A pair of specially made loop electrodes 

were placed around each eye, and a needle electrode was inserted into the tail of the 

mouse. A small drop of ocular lubricant (Alcon Systane®) was used to maintain corneal 

hydration and improve electrical contact. Different levels of stimuli were delivered, and 

signals were recorded simultaneously for both eyes. ERG analysis was performed as 

previously described, with three major components of the ERG waveform returned: the 

photoreceptor (a-wave), bipolar cell (b-wave), and ganglion cell dominated (scotopic 

threshold response, STR).  

https://paperpile.com/c/PbOHNG/n8esb+6GicE+Ln4QL


45 

2.1.12 Optical Coherence Tomography (OCT)  

Following ERG recordings, retinal images were obtained using a spectral domain-OCT as 

previously described20,105. Mice were positioned to capture Optic Nerve Head (ONH) 

centered 1.4 mm-wide horizontal B-scans (consisting of 1000 A-scans per B-scan) from 

both eyes. Eyes were aligned to place the optic nerve at the center of the image. Image 

analysis was undertaken using FiJI software (https://fiji.sc/) in a masked fashion, via 

manual segmentation of the inner boundary of the retinal nerve fiber layer (inner limiting 

membrane), the outer boundary of the retinal nerve fiber layer, the inner plexiform layer 

and Bruch’s membrane. Total retinal thickness (from the inner limiting to Bruch’s 

membrane), retinal nerve fiber layer thickness (from the inner limiting membrane to the 

inner aspect of the inner plexiform layer) and outer retinal thickness (from Bruch’s 

membrane to the outer plexiform layer) were measured in each eye.  

2.1.13 Retinal collection  

Eyes were popped out of sockets with applied force. A fine needle was used to the disturb 

aqueous humor to relieve intraocular pressure. The cornea was grasped with forceps and 

an elliptical opening was created using small surgical scissors. Iris, lens and vitreous body 

were extracted. Incisions were made along four sides of the eye and the retina was 

separated from the choroid. The retina was kept in an Eppendorf tube chilled PBS (4°C) 

until ready for dissociation.  

2.1.14 Flow cytometric analysis 

2.1.14.1 Cell preparation for flow cytometry 

YFP-expressing HEK293A cells were trypsinized and harvested in PBS. Cells were 

resuspended in Fluorescence-activated cell sorting (FACS) buffer and stained with DAPI 

(5 µg/mL) to exclude dead cells.  

https://paperpile.com/c/PbOHNG/Ln4QL+HlBFs
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2.1.14.2 Retina dissociation for flow cytometry 

Freshly collected retina was dissociated using a papain dissociation kit according to the 

manufacturer’s instructions. In brief, papain solution with a final concentration of 

approximately 20 units/mL and 0.005% DNase was prepared. Freshly dissected retinal 

tissue was placed in the papain solution and incubated at 37°C in a rocker platform for 1 

h. The mixture was vigorously triturated and cell suspension was transferred to a sterile

tube, followed by centrifuge to form retinal cell pellets. Pelleted cells were resuspended in 

a mixture of 0.9 mL EBSS with 100 µL reconstituted albumin-ovomucoid inhibitor solution 

in a sterile tube. The supernatant was discarded, and the cells were immediately 

resuspended in PBS. After washing with PBS several times, retinal cells were 

resuspended in FACS buffer and stained with DAPI (5 µg/mL) to exclude dead cells. 

The percentage of YFP-positive cells and mCherry-positive cells were then analyzed from 

the live cell population with a Flow Cytometer (BD FACS Canto II) and data were analyzed 

using FlowJo. 

2.1.15 Retinal flat mount, cryosection, imaging and cell counting 

2.1.15.1 Flat mount 

Enucleated eyes were fixed in ice-cold 4% paraformaldehyde (PFA) for 1 h prior to 

dissecting under a microscope. A fine needle was used to disturb the aqueous humor to 

relieve intraocular pressure. The cornea was grasped with forceps and an elliptical 

opening was created from the same incision using small surgical scissors. Cornea, iris 

and lens were removed, and four equally spaced radial relaxing incisions were made, 

extending two-thirds of the way from the retinal periphery to the ONH. The sclera and 

choroid were then removed along with residual vitreous body, leaving only the retina on a 

slide. The retina was fixed with 75% ethanol at 4ºC for 30 min in a dark slide staining box. 

The retina was washed with PBS and incubated with 1% Triton-X at room temperature for 

20 min. The retina was washed with PBS and then stained with NucBlue™ Live 

ReadyProbes™ Reagent for 20 min at room temperature. The slide was then washed 
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thoroughly with PBS and dried with Kimwipe, followed by mounting with Dako Fluorescent 

mounting medium and covered with a coverslip. Slides were stored at 4ºC in the dark until 

images were taken. 

2.1.15.2 Retinal cryosection 

Enucleated eyes were fixed in 4% PFA for 1 h and embedded in optimal cutting 

temperature compound prior to frozen sectioning on a microtome cryostat. Serial 10-um-

thick sections were cut, mounted on FLEX glass slides, and then stained with NucBlue™ 

Live ReadyProbes™ Reagent. Slides were then mounted with Dako Fluorescent mounting 

medium, covered with coverslip and stored at 4ºC in the dark until images were taken. For 

longer-term storage, slides with mounted retinal sections (without staining) were 

transferred directly in a slide storage box at -80ºC. Retinal cryosection images were taken 

by an Olympus VS120 Slide Scanner. 

2.1.15.3 Retinal imaging and cell counting 

For YFP-knockout counting, retinal images were captured by a fluorescence microscope 

(Zeiss Axio Imager Microscope; Carl-Zeiss-Strasse, Oberkochen, Germany) equipped 

with a charge-coupled digital camera (AxiocamMRm, Zeiss) and image acquisition 

software (ZEN2, Zeiss). Retinal cell quantification was performed as previously 

described20. Briefly, images of retinal flat mount were taken with filters fit for mCherry 

(605 nm, Zeiss Filter set 64HE) and YFP (495 nm, Zeiss Filter set 38HE). Retinal cells 

were manually quantified using ImageJ with individual fluorescent images captured at 

×400 magnification from different retinal quadrants. The efficiency of YFP knockout was 

determined by calculating the proportion of YFP-negative cells among these mCherry-

expressing cells. 

https://paperpile.com/c/PbOHNG/HlBFs
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2.1.16 SpCas9 expression in retina by qPCR 

2.1.16.1 Total RNA extraction from mouse retina 

Enucleated mouse eyes were stored in RNAlater RNA stabilization reagent, and retinas 

were dissected immediately under a microscope as described previously. Total RNA from 

mouse retinas was extracted and purified using commercial kits (RNeasy Mini Kit) in 

accordance with the manufacturer's instructions. Briefly, retinas were disrupted and 

homogenized. Ethanol was then added to the lysate to promote RNA binding to the 

RNeasy membrane. The sample was then transferred to the RNeasy Mini spin column. 

Total RNA was bound to the membrane of the column, with contamination washed away 

by desired washing buffers. RNA was then eluted in RNase-free water and measured by 

Nanodrop. A 260/280 ratio of <2.0 was considered pure. The RNA samples were stored 

at -80ºC. 

2.1.16.2 Reverse transcription for mRNA 

RNA was subsequently reverse-transcribed into complementary DNA (cDNA) using a 

high-capacity RT kit (Taqman RNA Reverse Transcription Kit) according to the 

manufacturer’s instructions. For each retinal sample, 80ng of total RNA eluted in 5 µL of 

Diethyl pyrocarbonate (DEPC)-treated water was reversely transcribed following the 

protocol listed below. 

Component volume (µL) 
10 x RT Buffer 1.0 
25 x dNTP Mix (100 mM) 0.4 
10 x RT Random Primers 1.0 
MultiScribe ™ Reverse Transcriptase 0.5 
Nuclease-free water 2.1 
RNA (80 ng) 5.0 
Total per reaction 10.0 

Thermal cycling condition 

Step 1 Step 2 Step 3 Step 4 
Temperature 
(°C) 

25 37 85 4 

Time (min) 10 120 5 ∞ 
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After the reverse transcription, cDNA was diluted with 90µl of DEPC-treated water for 

quantitative PCR. 

2.1.16.3 qPCR to detect SpCas9 expression 

qPCR was performed using a Fast SYBR Green Master Mix with the SpCas9 forward and 

reverse primers as well as mCherry forward and reverse primers. For each sample, a 10µL 

reaction was prepared containing 8μL master mix (as shown in the table below) and 2µL 

diluted cDNA sample. The relative expression levels of SpCas9 were calculated using the 

ΔΔCt method108 with normalization to mCherry. GAPDH was used as a housekeeper gene. 

Component 25 µL reaction (µL) 
Nuclease-free water 7.25 
Fast SYBR green master mix 12.5 
Forward primer (100 µM) 0.125 
Reverse primer (100 µM) 0.125 
Diluted cDNA 5.0 
Total per reaction 25.0 

2.1.17 Genome-wide CRISPR/Cas9 screen for uveal melanoma OCM-1 cells 

We used a Genome-Scale CRISPR Knockout (GeCKO) lentiCRISPR v2 library (a gift from 

Feng Zhang, Catalog#1000000048) that targets around 19050 genes throughout the 

whole human genome, with a total of 1233411 sgRNAs pooled together (6 gRNAs per 

targeted gene, 1000 control sgRNAs designed not to target the genome, and over 1000 

sgRNAs targeting microRNA). First, a lentiCRISPR v2 plasmid library was amplified and 

packaged with lentivirus. Uveal melanoma (UM) cell line OCM-1 was transduced with 

lentiCRISPR v2 library and puromycin was added to maintain a low Multiplicity of infection 

(MOI) to ensure each cell received only one sgRNA. A large volume of transfected OCM-

1 cells (more than 1x108) were cultured to maintain enough sgRNA coverage, and cells 

were collected at two time points: once immediately after transduction, and finally after 12 

passages. Genomic DNA was extracted, and the presence of the guide RNA library was 

identified using next-generation deep sequencing. Web-based tools CRISPRAnalyzeR 

https://paperpile.com/c/PbOHNG/Jwc01
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and g:Profiler were then employed for bioinformatics and functional analysis. Detailed 

protocols are listed below based on previous studies109–111.  

2.1.17.1 Amplification of pooled sgRNA library 

Pooled sgRNA library (GeCKO v2.0 DNA plasmids) for screening was amplified as 

previously described111. Briefly, diluted half-library of lentiCRISPR v2 (Library A and 

Library B) was electroporated in Endura ElectroCompetent Cells and recovered in SOC 

medium. A 40000 dilution of transformation was plated for overnight growth and 

transformation efficiency was calculated by multiplying the number of colonies by dilution 

fold. Colonies were harvested, bacteria pellets were weighed, and plasmid DNA was 

generated using Maxiprep Kit. 

2.1.17.2 Lentivirus generation for pooled sgRNA library (lentiCRISPR v2) 

Lentivirus was produced in HEK293FT cells packaging amplified GeCKO v2.0 DNA 

plasmids (Library A+ Library B).  

One day prior to transfection: Seeding 2x107 cells per T175 flask, 2 flasks in total.  

The reaction mixture was set up as below. 

Tube A: 

Component Per T175 flask 
Library A+B (1:1 ratio) 22.5 µg 
pMD2.G 7.9 µg 
pCMV D8.91 14.6 µg 
Opti-MEM 4.5 mL 

Tube B: 

Component Per T175 flask 
Lipofectamine 2000 130 µL 
Opti-MEM 4.5 mL 

Tube A and Tube B were incubated at room temperature for 10 min separately, then mixed 

evenly and incubated at room temperature for another 10 min. Medium was aspirated with 

only 1 mL left to cover cells. 9 mL of the transfection mixture was added per flask. The 

medium was changed after 4-6 h. Cells along with medium were collected to a 50 mL 

https://paperpile.com/c/PbOHNG/ytQvy+W88AX+Sbnrb
https://paperpile.com/c/PbOHNG/Sbnrb


51 
 

centrifuge tube 48 h later. The cell suspension was centrifuged for 5 min at 300g, and the 

supernatant was transferred to a new sterile centrifuge tube, followed by flowing through 

a 0.45 µm sterile filter. 5x PEG virus precipitation solution was added to concentrate the 

virus and the mixture was placed at 4ºC overnight. Supernatant was discarded followed 

by centrifuge at 4ºC at 1500 g for 30 min. The lentivirus particle was resuspended in 2mL 

Opti-MEM and an aliquot was stored at -80ºC. 

2.1.17.3 Kill-curve with puromycin selection for OCM-1 

2x105/well OCM-1 cells were seeded in 6-well plates to reach 80% confluency the next 

day. Different puromycin concentrations (0, 0.25, 0.50, 1, 2 and 2.5 µg/mL) was added to 

the wells. Cells were examined under microscope 24 h after puromycin treatment. The 

lowest concentration of puromycin that killed all the cells within two days was selected as 

the concentration for CRISPR screen for OCM-1. The selected concentration of puromycin 

was then tested in OCM-1 cells seeded in similar confluency in T175 flask before applying 

to large-scale cell culture. 

2.1.17.4 Lentiviral transduction and screening in OCM-1 cell  

i Lentiviral transduction 

One day before lentiCRISPR v2 transduction, 2x105/well OCM-1 cells were seeded in 6-

well plates. Before infection, the medium was replaced with 1ml RPMI with 10% FBS, and 

polybrene was added (final concentration 8 µg/mL). A series of different volumes of 

lentiCRISPR v2 virus (0, 0.1, 0.25, 0.5, 1 and 2.5 µL) were added to each well. Two days 

after infection, cell culture medium was replaced with 2 mL of fresh medium supplemented 

with the selected concentration of puromycin. Two wells of cells without Lentivirus infection 

were used as controls (positive control: with puromycin, negative control: without 

puromycin). Two days after puromycin treatment, live cells were collected and counted. 

MOI was calculated as the number of live cells in puromycin selection condition/number 

of live cells in the negative control. The amount of Lentivirus with a MOI around 0.3 was 
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selected for pooled screens. Lentiviral transduction and puromycin selection were further 

tested in larger cell numbers using the selected puromycin concentration and Lentiviral 

volume in proportion. 

ii Knockout screening in large-scale expansion of OCM-1 cells 

A total of 30 T225 flasks of OCM-1 cells (1x107 cells per flask) were seeded one day 

before Lentiviral transduction. Cells were transduced with lentiCRISPR v2 in medium 

supplemented with polybrene (8 µg/mL). Puromycin was added two days after lentiviral 

transduction. Cells were harvested two days after puromycin treatment and 1x108 cells 

were maintained in puromycin selection condition, with the remaining infected cells 

collected and stored in a freezer (referred to as UMP0). The cells in culture were 

maintained in puromycin condition for 1 week in total and then 1x108 cells were cultured 

and passaged in puromycin-free medium for 12 passages. OCM-1 cells were collected at 

P12 and stored in the freezer (referred to as UMP12). Three biological replicates of 

CRISPR knockout screening were performed in UM cell line OCM-1. Sample ID for P0 

were listed as UMP0_1, UMP0_2, UMP0_3, and P12 as UMP12_1, UMP12_2, UMP12_3. 

2.1.17.5 Next-generation sequencing (NGS) 

i gDNA preparation for NGS analysis 

Frozen cell pellets of OCM-1 P0 and OCM-1 P12 were stored at -80ºC until use. Over 

1x108 cells were used to maintain a coverage of >500. Genomic DNA was extracted using 

the Zymo Research Quick-DNA Midiprep Plus Kit according to the manufacturer's 

instructions. sgRNA library was PCR amplified for NGS. PCR reaction and conditions were 

as follows. 

 Component 50 µL reaction (µL) Final concentration 

NEBNext High Fidelity PCR master 
mix, 2x 

25 1x 

Pooled sgRNA library 
sample/gDNA of OCM-1 

1 0.4 ng/µL 
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NGS_Lib_Fwd primer 1.25 0.25 µM 

NGS_Lib_KO_Rev primer 
(barcode) 

1.25 0.25 µM 

Nuclease-free water 21.5 

Total 50 

Thermal cycling condition: 

Cycle number Denature Anneal Extend 

1 95ºC, 5 min 

2-13 98ºC, 20 s 60ºC, 15 s 72ºC, 15 s 

14 72ºC, 1 min 

PCR products were purified using a QIAquick PCR purification kit according to the 

manufacturer's protocol. NGS was performed in two stages: Stage 1, after amplification of 

pooled sgRNA library to determine sgRNA distribution; Stage 2, at the end of the screen. 

ii NGS analysis 

Sequencing was performed on the NOVOSEQTM 6000 Sequencing system at the 

Ramaciotti Centre for Genomics, University of New South Wales, Australia. The FastQ 

files were generated using bcl2fastq2 Conversion Software v2.20.  

iii Quality control 

Data from the FastQ files were assessed by FastQC, a quality control tool for high 

throughput sequence data, to ensure that all the reads have phred score over 25. An 

interactive report was provided including basic statistics (reads quality score), adapter 

contents, etc.  
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iv Adapter/Quality trimming 

The adapter content was removed by BBTools using the bbduk module, which filters or 

trims reads for adapters and contaminants using k-mers. It was developed to do quality 

filter trimming and remove adapter content via different parameters including GC filtering, 

k-mers matching and length filtering. Less than 9.78% of poor reads were removed along 

with the adapter contents from our FastQ files data.  

2.1.17.6 Bioinformatic analysis using CRISPRAnalyzeR 

CRISPR/Cas9 Knockout screening analysis was performed using the 

CRISPRAnalyzeR112, a web-based analysis platform that features eight different 

algorithms to compare the hit calling including DESeq2113 , MAGeCK114, edgeR115, 

sgRSEA (Jungsik Noh et al, 2015), Mann-Whitney116 , ScreenBEAM117 and BAGEL118. In 

our analysis, five different programs were used with default parameters to identify the 

ranked-based possible hits as follows: 

i DESeq2 

DESeq2 is a differential expression analysis method implemented in R as a package. It 

uses read counts of all sgRNAs/genes for given different experimental conditions to 

estimate the differential effects based on negative binomial model. Enrichment and 

depletion of the sgRNAs/genes were estimated on log2 fold change between the two 

different groups by using the Wald test113. 

ii MAGeCK 

MAGeCK is a model-based CRISPR/Cas9 knockout method to identify the negative and 

positive selected sgRNAs and genes across different experimental conditions. The 

program uses the median-normalized method to adjust the effective size of libraries and 

read-count distribution and then uses the mean variance estimation model and negative 

binomial to determine the significant sgRNAs and genes across the different conditions. 

https://paperpile.com/c/PbOHNG/sqF2d
https://paperpile.com/c/PbOHNG/42oT2
https://paperpile.com/c/PbOHNG/LcE8i
https://paperpile.com/c/PbOHNG/0Dn0j
https://paperpile.com/c/PbOHNG/lkK7C
https://paperpile.com/c/PbOHNG/kYTfu
https://paperpile.com/c/PbOHNG/IhF9e
https://paperpile.com/c/PbOHNG/42oT2
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Finally, the robust ranking aggregation (RRA) algorithm119 is used to rank the significant 

genes in negative and positive selection, respectively114 . 

iii edgeR 

edgeR is another method using differential expression analysis implemented in R. In this 

program, read count data were modelled by using an over-dispersed Poisson model. 

Gene dispersion was estimated by the conditional maximum likelihood method and 

adapted Fisher’s exact tests were used for assessing the differential expression for 

sgRNAs/genes115. 

iv Wilcox 

The Wilcox method was implemented on the two-sided Mann-Whitney-U test116, a test for 

comparing two different groups on fold change for each gene. Later, the corrected p value 

was calculated by using the Benjamini-Hochberg method to correct for multiple testing. 

v sgRSEA 

Single-guide RNA Set Enrichment Analysis (sgRSEA) is another program implemented 

on the R programming language for enrichment analysis of CRISPR/Cas9 Knockout 

Screen Data. It ranks the sgRNA on the signal-to-noise ratio and calculates sgRNA 

ranking by enrichment score (which is one-sided Kolmogorov Smirnov statistic method) 

and reflects the enriched and depleted sgRNA, respectively. 

2.1.17.7 Assessment of gene expression of hit candidates using ULCAN 

The tumor subgroup expression on our hit candidates was then assessed using online 

portal ULCAN120. The expression level of each gene at different cancer stages and its 

effect on UM patient survival was checked based on genomic data from TCGA datasets.  

2.1.17.8 Functional analysis using gProfiler 

The functional analysis was done by using gProfiler121,122, a web-based tool for functional 

profiling for significant genes from high throughput data. A list of significant genes was 

https://paperpile.com/c/PbOHNG/5DOpx
https://paperpile.com/c/PbOHNG/LcE8i
https://paperpile.com/c/PbOHNG/0Dn0j
https://paperpile.com/c/PbOHNG/lkK7C
https://paperpile.com/c/PbOHNG/TP4QK
https://paperpile.com/c/PbOHNG/iUhYo+Tpkwe
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supplied and statistically significant gene ontology and pathways were identified. 

Cytoscape123 and Enrichment map124 were used for visualizing statistically significant 

pathways as mentioned previously125. 

2.1.18 Whole-exome sequencing to detect off-target by CRISPR/Cas9 in the retina 

2.1.18.1 Genomic DNA extraction from mouse retina 

Genomic DNA was extracted from mouse retina using the Gentra Puregene Tissue Kit 

according to the manufacturer’s instructions. Briefly, a retina sample was completely lysed 

in Cell Lysis Solution by incubating at 55ºC overnight with Puregene Proteinase K. RNase 

A solution was added and the mixture was incubated at 37ºC for 1 h. Proteins were 

precipitated by adding Protein Precipitation Solution. Genomic DNA was precipitated from 

the supernatant by adding isopropanol. DNA pellet was washed with 70% ethanol, air 

dried and finally eluted in 50~100 µl DNA Hydration Solution. DNA was dissolved by 

incubating at 65ºC for 1 h. 

2.1.18.2 Whole-exome sequencing and analysis. 

Genomic DNA from retina was extracted and dissolved in DNA Hydration Solution. Whole-

exome sequencing (WES) and standard bioinformatics analyses were performed by the 

Beijing Genomics Institute (BGI). Raw reads were filtered, and the resulting high-quality, 

clean data were aligned to the mouse reference genome (mm10). For indel analysis, 

homology between the sgRNA sequence and sequences around the indel site in the 

mouse reference genome were evaluated. Off-target effects were considered when 

MAFFT showed ungapped alignment between these sequences126, with fewer than five 

nucleotide mismatches and correct PAM sites present in the reference sequence. 

2.1.19 Statistical Analysis 

All statistical analyses were performed using Prism 7 software (GraphPad Software, Inc., 

La Jolla, CA, USA). Group data are presented as mean ± SEM, and mean data were 

analyzed with unpaired t-tests, one-way or two-way analysis of variance (ANOVA) 

https://paperpile.com/c/PbOHNG/95UHF
https://paperpile.com/c/PbOHNG/hRniy
https://paperpile.com/c/PbOHNG/sAMcL
https://paperpile.com/c/PbOHNG/vFMJC
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followed by post-hoc analysis (GraphPad Prism 7.0) unless otherwise specified. A value 

of p<0.05 was taken to be statistically significant. 

2.2 Materials 

A complete list of reagents, cell lines, animal stains and their suppliers used for all 

experiments, experimental setup, software and online resources described in this thesis 

is provided in Appendix 2. 
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3 UTILITY OF SELF-DESTRUCTING CRISPR/CAS CONSTRUCTS FOR 

TARGETED GENE EDITING IN THE RETINA 

3.1 Introduction 

In our previous study, we achieved high-efficiency genome editing in mouse retina using 

a dual AAV2-mediated CRISPR/Cas9 system20. Other groups also reported promising 

results of CRISPR/Cas application in various animal models for pre-emptive therapy for 

well-characterized monogenic ocular diseases19,21,23,28. Despite advances in efficient gene 

editing in vivo, extended over-expression of CRISPR/Cas endonuclease including 

elevated off-target cleavage127,128 and cellular immune responses60 remain key safety 

hurdles to clinical application.  

To address this, we designed a self-destructive “kamikaze”-CRISPR/Cas system that 

disrupts the CRISPR/Cas gene after active protein expression (Figure 3.1). To determine 

the efficacy of in vivo genome editing by our “kamikaze”-CRISPR/Cas construct, a 

SpCas9-targeting sgRNA module, together with a YFP-targeting sgRNA, were packaged 

into a dual AAV2 vector system for intravitreal delivery in Thy1-YFP transgenic mice. Our 

hypothesis was that by inserting a second gRNA-targeting Cas endonuclease itself, 

CRISPR constructs would be degraded and Cas protein expression would be reduced 

without compromising the on-target efficacy of YFP-targeting sgRNA. 

https://paperpile.com/c/PbOHNG/HlBFs
https://paperpile.com/c/PbOHNG/MclRr+srvS6+eMBjG+3RAin
https://paperpile.com/c/PbOHNG/wPcQ4+YhA09
https://paperpile.com/c/PbOHNG/SJPKK


59 
 

 

Figure 3.1. Schematics of Kamikaze CRISPR/Cas system.  

A dual AAV vector system was used, with one viral vector delivering SpCas9 and the other 

delivering sgRNAs against SpCas9 and the target locus (YFP), in the presence of mCherry. 

The workflow of this study was to first design SpCas9-targeting sgRNAs (Figure 3.2), 

select the best-performing SpCas9 sgRNA with the least off-target profile, and then insert 

this SpCas9 sgRNA into the original YFP-targeting sgRNA AAV vector. Differences in 

SpCas9 expression and YFP knockout efficiency were compared in HEK293-YFP cells 

transfected with this self-targeting YFP-targeting CRISPR and the regular YFP-targeting 

CRISPR, followed by an in vivo test in Thy 1-YFP mouse retina using a dual AAV2 delivery 

system. Retinal functional and structural assessment were also performed to investigate 

whether this kamikaze-CRISPR/Cas system would cause extra burden to the retina 

compared with a regular CRISPR/Cas system.  
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Figure 3.2 Schematic diagram of SpCas9 sgRNA design.  

Blue: selected SpCas9 sgRNA targeted sites. Green: PAM sequences.  

3.2 Results 

3.2.1 Validation of four SpCas9-targeting sgRNA 

3.2.1.1 In situ validation of SpCas9 sgRNAs 

To validate our designed four sgRNAs for SpCas9 targeting, we first used an in situ 

cleavage assay by incubating the individual synthetic SpCas9 sgRNA or LacZ sgRNA 

alone with the recombinant SpCas9 protein and the pX551 plasmid. Cleavage pattern for 

SpCas9 was visualized on 0.8% TAE gel. 

 

Figure 3.3 In situ validation of SpCas9 sgRNAs. 
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Robust cleavage of the SpCas9 plasmid (pX551) was found when each of the four 

designed SpCas9-targeting sgRNAs （SpCas9 sgRNA #1, #2, #3, #4) were introduced to 

recombinant SpCas9 protein (Figure 3.3). The same cleavage pattern was found when 

pX551 plasmid was digested by restriction enzyme (AgeI), which served as a positive 

control. No cleavage was found in negative control and LacZ-targeting sgRNA control. 

Uncropped agarose gel images are presented in Appendix 5. 

3.2.1.2 SpCas9 sgRNA selection by western blot 

SpCas9-targeting sgRNA plasmids were generated. We further confirmed the efficacy of 

SpCas9 gene perturbations by transfection of the plasmid with SpCas9 (pX551-CMV-

SpCas9) together with plasmid with SpCas9-targeting sgRNA (pX552-SpCas9 sgRNA #1, 

#2, #3, #4) into HEK293A cells. SpCas9 sgRNA #4 had a clear destructive effect on 

SpCas9 (Figure 3.4) with reduction of SpCas9 protein by western blot, as well as having 

a lower off-target score against the human genome as predicted by a web-based CRISPR 

design program (http://crispr.mit.edu). Therefore, SpCas9 sgRNA#4 was selected and it 

is referred to as SpCas9 sgRNA in the following experiment. 

Figure 3.4 In vitro validation of SpCas9 sgRNAs by western blot. 

http://crispr.mit.edu/
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Representative western blot of SpCas9 protein expression in HEK293A cells co-

transfected with SpCas9 and SpCas9 sgRNA plasmids (A). Relative fold change of 

SpCas9 expression normalized to β-actin. Significant reduction of SpCas9 expression was 

found in cells transfected with SpCas9 and SpCas9 sgRNA4 plasmids compared with 

LacZ sgRNA control (B). Data are presented as mean ± SEM for three independent 

replicates. Statistical analysis between groups was performed using one-way ANOVA 

(*p<0.05). 

3.2.1.3 Time course of SpCas9 expression in vitro 

We further confirmed the efficacy of SpCas9 sgRNA in SpCas9 gene perturbations by a 

time-course analysis of SpCas9 protein expression in HEK293A cells co-transfected with 

SpCas9 plasmid and SpCas9 sgRNA plasmid. SpCas9 protein was progressively reduced 

in cells transfected with SpCas9-targeting CRISPR/Cas plasmids (pX551-CMV-SpCas9 + 

pX552-CMV-GFP-SpCas9 sgRNA4) and also cells transfected with LacZ sgRNA control 

plasmids (pX551-CMV-SpCas9 + pX552-LacZ sgRNA) by western blot (Figure 3.5). A 

time-course analysis showed that at each time point, SpCas9 protein expression was 

lower in cells transfected with SpCas9-targeting CRISPR/Cas plasmids compared with 

LacZ sgRNA control, and the difference in SpCas9 expression was significant at certain 

time points (p<0.01 at day 1, p<0.05 at day 2; Figure 3.6 ).  
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Figure 3.5 Representative western blot of the time course of SpCas9 protein 

expression. 

Cells were harvested at day 1, 2, 3, 5, 7 after transfection. A time course analysis by 

western blot showed that SpCas9 protein was progressively reduced in cells following the 

transfection of selected SpCas9-targeting CRISPR/Cas construct (pX552-SpCas9  

sgRNA4)  compared  to  LacZ sgRNA control. 
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Figure 3.6 Analysis of time course of SpCas9 protein expression. 

Relative fold change of SpCas9 expression normalized to β-actin. Data are presented as 

mean ± SEM for three independent replicates. Statistical analysis between groups was 

performed using two-way ANOVA followed by Tukey’s multiple comparisons test (*p<0.05, 

**p<0.001). 

3.2.2 Validation of kamikaze-CRISPR/Cas construct in YFP-expressing cells 

We next re-engineered our kamikaze-CRISPR/Cas construct with YFP-targeting sgRNA 

or a LacZ-targeting sgRNA. The schematics of kamikaze-CRISPR/Cas constructs used 

for in vitro test are shown in Figure 3.7. To strengthen the result, we generated kamikaze-

CRISPR/Cas construct based on two YFP-targeting guide RNAs, one termed YFP 

sgRNA2 and the other referred to as YFP sgRNA6. Their cleavage efficacy in YFP-

expressing cells was tested in our previous study (data not shown) and used as vector 

backbone for this kamikaze-CRISPR project.  
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Figure 3.7 Schematics of Kamikaze CRISPR/Cas constructs for in vitro validation. 

SpCas9 was driven by CMV promoter, sgRNA was driven by U6 promoter, and mCherry 

cassette was driven by a neuron-specific promoter hSyn1. 

3.2.2.1 SpCas9 reduction in vitro 

To validate the reduction of SpCas9 in cells treated with Kamikaze CRISPR/Cas 

constructs, HEK293A cells were transfected with either Kamikaze CRISPR/Cas 

constructs or conventional CRISPR/Cas constructs, followed by western blot analysis two 

days after transfection. We observed a reduction of SpCas9 protein in cells that had 

received the kamikaze-CRISPR/Cas construct (SpCas9 + SpCas9 sgRNA/LacZ sgRNA, 

SpCas9 + SpCas9 sgRNA/YFP sgRNA) compared to those cells that had received the 

regular CRISPR/Cas construct (SpCas9 + pX552-LacZ sgRNA, SpCas9 + pX552-YFP 

sgRNA) (Figure 3.8).  
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Figure 3.8 SpCas9 reduction in cells transfected with Kamikaze-CRISPR/Cas9. 

Representative western blot of SpCas9 protein expression in cells transfected with 

kamikaze-CRISPR/Cas9 construct or non-kamikaze CRISPR/Cas9 constructs. Two days 

after transfection in 6-well plates, HEK293A cells were lysed and subjected to western blot 

analysis with antibodies against SpCas9 and β-actin.  

3.2.2.2 YFP disruption in vitro 

To test the efficacy of YFP gene disruption, HEK293A-YFP cells were transfected with 

YFP-targeting Kamikaze CRISPR/Cas constructs or conventional YFP-targeting 

CRISPR/Cas9 constructs. YFP expression was checked under a fluorescence 

microscope. A marked reduction of percentage of YFP-expressing cells was detected from 

5-7 days after transfection (data not shown). Ten days after transfection, a marked 

reduction in YFP expression in HEK293-YFP cells transfected with YFP-targeting 

CRISPR/Cas constructs (SpCas9 + YFP sgRNA) and also YFP-targeting kamikaze-

CRISPR/Cas constructs (SpCas9 + SpCas9 sgRNA/YFP sgRNA). No obvious reduction 
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could be found in cells transfected with LacZ-targeting controls (kamikaze and non-

kamikaze). 

 

Figure 3.9 Fluorescence microscopy image showing reduction in YFP expression. 

Representative images of YFP expression in cells transfected with kamikaze (SpCas9 

sgRNA-YFP sgRNA and SpCas9 sgRNA-LacZ sgRNA) or non-kamikaze (YFP sgRNA 

and LacZ sgRNA) constructs. Scale bar: 100 µm. Cells were collected at day 10 post 

transfection. 

YFP-knockout efficiency was further quantified by flow cytometry analysis at day 10 post-

transfection (Figure 3.10 and 3.11). The percentage of YFP-expressing cells was 

significantly reduced in cells transfected with YFP-targeting kamikaze-CRISPR/Cas 

constructs (SpCas9 sgRNA-YFP sgRNA2: 10.0±1.0% and SpCas9 sgRNA/YFP sgRNA6: 

5.6±0.4%, respectively), compared to LacZ-targeting kamikaze (SpCas9sgRNA/LacZ 

sgRNA: 85.9±1.3%) or LacZ-targeting (LacZ sgRNA: 86.0±1.4%) CRISPR/Cas construct 

at 10 days after transfection. Similarly, a lower percentage of YFP-expressed cells was 

also found in cells transfected with the YFP-targeting CRISPR/Cas construct (YFP 

sgRNA2: 16.7±2.7% and YFP sgRNA6: 7.4±1.4% respectively).  
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Figure 3.10 Flow cytometry demonstration plot. 

Representative flow cytometry plots of HEK293A-YFP cells receiving CRISPR/Cas 

plasmids (upper panels) or Kamikaze-CRISPR/Cas plasmids (lower panels).  

Figure 3.11 Flow cytometry analysis. 

Data are presented as mean ± SEM for three independent replicates. Statistical analysis 

between groups was performed using one-way ANOVA followed by multiple comparisons 

test (**p < 0.001, compared with control) NC, using HEK293A cells as negative control. 

Control, HEK293A-YFP cells without transfection. Cells were collected at day 10 post 

transfection. 
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3.2.3 Kamikaze-CRISPR/Cas reduced potential off-target in vitro  

To assess the off-target effect of Kamikaze CRISPR/Cas, in silico prediction tool Cas-

OFFinder was used, and no off-target sites for YFP sgRNA and SpCas9 sgRNA were 

identified. An alternative method was introduced to verify if Kamikaze CRISPR/Cas could 

reduce potential off-target. To this end, we created a series of putative off-target sites by 

introducing single-nucleotide mismatch along YFP sgRNA6 sequence and compared the 

editing activity of non-kamikaze and kamikaze-CRISPR/Cas systems (Figure 3.12 A). 

Almost all guide RNAs with single-nucleotide mismatches (in kamikaze and non-kamikaze) 

displayed editing activity at day 10 (Figure 3.12 B), with the highest editing introduced by 

a mismatch located distal to the PAM (M18) at day 10. A statistically significant reduction 

in editing activity at M2-M8 and M20 mutant guide RNA positions was observed with our 

kamikaze-CRISPR/Cas system compared to the non-kamikaze CRISPR/Cas system 

(Figure 3.12 C).  
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Figure 3.12 Off-target analysis in vitro.  

(A) Sequences of single-nucleotide mismatch containing YFP-targeting guide RNAs. (B) 

CRISPR/Cas9 editing activity of these single-nucleotide mismatches at day 10 after 

transfection by T7E1 assay. (C) Difference in mismatch related CRISPR editing between 

kamikaze YFP-targeting CRISPR/Cas system and non-kamikaze YFP-targeting 

CRISPR/Cas system, by analysis of indel using ICE tool. Mean ± SEM for three 

independent replicates (*p<0.05). 

3.2.4 Time course of SpCas9 expression in vivo 

To test whether SpCas9 expression would be reduced in retinas receiving AAV2-

kamikaze, initially we tested SpCas9 protein expression by western blot analysis, but 
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SpCas9 protein was undetectable in all three groups (Figure 3.13). 

 

Figure 3.13 Western blot of SpCas9 protein expression in vivo.  

No expression of SpCas9 protein was detected in retinas receiving AAV2-YFP sgRNA2, 

AAV2-SpCas9 sgRNA/YFP sgRNA2, AAV2-SpCas9 sgRNA/LacZ sgRNA, while YFP 

protein expression was detected using GFP (B-2). (Protein in each group was prepared 

from three retinas pooled together). 

Next, we tested the SpCas9 gene perturbation in the retinas by qPCR instead. A time- 

course analysis (Figure 3.14) showed that SpCas9 mRNA levels in retinas treated with 

AAV2-YFP sgRNA2 were stable for 4 weeks after viral injection before increasing and 

fluctuating, while the SpCas9 mRNA level in retinas treated with AAV2-SpCas9 

sgRNA/YFP sgRNA2 remained low for 6 weeks and increased at week 8.  At most time 

points, SpCas9 mRNA was lower (week 3, 4, 5, 6, 8) or similar (week 1, 2) in retinas 

treated with AAV2-mediated-YFP/SpCas9-targeting CRISPR/Cas compared to those 

treated with YFP-targeting CRISPR/Cas alone. At week 8, the difference in SpCas9 

expression was statistically significant between these two groups (p<0.05).  
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Figure 3.14 Time course of SpCas9 mRNA expression in the mouse retina.  

SpCas9 mRNA was isolated from C57BL/6 mice mouse retinas receiving AAV2-SpCas9 

sgRNA/YFP sgRNA2 or AAV2-YFP sgRNA2 at 1, 2, 3, 4, 5, 6 and 8 weeks after intravitreal 

injection. Relative fold change of SpCas9 expression was normalized by week 1 in each 

treatment group. Representative data are shown for 5-6 retinas per group/time point and 

expressed as mean ± SEM. Statistical analysis between groups was performed using two-

way ANOVA followed by Sidak's multiple comparisons test. (a, YFP sgRNA2: 1 vs 8 weeks, 

p=0.002. b, SpCas9/YFP sgRNA: 1 vs 8 weeks, p=0.7043. c, YFP sgRNA2 vs 

SpCas9/YFP sgRNA, p=0.0142). 

3.2.5 YFP knockout quantification in vivo 

To evaluate whether the reduction of SpCas9 expression by the kamikaze-CRISPR/Cas 

construct would compromise on-target editing (YFP disruption) efficiency, Thy1-YFP mice 

received a single intravitreal injection of a dual viral suspension of AAV2-SpCas9 along 

with the YFP-targeting kamikaze-CRISPR/Cas construct (AAV2-SpCas9 sgRNA/YFP 

sgRNA), the LacZ-targeting kamikaze- CRISPR/Cas construct (AAV2-SpCas9 
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sgRNA/LacZ sgRNA) or a single YFP-targeting CRISPR/Cas construct (AAV2-YFP 

sgRNA). The timeline for in vivo YFP knockout study is shown in Figure 3.15.  

Figure 3.15 Timeline for YFP knockout in vivo.  

Each Thy1-YFP mouse received an intravitreal injection of 1 µL dual-viral suspension 

(2.5x109 vg AAV2-SpCas9 and 2.5x109 vg AAV2-sgRNA) in the left eye, and the 

contralateral right eye (no injection) was used as control. Animal groups are listed in 

Appendix 4. 

Eight weeks following injection, retinal flat mount images revealed a lower number of YFP-

positive cells among mCherry-expressing cells in mice treated with AAV2-SpCas9 

sgRNA/YFP sgRNA or AAV2-YFP sgRNA compared to AAV2-SpCas9 sgRNA/LacZ 

sgRNA control (Figure 3.16) or contralateral non-injected control eyes. A marked decrease 

in the number of YFP-positive cells in the inner retina was found in both kamikaze and 

non-kamikaze YFP-targeting CRISPR/Cas-treated eyes compared to controls upon 

quantification of YFP disruption. Specifically, the proportion of retinal YFP (-) /mCherry (+) 

cells was reduced to 5.5±1.4% in AAV2-SpCas9 sgRNA/YFP sgRNA2-treated retina and 

7.3±1.3% in AAV2-YFP sgRNA2-treated retina, compared with 38.2±1.7% in AAV2-

SpCas9 sgRNA/LacZ sgRNA treated eyes. Overall there was an 85.5% (95% CI: 78.4-

92.6) and 80.9% (95% CI: 74.3-87.5) reduction in YFP-positive cells in AAV2-SpCas9 

sgRNA/YFP sgRNA- and AAV2-YFP sgRNA2-treated retinas, respectively, compared to 

AAV2-SpCas9 sgRNA/LacZ sgRNA-treated eyes (Figure 3.17). No significant difference 

in YFP disruption was found between AAV2-YFP sgRNA2- and AAV2-SpCas9 

sgRNA/YFP sgRNA2-treated retinas (p=0.62; Figure 3.17). Similar results were found 
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using an alternate YFP-targeting sgRNA (YFP sgRNA6), where the proportion of retinal 

YFP (-) /mCherry (+) was 17.0±1.3% in AAV2-SpCas9 sgRNA/YFP sgRNA6-treated retina 

and 20.6±1.2% in AAV2-YFP sgRNA6-treated retina, compared to 40.8±2.0% AAV2-

SpCas9 sgRNA/LacZ sgRNA-treated eyes (Figure 3.18). This represents a relative 

reduction of 49.5% (95% CI: 43.5-55.5) and 58.3% (95% CI: 56.4-62.0) in AAV2-SpCas9 

sgRNA/YFP sgRNA6- and AAV2-YFP sgRNA6-treated retinas compared to those that had 

received AAV2-SpCas9 sgRNA/LacZ sgRNA, respectively (Figure 3.18). 

 

Figure 3.16 High magnification of retinal flat-mount images showing YFP disruption 

in vivo. 

Scale bar: 20 µm.  
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Figure 3.17 Quantification of YFP disruption in the retina (YFP sgRNA2). 

Differences were found in YFP expression following AAV2-mediated delivery of SpCas9 

sgRNA/YFP sgRNA2 (n=5), YFP sgRNA2 (n=5) or SpCas9 sgRNA/LacZ sgRNA (n=3). 

Mean ± SEM for 3-5 independent replicates. Statistical analysis between groups was 

performed using one-way ANOVA followed by Tukey's multiple comparisons test 

(**p < 0.001).  

 

Figure 3.18 Quantification of YFP disruption in the retina (YFP sgRNA6). 
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Differences were found in YFP expression following AAV2-mediated delivery of SpCas9 

sgRNA/YFP sgRNA6 (n=6), YFP sgRNA6 (n=6) or SpCas9 sgRNA/LacZ sgRNA (n=3). 

Mean ± SEM for 3-5 independent replicates. Representative data are shown for 3-5 

independent replicates and expressed as mean ± SEM. Statistical analysis between 

groups was performed using one-way ANOVA followed by Tukey's multiple comparisons 

test (*p<0.05).  

3.2.6 Kamikaze CRISPR/Cas didn’t affect retinal structure or thickness by OCT  

To evaluate whether our “kamikaze”-CRISPR/Cas construct would affect retinal structure 

or retinal thickness, OCT was performed at 8 weeks after intravitreal injection in the Thy1-

YFP mouse. The thickness of retinal nerve fiber layer and whole retina was measured 

manually as illustrated in Figure 3.19 A. OCT analysis suggested that none of the 

CRISPR/Cas constructs negatively impacted retinal structure, and there were no 

significant differences in the thickness of the retinal nerve fiber layer or total retinal 

thickness between viral-injected eyes and the contralateral non-injected control eyes of all 

three groups (Figure 3.19 B, C).  
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Figure 3.19 Morphological measurement and analysis in mouse retinas following 

viral injection.  

Representative OCT images illustrating measurement of retinal nerve fiber layer thickness 

and total retinal thickness (A). Scale bar, 100 mm. Group average (± SEM) retinal nerve 
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fiber layer thickness (B) for SpCas9 sgRNA/YFP sgRNA2 treated (filled red, n=4) and their 

contralateral controls (unfilled red, n=4), SpCas9 sgRNA/LacZ sgRNA treated (filled blue, 

n=4) and their contralateral controls (unfilled blue, n=4) and YFP sgRNA2 treated (filled 

green, n=5) and their contralateral controls (unfilled green, n=5). Total retinal thickness 

(C). Statistical analysis between injected and control eyes was performed using two-tailed 

Student t-test (*p<0.05).  

3.2.7 Functional test of retina following AAV-mediated CRISPR/Cas editing by 

ERG  

To investigate whether our “kamikaze”-CRISPR/Cas constructs would affect retinal 

function, ERG was performed at 8 weeks after intravitreal injection of viral suspensions in 

Thy1-YFP mouse. Group averaged waveforms generated from eyes injected with YFP-

targeting kamikaze-CRISPR/Cas constructs (AAV2-SpCas9 sgRNA/YFP sgRNA2, Figure 

3.20 A and B) and non-kamikaze YFP-targeting CRISPR/Cas constructs (AAV2-YFP 

sgRNA2, Figure 3.20 E and F) were lower compared to those from contralateral control 

eyes, while ERG from LacZ-targeting kamikaze-CRISPR/Cas construct (AAV2-SpCas9 

sgRNA/LacZ sgRNA, Figure 3.20 C and D) treated eyes weren’t affected. Retinal function 

was also decreased in AAV2-SpCas9 sgRNA/YFP sgRNA6 and AAV2-YFP sgRNA6-

treated mice. Details of ERG assessment for each group are shown in Figure 3.21-23 

(YFP sgRNA2) and Figure 3.24-26 (YFP sgRNA6). Data are presented as the 

mean ± SEM. Statistical analysis between groups was performed using two-tailed 

Student’s t-test (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 3.20 Effect of AAV2-mediated CRISPR/Cas administration on retinal function.  

Averaged ERG waveforms at selected intensities for control (black traces) and SpCas9 

sgRNA/YFP sgRNA2 (n=4, red traces; A), SpCas9 sgRNA/LacZ sgRNA (n=4, blue traces; 

C) and YFP sgRNA2 (n=5, green traces; E) injected eyes. Group average (± SEM) 

photoreceptoral (a-wave), bipolar cell (b-wave), amacrine cell (oscillatory potentials, OPs) 

and ganglion cell (scotopic threshold response, STR) amplitude relative to contralateral 

control eyes (%) for each group (B, D and F). 
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Figure 3.21 SpCas9 sgRNA/YFP sgRNA2 decreased retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=4, black) and treated 

eyes (n=4, red). (B) Groups average photoreceptoral (a-wave) saturated amplitude for 

contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral sensitivity to 

light. (D) Intensity response characteristics across the entire range of intensities. (E) 

Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal amacrine cell-

mediated response (oscillatory potentials). 
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Figure 3.22 YFP sgRNA2 alone affected inner retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=5, black) and treated 

eyes (n=5, green). (B) Groups average (±SEM) photoreceptoral (a-wave) saturated 

amplitude for contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral 

sensitivity to light. (D) Intensity response characteristics across the entire range of 

intensities. (E) Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal 

amacrine cell-mediated response (oscillatory potentials).  
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Figure 3.23 SpCas9 sgRNA/LacZ sgRNA did not affect retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=3, black) and treated 

eyes (n=3, blue). (B) Groups average (±SEM) photoreceptoral (a-wave) saturated 

amplitude for contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral 

sensitivity to light. (D) Intensity response characteristics across the entire range of 

intensities. (E) Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal 

amacrine cell-mediated response (oscillatory potentials).  
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Figure 3.24 SpCas9 sgRNA/YFP sgRNA6 decreased retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=10, black) and treated 

eyes (n=10, red). (B) Groups average (±SEM) photoreceptoral (a-wave) saturated 

amplitude for contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral 

sensitivity to light. (D) Intensity response characteristics across the entire range of 

intensities. (E) Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal 

amacrine cell-mediated response (oscillatory potentials). Data are expressed as the 

mean ± SEM. Statistical analysis between groups was performed using two-tailed 

Student’s t-test. Asterisks denote significance *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001.  
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Figure 3.25 YFP sgRNA6 alone affected inner retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=8, black) and treated 

eyes (n=8, green). (B) Groups average photoreceptoral (a-wave) saturated amplitude for 

contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral sensitivity to 

light. (D) Intensity response characteristics across the entire range of intensities. (E) 

Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal amacrine cell-

mediated response (oscillatory potentials). Data are expressed as the mean ± SEM. 

Statistical analysis between groups was performed using two-tailed Student’s t-test. 

Asterisks denote significance. *p<0.05, **p<0.01. 
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Figure 3.26 SpCas9 sgRNA/LacZ sgRNA did not affect retinal function.  

(A) Averaged ERG waveforms at selected intensities for control (n=8, black) and treated 

eyes (n=8, blue). (B) Groups average photoreceptoral (a-wave) saturated amplitude for 

contralateral control (unfilled) and treated eyes (filled). (C) Photoreceptoral sensitivity to 

light. (D) Intensity response characteristics across the entire range of intensities. (E) 

Bipolar cell amplitude. (F) Bipolar cell sensitivity to light. (G) Inner retinal amacrine cell-

mediated response (oscillatory potentials). Data are expressed as the mean ± SEM. 

Statistical analysis between groups was performed using two-tailed Student’s t-test. 
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3.2.8 Kamikaze CRISPR/Cas didn’t aggravate off-target effect in vivo  

Whole-exome sequencing from two pairs of retina samples (eyes receiving AAV2-

SpCas9-YFP sgRNA6 and contralateral control eyes) showed no off-target effect of AAV2-

SpCas9 sgRNA-YFP sgRNA6 in the protein-coding region of mouse genome. To be more 

specific, 303 indel variants were detected in all four retina samples and 120 indels were 

removed as they were shared between treated retinas and contralateral control retinas. 

About 79 indels were unique in treated retinas and these were removed due to a match in 

dbSNP and/or were homozygous. When searching for putative off-target sequences 

around the remaining indels in the reference genome, we did not find any indels that could 

be associated with off-target effects of our kamikaze-CRISPR/Cas system.  

3.3 Discussion 

This study was based on our previous work using AAV2-mediated CRISPR/Cas for gene 

editing in mouse retina. However, with this viral delivery system, active endonucleases will 

remain in the retina for an extended period, which may cause deleterious effects including 

off-target effects or genotoxicity. Ways to reduce off-target cleavage include improved 

guide-RNA design33,90, or modification of Cas9 enzymes91,92, which may reduce editing 

efficiency and does not address the issue of Cas9 accumulation. In particular, it poses a 

significant challenge to the clinical application of CRISPR/Cas9 in genetic retinal diseases, 

as the natural barriers in the retina aggravate accumulation of SpCas9.  

Our approach was to employ a self-destructive CRISPR/Cas system that disrupts the 

CRISPR/Cas enzyme itself after the active protein has been expressed. Our kamikaze-

CRISPR/Cas system can significantly reduce SpCas9 expression, without dramatically 

compromising the efficiency of on-target editing. As YFP sequence did not exist 

endogenously in the mouse genome, we used an alternative method to indirectly test 

whether our kamikaze CRISPR could reduce potential off-target in vitro. Previous studies 

showed that potential off-target cleavage activity occurred on DNA sequence with a few 

base pair mismatches in the PAM-distal part of the sgRNA-guiding sequence127,129. Our 

https://paperpile.com/c/PbOHNG/N0XGt+mp3oD
https://paperpile.com/c/PbOHNG/GC5Or+uZphm
https://paperpile.com/c/PbOHNG/wPcQ4+JDJWV
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results are consistent with previous findings that clear CRISPR cleavage existed using 

sgRNAs bearing a single nucleotide mismatch in both conventional CRISPR and 

Kamikaze CRISPR, with less editing detected in Kamikaze group. Our results showed that 

Kamikaze CRISPR could reduce mismatch-related editing therefore reducing potential off-

target in vitro, probably due to the reduced expression of Cas9.  

As a proof of concept study, we used YFP transgenic mice as a robust, easy quantifiable 

tool to explore this self-destructive CRISPR/Cas editing system. An endogenous ocular 

disease-specific gene in preclinical in vivo study could later be tested with our kamikaze 

CRISPR/Cas system for broader application. At the start of this project, there were no 

published papers employing this self-targeting approach to reduce SpCas9 expression. 

Similar strategies have now been tested by Merienne and colleagues98. They 

demonstrated that progressively inactivating the nuclease using a Cas9 self-inactivating 

editing system resulted in a lower frequency of off-target cleavage of HTT (mutant 

huntingtin responsible for Huntington’s disease) in human iPSCs-derived neurons in vitro 

and in mouse brains via lentiviral-mediated in vivo delivery. Two groups22,99 have also 

tested similar self-restrictive CRISPR/Cas systems in vitro. A recent study described a 

SaCas9-based self-deleting AAV system in the liver97. While these studies have shown 

the feasibility of a self-limiting CRISPR/Cas system, our study highlights the effectiveness 

of an AAV-mediated self-destructive CRISPR/Cas system for in vivo genome editing in 

the retina. 

We observed a difference between in vitro and in vivo models in the efficiency of YFP and 

SpCas9 disruption with our Kamikaze-CRISPR/Cas9 constructs. The reduced efficiency 

may be due to the difference in promoters and delivery systems used in vitro and in vivo. 

A ubiquitous cytomegalovirus (CMV) promoter was used in the in vitro test to ensure 

strong expression of SpCas9 in cells, while MeCP2 promoter was used in the in vivo study 

to achieve neuron-specific expression in the retina. A dual AAV2 vector system was 

employed to deliver the kamikaze CRISPR/Cas construct into the retina. The expression 

of the CRISPR/Cas9 machinery requires the receipt of both Cas9 and sgRNA from two 

https://paperpile.com/c/PbOHNG/R3oSN
https://paperpile.com/c/PbOHNG/6KaVv+Y0I0e
https://paperpile.com/c/PbOHNG/h7zr9
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separate viral vectors, which may significantly reduce editing efficiency. Cas9 orthologs 

such as SaCas9130 or CjCas929 delivered via a single vector system may provide better in 

vivo editing efficiency, but dual-vector systems may still be required for mutation correction 

as they enable delivery of donor templates and appropriate promoter elements. 

An unexpected reduction in retinal function was observed 8 weeks after injection of AAV2-

SpCas9 sgRNA/YFP sgRNA2 or AAV2-YFP sRNA2. Interestingly, retinal function was 

unaffected in mice treated with AAV2-SpCas9 sgRNA/LacZ sgRNA, therefore, deficits in 

retinal function are not related to the SpCas9 sgRNA construct per se but may be related 

to either off-target effects of YFP-targeting sgRNA or accumulation of non-functional 

fluorescent proteins resulting from CRISPR/Cas9 editing. To further explore this possibility, 

we first tested a different YFP sgRNA (sgRNA6 which targets another region of the YFP 

sequence) in vivo. However, a significant decrease in retinal function was still present in 

AAV2-SpCas9 sgRNA/YFP sgRNA6- and AAV2-YFP sgRNA6-treated mice. We then 

searched the mouse genome for potential off-target sites for two YFP sgRNAs and 

SpCas9 sgRNA by in silico prediction (Cas-OFFinder) and performed WES on the treated 

mouse retina. No significant candidate genes for the off-target sites were found by in silico 

prediction or by WES. Although off-target analysis through whole-exome sequencing may 

overlook off-target cleavage in the intron and intergenic region, it is unlikely that the 

potential off-targets in these regions would cause functional changes in the mouse retina, 

as the protein-coding areas were not affected. Note that it is difficult to accurately and 

directly identify off-target in vivo using existing off-target detection methods. Most in vivo 

CRISPR studies only applied in silico or in vitro off-target discovery methods to partly 

characterize off-target events. Recently developed in vivo off-target detection strategies 

such as VIVO88 or DISCOVER-Seq89 methods could be applied in future in vivo studies to 

provide unbiased and more accurate detection of genome editing off-targets. 

We hypothesize that the reduction of retinal function came from accumulation of mutated 

fluorescent proteins. Although fluorescence proteins such as GFP and YFP have been 

widely used in neuroscience research33, accumulation of non-functional proteins resulting 

https://paperpile.com/c/PbOHNG/mGvFV
https://paperpile.com/c/PbOHNG/aOedx
https://paperpile.com/c/PbOHNG/IEb5T
https://paperpile.com/c/PbOHNG/PSpMe
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from on-target deletions (indel) may have a deleterious effect on retinal protein 

homeostasis34. This could be confirmed through overexpression of a nonsensical mutant 

transcript, though this experiment might pose new potential technical issues and is beyond 

the scope of this work. 

Moreover, a recent study also indicated that large on-target deletions could lead to 

potential genotoxicity29. Whether such mechanisms account for the functional deficits 

observed in our study requires further investigation. Although no retinal toxicity was 

observed by over-expression of Cas9 enzyme or through delivery of our self-destructive 

CRISPR/Cas system, this study was conducted over a relatively short period of time (8 

weeks). Thus further investigation is required to determine the long-term safety profile, i.e. 

whether prolonged over-expression of truncated gene products in the retina, as potentially 

caused by our self-destructive CRISPR/Cas system, are deleterious. 

It is also noted that we did not expect the kamikaze CRISPR/Cas system alone to 

completely address the issue of CRISPR safety or the off-target effects. Combining our 

novel kamikaze strategy with shortened expression of Cas9 together with a high-fidelity 

Cas9 as well as through improved guide RNA design will be required to further reduce off-

target cleavage and improve the overall long-term safety in retinal gene editing.     

As a proof of concept, we tested this self-targeting system in YFP transgenic mice using 

the most commonly studied SpCas9. However, a similar strategy could be applied to other 

Cas orthologs such as SaCas997 or CjCas9, providing a useful tool for genome editing in 

the retina.  

In summary,  we  describe  and  characterize  a  self-destructive  “kamikaze”  CRISPR/Cas 

system for in vivo genome editing in the retina. This self-destructive kamikaze  

CRISPR/Cas  system  can effectively  reduce  the expression  of SpCas9 in  the mouse  

retina,  without  substantially  sacrificing  on-target  editing  efficiency.  Therefore,  our  

AAV2-mediated  self-destructive  CRISPR/Cas  may  be  a  useful and versatile tool  for  

genome  editing  in  the  retina. 

  

https://paperpile.com/c/PbOHNG/h7zr9
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4 COMPARISON OF CRISPR/CAS ENDONUCLEASE GENE-EDITING 

EFFICIENCY OF RETINAL CELLS IN VIVO 

4.1 Introduction 

CRISPR/Cas has opened up the prospect of direct gene correction therapy for some 

inherited retinal disease. Our previous studies20,57 demonstrated AAV-mediated in vivo 

delivery of retinal cells using SpCas9. However, a dual vector system is required to 

package both SpCas9 and sgRNA. The limitation of dual vector delivery system has been 

fully discussed in our self-targeting CRISPR study.  

As more CRISPR/Cas endonucleases are discovered, such as Cas12a, SaCas9 and 

CjCas9, which differs in their editing efficacy, packageability and PAM requirement, it may 

be possible to use a single vector to package both the Cas endonuclease and its sgRNA. 

Apart from SpCas9, minimal studies have tested the in vivo gene-editing efficiency of 

SaCas928,97,130,131 and Cas12a31132. Eunji et al.29 reported efficient in vivo gene editing in 

mouse muscle cells or RPE cells using an all-in-one AAV-delivered CjCas9 and sgRNA. 

Taeyoung Koo et al. tested the in vivo editing of CjCas9 in a Duchenne muscular dystrophy 

animal model133. To date, it is not clear which of these are most efficacious for gene editing 

in vivo. Would single vector CRISPR/Cas systems work better than the dual vector system 

in the retina? For the same dual vector system, which of the currently available Cas 

endonucleases is the most efficient in editing the retina? 

To answer these questions, we sought to compare the CRISPR/Cas endonuclease activity 

in retinal cells, using CMV-Cre::Rosa26-YFP mouse as our model. To approach this, we 

first designed 1~3 guide RNAs targeting YFP for each Cas endonuclease (Figure 4.1) and 

tested them in an engineered YFP-expressing HEK cell line to select the best-performing 

guide RNA. For the same clinical application consideration as mentioned previously, we 

used AAV vectors to deliver CRISPR/Cas into mouse retina. The differences compared 

with the first study is that we hypothesized that we could deliver CRISPR/Cas to the 

https://paperpile.com/c/PbOHNG/HlBFs+zdKC7
https://paperpile.com/c/PbOHNG/mGvFV+h7zr9+3RAin+Bhpxd
https://paperpile.com/c/PbOHNG/B5c9D
https://paperpile.com/c/PbOHNG/B5c9D
https://paperpile.com/c/PbOHNG/aOedx
https://paperpile.com/c/PbOHNG/tOA65
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deeper layer of retinal via intravitreal injection using a AAV2-based variant AAV7m8. We 

used AAV7m8 to package CRISPR/Cas constructs using a single or dual vector delivery 

system (Figure 4.2) and injected them intravitreally into mouse eyes. We then validated 

CRISPR/Cas gene-editing efficiency by checking the knockout of YFP in retinal cells using 

FACS. 

 

Figure 4.1 YFP-targeting sequence for sgRNA design.  

YFP-targeting sgRNAs were designed (three sgRNAs for SpCas9, one sgRNA for SaCas9, 

two sgRNAs for Cas12a and 2 for CjCas9). PAM sequence (red) 

 

 

Figure 4.2 Schematic graph for dual and single vector system.  
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For dual vector system plasmid, Cas endonuclease was driven by miniCMV or CMV 

promoter (only miniCMV promoter driven plasmid were packaged into AAV for in vivo test), 

sgRNA was driven by U6 promoter with mCherry under the control of CMV promoter to 

identify vector transfection. Considering the loading capacity of AAV, for the single vector 

system, an all-in-one plasmid with SaCas9/CjCas9 was designed with Cas endonuclease 

driven by miniCMV and sgRNA driven by U6 promoter (Only single SaCas9 plasmid was 

successfully cloned and tested in the following experiment). For Cas12a, we used the Cas 

endonuclease from Acidaminococcus (originally called AsCpf1). Hemagglutinin (HA) tag 

was fused to the C-terminus of Cas endonuclease in the vector, so Cas protein expression 

could be detected using an antibody recognizing HA tag by western blot.  

4.2 Results 

4.2.1 sgRNA selection by in vitro validation 

YFP-targeting sgRNA plasmids and LacZ sgRNA control for each different Cas 

endonuclease were generated as follows: For SpCas9, YFP sgRNA4, 5, 6; for Cas12a, 

YFP sgRNA 20nt and 23nt; for CjCas9, YFP sgRNA1 and 2 (details for plasmid name and 

cloning method are provided in Appendix 1). To test the editing efficacy for YFP disruption 

and select the most effective sgRNA for each Cas endonuclease, original Cas 

endonuclease plasmid (Appendix 1, Table 8.1 and Appendix 2, Table 8.11) driven by CMV 

promoter and sgRNA plasmid were co-transfected in HEK293A-YFP cells. Cells were 

collected at day 10.  

4.2.1.1 Fluorescence microscopy images 

Ten days after transfection, the fluorescence microscopy image (Figure 4.3) showed 

different degrees of reduction of YFP expression in HEK293-YFP cells co-transfected with 

Cas endonuclease and respective YFP-targeting sgRNA compared with LacZ sgRNA 

control. A marked reduction of YFP expression was found with all three YFP sgRNAs in 

the SpCas9-treated group, followed by Cas12a and SaCas9 (dual and single), while the 
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reduction in CjCas9 group seemed less obvious. Robust expression of mCherry were 

found in all cells except those transfected with single SaCas9 plasmid as no mCherry 

cassette was inserted into the single vector due to AAV capacity consideration.  

 

Figure 4.3 Fluorescence microscopy image. 

Representative images of YFP expression in cells transfected with different CRISPR/Cas 

constructs. Scale bar:100 µm. 

4.2.1.2 T7E1 assay 

The T7E1 assay revealed that most of our designed sgRNAs targeted YFP effectively, 

with the exception of YFP sgRNA1 for CjCas9 (Figure 4.4). Expected cut products were 

found at around 565 bp and 290bp. 
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Figure 4.4 T7E1 assay to detect cleavage efficiency for YFP. 

Expected cleavage products by T7E1 were detected in 2% TAE gel. 

4.2.1.3 Flow cytometric analysis 

The YFP disruption efficacy for each different CRISPR/Cas construct was further 

quantified through flow cytometric analysis (Figure 4.5). To be more specific, compared 

with HEK293A-YFP cells as control, the percentage of YFP-expressing cells was 

significantly reduced in cells transfected with SpCas9 and its YFP-targeting sgRNAs YFP 

sgRNA4 (26.0±2.9%), YFP sgRNA5 (11.5±1.3%), YFP sgRNA6 (14.7±2.9%); Cas12a and 

its YFP-targeting sgRNAs YFP sgRNA 20nt (33.6±4.9%), 23nt sgRNA (55.0±5.0%); 

CjCas9 and it YFP-targeting sgRNAs YFP sgRNA2 (69.5±3.1%); Dual vector SaCas9 

(57.3±3.2%) and Single SaCas9 (57.0±2.0%). There was no significant reduction of YFP 

expression in cells transfected with CjCas9 and YFP sgRNA1 compared with control. The 

most effective YFP-targeting sgRNA for each Cas endonuclease was therefore selected 

for subsequent in vivo test. 
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Figure 4.5 Flow cytometry analysis for sgRNA selection. 

Data are represented as mean ± SEM for 4-7 independent replicates. Statistical analysis 

between groups was performed using one-way ANOVA followed by multiple comparisons 

test (****p < 0.0001, compared with control using HEK293A-YFP cells without transfection). 

HEK293A cells and HEK293A-mCherry cell without YFP expression were also included 

as negative control. Columns with red border line illustrated the best-performing sgRNAs 

for each CRISPR/Cas. 

4.2.2 Cas endonuclease construct cloning and validation 

The original Cas endonuclease-expressing plasmids were not all in AAV2 ITR-containing 

plasmids (details for Cas endonuclease plasmid cloning are listed in Appendix 1). In order 

to validate Cas protein expression in cloned AAV2-Cas endonuclease plasmids, HEK293A 

cells were transfected with SpCas9, SaCas9, Cas12a driven by miniCMV promoter, two 

CjCas9 plasmids driven by miniCMV and CMV. The expression of different Cas protein 

was detected with HA tag antibody except miniCMV-CjCas9 (Figure 4.6).  
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Figure 4.6 In vitro validation of different Cas endonucleases by western blot. 

Representative western blot of Cas protein expression in HEK293A cells treated with AAV-

Cas plasmids two days after transfection. CjCas9 expression was not detectable in cells 

transfected with miniCMV-CjCas9 plasmid by western blot. 

4.2.3 In vivo AAV7m8 delivery of CRISPR/Cas in the mouse retina 

Both eyes of CMV-Cre::Rosa26-YFP mouse received intravitreal co-injection of  1 µL dual-

viral suspension (2.5x109 vg AAV7m8-Cas endonuclease and 2.5x109 vg AAV7m8-YFP 

sgRNA) for dual vector system or 1 µL dual-viral suspension (2.5x109 vg AAV7m8-Single 

SaCas9 and 2.5x109 vg AAV7m8-mCherry) for single SaCas9 group. Sole AAV7m8-

mCherry-treated eyes were included as control. Specific animal groups and numbers are 

listed in Appendix 4 (Table 8.21). AAV7m8 penetration and distribution were assessed on 

frozen sections and retinal whole-mount of the CMV-Cre::Rosa26-YFP mouse eye 5 

months after intravitreal injection. Fluorescence images taken by Slide Scanner revealed 

AAV7m8, indicated by mCherry expression, was visible throughout the retina, including 

Ganglion Cell Layer (GCL), Inner Nuclear Layer (INL) and even some part of the  ONL, 

with major expression within INL (Figure 4.7, 4.8). Robust AAV7m8 transductions in the 

retina with variation in penetration among individual animals were found (Figure 4.8). 

Retinal whole-mount images from different AAV7m8-CRISPR/Cas-treated groups showed 

mCherry positive cells distributed widely across the retina, with higher expression in two 
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or three quadrants (Figure 4.9). YFP expression could be found in all the layers throughout 

the retina and no obvious difference could be detected among AAV7m8-CRISPR/Cas-

treated mice and control mice. 

 

Figure 4.7 Representative cross section image from retina co-transduced with 

AAV7m8-miniCMV-CjCas9 and its selected YFP sgRNA.  

Mouse was sacrificed and images were taken 5 months after intravitreal injection (mouse 

ID: 81). Scale bar: 200 µm. Images were taken by a Zeiss spinning disk confocal 

microscope. 

  



98 
 

 

 

Figure 4.8 Representative cross section image from another mouse receiving 

AAV7m8-miniCMV-CjCas9 and its selected YFP sgRNA. 

Mouse ID: 183. Strong mCherry expression was in all the layers of retina; however, the 

layers of retina could not be clearly identified as the slice of retina cryosection was thicker. 

Scale bar: 200 µm. Images were taken by Olympus Slide Scanner. 

  



99 
 

 

 

 

Figure 4.9 Representative retinal whole-mount images from two mouse eyes 

receiving different AAV7m8-CRISPR/Cas.  

Left panel ： AAV7m9-CMV-CjCas9, mouse ID 29, right eye; Right panel: AAV7m8-

miniCMV-CjCas9, mouse ID 76, right eye. Scale bar: 500 µm. Images were taken by 

Olympus Slide Scanner. 

4.2.4 Comparison of in vivo YFP knockout in the mouse retina by FACS 

To evaluate and compare the YFP knockout in vivo in different AAV7m8-CRISPR/Cas-

treated eyes, the percentage of YFP disruption among mCherry positive retinal cells was 

quantified by FACS. The FACS plots of the pre-gating for single live cells are shown in 

Figure 4.10. Representative FACS plots in Figure 4.11 illustrated the difference in YFP 

disruption in retinal cells receiving control or SpCas9. Eyes with severe surgical 

complications such as cataract or retinal detachment or those with very low mCherry 

expression by FACS were excluded from the final FACS analysis. Dissociated retinal cells 

prepared from one retina were presented as one dot in the plot (Figure 4.12 and 4.13). 

Slight to medium differences in AAV7m8 transfection in different CRISPR/Cas treatment 

groups were observed (Figure 4.12), and the lowest percentage of mCherry positive cells 
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was in miniCMV-CjCas9-treated retinas (28.6±3.4%). Retinas receiving SpCas9 (SP), 

Single SaCas9 (SSA), or Dual SaCas9 (DSA) had a relatively high proportion of mCherry 

expression (50.0±4.6%, 52.0±4.3%, 57.7±3.3%, respectively), similar to the mCherry 

control (51.4±7.0%). Lower variation within the group was seen in Cas12a (35.1±10.7%) 

and two CjCas9 treatment groups (miniCMV-CjCas9: 28.6±3.4%, CMV-CjCas9: 

34.0±4.8%). SpCas9 had the highest knockout efficiency of YFP among all the Cas 

endonucleases (18.9±2.9%), followed by Single SaCas9 (9.8±2.6%), Dual SaCas9 

(8.4±3.4%) and Cas12a (5.4±2.0%), while CjCas9 (both miniCMV-CjCas9 and CMV-

CjCas9) showed no disruption of YFP expression. Other Cas endonucleases (SaCas9 

and Cas12a) had limited YFP knockout effect with variation among individuals. There were 

significant differences in YFP knockout between the SpCas9- and Single SaCas9-treated 

groups compared with control (Figure 4.13).  

 

Figure 4.10 Representative FACS plot showing pre-gating based on scatter and 

live/dead staining by DAPI.  

Single cells from dissociated retina were gated on forward scatter (FSC-H)/side scatter 

(SSC-A) plot and live cells were further gated on DAPI plot.  
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Figure 4.11 Representative FACS plots of dissociated retinal cells receiving 

AAV7m8. 

AAV7m8-mCherry control (A, C) or AAV7m8-SpCas9 / AAV7m8-YFP sgRNA (B, D). The 

histograms in the lower panels (C, D) were based on mCherry gating. Dissociated cells 

from one retina were used in each group.  
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Figure 4.12 mCherry expression indicating AAV7m8 transduction in the retina by 

FACS.  

mCh: mCherry, SP: SpCas9, SSA: Single SaCas9, DSA: Dual SaCas9, CMV-CJ: CMV-

CjCas9, CJ: CjCas9. Data are presented as mean ± SEM for 9-20 independent samples 

in each group. Statistical analysis between groups was performed using one-way ANOVA 

followed by multiple comparisons test. n=number of injected eyes. * p<0.05, ** p<0.01, *** 

p<0.001. 
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Figure 4.13 YFP knockout in mCherry positive cells by FACS.  

mCh: mCherry, SP: SpCas9, SSA: Single SaCas9, DSA: Dual SaCas9, CMV-CJ: CMV-

CjCas9, CJ: CjCas9. Data are presented as mean ± SEM for 9-20 independent samples 

in each group. Non-parametric one-way ANOVA - the Kruskal-Wallis test was applied as 

data in two groups (Cas12a and Dual SaCas9) didn’t pass the D’Agostino & Pearson 

normality test. n=number of injected eyes. * p<0.05, ** p<0.01, *** p<0.001. 

 

 

 

 

 

 

 

 

 



104 
 

4.3 Discussion 

AAV2-mediated gene delivery via intravitreal injection results in transduction mainly in the 

inner retinal layer, due to the barrier of the inner limiting membrane. Injected subretinally, 

AAV2 vectors primarily infect the outer layers of the retina, including photoreceptors and 

the RPE. Intravitreal injection has been an established clinical practice for many years, 

with few surgical complications, while subretinal injection is a more challenging procedure 

with confined diffusion within the injection bubble. AAV7m8 is an AAV2-based variant with 

a novel capsid that enables higher penetration in the retina134–136 and other tissues such 

as the inner ear137. As the degeneration of RPE and photoreceptors are involved in most 

inherited retinal diseases, it is imperative to explore a minimally invasive, safer and 

reproducible delivery method to bring CRISPR/Cas constructs to the outer layer of the 

retina. Our study shows that AAV7m8-mediated CRISPR/Cas has good pan-retinal 

transduction, with higher expression in two or three quadrants, which might be due to 

injection error. We noted cataract, inflammation, and retinal detachment as complications 

of the injection. For FACS analysis, we excluded the eyes with severe surgical 

complications and those with very limited viral infection.  

Previous studies show that the target sequence of guide RNAs affects targeting efficiency 

of CRISPR/Cas system. Crucial as it is to ensure a fair comparison between these 

currently available CRISPR/Cas systems, it is rather difficult to design a study to fully 

exclude the influence of sequence variation with different PAMs for different Cas 

endonucleases. We took several steps to ensure a relatively fair comparison of editing 

efficiency between different CRISPR/Cas systems. First, we checked the YFP gene for all 

the potential PAM sites for each Cas endonuclease and then designed sgRNA targeting 

YFP within the similar region. Furthermore, we designed many sgRNAs for each 

CRISPR/Cas systems targeting the similar region of YFP and chose the most effective 

one for each system for in vivo comparison. Also, we ensured that the expression of each 

endonuclease was being driven by the same ubiquitous promoter (CMV for in vitro sgRNA 

https://paperpile.com/c/PbOHNG/7M6J1+xWRl6+LdwuO
https://paperpile.com/c/PbOHNG/xpnss
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selection, miniCMV for in vivo) and allowed for the same viral delivery method. The only 

exception was CjCas9, which had poor expression via western blot, so we added an extra 

CjCas9 driven by a stronger promoter CMV. Still, CjCas9 barely demonstrated knockout 

YFP by FACS analysis in vivo. When I started this project, there was no human-codon 

optimized version of CjCas9, which may explain the difference in our editing efficiency 

results to other groups29. Moreover, there is a tradeoff between aiming to target the same 

region of the YFP gene versus each sgRNA having similar efficacy.  

We found differences in gene knockout efficiency between in vitro and in vivo modes. For 

the in vitro study, SpCas9 outperforms Cas12a, followed by SaCas9 and CjCas9. For the 

in vivo test, SpCas9 is still the best-performing Cas endonuclease among all, without a 

clear trend among the other Cas orthologs. Initially, we hypothesized that single SaCas9 

might have competitive or even higher editing efficiency compared to dual SpCas9, but 

we didn’t observe that in our in vivo test. Among all the other tested groups, the overall 

editing efficiency of single SaCas9 was second best; however, the conclusion is not firm 

as the variation was unexpectedly high in each injected eye. One limitation of this study is 

that due to time and funding constraints, we did not directly sequence the sorted cells to 

further investigate the actual on-target efficacy between each group or check the ones 

with exceedingly high editing efficiency. More work is required to explain the variation in 

knockout efficiency among individual mice within the same group and draw a more solid 

conclusion. 

In summary, we compared four currently available CRISPR/Cas systems for in vivo gene 

editing in the retina and found SpCas9 has the highest editing efficiency overall.   

https://paperpile.com/c/PbOHNG/aOedx
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5 A GENOME-WIDE CRISPR/CAS9 SCREEN TO IDENTIFY NOVEL 

THERAPEUTIC TARGETS FOR UVEAL MELANOMA 

5.1 Introduction 

Uveal melanoma (UM) is the most common primary malignant ocular tumor in adults 

involving the choroid (80%), the ciliary body (15%) or the iris (5%) (Collectively referred to 

as the uvea or uveal tract, the pigmented middle layer of the eye). Up to 50% of UM 

patients develop metastasis, mostly in the liver, indicating a poor survival and high 

mortality rate.  

As a rare subtype of melanoma, UM has unique features compared with Skin Cutaneous 

Melanoma (SKCM), including risk factors, genetics, treatment strategies and prognosis. 

Weak correlation has been found with sun exposure and the onset of UM138. The most 

common melanoma-related mutations, such as BRAF, NRAS and NF1139, were not closely 

related to UM. Over 80% of UM, however, is associated with GNAQ and GNA11 

mutations140,141. Other genes including BAP1142,143, CYSLTR2144,145, SF3B1146–148, 

EIF1AX148,149 have been reported to be related to UM. Treatment for UM includes 

enucleation and radiation and other methods, such as immunotherapy or chemotherapy150. 

Targeted therapy, such as anti-PD1 treatment used in SKCM, has limited activity in UM151. 

Other chemotherapeutics including dacarbazine have also had disappointing results for 

treating UM152–154.  

A comprehensive analysis of 4,999 UM patients revealed that the survival rate had not 

changed over a period of 40 years in the USA155. It is crucial that we uncover more novel 

therapeutic targets to treat this commonly fatal yet understudied cancer. 

Just as CRISPR/Cas can be applied to target a single gene, it is also possible to 

interrogate every possible gene in the genome. Thus, this powerful genome-scale 

CRISPR/Cas screening approach has been developed by several researchers109–111,156 for 

functional genetic study in various fields. Oligonucleotide synthesis technology allows for 

https://paperpile.com/c/PbOHNG/FeLsb
https://paperpile.com/c/PbOHNG/rUpEY
https://paperpile.com/c/PbOHNG/x00OO+gSodk
https://paperpile.com/c/PbOHNG/uQ0b9+jaaDU
https://paperpile.com/c/PbOHNG/CPvR9+9nLTf
https://paperpile.com/c/PbOHNG/dNkqp+1M0eQ+9ZxLe
https://paperpile.com/c/PbOHNG/iUjbW+9ZxLe
https://paperpile.com/c/PbOHNG/XsNrm
https://paperpile.com/c/PbOHNG/doENx
https://paperpile.com/c/PbOHNG/NwlEl+VBdKL+kNUP4
https://paperpile.com/c/PbOHNG/a1vct
https://paperpile.com/c/PbOHNG/ytQvy+W88AX+Sbnrb+gZDIB
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the production of a large-scale pooled library that is faster and more affordable than an 

arrayed library. The advantage of Lentivirus DNA integrating into the host genome is that 

it enables stable, permanent and heritable genetic perturbation. Thus pooled Lentiviral 

CRISPR library is a powerful tool to study cancer genetics and biology. 

Depending on the purpose of the CRISPR library, there are three main types: CRISPR 

knockout library, CRISPRi (CRISPR-based interference) library and CRISPRa (CRISPR 

gene activation) library. Pooled screening can be further divided into negative selection 

screen and positive selection screen, both of which have been tested by Shalem et al.156 

A negative-selection screen approach, as applied in our UM screen study, can be used to 

identify genes that are essential to cell viability as the cells with important genes that are 

knocked out will die with these related guide RNAs depleted from the population. By 

identifying the missing guide RNAs, it is possible to determine which genes are important 

for the growth and proliferation of specific cells. A positive screen has been applied to 

identify drug-resistant genes. An example of a positive screen is identifying genes 

resistant to vemurafenib in a human melanoma cell line A375. The workflow of Lentiviral 

CRISPR library screen is shown in Figure 5.1.  

https://paperpile.com/c/PbOHNG/gZDIB
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Figure 5.1 Workflow of Lentiviral CRISPR library screen. 

To date, this genome-wide CRISPR/Cas9 knockout screen has been used to identify novel 

gene targets for different cancers, such as bladder cancer157, colorectal cancer158, breast 

cancer159, liver tumor160,161, acute myeloid leukemia162,163 and glioblastoma164. We sought 

to identify genes that are essential for UM using this leading genetic approach. 

5.2 Results 

5.2.1 Quality control for uveal melanoma screening 

Standard quality control was carried out to determine base quality within reads. The 

quality-trimmed Fastq files from two different conditions, Passage 0 (P0) and Passage 12 

(P12) from UM (OCM1) cell lines were mapped to the Human_GeCKO v2_Library109 using 

MAGeCK. The mapping summary for all samples is listed in Table 5.1 with Gini index and 

read count distribution are shown in Figure 5.2.  

 

https://paperpile.com/c/PbOHNG/7hCe5
https://paperpile.com/c/PbOHNG/UJtdw
https://paperpile.com/c/PbOHNG/mMoG7
https://paperpile.com/c/PbOHNG/saa0e+G8bxD
https://paperpile.com/c/PbOHNG/1mQko+ZiSY9
https://paperpile.com/c/PbOHNG/Wjzwc
https://paperpile.com/c/PbOHNG/ytQvy
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Table 5.1 Quality control and summary OCM-1 screen samples 

 Sample 
ID 

Reads Mapped Percentage Total 
sgRNA 

Zero 
Count
s 

Gini  
Index 

1 UMP0_1 387529989 306261122 0.79 119461 286 0.06 
2 UMP0_2 427247327 311118165 0.73 119461 276 0.06 
3 UMP0_3 359356334 286941293 0.80 119461 69 0.06 
4 UMP12_

1 
416965737 322517953 0.77 119461 6309 0.17 

5 UMP12_
2 

679106595 524070831 0.77 119461 3320 0.12 

6 UMP12_
3 

417905201 309265060 0.74 119461 8800 0.21 

The Gini Index of the read count distribution indicates more evenness of the count 

distribution. Three biological replicates for P0 are listed as UMP0_1, UMP0_2, UMP0_3, 

and P12 as UMP12_1, UMP12_2, UMP12_3. 

 

Figure 5.2 Plots showing sgRNA distribution in OCM-1 P0 and P12. 

a) Scatterplot showing distribution of sgRNA read count in UMP0 and UMP12. b) Boxplot 

showing the distributions of sgRNA frequencies of all the samples. c) Distribution plot 

between biological replicates at two different time points with normalized read count. 
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5.2.2 15 genes were identified by CRISPR/Cas9 screen analysis in UM in vitro  

The read count data were further accessed and sgRNAs with less than 100 read counts 

were calculated in P0 and P12. We found 0.45% reads in P0 had less than 100 read 

counts whereas 3.9% reads in P12 had less than 100 read counts. The number of sgRNAs 

with read counts less than 10 in P12 compared to P0 and only 0.16% sgRNAs were 

identified (Figure 5.2 a). From the initial screening, the sgRNAs with less than 100 read 

counts in P12 and more than 100 read counts in P0 were identified as potential candidate 

genes. Fifty-six genes (Table 5.2) were identified with low expression in three or more 

sgRNAs in P12 and therefore considered as possible hits.  

Table 5.2 List of genes with three or more sgRNA missing in UMP12 compared with 
UMP0 

Gene Number of missing 
sgRNA 

Gene Number of missing 
sgRNA 

CDIPT 4 PHAX 3 

DUX2 4 POLG2 3 

GOLGA8B 4 POLR2I 3 

hsa-mir-3929 4 PRPF40A 3 

OR5AR1 4 PSMA3 3 

RPL35A 4 RAD9A 3 

CIT 3 RBM8A 3 

CLPB 3 RPL13 3 

COPA 3 RPL21 3 

CWC22 3 RPL23 3 

DDX56 3 RPL8 3 

DHX33 3 RPS27 3 

EIF2S1 3 S100A10 3 

EIF6 3 SART3 3 

GAPDH 3 SCAF11 3 

H2AFZ 3 SLC25A3 3 

hsa-mir-4459 3 SNRPD3 3 

hsa-mir-566 3 SNRPF 3 

hsa-mir-619 3 SON 3 

hsa-mir-663a 3 SOX10 3 

hsa-mir-8078 3 SRA1 3 

LONP1 3 SRSF1 3 

MAD2L1 3 SYNCRIP 3 

MED14 3 UBL5 3 
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MEF2C 3 VARS2 3 

MESP1 3 WDR43 3 

MRPS10 3 WDR70 3 

OGDH 3 WDR74 3 

 

Furthermore, we used CRISPRAnalyzeR, a multiple algorithm implemented online 

platform, to identify significant hits. From our analysis in negative selection, we found 48 

significant genes for OCM-1 using MAGeCK (adjusted p value<0.05) (Figure 5.3a), 25 

significant genes using sgRSEA (adjusted p value<0.05) (Figure 5.3b), 77 significant 

genes using DESeq2 (adjusted p value<0.001) (Figure 5.3c) and 2164 significant genes 

using EdgeR (adjusted p value<0.05) (Figure 5.3d).  

 
Figure 5.3 Scatterplot showing significant genes using MAGeCK (a), sgRSEA (b), 

DESeq2 (c), and EdgeR (d).  
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Gene overlap between different algorithms was identified (Figure 5.4a). Finally, we 

selected 15 candidate genes that had lower expression in P12 compared with P0 by 

identifying the overlap of genes using MAGeCK and DESeq2 (Figure 5.4b), as listed in 

Table 5.3.   

 

Figure 5.4 Venn diagram showing the overlap of genes between the different 

algorithms.  

The overlap of genes between four different algorithms: DESeq2, EdgeR, MAGECK and 

sgRSEA (a); the overlap of genes with final selected algorithms MAGeCK and DESeq2. 

Table 5.3 List of final gene subset select based on MAGeCK and DESeq2 algorithms 

Genes Total sgRNA in P0 and P12 Number of sgRNA with low expression in P12 

WASH1 6 6 

SLC3A2 6 6 

ABT1 6 6 

NDUFB10 6 6 

RPL35 6 5 

COQ2 6 6 

LSM11 6 6 

KATNB1 6 6 

UBL5 6 6 

MRPL22 6 4 

HIST2H4A 6 6 

HTRA2 6 6 

SPDYE5 4 4 

CCNA2 6 6 

POLR3K 6 6 
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5.2.3 Major pathways identified by functional enrichment analysis using g:Profiler  

A final selected subset of genes was used for the functional analysis and significant gene 

ontology pathways were identified using g:Profiler. The detailed pathways interactions are 

shown in Figure 5.5. Major pathways with the most intersects were as follows: metabolic 

process, cellular process, primary metabolic process, cellular metabolic process, 

biological process and organic substance metabolic process. 

 

Figure 5.5 Pathway analysis showing statistically significant pathways using 

gProfiler. 

5.2.4 Different expression levels of each candidate gene on different cancer 

stages and its effect on uveal melanoma patient survival 

To check the gene expression level at different cancer stages, we assessed the tumor 

subgroup expression on our hit candidates by using the online portal ULCAN120. Based on 

genomic data from the Cancer Genome Atlas (TCGA) datasets165, we found that all the 

other 14 genes have relatively fair expression on the UM genomic dataset as shown in 

Figure 5.6, whereas WASH1 gene expression was not detected. Heatmap (Figure 5.7) 

confirmed the difference in expression level with our selected genes. RPL35, SLC3A, 

https://paperpile.com/c/PbOHNG/TP4QK
https://paperpile.com/c/PbOHNG/85dIz
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UBL5 and NDUFB10 have relatively higher expression in UM patients, while SPDYE5, 

LSM11 and CCNA2 have lower expression. Noted that gene expression level in normal 

controls is not provided in this heat map using ULCAN.  

To evaluate whether these genes are related to UM prognosis, we further checked the 

effect of gene expression level on UM patient survival. Survival analysis revealed that the 

expression level of three genes (COQ2, MRPL22 and POLR3K) is associated with UM 

patient survival (Figure 5.8). Interestingly, the expression level of three different genes 

(SLC3A2, ABT1 and RPL35) was correlated with SKCM patient survival (Figure 5.9).  

Pan-cancer analysis for individual genes was also performed using ULCAN. Overall, the 

differences in gene expression among 33 TCGA tumors were not remarkable. Notably, 

SPDYE5 had the highest expression in acute myeloid leukemia (AML) among all the 

TCGA tumors; the expression of SLC3A2 seemed higher in UM compared with other 

tumors in TCGA datasets (Figure 5.10). Moreover, expression of SLC3A2 was higher in 

different cancers compared with normal control samples in each cancer type (Figure 5.11).  
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Figure 5.6 Expression level of final selected gene in TCGA datasets. 

Gene expressions were recorded in different cancer stages in uveal melanoma based on 

tpm (transcript per million) values. 
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Figure 5.7 Heatmap showing expression pattern of selected genes in uveal 

melanoma.  

 

 

Figure 5.8 Expression level of selected genes that are significantly associated 
with UM patient survival (p<0.05).  

 

 

Figure 5.9 Expression level of selected genes that are significantly associated with 

SKCM patient survival (p<0.05).  
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Figure 5.10 Expression level of selected gene in different TCGA tumors.  
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Figure 5.11 Comparison of SLC3A2 expression in different TCGA tumors with 

normal controls. 

The comparison of SLC3A2 expression between uveal melanoma and normal control 

samples was not provided in this analysis. The tumor types types included in the analysis 

are adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), cervical 

squamous cell carcinoma and endocervical adenocarcinoma (CESC), 

cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse 

large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma multiforme 

(GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), 

kidney renal clear cell carcinoma (KIRP), brain lower grade glioma (LGG), ovarian serous 

cystadenocarcinoma (OV), mesothelioma (MESO), liver hepatocellular carcinoma (LIHC),  

Lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic 

adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), pheochromocytoma and 

paraganglioma (PCPG), rectum adenocarcinoma (READ), sarcoma (SARC), skin 

cutaneous melanoma (SKCM), acute myeloid leukemia (LAML), testicular germ cell 

tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), stomach adenocarcinoma 

(STAD), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), 

uveal melanoma (UVM).  
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5.3 Discussion 

UM is a relatively rare but deadly ocular cancer. As UM and SKCM are biologically distinct, 

treatments effective for the latter may have limited or minimal activity in UM. Also, for UM 

patients at an advanced stage, there is no standard treatment. Even timely enucleation 

cannot prevent fatal metastases from developing. Compared with SKCM, UM is under-

studied. For example, UALCAN, the online tool that we used to evaluate gene expression 

in UM, only included UM data this March. Less information, e.g. patient ethnicity, was 

provided compared to other TCGA cancers. It is imperative that we investigate UM to find 

new therapeutic targets.  

Other methods such as Genome-wide association studies (GWASs) have been used to 

study cancer biology. In the past few years, GWASs have identified thousands of genetic 

variants that might be associated with common diseases or traits. Whether these variants 

could lead to therapeutic applications needs to be further assessed with functional genetic 

tests. 

Advances in functional genetic fields have facilitated the study of disease-related genes. 

Genomic perturbation tools, especially CRISPR, open new possibilities for analyzing how 

genetic variants affect phenotypes. The genome-wide CRISPR knockout screen has been 

reported to perform better with minimal off-target effects and experimental consistency 

compared with knockdown approaches156. So far, a handful of genes, including MSH2157, 

TRPS1166, ENL167, DCPS168, NF2, CUL3, TADA2B, and TADA1156 have been found to be 

novel targets for various cancer types using this leading genetic approach.  

In our primary screen, we found 56 possible hits that lost three or more sgRNAs during 

selection. We then applied different algorithms for data analysis and identified 15 

overlapped genes that were considered to be potentially essential for growth and 

proliferation of UM with two most commonly used algorithms. Major pathways including 

metabolic process, cellular process were found to be closely associated with these genes. 

Shared gene information in GeneCards169 and previous studies indicated that most of 

https://paperpile.com/c/PbOHNG/gZDIB
https://paperpile.com/c/PbOHNG/7hCe5
https://paperpile.com/c/PbOHNG/MswOZ
https://paperpile.com/c/PbOHNG/2nLG4
https://paperpile.com/c/PbOHNG/NVjXM
https://paperpile.com/c/PbOHNG/gZDIB
https://paperpile.com/c/PbOHNG/vb1xA
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these genes were related with the biological process of cancer cells, including 

mitochondrial activity, endoplasmic reticulum docking, pre-mRNA splicing or cell 

proliferation. Whether these genes are directly associated with uveal melanoma biology 

or with cancer progress is yet to be uncovered. The expression level of three genes, COQ2, 

MRPL22 and POLR3K, are associated with UM patient survival.  

Out of these 15 genes, one promising target gene SLC3A2 (Solute carrier family 3 member 

2) (also known as CD98hc) is a transmembrane protein and exists as a heavy chain of 

heterodimer with a large neutral amino acid transporter L-type amino acid transporter 1 

(LAT1 or SLC7A5) in cells170,171. SLC3A2 overexpression widely occurs in different cancer 

cells such as skin squamous cell carcinoma170, gastric cancer172 and osteosarcoma173. 

Overexpression of SLC3A2 in various cancers was also confirmed by our analysis using 

TCGA data in that the expression of SLC3A2 was higher in cancer compared with normal 

controls in each cancer type. Overexpression of SLC3A2 in UM has not been reported to 

date. Interestingly, through analysis based on TCGA data, we found that the overall 

expression level of SLC3A2 is higher in UM than in other tumors. Although no conclusion 

can be drawn in the pan-cancer view, we could see the trend of expression among 

different cancer types. One hypothesis of SLC3A2 overexpression in UM is that it could 

be mediated in part with hippo pathway effectors YAP. A previous study showed that 

transcriptional co-activators YAP and TAZ could promote cell growth through SLC7A5 

(LAT1) 174. Over 80% of UM is associated with mutations in the GNAQ and GNA11 

oncogenes, encoding heterotrimeric Gαq family members140,141. Feng et al.175 found that 

Gαq stimulates YAP and promotes the YAP-dependent growth of UM cells. Therefore, 

SLC7A5 might be a potential therapeutic target in UM. This hypothesis, however, was 

been further validated in our study.  

Another possible target gene COQ2 (Coenzyme Q2, Polyprenyl transferase) encodes for 

the biosynthesis of COQ (ubiquinone), an electron and proton carrier in the mitochondrial 

respiratory chain and a lipid-soluble antioxidant176. The deficiency in coenzyme Q10 related 

https://paperpile.com/c/PbOHNG/7RUE1+fc7bZ
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to the COQ2 gene was associated with retinopathy in some patients177; homozygous 

mutation visual dysfunction trait related to rod-cone retinopathy was also observed178.  

RPL35 and POLR3K are differentially expressed in the MCF-7 and MDA-MB-231 breast 

tumor cell lines and are associated with the Translation- and Transcription-related 

molecular pathways179. No previous findings have shown any link between these two 

genes and UM, and it is interesting to confirm whether these genes play a vital role in UM 

growth and proliferation.   

CCNA2 (CyclinA2) is a highly conserved member of the cyclin family and functions as a 

regulator in the cell cycle180. CCNA2 is identified as a prognosis biomarker for estrogen-

positive breast cancer and tamoxifen resistance181. Diseases associated with CCNA2 

include Retinoblastoma, the most common eye cancer in children. Whether this gene is 

directly associated with UM, the most common form of intraocular cancer in adults, needs 

to be validated in future studies. 

These 15 selected genes are located in different chromosomes, including chromosome 1, 

2, 3, 4, 5, 6, 7, 9, 11, 16 and 19. Most of them are protein-coding genes, playing an 

important role in many biological processes, including cellular metabolism, biosynthetic 

and protein transportation.  

Due to time constraints, our screening results are preliminary in vitro study. It is necessary 

to take further downstream steps: a secondary focused screening, with gene-by-gene 

knockout screen via cell viability assay in uveal melanoma cells to exclude false positive 

results based on these bioinformatics analysis, followed by confirmation of phenotypic 

changes such as protein level change, and moreover preferably in vivo screening in a UM 

animal model could be performed to validate our identification of these novel therapeutic 

targets.  

Nonetheless, we have identified some novel genes essential for the proliferation and 

growth of UM via in vitro “genome-wide CRISPR/Cas9 screen”. Our work provides new 

insights to the molecular mechanisms of UM and reveal new therapeutic targets for this 

https://paperpile.com/c/PbOHNG/ZWDEe
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devastating disease and will probably lead to more translational studies for the treatment 

of uveal melanoma. 
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6 GENERAL DISCUSSION AND CONCLUSIONS 

Inherited retinal diseases are disabling disorders of visual function that affect millions of 

people worldwide. Despite the development of next-generation sequencing that helps 

identify more genetic variants associated with inherited retinal degeneration, there 

remains no effective treatment for the majority of these genetic disorders. 

Advances in genome editing techniques, in particular, the recent advances in 

CRISPR/Cas technology, has renewed excitement in ocular gene-based therapy for 

inherited retinal diseases. A handful of preclinical animal studies have shown the feasibility 

and efficacy of CRISPR/Cas-based treatment in retinal degenerative diseases including 

retinitis pigmentosa, LCA, AMD etc. More exciting news is the recent commencement of 

a phase 1/2 clinical trial employing AAV mediated CRISPR/Cas to treat LCA patients 

(ClinicalTrials.gov; identifier: NCT03872479), the first ever somatic genome editing trial in 

humans. With its great power of CRISPR/Cas gene editing to directly and permanently 

correct the genome, comes with great concerns and challenges, and as such the principal 

issues in the clinical consideration of somatic gene editing need to be fully addressed, 

which includes improving in vivo gene editing efficiency and efficacy, eliminating off-target 

effects etc. 

Although previous studies have shown the efficiency of CRISPR/Cas gene editing in the 

retina using electroporation19,21,51,72, this approach is not applicable in a clinical setting. 

Our group demonstrated the first in vivo use of CRISPR/Cas9 in the adult retina using 

AAV2 delivery20. With the encouraging results of the high efficiency of genome editing in 

the retina via AAV2 delivery in previous study, the central aim of this thesis is to validate 

the feasibility and efficacy of a “clinic-ready” AAV-mediated CRISPR/Cas gene editing in 

the retina.  

Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the 

widespread application of in vivo genome editing. Potentially deleterious effects of 

prolonged over-expression of CRISPR/Cas endonuclease, including elevated off-target 

https://paperpile.com/c/PbOHNG/BMJ7L+MclRr+srvS6+SRx61
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cleavage and cellular immune responses, remain important safety hurdles to clinical 

application. Therefore the first aim of this thesis was to validate a self-destructing 

CRISPR/Cas system with reduced expression of Cas endonuclease to reduce off-target 

and immune response or cellular toxicity in the retina. The first part of this thesis 

demonstrated that similar efficiency in YFP-gene perturbation between a conventional and 

a kamikaze-CRISPR/Cas system: AAV2-mediated delivery of YFP/SpCas9-targeting 

CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-

expressing cells (~85.5% reduction compared to LacZ/SpCas9-targeting CRISPR/Cas) in 

the transfected retina of Thy1-YFP transgenic mice.  

The main limitation of this body of work was lack of accurate in vivo off-target detection 

method. No significant candidate genes for the off-target sites were found by whole-exome 

sequencing in the treated mouse retina, which indicated that the reduction of retinal 

function might not arise from off-target effect from YFP sgRNAs or SpCas9 sgRNA. 

However, WES is unable to accurately detect in vivo off-target cleavages. Recently 

developed in vivo off-target detection strategies such as VIVO88 or DISCOVER-Seq89 

methods could be applied in future in vivo studies to provide unbiased and more accurate 

detection of genome editing off-targets. 

We found differences between in vitro and in vivo models, especially in SpCas9 

sgRNA/YFP sgRNA6 construct (% YFP reduction in vitro: 93.5% vs in vivo: 49.5%) and 

YFP sgRNA6 construct (% YFP reduction in vitro: 91.4% vs in vivo: 58.3%). This difference 

may be due to the fact that a dual AAV2 vector system was employed to deliver the 

kamikaze-CRISPR/Cas constructs in vivo. In this case, it may be necessary to conduct 

studies on CRISPR-based editing efficiency via a single viral vector system employing 

smaller Cas9 orthologs such as SaCas9 or CjCas9 and compare these different Cas 

endonucleases.  With the expanding repertoire of CRISPR/Cas endonucleases, such as 

Cas12a, SaCas9 and CjCas9, a single viral vector system employing these Cas9 

orthologs may provide better in vivo editing efficiency. It is, however, not clear which of 

these are most efficacious for retinal editing in vivo. Neither do we know whether a single 

https://paperpile.com/c/PbOHNG/IEb5T
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delivery of a certain CRISPR/Cas system would outperform the dual delivery system 

package using the same Cas endonucleases and sgRNA. To answer this question, the 

second aim of this thesis was to compare the CRISPR/Cas endonuclease activity in retinal 

cells in vivo. 

To test CRISPR/Cas editing efficiency in the whole retina instead of the inner retina in the 

first study, we used a different fluorescent transgenic mice model, CMV-Cre::Rosa26-YFP 

transgenic mice, with YFP expression in the whole retina under a ubiquitous promoter. To 

achieve high transduction in the whole retina, an AAV2-based variant AAV7m8, was used 

for in vivo delivery through intravitreal injection. High AAV7m8 penetration in the retinas 

was observed, which is consistent with other studies using AAV7m8 for gene delivery. As 

intravitreal injection is a technically easier, less invasive, safer and more reproducible 

procedure compared with subretinal injection, transgenes or CRISPR constructs delivered 

with AAV7m8 could have great potential in addressing inherited retinal diseases involving 

photoreceptors or RPE. While the difference in transduction efficiency among different 

species, e.g. rodent versus non-human primate, should be further tested and compared, 

AAV7m8 might be a great tool for gene delivery with robust transduction in the retina.  

We tested and compared the gene-editing efficiency of currently available Cas 

endonucleases both in vitro and in vivo. We found a great difference in genome-editing 

efficiency in vitro versus in vivo. The overall efficiency of YFP disruption in engineered 

YFP-expressing HEK293A cells in almost all designed YFP-targeting sgRNAs co-

delivered with respective Cas endonuclease is high, with SpCas9 and Cas12a better than 

SaCas9 and CjCas9. For the in vivo test, SpCas9 was the best-performing Cas 

endonuclease among all those we tested. However, the difference in editing efficiency 

among other Cas endonuclease via single or dual vector delivery was not as notable as 

in the in vitro test, with unexpected variation in individual animals within the same group.  

We have taken the following steps to ensure a relatively fair comparison for editing 

efficiency between different CRISPR/Cas systems. Firstly, we checked the YFP gene for 

all the potential PAM sites for each Cas endonuclease and then designed sgRNA targeting 
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YFP within the similar region. Also, we ensured that the expression of each endonuclease 

was being driven by the same ubiquitous promoter (miniCMV) and allowed for the same 

viral delivery method. The only exception is CjCas9, which had poor expression via 

western blot, so we added an extra CjCas9 driven by a stronger promoter CMV. 

Nonetheless, CjCas9 showed minimal knockout of YFP by FACS analysis in vivo. When I 

started this project, there was no human-codon optimized version of CjCas9, which may 

explain the difference in editing efficiency compared to another group29. Moreover, there 

is a tradeoff between aiming to target the same region of the YFP gene for a fair 

comparison versus each sgRNA having similar efficacy.  

One limitation of this part is that we didn’t directly sequence the sorted cells to further 

investigate the indels between each group or check the ones with exceedingly high editing 

efficiency. In order to explain the variation in knockout efficiency among individual mice 

within the same group and draw a more solid conclusion, more work might be needed in 

the future.  

As the central aim of this thesis is the optimization and validation of a “clinic ready” 

CRISPR/Cas system, it would be particularly interesting and exciting to find a novel 

therapeutic target in human eye diseases for which we could apply this therapy in the 

future. For this purpose, the last part of this thesis illustrated the feasibility of employing 

GeCKO screening strategy to identify potential therapeutic targets for a human ocular 

cancer, uveal melanoma. The preliminary in vitro findings revealed 56 possible hits that 

lost three or more sgRNAs during selection, with 15 overlapped genes identified as 

potential essential genes for the growth and proliferation of UM. Major pathways including 

metabolic process and cellular process were found to closely interact with these identified 

genes.  

The limitation of this part is that our screening results are preliminary in vitro results due 

to time constraints. It is necessary to take further downstream steps: gene-by-gene 

knockout screen via cell viability assay and preferably an in vivo screening in a UM animal 

model could be conducted to further validate these novel therapeutic targets.  

https://paperpile.com/c/PbOHNG/aOedx
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Conclusions 

In summary, this thesis has demonstrated a novel self-destructive kamikaze-CRISPR/Cas 

system, which can effectively reduce the expression of SpCas9 in the mouse retina, 

without substantially sacrificing on-target editing efficiency. Also, the results of this thesis 

illustrated that SpCas9 achieved the highest knockout efficacy among all Cas 

endonucleases in vivo, and AAV2 based variant AAV7m8-mediated delivery of 

CRISPR/Cas constructs achieved effective transduction and deeper penetration in the 

adult mouse retina. Furthermore, using an in vitro GeCKO screen method, the last part of 

this thesis identified 15 novel genes that appear to underpin the proliferation and growth 

of UM.   

Taken together, this thesis provides original, useful additional knowledge and new insight 

for the in vivo application of CRISPR/Cas gene editing in the retina. We expect our findings 

will lead to more translational research “from bench to bedside” that eventually contribute 

to the development of “clinic ready” CRISPR/Cas-based genome editing to treat 

devastating ocular diseases.  
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8 Appendixes 

Appendix 1 Plasmid cloning and primers 

Table 8.1 List of plasmid cloning by restriction enzyme digest method 

Plasmid name vector insert   Enzyme 
pX551-CMV-SpCas9 pX551 pX601-AAV-CMV::NLS-

SaCas9-NLS-3xHA-
bGHpA;U6::BsaI-sgRNA 

AgeI/XbaI 

pX551-miniCMV-SaCas9 pX551-miniCMV-
SpCas9 

pX601-AAV-CMV::NLS-
SaCas9-NLS-3xHA-
bGHpA;U6::BsaI-sgRNA 

AgeI/EcoRI 

pX551-CMV-CjCas9 pX551-miniCMV-
CjCas9 

pX551-CMV-SpCas9 
 

AgeI/XbaI 

pX552-CMV-mCherry AAV-U6-sgRNA-
hSyn-mCherry 

pX552-CMV-GFP 
 

ApaI/KpnI 

pX552-CMV-mCherry-
SpCas9 sgRNA4 

pX552-CMV-
mCherry 

pX552-SpCas9 sgRNA4-
LacZ sgRNA-mCherry 

MluI 

 

Table 8.2 List of plasmid cloning by PCR 

Plasmid name Vector (enzymes) Insert PCR template Primers for PCR 
pX551-miniCMV-
Cas12a (AsCpf1) 

pX551-miniCMV- 
SpCas9 (AgeI/EcoRI) 

pY010 (pcDNA3.1-
hAsCpf1) 
 

Kozak Cas12a AgeI F; 
AsCpf1 EcoRI R 

pX552-CMV-GFP pX552 (ApaI/KpnI) pHpa-trs-KS-luci 
 

CMV-ApaI F; 
CMV-KpnI R 

pX552-hsyn1 
-mCherry-Cas9 
sgRNA4 
-YFP sgRNA2 

pX552-YFP sgRNA2-
mCherry 
(MluI) 

pX552-CMV-GFP 
-SpCas9 sgRNA4 

MluI-U6promoter fwd 
primer; 
SpCas9 sgRNA scaffold-
MluI reverse primer 

pX552-hsyn1 
-mCherry-Cas9 
sgRNA4 
-YFP sgRNA6 

pX552-hsyn1-
mCherry 
-YFP sgRNA6 
(MluI) 

pX552-CMV-GFP 
-SpCas9 sgRNA4 

MluI-U6promoter fwd 
primer; 
SpCas9 sgRNA scaffold-
MluI reverse primer 

pX552-hsyn1 
-mCherry-Cas9 
sgRNA4 
-LacZ sgRNA 

pX552-LacZ sgRNA-
mCherry 
(MluI) 

pX552-CMV-GFP 
-SpCas9 sgRNA4 

MluI-U6promoter fwd 
primer; 
SpCas9 sgRNA scaffold-
MluI reverse primer 

 

Table 8.3 List of plasmid cloning by oligo annealing 

Plasmid name Vector (enzymes) Insert (oligo annealing) 
Top oligo  Bottom oligo 

pX551-miniCMV 
-SpCas9 

pX551-CMV-SpCas9 
(AgeI/XbaI) 

miniCMV-XbaI/AgeI 
F 

miniCMV-XbaI/AgeI R 

pX552-CMV-GFP 
-SpCas9 sgRNA1 

pX552-CMV-GFP 
(SapI) 

SpCas9 gRNA1 top SpCas9 gRNA1 Btm 

pX552-CMV-GFP 
-SpCas9 sgRNA2 

pX552-CMV-GFP 
(SapI) 

SpCas9 gRNA2 top SpCas9 gRNA2 Btm 

pX552-CMV-GFP 
-SpCas9 sgRNA3 

pX552-CMV-GFP 
(SapI) 

SpCas9 gRNA3 top SpCas9 gRNA3 Btm 

pX552-CMV-GFP pX552-CMV-GFP SpCas9 gRNA4 top SpCas9 gRNA4 Btm 
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-SpCas9 sgRNA4 (SapI) 
pX552-hsyn1-
mCherry-YFP sgRNA6 

pX552-hsyn-mCherry 
(SapI) 

YFP sgRNA6 top 
(SpCas9) 

YFP sgRNA6 btm 
(SpCas9) 

pX552-CMV-mCherry 
-YFP sgRNA4 
(SpCas9) 

pX552-CMV-mCherry 
(SapI) 

YFP sgRNA4 top 
(SpCas9) 

YFP sgRNA4 btm 
(SpCas9) 

pX552-CMV-mCherry 
-YFP sgRNA5 
(SpCas9) 

pX552-CMV-mCherry 
(SapI) 

YFP sgRNA5 top 
(SpCas9) 

YFP sgRNA5 btm 
(SpCas9) 
 

pX552-CMV-mCherry 
-YFP sgRNA6 
(SpCas9) 

pX552-CMV-mCherry 
(SapI) 

YFP sgRNA6 btm 
(SpCas9) 

YFP sgRNA6 btm 
(SpCas9) 

pX552-CMV-mCherry 
-LacZ sgRNA  
(SpCas9) 

pX552-CMV-mCherry 
(SapI) 

LacZ sgRNA1 top 
(SpCas9) 

LacZ sgRNA1 btm 
(SpCas9) 

pX552-CMV-mCherry 
-YFP sgRNA 20nt 
(Cas12a) 

pX552-CMV-mCherry 
-U6-Cas12a scaffold 
(SapI) 

YFP sgRNA 20nt 
top (Cas12a) 

YFP sgRNA 20nt btm 
(Cas12a) 

pX552-CMV-mCherry 
-YFP sgRNA 23nt 
(Cas12a) 

pX552-CMV-mCherry 
-U6-Cas12a scaffold 
(SapI) 

YFP sgRNA 23nt 
top (Cas12a) 

YFP sgRNA 23nt btm 
(Cas12a) 

pX552-CMV-mCherry 
-LacZ sgRNA 20nt 
(Cas12a) 

pX552-CMV-mCherry 
-U6-Cas12a scaffold 
(SapI) 

LacZ sgRNA 20nt 
top (Cas12a)  

LacZ sgRNA 20nt top 
(Cas12a) 

pX552-CMV-mCherry-
LacZ sgRNA 23nt 
(Cas12a) 

pX552-CMV-mCherry 
-U6-Cas12a scaffold 

LacZ sgRNA 23nt 
top (Cas12a) 

LacZ sgRNA 23nt btm 
(Cas12a) 

pX552-CMV-mCherry 
-YFP sgRNA  
(SaCas9) 

pX552-CMV-mCherry 
-U6-SaCas9 scaffold 
(SapI) 

YFP sgRNA (SapI) 
top (SaCas9) 

YFP sgRNA (SapI) btm 
(SaCas9) 

pX552-CMV-mCherry 
-LacZ sgRNA  
(SaCas9) 

pX552-CMV-mCherry 
-U6-SaCas9 scaffold 
(SapI) 

LacZ sgRNA (SapI) 
top (SaCas9) 

LacZ sgRNA (SapI) 
btm (SaCas9) 

pX552-CMV-mCherry 
-YFP sgRNA1 
(CjCas9) 

pX552-CMV-mCherry 
-U6-CjCas9 scaffold 
(SapI) 

YFP sgRNA1 top 
(CjCas9) 

YFP sgRNA1 btm 
(CjCas9) 

pX552-CMV-mCherry 
-YFP sgRNA2 
(CjCas9) 

pX552-CMV-mCherry 
-U6-CjCas9 scaffold 
(SapI) 

YFP sgRNA2 top 
(CjCas9) 

YFP sgRNA2 btm 
(CjCas9) 

pX552-CMV-mCherry 
-LacZ sgRNA 
(CjCas9) 

pX552-CMV-mCherry 
-U6-CjCas9 scaffold 
(SapI) 

LacZ sgRNA top 
(CjCas9) 

LacZ sgRNA btm 
(CjCas9) 

pX601-miniCMV-
SaCas9-bGHpA-U6-
sgRNA 
(SapI) 

pX601-U6-SaCas9 
sgRNA scaffold (SapI) 
(AgeI/XbaI) 

miniCMV-XbaI/AgeI 
F 

miniCMV-XbaI/AgeI R 

pX601-miniCMV-
SaCas9-SpA-sgRNA 
scaffold (SapI) 

pX601-miniCMV 
-SaCas9-bGHpA-U6 
-sgRNA(SapI) 
(EcoRI/MluI) 

SpA F SpA R 

pX601-miniCMV-
SaCas9-U6-YFP 
sgRNA 

pX601-miniCMV 
-SaCas9-SpA-sgRNA 
scaffold (SapI) 

YFP sgRNA (SapI) 
top (SaCas9) 

YFP sgRNA (SapI) btm 
(SaCas9) 

pX601-miniCMV-
SaCas9-U6-LacZ 
sgRNA 

pX601-miniCMV 
-SaCas9-SpA-sgRNA 
scaffold (SapI) 

LacZ sgRNA (SapI) 
top (SaCas9) 

LacZ sgRNA (SapI) 
btm (SaCas9) 

pX552-CMV-mCherry 
-YFP sgRNA6 M20-M2 
 

pX552-CMV-mCherry 
(SapI) 

M20~M2FWD M20~M2REV 
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pX552-CMV-mCherry-
SpCas9 sgRNA4-YFP 
sgRNA6 M20-M2 

pX552-CMV-mCherry 
-SpCas9 sgRNA4 
(SapI) 

M20~M2FWD M20~M2REV 

 

Table 8.4 List of plasmid cloning by gBlocks 

Plasmid name vector Insert (gBlock) Enzyme 
pX552-CMV-mCherry-
U6-Cas12a scaffold 

pX552-CMV-mCherry gB1 MluI/ApaI 

pX552-CMV-mCherry-
U6-SaCas9 scaffold 

pX552-CMV-mCherry gB2 MluI/ApaI 

pX552-CMV-mCherry-
U6-CjCas9 scaffold 

pX552-CMV-mCherry gB3 MluI/ApaI 

pX601-U6-SaCas9 
sgRNA scaffold (SapI) 

pX601-AAV-CMV::NLS-
SaCas9-NLS-3xHA 
-bGHpA;U6::BsaI-sgRNA 

gB2 KpnI/NotI 

 

Table 8.5 Primers for PCR, qPCR and for sequencing 

Primer name Sequence Purpose 
Kozak Cas12a AgeI F CGCACCGGTgccaccATGACACAGTTCGA

GGGCTT 
cloning 

AsCpf1 EcoRI R CGCGAATTCTTAGGCATAGTCGGGGACA
T 

cloning 

CMV-ApaI F GCGGGGCCCCGTTACATAACTTACGGTA
AATGGC 

cloning 

CMV-KpnI R GCGGGTACCTCTGACGGTTCACTAAACG
AGC 

cloning 

miniCMV_CjCas9 FWD  ACGATGTTCCAGATTACGCTTCGCCGAA
GAAAAAGCGCAA 

cloning 

miniCMV_CjCas9 REV AAAGATCTTTTATTGAATTCTTAGCTGGC
CTCCACCTTTC 

cloning 

MluI-U6promoter fwd primer agcACGCGTgagggcctatttcccatgat 
 

sequencing 

SpCas9 sgRNA scaffold-MluI 
reverse primer 

gctACGCGTAAAAAAAgcaccgactcggt sequencing 

U6 primer  for sequencing the 
gRNA 

GAGGGCCTATTTCCCATGATTCC sequencing 

EYFP Seq-REV GAAGTCGTGCTGCTTCATGTGG sequencing 
miniCMV seq primer GTACGGTGGGAGGCCTATATAA sequencing 
CMV forward seq primer CGCAAATGGGCGGTAGGCGTG sequencing 
SpCas9 FWD  TACGCTTCGCCGAAGAAAAAGC  qPCR 
SpCas9 REV GTGTTGCCCAGCACCTTGAATT qPCR 
mCherry FWD CCGACATCCCCGACTACTTGAA  qPCR 
mCherry REV  TGTAGATGAACTCGCCGTCCTG  qPCR 
pX551‐FWD  CCGAAGAGGTCGTGAAGAAG   qPCR 

pX551‐REV  GCCTTATCCAGTTCGCTCAG  qPCR 

AAV-ITR FW GGAACCCCTAGTGATGGAGTT qPCR 
AAV-ITR REV CGGCCTCAGTGAGCGA qPCR 
pX552‐FWD TGTGGAAAGGACGAAACACC  qPCR 

pX552‐REV  TGGTCCTAAAACCCACTTGC qPCR 

CMV Seq‐FWD  CGCAAATGGGCGGTAGGCGTG T7E1 PCR  

EYFP SURVEYOR REV CTGGTAGCTCAGGTAGTGGTTG   T7E1 PCR  
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Table 8.6 Sequence of oligo for sgRNA cloning 

Oligo name Sequence 

miniCMV-XbaI/AgeI F CTAGATAATACGACTCACTATAGGGGGATCCACGTATGT
CGAGGTAGGCGTGTACGGTGGGAGGCCTATATAAGCAG
AGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGGTACC
GCCACCA 

miniCMV-XbaI/AgeI R CCGGTGGTGGCGGTACCTCCAGGCGATCTGACGGTTCA
CTAAACGAGCTCTGCTTATATAGGCCTCCCACCGTACAC
GCCTACCTCGACATACGTGGATCCCCCTATAGTGAGTCG
TATTAT 

SpCas9 gRNA1 top ACCGCAAGAAGTACAGCATCGGCC 

SpCas9 gRNA1 btm AACGGCCGATGCTGTACTTCTTGC 

SpCas9 gRNA2 top ACCGTACAGCATCGGCCTGGACAT 

SpCas9 gRNA2 btm AACATGTCCAGGCCGATGCTGTAC 

SpCas9 gRNA3 top ACCGCCGATGCTGTACTTCTTGT 

SpCas9 gRNA3 btm AACACAAGAAGTACAGCATCGGC 

SpCas9 gRNA4 top ACCGCAGAGTTGGTGCCGATGTCC 

SpCas9 gRNA4 btm AACGGACATCGGCACCAACTCTGC 

YFP sgRNA6 top ACCGCGTCGCCGTCCAGCTCGACC 

YFP sgRNA6 btm AACGGTCGAGCTGGACGGCGACGC 

YFP sgRNA4 top (SpCas9) ACCGCCGTCCAGCTCGACCAGGAT 

YFP sgRNA4 btm (SpCas9) AACATCCTGGTCGAGCTGGACGGC 

YFP sgRNA5 top (SpCas9) ACCGCCGTCCAGCTCGACCAGGA 

YFP sgRNA5 btm (SpCas9) AACATCCTGGTCGAGCTGGACGGC 

YFP sgRNA6 top (SpCas9) ACCGCGTCGCCGTCCAGCTCGACC 

YFP sgRNA6 btm (SpCas9) AACGGTCGAGCTGGACGGCGACGC 

LacZ sgRNA1 top (SpCas9) ACCTGCGAATACGCCCACGCGAT 

LacZ sgRNA1 btm (SpCas9) AACATCGCGTGGGCGTATTCGCA 

YFP sgRNA 20nt top (Cas12a)  ACCGTAATTTCTACTCTTGTAGATCGTCGCCGTCCAGCT
CGACCAGGTTTTGGCC 

YFP sgRNA 20nt btm (Cas12a) AAAAGGTCGAGCTGGACGGCGACGATCTACAAGAGTAG
AAATTAC 
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YFP sgRNA 23nt top (Cas12a)  ACCGTAATTTCTACTCTTGTAGATCGTCGCCGTCCAGCT
CGACCTTTTGGCC 

YFP sgRNA 23nt btm (Cas12a) AAAAGGTCGAGCTGGACGGCGACGATCTACAAGAGTAG
AAATTACC 

LacZ sgRNA 20nt top (Cas12a)  ACCGTAATTTCTACTCTTGTAGATCGAATACGCCCACGC
GATGGTTTTGGCC 

LacZ sgRNA 20nt btm (Cas12a) AAAACCATCGCGTGGGCGTATTCGATCTACAAGAGTAGA
AATTAC 

LacZ sgRNA 23nt top (Cas12a)  ACCGTAATTTCTACTCTTGTAGATCGAATACGCCCACGC
GATGGGTATTTTGGCC 

LacZ sgRNA 23nt btm (Cas12a) AAAATACCCATCGCGTGGGCGTATTCGATCTACAAGAGT
AGAAATTACC 

YFP sgRNA (SapI) top (SaCas9) ACCGTACGTCGCCGTCCAGCTCGAC 

YFP sgRNA (SapI) btm 
(SaCas9) 

AACGTCGAGCTGGACGGCGACGTAC 

LacZ sgRNA (SapI) top 
(SaCas9) 

ACCGCTTTGCGAATACGCCCACGCG 
 

LacZ sgRNA (SapI) btm 
(SaCas9) 

AACCGCGTGGGCGTATTCGCAAAGC 

YFP sgRNA1 top (CjCas9) ACCGCGAGCTGGACGGCGACGTAAAC 

YFP sgRNA1 btm (CjCas9) AACGTTTACGTCGCCGTCCAGCTCGC 

YFP sgRNA2 top (CjCas9) ACCGTCGCCGTCCAGCTCGACCAGG 

YFP sgRNA2 btm (CjCas9) AACCCTGGTCGAGCTGGACGGCGAC 

LacZ sgRNA top (CjCas9) ACCGTTGCGAATACGCCCACGCGATG 

LacZ sgRNA btm (CjCas9) AACCATCGCGTGGGCGTATTCGCAAC 

SpA F aattcAATAAAAGATCTTTATTTTCATTAGATCTGTGTGTTG
GTTTTTTGTGTA 

SpA R CGCGTACACAAAAAACCAACACACAGATCTAATGAAAAT
AAAGATCTTTTATTG 

M20FWD ACCGGGTCGCCGTCCAGCTCGACC 

M20REV AACGGTCGAGCTGGACGGCGACCC 

M18FWD ACCGCGACGCCGTCCAGCTCGACC 

M18REV AACGGTCGAGCTGGACGGCGTCGC 

M16FWD ACCGCGTCCCCGTCCAGCTCGACC 

M16REV AACGGTCGAGCTGGACGGGGACGC 

M14FWD ACCGCGTCGCGGTCCAGCTCGACC 
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M14REV AACGGTCGAGCTGGACCGCGACGC 

M12FWD ACCGCGTCGCCGACCAGCTCGACC 

M12REV AACGGTCGAGCTGGTCGGCGACGC 

M10FWD ACCGCGTCGCCGTCGAGCTCGACC 

M10REV AACGGTCGAGCTCGACGGCGACGC 

M8FWD ACCGCGTCGCCGTCCACCTCGACC 

M8REV AACGGTCGAGGTGGACGGCGACGC 

M6FWD ACCGCGTCGCCGTCCAGCACGACC 

M4FWD AACGGTCGTGCTGGACGGCGACGC 

M4REV ACCGCGTCGCCGTCCAGCTCCACC 

M2FWD AACGGTGGAGCTGGACGGCGACGC 

M2REV ACCGCGTCGCCGTCCAGCTCGAGC 

 

Table 8.7 Sequence of gBlocks 

gBlock name  Sequence 

(gB1)U6_Cas12a_sgRNA_scaffold gctagcGGTACCACGCGTgagggcctatttcccatgattcctt
catatttgcatatacgatacaaggctgttagagagataattggaatta
atttgactgtaaacacaaagatattagtacaaaatacgtgacgtaga
aagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatgg
actatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatat
atcttGTGGAAAGGACGAAACACCGTAATTTCTAC
TCTTGTAGATggaagagcgagctcttctTTTTGGGCCC
GCGGCCGCgaattc 

(gB2)U6_SaCas9_sgRNA_scaffold gctagcGGTACCACGCGTgagggcctatttcccatgattcctt
catatttgcatatacgatacaaggctgttagagagataattggaatta
atttgactgtaaacacaaagatattagtacaaaatacgtgacgtaga
aagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatgg
actatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatat
atcttGTGGAAAGGACGAAACACCggaagagcgagct
cttctgttttagtactctggaaacagaatctactaaaacaaggcaaaa
tgccgtgtttatctcgtcaacttgttggcgagatttttGGGCCCGC
GGCCGCgaattc 

(gB3)U6_CjCas9_sgRNA_scaffold gctagcGGTACCACGCGTgagggcctatttcccatgattcctt
catatttgcatatacgatacaaggctgttagagagataattggaatta
atttgactgtaaacacaaagatattagtacaaaatacgtgacgtaga
aagtaataatttcttgggtagtttgcagttttaaaattatgttttaaaatgg
actatcatatgcttaccgtaacttgaaagtatttcgatttcttggctttatat
atcttGTGGAAAGGACGAAACACCggaagagcgagct
cttctGTTTTAGTCCCTGAAGGGACTAAAATAAAG
AGTTTGCGGGACTCTGCGGGGTTACAATCCCC
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TAAAACCGCTTTTTTGGGCCCGCGGCCGCgaatt
c 

Appendix 2 Materials and experiment set up 

Table 8.8 Chemicals and reagents 

Chemicals and reagents Supplier Catalogue No. 
Dulbecco’s Modified Eagle Medium 
(DMEM) 

Life Technologies 11965118 

Iscove's Modified Dulbecco's Medium 
(IMDM) 

Life technologies 12440061 

RPMI 1640 medium Life technologies 11875119 
Dulbecco’s Phosphate Buffered 
Saline (DPBS) 

Life technologies 14190250 

Fetal Bovine Serum (FBS) Bovogen SFBS 
penicillin-streptomycin Life Technologies 15140122 
GlutaMAX Promega 35050-061 
Opti-MEM Life Technologies 11058021 
FuGENE-HD transfection reagent Promega E2311 
Lipofectamine 2000 transfection 
reagent 

Life Technologies 11668019 

0.25%Trypsin-EDTA Life Technologies 25200-072 
Disodium EDTA  Sigma-Aldrich  6381-92-6  
Dimethyl Sulfoxide  
(DMSO) 

Sigma D2650-100 mL 

PEG-it™ Virus Precipitation Solution System Biosciences #LV810A-1 
Puromycin dihydrochloride Thermo Fisher A1113803 
polybrene Sigma-Aldrich H9268-5G 
Sodium Chloride AMRESCO 0241-2.5KG 
Trizma base Sigma T1503-1KG 
Glycine Sigma G8898-1KG 
Sodium azide (NaN3) Sigma S2002-100g 
NaH2PO4 Sigma S0751-500G 
Calcium chloride dihydrate 
(CaCl2· 2H2O) 

Sigma 223506-500G 

Agarose Sigma A9539-250G 
Ampicillin sodium salt  Sigma A9518-5G 
Bovine Serum Albumin Sigma A4503-50G 
HEPES (500g) Santa Cruz 

Biotechnology 
sc-29097A 

Glycerol Sigma G5150-1L 
UltraPure™ DNase/RNase-Free 
Distilled Water 

Life Technologies 10977015 

DEPC-treated water Invitrogen AM9920 
Virkon 5gm Tablets x 10 Tabs MedShop Australia MED1610661 
2-Mercaptoethanol Life Technologies 21985-023 
4% paraformaldehyde ProSciTech N/A 
TRITON X-100  Sigma T8787-50ML 
SOC outgrowth medium Sigma S1797-10X5ML 
LB Broth Base Life Technologies 12780-029 
LB broth with agar Sigma L2897-1KG 
TAE buffer (50x) Thermo Scientific #B49 
NuPAGE MES SDS running buffer 
(20X) 

Invitrogen NP0002 

TE buffer (Ph 8.0, 500 mL) Life technologies AM9849 
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Sodium Dodecyl Sulfate (SDS)_ Invitrogen 15525017 
Tween 20 Sigma P9416-50ML 
SYBR Safe-DNA Gel Stain Invitrogen S33102 
1KB plus DNA ladder Life technologies 10787018 
Gel loading Dye Purple (6x) NEB #B7025S 
NuPAGE® LDS Sample Buffer (4X) Invitrogen 0007 
Novex® sharp pre-stained protein 
standard 

Invitrogen LC5800 

Cell Lysis Buffer Thermo Fisher 
Scientific 

89900 

T4 DNA ligase NEB M0202S 
Alkaline Phosphatase, Calf Intestinal 
(CIP) 

NEB M0290S 

T7 Endonuclease I  NEB M0302S 
T4 Polynucleotide Kinase (PNK) NEB M0201S 
DAPI Sigma D9542-5MG 
Anti-Cas9 Antibody, clone 7A9 Millipore MAC133 
HA-probe Antibody (F-7) Santa Cruz 

Biotechnology 
sc-7392 

mouse monoclonal β-actin antibody  Millipore MAB 1501 
HRP-conjugated goat anti-mouse 
secondary antibody 

Life Technologies A-11045 

recombinant SpCas9 protein  New England Biolabs M0386S 
NuPAGE™ Novex™ 4-12% Bis-Tris 
Protein Gels 

Life Technologies NP0321BOX 

Skim milk powder Woolworth #2885 
OCT compound Tissue-Tek 4583 

 

Table 8.9 Consumables 

Consumables Supplier Catalogue No. 
15 mL Falcon® polypropylene 
centrifuge tube 

Corning 352097 

50 mL Falcon® polypropylene 
centrifuge tube 

Corning 352070 

6 well TC plates in vitro technologies FAL353046 
Falcon 100 x 20 mm TC culture 
dish 

in vitro technologies FAL353003 

PCR tubes Thermo Fisher Scientific  AM12230 
1.5 mL Eppendorf tube Thermo Fisher Scientific AM12450 
Qubit assay tubes Invitrogen Q32856 
14 mL polypropylene round-
bottom tube 

In vitro technologies  352059 

Serological pipette sterile Costar N/A (5, 10, 25, 50 mL) 
Sterile filter pipette tips Corning Axygen N/A (10, 20, 200, 1000 µL) 
Cryogenic vials 2.0 mL Corning 430659 
T75 cell culture flasks in vitro technologies FAL353136 
T175 cell culture flasks in vitro technologies FAL353112 
T225 cell culture flasks in vitro technologies FAL353138 
Countess™ Cell Counting 
Chamber Slides 

Life Technologies C10228 

Millex-HV 0.45 μm filter Millipore SLHV004SL 
polyvinylidene difuoride 
membranes 

BIO-RAD 162-0177 

Nunc-Immuno™ MicroWell™ 
96 well solid plates  

Sigma-Aldrich M9410-1CS 

Flow cytometry tubes BD Falcon   367 526 
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FLEX glass slides Dako  
Stericup-GP 0.22 µm PES 
500mL 

Millipore SCGPU05RE 

Hamilton syringe (10 μL) Sigma 24530 
Coverslips (22 x 22 mm) TRAJAN/Grale CS2222100 
Corning® cell lifter Sigma CLS3008-100EA 
30-gauge needle Terumo 22-272-115 
White cardboard boxes Interpath CVB100 
2ml aspirating pipette in vitro technologies FAL357558 

 

Table 8.10 Commercial kits 

Commercial Kits Supplier Catalogue No. 
QIAquick PCR purification kit (250) Qiagen 28106 
Qiaprep spin miniprep kit (250) Qiagen 27106 
HiSpeed Plasmid Maxi Kit (10) Qiagen 12262 
QIAfilter Plasmid Mega Kit (5) Qiagen 12281 
Fast SYBR Green Master Mix Thermo Fisher 

Scientific 
4385612 

Purelink HiPure Precipitator Module Life Technologies K2100-22 
Qubit™ dsDNA BR Assay Kit Invitrogen Q32853 
Amersham ECL Prime Western 
Blotting Detection kit 

GE Healthcare  RPN2232 

RNeasy Mini Kit (250) Qiagen 74106 
Pierce™ BCA Protein Assay Kit Thermo Scientific™ 23227 
TaKaRa AAVpro Purification Kit  
( AAV2)  

Scientifix 6232 

TaKaRa AAVpro Purification Kit (All 
Serotypes)  

Scientifix 6666 

DNA Clean & Concentrator kit Zymo Research D4033 
Taqman RNA Reverse Transcription 
Kit 

Invitrogen N8080234 

Quick-DNA™  MidiPrep Plus Kit Zymo Research D4075 
Quick-DNA™  MiniPrep Plus Kit Zymo Research D4068 
Papain dissociation system Worthington 

Biochemical 
Corporation 

LK003153 

Puregene® Core Kit A Qiagen Lot No. 8570335 
Puregene® Proteinase K (650 μL) Qiagen 158918 
RNase A Solution  Qiagen 158922 

 

Table 8.11 Plasmid origin 

Plasmid name Source Addgene No.   Purpose 
pX551 Feng Zhang lab #60957 AAV plasmid expressing 

Cas9 under mecp2 
promoter 

pX552 Feng Zhang lab #60958 AAV plasmid for sgRNA 
cloning, expressing GFP 
under hsyn promoter 

pHpa-trs-KS-Luci Original plasmid 
from Prof Douglas 
M. McCarty, Center 
for Gene Therapy, 
Nationwide 
Children’s Hospital, 

 CMV for subcloning 
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USA 
pX601-AAV-CMV::NLS-
SaCas9-NLS-3xHA-
bGHpA;U6::BsaI-sgRNA 

Feng Zhang lab #61591 A single AAV vector 
expressing SaCas9 and 
its sgRNA 

pY010 (pcDNA3.1-
hAsCpf1) 

Feng Zhang lab #69982 plasmid expressing 
hAsCpf1 under CMV 
promoter 

pX404-CjCas9 Feng Zhang lab #68338 plasmid expressing 
CjCas9 under CMV 
promoter 

AAV-U6-sgRNA-hSyn-
mCherry 

Alex Hewitt lab #87916 AAV plasmid for sgRNA 
cloning, expressing 
mCherry driven by hSyn 
promoter (replaced the 
GFP in pX552 from 
Zhang lab with mCherry) 

AAV-U6-YFP sgRNA2- 
hSyn-mCherry 

Alex Hewitt lab Ref 20 AAV plasmid with YFP 
KO sgRNA, expressing 
mCherry driven by hSyn 
promoter 

AAV-U6-LacZ sgRNA- 
hSyn-mCherry 

Alex Hewitt lab Ref 20 AAV plasmid with LacZ 
KO sgRNA, expressing 
mCherry driven by hSyn 
promoter 

pXX2 A gift from Prof Ian 
Alexander  

N/A AAV2 production 

pXX6 A gift from Prof Ian 
Alexander  

N/A AAV2 production 

7m8 John Flannery & 
David Schaffer lab 

#64839 AAV7m8 production 

pMD2.G Didier Trono #12259   Lentivirus production 
pCMV D8.91 RNAiCore; 

Academia Sinica, 
Taipei, Taiwan 

N/A Lentivirus production 

 

Table 8.12 Cell lines 

Cells Source Catalogue No. 
Human Embryonic Kidney 293A 
(HEK293A) cell 

Life Technologies R70507 

HEK293FT cell Life Technologies R70007 
Subcloning Efficiency DH5a 
competent cell 

Life Technologies 18265017 

Endura Electro Competent Cells Lucigen 75852 
OCM-1 From Prof. Dr. G.P.M. Luyten, Rottterdam University 

Hospital, Rotterdam 
HEK293D cell A gift from Prof Ian Alexander (Children’s Medical 

Research Institute, Australia) 
HEK293A-YFP cell Generated by transducing HEK 293A cells with 

pAS2.EYFP.puro lentivirus (RNAiCore;Academia 
Sinica) 

 

Table 8.13 Animal origin 

Animals Source 

https://paperpile.com/c/PbOHNG/HlBFs
https://paperpile.com/c/PbOHNG/HlBFs
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Thy1-YFP transgenic mice 
[B6.Cg-Tg(Thy1-YFP)16Jrs/J] 

Obtained from the Jackson Laboratory (mouse stock 
number: 003709; Bar Harbor, ME, USA) and bred at the 
animal facility of the Menzies Institute for Medical 
Research 

CMV-Cre::Rosa26-YFP 
transgenic mice 

Animal Services, Menzies Institute for Medical Research 

C57BL/6 mice Animal Services, Menzies Institute for Medical Research 
 

Table 8.14 Drugs used for animal study 

Drugs Source 
0.5% Tropicamide Eye Drops (Mydriacyl) Alcon 
Proxymetacaine hydrochloride Eye Drops 
(Alcaine) 

Alcon 

Ocular lubricant (Systane) Alcon 
Ketamine/ Xylazine Animal Services,  Menzies Research 

Institute Tasmania 
 

 

Table 8.15 Equipment 

Equipment Supplier Model/Catalogue No 
Thermal cycler Bio-Rad T100™ 
Countess Automated Cell Counter Invitrogen C10227 
Nanodrop spectrophotometer Thermo Fisher Scientific Nanodrop 1000 
Qubit Fluorometer Invitrogen Qubit®  2.0 
Ultrasonic cell disruptor Qsonica MISONIX Microson XL 

2000 
Microplate reader TECAN Infinite M1000 Pro 
Invitrogen Mini Gel Tank Invitrogen A25977 
XCell II™ Blot Module Life Technologies EI9051 
Amersham Imager 600 GE Healthcare 29-0834-61 
Flow cytometer BD Bioscience FACSCanto II 
Leica Modulation Contrast 
Microscope 

Leica Leica DMIRB 

Zeiss Axio Imager Microscope Zeiss N/A 
Centrifuge Eppendorf 5430R 
Microcentrifuge Eppendorf 5424 
UMP3 Ultra Micro Pump World Precision 

Instruments 
UMP3-3 

Mr. Frosty™ Freezing Container Thermo Fisher Scientific 5100-0001 
Cryostat Leica, Germany CM1850 
Virtual Slide Microsope Olympus VS120 
Phase contrast microscope Nikon TE2000-U 
Digital Dry Bath Benchmark BSH1002 
Spectral-domain Optical coherence 
tomography 

Bioptigen Envisu R2200 VHR 

StepOnePlus™ Real-Time PCR 
System 

Applied Biosystems 4376600 

Milli-Q Biocel Water Purification 
System 
 

Millipore Milli-Q Biocel 
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Table 8.16 Software and online resources 

Purpose Software/Website  
CRISPR https://benchling.com 

http://crispr.mit.edu/ 
https://www.synthego.com/ 
Cas-OFFinder 

Molecular biology tools https://www.neb.com/tools-and-resources 
FACS analysis FlowJo® 
Bioinformatic analysis CRISPRAnalyzeR 

gProfiler 
ULCAN 
FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastq
c) 
BBTools  
(https://jgi.doe.gov/data-and-tools/bbtools/) 

Cell counting, image analysis Image J 
Statistics and plot GraphPad Prism 7.0 

 
 

Table 8.17 Reagent and equipment setup 

Cell culture 
Cell growth medium for HEK293 cells: 
Complete DMEM: DMEM + 10% FBS + 5 mL GlutaMAX stock + 5 mL Pen/Strep stock 
 
Freezing medium:  
FBS+10% DMSO 
 
Cell growth medium for OCM-1 cells: 
RPMI 1640+10% FBS + 5 mL GlutaMAX stock + 5 mL Pen/Strep stock 
 
Cell culture medium for HEK293D for AAV production: 
One week before AAV production, HEK293D cells were cultured in complete DMEM medium. 
After that, cells were maintained in Pen/Strep free medium. 
Growth medium: DMEM+10% FBS 
Transfection medium: IMDM+10% FBS 
Maintenance medium: DMEM+2% FBS 
Molecular Biology 
Liquid LB with ampicilin (1 L): 
20g of Lennox L Broth base in 1 L of distilled water.  
Autoclave at 121c for 15 min and cool to room temperature. 
Upon use for bacterial culture, add ampicillin to a final concentration of 100 μg/mL. 
 
LB agar plate with ampicilin (1 L):  
35g of Lennox LB Broth with agar in 1 L of distilled water. 
Autoclave at 121ºC for 15 min and allow the mixture to cool down to around 55 ºC before adding 
ampicillin to a final concentration of 100 µg/mL.  
Pour 20~25 mL of LB agar per petri dish in a sterile fume hood.  
Cool down until solidified. Place the lids, invert the plates and store at 4 ºC.  

http://crispr.mit.edu/
http://crispr.mit.edu/
https://www.synthego.com/
https://www.synthego.com/
https://www.neb.com/tools-and-resources
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://jgi.doe.gov/data-and-tools/bbtools/
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Western blot 
10 x Transfer Buffer (500 mL)： 
Tris-29.1 g, Glycine-14.6 g, 10% SDS-18.75 mL in 500 mL with distilled water 
 
1x Transfer buffer （500mL）:  
10x transfer buffer-50 mL, methanol-100 mL, distilled water-350 mL  
 
1 x TBS-T:  
1M Tris pH 7.5 20 mL, 5M NaCl 60 mL, 10% Tween 20 10 mL, million Q 1910 mL. 
 
Blocking buffer (5% skim milk, 50 mL): 
2.5 g skim milk in 50 mL 1xTBS-T buffer. 
 
Primary antibody: 
Add desired amount of primary antibody to 10 mL primary antibody dilution buffer (10mL TBS-T 
with 2% BSA and 10% NaN3).  
 
Secondary antibody: 
Add desired amount of HRP-conjugated secondary antibody (e.g. 1:5000) in 5% non-fat milk.  
AAV production 
2 x HBS: 
NaCl     8.182 g   (280 mM final) 
HEPES   5.958 g   (50 mM final) 
Make up to 500 mL with distilled water after adjusting to pH 7.1 and autoclave. 
 
0.15 M NaH2PO4: 
10.647 g in 500 mL distilled water. Adjust to pH 7.1 and autoclave. 
 
2 M CaCl2 
29.404 g of CaCl2·2H2O in 100 mL distilled water. Autoclave. 

FACS 
 
FACS buffer: 
Make DPBS-2 mM EDTA solution, then add BSA to a concentration of 1% w/v. Adjust pH to 7.45 
and sterilize using a Stericup-GP 0.22 µm bottle. 
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Appendix 3 AAVs and titration 

Table 8.18 AAVs and titration 

AAV2 Vector Titration (vg/mL) 
AAV2-SpCas9 pX551 8.18x1012 
AAV2-YFP sgRNA2 pX552-hsyn1-mCherry-YFP sgRNA2 8.97x1012 
AAV2-YFP sgRNA6 pX552-hsyn1-mCherry-YFP sgRNA6 4.81x1012 
AAV2-SpCas9 sgRNA 
-YFP sgRNA2 

pX552-hsyn1-mCherry-Cas9 sgRNA4 
-YFP sgRNA2 

1.47x1013 

AAV2-SpCas9 sgRNA 
-YFP sgRNA6 

pX552-hsyn1-mCherry-Cas9 sgRNA4 
-YFP sgRNA6 

1.89x1013 

AAV2-SpCas9 sgRNA 
-LacZ sgRNA 

pX552-hsyn1-mCherry-Cas9 sgRNA4 
-LacZ sgRNA 

1.21x1013 

AAV7m8 Vector Titration (vg/mL) 
AAV7m8-SpCas9 pX551-miniCMV-SpCas9 5.13x1014 
AAV7m8-SaCas9 pX551-miniCMV-SaCas9 5.48x1014 
AAV7m8-Cas12a pX551-miniCMV-Cas12a 6.22x1014 
AAV7m8-CjCas9 (CMV) pX551-CMV-CjCas9 1.61x1015 
AAV7m8-CjCas9 
(miniCMV) 

pX551-miniCMV-CjCas9 3.53x1014 

AAV7m8-YFP sgRNA5 
(SpCas9) 

pX552-CMV-mCherry-YFP sgRNA5 
(SpCas9) 

2.31x1014 
 

AAV7m8-YFP sgRNA  
20nt (Cas12a) 

pX552-CMV-mCherry-YFP sgRNA 20nt 
(Cas12a) 

1.06x1015 

AAV7m8-YFP sgRNA 
(SaCas9 dual) 

pX552-CMV-mCherry-YFP sgRNA 
(SaCas9) 

1.22x1014 

AAV7m8-YFP sgRNA2 
(CjCas9) 

pX552-CMV-mCherry-YFP sgRNA2 
(CjCas9) 

1.26x1015 

AAV7m8-YFP sgRNA 
(SaCas9 single) 

pX601-miniCMV-SaCas9-U6-YFP sgRNA 2.55x1014 

AAV7m8-mCherry  pX552-CMV-mCherry 1.58x1014 
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Appendix 4 Animal groups 

Table 8.19 Animal groups for time course of SpCas9 expression (Chapter 3 study) 

Animal groups (C57BL/6)* Number 
AAV2-SpCas9+AAV2-YFP sgRNA2 39 
AAV2-SpCas9+AAV2-SpCas9 sgRNA/YFP sgRNA2 37 

*Left eye was injected. Right eye was control with no injection. 
 
Table 8.20 Animal groups for YFP disruption (Chapter 3 study) 

Animal groups (Thy1-YFP transgenic mice)* Number 
AAV2-SpCas9+AAV2-YFP sgRNA2 17 
AAV2-SpCas9+AAV2-SpCas9 sgRNA/YFP sgRNA2 17 
AAV2-SpCas9+AAV2-SpCas9 sgRNA/LacZ sgRNA 15 

 

Animal groups (Thy1-YFP transgenic mice)* Number 
AAV2-SpCas9+AAV2-YFP sgRNA6 9 
AAV2-SpCas9+AAV2-SpCas9 sgRNA/YFP sgRNA6 10 
AAV2-SpCas9+AAV2-SpCas9 sgRNA/LacZ sgRNA 10 

*Left eye was injected. Right eye was control with no injection. 
 

Table 8.21 Animals for CRISPR comparison study (Chapter 4 study) 

Animal groups (CMV-Cre::Rosa26-YFP transgenic mice) # Number 
AAV7m8-SpCas9+AAV7m8-YFP sgRNA5 (SpCas9) 20 
AAV7m8-SaCas9+AAV7m8-YFP sgRNA (SaCas9 dual) 20 
AAV7m8-YFP sgRNA (SaCas9 single)+AAV7m8-mCherry 20 
AAV7m8-Cas12a+AAV7m8-YFP sgRNA  20nt (Cas12a) 20 
AAV7m8-CjCas9+AAV7m8-YFP sgRNA2 (CjCas9) 20 
AAV7m8-CjCas9(miniCMV)+AAV7m8-YFP sgRNA2 (CjCas9) 21 
AAV7m8-mCherry 29 

# both eyes were injected with the same AAV7m8-CRISPR/Cas in one animal. 
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Appendix 5 Uncropped agarose gel and western blot images. 
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