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Machine Learning for Mineral Exploration: Prediction and Quantified
Uncertainty at Multiple Exploration Stages

by Stephen KUHN

Machine learning describes an array of computational and nested statistical meth-
ods whereby a computer can ‘learn’ and subsequently make predictions or identify
patterns in data. With the increasing volume and variety of numerical data in the
geosciences, and widespread availability of the needed computing power, machine
learning techniques are a logical addition to the numerous possible approaches that
can be applied to the search for ore deposits.

The three core research chapters in this thesis develop the application of machine
learning in the context of mineral exploration. Emphasis is placed on the Random
Forests algorithm for mapping lithology in a range of settings and at a variety of
stages in the exploration process. Information entropy is used to assist both in as-
sessing and communicating any complex combinations, and potential inaccuracy, of
classification results. Through the thesis, methods are employed with future prac-
tical usage in mind, such that machine learning may be used by the geologist (as
domain expert) in an objective manner.

The first of these core studies uses the Random Forests algorithm to re-classify the
solid geology lithology map of the Heron South project, located in the Eastern Gold-
fields of Western Australia. This study uses geophysical and remote sensing data, in
the absence of geochemical samples and geological ground truthing with most of the
project under transported cover. This is characteristic of an early stage, reconnais-
sance exploration project. A sparse training sample of 1.6 percent of the total area,
is taken as training data, allowing much of the areas geology the freedom to be re-
classified. This study demonstrates that Random Forests, with proper consideration
given to sampling and training data selection, can be used effectively to produce or
improve geological mapping in little-explored areas. Information entropy is shown
to be valuable in predicting where classification was likely to be inaccurate or a re-
gion highly complex.

The second core study uses Random Forests to produce a solid geology map of the
Kliyul porphyry prospect of British Columbia, Canada, using a fusion of available
geophysical and geochemical data, typical of a greenfields stage exploration project.
Soil and rock chip sample sites were taken as training data, used to classify the re-
mainder of the project area. Assessment of the probability distributions produced
using the Random Forests algorithm enabled regions with an elevated probability
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of intrusions (a key indicator lithology) to be mapped, even where not observed in
training data. The results of this study highlight the value of a soft, ensemble clas-
sifier such as Random Forests, and the value to be gained from an assessment of
the spatial distribution of class probabilities as opposed to viewing a final map as a
solution in isolation.

In the third and final core study, a range of training data sampling paradigms are
tested in a data rich area located in the Domes region of the Central African Cop-
per belt hosting the Sentinel (Ni) and Enterprise (Cu) deposits. This study simu-
lates early and advanced stage exploration project maturity in incorporating a priori
geological Information. It culminates in the use of Random Forests to undertake
an objective audit of the present company geological map. Further to this, unsu-
pervised clustering is used in the production of a geological map in the absence of
training or constraint through identifying the natural grouping of data. The results
of these studies highlight the importance of proper sample balancing and explore
the repercussions of limited and/or non-representative training data. The use of the
information entropy proxy is developed to identify where a classification may de-
part from the domain represented by training data. The ranking of input data that
is performed in association with the Random Forests classification can be used to
improve clustering results through optimising dataset selection.

Through the three core research chapters, a set of practical considerations and rec-
ommendations for explorers are provided. It is demonstrated that Random Forests
can provide an objective audit and subsequent refinement of a pre-existing geolog-
ical map. The expression of uncertainty using information entropy, and the assess-
ment of class probabilities, can be used to appraise the results from the machine
learning analyses. This includes validation in the case of complex outcome com-
binations, and generation of new insights. Ranking of input datasets via Random
Forests can enhance understanding of data and improve both Random Forests clas-
sification results and improve clustering. With the proper selection of appropriate
datasets, clustering (for example immobile trace elements) and scaling can indeed
produce results that correspond well with lithology. Studies presented in this the-
sis use data from current/active exploration projects and methods are distilled to
streamlined workflows using industry standard software and data formats. In sum-
mary, these methods, previously the domain of computer and data scientists, are
now developed to be more widely accessible to mineral explorers.
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Chapter 1

Introduction

1.1 Introduction

Data-driven methods are used across many aspects of human endeavour and
present a new set of possible research approaches for the applied geosciences. The
availability of multiple datasets and the ubiquity of powerful portable computing
capability may be leveraged together as a transformational opportunity for the
resources industries. Machine learning describes the process where a computer can
learn from a, sometimes large, volume of high dimensional data and make
meaningful inferences or predictions, with minimal human input (Mitchel, 1997;
Dutton & Conroy, 1996). The production of an improved geological map, from
airborne geophysical data, remote sensing data, and sparse ground observations,
by machine learning techniques has been demonstrated (e.g. Cracknell, Reading &
McNeill, 2014). The success of early studies, particularly using Random Forests
(RF) has been developed in ongoing and related research (e.g. Cracknell & Reading,
2014; Cracknell, 2014; Harris & Grunsky, 2015; Yu et al., 2012).

A wide variety of data are routinely used in mineral exploration which, as in the
demonstration study noted above, can be grouped into geophysical (often airborne)
data, remote sensing (satellite) data, and geological/geochemical observations.
These are available at differing scales and resolutions defined by the prior history
of investigation, prospectivity, exploration stage and specific needs of a given
project. This thesis will focus on lithological mapping of the Earth’s surface,
focussing on the priorities most likely for mineral exploration. In this context, the
availability of data increases with the progression of a project from precompetitive
airborne potential field geophysical and satellite data to “boots on ground”
geological mapping, geochemical sampling and high-resolution geophysical
surveys. With each addition in terms of data variety, data resolution and the
increasing availability of direct geological observations, the ability to produce more
robust lithological maps through conventional means increases. As such, usage of
machine learning must demonstrate an addition of value for the given exploration
stage. For example, the production of a ‘first pass’ geological map from sparse
observations is a very useful result in a preliminary, remote desktop study for a
given project. Where the geology is well mapped and understood, however, a
product of this nature does not add any significant value. In this case of a
subsequent exploration stage, the ability to refine existing mapping while
revealing, quantitatively, the associated uncertainty could be significant. Thus,
there could be numerous ways that machine learning might add value to a mineral
exploration project.
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1.1.1 Research proposition and aims

The research described in this thesis aims to extend the application of machine
learning to a variety of geological settings, hosting a range of mineral commodities,
and at different stages of exploration project maturity. Three new machine learning
case studies are presented that use industry-sourced data and interpretations
developed in discussion with the industry geologist or geochemist (Figure 1.1).
Taken together, the case studies enable a more thorough appraisal of the
effectiveness of machine learning for lithology prediction and information
evaluation in the context of mineral exploration. Frequently encountered
challenges for exploration geologists such as data sparsity, data non-uniformity,
outcrop absence and sampling biases are addressed.

FIGURE 1.1: Simplified world geology map, grouped by age
of exposed crust, over seafloor bathymetry. The three studies
comprising this thesis along with work by Cracknell et al. (2014) are

shown.

The overarching research proposition under investigation is that machine learning,
the supervised RF and unsupervised clustering algorithms, if used appropriately,
can produce, or refine a lithological map in varied geological settings and for a
variety of mineral exploration contexts.

Specifically, through this research, I aim to:

1. Expand the range of demonstration studies for lithological map production or
refinement using RF classification.

2. Progress prediction evaluation and other metrics for knowledge generation. This
includes the use of quantified uncertainty and probabilistic assessment of
classification output.

3. Identify, at various stages of project maturity, where lithological mapping aided
by machine learning can add value in mineral exploration.
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In performing this research, I focus on pragmatic workflows and methodology
which are understandable and accessible to a range of geologists and geoscientists
working in exploration. This is reflected in the usage of industry standard software
packages for data handling, compilation, visualisation, and map production.
Additionally, this research, while preserving academic rigour, honours the realistic
conditions, practicalities, and outcome expectations of the mineral exploration
industry over the life cycle of an exploration project. Accurate lithological mapping
is a key component of mineral exploration and underpins all interpretation of
numerical datasets. As such, this research addresses the task of prediction of
lithology, or refinement of prior lithological mapping, in the context of the mineral
explorer looking to define geology accurately to identify target locations for further
investigation. It progresses the ability to improve prior mapping to prioritise or
minimise further “boots on ground” mapping. These objectives, specific to each
case study, will be progressed through the three core research chapters.
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1.1.2 Thesis structure

To address the aims stated above, this thesis comprises a literature review chapter
followed by three core science chapters, each of which constitutes a manuscript
published in an international peer-reviewed journal. Each of these core chapters
represents a study, or series of studies, that applies machine learning for lithological
map production or refinement in a specific context with regards to geological
setting, data availability and exploration project maturity (Figure 1.1). This thesis
concludes with a synthesis and discussion of key outcomes, with respect to the
research aims as outlined in this chapter. The contents of each of the following
chapters are as follows:

Chapter 2: Background. A review of machine learning, focusing on geological
mapping applications. The specific algorithms used in this thesis: RF, k-means and
Self-Organising Maps will be described as will the concept of information entropy,
the chosen uncertainty metric (proxy) for classification outputs in this thesis. The
second section of this chapter provides a review of the ore deposit types which
constitute exploration targets in the study areas comprising this thesis.

Chapter 3: Lithologic mapping using Random Forests applied to geophysical and
remote-sensing data: A demonstration study from the Eastern Goldfields of
Australia, published in GEOPHYSICS, 2017. This study focuses on the outcomes of
a RF classification using geophysical and remote sensing data, simulating an early
stage exploration setting. Additionally, this study investigates the relationship
between uncertainty, in the form of information entropy (Shannon, 1948) and
classification inaccuracy.

Chapter 4: Identification of intrusive lithologies in volcanic terrains using
Random Forests soft classification: a demonstration study from British
Columbia, published in GEOPHYSICS, 2020. This study investigates the
application of RF for lithological map production in a porphyry setting. This study
outlines the value of assessing RF internal probability statistics in conjunction with
the final classification result in order to detect subtle intrusive bodies: potential
hosts for mineralisation in conjunction with an early stage geological mapping and
sampling programme.

Chapter 5: Lithological mapping in the Central African Copper Belt using
Random Forests and clustering: Strategies for optimised results, published in
ORE GEOLOGY REVIEWS, 2019. This research comprises a series of studies
located in the Central African Copper Belt. These studies progressively simulate a
variety of exploration project stages, identifying how machine learning, in the form
of supervised classification or clustering, can be used to add value at each stage to
produce, improve or audit lithological mapping.

Chapter 6: Synthesis. A synthesis and discussion of the outcomes of Chapters 3, 4
and 5 presented with respect to the research aims presented in this thesis. A
summary of practical considerations for explorers using machine learning, and
strategies to handle them, as identified in the research comprising this thesis will be
provided.

Lastly, this chapter will include some discussion on the direction of future work
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integrating an increasing role for machine learning into the toolbox of mineral
explorers and geological mapping.

Chapter 7: Conclusions. A final statement of the findings of the research described
in this thesis.

As the published chapters were written to stand alone as individual scholarly works,
there is necessarily some repetition of background material throughout the thesis.
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Chapter 2

Background

This chapter presents background material, which forms the foundation for the
case studies in subsequent chapters. Firstly, a review of previous work concerning
machine learning in the geosciences is provided. This is followed by sections that
outline the algorithms used in one or more of the case studies. Secondly, the
diversity of tectonic settings for ore deposits are outlined with a view to the choice
of exploration target locations for these case studies. Finally, a short summary of
priorities for lithology mapping for mineral exploration is provided. Thus, the
context for the applied research presented in this thesis is given.

Machine learning algorithms (MLAs) provide an objective data-driven approach to
lithological mapping and minerals targeting. The research detailed in this thesis
utilises Random Forests (RF), and to a lesser extent, clustering in the form of k-
means and Self-Organising Maps (SOM). The research applies this approach to a
variety of ore deposit styles in order to predict lithology from disparate geophysical,
geochemical and remote sensing data. This will require an evaluation of type of
data, data sampling strategy and the stage of a project in which the approach will
deliver the most beneficial return. To understand the usefulness of this approach, a
background, both in the underlying techniques and the ore deposit models to which
it will be applied, is required.

In the first section of this chapter, I will define the concept of MLAs and outline the
geological problem they are being deployed to solve. RF supervised classification,
k-means and SOM unsupervised clustering algorithms are then reviewed. This
review is complemented by a summary of the implementation of these algorithms
for geological mapping applications, including the recent, seminal work in which
the combined RF/SOM approach to lithological mapping was developed. Also
summarised is the role of uncertainty in geological applications, in particular the
use of information entropy (H; Shannon, 1948).

An understanding of end-member ore deposit models to which these techniques
will be applied is critical to understanding how the outputs of MLAs can generate
meaningful geological knowledge. The general characteristics and setting of the
deposit styles under investigation: Archaean granite-greenstone orogenic Au,
porphyry (Cu-Au-Mo) and epithermal (Ag-Au) systems will be described. Key
properties of these deposit styles and how they are identified in geophysical,
geochemical and remote sensing data are examined. This will provide a framework
of observed characteristics that underpins mapping and mineral targeting through
the combined RF/SOM approach. A summary is presented, juxtaposing the
quantifiable observation criteria for the suite of each deposit style. An
understanding of these criteria will allow for the products of the combined
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RF/SOM approach to be interpreted in the context of an ore deposit environment,
turning data-driven predictions into geological knowledge and thus enhancing
opportunities for mineral discovery.

2.1 Machine Learning Methods

Machine learning describes a process whereby a computer can learn from data,
with minimal human input. In many situations this improves prediction
performance or ability to generalise to other tasks (Mitchel, 1997; Dutton & Conroy,
1996). MLAs provide a data driven, often inductive means of solving problems,
exploiting the ever-increasing performance of computers, by identifying patterns in
high-dimensional space. The concept of machine learning is not new. Alan Turing,
for example, well known in the public domain for contributions to breaking
German cyphers during the second world war, posed the question “Can Machines
think?” in a paper published in Mind 70 years ago (Turing, 1950), speculating on
many aspects of the potential of computers to imitate thought and learning
processes. The increasing performance and accessibility of computing resources
have led to the development of a multitude MLAs.

MLAs can be grouped broadly into two forms: supervised and unsupervised. An
MLA can be described as supervised if it utilises training data with known labels.
The supervised MLA learns a set of rules describing the relationship between the
training data and a priori class labels. In classification problems (including those
that form the basis of our research), a MLA is then able to predict labels for new,
previously unseen data. The general process of training a supervised classifier
(Hastie et al., 2009; Kotsiantis, 2007) is shown in Figure 2.1. Conversely, an MLA
can be described as unsupervised where prior information defining classes is not
provided. Instead, an unsupervised algorithm searches for natural groups, clusters,
patterns or responses in the data (Hastie et al., 2009; Kotsiantis, 2007).

2.1.1 Geoscience data for machine learning classification

MLAs have become an attractive option for classification (and regression) problems
in geoscience (e.g. Bierlein, 2007; Cracknell & Reading, 2014, 2015; Fraser &
Dickson, 2008; Harris & Grunsky, 2015; Yu et al., 2011). Geoscientific data are
generally not considered “Big Data” in the truest sense, not meeting the criterion
for sheer volume. For example, the first documented reference to “Big Data” (Cox
and Ellsworth, 1997) defines the term as datasets being too large to fit in memory or
even on hard disk of a system. Geoscientific data is regularly however, highly
disparate, high-dimensional and highly spatially variable. Supervised classifiers
allow geoscientists to define lithological classes, or other geological subdivisions,
while retaining the ability to objectively learn a set of rules for making that
classification, free of user bias (Kotsiantis, 2007) at this stage of analysis.

A variety of geochemical, geophysical and remote sensing data are required for
both conventional or MLA based geological prediction. These data are collected by
industry or government due to their utility in mineral exploration and used to map
and target a variety of features relating to various mineralisation styles discussed
later in this chapter. In this sense, pre-selection and acquisition of these data
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FIGURE 2.1: Generalised structure of the supervised machine
learning problem (from Kotsiantis, 2007).

propagate a degree of subjectivity/bias into what is otherwise, and throughout this
body of work, described as an objective, data driven process.

In order to produce a complete lithological map, data must be interpolated or
imputed into locations at which no direct measurement was made. Some data
types lend themselves well to such a process: ASTER (Abrams, 2000) Landsat
(National Aeronautics and Space Administration, 2006) or Shuttle radar
topography mission (SRTM; Farr et al, 2003) are collected at regular increments and
are pervasive. aeromagnetic, radiometric and electromagnetic geophysical data are
typically acquired at a rapid rate along a flight lines which are commonly separated
by tens to hundreds of meters. Methods such as bi directional splines or minimum
curvature are pervasively used to interpolate these data to a regular grid. gravity
data, being commonly equi-spaced to line separation double station separation are
also typically interpolated via minimum curvature (Briggs, 1974). It should be
understood that a degree of smoothing is inherent in all datasets prior to
interpolation due to the effects of vector quantisation when measuring a
continuous value at discrete intervals. While each sample is attributed to a pixel of
the same interval, the reading was taken at the central point and assumed to be
representative of the pixel. An increase in sample resolution results in the ability to
define higher spatial frequencies. This however is an attribute of data as collected
and delivered by industry or the government and not a parameter that can be
modified for the purposes of the study. Smoothing may be required where noise is
excessive, usually in the form of a low pass filter. There are several alternate choices
to a strict low pass filter which mitigate ringing (Gibbs phenomenon) such as
cosine roll-off, upward continuation of potential field data, Butterworth low-pass,
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or a simple convolution such as Hanning. These options are all industry standard,
viable, public domain techniques. Although somewhat subjective, this is currently
considered industry best practice. The threshold for low pass filtering is also
subjective and varies between datasets; determined by the noise apparent in the
data, the noise specified by the equipment manufacturer (often calibrated for the
particular instrument) and qualitative assessment of the solid earth of which the
data are representative. Any error produced or rather incompletely mitigated at
this stage will cascade through to classification uncertainty.

Conventionally, data representing geochemistry/litho-geochemistry have been
used to identify lithotype, alteration zones and other anomalous regions relating to
a mineralising event. While these remain powerful tools, they are limited by the
practitioners’ ability to define a series of meaningful relationships between data in
a 2D or 3D framework. Unsupervised clustering algorithms may have the potential
to aid practitioners by discovering alteration signatures or other ore deposit
characteristics in high-dimensional space. These expressions are highly variable
and difficult to define with the precision required for supervised classification or
conventional mapping techniques (Bierlein et al., 2007). Studies (as will be
discussed in the following section) that have used various machine learning
approaches consistently conclude that MLA outperform more conventional
statistical or manually weighted classification methods.

The research comprising this thesis will focus on the deployment of RF for
lithological mapping in a range of mineral exploration contexts and geological
settings. Clustering will also be investigated in some instances as an alternative to
supervised classification in map production. The following sections of this chapter
will introduce the algorithms used in this thesis: RF, k-means and SOM.

2.1.2 Random Forests

RF is an ensemble classification algorithm developed by Breiman (2001). The
classifier constructs multiple randomised decision trees or a ‘forest’. The class
assigned to a given sample or instance within the data is defined by a majority vote
cast by all the trees in the forest (Breiman, 2001). This allows for superior
classification performance when compared to decision trees and other single
classifiers, as these are more prone to bias and over-fitting (Hastie et al., 2009).

Randomness is introduced into the algorithm at two stages. Firstly, a subset
comprising a pre-defined number of input variables, selected at random from all
available input variables, is used to split instances at each node of a decision tree.
Secondly, bagging (Breiman, 1996) is used to modulate the training data available
to each decision tree in the forest. Bagging, also called bootstrap aggregation,
obtains training data for each decision tree by randomly sampling, with
replacement, a subset of the training dataset with the number of samples equal to
the training dataset. Due to the replacement of samples, some are selected in
multiple instances while others may not be sampled. Testing by Breiman (1996)
showed that an average of 6̃3% of instances are included in the training subset,
while the remaining or “out-of-bag” samples (3̃7%) are used to internally evaluate
trained classification models. Each node within the decision trees is split using a
threshold that improves the homogeneity of the child node. The Gini index, as
described by Breiman et al. (1984) is used to provide a measure of information
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purity of the child node relative to the parent node. Thus, the Gini Index defines 
the threshold that produces the maximum reduction in class heterogeneity from 
parent to child node. The process is effectivly non-linear in that variable assessed, 
and value at which it is split is considered independently of that which preceded it 
(except in partition of the total dataset that has passed through). As such, no 
assumption relating elements comprising a multi-element sample summing to 
100% is made and thus the problem of closure (Aitchison, 1982) is mitigated in the 
way RF is deployed in this work. The need to consider closure when analysing the 
statistical relationship between elements in a given sample, in machine learning 
applications is described in detail by Hood et al. (2019).

RF calculates an estimate of class membership probability (CMP) that describes the 
probability each sample belongs to candidate classes in the training data. The RF 
CMP is defined as the quotient of the frequency of votes for a class divided by the 
number of trees in the forest (Hastie, et al., 2009). This information is subsequently 
used to estimate the uncertainty associated with the classification of a given dataset 
and will be discussed further in the following section (2.1.2). Breiman (2001), 
determined that the two parameters which determined the (out-of-bag) error rate 
within a forest are: the correlations between any two trees; and the strength of the 
individual trees comprising the forest. Stronger trees, i.e. those with a lower error 
rate contribute to an overall lower error rate for the forest. In contrast, increasing 
correlation between trees increases the overall error rate of the forest. Breiman 
(2001) went on to show that reducing the number of input variables reduces both 
the strength of trees and their correlations. There is an optimal range in the number 
of variables selected for a given training dataset, balancing the two error sources 
results in a low error rate for the forest. RF is largely immune to direct over-fitting 
and multicolinearity and thus a stable minimum error can be reached even with the 
addition of a high number of variables and/or noisy data. The inclusion of such 
data can however, contribute to a reduction in the strength of individual trees and 
increase the chance of correlation between trees. Reducing the number of input 
variables also contributes to ease of interpretation and improved computational 
efficiency.

It is necessary to remove highly correlated input variables and identify a minimum 
number of relevant input variables without negatively impacting accuracy. 
Correlation between variables can be assessed via standard statistical correlation 
metrics such as Pearson’s or Spearman’s correlation coefficient and removed when 
above a defined threshold. RF provides an internal measure of variable importance 
by taking an average of the decrease in the Gini Index for all nodes in a forest split 
using that variable (Breiman 2001; Cutler et al. 2007; Cracknell et al., 2014). The 
objective is to include only as many variables as is necessary until a point of 
diminishing returns is reached and the error rate stabilises. This can be achieved 
through manual experimentation or is popularly achieved through a recursive 
variable elimination approach (e.g. Kuhn et al. 2012; Pedregosa et al., 2011).

The number of trees in a forest has an effect on overall accuracy. As with the 
number of input variables, this reaches a point of diminishing returns with regard 
to a given study and training dataset (e.g. Cracknell et al., 2014; Harris & Grunsky, 
2015; Rodriguez-Galiano et al., 2014; Waske, 2009). In all these examples, it was 
observed that a certain number of decision trees are required to reach a stable error 
minima, beyond this point, additional trees add to the computational cost of the
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algorithm without improving accuracy and are therefore superfluous.

RF has been shown to achieve similar accuracy to other classification algorithms
while having the advantage of being easier to use (e.g. Cracknell & Reading, 2013;
Hastie et al., 2009). This makes RF a good candidate for use by geoscience
practitioners as computational and mathematical literacy are not a limiting factor in
wider adoption of the method.

RF has been increasingly applied to the problem of lithological classification. Waske
et al. (2009) compared RF and another popular MLA, Support Vector Machines
(SVM; Vapnik, 1998), to standard classifiers in the context of mapping lithology
using hyperspectral imagery. They concluded that both methods achieved
significantly more accurate results than standard classifiers. While in that instance,
SVMs marginally outperformed RF, it was noted by the authors that RF remained
an attractive option due to high accuracy and relative ease of use. Cracknell &
Reading (2013) assessed RF and SVM for lithology mapping and the identification
of lithological contacts and zones of structural complexity. They discovered that RF,
in addition to an excellent overall performance, produced more usable outputs.
High uncertainty (discussed in the next section) was associated with incorrectly
classified samples, giving a robust measure of confidence in the accuracy of
classifications. Additionally, unlike SVM results, areas of high uncertainty
calculated from RF were spatially proximal to geological boundaries and zones of
high structural complexity, which in turn could be a valuable tool in targeting
exploration efforts. A further, rigorous study by Cracknell and Reading (2014)
compared RF with other MLAs as applied to a lithological mapping problem. Their
results showed that RF marginally outperformed other MLAs such as SVMs.
Despite small differences in accuracy RF was able to produce these results with
simpler input parameters, less sensitive to tuning and at less computational cost.
The authors also noted that with the use of increasingly spatially dispersed training
data, the performance gap between RF and other MLAs increased.

Cracknell and Reading (2014), deployed RF in conjunction with SOM to great effect
in Tasmania’s economically significant Mount Read Volcanics. The authors were
able to accurately map the lithology of the area using a small training dataset (less
than 2% of the instances from the available geological map) and by optimising input
variables though a variable importance ranking process. RF was also able to identify
unmapped features in the area, potentially of exploration significance. Harris &
Grunsky (2015) utilised a similar approach, deploying RF for lithological mapping
in northern Canada. They tested two training data selection scenarios: one based
on lake sediment geochemical sample locations and another based on field mapping
observation stations. Both approaches produced meaningful results, with gamma
ray spectrometry and geochemical data (abundance of 60 elements) produced the
best predictions. They conclude that RF is of value as a first pass mapping tool or
in future focusing effort into areas where there is a mismatch between predicted
geology and legacy maps.

2.1.3 k-means

k-means (Lloyd, 1957) is perhaps the simplest clustering algorithm; both
conceptually and operationally, partitioning data on the basis of similarity as
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defined by proximity to the nearest of a defined number of group means
(Macqueen, 1967). A given number (k) of centroids are seeded in the data space and
the distance between each data point and each centroid calculated. Each data point
is assigned to the group defined by the mean to which it is nearest, in doing so,
dividing the dataspace via Voronoi partitioning. Centroids are re-defined as the
mean of all data points assigned to that group. All data points which now lie closer
to an alternate centroid are re-allocated to that cluster. This process is re-iterated
until stable clusters are achieved. Where applied in this thesis, silhouette analysis
(Rousseeuw, 1987) is used to define the mathematically optimal number of clusters.
Silhouette provides a measure of the dissimilarity of points within each cluster, as
compared to dissimilarity to the nearest neighbouring cluster. Random seeding of
starting centroids can result in a large number of iterations required to reach a
satisfactory result, convergence in a local error minima or an inability to converge
at all where the number of iterations is capped. Where deployed in this thesis, the
k-means++ (Arthur & Vassilvitskii, 2007) variant of the k-means algorithm is used.
k-means++ controls seeding of starting centroids, avoiding coincident centroids or
those seeded as outliers relative to the range expressed in data. This produces
superior processing performance and accuracy.

2.1.4 Self-Organising Maps

SOM are a class of unsupervised MLA proposed and formalised by Kohonen (1998,
2002). This author defines a process by which higher dimensional observations are
mapped onto a 2D manifold or “constrained topological map” (Hastie, et al., 2009).
This process, as outlined below and described in subsequent literature, includes
applications relating to spatially distributed geoscientific datasets (e.g. Bedini, 2009;
Bierlein et al., 2008; Cracknell et al., 2014; Cracknell & Reading, 2014; Cracknell,
Reading & de Caritat, 2015; Fraser & Dickson, 2007; Klose, 2006). The following
description draws primarily from Bierlein et al. (2008) and the sources cited therein.

The initial step in SOM, requires the dimensions (rows and columns) of the desired
map to be defined and hence the total number of seed-nodes. A competitive step is
employed whereby a process of vector quantisation and subsequent measures of
vector similarity, such as Euclidean distance, are used to allocate an input sample to
the best matching seed node/vector within a given radius (Figure 2.2). The seed
node and all other nodes within a defined radius are modified to more closely
resemble a given input sample. This step is performed for each input sample.

The process is iterative, with input data shown to the seed-vectors, each time with a
decreasing radius within which seed-vectors are modified and a smaller
modification permitted. Trained seed-vectors represent the characteristics of
associated input data. In the resulting 2D map, input data are represented by the
nearest trained seed-nodes. The process of mapping from n dimensional space (n
being the number of variables comprising the input data) to 2D space preserves the
topology of the input data: samples that were close in nD space, remain close in 2D
space. This preservation of topology facilitates some ability to conceptually
perceive the structure and organisation within the nD dataset.

SOMs have been increasingly applied to a variety of geoscientific problems. For
example: Bierlein et al. (2008) used SOM to successfully define groups
corresponding to ore deposit styles within a multivariate database comprising
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FIGURE 2.2: Representation of the structure of a SOM, mapping input
variables (x1–xn) onto a 2D constrained topological map (Bierlein et

al., 2008).

information on geochemistry, ore and alteration mineralogy, and ore geometry.
These groups were linked with known deposit types and allowed the definition the
subtleties and variability associated with host rock or location within each deposit
style. These authors further examined the relationship between these groups and
structure, though various statistical analyses. Tayebi & Tangestani (2015), used
SOM to map the abundance of various alteration minerals in the Masashim volcano
in Iran, achieving an accuracy of 83% when validated. Cracknell, Reading & de
Cariat (2015) used SOM with a variety of geophysical and remote sensing datasets
to classify the regolith over the Australian continental landmass. By combining this
information with known mineral occurrences, they were able to produce
continent-scale, mineral prospectivity maps for several commodities. Cracknell,
Reading & McNeill (2014) combined SOM with RF to add value to the mapping
and classification process via the identification of sub-units within volcanic classes
predicted by RF.

2.1.5 The role of uncertainty in geological applications

Uncertainty is pervasive across geoscientific data and analysis (and indeed
scientific inquiry in general) being introduced via a wide variety of sources. As
such, a great number of anecdotal and quantitative definitions and frameworks
have been used in its description and measurement. Mann (1993), building upon
the work of Cox (1982) proposed a widely used framework defining three types of
uncertainty. Type 1 is defined by error and bias in measurement. Type 2 comprises
stochasticity and inherent randomness in a measured variable. Type 3 includes
incomplete or incorrect knowledge. Wellmann et al. (2010) further adapted these
definitions in a form well suited to a geospatial context. That being Type 1: the
degree of bias or error in measurement, Type 2: inherent stochastic and randomness
manifesting as uncertainty in interpolation (or imputation) of values between
measured data points; and Type 3: conceptual uncertainty comprising incomplete,
incorrect or imprecise understanding of the geological or structural context
represented by data. Numerous strategies exist to combat Type 1 and Type 2
uncertainty as described above. Type 1 can be mitigated through robust QAQC of
measurement apparatus and methods, measurement repetition to generate
statistically significant and verifiable results and rigour in accurately documenting
equipment error, resolution and detection limits. Type 2 uncertainty, as applied to
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2D and 3D interpolation of geoscientific data, has been widely addressed in the
field of geostatistics. Directional Analysis of semi-variance, domaining of data
where possible, and variations on Krigging are widely considered provide a
superior alternative to simple proximity weighted estimates (Chiles & Delfiner,
2012). These methods invariably produce a measure of uncertainty through
calculation of variance/co-variance during Krigging at any given point (Chiles &
Delfiner, 2012; Goovaerts, 1997). Type 3 uncertainty is difficult if not impossible to
fully mitigate as this would require a complete and correct knowledge of the
geology in question. The use of RF presents the opportunity to take a probabilistic
approach to calculation of uncertainty associated with classification prediction.
Such approach captures elements of both Type 1 and Type 2 uncertainty as they
effectively cascade through to any final predictions based upon interpolated data.
Prior research has demonstrated both qualitatively, through visualisation of results
and quantitatively that the spatial distribution of high uncertainty relates to poor
predictions (Kuhn et al., 2018) geological complexity (Kuhn et al., 2018; Cracknell &
Reading, 2014; Wellmann & Regenauer-Leib, 2012) and lithological contacts
(Cracknell & Reading, 2014). Cracknell & Reading (2014) further demonstrated the
application of statistical rigour applied to non-ensemble based algorithms,
permuting data selection, demonstrating a wide scope for use of probabilistic
approach to uncertainty in MLA classification assessment. As such, a probabilistic
method can be used to analyse Type 3 uncertainty manifesting as the validity of a
RF classification or model. As such this generalised, comprehensive approach to
describing uncertainty will be described in detail below and used throughout the
studies comprising this thesis.

2.1.6 Uncertainty from RF

RF, in addition to a class label for each instance/pixel in a dataset, produces a class
membership probability (CMP). This is in the form of a vector pc comprising
probabilities, with a length equal to the number of possible classes, which sum to 1.
These outputs can be used to calculate a meaningful measure of the uncertainty or
“fuzziness” of the classification for each point in a dataset. Two common metrics
used to quantify the uncertainty associated with this distribution of class
probabilities (Cracknell & Reading, 2013 and the sources reviewed therein;
Goodchild et al., 1994; are H and variance. These methods are equally applicable to
2D or 3D geological modelling, given it is the class probabilities attributed to a data
instance/pixel/voxel and not its geometry that are used in calculations of
uncertainty. As such, 2D and 3D examples will be discussed interchangeably. As H
has garnered attention in recent studies on the uncertainty associated with
geological models (e.g. Wellmann & Ragenauer-Lieb, 2012), this method will be
described. H was first defined by Shannon (1948) as:

H = -k ∑n
i=1 pilogpi

where p is a probability of each possible class: i, with n defining the total number of
possible classes, k is an arbitrary constant to define unit of measure if required.

The objective when using H (or any uncertainty calculation) is to provide a system
whereby a maximum value is achieved when all possible classes are equally
probable in a cell and a minimum value when a single class has a 100% probability
of being present and all other classes 0% (Figure 2.3). An important consideration
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when using H (or any such uncertainty metric) on highly dimensional datasets is
whether a normalisation factor should be applied. Cracknell and Reading (2013) for
example, calculated variance, normalised to a scale of 0-1 whereas Leung,
Goodchild & Lin (1993) also used an extra denominator, namely, a division by the
number of classes present at a given sample, to normalise their results.

FIGURE 2.3: An illustration of the behaviour of H in a simple 1 bit (2
class) scenario (from Shannon, 1948). Note that H is zero when class
1 or 0. H increases towards a maxima when both classes exhibit an

equal probability of occurrence.

Normalisation by the number of possible classes generates a consistent value,
providing a measure describing each instance in the context of whether it is
approaching its maximum or minimum uncertainty. This allows a classified dataset
to be examined qualitatively for areas of high uncertainty in a relative sense. It does
not however, accurately describe the absolute magnitude of uncertainty. Wellmann
et al. (2012), advocated for a non-normalised approach where monotonicity is
preserved, thus H is higher when a higher number of equally probable classes are
present. It should be noted that the authors do also discuss the value of a
normalised approach in some situations. A non-normalised approach, method is
better able to distinguish cells of higher absolute complexity for example, five
similarly probable classes as opposed to those where a class label was derived from,
for example, two similarly probable likely classes. In a normalised (0-1) approach,
both of these cases would approach 1. Conversely, instances with a low number of
possible classes will present with relatively low uncertainties, even if, within the
context of that instance, all classes are equally probable and therefore very difficult
to accurately label. This can be a disadvantage as cells with a higher number of
classes present may, as a function of the distribution of probabilities amongst those
classes, may have been more reliably classified but retain high entropy. This in turn
may be confused with cells with low H due to a low number of classes, albeit with a
less reliable class label. These properties are discussed in the sources cited
previously in this section and the choice of approach is largely determined by the
objectives of each study and the aspect of probability distribution of classes the
authors are trying to demonstrate. Both paradigms will be investigated further in
the current study. A normalised approach, as per Cracknell et al. (2014) could be a
better proxy of class label accuracy, while a non-normalised approach as per
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Wellmann et al. (2012) may better describe potential absolute complexity at each
point in a model. Thresholds will be explored in the context of a non-normalised
approach, eliminating classes that are possible but exhibit a negligible probability.
This provides an opportunity to extend on the previous research by providing a
better means of maintaining monotonicity while eliminating redundant, low
probability variables may inflate H relative to cells with a lower number of classes.

Irrespective of the choice of uncertainty measure, or the choice
between/combination of a normalised versus non-normalised approach, measures
of uncertainty are critical to the value of the machine learning approach to
geological classification. Uncertainty provides a means of critically evaluating
classified geological models produced by RF. Uncertainty can provide a proxy for
incorrect classification (e.g. Kuhn et al., 2018; Cracknell et al., 2014), a measure of
complexity (Wellmann et al., 2012) and as a vector to defining lithological
boundaries. The use of uncertainty measures, in particular, H, will form an
important component of the current research.

2.1.7 Combining Random Forests with clustering

Recent research (Cracknell, Reading & McNeill, 2014) demonstrated the
effectiveness of combining RF with SOM. This approach combines the advantages
of supervised classification and unsupervised clustering. RF was selected due to
the strong performance in previous research (Cracknell and Reading, 2013). This
work highlighted both the effectiveness of RF as a classification tool and the utility
of uncertainty measurements calculated from its outputs. Using RF, Cracknell et al.
(2014) were able to map a prospective volcanic hosted massive sulphide (VHMS)
terrain into 21 lithological classes with an accuracy of 78.41.8% (based on exact 95%
confidence limits). An assessment of input variables identified those datasets most
important to mapping lithologies in the study area; valuable knowledge for future
decision making in where to target often limited exploration expenditure.
Measurements of uncertainty were useful to additional critical evaluation of the
process. Areas of high uncertainty showed a strong correlation with misclassified
samples and pointed towards zones of geological contacts or structural complexity.
This ability to identify complex areas is a useful tool to guide exploration efforts in
geologically complex areas and reduce unnecessary expenditure on areas that are
easily defined through RF. SOM was subsequently deployed in order to
differentiate natural groups within the data. Via this approach, they were able to
identify a number of zones within the basaltic and andesitic units present in the
region. These clusters were shown to be indicative of possible overprinting
alteration, important to VHMS exploration and targeting. The study (Cracknell et
al., 2014) demonstrated the viability of each method as well as the value in
combining both the supervised classifier RF with the unsupervised SOM in a
VHMS setting. Following from this success, it necessary to expand the use of this
approach to other economically significant ore deposit types. The current study
will assess if this approach can be equally effective in other settings and what
modifications may be required to generate robust results.
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2.2 Ore Deposit Models

Ore deposit models describe the settings and characterisation of mineralisation. All
deposit models are defined by the common element of accumulated metals,
representing and enrichment relative to a background signal. The degree to which
individual ore systems conform to these models is highly variable. Nonetheless,
ongoing research attempts to classify and describe ore systems using idealised
models based primarily on their formation, timing, driving processes, favourable
locations, tectonic setting and diagnostic characteristics as they appear in the
modern rock record. Figure 2.4 for example, illustrates the general geological
setting for several deposit styles included in this review. These generalised models
provide a basis for mineral exploration and targeting exploration and targeting.

FIGURE 2.4: A generalised model of a porphyry system, showing the
spatial relationship between porphyry, epithermal, skarn, carbonate

replacement and sediment-hosted deposits (Sillitoe, 2010).

Section 2.2 of this review will focus primarily on those generalised characteristics,
applicable idealised deposit models. The ore deposit models selected for review are
those which fall within the scope of research comprising this thesis. While the
formation and genetic characteristics are important to an overall understanding,
this review will focus on the exploration model for each deposit style: quantifiable
properties, how these have conventionally been considered as vectors to
mineralisation and how they are predicted to manifest in the datasets used in our
research in a manner amenable to a MLA approach.
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2.2.1 Orogenic gold deposits

Orogenic gold deposits are named so due to a temporal association with the later
stages of orogenic events (Groves et al., 2000). This deposit class is also known as
lode gold, shear-hosted gold or mesothermal gold. As the name implies, this
deposit class is sought after and mined for Au. The deposit class occurs throughout
the Earth’s Archaean cratons and continuously throughout Phanerozoic
paleo-orogens (Goldfarb, Groves & Gardol, 2001). The following discussion will
focus on the characteristics of the Archaean orogenic gold setting of Australia’s
Yilgarn craton pertaining to the orogenic Au component of our current research.

The majority of orogenic gold deposits in the Yilgarn are hosted in greenstone
component of granite-greenstone terrains, named for the observed contrasting
greenschist to lower amphibolite metamorphosed corridors of volcanic/intrusive
and volcano-sedimentary rocks interspersed between granitic bodies (Goldfarb et
al., 2001). Research has shown that such gold deposits favour greenschist to
lower-amphibolite grade, Fe rich and structurally competent rock although a range
of hosts are possible (e.g. Eilu & Groves 2001; Goldfarb et al., 2001; Groves et. al,
1998; Yeates & Vandehor, 1998; and sources cited therein). This metamorphic grade
suggests that these deposits formed at depths between 10-20 km under a brittle to
brittle-ductile regime, with pressure and temperature conditions important controls
on the precipitation of gold.

Structure plays a key role in the formation of this deposit class with many examples
occurring on second or higher order structures, connected to larger basement
tapping structures. It is currently accepted that orogenic gold deposits are
syn-tectonic, in that they occur during seismic events (or accumulate during a
series of events), with structural controls on fluid flow, pressure and fluid rock
interactions critical to gold precipitation (Cox & Ruming, 2004; Micklethwaite &
Cox, 2006; Crawford, 2012). Deposits geometries are typically narrow and spatially
discrete, ranging from several metres to tens of metres in width along the
length/plane of host structures (Goldfarb et al. 2001).

Orogenic gold deposits are often surrounded by a hydrothermal alteration halo,
zoned perpendicular to the plane of the host structure. This zonation is described
by McCuaig & Kerrich (1998), as representing the progression of a metasomatic
front of a fluid moving out from the centre of a deposit, eventually reaching
equilibrium with the country rock. This alteration halo can extend for several
hundred metres. The geochemical properties of this radially zoned alteration are
shown in Figure 2.5.

It is acknowledged that direct detection of this deposit style is difficult (Yeates &
Vandehor 1998; Anand & Butt, 2010) and as such proxy criteria are required. As
structure places a key role in this style of deposit, the ability to map with sufficient
accuracy and precision both regional structures and higher order structures is
important. Doyle (1990), in a comprehensive review of geophysical exploration for
gold, lists high resolution magnetics as one a key tool for mapping to this level of
accuracy through the definition of magnetic units and subsequent mapping of
offsets. In the 21st century, the collection of high resolution magnetic data is
considered standard practice amongst gold explorers. Likewise, high resolution
gravity can also aid in mapping these structures, albeit to a lesser extent, while also
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having the ability detect low density regions concurrent with potentially favourable
source intrusions (Doyle, 1992).

FIGURE 2.5: Generalised mineral and metal zonation associated with
Archaean orogenic gold deposits (Eilu and Groves, 2001).

In addition, small-scale gravity surveys have been identified as important tools for
identifying structures favourable to orogenic gold mineralisation due to the regolith
cover in the Yilgarn. Anand & Butt (2010), published a comprehensive review and
guide to exploration through the regolith in the Yilgarn. They discuss the need to
understand the regolith as a means of exploring for gold at its base. They identify
remote sensing tools including aerial photography, satellite and airborne
multispectral imagery and radiometric surveys as a key to regolith mapping.

While it is possible for electrical and electromagnetic methods to detect orogenic
gold deposits with substantial pyrite/pyrrhotite, the sulphide bearing zone is
generally too narrow to produce an anomally when measured from surface or from
the air (Smith 2014). Whitford, Meyers & Stolz (2005) deployed sub-audio
magnetics to great effect at the St. Ives gold mine, in the Eastern Goldfields as a
means of mapping depth changes in the regolith. These changes in regolith
thickness highlighted preferential weathering along structures, however, these data
are not widely available across the Yilgarn. The ability to detect pathfinder
elements and minerals through geochemical sampling can provide important
information on relative proximity to mineralisation. This can be directly sampled
through whole rock geochemical techniques, or as suggested by Anand & Butt
(2010), mapped via their dispersion patterns in the regolith via ground sampling or
multispectral data.

As discussed earlier in this review, MLAs search for patterns in a higher
dimensional space than traditional methods. This will allow for a combination of
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the high resolution of magnetic and multispectral data for high spatial resolution
and geochemical data for accurate discrimination of lithology.

2.2.2 Porphyry deposits

Porphyry deposits are defined as large, low grade, high tonnage mineral systems,
produced by, and spatially related to porphyritic intrusions (Sillitoe, 2010). This
deposit style can be further subdivided into classes or end-members based on their
dominant economic metal content, namely Au, Cu or Mo (Sillitoe, 2010). For the
purpose of this review, the generalised model, consistent to all end members will be
discussed. The most influential model for porphyry systems, based on studies of
the Kalamazoo deposit and still widely used today, was presented by Lowell and
Guilbert (1970; Figure 2.5). Many studies have been conducted on porphyry
deposits (e.g. Cooke et al. 1998; Gustafson & Hunt, 1975; Jones, 1992; Lowell &
Guilbert, 1970; Shinohara and Hedenquist, 1997; Sillitoe, 2010). This research has
refined porphyry models. Despite many local variations “per deposit”, the
mineralisation, alteration, tectonic setting, favourable host rocks and overarching
geological, structural, chemical, and thermal mechanisms of ore formation are well
defined.

The porphyry model described by Lowell & Guilbert (1970) comprises a
porphyritic felsic to intermediate intrusion or stock, sourced from a larger, deeper
batholith displaying radially zoned hydrothermal alteration assemblages. From the
hotter, more central to cooler more distal parts of the system the alteration zonation
is defined as follows: potassic, phyllic and propylitic, with variable amounts of
advanced argillic overprinting. Mineralisation is generally associated with the
potassic and to a lesser extent, phyllic alteration phase (Figure 2.6).

FIGURE 2.6: The simple porphyry model (modified from Berger et
al., 2008 after Lowell and Guilbert, 1970). Right: Metal zonation
associated with porphyry mineralisation from proximal (bottom and

red) to distal (green; Cooke, 2014 after Jones, 1992).

Hydrothermal alteration associated with porphyry mineralisation comprises many
measureable characteristics due to variable mineralogy and hence, elemental
composition. Metal zonation from the inner to outer parts of the system provides a
useful indication of location in a system and a vector towards mineralisation
(Figure 2.5). This mineral and metal zonation can be mapped through
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multi-element geochemical sampling. In addition, it has been shown that the
enrichment or destruction of certain minerals can be expressed as geophysical
anomalism. Previous research related to the magnetic properties of porphyry
systems (e.g. Clark et al., 2004, 2014; Holden et al., 2011; Hoschke 2011) consistently
identified a zone of low magnetic susceptibility around many porphyry systems,
attributed to alteration halos favouring pyrite above magnetite. An oxidised zone,
associated with potassic alteration and containing up to 3% magnetite, has been
observed in Au-rich Porphyry systems (Hoschke, 2011). This may occur within the
broader magnetic low, creating a “bullseye” effect, when viewed in plan. This
contrast in magnetic susceptibility due to variable magnetite content manifests as
zones of anomalously high and/or low total magnetic intensity (TMI) relative to
the more homogenous background signal. Indeed, concentricity of magnetic
anomalism, regardless of outright amplitude, can be a diagnostic exploration
criterion for porphyry systems (Holden et al., 2011).

Elevated pyrite concentration (up to 10%), associated with the phyllic alteration
zone, provide another target criterion, which is detectable by electrical geophysical
methods (Hoschke, 2011). Induced polarisation can be a particularly effective
technique in detecting disseminated pyrite in this zone (Hoschke, 2011; Cooke et al.
1998). Disseminated sulphides in the ore zone, such as chalcopyrite, and pyrite, in
the phyllic zone, if sufficiently well connected, can behave as a massive body and
subsequently be detectable by electromagnetic methods. The presence of
conductive clay alteration minerals may also provide a detectable parameter by
electrical and electromagnetic means. Areas of low density associated with
granitiod batholiths to which porphyry deposits spatially adjacent to are detectable
gravity data. Radiometric surveys can be used to map elevated K where the inner
alteration zones present near enough to the surface and to map any enrichment in
radiogenic elements K, U and Th that may be associated granitic intrusions
(Hoschke, 2011; Cooke et al., 1998). Multispectral remote sensing may be useful in
mapping lithology and mineral zonation where exposed at surface. Pour & Hashim
(2011) demonstrated, through the use logical operators and shape-fitting based on
partial mixing techniques applied to the shortwave infrared (SWIR) bands of
ASTER (Abrams, 2000), the ability to map the alteration zones around porphyry
deposits.

The presence of the above listed features in available data provides the foundation
to accurate mapping and identification of porphyry systems. Correct identification
of populations in the data indicative of alteration mineralogy and metals provide a
means to identify position within a porphyry system and possibly a vector to
mineralisation.

2.2.3 Epithermal deposits

Epithermal deposits were initially defined by Lindgren (1933). More recent
classification of the deposit type, currently in use (Hedenquist et al., 2000), has
subdivided epithermal deposits into three sub-types: low, intermediate and high
sulphidation, based on sulphidation states of observable hypogene sulphide
assemblages (see Table 2.1). Epithermal deposits are both spatially and genetically
related to porphyry systems (Sillitoe 2010), as can be seen in Figure 2.4. The
primary commodities extracted from epithermal deposits are Au and Ag.
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Epithermal deposits occur in a range of terrains and rock types, although they to
share common metal content (ratios vary by subtype) and alteration mineralogy.
The distinction made by Hedenquist et al. (2000), based on observable sulphide
characteristics, was used to facilitate classification in the field. The model for all
subtypes is similar, a heat source (magma, often related to porphyry mineralisation)
mobilises hot fluids towards the surface. Decompression boiling at temperatures
between approximately 150-300oC facilitates metal precipitation as the fluid moves
through the system. Low and intermediate sulphidation deposits show evidence of
meteoric-magmatic fluid mixing at depth. In contrast, high sulphidation deposits
are believed to have formed as a result of magmatic fluids ascending and mixing
with meteoric fluids higher in the system (White & Hedenquist, 1995). Epithermal
deposits, due in part to their position at or near surface, exhibit a number of
mapable properties, although this is dependant on the erosional level per deposit
(Hedenquist, 2000).

TABLE 2.1: Generalised diagnostic features of epithermal Au-Ag
deposits (from Sillitoe & Hedenquist, 2003)

Hoschke (2011), presented geophysical data for four epithermal deposits on the
Pacific Rim as well as a review of prior research. Hoschke’s definition of the
geophysical exploration criterea was consistent with previous systematic reviews
on the deposit style (e.g. Feebrey et al. 1998; Hedenquist et al., 2000; Sillitoe &
Hedenquist, 2003). The afore mentioned study identified consistent geophysical
anomalism associated with various parts of the ore system. Electrical methods in
particular are useful for identifying components of epithermal deposits. The
presence of silica associated with mineralisation is seen as a zone of high resistivity,
while sulphides comprising mineralisation are often chargeable and observed in
induced polarisation (IP) methods (Figure 2.7A; 2.7B). Likewise the presence of a
lithocap can also manifest as a highly resistive but chargeable (if disseminated
pyrite is present) anomally. A lithocap can also present as a topographic high,
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associated with a radiometric low due to acid leaching. Hoschke noted that in
many cases there was a broad zone of magnetite destruction associated with silica
emplacement and an environment that favoures pyrite, noting however that a
subdued response from the underlying units, in the case of high sulphidation
systems, or linear anomalies confined to major structures within a broader
magnetic low, in the case of low and intermediate sulphidation systems.

FIGURE 2.7: A (top): Alteration zonation associated with a low
sulphidation epithermal system (left) and electrical properties, which
also hold true for high and int. sulphidation systems (right)
(after Hoschke, 2011). B (bottom): alteration zonation of a high

sulphidation epithermal system from Hedenquist et al. (2000).

It was noted consistantly in the epithermal review papers listed above, that the
gravity method is important in regional mapping but was innefective in
pinpointing epithermal systems. In a study of the porphyry and epithermal
systems in the Mankayan district of northern Luzon, Philippines, Chang et al.
(2011) showed that SWIR techniques could aid in lithocap mapping. They observed
a change in the alunite absorbtion peak towards higher wavelengths as sample
locations approached the centre of a system. They attribute higher Na and reduced
K in alunite to this phenomena. This suggests that SWIR can be an effective
pathfinder in epithermal mineral systems and so by extension, multispectral
imagery such as ASTER, which has 6 bands operating in the SWIR spectra may also
prove to be beneficial (Abrams, 2000). In studies of whole rock geochemistry, using
only non mineralised, alunite bearing samples, Chang et al. (2011) also observed an
increase in Sr/Pb and La/Pb ratios and a decease in Pb, Hg, Ag and Ag/Au when
moving outward from the centre of a system. While it is possible this may be
idiosyncratic to the Mankayan/Far South East system, the results are promising for
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mapping the system through a SWIR and systematic whole rock geochemical
approach. This mode of data acquisition is favoured for producing regularised
spatially contiguous input layers for inclusion in an RF/SOM style of assessment.

2.2.4 Sediment hosted copper systems of the Central African Copper Belt

Sediment hosted copper refers to a broad class of loosely stratabound (restricted to
specific layers but not restricted to following bedding) copper deposits formed
within sedimentary bedding (Cox, et al., 2007; Hayes et al., 2010). These systems
are responsible for approximately 25% of the world’s copper production, primarily
sourced from the Central African Copper Belt and the Kupferschiefer of central
Europe, while being an important source of cobalt and silver (Hitzman et al., 2010).
Common characteristics of these deposits (Figure 2.8) are: 1) Oxidised source rocks
such as red beds and basement rocks with sufficient mafic / ferromagnesian
content from which to leach copper. 2) Oxidised brines, sourced from overlying
evaporites, to scavenge copper from the source rocks and transport to 3) An
appropriate trap site. The latter requires a sedimentary layer, generally argillite or
arenite (Selley et al., 2005) with sufficient porosity and a reducing fluid to cause
precipitation of copper. Reducing fluids can take the form of a hydrocarbon or be
sources from organic rich shales and carbonaceous rocks which leads to these rocks
being generally considered prospective for sediment hosted copper.

FIGURE 2.8: Schematic representation of the sediment hosted copper
mineral system (from Hitzman et al., 2010)

These deposit types are associated with rifting (Brown, 1997), facilitating the
deposition source and host stratigraphy and evaporites to supply the brines. Large
scale basin growth structures provide a means of allowing copper enriched brines
to move to and interact with reducing fluids at the site of deposition. Prolonged
extension provides the necessary timeframe for these systems to become enriched
(Hitzman et al., 2005). At some stage, a change in the hydrodynamic regime is
required to force copper enriched fluids back up higher in the system where they
will precipitate copper at the first reducing horizon encountered. This may be
immediately above oxidised stratigraphy or via a structural path to a reduced unit
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higher in the sequence. The action of salt can also facilitate fluid movement and
interaction within the system (Hayes et al., 2010; Koziy et al., 2009). Hydrocarbons,
in addition to providing a redox trap for copper bearing fluids, can aid in creating
and maintaining porosity and permeability necessary for a deposit to form (Selley
et al., 2005).

The characteristics of sediment hosted copper systems, as described above, allow
mapping, characterisation and potentially, direct detection. This could be done
either conventionally or using a machine learning approach, taking information
from a number of geophysical, geological and geochemical properties (Table 2.2).
Mapping of lithology can be approached using including magnetic, radiometric,
gravity and electromagnetic data. These datasets can also be used to map structure
and infer stratigraphic position where petrophysically distinct marker stratigraphy
are known and present. Favourable host stratigraphy such as organic rich shales
may be directly detectable as conductors and may have a magnetic response if
sufficient pyrrhotite is present. It is possible to identify oxidised vs reduced regions
in some cases due to the suppression of magnetic character in the oxidised regions
where magnetite is oxidised to hematite. Geochemical data can be used to define
lithology and stratigraphy via a lithogeochemical approach while a mineralised
system may display anomalous Cu, Ag, Co, Pb, Zn, Mo, Re, V, Ge and U (Hayes,
2010). Accurate mapping of lithologies is key to determining stratigraphic position
and allows normalisation of geochemistry to better map oxidised and reduced
regions and the most probable location of mineralisation.

2.2.5 Overview of presented case studies

Individual studies that have investigated the use of RF are limited in number and
restricted to specific settings. Much of the research cited in this review has focused
on a particular training data scenario, either in the type of data used or variable
spatial extent and availability of selected training data, e.g. Cracknell et al. (2014)
which was specific to a VHMS setting. My research will broaden in the scope of use
of RF to a variety of settings, terrains, training data paradigms representing a
variety of exploration stages (Table 2.2). Previous research shows that there is
opportunity to explore the methods used in untested geological settings and to
undertake a more robust approach to comparing and rigorously testing training
data and variable selection strategies directly in each deposit setting. An overview
of the ore deposit styles on which my research will be focused indicates that there
are characteristic features to each deposit style, which manifest in geophysical,
geochemical and remote sensing data. Understanding these characteristics
provides the foundation for the conversion of machine learning outputs into real
geological knowledge.
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TABLE 2.2: Summary of features characteristic of deposit styles
reviewed in this chapter.
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Table 2.2 - Continued
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3.1 Abstract

The Eastern Goldfields of Western Australia is one of the world’s premier gold
producing regions, however, large areas of prospective bedrock are under cover
and lack detailed lithological mapping. Away from the near-mine environment
exploration for new gold prospects requires mapping geology using the limited
data available with robust estimates of uncertainty. In this study, we use the
machine learning algorithm, Random Forests, to classify the lithology of an
underexplored area adjacent to the historically significant Junction gold mine,
using geophysical and remote sensing data, with no geochemical sampling
available at this reconnaissance stage. Using a sparse training sample, 1.6% of the
total ground area, we produce a refined lithological map. The classification is
stable, despite including parts of the study area with later intrusions and variable
cover depth, and preserves the stratigraphic units defined in the training data. We
assess the uncertainty associated with this new Random Forests classification using
information entropy, identifying those areas of the refined map which are most
likely to be incorrectly classified. We find that information entropy, correlates well
with inaccuracy, providing a mechanism for explorers to direct future expenditure
towards areas most likely to be incorrectly mapped or geologically complex. We
conclude that the method can be an effective additional tool available to
geoscientists in a greenfields, orogenic gold setting, when confronted with limited
data. We demonstrate that the method could be used either to improve
substantially an existing map, or produce a new map, taking sparse observations as
a starting point. It can be implemented in similar situations (with limited outcrop
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information and no geochemical data) as an objective, data driven alternative to
conventional interpretation with the additional value of quantifying uncertainty.

3.2 Introduction

With increasing cost and difficulty of new discovery in areas with substantial
amounts of cover, there is a need for improved approaches to mineral exploration.
In the Eastern Goldfields of Australia, very detailed geological, geochemical and
geophysical datasets exist near mines. There is, however, a sharp transition into
adjacent greenfields areas where such data are not available and the geology is
significantly less-well constrained. Geophysical and remote sensing data are
widely available at a reasonable resolution either in the form of government or
multi-client datasets; or as a first pass acquisition performed by explorers when
new ground is acquired. Machine learning presents an attractive way forward,
facilitating the use of these data to improve a preliminary lithology map or to
produce a starting map from limited observations: in each case improving an
explorer’s ability to identify targets. Previous studies however (e.g. Cracknell et al.,
2014, Harris and Grunsky, 2015; Waske, 2009) have primarily used a richer and
more diverse set of data inputs such as geochemistry or additional spectral
information or, made use of a different algorithm, such as, for example, support
vector machines (SVM; Yu et al., 2012) or Artificial Neural Networks (Barnett and
Williams, 2009). In this study we assess the ability of the machine learning
algorithm (MLA) Random Forests (RF) to produce a geological classification using
only those geophysical and remote sensing data that would be available to an
explorer in a greenfields, early stage exploration environment.

3.2.1 Geological setting

The Heron South project area is located approximately 15 km east of the Junction
gold mine, in the St Ives Goldfield of the Yilgarn Craton, Western Australia (Figure
3.1, Figure 3.2). The St Ives camp is estimated to contain in excess of 300 t of gold,
with orogenic and (to a lesser extent) intrusion related gold deposits hosted
throughout the entire local stratigraphy, making it one of Australia’s largest gold
producing districts (Crawford, 2011). The Archean (2.7-2.6 Ma) bedrock
stratigraphy comprises a series of mafic-ultramafic volcanic and intrusive units,
volcanoclastic sediments and felsic intrusions, cross-cut by Proterozoic aged
basaltic dykes. The region has undergone pervasive, regional greenschist to lower
amphibolite metamorphism. The St Ives Goldfield is bound to the west and east by
the Merougil and Boulder-Lefroy Fault Zones respectively.

The region was subject to several distinct phases of deformation between 2675 and
2620 Ma. Until recently, the deformational framework for the region had largely
focused on compressional events (e.g. Swager, 1997, Ngyuen, 1997, Connors et al.,
2002). The more recent study by Blewett et al. (2010) includes events related to
extension, important in understanding the formation of the younger
volcano-sedimentary units of the region (Squire et al. 2010). The revised framework
proposed by Blewett et al. (2010) is as follows: D1 is characterised by ENE-WSW
extension. D2 represents a phase of ENE-WSW contraction that caused regional
NNW-trending folds and re-activation of faults produced during D1 as thrusts.
This was followed by D3, a period of extension on the same orientation. D4a was a
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FIGURE 3.1: Schematic representation of the Yilgarn Craton including
the location of major gold deposits. The approximate location of the
Heron South project is shown in red (modified after Cox and Ruming,

2003).

period of contraction that tightened existing NNW folds and was followed by D4b,
a period of sinistral transpression. During this deformation event existing
structures, such as the Boulder Lefroy Fault Zone, which passes through Heron
South, were reactivated as sinistral strike slip faults. Localised deflections,
step-overs and local higher order structures produced during D4b are associated
with the main mineralising event in the region (Blewett et al., 2010, Cox and
Ruming, 2004, Miller et al., 2010). D5 was a period of dextral transtension
producing NNE trending strike slip high angle faults. These structures may also be
associated with a gold mineralising event at various sites in the region (Blewett et
al., 2010, Ruming, 2006, Miller et al., 2010, Connors et al., 2002). D6 is not
documented in the St Ives Goldfield. D7 was a period of contraction associated
with the emplacement of dominantly ENE trending Proterozoic dykes which occur
in abundance in the study area. The Heron South project area is proximal to the
Boulder-Lefroy Fault Zone which passes through the southwest of the project on a
NNW orientation.

The geology of the study area is split by the Boulder Lefroy Fault Zone into a
western, and an eastern region. The western area forms part of the main St Ives
sequences and contains thick successions of Paringa Basalt and Black Flag Group
volcano-sedimentary sequences. The eastern area contains N-S striking, steeply
dipping packages of mafic-ultramafic and sedimentary units impinged between
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FIGURE 3.2: Schematic geology of the St. Ives gold camp with
including the location and extent of the project (red outline box)
relative to several major existing and historical gold mines (indicated
by red circles with mine name adjacent). The project outline (red
box) defines the extent of the project in all subsequent figures. Map

coordinates are projected using WGS84, UTM grid 51S (m).

larger granitoid bodies (Figure 3.2). It is anticipated that these units are correlates of
the main stratigraphic sequence mapped at St Ives; however, this has not yet been
confirmed. For the purpose of this study, these units have been defined by the
interpreted geological map of the St Ives Goldfield (Figure 3.3), as stratigraphically
distinct. Stratigraphic labels can be assigned to these units as geochemical and
geochronological information becomes available allowing these units to be
amalgamated or subdivided as required at a future date.
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FIGURE 3.3: Heron South geology map. In subsequent figures,
the lithological units will be abbreviated as follows: Volcanogenic
Sediments (VS), Tripod Hill Komatiite (THK), Paringa Basalt (PB),
Granitoid (G), High MgO Basalt (HMgOB), Basalt (B), Dolerite 1 (D1),
Dolerite 2 (D2). The map extent in this figure defines the extent of all

subsequent map figures in this article.
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3.2.2 Random Forests

RF (Breiman, 2001, p. 5-32) is a supervised ensemble classification algorithm and an
extension of the decision trees method. This classifier constructs a ‘forest’
comprising many decision trees (Figure 3.4), allowing for superior performance and
lower sensitivity to over fitting compared to single classifiers (Hastie et al., 2009, p.
587-604). Randomness is introduced at two stages during implementation of the
algorithm. Firstly, a process of bootstrap aggregation, known as bagging (Breiman,
1996 p. 123-124) is used to modulate the training data (Ta) available to each decision
tree. Bagging obtains for each tree, via random sampling with replacement, a
subset of Ta equal in size to Ta. This duplicates some samples and will not select
others. An average of 63.2 % of instances are included in each training subset,
while the remaining or “out-of-bag” samples ( 37.8%) are used for validation. The
second form of randomisation involves the selection of variables available to the
classifier to split each node. At each node, a random subset of input variables
selected from all available input variables. The number of variables in this subset is
predefined and consistent across the forest. At every node, the randomly selected
variables are then ranked by ability to produce a split threshold that maximises the
homogeneity of child nodes (Figure 3.4) relative to the parent node. The decrease in
Gini index (Equation 1), as implemented by Breiman et al. (1984) provides this
measure. The Gini index is an expression of information purity given by:

Gini(t) = ∑
j
c=1 gc(1 − gc)

where gc is an expression of the relative frequency of each class c, of a set comprising
j classes, at a given node t. gc is given by:

gc =
nc
n

where nc is the number of samples comprising class c at a given node and n is the
total number of samples comprising that node. Using this measure, the variable
which produces the greatest improvement in homogeneity in child nodes relative
to the parent node is used to split the node at the threshold which produced the
best split. This is repeated at every node until sufficient depth is reached to produce
nodes with complete homogeneity (or approached to within a defined tolerance).
The class assigned by RF to each sample is determined by a majority vote compiled
from the output of all classification trees (Breiman, 2001, p. 6).

Many studies have noted a point of diminishing returns, necessitating a forest be
grown to a certain extent where a stable error minima is approached, beyond
which, additional trees are redundant (e.g. Cracknell et al., 2014; Harris and
Grunsky, 2015; Rodriguez-Galiano, Chica-Olmo and Chica-Rivas, 2014; Waske,
2009). RF has been shown to achieve equal or better accuracy to other classification
algorithms with the advantage that parameter selection is relatively
straightforward. (e.g. Cracknell and Reading 2013; Hastie et al., 2009). process of
RF training can be performed on any PC with specifications readily commercially
available at the time of this study and does not require specialised equipment. In
this study, combined training and cross validation of a RF for any given set of
parameters required between 15 and 40 seconds on a Dell Precision T7610 with an
Intel Xeon e2630 processor and 32Gb RAM. This is ideal for uptake by geoscientists
as requirements for specialised computing skills and equipment are minimal.
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FIGURE 3.4: An example showing 3 levels of a classification tree,
showing at each node: A) the most numerous class, B) the proportion
of samples of the most numerous class, relative to all samples in
the node (shown as percentage and count of total), C) pie graph
distribution of all classes present, D) variable used to split parent
node into child nodes and E) the threshold at which that split was

executed.

RF has been increasingly applied to the problem of lithological classification. Waske
et al. (2009), compared RF and another popular MLA, Support Vector Machines
(Vapnik, 1995, 1998), in the context of mapping lithology using hyperspectral
imagery. They concluded that both RF and SVM achieved significantly more
accurate results than standard classifiers. While in that instance, SVM marginally
outperformed RF, it was noted by the authors that RF remained an attractive option
due to high accuracy and ease of use. Cracknell and Reading (2014) compared RF
with four other MLAs: SVM, Naïve Bayes, k-Nearest Neighbours and Artificial
Neural Networks; as applied in to lithological mapping. In their study, RF
marginally outperformed other MLAs. While there were only small differences in
accuracy, Cracknell and Reading (2014) demonstrated that RF was able to produce
accurate results with simpler input parameters and at less computational cost than
other algorithms evaluated. Another study by Cracknell and Reading (2013)
assessed RF and SVM for lithology mapping; and identification of lithological
contacts and zones of structural complexity. They discovered that RF, in addition to
an excellent overall performance, produced more usable outputs. Unlike for SVMs,
high uncertainty was spatially associated with incorrect classification; and proximal
to geological boundaries and zones of high structural complexity. Cracknell and
Reading (2014) noted that with increasingly spatially dispersed training data, the
comparative performance of RF improved further, widening the gap over other
MLAs.

Cracknell and Reading (2014) demonstrated that RF was able to identify and
redefine incorrectly mapped features in western Tasmania using 2 percent of the
surface area as training samples. Harris and Grunsky (2015) utilised a similar
approach, applying RF to geological mapping in northern Canada. They tested two
Ta selection scenarios: one based on lake sediment geochemical sample locations
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and another based on field mapping observations. Both approaches produced
meaningful results with the authors concluding that RF is of value as a first-pass
mapping tool or as a means of focussing effort into areas where there is a mismatch
between predicted geology and legacy maps.

3.2.3 Information entropy

There has been an increasing effort in the field of mineral exploration to quantify the
uncertainty associated with mapping and prediction. One such method, information
entropy (H) (Shannon, 1948) is defined as:

H = -k ∑n
i=1 pilogpi

pi is the class membership probability at location i, n is the number of candidate
classes, k is an arbitrary positive constant. Both k and the base of the logarithm can
be selected by the user to define scale. H has been used to great effect in a
“per-voxel” setting to demonstrate how uncertainty is distributed spatially
(Wellmann and Regenauer-Lieb, 2012). In the process of producing a final
classification, RF calculates class membership probabilities. These are defined as
the proportion of trees in a RF which voted for a given candidate class (Hastie et al.,
2009). RF class membership probabilities can be used in Equation 3 to calculate H
for each classified instance. The properties of H for a two class, binary, system are
such that a value of 0 corresponds to a 100% probability of one class occurring and
a value of 1 corresponds to an equal probability of both represented classes being
present. H in its general form preserves monotonicity such that an increase in the
number of candidate classes results in higher H. For the purpose of this study, a
normalised version of H has also been used, to account for number of candidate
classes by dividing H by the logarithm of the number of classes present, such that
H assigned to each pixel represents, on a scale of 0–1, the range of minimum to
maximum possible H for that pixel. As such, all pixels are comparable with regard
to how close they each internally approach their minimum or maximum possible
H. For example, a pixel with two possible and equally probable classes; and a pixel
with four possible and equally probable classes; shall both be described as H being
equal to 1.

3.3 Methods

3.3.1 Data

In this study 16 geophysical and remote sensing datasets were used (Figure 3.5),
and interpolated at a grid cell size appropriate (20–25%) to their respective
acquisition line spacing (Table 3.1). Landsat thematic mapper and Shuttle Radar
Topography Mission (SRTM) products (United States Geological Survey, 2003) were
procured in raster format and their original point separation specifications were
preserved (National Aeronautics and Space Administration, 2006 and United States
Geological Survey, 2003, respectively). Each dataset was re-sampled to a 30 metre
grid in order to populate a matrix where each line takes the form of: x, y, p1, p2, . . . ,
pn , where x and y are spatial coordinates and p are the various measured
properties at each pixel. At the extent of the study area, this comprised
approximately 56,000 samples. The compiled data were split into subsets
comprising training (Ta) and test (Tb) data through a process of stratified spatially
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random sampling. 100 samples were taken from each of the eight lithological
classes comprising the study area. These 800 samples comprising Ta, represent
approximately 1.6% of the total dataset (Figure 3.6). The remaining 98.4% of data,
Tb, were not shown to the classifier during the training process.

FIGURE 3.5: Examples of input data; A. Bouguer anomaly, B.
Elevation, C. Reduced to pole total magnetic intensity and D. Ternary

radiometric image.

3.3.2 Variable ranking and selection

RF facilitates several means of ranking the importance of input variables. In this
instance each variable was permuted and the effect on out-of-bag classification
accuracy was measured. Those variables which, when permuted, produced the
greatest change to classification accuracy were ranked highest (Table 3.2.). Due to
the relatively small number of datasets used in this study, none of the starting input
variables were sufficiently well correlated (as defined by a threshold at a Pearson’s
correlation coefficient = 0.85) with one another to warrant removal, due to
duplication of information, prior to ranking. To optimise both speed and
interpretability of results, redundant variables were screened at this stage. Using
Ta, variables were successively added to the classification according to their ranked
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TABLE 3.1: Geophysical and remote sensing datasets used in study,
including abbreviations and spatial resolution.

importance established in the prior step. Accuracy was assessed using a forest
comprising 500 classification trees, via 10-fold cross validation (Table 3.2). Cross
validation accuracy improved with the input of additional variables, albeit at a
diminishing rate, until a peak cross validation accuracy of 79% was achieved via
the inclusion of variables ranked one to eight (Table 3.2). Beyond this point, no
increase in cross validation accuracy was observed through inclusion of additional
variables, as such, the Landsat data, ranked 9th to 15th, were omitted. This is
logical given the sensitivity of reflectance methods to the immediate surface in an
area heavily influenced by transported cover. Easting and Northing were omitted
at this stage to avoid over fitting to classification based on position.

TABLE 3.2: Variable importance rankings as determined by RF
and cross validation accuracy (CV Acc). Cross validation accuracy
indicates the accuracy achieved when the corresponding variable is
added in addition to higher ranked variables. Abbreviations are
as per Table 3.1. Bold text indicates the first occurrence of peak
cross validation accuracy corresponding to variables selected for

classification.
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3.3.3 Classification and uncertainty

800 samples comprising 100 from each of the lithological units defined above (Figure
3.6) were used to train a RF classifier. Each sample was attributed with the 8 non-
redundant variables identified during variable ranking. We used a RF comprising
500 trees with no limits on individual tree depth or subsequent pruning. The RF
produced under these parameters required 12 seconds to train. Subsequently, the
remaining data comprising Tb, which do not have an associated class, were shown
to the trained classifier and a class prediction for each was made. Class membership
probabilities, describing the proportion of trees voting for each class, were retained
for the calculation and assessment of H.

FIGURE 3.6: Ta location coded by lithology. Note that sample point
diameter has been enlarged by a factor of 5 for legibility. Legend

abbreviations are as described in Figure 3.3.

3.4 Results

RF produced a new version of the geological map (Figure 3.7A), correctly
predicting mapped geology in 76.8% of Tb instances. The remainder of samples can
be categorised as either incorrect predictions or as showing new information not
previously mapped; or incorrectly mapped in the starting product. When plotted,
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class probabilities produced by RF (e.g. Figure 3.7B–7D), show the spatial
distribution of lithology dependent class membership probabilities. Areas where a
class has a very high probability of occupying an area with little likelihood of
another class being present such as, for example, the central zone of D2, (Figure
3.7C) are apparent. There are however, regions where multiple classes compete
such that the class that ultimately is predicted displays a marginally higher
probability than its competition (e.g. Figure 3.7B and 7D).

FIGURE 3.7: A) RF predicted Heron South geology. B) Probability
of THK class, C) Probability of D2 class and D) Probability of D1
class. All class membership probabilities are presented on the same
linear scale, shown at bottom of image. Lithology abbreviations are

described in Figure 3.3.

The confusion matrix in Table 3.3 indicates, on a per class basis, the distribution of
correct and incorrect classification percentages with respect to all other classes.
Several classes, namely the basaltic and granitic units, have been predicted with a
high degree of accuracy. One of the doleritic units (D2) is commonly classified by
RF as basalt or high MgO basalt. This suggests that either the classification was
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incorrect in this instance or alternatively, areas mapped as dolerite are in fact basalt.
There is spatial control on classification accuracy with misclassification more likely
when units with similar petrophysical properties occur adjacent to one another.
The overlapping petrophysical signals of these classes, particularly in the case of
potential field data due to smooth transitions as opposed to sharp boundaries, may
be contributing to a reduced ability to make accurate predictions. This is
particularly notable where these classes occupy the same areas of the map
suggesting both similarity of properties and spatial proximity are factors.

TABLE 3.3: Confusion matrix comparing mapped class with RF
predictions. Values are shown as a percentage of the number of
samples of a class present in the interpretation map. Red, yellow
and blue text indicates a recall greater than 50%, 70% and 80%

respectively.

The spatial distribution of H (calculated using Equation 3) shows very few
examples where a candidate class has a 0 probability of occurrence in a given pixel.
By definition this means that it must be included as a term in the calculation of H,
mitigating the ability to display the monotonic increase in H that additional
possible classes impose. As such a threshold probability of 2% was selected, below
which a class can be considered, for this purpose, to be not present in that pixel.
The calculation of H with this parameter imposed was used to produce a map of
the spatial distribution of H (Figure 3.8A). Areas in the central north and southwest
of the project display the highest H, indicating that these areas are characterised by
a high level of uncertainty across multiple classes that display a relatively high
probability of being predicted. Conversely, areas in the east and west of the project
extent that are classified as granite coincide with low H, indicating that, RF
classifications can be treated with a high degree of confidence such that no other
classes have a high probability of being present. H when normalised for number of
possible classes, represents the relative minimum to maximum possible H on a
per-pixel basis (Fig 3.8B). There is a direct relationship between normalised H and
the observed discrepancies between the interpretation map and that produced by
RF. This correlation can qualitatively observed in a visual comparison of Figures 8B
and 8D; and was confirmed quantitatively by Kuhn et al. (2016), who demonstrated
statistically distinct populations of H corresponding to correctly and incorrectly
classified sample groups. Both H and normalised H can potentially form the basis
of the assessment of the quality of RF predictions in the absence of a starting map
with which to compare.
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FIGURE 3.8: A) H (information entropy). B) H normalised per pixel
to 0-1. C) Lithology predictions made by RF. D) Accuracy relative
to starting map (white = correct, red = incorrect). E) The relative
proportion of correctly (blue) and incorrectly (orange) classified
samples (blue) at a given threshold of H. White box (8B and 8C)
indicates a westward extension of D1 predicted by RF and associated
high H increasing towards, and peaking at the geological boundary.
White-black outlined box (8B and 8C) indicates a zone of potential
geological complexity associated with high H. Figure 3.8 B C D and E

modified from Kuhn et al., 2016.
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3.5 Discussion

In the absence of the information that indicates orogenic gold mineralisation
directly, the ability to map and interpret geology accurately is a key feature in target
identification and the establishment of priority areas for exploration. We have
demonstrated in this study that RF was able to classify lithology with an accuracy
of approximately 76% relative to an existing interpreted geological map using only
2% of available data as training samples. These results are comparable to those
achieved by Cracknell, Reading and McNeill (2014) who used a similar approach,
achieving 78% accuracy, and compare favourably to similar implementations using
SVM such as Yu et al. (2012) who achieved a consistency with the geology map of
between 50.5% and 62.2% with various modal convolution filters applied. It is
important however, to note that different data and geological conditions were
encountered in each case. Nevertheless, the results of this study compare well with
similar applications in different settings.

Looking beyond bulk similarities, there is a wide range in performance with
regards to predictive power of the RF as applied to individual classes. As shown in
Table 3.3, both the VS and D1 classes produced accuracies with respect to the
starting geological map, in the order of 59% while the PB class exceeded 98%. It is
likely that this excellent result is due to the spatially discrete and small area defined
by the PB class, resulting in a very well constrained class signature. The poor
performance of the VS class is likely due to a highly variable class signature, the
result of both a wide range of sample locations and potentially, misidentification in
the original map. D1 was commonly confused with B (16.5% of instances) and
HMgOB (14.9%) which is logical, given the compositional similarity of these mafic
units. D2 however, while quite accurately captured at 81.8% was confused most
commonly with the THK class at a rate of 10.5% indicating the possibility of
unmapped ultramafic material interspersed in the region mapped as D1, or
conversely, doleritic intrusions in the THK. Alternatively, this could indicate
erroneous mapping of these units in the original geological interpretation map. The
G class was most often confused with the D2 class. This is explained by erroneous
mapping in the starting map being re-partitioned into the D2 class which RF
extends further to the west, supported by the expression of H in that region (Figure
3.8C).

In making use of spatially stratified random sampling, we have used a near ideal
spatial sample of the project area. A more spatially or numerically imbalanced Ta
would produce a less robust result. This study is, in part, an exercise in cross
validation against an existing interpretation map and as such a training subset was
taken at random. In a deployment of the method over incompletely mapped
regions, the distribution of training data would be determined entirely by the
number and positions of available geological observations, such as those obtained
from outcrop or drilling. It is important however that, even when using
geophysical data in the absence of geochemistry or mineralogical information, only
a very small percentage of a project area need be observed provided these sample
distribution criteria are met.

An important component of these results was the observation that RF was able to
preserve class labels defined from stratigraphic relationships and distinguish
between equivalent lithologies. In this case, the stratigraphic sequence is not well
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characterised and geochemical data were not available to resolve this distinction.
Geological interpretations indicate that multiple dolerites and basalts are present in
this region. The contrast between greenstone, felsic to intermediate intrusive bodies
and sedimentary packages is well expressed in the gravity and magnetic datasets
facilitating mapping using these variables via machine learning. It is, however,
difficult to distinguish between units of similar composition using these datasets
alone. Nevertheless, RF is able to capture this distinction, to the extent that it was
present in the training data, and produce a map retaining stratigraphy and not
simply amalgamating by rock type. Results produced by RF do not indicate a large
scale revision to the mapping or understanding of structure in the area. Updates to
lithological boundaries could form the basis of an adjustment to the position of
faults sub-parallel to stratigraphy and those which offset stratigraphy. Knowledge
of the position within the stratigraphic column is important in an exploration
context given that several models for the stratigraphic position of favourable host
units, relative to the timing of gold deposition, have been identified. Again, this is
contingent on the congruency of the sampled region. We suggest that when using
geophysical data, the accuracy of RF lithological predictions cannot be assumed to
apply to adjacent terrains. Potential field data in particular are influenced by effects
such as cover depth or the response of deeper sources can produce a shift in
absolute signal amplitude, not related to geology as mapped at surface. As such,
the rules defined by RF are only reliably applicable to the domain and from which
they were derived. Radiometric data are indicative of surficial features and may be
mirrored in adjacent or distant domains however it is also likely that these data
may be influenced by weathering and vegetation which differs from the study area.
In any event, it is not anticipated that radiometric data alone would be sufficient to
propagate mapping to greater distances beyond the sampled region. Our approach
is designed as a pragmatic workflow, however, further insights might be gained by
more geostatistical or computer-science oriented practitioners (e.g. Grunsky and
Kjaarsgard, 2016).

It is important to note that regardless of the physical response, elevation, depth to
source or height of sensor of a method, RF will preferentially use whichever
variables allow the algorithm to most accurately solve the given problem, in this
case, lithology. The datasets which are ranked highest, and the associated
frequency response are entirely determined by which allow RF to discriminate
between the lithologies.

The topographic (SRTM) dataset ranked highly amongst the available input data.
Given the contiguity and dominant strike of the geology relative to topography, it is
possible that topography is, in fact, serving as a proxy for lithological position in the
landscape. It is also probable that rock composition is one of the controlling factors
in preferential weathering and hence topography, although this relationship is not
always obvious in the region.

The Bouguer anomaly and reduced to pole total magnetic intensity (RTP) datasets
were both ranked as more important to the classification than their first vertical
derivatives. The most plausible interpretation of this result being that the potential
field data are more closely related to rock composition at the scale of this study. The
respective derivatives may define detailed features of the units which could reflect
structural or compositional variability. This information is of immense value in
accurately mapping and interpreting the regional and within-unit structural



3.5. Discussion 51

complexity of the area but does not necessitate a change to the lithological class at
any given location. Should the mapping area be expanded, the effects of regional
trends would become more significant with derivatives, as a form of high pass
filter, being required to mitigate the influence of these trends and thus would likely
be ranked of higher importance. It is possible that the introduction of additional,
textural data, derived from those datasets could have improved results. It is worth
noting however that of key importance is the ease of use of the method by
geoscientists and as such we consider this a good demonstration of the method
using readily available datasets, accessible to most projects without additional
prerequisite knowledge of GIS operations.

H provided an indication of those areas where an operator can be confident of
accurate mapping and those areas where they are more likely to be incorrect.
Consistent with prior research (Cracknell and Reading 2013), high uncertainty was
generally observed in proximity to lithological boundaries and areas of geological
complexity. Kuhn et al. (2016) have demonstrated statistically, through examination
of the distribution of normalised H in correctly and incorrectly classified (Figure
3.8F) samples that H provides a good, albeit imperfect proxy for inaccuracy. As
such H is a valuable tool when mapping in unknown areas and where validation
against a known result is not possible. Performing any exploration activity
requiring fiscal expenditure through a decision unknowingly underpinned by a
Type II statistical error in classification has a greater consequence than performing
additional study on an area that in fact was mapped correctly. H highlights areas
that require additional data collection, such that geoscientists can further validate
these areas to within the scope of reasonable due diligence prior to additional
expenditure. Conversely areas producing low H do not require the same level of
attention and as such, effort need not be expended here and can be diverted to
those areas of higher uncertainty. We believe that H is therefore a valuable
mechanism for quantifying uncertainty given that in addition to a normalised
product, the purest form of H preserves monotonicity and provides a measure of
the absolute uncertainty present throughout the classification.

The presence of highly magnetic Proterozoic dykes often confounds the ability to
interpret Archaean stratigraphy. A manual interpreter may opt to attempt to see
past these features in a somewhat subjective manner. It does, however, prohibit the
use of absolute levels in classification of individual datasets, such as aeromagnetic
imagery, when analysing only that property, dykes are indistinguishable from other
mafic units on a pixel by pixel basis. In this instance, our randomly selected
training data included several samples of various rock units in the locations where
they were intruded by Proterozoic dykes. As this interaction was represented in the
training data, RF was able to map consistently the underlying geological class and
was largely immune to the presence of these features. Looking at H, we can see that
uncertainty does consistently increase by up to approximately 20 percent (Figure
3.8B) in in areas where dykes intrude other lithologies, however, the correct
decision has still been obtained.

It is assumed that classifications produced by RF are deemed incorrect in the event
that they do not conform to the geological map. An interpreted geological map,
however, is a constantly evolving product. Both the accuracy and level of detail of an
interpreted geological map improves as data of higher resolution and accuracy, and
better interpretation techniques, become available. In a greenfields setting, where
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a geological map is based on limited outcrop and interpretation of potential field
datasets, it is entirely plausible that it contains errors and/or oversimplifications.

When RF produces a result which differs from the geological map training data is
sourced from, H provides a means to assert whether the RF output or the reference
information are likely to be incorrect. In this instance (Figure 3.8E), we can see that
the western boundary of the greenstone package is moved to the west relative to its
position in the interpreted map. Low H at the original boundary suggests RF
predicted with high certainty that this was in fact an area of greenstone. In
addition, H increases towards the predicted contact suggesting greater uncertainty
as the transition between rock types was approached and the potential field signals
“smear” (e.g., gravity decreasing towards the granitiod body). The relationship
observed between RF uncertainty and distance to geological boundaries is
consistent with prior observations (e.g. Cracknell et al., 2013). High H is also
observed in the southeast region of the study area. It is not possible to determine
whether the interpretation map is incorrect, however, both the RF classifications
and high H suggest that this rock unit is significantly more complex than shown.
This is a clear example of the benefit of the analysis of RF classification in
conjunction with uncertainty and may serve to optimise ongoing field efforts, either
outcrop mapping or drilling as appropriate.

3.6 Conclusions

This study demonstrates that Random Forests (RF) may be applied to
reconnaissance type geophysical data, in the absence of geochemistry, and produce
sound lithological predictions. There are two obvious applications for the use of RF
for early stage geological mapping. The first is for the refinement of an existing
geological map. The second being the production of a geological map from a
limited number of observations in the creation of a first pass map. Sparse outcrop
or a broad drilling campaign could provide such starting observations, provided
the spatial distribution of observations adequately samples the project area.

In this demonstration study, RF was able to preserve class labels i.e. stratigraphic
context where more than one class comprised the same lithology. This is an
important outcome as the timing relationships between mineralisation and various
stratigraphy are vital information for mineral prospecting. Proterozoic dykes,
which are petrophysically indistinguishable from Archean mafic rocks in the study
area, confusing aeromagnetic interpretation. RF by utilising a higher dimensional
data space can deal with this complication, provided examples of the dykes
overprinting the older stratigraphy are sampled in the training data.

H provides a valuable insight into classification results. The highest H denotes
areas of geological/geometric complexity and proximity to lithological boundaries.
Where a predicted lithological boundary significantly differs from the reference
map, the behaviour of H proximal to interpreted and predicted boundaries
indicates which position is most probable. Statistically distinct populations in H
correlate with correctly and incorrectly classified samples. Through understanding
H, an optimal trade-off, retaining the greatest number of correct samples whilst
discarding incorrect samples can be identified. Understanding the distribution of H
for correct and incorrect sample populations allows a user to define an acceptable



3.7. Acknowledgements 53

trade-off between discarding the maximal number of incorrectly classified samples
or retaining a more complete, albeit potentially less accurate map. This will reflect
the tolerance for risk of each individual explorer/company. The combination of RF
classification and uncertainty appraisal allows explorers to critique quantitatively,
the validity of map outputs: a quality control measure not available in conventional
mapping.
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4.1 Abstract

Identifying the location of intrusions is a key component in exploration for
porphyry Cu Mo Au deposits. In typical porphyry terrains, in absence of outcrop,
intrusions can be difficult to discriminate from the compositionally similar volcanic
and volcanoclastic sedimentary rocks in which they are emplaced. The ability to
produce lithological maps at an early exploration stage can significantly reduce
costs by assisting in planning and prioritisation of detailed mapping and sampling.
Additionally, a data-driven strategy provides opportunity for the discovery of
intrusions not identified during conventional mapping and interpretation. We used
Random Forests, a supervised machine learning algorithm, to classify rock types
throughout the Kliyul porphyry prospect in British Columbia, Canada. Rock types
determined at geochemical sampling sites, were used as training data. Airborne
magnetic and radiometric data, geochemistry and topographic data were used in
classification.

Results were validated using First Quantum Minerals’ geological map, which
includes additional detail from targeted location and transect mapping. The
petrophysical and compositional similarity of rock types resulted in a noisy
classification. Intrusions, particularly the more discrete, were inconsistently
predicted, likely due to their limited extent relative to data sampling intervals.
Closer examination of class membership probabilities identified locations where
the probability of an intrusion being present was elevated significantly above
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background. Indeed, a large proportion of mapped intrusions correspond to areas
of elevated probability and importantly, areas were highlighted as potential
intrusions which were not identified in geological mapping. The Random Forests
Classification produced a reasonable lithological map, if lacking in resolution, but
more significantly, great benefit comes from the insights drawn from the Random
Forests class membership probabilities. Mapping the spatial distribution of
elevated intrusion class membership probability, a soft classifier approach,
produced a map product which can target intrusions and prioritise detailed
mapping for mineral exploration.

4.2 Introduction

4.2.1 Regional geology

Northern British Columbia, Canada, dominantly consists of a series of intra-oceanic
island arc terrains that were accreted onto ancestral North America in the Mesozoic
(e.g., Bond and Kominz, 1984; Gabrielse et al., 1991; Monger and Price, 2002;
Nelson and Colpron, 2007; Johnston, 2008). The Kliyul Cu - Au prospect is located
in the northern end of one such terrain, known as Quesnellia (Figure 4.1).
Quesnellia consists of high-potassium calc-alkaline to shoshonitic submarine
volcanics and sediments known as the Takla Group (Lord, 1948; Monger, 1977). The
Hazelton Group andesitic volcanics, which are abundant at the Kemess porphyry
Cu - Au deposit north of Kliyul (Gordee et al., 2004; Rebagliati et al., 1995)
unconformably overly the Talka group. The Hogen Batholith is located to the south
of Kliyul, and is a large, fertile, late Triassic to Early Cretaceous igneous body that
hosts other porphyry deposits such as the Lorraine (Woodsworth, 1976; Nelson and
Bellefontaine, 1996).

4.2.2 Local geology

A new geological map of the Kliyul property (Figure 4.2) was created following a
350 m gridded rock sample campaign of the entire property, combined with targeted
1:10,000 scale mapping during August 2017 by First Quantum Minerals and AuRico
Metals personnel. This map, showing features as described below, will constitute the
reference geology map with which Random Forests (RF) outputs will be compared.
The Kilyul property consists of volcano-sedimentary strata, a series of discrete to
large intrusive bodies and several prominent faults (Table 4.1; Figure 4.2).
Quaternary glacial-fluvial cover fills the low-lying valleys. Volcano-sedimentary
strata at Kliyul consist of two units of the Takla Group volcanics, Goldway Peak
(GP) and Kliyul Creek (KC) Groups.

These are equivalent to the same named units in the British Columbia Geological
Survey government map of the area (Schiarizza, 2004a, b; Schiarizza and Tan, 2005).
The oldest unit is KC which consists of four sub-units: intermediate to mafic
volcanics and volcanoclastics (KCv); carbonate-rich sediments and volcanics (KCc);
felsic volcanics and volcanoclastics interlayered with carbonate-rich sediments
(KCfc); and siliceous sediments (KCs). Strata have dominantly low-angle north-east
dips.Overlying KC and all its sub-units are the GP volcanics. GP consists of more
mafic to intermediate augite-phyric volcanic flows and breccias. A series of
calc-alkaline, fine-to-coarse grained intrusions with variable pre-, syn-to-post
mineralization and alteration relationships cross-cut the KC and GP
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FIGURE 4.1: regional geology of British Columbia, Canada (modified
from Nelson and Colpron, 2011). the location of the Kliyul porphyry

Cu – Au prospect is within the yellow marker.
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FIGURE 4.2: Geology map of the Kliyul project, draped on
topography (SRTM, shown with 20m contour). Lithology codes are

detailed in Table 4.1.

volcano-sedimentary strata (Figure 4.2). Age dating is poorly constrained, but
historic and recent efforts estimate a Late Triassic to Early Jurassic timing ( 217 Ma).
Three apparently long-lived structures influence the map patterns at Kliyul: (1) the
north-northwest striking Kliyul Creek Fault with an apparent dextral sense of shear
with both sinistral and dextral fault splays; (2) the east-northeast-striking Valley
Fault with poorly constrained, but apparent normal, north-block-down kinematics,
and; (3) the north-striking dextral Dortatell fault which had a strong asymmetrical
influence of rock types to the west versus east of the fault, with a mylonitic-like
shearing of the rocks in the southwest.

4.2.3 Random Forests

We use Random Forests (RF; Breiman, 2001), a supervised machine learning
algorithm, to classify each pixel in the study area according to lithology. A number
of algorithms have been tested and applied to geological mapping enterprises.
Examples include variants of artificial neural networks (e.g. Barnett and Williams,
2009; Cracknell et al. 2014; Grunsky and Kjarsgaard, 2016), support vector
machines (Yu et al., 2012; Cracknell et al., 2014) and Random Forests (Cracknell and
Reading, 2013; 2014; Cracknell et al., 2014; Rodriguez-Galiano et al., 2014; Harris
and Grunsky, 2015; Kuhn et al., 2016; 2018). While all of these choices have been
successfully deployed in various scenarios, RF has been consistently identified as a
good choice of classifier on grounds of both performance, ease of use (both in terms
of few and simple tuning parameters and insensitivity to variable scaling) and



4.2. Introduction 61

TABLE 4.1: Simplified stratigraphy of the Kliyul project. Lithology
and colour codes shown in this table will be used for all figures in

this study.

ability to handle data with high intra-class variability and high interclass
similarities (Cracknell and Reading, 2013; Breiman, 2001) by multiple studies.
These include using RF alone (e.g. Cracknell et al., 2014; Kuhn et al., 2016, 2018) or
in comparison with other algorithms (Cracknell and Reading, 2014; Waske et al,
2009). The accessibility of RF makes the methods described in this study widely
applicable in the geoscientific disciplines, minimising the barrier to entry imposed
by requirements for specialised computing skills and equipment.

RF extends upon the classification and regression tree (CART) methodology
(Breiman et al., 1984), addressing the high variance (Friedman, 1997) that can be
associated with single decision trees (Murphy, 1998) by constructing an ensemble or
forest of pseudo-unique decision trees (Figure 4.3). The performance of a RF is
controlled by the strength of individual trees in the forest and the correlation
between trees, with a forest of strong, de-correlated trees being the ideal case
(Breiman, 2001; Hastie et al., 2009).

To minimise correlation between trees, randomness is introduced into the selection
of subsets shown to each tree and in the selection of variables used to split decision
nodes. Bagging (Breiman, 1996) is used to produce a random subset of input
training data, of equal size to the training set provided to each classification tree.
This has been shown, on average, to include approximately 63.7% of unique
instances from the training set, with the remainder, ‘out of bag’ instances, held
aside for testing (Breiman, 2001). During learning, a randomly selected pool of
variables of pre-determined size is provided to each decision node. From this pool,
the variable which produces the maximal improvement in homogeneity of the child
nodes relative to the parent node, as measured by Gini impurity (Breiman et al.,
1984 and described by Kuhn et al., 2018), is used to split that node (Figure 4.4.3).
This split is performed at all nodes in each classification tree and subsequently, all
trees in the Random Forest. Final classifications are assigned as the mode of the
forest (or mean the regression case).
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FIGURE 4.3: Schematic representation of a small end segment of one
of the 500 classification trees comprising the RF trained in this study.
Each node shows, from top to bottom: the modal class, the number of
samples comprising the modal class, the variable used to subdivide
the node and the value at which that subdivision occurred. Nodes
are coloured by lithology (as given in Figure 4.2 and Table 4.1) when

homogeneity is reached.

4.2.4 Class membership probabilities and uncertainty

RF acts as a soft classifier: the final decision is determined as the majority vote of
many competing solutions. The decision of individual trees and the proportion
trees voting for each class: class membership probabilities (Breiman, 2001; Hastie et
al., 2009), are recorded. Class membership probabilities, in addition to being
fundamental to the operation of RF, represent valuable metadata in assessing the
strength and distribution of classification results. A class may reach majority by a
narrow margin, highlighting the importance assessing class membership
probabilities. It is possible that a class other than the majority solution, could have
exhibited a near equal probability. The spread of class membership probabilities
can be made use of to quantify uncertainty. In this study, we calculate information
entropy (H; Shannon, 1948), as defined by:

H = -k ∑n
i=1 pilogpi

where pi is the class membership probability at location i, n is the number of
candidate classes, k is a positive constant. Both k and the logarithm base are
arbitrary scaling constants. H is a measure of disorder in a system with minimal H
corresponding to complete homogeneity and maximal H corresponding to a
heterogeneous spread with each class equally represented. H is monotonic,
increasing with the number candidate classes added. It has been demonstrated that
H is a useful metric in assessing the spatial distribution of uncertainty in
lithological classification made using RF (Kuhn, et al., 2016) in addition to prior
usage in displaying the per-voxel uncertainty associated with 3D potential field
inverse models (Wellmann and Regenauer-Lieb, 2012). Kuhn et al (2016) used a
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normalised form of H (Hnorm), accounting for the number of classes possible for a
given sample, representing how closely each sample approaches their own
respective minimal or maximal state of disorder. As such, a sample in which all
classes are equally probable, will have an Hnorm equal to 1, regardless of how many
classes were present. Using these metrics, we can describe both the complexity of a
system (H) and make an inference about the possible accuracy of the classification
(Hnorm), as demonstrated by Kuhn et al. (2016). Assessment of classification
validity is made with reference to the First Quantum Minerals 1:10000 scale
geological map (henceforth referred to as FQM geological map) until further
ground truthing can occur. What is, in effect, being measured is the consistency
between maps. In such a case, either the RF classification or the FQM geological
map (or both) could be in error. Cracknell and Reading (2014) and Kuhn et al.
(2016) provide examples of how the behaviour of H and Hnorm may aid in such an
assessment.

4.2.5 Objectives

In this study we explore a pragmatic approach for a relatively data-limited
situation. We train a RF classifier using soil sample points defined by geochemical
and geophysical data. This RF is subsequently used to classify all remaining
samples in the Kliyul project area. The soft classification metric, class membership
probability, and the more usual classification results are used to predict lithology
and identify intrusions in the project area. H is used to define, uncertainty and
complexity associated with classification objectively. We employ the FQM
geological map, which benefits from rock and soil sampling, in addition to detailed
location and transect mapping, as a benchmark with which to compare
classification results.

4.3 Methods

4.3.1 Data and sampling

This study incorporates all available geochemical and geophysical datasets that
encompass the project in addition to shuttle radar topography mission (SRTM)
elevation data. Geochemical data includes a suite of 49 measured elements (ICP21
+ MS61 + XRF5000) for rock and soil samples collected at a 350 m x 350 m spacing
over the project. These have been pre-processed such that all data exhibiting a
measurement below detection limit were assigned a value of half of the detection
limit for that element. Datasets comprising an excessive number of samples below
detection limit (in excess of 25 percent or where spatial distribution resulted in
large areas with insufficient real data) were omitted.

Geophysical data (Supplement 1) comprised reduced to pole (RTP) total magnetic
intensity data and derived datasets (vertical and horizontal derivatives, tilt
derivative, total horizontal derivative, analytic signal and analytic signal of the
vertical integral), and airborne radiometric data (Potassium, Thorium, Uranium
and total count), each collected at a 100m line spacing and gridded at 25m.
IP/resistivity and electromagnetic data have been collected in this area however
their extent was limited, lacking coverage over the entirety of the study area and
thus they were not included in this exercise (the present study could be used to
target future surveys of this kind with considerable cost savings).
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All datasets were resampled to a 50 m x 50 m grid and compiled as a matrix in the
form of easting, northing, V1, V2, . . . , Vn (where V is a given variable/dataset). In
order to preserve conditional independence, where pairs of variables correlated in
excess of 0.8 (Pearson’s correlation coefficient), one of the pair was removed. Where
a variable was a dataset exhibiting any indication of poor quality, e.g. excessive
missing data or readings below detection limit, that dataset was omitted. Where
multiple correlations where present, datasets were removed in such a way as to
maximally reduce the dimensionality of the dataset. If neither of these criteria were
encountered, but only where a correlation in excess of 0.8 was shown, datasets were
removed based on subjective geological utility. The datasets analysed as important
for best possible results (as described in the following section) are shown in Table
4.2.

TABLE 4.2: Datasets used in this study, ranked in order of importance
(as indicated by rank and corresponding score) by Random Forests.
10-fold Accuracy (scaled from 0 to 1) describes the 10 fold cross
validation accuracy achieved by Random Forests when including a
given variable in addition to all those ranked higher. For example,
when using an RF trained using variables 1 to 10, as was used in this

study, a 10 fold cross validation accuracy of 0.835 is achieved.

Pixels comprising samples, for which a lithology had been assigned (Table 4.1) were
taken as training data. The remaining data were held for classification by the trained
RF. RF is prone to bias in favour of a numerically dominant class (Hastie et al, 2009).
In order to mitigate this tendency, classes were balanced to 50 samples per class;
through either bootstrapping (where less than 50 samples were available) or random
decimation (where more than 50 samples were available.

The composition of intrusions is highly variable and comprise both felsic,
intermediate and mafic units. Due however to the impractically small number of
samples for each, this class was combined. We confirm that the training data
adequately samples the intrusion class and that training data samples and intrusion
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types are co-located. Data partitioning considerations in the spatial context, in a
general sense applicable to machine learning, are outlined by Vucetic et al. (1999).

The main objective of this study is to determine if RF can identify intrusions from
data typical of early-stage exploration, despite the heterogeneous class definition
(and also noting that we aim to identify an indicator lithology at this early stage,
not the ore deposit itself). It is understood that better, and worse, results could be
obtained through other means of retaining or adding synthetic samples to achieve a
balanced class size. For the purpose of the present study, this process was restricted
to the balancing described above, similar to the method used by Kuhn et al. (2019)
using only observed data values as opposed to imputing from an estimation of a
datasets probability density function or other common methods. In this study, at
an early stage in the exploration cycle, the notable limiting factor is the resolution
of the input data, however, it would be expected that results would improve were
additional training data available (Cracknell et al., 2013). Samples comprising the
training set are shown in Figure 4.4.

4.3.2 Variable ranking, reduction, and definition of Random Forest
classifier

Following the balanced sampling process, RF is used to rank the importance of
variables according to the mechanism described by Breiman (2001). Under this
strategy, each variable is permuted and shown to the RF (Demsar et al., 2013). That
variable which produces the largest difference in classification accuracy is most
important and the variable which, when permuted, produces the smallest
difference is least so. In this study, we seek to produce a classifier which benefits
from the additional dimensionality permitted by a machine learner as compared to
more conventional methods (for example, successive comparison of scatter plots or
a manually weighted GIS analyses) while producing a result that maximises
interpretability by the end user. As such, we seek to reduce the number of input
variables to the minimum required to produce the best result. This is possible as RF
tends to produce peak accuracy with the inclusion of a given number of variables,
after which, results remain stable or may even marginally deteriorate; additional
variables at this point are redundant. Prior studies deploying RF in a similar
fashion for lithology classification (e.g. Kuhn et al, 2019, Kuhn et al., 2018; Kuhn et
al. 2016; Cracknell et al., 2014) have shown a tendency for this to occur at between 8
and 15 variables though this may change as additional studies are performed.

For this study, we used a RF comprising 500 classification trees with no pruning or
growth restrictions (see also Supplement 2 for other implementation parameters).
RF is not prone to overfitting with additional trees, instead reaching a stable error
minima (Breiman, 2001). This number of trees is well above what is likely required
and represents a safe choice for geoscientists looking to replicate the methodology
of this case study without any risk of using insufficient trees. These parameters
were duplicated during ranking. All variables were ranked via the process
described prior. These variables were then successively used to build a classifier
which was in turn assessed for accuracy. We used 10-fold cross validation (James et
al., 2013) in conjunction with a backwards recursive process to determine the
cross-validation accuracy of the RF, drop off the lowest ranked variable and re-rank
variables. This procedure was repeated for all variables. Best results of 83.5% cross
validation accuracy were achieved with the inclusion of the best ranked 15
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FIGURE 4.4: Training sample locations coloured by lithology
underlain by the SRTM DTM (shown with a 50m contour). Lithology

class names are given in Table 4.1.

variables (Table 4.2). Examples of top ranked geophysical and geochemical datasets
are shown in Figure 4.5.

Using a confusion matrix (Table 4.3; a comparison of actual class labels with
predicted class labels for each training data point is made, in this case during 10
fold cross validation), we can see that several classes were consistently classified
correctly. The KCv class performed the most poorly, being commonly misclassified
as intrusive or GPa. Intrusions were most often misclassified as KCv. The RF used
to produce this result was selected as the final classifier for use on all remaining
data. While the relationships shown in this confusion matrix (based on cross
validation results) do not necessarily translate to classification on blind data, this
does give some indication of the potential strengths and weaknesses of the selected
classifier.

4.4 Results

The results of the RF classification show 73% overall consistency (Figure 4.6A) with
the FQM geological map (Figure 4.2). Results were more consistent with the FQM
geological map where a lithology was present in larger domains, whereas results
appear less robust for narrower zones of a given class, such as where lithologies
appear to wrap around the topography due to low angle bedding dips. This is in
part a function of the resolution of the geochemical input data and is discussed in
the next section. H identifies many of the class boundaries in the project area while
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FIGURE 4.5: Example of datasets used in this study: A) K
(radiometric, % K), B) Fe (% Fe in sample), C) Reduced to pole total

magnetic intensity.
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TABLE 4.3: Confusion matrix showing the performance of the
Random Forest classifier used in study on the provided training
data. This is useful in assessing classifier performance and
drawing inference about class similarity/dissimilarity and where
misclassification is likely to occur but is not a measure of performance

on new data.

normalised information entropy (Hnorm) shows a high per-pixel uncertainty
throughout the project area (Figure 4.6B, 4.6C). Both variants highlight some areas
for which RF classified with low uncertainty, including, for example, the large
intrusion in the north of the project. Class membership probabilities provide a more
detailed description of the information summarised in the calculation of H and
Hnorm. It can be seen (Figure 4.7) that there are clear domains classified as Intrusive
in the north, GPa in the east, SIVC in the west and KCv through the centre of the
project. It can be seen, however, that as demonstrated by Hnorm (Figure 4.6),
multiple classes were similarly probable particularly in the centre of the project
area. It is worth noting that many discrete zones of elevated probability of Intrusive
class, the target of economic significance, are identified. In many of such cases,
these areas were not classified in the final RF lithology map as intrusive. The value
of using the soft classifier, elevated class membership probability, is clear from this
analysis.

4.5 Discussion

Many of the broader domains in the RF lithology map resulting from the RF
classification are consistent with the FQM geological map. The most notable
shortcomings in the RF lithology map are due to a lack of resolution in regions
where the mapped lithotypes have more detail than the geochemical sample
spacing which is reflected in the pixel size used in this study. Large intrusions were
identified in final classification, therefore many of the subtler intrusive features
were either not identified or mapped without adequate resolution to be of
substantial use in targeting or follow up work. There are several likely causes for
this, foremost of which is the resolution of input data, a result of the sampling
interval of each dataset and the effects of interpolation of those data.

The limitations of gridding geochemical data are well understood as a potential
source of error in the result. If attempting to predict the nature of a region not
represented by a sample, a value must be imputed or interpolated. Interpolation of
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FIGURE 4.6: A) RF classification, shown smoothed by a modal
convolution filter (3x3 kernel), B) information entropy (H), C)
information entropy normalised by number of classes per-pixel

(Hnorm).
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FIGURE 4.7: The relative proportion of trees in the Random Forest
voting for each class (class membership probabilities). Examples

shown for: A) Intrusions, B) GPa, C) KCv and D) SIVC.

geochemical data is a technique used pervasively throughout the mineral
exploration industry. As such, this study provides a faithful indication of
performance on the data likely to encountered in a typical industry case example.
More conventional means of interpreting magnetic data (e.g. Isles and Rankin,
2013; Salem et al., 2008) could potentially be used to further improve RF
interpretation. While in this case all magnetic derivatives were discarded due to
poor ranking on ability to define lithology, these could be used to better define
structure and boundaries throughout the project area. It is entirely plausible that
the use of more sophisticated imputation strategies, in place of simple
bootstrapping could improve training class definition and thus results, particularly
where available real samples facilitate the accurate prediction of a given classes’
true distribution. This principle extends to several aspects of the study
methodology. This study was intentionally designed to demonstrate a rapid,
effective approach easily adopted by the wider geoscientific community, and
produced good results. It is possible that further tuning of RF parameters, or more
advanced feature ranking and selection (e.g. Lundberg and Lee, 2017) might be
useful for studies in a more data-rich context.

The use of an ensemble of unique classifiers (classification trees) is the key feature
of RF. Not only does this have the important benefits of improved accuracy and the
ability to respond well in dealing with high intraclass variability and interclass
similarity; but this also facilitates a detailed analysis of classification results.
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Plotting individual class membership probabilities indicates where each class was
most likely to occur (Figure 4.7), and in this study is an approach that leads to
valuable insight for the exploration program going forward. H responds both to
uncertainty and complexity: the distribution of probabilities and the number of
classes possible at a given sample. In this case, observing H (Figure 4.6B) highlights
boundaries between classes and other regions of more complex geology. This
coincides with similar observations of the behaviour of H (e.g. Kuhn et al., 2016,
2019). Hnorm (Figure 4.6C), a measure of how closely each instance approaches its
own maximal uncertainty, is high throughout much of the study area. This suggests
that there is a high likelihood of the classification being incorrect (e.g. Kuhn et al.,
2016, 2018).

Given the stated goal of identifying and defining intrusions, potentially of
economic significance to the project, we focused on the class membership
probability (CMP) of this unit (Figure 4.7). Even where this is not the majority class
and therefore not the result of final RF classification, an elevated CMP can be seen
(Figure 4.8). Contouring Intrusion class membership probabilities at multiple levels
from above background level (CMP of 0.125, a random response) to several times
background level facilitates a trade-off between correctness and completeness.
Many areas exhibit a sharp transition between background levels and an intrusion
CMP of 3 times higher than background level (Figure 4.8). Furthermore, the
location, form and trend of these zones of elevated CMP better defines the Intrusive
lithologies than the final RF classification.

When compared to the FQM geology map, we can see that most intrusions have
been captured (Figure 4.8, Figure 4.9), while the false positive rate is low. This
result was achieved in areas where no sample of the intrusive class was used in
training data, indicating that this method may be viable when using sparse and/or
incomplete training data. In this case, intrusions were predicted where no detailed
mapping has taken place and their presence in the broader volcano-sedimentary
packages is likely. This includes the prediction of discrete but substantial intrusive
bodies under regions mapped as glacial till at surface (Figure 4.2, Figure 4.8).
Neither mapped nor predicted intrusions show a consistent response to single
observables, geochemical or geophysical (Figure 4.9A, 9B), although a small
number of units, SIVC for example, can be separated on the basis of magnetic
character while a small number of other units are discernible in radiometric data.
This highlights the benefit of a machine learning / data fusion approach, making
use of many types of data (Figure 4.9C).

The situation where elevated CMPs do not ‘win’ the final classification is partly due
to the overlapping response across class boundaries in training data and extensive
adjacent zones. Further contributing factors are the overly smooth response of
interpolated data, the sampling interval of geochemical data relative to the width of
intrusions and the inherent resolution of the methods themselves, both as a
function of the physical and chemical expression of the rocks and the element
distribution in eroded and often transported soils. Taking note of CMPs is
important as it demonstrates that while the expression of subtle intrusions may not
result in a majority decision in the RF classification, they can be detected as a
subtler expression in the CMP, i.e. soft classification, metrics produced during the
RF classification. As such, we assert the importance of using CMPs in any similar
scenario where the goal is the identification of an important rock unit (or any key,
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FIGURE 4.8: Intrusion class membership probability. Contours are
shown over greyscale image to provide a quantitative level to aid
interpretation. The locations of training samples assigned to the
Intrusion class, used in classifier training are shown as yellow circles.

indicative feature) as opposed to the overall accuracy of a RF lithology map. These
products can be used in conjunction with, or to further guide the deployment of
more expensive and labour-intensive mapping, geophysical and geochemical
acquisition campaigns.

4.6 Conclusions

Locating intrusions is a key component of exploration for porphyry style Cu Au
Mo deposits. In porphyry hosting terrains, such as British Columbia, Canada, where
this study is located, lithologies are difficult to discriminate due to similarities in the
numerous generations of volcanic, volcanoclastic and intrusive units present, often
with similar provenance.

In this study we used systematic rock and soil sampling points as training data
points. Additional detailed geological mapping produced a new, FQM geology
map, against which the results of our RF classification could be compared. The
similarity between many of the lithological classes present resulted in competing
class probabilities and an erratic classification. Intrusions, particularly those of a
more discrete nature, were inconsistently predicted. This was due to their limited
extent, relative to the resolution of the underlying data samples, causing their
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FIGURE 4.9: A and B: Intrusive class membership probability of 0.25
shown over Ca (% Calcium in sample) and RTP respectively. Pink
and red polygons are examples of regions of probable intrusions
that correspond with Calcium, clearly indicating that classification of
intrusions required data other than RTP (and derivatives) C: Region
of the project area mapped as intrusions during detailed geological
mapping. Mapped intrusions are coloured blue where the Random
Forest classification showed an elevated intrusive class membership
probability. and pale red where Random Forests did not predict the

presence of a mapped intrusion.
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expression to be obscured by the spatially larger classes in which they are
emplaced. Closer examination of class membership probabilities indicates that
there were many locations where the probability of an intrusion being present was
significantly elevated above background. Indeed, a large proportion of mapped
intrusions were captured by areas of elevated of intrusion class membership
probability. Additionally, areas were identified showing an elevated probability of
membership to the intrusion class that were not yet mapped in the FQM geology
map.

For the task of identification and location of intrusions, Intrusion class membership
probability, i.e. not the overall RF lithology map, is the more useful product. Use of
this soft classifier has the potential to yield valuable insight, especially at the early
stages of exploration. We anticipate that this understanding will find use as a rapid,
near real time, tool by exploration teams wishing to predict intrusion locations in
order to target and prioritise field activities. More generally, we encourage the use
of Random Forest class membership probabilities to gain insight into the occurrence
of the classes of greater significance in any data-driven research challenge.
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5.1 Abstract

The Trident project is located in the Domes region of the Central African Copper
Belt and hosts a number of mineralised systems including the Sentinel (Ni) and
Enterprise (Cu) deposits. The project has received extensive systematic
geochemical soil sampling in addition to high resolution airborne geophysical
coverage. This data-rich environment enables experimentation with machine
learning strategies which aim to produce or refine geological maps from limited
direct observations.

In this study we present a series of three case studies that test lithological
classification using the supervised Random Forests algorithm. These studies
inform the situations encountered in mineral exploration including early stage
lithology mapping and more mature stage map refinement. We also present a
fourth study, using the unsupervised algorithms k-means and Self-Organising
Maps, to identify clusters, potentially associated with lithology in absence of a priori
geological information. Our case studies are most relevant to the situation where
the geology of a prospect is largely concealed beneath extensive cover rocks, with
some rock types being poorly expressed or even absent in outcrop. We find that
sampling from limited outcrop produces a RF lithology prediction that is likely to
be incorrect. We demonstrate that balancing sample size through a combination of
decimation and bootstrapping can improve results. Additionally, we identify some
important indicators in both the predicted geology and uncertainty metrics which
could alert an explorer to an inability of their training data to make accurate
predictions and to the presence of lithological classes not expressed in outcrop.
Sampling from a mature lithology map enables further map refinement and acts as
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an objective audit of the existing product. Information entropy (H) is calculated as
a metric to describe quantitatively the uncertainty associated with classification,
provide valuable information on the geological complexity of the mapped region
and highlight areas which are potentially misclassified. Clusters obtained using the
k-means algorithm produced a result more consistent with lithology in this instance
and was faster; however Self Organising Maps remains attractive due to the
production of additional metrics to assess algorithm performance. Clustering could
be used either in the development of a first pass interpretation, or in the critical
appraisal and subsequent refinement of existing interpretations.

5.2 Introduction

The Trident project, held by First Quantum Minerals Ltd (FQM) is situated in the
North-Western province of Zambia (Figure 5.1), a region of the Central African
Copper Belt (CACB), one of the world’s major mineralised regions, known
primarily for copper production, with annual production at 770,598 t as of 2016
(Bank of Zambia, 2016) but also well-endowed with Ni, Cu, Co U, Mo and Au
(Selley et al., 2005). The Trident project hosts several major discoveries including
the Sentinel (Ni) and Enterprise (Cu) deposits and is located in a region of the
CACB which has seen major recent mining and exploration activity with Barrick,
Vedanta Resources, Glencore and First Quantum Minerals spending a combined
$12.4 billion on new projects between 2000 and 2014 (Mining for Zambia, a Zambia
Chamber of Mines Initiative, 2017). The project has received extensive systematic
geochemical soil sampling in addition to high resolution airborne geophysical
coverage. This data-rich environment enables experimentation with machine
learning strategies that aim to predict lithological class and hence produce, or
refine, geological maps from limited direct observations.

5.2.1 Geology

The Trident project area is approximately 75 km x 40 km in size and located in the
Domes region of the CACB. The region, as described by Capistrant et al. (2015;
Figure 1) and references therein, is dominated by the metamorphic basement of the
Kabompo dome in the NW and is overlain by the rocks of the Katangan
Supergroup, predominately those of the Roan Group, Mwashya Group and
Ngumba Group. Large volumes of mafic intrusive units, predominately of gabbroic
composition are emplaced in the east. Structurally, the project is dominated by a
large NNE trending synform, the hinge of which hosts the Enterprise deposit. The
region exhibits a series of NNW striking high-angle faults which crosscut both the
basement and overlying Katangan Supergroup. The Domes region is variably
subject to greenschist to upper amphibolite grade metamorphism produced during
the Lufilian Orogeny (Selley et al., 2005). This heterogeneity is seen locally, within
the Trident project area (Capistrant et al. 2015). The stratigraphic positions of some
subunits are not well understood due to extensive cover by residual soils with only
0.75% of the area expressed as outcrop. FQM have further subdivided the geology
based on in-house mapping and interpretation to produce the initial map of
interpreteted lithology used in this study (Figure 5.2).

This map has undergone several updates that combine well-defined stratigraphy, as
described above, and lithologies with an unconfirmed stratigraphic position. The



5.2. Introduction 81

FIGURE 5.1: (Top) Project location relative to the African continent
and the country of Zambia. (Bottom) Schematic summary geology
of northern North-Western Zambia (modified from Capistrant et al.,

2015) showing the location of the Trident project (red outline).
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FIGURE 5.2: Initial map of interpreted lithology under cover (pale
colours) showing outcrop locations (solid colours). The Enterprise
and Sentinel deposits are located within the black and red boxes

respectively.

FQM geological interpretation map includes an extensive package of Kundelungu
rocks in the east of the project area which is referred to as Upper Roan Group in
other work (Capistrant et al., 2015).

5.2.2 Random Forests

Random ForestsT M (RF; Breiman, 2001) is a supervised machine learning algorithm
(MLA) based on the classification and regression tree method (Breiman et al. 1984).
RF, as previously applied described (e.g. Hastie et al., 2009; Kuhn et al., 2016, 2018.)
assembles a ‘forest’ comprising many classification trees (Figure 5.3), each
constructed using a unique, random subset of training data. RF compares well to
other MLA with regards to accuracy, while remaining straightforward to use and,
as such, is considered a good first choice (Cracknell et al., 2014). This is an
important consideration for deployment in the geosciences as specialised
computing skills may not be available in every exploration team.

RF accuracy is determined by the strength of the classification trees comprising the
forest and the correlation between trees (Breiman, 2001). To reduce correlation,
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FIGURE 5.3: Schematic example from a RF used in this study
highlighting an example of a node split (red box) where A is the
nodes dominant class, B is the proportion as percent and count of
the node that class occupies, C is the spread of classes also shown
as a pie chart, D is the variable used to split the parent node into
child nodes, and E is the threshold at which the optimal split in that
variable occurred. This node is one of many, from a single unique
classification tree (indicated by black box), which is part of a forest
(12 examples of 500 shown). Trees are shown as Pythagorean trees
(Beck et al., 2014). The relative proportion of parent and child nodes
defines the size of squares representing those nodes. Colours note a

dominant class, where present.
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trees are built on randomly selected subsets of training data (Ta) produced via a
process of bootstrap aggregation or bagging (Breiman, 1996). Furthermore, the
subset of variables available to split each node in a tree is selected at random. From
that subset, the variable which produces the greatest improvement in node
homogeneity as defined by decrease in Gini index (Breiman et al., 1984), is selected
to split that node (Figure 5.3). Trees are split until homogeneity is achieved or a
tolerance is reached. RF classifies each sample by the modal classification of all
constituent trees. Accuracy improves with additional trees, until a stable error
minimum is reached (e.g. Cracknell et al., 2014; Harris and Grunsky, 2015;
Rodriguez-Galiano et al., 2014; Waske et al, 2009). Several studies have applied RF
to lithological classification problems. Waske et al. (2009) compared RF with
Support Vector Machines (SVM; Vapnik, 1995, 1998) for mapping using
hyperspectral imagery. Both algorithms outperformed older classifiers. SVM
marginally outperformed RF, however, RF remained an attractive option to the
authors due to ease of use.

Cracknell and Reading (2014) compared the performance of RF, SVM, Naïve Bayes,
k-Nearest Neighbours and Artificial Neural Networks for geological mapping.
They found RF to be most accurate, noting simplicity and lower computational cost
as key additional benefits. They found that increasing spatial dispersion of training
data improved RF performance, a result which did not manifest to the same extent
for other MLAs. Cracknell and Reading (2014) also compared RF and SVM for
mapping and identification of geological boundaries; and zones of structural
complexity. They concluded that both RF and SVM were similarly accurate while
RF produced more meaningful results with high RF uncertainty associated with
map boundaries and complex regions. These findings were reproduced by Kuhn et
al. (2016), who also noted a relationship between uncertainty and map inaccuracy.
Cracknell and Reading (2014) successfully used RF to refine geological mapping in
western Tasmania, subsampling a geological map as training data. Harris and
Grunsky (2015) used a similar approach in northern Canada, using lake sediment
samples and field observations to train RF, again noting the value of RF as a
first-pass mapping tool. Kuhn et al. (2018) deployed RF in a reconnaissance setting
in the Eastern Goldfields of Western Australia, refining a geological map using
geophysical data and highlighting the applicability of uncertainty in assessing map
validity.

5.2.3 Quantification of uncertainty

RF classifies each sample by majority vote cast by all component decision trees,
however, a more detailed distribution of probabilities exists for each possible class.
Class membership probabilities are recorded, defining the proportion of trees that
voted for each class (Hastie et al., 2009). Individual class probabilities can be
assessed in isolation or the probability distribution can be quantified as a single
number. In this study, as a proxy for uncertainty, we use information entropy (H;
Shannon, 1948) defined as:

H = -k ∑n
i=1 pilogpi

were pi is the class membership probability at location i, n is the number of
candidate classes, k is a positive constant. Both k and the logarithm base are
arbitrary and are used to manage scale. H describes the level of disorder in a
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system. A minimal value corresponds to complete homogeneity and a maximal
value corresponds to equal possibility of all classes. H preserves monotonicity.
Increasing the number of candidate classes produces a higher possible H.. H has
proven effective in defining the spatial distribution of uncertainty (Wellmann and
Regenauer-Lieb, 2012; Kuhn et al., 2016). Values can be normalised (Hnorm) for the
number of candidate classes. Hnorm represents the minimum to maximum possible
H for each sample, allowing samples to be compared with regard to how closely
each approaches its own maximum possible H. For example, a sample with two
possible and equally probable classes; and another with five possible and equally
probable classes; will each produce H equal to one. H responds to complexity: the
number of classes possibly interacting at a given location. Hnorm is more closely
associated with predication inaccuracy (Kuhn et al., 2016). It is important to note
the distinction between inaccurate mapping and predictions that are inconsistent
with the starting interpretation map does not discount the possibility the
interpretation was incorrect, and RF has identified the correct classification. The
behaviour of H and Hnorm may provide insight into whether this has occurred
(Kuhn et al., 2016; 2018).

5.2.4 Clustering

The k-means algorithm (Lloyd, 1957; 1982) is a widely used clustering algorithm
that operates on the principle of partitioning data based on similarity (Macqueen,
1967) The k-means algorithm is a pragmatic first choice for geoscientific
applications due to conceptual and operational simplicity. The k-means algorithm
starts with the random placement of a given number of centroids in the data space.
Euclidean distance to each data point is calculated and each data point assigned to
the nearest mean, dividing the dataspace via Voronoi partitioning. Subsequent
iterations calculate new means using all data assigned to each centroid and
centroids are adjusted to those positions. This process is repeated until centroid
adjustment does not result in further re-assignment or until an iteration cap is
reached. As implemented in this study, silhouette analysis (Rousseeuw, 1987)
provides a measure of dissimilarity for points within clusters, as compared with
dissimilarity to the nearest neighbouring cluster. This facilitates an objective
selection of number of clusters needed to produce best separation between clusters.
Random seeding of starting centroids can produce high processing times and
convergence to local error minima. The k-means++ algorithm (Arthur and
Vassilvitskii, 2007) controls seeding of starting centroids and produces superior
processing performance and accuracy than random seeding. All further reference
to k-means in this paper relate to k-means with k-means++ seeding.

Self-Organising Maps (SOM), developed by Kohonen (1982; 2001), maps high
dimensional data onto a lower dimensional plane in such a way that preserves the
topological relationships in the dataset (Penn, 2005). A map is defined, with a
number of nodes relative to the number of input data. Data are treated as
n-dimensional vectors. Vector similarity between data and nodes are measured and
winning nodes updated to better resemble the assigned data, as are those within a
defined radius of a winning node, by a percentage of that applied to the winning
node. The process is repeated, with the radius of influence and percentage of
modification reduced iteratively. SOM has been deployed in the geosciences (e.g.
Fraser and Dickson, 2008; Berlein et al., 2008; Cracknell, Reading and McNeill, 2014;
Cracknell et al., 2015) with useful clustering results and visual outputs such as the
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unified distance matrix (Ultsch and Vetter, 1994). In this study, complete linkage
hierarchical clustering (Defays, 1977) is used for additional cluster reduction with
optimal cluster number assessed using the Davies-Bouldin index (DBI; Davies and
Bouldin, 1979). The method of complete linkage reduction of SOM clusters will be
referred as SOM-CL in this study.

5.2.5 Objectives

We conduct four experiments that simulate geological mapping using machine
learning for a variety of input conditions. Two of these studies describe the use of
RF for mapping using samples from outcrop, both on an “as is” basis (replicating
an early stage in exploration) and balanced for class sample size. A third study uses
RF to reclassify the project using a small subset of training data, sampled at random
from a company interpretation map. The goal of the third study is to assess the
viability of RF to audit objectively and, where possible, improve upon an existing
map (replicating a more mature stage in exploration). Lastly, we assess the ability
of the clustering algorithms to produce a classification, in the absence of any user
input, which corresponds to mapped geology at the scale of the project.

5.3 Data and Methods

5.3.1 Data compilation and pre-processing

Data used in this study were provided by FQM. These comprise both geophysical
and soil geochemical data (Table 5.1; Figure 5.4). Additional geophysical datasets
were derived from those provided and the Shuttle Radar Topography Mission
(SRTM; National Aeronautics and Space Administration, 2006) digital terrain
model (DTM) were added.

TABLE 5.1: Variables remaining after the removal of highly correlated
variables.

Soils in the project area are believed to be residual, and hence, reliable proxies for
the lithologies below. Geochemical data with values of 0 or below detection limit
were assigned by default, a value equal to half the detection limit of that element.
Aeromagnetic (flown at 100 m line spacing) and airborne electromagnetic data
(flown at 200 m line spacing) were gridded using minimum curvature at one fifth
and one quarter of their respective flight line spacing (20 m and 50 m cell size
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respectively). Geochemical data (sampled at 300 x 300 m) were gridded to a 100 m
cell size. All data were resampled to a regular grid of 100 m x 100 m and compiled
into a matrix taking the form of: x, y, p1, p2, . . . , pn , where x and y are coordinates
and p are values of each variable at a given sample location. This database
comprises approximately 178,000 instances, each with 59 variables, and was used to
partition training and test subsets for the RF experiments.

FIGURE 5.4: Examples of 3 variables used in this study: DTM, RTP
magnetics and Ti. These variables were deemed useful in case studies

C1, C2 and C3.

5.3.2 Removal of highly correlated variables

High correlation between variables suggests that they are not independent and are
duplicating information. This can lead to supervised classifiers placing undue
emphasis on those features (Guyon, 2008). Where a pair of variables exhibited a
high correlation, defined as those with a Pearson’s correlation coefficient >0.8, one
of those variables was removed. In cases where a variable exhibited excessive
noise, or a large number of below detection limit or missing samples, that variable
was removed. A total of 15 variables were removed, reducing the number of
variables for consideration to 44 (Table 5.1).

5.3.3 Variable ranking

Previous studies (e.g. Cracknell et al., 2014; Kuhn et al., 2016) have shown that a
point of diminishing returns exists, beyond which additional variables do not
improve accuracy and unduly complicate the interpretation of results. RF has an
inherent mechanism for ranking variables, (Breiman, 2001). Each variable is
permuted and the change in accuracy measured. Variables are ranked from highest
to lowest importance, with those that the classification accuracy is most sensitive,
deemed most important. Variables were successively added in rank order in
addition to those prior (i.e. 1, 1+2, 1+2+3 and so on), and accuracy tested by 10-fold
cross-validation. Variables were added until no further improvement was reached.
This was defined as the last instance where the addition of a variable produced a
change in cross validation accuracy of 1%. Variable ranking is specific to the
training data used. Rankings were produced in this manner, independently, for
each of three RF case studies.
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5.3.4 Sampling

Case study 1

Case study one (C1, early exploration stage) used mapped outcrop locations as
training data (Figure 5.5A). Samples were treated on an “as-is” basis with sample
size controlled by the abundance of each lithology in outcrop. This resulted in
highly imbalanced training set sizes, favouring the Roan Group and Banded
Orthogniess rocks (Figure 5.5A). This is not an optimal training set as RF produces
the best results when class sample sizes are balanced, otherwise it is prone to
over-fitting to classes with more samples. Outcrop observations do not represent all
lithologies (12 of 17 represented) and is restricted to the east of the project and
yields different training sample sizes. Our objective in using this raw sample set is
to investigate resulting errors in map outputs and uncertainty. We also investigate
how such errors might be identified in the absence of a priori knowledge of the
extent to which outcrop reflects geology undercover and/or without known
geology with which to verify results.

FIGURE 5.5: Training data locations for (A) case study C1, (B) C2 and
(C) C3. Note the diameter of each sample in (A) and (B) has been
increased by a factor of 7 and in (C) by a factor of 3, for legibility. See

Figure 2. for lithology colour key.

Case study 2

Case study two (C2, early stage with method refinement) started with the C1
training set. In order to rectify the imbalance in sample size in C1, we used a
combination of bootstrap sampling (Hastie et al., 2009) and decimation. Sample
sizes of 50, 100, 200 and 400 were investigated to find the balance between
preserving real samples and introducing artificial samples (Table 5.2). A sample
size of 100 per class was deemed to provide this balance of adequate sample size
while introducing an acceptable number of synthetic samples (Figure 5.5B). Larger
sample sizes retained more real data but introduced an unacceptably high
proportion of synthetic samples across all represented classes.

Case study 3

Case study three (C3, mature exploration stage) investigates the deployment of RF
at more advanced exploration project maturity than C1 and C2. As such this study
capitalises on much more extensive geological information in the form of a
well-developed company geological interpretation map. The objective, rather than
using outcrop to predict geology in unmapped regions as in C1 and C2; is to refine
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TABLE 5.2: The decimation and resampling used for balanced
training classes of various sizes. A smaller class requires the least
introduction of bootstrapped samples however a large number of
real data are excluded. A larger class makes better utility of real
data however the numbers of bootstrapped data are excessive. 100
samples per class represents an optimal balance between use of real

data and introduction of bootstrapped samples.

the existing geological interpretation. Additionally, through the calculation of H,
we will provide insight into map regions defined by geological complexity while
providing an indication of areas with a high probability of incorrect classification.
A stratified, spatially balanced random sample was taken from the FQM geological
interpretation map (Figure 5.5C). In this case, 200 samples per class were taken
from each of the 17 mapped lithological classes. The remainder of the dataset was
held for testing, unseen by the classifier.

Case study 4

Case study four (C4, clustering approach) tests the use of the k-means and SOM
algorithms to define natural groups in the data, i.e. without the introduction of user
input or influence resulting from the use of training data or predefined classes. This
has the advantage of being able to identify features not represented in the training
data. The disadvantage however is that there is no control over the correspondence
of clusters to lithology or other geological phenomena such as alteration.
Nevertheless, at scale of this project, the geology comprises several distinct
domains. This study seeks to test whether clustering is a viable means of producing
a first-pass interpretation map in a situation akin to C1 and C2. To address the
relative magnitude of datasets, all variables were normalised such that the mean
has a value of 0 and a variable at one standard deviation from the mean has a value
of 1. The complete database of approximately 178,000 samples was used. A number
of iterations were tested for each clustering exercise. For k-means with 20 clusters,
the upper bound for the number of clusters allowed in this study, 99.1% of samples
were partitioned into their final clusters after 300 iterations (Figure 5.6). As such
300 iterations were used for all k-means models. SOM parameters including map
size and dimensions, were investigated and a 45 x 45 node map used in this study.
Both algorithms were tested using all variables below the 0.8 correlation threshold
and again using those variables ranked most important during C2, representing the
optimal understanding of variables from outcrop mapping alone.
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FIGURE 5.6: k-means convergence vs iterations performed. Lines
represent the assignment and subsequent reassignment/refinement
of samples as the number of iterations is increased. Lines are
smoothed between experiments and reflect the reassignment path
(and not the assignment of samples at iteration increments between

those displayed).

5.4 Results

5.4.1 Ranking and variable selection

A 500 tree RF was used to rank variables in the C1, C2 and C3 training datasets. The
C1 training data produced a peak cross validation accuracy of 75.4% using the top 9
ranked variables (Table 5.3; Figure 5.7). Ranking of training data from C2 defined 10
relevant variables (Table 5.3; Figure 5.7), producing a peak cross validation accuracy
of 88.8%. Ranking of datasets using training data from C3 identified 12 relevant
variables (Table 5.3; Figure 5.7), producing a peak cross validation accuracy of 80.5%.

TABLE 5.3: Ranking, variable (Var), RF score (RF) and 10 fold cross
validation accuracy (Acc) for C1, C2 and C3, shown to a depth of 15
variables. Note that the cross validation accuracy refers to the result
obtained with the use of a given variable in addition to those ranked
higher. Green indicates the optimal cut off for variables used in each

case.
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FIGURE 5.7: Cross validation accuracy with addition of successively
lower ranked variables for each RF case study. (C1) sampling from
outcrop, (C2) class size balanced sampling from outcrop and (C3)
sampling from a geological map. Note the accuracy using balanced
outcrop-based sampling (C2) is strongly influenced by overfitting of
the RF model to a small and more homogeneous dataset which does
not well describe the full variability of those units were the whole

unit available for sampling.

5.4.2 C1 Classification results

Prediction of lithology using outcrop led to a training sample imbalance in favour
of the MSO and MGN classes. This resulted in a RF model dominated by the MSO
and MGN classes (Figure 5.8A). A pixel by pixel comparison showed results of this
case study to be consistent with the interpreted geology map in only 17% of cases.
H indicates high uncertainty within the area represented by outcrop with a region
of low H in the south west (Figure 5.8B).

Extending beyond the training data to the southwest, is a zone of low H, as
observed in C1. Mapping shows a correlation with terrain and drainage patterns
(Figure 5.9A; DTM in Figure 5.4). We assert that the high rank and thus influence of
the DTM, while in part due geological controls on topography is also due to the
positions of outcropping samples serving as a proxy for geographic location. This
may not conform with the range of elevations occupied by that class across
non-outcropping areas and thus biases the classification in favour of the particular
elevation at which training data were observed. The omission of the DTM resulted
in a lithology prediction that saw better recovery of interpreted boundary
geometries (Figure 5.9B) in the areas well represented by training data; and better
prediction of gabbros in the south of the map. H in this case was higher across the
project (Figure 5.9D) than was the case for classification results produced with the
DTM included and showed a more chaotic spatial distribution and relationship
with lithological boundaries.
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FIGURE 5.8: (A) Classification output using C1 training data.
See Figure 2 for lithology colour key. (B) H associated with
C1 classification output. Note that in addition to poor accuracy
with respect to interpreted lithology on a pixel by pixel basis,
interpreted geometry and structure are absent, in favour of broad N-S
trending domains. Anomalously low H associated with extrapolation
of nearest sampled lithology into the south west is a warning
that training data do not represent lithologies in that region and
assumptions regarding the behaviour of uncertainty (Cracknell and

Reading, 2014, Kuhn et al., 2016) are not valid.
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FIGURE 5.9: (A) Classified lithology map refined using C2 training
data. See Figure 2 for lithology colour key. (B) Classified lithology
map using C2 training data adjusted to omit the DTM. (C) H
associated with (A). (D) H associated with (B). Note that while
lithology prediction accuracy is poor on a per pixel basis, major

geometries/boundaries are present.
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5.4.3 C3 Classification results

This case study (C3) made use of a well-developed geological interpretation map for
the generation of training data. RF produced predictions (Figure 5.10A) with 67.2%
consistency with respect to that map (Figure 5.10B). The confusion matrix associated
with this classification (Table 5.4) shows that 10 of the 17 lithological classes achieved
a recall in excess of 75% and a further three classes above 65%.

TABLE 5.4: Confusion matrix. Red, Orange and Blue text represent
< 60, > 60 and > 75 percent of samples classified consistent with
the interpreted geology map. Prediction consistency is expressed
as a percentage and the relative size of classes given as number of

samples. Rock codes are as per Figure 5.2.

Bulk inaccuracy was largely a function of the undifferentiated Kundelungu rocks
being partitioned into other, adjacent lithologies, many of which were more
concisely defined subunits of the Kundelungu Group (Table 5.4). This can be seen
clearly in the expression of class membership probabilities, examples of which are
shown in Figure 5.11. The MGN lithology class (Figure 5.11E, predicted with a
recall of 96%, exhibits very concise and distinct regions where this class was
probable.

Conversely, the lithology class SOO (Figure 5.11D) was not predicted by a large
majority, as shown by relatively low class membership probabilities across its
spatial range. H (Figure 5.12A) highlights areas of geological complexity and shows
a relationship with lithological contacts. This is prevalent in the centre and south of
the project. Hnorm (Figure 5.12B) shows a larger proportion of cells internally
approaching maximal possible H and demonstrates a correlation with those cells
which were classified inconsistently with the starting geological interpretation map
(Figure 5.13).
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FIGURE 5.10: (A) Classified lithology map refined using training data
C3. See Figure 2. for lithology colour key. (B) Comparison with the
initial map of interpreted geology (Figure 2) as consistent (white) and

inconsistent (red).

FIGURE 5.11: Examples of case C3 class membership probabilities.
(A) AOO, (B) IGB, (C) IGR, (D) SOO, (E) MGN and (F) MSO. Rock

codes are given in Figure 5.2.
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FIGURE 5.12: Case study C3: (A) H and (B) H normalised to 0-1. H is
an indication of the disorder at a given point and rises as complexity,
i.e. the number of possible classes, increases. When normalised,
H provides an indication of how closely a given pixel reaches its
maximum possible state of disorder. As such, pixels can be compared

and can be a better proxy for prediction accuracy.

FIGURE 5.13: The distribution of H for C3 partitioned into two
groups: samples classified consistently, or inconsistently, relative to
the initial interpreted lithology map (Figure 2). (Top) The relative
probability of a consistent or inconsistent classification for any given
Hnorm. (Bottom) Box plot showing the distribution of Hnorm for
consistent and inconsistently classified sample populations. Note
that at above a Hnorm of 0.75, there is a greater probability of
encountering an inconsistent classification than consistent however
there is considerable overlap from 0.6 to 0.75 where either is similarly
probable. Below a Hnorm of 0.5, a consistently classified sample is

considerably more probable.
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5.4.4 C3 Clustering results

Using k-means and SOM-CL produced a series of outputs of 2 to 20 clusters with
an optimal cluster number defined by silhouette and DBI (for k-means and
SOM-CL respectively). When using all datasets, both methods showed a strong
relationship with drainage patterns, regardless of cluster numbers. As such, both
methods were performed using only those elements ranked as non-redundant by
RF in C2. Outputs for k-means and SOM-CL optimised at 3 and 5 clusters
respectively. In both cases, this reflected a separation of the Kundelungu Group
from the metamorphic basement. Based on the number of lithological classes
expressed in outcropping geology, information that would be available at the
earliest stages of a project, we further constrained cluster number to between 10
and 20. With this limit in place both k-means and SOM-CL defined the optimal
number of clusters as 11. Both k-means and SOM-CL results showed a strong
spatial resemblance to the interpreted geology map of the project (Figure 5.14).

5.5 Discussion

5.5.1 Ranking of input data

Dataset ranking is a necessary component of RF classification while also providing
a rapid and objective means of prioritising data for other areas of geological and
geochemical investigation. The sample used for classification in C1 produced
spurious results due to the large imbalance in class size. Conversely, ranking using
a properly balanced sample (C2) produced a set of relevant datasets which would
prove insightful geochemical interpretation (discussed in detail in Kuhn, et al.,
2018). This set (Table 5.3) included widely used geophysical mapping datasets
(RTP, EMZ4) and several high field strength elements that are well known
lithological discriminators such as Ti and Ta (Pearce and Norry, 1979; MacLean and
Barret, 1999). That these datasets, well known for use in conventional geological
mapping, were prominent in RF ranking lends credence that the RF assessment of
ranked datasets was geophysical and geochemically sound; providing confidence
in the RF classification and other interpretations based on these findings. In
addition to these well-known datasets, others were included, the importance of
which may be idiosyncratic to the project. La, for example, trends through the
central-northeast of the project. Company geologists (Ireland, pers. comm., 2016)
identify this feature as a monazite trend. Other elements such as As and Mg, also
ranked as necessary by RF, have been used by company geochemists for the
subdivision of mafic packages and partitioning of talc rich rock units respectively,
further demonstrating that RF rankings are geologically meaningful.
Ranking of datasets using Ta, sampled from a geological interpretation map (C3)
saw the increased prioritisation of geophysical datasets, with the EM and RTP
datasets featuring at second and fourth most important, respectively (Table 5.3).
This is consistent with the additional information used in producing this map, as
compared to a model comprising purely observations. The prominence of these
datasets is likely a reflection of their use in defining lithological zones during
geological interpretation.

The RTP magnetics dataset was ranked as necessary in all cases, while the first
vertical derivative (1VD) was redundant. We assert that at the scale of mapped
lithology, the 1VD, a high-pass filter, is responding to sub-units or other textures
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FIGURE 5.14: Comparison of lithology maps. (A) Generated by
clustering using k-means and (B) generated by clustering using SOM-
CL. (C) The initial interpreted lithology map (Figure 2) is replotted
at the same scale to facilitate a visual comparison (C). Clusters are
coloured for the best comparison for that clustering output with

initial mapped lithology.
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and variations at a scale smaller than lithological domains. As such, the absolute
magnitude of magnetic response may be diagnostic of lithology at the scale of this
investigation, the 1VD is not. This is counter to common use the 1VD as a primary
mapping and interpretation tool. In this case, objective ranking would suggest that
while the 1VD may be very useful for the mapping of structure, texture, or sub-unit
differentiation, it is not diagnostic of lithology.

5.5.2 Classification from outcrop Ta (case study C1 and C2)

Poor sample balance and distribution, in addition to the absence of five lithological
classes in outcrop-based Ta, resulted in poor classification results. The complete
loss of geometry (Figure 5.8A) reinforces the need to attempt to address class
imbalance. In case study C2, results were improved by statistically rebalancing
classes by bootstrapping where sample size was inadequate; and randomised
decimation where sample size reduction was required. This cannot address the
problem of limited outcrop distribution but will correct for the bias introduced in
RF due to class imbalance. In this case, while a pixel by pixel accuracy compared to
the geological map was still low, correct contact geometries were more closely
recovered in the east of the map. Additionally, some classes, namely those with
better spatial representation in the training data, were predicted in a more
geological reasonable manner (Figure 5.9A, 9B). Care should be taken in
rebalancing. Reduction of sample size risks excessive removal of real data, while
oversampling preserves real data but introduces a high level of artificial samples
(Table 5.2). Caution must be taken when bootstrapping, as this can result in
duplicated samples being orders of magnitude more numerous than original,
unique samples, producing a tightly defined, over fitted class signal. In such cases,
cross validation using training data was misleading (C2, Figure 5.7). RF can
produce strong classification results based on over-fitted class Ta, with these results
not being indicative of predictive power for new samples. In line with the
pragmatic approach taken in these studies, this simple method does not attempt to
predict the distribution of sample populations beyond that which was observed.
These results therefore could potentially be improved through the use of further
strategies for addressing class imbalance if needed for the given exploration goal.

This sample paradigm (C1 and C2) was designed to simulate the state of the project
prior to the completion of a robust interpretation map. In this scenario, the extent to
which outcrop is representative unknown and explorers will require outputs of RF
to assess if or where classification was robust. When classifying new data occurring
outside of the spatial range of Ta (outcrop), prediction of the class label of the
nearest training data was common. This occurred most notably, in the southwest
(Figures 8A, 9A and 9B). These predictions were associated with anomalously low
H (Figures 8B, 9C and 9D). We interpret this effect as the being a result of high
similarity to a single, most proximal class and low similarity to all other,
non-proximal classes. In this case, RF lacks examples of how all but the Roan
Group (MSO) classes manifest in the southwest. Contrary to the well documented
behaviour of uncertainty calculated from RF class membership probabilities (Kuhn
et al., 2018; Kuhn et al., 2016; Cracknell and Reading, 2014; Cracknell, Reading and
McNeill, 2014) H and Hnorm associated with this bulk, incorrect prediction is very
low. This anomalous low H, in association with an adjacent class being
“extrapolated” away from training data is in fact a key indicator that predictions in
that area are incorrect and additionally, indicate that area of the map in question is
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distinctly different in data space, to that described by the Ta used. This indicates a
spatial transition into an unsampled geological domain but could also occur when
presented with rock types not included in the Ta, regardless of spatial range.

5.5.3 Reclassification of geological interpretation map (case study C3)

RF produced a classification output after training on Ta sampled from FQMs most
recent geological interpretation map. Overall, the consistency of C3 with the initial
geological interpretation map was moderate, at 67.5% (Figure 5.10B). In many
cases, classification results were strong, with nine classes achieving greater than
75% consistency with the geological interpretation map. As expected this result is
considerably better than the predictions based on limited outcrop (C1, C2) and is
consistent with other findings (Kuhn et al., in review, 2018; Cracknell and Reading,
2014) that the results of such RF classification implementations are highly sensitive
to an adequate spatial distribution of Ta representative of the range in observed
values for a project. A major source of inconsistency with the map is the
re-classification of the undifferentiated Kundelugu Group rocks (SOO) into
adjacent classes, most notably, the magnetite-altered Kundelungu rocks and the
adjacent dolomitic (MCB) and Syenite (ISY) units. It is likely that the original
interpretation of the eastern region as undifferentiated Kundelungu rocks is an
oversimplification and RF is partitioning rock units within this agglomerate group
into correct subdivision, which in turn is supported by a lower Hnorm.

The geological interpretation map is variably accurate with respect to the real
geology of the region as the location and degree of inaccuracies are not quantifiable.
As such we have referred to the consistency of RF output with respect to this map,
recognising that where inconsistent, it may be the RF prediction, the FQM
interpretation map, or both that are incorrect with respect to the real geology. It is a
potentially useful insight that the relationship between RF and the starting map is
interactive: the interpretation map can be used to validate RF classification, while
the RF classification can be used as a form of objective audit of the interpretation
map which may demand a small or large scale refinement to the original map. The
added benefits of this approach, in addition to the reproducibility of the RF
classification are the additional metrics produced by RF. Class membership
probabilities (Figure 5.11) can be used to better understand the confidence in
prediction of lithology on a per-unit basis. Quantified uncertainty, in the form of H
(Figure 5.12A) and Hnorm (Figure 5.12B) relate to the difficulty of assigning a correct
lithology to a given sample and the associated data. It is reasonable to assume that
this ambiguity, a function of the expression of the data at a given location,
influences any other manual attempts at classification using these data and thus H
and Hnorm facilitate review not only of the RF classification, but also other manual
mapping efforts. H defines areas of geological complexity, frequently tracking
lithological boundaries (Figure 5.12A). In this case, areas of high H, related to those
with the greatest number of possible lithologies present, include most notably, the
geologically and structurally complex fold hinge in the central-west and a large
region of the central-south (Figure 5.12A). Hnorm displays the uncertainty of each
sample, relative to its own minima and maxima, independent of number of
possible classes. This can be seen in comparing Figure 5.12B, where a larger
number of pixels exhibit high Hnorm (warm colours), with 12A where the number
of pixels with high H is lower, de-emphasising areas with fewer classes. High
Hnorm is correlated with a higher probability of incorrect classification. Of further



5.5. Discussion 101

interest are regions where RF has made classifications with low associated Hnorm
that are inconsistent with the starting interpretation map. This may indicate regions
where RF has made a correct prediction against an incorrect starting map. A
notable example is the partitioning of undifferentiated Kundelungu rocks (SOO)
into the magnetite-altered Kundelungu Rocks class (AOO) described above. This
more extensive domain of AOO class, identified by RF is not apparent in the RTP
data. As the number of classes incorporated in this study was higher than was the
case for C1 and C2, the absolute range of H is not comparable across the 3 studies.

5.5.4 Mapping via clustering (case study C4)

Both k-means and SOM-CL, when unconstrained by the number of clusters,
converge on clusters that can easily be mapped to major tectonic domains. When
constrained to a minimum reasonable number of clusters, based on outcrop
mapping, both clustering methods converged on an optimal number of 11 clusters.
Clusters were produced that showed a strong spatial resemblance to lithology
(Figure 5.14). K-means clusters showed a stronger spatial correlation with
interpreted geology, however, with apparent sensitivity to drainage patterns.
SOM-CL clusters by comparison were less sensitive to drainage patterns and
performed well in recognising clusters spatially congruent with the Kundelungu
Group sub units while grouping the region associated with gabbros with much of
the neighbouring Kundelungu Group. Both methods reveal a large loosely
semi-circular cluster in the central south of the project This cluster shows spatial
congruency with syenite rocks in the central-east (Figure 5.14: k-means cluster 11
and SOM-CL cluster 10).

K-means is relatively easy to implement and understand conceptually.
Additionally, k-means is fast, with clustering results for this study produced in
minutes, using a high end (at the time of this study) but standard production
desktop PC. This is an important factor for uptake by exploration teams as there is
no requirement for specialised computing skills. Speed of analysis facilitates
iteration, experimentation and modulation of input variables. SOM is a more
sophisticated algorithm and the additional steps associated with SOM and
hierarchical clustering, as with SOM-CL used in this study adds further demands
on the user. The algorithm is potentially capable of identifying more complex
groupings in data than k-means. The caveat is that SOM-CL requires significantly
more sophisticated tuning which in turn requires some degree of specialist
knowledge for robust implementation. Additionally, SOM run times are
significantly longer than k-means and do not lend well to repeat experimentation.
It is worth considering that geoscientific data in the 2D map space does not exhibit
the level of complex, non-convex datasets seen in other computing fields. With that
in mind, we assert that k-means is an adequate starting point for a 2D mapping
problem and may perform as well, or better than more sophisticated algorithms.
SOM-CL also produced excellent results in this study and the additional flexibility
in tuning and production of validation metrics make it a valuable addition to the
toolbox and a useful option for cases where more complex data are encountered, or
a more comprehensive understanding of dataset topology is desired.
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5.6 Conclusions

Our testing of Random Forests classification and clustering methods using the
CACB Trident dataset identified a number of machine learning usage strategies
likely to be of value to create/improve the working lithology map at both early and
mature stages of mineral exploration. Dataset ranking, and prioritisation should be
undertaken. The rankings produced by RF formed an important part of the
classification process and provide information that assists in optimising clustering
results. They also serve as a prompt to assist conventional geological interrogation.

Machine learning algorithm usage strategies that we found to be important in
scenarios replicating early stages of geological exploration ensure that a meaningful
lithological map is produced and that a quantitative appraisal of inaccuracy may be
made. RF classification using a limited training dataset, naively sampled from raw
outcrop information, results in low classification accuracy. In such circumstances,
RF results are not meaningful. Balancing class sample size produces optimal results
from a restricted training dataset, better predicting some classes and improving
recovery of mapped geometries while noting that high cross validation accuracy is
not indicative of predictive power for new samples. The spatial extent of the
training data needs to be considered to avoid the over-extended prediction of a
boundary proximal class. Such boundary proximal class predictions, away from Ta
and coupled with low H, can be interpreted as a warning sign that predicted classes
are encroaching into regions comprising lithologies not represented by Ta.

Machine learning algorithm strategies appropriate for scenarios replicating more
mature stages of exploration were demonstrated with the classification of lithology
from a training sample comprising Ta from an existing interpretation map. The use
of RF in such in data-rich exploration settings is very valuable, leveraging the
additional information available, in producing a more accurate and insightful
prediction. Using RF at this stage fulfils two important functions: firstly, as a means
of performing an objective audit of the starting map; and secondly, as a basis of
refining the initial product. H, Hnorm and class membership probabilities can be
used to evaluate RF outputs or better understand the uncertainty associated with
both the pre-existing geology map and the refined map produced through the RF
prediction.

Clustering is a further tool that may be of utility in lithological mapping. Both
k-means (and SOM) produced results showing spatial congruency with mapped
lithologies, providing a powerful first pass mapping tool without the need for a Ta.
In this study clustering, k-means in particular, produced a map, in the absence of
geological constraint, which allocated clusters with close spatial affinity for the
position of mapped lithologies as they are currently understood by FQM. This
suggests that clusters are responding to lithology above other effects. Alternatively,
these methods could be used to appraise, validate or refine an existing map.
Geological domain knowledge may then be added to interrogate clusters and
assess if/how they relate to lithology, alteration or other geological processes.



5.7. Acknowledgements 103

5.7 Acknowledgements

We would like to thank First Quantum Minerals Ltd. for permission to access data.
We thank Chris Wijns and Tim Ireland for support and discussion regarding data
and results. Stephen Kuhn is supported by a Tasmanian Graduate Research
Scholarship (TGRS) from the University of Tasmania. This research was conducted
as part of the ARC Industrial Transformation Research Hub for Transforming the
Mining Value Chain (project number IH130200004) at the Centre of Excellence in
Ore Deposits, University of Tasmania. The views expressed herein are those of the
authors and are not necessarily those of the Australian Research Council. We used
the Orange software package (Demsar et al., 2013) for RF classification and k-means
clustering, and the R package: Kohonen (Wehrens and Buydens, 2007) for SOM.
Pre-processing, interpolation and plotting were performed using Geosoft Oasis
Montaj and ESRI ArcGIS.

References

Arthur, D. and Vassilvitskii, S. (2006). k-means++: The Advantages of Careful Seeding:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, New Orleans, Louisiana.

Bank of Zambia Annual Report (2016). http://www.boz.zm/annual-reports.htm.
Accessed October 2017.

Beck, F., Burch, M., Munz, T., Silvestro, L. and Weiskopf, D. (2014). Generalized
pythagoras trees for visualizing hierarchies: 9th international conference on
information visualisation theory and applications.

Berlein, F., Fraser, S., Brown, W. and Lees, T. (2014). Advanced methodologies for
the analysis of databases of mineral deposits and major faults, Australian Journal
of Earth Sciences 55: 79–99.

Breiman, L. (1996). Bagging predictors, Machine Learning 24: 123–140.

Breiman, L. (2001). Random forests, Machine Learning 45: 5–32.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification
and Regression Trees, Wadsworth Brooks/Cole Statistics/Probability Series,
Wadsworth International Group.

Capistrant, P., Hitzman, M., Kelly, N., Kuiper, Y., Wood, D., Williams, G., Zimba,
M., Jack, D. and Stein, H. (2015). Geology of the Enterprise hydrothermal nickel
deposit, Economic Geology 110(1): 9–38.

Cracknell, M. (2014). Machine Learning for geological mapping: Algorithms and
applications., University of Tasmania: University of Tasmania.

Cracknell, M. and Reading, A. (2013). The upside of uncertainty: Identification of
lithology contact zones from airborne geophysics and satellite data using random
forests and support vector machines, Geophysics 78(3): 113 – 126.

Cracknell, M. and Reading, A. (2014). Geological mapping using remote sensing
data: A comparison of five machine learning algorithms, their response to
variations in the spatial distribution of training data and the use of explicit spatial
information, Computers and Geosciences 63: 22 – 33.

http://www.boz.zm/annual-reports.htm


104 Chapter 5. Lithological mapping in the Central African Copper Belt

Cracknell, M., Reading, A. and McNeill, A. (2014). Mapping geology and volcanic-
hosted massive sulfide alteration in the Hellyer–Mt Charter region, Tasmania,
using Random ForestsT M and Self-Organising Maps, Australian Journal of Earth
Sciences 61: 287–304.

Davies, D. and Bouldin, D. (1979). A cluster separation measure, IEEE Transactions
on Pattern Analysis Machine Intelligence 1(2): 224.

Defays, D. (1977). An efficient algorithm for a complete link method, The Computer
Journal 20, 4: 364–366.

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M.,
Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J.,
Zitnik, M. and Zupan, B. (2013). Orange: Data mining toolbox in python, Journal
of Machine Learning Research 14: 2349–2353.

Fraser, S. and Dickson, B. (2008). A new method for data integration and integrated
data interpretation: Self-Organising Maps.

Guyon, I. (2008). Practical feature selection: from correlation to causality, in
F. Fogelman-Soulié, D. Perrotta, J. Piskorski and R. Steinberger (eds), Mining
Massive Data Sets for Security – Advances in Data Mining, Search, Social Networks and
Text Mining, and their Applications to Security, 19, IOS Press, Amsterdam, p. 27–43.

Harris, J. and Grunsky, E. (2015). Predictive lithological mapping of Canada’s north
using Random Forests classification applied to geophysical and geochemical data,
Computers and Geosciences 80: 9–25.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps,
Biological Cybernetics v. 43: 56–69.

Kohonen, T. (2001). Self-organizing maps, Springer series in information sciences, 30,
Springer-Verlag, Berlin.

Kuhn, S., Cracknell, M. and Reading, A. (2008). Lithological mapping via
Random Forests: Information entropy as a proxy for inaccuracy, 25th International
Geophysical Conference and Exhibition, ASEG, Extended Abstracts p. 1–4.

Kuhn, S., Cracknell, M. and Reading, A. (2018). Lithological mapping using Random
Forests applied to geophysical and remote sensing data: a demonstration study
from the Eastern Goldfields of Australia, Geophysics 83: B183–B193.

Liaw, A. and Wiener, M. (2002). Classification and regression by Random Forests, R
news 2: 18–22.

Lloyd, S. (1957). Least squares quantization in pcm: Technical note, Bell
Laboratories, Published in IEEE Transactions on Information Theory 28(2): 129.

MacLean, W. and Barrett, T. (1993). Lithogeochemical techniques using immobile
elements, Journal of Geochemical Exploration 48(2): 109–133.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations, University of California Press, Berkeley.

Mining for Zambia, A concentrated mining sector (2016). Accessed October 15, 2017.
URL: https://miningforzambia.com/a-concentrated-mining-sector/



5.7. Acknowledgements 105

Pearce, J. and Norry, M. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb
variations in volcanic rocks, Contributions to Mineralogy and Petrology 69(1): 33–47.

Penn, B. (2005). Using Self-Organizing Maps to visualize high-dimensional data,
Computers and Geosciences 31(5): 531–544.

Rodriguez-Galiano, V., Chica-Olmo, M. and Chica-Rivas, M. (2014). Predictive
modelling of gold potential with the integration of multisource information based
on Random Forest: a case study on the Rodalquilar area, Journal of Geographical
Information Science 28(7): 1336–1354.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, Journal of Computational and Applied Mathematics
20: 53–65.

Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P.,
Croaker, M. and Pollington, Y. (2005). A new look at the geology of the Zambian
Copperbelt, Vol. Hundredth Anniversary Volume, pp. 965–1000.

Shannon, C. (1948). A mathematical theory of communication, Bell Systems Technical
Journal 27: 379–423.

Ultsch, A. and Vetter, C. (1994). Self-organising Feature Maps versus Statistical
Clustering A, Deptartment of Mathematics and Computer Science, University of
Marburg, Benchmark.

Vapnik, V. (1995). The nature of statistical learning theory, Springer-Verlag New York,
Inc.

Vapnik, V. (1998). Statistical Learning Theory, John Wiley Sons Inc.

Waske, B., Benediktsson, J., Árnason, K. and Sveinsson, J. (2009). Mapping of
hyperspectral aviris data using machine-learning algorithms, Canadian Journal of
Remote Sensing 35: 106–116.

Wehrens, R. and Buydens, L. (2007). Self- and super-organising maps in r: the
Kohonen package, Journal of Statistical Software 21: 1–19.

Wellmann, J. and Regenauer-Lieb, K. (2012). Uncertainties have a meaning:
Information entropy as a quality measure for 3-d geological models, Tectonophysics
526–529: 207–216.





107

Chapter 6

Synthesis

The research presented in this thesis has expanded knowledge through
demonstration studies of the situation specific application of machine learning
(ML) for lithological map production and refinement in a mineral exploration
context. The overarching objective of this thesis was to progress the use of using
ML for this purpose, and the insights from the core science chapters are now
synthesised in this final chapter.

6.1 An Expanded Set of Demonstration Studies

Chapters 3, 4 and 5 each defined a case study, or studies, in a different geological
setting and target deposit style. These studies all take, quite deliberately, a
pragmatic approach with regards to available data and position in a mineral
explorer’s workflow, leading to demonstrable practical applications for explorers
looking to incorporate ML into their geological mapping efforts. The studies focus
on approaches that can be replicated by most geoscientists, without requirements
for specialist programming and/or GIS skillsets, identifying where such methods
work effectively, where they do not, and where improvements might come from
more sophisticated methods.

Importantly, the research demonstrates effective usage of supervised and
unsupervised ML at various stages in the maturity of an exploration project. Thus,
the data available at that point in time is utilised appropriately to inform the
subsequent exploration stage.

6.1.1 Random Forests lithology classification studies

This thesis, and the papers contained herein, extends the usage of Random Forests
(RF) for surficial solid geology mapping in a mineral exploration setting over a
wide sample of geological domains and expected commodities. Cracknell et al.
(2014) demonstrated the efficacy of the RF for lithological map refinement, making
use of a small volume of spatially well distributed training data in western
Tasmania, a region of significant and well established volcanic hosted massive
sulphide (VHMS) style mineral endowment. The three technical papers comprising
this thesis extend widely the usage of this method in several ways. Firstly, these
new studies extend to the exploration of a wider range of deposit styles: porphyry
/ epithermal systems (Cu, Au, Mo, Ag; Chapter 4, Kliyul, British Columbia,
Canada), orogenic gold (Chapter 3, Heron South, Eastern Goldfields, Western
Australia) and sediment hosted copper, cobalt and nickel systems (Chapter 5,
Trident, Central African Copper Belt, Zambia). While each study represents a
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sample of one, works comprising this thesis strongly suggests that the methods
applied can be effective in the settings hosting a large proportion of the major
commodities.

Each study comprising this thesis encountered unique challenges specific to the
geological setting in which they were situated. This included flat lying areas under
significant cover, both transported (Chapter 3) and residual (Chapter 5); areas of
significant topography (Chapter 4); and terrains ranging in age from Archaean
(Chapter 3) to Proterozoic (Chapter 5) to Mesozoic (Chapter 4). Additionally, the
available data for each project reflected in part both the geological setting and the
stage of maturity in the exploration pipeline of each. Chapter 3 represents an early
stage conceptual target area, reflected in the available data being limited to remote
sensing and potential field geophysical data. Chapter 5 (case study 1) presents in
some ways a similar set of conditions at a relatively early exploration stage,
however due to the existence of active mining operations in the area and the
presence of mostly residual soils; soil geochemical data were available, adding
significantly to the information available for all forms mapping by RF. Likewise,
Chapter 4 presents a study with good ground based geochemical sampling and a
significant spread of outcropping geology, allowing mapping to focus on more
discrete units. Together, these studies demonstrate that the ML methods described
can be effective at most stages likely to be encountered by mineral explorers.
Perhaps the most important consideration is the availability of spatially well
distributed training data, which, when available, delivered consistently strong
results. Chapter 5 describes a scenario in which training data are restricted to
spatially discrete and not well representative regions of the study area. Further
studies of this type of situation would be useful to build experience in the
production of new / first pass geological maps in the real, non-idealised outcrop
faced when exploring new ground, over which explorers have no control.

6.1.2 Objective audit of a pre-existing lithological map

A key aim of this research was to demonstrate the efficacy of RF for the refinement
of an existing map. This can be thought of as two steps, firstly, the generation of a
new map, and secondly, an objective appraisal (or audit) of the previous version.
This was accomplished in core research Chapters 3 and 5. In each case, RF, using a
sparse training sample derived from the existing geological map, was able to
achieve a high level of consistency with existing geological mapping. Chapter 3
represents an early stage exploration project comprising airborne and remotely
sensed reconnaissance level data and geological mapping produced through
desktop interpretation. Chapter 5 includes (though with inconsistent distribution
across the project) the benefit of geological mapping and comprehensive soil
geochemistry. In these examples, training data were taken via a spatially balanced
random sample from an existing geological map. Lithological mapping using RF
offers, in a form that is repeatable and with quantifiable uncertainty, a means of
objectively auditing an existing an existing map. This is achieved by taking a small,
spatially balanced sample with equal representation from each mapped lithology:
in the order of 2% of the total area. This allows an accurate class expression to be
defined by RF while allowing the majority of the map the freedom to be
reclassified. In this manner, RF can identify inconsistencies where a mapped unit
does not coincide, in data space, with an explorer’s own mapping (or unit
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definitions) throughout the sampled locations in the map. More generally, this
approach draws attention to where lithology prediction is well supported by the
available data and where it was not. This may also point to inconsistencies in
geophysical and geochemical character within a broader lithological classification,
such as was seen in Chapter 5 (case study 3), where one oversimplified
stratigraphic grouping was split into more specific subunits. While these had been
inferred in absence of outcrop, evaluation of the data using RF clearly confirmed
that these subunits, identified elsewhere in mapping, were present.

6.1.3 Refinement of a pre-existing lithological map

Any observed inconsistency between an original geological map and the RF
produced product using that map as a basis for training data must be reconciled
either through the identification of incorrect predictions by RF or incorrect, or
imprecise mapping in the original. This in turn requires modifications to the
existing map or need for better understanding of the variable expression of data
across a lithological unit that was indeed mapped correctly. This can be supported
or assisted by the quantitative metrics such as class membership probabilities
(CMP) and uncertainty, made possible through the ML approach. This was well
demonstrated in Chapter 3, where RF predicted a transition from mafic
stratigraphy to granite several hundred metres further to the west than the original
mapping suggested. The behaviour of information entropy (H; Shannon, 1948),
increasing, approaching a maxima over a lithological boundary, while remaining
low over the previously mapped boundary, supports the RF prediction and
indicated that the prior mapping requires revision.

6.1.4 Clustering

Clustering was a relatively minor point of focus in this research, although it
provides a simple and intuitive reference method of potential utility. It was trialled
as an alternative to classification for the task of map production. In Chapter 5, case
study 4, both k-means and Self-Organising Maps (SOM) clustering algorithms were
used. Firstly, they were applied to all datasets, and again applied only to those
datasets identified as non-redundant according to the RF variable importance
ranking, with the results of the latter outperforming the former. Both methods were
subjected to some manual guidance via use of a priori geological information. For
k-means, this took the form of restricting the number of clusters to a reasonable
range, based on the number of rock types observed in the geology and in the case of
SOM, complete-linkage hierarchical clustering was used to group nodes into
amalgamated clusters of a geologically meaningful number (in both cases, from 10
to 20). Interestingly, prior to the application of such constraints, both algorithms
optimised at a low number of clusters (3 and 5 for k-means and SOM respectively)
which correlated well with major tectonic domains. Once limited to a number of
clusters feasible to represent the surficial geology at the project scale, both
algorithms converged at 11 clusters. In this case, k-means returned the superior
map (as compared with the most well-developed company geological map and that
produced by RF in Chapter 5 (case study 3)), better preserving the structural and
geological complexity of the project. While it is entirely plausible that further
tuning of the SOM parameters would with time, produce a superior map, the fact
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that a simple algorithm such as k-means was able to perform well is an important
conclusion to take forward. This is of importance for wider deployment of
clustering algorithms in the geosciences by practitioners without expertise in ML
algorithms or computer sciences.

6.2 Prediction evaluation and metrics for knowledge
generation

A key component in the usage of ML for mineral exploration is the ability to
produce repeatable, quantified, and hence, objectively assessable outputs. The
ability to quantify, express and visualise the relationship between possible classes
and an overall uncertainty is a distinct point of difference between ML based map
prediction and conventional manual interpretation by geoscientists. The complex
nature of results may be captured, as is the potential for inaccuracy both for any
given sample and across a project area. This prediction evaluation is distinct from
many more mainstream fields of ML, for example robotics, voice or character
recognition or virtual personal assistants. Challenges intrinsic to mineral
exploration frequently result in classification inaccuracies: limited and poor
training data, variable sampling, under sampling, non-uniqueness of the property,
and position of sources of potential field signals. So far as an existing geological
mapping can be used as the basis for comparison, the success rate is of the order of
60-80% (as demonstrated in Chapters 3, 4 and 5 of this thesis). Given the relatively
large proportion of error still present even under the best of normally encountered
circumstances, the ability to assess the nature and possibly cause of
misclassification is critical. This thesis presents several metrics for variable
assessment and ranking, competing class probabilities and quantified uncertainty.

6.2.1 Variable ranking and reduction

In Chapter 5, it is demonstrated that through variable ranking and reduction,
utilising the objective method embedded within RF, results of clustering are
improved. This is an important benefit to the method as it allows the generation of
more accurate classification results, which can both pre-empt and assist more
detailed and time consuming geological, geophysical, or geochemical
interpretation of the same datasets. Furthermore, the ranking, reduction, and
improved clustering and classification results may be used to assist in building
understanding for a new project, potentially saving time both time and money
while being objective, repeatable and available to geologists regardless of
experience and skill level. The studies in this thesis have shown that many of the
variables ranked highly correspond with those well understood in conventional
mapping. This behaviour is to be expected to some extent given the RF has been
tasked with predicting lithology. This provides valuable confidence for geologists
utilising the method. Variable ranking, as shown in all case studies comprising this
thesis routinely includes datasets which may not be obvious to geologists at first
glance, or, would have been a lower priority in order of investigation, potentially
expediting understanding of a project. A further benefit of this process, shown in
Chapters 3, 4 and 5, is the reduction of dimensionality down to those datasets
necessary to make accurate predictions. This facilitates a more manageable
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interpretation of results by the end user. The case studies comprising this thesis,
along with work by Cracknell et al. (2014) have shown that RF, in this context
spanning a range of ore deposit types, has consistently required between 8 and 15
variables to produce an optimal result; while often starting with in excess of 50 to
100 variables. Considering 8 to 15 variables simultaneously yields benefits over
traditional interpretation by a geologist (utilising comparisons of 2 or 3 variables, or
a mild dimensionality reduction through ratios) yet is still a small enough number
of datasets for a geologist to meaningfully interpret following the ML analysis.

6.2.2 Uncertainty

A key benefit for explorers using a ML approach is the ability to quantify
uncertainty. RF’s ensemble approach: constructing many uncorrelated classification
trees allows the user to investigate the distribution of classification results. The
proportion of trees voting for a given class, of the total number of trees comprising
the RF are described as CMPs. In the studies comprising this thesis, H is the chosen
metric used as a proxy for expressing uncertainty. H is described in detail in
Chapter 2, and, where this metric is used in Chapters 3, 4 and 5. H is a measure of
the of the disorder, or lack thereof as expressed by competing CMP. An important
criterion for the use of H as the preferred metric for expressing uncertainty for the
research comprising this thesis is the preservation of monotonicity, with the
addition of terms, i.e. possible classes, contributing to a higher possible H. This
means that H will increase in response to uncertainty as well as complexity. Both of
which can be well expressed by assessing and visualising H and normalised H. This
allows for the identification for areas of greatest lithological, and in many cases, by
inference, structural, complexity. Furthermore, H can be normalised (Hnorm) on a
per-instance basis, by number of classes present to express to what extent each
instance approaches its own maximal possible disorder. Prediction uncertainty, in
the form of H, is an expression of the internal consistency of the RF prediction and
is not, nor is intended, as a direct measure of the congruency between the RF
prediction and reality. In this thesis, however, it is demonstrated that there is good
correlation between high Hnorm and where predictions were inconsistent with
observed or mapped geology (noting that such maps may themselves contain
inaccuracies). Hnorm grouped by accurate and inaccurate prediction are shown to
comprise statistically distinct, though overlapping populations (Kuhn et al., 2018;
Kuhn et al., 2016). Looking at Hnorm where predictions can be validated (i.e. areas
of known geology within the study area) the statistical distributions of both
populations should be displayed and analysed. This allows an explorer to tune a
cut off value that corresponds to their particular risk tolerance. For example, by
choosing a higher cut off value, a more complete map can be retained, albeit with
an increased rate of misclassified samples being included, or, through use of a
lower cut off value, the number of misclassified samples can be minimised, but at
the expense of some proportion of correctly classified data also being excluded. The
full distribution of Hnorm for accurately vs inaccurately classified samples (where
knowable) should always be analysed in detail prior to using Hnorm for the purpose
of excluding a classification that is likely to be incorrect.

Where a correlation between Hnorm and prediction inaccuracy can be clearly
demonstrated, the observed relationship between H and lithological complexity is
of a more anecdotal nature. Cracknell et al. (2013) demonstrated a relationship
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between high uncertainty and proximity to lithological contacts, a form of
lithological complexity, as predicted by RF, while Wellmann (2012) showed a clear
relationship between high H and the number of possible lithologies present at a
location. The studies comprising this thesis are consistent with these findings,
showing that H increases in areas where an increasing number of lithologies are
present. This is contingent on a simple definition of lithological complexity as being
more lythotypes possibly present. Any further investigation of lithological
complexity in a spatial sense requires a specific and somewhat subjective definition
of geological and structural complexity and a rigorous assessment of the behaviour
of H against a number of such definitions would be a valuable and productive
avenue of future research.

6.2.3 Assessing spatial limits of predictive capability

A key component in the application of ML in the geosciences are the considerations
regarding the spatial distributions of both training data and extents to which
prediction is applied. Through comparisons of map audit and refinement studies in
Chapters 3, 4, and 5 where data were spatially well distributed and balanced;
against Chapter 5’s cases 1 and 2, and synthetic examples presented in Cracknell &
Reading (2013), it is evident that spatially well distributed data are a key factor in
the ability to make accurate predictions. This is intrinsically linked to the likelihood
of capturing i) all geological units, and ii) the full range of expressions of each unit,
within a project area increasing as more of the area is sampled. In Chapter 4 data
are taken from the class labels at soil/rock chip sample locations collected on a
nominally regular grid. In all cases, training data are spatially well distributed
across the project areas. This contrasts with additional case studies in Chapter 5
where spatially discrete geological observations, in the form of outcrop, are taken
as training data. While measures were taken to add value and improve results;
classification performance was poor as compared to where a spatially more
comprehensive sample was used. While the relationship between an equal
representation of all classes, from a statistical standpoint, and an even spatial
distribution of training data may vary, these properties are linked in practice. It is
apparent that a spatially representative spread of training data contributes to a
better classification result. This need not be the case as there will be examples
where limited outcrop may represent the full expression of geology in an area. This
is, however, not easily predictable and will vary widely on a case by case basis and
must be assessed thoroughly with best available information at the outset of a
study and considered carefully when assessing results.

The spatial resolution of classification or clustering exercises are inherently linked
to that of the input data. This introduces a number of challenges with regards to
how data are interpolated and ultimately how data acquired at various resolutions
are amalgamated. Potential field geophysical data were gridded in accordance with
current industry best practice methods, namely a combination of minimum
curvature and bi-directional splines at a grid cell size equal to a quarter to a fifth of
the survey line spacing. Geochemical data were gridded at half to a third of sample
spacing tightly controlling the level of interpolation allowed taking an approach
more akin to a nearest neighbour. Remote sensing, being of a pervasive nature
already, were treated as-is. In order to perform a pixel/instance based classification,
all datasets must be sampled on a consistent grid. The variability between sample
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intervals of incorporated data will inevitably result in some being undersampled
while others oversampled. In the studies comprising this thesis, an approach
towards oversampling was taken. This allowed classification to benefit from the
resolution permitted by higher resolution datasets. It is interpreted that by
incorporated upsampled lower resolution datasets that overall class accuracy is
improved at the cost of minor degreadation of spatial accuracy, particularly near
class boundaries. lower spatial resolution does not appear to have a deleterious
effect on variable importance, as evidenced by the high ranking of geochemical
data (lower spatial resolution) in chapters 4 and 5. Further study however, on the
effects of isolating the inclusion or exclusion; or modulation of resolution, of select
datasets on variable importance would be beneficial.

With regard to the extent of the domain to which a classification can be applied,
the presence of lithologies not present in training data must produce an erroneous
result when encountered by a classifier. Unfortunately, in a genuine exploration
context where the rocks are unknown, the explorer will not know of rocks they are
yet to see but will also be unaware of where such a misclassification has occurred.
This is inherently unknowable at the outset of a study without a degree of explicit
prior information, such as reliable prior geological mapping, conclusive evidence of
a domain change in geophysical data, indications from exploratory data analysis,
including clustering methods, or other lines of evidence. In Chapter 5 a result is
seen associated with incorrect classification, whereby RF begins to predict the most
boundary proximal class, associated with low H, away from known observations.
A departure from the domain in which the training data are representative of the
rocks being classified is thereby suspected. The most probable cause of this result is
that broad similarities in geophysical data, based on proximity between the nearest
training sample and the “out-of domain” sample are overriding other similarities.
Nevertheless, this is a key problem that warrants further investigation. It may be
unsolvable, in that rocks from an adjacent area may be identical in property space
to those within the predictive domain. Thus, attention should be directed to the
best possible definition of the study domain while remaining alert to any possible
indications of departure from the domain.

6.2.4 Assessment of class membership probabilities

The ability to quantify uncertainty in classification is a key benefit of classification
using RF, and indeed ML approaches more generally. The use of qualitative and
quantitative interpretation of CMPs in this regard can be highly informative.
Chapter 4 focusses on lithological classification in a porphyry exploration context.
In this case, discrete intrusions can be identified through an increase in CMP,
relative to a background rate, regardless of whether they were correctly classified in
final classification output or misclassified as their more spatially extensive
surrounding host rocks. This is a very valuable finding and allows the prediction of
source / host rocks for porphyry mineralisation amongst complex volcanic,
volcaniclastic and volcano-sedimentary rock packages with overlapping class
signatures. In such instances, an accurate geological map of a project might be
difficult to produce, but a method to point directly to potential source intrusions is
perhaps more valuable still. This study (Chapter 4) demonstrates the efficacy of
using elevated CMPs at an early stage of the exploration cycle and could guide
targeting prior to mobilisation of a drill rig.
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Further to examining individual class predictions and the outright result, where
misprediction does occur, assessments can be made of which classes are commonly
confused and the rate at which misclassification occurs. Using confusion matrices
compiled during cross validation on training data, one can analyse where, i.e.
between which classes, misclassification is likely to occur. It is then a reasonable
assumption that a similar misclassification between those classes is more likely
when applying that classifier to the remainder of a project area. Furthermore, this
information can be valuable independently of classification in highlighting
geochemical and petrophysical similarities between lithological and/or
stratigraphic units that may not yet be well understood at the time of classification.

6.3 Lithological Mapping Aided by Machine Learning in
Mineral Exploration

Each research chapter comprising this thesis is representative of a specific stage of
mineral exploration. Collectively, these studies demonstrate that RF lithological
classification can be of value at any stage of a mineral exploration project.

6.3.1 Adding value through machine learning at different stages of
project maturity

As demonstrated in Chapter 3, the method can be used to refine an interpreted
geological map using geophysical data. Chapters 4 and 5 each comprise a study
using direct geological observations as training data for and RF classification and
included the use of soil / rock geochemistry, representing a more advanced
exploration stage than was the case in Chapter 3. In each instance the method was
effective in adding value to the project. In Chapter 4, this was achieved directly
through the identification of intrusive rock units, providing a direct target for
drilling or further mapping or sampling. In the equivalent case studies in Chapter 5
(case studies 1 and 2) a poor distribution of outcrop resulted in low accuracy in
classification however, the knowledge gained from variable ranking could provide
a valuable head start on geochemical interpretation and the pre-selection of those
variable deemed non-redundant by RF ranking, to the exclusion of all others,
improved clustering results.

The key difference between these studies was the spatial extent of training data
relative to the full extent of the project area. Unsurprisingly then, a larger range of
outcrop spread more widely over a project will contribute to a better result, though
it is entirely possible in some circumstances that the full expression of the geology
of a project area could be obtained via sampling of a spatially limited region. If
certain rock types are unrepresented in the training data, they may be excluded
from the training data by the simple fact that they are not present in outcrop.
Alternatively; geologically, petrophysically and geochemically similar rock types
may exhibit significantly different expressions in geophysical and to a lesser extent
geochemical datasets, due to regional trends not related to geology at the scale of
mapping. One way to explore this latter possibility is through modelling of
potential field data at the scale of the project. This approach could yield meaningful
improvements if the model is accurate or have a deleterious effect if it is not. This
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approach was not pursued in this research due to the stated goal of objectivity in
classification and the inherent subjectivity in the execution of modelling.
Nevertheless, it is recognised that combined approaches (ML and traditional
geophysics) could be of utility where confidence can be had in geophysical
modelling.

As discussed in Section 6.1, using RF to perform an objective audit on an existing
geological map is a valuable process at any stage of exploration. By using a small
proportion of samples (1-5% as demonstrated across Chapters 3 through 5) as
training data, adequate freedom is allowed over the majority of a project area
permitting deviation from the starting map where patterns in the training data
indicate. Not only does this present the opportunity to refine the geological map;
this facilitates the provision of variable ranking, CMPs and H, to supplement
existing geological understanding and further highlight any limitations in current
mapping products.

6.3.2 Practical considerations for mineral exploration

The research methodologies used in this study were progressed with the
non-expert in ML in mind. The bulk of data preparation, pre-processing, data
visualisation and assessment can be performed using industry standard software
packages. Only the execution of a chosen ML approach, requires specialist software
or code with, Python - Scikitlearn, used directly and as implemented in Biolabs’
Orange package (Demsar, et al., 2013) and R used in this research. The procedures
used are repeatable, building upon the workflow outlined in Cracknell, et al. (2014)
to avoid known pitfalls such as not testing for conditional independence of training
data, class size imbalance, poor spatial representation of training data, improper
data scaling or inclusion of an excessive number of redundant variables.

Where these aspects of input data character could not be avoided, strategies to
identify potential errors, and if possible, attain new insight, were investigated. This
was most prevalent when restricting training data to outcrop, as seen in Chapter 5
(case study 1), which resulted in both an imbalance in training class size
representation in training data. In this research, a simple strategy of bootstrapping
and decimation was used, increasing or reducing the number of samples restricted
to actual observations, in order to address class size imbalance. It was apparent that
training data present at outcrop did not provide enough information to determine
an accurate probability density function for more sophisticated imputation and
avoid the potential for over-fitting bootstrapping can cause. In this case, the
simplest means of addressing class imbalance without unduly throwing away real
data was used.

It should be noted that where data of sufficient volume, representation and quality
exist, a number of additional approaches can be investigated to extract additional
value. These include but are not limited to more complete strategies for imputation
such as imputation from variables probability density function via kernel density
estimation or similar and more sophisticated strategies for analysing compositional
data, such as generating independent orthogonal variables (principle component
analysis for example). It is recommended that where practical, and in line with the
goals and time frame of the exploration campaign, such investigations be attempted
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however they fell outside of the aims of this body of research. The reader is directed
to Hood (2019; completed in parallel to work comprising this thesis), Hood et al.
(2018), Grunsky & Kjarsgaard (2015) and Mueller & Grunksy (2016); and references
therein for a more detailed assessment of these methods.

A summary of the key challenges to the implementation of ML for lithological
mapping in mineral exploration is provided in Table 6.1 together with a set of
matching recommendations, developed through this research, for addressing each
in an accurate, practical and productive manner.
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TABLE 6.1: A summary of exploration challenges identified through
this research, and recommendations for addressing those challenges

through ML approaches.
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Conclusions

This thesis comprises a series of case studies demonstrating the efficacy of machine
learning for lithological mapping across a range of geological settings. Random
Forests, and, to a lesser extent, the clustering algorithms Self-Organising Maps and
k-means are deployed for lithological map production or refinement at various
stages of project maturity. These case studies demonstrate the ability of Random
Forests to rank, prioritise and reduce the number of input variables to those
essential for an accurate result, giving explorers insight into useful datasets for
mapping which may not have been anticipated via traditional workflows. This
allows explorers to extract value from the higher dimensionality search space
available to machine learning techniques using only as many variables as is
necessary to produce the best result, making interpretation and validation of the
end products by geoscientists more feasible. Further interpretation or clustering
benefits from this identification of non-redundant variables.

Information entropy (H) is the uncertainty metric found to be of utility throughout
this thesis. It provides a monotonic expression of uncertainty; a combination of
possible inaccuracy and complex result combinations, or, can be normalised in a
form that correlates with an increasing probability of inaccurate classification, as
demonstrated in this thesis. This gives explorers the option to omit results at a cut
off level of their choosing, biased towards completeness or correctness at their
choosing. Random Forests, a soft classifier, allows for quantitative prediction
evaluation calculations to test the validity of classification. Moreover, it was found
that an elevated class membership probability could be of particular value to
explorers in identifying indicator lithologies for subsequent field investigation.

Clustering was successfully used to produce a lithological map of a project area.
Results are improved through the omission of redundant variables as identified
using Random Forests ranking. Results showed two maxima with an optimal
(according to numerical scoring of cluster coherence) small cluster number
corresponding to tectonic domains and a larger number better corresponding to
lithologies. This makes some understanding of the geological setting, and number
of lithology types present, desirable in adding the most value through the machine
learning procedure.

In the three studies presented in this thesis, Random Forests is used to perform an
objective audit of an existing geological map. This was demonstrated to be an
effective means of adding value at any stage of project maturity: from early stages
with limited reconnaissance stage data (airborne potential field, remote sensing) or
with the full benefit of ground based geochemical sampling. This procedure allows
a geological map to be tested in a repeatable and objective fashion and
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subsequently refined as needed. By taking enough samples for a robust training
dataset, but a proportionally smaller number relative to the total map area, enough
freedom is allowed for the lithological map to be reclassified.

All workflows and methods presented in this thesis were selected with the
non-computer scientist in mind. The selection of machine learning GUI, industry
standard software and the use of geoscience terminology, as opposed to
mathematical or data science-oriented terminology, lowers the barrier to entry and
thus will enable the much wider uptake of machine learning by mineral explorers.
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Appendix A

Supplement to Chapter 4

TABLE A.1: All conditionally independent variables considered and
ranked in this study, prior to experimental selection of top 15 for RF

training (as described in main text Methods).
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FIGURE A.1: Random Forests Workflow and Modifiable parameters
of Random Forest used in classification. Implemented in Orange 3

(Demsar et al. (2013))

Number of Trees: 500

Number of input variables: 15

Measure of split quality used to split at each node: Gini Impurity

Depth limit of individual trees: None

Minimum number of samples required to split node: 2

Number of variables considered at each split: Square root of number of input
features
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