
A new model for classifying DNA code inspired
by neural networks and FSA

Byeong Kang, Andrei Kelarev, Arthur Sale, Ray Williams

School of Computing
University of Tasmania
Private Bag 100, Hobart
Tasmania 7001, Australia

{BHKang,Andrei.Kelarev,Arthur.Sale,R.Williams}@utas.edu.au
www.comp.utas.edu.au/users/{bhkang/,kelarev/,ahjs/,rwilliams/}

Abstract. This paper introduces a new model of classifiers CL(V, E, `, r)
designed for classifying DNA sequences and combining the flexibility of
neural networks and the generality of finite state automata. Our careful
and thorough verification demonstrates that the classifiers CL(V, E, `, r)
are general enough and will be capable of solving all classification tasks
for any given DNA dataset. We develop a minimisation algorithm for
these classifiers and include several open questions which could benefit
from contributions of various researchers throughout the world.

1 Introduction

Classification of data is important in data mining, see [39]. The results of this
paper make the very first essential and rather non-trivial step of work on IRGS
grant allocated by the University of Tasmania for the development and inves-
tigation of new Artificial Intelligence methods for classification of DNA data
collected by the School of Plant Science and CRC for Sustainable Production
Forestry. This is why we are mainly interested in DNA sequences, and we record
all new definitions in this case. In fact, the results and concepts of this note are
applicable to larger classes of problems and can be used to classify texts and
documents, see for example [3], [4], [11], [21], [22], [23], [24], [27], [28], [29], [30],
[32], as well as sequences in datasets of various other kinds too.

The applications of neural networks to solving numerous practical tasks have
been very well known. Many useful results have been obtained with neural net-
works in various applied branches. For the purposes of classifying DNA sequences
it is impossible to use neural networks directly processing the sequences of nu-
cleotides. As a guide we have to look at another very well known concept of a
finite state automaton (FSA) used for analysing sequences. We refer to [6], [9],
[13], [14], [15], [16], [17], [19], [20], [31], [33], [34], [38] for background and some
relevant recent results on the subject. The first aim of the present paper is to
generalize the architecture of neural networks in order to encompass all FSA in
a new concept.

Let us begin by introducing a new model of classifiers CL(V,E, `, r) as a
simultaneous generalisation of neural networks and finite state automata. This
model combines the flexibility of neural networks and the generality of finite
state automata. It is likely that this new notion will attract the attention of re-
searchers. We develop a minimisation algorithm for the classifiers CL(V,E, `, r).
This paper includes several challenging open questions, which could benefit from
contributions of many investigators throughout the world.

Before the start of experimental investigation, first of all it is important to
demonstrate that the model is suitable for handling sufficiently general classes
of problems and can avoid pitfalls. The main result of this paper provides the
readers with a thorough verification of the fact that the classifiers CL(V,E, `, r)
are capable of handling all classification problems for DNA sequences.

Our formal model is also related to the more general concept of a labeled
graph. Labeled graphs have valuable applications in various areas and have been
investigated by many researchers too. We refer to [7] for a dynamic survey on
graph labeling available online from the Electronic Journal of Combinatorics (see
also, for instance, [36] and [37]).

The notion of classifiers CL(V,E, `, r) has been carefully chosen from the very
beginning to combine the generality of finite state automata and the flexibility of
neural networks. Our main theorem shows that the classifiers CL(V,E, `, r) can
handle all classification problems for DNA datasets given sufficient computing
time. A separate section develops a minimisation algorithm for these classifiers.

Background information and preliminaries are included in Section 2. Our new
model is defined in Section 3. Section 4 contains the main theorem. Several major
differences between classifiers CL(V,E, `, r), neural networks, and finite state
automata are pointed out in Section 5. A minimization algorithm for classifiers
CL(V,E, `, r) is presented in Section 6. Open questions are collected in Section 7.

2 Preliminaries

We use standard concepts concerning graphs and algorithms, following [2] and
[35]. Throughout the word ‘graph’ will mean a directed graph, which is allowed
to have multiple edges and loops. We refer to [8] for preliminaries on algorithms
for computational analysis of DNA sequences.

Let us refer to the monographs Baldi and Brunak [1], Durbin, Eddy, Krogh
and Mitchison [5], Jones and Pevzner [10] and Mount [26] for preliminaries on
bioinformatics. Here we briefly recall that every DNA molecule is a double helix
consisting of two strands. Each strand is a sequence of 4 nucleotides or bases:
A (adenine), C (cytosine), G (guanine), and T (thymine). According to the
Watson-Crick complementarity each nucleotide in one strand is crosslinked to
a complementary nucleotide in another strand, and together they form a base
pair. For example, the human genome contains about 3 billion base pairs and
about 35,000 genes. In each DNA molecule, A and T always complement each
other: A in one strand is linked to T in the second spiral. Similarly, C and G
complement each other: C in one spiral is always linked to G in another strand.

If we know one sequence, it’s easy to determine its complement. Therefore the
sequence of base pairs in every DNA molecule can be represented with just one
string over the alphabet of four letters A,C,G,T. In this paper we consider the
problem of classifying strings of letters over the alphabet

X = {A,C,G, T}.

Accordingly, the set of all DNA sequences is precisely the set X∗ of all strings
over X.

3 Main Notion

A classifier CL(V,E, `, r) is a quadruple

CL(V,E, `, r) = (V,E, `, r), (1)

where V = {v1, . . . , vn} is the set of vertices and E is the set of edges of a graph
G = (V,E) with multiple edges allowed and with each edge e labeled by a letter
`(e) of the alphabet X and a real number r(e). In other words, there are two
functions

` : E → X and r : E → IR. (2)

The state (or current state) of the classifier CL(V,E, `, r) is a labeling of all
vertices by real numbers, i.e., a function

s : V → IR. (3)

Notice that our model has some similarities with the concept of a finite state
automaton and that of a neural network, but is different from them.

The classifiers CL(V,E, `, r) potentially can be used for both classification
and clustering. A classification of any given set of DNA sequences is a partition of
these sequences into several classes. Classifiers obtain classifications via various
algorithms for supervised learning. In this way the classification is known for
the given set of data. The problem is to construct a classifier that will produce
this classification, so that it can then be used to determine class membership of
new sequences. Initial partition is usually communicated by a supervisor to a
machine learning process constructing the classifier. A different problem is that
of clustering data. It deals with dividing a set of given sequences into classes
not known initially, but determined according to certain measures of similarities
between sequences. This is usually accomplished via a process of unsupervised
learning, see [39].

Now suppose that we want to use the classifier CL(V,E, `, r) to analyse a
DNA sequence

x1, x2, . . . , xN , (4)

where x1, . . . , xN ∈ X. The initial state s0 : V → IR can be chosen arbitrarily
depending on practical implementation. Then we use the labeled graph to recur-
sively process all letters of the sequence (4) and modify the state of the graph.

Suppose that after we have considered the first i ≥ 0 letters of (4) the state of
the graph is

si : V → IR.

Then we can determine the next state si+1 with recursion

si+1(v) =
∑

w∈V,(w,v)∈E

r((w, v))si(w). (5)

After the whole sequence (4) has been processed, for every vertex v ∈ V , we
know the final value sN (v) ∈ IR.

Let us now define the standard partitions which we are going to use in classi-
fication of DNA sequences. The following standard partitions will be associated
with the classifier CL(V,E, `, r). For every 1 ≤ k ≤ N , we define the classifica-
tion Kk as the one which divides all given DNA sequences into classes C1, . . . , Ck,
by including the sequence (4) into the class Ci = C

(k)
i , where i is chosen so that

1 ≤ i ≤ k, and
sN (vi) = max{sN (v1), . . . , sN (vk)}.

Obviously, for k > 1, every classification Kk can be obtained from Kk−1 by
selecting certain elements in all classes

C
(k−1)
1 , C

(k−1)
2 , . . . , C

(k−1)
k−1

of Kk−1 and including them in the new class C
(k)
k . Thus, every previous classi-

fication can be regarded as a simplified version of the next one, and every next
classification is a refinement of the preceding one.

4 Main Result and Verification

The main theorem of this paper establishes that the classifiers CL(V,E, `, r) are
capable of solving all classification tasks for any given dataset of DNA sequences.

Theorem 1. For each set S of DNA sequences and every given partition

S = S1∪̇S2∪̇ · · · ∪̇Sk (6)

one can find a classifier CL(V,E, `, r)

C = (V,E, `, r) (7)

which produces classification

K : X∗ = C1∪̇C2∪̇ · · · ∪̇Ck (8)

such that the classes of partition (6) are determined by the classes of classification
(8) so that Si = S ∩ Ci for all i = 1, . . . , k.

Proof. First, let us define convenient notation which will enable us to refer to all
sequences and their base pairs. Putting N = |S|, denote the sequences of the set
S by b(1), b(2), . . . , b(N). For each i = 1, . . . , N , denote the bases of the sequence
b(i) by the symbols b

(i)
j , where j = 1, . . . ,mi so that

b(i) = b
(i)
1 , b

(i)
2 , . . . , b(i)

mi
,

for all i = 1, . . . , N . Suppose that the sequence b(i) belongs to the class Sφ(i) of
partition (6), where φ is a function from [1 : N] into [1 : k].

Next, we introduce the following sets of vertices for the classifier CL(V,E, `, r)
we are going to construct:

V0 = {v1, v2, . . . , vk} (9)

Vi = {v(i)
1 , v

(i)
2 , . . . , v

(i)
mi−1} (10)

for i = 1, 2, . . . , N . In addition, choose a vertex v0 which does not belong to any
of the sets V0, V1, . . . , VN and suppose that these sets are pairwise disjoint and
all of their vertices are distinct. Put

V = V0 ∪ V1 ∪ · · · ∪ VN ∪ {v0}. (11)

To simplify further notation and have uniform definitions, we are going to denote
one and the same vertex v0 by several alternative symbols v

(1)
0 , v

(2)
0 , . . . , v

(N)
0 too.

Similarly, for i = 1, 2, . . . , N , we introduce a new symbol v
(i)
mi to be used as an

alternative notation for the vertex vφ(i) ∈ V0. For i = 1, 2, . . . , N , let us introduce
sets of edges

Ei = {(v0, v
(i)
1) = (v(i)

0 , v
(i)
1), (v(i)

1 , v
(i)
2), . . . , (v(i)

mi−1, v
(i)
mi

) = (v(i)
mi

, vφ(i))} (12)

and put
E = E1 ∪ E2 ∪ . . . ∪ EN . (13)

It remains to define the initial state s0 and the labels ` and r, see (2) and (3).
For all i = 1, 2, . . . , N and j = 1, 2, . . . ,mi, put

`((v(i)
j−1, v

(i)
j)) = b

(i)
j , (14)

r((v(i)
j−1, v

(i)
j)) = 1. (15)

The initial state s0 is defined by putting, for v ∈ V ,

s0(v) =
{

1 if v = v0,
0 otherwise. (16)

This completes the definition of the classifier CL(V,E, `, r).
Suppose that the classifier is used to process the sequence b(i), where 1 ≤ i ≤

N . We are going to show by induction that after considering the first j bases of
the sequence the current state of the classifier will satisfy

sj(v) =
{

1 if v = v
(i)
j ,

0 otherwise,
(17)

for any v ∈ V .
The induction basis is provided by (16). Suppose that equalities (17) have

been established for some 1 < j < mi. Then we can find the next state sj+1(v)
using recursion (5).

First, consider the case where v = v
(i)
j+1. Since E contains only one edge of

the form (w, v
(i)
j+1), and sj(v

(i)
j) = 1 by the induction assumption, (15) and (5)

yield us that

sj+1(v) =
∑

w∈V,(w,v)∈E

r((w, v))sj(w) (18)

=
∑

w∈V,(w,v
(i)
j+1)∈E

r((w, v
(i)
j+1))sj(w) (19)

= r((v(i)
j , v

(i)
j+1))sj(v

(i)
j) (20)

= sj(v
(i)
j) (21)

= 1. (22)

Thus, for v = v
(i)
j+1, the required version of (17) holds indeed.

Second, assume that v 6= v
(i)
j+1. Consider any w ∈ V . If w = v

(i)
j , then

(w, v) /∈ E by the choice of v. If, however, w 6= v
(i)
j , then sj(w) = 0 by the

induction assumption. Thus all summands in recursion (5) vanish and we get

sj+1(v) =
∑

w∈V,(w,v)∈E

r((w, v))sj(w) (23)

= 0. (24)

This means that the desired version of (17) holds if v 6= v
(i)
j+1, too. By the

principle of mathematical induction, it follows that (17) is always satisfied.
After all bases b

(i)
1 , . . . , b

(i)
mi of the sequence b(i) have been processed, the final

state of the the classifier CL(V,E, `, r) turns into

smi(v) =
{

1 if v = v
(i)
mi = vφ(i),

0 otherwise.
(25)

According to our definition b(i) belongs to the class Cφ(i) of the classification
Kk, as required. This means that our classifier indeed produces a classification
that agrees with the given partition of data, and so the proof is complete.

5 Neural Networks and Finite State Automata

Let us begin by comparing the classifiers CL(V,E, `, r) with neural networks.
Neural networks can be represented with similar labeled graphs. In this case
the vertices are called neurons, and the labels of the edges are called weights.

Edge labels are modified while a neural network is being trained. After that dur-
ing the operation of the network the labels remain unchanged. Each neuron of
the network takes a weighted sum of its inputs and passes it through a thresh-
old function, usually the sigmoid function. As indicated above, the classifiers
CL(V,E, `, r) are different from neural networks and finite state automata.

The major difference is that neural networks and classifiers CL(V,E, `, r)
are designed to solve substantially different types of problems. Neural networks
cannot be directly applied to classification of DNA sequences without collections
of some additional data, for example, from microarrays. The reason for this is
that the operation of every neural network depends on a relatively small number
of input parameters, represented as continuous real values. Small changes to
the values of these parameters are not generally supposed to create changes to
the classification outcome. Hence it is impossible to encode whole long DNA
sequences in this way. In contrast, the classifiers CL(V,E, `, r) can process all
base pairs of a given DNA sequence in succession.

Sophisticated continuous threshold functions used in neural networks lead to
another serious difference (see [25], Section 11). Although the current state of
a classifier CL(V,E, `, r) appears similar to the state of a neural network, the
transition to the next state is accomplished in a completely different fashion.

Comparing the classifiers CL(V,E, `, r) to finite state automata, let us just
note that each finite state automaton is used to divide its input into two classes
only. Besides, the edges of finite state automata do not have real numbers as
labels. These labels are inspired by analogy with neural networks. They make
classifiers CL(V,E, `, r) more flexible than finite state automata. This is why it
is natural to expect that future research will demonstrate the possibility of sub-
stantial reduction to the size of the classifiers CL(V,E, `, r) designed to handle
certain classification tasks.

6 Main Algorithm

After a classifier CL(V,E, `, r) has been found, the next natural step is to make
it smaller. This can be achieved by identifying equivalent vertices. We say that a
classifier CL(V,E, `, r) is minimal if it can no longer be simplified by combining
and identifying its vertices in some groups. As a guide to developing our mini-
mization algorithm we are going to use the established standard terminology for
analogous situations known in automata theory. Our new algorithm originates
from the reduction algorithm for finite state automata described in several books
(see, for example, [13], Section 3.7).

The minimization algorithm we are going to develop applies only to classifiers
of the special type used in the proof of our main theorem. Namely, here we
restrict our attention to the classifiers where each current state is a characteristic
function of one of the vertices: it is equal to 1 at this vertex, and is equal to 0
at all other vertices. The special vertex will be called the vertex of the current
state.

The algorithm proceeds by identifying equivalent vertices, so that one can
combine them without affecting the action of the classifier CL(V,E, `, r) on input
strings.

The concepts of equivalence and congruence will be used in order to simplify
the classifiers CL(V,E, `, r). They formalise and provide exact meaning to the
idea of dividing all vertices of a the classifier CL(V,E, `, r) into groups in such a
way that the operation of the classifier remains unchanged if all vertices in each
group are regarded as one new vertex.

Consider a classifier C = (V,E, `, r). In order to define the concept of a
congruence on C, we begin with a few auxiliary notions. First of all, let us recall
the definition of an equivalence relation. It is required, because every partition
of the set of vertices V into classes can be achieved using an equivalence relation.
Every subset of the set

V × V = {(u, v) | u, v ∈ V } (26)

is called a relation on the set V of all vertices. A relation % is said to be symmetric
if (u, v) ∈ % implies (v, u) ∈ %, for all u, v ∈ V . It is transitive if (u, v), (v, w) ∈ %
implies (u, w) ∈ %, for all u, v, w ∈ V . A relation is said to be reflexive if it
contains the set

{(v, v) | v ∈ V }. (27)

An equivalence relation is a relation which is reflexive, symmetric and transitive.
If % is a relation on V and v ∈ V , then we put

v% = {w | (v, w) ∈ %}. (28)

The set v% is called the equivalence class of % containing v. It is known and easy
to verify that % is an equivalence relation if and only if the sets v%, v ∈ V , form
a partition of V into several equivalence classes.

Let % be an equivalence relation on C. Next, we show how % simplifies C
by combining all vertices which belong to the same classes of %. The resulting
classifier will be called a quotient classifier. Namely, the quotient classifier C/%
is the quadruple

C/% = (V/%, E/%, `/%, r/%), (29)

where the sets V/%, E/% and functions `/%, r/% are defined as follows. The set
V/% is the set of all equivalence classes of % on V . The set E/% will contains an
edge (u%, v%) with

(`/%)((u%, v%)) = x ∈ X (30)

if and only if there exist u′ ∈ u% and v′ ∈ v% such that (u′, v′) ∈ E and
`((u′, v′)) = x. In this case we set

(r/%)((u%, v%)) =
∑

u′∈u%,v′∈v%,(u′,v′)∈E,`((u′,v′))=x

r((u′, v′)). (31)

To simplify notation, we will use the same symbols ` and r for the functions `/%
and r/%, too.

We say that two vertices of a the classifier CL(V,E, `, r) are *-equivalent if
the result of classification of each word by the classifier CL(V,E, `, r) starting in
the state of one of vertices coincides with its classification result when it starts
from the state of the second vertex.

In order to determine whether two vertices are *-equivalent, the algorithm
uses an iterative process based on k-equivalence. Two states are said to be
k-equivalent if every word of length ≤ k produces identical classification out-
comes in the case where the classifier CL(V,E, `, r) starts in the state of the
first vertex, exactly as when it starts in the second vertex. It is straightforward
to verify that *-equivalence is a congruence.

In order to start the process, let us say that two vertices s and t of the
the classifier CL(V,E, `, r) C = (V,E, `, r) are 0-equivalent to each other if and
only if they coincide. Next, suppose that for some k ≥ 0 the k-equivalence has
already been defined. Taking any two vertices s and t in V , we say that s is
(k + 1)-equivalent to t if and only if s and t are k-equivalent and, for each input
letter x ∈ X, if the classifier starts in the state of the vertex s and processes the
letter x, then it arrives at exactly the same state that is achieved if it starts in
the state of the vertex t and processes the letter x from that state, so that there
is no difference between starting from s or from t.

The method of computing the k-equivalence classes from (k − 1)-equivalence
classes is a dynamic programming algorithm. It finds the k-equivalence classes
by subdividing the (k − 1)-equivalence classes according to the change of state
of the classifier CL(V,E, `, r) when it reads each of the letters in X.

Since the set of all vertices is finite, they cannot be combined indefinitely,
and at some stage the algorithm terminates. For some integer k ≥ 0, the set of
k-equivalence classes will coincide with the set of (k + 1)-equivalence classes. At
this stage we see that both k-equivalence and (k + 1)-equivalence are in fact the
∗-equivalence.

These explanations show that the following steps find a minimal classifier
CL(V,E, `, r) equivalent to the original one:

1. Find the set of 0-equivalence classes of V .
2. For k = 0, 1, 2, and so on, if k-equivalence classes have been found, then

divide them as described above to find the (k +1)-equivalence classes of V . Stop
when the set of (k + 1)-equivalence classes is equal to the set of k-equivalence
classes, for some integer k. This step gives the set of ∗-equivalence classes, as
explained above.

3. Construct the minimal classifier CL(V,E, `, r) by identifying all vertices
of the classes of ∗-equivalence.

7 Open Questions

Problem 1. Develop a minimization algorithm for classifiers CL(V,E, `, r) with
arbitrary current state functions.

Problem 2. Evaluate the running time and develop more efficient minimization
algorithms for these classifiers.

Problem 3. Develop more robust algorithms by introducing a preprocessing step
which will augment the dataset with other sequences and achieve similar classi-
fications for sequences which are similar.

Two other related models used in the analysis of DNA sequences are Markov
Models and probabilistic finite state automata, see Baldi and Brunak [1], Durbin,
Eddy, Krogh and Mitchison [5], Jones and Pevzner [10] and Mount [26]. They
have been used to identify and classify segments of one DNA sequence and are
different from our model. It may make sense to explore the possibility of using
these notions to classify sets of whole large DNA sequences too. This leads to
the following questions suggested by the referees of this paper.

Problem 4. Investigate the running times and compare the classifications pro-
duced by our new model with those which can be obtained using Markov Models.

Problem 5. Investigate the running times and compare the classifications pro-
duced by our new model with those which can be obtained using probabilistic
finite state automata.

8 Acknowledgements

This research has been supported by the IRGS grant K14313 of the Univer-
sity of Tasmania and Discovery grant DP0449469 from the Australian Research
Council.

The authors are grateful to the referees for suggesting interesting open ques-
tions recorded in Probems 4 and 5.

References

1. Baldi, P. and Brunak, S.: “Bioinformatics : The Machine Learning Approach”.
Cambridge, Mass, MIT Press, (2001).

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.: “Introduction to Algo-
rithms”, The MIT Press, Cambridge, 2001.

3. Dazeley, R.P., Kang, B.H.: Weighted MCRDR: deriving information about rela-
tionships between classifications in MCRDR, AI 2003: Advances in Artificial In-
telligence, Perth, Australia, 2003, 245–255.

4. Dazeley, R.P., Kang, B.H.: An online classification and prediction hybrid system
for knowledge discovery in databases, Proc. AISAT 2004, The 2nd Internat. Conf.
Artificial Intelligence in Science and Technology, Hobart, Tasmania, 2004, 114–119.

5. Durbin, R., Eddy, S.R., Krogh, A. and Mitchison, G.: “Biological Sequence Anal-
ysis”. Cambridge University Press (1999).

6. Eilenberg, S.: “Automata, Languages, and Machines”. Vol. A,B, Academic Press,
New York, 1974.

7. Gallian, J.A.: Graph labeling, Electronic J. Combinatorics, Dynamic Survey DS6,
January 20, 2005, 148pp, www.combinatorics.org

8. Gusfield, D.: “Algorithms on Strings, Trees, and Sequences”, Computer Science
and Computational Biology, Cambridge University Press, Cambridge, 1997.

9. Holub, J., Iliopoulos, C.S., Melichar, B. Mouchard, L.: Distributed string matching
using finite automata, “Combinatorial Algorithms”. AWOCA 99, Perth, 114–127.

10. Jones, N.C. and Pevzner, P.A.: An Introduction to Bioinformatics Algorithms.
Cambridge, Mass, MIT Press, (2004). http://www.bioalgorithms.info/

11. Kang, B.H.: “Pacific Knowledge Acquisition Workshop”. Auckland, New Zealand,
2004.

12. Kelarev, A.V.: “Ring Constructions and Applications”. World Scientific, 2002.
13. Kelarev, A.V.: “Graph Algebras and Automata”. Marcel Dekker, 2003.
14. Kelarev, A.V., Miller, M. and Sokratova, O.V.: Directed graphs and closure proper-

ties for languages. “Proc.12 Australasian Workshop on Combinatorial Algorithms”
(Ed. E.T. Baskoro), Putri Gunung Hotel, Lembang, Bandung, Indonesia, July 14–
17, 2001, 118–125.

15. Kelarev, A.V., Miller, M. and Sokratova, O.V.: Languages recognized by two-sided
automata of graphs. Proc. Estonian Akademy of Science 54 (2005) (1), 46–54.

16. Kelarev, A.V. and Sokratova, O.V.: Languages recognized by a class of finite au-
tomata. Acta Cybernetica 15 (2001), 45–52.

17. Kelarev, A.V. and Sokratova, O.V.: Directed graphs and syntactic algebras of tree
languages. J. Automata, Languages & Combinatorics 6 (2001)(3), 305–311.

18. Kelarev, A.V. and Sokratova, O.V.: Two algorithms for languages recognized by
graph algebras. Internat. J. Computer Math. 79 (2002)(12) 1317–1327.

19. Kelarev, A.V. and Sokratova, O.V.: On congruences of automata defined by di-
rected graphs. Theoret. Computer Science 301 (2003), 31–43.

20. Kelarev, A.V. and Trotter, P.G.: A combinatorial property of automata, languages
and their syntactic monoids. Proceedings of the Internat. Conf. Words, Languages
and Combinatorics III, Kyoto, Japan, 2003, 228–239.

21. Lee, K.H., Kay, J., Kang, B.H.: Keyword association network: a statistical multi-
term indexing approach for document categorization. Proc. Fifth Australasian Doc-
ument Computing Symposium, Brisbane, Australia, (2000) 9 - 16.

22. Lee, K., Kay, J., Kang, B.H.: KAN and RinSCut: lazy linear classifier and rank-in-
score threshold in similarity-based text categorization. Proc. ICML-2002 Workshop
on Text Learning, University of New South Wales, Sydney, Australia , 36-43 (2002)

23. Lee, K.H., Kay, J., Kang, B.H., Rosebrock, U.: A comparative study on statis-
tical machine learning algorithms and thresholding strategies for automatic text
categorization. Proc. PRICAI 2002, Tokyo, Japan, (2002) 444–453.

24. Lee, K.H., Kang, B.H.: A new framework for uncertainty sampling: exploiting un-
certain and positive-certain examples in similarity-based text classification. Proc.
Internat. Conf. on Information Technology: Coding and Computing (ITCC2004),
Las Vegas, Nevada, 2004, 12pp.

25. Luger, G.F, “Artificial Intelligence. Structures and Strategies for Complex Problem
Solving”. Addison-Wesley, 2005.

26. Mount, D.: “Bioinformatics: Sequence and Genome Analysis”. Cold Spring Harbor
Laboratory, (2001). http://www.bioinformaticsonline.org/

27. Park, S.S., Kim, Y., Park, G., Kang, B.H., Compton, P.: Automated information
mediator for HTML and XML Based Web information delivery service. Proc. 18th
Australian Joint Conf. on Artificial Intelligence , Sydney, 2005, 401–404.

28. Park, G.S., Kim, Y.S., Kang, B.H.: Synamic mobile content adaptation according
to various delivery contexts. J. Security Engineering 2 (2005) 202-208.

29. Park, G.S., Kim, Y.T., Kim, Y., Kang, B.H.: SOAP message processing perfor-
mance enhancement by simplifying system architecture. J. Security Engineering 2
(2005) 163–170.

30. Park, G.S., Park, S., Kim, Y., Kang, B.H.: Intelligent web document classification
using incrementally changing training data Set, J. Security Engineering 2 (2005)
186–191.

31. Păun, G. and Salomaa, A.: “New Trends in Formal Languages”. Springer-Verlag,
Berlin, 1997.

32. Petrovskiy, M.: Probability estimation in error correcting output coding framework
using game theory. AI 2005: Advances in Artificial Intelligence, Sydney, Australia,
2005, Lect. Notes Artificial Intelligence 3809 (2005) 186–196.

33. Pin, J.E.: “Formal Properties of Finite Automata and Applications”. Lect. Notes
Computer Science 386, Springer, New York, 1989.

34. Rozenberg, G. and Salomaa, A.: “Handbook of Formal Languages”. Vol. 1, Word,
Language, Grammar, Springer-Verlag, Berlin, 1997.

35. Smyth, B.: “Computing Patterns in Strings”. Addison-Wesley, 2003.
36. Sugeng, K.A., Miller, M., Slamin and Bača, M.: (a, d)-edge-antimagic total label-

ings of caterpillars. Lecture Notes in Comput. Sci. 3330 (2005) 169–180.
37. Tuga, M. and Miller, M.: ∆-optimum exclusive sum labeling of certain graphs with

radius one. Lecture Notes in Comput. Sci. 3330 (2005) 216–225.
38. van Leeuwen, J.: “Handbook of Theoretical Computer Science”. Vol. A,B, Algo-

rithms and Complexity. Elsevier, Amsterdam, 1990.
39. Witten, I.H. and Frank, E.: “Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations”. Morgan Kaufmann, 2005.

