Computational Techniques and Applications: CTAC97 1
World Scientific

Floating Point and Composite Arithmetics

W.N. Holmes

Department of Computing, University of Tasmania, Launceston, Tasmania 7250, Australia.

(Proceedings of the Eighth Biennial Computational Techniques and Applications Conference,
Adelaide, South Australia, September 29 to October 1, 1997)

1. Introduction

The widespread adoption of the IEEE/1SO standard for binary floating point arith-
metic [8] has brought a measure of order to the chaos of technical computation. Persis-
tent complaints about calculator design [18], spreadsheet implementations, and about
computational software generally [6] demonstrate that general computation suffers
from the lack of similar support. Composite arithmetic, as outlined in a paper [7]
recently published by the IEEE, addresses these broader problems.

However, composite arithmetic could also be a basis for improving technical pro-
grams. This paper contrasts the use of floating point arithmetic and composite
arithmetic in technical computation.

2. Floating Point Representation and Arithmetic

The numbers used in floating point arithmetic are represented in semilogarithmic
form by expressing their value as two component numbers—one simple number giv-
ing its significant digits and another giving the level of scaling used. The so-called
scientific notation, now in popular use, is similar, and in the example 2.73 x 105 the
significant digits (or significand) are given as 2.73 and the level of scaling as 15. Here
the base of logarithmic scaling is explicitly given as 10, but most uses of semiloga-
rithmic notations allow the base to be implied, as in the so-called e-notation, which
would express 2.73 x 10*® as 2.73e15.

The first computers built after the second World War directly implemented only
fixed point arithmetic, usually integer arithmetic, and writings of the time recom-
mended that hand scaling be used for numbers in scientific computation, firstly as
more reliable (and more familiar in that era of the ubiquitous slide rule), and secondly
so that precision was not sacrificed in storing an explicit scale [14]. However, the con-
venience of automatic scaling soon led to semilogarithmic representation being used
through software subroutine libraries, and the popularity of these libraries soon led
to the introduction of circuitry to carry out arithmetic, now somewhat misleadingly
called floating point arithmetic, directly on values represented semilogarithmically.

2.1. Parameters The variety of computer architectures used in the 1950s
and '60s led naturally to a variety of floating point arithmetics, where the variety
was within the three parameters of the design of such arithmetic [15].

Numeric base: values were represented digitally in two ways—binarily and decimally, and both
were used in floating point representations. The representational base was usually also the
scaling base, but not always.



2 W.N. Holmes

Range: the range of values that could be represented was determined by the scaling base, together
with the number of digits allocated to represent the scaling level—usually called the exponent.
Negative exponents were sometimes allocated a sign bit, and sometimes kept as complements.

Precision: the number of significant digits allocated to that part of the representation giving the
value before scaling—once called the mantissa but nowadays called the significand—depends
on the word size of the computer, less whatever was allocated to the exponent. Again, negative
significands were sometimes allocated a sign bit, and sometimes kept as complements.

Eventually, a standard for floating point arithmetic became widely accepted [8],
which reduced the variety of floating point arithmetics without removing any of the
basic problems of scaling and of arithmetic on scaled values.

2.2. Floating point arithmetic problems The problems of floating point
arithmetic are inherent in the very method of representation [4].

Special values: neither logarithmic nor semilogarithmic representation (normalised or not), has a
natural place for the common value of zero. Zero, its reciprocal, and its self quotient, need
special representation if they are to be represented at all.

Range: although a much greater range of values can be represented in floating point than in
fixed point, arithmetic overflow cannot be completely avoided, and the additional problem of
underflow is introduced. The arithmetic must provide some way of signalling these exceptions.

Precision: values rarely occur singly, and often congregate in very large collections. Floating point
representation must therefore allow the designers of files to be generous or frugal in allowing
space for floating point values to be stored, consonant with any constraints arising from need
for accuracy. More than one length of representation is usually provided, and this affects the
accuracy of the arithmetic.

Accuracy: floating point arithmetic is inherently inexact, both in the conversion of values to and
from display form, and through truncation and rounding errors. Greater precision in storage
is often needed to maintain an acceptable level of accuracy in arithmetic.

To get around such problems special programming techniques, such as logarithmic
arithmetic [3] and multiple precision, are often needed. But the problems are not
confined to the arithmetic.

2.3. Programming problems Programming for computation with floating
point arithmetic is fraught with decisions that could greatly affect the reliability
of any results. Simply dealing with the doubts and uncertainties of the arithmetic
greatly complicates the work of the programmer. And often the user doesn’t know
about the decisions, and blithely accepts erroneous results.

Fix or float ? For what values, and in which computations, should floating point be used, and for
what and in which should fixed point be used ?

Short or long? For what values, and in which computations, should single precision be used, and
for what and in which should double be used ? Should a multiple precision subroutine library
be resorted to?

Exceptions ? Is exception handling provided, should it be used, and if so, what handling for which
computations ?

Conversion ? Where does a program convert values from one precision to another, or between
fixed point and floating point 7 How does a compiler convert numeric constants in a source
program ? Is the loss of accuracy significant ?



Floating Point and Composite Arithmetics 3

Display ? How is accuracy displayed, if known ? Or brought into a program ? How are exceptions
to be displayed ? Special values?

The possible effects of these decisions are often ignored, but often mentioned in
research reports with a touch of exasperation, though the problems have all long been
known and many solutions have long been considered for particular aspects[15].

3. Composite Representation and Arithmetic

Composite arithmetic is intended to provide a single solution to many of the prob-
lems of floating point arithmetic by providing for a variety of representations which
the arithmetic can use to adapt automatically to changes in kinds of values, both
those fed into computations and those resulting from them [7]. Composite arithmetic
is based on a composition of four formats of value representation within three different
forms.

3.1. Composite forms Three composite forms are proposed to meet sep-
arately the otherwise conflicting requirements of value storage, value display, and
arithmetic.

Storage form strives for efficient storage of values kept within both the main storage, and the
secondary storage of computers. As the designer of files would like control over how much

storage is taken up by numeric values, subject to any need for particular precision, four
different sizes (4 8 16 and 32 bytes) are proposed for storage form, which is binary.

Display form strives for effective communication of information about values between a program
and its users. Display form uses character fields whose lengths can be determined by the
programmer or the user, and provides for the representation to show not only the value, but
also what kind of value it is, and, for an inexact value, what its accuracy is, within the limits
of the display field specified.

Register form strives to provide a representation which allows the best feasible arithmetic to be
used. Register form is binary and very long—always 512 bytes. Values can be stored in
register form, but will take up much more space than even the longest storage form.

The relationship between the three forms is shown in the following diagram. Note
particularly that no provision is made for direct conversion between storage form and
display form. This means that all conversions are to or from register form so that
the best possible conversions are made—those with the least loss of information.

storage register | display
form form form

A
Y
A
A

3.2. Composite formats FEach composite form has four formats, two for
exact values, two for inexact. The specific format to be used for any value is chosen
by the arithmetic, not by the programmer. Format changes may be required within
register form in the course of a computation, or between forms during form conversion.
Primary exact format represents integers. An exact zero is provided. An integer of more than

500 bytes, binarily represented, can be accommodated in register form, but the value may be
too large for either exact, or for primary inexact storage format.



4 W.N. Holmes

Secondary exact format represents rational values as two integer components [9] though display
form will use three, if appropriate. This format represents indeterminacies and exact infinities.

Primary inexact format represents values which are inherently inexact, or cannot be represented
exactly, or become inexact through computation. In storage form pure logarithmic represen-
tation is used, and in register form fractional is used.

Secondary inexact format represents inexact values which are beyond the representational ca-
pacity of the primary inexact format. In storage form antitetrational representation is used,
which effectively eliminates overflow and underflow. In register form pure logarithmic repre-
sentation is used.

Because of space limitations, the original composite arithmetic proposal [7] left out
many of the details, in particular those of the means for keeping track of accuracy.
Some of those details can be got from Internet in the following documents.

ftp://ftp.comp.utas. edu.au/pub/nholmes/{ dssf.ps,ipdf.ps,iprf.ps}
A related document in the same place is vicl.ps. The scheme for accuracy tracking
within the inexact representational forms is like that first proposed by Gray and
Harrison [5], keeping a central value combined with an index of significance.

3.3. Composite Arithmetic The arithmetic functions of composite arith-
metic are defined solely between registers holding values in register form. This form
provides extremely high precision within one length of representation, exact arith-
metic for exact values, and inexact arithmetic with a significance index for inexact
values.

The exact arithmetic is of particularly high precision. The primary exact format
provides more than twelve hundred decimal digits. (This format was elided from [7]
but is described in the Internet document iprf.ps cited above.) The secondary ex-
act format provides more than six hundred decimal digits each for numerator and
denominator.

Although the inexact arithmetic is defined on the basis of formats including an
index of significance, this provides merely a minimum level of accuracy tracking.
Implementations could even provide an interval arithmetic [13] between and within
its registers, though the defined format would necessarily be reverted to when values
were to be stored in register form.

Primary inexact register format uses a straightforward representation with the
bytes split roughly equally between the integer part and the fraction part. The many
and signal advantages of this representation for inexact arithmetic are well known as
long accumulator arithmetic [10].

Secondary inexact register format keeps the logarithm of its value in the same
format that the primary uses directly for its value. This does not provide the same
freedom from overflow and underflow that the antitetrational representation of sec-
ondary inexact storage format provides[11], but it will nevertheless take quite an
extraordinary computation to flow out.

3.4. Feasibility Floating point arithmetic has been used in digital computers
in one form or other for some fifty years[17], and the reigning standard has been
successfully implemented within a single chip.



Floating Point and Composite Arithmetics 5

Obviously, composite arithmetic is more complex than floating point, but many
aspects of composite arithmetic have been implemented in hardware and software,
though the implementation of composite arithmetic in software would be relatively
slow in running[16]. The sheer componentry of modern computer processors 1]
strongly suggests that implementation on a single chip would be feasible, provided a
suitable standard could be agreed.

Composite arithmetic was originally proposed to support general purpose arith-
metic, such as that used by spreadsheet packages and electronic calculators, by defin-
ing arithmetic that would give better results, in particular for naive users. But
composite arithmetic also has benefits for technical computation beyond simply the
better arithmetic—it will make better programs easier to write.

3.5. Program Reliability @ Programs will of course be more reliable if their
final results are better, in particular if some estimation of the accuracy of those
results can be given automatically as provided for by composite arithmetic. Most
of the techniques within composite arithmetic are already used piecemeal for some
technical computation, in particular computational geometry has been supported
by both SLI (semiantitetrational) arithmetic[11] and rational arithmetic[12]. But
the greatest boon to reliable programming would be any systematic way to allow
technical programs to be simpler [19]. This, composite arithmetic also provides.

Fix or float ? The programmer has no choice. The user, or the arithmetic, can choose according
to values when the program is run.

Short or long? The programmer has more choice than at present, but that choice is mainly a
matter of file design, not of arithmetic, because the choice only applies to storage form, as
the arithmetic being carried out in the sole precision of register form. Multiple precision
subroutine libraries would almost never be needed.

Exceptions ? There are no exceptions for storage form, and only extremely unlikely exceptions for
register form, and those only exceptions which could be satisfactorily handled by representing
the result as an inexact infinity. (Indeterminacy has a representation as well.) Display form
would cause exceptions, either on output if the field were shorter than say five characters
(which the compiler or interpreter might be expected to prevent), or on input when the error
could be corrected by interaction with the user.

Conversion ? Any conversions during computation would be done in register form. Conversions
of keyed input would be done straight into register form of the appropriate format carrying
exactly the accuracy expressed by the user. Results would be displayed to the user converted
from register form with as much accuracy as allowed by the length of the display field provided,
and with any inaccuracy explicity displayed. Inaccuracy would either result from inaccurate
starting values, from algorithmic inaccuracies, or from inaccuracies introduced when register
form values are converted to storage form—this last is the only source of inaccuracy the
programmer would normally be concerned with, and this would be a matter of balancing the
exigencies of file design against the need for sustaining accuracy.

Display ? The proposal for composite arithmetic provides for explicit display of accuracy, usable
for either input or output (see document ipdf.ps). Special values, indeterminacy as well as
exact and inexact zeroes and infinities, are also provided for in all forms, not just in display
form.

With composite arithmetic, the search for good algorithms would be able to focus
on the more difficult algebraic problems, because the arithmetic problems would



6 W.N. Holmes

be greatly diminished, if not eliminated. Even some of these algebraic problems
might eventually be automatically solved, for example, by the value labelling methods
sometimes used by compilers [2].

4. Conclusion

Composite arithmetic provides benefits to technical computing in allowing better
final results to be computed with an estimate of accuracy, and in allowing simpler
programs to be written. Therefore standardisation of something like composite arith-
metic should be supported and promoted actively. The benefits of simpler programs
are in the long run even greater than those of better final results.

References

[1] Burger, D. and Goodman, J.R., Billion Transistor Architectures, IEEE Computer, 30, 9, 1997,
46-48.

[2] Briggs, P., Cooper, K.D. and Simpson, L.T., Value numbering, Software—Practice and Ezpe-
rience, 27, 6, 1997, 701-724.

[3] Das, D., Mukhopadhyaya, K. and Sinha, B.P., Implementation of Four Common Functions on
an LNS Co-Processor, IEEE Trans. Computers, 44, 1, 1995, 155-161.

[4] Goldberg, D., What every computer scientist should know about floating-point arithmetic,
ACM Computing Surveys, 23, 1, 1991, 5-48.

[6] Gray, L.H. and Harrison, J.C., Normalized Floating-Point Arithmetic with an Index of Signif-
icance, in Proc. Eastern Joint Comput. Conf., AFIPS, 16, 244-248.

[6] Hatton, L., The T Experiments: Errors in Scientific Software, IEEE Computational Science &
Eng., 4, 2, 1997, 27-38.

[7] Holmes, W.N., Composite arithmetic: Proposal for a new standard, IEEE Computer, 30, 3,
1997, 65-73.

[8] IEEE Standard for Binary Floating Point Composite arithmetic, ANSI/IEEE Std.754-1985,
IEEE, 1985, reprinted in ACM SIGPLAN Notices, 22, 2, 1987, 9-25 (also called IOS/IEC 559).

[9] Kornerup, P. and Matula, D.W., Finite Precision Rational Arithmetic: An Arithmetic Unit,
IEEE Trans. Computers, 32, 4, 1983, 378-388.

[10] Kulisch, U.W. and Miranker, W.L., The Arithmetic of the Digital Computer: A New Approach,
SIAM Review, 28, 1, 1986, 1-40.

[11] Lozier, D.W., An underflow-induced graphics failure solved by SLI arithmetic, in Proc. 11th
Symp. Computer Arithmetic, editors E. Schwartzlander, M.J. Irwin and G. Jullien, IEEE CS
Press, 1993, 10-17.

[12] Michelucci, D. and Moreau, J-M., Lazy Arithmetic, IEEE Trans. Computers, 46, 9, 1997,
961-975.

[13] Moore, R.E., Interval Analysis, Prentice-Hall, 1966.

[14] National Physical Laboratory, Modern Computing Methods, HMSO, second edition, London,
1961.

[15] Sterbenz, P.H., Floating-Point Computation, Prentice-Hall, 1974.

[16] Schulte, M.J. and Swartzlander, E.E.Jr., A processor for accurate, self-validating computing,
in Scientific Computing and Validated Numerics, editors G. Alefeld, A. Frommer and B. Lang,
Akademie Verlag, 1996, 25-31.

[17] Rojas, R., Konrad Zuse’s Legacy: The Architecture of the Z1 and 73, IEEE Annals Hist.
Comp., 19, 2, 1997, 5-16.

[18] Thimbleby, H.W., A New Calculator and Why It Is Necessary, The Computer Journal, 38, 6,
1995, 418-433.

[19] Wirth, N., A Plea for Lean Software, IEEE Computer, 28, 2, 1995, 64-68.



