
ADAPTIVE SIMULATION MODEL CONFIGURATION

by

Randall Gray, B.A. (Flinders University of South Australia)

Submitted in fulfilment of the requirements
for the Degree of Doctor of Philosophy

Discipline of Mathematics
University of Tasmania

December, 2018

I declare that this thesis contains no material which has been ac-
cepted for a degree or diploma by the University or any other in-
stitution, except by way of background information and duly ac-
knowledged in the thesis, and, to the best of my knowledge and
belief, no material previously published or written by another per-
son, except where due acknowledgement is made in the text of the
thesis; nor does the thesis contain any material that infringes copy-
right.

Dr Simon Wotherspoon is listed as a contributor to the papers in-
cluded as Chapters 2 and 3, his contribution to each of the papers
was predominantly as a sounding board and a source of encour-
agement. His direct input into the papers was primarily concerned
with the structure of the paper and its ordering rather than its con-
tent.

Signed:

Date: December, 2018

The publishers of the papers comprising Chapters 2 and 3 hold the
copyright for those chapters, and access to the material should be
sought from the respective journals. The remaining non-published
content of the thesis may be made available for loan and limited
copying and communication in accordance with the Copyright Act
1968

Signed:

Date: December, 2018

Statement of Co-Authorship

School of Natural Sciences, Mathematics Randall Gray (Candidate)
University of Tasmania Dr Simon Wotherspoon (Supervisor)

Author details and their roles:

Paper 1, Increasing model efficiency by dynamically changing model representations

Located in Chapter 2.

The candidate, Randall Gray, was the primary author and was responsi-
ble for the conception, design, implementation, preparation of graphics,
analysis of the work described in the paper, and writing the paper it-
self. Dr. Wotherspoon contributed guidance as to how to improve the
presentation of the work and make it accessible to a broader audience
before submission, and provided advice on addressing the concerns of
the reviewers.

Paper 2, Adaptive submodel selection in hybrid models

Located in Chapter 3.

The candidate conceived the ring-like structure used in paper, estab-
lished the algebraic properties of the structure and proved the relevant
theorems. The candidate also designed the thought model described in
the paper, prepared the tables and graphics and was wrote the paper.
Again, Dr. Wotherspoon contributed by acting as an informal reviewer,
highlighting those parts of the paper that were inadequately explained
or difficult to follow, and after acceptance by providing advice on ad-
dressing reviewers’ comments.

Signed:

Dr Simon Wotherspoon
Supervisor
Institute for Marine and Antarctic Studies

Date:

Signed:

Prof Mark Hunt
Head of School
School of Natural Sciences

Date:

ABSTRACT

Models of complex systems may be improved in fidelity, efficiency or both by
allowing the way they represent component parts to change as the state of the
model and its components move through their state-spaces.

A simple model demonstrates that representation changes for a population en-
countering contaminants may perform better than either conventional form.
Here, there was a substantial decrease in runtime relative to a purely i-state
configuration (individual-based) model, with comparable fidelity, while the
purely p-state (population-based) version exhibited error arising from the b̀lurring”
of contaminant contact through the distributed population. This example demon-
strates the utility of model representations maintain important state data across
representations so that previous representations can be recovered with mini-
mal error.

Triggers for changing representations of components is addressed in a paper
exploring a possible set of dynamics associated with a simple, hypothetical
model of a seven component ecosystem. The components of the system are
described as i-state configuration models or as p-state models, and a mecha-
nism for determining when to change representations is outlined.

To support the analysis and selection of representations, a metric-space with
the properties of a commutative ring is defined. The elements of the metric-
space are trees that can encode the structural character of a set of submodels
which comprise the model of a system, and to provide a metric in analysis.

Finally, a framework is developed with an example model that closely fol-
lows the hypothetical example. It was designed as a reference model, and
is freely available on https://github.com/snarkypenguin/Mutans.git This
implementation demonstrates dynamic configuration management, mainte-
nance of the states of superceded submodel representations, and the support
structures needed to implement models of this type.

ACKNOWLEDGEMENTS

My deepest thanks go to my very patient wife, Anne, who coped with far too
many years with me firmly attached to my keyboard. Thanks also go my su-
pervisors: Simon, who was never short of optimism and encouragement, and
both Vincent Lyne and Beth Fulton who shared many years of modelling on
the cliff-face with me. I would also like to acknowlege my debt and gratitude
to the late Dr William Cornish of Flinders University, who kindled my love of
mathematics in 1985.

TABLE OF CONTENTS

TABLE OF CONTENTS 2

LIST OF TABLES 6

LIST OF FIGURES 7

1 INTRODUCTION 9

1.1 Motivation . 12

1.1.1 Implications of the effects of behaviour, vulnerability and
change . 13

1.1.2 Implications of the effects of social dysfunction 15

1.2 Comparable work . 15

1.3 Structure . 18

1.4 Scales . 20

1.5 Outline . 22

2 INCREASING MODEL EFFICIENCY BY DYNAMICALLY CHANG-
ING MODEL REPRESENTATIONS 24

2.1 Prologue to the paper . 24

2.2 Introduction . 26

2.3 Overview: an ODD model description 29

2.3.1 Purpose . 29

2.3.2 State variables and scales . 30

2.3.3 Process overview and scheduling 31

2.4 Design concepts . 31

2.5 Details . 32

2.5.1 Initialisation . 32

2

TABLE OF CONTENTS 3

2.5.2 Input . 32

2.5.3 Submodels . 33

2.6 Results . 35

2.6.1 Contaminant load correspondence between representa-
tions . 36

2.6.2 Contaminant load variability 36

2.6.3 Sensitivity to the shape of the plume 37

2.6.4 Run-time . 38

2.7 Discussion . 39

2.7.1 State spaces . 39

2.7.2 Heuristics . 40

2.7.3 Transitions . 40

2.7.4 Errors . 41

2.8 Conclusion . 42

2.9 Epilogue to the paper . 43

3 ADAPTIVE SUBMODEL SELECTION IN HYBRID MODELS 44

3.1 Prologue to the paper . 44

3.2 Introduction . 46

3.3 Model organization . 48

3.3.1 Implications of changing configurations 49

3.3.2 Systematically adjusting the model configuration 51

3.4 The example model . 53

3.4.1 IB Plants . 56

3.4.2 IB Animals . 56

3.4.3 The monitor and model dynamics 58

3.5 Discussion . 64

3.6 Conclusion . 66

3.7 Appendix . 67

3.7.1 Mathematical definitions . 67

3.8 Epilogue to the paper . 70

4 A RING-LIKE STRUCTURE OF TREES 71

4.1 Introduction – a historical context . 71

TABLE OF CONTENTS 4

4.2 Conventions and preliminary definitions 72

4.3 Scalar Multiplication and addition 75

4.3.1 Scalar multiplication and some convenience functions . . 75

4.3.2 Addition . 75

4.4 Properties of a vector space . 76

4.5 Seminorms, norms and metrics . 81

4.5.1 T and its classwise seminorm 82

4.6 Element multiplication in Ť and establishing the properties sim-
ilar to those of a ring . 84

4.7 Discussion . 87

5 THEORY AND AN EXAMPLE IMPLEMENTATION 88

5.1 Formative design considerations . 89

5.2 Principles . 90

5.2.1 Interactions . 90

5.2.2 Time . 91

5.2.3 Changing representation . 91

5.2.4 Assessment and adaptation 92

5.3 Framework and Example implementation 92

5.3.1 Scheme . 93

5.3.2 SCLOS– a Scheme implementation of CLOS 96

5.3.3 Class structure . 96

5.3.4 Parameterisation . 103

5.3.5 Model initialisation . 106

5.3.6 Methods, model bodies and closures 106

5.4 Execution and Control flow . 107

5.5 Interaction with the kernel and other agents 108

5.5.1 Calls to the kernel . 108

5.5.2 Spatial queries . 109

5.6 Introspection agents: loggers and monitors 110

5.6.1 Generating output files – loggers 110

5.6.2 Changing representations . 111

5.6.3 Comparison of states . 114

5.7 Future work . 116

TABLE OF CONTENTS 5

5.7.1 Distributed models . 116

5.7.2 Cross-representation interactions 116

5.8 Observations . 120

6 Conclusion 123

6.1 Into the future . 127

A TYPESETTING CONVENTIONS 130

B SNAPSHOTS OF REMODEL RUN 131

C SUPPLEMENTARY MATERIAL 135

BIBLIOGRAPHY 139

LIST OF TABLES

2.1 Parameters associated with individual movement 33

2.2 Maxima and Means . 36

2.3 Deviations amongst the model runs with respect to a given mean 37

2.4 Circular plume results . 38

2.5 Elliptical plume results . 38

5.1 Fundamental classes in the Remodel framework framework-classes.scm 97

5.2 More fundamental classes – framework-classes.scm 98

5.3 Introspection classes in Remodel– introspection-classes.scm 100

5.4 Basic individual-based representations – framework-classes.scm . . 101

5.5 Non-spatial environments elements – landscape-classes.scm 102

5.6 Spatial environments – landscape-classes.scm 103

5.7 Symbols . 117

A.1 Printing styles . 130

6

LIST OF FIGURES

2.1 Snapshots of individuals’ locations at 28 day intervals superim-
posed on the migratory path. The plume’s contact domain is
marked by a grey ellipse near the position of individuals at day
28, with the track of a single individual approaching it. The do-
main of a population is is circumscribed around the individuals
at day 196 for comparison. 30

3.1 Time scheduling strategies. Red boxes represent time steps that
have already passed, blue boxes represents scheduled time steps
that have not yet been run. “Uni:” and “Vss:” submodels are
members of a uniform or variable speed splitting submodels
and require uniform time steps, and “Dyn:” submodels have
adaptive time steps. 50

3.2 The model domain is divided into nine cells. An SD agent is
associated with each of these cells and with the domain as a
whole. Any IB agents which are created during the simulation
will be associated with one cell at any given time. 53

3.3 The color of the p,h and c indicate an agent’s current representa-
tion within a cell at various points in the description of a simula-
tion. In each, a black symbol indicates that the biomass of plants
(p), herbivores (h) or carnivores (c) is modeled with the global
SD agent, a blue symbol indicates that the biomass is modeled
with a cell’s SD agent, and red indicates that an IB model is be-
ing used. Symbols composed of two colors indicate that more
than one representation is currently controlling portions of the
relevant biomass. 61

3.4 Normalized indexes of execution speed (black) and fidelity (red)
the against configuration changes through time associated with
Figure 3.3 . 62

B.1 Snapshots of tree-cover locations at day 0. The herbivore is not
visible, because it hasn’t moved yet. 132

B.2 Snapshots of tree-cover locations at day 25. The herbivore is
grazing on the foliage of the trees. 133

7

LIST OF FIGURES 8

B.3 Snapshots of tree-cover locations at day 50. The herbivore is still
grazing on the foliage of the trees. 134

CHAPTER 1

Introduction

Modellers of complex systems are often faced with the task of coupling com-
ponents which may operate at quite different scales with the goal of creating
a useful tool for study these systems. This thesis puts forward the argument
that better1 models may be built if we allow the representation of component
parts of a model to change according to

their states,
the nature of their interactions with other components,
the needs and states of the other components

and
the state of the model as a whole.

The majority of the discussion will be couched in the context of biological or
environmental systems, but it is not limited to this area: the context was cho-
sen for its familiarity, its generality, and because models of ecosystems often
incorporate significant environmental, physical and biochemical submodels
such as in ATLSS [DeAngelis et al., 1998], Atlantis [Fulton et al., 2011b], and
InVitro [Gray et al., 2014].

A mechanism for deciding how close complex mixtures of agents are to nom-
inative “good” or “bad” configurations is necessary, so a mathematical struc-
ture is developed which can be used to encode information about the model’s
constituents and their relationships. This structure is a normed vector-space,
and can be used to assess the relative utility of a configuration by comparison
with a corpus of configurations which are either preferred or deprecated.

The assessment and conversion of components from one form to another is
a potentially burdensome process; to alleviate this, and make the approach
more useful, a framework for constructing models, Remodel, is developed in
Chapter 5. It treats models as being composed of niches which are analogous
to environmental niches. Much as an environmental niche may be occupied
by members of a number of different species, a niche in the framework may

1Here, better can mean ‘less error, faster, more consistent with field data or whatever the model
in question is configured to optimise. This objective may also change through the life of the
simulation.

9

10

be populated by instances of different types of agents. In an environment, the
succession of occupants in a niche is driven by the state of the system, and
organisms which are more fit for the state replace those which perform less
well. The same sort of principle may be applied in Remodel. While it can be
used in much the same way as other modelling frameworks, such as NetLogo
[Wilensky, 1999] or Swarm [Minar et al., 1996], the framework provides sup-
port for modellers to indicate what conditions are favourable for different rep-
resentations which fill the niches in the models and to automatically replace
agents which are ill-suited to their context with more appropriate representa-
tions when the need arises. The framework is explored using the thought-model
of Chapter 3 as a notional equivalent of an artist’s mannequin.

Such a strategy has a number of potential benefits:

– we can make many simple representations, submodels, for a niche (sensu Gray
et al. [2006] and Gray et al. [2014]) in the model, each of which deals well
with a particular part of the submodel’s domain;

– the comparative simplicity of these representations effectively reduces
the number of potential code paths within a model at any given moment,
since representations do not have to cope with edge cases, they merely
indicate that they are entering a marginal or inappropriate domain;

– we can use analytic representations which are more efficient at represent-
ing large numbers of entities;

– we can use individual-based representations which capture the fine-scale
dynamics that dominate when we are dealing with discrete events or low
numbers of entities;

– we can choose representations that make the best use of available data
within the model, or can ask for better representations in the ensemble;

– it is simple to incorporate code to track information about representation
changes, relative execution speed, and cumulative error into the mod-
elling system;

– we may include agents that identify the emergence of perverse dynamics
within the system;

and

– we can decouple the production of the results from processes which sim-
ulate the systems and subsystems being modelled.

The work will explore issues such as managing components with different
time-steps, the preservation of data across various representations of a com-
ponent of the model, the sequencing of agents and maintaining temporal con-
sistency, and the fundamental issues regarding how the transition from one
model mix to another should be decided upon and effected. It also makes it

11

simple to address the questions “How do we deal with situations where the as-
sumptions that underpin our representation no longer hold?” and “How do we man-
age the execution of submodels which simulate systems or entities with multi-modal
behaviour?”

Consider this example: rather than a single representation for the population
of a coastal city, we may have a number of different submodels with different
levels of aggregation and different temporal or spatial scales. In a simulation of
a cyclone season, we may start with a simple single age-histogram representa-
tion. As a tropical storm builds we may disaggregate the histogram, appropri-
ately distributing the population to finer age-histograms associated with local-
ities throughout the region. As it approaches the coastline, the essentially static
representations which lie in areas likely to suffer damage are converted into
agents instances of running submodels which represent households. Shortly
before the cyclone reaches the point where damage occurs, we may resolve
the representation further, instantiating emergency response agents and con-
verting households agents to individuals at risk. In the aftermath, aggregation
may occur in regions where there are no acute effects, but other parts of the
system may remain finely resolved.

In this example, we change the representations to deal with both of the ques-
tions above. We initially assumed that for most of the purposes of the simu-
lation, our population could be treated as relatively homogeneous, and may
have kept aggregate information about population distribution, wealth and
demographic characteristics, but as the storm hits, the simulation needs to
change the state of a portion of the population (those with damaged prop-
erty, for example), and we have to refine our representation. Similarly, the
behaviours following the storm are modally different: those who live in pro-
tected areas are mostly free to carry on with essentially the same normal rep-
resentation, but those who are living in damaged areas must engage in quite
different activities, and may have quite a different exposure to risks.

Adaptive approaches commonly occur in techniques for numerical approxi-
mation (regression, root finding, and parameter estimation for example), nu-
merical solutions for systems of differential equations, feature detection and
recognition, control systems and route planning. Often these approaches in-
volve adjusting the size of the domain considered (subdivisions or step size),
or the rates associated with a process. In the case of route planning, sets of
routes may be marked as impassable as data becomes available, triggering a
reassessment of the set of possible routes. More broadly, domain adaptation
describes a general approach where a model or system adjusts itself to the data
it works with one of the canonical examples is a Bayesian spam filter which
includes a users assessment of whether email is spam or not in its subsequent
assessments. A common trait these adaptive techniques share is that the algo-
rithm which processes the data remains essentially the same.

Huston et al. [1988] argued that individual-based models are able to incor-
porate dynamics across scales and that the fine scale dynamics experienced
by individuals plays a significant role in many of the population scale pat-
terns observed in ecological studies. This is a reasonable position to take, and

1.1. MOTIVATION 12

individual-based modelling is now a common approach. Individual-based or
super-individual-based models are not a panacea. These types of models may
become costly as the number of individuals or the interactions between in-
dividuals or super-individuals grows, and small discrepancies between the
behaviour or parameterisation of the modelled entities and their real counter-
parts may produce large discrepancies at the population level. Many of the
parameters that may influence the life-history of organisms at an individual
level are difficult or impossible to estimate in situ, and so the effects of individ-
uals modelled behaviours or processes may not scale well when incorporated
in larger systems.

Discrete changes in the behaviour of a system, or part of a system, are com-
monplace. The scales of systems that exhibit switching behaviour range from
a molecular level, such as the behaviour of freezing liquids, through the in-
termediate scales to the changing climate. Evidence for a broad recognition
that systems dynamics can (and do) switch rapidly from one ostensibly stable
mode to another is that the discussion of tipping points has increased dramat-
ically in the last decade [Bhatanacharoen et al., 2011].

1.1 Motivation

There are a number of situations where the nature of a system changes to such
a degree that the fundamental dynamics we might normally use to simulate
the system are inappropriate. In models of animal populations, it may be that
the number of individuals may have climbed to the point that inaccuracies in
individual-based models begin to dominate the dynamics of the system, or
that the number of individuals has declined to the point that an analytic rep-
resentation is unable to capture the dynamics of a small population. We ought
to be able to reduce our model error by choosing appropriate representations
for the conditions, and to limit the propagation of error into components that
depend on other submodels. Such partitioning also makes error estimation
more straightforward.

We can also find examples systems that are subject to serious perturbation
arising from small deviations from their “nominal” condition. Traffic flow, for
example, can be dramatically constrained by obstructions (sudden or other-
wise) on the roadway with consequences that spread quite a long way from
the source. Another potential source of perturbation which may have signifi-
cant effects is a change in behaviour in some subset of components of the sys-
tem. In the context of biological systems, this is particularly so if the change
impinges on the viability of individuals or their ability to reproduce.

Frameworks have been constructed to assist the development of agent-based
models, notably Swarm [Minar et al., 1996], MASON [Luke et al., 2004], Net-
Logo [Wilensky, 1999], RePast [Collier et al., 2003], and AnyLogic [AnyLogic,
2001]. These frameworks or toolkits were the first major software packages
designed to make the process of constructing agent based simulation mod-
els simpler. Many of them also support the blending of modelling paradigms

1.1. MOTIVATION 13

(systems dynamics, discrete event simulations, and individual-based models,
for example). These toolkits have a broad user base and include support for
essential facilities such as generating graphic output or interaction with GIS
systems: their focus is on making robust tools available to modellers across a
range of research domains. They have, however, no explicit support for mod-
els where the representations of entities may actually change their form. As
mentioned above, we are comfortable with real-world systems where things
undergo dramatic changes: water freezes, some insects go from egg to nymph
and nymph to adult as part of their life-cycle: it seems a natural conclusion
that simulations of these things may benefit from an analogous process.

1.1.1 Implications of the effects of behaviour, vulnerability and change

Migrations are common in many populations, often for reasons such as breed-
ing, resource scarcity, and the encroachment of competing species, such as
Homo sapiens. These examples are relatively predictable, and typically in-
volve a homogeneous response from the population. Similarly, acute exoge-
nous factors, such as changing environmental conditions, such as the seasonal
variations, weather, or the availability of water or prey, can significantly alter
the behaviour of organisms. The responses to these stressors are not necessar-
ily uniform in the population. Ward and Krebs [1985] discuss the behaviour
of lynxes in response to declining prey populations. In this study, two distinct
behavioural responses prevailed: some animals choose a nomadic lifestyle as a
means of optimising their likelihood of hunting success, while others remain in
their own territory. Though Ward & Kreb’s sample size was small, the distinct
responses suggest that lynx populations respond to prey scarcity in a hetero-
geneous way and, as a result, may be less amenable to modelling as a single
population. Models of the effect of trapping on the lynx population which do
not represent these two behaviourally distinct populations differently would
have difficulty producing results which were consistent with field studies.

Zala and Penn [2004] present a useful review of the effects of behaviour dis-
rupting contaminants in over thirty different species of vertebrates studied in
the literature. In this review, nearly half of the noted behavioural changes
amongst the species could impair their reproductive capacity, and a number
of them involved impairment of cognitive abilities, movement or ability to for-
aging. Simple models of systems with contaminant uptake, and its non-lethal
effects may be unable to capture important dynamics in the populations when
contact with contaminants may be both indirect and behaviour dependent at
several trophic levels. If a species is particularly vulnerable to low levels of
contaminants, the flow-on effect of trophic transport may be very difficult to
model in any way other than with an individual-based model. Swan et al.
[2006] has found that very low levels of the anti-inflammatory drug diclofenac
are fatal to old world (Gyps spp) vultures which acquire it by scavenging car-
casses of dead cattle. In cases where there may be altered behaviour or fatal
toxicity at low levels, traditional analytic approaches to modelling the trans-
port of contaminants through the food chain may be inadequate since the be-
haviours exhibited by the populations are no longer homogeneous, and alter-

1.1. MOTIVATION 14

native representations for affected and unaffected portions of the populations
are indicated.

When an altered behaviour or biological efficiency is associated with the spread
or reproduction of organisms, the scope for destructive feedback is increased,
and the dynamics can diverge rapidly from representations that are adequate
for an unperturbed system. The effects of Toxoplasma gondii on rats [Berdoy
et al., 2000] is an ideal example: rats inoculated with the parasite (usually by
contact with infected cat faeces) lose their innate fear of cats. The positive rein-
forcement on the spread of T. gondii afforded by this leads to greater potential
for the pathogen to infect more cats, and hence, more rats. The behaviour of
the rats is clearly not consistent with the behaviour one would usually encode
in a model of a rat population. In a similar paper, van Dobben [1952] observes
that roaches (Rutilus spp) infected with Lingua intestinalis were three to five
times more numerous in cormorant catches than in the roach population of
the IJsselmeer2 (as estimated from commercial catches), suggesting that some-
thing in the fishs behaviour makes them more susceptible to capture. In these
cases, special steps would be needed to to model the populations, either ana-
lytically or in simulation, to avoid underestimating both the mortality of the
prey species and the presence of the pathogens in the definitive host.

Dobson [1988] contains a brief summary of literature that addresses parasitic
infection which alters the hosts behaviour to benefit the parasites reproduc-
tion. Particularly useful are the analyses of the consequence of the interac-
tion for both the definitive host that parasites breed in, and intermediate hosts
which are used to reach the definitive host3. In a broader study, Poulin [1994]
assesses the effect on host behaviour in a number of host-parasite pairings,
and found that the parasites had a significant effect on the behaviour of their
hosts.

These papers concerning the effect of parasites on host behaviour suggest that
the influence of parasitism on populations may be greater than we might ex-
pect. Lafferty et al. [2006] argue that parasitism is the dominant mode of
trophic interaction, and that their role is significantly absent in the literature.
The implication is that for trophic models of any sort, there needs to be a body
of robust techniques to manage the transition of parts of a population from
uninfected to infected and some means of dealing with them which preserves
their properties appropriately. While Dobson provides an analytic example,
it is clearly limited by the requirement of sufficient population sizes to make
the analytic representation tenable its application in situations where local
extinction is a possible outcome may not be tenable.

It is also possible for populations which are afflicted by behaviour modifying

2A large lake in the Netherlands.
3The author also presents several systems of differential equations which describe the pop-

ulation trajectories of different ways the parasitism occurs, their points of equilibrium, and he
also discusses the derivation of these systems. Equations like these can be used as the basis for
interaction between different levels of aggregation (see Section 5.7.2 for an example using inte-
gral equations to make gape limited predation by individual on populations select the correct
sub-population).

1.2. COMPARABLE WORK 15

parasites to also be vectors for contaminants which affect their predators. Man-
aging the resulting cascade of influence may have particular relevance when
considering strategies for the management of vulnerable species. An appropri-
ate expression of behaviour influences reproduction and predation dynamics
and is thus essential in simulation models.

When a significant portion of a population is infected with these types of par-
asites, we can no longer treat the population as homogeneous, and the rates
for reproduction and mortality vary significantly between infected and unin-
fected sub-populations. In this scenario, there it is a reasonable assertion that
infected portions of the population should be treated separately from the un-
infected population.

1.1.2 Implications of the effects of social dysfunction

The situation is more complex when there are endogenous reasons for fun-
damental changes in an organisms basic dynamics. Unnatural situations can
induce radical, even pathological, changes in behaviour. Social animal popula-
tions may behave in quite strange ways when their population density grows
too large, there are stressors which are alien to them, or the populations so-
cial profile is disrupted. A seminal (and grim) example of this is described
in Calhoun [1973]. Calhoun recounts an experiment in which mice are con-
fined in a domain where all their physical needs were met, all possible sources
of mortality apart from senescence and death by injury were excluded, and
there was no possibility of emigration. Social and behavioural disintegration
began to manifest in the third generation (day 315), and the population went
into terminal decline after 560 days, and for all practical purposes the social
organisation had collapsed utterly.

Calhoun discounted the population density as the cause of the social disinte-
gration, rather attributing the collapse to the inability of young adults to en-
gage in normal roles due to high competition for the social niches which were
filled by older, dominant mice. The behavioural changes attending the so-
cial collapse did not revert to more normal behaviour when population levels
dropped (past 560 days). This type of response to social conditions may be
pertinent for other species, and it has clear implications for simulation mod-
els of social animals. Behaviour associated with social settings is, almost by
definition, context dependent. This paper illustrates that, at least in social an-
imals, dramatic changes in models of behaviour may be required, and that
those changes may be dependent on the social context rather than the physical
environment. The social connections maintained may be as important to the
survival of an individual as access to shelter or food in some circumstances.

1.2 Comparable work

In environmental modelling, there has been gradual trend to increase the rep-
resentational correspondence between models and their biophysical analogues,

1.2. COMPARABLE WORK 16

both in terms of basic biological activity and in their interactions with other el-
ements in the simulated domain. This comes at a cost. Tracking the fine scale
modal properties more closely requires decision or selection strategies which
ensure that the models behave in ways that are appropriate for the context.

Many individual-based models incorporate environmental characteristics that
influence the behaviour of the individuals simulated. Botkin et al. [1972a,b]
and DeAngelis [1978] are important early examples: Botkin et al. dealt with
systems that modelled the effect of spatially explicit environmental conditions
on simulated trees (rather than stands or coupes) in a mixed species popula-
tion in North America; in the case of DeAngelis, the model was used to explore
the distribution of fish (modelled as individuals) in a speculative body of wa-
ter with a known distributions of temperature and food availability. Both of
these models simulated the dynamics resulting from the physical conditions
real plants and animals might encounter and they reflected observed patterns
to a striking degree. Many processes occur over short time spans, small do-
mains or both, and these models provided a means of simulating these pro-
cesses over appropriate scales. These models were successful because they
they increased the fidelity of their representation, and were able to generate
results that were more intuitively accessible to non-experts because they re-
flected observable processes. They also represent the scientific realisation that
traditional population-level models relying on a significant degree of homo-
geneity may not be appropriate in heterogeneous environments. What they
demonstrate is that the form a model should take ought to be sensitive to the
conditions and dynamics which prevail in the system being simulated.

Hu and Edwards [2005] describe a model of crayfish is constructed in the
DEVS framework using component submodels which competitively assess
various behaviours and select one or more of these behaviours based on thresh-
old values as an appropriate response to the environment and the state of the
crayfish agent. An essentially similar strategy for behaviour selection was
used in in Lyne et al. [1994b] for unimodal behaviour selection and in Gray
et al. [2006, 2014] for restricted multi-modal behaviours. These works base the
execution (or not) of particular branches of code model on assessments com-
prised of their own state and that of their environment. In this way, they bear a
similarity to the model selection described in subsequent chapters; while this
approach to nuanced simulation is only focussed on the behaviours evinced
by the agents, it foreshadows modal representation dictated by dynamic as-
sessment.

The coastal marine ecosystem models based on the InVitro framework [Gray
et al., 2006] used different representations for the organisms to based on their
life-stages. As organisms that comprised the benthic habitat matured, their
representations would change to suit their niche in the system. In this case the
sequence of transitions was determined before compilation of the model. This
is an early attempt to select a representation for niche which was appropriate
for the dynamics it was expected to demonstrate, and the computational as-
pects it was to optimise (such as run-time or fidelity). This model was in most
other ways similar to conventional agent-based modelling of the time.

1.2. COMPARABLE WORK 17

Bobashev et al. [2007] describes a model of epidemic simulation in which the
representations of populations or portions of populations are decided based on
the number of infected individuals relative to a nominated trigger value. This
model demonstrates that there is a demonstrable advantage to changing rep-
resentation in terms of computational efficiency and the fidelity of the model.
The published model in Chapter 2 is similar: when individuals with contami-
nant loads in Chapter 2 leave the region where contamination is possible, they
are subsumed back into the population and their data is incorporated so that
the individual contaminant profiles are maintained and subject to depuration.
Both of these models are an improvement on traditional individual-based and
equation-based methods: local conditions are able to affect the outcome for
individuals, and the computational load of individual-based simulation is re-
duced when appropriate. The aim is to preserve the fidelity of the individual-
based data, while benefiting from the speed and mathematical tractability of
an analytic or numerical model. In both of these models, the triggers for
change are fairly basic – numbers of infected individuals or presence within
the zone of potential contamination.

Much like Bobashev et al. and the model in Chapter 2, the model described in
Wallentin and Neuwirth [2017] is a hybrid predator-prey model that exhibits
model switching. The model simulates a lake with fish and plankton, switch-
ing between equation-based lake-wide representations and agent-based rep-
resentations for fish at either a sub-region level or as individuals, and plank-
ton were represented either by a global model or by local cellular-automata.
Again, changes in representation were by transitions past nominated trigger
values. These swapping strategies are ideal for models which focus on a lim-
ited set of simple dynamics, but whether this is adequate for more complex
ensembles is unclear.

The pedestrian detection and tracking system of Zhang et al. [2016] selects the
algorithms and parameters to be used in the analysis of segments of data based
on the nature of the data it is given. Their approach has qualitative similarities
to the approach suggested in this work, since the whole method of evaluation
changes based on its input, rather than adjusting the scales or domains. They
accomplish this by training the selection system off-line on known data. Their
selection system corresponds to a member of particular class in Remodel called
a monitor. The monitor agents are fundamental to the automatic control of the
mix of representations in the running model: they interrogate sets of agents
and are able to initiate changes in representation. Monitors are able to make
use of a corpus of sets containing known-good and known-bad configurations: a
situation which corresponds closely with Zhang et al.. The monitors also have
the ability to adjust this corpus according to the dynamics at play within the
simulation and so may be reactive as well as adaptive.

Vincenot et al. [2011] provides a good overview of many of the features and is-
sues attending models which combine representations from different paradigms.
The authors argue that rather than treating the discrete and the analytic (or
near analytic) models as opposing paradigms, they have the potential to model
common domains more accurately with a more broadly accessible form, and
possibly with greater efficiency. In spite of the fact that awkward issues may

1.3. STRUCTURE 18

remain4, it provides a road-map with signposts to aid newcomers to the do-
main.

There is clearly a growing set of models which demonstrate that adaptive hy-
brid models are both feasible and worthwhile. However, the mechanisms be-
hind changes in representation in the literature are both simple and largely
based on local state information. The exploration of the issues associated with
the maintenance of state information across transitions is also largely absent.
There is no systematic support for transitions in response to the needs of other
components of the systems, or mechanisms that enable systematic collection
of data regarding the performance of the model. Most importantly, there are
no fundamental code-bases from which model development can proceed. The
work that follows addresses these deficits and constructs a more comprehen-
sive framework that is able to support models with complex conditions related
to representational transitions, and to support the maintenance of state data
across transitions.

1.3 Structure

Models of complex systems usually incorporate alternative code paths or ex-
pressions in a component to deal with situations where there are fundamen-
tally different dynamics or properties by testing for these conditions at each
potential fork in the code. In many cases, this sort of control flow may decide
between a number of paths, but the selection protocol and consequent paths
are all hard-coded within the model. Such a structure can engender a com-
plicated network of potential execution paths through the model. In contrast,
the approach discussed in this thesis addresses this problem by constructing
the models as an ensemble of agents which can cede their role to another rep-
resentation which is more suitable when the need arises. A resident popula-
tion might be represented by a single population agent, a set of individual-based
agents, super-individual agents or by some mixture of these representations.

Models of complex systems usually incorporate alternative code paths or ex-
pressions in a component to deal with situations where there are fundamen-
tally different dynamics or properties by testing for these conditions at each
potential fork in the code. In many cases, this sort of control flow may decide
between a number of paths, but the selection protocol and consequent paths
are all hard-coded within the model. Such a structure can engender a compli-
cated network of potential execution paths through the model. In contrast, the
approach discussed in this thesis addresses this problem by constructing the
models as an ensemble of agents which can cede their role to another repre-
sentation which is more suitable when the need arises. A resident population
might be represented by a single population agent, a set of individual-based
agents, super-individual agents or by some mixture of these representations.

The decision to change the representation of a submodel occupying a niche

4Such as might be posed by situations analogous to gape limited predation between
equation-based and individual-based entities in marine ecosystems

1.3. STRUCTURE 19

in the model should be based on the state of the system, the capabilities (or
incapability) of the agents in the system and the objectives of the modeller in
configuring a model, we might prioritise speed over accuracy for a real-time
simulation, a computer game or a combat training simulator, and for a scien-
tific extrapolation of the state of a harbour for each of a number of develop-
ment scenarios, we might choose accuracy over speed.

Representing the state of the model, either as a whole or of its constituent
parts, is not simple: not only may the submodel mix in the niches of the model
vary through time, but the dependences of submodels on other components
and niches may change as the state of the model changes. A model which con-
tains a whale spotting tourism venture may follow the activities of whales at
particular times of the year, but be utterly indifferent to the whales at times
when there is little likelihood of their presence in an accessible location. Simi-
larly, the association of entities represented by a population-based model may
need to be maintained if the population disaggregates into agents based on
super-individuals (small cohorts) or agents representing individuals.

The interplay of factors like these make a simple vector-based encoding mech-
anism for the states of a model and its components awkward, thus we turn to
a metric space whose elements are trees with a finite number of weighted, la-
belled nodes. This simplifies the comparison of possible ways to fill the niches
in the model for a given global state, and makes available any algorithms (par-
ticularly useful are clustering) which depend only on the properties of a metric
space.

The decision to change representations can be made by an agent that recog-
nises that it is unable to continue in the conditions in which it finds itself (akin
to the code-path decisions in more traditional models), or by a similar assertion
from some higher agency (a monitor in the discussion which follows) which
assesses states more broadly. In the case of an agent determining that it needs
to change, such as a penguin moving from the nestling submodel to the juve-
nile submodel, this can be effected directly, though the more general (and in
this case, burdensome) strategy would for a monitor to flag the desired state
change and then act on it when appropriate.

The models explored in this work bear a resemblance to a multitasking operat-
ing system, but, unlike an operating system, the models kernel must maintain
temporal ordering of agents’ start times within the agent queue, and this order
must be strictly non-decreasing. Interactions between agents are largely me-
diated by the kernel and new agents may be created or removed with relative
ease. Choosing this as an organisational template means that there are many
patterns to serve as templates for further development.

All of the submodels in the example model presented in Chapter 5 are able to
act to some degree as a kernel themselves in a sense, models can be nested.

1.4. SCALES 20

1.4 Scales

The natural time step or spatial scales of a model may change if one or more
of its constituent submodels changes its representation. This seems like an ob-
vious statement, but many models are structured with quite carefully chosen
time steps and spatial scales, and they may behave poorly when these scales
are changed. Examples of this, such as Lyne et al. [1994a], Xu et al. [2001],
Zhang and Montgomery [1994], model systems where the appropriate time-
step is intimately linked to the temporal scale of the system being studied.

Component submodels of the models in Lyne et al. [1994a] (and of Gray et al.
[2006] and Gray et al. [2014]) were tested during development for the effect
of length of an individual’s time-step on the component’s dynamics. The re-
sults of the first of these models prompted the use floating point variables
for time in subsequent models, and time-steps with intervals determined by
a continuous function based on the individual’s conditions, activity and inter-
actions. In Lyne et al. [1994a], the smallest time-step was conditioned by the
interval where a simulated organism’s contaminant uptake was reasonably
stable: steps which were too long either over-estimated or under-estimated
potential uptake, and steps which were too short suffered both from compu-
tational inefficiency, and accumulated error in the movement of the modelled
individuals. Xu et al. [2001] found that simulations of mesoscale convective
systems were sensitive to the size of the time-step, even though the model re-
mained numerically stable. They found that the predicted precipitation could
vary by as much as 50% when the time-step was reduced from 225s to 50s, and
attributed the change to the dependence on the time-step size of the calcula-
tions associated with the horizontal diffusion. Zhang and Montgomery [1994]
found that grid-size for digital elevation maps in hydrological models had a
significant effect on the results of simulations.

Fulton et al. [2004b] examines the effect of spatial resolution of the dynamics
of marine populations using two models of a large bay. The domain is parti-
tioned into regions (boxes) filling the domain both vertically and horizontally.
Two particularly important observations are made: coarse spatial resolutions
in the model lead to a simplification of the trophic web relative to fine-scale
simulations, and the spatial resolution must reflect the dynamics of scale of
the dominant gradients and processes in the system. This sentiment is also
reflected by a conclusion in a paper produced by the FAO,

At the end of this process the necessary components will need to be
represented at the appropriate scales in prototype or final model(s).
It is important to reemphasise here that there is no one single right
model. All models have problems and it is best (where possible)
to use a range of models that can address the question in different
ways.

Food and of the United Nations [FAO], p. 78. While these sentiments are made
with conventional modelling strategies in mind, they apply equally well to the
constitution of a model as it runs.

1.4. SCALES 21

Generally, representations of individual organisms are likely to require much
smaller temporal and spatial scales than representations at a population level,
so a model which seeks to accommodate both possibilities must be able to ac-
commodate the scales that are important at that point in the simulation. For
temporal scales this means providing the infrastructure to ‘buffer’ the activ-
ity of agents with longer time-steps, and to ensure that – as far as possible –
the temporal discrepancy amongst the agents is minimised. Agents with long
time-steps will necessarily often be ahead or behind agents with shorter time-
steps. Changing spatial resolution seems relatively straightforward, but the
errors that accompany spatial misregistration or integration over an inappro-
priately interpolated domain can become significant.

Changes in temporal scale can be more problematic, however. Time influences
causality in a way that space does not. Deciding how to manage the flow of
time in an ecological simulation model is one of the first decisions in its de-
sign. Many ecological models have been constructed as a large set of arrays
containing state variables which are inspected and updated in the body of an
event loop (or many loops). Some models achieve temporal optimisation by
dividing the arrays into various groups of fast-stepping and slower-stepping
variables, only dealing with the necessary parts of the system at each time
step (variable speed splitting as in Walters et al. [2000], for example). Gray et al.
[2006] and Gray et al. [2014] allow agents to dynamically determine their own
time step based on their state – time steps may be truncated, or changed for
their next turn in response to their situation. There is a trade-off in this: with
a variable speed splitting approach, we can calculate all values based on a
temporally coherent set of data, and update them all in one pass; in contrast,
the dynamic time stepping approach means that each interaction is essentially
conducted in isolation, and the consequences of a set of interactions may be
dependent on the order in which the interactions occurs. Both variable speed
splitting and dynamic time step selection are flexible enough to support rep-
resentational changes for entities, but the greatest advantage comes from con-
structing the submodels to be robust with respect to arbitrary time steps over
a reasonable domain. If a model is consistently run with time steps which are
too long or too short, the model or system needs to be able to initiate a change
to a more appropriate representation.

Inappropriate or incommensurate time steps can pose a real problem: while
the interactions between submodels with short time steps and submodels with
long time steps may be managed, at least to some degree, by accumulating
changes to the slower model and applying them during the slower model’s
time step, this is not an ideal solution. One of the major risks this approach
poses is a of distortion of resource availability which is dependent on the order
in which agents are executed. This sort of error can artificially inflate or deplete
apparent resources in a seemingly random fashion, and render the results of
the simulation useless.

The principles which have guided the coupling of models remain salient, par-
ticularly those aspects associated with issues of coherence in time and space.
While matching time steps isnt essential, the discrepancy between the time
steps of interacting models should be limited by the magnitude of the changes

1.5. OUTLINE 22

which may occur as a result of interactions large changes may call for small
time steps.

1.5 Outline

The paper5 which forms the body of Chapter 2 develops a model of organisms
that periodically move through a region subject to plumes of contaminant. The
model is capable of modelling the organisms either with a population-based
representation or with an individual-based representation. This model is run
in three configurations: purely population based, purely individual-based and
as a hybrid where the individual-based representation is used when it is pos-
sible for any of the population represented to come into contact with the con-
taminant, and with the population-based elsewhere. An essential notion that
was treated lightly in this paper is developed much more fully, namely that
for a model to allow an oscillation between representations, additional data
must be passed between them, maintained and possibly adjusted in order to
preserve consistency across transitions.

The purpose of the model is to demonstrate the feasibility and utility of main-
taining the contaminant loads (more generally state data) while running in a
different representation and to compare both the execution speed of the simu-
lations and the fidelity of the simulation with respect to the contaminant loads
of the simulated population. The study found that the trials which alternated
representations based on the proximity to the contaminated region was con-
sistent with the individual-based trials, but performed with a computational
speed of the same order as the population-based trials.

Chapter 3 was published6 in a special issue of Frontiers in Environmental Sci-
ence. It considers a small three species ecosystem and explores the properties
needed for a more complex evaluation of possible model-swapping configu-
rations of a running model, and develops a thought-model as a platform for
discussion. To support the dynamic assessment and selection of model con-
figurations, the paper introduces a metric space based on a tree structure. The
metric space allows us to calculate distances between configurations and to re-
duce our potential search spaces by identifying clusters of representations that
are largely similar in their constitution.

Chapter 4 presents a modified version of the appendix included in Chapter
3. The modifications make the structures easier to manipulate, and code to
perform mathematical operations on these objects forms the basis for the se-
lection process in the realised modelling framework and the example model
discussed in Chapter 5.

There are many consequences which arise from the premise that the agent or
set of agents which represent part of a simulation may change and that the
synthesis of what they represented may be represented by a different set of

5https://doi.org/10.1016/j.envsoft.2011.08.012
6https://doi.org/10.3389/fenvs.2015.00058

1.5. OUTLINE 23

agents. The discussion in Chapter 5 seeks to highlight and explain these con-
sequences and the response to them, referring both to the Remodel framework
and to the example model that was described in Chapter 3 and built within
the framework. Currently the framework is functional, but still requires a
more fully developed set of transition mechanisms, basic classes (for things
other than animals, trees and monitors), and is lacking in a broad set of ex-
ample models. Many of the functional niches in Remodel have more than one
possible representation, and these representations can change in response to
their own state, the states of other agents, or even the requirements of other
agents. Where possible, the options for model selection differ in an important
and fundamental way: they span the range from individual-based represen-
tations, through intermediates which represent a number of individuals, to
conceptually continuous models. These changes are, in some sense, analogous
to the transition from the set of integers to the set of real numbers. A model
which demonstrated the utility of adaptive representations without changing
the “cardinality” of the system would have been much simpler, but it would
have missed some of the most important parts of the problem.

— — —

The corpus of code in the framework is a little under 28,500 lines of Scheme
code and is freely available at

http://github.com/snarkypenguin

The interpreter/compiler used in this work is Gambit developed by Marc Fee-
ley. It has a thriving community, excellent support and integrates well with C
and C++, and is available from the GitHub repository

https://github.com/gambit

While the model does not require SLIB by Aubrey Jaffer, SLIB provide a broad
range of useful functions. SLIB is available at

http://people.csail.mit.edu/jaffer/SLIB.html

———–

Dr Simon Wotherspoon was credited in the papers which comprise Chapters 2
and Chapter 3, in acknowledgement of his salient advice to me on how to ap-
proach the task of writing papers both for journals and for a broader audience,
and how to avoid getting distracted by the little stuff.

The corpus of code in Remodel is a little under 28500 lines of Scheme code and
is freely available at http://github.com/snarkypenguin/Remodel.git

The interpreter/compiler used in this work is Gambit developed by Marc Fee-
ley. It has a thriving community, excellent support and integrates well with C
and C++, and is available from the GitHub repository https://github.com/gambit

While neither the framework nor the model requires SLIB by Aubrey Jaffer,
SLIB provides a broad range of useful functions.

SLIB is available at http://people.csail.mit.edu/jaffer/SLIB.html

CHAPTER 2

Increasing model efficiency by
dynamically changing model

representations

2.1 Prologue to the paper

The body of this chapter is a (verbatim) paper published in the refereed jour-
nal Environmental Modelling and Software (Gray and Wotherspoon [2012]). The
model discussed in this chapter is built using an older, much simpler body
of code than the framework that is explored in Chapter 3. While the primary
purpose of the paper is indicated by its title, a significant contribution is its
development of the basic mechanisms for changing representations.

The source-code can be obtained from

https://github.com/snarkypenguin/Model-Efficiency.git.

The paper explores a model of marine organisms that periodically migrate
through an intermittent plume of some contaminant. The uptake and depura-
tion of the contaminants in the organisms are modelled, and the paper com-
pares the results and the run-time for the system in three forms in order to
establish how useful using model switching may be in terms of run-time and
fidelity. The three configurations tested are

• a purely analytic representation of the migrating population – In this
configuration a population whose relative locations follow a Gaussian
distribution is moved around the migratory circle, and the uptake of con-
taminant is calculated using a Runge-Kutta4 algorithm

• a purely individual-based model – Individuals move through the con-
taminant zone, integrating their contact with the plume and generating
an uptake level appropriately

24

2.1. PROLOGUE TO THE PAPER 25

• either a population (as described), a set of individuals (also as described),
or as a mix with part of the cohort represented as individuals within the
risk zone, and the balance represented as a population – Here, individ-
uals are generated (and removed from the population) as the popula-
tion disk encroaches on the contaminant zone. As individuals leave the
contact zone, they are subsumed by the population and their individual
contaminant level is decayed appropriately.

The analytic submodel is the simplest of the representations, consisting largely
of a value (or vector) which records the contaminant load, and the number of
individuals which are represented. A single instance of the analytic submodel
is present in both the purely analytic model and in the switching model. The
individual-based model incorporates a number of state variables, such as ve-
locity, contaminant load and the instantiated agents are independent of the
analytic representation.

In order to avoid confounding the results, the contaminant is inert since in-
cluding toxicity effects would have the potential to alter both the number of
entities modelled and their behaviour (such as movement rates); since slower
individuals would take longer to move through contaminated regions, their
likelihood of contact would be higher. The scenario in the model would be
substantially similar to simulating the uptake of isotopes associated with par-
ticular geographic locations.

Given the very predictable dynamics of the modelled entities, the inclusion of
multiple contaminants or multiple sources, such as in Gray et al. [2006, 2014],
seemed unlikely to do anything surprising.1

1incorporated mortality or morbidity associated with contact, the mortality strategy used in
Gray et al. would have been an appropriate choice.

2.2. INTRODUCTION 26

Increasing model efficiency by dynamically changing
model representations

Randall Gray2

CSIRO Division of Marine and Atmospheric Research

Simon Wotherspoon

University of Tasmania

Abstract

There are a number of strategies to deal with modelling large complex
systems such as large marine ecosystems. These systems are often com-
prised of many submodels, each contributing to the overall trajectory
of the system. The balance between the acceptable modelling error and
the run-time often dictates the form of these submodels. There may be
scope to improve the position of this balance point in both regards by
structuring models so that submodels may change their algorithmic rep-
resentation and state space in response to their local state and the state
of the model as a whole.

This paper uses an example system consisting of a single population of
animals which periodically encounters a diffuse contaminant in a lo-
calised region as an example of such a system, and discusses the key
issues that arise from the approach.

2.2 Introduction

There is a body of literature stretching back several decades which discusses
individual-based modelling as a useful alternative to classical models. Early
examples modelled forest canopy dynamics, notably JABOWA and its deriva-
tives Botkin et al. [1972b,a]. The number of significant papers and books has
steadily increased since the 1980s. These works describe the use of individual-
based models across a broad range of systems, and the relative strengths and
weaknesses of the approach (such as Huston et al. [1988], DeAngelis and Gross
[1992] and Grimm and Railsback [2005]). Classical models exploring popula-
tions and ecological systems are usually associated with modelling the dy-
namics of large groups and arguably appeared at the end of the eighteenth
century with Malthus’s An Essay on the Principle of Population (1798). The

2Published in Environmental Modelling and Software, 2012
Corresponding author: Randall.Gray@limnal.net (Randall Gray),
Simon.Wotherspoon@utas.edu.au (Simon Wotherspoon)

2.2. INTRODUCTION 27

properties of these models are well understood and their state variables usu-
ally correspond to measurable quantities. Often, they are much faster than
individual-based counterparts, and the analysis of model error may be much
more straightforward. Classical and individual-based approaches represent
the ends of a spectrum of aggregation in time, space and membership. Rep-
resentations lying between these extrema, such as described by Scheffer et al.
[1995], capitalise on the process-fidelity of an individual-based representation
and gain some of the computational efficiency of a more aggregated classical
approach, but an adaptive exploitation of the strengths of different represen-
tations is possible and worth exploring.

Ecosystem models are becoming broader in scope (Rose et al. [2010], DeAn-
gelis and Gross [1992], Harvey et al. [2003] ?Fulton et al. [2004a], Gray et al.
[2006], Gray et al. [2014]) and include more species with richer environments.
The environmental response to climate change has also made anthropogenic
pressure an important feature in many of these models. As this trend grows
it seems less likely that a single model drawn from any particular region of
this spectrum will be able to address all members and processes equally well.
Simulation models often embed their subject in an “environment” comprised
of primary data and other models and these components may occupy many
places in the spectrum of representations. The model’s actual implementation
may be anything from a set of distinct models which are coupled together but
retain their independence, to a corpus of code with the submodels so inte-
grated that there is no real distinction between one “model” and the next.

The dynamics associated with biological and ecological systems can depend
on the distributions and states of individuals in ways which are not amenable
to equation-based modelling. The individual-based models described in Farolfi
et al. [2010], and de Almeida et al. [2010] deal with systems of this sort. Ver-
sions of these models could be embedded in a common simulation environ-
ment in order to address more complex problems which span traditional do-
main boundaries, and such a model could address broader questions, such
as how mosquito control strategies may best adapt to evolving agricultural
practices and watershed conditions. Thiele and Grimm [2010] describes an
extension to NetLogo which allows modellers to incorporate calls to R func-
tions to aid in configuring the model to meet desirable mathematical condi-
tions, to provide ongoing analysis, and to display the model’s state through
its run. This interface between R and NetLogo could be extended to support
incorporating mathematical decision models written in R into the model’s de-
cision tree. The fusion of these three elements would form a system capable
of simulating possible trajectories for the management of watersheds and hu-
man health in ways which would not be possible with a traditional monolithic
modelling approach.

Models are including more functional groups and the interactions between
components are becoming more detailed. It is costly in terms of computational
load to address this increased demand for detail: individual-based models of
populations may be very good at capturing vulnerability to exceptional events,
but such simulations take a long time. Much of this time may be spent with
the model in a largely unchallenging or uninteresting part of its state-space.

2.2. INTRODUCTION 28

This paper explores the technique of changing the representation of a com-
ponent of a model based on its location in its state-space. Modellers already
do this to some degree: time-steps or spatial resolutions are changed, partic-
ular code paths may be by-passed to avoid pointless work, or additional cal-
culations might be performed to reduce the error when the state is changing
rapidly. These optimisations are largely optimisations of the encoding of the
model or submodels, rather than an actual change in representation.

Vincenot et al. [2011] make a clear case for considering what the authors term
“hybrid-models.” They present four reference cases which they use to describe
ways in which equation-based models and individual-based models might
be coupled to increase their utility. Their categories of hybrid-models are:
individual-based models interacting with a single system dynamics model,
system dynamics models embedded in individual-based models, individual-
based models interacting with a number of system dynamics models, and
models in which the representation swaps between individual-based and an
equation-based form. They argue that a hybrid approach may provide a means
of increasing the speed and accuracy of our models; Gray et al. [2006], and ?
have demonstrated that large models of ecosystems can be modelled this way.
Vincenot et al. note that they found relatively few models which use both
individual-based and equation-based submodels, and they present no exist-
ing models representing their fourth reference case. This final case, where
models swap from equation-based to individual-based, is briefly described in
general terms and is clearly intended to encompass models like the model of
this paper.

This “mutating” or “switching” approach to the problem of managing com-
plex simulations was developed using the experience from making several
large scale human-ecosystem interaction models (Lyne et al.; Gray et al. [2006];
and a current, larger study of Ningaloo coastal region (work in progress)). In
each of these studies a significant component of the model focused on sim-
ulating the interaction between organisms and contaminant plumes, though
there is nothing that inherently limits the techniques to these sorts of stud-
ies. Lyne et al. assessed the potential of contaminants originating in indus-
trial waste percolating through the food chain into commercially exploited fish
stocks. Gray et al. developed a regional model to assess management strate-
gies for human activity which interacts with the biological systems along the
Northwest Shelf of Australia.

Simulating contaminant interactions in an ecosystem is expensive in terms of
run-time and memory use. The models described by Gray et al. and Lyne
et al. include contaminant transport, uptake and depuration modelling, with
behavioural sensitivity to contaminants. In Gray et al., the time taken to run
a simulation with contaminants increased by roughly an order of magnitude,
and in both studies a large amount of time was spent in regions where no inter-
action with contaminant plumes was possible. Monte [2009] presents a lucid
discussion of analytic contaminant migration-population effects models. These
models incorporate the movement of populations and their internal distribu-
tion, the transport of contaminants through the system via biotic and abiotic
pathways, and the changes in behaviour and population dynamics associated

2.3. OVERVIEW: AN ODD MODEL DESCRIPTION 29

with contamination. Monte discusses a method of coupling the equations
which govern contaminant dispersion with the equations for population dy-
namics and migration. The technique depends on the equations of the location
and the dispersion of members of a population satisfying an independence
condition with respect to time and location which must hold. He states that
the class of systems where the “movement of animals, the death and birthrates
of individuals in x [location] at instant t [time] depend on previously occu-
pied positions” is not generally amenable to the approach and suggests that
repeated simulations of many individuals is an appropriate way of dealing
with this situation.

It is unnecessary to run a complex model and carry the burden of maintain-
ing its state when a simple model may perform better. If representations are
switched appropriately, there is potential for improvements in run-time and
accuracy. We need to consider four basic questions to do this:

1. What data need to persist across representations?

2. When should a model change representation?

3. How is the initial state for a new representation constructed?

4. How should the error associated with the loss of state information be
managed?

The answer to these questions is specific to the set of submodels in question.
Before expending resources and effort on a large scale model there needs to
be a demonstration that the notion is worth pursuing, and some indication of
how it might be accomplished. The aim of this paper is to provide this demon-
stration rather than to develop a comprehensive body of techniques support-
ing the approach. Many systems may benefit from similar techniques; obvious
candidates are models of marginal populations, and the population dynamics
of animals with behaviour where short periods of time have a significant influ-
ence on population levels (Wolff [1994] and Elderd et al. [2008], for example).

2.3 Overview: an ODD model description

The ODD protocol [Grimm et al., 2006] is used to describe the example model.
We discuss the issues associated with making such a system, strategies and the
reasons behind them in the Discussion section.

2.3.1 Purpose

This example model plays two roles. Its first is as an explicit demonstration,
and the second is as a tool to explore the larger subject of changing a model’s
representation in response to its state. This example is overly simple, but it

2.3. OVERVIEW: AN ODD MODEL DESCRIPTION 30

shares a number of features with plausible models and the analysis and de-
velopment of the mutating model should be a reasonable template for other
systems.

The model simulates organisms moving along a simple migratory path which
intersects a region containing a field of fluctuating contamination (see Fig-
ure 2.3.1). This model exhibits fundamental attributes of larger studies of pol-
lutant/ecosystem interactions (Lyne et al. and Gray et al.) and, while it is not
intended to accurately represent any particular system, it might loosely corre-
spond to some body of water influenced by contaminant loads associated with
terrestrial runoff resulting from intense rainfalls.

Figure 2.1: Snapshots of individuals’ locations at 28 day intervals superim-
posed on the migratory path. The plume’s contact domain is marked by a
grey ellipse near the position of individuals at day 28, with the track of a sin-
gle individual approaching it. The domain of a population is is circumscribed
around the individuals at day 196 for comparison.

The test models are composed of one or more submodels which run within a
simple time-sharing system. Each submodel runs for a nominated period of
time and passes control to the next submodel, very much like tasks running in
many modern computer operating systems. In a mutating configuration, a trial
will have different models take turns representing components of the system.

The population-based and individual-based submodels have been kept as sim-
ilar as practicable in order to minimise the sources of divergence.

2.3.2 State variables and scales

There are essentially three distinct submodels in the simulation: an individual-
based representation of the migrating group, population-based representation
of the group, and a contaminant uptake-depuration model. We can think of
the models which take the role of the group as candidates for filling a niche,
which we can think of as the “sub-model shaped hole” in the middle of the
program. Because the individual-based and population based models have
fundamentally different spatial representations, each of these models include
mechanisms to evaluate their contact with a plume as they move through their
environment. The spatial domain of the whole model system is a circular re-
gion with an arbitrary radius of somewhat more than 100km which encom-

2.4. DESIGN CONCEPTS 31

passes both the area influenced by the contaminant source and the annual mi-
gratory path of the organisms. The plume can be viewed as a forcing function
in the model and it has a maximum footprint area of approximately 43km2

which may be circular or elliptical and is centered on a point of the migra-
tory circle. Both the elliptic and circular variants of the plume have the same
area, and their intensities are adjusted so that the integral of the contaminant
concentration over the region is the same.

The individual-based representation maintains a contaminant load associated
with contact with the plume, a location, a direction and the next time at which
it is scheduled to run. The population-based representation treats the group
as homogeneous with respect to all state variables other than the contaminant
load, and maintains only a record of its next time-to-run and an indication
of contaminant load in the population. In the straight population-based rep-
resentation, this is a single value, but in the mutating system the submodel
maintains a list of contaminant loads which correspond to the non-zero loads
of individuals. The plume model is deterministic with respect to time and
location and maintains no state variables.

2.3.3 Process overview and scheduling

Simulations were run with 90 minute time-steps for a period representing
twelve years. At each time-step, each instance of a submodel is rostered in
a priority queue sorted on the “time-to-run” state variable, and when it comes
to the top of the queue it executes.

Populations operate in a straightforward way: their path is deterministic, ex-
posure to contaminants is calculated, and the resulting values are fed through
the uptake-depuration equation. Individuals calculate their path (a segment
of a directed random walk which follows the path of migration) and contact
for the time-step and an apply the uptake-depuration equation. At the end
of a time-step in non-mutating configurations, data is accumulated for output
and each submodel reinserts itself in the priority queue. Otherwise, a heuristic
is used to choose an appropriate representation for the niche in next time-step
and that is inserted into the queue. Randomisation within a time-step is un-
necessary, since the individual’s or the population’s contaminant updates are
resolved for the contaminant contact across their time-step and are not depen-
dent on the state of any other agents.

2.4 Design concepts

The central reason for the model is the mutability of the representation of
the simulated organisms. Individuals and populations in the model are pro-
foundly simple: no real scope is present for any of the trait categories men-
tioned in Grimm et al. [2006], apart from their interaction with the contaminant
plume, though this interaction is completely deterministic with respect to their
path through the plume. In place of these traits, we have the basic heuristics

2.5. DETAILS 32

associated with triggering a change from a population-based representation to
individuals and a corresponding heuristic which indicates when an individ-
ual should join (or become) a population. The actual mechanism which turns
a population into individuals or its converse is not necessarily a property of
those models. Since the objective is to examine the impact of changing model
representation in a fairly narrow situation, no attempt is made to optimise the
submodels in the “non-contact” areas which constitute most of the model do-
main.

2.5 Details

2.5.1 Initialisation

Individuals and populations initially begin with no contaminant load, and in-
dividuals are positioned according to the two-dimensional normal distribu-
tion which characterises the population’s assumed distribution. When a pop-
ulation mutates into an appropriate set of individuals, the individuals are posi-
tioned in the same fashion (centered on the centre of the population) with their
corresponding contaminant loads either taken from the list of non-zero con-
taminant loads maintained by the population or initialised to be zero should
the population’s list fall short.

2.5.2 Input

Several characteristic features of the model are determined by the time and lo-
cation represented. The contaminant intensity (and hence extent) at any point,
r, relative to the centroid of the plume, mplume, at a time, t, by the equation

I(t, r) = 1
2
(1+ cos(2πt/p)) exp(−ψϕ(r, mplume))

where p is the period of 34 days, ψ = 0.05 is a decay exponent. We take
ϕ to be a distance function, either ϕ(a, b) = ∣a − b∣, for a circular plume, or

ϕ(a, b) =
√
(a − b) ⋅ (

√
2,
√

1/2), for an elliptical plume. The effective radius of
the circular plume in the model is about 3.7% of the circular migratory path
of the populations and individuals. The intensity of the elliptical plume is ad-
justed by scalar multiplication so that the integral of I for the two plumes over
their domain is the same.

The individual-based and population-based models follow a circular migra-
tory path about the origin. The path is traced annually and its location at any
given time follows the equation l (t) = 105 (cos (2tπ/365.25) , sin (2tπ/365.25)).

2.5. DETAILS 33

2.5.3 Submodels

Individual-based representation

Individuals follow a directed random walk around the migratory circle de-
scribed in the previous section. At each time-step the stride the individual
takes is calculated according to its proximity to the “target” on the migratory
path. There are a number of parameters associated with the movement of the
individuals presented in Table 2.1.

Table 2.1: Parameters associated with individual movement

Parameter Value Description

V 4 A “variability” parameter associated
with a Poisson-like process

q 0.5 A magnitude control parameter on
directional change

µδ 1 day Notional interval over which we
calibrate individual’s movement

µ 20km Indicates the radius which is likely
in a period of µδ

s 4ms−1 nominal speed of the individuals

If we take δ to be the length of the current time step, and v to be a realisation
of an event in a Poisson-like process with a mean of V, we can take

Q = [1− exp(v
V̄

log (1− q))]

to be a “variation” scalar which we use to evaluate an effective radial speed,

νs =
RRRRRRRRRRRR
−1+

√
1+ 4sQ2 δ

V̄

RRRRRRRRRRRR
/2Q2.

Large values of Q correspond to long stretches of time without a change in
direction, so we include Q in the calculation of α, the partial change in the
individual’s direction vector, by setting it to α = πrnd (−Q, Q). We can take
their effective displacement over the 90 minute interval to be determined by
a weighted sum of the normalised vector which joins them to their “target”
location on the migratory path and a direction vector of length νs which is
deflected by α.

Population-based representation

The population-based model assumes that a radially symmetric, normal distri-
bution of individuals is an appropriate representation. Trials using the move-

2.5. DETAILS 34

ment model of the individual-based model were run, and the positions of in-
dividuals relative to their “target” on the migratory circle at each time-step
closely matched a 2D-normal distribution with a σ2 = 3136.252. Using this
value, we define the density of the population at the point p = (px, py), rela-
tive to the population’s centre, to be

ρ(p) = S
L

1
2πσ2 exp

⎛
⎝
−

p2
x + p2

y

2σ2

⎞
⎠

SL = 1.015 is a scaling parameter chosen so that the integral over the popula-
tion’s effective disk, D = {q ∈ Domain (ρ) ∶ ∣q∣ ⩽ 3σ2}, gives

∫
D

ρ (p) dp = 1.

Contaminant handling

Initially a contact value is calculated for the time step. For an individual, this
value is the integral of the contaminant level over its path. Population contact
is calculated in an analogous way over the domain of the population and it
represents the average contact of the members of the population.

The mass of contaminant which is available for uptake, or contact is, for indi-
viduals, taken to be the result of integrating the intensity of the plume over its
path, Pt to Pt+δ. Namely,

M = ∫
Pt+δ

Pt
I(p)∣∣p∣∣dp

where our variable p is a vector with time and location and we assume that
the motion from Pt to Pt+δ is along a straight line segment. We take ∥p∥ to be
the speed at which the individual is moving.

Population’s contact occurs across its domain and we calculate the definite
integral

M = ∫
Pt+δ

Pt
2∫

Ω
I(p + !)ρ(!)d!dp

where Ω is an area over which we assess the effective area of the population
and p +ω denotes the area Ω translated so that its centroid corresponds to p.
The contact equations are solved using a simple adaptive quadrature routine.
This value corresponds to the most likely mean contact in the population.

For both models of our organisms, uptake and depuration is modelled by the
ordinary differential equation

dC/dt = uM − λC

where u = 0.02 is the uptake rate, a decay rate which is approximately λ =0.0059.
The equation is solved numerically with a fourth order Runge-Kutta algorithm
for the value of C given a contact mass, M, and an initial contaminant value or
vector of values for C

2.6. RESULTS 35

Mutating sub-models

The individual-based representation requires no change to run in a mutating
configuration, but the population-based representation must maintain a list
of contaminant loads which are processed in exactly the same way a scalar
might be processed in one of the simple configurations. In the mutating con-
figuration, each instance of a model is assessed at the end of its time-step to
determine whether a change in representation is appropriate.

When a population dis-aggregates into individuals, the set of individuals with
contaminant loads corresponding to the entries in the list are created. Their
locations are normally distributed within the population disk. Any shortfall in
numbers is handled by creating individuals which have no contaminant load
and positioning them in the same fashion. Once the individuals are created,
the population model is allowed to terminate.

An individual joins a population by having its contaminant load added to the
list the population maintains. The first step in the process is to determine if
there is a population close enough to the individual. If not, an empty popula-
tion is created. Once a population’s contaminant load has been inserted into
the population the individual is allowed to terminate. The population model
itself does not really play a part in this transaction: the “import” call is never
used directly by the population, rather it is the supervising scheduler which
organises the transfer to and from individuals and populations.

2.6 Results

The data presented in section 2.6.1 are based on two sets of simulations repre-
senting forty individuals. The first set uses a circular plume and the second an
elliptical plume. These data sets allow a comparison of run-times, the equiva-
lence (or lack of equivalence) amongst the submodels, and that provide data to
examine the robustness of the representations to changes in the configuration
of the plume. To ensure that run-time comparisons are meaningful all of the
simulations in the first set of trials were run on the same computer.

The first set is comprised of forty trials of the homogeneous individual-based
model, corresponding trials of the mutating model, and a single run of the
population-based model. The second set is comprised of eighty trials of the
mutating model and a single run of the population-based model. The data in
the first set of trials establishes the equivalence of the homogeneous individual-
based model and the mutating model. We pool the data from the mutating and
homogeneous individual-based runs from the first set to match the eighty runs
in the second to compare the effect of the plume’s configuration. The results
with an elliptical plume were not consistent across the model representations.

The individual-based representation produces a time series of contaminant
levels for each individual, while the population submodel produces a “mean
load” across a group of entities. The mutating submodel sits between the two,
sometimes producing individual time series and sometimes mean time series

2.6. RESULTS 36

for varying parts of the population. We denote representations by a subscript
r ∈ {i, m, p}, so that Crkj(t) is the contaminant load at t in time series, C, associ-
ated with individual j in trial k of representation r, Crk(t) is the mean at a time
t over all the groups simulated in the indicated representation and trial, and
Cr(t) denotes the mean of Crk(t) across the k trials for the indicated represen-
tation. To compare the dynamics of the system we generate mean time series
for each of the k trials in the individual-based and mutating sets, Cik(t) and
Cmk(t). We are careful to generate the correct mean in the mutating submodel
from time steps which have a mixture of individual trajectories and mean tra-
jectories from population-based representations. Each of the mean time series,
Crk(t), corresponds to the mean contaminant load of the population, Cp(t),
produced by the population submodel; averaging them, that is constructing

Cr(t) =
1
k

k
∑
j=1

Crj(t),

where r is one of i or m, is equivalent to running many stochastic trials and
averaging to fit the population submodel. Using Cik(t), Cmk(t) and Cp(t) we
find the maximum value attained for each representation, Ĉr. We are also in-
terested in the mean value across time of each representation,

C̄r =
1
T
∑
t∈T

Cr(t)

2.6.1 Contaminant load correspondence between representations

Both sets, C̄r and Ĉr, are presented in Table 2.2.

Table 2.2: Maxima and Means

Seriesr Ĉr C̄r

Ci 0.1787 0.0390
Cm 0.1821 0.0392
Cp 0.1387 0.0350

These data suggest that the mutating representation is consistent with the ho-
mogeneous individual-based representation. The population-based represen-
tation seems to present markedly different mean and maximum values.

2.6.2 Contaminant load variability

We calculated measures of variability in the time series using the aggregated
time series Cik(t) and Cmk(t) and their respective means across the k trials,

2.6. RESULTS 37

Ci(t) and Cm(t). We will take T to be the total number of time steps taken, and
we take

σ̂ab = max
t∈[1,T]

⎡⎢⎢⎢⎢⎣

1
k

k
∑
j=1
(Cak(t)−Cb(t))2

⎤⎥⎥⎥⎥⎦

1/2

and

σ̄ab =
⎡⎢⎢⎢⎢⎣

1
T

T
∑
t=1

⎡⎢⎢⎢⎢⎣

1
k

k
∑
j=1
(Cak(t)−Cb(t))2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

1/2

,

to be the maximum root mean square error and the average root mean square
error. Clearly we can write σ̄rr as σ̄r without introducing ambiguity, and sim-
ilarly for σ̂r. The values for these measure of variability are presented in Ta-
ble 2.3.

Table 2.3: Deviations amongst the model runs with respect to a given mean

r.m.s.e. r = i r = m r = p

σ̂ir 0.0083 0.0084 0.0534
σ̄ir 0.0024 0.0024 0.0096
σ̂mr 0.0090 0.0090 0.0538
σ̄mr 0.0024 0.0024 0.0096

The data here indicate that the variability about the mean is consistent in the
two representations which use simulated individuals to estimate contact and
uptake. This is what we would expect since the mechanisms of uptake and
contact are the same. In contrast, the population’s values suggest that the con-
tact and uptake are quite different, and that this model does not perform in
quite the same way.

2.6.3 Sensitivity to the shape of the plume

We will use the same notation as Section 2.6.2 for the data derived from the cir-
cular plumes, while we will add a prime symbol to the data derived from the
elliptical plumes. Thus, the mean value time series for the mutating submodel
with elliptical plumes would be denoted C′m and the mean value of that time
series is C̄′.

There is a good correspondence between the means and deviations associated
with the mutating model in the circular and elliptical plume scenarios, but
there is much poorer correspondence in the population based results in the
two scenarios. The data for the circular plume and for the elliptical plume are
presented in Tables 2.4 and 2.5 respectively.

The population based model is clearly more sensitive to the shape of the plume
than the mutating model. It seems likely that the major driver of this difference

2.6. RESULTS 38

Table 2.4: Circular plume results

Seriesr Ĉr C̄r StdDev r = m r = p

Cm 0.1738 0.0392 σ̂mr 0.0088 0.0535
Cp 0.1387 0.0350 σ̄mr 0.0024 0.0098

Table 2.5: Elliptical plume results

Seriesr Ĉ′r C′r StdDev r = m r = p

C′m 0.1856 0.0394 σ̂′mr 0.0087 0.0616
C′p 0.1763 0.0445 σ̄′mr 0.0025 0.0092

is that the long axis of the plume (a region where the net contact will be higher)
remains in close proximity to the centroid of population where the population
density is greatest.

2.6.4 Run-time

Each run collected data regarding the amount of time spent in different parts
of the submodel; predictably, most of the effort is in calculating contact and
updating contaminant loads.

The optimisation of suppressing the contact calculations when a population is
outside the area of potential contact seemed to make very little difference to
the run-time of population submodel (about 3%). It seems unlikely to make
a great deal of difference to the mutating submodel. In the case of the purely
individual-based submodel, this sort of optimisation is likely to play a much
bigger role; any penalty would be multiplied by the number of animals simu-
lated.

The population submodel ran for 98.7 cpu seconds. This submodel is deter-
ministic and the amount of cpu time used is very stable, so only a single run is
considered for comparison. The purely individual-based submodels took just
over a mean time of 4205 cpu seconds with a standard deviation of approx-
imately 16 seconds and the mean of the mutating submodel’s run time was
1157 cpu seconds with a standard deviation of slightly over 11 cpu seconds.

2.7. DISCUSSION 39

2.7 Discussion

In the example our objective is to produce time-series data associated with the
contaminant load of the group. Our individual-based model is taken as the
best model for capturing the contact that real organisms have with an intermit-
tent plume, and the population based representation has a computational effi-
ciency that the individuals lack. The case for swapping in the example model is
reasonably clear: there is a distinct improvement in run-time with no apparent
deterioration in the fidelity of the dynamics. It seems likely that the naïve pop-
ulation distribution may be introducing a systematic divergence from what we
see as an accurate, but computationally intense, individual-based model.

The general case is not limited to the polar extremes of switching between
individual-based models and populations. A niche may have many represen-
tations, each of which has a particular set of strengths and weaknesses. This
adaptive approach would present the same scope for improvement in purely
equation-based models, where rules of thumb might be replaced by first-order
approximations, or by complex systems of differential equations. In a purely
individual-based example, the depth of the representation of the individual
might vary from a simple mass and location through to a level of detail which
included the individual’s metabolic rates and breeding characteristics.

2.7.1 State spaces

To make our population-based model compatible with the individual-based
model we have to extend the population’s state space and maintain additional
information to preserve the essential parts of the individual representation that
makes it valuable to us. This is basically posing the first of the enumerated
question from section 2.2. The significant information which the individual-
based representation possesses is embodied in the contaminant loads amongst
the individuals which comprise the group. We assume that the role of their
relative locations about the population’s centre is not important over a large
portion of the global state-space and that we can discard it when we move
from individuals to populations.

The union of submodels’ state-spaces can generally be decomposed into pro-
cessing sets of state-variables. Partitioning the state variables in this way – par-
ticularly in advance – makes it easier to analyse and minimise the boundary ef-
fects associated with the transition from one representation to another. Within
a representation, the state variables which are unique to it form a special sub-
set. The subset can be divided into the variables which need to be maintained
by other representations, which we call Vr, and the variables which do not
which we will call Ur. In principle, the variables in Vr might be maintained by
a routine which is common to them all. The variables in Ur are more complex:
when some other representation is mutating to representation r, the values as-
signed to the variables in Ur should reflect the state implied by the state of the
old representation.

2.7. DISCUSSION 40

In the example model, an individual’s relative location is a member of this set.
Variables which are maintained and used by more than one representation are
the third major group. This group can be divided into the set which is used
consistently across the submodels (Wr), and the group of variables which have
different dynamics in the various representations (Xr). In our example case,
the contaminant load level of an individual would belong to the set Vind. Its
location and velocity would be in Uind, the current time for both individuals
and populations belongs to Wr, and a list of contaminant loads for populations
belongs to Vpop.

2.7.2 Heuristics

The example model has very simple dynamics: the plumes are always in the
same place, the migration is very predictable, and the spatial domain an indi-
vidual may explore is well contained. Implementing a heuristic for the model
which efficiently decides when to move from one representation to another is
very straightforward: If we are close enough that an individual might encounter the
plume if the plume were at its maximum, switch a population to a group of individuals.
Conversely, if there is no chance that an individual heading straight toward the plume
(backwards) will encounter it, move the individual to a “close enough” population, or
create a new population to accommodate the individual. The model was constructed
so that any number of populations could be run, and the heuristic was framed
so that there were no assumptions about the number of population agents and
the size of the groups they represented.

In this model, the decision process was shared between the representations
themselves and the controlling scheduler. The representations reported their
“robustness” to the scheduler which would then decide how to act on the ad-
vice, either triggering a change in representation or not.

The goal is to have a complex ensemble of niches which will change repre-
sentations under the aegis of the scheduler to optimise the global outcome.
For this more general approach additional information is needed: the sched-
uler would incorporate information about what properties each of the current
representations required from other niches in order to decide what the mix of
submodels filling the niches ought to be.

2.7.3 Transitions

The transition from individuals to population and population to individuals
involves the loss and reconstruction of fine-scale position data, which may be
a source of error. In our example, we assume that we can reconstruct a plau-
sible position for each individual from the population’s distribution function
because we know the typical distribution of individuals and there is no be-
havioural change associated with contaminant load. A contaminant that made
an organism sluggish would skew the distributions of both the population as
a whole and the distribution of intoxicated organisms within the population.

2.7. DISCUSSION 41

In the example model, individuals were randomly located in this way with
enough time to randomise their velocities and blur any artifacts resulting from
the selection of their locations. This corresponds to the perception that the ve-
locities and relative locations of the individuals are comparatively unimpor-
tant except as they related to the distribution of the population. When values
of state variables are generated in the process of changing to another represen-
tation, they need to conform to the distributions of the representation they are
leaving. If for some strange reason (like behavioural change) the distribution
of individuals, for example, does not conform to the distribution associated
with a coherent population, then additional steps need to be taken accommo-
date this when changing to a population-based representation.

In section 2.7.2, transitions between representations in the example model are
mediated by the scheduler. Decisions to change representation must be based,
in part, on whether the transition will increase or decrease the efficacy of the
suite of representations as a whole. If the example model were more than a
pedagogic tool, it would have been useful to assess the mean error introduced
in the transition from population to individual and individual to population.
Our simulation was aimed at producing contaminant load results, but in this
context our aim would be to track the mean position, variance and extrema of
the distribution of individuals relative to the population. To do this we would
perform a comparison similar to that of section 2.6 but using positional data
rather than contaminant load. The results would indicate if there might be
significant transition effects associated with the change in representation. This
sort of testing should ideally be performed at a number of scales (temporal or
spatial, for example) since the knowledge of how long it takes for the transition
boundary effects to settle (if they do) should feed into the high-level managing
scheduler. In a sophisticated system, a representation might be spun up in
advance so that the boundary effects have settled before it takes over from a
less efficient representation.

2.7.4 Errors

Estimating error and confidence is extremely hard in complex models. Not
only are the abstract processes deeply connected, but there may be hundreds
of thousands of lines of code3 which may introduce error of their own. Con-
fronted with the code of a large-scale marine ecosystem model, a naïve mod-
eller might turn around and contemplate joining a monastery rather than try
and track the error propagation through the system. When we look at making
an aggregate model out of niches, we can make the set of each of the represen-
tations which fill the niche simpler than some chimera which tries to take the
best bits of each of the candidate representations. With well isolated transition
mechanisms, we side-step nests of conditional code-paths and can contain the
potential sources of error we must analyse. Since transitions can be recorded

3Ningaloo-InVitro is currently more than 233000 lines of C++, NWS-InVitro is slightly more
than 118000 lines of C++ and Atlantis is more than 145000. The size of the code-base for the
InVitro models was a significant goad toward developing an approach to model construction
which would make error control, tracking and estimation more feasible.

2.8. CONCLUSION 42

(like other useful data), we can generate an indication of the likely level of
confidence based on our understanding of the representations used in a simu-
lation.

2.8 Conclusion

Interesting and unanticipated results have come from this experiment. The
discrepancy between the data concerning elliptical and circular plumes sug-
gests that, at least in contaminant work, we need to pay closer attention to
the movement dynamics of individuals and the density functions of popu-
lations. More predictably, the run-times show that mutating configurations
provide a reasonable means of increasing computational speed without sac-
rificing fidelity in appropriate situations. The simple example demonstrated
that a model which changes the representation of the system according to its
location in its state space could provide much better computational efficiency
than a model with a constant representation with no loss of accuracy.

Increasing population and resource use often reduce our environment’s re-
silience and there is a growing need to model larger, more complex parts of
the system we live in. Techniques for this have been iteratively moving to-
ward a more systematic approach: many models will optimise their run-time
and accuracy by suppressing unnecessary calculation, models will split their
time-steps according to what they are simulating, or perhaps even adaptively
set an appropriate time-step or spatial scale.

This paper proposes that actually changing the representations to suit the dif-
ferent regions of the state space of the model could provide a better balance
between computational efficiency and error.

In our experience of large scale marine ecosystem modelling, the size of the
system considered is growing much faster than computational capacity. Even
for small systems the possibility of adjusting the representation of submodels
to optimise the accuracy of the model as a whole has great appeal. Mutating
models may provide an effective means of concentrating the use of computa-
tional capacity where it is most needed.

The authors would like to thank the three reviewers whose advice and sug-
gestions have made this paper much clearer and to the point. Their care and
insight are deeply appreciated.

2.9. EPILOGUE TO THE PAPER 43

2.9 Epilogue to the paper

This paper shows that two of the basic problems discussed in Chapter 1, namely
situations where the mixing assumption fails, and improving the run-time effi-
ciency of a model without sacrificing fidelity, can be resolved by models which
change their representations according to the state of the agents. The initial
motivation for considering this kind of model was the recurring need to in-
corporate contaminant modelling in marine environments Lyne et al. [1994a],
Gray et al. [2006, 2014].

The decision strategy in this model was unusually straightforward and simple;
this was primarily to avoid obscuring the the central idea, since a more real-
istic treatment might both obscure the basic simplicity of the idea, and need a
significantly more capable modelling system for the discourse. At the time, the
mathematical and programmatic resources I could bring to bear on the matter
were primitive.

A soon after this paper was submitted I became involved in what seemed to be
unrelated work which sought to incorporate social survey data into systems-
management models. This work lead to the development of a tree structure
which is used in Chapter 3 and fully defined, later, in Chapter 4. The config-
uration of trees can closely follow the structural characteristics of the surveys
and provide a robust mathematical means of allowing simulated individuals
with different attitudes, organisations or events to exert influence (positively
or negatively) the attitudes of others in the system. The mathematical work
presented later arose from that project, and during its development it became
evident that this could provide a means of encoding complex relationships
within a modelling system.

CHAPTER 3

Adaptive submodel selection in
hybrid models

3.1 Prologue to the paper

This chapter is a (verbatim) inclusion of a paper that I was invited to sub-
mit for a special topic issue of the refereed journal Frontiers in Environmental
Science. The issue’s intent was to focus attention on hybrid models which
couple component-models (submodels) from across the range of modelling
paradigms, and to encourage the development of this sort of model in the con-
text of ecological research. The paper develops a thought model which demon-
strates a high level mechanism for governing the mix of representations used
in the model based on the state of the system and the states of its components.

Simple rules can be used to govern transitions from one representation to an-
other (Chapter 2), but these local transitions may degrade the quality of the
simulation as a whole. The biomass of grass a farm’s paddocks is probably
quite adequately represented by a single number if there is little or no grazing,
but with more livestock we might need to represent each paddock’s biomass
individually, . . . and possibly each paddock as a finely resolved field showing
where the animals graze most intensely.

The appendix to the paper is an early version of the mathematical machinery
developed in Chapter 4. Since publication, the basic mathematical structure
has changed somewhat. Other, related trees have been explored in an attempt
to simplify calculations involving elements of the vector space; initial attempts
were based on the notion of treating the scalar term of the lable in a node as its
weight, but each of these formulations resulted in a loss of one or another of the
algebraic properties which are useful to us. The algebraic structure described
in the next chapter shares many of the properties of the trees defined in the
appendix to this chapter, but differs in ways which simplify operations and
make the interpretation of their effect somewhat more intuitive.

Here, the propositions and assertions in this chapter are presented largely

44

3.1. PROLOGUE TO THE PAPER 45

without proof1, though the corresponding propositions for the work in Chap-
ter 4 are proved in the material in Chapter 4.

The Supplementary Material mentioned in the chapter is present as Appendix
C.

1Proofs of these propositions and assertions are available, but they haven’t been included
since the structure has been superceded.

3.2. INTRODUCTION 46

Adaptive submodel selection in hybrid models

Randall Gray2

University of Tasmania

Simon Wotherspoon

University of Tasmania

Abstract

Hybrid modeling seeks to address problems associated with the repre-
sentation of complex systems using “single-paradigm” models: where
traditional models may represent an entire system as a cellular automa-
ton, for example, the set of submodels within a hybrid model may mix
representations as diverse as individual-based models of organisms, Markov
chain models, fluid dynamics models of regional ocean currents, and
coupled population dynamics models. In this context, hybrid modelers
try to choose the best representations for each component of a model in
order to maximize the utility of the model as a whole.

Even with the flexibility afforded by the hybrid approach, the set of mod-
els constituting the whole system and the dynamics associated with in-
teracting models may be most efficient only in parts of the global state
space of the system. The immediate consequence of this possibility is
that we should consider adaptive hybrid models whose submodels may
change their representation based on their own state and the states of the
other submodels within the system.

This paper uses a simple example model of an artificial ecosystem to ex-
plore a hybrid model which may change the form of its component sub-
models in response to their local conditions and internal state relative to
some putative optimization choices. The example demonstrates the as-
sessment and actions of a “monitor” agent which adjusts the mix of sub-
models as the model run progresses. A simple mathematıcal structure
is also described and used as the basis for a submodel selection strategy,
and alternative approaches are briefly discussed.

3.2 Introduction

The case has been made for developing systems with submodels that change
their representation according to their state. Vincenot et al. [2011] identify ref-

2Published in Frontiers in Environmental Science, 20/8/2015
Corresponding author:Randall.Gray@limnal.net (Randall Gray),
Simon.Wotherspoon@utas.edu.au (Simon Wotherspoon)

3.2. INTRODUCTION 47

erence cases describing the major ways system dynamics models (SD) and
individual-based models (IB) can be coupled. Their final case, SD-IB model
swapping, is exemplified in the models described by both Bobashev et al.
[2007] and Gray and Wotherspoon [2012]. These papers argue that we can
improve on conventional hybrid models, in terms of efficiency, fidelity, model
clarity or execution speed by using an approach that allows the submodels
themselves to change during a simulation. The last two papers implement
simple models which demonstrate the approach, with correspondingly sim-
ple mechanisms to control transitions between different submodels.

Some authors argue that the explicit coupling of SD models and IB models
may provide greater clarity and resolution in modeling [Vincenot et al., 2011,
Fulton, 2010]: parts of a model that are most clearly the result of aggregate
processes are likely to be better suited to modeling with a SD approach. In
contrast, the parts of a system where individuals have a significant influence
on their neighbors [Botkin et al., 1972b] are better suited to an IB approach.
This argument is closely tied to the notion of model fidelity. Following Del-
Sole and Shukla [2010], we take fidelity to be the degree to which a model’s
trajectory is compatible with real trajectories. If our immediate goal is to max-
imize the utility of the set of submodels within a model as it runs, this must
include the fidelity of the system in the decision process.

Measuring or estimating execution speed and numerical error are compara-
tively straight-forward, but determining model fidelity is not. Models with a
high degree of fidelity should produce results which are consistent with ob-
served data from real instances of the system they model across both a wide
range of starting conditions and under the influence of ad hoc perturbations,
such as fires through a forested domain. Model fidelity is addressed by Del-
Sole and Shukla [2010] in the context of seasonal forecasting models. They ex-
plore the relationship between fidelity and skill using an information-theoretic
approach. They describe skill loosely as the ability to reproduce actual trajecto-
ries, and they describe fidelity as measuring the difference between the distri-
bution of model results and the distribution of real world results. They high-
light the attractiveness of mutual information and relative entropy as measures
(or at least indices) of skill and fidelity, but they observe that in their domain,
climate modeling, the necessary probability distributions are unknown.

The issues of fidelity and the attendant cost/benefit balance are central to the
discussion in Bailey and Kemple [1992]. This paper assesses the costs and
benefits of three different upgrades to an existing model designed to help de-
termine the best mix of types of radios used in a military context; their ob-
jective is to prioritize implementation of the refinements of their model. The
fundamental issues they address are substantially the same as issues that in-
fluence dynamic model selection.

The paper by Yip and Marlin [2004] compares three models used for real-time
optimization of a boiler network: simple linear extrapolation from the system’s
current state, quadratic prediction with the coefficients based on historical data
and updated at every step, and a detailed process model that corresponds
closely with the physical elements of the modeled system. Their conclusion

3.3. MODEL ORGANIZATION 48

correlates the fidelity of the model with its ability to control the real-time op-
timization of the system. They explicitly note that there are real costs associ-
ated with the increased fidelity. These costs include model development and
the need for more expensive sensors. They note that increasing fidelity in the
model enabled the system to adapt to changing fuel more efficiently, and that
when there were frequent changes in fuel characteristics the simpler models
performed poorly.

The projects described in Little et al. [2006] and Fulton et al. [2011a] both used
hybrid models as a means of decreasing the run-time, and increasing the fi-
delity of the modeled contaminant uptake in simulated organisms. This was
accomplished by mixing individual-based submodels and regional population-
based systems models. Gray and Wotherspoon [2012] explicitly used changes
in the representation of agents to improve the execution speed of a contamina-
tion tracking model, without losing the fidelity of the individual based uptake
model. In this paper we will develop a more general strategy which may be
appropriate for more complex systems.

3.3 Model organization

For clarity, we will take the term niche to refer to something in the model
which could be modeled in several ways: a “porpoise” niche could be filled by
many instances of an individual-based model, models of pods, or a regional
SD model of the porpoises. This is essentially the same as the term component
in Vincenot et al. [2011]. The motivation for departing from this convention
arose from confusion resulting from inadvertently using component both in a
technical and non-technical sense. The close analogy between the nature of a
niche in an ecosystem and the nature of a component as discussed in Vincenot
et al. [2011] suggested the choice of niche.

Each of the alternative ways of representing a niche can be viewed as a sub-
model, and the word representation will be used to reflect a particular choice of
submodel within a niche. An explicit instance of a submodel (such as a specific
pod or an SD model) will be referred to as an agent. The configuration of the
model at any moment consists of the particular set of submodels which fill the
niches that comprise the model as a whole. For an adaptive hybrid model,
there may be a large number of possible configurations and the selection of a
“best” configuration is a complex matter.

Each agent running in a model must necessarily have data which can serve
to characterize it for these assessments. This data would typically be some
subset of its state variables, but the data alone may not be enough to base an
assessment on: there may also be extrinsic data which play a role in a partic-
ular submodel’s or agent’s activity and impinges on its suitability. Then, the
characterization of an agent – its state vector – is an amalgam of its own state
and the state of other niches it interacts with, and it can be regarded as a point
in the state space which the submodel is defined over.

A corresponding set of data characterizes a niche in the model; here, it is typ-

3.3. MODEL ORGANIZATION 49

ically some appropriate aggregation of agent-level state variables (a biomass-
by-size distribution, for example), relative rankings of the suitability of agents
and alternative submodels, and indications of what extrinsic support all of the
various alternatives require. This niche-level state vector provides the data
needed for optimizing the configuration globally, and for managing the con-
figuration when niche-wide effects become significant, for example, for an in-
cipient epidemic.

Thus, there are three distinct levels of organisation which may influence the
considerations regarding the current configuration, and inform any decision
about what may need to change, namely

1. agent-level data need to be examined to determine how well suited each
agent is to its current state and the context provided by the agents it
interacts with,

2. a niche-level assessment which compares the utility of each of its current
agents within a niche with their alternative submodels, and

3. a model-wide assessment which determines whether there are cross-
agent conflicts or unmet needs arising from a particular configuration.

The state vectors which form the domains of submodels and niches are loci
in appropriate state spaces and can be encoded as an elements in appropriate
vector spaces. The mathematical tools to manipulate these state vectors can
then be applied to calculate the distances between two states, the similarity of
loci which represent models or niches, or to identify trends or clusters.

3.3.1 Implications of changing configurations

At a basic level, hybrid models are designed to represent entities or processes
in the real world in a way which brings more clarity, efficiency, or fidelity that
may be possible with more traditional approaches. Adaptive hybrid mod-
els, implicitly acknowledge that the appropriate representation may change
through time. An important consequence is that when a submodel in a niche
changes, it may trigger changes in representation elsewhere in the model.

We might consider an example where an SD submodel which represents the
prey for an SD based predator changes to IB submodels. It seems reasonable to
expect the representation of the predator might follow suit. This may change
the spatial resolution, the fineness of the “quantities” represented, and possi-
bly the time steps associated with the predators and prey. Disparities in either
of the first two are simple enough to deal with: modelers routinely use inter-
polation as a means of removing inappropriate edges, or generating subscale
data, for example. Changes in an agent’s time step can have a dramatic causal
influence on the subsequent simulation.

Chivers [2009] discusses how individual-based models are sensitive to when
state variables are updated. In his discussion, the issue arises as a result of
when the probability of a predator-prey interaction is calculated relative to

3.3. MODEL ORGANIZATION 50

Uni:0
Vss:1
Vss:2
Vss:3
Vss:4
Vss:5

Dyn:6
Dyn:7
Dyn:8
Dyn:9

Dyn:10
Dyn:11

minutes 0 10 20 30 40 50

Figure 3.1: Time scheduling strategies. Red boxes represent time steps that
have already passed, blue boxes represents scheduled time steps that have
not yet been run. “Uni:” and “Vss:” submodels are members of a uniform
or variable speed splitting submodels and require uniform time steps, and
“Dyn:” submodels have adaptive time steps.

when the prey are removed from the system, though similar effects are also
likely to occur in other contexts. The temporal sensitivity of submodels’ inter-
actions needs careful examination in order to construct submodels that pro-
ceed through time coherently and interact correctly.

Multi-agent models must have strategies to manage the agents as they step
from the start of the simulation to its end. The simplest method is to make
everything within the model use the shortest time step required. This is com-
putationally inefficient in a heterogeneous model.

A better approach is the technique of variable speed splitting, such as in Wal-
ters and Martell [2004] and many others. (Figure 3.3.1) This approach allows
models to step through time in different intervals by dividing the largest in-
terval required into smaller steps that are more appropriate for the submodels
with naturally shorter time scales. While models with uniform time steps are
a trivial example of this approach, variable speed splitting is almost as simple
and much more efficient. This technique can keep the subjective times of a set
of agents moderately consistent, but ad hoc stepping changes would still seem
to be awkward or difficult.

Both of these strategies may be subject to artifacts arising from the sequence
in which agents are given their time step. The general class of model errors
of the sort described in Chivers [2009] arise as a consequence of structure of
the processing across the set of agents in a simulation. IB models which pro-
cess agents species-by-species will be particularly vulnerable to these sorts of
artifacts, since there will be an implicit advantage or disadvantage to being

3.3. MODEL ORGANIZATION 51

early in the list. Similarly, advantage or disadvantage can arise when there is a
change in representation, perhaps from an SD submodel to an IB submodel; a
shorter time step in this situation may introduce a great many small time steps
which agents may exploit. This kind of problem can be overcome by introduc-
ing a randomizing process within each time step. Early versions of the variable
speed splitting model in Lyne et al. [1994a] suffered from predator-prey arti-
facts arising from a naïve introduction of predators and prey into the list of
agents, and such randomizing was introduced to minimize the effects. In sit-
uations where the time steps of the interacting agents differ, implementing a
randomization strategy may require a significant increase in the complexity of
the system to accommodate irregular stepping through the lists of agents, or a
significant change in the basic structure of the model.

Gray et al. [2006] and Fulton et al. [2009] describe models that have a well de-
veloped approach to coordinating agents using adaptive time steps. In these
models agents may set their own time steps to intervals that are suitable for
their current activity or role. This strategy can readily incorporate submodels
with uniform time steps, or collections that employ a variable speed splitting
strategy. When agents interact, they either explicitly become synchronous be-
fore interaction occurs by setting their time steps appropriately and waiting, or
they implicitly acknowledge that there is a temporal mismatch. (Figure 3.3.1)

While some agents should be given execution priority (such as an agent which
models ocean currents), most agents will have their execution order within a
time step randomized, effectively preventing a large class of execution order
dependent artifacts. The associated overhead in the most recent work, Gray
et al. [2006], Gray and Wotherspoon [2012], is marginally higher than one
would expect from single-stepping or variable speed stepping systems, but
the advantages arising from the ability to ensure synchrony and change time
steps in response to environmental stimulus outweigh the small computa-
tional overhead. This last approach seems likely to be the most appropriate
for a general hybrid model that supports swapping models.

General adaptive hybrid models must have a mechanism for scheduling each
agent’s execution which keeps the cohort of agents roughly synchronous, and
it should able to handle changes in an agent’s time step when the agent changes
its representation; where possible, agents should also be designed so that they
may run at other time steps as well as their own preferred time step so they
can become synchronous and interact at the appropriate temporal scale with
other agents.

3.3.2 Systematically adjusting the model configuration

A model’s configuration should only change when there is an overall benefit in
the efficiency or fidelity of the system. A straightforward way of determining
this is to have a monitoring routine that runs periodically, polling the agents,
and ranking likely configurations according to their relative benefit or cost.
This means that each submodel would need a way to provide, to the monitor,
a measure of its current suitability, and to indicate what it needs from other

3.3. MODEL ORGANIZATION 52

niches.

Algorithm 1 Basic processing pass for the monitor
for all niches do

for all submodels in the niche do
for all agents in the submodel do

generate agent state vector
generate the submodel state vector

note extrinsic requirements
end for

end for

generate niche state vector
end for

Run niche-level assessment
Flag any whole of model issues
for all candidate configurations do

Deprecate untenable configuration
Adjust for unavoidable extrinsic

requirements
end for

Select best indicated configuration

The last step in Algorithm 1 is deliberately vague.

Algorithm 1 illustrates a possible assessment pass for a monitor, though how
appropriate it may be is an open question. Configuration ranking for the ex-
ample model will be cast in terms of evaluating an objective function based on
elements of the vector space of tree elements described in the Appendix.

A monitor may have large number of potential candidate configurations, but
we would like to keep the actual number quite low. The example model de-
scribed below has a global domain associated with a particular representation,
along with local domains (subregions of the global domain) which are associ-
ated with finer scale representations of the modeled entities. The set of poten-
tial candidate trees could be quite large; in practice we reduce the number by
casting the candidate trees in a more general way – including trees represent-
ing particularly good representations and particularly poor representations:
the first to steer the configuration toward good choices, and the second to drive
it away from poor choices. We can use the hierarchical organisation (whole-
model, niche, submodel, agent) to help limit our search space, as well as the
geographic context of the agents (whole-domain, local cell, immediate-locus).

The sets of candidate trees which are associated with particular configurations
will need to be crafted carefully as a part of the model design. These trees
reflect the modelers understanding of the strengths and weaknesses of each of
the submodels (or sets of different submodels) which may be employed.

3.4. THE EXAMPLE MODEL 53

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

Figure 3.2: The model domain is divided into nine cells. An SD agent is asso-
ciated with each of these cells and with the domain as a whole. Any IB agents
which are created during the simulation will be associated with one cell at any
given time.

Exactly how a monitoring routine is integrated into the model framework is a
subjective choice best left to the team implementing the models, but one very
attractive option is to implement the monitor as an agent in the system. This
would allow the monitor to assess its own performance and the needs of other
agents with respect to its own suitability with the option of swapping itself
our for a montitor which implements some alternative strategy.

3.4 The example model

The purpose of the example model described below, is to provide a context for
a discussion of the dynamics associated with a hypothetical simulation using
this model. The ends of the spectrum between SD models and IB models are
represented, and the environment is unrealistically simple in order to keep us
from being swamped by detail.

The model consists of a spatially explicit environment that is partitioned into
nine cells (Figure 3.4). The biotic elements consist of plants, fruit, seeds, her-
bivores, and carnivores. The herbivores feed on the plants and their fruit; and
carnivores prey upon juvenile herbivores. The plants and herbivores are in-
terdependent: fruit is the sole diet for juvenile herbivores and the plants need
juvenile herbivores to make the seeds viable by eating the fruit.

The representations are equation-based SD models of the interactions between
the plants and animals and IB models for plants and animals. The SD sub-
models model the biomass with respect to size, for plants and animals, or sim-

3.4. THE EXAMPLE MODEL 54

ply numeric quantities for fruit and seeds, and they can operate at either the
global or cell-sized scale. Modeling biomass in this way makes it possible
to minimize the loss of fidelity incurred by swapping from IB agents to SD
agents and visa-versa, since we preserve more of the essential nature of the
populations. A more detailed description of the SD agents is presented in the
Supplementary Material.

Fruit and seeds

Fruit and seeds are treated somewhat differently to the rest of the niches. They
exist principally as numbers of entities that are updated as a result of the ac-
tivities of other, more explicit SD or IB models. There are explicit routines
that deal with uniquely “fruit” and “seed” processing to handle spoilage and
germination, respectively.

For fruit and seeds we have the following relationships

dNF(t) = Production− Spoilage− FruitEaten

and

dNS(t) = s ∗ FruitEaten

−
⎛
⎝

1− NP(t)
KP

⎞
⎠

Germ.

where NP(t) is the biomass of plants at time t, and KP is the carrying capacity
of the pertinent domain (either global or cell-based). The processing for fruit

Algorithm 2 Basic processing pass for fruit
NF ← NF − (SpoilageF ⋅NF)

is quite simple and consists only of applying “spoilage”; no reference to other
agents in the system is required, and only the number of fruit is adjusted as
a result (Algorithm 2). Seed models will adjust their “seed count” as well as

Algorithm 3 Basic processing pass for seeds
NewTreeCount← Germination ⋅ SeedCount
SeedCount← SeedCount− (NewTreeCount
+SpoilageS ⋅ SeedCount)

generate NewTreeCount new plant agents and introduce them into the sys-
tem

the biomass distribution for plants in their time step, according to the level
of germination. Germination is probabilistic as is the size of the plant a ger-
minated seed becomes in its pass, though the distribution of possibly sizes is
quite restrained (Algorithm 3).

3.4. THE EXAMPLE MODEL 55

SD representations

Each of the niches has an integral equation expressing the change in biomass
for a given size; an animal’s equation is of the form3

dNA(t, x) =Growth&Starv+Repr

−PredMort−NatMort.

We do not include migration terms in the SD models, since that will be ad-
dressed by the IB forms. The assumption is that the SD representation is most
appropriate when population levels are moderately high, and there is ade-
quate food; under these conditions, we will assume that the net migration
associated with a domain will be close to zero.

Plants are represented by similar equations, namely

dNP(t, x) =
⎛
⎝

1− NP(t)
KP

⎞
⎠
[Growth+Germ]

− PredMort−NatMort

where NP(t, x) is the biomass of plants of size x at time t.

The important state variables for the SD are, for each domain, the biomass-by-
size distributions for plants, herbivores and carnivores, and the raw numbers
of fruit and viable seeds.

Algorithm 4 Basic processing pass for the SD models
for all agents in this domain do

Incorporate quantities that are
controlled in other agents

Run Runge-Kutta4
Update only quantities that are

controlled by this agent
end for

The system of equations described in the Supplementary Material is evalu-
ated using a fourth order Runge-Kutta algorithm; the numbers of fruit and
seeds, and both the global and cell-based biomass distributions for plants and
animals are updated at the end of the calculation. The model will adjust the
values in the global and cell-based models to allow data from models running
with better resolution (usually more localized models) (Algorithm 4) to take
precedence.

Most of the important parameters and many of the functions associated with
the life history of the modeled entities are not specified. This way we may
consider possible trajectories without being tied to a particular conception or
parameterization of the system.

3See the Supplementary Material for a more detailed set of equations.

3.4. THE EXAMPLE MODEL 56

IB representations

Individual-based representations for plants, herbivores and carnivores follow
the pattern in Little et al. [2006]; fruit and seeds are only modeled in the SD
representation, though their numbers are modified by the activities of the her-
bivores irrespective of how those herbivores are represented.

3.4.1 IB Plants

Plants maintain a reference to their cell, their location, a mass and a peak mass.
If a plant’s mass drops below a certain proportion (PMΩ) of its peak mass, it
dies — this provides a means for the herbivores to drive the plant population
to local extinction.

We will suppose that plants grow according to a sigmoidal function with some
reasonable asymptote and intermediate sharpness; fruiting occurs probabilis-
tically as in the SD representation.

Algorithm 5 Basic processing pass for plants
if (Mass ≥ PMature)∧ (PFruits ≥ rnd0,1) then

ADDFRUIT(PρMass
2
3)

end if
if (Mass ≤ PMΩ PkMass)∨ (ΩindP < rnd0,1) then

DIE

else
Mass← ΓP(δt, Mass)
if Mass > PkMass then

PkMass←Mass
end if

end if

The plant agent goes through the steps in Algorithm 5 in each of its time steps.
In the algorithm, ΓP(δt, mass) is an analogue of the probability of a plant grow-
ing from one size to another from the SD representation, PMature is the param-
eter that indicates the mass a plant must be before it fruits, PFruits is the prob-
ability of a mature plant fruiting, and Pρ is the amount of fruit relative to the
fruiting area. The routine ADDFRUIT updates the models representing fruit in
the domain.

3.4.2 IB Animals

Like the plants, animals maintain a reference to their cell, their location, and a
mass. They also maintain several variables that are associated with foraging
or predation, namely the amount of time until they need to eat (Sated), and the
amount of time they have been hungry (Hungry).

Animals will grow while they do not need to eat and will only forage when

3.4. THE EXAMPLE MODEL 57

they are hungry. Reproduction happens in a purely probabilistic way once the
animal is large enough, and the young are not cared for by the parents.

Animal movement is constrained so that they will tend to stay within their
nominated home cell, only migrating (changing their home cell to an adjacent
cell) when food becomes scarce or if the population exceeds some nominated
value and causes crowding.

The analogues of the mechanisms for growth and starvation in the SD rep-
resentation are quite different to those of the IB version. In the SD models,
starvation and growth occur as a result of the relative population levels of the
consumer and the consumed rather than the local availability of food.

There are no real programmatic differences between the IB representations of
herbivores and carnivores; their differences lie in their choices of food and the
way their “time-to-eat” variable is initially managed. InDiViduAl-based, new-
born carnivores begin with a long time till they need to eat. This reflects a
reliance on some unmodeled foodstuff until they are large enough to prey on
the juvenile herbivores. In contrast, the juvenile herbivores must begin eating
fruit immediately, and only switch to foraging on plants when they are larger
(but before they can reproduce). For both species, if the amount of time they
have been hungry exceeds a particular value, HΩ or CΩ, the individual dies.

Algorithm 6 Basic processing pass for herbivores and carnivores
if (ΩindA > rnd0,1)∨ (Hungry ≥ AΩ) then

DIE

end if
PreyList← PREYPRESENTA(Locus, Mass)
if Sated ≥ 0 then

Mass←Mass+GROWTHA(mass, δt)
else if (Hungry ≥ 0)∧ (len(PreyList) > 0) then

Sated← EAT(PreyList, AEatLimit, mass)
Hungry← 0
ForageCt← 0

else if ((Hungry ≥ 0)∧ len(PreyList) = 0) then
FORAGE

ForageCt← ForageCt+ 1
else if (Hungry ≥ AmoveT)∨CROWDEDA then

MIGRATEA(Locus)
else

if (mass ≥ ARepSize)∧ (ARepP ≥ rnd0,1) then REPRODUCEA(Locus)
end if

end if

So, if we take A to represent either carnivores (C) or herbivores (H) below, then
the processing pass for an animal is shown in Algorithm 6, where AmoveT is the
amount of time an animal can be hungry before it migrates, AΩ is the amount
of time it takes for the animal to starve, AEatLimit is the most the animal can eat
as a proportion of its mass, ARepSize is the minimum size an animal may breed at

3.4. THE EXAMPLE MODEL 58

and ARepP is the probability of reproducing. The routines PREYPRESENTH and
EATH have different cases for juvenile and adult herbivores, since juveniles
prey upon fruit, and the seeds from the fruit they eat need to be accounted
for in the appropriate places. There is a similar issue with juvenile carnivores.
Their preylist will always be set to a value that indicates that they may eat as
much as they like, and the corresponding call to EATC will handle this value
appropriately.

3.4.3 The monitor and model dynamics

The following may be typical of the types of situations that could or should
cause changes in the configuration:

• Low population – If, in an SD representation, the number of individuals
filling a niche (either explicitly taken from a distribution, or estimated
using a mean and a biomass) drops below a nominated value, then the
biomass in that niche should be converted to IB agents representing those
individuals. This type of change is motivated by the observation that at
low population levels the assumption that we can treat the population as
having uniform access to resources (or be uniformly available to preda-
tors) breaks down;

• High population – If a niche in a cell is represented by IB agents and the
number of individuals exceeds a (higher) nominated value, the biomass
those agents represent should be subsumed by the distribution in the
local SD submodel. The change in representation is attractive here for
two reasons: an equation-based representation will be much faster, and
SD submodels are arguably simpler to calibrate;

• Starvation risk – If the mean amount of time an animal in a cell spends
hungry in a cell exceeds half of Aω (or some other nominated time), the
prey biomass must convert to IB agents if it isn’t already so (bearing in
mind that this isn’t pertinent for fruit). This mean is calculated by aver-
aging the means of each animal in the cell. If this is triggered, it indicates
that the biomass of the prey species is sparse enough that homogeneity
assumption is unlikely to hold;

• Relative biomass – If the biomass available for predation is represented in
a local SD agent and its density drops below some proportion of the
minimum required to support the predators in the domain, the prey
species should convert its biomass into IB agents and, if the predator
is represented by a SD agent, it should also convert to an IB form. If the
biomasses are such that the effective predation rate is unsustainable, the
mixing assumption is unlikely to hold.

The pertinent data for conditions will be periodically reported to the monitor
through a set of status trees. The trees are able to represent single entities,
nested entities and aggregates equally well, and can preserve structural infor-
mation which may also be used in the comparison of these trees. One of the

3.4. THE EXAMPLE MODEL 59

basic elements we can easily incorporate into a submodel’s status tree is the
agent’s own assessment of its competence relative to its state-vector and its lo-
cal conditions. This measure of “self-confidence” can probably be maintained
at little computational cost for most agents, and may be the most significant
component in a monitor’s assessment. The high and low population level con-
ditions can clearly be determined by the agent in question; it can set its level
of self-confidence upward or downward as appropriate. Starvation can also
be encoded in the relevant node of an agent’s status tree, but since starvation
alone may not indicate a problem with the way the entity is represented, it
probably wouldn’t reduce the value for its confidence.

A starvation trigger may usually arise as a natural consequence of the popula-
tion dynamics, but it may also occur when there is a mismatch in representa-
tions which has not been adequately addressed in the design stage. The final
condition based on the relative biomasses is one which properly lies in the
realm of the monitor – it would be quite inefficient for each of the candidate
animals to be querying their prey for available biomass, summing the result,
and then noting the need for change.

The monitor will primarily use the confidence values associated with agents
and their niches, and the distance from trees which describe the state of the
model or its set of submodels to trees which describe “known good” config-
urations. With data obtained directly from the agents in the system and from
alternative representations it generates status trees,

• ¯̌τΣ
sn, is a candidate status tree tied to a specific configuration. The

serial number, sn, ties it to a configuration with that serial number,

• τ̌Σ
d , is a candidate tree which represents the current state of a do-

main,

τΣ
t , an aggregate tree for the whole domain at time t,

τΣ
SD(n),t, aggregate trees for each cell, n ∈ {1, . . . , 9},

τR(i),t, specific status trees for each agent,

τR,t, specific status trees for a representation R for each representation
associated with a niche,

and

τ̂R(i),t, candidate trees for all possible representations of each agent i,

at the beginning of each of its steps. The model may have a mix of SD and IB
representations, and some of the trees will have to incorporate data from many
agents (τΣ

t , any of the τ̂R(i),t, and τR,t, for example). A candidate tree is a
status tree which represents an alternative submodel in a niche, and candidate
trees are generated for specific agents and for each niche. When the monitor
begins to generate status or candidate trees for a given agent, it first looks to
see if it has generated an appropriate tree already. If it finds one, it incorporates

3.4. THE EXAMPLE MODEL 60

or adjusts the tree appropriately; perhaps by incorporating the agent’s biomass
and size into the tree’s data. We will also denote the configuration of a domain
(global or local) with τ̌Σ

c where c identifies the domain in question.

The monitor assesses the trees by calculating aggregate values of particular
attributes, comparing the trees’ divergences from allegedly ideal configura-
tions, and by looking how uniform groups are – groups of individuals that are
all very similar are good candidates for simpler representations.

We can calculate the average confidence value from any of these trees by eval-
uating Lmask(τ, confidence, 0)M

supp(mask(τ, confidence, 0))
,

for example. The trees and functions to manipulate them are described in the
Appendix.

Now let us consider what a simulation might look like. Figure 3.3 provides
an overview of the configuration of the system as our hypothetical simula-
tion runs. The model begins with eleven agents (not counting the monitor).
The monitor runs its first step generating the status trees: τΣ

0 , which charac-
terizes the model in aggregate, τΣ

SD(0),0, . . . , τΣ
SD(9),0, which record the aggre-

gate state of the ten SD submodels, the aggregate status tree for the IB agent,
τΣ

IB(0),[9], status trees for the SD submodels: τSD(0),0– τSD(10),0, the status tree
for the lone carnivore, τIB(11),0, followed by the trees which represent alterna-
tive agents: τ̂SD(0),0– τ̂SD(10),0 and τ̂IB(11),0. As mentioned earlier, there is only
the single tree for agent 11 (the carnivore) since its alternative representation
is embodied in τ̂SD(10),0. During the simulation a simulated fire will occur.

The first steps which must be taken before ranking of potential configurations
is to find the sets of candidate trees which best approximate the current config-
uration at both the global and cell levels. We do this by calculating a similarity
index or a distance which indicates how close each of the candidate trees are
to the configuration of each of the domains. There are many ways we could
do this: for an index which only considers structural similarity we might use
something like the simple function

ssim(c, τd) =
overlap(c, τd)

max(∥c∥⊺, ∥τd∥⊺)
,

but for a more comprehensive treatment which factors values which are in-
corporated into the candidate and status trees we might apply the ∆(,) or d
functions described in the Appendix. The d function is a well-defined distance
over the vector space of trees, while the ∆(,f)unction is an index of similarity
that incorporates structural characteristics as well as the numerical distance
between compatible subtrees. To refine such an analysis we could apply mask
and mask to select only the relevant parts of the candidate and status trees.

So to assess the configuration of a domain, we would use our chosen measure
to construct a set of the results of applying an optimisation function, opt, to
each of the candidate trees and their similarity to the current configuration. So

3.4. THE EXAMPLE MODEL 61

a global SD
global SD + IB

a local IB
a local SD

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(A)
phc phc ph

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(B)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(C)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(D)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(E)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(F)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(G)
phc phc phc

phc phc phc

phc phc phc

cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

(H)
phc phc phc

phc phc phc

phc phc phc

Figure 3.3: The color of the p,h and c indicate an agent’s current represen-
tation within a cell at various points in the description of a simulation. In
each, a black symbol indicates that the biomass of plants (p), herbivores (h) or
carnivores (c) is modeled with the global SD agent, a blue symbol indicates
that the biomass is modeled with a cell’s SD agent, and red indicates that an IB
model is being used. Symbols composed of two colors indicate that more than
one representation is currently controlling portions of the relevant biomass.

3.4. THE EXAMPLE MODEL 62

AB C D E F G H

0

0.25

0.5

0.75

1.0

Transition events

Figure 3.4: Normalized indexes of execution speed (black) and fidelity (red)
the against configuration changes through time associated with Figure 3.3

if S is the set of all serial numbers for candidates, τ̌Σ
d is the status tree fo the

current domain, and is the, we calculate

(C) = {(δ(τ̌Σ
d , ¯̌τΣ

i), i) ∶ ∀i ∈ S},

and this is used to generate

C∗ = {(opt(¯̌τΣ
i), c, ¯̌τΣ

i , i) ∶ ∀(c, i) ∈ C}

where δ stands for our chosen measure of similarity.

The elements in C∗ are then assessed by the monitor, and the best permissible
candidate is selected. If there is only a small improvement on the current con-
figuration, τ̌Σ

d , the monitor will leave the configuration as it is; otherwise, the
monitor would then manage the creation of new agents to replace less optimal
representations and manage the exchange of state data.

So the early phase of our simulation might begin like so:

1. Both of the aggregate trees τΣ
0 and τΣ

SD(9),0 indicate that there is an IB
agent in their domain and that their SD representation does not perform
well for the indicated biomass. Both the status and candidate trees for
agent 11, τ11(0),, τIB(11),0 and τ̂IB(11),0, indicate that it is confident that it
can represent the biomass, and that there are no immediate unmet re-
quirements from other agents. Figure 3.3 (A)

2. The monitor assesses the trees against a prepared set of configurations:
each of the alternative configurations (including the current configura-
tion) is compared to a set of prepared, “efficient” configurations. The
configuration of cell 9, τ̌Σ

9 , notes global SD representations for plants
and herbivores. This configuration is ranked lower than the alternative
which has an individual based model for carnivores and a local SD sub-
model for the other entities in the cell. The monitor makes this change
in configuration, and informs the global SD agent that it is no longer
controlling the biomasses in cell 9. Figure 3.3 (B)

3.4. THE EXAMPLE MODEL 63

3. The model may run for some time without any change in configura-
tion. Both the herbivores and carnivores breed. The increased execution
speed between C and D in Figure 3.4 is a result of a change in represen-
tation: the number of carnivores, recorded in τΣ

SD(C),t4
, reaches a point

that prompts the monitor to convert them to an SD form. Figure 3.3 (C)

4. The biomass of carnivores has increased significantly by the time the
model reaches D in Figure 3.4, and they are now eating all the young her-
bivores; as a result the carnivore population is now prey-limited, and the
Relative biomass condition is triggered. Both the carnivore and herbivore
populations are converted to IB representations. Notice that dynamics
in the fidelity in Figure 3.4 around D arise from the collapse of the car-
nivore’s prey, followed by the increase in fidelity after the representation
change at D. Figure 3.3 (D)

5. A carnivore, agent 43, has been hungry (Hungry ≥ AmoveT) and has mi-
grated to the cell 5 (noted in τIB(43),t5). As occurred in cell 9 at step 2, the
monitor converts plants and herbivores in cell 5 to a local SD representa-
tion, with IB carnivores. Figure 3.3 (E)

6. A lot of activity has occurred in this monitor interval: a Starvation risk
is triggered in cell 9 because too many of the carnivores are hungry
(many of the τIB(n),t7 trees indicate that the elapsed time without eat-
ing is greater than Hungry). There has been more migration to cells 5,6
and 8 from cell 9 (more of the τIB(n),t7 trees indicate residence in new
cells), and a chance migration has introduced a carnivore into cell 3 from
cell 5. Cells 3,6 and 8 are converted to local SD and IB representations as
happened in step 3. Figure 3.3 (F)

7. The population of carnivores in cell 9 crashes as a result of migration
and the scarcity of prey, (reported in τ̌Σ

9) The IB juvenile herbivores are
patchy and harder to find, so only a few carnivores are getting enough
to eat. There will be many τIB(n),t10

which indicate hunger or death due
to starvation. The monitor cleans up the dead agents. There are chance
migrations from cell 5 into cells 4 and 7 (in τΣ

SD(4),0 and τΣ
SD(7),0). A fire

begins in cell 8, moving through cell 5: biomass loss in all niches causes
all niches to shift to IB representations. Figure 3.3 (G)

8. Juvenile herbivores are reappearing in cell 9, but the available plant biomass
(recorded in τSD(9),t11

) has dropped due to reduced germination rates,
triggering the Relative biomass condition in cell 9 causing the plants to
convert to an IB representation. The fire in cell 8 has killed all animal
biomass in the cell; they do not return to the global SD representation
because their status trees diverge by too much. Instead, they convert to
local SD representations (which represent zero biomass quite efficiently).
Plants remain as IB agents The fire spreads to cell 5. Figure 3.4 shows a
modest increase in execution speed between G and H due to the popu-
lation losses associate with the fire. Figure 3.3 (H)

● . . . the simulation continues

3.5. DISCUSSION 64

3.5 Discussion

Adaptive hybrid models can be constructed so that each submodel is aware of
its other representations and is able to change form as appropriate [Gray and
Wotherspoon, 2012]. This approach requires each model to have a reasonably
close coupling with its alternative representations, and the burden of instru-
menting (and maintaining) the necessary code quickly becomes untenable in
complex models. Worse, it removes the possibility of more subtle configura-
tion management that can accept poor performance in one part of a system in
exchange for much better performance elsewhere. It seems that a guiding prin-
ciple should be that in an adaptive hybrid model, each representation should
know only as much about the rest of the model as it must know, and no more.
The facility for a submodel to delve into the workings of other submodels, or
the workings of the model as a whole, decreases the clarity that hybrid model-
ing makes possible, and opens avenues for unwanted, unanticipated behavior.

The major argument in favor of closely integrated representations for sub-
models is that it makes common (or at least similar) state variables easy to
maintain across representations, even in the face of many representation changes.
It is an attractive arguement, but the long term consequence is an ever growing
burden of code maintenance.

Constructing hybrid models isn’t significantly more complex than construct-
ing traditional models. Adaptive hybrid models of the sort described in this
paper will require a more significant investment in the design of a monitor-
ing routine, and in the crafting of appropriate sets of candidate configurations.
The transition dynamics such a model will exhibit depend on the sets of can-
didate configurations, and it seems likely that a combination of analysis and
experimentation may be the most effective way to develop a set of useful con-
figurations. The hybrid models associated with Lyne et al. [1994a], Little et al.
[2006], Fulton et al. [2009] were built by extending the repertoire of ways of
representing elements of the ecosystem or the anthropic components rather
than wholescale redesign and replacement.

We can imagine an ideal adaptive hybrid model, where any state information
which must be passed on is accompanied by an appropriate, opaque parcel of
code to perform the maintenance. As long as the monitor knows what infor-
mation each of these maintenance interfaces needs, they can be updated each
time the monitor interrogates the agent which has control of the state data.
This is a readily attainable ideal: many programming languages support first
class functions with closures, and these features are precisely what we need to
address this problem. Scheme, Python, ML, Common Lisp, Lua, Haskell, and
Scala all have first order functions with closures and, hence, the capacity to
build model systems with this capability.

The state vectors and their supporting maintenance procedures can be treated
as data and passed in lists associated with the status trees. If a monitor decides
to swap representations, the accumulated lists of maintenance functions may
be passed on to the new representation. A new representation inherits a main-
tenance list with variables that are part of its native state, it can claim them as

3.5. DISCUSSION 65

its own and continue almost as though it had been running the whole time. In
this way, a new representation doesn’t need to know anything about its near
kin, only that it must be able to run these black-box functions that come from
other submodels, and to pass them on when required.

It may seem that this concentrates the global domain knowledge in the mon-
itor, but this is not really the case. The monitor knows how to blindly query
agents for state data and to the data in maintenance procedures. The monitor
also knows how to recognize and rank characterizations of the states of the
submodels or niches and to use those data to select a configuration.

The domain knowledge is encapsulated in the sets of targets the monitor matches
the current configuration against, and in the heuristic triggers (such as Starva-
tion risk) associated with a submodel or niche.

The essential problems any monitor is likely to deal with are problems of set
selection (recognition, pattern matching. . .) and optimisation. These are com-
mon tasks: web searches, voice recognition, and route planning have become
ingrained parts of modern society. Like route planning, the monitor needs to
be able to reassess the “optimal” strategy as an ongoing process.

There are many options to choose from to rank configurations. A few of the
likely candidates include

• using an objective function to evaluate each of the possible configura-
tions,

• selecting a configuration based on decision trees,

• using neural nets to match model states and direct us to an appropriate
configuration,

• using Bayesian networks to determine the most likely candidate,

and

• using support vector machines to select the target/configuration pairs.

In writing this paper, one of the vexing difficulties has been finding a suitable
mathematical representation which would allow comparisons between con-
figurations, submodel states and the states of niches. We need proxies that
describe models and configurations of models in a way that we may readily
understand, manipulate and reason about, and being able to deal with sub-
models which are, in themselves, adaptive hybrid models, seems to be a nat-
urally desirable trait. The vector space of trees described in the Appendix has
some nice properties, and may be directly useful with many of the options
above: it forms a commutative ring (without necessarily having a unit), and
would naturally inherit the body of techniques which only require the proper-
ties of such a ring.

3.6. CONCLUSION 66

3.6 Conclusion

There are still some major obstacles to developing a fully fledged adaptive hy-
brid model which is generic enough to tackle instances as varied as marine
ecosystem modeling and urban planning. Foremost is a relative lack of real
examples. The simulation of the hypothetical model4 has tried to expose the
character of an adaptive hybrid model which uses a monitor to manage the
configuration of the system. There are parts of the description of the example
system which are conspicuous by their absence; this is largely because they
lie in almost wholly uncharted water. As a modeling community, we need to
develop a wide range of approaches to how a model may assess the relative
merits of a set of configurations. Many of the mechanisms we need for adap-
tive hybrid models already exist, but are found in domain specific models, and
in wholly different domains, such as search engines and GPS navigation.

Establishing a suitable mathematical representation for model configurations
which gives us access to well developed techniques for set selection, pattern
recognition and component analysis would seem to be almost as urgent as
adaptive hybrid examples of real systems.

Acknowledgments
The authors would like to thank two anonymous reviewers whose comments
have improved the paper immeasurably. Thanks also go to a patient and un-
derstanding editor at Frontiers, and to Dr Tony Smith, who gave up a weekend
to work a scientifically and grammatically fine toothed comb through the pa-
per. The responsibility for any mistakes, awkward sentences, or places where
it just does not make sense now rests completely with the lead author.

4The model described in this paper is currently under development and will be made freely
available when it has been completed.

3.7. APPENDIX 67

3.7 Appendix

3.7.1 Mathematical definitions

The trees we use are members of a normed vector space: we can add them,
find out how far apart they are and interpolate between them. In principle,
we can run clustering algorithms to find configurations that are similar, and
identify when a model has left one cluster and entered another.

Definition 3.7.1. Let S be a set of labels, and let Kbe a field like the real or complex
numbers. Then we define a node n as a triplet of the form (s , v, E), with v ∈K, s ⊂ S ,
and the set E is a (possibly empty) set of nodes of the same form with the restriction
that no two nodes in E may have the same label in their first ordinate. We also define
the triple O = (∅, 0,∅), which we will call the null tree, and define T to be the union
of the set of all trees composed of a finite number of these nodes.

The ordinates of u = (u
P
, uv , uE) in T correspond to its label, value, and extension

set. An element of uE will be called an extension.

In our discussion, it will help to have a few more descriptive terms.

A node with an empty extension set is called a simple node, if this node hap-
pens to be a root node, then it is a simple tree.

Two trees, u, v ∈ T are called compatible if either u
P
= v

P
or at least one of u

and v is O.

We define the depth of a tree with:

depth(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if u = (∅, 0,∅) = O

1 if u is a simple node
1+max({depth(v) ∶ ∀v ∈ uE}) otherwise.

We will also define for u ∈ T ,

trim(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O if u = O

O if u is simple
(u

P
, uv ,{trim(e) ∶

∀ e ∈ uE}∖ {O}) otherwise.

The cardinality of a tree is the number of nodes it contains. Specifically,

∥u∥⊺ =
⎧⎪⎪⎨⎪⎪⎩

0 if u = O

1+∑ e∈ uE
∥ e∥⊺ otherwise.

Simple nodes are the only nodes that have a cardinality of one, and O is the
only node or tree with a cardinality of zero.

3.7. APPENDIX 68

The support of a tree is the number of nodes which have a non-zero value.

supp(u) =
⎧⎪⎪⎨⎪⎪⎩

0+∑ e∈ uE
supp(e) if uv = 0

1+∑ e∈ uE
supp(e) otherwise .

Related is the fundamental support of a tree, which only counts nodes with no
zero valued nodes in their connection to the root node

fund(u) =
⎧⎪⎪⎨⎪⎪⎩

0 if uv = 0
1+∑ e∈ uE

fund(e) otherwise .

Clearly the support of a tree, supp u, must lie in the domain [0, ∥u∥⊺] and
fund u ≤ supp(u).

The overlap between two trees is defined

overlap(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = O or v = O or u
P
≠ v

P

1+ ∑
e∈ uE
f∈ vE

overlap(e, f) otherwise

Clearly two trees, u and v, are compatible if and only if overlap(u, v) ≠ 0;
they will be said to completely overlap if ∥u∥⊺ = ∥v∥⊺ = overlap(u, v).

We can now define scalar multiplication, and tree addition.

Definition 3.7.2. Take a ∈K and u ∈ T , then

a u =
⎧⎪⎪⎨⎪⎪⎩

O if u = O

(u
P
, a uv ,{a f ∶ f ∈ uE}∖ {O}) otherwise.

(3.1)

Definition 3.7.3. Let u and v be compatible elements of T .Then taking the symbol +
to be addition in the field K, we extend it to addition in T so that for nodes u and v,

u + v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O if u = v = O

u if u ≠ O and v = O

v if u = O and v ≠ O

(u
P
, uv + vv ,∅) if uE , vE = ∅

(u
P
, uv + vv , ({ f + g ∶ f ∈ uE and g ∈ vE and f

P
= g

P
}

∪{ f ∶ f ∈ uE and f
P
≠ g

P
∀ g ∈ v}

∪{ g ∶ g ∈ vE and g
P
≠ f

P
∀ f ∈ u})∖ {O}) otherwise.

(3.2)

Definition 3.7.4. Let u and v be compatible elements of T .Then we define inner-
multiplication between the two nodes

u ⋅ v = (u
P
, uv vv ,{ f ⋅ g ∶ f ∈ uE , g ∈ vE and f

P
= g

P
}∖ {O}) (3.3)

3.7. APPENDIX 69

It can be shown that T with scalar multiplication and tree addition forms a vec-
tor space. This isn’t quite enough to give us distances between trees, however,
so we define a semi-norm

Definition 3.7.5. Let u be an element of T .Then we can define a semi-norm over T

L uM =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = O

∣uv ∣ if uE = ∅
∣uv ∣+∑ e∈ uE

L eM otherwise.

It is clear that L uM will always be non-negative, and the only shortcoming is
that we can have a node u with L uM = 0, but u ≠ O. In order to turn this
into a normed vector space we take the set O = {u ∶ u ∈ T and L uM = 0} and
we construct an equivalence relation on T by the rule [u] ≡ [v] if and only if
there exist zu, zv ∈ O such that u + zu = v + zv. It can be shown that scalar
multiplication, tree addition, and the semi-norm behave appropriately with
respect to the equivalence classes. This means that if we identify elements of
T with their equivalence class, then we can take L uM to be a norm and that it
induces a distance function

d(u, v) = L u − vM.
Definition 3.7.6. We define the functions mask and mask that set the values associ-
ated with particular nodes in a tree to v ∈K. Specifically, if L ⊂ T , then

mask(u, L , v) =
⎧⎪⎪⎨⎪⎪⎩

(u
P
, v,{mask(f , L , v) ∶ f ∈ uE}) if u

P
∈ L

(u
P
, uv ,{mask(f , L , v) ∶ f ∈ uE}) otherwise

(3.4)

and

mask(u, L , v) =
⎧⎪⎪⎨⎪⎪⎩

(u
P
, v,{mask(f , L , v) ∶ f ∈ uE}) if u

P
/∈ L

(u
P
, uv ,{mask(f , L , v) ∶ f ∈ uE}) otherwise.

(3.5)

mask(u, L , 0) would return a tree similar to u, but all its nodes that have labels in L

would have values of zero.

We also define several functions which prune or select a child from a tree’s extension
set. This function returns only the part of u which overlaps p,

excise(u, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(u
P
, uv ,{excise(f , g) ∶ f ∈ uE and g ∈ p and f

P
= g

P
}∖ {O}) if u

P
= L

O if u
P
≠ p

P

(u
P
, uv ,∅) otherwise,

(3.6)
and this one either returns an appropriately labelled child from the extension set (a
branch), or O.

(
C

u, l) =
⎧⎪⎪⎨⎪⎪⎩

f if f
P
= l and f ∈ uE

O otherwise.
(3.7)

3.8. EPILOGUE TO THE PAPER 70

We now finish with a definition of a function, ∆(,), that gives us a measure of
the degree of divergence between two trees.

Definition 3.7.7. The degree of deviation between two trees, u and v is given by the
expression

∆(u, v) =
⎧⎪⎪⎨⎪⎪⎩

∥u∥⊺ + ∥v∥⊺ − 2 overlap(u, v)+ L u − vM if u and v are compatible
∥u∥⊺ + ∥v∥⊺ otherwise.

(3.8)

The rationale behind this definition is that if trees u and v are identical, then ∆(u, v)
will be zero. We also want nodes that aren’t common to both trees to count as differ-
ences.

3.8 Epilogue to the paper

The model described in this paper has been used as a template for the model
used to frame the discussion in Chapter 5. The paper attempted to describe a
credible “toy” model to provide a setting for such a discussion; when it came to
implementation of the model the paper described, a few shortcomings came
to light and some of the corresponding algorithms have been altered in the
explicit model to correct them. The most notable example, and one which
characterises the oversights well, is that adhering to the description effectively
prevented cells which are stripped of living plants from being recolonised.
As stated, the seeds resulting from the consumption of fruit were tied to the
cell they were eaten in, because the animals excreted them immediately. The
consequence of this was that there was no way for plants to recolonise empty
cells.

This paper extended and generalised the simple state maintenance of Chapter
2 by passing closures rather than a vector of values and the confident knowl-
edge that the closures embodied the correct process for update. By using clo-
sures, the actual machinery supporting the update of the state of a previous
representation can be passed and both the mechanism and data made, in some
sense, opaque to all but the representation it is associated with. Enforcing the
notion that the code required for maintaining a state vector of a representa-
tion must be provided by that representation means that all of the code which
changes the state of an agent is embodied within the agent’s representation.
This has practical appeal in that inappropriate modifications to that state data
may cause errors that would be very difficult to isolate.

The trees described in the next chapter are used to characterise the distribution
of agents within the model’s spatial domain, and encode the different repre-
sentations and numbers of those agents.

CHAPTER 4

A ring-like structure of trees

4.1 Introduction – a historical context

The project which triggered the development of the structure in this chapter
considered using the modeling of the social dynamics associated with policies
about, and responses to climate change and to predict the social and economic
consequences of development arising from various scenarios. This was a sig-
nificant change from previous representations of “public” participants, such
as recreational fishers, tourists, accommodation and other small businesses,
which were modelled in fairly simple ways (Fulton et al. [2011a], Gray et al.
[2014]). The specific goal was to be able to incorporate a simulation of the
way public opinion changes in response to policy actions and changes in the
economy and environment. The starting point for this was a corpus of re-
sponses to a survey on attitudes associated with the topic of climate change
(Boschetti et al. [2012]). The data consisted of (largely) numeric answers to
individual questions which could represented as either distinct items, or as
an aggregation of symbolic elements. Questions like “How much do trust the
following individuals or organisations to tell you the truth about changing
climate?” might be encoded in a symbolic way by aggregating the symbols cli-
mate_change, trust, information_source, AustPeng for the trustworthiness of the
Australian Penguins as a source of information. The actual value marked could
be encoded as a scalar, giving us an expression like “4/5 + climate_change +
information_source + trust + AustPeng” – expressing it in this way suggested
that working with more intricate relationships might be possible.

It became evident that the the mathematical structures could represent config-
urations of models, and that it might be able to incorporate the interdependen-
cies between models and other information in a very simple way. It seemed
possible to construct example configurations which were reasonable for par-
ticular conditions and to assess how close to “known-good” configurations
the system was at any given point. It also seemed possible that it might al-
low strategies which were able to interpolate between “good” configurations
making intermediate transitions between configurations feasible. The natural
network of dependencies exhibited by some components of past models sug-

71

4.2. CONVENTIONS AND PRELIMINARY DEFINITIONS 72

gested using tree structures to encode the configuration of a model as a starting
point.

The structure described in this chapter is the structure behind the work in
Chapter 5. The trees are comprised of nodes which have a label and a weight
(and, of course, children). Initially, the labels were simply symbols associated
with certain attitudes or semantic data which were taken from a nominated
set. This had the advantages of simplicity and clarity, but their very simplicity
made the multiplicative operator much more complicated. Much of the ma-
chinery associated with labels was really just a messy version of arithmetic in
commutative ring-like structure of multinomials. Once labels were identified
with multinomials, everything became clear. Using the field of rational multi-
nomials may be productive, but this notion has not been seriously explored.

4.2 Conventions and preliminary definitions

The structure is, loosely speaking, a set comprised of disjoint subsets with a
corresponding family of additive operators (one to each subset). Each subset
is closed under its addition, and there is a multiplicative operator which is
defined over the whole set.

Generally, we will use lower case, boldfaced symbols to denote a node (or
tree), and upper case, boldfaced symbols to denote sets – particularly sets of
nodes. Other symbols (such as x) will typically refer to numbers or multino-
mials. Elements of a node, u will be identified using an appropriate subscript,
namely uv , for the node’s value and u

P
for its label. Initially, the children of a

node were thought of as refinements or children of an attitude, so the children
of u were its children, and uC denotes the set of children. We will take K[A]
to be the ring of multinomialsover the elements of a finite set of symbols A.
Here K would usually be some numeric field such as Q, R or C, for example.

Definition 4.2.1. Given A and K[A] and an arbitrary field, K, we define the set, T∗

of finite (acyclic) trees where each node is of the form (uv , u
P
, uC) where the value,

uv , is a member of K, it’s label, u
P

is a member of K[A] and the set of children, uC ,
contains leaf nodes with distinct labels.

Nodes or trees with no children, E = ∅, will be called simple nodes, simple trees,
or leaf nodes, and simple nodes which also have scalar multinomials as their
labels may be referred to as scalar nodes or scalar trees. The domain of trees, T∗,
is the collection of only those trees with a finite number of nodes. We will make
use of a set of special elements in T∗, O = (0, 0,∅), which is an an analogue of
zero that we will call the zerotree.

In this work, we will occasionally restrict ourselves to an arbitrary subset of
T∗, Once labels were identified with multinomials, everything became clear.
We will take ˇTpP to be the set of trees whose root nodes have a label equal to
p

P
. The element OpP = (0, p

P
,∅)will be shown to play the role of the additive

identity in the set ˇTpP ; we will use the symbol Omore generally to refer to

4.2. CONVENTIONS AND PRELIMINARY DEFINITIONS 73

an appropriate member of the set of additive zero elements unless it creates
ambiguity.

Note that the choice to use elements of the ring of multinomialsfor labels is,
in a sense, arbitrary: elements of any commutative ring will serve, though we
will see that if we use a commutative ring, T∗ and the derived domains are
also commutative; here, the ring of multinomialsprovide a simple example
which is easily manipulated and printed. K is taken to be R or Q.

Definition 4.2.2. Two nodes or trees, u, v ∈ ˇTpP f orsome p
P
∈ K[A] are said to be

compatible if they have the same label.

u ∼ v ⇐⇒ u ∈ R v
P
⇐⇒ v ∈ R u

P
.

Clearly, all the trees in ˇTpP are compatible, and we will denote the set of all nodes of
the form (0, p

P
,∅) with Ǒ.

When there is no risk of ambiguity, we will use the same symbol to refer to a
set, T∗ for example, and a vector space based on that set. Compatibility (or lack
thereof) is really only pertinent to the addition of trees, in the same way that
having the same row- and column-rank is only necessary in matrix addition.
There is no such constraint in the pairwise multiplication of trees.

First, the definitions for some basic tools for manipulating these trees. Some of
the functions defined below are not used in this chapter, but play a role in the
explicit model described in Chapter 5.

Definition 4.2.3. The cardinality of a tree u ∈ T∗ is the number of nodes it contains.
We define it formally as

∥u∥⊺ =
⎧⎪⎪⎨⎪⎪⎩

0 if uv = 0 and =C∅
1+∑ e∈ uC

∥ e∥⊺.

Simple nodes are the only nodes which have a cardinality of one, and Ois the only
node or tree with a cardinality of zero.

Definition 4.2.4. For any u ∈ T∗ we define the function for

depth(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if uv = 0 and =C∅
1 if u is a simple node
1+max({depth(v) ∶ ∀v ∈ uC}) otherwise

which gives us the depth of the tree.

Definition 4.2.5. We will also define for u ∈ T∗,

trim(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O uv = 0 and =C∅
O if u is simple
(uv , u

P
,{trim(e) ∶ ∀ e ∈ uC}∖ { Ǒ}) otherwise.

4.2. CONVENTIONS AND PRELIMINARY DEFINITIONS 74

Obviously the depth is an indication of how many levels of nodes the tree pos-
sesses. Trimming essentially removes all simple nodes from the tree. A recur-
sive application of trimming will be denoted trimk, indicating that the tree u
will be trimmed k times. Note that trimdepth(u) u = 0 and depth(trimdepth u−1 u) =
1.

Definition 4.2.6. The overlap between two trees is defined

overlap(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u ∈ Ǒ or v ∈ Ǒ or u
P
≠ v

P

1+ ∑
e∈ uC
f∈ vC

overlap(e, f) otherwise

Clearly two trees, u and v, are compatible if and only if overlap(u, v) ≠ 0; they will
be said to completely overlap if ∥u∥⊺ = ∥v∥⊺ = overlap(u, v).

We may also make use of the relative overlap of two nodes, u and v, given by

overlapr(u, v) =
2 overlap(u, v)
∥u∥⊺ + ∥v∥⊺

.

The relative overlap of Owith itself is not defined.

Definition 4.2.7. The shadow cast by a tree, v, onto another tree, u, is given by

shadow(u, v) =
⎧⎪⎪⎨⎪⎪⎩

(uv , u
P
,{shadow(r, s) ∶ r ∈ uC , s ∈ vC}∖ { Ǒ}) if u

P
= v

P

O otherwise

where u and v are compatible.

This lets us restrict our attention to those parts of a tree which conform to some
“template” tree. It is easy to see that overlap(u, v) is precisely ∥(∥⊺ shadow(u, v)).

Definition 4.2.8. We will define a few useful notations for sets derived from sets of
nodes in T∗. Take U and V be such sets and a be a node in T∗; then

L(U) = { e
P
∶ ∀ e ∈ U}

U ∣L(V) = { f ∈ U ∶ f
P
∈ L(V)}

U ∣L(V) = { f ∈ U ∶ f
P
∉ L(V)}

and

aU = {a u ∶ ∀u ∈ U}

Definition 4.2.9. For convenience, we define analogues of several of the above rela-
tions for nodes to implicitly refer to the children of those nodes.

Let u and v be arbitrary nodes in T∗. Then we define the following

L(u) ≡ L(uC)
u∣L(v) ≡ uC ∣L(vC)

u∣L(v) ≡ uC ∣L(vC)

4.3. SCALAR MULTIPLICATION AND ADDITION 75

Some of these functions are not used in this chapter, but are presented because
they may come into play in constructing software components used to assess
and trigger changes in model configuration.

4.3 Scalar Multiplication and addition

The aim of this work is to be able to compare trees in a robust way and to ma-
nipulate them as though they were vectors: trees which form a vector space,
or – better – a metric space, which can be compared and clustered. We will
start by defining scalar multiplication of the trees in T∗, and then we will de-
fine a few useful mappings which will help keep the expressions simple. Our
aim, in this section, is to define addition, and to show that the defined scalar
multiplication and addition make this a vector space. When there is no risk of
ambiguity, we will use the same symbol to refer to both the set and a vector
space based on that set.

4.3.1 Scalar multiplication and some convenience functions

Definition 4.3.1. For all a ∈K[A] and u ∈ T∗, we define

a u =
⎧⎪⎪⎨⎪⎪⎩

O if a = 0 or u = O

(a uv , u
P
, a uC) otherwise

where aA indicates the element-wise product. Since the elements of K are a subset of
K[A] this also defines scalar multiplication of trees by elements of K.

4.3.2 Addition

Now we define the addition of two trees,

Definition 4.3.2. For compatible nodes u and v ∈ T∗,

u + v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u if v = O

v if u = O

(uv + vv , u
P
, (u∣L(v) ∪ v∣L(u)

∪{ r + s ∶ r ∈ u∣L(v) and s ∈ v∣L(u) and r
P
= s

P
})∖ {O}) otherwise

Definition 4.3.3 (Notation). We will use the following notation as a more concise
representation of the addition of two sets, such as the sets of children in Eq. 4.3.2, by

B⊞C = (B∣L(C) ∪ C∣L(B) ∪ { r+ s ∶ r ∈ B∣L(C) and s ∈ C∣L(B) and r
P
= s

P
})∖ {O}.

4.4. PROPERTIES OF A VECTOR SPACE 76

4.4 Properties of a vector space

In this section we prove that the elements of T and operations give us a vector
space.

Proposition 4.4.1. T , with scalar multiplication and tree addition is a vector space.

Proof. We will assume that p, q, u, v, w ∈ T and a, b ∈K.

Additive identity element This is explicit in the definition of addition between
elements of T .

Inverse elements with respect to addition The element O is its own inverse,
since O+ O = O by definition.

So, we consider the case of u, where depth(u) = 1, then

u +−u = (uv , u
P
,∅)+ (−1 uv , u

P
,∅)

= (uv +−uv , u
P
,∅)

= O

so for any simple node, u, −u is its inverse.

Let v be a non-null node which is not simple, but has simple c, that is to
say depth(v) = 2. Then

v +−v = (vv − vv , v
P
,{ e +− e ∶ ∀ e ∈ vC}∖ {O})

= (0, v
P
,∅)

= O

since the simple leaf nodes are all added to their own additive inverse.

So, we can generalise to trees with a depth greater than two. Assuming
that the proposition holds for elements of T with depth n, we consider
an element, u, where depth(u) = n + 1 added to the element −u.

u +−u = (0, u
P
,{ e +− e ∶ ∀ e ∈ uC})

Since the child nodes of the root node of u are, by assumption, added to
their additive inverses, they then become

= (vv +−vv , v
P
,∅)

= O

for each v ∈ uC and, by induction, our inverse holds for all members of
T .

Multiplicative identity element First observe that 1O = (1 ⋅ 0, 0,∅) = O.

4.4. PROPERTIES OF A VECTOR SPACE 77

Now consider an arbitrary non-null tree in T , u; u is either simple, or it
has child nodes. In the case of a simple u, it is obvious that 1 ∈K acts as
an identity.

u = (uv , u
P
,∅)

= (1 uv , u
P
,∅)

= 1(uv , u
P
,∅)

= 1 u

Thus, for all leaf nodes on u, 1 is the identity for scalar multiplication.
Now we take u to be some non-simple node,

u = (uv , u
P
, uC)

= (1 uv , u
P
, 1 uC)

= (1 uv , u
P
,{(1 ev , e

P
, eC) ∶ ∀ e ∈ uC}),

and, if the children are all simple nodes,

= 1(uv , u
P
, uC)

= 1 u.

so it is the case that 1 is the scalar multiplicative identity for nodes which
have a depths of less than three.

Now suppose that 1 is the identity for scalar multiplication of all mem-
bers of T with a depth of n or less for some natural number n, and we
consider v which has a depth of n + 1. Then

v = (vv , v
P
, vC)

= (1 vv , v
P
, 1 vC)

.

But each of the elements in the set 1 vC either has a depth of n or less and
so the the children of 1 v is merely vC , and so 1 v = v.

By induction, we can demonstrate that 1 is the identity for scalar multi-
plication of nodes of arbitrary (finite) depth.

Commutativity Let us consider compatible nodes u and v.

The commutativity of addition involving Ois guaranteed by the defini-
tion of addition, so we first address the case where both addends are
simple.

Take u and v to be simple nodes; then

u + v = (uv , u
P
,∅)+ (vv , v

P
,∅)

= (uv + vv , u
P
,∅)

= (vv + uv , u
P
,∅)

= v + u.

4.4. PROPERTIES OF A VECTOR SPACE 78

Now suppose that there is some number n for which depth(u) ≤ n and depth(v) ≤
n Ô⇒ u + v = v + u.

Then if we take u and v to be nodes with depths of n + 1 or less,

u + v = (uv , u
P
, uC)+ (vv , v

P
, vC)

= (uv + vv , u
P
, ({ r + s ∶ r ∈ u∣L(v) and s ∈ v∣L(u) and r

P
= s

P
}

∪ { r ∶ r ∈ uC and r
P
∉ L(v)}∪ { s ∶ sC ∈ v and s

P
∉ L(u)})∖ {O})

= (uv + vv , u
P
, ({ r + s ∶ r ∈ uC and r

P
∈ L(v) and s ∈ vC and s

P
∈ L(u)}

∪ u∣L(v) ∪ v∣L(u))∖ {O}

So,

u + v = (vv + uv , u
P
, ({ r + s ∶ r ∈ uC and r

P
∈ L(v) and s ∈ vC and s

P
∈ L(u)}

∪ u∣L(v) ∪ v∣L(u))∖ {O}

since addition in T is commutative. If we can demonstrate that the ex-
pression for the children is independent of order, then it must be the case
that sum of the addends, u and v, must also be order independent.

The set { r + s ∶ r ∈ uC and r
P
∈ L(v) and s ∈ vC and s

P
∈ L(u)} must

be order independent since each of the candidate r and s addends must
have a depth of n or less. Since set union is commutative, the order of
u∣L(v) and v∣L(u) doesn’t affect the result, thus, addition must be com-
mutative for all u where depth(u) ≤ n + 1. By induction, this must be
true for all n ≥ 0.

Associativity Let us consider compatible nodes u, v and w in T .

First consider the situation where the depths of u, v and w are all less
than or equal to one. If they all have a depth of zero, the sum is trivially
the null tree. Similarly, if any have depths of one or less is the zero tree,
we also get a trivial result. So we take all of u, v, and w to be simple.
Then

(u + v)+ w = ((uv , u
P
,∅)+ (vv , u

P
,∅))+ (wv , u

P
,∅)

= (uv + vv , u
P
,∅)+ (wv , u

P
,∅)

= ((uv + vv)+ wv , u
P
,∅)

= (uv + (vv)+ wv), u
P
,∅)

= u + (v + w).

Let us consider the case where these may be non-simple trees. Sup-
pose there is an integer n such that associativity holds for any three trees
u, v and w, whose depth is less than or equal to n, that is if depth(u) ≤
n, depth(v) ≤ n and depth(w) ≤ n, then it must be the case that

(u + v)+ w = u + (v + w).

4.4. PROPERTIES OF A VECTOR SPACE 79

Now suppose one or more of these trees has a depth of n + 1.

(u + v)+ w = ((uv , u
P
, uC)+ (vv , u

P
, vC))+ (wv , u

P
, wC)

= (uv + vv , u
P
, uC ⊞ vC)+ (wv , u

P
, wC)

Recall that

uC ⊞ vC = (u∣L(v) ∪ v∣L(u) ∪ { p+q ∶ p ∈ u∣L(v) and q ∈ v∣L(u) and p
P
= q

P
})∖ {O}

so, letting

B = uC ⊞ vC

we get

(u + v)+ w = ((uv + vv)+ wv , u
P
, (B∣L(w) ∪ w∣L(B) ∪ B⊞ wC)∖ {O})

= (uv + (vv + wv), u
P
, (B∣L(w) ∪ w∣L(B) ∪ B⊞ wC)∖ {O})

since addition in T is associative for nodes with a depth of n or less

Notice that the elements of all the sets which comprise the children, those
in B and in wC , must have a depth of n or less; any addition which occurs
amongst the elements of these sets must be associative by our inductive
assumption. Hence

(u + v)+ w = u + (v + w).

Compatibility of scalar multiplication and multiplication in K Observe first
that aO = O,∀a ∈K. We also dispose with the case of simple nodes:

a(b u) = (a(b uv), u
P
,∅)

= (ab uv , u
P
,∅)

= ((ab)uv , u
P
,∅)

= (ab)u;

So assuming that multiplication is compatible with nodes with depths of
n or less, we consider u, where depth(u) = n + 1,

a(b u) = a(b uv , u
P
, b uC)

since depth(e) ≤ n∀ e ∈ uC , multiplication of these elements is compati-
ble, and

= (ab uv , u
P
, a(b uC))

becomes

= ((ab)uv , u
P
, (ab)uC)

= (ab)u

Thus the scalar and field multiplication operators are compatible.

4.4. PROPERTIES OF A VECTOR SPACE 80

Distribution of scalar multiplication with respect to vector addition Let us con-
sider compatible trees, u and v.

First, note that
∀u ∈ T , a(O+ u) = a u = aO+ a u,

and that
∀u, v ∈ T , 0(u + v) = O = 0 u + 0 v.

The property holds for simple nodes,

a(u + v) = a((uv , u
P
,∅)+ (vv , v

P
,∅))

= a (uv + vv , u
P
,∅)

= (a(uv + vv), u
P
,∅)

= (a uv + a vv , u
P
,∅)

= (a uv , u
P
,∅)+ (a vv , u

P
,∅)

= a u + a v

.

So, suppose that the equation a(p+ q) = a p+ a q holds for all compatible
nodes p and q such that depth(p) ≤ k, and depth(q) ≤ j.

Take n =min(j, k), a ∈ K, and nodes u and v such that depth(u) = n + 1,
and depth(v) = n + 1. Note that n must be greater than zero since the
property holds for simple nodes. Then

a(u + v) = a((uv , u
P
, uC)+ (vv , v

P
, vC)

= a(uv + vv , u
P
,{u∣L(v) ∪ v∣L(u)

∪ { r + s ∶ r ∈ u∣L(v) and s ∈ v∣L(u)}}∖ {O})

= (a(uv + vv), u
P
,{{a e ∶ e ∈ u∣L(v)}∪ {a e ∶ e ∈ v∣L(u)}

∪ {a(r + s) ∶ r ∈ u∣L(v) and s ∈ v∣L(u)}}∖ {O}))

= (a uv + a vv , u
P
,{{a e ∶ e ∈ u∣L(v)}∪ {a e ∶ e ∈ v∣L(u)}

∪ {a(r + s) ∶ r ∈ u∣L(v) and s ∈ v∣L(u)}}∖ {O}))

.

Notice that the component sets of the set of children to u + v, namely
{a e ∶ e ∈ u∣L(v)}, {a e ∶ e ∈ v∣L(u)} and {a(r + s) ∶ r ∈ u∣L(v) and s ∈
v∣L(u)} can only contain nodes with a depth of n or less; Thus, we can
proceed inductively, increasing the least upper bound, min(j, k), for the
set of trees that cooperate with distribution of scalar multiplication over
vector addition, to any value we wish.

Distribution of scalar multiplication with respect to addition in K The prop-
erty is clearly true when u = O, since (a + b)O = O = aO+ bO.

4.5. SEMINORMS, NORMS AND METRICS 81

We first consider simple nodes:

(a + b)u = (a + b)((a + b)uv , u
P
,∅)

= ((a + b)uv , u
P
,∅)

= (a uv , u
P
,∅)+ (b uv , u

P
,∅)

= a u + b u.

Nodes with a depth of two are slightly more complicated,

(a + b)u = (a + b)((a + b)uv , u
P
, (a + b)uC)

= (a uv + b uv , u
P
,{(a + b) e ∶ e ∈ uC})

but uC is composed of simple nodes, so,

= (a uv + b uv , u
P
,{a e + b e ∶ e ∈ uC})

= (a uv + b uv , u
P
, a uC)+ (b uv , u

P
, b uC)

= a u + b u.

Now suppose the property holds for nodes with a depth of n. Then we
consider node u with a depth of n + 1:

(a + b)u = (a + b)(uv , u
P
, uC)

= ((a + b)uv , u
P
, (a + b)uC),

= (a uv + b uv , u
P
,{a e + b e ∶ e ∈ uC})

since depth(e) = n

= a u + b u.

By induction, the property must hold for all n >= 0

4.5 Seminorms, norms and metrics

Now that we have a vector space, we can construct model configurations as
linear combinations of basis configurations. In the context of models which
change their configuration, we need a way for the model itself to combine basis
configuration trees by choosing from a set of configurations that are known to
exhibit suitable properties. To this end, we need a mechanism for judging how
close or far a given configuration is from where it needs to be – we need a
way to decompose an extant, running configuration into its basis elements,
and then map these to some provably more appropriate configuration. To do
this, our structure needs to be a metric space.

We will now construct a seminorm on the vector space T . This will induce
a norm on a quotient space of T which we can use as a tool for assessing the
similarity of trees and, ultimately, provide both a means of clustering trees and
selecting trees with particular properties.

4.5. SEMINORMS, NORMS AND METRICS 82

4.5.1 T and its classwise seminorm

Definition 4.5.1. We define the absolute value of a node to be

L uM =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = O

∣uv ∣ if uC = ∅
∣uv ∣+∑ e∈ uC

L eM otherwise.

The absolute magnitude is only based only on the values of the nodes of trees.
Note that each node in a tree can only contribute a non-negative quantity to
the absolute value of the tree, it is obvious that L uM ≥ 0 for all u ∈ T and that
equality only occurs if the weight of each node in the tree u is zero.1

For any two trees (including those with dissimilar labels) we can define a func-
tion analogous to a distance.

Definition 4.5.2. We will define a semi-norm on the trees:

juo = ∣uv ∣2 + ∑
v∈ uC

jvo (4.1)

and we define the norm in terms of this with

⟪u⟫ =
√
⟪u⟫. (4.2)

Both of these functions clearly have non-negative ranges, and they only take
the value zero if all the node values and the node labels are zero. Since we
restrict ourselves to finite, acyclic trees, we can argue that for any finite set of
n trees, we can construct an equivalent vector-based representation of the set
by serialising the trees. The defined norm is precisely equivalent to the usual
length of vectors in this set. In the example model discussed in Chapter 5 we
make use of both this norm and the distance function ⟪u − v⟫.

Proposition 4.5.1. For a ∈K and u ∈ T , ∣a∣L uM = La vM.
Proof. The magnitude of the empty tree is trivially zero, so ∣a∣LOM = LaOM = 0.

Consider simple nodes in T :

∣a∣L uM = ∣a∣(∣uv ∣+ 0)
= ∣a∣∣uv ∣
= La uM.

Now suppose that there is n ≥ 1 such that the proposition is true for all trees
with a depth of n or less. Then, taking u ∈ T where depth(u) = n + 1, we have

∣a∣L uM = ∣a∣((∣uv ∣+ ∑
e∈ uC

L eM))
= ∣a∣∣uv ∣+ ∑

e∈ uC

∣a∣L eM
1. . . Or, alternatively, the absolute value of every subtree is zero.

4.5. SEMINORMS, NORMS AND METRICS 83

but all the elements in uC have a depth of k or less

= ∣∣a∣uv ∣+ ∑
e∈ uC

L∣a∣ eM
= ∣a uv ∣+ ∑

e∈ uC

La eM
= La uM.

By induction, the proposition must be true for all n ≥ 0.

Proposition 4.5.2. For u and v ∈ T , L u + vM ≤ L uM+ L vM.
Proof. We start by considering trees of depths zero and one. The case for null
trees is trivial: LO+ OM = ∣0+ 0∣ = 0, and if only one of the trees has a depth of
one, we get either L u + OM = L uM or LO+ uM = L uM.
For u and v with depths of one,

L u + vM = L(uv + vv , u
P
,∅)M = ∣uv + vv ∣.

Since uv and vv are scalars in K, we must have ∣uv + vv ∣ ≤ ∣uv ∣+ ∣vv ∣, so

∣uv + vv ∣ ≤ ∣uv ∣+ ∣vv ∣ = L uM+ L vM.
We will now proceed by induction; let n be a positive integer for which the
triangle inequality holds for all trees with a depth of k or less. Let’s consider
compatible trees, u and v whose depths are less than or equal to n + 1. Then

L u + vM = L(uv + vv , u
P
, uC ⊞ vC)M

= [∣uv + vv ∣+∑
e∈ uC⊞ vC

L eM].

Observe that ∣uv + vv ∣ ≤ ∣uv ∣+ ∣vv ∣, and that each of the addends in

∑
e∈ uC⊞ vC

L eM
has a depth of n or less, so

∑
e∈ uC⊞ vC

L eM ≤ ∑
e∈ uC

L eM+ ∑
e∈ vC

L eM.
This implies that

L u + vM ≤ [∣uv ∣+ ∣vv ∣+ ∑
e∈ uC

L eM+ ∑
e∈ vC

L eM];
rearranging we get

L u + vM ≤ [∣uv ∣+ ∑
e∈ uC

L eM]+ [∣vv ∣+ ∑
e∈ vC

L eM]

4.6. ELEMENT MULTIPLICATION IN Ť AND ESTABLISHING THE
PROPERTIES SIMILAR TO THOSE OF A RING 84

and hence

L u + vM ≤ L uM+ L vM.
Corollary 4.5.1. The absolute value forms a seminorm on T .

Proof. Propositions, 4.5.1 and 4.5.2, are sufficient for the absolute value to be a
seminorm on T .

At this point we should consider the elements o ∈ T which are analogues
of zero. We define the set O = {o ∈ T ∶ L oM = 0}, and observe that for any
e ∈ T , and o ∈O the equation L e + oM = L eM must hold.

Since T is a seminormed vector space, it is also a pseudometric space and we
can induce a fully fledged metric space over the quotient space Ť = T/O.

For simplicity, we identify the coset of O with respect to O with Ǒ, and we
take the induced metric on the normed vector space Ť , to be

d(ǔ, v̌) = L ǔ − v̌M for all ǔ, v̌ ∈ Ť .

We will continue to use L ǔM to denote the the induced absolute value of ǔ ∈ Ť .

4.6 Element multiplication in Ť and establishing the
properties similar to those of a ring

In this section, we will define a multiplicative operator for trees. We want to
establish these properties mainly so that it broadens the set of mathematical
tools we have at our disposal to analyse sets of trees (clustering, classification,
interpolation, extrapolation. . .). The element (1, 1,∅) acts as a multiplicative
identity.

Definition 4.6.1. We define the multiplication of two trees (or nodes) to be

ǔ ⋅ v̌ =
⎧⎪⎪⎨⎪⎪⎩

Ǒ if ǔ = Ǒ or v̌ = Ǒ

(ǔν v̌ν , ǔ
P

v̌
P
, ǔ

P
v̌C ⊞ v̌

P
ǔC) otherwise.

where the notation ǔ
P

v̌C or v̌C ǔ
P

corresponds to the set obtained by multiply-
ing each label in the root node of the set v̌C by the label ǔ

P
. Clearly, if the set

in the operation (on either side) is null, then the result is null.

Proposition 4.6.1. ι = (1, 1,∅) commutes with all other nodes, is the multiplicative
identity, and it is unique,

4.6. ELEMENT MULTIPLICATION IN Ť AND ESTABLISHING THE
PROPERTIES SIMILAR TO THOSE OF A RING 85

Proof. Let v̌ be some arbitrary tree, then

(v̌ν , v̌
P
, v̌C) ⋅ ι = (v̌ν 1, v̌

P
1, v̌C 1⊞∅ v̌

P
)

= (1 v̌ν , 1 v̌
P
, 1 v̌C ⊞ v̌ν∅)

= (1 v̌ν , 1 v̌
P
, v̌ν∅⊞ 1 v̌C)

= (1 v̌ν , 1 v̌
P
, 1 v̌C)

= ι ⋅ (v̌ν , v̌
P
, v̌C)

= (v̌ν , v̌
P
, v̌C)

We can see that, since both the weight and label are members of a field, the only possible
value for both the weight and the label of the identity is one. This leaves us to consider
our options for the set of children. Suppose we have an alternative identity, I, with a
non-empty set of children; then the set of children in the product must be v̌C 1⊞ ǏC v̌

P
.

For this to be the identity, v̌C ⊞ ǏC v̌
P

must equal v̌C . This means, however that ǏC v̌
P

contributes only trees which are members of O, but this implies that Ǐν = 0 which
contradicts our observation that it must be 1.

Now we must prove that the necessary multiplicative properties so that we
can be confident that arithmetic involving trees works in the “normal” way.2

Proposition 4.6.2. Multiplication of trees in Ť is commutative.

Proof. Suppose there is a number n such that multiplication is commutative
for all trees ǔ, v̌ such that depth(ǔ), depth(v̌) ≤ n.

Multiplication involving nodes with a depth of zero clearly commutes, so n
may reasonably take the value 0.

In the case where both nodes are simple, it is evident that they must commute,
since scalar multiplication commutes, and the multiplication of ring of multi-
nomialsis commutative.

Suppose that one or both of the nodes has a depth of n + 1. The children of the
nodes all have depths of n or less, so the elements of the children of the product
must be independent of the order of the operators in the multiplication, and
both scalar multiplication and multiplication in the ring of multinomialscom-
mute. Hence the multiplication of nodes with a depth of n + 1 must commute.
By induction, we can say that trees of arbitrary depth commute with this defi-
nition of multiplication in Ť .

Proposition 4.6.3. Multiplication of trees in Ť is associative.

2Ideally, we would have inverses for trees (and hence a multiplicative identity), but, like
matrices, this may only be possible (if it is at all) for a comparatively small part of Ť .

4.6. ELEMENT MULTIPLICATION IN Ť AND ESTABLISHING THE
PROPERTIES SIMILAR TO THOSE OF A RING 86

Proof. Let ǔ, v̌, and w̌ be nodes in Ť . Then,

ǔ ⋅ (v̌ ⋅ w̌) = (ǔν , ǔ
P
, ǔC) ⋅ (v̌ν w̌ν , v̌

P
w̌

P
, w̌

P
v̌C ⊞ v̌

P
w̌C)

= (ǔν v̌ν w̌ν , ǔ
P

v̌
P

w̌
P
, ǔ

P
(w̌

P
v̌C ⊞ v̌

P
w̌C)⊞ v̌

P
w̌

P
ǔC)

but tree addition is both commutative and associative, and multiplication in
the ring of multinomialsalso commutes, so

= (ǔν v̌ν w̌ν , ǔ
P

v̌
P

w̌
P
, ǔ

P
w̌

P
v̌C ⊞ ǔ

P
v̌

P
w̌C ⊞ v̌

P
w̌

P
ǔC)

= (ǔν v̌ν w̌ν , ǔ
P

v̌
P

w̌
P
, w̌

P
(ǔ

P
v̌C ⊞ v̌

P
ǔC)⊞ ǔ

P
v̌

P
w̌C)

= (ǔν v̌ν , ǔ
P

v̌
P
, ǔ

P
v̌C ⊞ v̌

P
ǔC) ⋅ (w̌ν , w̌

P
, w̌C)

= (ǔ ⋅ v̌) ⋅ w̌

Proposition 4.6.4. Tree-multiplication distributes over tree-addition in Ť .

Proof. We want to show that for ǔ, v̌, and w̌ ∈ Ť , where nodes v̌ and w̌ are
compatible, ǔ ⋅ (v̌ + w̌) = ǔ ⋅ v̌ + ǔ ⋅ w̌ is true.

Let us first consider multiplication of a sum by a node with a depth of one, ǔ,
over the the sum v̌ + w̌,

ǔ ⋅ (v̌ + w̌) = (ǔν , ǔ
P
,∅) ⋅ (v̌ν , v̌

P
, v̌C)+ (w̌ν , w̌

P
, w̌C)

= (ǔν , ǔ
P
,∅) ⋅ (v̌ν + w̌ν , v̌

P
, v̌C ⊞ w̌C)

= (ǔν(v̌ν + w̌ν), ǔ
P

v̌
P
, ǔ

P
(v̌C ⊞ w̌C)⊞ (v̌

P
∅))

= (ǔν(v̌ν + w̌ν), ǔ
P

v̌
P
, ǔ

P
(v̌C ⊞ w̌C))

= (ǔν v̌ν + ǔν w̌ν , ǔ
P

v̌
P
, ǔ

P
v̌C ⊞ ǔ

P
w̌C)

= ǔ ⋅ v̌ + ǔ ⋅ w̌

Note that this is independent of the depths of nodes v̌ and w̌.

Suppose then that there is an integer n such that multiplication of nodes with
a depth of n or less distributes over addition, and we consider the case where
our factor, ǔ, has a depth of n + 1 or less. Then

ǔ ⋅ (v̌ + w̌) = (ǔν , ǔ
P
, ǔC) ⋅ ((v̌ν , v̌

P
, v̌C)+ (w̌ν , w̌

P
, w̌C))

= (ǔν , ǔ
P
, ǔC) ⋅ (v̌ν + w̌ν , v̌

P
, v̌C ⊞ w̌C)

= (ǔν(v̌ν + w̌ν), ǔ
P

v̌
P
, v̌

P
uC ⊞ ǔ

P
(v̌C ⊞ w̌C))

but since ǔ
P
∈K[A] and polynomial multiplication distributes over addition

= (ǔν v̌ν + ǔν w̌ν , ǔ
P

v̌
P
, v̌

P
uC ⊞ (ǔ

P
v̌C ⊞ ǔ

P
w̌C))

= (ǔν , ǔ
P
, ǔC) ⋅ (v̌ν , v̌

P
, v̌C)+ (ǔν , ǔ

P
, ǔC) ⋅ (w̌ν , w̌

P
, w̌C)

= ǔ ⋅ v̌ + ǔ ⋅ w̌.

4.7. DISCUSSION 87

4.7 Discussion

This set of metric spaces arose from attempts to capture the nuanced asso-
ciations in survey questions like “Thinking about the weather forecast, how
would you rate the chances of your favourite sporting team in the coming
match?” and to be able to incorporate the sorts of conflicting data that re-
spondents may provide into simulation models. Initially, the trees were no
more than data structures with a rough and ready distance function, but as the
work became more coherent, the underlying mathematical structure began to
emerge, and the realisation that the trees might be useful for representing more
than survey responses came about. The basic heuristic comparisons used in
exploring the survey data were replaced with a better behaved metric based
on the tree norm.

The loosely defined structure was defined and converted into a vector space so
that we can construct model-spaces from a set of basis elements corresponding
to submodels. Extending this structure to the assessment of configurations
required a metric space.

In principle, we can treat each distinct symbol in a label as a length in an axis
orthogonal to each of the other symbols. This interpretation makes a heuristic
“distance” function between trees quite simple. This avenue has not yet been
explored; the trees used in the example model of Chapters 3 and 5 largely
makes use of the simple functions for cardinality, overlap and shadow.

In the example model developed later, the states of the model as a whole,
subdomains of the model and the components within the model are repre-
sented by representative trees. There is also a set of trees which are identified
by known-good configurations, and the mechanism which handles switching
within the model uses the metric in its assessment. Like the model in Chapter
2, the approach is relatively simple, but the hope is that, having established the
ring-like properties, more advanced clustering and discrimination techniques
can be brought to bear.

In Chapter 3 the model developed is concerned with demonstrating the adap-
tive selection of models using abstracted representations of the model’s com-
ponents and of the model’s configuration. These representations are in the
form of trees in Ť with particular forms.

CHAPTER 5

Theory and an example
implementation

Chapter 2 demonstrated that switching models can provide benefits in fidelity
and efficiency, when compared with non-switching alternative models, and
that maintaining state information across changes in representation are both
feasible and beneficial. The example developed in Chapter 3 describes a model
of a small trophic network to use in exploring how a general model might
be constructed. Here, we describe a prototype framework, Remodel, with an
accompanying model resembling the example described in Chapter 3 imple-
mented in the framework.1 In this chapter, submodels are models which are
embedded in a multiprocessing system which, taken in aggregate, forms a
more complex model which is based upon the Remodel framework. In this
chapter, the term “submodel” will be used when we are explicitly dealing
with subsidiary models. They may also be referred to a “models” from time
to time, and the context should indicate which level of aggregation is implied.
The term “framework” refers the machinery which supports a set of models
or submodels to run and interact.

A guiding principle in the development of Remodel is that the construction of
a submodel should conform – as much as is possible – to an equivalent model
in a more conventional context: the body of an agent’s code should look and
behave much like the code of a similar agent in other models or frameworks.
These goals have consequences in both the underlying framework and in the
expression of the model in that framework. In this chapter, we will discuss
the ways these consequences are addressed and other issues that have influ-
enced the construction of the framework. The aim of this chapter is to discuss
explicit solutions to problems that arise in complex model-swapping systems,
and to reify the ideas that relate to using the states of the participating agents
to determine an appropriate mix of representations for the simulated entities.
It should also provide a pattern for researchers that wish to construct models
or frameworks that support changes in the representation of simulated entities

1The framework and model this chapter refers to is released under the GPLv3 and available
by running git clone http://github.com/snarkypenguin.

88

5.1. FORMATIVE DESIGN CONSIDERATIONS 89

or systems.

5.1 Formative design considerations

The general components of this example framework follow conventional pat-
terns for agent-based models. The framework was influenced by previous
work, Gray et al. [2006, 2014], which formed the core operational models for
management strategy evaluation (MSE) dealing with anthropogenic effects on
marine ecosystems. The principle behind MSE and adaptive management is
that candidate strategies for managing the effects of human activity are ex-
plored in simulation.2 Adaptive strategies actively monitor conditions in their
domain3 and change management strategies to suit the observed conditions
and dynamics of the system. [Walters and Hilborn, 1976, Smith, 1993, Po-
lacheck et al., 1999, Sainsbury et al., 2000, Keith et al., 2011] Each of these three
major projects has provided the opportunity to explore the issues associated
with modelling increasingly complex systems over increasingly large areas.

The focus of Gray et al. [2006] was broad and required a flexible approach
to the problem of simulating the interactions of human activity and compo-
nents of local ecosystems. In it, time was treated as a continuous variable, and
a number of new kinds of simulated entities were required to reflect the ac-
tivities influencing the system and the management of these activities. This
required a more abstracted view of what constituted an “agent” in the system.
Most species were able to be represented by more than one class of agent,
and the range of representations included, for animals, individuals, super-
individuals, and several forms representing populations; benthic communi-
ties could be represented by irregular cellular automata, or populations. This
multiplicity of representations brought a great deal of flexibility in configuring
model runs and case testing. It also used distinct representations for different
life-stages of some species within the model. Gray et al. [2014] incorporated
most of the conceptual development of the previous work, but took a novel ap-
proach to simulating whale-sharks: the whale-sharks are individually recog-
nisable and were removed from the common domain as a part of their annual
migration and reproduction cycle, maintained in a subsidiary model, and then
reintroduced. Its implementation was awkward and constrained by the limi-
tations of the software environment which had evolved to support the rest of
the system.

The maintenance of state for superceded representations evolved from the ba-
sic strategy developed in Chapter 2. In the model of Chapter 2, the only inter-
actions were between the simulated organisms and the environmental plume
and there was no need to include mechanisms for agents to interact; this is
obviously not usually the case.

2This is effectively impossible to do in the real world, since the application of a strategy has
a high likelihood of changing the baseline for other candidates in the trial.

3The simulation must follow the same sampling protocols of actual environmental monitor-
ing surveys.

5.2. PRINCIPLES 90

The Remodel framework extends these concepts by allowing independent agents
to assess the state of the system and suggest or apply changes in the repre-
sentation mix. The assessement process within a model in the framework is
explicitly considered part of the model and, as such, may be subject to change
during a simulation. Remodel also has the machinery to support sets of state
data across transitions in order to minimise the “edge effects” which can occur
across transitions.

5.2 Principles

Large, complex models have problems which are not relevant to smaller ex-
ploratory models: communication between (instances of) submodels, the se-
quencing of events within the system, consistency in the treatment of tempo-
ral scales, spatial scales, and units of measurement, for example. A number
of well known principles from the domain of computer science can be em-
ployed to reduce the angst associated with some of these issues, but they do
not address the issues of suitability which can arise when cooperating submod-
els actually require features which their partners are unable to provide, or the
basic dynamics within a representation is unsuited to either its own state or
the state of other components that it depends on. It is the monitor agents that
act to preserve a consistent mix of submodels.

5.2.1 Interactions

The interaction between two agents should be conducted by calls through the
kernel which manages the execution of the simulation. Agents are imple-
mented as closures in the framework: basically functions with hidden data.
The kernel is told (by programming it) how to interact with an agent – to find
out what it has or can do, to read or modify its data, and to act as an inter-
mediary on the agent’s behalf. In this way, making an agent “accessible” only
requires a small set of code, and no other agents need prior knowledge of what
an agent provides. 4 In the exemplar discussed below, the “kernel” interface
of the framework is used to provide the accessor and mutator functions asso-
ciated with every submodel.

This approach to interaction has a number of significant benefits: it reduces the
total amount of code needed to include a new submodel, it makes the task of
parallelisation or of rigging a model for distributed computation much easier,
and it provides a well exercised mechanism for an agent to obtain or modify
data in another instance of a submodel.

4This is similar to interprocess communication in Unix. One of the best books covering this
is Advanced Programming in the Unix environment by W. Richard Stevens and Stephen A. Rago,
published in the Addison Wesley Professional Computing Series; ISBN-13: 978-0321637734,
ISBN-10: 0321637739.

5.2. PRINCIPLES 91

5.2.2 Time

Modelled entities or processes may have quite different natural time scales,
and the timescales appropriate to a cargo ship are unlikely to suit a speedboat.
Even within a submodel, the time steps may vary according to what the sub-
model might be doing: a kitten may “sleep” twenty hours a day, eat for ten
minutes and spend the rest of the time attacking things. Choosing to model
sleep with the same the same time-step as combat will be slow, and may increase
error.

A model with a number of these sorts of components – particularly when they
cover a range of submodels – must deal with a system where “now” may be
different for each of agents. This issue similar to those in multitasking and
real-time operating systems, and a similar approach is taken: all entities are
entered into a time ordered queue and each is run for some amount of time be-
fore being re-entered into the queue. When an entity ha a subjective notion of
“now” which is significantly farther in the future that an agent which wishes to
interact with it, we coerce them into synchrony. If they are close enough, a sim-
pler alternative is to only agents to interact if they are “near enough” in time.
Gray et al. [2014] and Gray et al. [2006] dealt with the need for synchrony by
allowing agents to make requests through the kernel to become synchronous
with other agents. In these studies, some submodels were treated as “always
synchronous,” such as bathymetry, or “nearly always synchronous” such as
coral reefs. In these agents, changes could be accumulated with appropriate
adjustments when interactions with other agents occurred.

Clearly it should be the case that the flow of time is monotonic for each par-
ticipant in the model. We should be able to prioritise some agents so that they
routinely run before others (such as the monitor agents) and within a time-slot
and priority group we ought to be able to introduce a randomness in their in-
sertion order. Introducing this randomness ensures that no individual agent
or group of agents has a systematic advantage as a result of when it was first
inserted into the queue. With that as the general goal, we can also entertain
the idea of incorporating global checkpoints from which a simulation can be
restarted non-deterministically.

5.2.3 Changing representation

On the surface, changing the representation of an instance of a submodel would
seem to increase the complexity of the system as a whole. In some sense this
is true, but such changes may also simplify the system by either reducing the
number of agents in the simulation, or by making the computation simpler
(even in the face of an increased number of agents).

Recall that a change in representation is triggered by the recognition of some
condition indicating that the current situation is not optimal. It may be true
that transitions may engender artifacts akin to the “ringing” associated with
sharp transitions in continuous systems, the premise is that we have suffi-
cient cause to change to a “better” representation, and that we may be able

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 92

to mitigate these effects. It seems likely that conditioning an individual-based
model of an organism accurately enough to produce observed dynamics in
large populations is much more difficult than a controlled change between
population-level representations and individual-based representations when
appropriate. Some individual characteristics may need special attention: the
behaviour of an individual may be permanently altered by the conditions it
encounters, or epigenetic changes in response to the environment may influ-
ence the development of an individual’s progeny, so these data would need
to be maintained in some way across representation changes and factored into
the pertinent facets of that representation, such as vulnerability to predation
or the nature of progeny.

5.2.4 Assessment and adaptation

As a model run progresses, data is generated and output which records a sub-
set of the state of the system is usually written to a file or database. This process
often occurs completely within a the body of a submodel and is independent
of any other facet of the model. Similarly, submodels may monitor aspects of
their state and adjust their operation to best fit the prevailing conditions. It is
easy to see how an agent may decide to convert to a new representation, such
as an adult lamprey or salmon converting to a breeding adult. This kind of
change is relatively straightforward, but can be limited in its application: it oc-
curs in a piecemeal way, happening – or not – on an individual-by-individual
basis.

A more nuanced approach assesses sets of agents in order to determine whether
a representation change is appropriate, such as basing the decision to convert a
set of individual-based kangaroos in a given area to an equation-based model
which uses both the state of the kangaroos, the state of the grass and the water
content of the soil. This sort of assessment can be carried out by another agent
within the system: a monitor. Monitors are constructed to select configurations
of an ensemble of agents and to effect a change in the configuration of the sys-
tem. Each monitor is acts both as an analogue of an objective function which
is used for optimisation, and an agent of that optimisation. In this way, we can
choose what we optimise

5.3 Framework and Example implementation

Remodel5 is used to implement a model based on the the description of the ex-
ample in Chapter Chapter 3. In the example, the domain consists of nine cells
containing tree-like plants. These trees are a critical food source for a popula-
tion of herbivores, and the trees rely on the young herbivores to eat the ripe
fruit in order to make their seeds viable (perhaps the seeds have a particularly

5The printing styles associated with the code in the example implementation are noted in
the appendix. Table A.1.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 93

tough seedcase). A carnivore which preys solely on juvenile herbivores is in-
troduced into a stable system. In Chapter 3, the introduction of the carnivore
and a subsequent range-land fire initiated a sequence of events which, in turn,
engendered changes in the configuration of the model as a whole. The imple-
mentation described here is not identical to the system described in the paper
– some inadequacies of the model presented in the paper have been addressed
(such as the inability of the plants to recolonise a cell after they have become
extinct in it).

5.3.1 Scheme

The design decisions for the modelling framework was heavily influenced by
experience with large ecosystem models which were primarily developed us-
ing C++ and C.

Scheme was designed with a minimalist approach, and is a useful medium for
exploring fundamental ideas about language design and programming. Its
small size and simple syntax make it relatively quick to learn. Scheme is a
lexically scoped member of the LISP family. This means that variable scope
in the code itself is structured like more like C, Pascal or Java, than some of
the other members in the LISP family. As a dialect of LISP, Scheme makes
extensive use of parentheses6 to delimit statements, and this can be daunting
to newcomers.

Remodel was implemented in the Scheme programming language because it
possesses particular properties that are only now becoming part of the stan-
dard in members of the C family, such as anonymous functions, and first-class
closures (described later).

A number of factors were important in the choice of implementation language,
namely

– class-based multiple inheritance with polymorphism
– weak/dynamic typing
– linking with compiled code in other languages,
– able to support maintenance models
– potential for parallelising and distributed execution.

and
– interpreted operation if possible,

These constraints excluded a number of familiar languages, such as C++, C,
Java, C#, Python and DD.

An interpreted language allowed a simple path to incorporating both func-
tions7 and numeric quantities with physical units in the parameterisation of
modelled entities in the parameter files.

Scheme was designed as a tool for exploration Sussman and Steele [1998] and

6As well as brackets and braces in some dialects
7The mass-at-age functions for trees and animals are defined as parameters, rather than

hard-coded in the body of the framework, for example

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 94

it remains an excellent tool for this purpose. As a language, it is most notori-
ous for its call-with-current-continuation function (usually encountered
as call/cc). Loosely speaking, this is a generalisation of flow control struc-
tures. Its use has been avoided in the code of Remodel, since the framework is
intended to be a tool in the discussion of model-swapping methods, and the
behaviour of injudicious use of call/cc is often hard to debug. Future work
on the framework is likely to include implementing constraint solving routines
that might employ call/cc, but these would be carefully managed.

Scheme is an actively developing language, and there are a number of very
good interpreters and compilers for it; many of these implementations are also
amenable to integration with other languages, either through directly linking
binary objects or by interacting through a virtual machine (such as a JVM).

Interpreter/Compiler

Gambit-C8 was used for the implementation language. It is a well regarded im-
plementation of Scheme which runs on all of the major platforms (Linux, Unix,
OSX, Android and Windows). Gambit incorporates both a mature Scheme inter-
preter and a compiler, and both can dynamically link programs with external,
compiled code and libraries which may exist either as compiled C or Scheme
code. The choice to use Gambit, rather than another version of Scheme, was
heavily influenced by several points: it was the implementation used for the
model in Chapter 2; its ability to link to compiled C code and its own com-
piled code can combine to produce programs which are noticeably faster than
purely interpreted code; it supports very C-like infix notation (indeed, it can
be programmed using syntax which is almost-native C syntax); and adding
hand-crafted C or C++ code for particularly intensive routines is not difficult.

Porting Remodel to other versions of Scheme should be relatively simple; the
only potentially awkward issue in using a different Scheme implementation
would be the use of d efine-macro in the creation of the classes and methods
in a model. These macros are used to automatically incorporate code which
maintains data-structures that provide information essential to the communi-
cation between submodels, and the system as a whole. The macros are also
able to detect and respond to some sorts of oversights or inconsistencies in the
construction of methods or model-bodies. There are a number of approaches
to constructing macros or macro-like syntax in Scheme; unlike many language
families, many members of the LISP family may have their syntax extended,
and there are a number of methods available to do this. Definitions of classes
and methods use the most primitive mechanism of syntactic extension, d efine-
macro, which is analogous to the #define found in C and C++.

Unfortunately, the use of d efine-macro complicates the process of locating
syntax errors, since the interpreter is unable to track line numbers within a
macro. 9 The only aspect associated with using these extensions which would

8http://gambitscheme.org
9The macros which wrap the methods called by an agent are implemented in such a way that

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 95

require broader changes with d efine-syntax is synthesising the context-specific
identifiers (such as <animal>-model-body) which refer to the “body” of the
different classes of agents; this is not insurmountable, but will be left for a
subsequent version of the modelling framework.

First class closures and maintenance closures

There are alternatives to using first-class closures to maintain state-variables
across representation changes, but these methods are not opaque, and it is
more difficult to “protect” the data from accidental modification. A closure is
essentially a function which is coupled with private state-data. The function
may take arguments, operate on its state, and may return values, but no ex-
ternal code can directly modify its state. This feature means that an arbitrary
representation of an entity typically knows nothing about the internal features
of any maintenance closures it carries, and can only interact with them accord-
ing to the services they provide.

A simple example of a closure might look like so:

;; The closure will be called like (@ ’tick dt)
(define @ ;; this line defines a variable or function

(let ((TBT 0) ;; this reads "let the variable TBT take the value 0, and
;; the variable depuration-rate take
;; the value 0.0001
;; tributyltin

(depuration-rate 0.0001))
(lambda (action #!rest x) ;; "lambda" constructs a function

(cond ;; select the first true condition -- e.g.
;; (eqv? action ’reset), and execute the rest of the
;; contents of the parenthetic block, then exit
((eqv? action ’reset) (set! TBT 0))
((eqv? action ’value) TBT)
((and (eq? action ’tick) (= (length x) 1)
(number? (car x)))
(set! TBT
(* TBT (- 1 (exp (* depuration-rate (cadr x)))))))

(else ’ignored) ;; if none of the conditions are true
))))

This example maintains a contaminant level in the absence of contact with
the contaminant, TBT. If the modelled entity enters a situation where TBT is
present, a monitor class may decide that a representation change is necessary,
and the closure would be queried for the correct value for the contaminant
level to use in the construction of the new representation.

The variable is set to point to the function the lambda defines, and the state
variable TBT is “global” to this function, rather like a static variable defined

the code they produce can be written to a file, and that file may take the place of the original
block of code. In this way, the difficulties with respect to line number tracking can be managed,
Such code could be used to generate a code-base for a model which was free of macros.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 96

outside a function in a C source file. Closures are a coupling of a procedural
element with data which is preserved across invocations of the procedure. An
agent maintaining this closure would be able to fetch the value of TBT, cause
the closure to run the depuration code for a time step (dt) or reset the contam-
inant level to zero, but nothing else. More complex closures would typically
be able to provide a list of tags which specify external properties which are to
be used in their update step.

5.3.2 SCLOS– a Scheme implementation of CLOS

The class structure in the Remodel framework makes use of the Scheme imple-
mentation of CLOS that was written by Gregor Kiczales [Kiczales et al., 1993]
while he was working at Xerox PARC in 1992 and 1993. Kiczales has been
an instrumental researcher and proponent for the use of meta-object protocols
(MOPs) as a tool for making computer programs clearer, more efficient, and
more robust. The basic tenet is that generic methods or functions are used to
manipulate objects, and that these generic objects inspect the nature of the data
being passed to them and pass the processing to a specialised function of the
same name which deals with the task most appropriately. While this is not an
exact analogue to the problems we seek to address in this work, there is a sub-
stantial similarity and using SCLOS with its implicit MOP seemed a natural fit.
SCLOS has been the basis for many of the significant object-oriented systems
for Scheme. In the development of Remodel there have been some instances
where the “wrong” methods seemed to have been called to act on an object,
but these have inevitably been associated with a type error in the signature of
an overloaded method (in the SCLOS idiom, that would be a generic method
with more than one implementation), or a case where a generic method has
been defined twice. These errors are now trapped by the framework by ensur-
ing that there are no duplicate generic methods.

The basic SCLOS library has been slightly modified (the <<object>> class of
SCLOS has been renamed to <primitive-object>) and additional support rou-
tines have been added in the file sclos+extn.scm. These additions include the
recognition of a number of Scheme data-types, routines to examine the parents
of an object, registers which recognise objects and classes which have been in-
stantiated, extended support for the initialisation of slots in an SCLOS object
(parameter files), and classification predicates.

5.3.3 Class structure

The submodels in the example are all derived from a basic <agent> class which
provides each modelled entity the facilities for interacting with the kernel of
the example implementation and mechanisms for the agents to obtain infor-
mation about the other agents and a means of interaction.

The taxonomy of the classes is fairly conventional: the primitive agent is the
superclass of almost all of the implementation’s components (exceptions in-

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 97

clude classes for things like bounding regions), and it provides submodels
with access to the infrastructure of the system.

At the lowest levels, the classes provide definitive features that characterise
broad categories of entities, such as discrete locations, delineated areas, the
ability to map between ordinate systems, or the ability to poll other agents at
regular intervals.

Table 5.1: Fundamental classes in the Remodel framework framework-
classes.scm

Classname role

<agent> The agent class provides the fundamental
components for a model to run within the
framework, such as essential state vari-
ables and common methods

<projection> This class is derived from <object>; it
adds methods and state variables to al-
low mapping between an agent’s native
coordinate system and the common co-
ordinate system. It extensively used by
the routines that output graphical data10,
– mapping each agent from its domain to
the domain of the output page or image.

<introspection-agent> The methods which allow <monitor>
and <log-introspection> agents to oper-
ate is provided by this class – it forms the
basis for agents which poll other agents

<plottable> Children of this class can be plotted in
map-like output. The attributes of this
class include a “glyph” a location, an ori-
entation, a preferred font, colour, glyph
size (which may be scaled by the value
of a slot) and an additional magnifica-
tion which can be used to adjust the scale.
This is the class that provides location
and orientation to the animal and plant
classes.

<environment> An agent’s basic spatial context is pro-
vided by this class’s bounding box and a
link to an explicit representation

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 98

The classes in Table 5.1 provide the basic mechanisms essential to agents of
each branch. They provide a means of communication with the kernel of the
framework, and mappings between the internal and external representations
of agent’s spatial domains.

Table 5.2: More fundamental classes – framework-classes.scm
Classname role

<object> This is the “primal” class for all of the dif-
ferent agent classes, and the more com-
plex data structures like polygons

<array> Arrays are used to construct a collec-
tion of lists which often act as the ba-
sis for a model representation between
a fully defined individual-based repre-
sentation and an analytic representation.
Lacks the potential temporal sensitiv-
ity of an individual-based representation,
but able to maintain many i-state vari-
ables (sensuCaswell and John [1992])

<diffeq-system> Agents derived from this class run a
Runge-Kutta4 algorithm for a system of
differential equations. Class members
don’t maintain variables as such, they
are passed “getters” and “setters” which
obtain state variable values from other
agents (such as ecoservice agents) and
subsequently set new values in those
agents.

<proxy> Proxies represent some “element” (like a
row in an <array> agent) when engaging
in individual-to-individual interactions.

<model-maintenance> Instances of this class aren’t really agents
in the usual sense. They provide the sup-
port for maintaining state variables for
representations which are not currently
active (such as in Chapter 2).

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 99

Introspection agents

The <introspection> class is geared to to supervising and extracting data from
the set of running agents. The classes of agents (listed in Table 5.3) are de-
rived directly or indirectly from <introspection> and the classes <logger> and
<monitor> classes exist solely to poll the other agents within the system and,
respectively, either extract information in an analogue of the sampling under-
taken by researchers, or to monitor the states of agents, ensembles and the
model as a whole in order to be able to effect changes in the constituents of the
model ensemble when necessary. The loggers handle all of the generation of
output files – the code which makes up the submodels only provides one or
more log-data methods which the loggers use to assemble their output. The
notion is that the agents do not need to know about what is being sampled,
only how to make the data they can provide “presentable” and the loggers
don’t really need to know the details of a submodel’s workings, only that it
ought to obtain certain data from agents of particular types and generate an
output file.

While this approach to data output engenders some extra overhead, it has a
number of advantages which are not necessarily obvious. Consolidating the
output into separate agents makes changes to the format of the generated out-
put a simple matter of changing which output agent is used, or which format
is required. The same mechanism, or one which is very similar, could be used
as the basis for coupling distributed models.

Using <logger> agents rather than embedded output code also means that
we can confine code associated with generating “output” (mainly the log-data
methods) to a very small section of a few basic parent classes; thus instances
of all the child classes can automatically be queried without the necessity of
writing new output routines. The MOP of SCLOS is used to map calls from
the introspection agent to the appropriate version of log-data, and the chain of
inheritance can be used to call the log-data methods of its parents to structure
the output appropriately.

In many ways, this is a direct analogue of field sampling, and designing the
mechanism in this way makes the direct simulation of field sampling quite
straightforward.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 100

Table 5.3: Introspection classes in Remodel– introspection-classes.scm
Classname role

<log-introspection> The fundamental mechanics that under-
pin the regular polling of other agents in
the system

<logger> provides the basic structure for generat-
ing model output

<monitor> provides the machinery for assessing the
state of the system and effecting changes
in its configuration

The introspection classes are defined in the files introspection-classes.scm, monitor-
classes.scm, and log-classes.scm. Of these, log-classes.scm is the most complex.

The monitor classes are able to maintain a history of the decisions they make
and can, in principle, factor this history into the decisions they make subse-
quently. As yet, the <monitor> classes are still quite simple, acting to coerce
changes in the constitution of the model ensemble according to fairly simple
rules.

Agents with locations

The individual-based classes are all derived from a small ensemble of classes
which endow them with the physical attributes we expect, such as location,
and mass. All of the biotic agents in this branch of classes are able to maintain
a history of their movement through the model’s geographic domain and may
also maintain a record of state variables. The agents may inspect these data
and potentially use them in their own decision-making process; thus, some (as
yet unimplemented) model of a animal may “recall” a recent encounter with a
predator in a location and avoid the area.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 101

Table 5.4: Basic individual-based representations – framework-classes.scm
Classname role

<tracked-agent> Agents derived from this class automati-
cally maintain a time-stamped history of
where they have been. This data can be
extracted for analysis or plotting.

<thing> This adds mass to a <tracked-agent>.

<living-thing> This class adds age and mortality, also
aware of the environmental context in
which it lives.

<plant> The general structure for plants is pro-
vide here. The more refined <example-
plant> is derived from <plant>.

<simple-animal> Instances of this class make use of a sim-
ple metabolism, simple modal behaviour

<animal> extends the behaviour of simple animal
by making the metabolism and modal be-
haviour more complex

<example-animal> This class adds reproduction, density
limits, and the ability to migrate when
conditions warrant it. The classes used to
represent the animals in Remodel example
are derived from this class.

The classes for the simple organisms of Chapter 3 are defined in the files
animal-classes.scm, plant-classes.scm, with corresponding “. . . -method.scm” files
with the implementation of the methods.

Plants and animals are both implemented in classes derived from <living-
thing>. An analytic representation for plants based on <diffeq-system> is
also implemented.

There are essentially three implementations for modelling plants in the Re-
model example. <plant> is the basic starting point for the <example-plant>,
which implements a model substantially similar to that described in Section
3.3.4.1. The alternative representation for plants is the <plant-array> which is
an array of state-vectors which apply update methods to each of the state vari-
ables which are similar to those used for the individual based version. <plant-
proxy> is an interlocutor for a <plant-array>, though we have not employed
it in this implementation.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 102

The way we deal with animal classes is similar to that of the plant classes. Both
the <aherb> and <jherb> can be represented by <animal-array> agents. We
refrain from carrying the generalisation to include the <carnivore> class, since
carnivores are unlikely to reach high population levels, and their participation
in the system is more characteristically discrete.

Agents associated with areas

Most of the entities which are associated with an area rather than a specific lo-
cation are members of the environmental classes defined in landscape-classes.scm.
Exceptions include equation-based representations for populations which may
be associated with particular <environment> agents.

Table 5.5: Non-spatial environments elements – landscape-classes.scm
Classname role

<ecoservice> Usually associated with a patch, this class
provides data which can be inspected
and modified by other agents. It is pos-
sible for the ecoservice to access data in
other agents, and to have implicit growth
or decay associated with its value. In-
stances are able to store the (time value)
pairs in a history list.

<population-system> This is a refined version of the <ecoser-
vice> which primarily provides a simple
“biomass” agent.

The classes in Table 5.5 are typically incorporated into environments associ-
ated with nominated areas, though they need not be. Both ecoservices and
population systems can play the role of spatially agnostic agents which are
pertinent for the whole model domain, such as external forcing conditions. In
contrast the classes in Table 5.6 are explicitly associated with bounded regions
currently represented by circles or arbitrary polygons, or sets of these bounded
regions.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 103

Table 5.6: Spatial environments – landscape-classes.scm
Classname role

<patch> The basic geographic region is imple-
mented in <patch>. It has a bounded
area, a list of ecoservices which are
assumed to be uniformly available, a
“notepad” which can be interrogated for
state information, and it may also have
“caretaker” routines defined in parame-
ter files which get executed every time
the patch gets a time step.

<dynamic-patch> Patches in this class may have a system
of differential equations which stand in
the place of the simpler – possibly sim-
plistic – dynamics possible using only the
ecoservice mechanisms.

<landscape> An instance of this class maintains a list of
patches and a terrain function which pro-
vides an altitude ordinate to the locations
in the geographic domain; in aquatic/-
marine models, this would typically be
used to provide the depth of water at a
give point.

5.3.4 Parameterisation

Agents (instances of the above classes) are made by calling the create function.
The principal tasks of create are to allocate storage, and to call the functions
which initialise the state variables of an agent. create initialises its state vari-
ables using the data taken from the files in a nominated parameter directory.
These parameter files contain Scheme code and they are loaded immediately
after all of the code associated with implementing representations of submod-
els has been loaded, but before any model initialisation occurs.

The the names of the files in the parameter directory (in our case “./parame-
ters/) directly associate the parameter sets to either a particular class, or with
a particular taxon. When agents are created, the instantiation process first ini-
tialises all of the agent’s state variables to the value <undefined>, which is
used to identify uninitialised values. The next phase then applies any ini-
tialisations which may be found in the file associated with the <agent> class,
namely ./parameters/<agent>. The process continues, from most general (the
greatest grandparent class) to most specific, till all the relevant initialisations

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 104

found in the agent’s class tree have been applied. The system then looks for a
“taxon” file which which contains very specific initialisation data – we might
have a generic class for oak trees – <quercus> – for example, which serves ad-
equately for both the Q.robur and for the Q.petraea taxa, for the most part. The
parameters which differentiate similar species are assigned after this with data
taken from their taxon specific file, and these new data may overwrite more
generic parameters. Finally any initialisation indications found in the (create
. . .) call used to instantiate the agent are applied. In this way, more specific
parameters (like age, or metabolic rates) get applied last in the process.1112

A typical parameter file might look like look like the ’<example-plant>’ file
below:

’Parameters
(kdebug ’(loading-parameters

taxon-parameters "B.ex-longevity" "*.ex-*"))

(define B.ex-longevity (* 37 years))
(define B.ex-mass-max (* 150 kg))
(define B.ex-mass

(rk4 (lambda (t y) ;; make the d.e.
(* 5e-7 (- 1 (/ y B.ex-mass-max)))) 0
B.ex-longevity (* 4 weeks) 0.1))
;; stepsize initial-val

(define <example-plant>-parameters
(list (list ’cell ’<uninitialized>)
(list ’peak-mass 12)
;; this will seed trees in the
;; 4km x 4km square around
;; the origin
(list ’location
’($ (random-location

(list -2000 -2000) (list 2000 2000))))
(list ’mass
’($ (nrnd 4 1 0.01 12)))
(list ’height
’($ (* kg (min 12 (+ 12 (nrnd 10))))))
(list ’fruiting-mass (* 8 kg))
(list ’fruiting-prob
(/ 0.1 week)) ;; 10 percent per week
(list ’fruiting-rate
(* 7 (/ 1 kg))) ;; N / (kg week)
(list ’mort-prob (/ 0.1 year))

11It doesn’t matter if there are entries for things which are not state variables – any specifica-
tion which isn’t recognised is silently ignored.

12Within the code of Remodel, taxons are always represented by strings, and classes are al-
ways represented either directly by the class, or by a symbol which returns that class when it is
evaluated by the interpreter.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 105

(list ’seeds-per-fruit ’($ (+ 4 (urnd 8))))
(list ’mass-at-age B.ex-mass)
(list ’references
’(J. Muppet Botany, S.Chef et al v2,1995))
)
)

(set! global-parameter-alist
(cons (cons <example-plant>
<example-plant>-parameters)
global-parameter-alist))

The ’Parameter line which is the first entry in the file is an indicator that this is
a parameter file, and the example implementation uses this to determine that
the file is a valid parameter file. The definition which follows is a list of lists
where the first element of each of the second level lists must be a symbol. These
symbols should (but are not required to) correspond to the state variables in
the agent. Note that even though this file is associated with <example-plant>,
it is not restricted to setting state variables defined in <example-plant> – it is
both reasonable and common to set variables associated with parent classes, such
as the plant’s location in the example above.

The last three lines of the file add the definitions to the list of all the state vari-
able defaults the system knows about – if they are missing or compromised,
the definitions may not be accessible.

The parameter files from which the parameterisation is taken must be valid
Scheme code, and as such can contain variable and function definitions. The
example above includes the function definition for the mass-at-age function
for the taxon “ B.exemplarii”. Naïvely we might assume that we would be able
to perturb the starting mass of each individual tree by just incorporating a ran-
dom number into the mass indicated in the parameter file: we can do so, but
the parameter files are loaded early in the loading process, before any agents
are actually instantiated. At the point we begin to create agents, the param-
eterisation data is static. In order to overcome this, the code which accesses
parameters recognises that parameters of the form ($. . .) should be evaluated
dynamically when they are accessed and passed back, so the line

(list ’height
’($ (* kg (min 12 (+ 12 (nrnd 10)))))),

will return a value greater than twelve, with a distribution of twelve added
to the left half of a normally distributed variable with standard deviation of
ten. Other examples can be found in the parameter files with carnivore, adult-
herbivore, juvenile-herbivore and , B.exemplarii. It should be emphasised that the
parameters obtained from the parameter files may be overridden in the create
call, and by code within the model itself.

In general, units are specified in the parameter files, and should also be spec-
ified when indicating particular initialisations for agents. The (extensible) list
of known units is found in the file units.scm.

5.3. FRAMEWORK AND EXAMPLE IMPLEMENTATION 106

5.3.5 Model initialisation

The first stage in a model run is the creation and initialisation of the com-
ponents of the model. A model is constructed by a (comparatively) short
Scheme program which uses the infrastructure to create and configure the
agents which comprise the model ensemble. These agents are added to a list
called the runqueue, which corresponds to the execution queue in a simple
multitasking operating system. The agents are created by a call to a routine in
sclos+extn.scm that looks like

(create <landscape> taxon ’name "domain" ...)

where the ellipsis indicates additional state variable assignments which su-
percede any previously set values from the parameter files. Agents which have
an associated region or location would usually require some additional code to
add agents to encompassing entities (such as including trees in the landscape)
this would often be a part of the code which creates the agents13, or would be
effected in the class-method initialise-instance which is called as a part of the
process that prepares an agent to be run; generally, initialisation of an agent
would be accomplished using both of these approaches.

5.3.6 Methods, model bodies and closures

Model methods are essentially functions that are explicitly associated with the
class signature of the arguments passed to them. For example, there are several
versions of the model method dump, and each is made distinct by the class of
its arguments, particularly the first argument, and each of the methods may be
invoked only by members of the appropriate class or of its descendants. This
ability to have several functions with the same name is made possible by the
use of instances of <generic-methods> which maintain an internal list of ac-
tual functions and information about the types of the arguments they expect.
When a call to a method is made, it is the generic-method that receives it, and
it examines the arguments passed in order to determine which of the model-
methods should handle the call. The call is then forwarded to the appropriate
actual implementation. This means that <shark> and <seal> may both have an
eat method – moreover, <shark> may have two eat methods: one which recog-
nises when the item being eaten is an <animal>, and one where it is merely an
<object>, which would usually be inedible. This multiple-dispatch means that
no explicit test is required in the model code. In this case it would be worth
writing an <object> version which causes the agent to spit out the offending
item. If there was only a version of the eat method which implemented eating
<fish>, for <shark> agents, they will only attempt to eat fish, and presenting
them with anything else will raise an error. This ability to catch and recover
from unexpected arguments makes the extension of classes much less vulner-
able to undetected error conditions.

13See the file specific-model.scm, or spawning code in animal-methods.scm for an illustration
of this.

5.4. EXECUTION AND CONTROL FLOW 107

There are two golden rules to model-methods

Only define each generic method once: Redeclaring a generic-method or define-
ing a method (define hunt (generic-method)) destroys any previously de-
clared hunt methods, generic or otherwise! To this end, all declarations
of generic methods must be made in the framework-declarations.scm file,
which should contain the declarations of the all generic methods used
by the model, apart from a very special few declared in sclos+extn.scm.
Related to this is the problem of defining a method before you have a
generic-method declared – the macros in framework should catch this.

Don’t construct methods that match the same argument lists: Generally, SC-
LOS is very good at getting the right method for the job, but there are
situations where it can be confusing for it. If you have a situation where
there are several possible desired code paths for essentially similar argu-
ments, it is clearer to have an explicit selection made within the body of
a single method, and that way is much easier to debug.

Model bodies are special methods which are only called by either the kernel
or by the subsidiary execution lists embedded in agents. There is no provision
for an agent to directly call model bodies. Each agent’s model-body is run by
the kernel at each of the agent’s time steps; there is no object-body since objects
are (by design) not able to be run by the kernel.

5.4 Execution and Control flow

After the initial cohort of agents have been instantiated and introduced into the
runqueue (or in the subsidiary-runqueue’s of other agents), control is passed to
the kernel which then begins to run each agent in turn for an appropriate time
step. The queue is ordered first by the subjective-times of the agents, then their
relative precedence, and finally an optional jiggle value which can be added to
ensure that there are no systematic preferences within a time step.

The most important routines in maintaining an orderly flow of control from
one agent to the next are

run-agent which manages the interactions between the agent and the runqueue and
constructs the procedure that the agent uses to communicate with the
kernel.

run calculates the upper limit on the amount of time the agent will run, then
runs the body of the model (declared in a model-body block), next it runs
any nested agents and finally attends to the maintenance of any data
from superceded representations.

The sorted queue of agents is maintained by the system; the agent at the head
of this list is removed from the list and execution is passed from a call to run-
agent to run which then passes control to the agent’s model-body. The call

5.5. INTERACTION WITH THE KERNEL AND OTHER AGENTS 108

chain is split in this way to separate interactions with the run queue and the
management of the activities of agents. The motivation for this separation is
that provides an avenue for changing the nature of the system used to run the
submodels, say from a single-threaded execution list to a number of parallel
lists.

The model-body of an agent takes control with an indicated maximum amount
of time over which it might run. Agents need not run their whole time step –
events may occur which cause them to truncate their turn, returning control to
the kernel with an indication of the amount of time they actually used. When
the kernel receives control from an agent, it examines the data passed to it by
the agent and acts accordingly: terminated agents may be silently dropped
from the queue, for example, and other agents may be reinserted in an ap-
propriate place in the queue for the their next time step, or agents represent-
ing organisms which have just reproduced may introduce new agents into the
runqueue.

Control also passes from agents to the kernel when the agent makes queries
looking for prey or to interact with other agents: a carnivore might want to
know whether there are any prey animals within a certain radius, for example.
Here, a request would go to the kernel for a list of nearby prey. The kernel
would then examine the list of agents meeting the requirements (type, spatial
location, temporal contiguity) and pass the list – and control – back to the
hunter. This is a common paradigm in both agent-based modelling and in
computer-operating systems design, where access to information or resources
are obtained from a delegated “authority”.

The maintenance of state data from a superceded representation is rather dif-
ferent. When an agent is given data to maintain, it processes them at the end of
each of its time steps. Each is asked what set of data their maintenance closure
needs in the update step; this data is obtained and duly passed to the mainte-
nance closure to use in its update processing. When the closure has finished,
control returns to the agent, and ultimately passes back to the kernel.

5.5 Interaction with the kernel and other agents

5.5.1 Calls to the kernel

The first step in an interaction between agents is often to find other agents
which fit particular criteria: a predator looks for nearby prey or a travelling
salesman might look for accommodation within their budget, for example.
Many of these searches are conducted either by using one of the locate calls
provided by the kernel, or by taking advantage of previously cached informa-
tion maintained by the searcher. The searches can be restricted to particular
spatial regions, particular sets of taxa (as determined by the agent’s taxon),
particular classes, or the possession of particular state variables (such as loca-
tion or available-rooms). The nature of the interactions may range from merely
ascertaining the presence of another agent, to predation, or extracting state in-

5.5. INTERACTION WITH THE KERNEL AND OTHER AGENTS 109

formation (such as mass, location or the price of a room). A typical call to the
kernel would look like

(set! target (kernel ’locate (apply *provides-*? (my ’requires))))
(set! vtargets (kernel ’providers? (my ’requires)))

Both targets and vtargets should have the same values. There are a number of
predicates defined in slos+extn.scm which are similar to *provides-*? which
select on class, taxon, location, possession of particular state variables, the roles
an agent may play, or combinations there-of.

5.5.2 Spatial queries

Agents that regularly interact with other agents which are close to them in the
spatial domain will often cache references to their important neighbours to re-
duce the overhead of calls to the kernel routines, since direct communication
with target agents has a much lower overhead. Direct contact does require
agents to check to see whether the agent being queried is active or has been re-
placed by another representation, since both state and representation changes
can occur without the agent knowing. Most state changes of an agent will be
from alive to dead or terminated: the first two indicate that the agent is still
available for interaction, the third indicates that it is no longer a participant
in the system. Should the object of an agent’s interest become terminated, the
agent can then query the terminated agent to see if it has been replaced by
another representation; if so, it may be able to obtain a reference to the new
instance directly from the superceded agent, or query the kernel for the refer-
ence.

Scheme only reclaims objects (in this case instances of a submodel) when all
references to the object have vanished; this means that as long as an agent
maintains a reference to the entities it is interested in, those entities will persist,
and can be used to obtain a reference to instances which have replaced it.

Agents representing animals or plants will typically already know about their
“domain” – the landscape they inhabit. Landscapes are usually cast as bounded
geographic regions associated with environmental data such as water avail-
ability, topography or contaminant levels. In contrast, an animal would typ-
ically not keep track of other animals. The agents in Remodel only cache a
limited amount of information in this regard.

The basic calls which return the locations associated with agents look like

(let* ((prey (kernel ’locate
(apply *provides-*? (my ’food-list))))
(cover (look-for self (my ’prey-hides)))
;; another way of querying
;; plants that can hide my prey
(preylocations

(map (lambda (x)

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 110

(query x self ’location
(my ’search-radius)))
(append prey cover)))

)
;; body of processing code using prey, cover and
;; preylocations
...

)

In this example, the first of the three clauses obtains a list of candidate prey
with a call to the kernel14 The next searches for potential hiding places with
the look-for* call. This call does not enforce synchrony15, and the last actually
extracts targets’ locations for subsequent use.

Once an agent is aware of another agent, it will typically interact using either
the query call or calls to the methods appropriate to the target. 16

5.6 Introspection agents: loggers and monitors

Introspection classes are primarily structured to periodically pass through a
list of running agents. Instances of these classes have the ability to glean data
from the agents they query, cause the agents to change their behaviour, and
even remove or replace agents. The classes with these special properties are
all derived from the general <introspection> class. The most important role
they play is in the generation of the model output, but they are also responsible
for the ability of the implementation to adaptively change the representations
used in is simulation of a system.

5.6.1 Generating output files – loggers

The <log> agents do their work by first generating a list of agents to be polled,
and then calling a routine to “emit a page”, which really just means that it
should emit the data which is appropriate for this iteration. This task has
three phases: first it calls the method page-preamble which prepares state
variables for processing the appropriate sort of assessment (agent-level, taxon-
level niche-level, or configuration-wide), then it iterates through the list of tar-
gets provided by the kernel apply the log-data method, and finally it calls
page-epilogue to finish generating the output. It should be noted that only
<log> has an emit-page method – this method works for all loggers, since they
are derived from <log> and the class-specific specific details are devolved to
the children.

14In this case locate returns all possible candidates irrespective of location, but insists that the
targets are contemporaneous. locate*, in contrast, does not enforce temporal consistency. Both
are able to filter the results based on location, class or the role targets play in the simulation.

15The alternative look-for does enforce synchrony.
16The MOP paradigm makes it possible to use substantially the same code for many agents

of many classes, but calls through query may be easier to convert for parallelism later.

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 111

The method log-data is used because the child classes often have significant
differences in their state variables, their internal data structures and output for-
mats. Dividing the processing in this way means that data can be accumulated
in an orderly way and either written or cached until it is suitable for writing.
Each of the classes that can be logged must either use the <log> version of de-
fault log-data (associated with one of their parents classes) or supply its own.
Some of the leaf classes produce some of their output in a log-data method
associated with their class, but chain back to the parents log-data methods to
generate the rest of their output.

As mentioned before, the decoupling of the subsidiary models and the gener-
ation of their output is not without some overhead, but the net gain – at least
in this example implementation – has been worthwhile. Not only is starting
the logging of data after the model’s “spin-up” simple, but the loggers can be
configured to replicate different field studies without requiring modifications
to the underlying model.

5.6.2 Changing representations

Monitors are very similar to the logging agents and use essentially the same
infrastructure for agent selection and processing. The process of assessment
and the management of the representations of the systems being modelled is
reasonably simple to describe: periodically the monitoring agent will interro-
gate the subset of the model for which it is responsible; each time it does so,
it generates a tree or set of trees which encode the state of the model and the
system’s assessment of their merit with respect to the location of the model
(or components) in the state space. These periodic assessments are essentially
“maps” of the current configuration of the model into the metric-space of the
trees of Chapter 4. We use this mapping to calculate the closest candidate con-
figuration from a set of configurations we believe (or know) to represent the
system well in a given part of its state space. Because the trees are elements
of a ring, we can, in some cases, interpolate between configurations, arriving
at possibly advantageous configurations which have not been explicitly spec-
ified.

There is an overhead to using monitors to adjust the configuration: like log-
gers, they must run periodically and poll agents. While a branch to an al-
ternative processing path within a submodel is undoubtedly a lower cost, the
tests attendant to both approaches will be substantially similar and, by shifting
the business of changing representation to an appropriate monitor, all repre-
sentations for an entity automatically become capable of making that change
without altering their code. We also gain the benefit of greater control over
how frequently tests and changes of representation occur without muddling
the code which comprises the various representations.

The processing loop for a <monitor> agent has a number of steps:

— Each of the agents will be queried for its status and its own assessment
of its state in the context of the other elements it interacts with. This may

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 112

be fairly trivial for most agents, particularly those which change slowly,
or are not significantly influenced by the activities of other agents. In the
majority of cases, the agents will return a list with a self-assessment of
their current levels of fidelity and cost.

— The monitor synthesises a number of representative state-trees which de-
scribe the status of the configuration of agents by taxon and niche, and
it generates a state-tree which describes the current configuration. Other
factors dealing with significant conditions which pertain to the simula-
tion – perhaps relating to the geographic distributions, population num-
bers or density, the abundance of resources, or the presence of significant
conditions such as fire, may be incorporated into the configuration trees
and the candidate configuration trees.

— The monitor then compares the current state against the known-good and
known-bad configurations, and records these values. Each of the gener-
ated status trees is then compared with appropriate good and bad trees.
The results of the comparisons are used to select the best candidate con-
figurations and representations for consideration. The trees that repre-
sent the model and its constituents are constructed so that we can add
trees that represent agents or groupings of agents to construct a tree that
represents a model or component. Each of these synthetic trees is ranked
and, if there is enough benefit, the desirability of a change is indicated.

The assessment trees are then used to direct the conversion of groups of agents
to other representations. Sometimes this will entail the collapsing of a number
of individual-based agents into a super-individual, an equation-based repre-
sentations or possibly a hybrid of some sort. Other times, a more aggregated
entity may be converted to a more discrete form. The strategies for conversion
depend on the nature of the representations in question, and this is probably
the most challenging part of constructing a modelling system of this kind – in
order to maximise its utility, the conversions should be carefully considered.
One of the benefits of this type of examination is that the sensitivities of the
model must be explicitly analysed and dealt with.

Developing a body of configurations which function well is likely to be, at least
initially, a process of intuitive selection and trial and error. Initially, we begin
with coarse knowledge regarding the utility of particular representations un-
der given conditions. <loggers> can collect and record information about the
agents within the simulation, and their performance. This data can be used
as the basis for the selection and testing of new configurations, and we can
classify them into varying degrees of “good” and “bad” configurations.

This process depends on being able to discriminate between configurations,
and we do this by mapping configurations into state-trees which are con-
structed in a way which encodes coarse spatial information (the relationship
between patches, for example), the numbers of entities represented by differ-
ent classes, and their own performance measures.

The replacement of an agent by another is accomplished by a routine using the
create function as used in the specific-model.scm file. There is an issue associ-

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 113

ated with the risk of exhausting the available memory, however: if any mem-
ory reference in an active memory allocation refers to a scheme object then the
object is protected from garbage-collection. This means that update-closures
which are created with a built-in reference to the creating agent protect that
agent from having its memory returned to the pool.17

Maintaining state across representations

When an entity is being prepared to change its representation, its current rep-
resentation may create an encapsulation of its critical state variables in a clo-
sure that is bound to a function which is able to access these variables, and to
maintain their values. The closure may ultimately pass these values back to
another agent which will take over the role played by the model maintenance
function.

A typical closure definition might look like

(update-closure <plant>-B.exemplarii:14
’(age mass taxon location)
(list ;; initialise with these values

(slot-ref self ’age)
(slot-ref self ’mass)
(slot-ref self ’taxon)
(slot-ref self ’location))

(list ;;
(lambda (t dt a m t l) (set! age (+ age dt)))

(lambda (t dt a m t l) (set! mass (mass-at-age (+ age dt))))
#f
#f))

In this example the state-variables age and mass are updated in the body. Clo-
sures are (at least in this model) unable to access anything other than the ar-
guments passed to them by the model responsible for maintaining them. The
update-closure block is implemented as a macro that is turned into a func-
tional closure with internal state-variables. Calls to a maintenance closure
passes a list of expected values to the closure in the expected order, and the
current values for time and the length of the time step (t and dt) are always
passed in by the system. The maintenance closure can be passed a single sym-
bolic value – quit – which indicates that it should terminate and return the
current value of the variables it maintains.

17This sort of issue is easy to recognise – the computer rapidly becomes sluggish or almost
completely unresponsive because it is spending all its time in swap space.

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 114

5.6.3 Comparison of states

The first step in being able to quantitatively compare configurations of mod-
els is to construct a means for encoding the state in a way that supports some
sort of qualitative or quantitative comparison. The trees described briefly in
Chapter 3 and more comprehensively in Chapter 4 are elements of a metric
space. Since the set of indeterminate variables in the labels of these trees is
quite arbitrary, we can identify any particular attributes of interest in a family
of representations with indeterminates, and we can also extend this to denot-
ing the various representations for the modelled entities.

The framework maps the configuration of the model to a tree in the metric
space defined in Chapter 4 as a means of allowing us to calculate how close
one configuration is to another. The example tree (below) consists of only
a few agents, but it illustrates the type of structure and information used in
determining the relative merits of different configurations. Only three taxa
are represented in this tree – fruit, seeds and B.exemplarii, and only the plants
are represented by more than one type of agent. The tree includes in “leaf-
most” nodes the identifying information that ties specific agents to particular
branches of the tree. In this way, we can apply a trim operation (Def. 4.2.5) and
calculate the distance between representations without the details of specific
members of the aggregate data interfering in the result.

In this example, the numbers in the “weight” position, after the colon, refer
either to the aggregate values (in the case of equation-based ecoservices), the
numbers of distinct agents, or the serial numbers of the specific agents in leaf-
most nodes. A number of useful indicators can be constructed from the simple
operations defined at the beginning of Chapter 4.

(taxon : 0 {
(fruit : 2792746.800173795

{(fruit + eqn-based + <ecoservice> : 625055.9572307098
{(gridcell-1,2:fruit : 21 {})})

(fruit + eqn-based + <ecoservice> : 132324.34236008758
{(gridcell-1,1:fruit : 19 {})})

(fruit + eqn-based + <ecoservice> : 362001.18511443434
{(gridcell-1,0:fruit : 17 {})})
(fruit + eqn-based + <ecoservice> : 696015.3639367699

{(gridcell-0,2:fruit : 15 {})})
(fruit + eqn-based + <ecoservice> : 462154.55908067356

{(gridcell-0,1:fruit : 13 {})})
(fruit + eqn-based + <ecoservice> : 515195.3924511202

{(gridcell-0,0:fruit : 11 {})})
}

)
(seeds : 4950004.701824954

{(seeds + eqn-based + <ecoservice> : 825000.4339876496
{(gridcell-1,2:seeds : 20 {})})
(seeds + eqn-based + <ecoservice> : 825000.6790376918

5.6. INTROSPECTION AGENTS: LOGGERS AND MONITORS 115

{(gridcell-1,1:seeds : 18 {})})
(seeds + eqn-based + <ecoservice> : 824999.6759855568

{(gridcell-1,0:seeds : 16 {})})
(seeds + eqn-based + <ecoservice> : 825001.7606296955

{(gridcell-0,2:seeds : 14 {})})
(seeds + eqn-based + <ecoservice> : 825000.96499662

{(gridcell-0,1:seeds : 12 {})})
(seeds + eqn-based + <ecoservice> : 825001.1871877399

{(gridcell-0,0:seeds : 10 {})}
)}

)
(B.exemplarii : 6

{(super-individual + B.exemplarii + <plant-array> : 3
{(B.exemplarii_1 : 6 {})})

(individual + B.exemplarii + <example-plant> : 1
{(B.exemplarii_4 : 9 {})})

(individual + B.exemplarii + <example-plant> : 1
{(B.exemplarii_3 : 8 {})})

(individual + B.exemplarii + <example-plant> : 1
{(B.exemplarii_2 : 7 {})})

}
)}

)

Analogous trees can be constructed which can be used in a similar way to
match spatial patterns. We do this by identifying the neighbours of a region
with symbolic variables in the labels of nodes; a very simple example using
grid cells might look like so:

(taxon : 0 {
(gridcell-1,1 : 1044
{(gridcell-2,1 : 37 {})}
{(gridcell-2,2 : 637 {})}
{(gridcell-1,2 : 937 {})}

)

(gridcell-2,1 : 37
{(gridcell-1,1 : 1044 {})}
{(gridcell-2,2 : 637 {})}
{(gridcell-1,2 : 937 {})}

)

(gridcell-1,2 : 1044
{(gridcell-2,1 : 37 {})}
{(gridcell-2,2 : 637 {})}
{(gridcell-1,1 : 1044 {})}

)

5.7. FUTURE WORK 116

(gridcell-2,2 : 637
{(gridcell-2,1 : 37 {})}
{(gridcell-1,1 : 1044 {})}
{(gridcell-1,2 : 937 {})}

)
}

)

Like the status trees in the first example, these trees can be compared to ref-
erence patterns to identify spatial distributions which require the intervention
of a monitor. An example of this type of situation might occur in a model of
suburban housing: if large numbers of residents are abandoning one particu-
lar region, there may be effects on the surrounding regions – increase in civil
disorder, for example – which are not accounted for by the representations for
those areas.

Monitors can be constructed to maintain a list of status trees which track changes
in the ensemble through time. At the moment, this would be a computation-
ally expensive process, but as the implementation of the underlying math-
ematical machinery improves, the notion of using this kind of higher order
analysis of the dynamics in the system becomes more tenable.

5.7 Future work

5.7.1 Distributed models

The top-level <introspection> class may ultimately form the basis for connect-
ing distributed models, a promising library for this purpose is∅MQ (“zeroMQ”
in Corp. [2012]). No work has yet been done to directly support distributed
execution, the approach taken to address these issues has been structured to
make this type of connection feasible and as straightforward as possible.

5.7.2 Cross-representation interactions

A model which couples elements which are discrete entities (e.g. cattle) with
others that have some type of continuous representation (e.g. a vegetated area)
must deal carefully with the way the interactions are played out. Although
interactions that arise are not limited to predation, predation will be used as an
example that illustrates a way of playing out an interaction between different
representations.

Models at the “individual-based” end of the spectrum can be very sensitive
to fine changes in parameterisations or gradients within the model. In some
contexts, this is exactly what we wish for, but in others it can make tuning
the model difficult and there may be underlying structural factors that have

5.7. FUTURE WORK 117

undue influence in the model’s trajectory.18 Also, processes like predation are
computationally expensive when large numbers of prey are present. It is possi-
ble for us to model predation between individual-based and population-based
representations, but to do so requires an approach quite unlike the approaches
of conventional individual-based models, where the pursuit, capture and con-
sumption may be explicitly simulated, or the approaches of conventional age-
class structured population models. The work outlined in this section pro-
vides a reasonably efficient example of how couplings between individual-
based and analytic components may be accomplished.

In this example, we will consider a set of individual-based predators preying
on a size structured population. Here, there is a limitation on the size of prey
which is available imposed by the gape of the predator. This type of constraint
is not all that uncommon in species which are lone predators.

We can map population histograms (where x-axis corresponds to the ‘size’ of
a fish) onto piece-wise linear functions with the property that the partial in-
tegrals of the linear functions correspond to the partial sums of histograms at
each boundary in the histogram. If populations are functions, then we can
evaluate the consequences on the population.

Let us consider the following “known” attributes in a system

Table 5.7: Symbols
ma(l) the member distribution with respect to

size of each agent of interest
Gi,j(l, w) the gape filter for predator i with respect

to prey j
T(a) returns the taxon or type number of agent

a
Ma the total number of members for agent a
M∗i (w) the sum of all the distributions of agents

with a type i
M̄i = ∫

∞
0 M∗i (w)dw the total number of entities of type i

Calculating mortality

Let
Ii,j(l, w) = M∗i (l)Gi,j(l, w)

and
Ji,j(l, w) = M∗j (w)Gi,j(l, w).

Ii,j is the raw distribution of pressure of predator i onto prey j, and Ji,j is the
raw distribution of the vulnerability of prey j to the predator i.

18In an unpublished model I wrote in the very early 1990’s, simulated fish lined up neatly
on boundaries between the pixels of the digital elevation map that made up the seabed – they
maximised their access to prey by straddling the different domains.

5.7. FUTURE WORK 118

If the constants
ki,j = ∫

∞

0
∫
∞

0
Ii,j(l, w)dldw

and
hi,j = ∫

∞

0
∫
∞

0
Ji,j(l, w)dldw

are non-zero, they can be used to scale Ii,j and Ji,j so that they form kernel
functions, and we get

Ki,j(w) =
1

ki,j
∫
∞

0
Ii,j(l, w)dl

which is the normalised predatory pressure with respect to size, and the nor-
malised vulnerability

Hi,j(w) =
1

hi,j
∫
∞

0
Ji,j(l, w)dl.

Values of zero in ki,j and hi,j indicate that no predation is possible – usually
because M∗ has collapsed. In this case we take either (or both) Ki,j(w) and
Hi,j(w) to be zero.

We calculate
vi,j = ∫

∞

0
Ki,j(w)Hi,j(w)dw

which has a value in the range [0, 1]. If vi,j is non-zero we can construct the
normalised interaction

Vi,j(w) =
1

vi,j
Ki,j(w)Hi,j(w)

which indicates the proportion by size of type j subjected to predation from
type i at the given length w. Again a zero value for vi,j indicates that no inter-
action (“diner” or “dinner”) are possible.

The function
ei,j(w) = M∗j (w)Vi,j(w)

can be used to give us the number

Ei,j = ∫
∞

0
M∗j (w)Vi,j(w)dw

which is the exposure of prey population j to the predators in population i.
The converse,

Ci,j = ∫
∞

0
M∗i (w)Vi,j(w)dw,

is the potential for predation of the predator type i on an “average” prey of
type j.

We can then use a predation relationship of some sort to get the raw number
of “kills” based on the exposure averaged over the potential volume (or area)
of contact per unit of time, which we call Ωi,j, where Ωi,j = M̄iF(Ei,j/Aj, pi,j)∆t

5.7. FUTURE WORK 119

where F is the predation relationship, and pi,j is the parameterisation for the
species, and ∆t is the time step, and Aj is the area/volume we divide by to get
a density.

We can sum over a predator type

Ω∗j = ∑
i

Ωi,j

to give us the total possible consumption of prey type j.

Alternatively, we can calculate a consumption-by-size distribution and define
the function ωi,j(w), the raw number of kills for a length w on a consumption-
by-size basis, by

ωi,j(w) = M̄iF(ei,j(w)/Aj, pi,j)∆t.

Thus the impact on the prey population (at least those of length w) is

ω∗j (w) = ∑
i

ωi,j(w)

and for the whole population it is

∫
∞

0
ω∗j (w)dw

(or something like that).

Alternatively, we can express things more in the way that it is calculated in the
Atlantis model [Fulton, 2011] with

Zi(w) =
gi M∗i (w)

gi/ci +∑j ai,jei,j(w)

where Zi(w) reflects the aggregate clearance rate of a predator of type i if we
take ci to be the “clearance rate” which incorporates the volume it sweeps and
a proportion of prey captured and we take gi to be the predator’s growth rate.

So ∫
∞

0 Zi(w)ei,j(w)∆tdw is the amount of prey of type j consumed by the
predators of type i over the interval ∆t.

It should be pointed out that the number of types is fairly small compared to
the number of agents, and this shouldn’t be too onerous a calculation (at least
compared to playing it all out individually).

Apportioning mortality

Mortality can be calculated either by apportioning it to each agent according
to the proportion of the global population it represents (and within it, appor-
tioning the mortality to ages in an analogous fashion), or we can apportion
mortality to each age in each agent according to how much of the population
it represents.

5.8. OBSERVATIONS 120

For the agent-by-agent update we have

δma(w) = Ω∗T(a)
ma(w)

M∗T(a)(w)

and for the age-by-age update we have

δma(w) = ω∗T(a)(w)
ma(w)

M∗T(a)(w)
.

The new distribution
na(w) = ma(w)− δma(w).

In these steps, places where there are no members of size w should be dealt
with carefully in the division, and at all points M∗T(a)(w) ⩾ ma(w).

5.8 Observations

Conveniences

A number of features of the model have proved to be – unexpectedly – very
useful during the construction of the example described in this chapter. Partic-
ularly noteworthy items are the parameterisation mechanism, output genera-
tion, the instrumentation to collect the elapsed time within routines, and the
code for debugging output.

Parameter files are small snippets of Scheme code which adhere to a particu-
lar form. In these files, data are associated with symbols which get used to
determine what state variables are initialised to. There is a mechanism which
supports the delayed evaluation of the value to initialise a state variable al-
lows the modeller to perturb values (such as mass) in the instantiation of the
agents. Similarly, we are able to move functions that are traditionally coded
as part of the model into the parameter space – thus, we could easily write one
basic Galapagos finch model and parameterise the many different behaviours
and food preferences.

All of the output in the model arise from one of two basic mechanisms: debug-
ging/warning messages emitted by the kdebug routines which were briefly
discussed in Section 5.3.4 or output generated by a <logger> . There have been
a number of benefits from not incorporating the output within the submodels.
The most significant benefit is that it makes the task of producing “exotic”
output, such as postscript or animations, much more straightforward, and the
code to produce the output is much less likely to interfere with the model it-
self, since the output routines are quite distinct from the submodels they may
query. With this approach, an output only needs to know is how to obtain
data from an agent, and how to generate appropriate output (see Figures A.1,
A.2 and A.3 in the appendix). In this way, the log-data routines are able to be
applied to a number of quite different models, and their output is consistent
irrespective of the underlying model generating the data.

5.8. OBSERVATIONS 121

The debugging messages provided by the kdebug call and its kin can be con-
structed to emit messages according to arbitrary flags which can consist of
symbols, can contain wildcards, class-names, or parameter taxa. The same
mechanism can conditionally execute more complex debugging or validation
code, and virtually vanishes when the no messages are required. This has
proved very useful both in debugging code, and in the parameterisation of
models.

A small amount of effort has been devoted to improving the efficiency of
the modelling framework. The primary aim of Remodel is currently not so
much the implementation of production models, but as a tool for exploration.
That said, its early versions ran slowly enough, that instrumentation to time
procedure-level and block level code was added. Serendipitously, this code
neatly meets anticipated needs to assess the execution speed for the purposes
of adjusting configurations.

Using this, computationally greedy code can be located by using the alterna-
tive syntaxes define%, model-method%, and model-body% which extend define,
model-method, and model-body by adding instrumentation which allows the
modeller to determine how much time was actually spent in the functions,
methods or model-bodies, with a call to (timing-report)’. This make the
task of finding the bottlenecks in the code much simpler. Access to the data
for assessment can be accessed by calling the function elapsed-time with the
symbol specified as the tag in a timing-block, and these functions are defined
in the file timer.scm.

—

The code for the example described is under continuing development. The
submodels which comprise it are deliberately simple in order to maximise
the ability to track the dynamics arising from model switching. The models
are comprehensive enough that comparisons between “unimodal” runs can
be made and the parameterisations for the different representations can be
made as compatible as possible. The model in Chapter 2 was, in many ways,
an ideal platform for initial exploration . . . except that exploring much further
than its ambit proved unfruitful. The essential limitation posed by the lack
of a bidirectional interaction suggested that a model capable of predator-prey
interactions was needed.

Early implementation decisions were based on experience with the models in
Lyne et al. [1994a], Gray et al. [2006] and Gray et al. [2014], along with the gen-
eral notions formulated in the development of Chapter 2 and Chapter 3. The
class structure is readily extended, and the ability to use temporary instances
of other agents as intermediaries – such as may be found in <plant-array>:log-
data, where a temporary plant is used to sequentially hold the essential data
to pass to the tree plotting routine – makes the process of constructing new
representations much easier than expected.

Current efforts are focused on making the framework more robust and simpler
to use, particularly with respect to maintenance closures. While constructing

5.8. OBSERVATIONS 122

closures to maintain variables is straight-forward in Scheme, a means of im-
plementation that did not rely on a reasonable fluency in the language would
be better. Similarly, additional support routines for crafting <monitor> agents
would help. Reference trees must currently be constructed by hand, and this
is a somewhat tedious process. n

CHAPTER 6

Conclusion

There is a trend for ecosystem models to become more detailed and to cover
larger domains, which can be viewed as the natural consequence of a growing
desire for realism; in fact, this realism is often essential (Fulton et al., 2003; Rose
et al., 2010). It is no great leap to suspect that the situation is similar in other
fields of research. There are many other reasons why our expectations of mod-
els are growing, not least of which is our desire to understand and be able to
predict the dynamics of physical and ecological systems we depend on. These
expectations raise serious issues for the researchers involved with modelling:
as the scope of a models domain increases, the computational requirements of
the model typically increase more rapidly adding new species or doubling the
area may increase the number of interactions by orders of magnitude, and the
number of connections between components in models can grow much faster
than simply a multiple of the number of components.

There are several major consequences of this growth in model size and com-
plexity, the most obvious is that it takes longer to bring a new model to the
point of usefulness. Not only does it take longer to assemble the model, but
it also take a great deal more effort to test the model due to the increase in
the number of possible connections between components. Stand-alone mod-
els may have radically different approaches to the treatment of the physical
environment and coupling these can create regions where the usual methods
do not work well. The demand for realism and the application of models in
important processes, such as deciding how to manage industry in sensitive
habitats, drives a process of model extension which is often accompanied by
hard reporting dates. The combination of these factors puts run-time at a pre-
mium, since at least in ensemble models many simulations need to run with
time left for analysis and writing. Clearly more memory, faster hardware or
more efficient algorithms may help extend the limits on what a model may do,
but it isnt always the case that a more resolved model will improve the corre-
spondence between model results and the trajectory of a real system [?]Fulton
et al., 2003; Sperber and Palmer, 1996).

The situation is not inherently intractable; a number of modelling approaches
are available to us and they all bring particular strengths which we can exploit.

123

124

The work in Chapter 2 used two quite different approaches to the same prob-
lem, and each had advantages over the other. It also demonstrated that there
was no substantive reason to avoid using both representations concurrently to
maximise our advantage.

This work attempts to construct a theoretical context to aid the development
and exploration of models composed of many interacting subsystems. The
metric-space developed in Chapter 4 can be used in constructing an encoding
which can

– represent a models state,

– be used to assess that state relative to known landmark trees,and

– provide a vector space in which to search for appropriate alternatives,

should the need arise.

The formal structure which casts each component in the model as a distinct
entity which communicates with other participants through well-defined and
consistent interfaces is conventional practice. In the context of ecosystem mod-
elling, this approach makes the inclusion or coupling of new systems such as
new trophic levels or land forms much more straightforward.

Where the formal framework described differs most significantly is the inclu-
sion of both self-assessment and supervisory assessment by the <monitor>
agents. While the monitoring agents play a special role, in that they may force
changes in the representation of other agents, they may also be subject to the
assessment-and-replacement paradigm which applies to agents which simu-
late the system a model seeks to simulate. This meta-structure means that not
only is it possible to automatically change the composition of a running model
in terms of how its component parts are represented, but we can adjust our
assessment and configuration mechanisms in the same way.

Structures that allow a flexible representation for components can help to re-
duce the overall complexity of a model as a whole by making each of its active
components simpler.

Models like Gray et al. [2006] and Gray et al. [2014], have handled major
changes in behaviour or niche by examining either their own state, their imme-
diate neighbours or other external state data. This approach comes at a cost,
however: as more and more exceptions occur, problems begin to arise:

– more time is expended on tests to see which path to take

– the number of possible trajectories through the code-path increase dra-
matically, making adequate testing tedious or difficult;

– there is a risk that complex sets exceptions which ought to be exclusive
fail to be adequately guarded;

and

125

– we eventually reach a point where it becomes difficult for a modeller that

has not been involved in the evolution of the model to understand the dynam-
ics of the system.

Branching is a plausible solution, but it doesnt offer compelling advantages
over a representation change.

Experience suggests that as model size increases, the modellers ability to main-
tain consistency across the the code which handles the exceptions decreases.
Failing to maintain the exceptions while the mainline code evolves presents
silent risks to the integrity of the model as a whole. Adding insult to injury,
the clauses which test which path should be taken may be executed frequently
with no effect other than to slow the model.

The dividend that changing representation pays is a dramatic increase in the
flexibility of the model: all the representations of an entity are automatically
able to cede their place to a more appropriate representation, should the need
arise, because the changes in representation are effected by another agent - a
<monitor> - which is responsible for the assessment and change. The specific
advantage provided by model switching over branching is that we not only
avoid unnecessary condition testing, but we can devolve the whole process of
assessment and switching onto a monitoring agent which can test only when
needed.

The multiple inheritance provided by TinyCLOS makes it possible to construct
variants of a model which may possess largely identical code-bases but exhibit
different behaviours1. Each of these representations can typically proceed as
though no other representation exists.

The model used as an example in Chapter 2 provided a simple demonstration
that a model can modify the nature of the representations of processes, such
as whether to represent a population analytically or as a group of migrating
animals, in order to maintain the fidelity of model outcomes while improv-
ing computational efficiency. The explicit assumption in Chapter 2 was that
an individual-based representation for the organisms would be taken to be
the gold-standard for modelling contaminant uptake. Given this, the example
runs showed that the adaptive version of the model was roughly four times as
efficient in terms of computation cost. There was also a noticable difference be-
tween the results using the analytic representation for the population and the
individually resolved representation; in the absence of a corresponding phys-
ical experiment, it would be somewhat presumptuous to press the claim that
the individual-based and mutating models were more consistent with the real
dynamics of a physical analogue of the system, however tempting that claim
may be. In it, the change from one representation to another was simple, and
the maintenance of the state variable which was to be preserved across tran-
sitions required no additional datain most cases a prohibitively constraining
assumption, but even in such a simple model, the benefit of using the tech-
nique was clear.

1This property would also be true if Remodel had been written in C++, or any other language
with multiple inheritance.

126

In ecosystem modelling, there are many circumstances where a group of indi-
viduals can be treated as homogeneous on the surface, it seems unlikely that
one would ever need to discriminate between blowflies or sardines in a school,
for example. Unfortunately, it is easy imagine scenarios where the uniqueness
of an individual does become important. Contact with behaviour modifying
parasites can make an organism less mobile and thus vulnerable to predation
by the hosts that the parasite breeds in, thus providing a positive feedback
in the system. In such cases, the individual characteristics, such as resistance
to parasites, resistance to contaminants, the ability to store fat and the ani-
mals life-history, have an influence on what happens to the population as a
whole2. Chapter 2 demonstrates that we can efficiently represent a system us-
ing sub-models with vastly different assumptions about individuality without
necessarily compromising the quality of our results.

The model examined in Chapter 2 was, in a sense, a minimal construction: at
slightly more than a thousand executable lines, it was sufficient to accomplish
its intent to demonstrate that a strategy using adaptive representations can
be significantly advantageous, and that state could be efficiently maintained
across representations but the example cannot take the argument much fur-
ther than that. In order to explore the implementation issues more fully and
to be able to make informed judgements on where the technique is most ap-
plicable, a more general adaptive hybrid model with the capacity to deal with
a broader range of situations was necessary. The description of a model in
Chapter 3 described a baseline scenario that this more general model should be
able to implement. The model has dynamics which create interdependencies
amongst the biotic elements, there is a spatial heterogeneity, and the poten-
tial for migration within the region. Chapter 3 extended the notions discussed
in Chapter 2 to include the possibility of dynamically determined (rather than
hard-coded) strategies for changes in the representation of model components.
This end has not yet attainable, but the example implementation, Remodel, has
been constructed with this endpoint in mind, and development along these
lines is continuing. Remodel is still under active development many of the
desired outcomes have been achieved, but moving it from a pedagogic tool to
a basis for real model development is the dominant long term objective. This
modelling approach has application in a number of situations where conven-
tional models may fail to perform adequately, whether in terms of process-
fidelity, computational cost, or flexibility:

Systems with dynamics which oscillate between levels where the influ-
ence of individuals have a significant effect on the outcome, and levels
at which the mixing assumption holds;

Real-time situations where execution speed and fidelity must be traded
against each other, such as in virtual environments, online commerce,
and computer games;

Simulating complex systems with numerous tipping points;

2The evolution of species might be constructive evidence that individual variability is an
important feature in long-term projections.

6.1. INTO THE FUTURE 127

Autonomous control systems that operate in complex or unpredictable
environments.

The ability to assess a models configuration and performance in arbitrary (mea-
surable) terms, such as fidelity, computational efficiency and run-time, gives
modellers the scope to construct systems which readily adapt to a wide range
of use-cases: adjusting the sets of known-good and known-bad configurations
could allow us to use the same basic model for long-term forecasting and for
time-critical predictions which may be needed for emergency response deci-
sions.

The conceptual strategy for constructing models described in this work ad-
dresses the problems which arise when dealing with complex systems whose
components exhibit dynamics which are sensitive to the state of the system.
Models can be constructed so that, as a simulation progresses, the representa-
tion of their component parts can adapt to the most appropriate form for the
state of the model. In practice, it is possible to choose a strategy which opti-
mises for any appropriate measure speed, fidelity, or the cost of real-world
management, for example.

6.1 Into the future

This approach to modelling seems likely to be able to map readily into paral-
lelised or distributed systems. Since it inherently encapsulates the data associ-
ated with submodels and provides mechanisms which control the communi-
cation between agents, a parallelising kernel should be reasonably straightfor-
ward. As a second stage, distributed processing is also likely to be a tractable
problem; serialising the data structures is simple, and the whole system is
geared to permit the dynamic introduction and removal of agents.

call-with-current-continuation is, like wizards, subtle but quick to anger.
Also like wizards, it can be very useful when it comes to solving knotty prob-
lems. A class (or set of classes) implementing backtracking is planned, and it is
likely to use call/cc. Backtracking is a method of attacking constraint solving
problems, such as arise when hunting “optimal” model mixes, or parameter
sets that cause a model to track a given set of data most accurately.

While these are the applications that spring to mind, a search for optimal so-
lutions to constrained problems arises in many situations, and the ability to
apply the technique both within a submodel and in managing the framework
has great appeal.

Data assimilation and ensemble modelling are significant techniques which
im prove our ability to construct realistic representations of systems which
interest us. The use of a model-swapping approach in could be an attrac-
tive addition in these contexts - container models which implicitly apply tech-
niques from these paradigms to subsidiary representations of a system could
be readily implemented within Remodel. Moreover, a model-swapping ap-
proach could readily be employed at a number of levels, namely

6.1. INTO THE FUTURE 128

– as the implementation paradigm for member models,
– as a mechanism for adjusting a mix of the models which constitute the

ensemble, or

– at a macro assessment level, integrating the results of ensembles.

How the approach discussed in the preceding chapter might be best used in
these types of models requires more investigation. Collaboration with scien-
tists and modellers which are fluent in their use is likely to bring new perspec-
tives on the development of Remodel, and possibly the methods in use in the
domains dominated by these assimilation and ensemble techniques.

The central theme in this thesis has been the use of dynamic assessment and
the reconfiguration of models to best manage the fidelity and efficiency of the
model. The assessments and decisions of a model-run can be recorded like any
other data generated by the model, and these data can inform the development
of more comprehensive or nuanced decision strategies or models. The data
may also provide insight into how the system changes its character through
time at a macroscopic level.

It incorporating a <log> based checkpointing facility in Remodel would be
fairly simple to implement. Such a facility could support a model configura-
tion sensitivity analysis akin to the parameter sensitivity analyses we are fa-
miliar with. The data derived from this could be fed directly into subsequent
assessments within the run in principle, should a monitor detect that a model
has run off the rails, the whole model could be restored from a previous check-
point, the decision logs could be examined and an alternative choice made at
a point that precedes the models loss of fidelity. This sort of feature may be
attractive in the implementation of submodels using data assimilation.

Early ecological models were necessarily quite simple in order to be able to
run on the hardware available at the time. Moores Law has seemed to hold
since it was first articulated in 1965, but it seems inevitable that, like organ-
isms in ecosystems, the software will expand to make comprehensive use of
its environment. This effect has been widely observed, and personal experi-
ence suggests that the domain of ecosystem modelling is not immune: Though
hardly a broad survey, the scope of the studies Lyne et al. [1994a], Gray et al.
[2006] and Gray et al. [2014] illustrate this growth. These models were based
on the InVitro framework and the code bases for these models doubled in size
roughly every three and a half years.

While quantum processors may also help with some aspects of simulation
(such as path resolution or prey selection) to ameliorate this, it seems unlikely
that they will provide a conceptual magic carpet that carries us immediately
to our goal; as suggested above, the problem any new model addresses will
grow to become just barely tractable. If this is true, no real technological ad-
vance or methodological insight (such as changing representations!) is really
going to do much more that shift the boundary: modellers will still sit impa-
tiently waiting for the model run to finish, wishing they had more memory,
more qubits, and a faster CPU.

6.1. INTO THE FUTURE 129

The goal of this work has been to develop a conceptual basis for models which
are able to use their own state to direct the adaptation of their representation
to optimise some aspect of their simulation. The evidence of the utility of this
approach was established in the simple model of Chapter 2. Making models
with the properties discussed in the preceding chapters is not a trivial under-
taking, but with appropriate support it is only marginally more complicated
than a conventional approach.

APPENDIX A

Typesetting conventions

Table A.1: Printing styles

Example role

scheme-syntax indicates a syntactic component of
Scheme, or a macro declared in framework

symbolic-value indicates a Scheme symbol

“ character string” indicates a string of characters

variable-name indicates a Scheme variable

method-name indicates an SCLOS method

agent-state-variable indicates the name of an attribute of an
agent

<class-name> indicates the name of an SCLOS class

Keep in mind that in Scheme, a symbol may be bound to something (like a C
pointer) such as a symbol, a string, a number, a list or a function. Methods
are similar to functions (which are accessed through a variable), but they are
not the same thing. A method requires an agent it knows how to handle as its
first argument. State variables are usually only accessible by asking the agent
for the value: other agents, and even the kernel, cannot delve into an agent’s
innards without help from the agent.

130

APPENDIX B

Snapshot of Remodel run

The following three figures show the trees in a simulation of fifty days. The
diameter of each tree is proportional to its mass.

Note that in the first figure, there are a number of relatively large trees, and
no small trees outside the four clusters. At day 25, the larger trees have been
heavily grazed and there are a number of small trees distributed between the
clusters. By day fifty, most of the trees are significantly smaller and there are a
many more small trees distributed around the region.

The track of a single herbivore has been included as a half grey trace on each
of the maps (visible in the upper right hand cluster).

131

132

 B._ex._fruit = 51.99
 B._ex._seeds = 3335.95
 gridcell-0,0 at 0

Figure B.1: Snapshots of tree-cover locations at day 0. The herbivore is not
visible, because it hasn’t moved yet.

133

 B._ex._fruit = 190.92
 B._ex._seeds = 6075.96
 gridcell-0,0 at 2246400

Figure B.2: Snapshots of tree-cover locations at day 25. The herbivore is graz-
ing on the foliage of the trees.

134

 B._ex._fruit = 111.3
 B._ex._seeds = 5937.96
 gridcell-0,0 at 4406400

Figure B.3: Snapshots of tree-cover locations at day 50. The herbivore is still
grazing on the foliage of the trees.

APPENDIX C

Supplementary Material

We can cast the dynamics of the system as a system of differential equations
for the changes in distribution of biomass amongst the populations. These
equations are solved at each step by a fourth order Runge-Kutta scheme that
calculates the biomass distribution for each species.

So we denote our types by

P – plants, from germination onwards,

F – fruit, which are available for consumption,

S – viable seeds, which have passed through a herbivore,

H – herbivores, which eat the plants and fruit, and

C – carnivores, which eat the juvenile herbivores,

and we take the notation NA(t) to denote the total biomass of things of type A at
the time t, NA(t, x) indicates the total biomass of the members of type A which
have a size x, and N̂A(t, x) denotes the proportion of the population that has a
size x at t. Thus we have

NA(t) = ∫
∞

0
NA(t, x) dx

and
N̂A(t, x) = NA(t, x)

NA

(t).

Clearly for positive values of NA(t), N̂A(t, x) ∈ [0, 1], for non-positive values of
NA(t)we will take N̂A(t, 0) = 1.

So for plants, we also make the following assumptions:

• Plants produce fruit continuously (without seasonal variation), and their
mortality is uniformly distributed with respect to size and distributed
evenly through the year,

135

136

• plants grow slowly enough that it is possible for all the adult herbivores
to die before a plant fruits — this means that a near complete collapse of
the plant population can trigger a collapse in the herbivore population

• fruit has a probability of spoiling, and the associated seeds will spoil

• seeds that have passed through the juveniles will germinate

The change in plant biomass for a given size due solely to growth is

dNP(t)∣growth(t, x) = (1− NP(t)
KP

)∫
∞

0
ΓP(x, y)NP(t, y) dy (C.1)

where ΓP(a, b) is the probability that a plant of size b will grow to size a. The
germination of seeds contributes

dNP∣germination(t, x) = (1− NP(t)
KP

)NS(t)ΓS(x) (C.2)

where ΓS(x) is the probability of a seed growing to size x. We will also make
germination success dependent on the density of plants relative to the carrying
capacity, KP — for the sake of the argument, germination might only occur in
full sunlight.

The change in biomass in plants due to predation by herbivores is

dNP∣predation(t, x) = −∫
∞

0
NP(t, x)NH(t, y)EHP(y, x) dy (C.3)

where EHP(y, x) is the probability that a plant of size x will be eaten by a herbi-
vore of size y.

The mortality is given by

dNP∣mortality(t, x) = −ΩPNP(t, x) (C.4)

Thus, the collective change in biomass can be written

dNP(t, x) =(1− NP(t)
KP

) [∫
∞

0
NS(t)ΓS(y) dy +∫

∞

0
ΓP(x, y)NP(t, y) dy]

−NP(t, x) [ΩP +∫
∞

0
NH(t, y)EHP(x, y) dy] .

We’ll take the production of fruit to be related to the surface area of a minimal
bounding volume of a plant, so we include a quadratic term in x with the
assumption that volume is proportional to mass, so

dNF∣production(t) = ∫
∞

0
ρP fPx

2
3 NP(t, x) dx, (C.5)

where fPx
2
3 is the (“instantaneous”) likelihood that a plant with a mass of x

will fruit and we assume that ρP, the mean size of fruit, to be similar across all

137

sizes of plant. This is clearly a little silly, since newly germinated plants are
unlikely to produce fruit that may be larger than they are, but in a spirit of
blindly hacking through the undergrowth, we’ll forge ahead.

A decrease in the population of fruit may be the result of “spoilage” and by
the predation of the (juvenile) herbivores, so

dNF∣consumption(t) = −NF(t) (κF +∫
∞

0
NH(t, y)EHF(y) dy) (C.6)

where κFNF is a “spoilage” term that is constant across the population. Putting
the equations together, we get

dNF(t) = ∫
∞

0
ρP fPx

2
3 NP(t, x) dx −NF(t) (κF +∫

∞

0
NH(t, y)EHF(y) dy) (C.7)

Seeds are fairly simple,

dNS(t) = NF(t)∫
∞

0
NH(t, y)EHF(y) dy − κS − (1−

NP(t)
KP

)NS∫
∞

0
(t)ΓS(x) dx

(C.8)

The any change in the biomass of herbivores is determined by birth, growth,
natural mortality, starvation and the effect of predation; the only real differ-
ence between adults and juveniles is their size and the functions EHF and EHP.
Thus we get the following component equations:

dNH∣birth(t, x) = NH(t, x) fH(x) (C.9)

dNH∣growth(t, x) = NH(t, x)(ΓH(x)∫
∞

0
NP(t, w)EHP(x, w) dw +min(0,

NF −ωHF(x)NH

NF

)

+ ΓH(x)NF(t)EHF(x)−MH) (C.10)

dNH∣mortaltiy(t, x) = −NH(t, x)(ΩH(x)+∫
∞

0
NC(y)ECH(y, x) dy) (C.11)

where ΩH(x) is the probability of natural mortality for a herbivore, and fH is
the expected reproductive contribution from a herbivore with a size of x, ΓH(x)
is the growth coefficient for herbivores of size x and MH is a maintenance rate
per unit of biomass. Combining these components, we get the the equation

dNH(t, x) = NH(t, x)[fH(x)+ΓH(x)∫
∞

0
NP(t, w)EHP(x, w) dw+min(0,

NP −ωHP(x)NH

NP

)

+min(0,
NF −ωHF(x)NH

NF

)+ΓH(x)NF(t)EHF(x)−(MH+∫
∞

0
NC(y)ECH(y, x) dy)]

(C.12)

The population of carnivores is largely similar to that of herbivores with the
exception that they prey on the herbivores and do not suffer from predation
themselves. growth, birth, and their ability to catch juvenile herbivores.

138

dNC(t, x) = NC(t, x)[fC(x)+ ΓC(x)∫
∞

0
NH(t, w)ECH(x, w) dw

+min
⎛
⎝

0,∫
∞

0

NH(y)−ωCH(x)NH(y)
NH(y)

dy
⎞
⎠
− (MC +ΩC(x))] (C.13)

where ωAB(x) ≥ 1 indicates how much an animal with a mass, x, needs to eat
relative to the mass of the prey1. The predation functions ωHP, ωHF, ECH, EHP and EHF

are constructed so that the preying species observes the conditions on the sys-
tem: ECH(x, y), for example, is constructed so that for small x the carnivores
do not prey on herbivores of any size, and for larger x they prey only upon
herbivores with small values of y. Similarly, EHF(x) is only non-zero for small
values of x, and EHP is non-zero where EHF is zero. The implication of this is
that ∫

∞
0 ωHP(x)ωHF(x) dx = 0 and ∫

∞
0 EHP(x)EHF(x) dx = 0.

1This relationship is likely to only hold in very specific circumstances.

BIBLIOGRAPHY

AnyLogic. Release: Anylogic, ver. 4, December 2001.

MP Bailey and WG Kemple. The scientific method of choosing model fidelity. In
Proceedings of the 24th conference on Winter simulation, pages 791–797. ACM, 1992.

M Berdoy, JP Webster, and DW Macdonald. Fatal attraction in rats infected with tox-
oplasma gondii. Proceedings of the Royal Society of London B: Biological Sciences, 267
(1452):1591–1594, 2000.

P Bhatanacharoen, D Greatbatch, and T Clark. The tipping point of the tipping point-
metaphor: Agency and process for waves of change. 2011.

GV Bobashev, DM Goedecke, F Yu, and JM Epstein. A hybrid epidemic model: com-
bining the advantages of agent-based and equation-based approaches. In Simulation
Conference, 2007 Winter, pages 1532–1537. IEEE, 2007.

F Boschetti, C Richert, I Walker, J Price, and L Dutra. Assessing attitudes and cogni-
tive styles of stakeholders in environmental projects involving computer modelling.
Ecological Modelling, 247:98–111, 2012.

DB Botkin, JF Janak, and JR Wallis. Rationale, limitations, and assumptions of a north-
eastern forest growth simulator. IBM Journal of Research and Devevelopment, 16:101–
116, 1972a.

DB Botkin, JF Janak, and JR Wallis. Some ecological consequences of a computer
model of forest growth. The Journal of Ecology, 60:849–872, 1972b.

JB Calhoun. Death squared: the explosive growth and demise of a mouse population.
Proceedings of the Royal Society of Medicine, 66(1 Pt 2):80, 1973.

H Caswell and AM John. From the individual to the population in demographic
models. In D. L. DeAngelis and L. J. Gross, editors, Individual-based models and
approaches in ecology, pages 36–61. Springer, 1992.

WJ Chivers. Generalised, parsimonious, individual-based computer models of ecological sys-
tems. University of Newcastle, 2009.

N Collier, T Howe, and M North. Onward and upward: the transition to repast 2.0.
In First Annual North American Association for Computational Social and Organizational
Science Conference, Pittsburgh, PA, 2003.

iMatix Corp. ∅MQ: The Intelligent Transport Layer, November 2012. URL http:
//www.zeromq.org.

139

BIBLIOGRAPHY 140

SJ de Almeida, R Poley M Ferreira, ÁE Eiras, RP Obermayr, and M Geier. Multi-agent
modeling and simulation of an aedes aegypti mosquito population. Environmental
Modelling & Software, 25(12):1490–1507, 2010.

DL DeAngelis. Model for the movement and distribution of fish in a body of water.
Technical report, Oak Ridge National Lab., Tenn.(USA), 1978.

DL DeAngelis and LJ Gross, editors. Individual-Based Models and Approaches in Ecology.
Springer, isbn-13: 978-0412031618, isbn-10: 0412031612 edition, 1992.

DL DeAngelis, LJ Gross, MJ Huston, WF Wolff, DM Fleming, EJ Comiskey, and
SM Sylvester. Landscape modelling for everglades ecosystem restoration. Ecosys-
tems, 1:64–75, 1998.

T DelSole and J Shukla. Model fidelity versus skill in seasonal forecasting. Journal of
Climate, 23(18):4794–4806, 2010.

AP Dobson. The population biology of parasite-induced changes in host behavior.
Quarterly Review of Biology, pages 139–165, 1988.

BD Elderd, J Dushoff, and G Dwyer. Host-pathogen interactions, insect outbreaks,
and natural selection for disease resistance. The American Naturalist, 172(6):829–842,
2008.

S Farolfi, J-P Müller, and B Bonté. An iterative construction of multi-agent models to
represent water supply and demand dynamics at the catchment level. Environmen-
tal modelling & software, 25(10):1130–1148, 2010.

Food and Agriculture Organisation of the United Nations (FAO). Best practices in
ecosystem modelling: Modelling ecosystem interactions for informing an ecosys-
tem approach to fisheries. fisheries management, 2008.

EA Fulton. Approaches to end-to-end ecosystem models. Journal of Marine Systems,
81(1):171–183, 2010.

EA Fulton, 2011. Personal communication.

EA Fulton, ADM Smith, and CR Johnson. Biogeochemical marine ecosystem models.
i: Igbem – a model of marine bay ecosystems. Ecological Modelling, 174:267–307,
2004a.

EA Fulton, ADM Smith, and CR Johnson. Effects of spatial resolution on the perfor-
mance and interpretation of marine ecosystem models. Ecological Modelling, 176:
27–42, 2004b.

EA Fulton, R Gray, M Sporcic, R Scott, and M Hepburn. Challenges of crossing scales
and drivers in modelling marine systems. 18th World IMACS Congress and MOD-
SIM09 International Congress on Modelling and Simulation, July, pages 2108–2114,
2009.

EA Fulton, R Gray, M Sporcic, R Scott, LR Little, M Hepburn, B Gorton, B Hat-
field, M Fuller, T Jones, W De la Mare, F Boschetti, K Chapman, P Dzidic,
G Syme, J Dambacher, and D McDonald. Ningaloo collaboration cluster: Adap-
tive futures for ningaloo. Technical Report 5.3, Ningaloo Collaboration Cluster,
Hobart, Tasmania, October 2011a. URL http://www.ningaloo.org.au/www/en/
NingalooResearchProgram/Background.htm.

BIBLIOGRAPHY 141

EA Fulton, JS Link, IC Kaplan, M Savina-Rolland, P Johnson, C Ainsworth, P Horne,
R Gorton, RJ Gamble, ADM Smith, et al. Lessons in modelling and management of
marine ecosystems: the atlantis experience. Fish and Fisheries, 12(2):171–188, 2011b.

R Gray and S Wotherspoon. Increasing model efficiency by dynamically changing
model representations. Environ. Model. Softw., 30:115–122, April 2012. ISSN 1364-
8152. doi: 10.1016/j.envsoft.2011.08.012.

R Gray, EA Fulton, LR Little, and R Scott. Ecosystem model specification within an agent
based framework. North West Shelf Joint Environmental Management Study Technical Re-
port. Number 16 in CSIRO-CMAR NWSJEMS Technical Reports. CSIRO, Hobart,
Tasmania, Hobart, Tasmania, 2006. ISBN 1 921061 80 4 (pbk), ISBN 1 921061 82 0
(pdf).

R Gray, EA Fulton, and R Little. Human-ecosystem interaction in large ensemble-
models. In A Smajgl and O Barreteau, editors, Empirical Agent-Based Modelling -
Challenges and Solutions, pages 53–83. Springer New York, 2014. ISBN 9781-461-
4613-3-3. doi: 10.1007/978-1-4614-6134-0_4.

V Grimm and SF Railsback. Individual-based Modeling and Ecology: (Princeton Series in
Theoretical and Computational Biology). Princeton University Press, July 2005. ISBN
0-691-09666-X. URL http://www.worldcat.org/isbn/069109666X.

V Grimm, U Berger, F Bastiansen, S Eliassen, V Ginot, J Giske, J Goss-Custard,
T Grand, SK Heinz, et al. A standard protocol for describing individual-based and
agent-based models. Ecological Modelling, 198(1-2):115–126, 2006. ISSN 0304-3800.
doi: DOI:10.1016/j.ecolmodel.2006.04.023. URL http://www.sciencedirect.com/
science/article/B6VBS-4K606T7-3/2/1dad6192bec683f32fce6dee9d665b51.

CJ Harvey, SP Cox, TE Essington, S Hansson, and JF Kitchell. An ecosystem model of
food web and fisheries interactions in the baltic sea. ICES Journal of Marine Science,
60:939–950, 2003.

X Hu and DH Edwards. Behaviorsim: A simulation environment to study animal
behavioral choice mechanisms. In Proceedings of the 2005 DEVS Integrative M&S
Symposium, Spring Simulation Multiconference, San Diego CA. Citeseer, 2005.

M Huston, D DeAngelis, and W Post. New computer models unify ecological theory.
BioScience, 38(10):682–691, 1988.

DA Keith, TG Martin, E McDonald-Madden, and C Walters. Uncer-
tainty and adaptive management for biodiversity conservation. Biologi-
cal Conservation, 144(4):1175–1178, 2011. ISSN 0006-3207. doi: 10.1016/
j.biocon.2010.11.022. URL http://www.sciencedirect.com/science/article/
pii/S0006320710004933. <ce:title>Adaptive management for biodiversity conser-
vation in an uncertain world</ce:title>.

G Kiczales, JM Ashley, L Rodriguez, Amin Vahdat, and Daniel G Bobrow. Metaobject
protocols: Why we want them and what else they can do. Object-Oriented Program-
ming: The CLOS Perspective, pages 101–118, 1993.

KD Lafferty, AP Dobson, and AM Kuris. Parasites dominate food web links. Proceed-
ings of the National Academy of Sciences, 103(30):11211–11216, 2006.

BIBLIOGRAPHY 142

LR Little, EA Fulton, R Gray, D Hayes, R Scott, AD McDonald, and K Sainsbury.
Management strategy evaluation results and discussion for the north west shelf.
Final Report 14, CSIRO Australia, Hobart, Tasmania, 2006. ISBN 1 921061 74 X
(pbk), ISBN 1 921061 76 6 (pdf).

S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan. Mason: A new multi-agent sim-
ulation toolkit. In Proceedings of the 2004 SwarmFest Workshop, 2004.

V. Lyne, R. Gray, K. Sainsbury, and R. Scott. Integrated biophysical model investi-
gations. Final report, CSIRO Australia, Division of Fisheries, Hobart, Tasmania,
1994a.

V Lyne, R Gray, and R Scott. North west shelf joint environmental management study:
Invitro inputs-statistical extrapolation of currents. Final report, CSIRO Australia,
Division of Fisheries, Hobart, Tasmania, 1994b.

Thomas Robert Malthus. An Essay on the Principle of Population. Library of Economics
and Liberty, Internet, 16 feb 2010 edition, 1798. URL http://www.econlib.org/
library/Malthus/malPop.html. First edition, originally published by J. Johnson,
London.

N Minar, R Burkhart, C Langton, and M Askenazi. The swarm simulation system: A
toolkit for building multi-agent simulations, 1996.

L Monte. A methodological approach to develop contaminant migration-population ef-
fects models. Ecological Modelling, 220:3280–3290, 2009.

T Polacheck, NL Klaer, C Millar, and AL Preece. An initial evaluation of manage-
ment strategies for the southern bluefin tuna fishery. ICES Journal of Marine Sci-
ence: Journal du Conseil, 56(6):811–826, 1999. doi: 10.1006/jmsc.1999.0554. URL
http://icesjms.oxfordjournals.org/content/56/6/811.abstract.

R Poulin. Meta-analysis of parasite-induced behavioural changes. Animal Behaviour,
48(1):137–146, 1994.

KA Rose, JI Allen, Y Artioli, M Barange, J Blackford, et al. End-to-end models for
the analysis of marine ecosystems: Challenges, issues, and next steps. Marine and
Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 2:115–130, 2010.

KJ Sainsbury, AE Punt, and ADM Smith. Design of operational management strate-
gies for achieving fishery ecosystem objectives. ICES Journal of Marine Science:
Journal du Conseil, 57(3):731–741, 2000. doi: 10.1006/jmsc.2000.0737. URL http:
//icesjms.oxfordjournals.org/content/57/3/731.abstract.

M Scheffer, JM Baveco, DL DeAngelis, and KA Rose. Super-individuals: a simple so-
lution for modelling large populations on an individual basis. Ecological Modelling,
80:161–170, 1995.

AD Smith. Management strategy evaluation - the light on the hill. In D. A. Hancock,
editor, Australian Society for Fish Biology Workshop Proceedings, volume 97 of Popula-
tion Dynamics for Fisheries Management, pages 249–253. Australian Society for Fish
Biology, August 1993. URL http://asfb.org.au/pdf/1993/1993-06-04.pdf.

GJ Sussman and GL Steele. The first report on scheme revisited. Higher-Order and
Symbolic Computation, 11(4):399–404, 1998.

BIBLIOGRAPHY 143

GE Swan, R Cuthbert, M Quevedo, RE Green, DJ Pain, P Bartels, AA Cunningham,
N Duncan, AA Meharg, JL Oaks, et al. Toxicity of diclofenac to gyps vultures.
Biology letters, 2(2):279–282, 2006.

JC Thiele and V Grimm. Netlogo meets r: Linking agent-based models with a toolbox
for their analysis. Environmental Modelling & Software, 25(8):972–974, 2010.

WH van Dobben. The food of the cormorant in the netherlands. Ardea, 40(1-2):1–63,
1952.

E Vincenot, F Giannino, M Rietkerk, K Moriya, and S Mazzoleni. Theoretical consid-
erations on the combined use of system dynamics and individual-based modeling
in ecology. Ecological Modelling, 222(1):210–218, 2011. ISSN 0304-3800. doi: DOI:
10.1016/j.ecolmodel.2010.09.029. URL http://www.sciencedirect.com/science/
article/B6VBS-518MX70-2/2/199628e93c44d13863a48b3299472a32.

G Wallentin and C Neuwirth. Dynamic hybrid modelling: Switching between ab and
sd designs of a predator-prey model. Ecological Modelling, 345:165–175, 2017.

C Walters, J Korman, LE Stevens, and B Gold. Ecosystem modeling for evaluation
of adaptive management policies in the grand canyon. Conservation Ecology, 4(2):1,
2000.

CJ Walters and R Hilborn. Adaptive control of fishing systems. Journal of the Fisheries
Research Board of Canada, 33(1):145–159, 1976. doi: 10.1139/f76-017.

CJ Walters and SJD Martell. Fisheries ecology and management. Princeton University
Press, 2004.

RMP Ward and CJ Krebs. Behavioural responses of lynx to declining snowshoe hare
abundance. Canadian Journal of Zoology, 63(12):2817–2824, 1985.

U Wilensky. Netlogo, 1999. URL http://ccl.northwestern.edu/netlogo/.

WF Wolff. An individual-oriented model of a wading bird nesting colony. Eco-
logical Modelling, 72(1-2):75–114, 1994. ISSN 0304-3800. doi: DOI:10.1016/
0304-3800(94)90146-5. URL http://www.sciencedirect.com/science/article/
B6VBS-48YNSFT-2X/2/09ef35a0a8e95b3261adfc540cd87a23.

M Xu, J-W Bao, TT Warner, and DJ Stensrud. Effect of time step size in mm5 simu-
lations of a mesoscale convective system. Monthly weather review, 129(3):502–516,
2001.

WS Yip and TE Marlin. The effect of model fidelity on real-time optimization perfor-
mance. Computers & chemical engineering, 28(1):267–280, 2004.

SM Zala and DJ Penn. Abnormal behaviours induced by chemical pollution: a review
of the evidence and new challenges. Animal Behaviour, 68(4):649–664, 2004.

S Zhang, Q Zhu, and AK Roy-Chowdhury. Adaptive algorithm and platform selection
for visual detection and tracking. CoRR, abs/1605.06597, 2016. URL http://arxiv.
org/abs/1605.06597.

W Zhang and DR Montgomery. Digital elevation model grid size, landscape represen-
tation, and hydrologic simulations. Water resources research, 30(4):1019–1028, 1994.

