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ABSTRACT

High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification.

Marine microbes are the base of the food web and support the wealth of life in Antarctica. They

are also a critical link in biogeochemical processes, such as the cycling of nutrients and carbon.

Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes

is poorly understood. This thesis sets out to address this lack of scientific knowledge of how the

base of the Antarctic food web, both as individual taxa and communities, will respond to elevated

CO2.

Much of the results of this thesis are derived from an ocean acidification study performed on

an early spring, coastal marine microbial community from Prydz Bay, Antarctica. Such studies

are currently rare in Antarctic waters and can provide valuable insights into how future changes

in CO2 will affect the marine microbial community. In this study, the microbial community was

exposed to increasing f CO2 levels from ambient (343µatm) to 1641µatm in 650 L minicosms.

Measurements of abundance and primary and bacterial productivity were taken to determine

the effect of CO2 on different community groups. Photophysiological measurements were also

performed to identify possible mechanisms driving changes in the phytoplankton community.

The limits for CO2 tolerance were broad, likely due to the naturally variable environment this

community inhabits. However, there were thresholds to this CO2 tolerance that elicited

responses by different community groups. An important tipping point was identified in the

phytoplankton community’s ability to cope with the energetic requirements of maintaining

efficient productivity under high CO2. These results highlighted the strong interplay between

enrichment of CO2 enhancing physiology and metabolic costs imposed by increased H+. In

addition, elevated CO2 slowed the growth of heterotrophic nanoflagellates, releasing their prey

(picophytoplankton and prokaryotes). Thus, increasing CO2 has the potential to change the

xxi



composition of Antarctic microbial communities by altering interactions among trophic levels.

A diatom was isolated from the community-level study and exposed to f CO2 levels from 276 to

1063µatm in a unialgal culture study to determine taxon-specific CO2 sensitivities. Comparing

these results with those reported for this species in the community-level study assessed the utility

of unialgal studies for predicting the sensitivity of Antarctic phytoplankton taxa to elevated f CO2.

A difference in growth response between the two studies confirmed that factors other than CO2

affected this species when it is part of a natural community.

This research showed that ocean acidification altered microbial productivity, trophodynamics and

biogeochemistry in Antarctic coastal waters. Changes in phytoplankton community production

and predator-prey interactions with ocean acidification could have a significant effect on the food

web and biogeochemistry in the Southern Ocean. In addition, while culture studies are useful for

evaluating mechanisms of CO2-induced tolerance and stress, such studies proved to be of limited

value for predicting responses in nature as they fail to include interactions among species and

trophic levels.
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1.1 Introduction

Iconic Antarctic wildlife from krill to whales, seals, penguins, and seabirds, ultimately depend

on single-celled marine plants (phytoplankton) for their food. More than 500 species of protist

have been identified in Antarctic waters, ⇠350 of which are phytoplankton and ⇠150

microheterotrophs (Scott and Marchant 2005, http://taxonomic.aad.gov.au). These organisms

coexist with untold numbers of heterotrophic prokaryotes (bacteria and Archaea) and viruses.

Together they comprise the microbial food web (Fig. 1.1), through which much of the carbon

sequestered by phytoplankton is consumed, respired, and/or remineralised (Azam et al. 1983;

Azam et al. 1991; Fenchel 2008; Kirchman 2008). This food web includes the microbial loop in

which dissolved carbon substrates fuel the growth of bacteria and Archaea, which are

subsequently consumed by protists, returning carbon to the microbial food web that is

otherwise lost to the dissolved pool (Azam et al. 1983). Phytoplankton are the base of the

Southern Ocean (SO) food web. In nutrient rich Antarctic coastal waters their blooms can reach

concentrations approaching 10⇥ 108 cells L�1. Chlorophyll a (Chl a) concentrations as high as

50µgL�1 have been recorded off the West Antarctic Peninsula (WAP), although maximum Chl a

concentrations off East Antarctica are usually an order of magnitude less (Nelson et al. 1987;

Smith and Gordon 1997; Wright and van den Enden 2000; Garibotti et al. 2003; Wright et al.

2010; Goldman et al. 2015). The majority of phytoplankton production in the SO is grazed by

microheterotrophs or consumed and remineralised by bacteria (Lochte et al. 1997; Christaki

et al. 2014). Production that escapes these fates sinks to depth, often in the form of dead cells,

aggregates of biogenic material (marine snow), or faecal pellets, sequestering carbon in the

deep ocean.

Some phytoplankton, such as prymnesiophytes and dinoflagellates, also synthesise substantial

quantities of dimethylsulfoniopropiothetin (DMSP), which when enzymatically cleaved, forms

dimethylsulfide (DMS). Oxidation of DMS in the atmosphere forms sulfate aerosols, which

nucleate cloud formation and increase the reflectance of solar radiation (Charlson et al. 1987).

The microbial food web plays a vital role in metabolizing these sulfur compounds (Kiene et al.

2000; Simó 2004). The active involvement of phytoplankton in the sequestration and synthesis

of climate-active gases (CO2) and biogenic sulfur compounds (DMSP and DMS), plus the
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mediation of the fate of these compounds by protozoa and bacteria means that microbes are a

crucial determinant of future global climate (Fig. 1.1).

Figure 1.1: Schematic showing the connections amongst members of the microbial food web and microbial loop and
the processes driving carbon transfer to higher trophic levels and flux to the deep ocean.

The SO plays a substantial role in mediating global climate. The world’s oceans have taken up

between 25-30% of the anthropogenic CO2 released to the atmosphere, with ⇠40% of this

uptake occurring in the SO (Raven and Falkowski 1999; Sabine 2004; Khatiwala et al. 2009;

Takahashi et al. 2009; Frölicher et al. 2015). Without this, the atmospheric CO2 concentration

would be ⇠50% higher than it is today. Drawdown of CO2 by phytoplankton photosynthesis and

vertical transport of this biologically sequestered carbon to the deep ocean (the biological

pump) is responsible for around 10% this uptake (Cox et al. 2000; Siegel et al. 2014). Any

climate-induced change in the structure or function of phytoplankton communities is likely to

alter the efficiency of the biological pump, with feedbacks to the rate of climate change (Matear

and Hirst 1999; Le Quéré et al. 2007).

The SO is a region of seasonal extremes in productivity that reflect the large fluctuations in the SO
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environment. In summer, the development of large blooms of phytoplankton support a profusion

of Antarctic life. Their metabolic activity also affects biogeochemical cycles in the SO, which in

turn can influence the global climate. Whilst their effect on global climate is substantial, their

microscopic size means they are intimately exposed to changes in their environment and are

also likely to be affected by climate change. Already, climate change is causing the southward

migration of ocean fronts, increasing sea surface temperatures, and changes in sea ice cover

(Constable et al. 2014). Further changes in temperature, salinity, wind strength, mixed layer

depth, sea ice thickness, duration and extent, and glacial ice melt are predicted. These changes

are likely to affect the composition, abundance, and productivity of phytoplankton in the SO and

feed back to threaten the ecosystem services they provide, namely sustaining biodiversity, fueling

the food web and fisheries, and mediating global climate (Moline et al. 2004).

The SO is a vast and diverse environment, and hence the effect of climate change on the

phytoplankton community is likely to be complex. For the purposes of this review we define the

SO as waters south of the Sub-Tropical Front, thereby comprising ⇠20% of the world’s ocean

surface area. We subdivide these waters into five regions that group waters according to the

environmental drivers of the phytoplankton community in a similar manner as Tréguer and

Jacques (1992) and Sullivan et al. (1988), namely the Sub-Antarctic Zone (SAZ), Permanently

Open Ocean Zone (POOZ), Seasonal Sea Ice Zone (SSIZ), Marginal Ice Zone (MIZ), and the

Antarctic Continental Shelf Zone (CZ) (Fig. 1.2). Differences in environmental factors (physical,

chemical, and biological) and processes (e.g. stratification, mixing, grazing) define the

composition, abundance, and productivity of the phytoplankton community, both within and

between these regions. Climate change is expected to elicit widespread changes in

oceanography in each region, such as the displacement of oceanographic fronts (Sokolov and

Rintoul 2009b), as well as different permutations of climate-induced stressors that may interact

synergistically or antagonistically, with either beneficial or detrimental effects on the

phytoplankton community (Boyd and Brown 2015; Boyd et al. 2016a).

Here we identify the factors and processes that critically affect phytoplankton communities in

each region of the SO, consider the impacts of climate change on each of these regions, examine

the likely effect of these changes on the phytoplankton inhabiting these waters, and predict the

possible repercussions for the Antarctic ecosystem.
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Figure 1.2: Summer near-surface Chlorophyll a concentration, frontal locations and sea ice extent in the Southern
Ocean. Chlorophyll a is determined from MODerate-resolution Imaging Spectroradiometer, Aqua satellite estimates
from austral summer season between 2002/03 and 2015/16 at 9 km resolution. Black lines represent, frontal positions
from Orsi et al. (1995). The red line denotes the maximum extent of sea ice averaged over the 1979/80 to 2007/08
winter seasons, derived from Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Image
satellite data. Light blue lines depict the 1000 m depth isobath, derived using the General Bathymetric Chart of the
Oceans, version 20150318. Abbreviations are STF, Sub-Tropical Front; SAF, Sub-Antarctic Front; PF Polar Front; and
SACCF, Southern Antarctic Circumpolar Current Front.
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1.2 Sub-Antarctic zone

The Sub-Antarctic Zone (SAZ) comprises more than half the total area of the SO and

incorporates three important frontal regions; the Sub-Tropical Front, the Sub-Antarctic Front,

and the Polar Front (Fig. 1.2) (Orsi et al. 1995). Within this region, the waters between the

Sub-Antarctic Front and the Polar Front are also referred to as the Polar Frontal Zone (e.g.

Tréguer and Jacques 1992). This region forms an important transitional boundary within the

SO between the dominance of coccolithophores that construct carbonate shells to the north and

diatoms with silicate frustules to the south (Fig. 1.2, 1.3) (Trull et al. 2001a; Trull et al. 2001b;

Honjo 2004). Macro- and micronutrients are more abundant at the Polar Frontal Zone where

nutrients are entrained across the bottom of the mixed layer, supporting deep chlorophyll

maxima at depths up to 90 m. These deep chlorophyll maxima support blooms of large diatoms,

such as Rhizosolenia sp. and Thalassiothrix sp., which can grow to high abundance and

contribute significantly to carbon and silica flux (Tréguer and Van Bennekom 1991; Kopczyńska

et al. 2001; Kemp et al. 2006; Assmy et al. 2013). For the purpose of this review we are

combining all waters between the Sub-Tropical Front to the north and the Polar Front to the

south as the SAZ, as the physical and biological characteristics of these regions are similar.

This region of the SO is a major contributor to the uptake of CO2 by the ocean (Metzl et al. 1999;

Sabine 2004; Frölicher et al. 2015). The westerly winds that circulate Antarctica carry water from

the Antarctic Slope Front north across the SAZ by Ekman transport (Fig. 1.3). This water has a

partial pressure of carbon dioxide (pCO2) below that of the atmosphere, allowing CO2 to dissolve

into the ocean (the solubility pump). North of the Sub-Antarctic Front, surface water is convected

to hundreds of meters, forming Antarctic Intermediate Water and Sub-Antarctic Mode Water (Fig.

1.3) (Wong et al. 1999; Matear et al. 2000; Rintoul and Trull 2001; Lumpkin and Speer 2007). In

doing so, it carries an estimated ⇠1 GtC yr�1 to the ocean’s interior and connects the upper and

lower components of the global overturning circulation (Metzl et al. 1999; Sloyan and Rintoul

2001a,b).

The SAZ is the largest high nutrient, low chlorophyll (HNLC) province in the world’s ocean.

Over the year phytoplankton productivity in this region is limited by a variety of bottom-up
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Figure 1.3: Schematic view of the meridional overturning circulation of the Southern Ocean, modified from Fig. 3 in
Post et al. (2014). Abbreviations are: STF, Sub-Tropical Front; SAF, Sub-Antarctic Front; PF, Polar Front; ASF, Antarctic
Slope Front; SAMW, Sub-Antarctic Mode Water; AAIW, Antarctic Intermediate Water; UCDW, Upper Circumpolar Deep
Water; LCDW, Lower Circumpolar Deep Water; AABW, Antarctic Bottom Water; SAZ, Sub-Antarctic Zone; PFZ, Polar
Frontal Zone; POOZ, Permanently Open Ocean Zone; SSIZ, Seasonal Sea Ice Zone; CZ, Continental Zone. Arrows
indicate mean flow direction. Red arrows show the upper cell and blue shows the deep cell. Small arrows indicate
diabatic transport due to interior mixing. Note that this is an averaged view of the emergent residual flow due to
complex, time-varying, three-dimensional processes and does not reflect the current directions of any given section
across the Antarctic Circumpolar Current.

(silicic acid, iron, and light) and top-down (grazing) factors (Fig. 1.4A) (e.g. Banse 1996; Boyd

et al. 2001; Hiscock et al. 2003; Doblin et al. 2011). Iron is the main factor limiting

phytoplankton growth in the SAZ, despite inputs from dust, shelf sediments, and hydrothermal

vents (Boyd et al. 2004; Blain et al. 2007; Cassar et al. 2007; Pollard et al. 2009; Boyd and

Ellwood 2010; Tagliabue et al. 2010). Silica is replete in these waters in spring but it is drawn

down by silicifying plankton, such as diatoms, silicoflagellates, and radiolarians, to limiting

concentrations by autumn (Trull et al. 2001b; Salter et al. 2007; Pollard et al. 2009). In

iron-limited regions of the SAZ, Si:C ratios are high, resulting in low carbon export (Salter et al.

2007, 2012; Assmy et al. 2013). In addition, light levels experienced by phytoplankton can be

very low due to cloudiness and mixed layer depths ranging from 70–100 m in summer to as

deep as 600 m in winter (Bishop and Rossow 1991; Rintoul and Trull 2001). In regions of
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shallow or complex bathymetry, such as sea mounts, or in waters downstream of sub-Antarctic

islands, resuspension of iron-rich sediments naturally fertilises the SAZ waters creating areas of

high productivity (Salter et al. 2007; Pollard et al. 2009). Large, heavily-silicified diatoms, such

as Eucampia antarctica and Fragilariopsis kerguelensis, are responsible for high levels of export

in these naturally fertilised regions (Salter et al. 2007, 2012; Assmy et al. 2013; Rembauville

et al. 2016b,c). This export is aided by silica limitation, the exhaustion of which ceases diatom

growth and accelerates rates of sinking. Nutrient limitation also causes a succession in the

phytoplankton community to picoeukaryotes, such as Phaeocystis sp. and coccolithophorids

(Salter et al. 2007; Quéguiner 2013; Balch et al. 2016).

Small taxa, including nanoflagellates, cyanobacteria, dinoflagellates, coccolithophores, and

small or lightly silicified diatoms, dominate the protistan community in the SAZ (Odate and

Fukuchi 1995; Kopczyńska et al. 2001, 2007; de Salas et al. 2011). Copepods and mesopelagic

fish, particularly myctophids, are important primary and secondary consumers of the

phytoplankton in these waters and form an alternative food web for squid, predatory

mesopelagic fish, and penguins (Kozlov 1995; Cherel et al. 2010; Murphy et al. 2016).

Measured rates of microzooplankton grazing (Jones et al. 1998; Griffiths et al. 1999; Safi et al.

2007; Pearce et al. 2011), together with high grazer biomass (Kopczyńska et al. 2001) suggest

that grazers consume much of the primary productivity in this region. As a result of the physical

and biological factors limiting primary productivity in the SAZ, phytoplankton abundance is

moderately low and varies little among seasons (Banse 1996). The SAZ is more productive in

the Atlantic sector and around 170 ° W where iron concentrations are higher due to the

proximity of land (Fig. 1.2) (Comiso et al. 1993; de Baar et al. 1995; Moore and Abbott 2000).

Despite the low levels of primary productivity, export efficiency is high in HNLC waters of the

SAZ, suggesting that small taxa contribute to a high proportion of carbon export (Trull et al.

2001a; Lam and Bishop 2007; Cassar et al. 2015; Laurenceau-Cornec et al. 2015).

Climate predictions suggest that waters of the SAZ will become warmer, fresher and more

acidic; the frequency of storms will increase, bringing more wind-blown dust to the region; and

phytoplankton will experience increased irradiances of photosynthetically active radiation

(PAR) and ultraviolet (UV) radiation (Fig. 1.4B) (Matear and Hirst 1999; Caldeira and Wickett

2003; Orr et al. 2005; Marinov et al. 2010; Boyd and Law 2011; Boyd et al. 2016a). Together,
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these changes may have profound consequences for phytoplankton in the SAZ and the role of

this region in mediating global climate.

Models suggest that global warming is likely to reduce the efficiency of both the solubility and

biological pumps (Sarmiento and Le Quéré 1996; Matear and Hirst 1999). For phytoplankton,

increased precipitation and warming increases the buoyancy of surface waters, enhancing

stratification and reducing mixed layer depths over much of the SAZ. This reduces the delivery

of nutrients to surface water, thereby reducing phytoplankton production and the vertical flux

of biogenic carbon to the deep ocean via the biological pump (Matear and Hirst 1999 and refs.

therein; Boyd and Law 2011; Petrou et al. 2016). The declining efficiency of the biological

pump means it would be unable to compensate for any decline in the solubility of CO2 as the

ocean warms (Matear and Hirst 1999). Recent studies also indicate that rising temperatures

cause rates of grazing to increase more rapidly than rates of phytoplankton growth (Sarmento

et al. 2010; Evans et al. 2011; Caron and Hutchins 2013; Behrenfeld 2014; Biermann et al.

2015; Cael and Follows 2016). Thus, phytoplankton standing stocks are likely to decline and

the proportion of primary production respired in near-surface waters by prokaryotes and

grazers will increase. The nutritional quality of phytoplankton may also decline at higher

temperatures (Finkel et al. 2010 and refs. therein; Hixson and Arts 2016), suggesting grazers

will also need to consume more phytoplankton to obtain the nutrition they require. Together,

these factors are predicted to reduce phytoplankton productivity and the uptake of CO2 by the

ocean in the SAZ region.

The absence of iron is regarded as the primary cause of HNLC waters of the SO having the world’s

highest inventory of unused surface macronutrients (Martin et al. 1990; Boyd et al. 2007). As the

largest HNLC region in the ocean, low rates of iron supply to the SAZ restrict primary production,

alter phytoplankton species composition, increase Si:C export ratios, and constrain the biological

pump (Ridgwell 2002; Salter et al. 2012; Assmy et al. 2013; Salter et al. 2014). Aeolian dust

makes a significant contribution to iron supply in the SAZ in areas downwind of landmasses and

any increase in storm activity as a result of climate change may enhance delivery of iron-rich dust

to these areas, enhancing productivity and carbon drawdown in this region (Cassar et al. 2007;

Boyd and Law 2011; Boyd et al. 2012, 2016a). Investigations into sediment cores taken in the sub-

Antarctic South Atlantic have correlated increased aeolian iron supply to the SAZ with increased
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Figure 1.4: Schematic showing the primary physical constraints on phytoplankton in the Sub-Antarctic Zone (SAZ)
(A) before and (B) after climate change, modified from Boyd and Law (2011). Ovals represent the depth of mixing
and arrow thickness reflects relative rates of flux. SST, sea surface temperature.

productivity during ice ages, strengthening the biological pump and causing significant declines

in atmospheric CO2 (Anderson et al. 2014; Martínez-García et al. 2014). Increased desertification

through climate change-related vegetation loss may result in a 10-fold increase in dust over the

Southern Hemisphere (Woodward et al. 2005). However, the increase in dust will depend on

both climate change and anthropogenic changes in land-use and re-vegetation, the net effects of

which are currently uncertain (Ridgwell 2002; Hutchins and Boyd 2016).

While oceanic uptake of CO2 ameliorates the accumulation of this gas in the atmosphere, it also

alters the carbonate chemistry of the ocean. Absorption of CO2 by the ocean reduces its pH

(termed ocean acidification) and increases the solubility of calcium carbonate by reducing its

saturation state (⌦) (Caldeira and Wickett 2003; Orr et al. 2005). Coccolithophorids are the

only calcifying phytoplankton in the SO and are most abundant in naturally iron-fertilised

regions in the SAZ, such as fronts and downstream of sub-Antarctic islands (Salter et al. 2014;

Balch et al. 2016). Calcification releases CO2 (the carbonate counter-pump), resulting in the

elevation of pCO2 concentrations in SAZ waters where coccolithophores are highly abundant,
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particularly around the Sub-Antarctic Front (Patil et al. 2014; Saavedra-Pellitero et al. 2014;

Balch et al. 2016). Studies of the dominant coccolithophore, Emiliania huxleyi, found

morphological variations in calcification that closely followed the southerly decline in calcite

saturation state but were strain-specific rather than caused by acidification (Cubillos et al. 2007;

Patil et al. 2014; Saavedra-Pellitero et al. 2014; Malinverno et al. 2015). However, culture

studies by Müller et al. (2015) reported that calcification by E. huxleyi decreased at pCO2

concentrations >1000µatm. This suggests that calcifying phytoplankton in the SAZ will be

vulnerable to predicted increases in pCO2. A decrease in calcification is anticipated to have a

greater negative impact on the carbonate counter-pump than cell growth, leading to greater

surface water pCO2 uptake but potentially reducing vertical carbon flux through a decline in the

ballasting effect of calcification (Riebesell et al. 2009; Müller et al. 2015; Balch et al. 2016).

Minimal research has been performed on the effect of ocean acidification on non-calcifying

phytoplankton in the SAZ. Boyd et al. (2016a) included ocean acidification in their

multi-stressor study on a sub-Antarctic diatom and whilst their experimental design did not

allow for full analysis of each individual stressor, they found that ocean acidification was not

likely to be a primary controller in diatom physiology. Studies on other sub-Antarctic diatom

species have reported an increase in productivity with increased CO2 concentration, likely due

to reduced energetic costs associated with the down-regulation of carbon concentrating

mechanisms (CCMs) (Hopkinson et al. 2011; Trimborn et al. 2013). Most SO phytoplankton use

CCMs to increase the intracellular concentration of CO2 for fixation by RuBisCO (Hopkinson

et al. 2011). This process requires substantial energy consumption and the down-regulation of

CCMs is thought to decrease the energy cost of carbon acquisition for phytoplankton

photosynthesis (e.g. Raven 1991; Rost et al. 2008; Hopkinson et al. 2011). However, iron and

light limitation in these waters is likely to inhibit any positive effects of increased CO2 supply

(Hoppe et al. 2013; Hoppe et al. 2015).

Stratification of the water column is predicted to increase in the SAZ region, trapping

phytoplankton in a shallowing mixed layer where they are exposed to higher irradiances of PAR

and UV radiation (280–400 nm) (Davidson 2006; Gao et al. 2012a; Häder et al. 2015). Light

wavelengths are differentially attenuated by sea water. Blue wavelengths (⇠500 nm) can reach

depths exceeding 250 m in clear oceanic water but the penetration rapidly decreases as
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radiation tends towards infrared (longer) and ultraviolet (shorter) wavelengths (Fig. 1.5)

(Davidson 2006). Thus, red and infrared wavelengths only warm the very surface of the ocean,

while damaging irradiances of UV-B penetrate to 30 m depth (Karentz and Lutze 1990; Buma

et al. 2001; Davidson 2006). Rates of phytoplankton productivity in the SAZ are commonly

limited by light availability due to cloudiness and deep mixing. Increased stratification could

mitigate this limitation by keeping cells in sunlit near-surface waters. Overall, productivity

would still be constrained by the availability of key nutrients (iron and silicate), which already

limit phytoplankton production in the SAZ despite the low light. Thus, increased rates of

productivity are unlikely to result in higher biomass or carbon export in this region without a

coincident increase in nutrient supply (see above).

Exposing phytoplankton in the SAZ to higher irradiances of PAR, Ultraviolet-A (UV-A,

315–400 nm), and Ultraviolet-B (UV-B, 280–315 nm) is also likely to increase photodamage.

The damage to intracellular molecules or structures become progressively less repairable as

wavelengths decline below 350 nm, reducing phytoplankton productivity, growth and survival,

and changing the species composition, with implications for ecosystem structure and function

(e.g. Karentz 1991; Marchant and Davidson 1991; Davidson 2006). The amount of damage

sustained by cells is a function of the dose and dose rate of UV exposure; the frequency and

duration of exposure to low irradiances to allow repair; and species-specific differences in the

UV-tolerance of component species in natural phytoplankton communities (e.g. Cullen and

Lesser 1991; Davidson 2006; Häder et al. 2015). It is hard to assess the additional risk UV

exposure may have to phytoplankton in the SAZ as such details are currently unavailable.

Studies by Helbling et al. (1994) and Neale et al. (1998a,b) showed that increasing the rate of

change in the light climate altered the balance between damage and repair and greatly

increased the biological impact of a specific UV dose. Thus, trapping cells in a shallow mixed

zone where they receive repeated exposure to high PAR and UV irradiances over short time

scales (see above, Fig. 1.5) may have a far greater impact on the growth, production, and

survival of phytoplankton than ozone depletion (Davidson 2006).

The SAZ region is being increasingly penetrated by both sub-tropical and polar waters. The

climate-induced increase in the positive phase of the Southern Annular Mode (SAM) has caused

the westerly wind belt to intensify and move south (see POOZ below). This increase in the
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velocity of westerly winds to the south of the SAZ has enhanced upwelling at the Antarctic

Slope Front and increased its Ekman transport into the SAZ from the south, increasing

phytoplankton growth in the cool, nutrient-rich water (Lovenduski and Gruber 2005; DiFiore

et al. 2006). A 37 year dataset of surface Chl a measurements south of Australia from vessels of

the Japanese Antarctic Research Expeditions show as similar trend of increasing Chl a spreading

northward from these northern limits of the POOZ (55 ° S) into the Polar Frontal Zone (40 °S)

(Hirawake et al. 2005). The southward movement of the westerly wind belt has also increased

the penetration of sub-tropical waters into the SAZ; supplementing iron supply, exacerbating

warming, and intensifying climate-induced stratification (Lovenduski and Gruber 2005;

Poloczanska et al. 2007; Ridgway 2007). Warmer waters also allow the incursion of sub-tropical

phytoplankton and grazers into SAZ waters, causing additional grazing competition and

unknown effects on the SO food web (McLeod et al. 2012).

Not all of the SAZ is expected to experience shallowing mixed layer depth as a result of climate

change. At the sub-Antarctic convergence, increased wind will deepen the mixed layer, causing

declines in phytoplankton productivity through light limitation (Lovenduski and Gruber 2005).

In addition, there are zonal differences in the effect of the increasingly positive SAM on mixed

layer depth in the SAZ region, with deepening over the eastern Indian Ocean and central Pacific

Ocean, and shallowing over the western Pacific Ocean (Sallée et al. 2010). Resulting in a mosaic

of changing factors that limit phytoplankton productivity, from nutrient limitation in shallower

regions to light limitation in deeply mixed waters.

Clearly, phytoplankton occupying the SAZ region are likely to experience a range of environmental

stressors as a result of climate change. The net effect of these changes is uncertain. Most studies

investigate the physiological effects of change on phytoplankton by imposing single stressors

(e.g. Boyd et al. 2013; Trimborn et al. 2013) but research shows interaction among stressors alter

their response. A multi-stressor study by Boyd et al. (2016a) using a sub-Antarctic diatom showed

that its response to environmental change was governed by the range of stresses to which it was

exposed. Negative responses to several stressors (CO2, nutrients, and light) were offset by positive

responses to others (temperature and iron). Thus, the response of an organism is determined by

the interactive effect of all the stresses they experience (Boyd et al. 2016a). Equally, responses of

single species (e.g. Boelen et al. 2011; Trimborn et al. 2014; Müller et al. 2015) provide valuable
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Figure 1.5: Schematic showing (A) the spectral flux (coloured bars) and molar photon energy (black line) of solar
radiation, (B) the wavelength-dependent penetration of light in the ocean and (C) the role of wind in deepening the
mixed layer depth, modified from Davidson (2006). Solar spectral flux was calculated from the UVSpec model for
noon at the summer solstice at Davis Station, Antarctica, an albedo of 0.5 and a column Ozone of 300 Dobson units.
Photon energy was calculated after Kirk (1994). SAZ, Sub-Antarctic Zone; POOZ, Permanently Open Ocean Zone;
SSIZ, Seasonal Sea Ice Zone; PAR, photosynthetically active radiation.

insights into the mechanisms of sensitivity and tolerance but avoid interactions among species and

trophic levels that can alter the responses or sensitivity of a community to a stressor (Davidson

et al. 2016; Thomson et al. 2016). Yet gaining maximum predictive strength by simultaneously

performing multi-stressor and multi-trophic level studies is often logistically so demanding as to
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be impractical.

Predicted responses by phytoplankton in the SAZ to climate change differ. Many propose that

the stratification-induced decline in nutrient supply to surface waters will reduce their

productivity and favour small flagellates (e.g. Matear and Hirst 1999; Marinov et al. 2010;

Petrou et al. 2016), heightening the role of the microbial food web and reducing carbon export.

While Boyd et al. (2016a) indicates that increases in iron and temperature may double growth

rates and favour diatoms; scenarios which have major and opposing influences on regional

productivity and biogeochemistry. It is likely that the effect of climate change on phytoplankton

in the SAZ is going to be determined by the timing, rate, and magnitude of change in each

stressor. Stochastic inputs of iron, wind, and storms disrupt stratification; influencing

productivity, species composition, and export production through changes in nutrients and light

climate. Changes in community composition from diatoms to flagellates also affect particulate

matter stoichiometry in this region, causing a decline in nutritional quality for grazing

zooplankton (Martiny et al. 2013; Rembauville et al. 2016a) and subsequent flow on effects

throughout the food web (Finkel et al. 2010). Ocean acidification will also cause declines in

carbonate saturation, affecting coccolithophore calcification, resulting in greater surface pCO2

uptake and decreased carbon export. Overall, our synthesis suggests that productivity will

decline in the SAZ due to the net response of nutrient limitation and increased grazing,

especially in silicate-limited waters.

1.3 Permanently open ocean zone

The Permanently Open Ocean Zone (POOZ) lies between the Polar Front and the northern limit

of the winter sea ice, covering approximately 14 millionkm�2 (Fig. 1.2). The Polar Front at the

northern extent of the POOZ forms a natural barrier between the warm SAZ water (5–10 �C)

and the cold Antarctic water (<2 �C) (Pollard et al. 2002; Sokolov and Rintoul 2009a). These

waters are predominantly HNLC with a phytoplankton community dominated by nano- and

picoflagellates but characteristically contain even less Chl a than the SAZ (Becquevort et al.

2000; Moore and Abbott 2000; Kopczyńska et al. 2001; Olguín and Alder 2011). The exception

to this is where iron concentrations in surface waters are enhanced by upwelling and/or
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sediment input/resuspension from sea floor bathymetry and sub-Antarctic islands (Fig. 1.2)

(e.g. Pollard et al. 2002; Ardelan et al. 2010; Rembauville et al. 2015b). This pattern differs

from that of macronutrients, which decline northwards across the POOZ region, nitrate falling

from ⇠25–20µmol L�1 and silicate from ⇠60–10µmol L�1. These nutrients are upwelled at the

Antarctic Slope Front and are progressively drawn down by phytoplankton as they are

transported northward across the POOZ by Ekman drift (Tréguer and Jacques 1992; Pollard

et al. 2002).

The POOZ displays a strong seasonality in biological production (Abbott et al. 2000). Strong

winds in winter deepen the mixed layer, bringing nutrient-rich water to the surface. These

nutrients fuel phytoplankton growth in spring when sunlight increases, conditions are calmer,

and phytoplankton are confined to shallower mixed depths by stratification (Fig. 1.6A) (Abbott

et al. 2000; Pollard et al. 2002; Constable et al. 2014). Whilst the POOZ is considered to be an

iron-limited environment, silicate limitation and grazing by micro- and metazooplankton also

limit the duration of the diatom-dominated bloom in this region (Abbott et al. 2000; Becquevort

et al. 2000; Timmermans et al. 2001; Strzepek et al. 2011; Christaki et al. 2014). Like the SAZ,

large, heavily silicified diatoms contribute significantly to carbon export (Rembauville et al.

2015a; Rembauville et al. 2015b; Rigual-Hernández et al. 2015; Rembauville et al. 2016b). In

regions of natural iron fertilization (e.g. the Kerguelen Plateau), phytoplankton production

appears to be strongly linked to higher trophic levels rather than making a substantial

contribution to carbon export (Obernosterer et al. 2008; Christaki et al. 2014;

Laurenceau-Cornec et al. 2015; Rembauville et al. 2015b).

Modeling studies predict the POOZ region will experience a poleward shift and strengthening

of the westerly winds; deepening of the summertime mixed layer depth; increasing cloud cover;

warming and freshening of surface waters; and decreasing pH (Fig. 1.6B) (Orr et al. 2005; McNeil

and Matear 2008; Meijers 2014; Leung et al. 2015; Armour et al. 2016; Haumann et al. 2016).

Thus far, sea surface warming in the POOZ of only 0.02 �C per decade has been slower than

the global average of 0.08 �C per decade, since 1950 (Armour et al. 2016). This is due to heat

taken up by surface water in the POOZ being transported northward by Ekman drift into the SAZ

(Fig. 1.3). Despite this, it has been proposed that rising temperatures may be contributing to an

observed range extension of E. huxleyi below 60 °S (Cubillos et al. 2007; Winter et al. 2014).
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Figure 1.6: Schematic showing the primary physical constraints on phytoplankton in the Permanently Open Ocean
Zone (POOZ) (A) before and (B) after climate change. Ovals represent the depth of mixing and arrow thickness
reflects relative rates of flux. SST, sea surface temperature.

Whilst warming is expected to increase phytoplankton productivity (Sarmiento et al. 2004;

Behrenfeld et al. 2006; Steinacher et al. 2010), this effect is offset against the increasingly

positive phase of SAM, which is causing an intensification and southerly shift of westerly winds

in summer (Lenton and Matear 2007; Lovenduski et al. 2007). The SAM controls the

north-south shift of the circumpolar westerly winds and is the dominant climate-induced

environmental change in Antarctic waters, substantially affecting SO circulation and CO2

uptake (Thompson and Solomon 2002; Lenton and Matear 2007; Lovenduski et al. 2007; Swart

et al. 2014). In the last 50 years there has been an observed increase in the positive phase of

SAM, strongly related to the depletion of ozone in the atmosphere above Antarctica (Son et al.

2008; Polvani et al. 2011). Leung et al. (2015) predict that the positive SAM will continue to

deepen the summer mixed layer and increase cloud cover in the POOZ, resulting in decreasing

light availability and causing a decline in phytoplankton biomass and productivity. Observed

trends in summertime mixed layer depth, cloud cover, and Chl a (since 1950, 1980, and 1997,

respectively) correspond well to the modeled projections (Leung et al. 2015).
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Conversely, some predict the increase in positive SAM may enhance phytoplankton productivity

in the POOZ. Deepening of the mixed layer can increase the upwelling of nutrients, which some

models predict will promote phytoplankton productivity and export production south of 60 °S

(Lovenduski and Gruber 2005; Hauck et al. 2013, 2015; Laufkötter et al. 2015). It is hard to

assess the validity of such predictions for the POOZ region as these models combine all waters

south of the Polar Front, including the SSIZ. Using satellite and Argo data, Carranza and Gille

(2015) reported a correlation of increased Chl a in the SO with increased mixed layer depth.

A positive SAM also increases eddy formation and transports SAZ water across the Polar Front

(Meredith and Hogg 2006; Kahru et al. 2007; Hogg et al. 2008). These cyclonic eddies trap warm

water at their core, enhance stratification, and upwell nutrients and iron, creating ideal conditions

for phytoplankton productivity (Kahru et al. 2007) and may also contribute significantly to ocean

warming in the POOZ (Hogg et al. 2008).

Increased nutrient input from melting icebergs may also increase productivity in the POOZ.

Climate warming and the breakup of Antarctic ice shelves (Scambos et al. 2000) could increase

the number of icebergs in the POOZ (see CZ below). Melting icebergs enrich the surrounding

water with iron, enhancing phytoplankton growth and productivity (Cefarelli et al. 2011; Lin

et al. 2011; Shaw et al. 2011; Vernet et al. 2011; Vernet et al. 2012), and increasing export of

carbon from surface waters (Smith et al. 2011). This heightened productivity also attracts large

grazing populations that increase food availability to higher trophic levels and facilitates the

sequestration of carbon to the deep ocean through faecal pellet production (Vernet et al. 2011).

Climate change is expected to change the location and area of the POOZ. The Polar Front,

which denotes the northern limit of the POOZ has already shifted 60 km south since 1992 and

this southward migration is expected to continue as the climate warms (Sokolov and Rintoul

2009b). To the south, the northernmost extent of sea ice coverage is also predicted to retreat

with ocean warming. Overall, this would result in a net increase in the area of the POOZ in the

future (Bracegirdle et al. 2008; McNeil and Matear 2008; Boyd et al. 2014). Some studies

suggest that an increase in open ocean habitat will increase production in this region (Bopp

et al. 2001; Behrenfeld et al. 2006). However, it is not yet understood how the multi-stressor

effects of the accompanying environmental changes, such as ocean warming, decreased pH,

light availability, and nutrient supply will affect the phytoplankton community.
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The effect of climate change on phytoplankton productivity in the POOZ will strongly depend

on the changes in light limitation and nutrient supply. Deepening of the summertime mixed

layer depth due to increases in the strength of westerly winds are likely to further reduce the

light available to phytoplankton, reducing their productivity over much of the POOZ (see

above). However, increased nutrient concentrations as a result of increased mixing and melting

icebergs, together with the incursions of warm-core eddies from the Polar Front may promote

localised phytoplankton blooms when light is not limiting. Furthermore, increased nutrient

concentrations might promote the growth of large diatoms (Timmermans et al. 2001), as well

as increased abundance of phytoplankton in near surface waters rather than forming deep

chlorophyll maxima. This increase in abundance is likely to increase the functioning of the

microbial loop and promote grazing, as has been observed in naturally iron-fertilised regions of

the POOZ (Christaki et al. 2014). It is also likely that with a future southward shift in SSIZ

extent (see SSIZ below) the brief but substantial blooms of Phaeocystis sp. and large diatoms of

the MIZ will be replaced by a prolonged but subdued bloom of phytoplankton over summer in

waters that are now part of the POOZ (see MIZ below, Behrenfeld et al. 2006).

1.4 Seasonal sea ice zone

In the following sections we divide the region of the SO covered by sea ice into two distinct zones.

First we consider the effects of climate change on the extent, advance and retreat of ice over the

entire Seasonal Sea Ice Zone (SSIZ) and examine the implications for phytoplankton. Then we

consider the processes occurring at the northern margin of the sea ice (the marginal ice zone,

MIZ), and how these are predicted to respond to a changing climate.

The SSIZ encompasses the region of the SO between the winter maximum and summer

minimum of sea ice cover (Fig. 1.2). The sea ice is one of the largest and most dynamic

ecosystems on earth, extending to over 19 millionkm�2 in winter and retreating to

⇠3 millionkm�2 over summer (Brierley and Thomas 2002; Comiso and Nishio 2008; Convey

et al. 2009). Total productivity within the SSIZ has been estimated at ⇠140–180 TgC yr�1

(Arrigo et al. 1997; Arrigo et al. 2008a). Sea ice cover plays an important role in the regulation

of climate by controlling heat and gas exchange between the atmosphere and the ocean
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(Massom and Stammerjohn 2010). Snow covered sea ice creates a high albedo surface that

reflects most of the sun’s energy back into space, thereby reducing warming of the polar oceans

(Perovich 1990). Conversely, in winter the ice cover insulates the ocean from direct exposure to

the cold atmosphere (Stroeve et al. 2016 and refs. therein). Not only is sea ice itself an

important regulator of global climate, it also provides a vital environment for Antarctic life.

Sea ice supports a diverse community of algae that possess some of the most extreme

adaptations to environmental stress recorded. They inhabit a range of environments throughout

the ice; from surface ponds to brine channels in the sea ice interior and at the bottom ice-water

interface (Knox 2007; Arrigo 2014). Here they can experience extremely low temperatures

(<� 20 �C), light irradiances (<1µmolm�2 s�1), CO2 concentrations (<100µatm), and

salinities up to ⇠200 PSU (Thomas and Dieckmann 2002 and refs. therein). Primary production

by sea ice algae contributes between 24–70 Tg Cyr�1 (Legendre et al. 1992; Arrigo et al. 1997;

Saenz and Arrigo 2014) and phytoplankton biomass averages between 1–100 mg Chl a m�2,

although it can exceed 1000 mg Chl a m�2 in some regions (Lizotte 2001; Arrigo et al. 2010).

Ice algal biomass and productivity varies greatly at small spatial and temporal scales, primarily

due to changes in snow cover, ice thickness, surface flooding, and ice rafting (McMinn et al.

2007; Meiners et al. 2012; Arrigo 2014 and refs. within). Thus, ice algae are able to thrive in

this harsh physical environment.

Ice algal productivity is essential to the nutrition of higher trophic levels in Antarctic waters.

Productivity and algal biomass within the sea ice is generally low during the winter (Arrigo et al.

1998b). Conditions are most favourable at the ice-water interface, where warmer temperature

(�1.8 �C), lower salinity (⇠35 PSU), and high nutrients maintain higher productivity rates than

the sea ice interior (Lizotte 2001). These bottom ice algal communities are an essential food

source for zooplankton over winter (Brierley and Thomas 2002 and refs. therein, Jia et al. 2016),

when phytoplankton biomass in the waters beneath the sea ice are very low due to light limitation

(Perrin et al. 1987; Legendre et al. 1992; Robins et al. 1995). For example, the phenology of the

Antarctic krill, Euphausia superba, a keystone organism in SO food webs, is integrally liked to

sea ice and seasonality, largely due to its being a refuge and source of algal nutrition over winter

(Kawaguchi and Satake 1994; Daly 1998; Atkinson et al. 2004; Smetacek and Nicol 2005; Quetin

and Ross 2009) and is associated with the ice at all stages of its life cycle (Flores et al. 2012 and
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refs. therein). Thus, changes in the timing and/or extent of sea ice cover are likely to have major

implications for the Antarctic food web (see below, Quetin and Ross 2009).

Changes in the extent, duration, thickness, and transparency of sea ice will have major

implications for the algae that inhabit the ice and processes that drive phytoplankton

productivity during sea ice retreat. In stark contrast to the decline currently observed in the

Arctic (Stroeve et al. 2012 and refs. therein), the overall sea ice extent (SIE) around Antarctica

has experienced a modest increase of between 0.9 to 1.5% since 1979 (Comiso and Nishio

2008; Turner et al. 2009; Parkinson and Cavalieri 2012; Simmonds 2015), and modeled

increases in sea ice volume of ⇠0.4 %yr�1 between 1992 and 2010 due to approximately equal

increases in both SIE and thickness (Holland et al. 2014). This culminated in the National Snow

and Ice Data Center (NSIDC) reporting a maximum recorded SIE >20 millionkm�2 in

September 2014, 1.54 millionkm�2 above the 1981 to 2010 average (Fetterer et al. 2016a).

However, the SIE around Antarctica in November 2016 was only 14.54 millionkm�2,

1.81 millionkm�2 below the 1981 to 2010 average (Fetterer et al. 2016b), demonstrating

substantial interannual variability. Furthermore, the long term trend in increasing SIE is not

uniform around Antarctica, with a significant decrease in the Amundsen and Bellingshausen

Seas of between -5.1 to -6.6% per decade but a large increase in the Ross Sea of between 4.2 to

5.2% per decade due to the Amundsen Sea Low (ASL) (see below, Comiso and Nishio 2008;

Massom and Stammerjohn 2010; Parkinson and Cavalieri 2012).

Dramatic changes in SIE in some regions around Antarctica have altered the timing of sea ice

growth and retreat. The large changes in SIE between the Ross Sea and the WAP are driven by the

combined influence of the El Niño-Southern Oscillation (ENSO), the SAM, and their interaction

with the ASL, the deepest low pressure cell around Antarctica (Arrigo and Thomas 2004; Liu

et al. 2004; Massom et al. 2008; Stammerjohn et al. 2008; Pezza et al. 2012; Raphael et al.

2016). The positive SAM phase and the La Niña phase of the ENSO have deepened the ASL.

Increasing greenhouse gasses and stratospheric ozone recovery may also exacerbate the current

SIE trends in these regions by further deepening the ASL (Raphael et al. 2016). The resultant

strengthening of winds associated with the ASL lead to the compression of the sea ice in the

Amundsen and Bellingshausen Seas and expansion in the Ross Sea. As a result, sea ice extent

around the West Antarctic Peninsula (WAP) has declined by up to 40% over the past 26 years
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Figure 1.7: Schematic showing the primary physical constraints on phytoplankton in the Seasonal Sea Ice and Marginal
Ice Zones (SSIZ and MIZ) (A) before and (B) after climate change. Modified from Sullivan et al. (1988) and Petrou
et al. (2016). Ovals represent the depth of mixing and arrow thickness reflect relative rates. Blue dashed line denotes
the location of the pycnocline; and the red dashed line depicts the approximated depth for 1% surface irradiance. SST,
sea surface temperature.
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(Smith and Stammerjohn 2001; Ducklow et al. 2007; Parkinson and Cavalieri 2012). Modeling

studies predict that continued global warming will eventually override the SAM and ENSO effects,

increasing warming to the atmosphere and ocean, and resulting in significant declines in SIE

around Antarctica (Bracegirdle et al. 2008; Ferreira et al. 2015).

Changes in sea ice concentration, extent, and seasonality critically affect the timing and

productivity of phytoplankton blooms. In the western Ross Sea, sea ice retreats later and

advances earlier, reducing the ice-free season by ⇠2.6 months (Stammerjohn et al. 2012). The

delay in ice retreat has delayed the onset of the summer bloom and decreased its duration,

thereby reducing total seasonal productivity (Arrigo and van Dijken 2004). Conversely, earlier

retreat and delayed advance of sea ice has resulted in a 3 month lengthening of the summer

ice-free season in the Amundsen and Bellingshausen Seas (Stammerjohn et al. 2012). While this

extension of the ice-free period was expected to increase annual phytoplankton production and

growth (Sarmiento et al. 2004; Moreau et al. 2015), no such trend has yet been observed

(Montes-Hugo et al. 2008; Smith et al. 2008). This may be due to constraints imposed by

nutrient and light limitation that are also key drivers of phytoplankton growth in the SSIZ

(Pearce et al. 2010; Westwood et al. 2010).

The observed increase in SIE is contrary to modeling studies that predict a decline in SIE with

global warming (Maksym et al. 2012 and refs. therein), reflecting the complex interaction of

factors influencing the distribution and concentration of sea ice around Antarctica (Sen Gupta

et al. 2009; Parkinson and Cavalieri 2012 and refs. therein, Turner et al. 2013). Models indicate

that the continued warming of the Earth’s climate will result in a 33% decline in Antarctic SIE

by 2100 (Bracegirdle et al. 2008). Historical records (whaling records, ice charts, and direct

observations) and concentrations of methane sulfonic acid in ice cores suggest SIE has declined

at least 20% since the 1950s (Curran et al. 2003; de la Mare 2009).

The seasonal southward retreat of the sea ice initiates the phytoplankton bloom (see MIZ below)

and changes in the timing of sea ice growth and retreat will alter the timing of these blooms.

Such changes can impose temporal asynchronies and spatial separations between grazers and

their food, reducing grazer abundance, reproductive success, and altering the distributions of

higher trophic levels (Moline et al. 2008). SO zooplankton use the sea ice as a refuge and food
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source in the winter (Daly 1998; Murphy et al. 2007; Jia et al. 2016). MIZ phytoplankton blooms

supply the essential fatty acids required for reproduction and over-wintering strategies (Schnack-

Schiel et al. 1998; Hagen 1999). It is not yet known how changes in sea ice retreat will affect

higher trophic levels in SSIZ but a delay in the summer bloom may restrict the availability of an

essential food source during vulnerable life-stages, resulting in significant grazer mortality and

less food availability to higher trophic organisms.

A decline in SIE is likely to decrease overall ice algal abundance, reducing carbon flux to the deep

ocean. Decaying sea ice releases plumes of ice algal aggregates that can sink from surface waters

at rates 200 md�1 (Thomas et al. 1998; Wright and van den Enden 2000; Wright et al. 2010).

Given that sea ice algae contribute to⇠12% of annual productivity in the SSIZ (Saenz and Arrigo

2014); the large accumulations of algal biomass amongst the sea ice (see above); and the fact

that the rate of sedimentation would largely preclude remineralization of these algal aggregates;

it is likely that declining ice algal abundance would reduce this region’s contribution to vertical

carbon flux.

A reduction in SIE extent, and therefore sea ice algal biomass, is also likely to reduce the

contribution of Antarctic sea ice algae to the global biogenic sulfur budget via synthesis of DMSP

and subsequent release of DMS. Many intracellular roles have been proposed for DMSP and

DMS, including cryoprotectant, antioxidant, metabolic overflow product, and even a compound

that mediates grazer interactions (Kirst et al. 1991; Malin 2006 and refs. therein). DMS is

oxidized in the atmosphere to sulfate aerosols which nucleate cloud condensation, altering

global albedo (Charlson et al. 1987; Charlson et al. 1992). Estimates suggest that the Antarctic

region contributes 17% of the global DMS emissions (Curran and Jones 2000), with the highest

concentrations of these DMSP and DMS compounds often found amongst sea ice (e.g. Kirst

et al. 1991; Turner et al. 1995; Trevena and Jones 2006; Jones et al. 2010; Vance et al. 2013).

Any climate-induced decline in SIE and/or duration (see above) could reduce the magnitude of

DMS production in the SSIZ, feeding back to global climate by reducing cloud-induced albedo.

Thinning of sea ice could substantially contribute to the loss of sea ice volume within the SSIZ,

impacting ice algal communities. Observations of ice thickness in the SSIZ are sparse and difficult

to obtain, displaying large variability within regions and among seasons (Worby et al. 2008). As
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a result, current trends in Antarctic sea ice thickness are not well understood (Kwok 2010; Hobbs

et al. 2016 and refs. therein) and based upon model estimates (Holland et al. 2014). The majority

of the sea ice in the SSIZ is first-year ice, with ice thickness seldom exceeding 2 m (Worby et al.

2008; Meiners et al. 2012). Ice algal biomass is often concentrated in the bottom 20 cm of the ice

(Palmisano and Sullivan 1983; McMinn et al. 2007; Meiners et al. 2012), with thicker ice (>1.0 m)

supporting higher algal biomass than thin ice (<0.4 m), due to longer time for colonization and

growth of the bottom ice algal community, along with development of internal communities from

the rafting of ice floes (McMinn et al. 2007; Meiners et al. 2012). Thus, a decline in sea ice

thickness may result in a reduction in bottom community biomass, which is an important food

source for zooplankton (Brierley and Thomas 2002; Jia et al. 2016), thereby causing a shift in the

diet of Antarctic birds and mammals toward less efficient pathways (Murphy et al. 2007; Moline

et al. 2008; Flores et al. 2012; Ballerini et al. 2014).

A warming atmosphere is predicted to result in more precipitation that could cause an increase in

snow deposits on the surface of the sea ice (Bracegirdle et al. 2008; Massom et al. 2008). Increased

snow load depresses ice floes, flooding the ice surface and fostering phytoplankton blooms in the

high light, high nutrient environment at the snow-ice interface (Arrigo et al. 1997; Massom et al.

2006). Surface communities are most often associated with thin ice (<0.4 m) (Meiners et al.

2012) and as such, could become more prominent in the future. Increased albedo caused by

greater snow cover on the ice would also limit light transmission through the ice, reducing ice

algal productivity in internal and bottom communities (Grossi et al. 1987; Palmisano et al. 1987).

Sea ice is a substantial sink for CO2 over winter. Air-ice exchange at the ice surface

over-saturates the CO2 in sea ice brine and contributes as much as 58% of the annual

atmospheric CO2 uptake in the SO (Delille et al. 2014). Ice cover provides a barrier between the

atmosphere and the surface water, slowing atmospheric CO2 uptake (Boyd et al. 2008) and

limiting predicted pCO2 levels by 2100 to 500–580µatm. Furthermore, it prohibits outgassing

of upwelled water supersaturated in CO2 over winter (Gibson and Trull 1999; Roden et al.

2013). The few studies investigating the effect of ocean acidification on sea ice algal

communities suggest they can tolerate CO2 concentrations up to 10.000µatm (McMinn et al.

2014; Coad et al. 2016).
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The increasingly positive SAM (see SAZ above) exposes the SSIZ is to stronger winds. However,

future recovery of the ozone hole will reduce the SAM favouring increasing warming and

stratification (see Conclusion), with consequent declines in the SIE extent, thickness and

duration of ice cover. This is likely to have a strong negative effect on sea ice algal abundance,

through a loss of habitat. Whilst ice algae are not major contributors to overall SO primary

productivity, they are essential in the life cycles of many zooplankton species. Thus, declines in

ice algal abundance will likely have a significant negative effect on critical links in the SO food

web, especially krill, and promote different and less energy efficient trophic pathways such as

consumption of phytoplankton by salps or via copepods to myctophids. Such changes would

reduce the capacity of the SO to support the current abundance of iconic, krill-dependent

Antarctic wildlife (Murphy et al. 2007; Murphy et al. 2016).

The development of the phytoplankton bloom and succession of the pelagic phytoplankton

community is initiated by the seasonal retreat of the sea ice across the SSIZ. Here we consider

the effects of climate-induced changes on processes in the MIZ.

1.5 Marginal ice zone

The region where the dense sea ice pack transitions to open ocean is known as the marginal ice

zone (MIZ). It is an area of high productivity that accounts for the majority of the

spring-summer phytoplankton blooms (Fig. 1.2) (Arrigo et al. 2008a). The area of the MIZ

varies greatly over spring and summer, ranging from 6 millionkm�2 in December to

⇠0.2 millionkm�2 by March (Fitch and Moore 2007). Sea ice formation in the winter scavenges

phytoplankton cells into the ice and concentrates iron from the surface water (de Baar et al.

1995; Boyd 2002; Lannuzel et al. 2010, 2016). In the spring, low salinity, high iron melt water

is released from the sea ice, creating a buoyant layer of fresher water that traps phytoplankton

in an environment where conditions are ideal for growth (high light, and high macro- and

micronutrients). This fosters large phytoplankton blooms (Fig. 1.7A) (Smith and Nelson 1986;

Sullivan et al. 1988), which can reach biomasses of over 200 mg Chl a m�2 (e.g. Smith and

Nelson 1986; Nelson et al. 1987; Wright et al. 2010). The region was thought to house very

high rates of productivity (⇠400 TgC yr�1) (Smith et al. 1988; Arrigo et al. 1998a) and
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contribute 40-50% of the productivity of the entire SO (Smith and Nelson 1986; Sakshaug

1994). Advances in satellite technology and modeling algorithms provide more conservative

results (Arrigo et al. 2008a; Taylor et al. 2013), suggesting the MIZ contributes ⇠114 TgC yr�1.

This equates to a total annual productivity of 54–68 g Cm�2 yr�1, which is ⇠5 times that in the

sea ice (⇠24 TgC yr�1) but is similar to that in the POOZ (⇠62 gC m�2 yr�1) (Moore and Abbott

2000; Arrigo et al. 2008a; Saenz and Arrigo 2014).

A diverse array of phytoplankton inhabit the MIZ, undergoing successional change due to ice

retreat, warming, nutrient depletion, and grazing (Davidson et al. 2010; Wright et al. 2010).

Phytoplankton blooms in East Antarctica and the Weddell Sea, are commonly co-dominated by

the colonial life-stage of Phaeocystis sp. and diatoms, with increasing diatom abundance over

time and the appearance of dinoflagellates, silicoflagellates, and heterotrophic protists later in

the season (Waters et al. 2000; Kang et al. 2001; Davidson et al. 2010). Once the available iron

has been exhausted, the community shifts to one more typical of the POOZ, consisting of small

diatoms and flagellates (Pearce et al. 2010; Wright et al. 2010). In the WAP, diatom-dominated

blooms in the spring shift to flagellate communities as melting sea ice and glacial run-off reduce

the salinity of surface waters (Kang et al. 2001). However, icebergs released by the breakup of ice

shelves will increase nutrient input, as in the POOZ (see above, Duprat et al. 2016), promoting

additional blooms of large diatoms.

Phytoplankton in the MIZ can contribute directly or indirectly to vertical flux. During large

blooms phytoplankton aggregate to form marine snow, which fall rapidly through the water

column, contributing to carbon sequestration into the deep ocean (Alldredge and Silver 1988).

High algal biomass within decaying sea ice in summer is also a rich source of nutrition and a

site of reproduction for grazers (Schnack-Schiel et al. 1998; Thomas et al. 1998). This grazing

transfers carbon to higher trophic levels but can also contribute to vertical carbon flux by

reparceling cells into rapidly sinking faecal pellets (Cadée et al. 1992; Burkill et al. 1995;

Perissinotto and Pakhomov 1998; Pearce et al. 2010).

Climate change is predicted to decrease SIE, increase icebergs, and cause SAM-induced

increases in wind and wave action (Fig. 1.7B). The effect of decreased SIE on total annual

productivity in the SO may not be large. Reduced SIE would shift the latitudinal range of the
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MIZ southward, resulting in an increase in the area of the POOZ (Smetacek and Nicol 2005).

However, the restriction of intense primary productivity in the MIZ to the spring-summer season

results in area-normalised annual primary production similar to that of the POOZ (see above,

Moore and Abbott 2000; Arrigo et al. 2008a), suggesting that an increase in the size of the

POOZ may not significantly affect total SO productivity (Arrigo et al. 2008a). Admittedly, this

does not take into account other potential effects of climate change on the POOZ (see above),

nor does it consider the effect of the absence of ice on the timing and magnitude of the

phytoplankton bloom. It is likely that blooms would start earlier due to the higher light climate

but may develop slower due to greater mixed depths (see below) and the lack of iron

fertilization from the ice melt (Behrenfeld et al. 2006).

The most profound change in the MIZ may be caused by the increasingly positive phase of SAM.

The poleward shift and intensification of wind strength and storms is predicted to deepen the

mixed layer and reduce phytoplankton production in the MIZ (Fig. 1.7B) (Lovenduski and Gruber

2005; Yin 2005; Hemer et al. 2010; Massom and Stammerjohn 2010; Young et al. 2011; Dobrynin

et al. 2012)). Phytoplankton blooms in the MIZ are patchy in space and time (Smith and Nelson

1986). They generally occur in shallow mixed layers where wind speeds are <5 ms�1 (Fitch and

Moore 2007). Storms, wind mixing, and waves deepen mixed depths in the MIZ, reducing the

light availability and inhibiting bloom development (Fig. 1.7B) (Venables and Meredith 2014).

As a result, blooms only cover 17-24% of the MIZ over summer with maximum coverage of

only 0.36 millionkm�2 in December (Savidge et al. 1996; Fitch and Moore 2007). Evidence from

culture studies and blooms in the Ross Sea indicate that Phaeocystis sp. is more tolerant of deeply

mixed, low light environments than diatoms (Arrigo et al. 1999; Moisan and Mitchell 1999).

Therefore, a more deeply mixed MIZ could cause a shift toward Phaeocystis sp. dominated blooms.

Large, early season blooms of Phaeocystis sp. can be responsible for substantial carbon export,

rapidly sinking from surface waters and avoiding grazing pressure. Phaeocystis sp. colonies are

encased in a tough outer coating, providing an effective defense against grazing protozoa and

small zooplankton (Smetacek et al. 2004). In combination with their ability to draw down larger

amounts of CO2 than diatoms (Arrigo et al. 2000), it is likely that an increase in blooms dominated

by Phaeocystis sp. may enhance carbon export in the MIZ (DiTullio et al. 2000). Phaeocystis sp. are

also responsible for generating large amounts of DMSP (DiTullio and Smith 1995; Turner et al.
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1995; Vance et al. 2013). If increased mixing favours Phaeocystis sp. growth, it may counteract

some of the loss of DMSP from decreased SIE in the SSIZ (see SSIZ above).

An increase in wind and wave action could also potentially increase the area of the MIZ by

increasing the breakup and dispersal of sea ice by waves (Yin 2005; Hemer et al. 2010; Young

et al. 2011; Dobrynin et al. 2012; Stroeve et al. 2016). In spring and summer, large waves

propagate through the sea ice up to 200 km, breaking up ice floes and accelerating ice retreat

(Kohout et al. 2014; Horvat et al. 2016). Some satellite derived estimates of the MIZ region

suggest a positive trend in MIZ area over time during spring (Stroeve et al. 2016), although not

all models agree due to difficulties in accurately mapping the MIZ from satellite images (Ackley

et al. 2003). However, changes in MIZ area are not likely to be uniform within the SSIZ, with

Massom et al. (2006) reporting a contraction of the MIZ in the WAP due to strong northerly

winds from the ASL (see SSIZ above). Interestingly, intense phytoplankton blooms still occurred

amongst in the slurry of frazil ice between floes in this region (Massom et al. 2006), suggesting

MIZ size is not necessarily a good indicator of its productivity.

Bloom formation within the MIZ is reliant on the coincidence of optimal conditions for

phytoplankton growth. Increases in turbulent mixing by wind and waves would decrease light

availability through a deepened mixed layer, with likely reductions in productivity and changes

in the phytoplankton community structure within MIZ blooms. Additional nutrient inputs from

melting icebergs are likely to cause localised increases in productivity but the extent of this

effect would be felt most in the SSIZ, where growth of phytoplankton has drawn down nutrient

concentrations. The net effect of future increases in MIZ area and decline in overall SIE remain

uncertain.

1.6 Antarctic continental shelf zone

Antarctic Continental Shelf Zone (CZ) waters make up the smallest area of the SO

(1.28 millionkm�2) but they are also highly productive, contributing 66.1 TgC yr�1 or an

average of 460 mgC/m2/d] (Arrigo et al. 2008a). The high productivity in this region is due to

high surface nutrient concentrations; iron enrichment from coastal sediments and basal shelf
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melt; and upwelled upper circumpolar deep water (UCDW, Fig. 1.3) onto the continental shelf

from the easterly-flowing Antarctic Slope Current, which approximately follows the 1000 m

isobath (Fig. 1.2) (Jacobs 1991; Smetacek and Nicol 2005; Westwood et al. 2010; Williams

et al. 2010). Blooms in CZ waters make a vital contribution to supporting the abundance and

diversity of life in Antarctica. They attract large numbers of grazers that consume

phytoplankton, that in turn feed higher tropic levels, while also producing faecal pellets, that

are either remineralised into nutrients by heterotrophic microbes or sink rapidly into deep

water, supporting the biological pump (Cadée et al. 1992; Turner 2002; Honjo 2004;

Schnack-Schiel and Isla 2005). Open water regions over the CZ are important foraging areas for

many Antarctic species, especially during the summer breeding season (Arrigo and van Dijken

2003; Smith et al. 2007; Stroeve et al. 2016). For example, DMS released from grazed

phytoplankton acts as an olfactory foraging cue for white-chinned petrels (Nevitt et al. 1995)

and Adélie penguin breeding success has been related to the proximity of colonies to open

water (Ainley et al. 1998). The CZ is also a significant CO2 sink over the summer as high rates

of primary productivity cause surface CO2 undersaturation (Hoppema et al. 1995; Gibson and

Trull 1999; Ducklow et al. 2007; Arrigo et al. 2008b; Roden et al. 2013).

Polynyas contribute to high productivity over the CZ with average annual primary production

rates up to 105.4 gC m�2 yr�1 (Arrigo and van Dijken 2003; Arrigo et al. 2015). Strong, cold

katabatic winds freeze the surface water of the polynya, creating ice that is pushed north,

adding to the seasonal sea ice extent and contributing to the generation of Antarctic Bottom

Water through exclusion of high salinity brine by sea ice as it forms (Orsi et al. 1999). The Ross

Sea polynya is the largest and the most productive polynya in Antarctica, contributing on

average, 22.2 Tg Cyr�1 (Arrigo et al. 2015), with daily production as high as 6 gC m�2 d�1

(Smith and Gordon 1997). These high productivity rates are likely due to substantial iron input

from upwelling of underlying sediments and basal melt of nearby ice shelves (Arrigo et al.

2015). Future increases in sea surface temperature are likely to accelerate the melting of ice

shelves, increasing the input of fresh, stratified, iron-rich water to polynyas. increasing

productivity in these regions (Feng et al. 2010).

Spatial differences in the factors controlling phytoplankton production have been observed

within CZ waters. Consequently, the cause and rate of climate-induced change in these waters
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differs with location. Substantial differences have already been observed between East and West

Antarctica (Turner et al. 2014 and refs. therein) and as such, we separately address the effects

climate change on the phytoplankton communities in each of these two regions.

Figure 1.8: Schematic showing the primary physical constraints on phytoplankton in the Antarctic Continental Shelf
Zone (CZ) (A) before and (B) after climate change. Ovals represent the depth of mixing and arrow thickness reflects
relative rates of flux. SST, sea surface temperature.

1.6.1 West Antarctica

The West Antarctic CZ spans from the Amundsen and Bellingshausen Seas in the west to the

Weddell Sea in the east and is dominated by the Antarctic Peninsula. Productivity is highest

along the WAP and the Weddell Sea with rates of over 600 mg Cm�2 d�1 during the peak of

summer (El-Sayed and Taguchi 1981; Arrigo et al. 2008a; Vernet et al. 2008). The flow of warm,

nutrient-rich UCDW onto the continental shelf (Fig. 1.3) in the WAP accelerates sea ice retreat

and enhances phytoplankton productivity (Kavanaugh et al. 2015), fostering diatom blooms as

in the MIZ (see above). These are replaced by small flagellate and cryptophyte communities in

the fresher, more stratified surface water later in the season (Moline et al. 2004; Ducklow et al.

2007). High production in the WAP and Scotia Sea support abundant krill populations, which are
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in turn food for a wealth of higher predators (Ducklow et al. 2007 and refs. therein).

Climate change threats to the West Antarctic CZ include warming, freshening, increased

stratification, the melting and break up of glaciers and ice shelves, and ocean acidification (Fig.

1.8B). The WAP is one of the fastest warming regions on Earth with an increase in the mean

atmospheric temperature of 2 �C (6 �C in the winter) since 1950 (Meredith and King 2005;

Ducklow et al. 2007). No similar warming event has occurred on Earth in the last 1800 years

(Vaughan et al. 2003). Along with atmospheric warming in the WAP, increased heat delivery of

UCDW from the Antarctic Circumpolar Current onto the shelf has caused a 0.6 �C increase in

temperature of the upper 300 m of the water column (Meredith and King 2005; Turner et al.

2014). This warming trend has resulted in increased glacial melt, with 87% of glaciers in the

Antarctic Peninsula showing signs of retreat since 1950 (Cook et al. 2005; Peck et al. 2010).

Glacial melt has resulted in an influx of fresh water to coastal regions of the WAP, freshening

and increasing the stratification of surface waters over the summer. While phytoplankton

productivity is expected to increase with increasing sea surface temperature (Rose et al. 2009a),

the phytoplankton community is likely to be more affected by resultant changes in SIE and

freshwater inputs to the CZ (Arrigo et al. 2015; Moreau et al. 2015).

Freshening of surface waters from glacial melt has led to a documented change in the

phytoplankton community in the WAP from diatom-dominated assemblages to cryptophytes and

small flagellates (Moline et al. 2004; Montes-Hugo et al. 2008). The resultant shift in size

distribution from large to small phytoplankton cells has had a significant flow on effect to

zooplankton grazers, particularly krill and salps (Moline et al. 2004). This region is historically

an area of high krill abundance, which is the preferred food source for the many Antarctic birds

and mammals that live in the WAP (Atkinson et al. 2004). Changes to the phytoplankton

community structure, favouring small cells, negatively affects krill grazing as they feed most

efficiently on cells >10µm and are unable to capture particles <6µm in size (Kawaguchi et al.

1999). This has caused a shift in dominance to salps, mucoid feeders that are unaffected by the

particle size of their prey (Moline et al. 2004), and a shift toward a less efficient fish-based food

web (Murphy et al. 2007). Reductions in the krill population in the WAP are expected have a

significant negative effect on the food chain in this region (Ballerini et al. 2014).
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Surface water freshening causes a concurrent stratification of the water column, elevating

phytoplankton into shallow mixed layers with higher light intensity. Phytoplankton productivity

is enhanced through increased light, however, excessive light and elevated UV-A and UV-B

exposure can lead to photoinhibition and cell damage (see SAZ above, Moreau et al. 2015). In

order to limit the damage of these conditions, phytoplankton can channel metabolic reserves

into photoprotection and tolerance mechanisms (Davidson 2006). A lengthening of the open

water season in the WAP, caused by earlier sea ice retreat (see SSIZ above), has increased

productivity in the CZ, whilst also increasing photoinhibition rates (Moreau et al. 2015). Thus

far, the increase in production is much greater than the loss due to photoinhibition so it is

expected that increased stratification will lead to a net increase in primary productivity in the

future (Moreau et al. 2015).

Stronger westerly winds, as a result of a positive SAM, are bringing warmer air across the Antarctic

Peninsula, increasing snowfall and causing a break up of large ice shelves (e.g. Scambos et al.

2000; Rack and Rott 2004; Turner et al. 2014). The break up of the Larsen A ice shelf created new

areas of high nutrient open water, stimulating phytoplankton blooms and increasing productivity

in a previously ice-covered pelagic habitat (Bertolin and Schloss 2009). The continued retreat of

glaciers and breaking up of ice shelves has led to the creation of new carbon sinks around the

Antarctic Peninsula that have increased productivity up to 3.5 Tg Cm�2 yr�1 (Peck et al. 2010).

The continued break up of ice shelves will also lead to an increase in icebergs over the CZ. Melting

icebergs have been found to provide a significant amount of iron and nutrients to surface waters,

leading to increased phytoplankton productivity (Lin et al. 2011; Vernet et al. 2011; Duprat et al.

2016). Increased iceberg numbers will also contribute to increased productivity throughout the

SSIZ and POOZ as they are propelled by ocean currents around Antarctica (see above).

Little work has investigated the effect of ocean acidification on phytoplankton in West Antarctic

waters. The CO2 concentration in waters over the West Antarctic CZ vary seasonally from ⇠176

to 503µatm through to the uptake of CO2 by phytoplankton in the summer and return to

super-saturated levels in winter under the sea ice (Moreau et al. 2012). Coastal phytoplankton

communities from the WAP (both diatom-dominated and mixed diatom-flagellate communities)

displayed no significant change in community composition, cell size, or growth rate when

exposed to 800µatm CO2 (Young et al. 2015). Yet, results of this study did demonstrate the
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differences in physiological carbon uptake among phytoplankton species as production by

diatoms may be enhanced by down-regulation of CCMs at high pCO2, while a slight decline in

production by Phaeocystis sp. was attributed to the alternative bicarbonate transport pathway

used by this species.

1.6.2 East Antarctica

The East Antarctic CZ ranges from the Ross Sea in the east to the eastern edge of the Weddell

Sea in the west. The Ross Sea is the most productive region in the CZ, contributing

⇠24 TgC m�2 yr�1 and accounting for ⇠30% of the total annual production in shelf waters

(Sweeney et al. 2000; Arrigo et al. 2008a). Iron and light availability are the dominant factors

controlling growth of phytoplankton in the Ross Sea (Fig. 1.8A) (Smith et al. 2000b; Feng et al.

2010; Sedwick et al. 2011). In addition, the relative abundances of the dominant phytoplankton

(diatoms and Phaeocystis sp.) are linked to mixed layer depth, with diatoms dominant in highly

stratified water and Phaeocystis sp. where it is deeply mixed (Arrigo et al. 1999). These

phytoplankton blooms support a unique food web in the Ross Sea, structured around the crystal

krill, Euphausia crystallorophias, and the Antarctic silverfish, Pleuragramma antarcticum (Smith

et al. 2007). Elsewhere around East Antarctica the CZ is relatively narrow and contributes

⇠12 TgC m�2 yr�1 (Arrigo et al. 2008a) and like the West Antarctic CZ, the Antarctic krill, E.

superba, is a keystone species (Nicol et al. 2000; Nicol et al. 2010). Here the phytoplankton

community is dominated by blooms of diatoms and Phaeocystis sp. during the summer and

shifts to small flagellates once nutrients have been exhausted (Waters et al. 2000; Wright and

van den Enden 2000; Davidson et al. 2010).

The East Antarctic CZ is expected to experience increased freshening, stratification, the melting

and break up of glaciers and ice shelves, ocean acidification, and modest warming (Fig. 1.8B).

In contrast to the warming trend around West Antarctica, there has been a measured cooling

over East Antarctica for the same period (1969-2000) (Thompson and Solomon 2002). Despite

this, most recent model projections for the Ross Sea by the end of the century predict a

0.15–0.4 �C increase in SST, with decreases in the mixed layer depth (⇠50–70 m), sea ice

concentration (2-11%), and macronutrient concentrations (Rickard and Behrens 2016).
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Freshening has already been reported in the Ross Sea and has been attributed to changes in

precipitation, sea ice production, and melting of the West Antarctic ice sheet (Jacobs et al.

2002). Projected changes to the remaining area of East Antarctica are not well understood but

similar trends are anticipated (Watanabe et al. 2003; Convey et al. 2009; Gutt et al. 2015).

Ocean acidification is anticipated to affect polar waters sooner than the rest of the world, due to

the increased solubility of CO2 in cold water (Orr et al. 2005; McNeil and Matear 2008).

Phytoplankton communities in Antarctic shelf waters are already exposed to strong annual

variations in pCO2 (Gibson and Trull 1999; Sweeney et al. 2000; Roden et al. 2013; Shadwick

et al. 2013; Kapsenberg et al. 2015). Sea ice cover during the winter restricts air-sea gas transfer,

allowing for CO2 oversaturation of the water column (up to 450µatm) through upwelling of

high CO2 UCDW water from the Antarctic Slope Current (Fig. 1.3). Photosynthetic drawdown

over the summer can result in CO2 levels falling below 100µatm. This large seasonal variation

seems to favour species that tolerate large fluctuations in pH. Phytoplankton communities have

been observed to show little change in composition when grown at CO2 concentrations similar

to those already experienced in coastal environments (84–643µatm) (Davidson et al. 2016).

However, superimposing anthropogenic pCO2 increase upon the large natural fluctuation

already occurring in the natural environment may push some species past their limit sooner

than anticipated (McNeil and Matear 2008), causing changes in phytoplankton productivity,

growth and community composition. Concentrations of CO2 exceeding 1000µatm induced a

change in phytoplankton community composition in Prydz Bay, increasing the abundance of

small phytoplankton species (Davidson et al. 2016; Thomson et al. 2016). Studies on Ross Sea

phytoplankton communities also suggest that high CO2 concentrations (760–800µatm) may

cause a shift in dominance in this region from Phaeocystis sp. to large chain-forming diatom

communities (Tortell et al. 2008a; Feng et al. 2010). Investigation into the physiological reasons

for changes in growth rates link increased growth and carbon fixation to the energy saved

through the down-regulation of CCMs (Rost et al. 2008; Tortell et al. 2008a), while inhibition of

growth and productivity may be related to the metabolic costs of proton pumps to exclude

hydrogen ions (Gao et al. 2012a; McMinn et al. 2014).

A change in phytoplankton community composition will likely have significant effects on carbon

export in the CZ. A shift toward smaller cell communities will allow for increased remineralization
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of cells through the microbial consumption, decreasing the downward flux of carbon into the deep

ocean (Finkel et al. 2010 and refs. therein). These cells are also likely to be less efficiently grazed

by zooplankton, resulting in less carbon transfer to higher trophic organisms. Any CO2-induced

increase in the dominance of diatoms in the Ross Sea may cause a decline in net carbon export

as blooms of Phaeocystis sp. are capable of exporting more carbon than diatoms (Arrigo et al.

2000). However, diatom-dominated communities are likely to be grazed more than Phaeocystis

sp., providing better nutrition for the Antarctic food web and also producing negatively buoyant

faeces that can assist in the sinking of diatoms (Schnack-Schiel and Isla 2005).

Whilst most studies have focused on individual factors predicted to alter as a result of climate

change, phytoplankton in the SO will be simultaneously exposed to multiple climate change

stressors (Gutt et al. 2015). Recent work has focused on the interaction of multiple stressors on

phytoplankton growth in the Ross Sea, highlighting the complex interaction between

environmental changes and the phytoplankton community (Rose et al. 2009a; Feng et al. 2010;

Xu et al. 2014; Zhu et al. 2016). Iron promotes phytoplankton growth, whereas interactive

effects between iron, warming, increased CO2, and light favour the dominance of diatoms over

Phaeocystis sp. (Rose et al. 2009a; Xu et al. 2014; Zhu et al. 2016). In contrast, high pCO2 only

affected diatoms, favouring the growth of large centric species (Feng et al. 2010). As well as

causing shifts in phytoplankton taxa, changes in temperature and iron supply caused

modifications to microzooplankton abundance, suggesting possible changes in predator/prey

interactions (Rose et al. 2009a). No multi-stressor experiments have yet been performed on

other East Antarctic phytoplankton communities, though it appears likely that climate-induced

change will alter the competitive interactions among dominant phytoplankton taxa and change

trophodynamics throughout continental waters.

Freshening, increased stratification, ocean acidification, and the melting and break up of glaciers

and ice shelves are all occurring across the Antarctic CZ due to climate change. Phytoplankton

growth is promoted by freshening, increased stratification, and the break-up of ice shelves by

establishing conditions that are optimal for growth, most notably an increase in iron supply and

light availability. However, freshening and ocean acidification also appear to be responsible for

shifts in community composition that could result in a decrease in food quality and availability for

grazers. This could have a significant negative effect on the structure and function of the Antarctic
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food web as well as reducing carbon export. In contrast, the proposed CO2-induced increase in

abundance of large diatoms in the Ross Sea may benefit the food web in this region but may still

result in a decline in carbon export.

Temperature trends currently differ between East and West Antarctica, with significant warming

in West Antarctica and a slight cooling trend over East Antarctica. Increases in temperature

appear to promote phytoplankton growth and may accelerate sea ice retreat, changing the

timing and magnitude of bloom onset in this highly productive region. However, the interactive

effects that this combination of climate stressors will have on phytoplankton communities in

this region is not well understood. Further work will be required before we can fully understand

how phytoplankton over the CZ will be affected by a changing climate.

1.7 Conclusion

The SO comprises a vast expanse of ocean containing a diverse array of environments, each of

which exposing phytoplankton to environmental factors that limit their production, growth,

survival, and composition. Despite these stressors, phytoplankton thrive in some of the most

extreme conditions on earth. Climate-induced changes in the physical characteristics of the SO

and the responses by phytoplankton differ substantially among environments. No long-term

trends in satellite-derived Chl a or primary productivity are yet detectable due to the large

background of interannual/decadal variability (Henson et al. 2010; Gregg and Rousseaux

2014). It is unlikely that unambiguous trends due to climate change will be seen until

approximately 2055 (Henson et al. 2010). However, some longer time series of underway Chl a

measurements exist that could indicate climate-induced trends (see below).

Given the competing influences on phytoplankton within each region of the SO, predictions are

bound to be tentative and contentious. Our assessment of the available information suggest the

responses of phytoplankton in various regions of the SO are:

• In the SAZ, the stratification-induced decline in nutrient supply to surface waters (Fig. 1.4)

will reduce productivity and favour small flagellates (e.g. Matear and Hirst 1999; Marinov

et al. 2010; Petrou et al. 2016). Boyd et al. (2016a) indicates that increases in iron and
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temperature may double growth rates and favour diatoms but such events depend on the

frequency and magnitude of storms to deposit dust in the SAZ and the proximity to land.

• In the POOZ, productivity may increase due to enhanced mixing, eddy activity, and nutrient

supply from upwelling and melting icebergs (Fig. 1.6). Yet, light limitation imposed by a

deepened mixed layer and increased cloud cover may limit this potential increase (Armour

et al. 2016).

• In the SSIZ, ice algal abundance is likely to decrease through a decline in SIE, thickness, and

duration (Fig. 1.7). The absence of sea ice will preclude ice algae providing an essential food

source over winter for some zooplankton species. This has the potential to cause significant

changes throughout the Antarctic food web. The decline of sea ice as a result of ocean

warming may not markedly alter the annual SO productivity but the expansion of the POOZ

into the SSIZ is likely to alter the timing, magnitude, and duration of the phytoplankton

blooms in these waters.

• In the MIZ, increased wind and wave action is likely to accelerate sea ice retreat,

increasing the mixed layer depth and destabilizing the seasonal progression of

phytoplankton blooms (Fig. 1.7). Such changes would reduce the frequency of ice edge

blooms and cause taxonomic shifts in the phytoplankton community toward small

diatoms and flagellates.

• In the CZ, the few available studies suggest that warming, freshening, and ocean

acidification are likely to elicit changes to community composition (Fig. 1.8), with reports

of a shift towards communities composed of smaller cells and flagellates (Moline et al.

2004; Davidson et al. 2016). Increased nutrients and stratification from melting glaciers

and icebergs are likely to increase productivity (Fig. 1.8). Localised shifts in community

composition in the Ross Sea toward diatom-dominated communities will potentially

decrease carbon export but may provide better nutrition for higher trophic levels.

These changes are likely to have a significant effect on the biogeochemical processes in the SO,

affecting the biological pump, microbial loop, and nutrition for higher trophic levels. It is likely

that the effect of climate change on phytoplankton in each of these regions is going to be
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determined by the timing, rate, and magnitude of change in each stressor; as well as the

sequence in which these stressors are imposed. Climate change models of the SO still contain

large uncertainties, in part due to knowledge gaps in biogeochemical processes and carbon

uptake (Frölicher et al. 2016). The vast majority of phytoplankton research in the SO have been

observational studies, providing essential data on phytoplankton communities, seasonal

community succession, nutrient utilization, primary and export production, and food web

interactions (e.g. El-Sayed 1994; Nicol et al. 2000; Smith et al. 2000a; Nicol et al. 2010; Olguín

and Alder 2011; Quéguiner 2013). These studies are essential for our understanding of the

current and potential future state of SO phytoplankton. Relatively few studies have focused on

the manipulation of climate stressors on SO phytoplankton species/communities (e.g. Tortell

et al. 2008a; Rose et al. 2009a; Hoppe et al. 2013; Müller et al. 2015; Boyd et al. 2016a; Coad

et al. 2016; Davidson et al. 2016). More of these studies are necessary in all of the regions of the

SO to determine the thresholds for climate-induced stressors on phytoplankton communities. It

is also important to perform multi-stressor experiments, incorporating a range of environmental

factors affected by climate change, if we are to understand the interactive effects (from

synergistic to antagonistic) of future stressors on phytoplankton species and communities (e.g.

Feng et al. 2010; Xu et al. 2014; Boyd et al. 2016a; Zhu et al. 2016).

The vastness and environmental diversity of the SO; the inherent spatial and temporal variability

in phytoplankton communities; and the logistical costs and difficulty in obtaining data from the

SO, especially year-round observations, means the effect of climate change on phytoplankton

in this region is poorly understood. In some instances, advances in remote sensing technology

and computer modeling have allowed access to data sets that can assist in understanding trends.

However, they are still limited in their ability to detect some physical changes, such as sea ice

thickness and Chl a concentration in waters covered by ice (Massom et al. 2006; Hobbs et al.

2016). There are very few places that have long-term monitoring programs to detect changes

in the physical and biological environment (such as the Palmer-Long Term Ecological Research

program, Smith et al. 1995) and few of these have collected data for a sufficient duration to detect

trends in phytoplankton against the background of natural variation. Decades long monitoring

programs should be established as a matter of urgency to detect changes in SO phytoplankton

abundance, production, and composition.
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Stratospheric ozone concentrations exert a pervasive effect on atmospheric circulation in the

Southern Hemisphere and recovery of the ozone hole will change the trajectory of climate.

Concern over ozone depletion and the consequent rise in short wave UV radiation reaching the

Earth’s surface, galvanised the international community, culminating in the Montreal protocol,

which banned the use of ozone depleting substances, such as chlorofluorocarbons (CFCs) and

halons. Unrecognised at the time, ozone depletion was also the primary cause of increases in the

positive phase of the SAM, resulting in the acceleration and poleward shift of westerly winds

over the SO (see POOZ above, Polvani et al. 2011; Thompson et al. 2011). This proved to be the

most obvious and persistent characteristic of Southern Hemisphere climate change in the last

half century (Thompson and Wallace 2000; Polvani et al. 2011). Modeling studies indicate that

recovery of the ozone hole will decelerate the westerly winds (Son et al. 2008) and result in a

more rapid rise in Antarctic temperatures than elsewhere in the Southern Hemisphere (Shindell

and Schmidt 2004). Nearly 30 years after the Montreal protocol came into effect, the first signs

are emerging that the ozone hole is beginning to heal (Solomon et al. 2016). Projections suggest

that ozone concentrations in the stratosphere are likely to return to pre-ozone hole values

around 2065 (Son et al. 2008; Schiermeier 2009). Thus, the main factor presently driving

climate change and phytoplankton responses over much of the SO will decline over the next half

century. Ozone depletion and positive SAM cause increases in wind and wave action, deeper

mixing, and increased nutrient entrainment into surface waters (see POOZ, SSIZ, MIZ above).

Replenishment of ozone is likely to reverse these climate-induced drivers of phytoplankton

dynamics in Antarctic waters, moving to a scenario reminiscent of the SAZ region and

dominated by increased warming, stratification, and declining nutrient availability in surface

waters. The effect of this reversal in climate fortunes is unknown but the rate of change (⇠50

years) may prove too fast for some species to adapt and/or evolve to the changing environment.

The response of phytoplankton to anticipated future environmental conditions in the SO will

eventually depend upon their capacity to adapt and evolve (Boyd et al. 2016a and refs. therein).

Phytoplankton communities have short generation times and high genetic diversity, which allow

for adaptation to changing environmental conditions through natural selection (Collins et al.

2014). Some SO phytoplankton communities are already exposed to large variations in their

environment, such as sea ice and coastal communities. Phytoplankton that are already exposed
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to large variations in their environment are considered inherently more tolerant and capable of

adapting to future changes (Sackett et al. 2013; Schaum and Collins 2014). Davidson et al.

(2016) showed that exposing natural microbial communities to the large range in CO2

concentrations they encounter in nature over a year had little effect. Concentrations above this

reduced productivity and changed the composition of the phytoplankton community, suggesting

that their tolerance to variability outside of those normally encountered was low. Furthermore

current experiments, which determine the tolerance limits of phytoplankton over short time

scales, may not be a good indicator of long-term resilience as the metabolic costs of

climate-induced stress may not be sustainable over numerous generations (Schaum and Collins

2014; Torstensson et al. 2015). It is currently unknown whether the rate of environmental

change will outpace the ability of SO phytoplankton to adapt and/or evolve. It is, however,

inevitable that changes at the base of the SO will influence trophodynamics, biogeochemistry,

and climate change.
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2.1 Introduction

The Southern Ocean (SO) is a significant sink for anthropogenic CO2 (Metzl et al. 1999; Sabine

2004; Frölicher et al. 2015). Approximately 30% of anthropogenic CO2 emissions have been

absorbed by the world’s oceans, of which 40% has been via the SO (Raven and Falkowski 1999;

Sabine 2004; Khatiwala et al. 2009; Takahashi et al. 2009, 2012; Frölicher et al. 2015). While

ameliorating CO2 accumulation in the atmosphere, increasing oceanic CO2 uptake alters the

chemical balance of surface waters, with the average pH having already decreased by 0.1 units

since pre-industrial times (Sabine 2004; Raven et al. 2005). If anthropogenic emissions continue

unabated, future concentrations of CO2 in the atmosphere are projected to reach ⇠930µatm by

2100 and peak at ⇠2000µatm by 2250 (Meinshausen et al. 2011; IPCC 2013). This will result

in a further reduction of the surface ocean pH by up to 0.6 pH units, with unknown

consequences for the marine microbial community (Caldeira and Wickett 2003). High-latitude

oceans have been identified as amongst the first regions to experience the negative effects of

ocean acidification, causing potentially harmful reductions in the aragonite saturation state and

a decline in the ocean’s capacity for future CO2 uptake (Sabine 2004; Orr et al. 2005; McNeil

and Matear 2008; Fabry et al. 2009; Hauck and Völker 2015). Marine microbes play a pivotal

role in the uptake and storage of CO2 in the ocean through phytoplankton photosynthesis and

the vertical transport of biological carbon to the deep ocean (Longhurst 1991; Honjo 2004). As

the buffering capacity of the SO decreases over time, the biological contribution to total CO2

uptake is expected to increase in importance (Hauck and Völker 2015; Hauck et al. 2015). Thus,

it is necessary to understand the effects of high CO2 on the productivity of the marine microbial

community if we are to predict how they may affect ocean biogeochemistry in the future.

Phytoplankton primary production provides the food source for higher trophic levels and plays a

critical role in the sequestration of carbon from the atmosphere into the deep ocean (Azam et al.

1983; Azam et al. 1991; Longhurst 1991; Honjo 2004; Fenchel 2008; Kirchman 2008). In

Antarctic waters it is restricted to a short summer season and is characterised by intense

phytoplankton blooms that can reach over 200 mg Chl a m�2 (Smith and Nelson 1986; Nelson

et al. 1987; Wright et al. 2010). Relative to elsewhere in the SO, the continental shelf around

Antarctica accounts for a disproportionately high percentage of annual primary productivity
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(Arrigo et al. 2008a). In coastal Antarctic waters, seasonal CO2 variability can be up to

450µatm over a year (Gibson and Trull 1999; Boyd et al. 2008; Moreau et al. 2012; Roden et al.

2013; Tortell et al. 2014). Sea ice forms a barrier to the outgassing of CO2 in winter, causing

supersaturation of the surface water to ⇠500µatm. Intense primary productivity in summer

rapidly draws down CO2 to <100µatm, making this region a significant CO2 sink during

summer months (Hoppema et al. 1995; Ducklow et al. 2007; Arrigo et al. 2008b).

Ocean acidification studies on individual phytoplankton species have reported differing trends

in primary productivity and growth rates. Increased CO2 enhanced rates of primary productivity

(Wu et al. 2010; Trimborn et al. 2013) and growth (Sobrino et al. 2008; Tew et al. 2014; Baragi

et al. 2015; Chen et al. 2015; King et al. 2015) in some diatom species, while others were

unaffected (Chen and Durbin 1994; Sobrino et al. 2008; Berge et al. 2010; Trimborn et al. 2013;

Chen et al. 2015; Hoppe et al. 2015; King et al. 2015; Bi et al. 2017). In contrast, CO2-related

declines in primary productivity and growth rate have also been observed (Barcelos e Ramos

et al. 2014; Hoppe et al. 2015; King et al. 2015; Shi et al. 2017), suggesting that responses to

ocean acidification are largely species specific. These differing responses among phytoplankton

species may also cause changes in the composition of phytoplankton communities (Trimborn

et al. 2013). It is difficult to extrapolate the response of individual species to natural

communities, as monospecific studies exclude interactions among species and trophic levels.

Estimates of CO2 tolerance under laboratory conditions may also be influenced by experimental

acclimation periods (Trimborn et al. 2014; Hennon et al. 2015; Torstensson et al. 2015; Li et al.

2017a), differences in experimental conditions (e.g. nutrients, light climate) (Hoppe et al.

2015; Hong et al. 2017; Li et al. 2017b), methods of CO2 manipulation (Shi et al. 2009; Gattuso

et al. 2010), and region-specific environmental adaptations (Schaum et al. 2012). Thus,

investigations on natural communities are essential in order to better understand the outcome

of these complex interactions.

The effects of ocean acidification on natural Antarctic phytoplankton communities is currently

not well understood (Petrou et al. 2016; Deppeler and Davidson 2017). Tolerance to CO2 levels

up to ⇠800µatm have been reported for natural coastal communities in the West Antarctic

Peninsula and Prydz Bay, East Antarctica (Young et al. 2015; Davidson et al. 2016). Although in

Prydz Bay, when CO2 levels exceeded 780µatm, primary productivity declined and community
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composition shifted toward smaller, picoeukaryotes (Davidson et al. 2016; Thomson et al. 2016;

Westwood et al. 2018). In contrast, Ross Sea phytoplankton communities responded to CO2

levels �750µatm with an increase in primary productivity and abundance of large

chain-forming diatoms, suggesting that as CO2 increases in this region, diatoms may increase in

dominance over the prymnesiophyte Phaeocystis antarctica (Tortell et al. 2008a; Feng et al.

2010). The paucity of information regarding the ocean acidification response of these Antarctic

coastal phytoplankton communities highlights the need for further research to determine

region-specific tolerances and potential tipping points in community productivity and

composition in Antarctica.

Bacteria play an essential role in the microbial food web through the remineralisation of

nutrients from sinking particles (Azam et al. 1991) and as a food source for heterotrophic

nanoflagellates (Pearce et al. 2010). Bacterial populations respond to increases in

phytoplankton primary productivity by increasing their productivity and abundance, with

maximum abundance often occurring after the peak of the phytoplankton bloom (Pearce et al.

2007). High CO2 levels have been observed to have either no effect on abundance and

productivity (Grossart et al. 2006; Allgaier et al. 2008; Paulino et al. 2008; Baragi et al. 2015;

Wang et al. 2016) or increase growth rate and production only during the post-bloom phase of

an experiment (Grossart et al. 2006; Sperling et al. 2013; Westwood et al. 2018). Thus, bacterial

communities appear to be relatively tolerant to ocean acidification, with bacterial growth

indirectly affected by the ocean acidification responses of the phytoplankton community

(Grossart et al. 2006; Allgaier et al. 2008; Engel et al. 2013; Piontek et al. 2013; Sperling et al.

2013; Bergen et al. 2016).

Mesocosm experiments are an effective way of monitoring the community response of microbial

assemblages to environmental changes. Experiments examining multiple species and trophic

levels can provide responses that differ significantly from monospecific studies. Numerous

mesocosm studies have now been performed to assess the effect of ocean acidification on

natural marine microbial communities around the world (e.g. Kim et al. 2006; Hopkinson et al.

2010; Riebesell et al. 2013; Paul et al. 2015; Bach et al. 2016; Bunse et al. 2016). Studies in the

Arctic reported increases in phytoplankton primary productivity, growth, and organic matter

concentration at CO2 levels �800µatm under nutrient-replete conditions (Bellerby et al. 2008;
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Egge et al. 2009; Engel et al. 2013; Schulz et al. 2013), whilst the bacterial community was

unaffected (Grossart et al. 2006; Allgaier et al. 2008; Paulino et al. 2008; Baragi et al. 2015).

These studies also highlight the importance of nutrient availability in the community response

to elevated CO2, with substantial differences in primary and bacterial productivity, chlorophyll a

(Chl a), and elemental stoichiometry observed between nutrient-replete and nutrient-limited

conditions (Riebesell et al. 2013; Schulz et al. 2013; Sperling et al. 2013; Bach et al. 2016).

Previous community-level studies investigating the effects of ocean acidification on natural

coastal marine microbial communities in East Antarctica reported declines in primary and

bacterial productivity when CO2 levels exceeded 780µatm (Westwood et al. 2018). To build

upon the results of Westwood et al. (2018), a similar experimental design was utilised, with a

natural marine microbial community from the same region exposed to CO2 levels ranging from

343 to 1641µatm in 650 L minicosms. The methods were refined in our study to include an

acclimation period to the CO2 treatment under low light. Rates of primary productivity,

bacterial productivity, and the accumulation of particulate organic matter (POM) were

examined to ascertain whether the threshold for tolerance to CO2 was similar to that reported

by Westwood et al. (2018) or if acclimation affected the community response to high CO2.

Photophysiological measurements were also undertaken to assess underlying mechanisms that

caused shifts in phytoplankton community productivity.

2.2 Methods

2.2.1 Minicosm set-up

Natural microbial assemblages were incubated in six 650 L polythene tanks (minicosms) housed

in a temperature-controlled shipping container (Fig. 2.1). All minicosms were acid washed with

10% vol:vol AR HCl, thoroughly rinsed with MilliQ water, and given a final rinse with seawater

from the sampling site before use. The minicosms were filled with seawater taken amongst

decomposing fast ice in Prydz Bay, at Davis Station, Antarctica (68° 35 0 S 77° 58 0 E) on 19th

November, 2014. Water was transferred by helicopter in multiple collections using a 720 L

Bambi Bucket to fill a 7000 L polypropylene holding tank. Seawater was gravity fed into the
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minicosm tanks through Teflon-lined hosing fitted with an in-line 200µmol Arkal filter to

exclude metazooplankton. All minicosms were filled simultaneously to ensure uniform

distribution of microbes in all tanks.

Figure 2.1: Minicosm tanks filled with seawater in temperature-controlled shipping container.

The ambient water temperature at the time of sampling in Prydz Bay was �1.0 �C. Tanks were

temperature controlled to an average temperature of 0.0 �C, with a maximum range of ±0.5 �C,

through cooling of the shipping container and warming with two 300 W aquarium heaters

(Fluval) that were connected to a temperature control program via Carel temperature

controllers. The contents of each tank were gently mixed by a shielded high-density

polyethylene auger, rotating at 15 rpm, and each tank was covered with a sealed acrylic lid.

Each tank was illuminated on a 19:5 h light:dark cycle by two 150 W HQI-TS/NDL (Osram) metal

halide lamps (transmission spectra: Deppeler et al. 2018a). The light output was filtered by a

light-scattering filter and a one-quarter colour temperature (CT) blue filter (Arri) to convert the

tungsten lighting to a daylight spectral distribution; attenuating wavelengths <500 nm by ⇠20%

and >550 nm by ⇠40% (Davidson et al. 2016).

Similar to Schulz et al. (2017) the fugacity of carbon dioxide ( f CO2) in each tank was raised to

the target concentration in a stepwise manner over the first 5 days of the incubation (Fig. 2.2, see

below). During this acclimation, phytoplankton growth in the tanks was slowed by attenuating

the light intensity to 0.9± 0.2µmolphotons m�2 s�1 using two 90% neutral density (ND) filters

(Arri).
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Figure 2.2: The (a) fugacity of CO2 ( f CO2) and (b) pH on the total scale (pHT ) carbonate chemistry conditions in
each of the minicosm treatments over time. Grey shading indicates CO2 and light acclimation period.

At the conclusion of this CO2 acclimation period, the light intensity was increased for 24 h through

the replacement of the two 90% ND filters with one 60% ND filter. The final light intensity was

achieved on day 7 with a one-quarter CT blue and a light-scattering filter, which proved to be

saturating for photosynthesis (see below).

Unless otherwise specified, samples were taken for analyses on days 1, 3, and 5 during the CO2

acclimation period and every 2 days from day 8 to 18.

2.2.2 Carbonate chemistry measurements and calculations

Samples for carbonate chemistry measurements were collected daily from each minicosm in

500 mL glass-stoppered bottles (Schott Duran) following the guidelines of Dickson et al. (2007).

Subsamples for dissolved inorganic carbon (DIC; 50 mL glass-stoppered bottles) and pH on the

total scale (pHT ; 100 mL glass-stoppered bottles) measurements were gently pressure filtered

(0.2µm) with a peristaltic pump at a flow rate of ⇠30 mLmin�1, similar to Bockmon and

Dickson (2014).

DIC was measured by infrared absorption on an Apollo SciTech AS-C3 analyser equipped with a Li-

cor LI-7000 detector using triplicate 1.5 mL samples. The instrument was calibrated (and checked

for linearity) within the expected DIC concentration range with five sodium carbonate standards

(Merck Suprapur) that were dried for 2 h at 230 �C and prepared gravimetrically in MilliQ water

(18.2 M⌦ cm�1) at 25 �C. Furthermore, daily measurements of certified reference material batch
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CRM127 (Dickson 2010) were used for improved accuracy. Volumetrically measured DIC was

converted to µmolkg�1 using calculated density derived from known temperature and salinity.

The typical precision among triplicate measurements was <2µmolkg�1.

The pHT was measured spectrophotometrically (GBC UV-vis 916) in a ten centimetre

thermostated (25 �C) cuvette using the pH indicator dye m-cresol purple (Acros Organics,

62625-31-4, lot A0321770) following the approach described in Dickson et al. (2007), which

included changes in sample pH due to dye addition. Contact with air was minimised by sample

delivery, dye addition, and mixing via a syringe pump (Tecan; Cavro XLP 6000). Dye impurities

and instrument performance were accounted for by applying a constant off-set (+0.003 pH

units), determined by the comparison of the measured and calculated pHT (from known DIC

and total alkalinity (TA), including silicate and phosphate) of CRM127. Typical measurement

precision for triplicates was 0.001 for higher and 0.003 for lower pH treatments. For further

details see Schulz et al. (2017).

Carbonate chemistry speciation was calculated from measured DIC and pHT . In a first step, at

salinities measured in situ (WTW197 conductivity meter), practical alkalinity (PA) was calculated

at 25 �C using the dissociation constants for carbonic acid determined by Mehrbach et al. (1973)

as refitted by Lueker et al. (2000). Then, total carbonate chemistry speciation was calculated from

measured DIC and calculated PA for in situ temperature conditions.

2.2.3 Carbonate chemistry manipulation

The f CO2 in the minicosms was adjusted by additions of 0.22µm filtered natural seawater that

was saturated by bubbling with AR-grade CO2 for �30 min. In order to keep f CO2 as constant

as possible throughout the experiment, pH in each minicosm was measured with a portable

NBS-calibrated probe (Mettler Toledo) in the morning before sampling and in the afternoon, to

estimate the necessary amount of DIC to be added. The required volume of CO2-enriched

seawater was then transferred into 1000 mL infusion bags and added to the individual

minicosms at a rate of about 50 mL min�1. After reaching target levels, the mean f CO2 levels in

the minicosms were 343, 506, 634, 953, 1140, and 1641µatm (Table A3.1).
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2.2.4 Light irradiance

The average light intensity in each minicosm tank was calculated by measuring light intensity in

the empty tanks at three depths (top, middle, and near-bottom) and across each tank (left, middle,

and right) using a Biospherical Instruments’ Laboratory Quantum Scalar Irradiance Meter (QSL-

101). The average light irradiance received by the phytoplankton within each tank was calculated

following the equation of Riley (1957) (Table 2.1). Incoming irradiance ( Īo) was calculated as

the average light intensity across the top of the tank. The average vertical light attenuation (Kd)

was calculated as the slope from the regression of the natural log of light intensity at all three

depths, and mixed depth (Zm) was the depth of the minicosm tanks (1.14 m).

Changes in vertical light attenuation due to increases in Chl a concentration throughout the

experimental period were calculated from the equation in Westwood et al. (2018); Kd(biomass) =

0.0451157 ⇥ Chl a (mg m�3). Total light attenuation Kd(total) in each tank at each sampling day

was calculated by addition of Kd and Kd(biomass).

2.2.5 Nutrient analysis

No nutrients were added to the minicosms during the experiment. Macronutrient samples were

obtained from each minicosm following the protocol of Davidson et al. (2016). Seawater was

filtered through 0.45µm Sartorius filters into 50 mL Falcon tubes and frozen at�20 �C for analysis

in Australia. Concentrations of ammonia, nitrate plus nitrite (NOx), soluble reactive phosphorus

(SRP), and molybdate reactive silica (Silica) were determined using flow injection analysis by

Analytical Services Tasmania following Davidson et al. (2016).

2.2.6 Elemental analysis

Samples for POM analysis, particulate organic carbon (POC) and particulate organic nitrogen

(PON), were collected following the method of Pearce et al. (2007). Equipment for sample

preparation was soaked in Decon 90 (Decon Laboratories) for >2 days and thoroughly rinsed in

MilliQ water before use. Forceps and cutting blades were rinsed in 100% acetone between
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samples. Seawater was filtered through muffled 25 mm Sartorius quartz microfibre filters until

clogged. The filters were folded in half and frozen at �80 �C for analysis in Australia. Filters

were thawed and opposite 1/8 subsamples were cut and transferred into a silver POC cup

(Elemental Analysis Ltd). Inorganic carbon was removed from each sample through the

addition of 20µL of 2 N HCl to each cup and drying at 60 �C for 36 h. When dry, each cup was

folded shut, compressed into a pellet, and stored in desiccant until analysed at the Central

Science Laboratory, University of Tasmania using a Thermo Finnigan EA 1112 Series Flash

Elemental Analyser.

2.2.7 Chlorophyll a

Seawater was collected from each minicosm and a measured volume was filtered through 13 mm

Whatman GF/F filters (maximum filtration time of 20 min). Filters were folded in half, blotted

dry, and immediately frozen in liquid nitrogen for analysis in Australia. Chlorophyll a (Chl a)

pigments were extracted, analysed by HPLC, and quantified following the methods of Wright

et al. (2010). Chl a was extracted from filters with 300µL of dimethylformamide plus 50µL of

methanol, containing 140 ng apo-8’-carotenal (Fluka) internal standard, followed by bead beating

and centrifugation to separate the extract from particulate matter. Extracts (125µL) were diluted

to 80% with water and analysed on a Waters HPLC using a Waters Symmetry C8 column and a

Waters 996 photodiode array detector. Chl a was identified by its retention time and absorption

spectra compared to a mixed standard sample from known cultures (Jeffrey and Wright 1997),

which was run daily before samples. Peak integrations were performed using Waters Empower

software, checked manually for corrections, and quantified using the internal standard method

(Mantoura and Repeta 1997).

2.2.8 14C primary productivity

Primary productivity incubations were performed following the method of Westwood et al. (2010)

based on the technique of Lewis and Smith (1983). This method incubated phytoplankton for 1

h, minimising respiratory losses of photo-assimilated 14C so that the uptake nearly approximated

gross primary productivity (e.g. Dring and Jewson 1982; González et al. 2008; Regaudie-de-gioux
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et al. 2014). Samples were analysed for total organic carbon (TO14C) content, thereby including

any 14C-labelled photosynthate leaked to the dissolved organic carbon (DO14C) pool (Regaudie-

de-gioux et al. 2014).

For all samples, 5.92 MBq (0.16 mCi) of 14C-sodium bicarbonate (NaH14CO3; PerkinElmer) was

added to 162 mL of seawater from each minicosm, creating a working solution of 37 kBqml�1.

Aliquots of this working solution (7 mL) were then added to glass scintillation vials and

incubated for 1 h at 21 light intensities ranging from 0–1412µmolphotons m�2 s�1. The

temperature within each of the vials was maintained at �1.0± 0.3 �C through water cooling of

the incubation chamber. The reaction was terminated with the addition of 250µL of 6 N HCl

and the vials were shaken for 3 h at 200 rpm to remove dissolved inorganic carbon. Duplicate

time zero (T0) samples were set up in a similar manner to determine background radiation,

with 250µL of 6 N HCl added immediately to quench the reaction without exposure to light.

Duplicate 100% samples were also performed to determine the activity of the working solution

for each minicosm. For each 100% sample, 100µL of working solution was added to 7 mL 0.1 M

NaOH in filtered seawater to bind all 14C. For radioactive counts, 10 mL of Ultima Gold LLT

scintillation cocktail (PerkinElmer) was added to each scintillation vial, shaken, and decays per

minute (DPM) were counted in a PerkinElmer Tri-Carb 2910TR Low Activity Liquid Scintillation

Analyzer with a maximum counting time set at 3 min.

DPM counts were converted into primary productivity following the equation of Steemann

Nielsen (1952) (Table 2.1), using measured DIC concentrations (varying between ⇠2075 and

2400µmol kg�1) and normalised to Chl a using minicosm Chl a concentration (see above).

Photosynthesis versus irradiance (PE) curves were modelled for each treatment following the

equation of Platt et al. (1980) using the Phytotools package in R (Silsbe and Malkin 2015; R

Core Team 2016). Photosynthetic parameter estimates included the light-saturated

photosynthetic rate (Pmax), maximum photosynthetic efficiency (↵), photoinhibition rate (�),

and saturating irradiance (Ek).

Chl a-specific primary productivity (csGPP14C) was calculated following the equation of Platt

et al. (1980) using average minicosm light irradiance ( Ī). Gross primary production rates

(GPP14C) in each tank were calculated from modelled csGPP14C and Chl a concentration (see
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above). Calculations and units for each parameter are presented in Table 2.1.

2.2.9 Gross community productivity

Community photosynthesis and respiration rates were measured using custom-made

mini-chambers. The system consisted of four 5.1 mL glass vials with oxygen sensor spots (Pyro

Science) attached on the inside of the vials with non-toxic silicon glue. The vials were sealed,

ensuring that any oxygen bubbles were omitted, and all vials were stirred continuously using

small Teflon magnetic fleas to allow homogenous mixing of gases within the system during

measurements. To improve the signal-to-noise ratio, seawater from each minicosm was

concentrated above a 0.8µm, 47 mm diameter polycarbonate membrane filter (Poretics) with

gentle vacuum filtration and resuspended in seawater from each minicosm CO2 treatment. Each

chamber was filled with the cell suspension and placed in a temperature-controlled incubator

(0.0± 0.5 �C). Light was supplied via fluorescent bulbs above each chamber and light intensity

was calibrated using a 4⇡ sensor. Oxygen optode spots were connected to a FireSting O2 logger

and data was acquired using FireSting software (Pyro Science). The optode was calibrated

according to the manufacturer protocol immediately prior to measurements using a freshly

prepared sodium thiosulfate solution (10% w/w) and agitated filtered seawater (0.2µm) at

experimental temperature for 0% and 100% air saturation values, respectively. Oxygen

concentration was recorded until a linear change in rate was established for each

pseudoreplicate (n = 4).

Measurements were first recorded in the light (188µmolphotons m�2 s�1) and subsequently in

the dark, with the initial steeper portion of the slope used for a linear regression analysis to

determine the post-illumination (PI) respiration rate. Gross community production (GCPO2
) was

then calculated from dark PI respiration (RespO2
) and net community production (NCPO2

) rates

and normalised to Chl a concentration (csGCPO2
, Table 2.1). Chl a content for each concentrated

sample was determined by extracting pigments in 90% chilled acetone and incubating in the

dark at 4 �C for 24 h. Chl a concentrations were determined using a spectrophotometer (Cary 50;

Varian) and calculated according to the equations of Jeffrey and Humphrey (1975), modified by

Ritchie (2006).
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2.2.10 Chlorophyll a fluorescence

The photosynthetic efficiency of the microalgal community was measured via Chl a fluorescence

using a pulse-amplitude-modulated fluorometer (WATER-PAM; Walz). A 3 mL aliquot from each

minicosm was transferred into a quartz cuvette with continuous stirring to prevent cells from

settling. To establish an appropriate dark adaptation period, several replicates were measured

after 5, 10, 15, 20, and 30 min of dark adaptation, with the latter having the highest maximum

quantum yield of PSII (Fv/Fm). Following dark adaptation, minimum fluorescence (F0) was

recorded before the application of a high-intensity saturating pulse of light (saturating pulse

width = 0.8 s; saturating pulse intensity >3.000µmol photonsm�2 s�1) and maximum

fluorescence (Fm) was determined. The maximum quantum yield of PSII was calculated from

these two parameters (Schreiber 2004). Following Fv/Fm, a five-step steady-state light curve

(SSLC) was conducted with each light level (130, 307, 600, 973, 1450µmol photonsm�2 s�1)

applied for 5 min before recording the light-adapted minimum (Ft) and maximum fluorescence

(Fm0) values. Each light step was spaced by a 30 s dark ’recovery’ period before the next light

level was applied. Three pseudoreplicate measurements were conducted on each minicosm

sample at 0.1 �C. Non-photochemical quenching (NPQ) of Chl a fluorescence was calculated

from Fm and Fm0 measurements. Relative electron transport rates (rETRs) were calculated as the

product of effective quantum yield (�F/Fm0) and actinic irradiance (Ia). Calculations and units

for each parameter are presented in Table 2.1.

2.2.11 Community carbon concentrating mechanism activity

To investigate the effects of CO2 on carbon uptake, two inhibitors for carbonic anhydrase (CA)

were applied to the 343 and 1641µatm treatments on day 15: ethoxzolamide (EZA; Sigma),

which inhibits both intracellular carbonic anhydrase (iCA) and extracellular carbonic anhydrase

(eCA), and acetazolamide (AZA; Sigma), which blocks eCA only. Stock solutions of EZA

(20 mM) and AZA (5 mM) were prepared in MilliQ water, and the pH was adjusted using NaOH

to minimise pH changes when added to the samples. Before fluorometric measurements were

made, water samples from the 343 and 1641µatm CO2 treatments were filtered into �10 and

<10µm fractions and aliquots were inoculated either with 50µL of MilliQ water adjusted with
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NaOH (control) or a 50µM final concentration of chemical inhibitor (EZA and AZA).

Fluorescence measurements of size-fractionated control- and inhibitor-exposed cells were

performed using the WATER-PAM. A 3 mL aliquot of sample was transferred into a quartz

cuvette with stirring and left in the dark for 30 min before the maximum quantum yield of PSII

(Fv/Fm) was determined (as described above). Actinic light was then applied at

1450µmol photonsm�2 s�1 for 5 min before the effective quantum yield of PSII (�F/Fm0) was

recorded. Three pseudoreplicate measurements were conducted on each minicosm sample at

0.1 �C.

2.2.12 Bacterial abundance

Bacterial abundance was determined daily using a Becton Dickinson FACScan or FACSCalibur

flow cytometer fitted with a 488 nm laser following the protocol of Thomson et al. (2016).

Samples were pre-filtered through a 50µm mesh (Nitex), stored at 4 �C in the dark, and

analysed within 6 h of collection. Samples were stained for 20 min with 1:10,000 dilution SYBR

Green I (Invitrogen) (Marie et al. 2005) and PeakFlow Green 2.5µm beads (Invitrogen) were

added to the sample as an internal fluorescence standard. Three pseudoreplicate samples were

prepared from each minicosm seawater sample. Samples were run for 3 min at a low flow rate

(⇠12µLmin�1) and bacterial abundance was determined from side scatter (SSC) versus green

(FL1) fluorescence bivariate scatter plots. The analysed volume was calibrated to the sample

run time and each sample was run for precisely 3 min, resulting in an analysed volume of

0.0491 and 0.026 04 mL on the FACSCalibur and FACScan, respectively. The volume analysed

was then used to calculate final cell concentrations.

2.2.13 Bacterial productivity

Bacterial productivity measurements were performed following the leucine incorporation by

microcentrifuge method of Kirchman (2001). Briefly, 70 nM 14C-leucine (PerkinElmer) was

added to 1.7 mL of seawater from each minicosm in 2 mL polyethylene Eppendorf tubes and

incubated for 2 h in the dark at 4 �C. Three pseudoreplicate samples were prepared from each

minicosm seawater sample. The reaction was terminated by the addition of 90µL 100%
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trichloroacetic acid (TCA; Sigma) to each tube. Duplicate background controls were also

performed following the same method, with 100% TCA added immediately before incubation.

After incubation, samples were spun for 15 min at 12.500 rpm and the supernatant was

removed. The cell pellet was resuspended into 1.7 mL of ice-cold 5% TCA and spun again for

15 min at 12.500 rpm and the supernatant was removed. The cell pellet was then resuspended

into 1.7 mL of ice-cold 80% ethanol, spun for a further 15 min at 12.500 rpm and the

supernatant was removed. The cell pellet was allowed to dry completely before addition of 1 mL

of Ultima Gold scintillation cocktail (PerkinElmer). The Eppendorf tubes were placed into glass

scintillation vials and DPMs were counted in a PerkinElmer Tri-Carb 2910TR Low Activity

Liquid Scintillation Analyzer with a maximum counting time of 3 min.

DPM counts were converted to 14C-leucine incorporation rates following the equation in

Kirchman (2001) and used to calculate gross bacterial production (GBP14C) following Simon

and Azam (1989). Bacterial production was divided by total bacterial abundance to determine

the cell-specific bacterial productivity within each treatment (csBP14C). Calculations and units

for each parameter are presented in Table 2.1.

2.2.14 Statistical analysis

The minicosm experimental design measured the microbial community growth in six

unreplicated f CO2 treatments. Therefore, subsamples from each minicosm were

within-treatment pseudoreplicates and thus, only provide a measure of the variability of the

within-treatment sampling and measurement procedures. We use pseudoreplicates as true

replicates in order to provide an informal assessment of differences among treatments, noting

that results must be treated as indicative and interpreted conservatively.

For all analyses, a linear or curved (quadratic) regression model was fitted to each CO2

treatment over time using the stats package in R (R Core Team 2016) and an omnibus test of

differences between the trends among CO2 treatments over time was assessed by ANOVA. This

analysis ignored the repeated measures nature of the data set, which could not be modelled due

to the low number of time points and an absence of replication at each time. For the CCM

activity measurements, differences between treatments were tested by one-way ANOVA,
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followed by a post-hoc Tukey’s test to determine which treatments differed. The significance

level for all tests was set at <0.05.

2.3 Results

2.3.1 Carbonate chemistry

The f CO2 of each treatment was modified in a stepwise fashion over 5 days to allow for

acclimation of the microbial community to the changed conditions. Target treatment conditions

were reached in all tanks by day 5 and ranged from 343 to 1641µatm, equating to an average

pHT of 8.10 to 7.45 (Fig. 2.2, Table A3.1), respectively. The initial seawater was calculated to

have an f CO2 of 356µatm and a PA of 2317µmolkg�1, from a measured pHT of 8.08 and DIC

of 2187µmolkg�1 (Fig. A3.1, Table A3.2). One minicosm was maintained close to these

conditions (343µatm) throughout the experiment as a control treatment.

2.3.2 Light climate

The average light irradiance for all CO2 treatments is presented in Table A3.3. During the CO2

acclimation period (days 1-5) the average light irradiance was 0.9± 0.2µmol photonsm�2 s�1

and was increased to 90.5± 21.5µmol photonsm�2 s�1 by day 8. The average vertical light

attenuation (Kd) across all minicosm tanks was 0.92± 0.20 Increasing Chl a concentration over

time in all CO2 treatments increased Kd(total) from 0.96± 0.01 on day 1 to 3.53± 0.28 on day

18, resulting in a decline in average light irradiance within the minicosms from 86.61± 20.50 to

35.97± 9.30µmol photonsm�2 s�1 between days 8 and 18.

2.3.3 Nutrients

Nutrient concentrations were similar across all treatments at the beginning of the experiment

(Table A3.2) and did not change during the acclimation period (days 1-5). Ammonia

concentrations were initially low (0.95± 0.18µM) and fell rapidly to concentrations below the
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limits of detection beyond day 12 in all treatments (Fig. A3.2). No differences in drawdown

between CO2 treatments were observed, and thus it was excluded from further analysis. NOx

fell from 26.20± 0.74µM on day 8 to concentrations below detection limits on day 18 (Fig.

2.3a), with the slowest drawdown in the 1641µatm treatment. SRP concentrations were

initially 1.74± 0.02µM and all CO2 treatments followed a similar drawdown sequence to NOx,

reaching very low concentrations (0.13± 0.03µM) on day 18 in all treatments (Fig. 2.3b). In

contrast, silica was replete in all treatments throughout the experiment falling from

60.00± 0.91µM to 43.60± 2.45µM (Fig. 2.3c). The drawdown of silica was exponential from

day 8 onwards and followed a similar pattern to NOx and SRP, with the highest silica drawdown

in the 634µatm and the least in the 1641µatm treatment.

2.3.4 Particulate organic matter

Particulate organic carbon (POC) and nitrogen (PON) concentrations were initially low at

4.70± 0.15 and 0.50± 0.98µM respectively, and increased after day 8 in all treatments (Fig.

2.4a, b). The accumulation of POC and PON was effectively the reciprocal of the drawdown of

nutrients (see above), being lowest in the high CO2 treatments (�1140µatm) and highest in

the 343 and 634µatm treatments. Rates of POC and PON accumulation were both affected by

nutrient exhaustion, with declines in the 343 and 634µatm treatments between days 16 and

18. POC and PON concentrations on day 18 were highest in the 953µatm treatment. The ratio

of POC to PON (C:N) was similar for all treatments, declining from 8.00± 0.38 on day 8 to

5.70± 0.28 on day 16 (Fig. 2.4c). The slowest initial decline in the C:N ratio occurred in the

1641µatm treatment, displaying a prolonged lag until day 10, after which it decreased to

values similar to all other treatments. Nutrient exhaustion on day 18 coincided with an increase

in the C:N ratio in all treatments, with C:N ratios >10 in the 343, 634, and 953µatm

treatments and lower C:N ratios (8.6–6.7 ) in the 506, 1140, and 1641µatm treatments.

2.3.5 Chlorophyll a

Chl a concentrations were low at the beginning of the experiment at 0.91± 0.16µg L�1 and

increased in all treatments after day 8 (Fig. 2.5a). Chl a accumulation rates were similar
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amongst treatments 634µatm until day 14, with a slightly higher Chl a concentration in the

506 and 634µatm treatments on day 16 compared to the control treatment. By day 18, only the

506µatm treatment remained higher than the control. Chl a accumulation rates in the 953 and

1140µatm treatments were initially slow but increased after day 14, with Chl a concentrations

similar to the control on days 16-18. The highest CO2 treatment (1641µatm) had the slowest

rates of Chl a accumulation, displaying a lag in growth between days 8 and 12, after which the

Chl a concentration increased but remained lower than the control. Rates of Chl a accumulation

slowed between days 16 and 18 in all treatments except 1641µatm, coinciding with nutrient

limitation. At day 18, the highest Chl a concentration was in the 506µatm exposed treatment

and lowest at 1641µatm.

The omnibus test among CO2 treatments of trends in Chl a over time indicated that the

accumulation of Chl a in at least one treatment differed significantly from that of the control

(F5,23 = 5.5, p = 0.002; Table A3.4). Examination of individual coefficients from the model

revealed that only the highest CO2 treatment, 1641µatm, was significantly different from the

control at the 5% level.

2.3.6 14C primary productivity

During the CO2 and light acclimation phase of the experiment (days 1-8), all treatments

displayed a steady decline in the maximum photosynthetic rate (Pmax) and the maximum

photosynthetic efficiency (↵) until the levels on day 8 were approximately half of those at the

beginning of the experiment, suggesting cellular acclimation to the light conditions (Fig. A3.3a,

b). Thereafter, relative to the control, Pmax and ↵ were lowest in CO2 levels �953µatm and

�634µatm, respectively. Rates of photoinhibition (�) and saturating irradiance (Ek) were

variable and did not differ among treatments (Fig. A3.3c, d). The average Ek across all

treatments was 28.7± 8.6µmol photonsm�2 s�1, indicating that the light intensity in the

minicosms was saturating for photosynthesis (see above) and not inhibiting

(�<0.002 mgC (mg Chl a)�1 (µmol photonsm�2 s�1)�1 h�1.

Chl a-specific primary productivity (csGPP14C) and gross primary production (GPP14C) were low

during the CO2 acclimation (days 1-5) and increased with increasing light climate after day 5.
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Rates of csGPP14C in treatments �634µatm CO2 were consistently lower than the control

between days 8 and 16, with the lowest rates in the highest CO2 treatment (1641µatm; Fig.

2.6a). Rates of GPP14C in treatments 953 were similar between days 8 and 16, with the 343

(control), 506, and 953µatm treatments increasing to 46.70± 0.34µg CL�1 h�1 by day 18 (Fig.

2.5b). Compared to these treatments, GPP14C in the 634µatm treatment was lower on day 18,

only reaching 39.7µgC L�1 h�1, possibly due to the concurrent limitation of NOx in this

treatment on day 16 (see above).

The omnibus test among tanks of the trends in CO2 treatments over time indicated that GPP14C

in at least one treatment differed significantly from the control (F5,23 = 4.9, p = 0.003; Table

A3.5). Examination of the significance of individual curve terms revealed that this manifested as

differences between the 1140 and 1641µatm treatments and the control group at the 5% level.

No other curves were different from the control. In particular, GPP14C in the 1641µatm treatment

was much lower until day 12, after which it increased steadily until day 16. Between days 16 and

18, a substantial increase in GPP14C was observed in this treatment, subsequently resulting in a

rate on day 18 that was similar to the 1140µatm treatment (36.30± 0.08µg CL�1 h�1), although

these treatments never reached rates of GPP14C as high as the control.

2.3.7 Gross community productivity

The productivity of the phytoplankton community increased over time in all CO2 treatments;

however, there were clear differences in the timing and magnitude of this increase between

treatments (Fig. 2.6b). A CO2 effect was evident on day 12 when Chl a-normalised gross O2

productivity rates (csGCPO2
) increased with increasing CO2 level, ranging from

19.5–248 mgO2 (mg Chl a)�1 h�1. After day 12, the communities in CO2 treatments 634µatm

continued to increase their rates of csGCPO2
until day 18 (97.7± 17.0 mgO2 (mg Chl a)�1 h�1).

The 953 and 1140µatm CO2 treatments peaked on day 12 (90.4 and

126 mgO2 (mg Chl a)�1 h�1, respectively) and then declined on day 14 to rates similar to the

control treatment. In contrast, the 1641µatm treatment maintained high rates of csGCPO2
from

days 12-14 (258.0± 13.8 mgO2 (mg Chl a)�1 h�1), coinciding with the recovery of

photosynthetic health (Fv/Fm; see below) and the initiation of growth in this treatment (see
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Figure 2.5: Phytoplankton biomass accumulation
and community primary production in each of the
minicosm treatments over time. (a) Chlorophyll
a (Chl a) concentration, (b) 14C-derived gross
primary production (GPP14C), and (c) O2-derived
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Figure 2.6: (a) 14C-derived Chl a-specific primary
productivity (csGPP14C) and (b) O2-derived Chl a-
specific community productivity (csGCPO2

) in each of
the minicosm treatments over time. Error bars display
one standard deviation of pseudoreplicate samples.
Grey shading indicates CO2 and light acclimation
period.
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above). After this time, rates of csGCPO2
declined in this treatment to rates similar to the

control. Despite these differences in csGCPO2
, there was no significant difference in the gross

community production (GCPO2
) among CO2 treatments (Fig. 2.5c).

2.3.8 Community photosynthetic efficiency

The community maximum quantum yield of PSII (Fv/Fm) showed a dynamic response over the

duration of the experiment (Fig. 2.7). Values initially increased during the low-light CO2

adjustment period but declined by day 8 when irradiance levels had increased. Between days 8

and 14, differences were evident in the photosynthetic health of the phytoplankton community

across the CO2 treatments, although by day 16 these differences had disappeared. Steady-state

light curves revealed that the community photosynthetic response did not change with

increasing CO2. The effective quantum yield of PSII (�F/Fm0) and NPQ showed no variability

with CO2 treatment (Fig. A3.5, A3.6). There was, however, a notable decline in overall NPQ in

all tanks with time, indicating an adjustment to the higher light conditions. Relative electron

transport rates (rETR) showed differentiation with respect to CO2 at high light

(1450µmol photonsm�2 s�1) on days 10-12. However, as seen with the Fv/Fm response, this

difference was diminished by day 18 (Fig. A3.6).
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Figure 2.7: Maximum quantum yield of PSII (Fv/Fm) in each of the minicosm treatments over time. Error bars display
one standard deviation of pseudoreplicate samples. Grey shading indicates CO2 and light acclimation period.
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2.3.9 Community CCM activity

There was a significant decline in the effective quantum yield of PSII (�F/Fm0) with the addition

of the iCA and eCA inhibitor EZA to both the large (�10µm, p = 0.02) and small (<10µm, p

<0.001) size fractions of the phytoplankton community exposed to the control (343µatm) CO2

treatment (Fig. 2.8). The addition of EZA to cells under high CO2 (1641µatm) had no effect

on �F/Fm0 for either size fraction. However, in the case of the small cells under high CO2 (Fig.

2.8b), �F/Fm0 was the same as that measured in the control CO2 in the presence of EZA. The

addition of AZA, which inhibits eCA only, had no effect for either CO2 treatment in the large-

celled community. In contrast, there was a significant decline in �F/Fm0 in the smaller fraction

in the control CO2 treatment (p <0.001), but no effect of AZA addition under high CO2. Again,

the high CO2 cells exhibited the same �F/Fm0 as those measured under the control CO2 in the

presence of AZA.
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Figure 2.8: Effective quantum yield of PSII (�F/Fm0) of (a) large (�10µm) and (b) small (<10µm) phytoplankton
in the control (343µatm) and high (1641µatm) CO2 treatments treated with carbonic anhydrase (CA) inhibitors. A
decline in �F/Fm0 with the application of inhibitor indicates CCM activity. C denotes the control treatment, which
received no CA inhibitor; AZA is the acetazolamide treatment, which blocks extracellular carbonic anhydrase; EZA is
the ethoxzolamide treatment, which blocks intracellular and extracellular carbonic anhydrase. Error bars display one
standard deviation of pseudoreplicate samples.

2.3.10 Bacterial abundance

During the 8-day acclimation period, bacterial abundance in treatments �634µatm increased

with increasing CO2, reaching 26.0–32.4⇥ 107 cells L�1 and remaining high until day 13 (Fig.

2.9a). Between days 7 and 13, bacterial abundances in CO2 treatments �953 were higher than

the control. In contrast, abundance remained constant in treatments 506µatm
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(20.6± 1.4⇥ 107 cells L�1) until day 11. Cell numbers rapidly declined in all treatments after

day 12, finally stabilising at 0.5± 0.2⇥ 107 cells L�1. An omnibus test among CO2 treatments of

the trends in bacterial abundance over time showed that changes in abundance in at least one

treatment differed significantly from the control (F5,185 = 9.8, p <0.001; Table A3.6).

Examination of individual coefficients from the model revealed that CO2 treatments �953µatm

were significantly different from the control at the 5% level.
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Figure 2.9: Bacterial abundance and community production in each of the minicosm treatments over time. (a) Bacterial
cell abundance and (b) 14C-derived gross bacterial production (GBP14C). Error bars display one standard deviation of
pseudoreplicate samples. Grey shading indicates CO2 and light acclimation period.

2.3.11 Bacterial productivity

Gross bacterial production (GBP14C) was low in all CO2 treatments (0.20± 0.03µgC L�1 h�1) and

changed little during the first 5 days of incubation (Fig. 2.9b). Thereafter it increased, coinciding

with exponential growth in the phytoplankton community. The most rapid increase in GBP14C was

observed in the 634µatm treatment, resulting in a rate twice that of all other treatments by day 18

(2.1µg CL�1 h�1). No difference was observed among other treatments, all of which increased to

an average rate of 1.1± 0.1µg C L�1 h�1 by day 18. Cell-specific bacterial productivity (csBP14C)

was low in all treatments (1.2± 0.5 fgC L�1 h�1) until day 14, with slower rates in treatments

�953µatm, likely due to high cell abundances observed in these treatments (Fig. A3.8). It then

increased from day 14, coinciding with a decline in bacterial abundance. Rates of csBP14C did not

differ among treatments until day 18, when the rate in the 634µatm treatment was higher than

all other treatments (0.5 pgC L�1 h�1).
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2.4 Discussion

Our study of a natural Antarctic phytoplankton community identified a critical threshold for

tolerance of CO2 between 953 and 1140µatm, above which photosynthetic health was

negatively affected and rates of carbon fixation and Chl a accumulation declined. Low rates of

primary productivity also led to declines in nutrient uptake rates and POM production, although

there was no effect of CO2 on C:N ratios, indicating that ocean acidification effects on the

phytoplankton community did not modify POM stoichiometry. Assessing the temporal trends of

Chl a, GPP14C, and PON against CO2 treatment revealed that the downturn in these parameters

occurred between 634 and 953µatm f CO2 and could be discerned following �12 days

incubation (Fig. 2.10). On the final day of the experiment (day 18), this CO2 threshold was less

clear and likely confounded by the effects of nutrient limitation (Westwood et al. 2018). In

contrast, bacterial productivity was unaffected by increased CO2. Instead, production coincided

with increased organic matter supply from phytoplankton primary productivity. In the following

sections these effects will be investigated further, with suggestions for possible mechanisms that

may be driving the responses observed.

2.4.1 Ocean acidification effects on phytoplankton productivity

The results of this study suggest that exposing phytoplankton to high CO2 levels can decouple

the two stages of photosynthesis (see also the discussion below). At CO2 levels �1140µatm, Chl

a-specific oxygen production (csGCPO2
) increased strongly yet displayed the lowest rates of Chl

a-specific carbon fixation (csGPP14C; Fig. 2.6). This mismatch in oxygen production and carbon

fixation is likely due to the two-stage process in the photosynthetic fixation of carbon (reviewed

in Behrenfeld et al. 2004). In the first stage, light-dependent reactions occur within the

chloroplast, converting light energy (photons) into the cellular energy products, adenosine

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH), producing O2

as a by-product. This cellular energy is then utilised in a second, light-independent pathway,

which uses the carbon-fixing enzyme RuBisCO to convert CO2 into sugars through the Calvin

cycle. However, under certain circumstances the relative pool of energy may also be consumed
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in alternative pathways, such as respiration and photoprotection (Behrenfeld et al. 2004; Gao

and Campbell 2014). Increases in energy requirements for these alternate pathways have been

demonstrated, where measurements of maximum photosynthetic rates (Pmax) and

photosynthetic efficiency (↵) display changes that result in no change to saturating irradiance

levels (Ek) (Behrenfeld et al. 2004; Behrenfeld et al. 2008; Halsey et al. 2010). This

"Ek-independent variability" was evident in our study, in which decreases in Pmax and ↵ were

observed in the high CO2 treatments, while Ek remained unaffected (Fig. A3.3).
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Figure 2.10: Temporal trends of (a) Chl a, (b) 14C-derived gross primary production (GPP14C), and (c) particulate
organic nitrogen (PON) against CO2 treatment. Grey shading indicates CO2 treatments �1140µatm.

This highlights an important tipping point in the phytoplankton community’s ability to cope

with the energetic requirements of maintaining efficient productivity under high CO2. While

studies on individual phytoplankton species have reported decoupling of the photosynthetic

pathway under conditions of stress, no studies to date on natural phytoplankton communities

have reported this response. Under laboratory conditions, stresses such as nutrient limitation

(Halsey et al. 2010) or a combination of high CO2 and light climate (Hoppe et al. 2015; Liu

et al. 2017) have been shown to induce such a response, in which isolated phytoplankton

species possess higher energy requirements for carbon fixation. In our study, the phytoplankton

community experienced a dynamic light climate due to continuous gentle mixing of the

minicosm contents, and although nutrients weren’t limiting, the phytoplankton in the higher
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CO2 treatments did show lower csGPP14C rates (Fig. 2.6a), which could be linked to higher

energy demand for light-independent processes. Since nutrients were replete and not a likely

source of stress, it follows that CO2 and light were likely the only sources of stress on this

community.

Increased respiration rates could account for the decreased carbon fixation rates measured. Thus

far, respiration rates are commonly reported as either unaffected or lower under increasing CO2

(Hennon et al. 2014; Trimborn et al. 2014; Spilling et al. 2016). This effect is generally attributed

to declines in cellular energy requirements via processes such as the down-regulation of CCMs,

which can result in observed increased rates of production (Spilling et al. 2016). Despite this,

decreased growth rates have been linked to enhanced respiratory carbon loss at high CO2 levels

(800–1000µatm) (Gao et al. 2012b). The contribution of community respiration rates to csGCPO2

was high and increased with increasing CO2 (Fig. A3.4). However, respiration rates were generally

proportional to the increase in O2 production (i.e. the ratio of production to respiration remained

constant across CO2 conditions), making it unlikely to be a significant contributor to the decline

in carbon fixation. Instead, high respiration rates were possibly a result of heterotrophic activity.

It has been suggested that the negative effects of ocean acidification are predominantly due to

the decline in pH and not the increase in CO2 concentration (e.g. McMinn et al. 2014; Coad

et al. 2016). A decline in pH with ocean acidification increases the hydrogen ion (H+)

concentration in the seawater and is likely to make it increasingly difficult for phytoplankton

cells to maintain cellular homeostasis. Metabolic processes, such as photosynthesis and

respiration, impact cellular H+ fluxes between compartments, making it necessary to

temporarily balance internal H+ concentrations through H+ channels (Taylor et al. 2012). Under

normal oceanic conditions (pH ⇠8.1), when the extracellular environment is above pH 7.8,

excess H+ ions generated within the cell are able to passively diffuse out of the cell through

these H+ channels. However, a lowering of the oceanic pH below 7.8 is likely to halt this passive

removal of internal H+, requiring the utilisation of energy-intensive proton pumps (Taylor et al.

2012) and thus potentially reducing the energy pool available for carbon fixation. While not

well understood, these H+ channels may also perform important cellular functions, such as

nutrient uptake, cellular signalling, and defense (Taylor et al. 2012). Our results are consistent

with this idea of a critical pH threshold, as significant declines in GPP14C were observed in
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treatments �1140µatm (Fig. 2.10), which are the CO2 treatments for which the pH ranged

from 7.69-7.45 (Fig. 2.2).

Despite the initial stress of high CO2 between days 8 and 12, the phytoplankton community

displayed a strong ability to adapt to these conditions. The CO2-induced reduction in Fv/Fm

showed a steady recovery between days 12 and 16, with all treatments displaying similarly high

Fv/Fm at day 16 (0.68-0.71; Fig. 2.7). This recovery in photosynthetic health suggests that the

phytoplankton community was able to acclimate to the high CO2 conditions, possibly through

cellular acclimation, changes in community structure, or most likely, a combination of both.

Cellular acclimations were observed in our study. A lowering of NPQ and a minimisation of the

CO2-related response to photoinhibition (rETR) at high light intensity suggested that PSII was

being down-regulated to adjust to a higher light climate (Fig. A3.6, A3.6). Decreased energy

requirements for carbon fixation were also observed in the photosynthetic pathway, resulting in

increases in GPP14C and Chl a accumulation rates (Fig. 2.5). Acclimation to increased CO2 has

been reported in a number of studies, resulting in shifts in carbon and energy utilisation

(Sobrino et al. 2008; Hopkinson et al. 2010; Hennon et al. 2014; Trimborn et al. 2014; Zheng

et al. 2015). Numerous photophysiological investigations on individual phytoplankton species

also report species-specific tolerances to increased CO2 (Gao et al. 2012a; Trimborn et al. 2013;

Gao and Campbell 2014; Trimborn et al. 2014), and a general trend toward smaller-celled

communities with increased CO2 has been reported in ocean acidification studies globally

(Schulz et al. 2017). Changes in community structure were observed with increasing CO2, with

taxon-specific thresholds of CO2 tolerance (Hancock et al. 2018). Within the diatom community,

the response was also related to size, leading to an increase in abundance of small (<20µm)

diatoms in the higher CO2 treatments (�953µatm). Therefore, the community acclimation

observed is likely driven by an increase in the growth of more tolerant species.

It is often suggested that the down-regulation of CCMs helps to moderate the sensitivity of

phytoplankton communities to increasing CO2. The carbon-fixing enzyme RuBisCO has a low

affinity for CO2 that is compensated for through CCMs that actively increase the intracellular

CO2 (Raven 1991; Badger 1994; Badger et al. 1998; Hopkinson et al. 2011). This process

requires additional cellular energy (Raven 1991) and numerous studies have suggested that the

energy savings from down-regulation of CCMs in phytoplankton could explain increases in rates
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of primary productivity at elevated CO2 levels (e.g. Cassar et al. 2004; Tortell et al. 2008a,

2010; Trimborn et al. 2013; Young et al. 2015). In Antarctic phytoplankton communities, Young

et al. (2015) showed that the energetic costs of CCMs are low and any down-regulation at

increased CO2 would provide little benefit. We found that the CCM component carbonic

anhydrase (CA) was utilised by the phytoplankton community at our control CO2 level

(343µatm) and was down-regulated at high CO2 (1641µatm; Fig. 2.8). Yet we saw no

promotion of primary productivity that coincided with this down-regulation. Thus, our data

support the previous studies showing that increased CO2 may alleviate energy supply

constraints but does not necessarily lead to increased rates of carbon fixation (Rost et al. 2003;

Cassar et al. 2004; Riebesell 2004).

Furthermore, size-specific differences in phytoplankton CCM utilisation were observed. The

absence of eCA activity in the large phytoplankton (�10µm; Fig. 2.8a) suggests that

bicarbonate (HCO –
3 ) was the dominant carbon source used by this fraction of the phytoplankton

community (Burkhardt et al. 2001; Tortell et al. 2008b). This is not surprising as direct

HCO –
3 uptake has been commonly reported among Antarctic phytoplankton communities

(Cassar et al. 2004; Tortell et al. 2008b, 2010). On the other hand, the small phytoplankton

(<10µm; Fig. 2.8b) seem to have used both iCA and eCA, implying that carbon for

photosynthesis was sourced through both the extracellular conversion of HCO –
3 to CO2 and

direct HCO –
3 uptake (Rost et al. 2003). Despite these patterns, CCM activity in this study was

only determined via Chl a fluorescence and therefore direct measurement of light-dependent

reactions in photosynthesis. This imposes limitations to the interpretability of this particular

data set, as CA is involved primarily in carbon acquisition, which occurs during photosynthetic

reactions that are independent of light.

The presence of iCA has also been proposed as a possible mechanism for increased sensitivity of

phytoplankton to decreased pH conditions. Satoh et al. (2001) found that the presence of iCA

caused strong intracellular acidification and inhibition of carbon fixation when a CO2-tolerant

iCA-expressing algal species was transferred from ambient conditions to very high CO2 (40%).

Down-regulation of iCA through acclimation in a 5% CO2 treatment eliminated this response,

with similar tolerance observed in an algal species with low ambient iCA activity. Thus, the down-

regulation of iCA activity at high CO2, as was seen in our study, may not only decrease cellular
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energy demands but may also be operating as a cellular protection mechanism, allowing the cell

to maintain intracellular homeostasis.

Contrary to the high CO2 treatments, the phytoplankton community appeared to tolerate CO2

levels up to 953µatm, which identified a CO2 threshold. Between days 8 and 14 we observed

a small and insignificant CO2-related decline in Fv/Fm, GPP14C, and Chl a accumulation among

the 343-953µatm treatments (Fig. 2.7, 2.10). Tolerance of CO2 levels up to ⇠1000µatm has

often been observed in natural phytoplankton communities in regions exposed to fluctuating

CO2 levels. In these communities, increasing CO2 often had no effect on primary productivity

(Tortell et al. 2000; Tortell and Morel 2002; Tortell et al. 2008a; Hopkinson et al. 2010; Tanaka

et al. 2013; Sommer et al. 2015; Young et al. 2015; Spilling et al. 2016) or growth (Tortell et al.

2008a; Schulz et al. 2013), although an increase in primary production has been observed in some

instances (Riebesell 2004; Tortell et al. 2008a; Egge et al. 2009; Tortell et al. 2010; Hoppe et al.

2013; Holding et al. 2015). These differing responses may be due to differences in community

composition, nutrient supply, or ecological adaptations of the phytoplankton community in the

region studied. They may also be due to differences in the experimental methods, especially the

range of CO2 concentrations employed (Hancock et al. 2018), the mechanism used to manipulate

CO2 concentrations, the duration of the acclimation and incubation, the nature and volume of the

mesocosms used, and the extent to which higher trophic levels are screened from the mesocosm

contents (see Davidson et al. 2016).

Previous studies in Prydz Bay report a tolerance of the phytoplankton community to CO2 levels up

to 750µatm (Davidson et al. 2016; Thomson et al. 2016; Westwood et al. 2018). Although these

experiments differed in nutrient concentration, community composition, and CO2 manipulation

from ours, when taken together, these studies demonstrate consistent CO2 effects throughout

the Antarctic summer season and across years in this location. The most likely reason for this

high tolerance is that these communities are already exposed to highly variable CO2 conditions.

CO2 naturally builds beneath the sea ice in winter, when primary productivity is low (Perrin et al.

1987; Legendre et al. 1992), and is rapidly depleted during spring and summer by phytoplankton

blooms, resulting in annual f CO2 fluctuations between ⇠50 and 500µatm (Gibson and Trull

1999; Roden et al. 2013). Thus, variable CO2 environments appear to promote adaptations within

the phytoplankton community to manage the stress imposed by fluctuating CO2.
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Changes in POM production and the C:N ratio in phytoplankton communities can have

significant effects on carbon sequestration and change their nutritional value for higher trophic

levels (Finkel et al. 2010; van de Waal et al. 2010; Polimene et al. 2016). We observed a decline

in POM at CO2 levels �1140µatm (Fig. 2.10), while changes in organic matter stoichiometry

(C:N ratio) appeared to be predominantly controlled by nutrient consumption (Fig. 2.4).

Increases in POM production were similar to Chl a accumulation, with declines in high CO2

treatments (�1140µatm) due to low rates of primary productivity. Carbon overconsumption

has been reported in some natural phytoplankton communities exposed to increased CO2,

resulting in observed or inferred increases in the particulate C:N ratio (Riebesell et al. 2007;

Engel et al. 2014). While in our study the C:N ratio did decline to below the Redfield ratio

during exponential growth, it remained within previously reported C:N ratios of coastal

phytoplankton communities in this region (Gibson and Trull 1999; Pasquer et al. 2010).

However, as we did not analyse the elemental composition of dissolved inorganic matter, carbon

overconsumption cannot be completely ruled out (Kähler and Koeve 2001). Therefore, it is

difficult to say whether or not changes in primary productivity will affect organic matter

stoichiometry in this region, particularly as any resultant long-term changes in community

composition to more CO2-tolerant taxa may also have an effect (Finkel et al. 2010).

2.4.2 Ocean acidification effects on bacterial productivity

In contrast to the phytoplankton community, bacteria were tolerant of high CO2 levels. The low

bacterial productivity and abundance of the initial community is characteristic of the

post-winter bacterial community in Prydz Bay where growth is limited by organic nutrient

availability (Pearce et al. 2007). Whilst an increase in cell abundance was observed at CO2

levels �634µatm (Fig. 2.9a), it was possible that this response was driven by a decline in

grazing by heterotrophs (Thomson et al. 2016; Westwood et al. 2018) instead of a direct

CO2-related promotion of bacterial growth. The subsequent decline in abundance was likely due

to top-down control from the heterotrophic nanoflagellate community, which displayed an

increase in abundance at this time (Hancock et al. 2018). Bacterial tolerance to high CO2 has

been reported previously in this region (Thomson et al. 2016; Westwood et al. 2018) and has

also been reported in numerous studies in the Arctic (Grossart et al. 2006; Allgaier et al. 2008;



CHAPTER 2. PRIMARY & BACTERIAL PRODUCTIVITY 74

Paulino et al. 2008; Baragi et al. 2015; Wang et al. 2016), suggesting that the marine bacterial

community will be resilient to increasing CO2.

While we detected an increase in bacterial productivity, this response appeared to be correlated

with an increase in Chl a concentration and available POM rather than CO2. Bacterial

productivity was similar among all CO2 treatments, except for a final promotion of productivity

at 634µatm on day 18 (Fig. 2.9b). This promotion of growth may be linked to an increase in

diatom abundance observed in this treatment (Hancock et al. 2018). The coupling of bacterial

growth with phytoplankton productivity has been reported by numerous studies on natural

marine microbial communities (Grossart et al. 2006; Allgaier et al. 2008; Engel et al. 2013;

Piontek et al. 2013; Sperling et al. 2013; Bergen et al. 2016). Thus, it is likely that the bacterial

community was controlled more by grazing and nutrient availability than by CO2 level.

2.5 Conclusions

These results support the identification of a tipping point in the marine microbial community

response to CO2 between 953 and 1140µatm. When exposed to CO2 �634µatm, declines in

growth rates, primary productivity, and organic matter production were observed in the

phytoplankton community and became significantly different at �1140µatm. Despite this, the

community displayed the ability to adapt to these high CO2 conditions by down-regulating

CCMs and likely adjusting other intracellular mechanisms to cope with the added stress of low

pH. However, the lag in growth and subsequent acclimation to high CO2 conditions allowed for

more tolerant species to thrive (Hancock et al. 2018).

Conditions in Antarctic coastal regions fluctuate throughout the seasons and the marine

microbial community is already tolerant to changes in CO2 level, light availability, and nutrients

(Gibson and Trull 1999; Roden et al. 2013). It is possible that phytoplankton communities

already exposed to highly variable conditions will be more capable of adapting to the projected

changes in CO2 (Schaum and Collins 2014; Boyd et al. 2016b). This will likely also include

adaptation at the community level, causing a shift in dominance to more tolerant species. This

has been observed in numerous ocean acidification experiments, with a trend in community
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composition favouring picophytoplankton and away from large diatoms (Davidson et al. 2016;

Reviewed in Schulz et al. 2017). Such a change in phytoplankton community composition may

have flow-on effects to higher trophic levels that feed on Antarctic phytoplankton blooms. It

could also have a significant effect on the biological pump, with decreased carbon drawdown at

high CO2, causing a negative feedback on anthropogenic CO2 uptake. Coincident increases in

bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial

loop, resulting in increased organic matter remineralisation and further declines in carbon

sequestration.
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3.1 Introduction

Oceanic uptake of anthropogenic CO2 has resulted in a ⇠0.1 unit decline in pH in the oceans

since pre-industrial times (Sabine 2004; Raven et al. 2005), with ⇠40% of this uptake occurring

in the Southern Ocean (Takahashi et al. 2012; Frölicher et al. 2015). In addition, the low overall

water temperature and naturally low CaCO3 saturation state make the Southern Ocean

particularly vulnerable to ocean acidification (Orr et al. 2005; McNeil and Matear 2008).

Coastal Antarctic waters are regions of high productivity, that provide an essential food source

for the abundance of life in Antarctica (Arrigo et al. 2008a). While large phytoplankton, such as

diatoms and dinoflagellates, are often believed to be responsible for most of the energy transfer

to higher trophic levels in this region, picophytoplankton, prokaryotes, mixotrophic

phytoflagellates, microheterotrophs, and heterotrophic nanoflagellates (HNF) also play

important roles in grazing and the carbon cycle (Azam et al. 1991; Sherr and Sherr 2002;

Smetacek et al. 2004).

Marine microbes are an essential part of the marine food web and are a critical link in

biogeochemical processes, such as the cycling of nutrients and carbon (Azam and Malfatti

2007). Globally, it is estimated that ⇠80-100% of daily primary production is either consumed

by grazers or lost via processes such as cell lysis and sinking (Behrenfeld 2014). Grazing can

profoundly affect phytoplankton abundance in marine ecosystems, with microzooplankton

consuming on average 60-75% of daily primary production (Landry and Calbet 2004) and HNF

grazing between 20-100% of daily bacterial production (Safi et al. 2007; Pearce et al. 2010).

Prokaryotes salvage dissolved organic matter released from phytoplankton primary production,

whish is returned to the food web upon grazing by HNF (Pearce et al. 2010; Buchan et al.

2014). Prokaryotes also produce essential micronutrients and vitamins required for

phytoplankton growth (Azam and Malfatti 2007; Buchan et al. 2014; Bertrand et al. 2015) and

are important in the supply of nutrients to microzooplankton in Antarctic waters over winter,

when primary productivity is low (Azam et al. 1991). This transfer of organic matter between

primary producers, prokaryotes (bacteria and Archaea), and protozoa forms the microbial loop,

upon which all life in the ocean relies (Azam et al. 1983; Fenchel 2008).
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In Antarctic waters, heterotrophic flagellates make a significant contribution to the top-down

control of phytoplankton and prokaryote productivity. They can achieve growth rates that

exceed that of their phytoplanktonic prey and their grazing can significantly alter the microbial

community composition (Bjørnsen and Kuparinen 1991; Archer et al. 1996; Pearce et al. 2010).

Heterotrophic flagellates, microzooplankton, and ciliates of all sizes (2–>200µm) have been

observed grazing on picophytoplankton 0.2–2µm and prokaryotes 0.1–5µm (Safi et al. 2007).

Despite their importance in marine ecosystems, they remain relatively unstudied (Caron and

Hutchins 2013). Difficulties in identification of HNF in natural seawater samples has no doubt

contributed to the scarcity of published studies (Rose et al. 2004). Of the few studies that have

included heterotrophic flagellates, most studies have focused on the larger microzooplankton

community (20–200µm), reporting no changes in abundance or grazing rates with elevated

CO2 (Suffrian et al. 2008; Aberle et al. 2013; Davidson et al. 2016). However, ocean

acidification effects on microzooplankton grazers may also be indirect, due to changes in the

abundance and composition of their prey (Rose et al. 2009a). Thomson et al. (2016), in their

Antarctic minicosm study, reported a negative effect of ocean acidification on HNF abundance

when CO2 concentrations were �750µatm. Species-specific responses to ocean acidification

have also been observed amongst choanoflagellates in the present study (Hancock et al. 2018),

exposing a hitherto unrecognised layer of complexity to predicting the effects of ocean

acidification on microbial communities.

When assessing ocean acidification studies globally, Schulz et al. (2017) reported a general

trend toward increased abundance of picophytoplankton with declining ocean pH. The

cyanobacterium Synechococcus and picoeukaryotes in the prasinophyte class were identified as

the key beneficiaries of increased CO2 levels, potentially through increased CO2 concentration

in the relatively small diffusive boundary layer of these small cells, allowing for down

regulation of energetically costly CO2 and HCO –
3 transporters into the cell (Beardall and

Giordano 2002). Unlike temperate oligotrophic ecosystems, cyanobacteria are rare in Antarctic

waters (Wright et al. 2009; Lin et al. 2012; Flombaum et al. 2013; Liang et al. 2016) meaning

the picophytoplankton in waters south of the Polar Front are composed largely of eukaryotes.

This group can comprise up to 33% of total phytoplankton biomass (Wright et al. 2009; Lin

et al. 2012). A minicosm study on natural communities of coastal Antarctic marine microbes
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observed an increase in picoeukaryote abundance at CO2 levels above 750µatm, although their

results suggested that this may have been due to a reduction in top-down control of the HNF

community, as opposed to a direct promotion of picoeukaryote growth (Thomson et al. 2016).

In natural marine microbial communities, prokaryotes have been shown to have a high

tolerance to ocean acidification, with little effect on abundance or productivity (Grossart et al.

2006; Allgaier et al. 2008; Paulino et al. 2008; Wang et al. 2016). Prokaryote abundance and

production is generally linked to increased primary production, with peaks in abundance often

occurring immediately after the peak of a phytoplankton bloom (Pearce et al. 2007; Buchan

et al. 2014). This is likely due to increased availability of dissolved organic matter, released by

phytoplankton during growth, viral lysis, or bacterial degradation of dead cells (Azam and

Malfatti 2007). A CO2-induced increase in the production of organic matter and the formation

of transparent exopolymer particles has been reported in a natural community Endres et al.

(2014). This promoted bacterial abundance and stimulated enzyme production for organic

matter degradation, suggesting that ocean acidification may increase the flow of carbon through

the microbial loop in surface waters Endres et al. (2014). Shifts in prokaryote community

composition have also been reported, although with no significant effect on total prokaryote

abundance (Roy et al. 2013; Zhang et al. 2013; Bergen et al. 2016). Instead, the composition

and abundance of prokaryote communities appear to be indirectly affected by ocean

acidification by altering biotic factors that influence their growth and mortality.

In our study, a natural community of marine microbes from Prydz Bay, East Antarctica was

exposed to increasing levels of CO2, up to 1641µatm, in 650 L minicosms. The abundance of

HNF, nano- and picophytoplankton, and prokaryotes was measured and the results used to

assess whether interactions between these communities could be inferred. A previous

community-level study in the Antarctic reported a decline in HNF abundance and an increase in

picophytoplankton and prokaryotic abundance when CO2 concentrations were �750µatm

(Davidson et al. 2016; Thomson et al. 2016; Westwood et al. 2018). We used a similar

experimental design to Thomson et al. (2016) but added an initial CO2 acclimation period at

low light to determine whether this acclimation would alter the response previously reported.
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3.2 Methods

3.2.1 Minicosm

A natural microbial assemblage from Prydz Bay, Antarctica was incubated in six 650 L polythene

tanks (minicosms) and exposed to six CO2 treatments; ambient (343µatm), 506, 634, 953,

1140, and 1641µatm. Before commencement of the experiment, all minicosms were acid

washed with 10% vol:vol AR HCl, rinsed thoroughly with MilliQ water, and finally rinsed with

seawater from the sampling site. Seawater to fill the minicosms was collected from amongst the

decomposing fast ice in Prydz Bay at Davis Station, Antarctica (68° 35 0 S 77° 58 0 E) on 19th

November, 2014. A 7000 L polypropylene reservoir tank was filled by helicopter, using multiple

collections in a thoroughly rinsed 720 L Bambi bucket. The seawater was then gravity fed from

the reservoir to the minicosms through Teflon-lined hose, fitted with a 200µm pore size Arkal

filter to exclude metazooplankton that would significantly graze the microbial community.

Microscopic analysis showed that very few metazooplankton and nauplii passed through the

pre-filter and they were seldom observed throughout the experiment (see Hancock et al. 2018).

Thus, it is unlikely that their grazing effected the CO2-induced trends in community

composition in our study. All minicosms were filled simultaneously to ensure uniform

distribution of microbes.

The six minicosms were housed in a temperature-controlled shipping container, with the water

temperature in each minicosm maintained at 0.0± 0.5 �C. The temperature in each minicosm

was maintained by offsetting the cooling of the shipping container against warming of the tank

water with two 300 W Fluval aquarium heaters connected via Carel temperature controllers and

a temperature control program. Each minicosm was sealed with an acrylic lid and the water was

gently mixed by a shielded high-density polyethylene auger, rotating at 15 rpm.

Minicosms were illuminated by two 150 W HQI-TS (Osram) metal halide lamps on a 19:5 h

light:dark cycle. Low intensity light (0.90± 0.22µmolphotons m�2 s�1) was provided for the

first 5 d to slow phytoplankton growth while the CO2 levels were gradually raised to the target

concentration for each minicosm (see below). Following this 5 d CO2 acclimation period, light
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was progressively increased over 2 d to a final light intensity of

90.5± 21.5µmol photonsm�2 s�1. The microbial assemblages were then incubated for 10 d with

samples taken at regular intervals (see below) and no further addition of seawater or nutrients.

For further details on minicosm setup see Deppeler et al. (2018b).

3.2.2 Carbonate chemistry calculation and manipulation

Carbonate chemistry was measured throughout the experiment, allowing the fugacity of CO2

( f CO2) to be manipulated to the desired values over the first 5 d of acclimation and then

maintained for the remainder of the experiment. Samples were taken daily from each minicosm

in 500 mL glass-stoppered bottles (Schott Duran) following the guidelines of Dickson et al.

(2007), with sub-samples for dissolved inorganic carbon (DIC, 50 mL glass-stoppered bottles)

and pH on the total scale (pHT , 100 mL glass stoppered bottles) gently pressure filtered

(0.2µm) following Bockmon and Dickson (2014). For each minicosm, DIC was measured in

triplicate by infrared absorption on an Apollo SciTech AS-C3 analyser equipped with a Li-cor

LI-7000 detector calibrated with five prepared sodium carbonate standards (Merck Suprapur)

and daily measurements of a certified reference material batch CRM127 (Dickson 2010). DIC

measurements were converted to µmolkg�1 using calculated density from known sample

temperature and salinity.

Measurements of pHT were performed using the pH indicator dye m-cresol purple (Acros

Organics) following Dickson et al. (2007) and measured by a GBC UV-vis 916

spectrophotometer at 25 �C in a 10 cm thermostated cuvette. A syringe pump (Tecan Cavro XLP

6000) was used for sample delivery, dye addition, and mixing to minimise contact with air. An

offset for dye impurities and instrument performance (+0.003 pH units) was determined

through measurement of pHT of CRM127 and comparison with the calculated pHT from known

DIC and total alkalinity (TA), including silicate and phosphate. Salinity was measured in situ

using a WTW197 conductivity meter and used with measured DIC and pHT to calculate

practical alkalinity (PA) at 25 �C, using the dissociation constants for carbonic acid determined

by Mehrbach et al. (1973) and Lueker et al. (2000). Total carbonate chemistry speciation was

then calculated for in situ temperature conditions from measured DIC and calculated PA.
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During the acclimation period, the f CO2 in each minicosm was adjusted daily in increments

until the target level was reached, after which f CO2 was kept as constant as possible for the

remainder of the experiment. Twice-daily measurements of pH were performed in the morning

(before sampling) and the afternoon using a portable, NBS-calibrated probe (Mettler Toledo)

to determine the amount of DIC to be added to the minicosm. Adjustment of the f CO2 in each

minicosm was performed by addition of a calculated volume of 0.2µm filtered CO2-saturated

natural seawater to 1000 mL infusion bags and drip-fed into the minicosms at ⇠50 mLmin�1.

One minicosm was maintained close to the f CO2 of the initial (ambient) sea water (343µatm)

and was used as the control treatment, against which the effects of elevated f CO2 were measured.

The mean f CO2 levels in the other five minicosms were 506, 634, 953, 1140, and 1641µatm.

For further details of the carbonate chemistry sampling methods, calculations, and manipulation

see Deppeler et al. (2018b).

3.2.3 Nutrient analysis

Concentrations of the macronutrients nitrate plus nitrite (NOx), soluble reactive phosphorus

(SRP), and molybdate reactive silica (silicate) were measured in each minicosm during the

experiment. Samples were taken on days 1, 3, and 5 during the CO2 acclimation period and

every 2 days for the remainder of the experiment (days 8-18). Samples were obtained following

the protocol of Davidson et al. (2016). Briefly, seawater samples were filtered through 0.45µm

Sartorius filters into 50 mL Falcon tubes and frozen at �80 �C for analysis in Australia.

Determination of the concentration of NOx, SRP, and silicate were performed by Analytical

Services Tasmania, using flow injection analysis.

3.2.4 Flow cytometry

Flow cytometric analyses were performed daily to determine the abundance of small protists

(HNF, pico- and nanophytoplankton, and prokaryotes) in each minicosm during the experiment.

Samples were pre-filtered through a 50µm mesh (Nitex), stored in the dark at 4 �C, and analysed

within 6 h of collection, following Thomson et al. (2016). Samples were analysed using a Becton

Dickinson FACScan or FACSCalibur flow cytometer fitted with a 488 nm laser. MilliQ water was
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used as sheath fluid for all analysis. The analysed volume for each flow cytometer was calibrated

to the sample run time and flow rate and was used to calculate final cell concentrations from

event counts on bivariate scatter plots. PeakFlow Green 2.5µm beads (Invitrogen) were added

to samples as an internal fluorescence and size standard.

(a) (b)

FL
3

FL
3

SSCFL2

Figure 3.1: Nano- and picophytoplankton regions identified by flow cytometry. (a) Two separate regions identified
based on red (FL3) versus orange (FL2) fluorescence scatter plot. (b) Picophytoplankton (R1) and nanophytoplankton
(R2) communities determined from side scatter (SSC) versus FL3 fluorescence scatter plot. PeakFlow Green 2.5µm
beads (R3) used as fluorescence and size standard.

Pico- and nanophytoplankton abundance

Three pseudoreplicate 1 mL samples for pico- and nanophytoplankton abundance were

prepared from each minicosm seawater sample. Each sample was placed in a beaker of ice and

run for 3 min at a high flow rate of ⇠40µLmin�1 for FACScan and ⇠70µLmin�1 for

FACSCalibur, resulting in an analysed volume of 0.1172 and 0.2093 mL, respectively.

Phytoplankton populations were separated into regions based on their chlorophyll

autofluorescence in bivariate scatter plots of red (FL3) versus orange fluorescence (FL2) (Fig.

3.1a). The pico- and nanophytoplankton communities were determined from relative cell size in

side scatter (SSC) versus FL3 fluorescence bivariate scatter plots (Fig. 3.1b). Final cell counts in

cells L�1 were calculated from event counts in the phytoplankton regions and analysed volume.
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Figure 3.2: LysoTracker Green-stained heterotrophic nanoflagellates identified by flow cytometry. (a) Phytoplankton
identified based on red (FL3) versus orange (FL2) fluorescence scatter plots. (b) Detritus particles identified from
high side scatter (SSC) versus LysoTracker Green fluorescence (FL1). (c) PeakFlow Green 2.5µm beads identified
from high FL1 versus low red (FL3) fluorescence. (d) Phytoplankton and detritus from (a) and (b) removed from
FL1 and forward scatter (FSC) plot and remaining LysoTracker Green-stained particles >2.5µm were counted as
heterotrophic nanoflagellates.
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Figure 3.3: Prokaryote regions identified by flow cytometry. (a) SYBR-Green I-stained high DNA (HDNA) and low
DNA (LDNA) prokaryote regions identified from side scatter (SSC) versus green fluorescence (FL1) scatter plots. (b)
Prokaryote cells determined from high FL1 versus low red (FL3) fluorescence. PeakFlow Green 2.5µm beads used as
fluorescence and size standard.
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Heterotrophic nanoflagellate abundance

Heterotrophic nanoflagellate (HNF) abundance was determined using LysoTracker Green

(Invitrogen) staining following the protocol of Thomson et al. (2016). A 1:10 working solution

of LysoTracker Green was prepared daily by diluting the commercial stock into 0.22µm filtered

seawater. For each minicosm sample, 10 mL of seawater was stained with 7.5 mL of working

solution to a final stain concentration of 75 nM. Stained samples were then incubated in the

dark on ice for 10 min. Triplicate 1 mL sub-samples were taken from the stained sample and run

for 10 min at a high flow rate of ⇠40µL min�1 for FACScan and ⇠70µL min�1 for FACSCalibur,

resulting in an analysed volume of 0.4153 and 0.7203 mL, respectively.

LysoTracker Green stained HNF abundances were determined in green fluorescence (FL1)

versus forward scatter (FSC) plots after removal of phytoplankton and detritus particles

following Rose et al. (2004) and Thomson et al. (2016) and shown in Fig. 3.2. Phytoplankton

were identified by high chlorophyll autofluorescence in bivariate scatter plots of FL3 versus FL2

fluorescence (Fig. 3.2a) and detritus was identified by high SSC in FL1 fluorescence versus SSC

plots (Fig. 3.2b). HNF abundance was then determined in a bivariate plot of FL1 fluorescence

versus FSC with phytoplankton and detritus particles removed. Remaining particles larger than

the 2.5µm PeakFlow Green beads were counted as HNF (Fig. 3.2c). Final cell counts in cells L�1

were calculated from event counts and analysed volume.

Prokaryote abundance

Samples for prokaryote abundance were stained for 20 min with 1:10,000 dilution SYBR Green

I (Invitrogen) following Marie et al. (2005). Three pseudoreplicate 1 mL samples were prepared

from each minicosm seawater sample and were run for 3 min at a low flow rate

(⇠12µLmin�1), resulting in an analysed volume of 0.0260 and 0.0491 mL on the FACScan and

FACSCalibur, respectively. Prokaryote abundance was determined from SSC versus FL1

fluorescence bivariate scatter plots (Fig. 3.3). Final cell counts in cells L�1 were calculated from

event counts and analysed volume.
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3.2.5 Statistical analysis

Microbial community growth in the minicosms was measured in six unreplicated f CO2

treatments and thus, sub-samples from individual minicosms represent within-treatment

pseudoreplicates. Therefore, means and standard error of these pseudoreplicate samples only

provide the within-treatment sampling variability for each procedure. For the purpose of

analysis, we treated pseudoreplicates as independent to provide an informal assessment of the

difference among treatments. A curved (quadratic) regression model was fitted to each CO2

treatment over time for all analyses using the Stats package in R (R Core Team 2016), with an

omnibus test of differences between the trends in CO2 treatments over time assessed by ANOVA.

Growth rates were calculated from linear regression on the region that marked steady-state

logarithmic growth and the differences between the trends in CO2 treatments over time was

assessed by ANOVA. For peak abundance measurements, differences between treatments were

tested by one-way ANOVA, followed by a post-hoc Tukey test to determine which treatments

differed. The lack of replication in our study and limited number of time points at which each

minicosm was sampled means that the trends within treatments are indicative and the

statistical differences among treatments should be interpreted conservatively. The significance

level for all tests was set at <0.05.

3.3 Results

3.3.1 Carbonate chemistry

The carbonate chemistry of the initial seawater was measured as a pHT and DIC of 8.08 and

2187µmol kg�1, respectively, resulting in a calculated f CO2 of 356µatm and a PA of

2317µmol kg�1 (Fig. 3.4, A4.1; Table A4.1). Measurements of carbonate chemistry during the

acclimation period showed a stepwise increase in f CO2, after which the CO2 level remained

largely constant, with treatments ranging from 343 to 1641µatm and a pHT range from 8.1 to

7.45 (Fig. 3.4; Table 3.1). Some decline in f CO2 was observed in the high CO2 treatments

towards to the end of the experiment indicating that the addition of CO2-saturated seawater
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was insufficient to fully compensate for its out-gassing into the headspace and drawdown by

phytoplankton photosynthesis.

3.3.2 Nutrients

There was little variance in nutrient concentrations among all treatments at the start of the

experiment (Table A4.1). Concentrations of NOx fell from 26.20± 0.74µM on day 8 to below

detection limits on day 18 (Fig. 3.5a), with the 1641µatm treatment being drawn down the

slowest. SRP concentrations were drawn down in a similar manner as NOx, falling from

1.74± 0.02µM to 0.13± 0.03µM on day 18 in all treatments (Fig. 3.5b). Silicate was replete

throughout the experiment in all treatments, with initial concentrations of 60.00± 0.91µM

falling to 43.60± 2.45µM (Fig. 3.5c). Silicate draw-down was highest in the 634µatm and

lowest in the 1641µatm treatment.

3.3.3 Picophytoplankton abundance

Picophytoplankton abundance did not change during the CO2 acclimation period and remained

at ⇠2.00± 0.02⇥ 106 cells L�1. Cell abundance increased in all treatments from day 8, with a

significantly enhanced growth rate in the 953µatm treatment when compared with the control

(Table 3.2, 3.3). Abundance peaked on day 12 in treatments 506µatm at

5.50± 0.61⇥ 106 cells L�1 but continued to rise in treatments �634µatm until day 13 (Fig.

3.6a). Despite a faster growth rate in the 953µatm treatment, peak abundance in this treatment

was similar to the 1641µatm treatment (7.80± 0.05⇥ 106 cells L�1), while the 634 and

1140µatm treatments peaked at a slightly lower abundance of 6.90± 0.02⇥ 106 cells L�1 (Fig.

3.6a). After reaching their peak, cell numbers rapidly declined in all treatments until day 18,

falling to 0.80± 0.03⇥ 106 cells L�1. The 506µatm treatment was excluded from analysis on

day 18 due to very high background noise on the flow cytometer, resulting in artificially

elevated event counts.
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Table 3.1: Mean carbonate chemistry conditions in minicosms

Tank f CO2
(µatm)

pHT DIC
(µmol kg�1)

PA
(µmolkg�1)

1 343 ± 30 8.10 ± 0.04 2188 ± 6 2324 ± 11
2 506 ± 43 7.94 ± 0.03 2243 ± 8 2325 ± 10
3 634 ± 63 7.85 ± 0.04 2270 ± 5 2325 ± 12
4 953 ± 148 7.69 ± 0.07 2314 ± 11 2321 ± 11
5 1140 ± 112 7.61 ± 0.04 2337 ± 5 2320 ± 10
6 1641 ± 140 7.45 ± 0.04 2377 ± 8 2312 ± 10

Data are mean ± one standard deviation of triplicate pseudoreplicate measurements
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Figure 3.4: The (a) pH on the total scale (pHT )
and (b) fugacity of CO2 ( f CO2) carbonate chemistry
conditions in each of the minicosm treatments
over time. Grey shading indicates CO2 and light
acclimation period.

Figure 3.5: Nutrient concentration in each of the
minicosm treatments over time. (a) Nitrate + nitrite
(NOx), (b) soluble reactive phosphorus (SRP), and
(c) molybdate reactive silica (Silicate). Grey shading
indicates CO2 and light acclimation period.
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Figure 3.6: Abundance of (a) picophytoplankton, (b) nanophytoplankton, (c) heterotrophic nanoflagellates, and (d)
prokaryotes in each of the minicosm treatments over time. Error bars display standard error of pseudoreplicate
samples. Grey shading indicates CO2 and light acclimation period.

Abundance curves for each CO2 treatment were modelled from days 8 to 18, excluding the

acclimation period when no growth occurred. The omnibus test of trends in picophytoplankton

abundance among CO2 treatments over time indicated there was no significant difference

among treatments (Table 3.2, A4.2). However, examination of the model fits showed that whilst

there was a reasonable fit to the data set (Adjusted R2 = 0.82; Table 3.2), the constraints of

limited data meant that the high abundance values between days 12-14 in the treatments

�634µatm were not well fitted (Fig. A4.2). Despite this, the models did show the general trend

of increased abundance in treatments �634µatm. Analysis of the differences between peak

abundances revealed that CO2 treatments �634µatm reached significantly higher maximum

abundances than the control, while the 506µatm treatment was significantly lower (Fig. 3.7a).
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Table 3.2: ANOVA results comparing trends in each CO2 treatment over time against the control

F Adjusted
R2

Day:506
p-value

Day:634
p-value

Day:953
p-value

Day:1140
p-value

Day:1641
p-value

Modelled growth curves
Pico F12,182 = 74.6 0.82 0.38 0.80 0.57 0.76 0.08
Nano F12,311 = 478.8 0.95 0.47 <0.01 0.01 0.10 0.78
HNF F12,307 = 634.3 0.96 0.15 0.88 0.99 <0.01 <0.01
Prok F12,256 = 131.5 0.85 0.39 0.49 <0.05 0.04 0.08

Steady-state growth rate
Pico F11,81 = 144.7 0.95 0.71 0.12 <0.01 0.48 0.98
Nano F11,132 = 611.1 0.98 0.34 <0.01 0.29 <0.05 0.01
HNF F11,131 = 518.6 0.98 0.02 0.30 0.32 0.39 0.02
Prok F11,113 = 12.94 0.51 0.52 0.17 <0.01 <0.01 <0.01

Bold text denotes significant p-values (<0.05). Pico; picophytoplankton, Nano; nanophytoplankton, HNF;
heterotrophic nanoflagellates, Prok; prokaryotes.

Table 3.3: Steady-state logarithmic growth rates in CO2 treatments

343
µatm

506
µatm

634
µatm

953
µatm

1140
µatm

1641
µatm

Pico 0.25 0.26 0.29 0.32 0.23 0.25
Nano 0.26 0.25 0.32 0.27 0.28 0.29
HNF 0.36 0.32 0.38 0.37 0.34 0.40
Prok 0.00 0.01 0.02 0.07 0.07 0.07

Bold text denotes growth rates significantly different to the control (343µatm, p <0.05).
Pico; picophytoplankton, Nano; nanophytoplankton, HNF; heterotrophic nanoflagellates, Prok;
prokaryotes.

3.3.4 Nanophytoplankton abundance

Nanophytoplankton abundance declined during the CO2 acclimation period in all treatments,

falling from a mean initial abundance of 1.20± 0.03⇥ 106 cells L�1 to

0.90± 0.02⇥ 106 cells L�1 on day 7. Following acclimation, nanophytoplankton abundance

increased in treatments 953µatm until day 18, while treatments �1140µatm remained low

through to day 9 before increasing (Fig. 3.6b, A4.3). Analysis of steady-state logarithmic growth

rates revealed that growth rates in the 634, 1140, and 1641µatm treatments were significantly

higher than the control (Table 3.2, 3.3). In spite of this, comparison of the trends between

modelled abundance curves for each CO2 treatment indicated that the 634 and 953µatm

treatments were significantly enhanced compared to the control (Table 3.2, A4.3). In the
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634µatm CO2 treatment, elevated nanophytoplankton abundance was observed from day 12

through to day 18, reaching a final abundance of 15.0± 0.4⇥ 106 cells L�1 (Fig. 3.6b). Despite

lower abundance on days 8-9, enhanced growth rates in treatments �1140µatm led to final

abundances similar to the 953µatm treatment on day 18, reaching 12.0± 0.5⇥ 106 cells L�1

(Fig. 3.6b, A4.3). The lowest nanophytoplankton abundance on day 18 was in the CO2

treatments 506µatm, which were 10.0± 0.3⇥ 106 cells L�1.

3.3.5 Heterotrophic nanoflagellate abundance

HNF abundance was initially low (0.90± 0.04⇥ 105 cells L�1) and remained at a similar

abundance throughout the CO2 acclimation period. Abundance increased from day 8 in all

treatments, but by day 9 was lower in CO2 treatments �634µatm than 506µatm treatments,

at 1.90± 0.08⇥ 105 cells L�1 and 2.90± 0.18⇥ 105 cells L�1, respectively and remained lower

until day 15 (Fig. 3.6c). Growth rate analysis between days 8 and 15 revealed that growth rates

were significantly slower in the 506µatm treatment and significantly faster in the 1641µatm

treatment, when compared with the control treatment (Table 3.2, 3.3). From day 15 to 18, the

control, 634, and 953µatm treatments continued to rise, reaching 3.20± 0.07⇥ 106 cells L�1,

while abundance in the 506µatm treatment stabilised between days 16 and 18, reaching

2.60± 0.95⇥ 106 cells L�1. HNF abundance remained lower than the control in the 1140 and

1641µatm, reaching abundances on day 18 of 2.10± 0.02⇥ 106 and 2.50± 0.11⇥ 106 cells L�1,

respectively (Fig. 3.6c). The omnibus test among modelled abundance curves for each CO2

treatment over time indicated that HNF abundance in at least one treatment differed

significantly from the control (Table 3.2, A4.4). Examination of the significance of individual

curve terms revealed that this reflected the significantly lower abundance of HNF in these two

highest CO2 treatments (1140 and 1641µatm; Table 3.2).

3.3.6 Prokaryote abundance

Prokaryote abundance increased in CO2 treatments �634µatm during the acclimation period,

with growth rates in treatments �953µatm significantly higher than the control between days 4

and 8 (Table 3.2, 3.3). In contrast, abundance in treatments treatments 506µatm remained
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unchanged (Fig. 3.6d). Between days 7 and 11, prokaryote abundance remained steady in all

treatments, with abundances in treatments �634 significantly higher than the control (Fig. 3.7).

During this time, the mean abundance was 3.09± 0.02⇥ 108 cells L�1 for treatments

�953µatm, 2.47± 0.02⇥ 108 cells L�1 in the 634µatm treatment, and

2.07± 0.03⇥ 108 cells L�1 in treatments 506µatm (Fig. 3.6d). After day 12, prokaryote

abundance declined in all treatments, falling to 0.60± 0.06⇥ 107 cells L�1 by day 17.

Prokaryote abundance curves were modelled for each CO2 treatment from days 4 to 18,

excluding days 2 and 3 when no growth occurred. There was no significant difference between

CO2 treatments in the omnibus test among modelled abundance curves (Table A4.5) but curves

for the 953 and 1140µatm treatments differed significantly from the control (Table 3.2). In a

similar manner to the picophytoplankton data, the models did not well represent the high

values in the treatments �953µatm (Fig. A4.2). Whilst no significant differences were reported

for the 634 and 1641µatm treatments, the general trend in the modelled curves did follow that

of the analysis, with increased abundance in all treatments �634µatm.

3.3.7 Microbial community interaction

Although grazing experiments were not performed, the co-occurrence of slowed HNF growth

with increased picophytoplankton and prokaryote abundance in CO2 treatments �634µatm

suggests that the picophytoplankton and prokaryote communities were released from grazing

pressure. Growth rates of prokaryotes and picophytoplankton were compared with HNF

abundance on day 8 and 13, respectively, to examine whether trophic interactions could be

inferred. Picophytoplankton had a negative but non-significant trend (Fig. 3.8a; Table A4.6),

while prokaryotes displayed a significant negative trend with HNF abundance (Fig. 3.8b; Table

A4.7). This suggests that reduced HNF abundance reduced grazing mortality of the

picoplankton community. This hypothesis was further supported by the observation that above a

threshold HNF abundance there was a rapid decline in both the picophytoplankton and

prokaryote abundance, irrespective of treatment and the duration of incubation. For

picophytoplankton, this decline occurred when HNF abundance reached

0.84± 0.02⇥ 106 cells L�1 (Fig. 3.9a) and for prokaryotes it occurred after HNF abundance
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Figure 3.7: Peak abundances of (a) picophytoplankton and (b) prokryotes in each of the minicosm treatments.
Letters indicate significantly different groupings assigned by post-hoc Tukey test. Error bars display standard error
of pseudoreplicate samples.
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Figure 3.9: Heterotrophic nanoflagellate abundance on the day before (a) picophytoplankton and (b) prokaryote
abundance declined in each of the minicosm treatments. Error bars display standard error of pseudoreplicate samples
of heterotrophic nanoflagellates (grey) and picophytoplankton/prokaryotes (black). Dotted line indicates threshold
of heterotrophic nanoflagellate abundance of (a) 0.84± 0.02⇥ 106 cells L�1 and (b) 0.31± 0.02⇥ 106 cells L�1.
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reached 0.31± 0.02⇥ 106 cells L�1 (Fig. 3.9b). Interestingly, the decline in picophytoplankton

and prokaryote abundances in the CO2 treatments �634µatm was greater than the control and

506µatm treatments. However, this provided no benefit to HNF abundance in these treatments,

which never surpassed that of the control (Fig. 3.6c).

3.4 Discussion

Mesocosm experiments are useful in assessing the effects of environmental perturbations on

multiple trophic levels of a marine ecosystem (Riebesell et al. 2008). Our results suggest that

there are both direct effects of elevated CO2 on nanophytoplankton and indirect effects of

trophic interactions occurring between HNF and their picoplanktonic prey that can significantly

alter the composition and abundance of organisms at the base of the food web.

Exposing cells to a gradual change in CO2 during an acclimation period allows cells an

opportunity to adjust their physiology to environmental change and may alleviate some of the

stress experienced when changes are imposed rapidly (Dason and Colman 2004). However,

little is known about the time scales required for the changes in physiology necessary to

optimise cellular tolerance of CO2-induced stress. In addition, acclimating cells over the years to

decades anticipated for anthropogenic ocean acidification is unachievable in most experimental

designs. Acknowledging these limitations, a gradual increase in f CO2 over 5 days was included

in this study to assess whether acclimation would moderate the previously observed response of

Antarctic microbial communities exposed to rapid changes in CO2 (Davidson et al. 2016;

Thomson et al. 2016; Westwood et al. 2018).

The results of the current study were similar to those reported previously (Davidson et al. 2016;

Thomson et al. 2016; Westwood et al. 2018) that lacked acclimation. Thus, it appears that an

acclimation period had no discernible effect on the response of the community to enhanced

CO2. Hancock et al. (2018) did observe a significant change in microbial community

composition in all treatments between days 1 and 3 but no further change in community

composition was found between any of the treatments during the acclimation. Therefore, they

attributed this initial change to acclimation of the community to the minicosm tanks and not a
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response to increasing CO2. This lack of acclimation may be due to ineffectiveness of the

acclimation we used or to the highly variable CO2 experienced by the marine microbial

community at the study site. Here, CO2 levels have been measured to vary by ⇠450µatm

throughout the year, with highest CO2 levels experienced at the end of winter and strong CO2

draw-down occurring in the Austral summer (Gibson and Trull 1999; Roden et al. 2013).

Marine organisms exposed to highly variable environments have been shown to be more

tolerant of changes in CO2 (Boyd et al. 2016b) and have also been demonstrated in this region

(e.g Thomson et al. 2016; Deppeler et al. 2018b).

It is also possible that the acclimation under low light conditions did not allow the cells to adjust

their physiology effectively and that much of the acclimation occurred after the light levels were

increased. Indeed, phytoplankton cell health (measured by photochemical quantum yield; Fv/Fm)

was high during the low light acclimation period and a CO2-induced decline in health was only

observed when light intensity was increased between days 5 and 8 (see Deppeler et al. 2018b).

Synergistic effects of CO2 and light stress have been observed in a number of phytoplankton

studies, with declines in growth, productivity, and cell health (Fv/Fm) reported under a combined

high CO2 and light intensity (Gao et al. 2012a,b; Li et al. 2015; Trimborn et al. 2017, e.g.). In our

study, the phytoplankton community did appear to acclimate to this light and CO2 stress, with

Fv/Fm increasing in all treatments after day 12 (Deppeler et al. 2018b). Consequently, it is likely

that the acclimation was either incomplete or ineffective. Despite this, the similarity of our results

with those previously reported does allow us to gain a more comprehensive understanding of the

seasonal and temporal effects of ocean acidification on the marine microbial community in this

region.

3.4.1 Heterotrophic nanoflagellates

Our study indicates that HNF abundance is negatively affected by elevated CO2. This contrasts

with the study by Moustaka-Gouni et al. (2016), who found no effect of CO2 on the HNF

community when exposed to levels up to 1040 ppm. As HNF cells are difficult to identify by

microscopy in fixed samples (Sherr et al. 1993; Sherr and Sherr 1993), we were unable to

determine whether the reduction in HNF abundance and differences in growth rates among
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treatments were due to CO2-induced effects on the entire HNF community or if species-specific

sensitivities changed the community composition. Hancock et al. (2018) reported a CO2-related

change in the relative abundances of two choanoflagellate species at CO2 levels �634µatm (see

4.4 below) and thus, it is possible that other CO2-induced changes to HNF community

composition may have occurred. Previous experiments in Prydz Bay, Antarctica also reported a

reduction in HNF abundance when CO2 was �750µatm in both high and low nutrient

conditions (Thomson et al. 2016). The consistency of these results over the Austral summer and

between years suggests that if CO2 emissions continue to increase at rates similar to the IPCC

RCP8.5 projections, the abundance and composition of HNF communities may change around

2050 (IPCC 2013).

Increased top-down control by heterotrophic dinoflagellates and ciliates on the HNF community

may have led to the lower abundance of HNF in the high CO2 treatments. However, this was

unlikely as Hancock et al. (2018) saw no effect of CO2 on the composition or abundance of the

microheterotrophic community in our study. Few other studies have investigated the effect of

ocean acidification on heterotrophic protists and as yet there are no reports of direct effects of

elevated CO2 on microheterotrophic grazing rates, abundance, or taxonomic composition

(Suffrian et al. 2008; Aberle et al. 2013). One study by Rose et al. (2009b) did report an

increase in microzooplankton abundance when a natural North Atlantic microbial community

was exposed to high CO2 (690 ppm). However, this increased abundance was thought to be an

indirect effect of CO2-induced promotion of phytoplankton abundance and a change in the

phytoplankton community composition, as opposed to a direct effect of ocean acidification on

microzooplankton physiology.

It is difficult to evaluate the potential reasons for reduced abundance in the HNF community in

high CO2 treatments as the mechanism(s) responsible for CO2 sensitivity in HNFs are unstudied

(Caron and Hutchins 2013). Heterotrophs do not require CO2 for growth, thus pH is likely the

dominant driver of the effects observed (Sommer et al. 2015). The CO2 sensitivity of

heterotrophic flagellates may be governed by the effectiveness of the mechanism(s) they

possesses to regulate intracellular pH (Pörtner 2008). However, little is known about the pH

sensitivities of heterotrophic flagellates. Among the few studies on flagellates, a decline in pH

influenced the swimming behaviour of a harmful algal bloom causing raphidophyte (Kim et al.
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2013) and an inability to control intracellular pH disrupted the growth of the autotrophic

dinoflagellates Amphidinium carterae and Heterocapsa oceanica (Dason and Colman 2004).

Disruption of flagella motility has also been observed in marine invertebrate sperm, due to

inhibition of the internal pH gradients required to activate signalling pathways (Nakajima 2005;

Morita et al. 2010; Nakamura and Morita 2012). Whilst these examples do not provide evidence

for direct inhibition of HNF growth, they do highlight the diverse sensitivities of flagellates to

changes in pH that require further investigation. Size may also play a part in CO2 sensitivity,

with size-related declines in the external pH boundary layer meaning small cells are likely to be

more affected by lower ocean pH (Flynn et al. 2012). As heterotrophs respire CO2 and do not

photosynthesise, it is likely that pH would be even lower at the cell surface than for autotrophs.

This may explain why HNFs showed reduced growth rates in our study while the larger

microheterotrophs were unaffected (see Hancock et al. 2018).

This study highlights the need for additional research on the nanoflagellate community. There is

an increasing understanding of the prevalence of mixotrophy in the marine microbial community

(Mitra et al. 2014; Stoecker et al. 2017; Gast et al. 2018). Mixotrophs are able to utilise both

autotrophic and heterotrophic methods of energy production and consumption, although the

methods employed can be diverse (Stoecker et al. 2017). It is currently unknown how mixotrophic

phytoflagellates will respond to ocean acidification. Caron and Hutchins (2013) speculated that

with an increasing concentration of DIC at increasing levels of CO2, autotrophic energy production

may be more efficient. However, the simultaneous increase in H+ may have negative effects on

both heterotrophic and autotrophic cellular mechanisms, causing multiple stresses to mixotrophic

physiology. As molecular methods are allowing for better identification of mixotrophic species

(Gast et al. 2018), further research into how these species respond to increasing CO2 may now

be possible. Whilst iron was not a limiting factor for phytoplankton in the coastal region studied

(Davidson et al. 2016), it is a significant driver on the ecology of the marine microbial community

in a majority of the Southern Ocean (Martin et al. 1990). Iron limitation has been found to lessen

the impact of CO2 on some diatom species, especially in combination with other stressors (Hoppe

et al. 2013). No studies to date have investigated the effect of ocean acidification on HNF in the

iron-limited Southern Ocean, despite their dominance in the microbial community this region

(Safi et al. 2007). Thus, it is imperative that further study be done.
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3.4.2 Nano- and picophytoplankton

A significant increase in picophytoplankton abundance was observed in our study when CO2

levels were �634µatm (Fig. 3.6a). Increased abundance of picophytoplankton has been

reported in ocean acidification studies on natural communities around the world (e.g.

Brussaard et al. 2013; Schulz et al. 2013; Biswas et al. 2015; Crawfurd et al. 2017). In contrast,

Antarctic community studies report varying responses to elevated CO2. Shifts toward larger

diatom species have been reported in coastal waters of the Ross Sea (Tortell et al. 2008a; Feng

et al. 2010), while there was no CO2-induced change to growth or community composition at a

site on the Antarctic Peninsula (Young et al. 2015). This variability in response among sites in

Antarctic waters may be due to factors such as differences in microbial composition or study

methods. Picophytoplankton were either not counted (Tortell et al. 2008a; Feng et al. 2010) or

were considered negligible (Young et al. 2015) in these studies. The significant increase in

picophytoplankton abundance at CO2 levels �634µatm that we report is similar to the findings

of Thomson et al. (2016) at the same site and using similar methods, indicating that this

response is consistent across different seasonal and temporal environments. It has been

suggested that increased abundance of picophytoplankton may be due to increases in

productivity derived from more readily-available CO2 at the cell surface, allowing more passive

diffusion of CO2 into the cell, and thus, reduced requirements for energy-intensive carbon

concentration mechanisms (CCMs) (Riebesell et al. 1993; Paulino et al. 2008; Schulz et al.

2013; Calbet et al. 2014). CCMs were down-regulated in the high CO2 (1641µatm) treatment

in both small (<10µm) and large (�10µm) cells in our study (Deppeler et al. 2018b). We did

not observe any increase in primary productivity from CCM down-regulation in this treatment

(Deppeler et al. 2018b) although, small changes in exponential growth get amplified over time

and are difficult to pick up in primary productivity measurements, which are representative for

the entire community.

Larger cell surface to volume ratios in small cells, allowing increased nutrient utilisation in

nutrient-limited environments, has also been invoked to explain the increased abundance of

picophytoplankton with elevated CO2 (Schulz et al. 2013). Size-related differences in growth

rates may allow picophytoplankton to establish a bloom faster than larger phytoplankton
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species (e.g. Newbold et al. 2012). However, this is not seen in nutrient-replete Antarctic waters,

where early summer blooms are dominated by large diatoms and Phaeocystis antarctica in its

colonial life-stage (Davidson et al. 2010). It was also not observed in this study, where only the

953µatm treatment displayed a significantly enhanced growth rate (Table 3.2). Increased rates

of nutrient draw-down were observed in the 634–953µatm CO2 treatments (Fig. 3.5),

suggesting that moderate increases in CO2 may stimulate phytoplankton growth, but further

increases in CO2 led to significant reductions in primary productivity (Deppeler et al. 2018b).

Nanophytoplankton abundance was significantly higher in the 643 and 953µatm treatments,

with significantly increased growth rates in the 634, 1140, and 1641µatm treatments (Fig.

3.6b; Table 3.2). This was likely due to favourable conditions, including the inhibition of growth

of larger phytoplankton species, that allowed nano-sized phytoplankton to thrive at higher CO2

levels (Hancock et al. 2018). The initial decline in nanophytoplankton abundance in all

treatments between days 1 and 7 may have been due to acclimation of the community to the

mesocosms or grazing by microzooplankton. Increasing light intensity had a temporary

inhibitory effect on growth at CO2 levels �1140µatm between days 8 and 9 (Fig. 3.6b),

suggesting that the significantly enhanced growth rates in these treatments between days 9 and

15 may have been caused by an increase in relative abundance of more tolerant species. The

most abundant nanophytoplankton species present in the minicosms were Fragilariopsis spp.

and Phaeocystis antarctica in it’s colonial form (Hancock et al. 2018). These species displayed a

CO2-related threshold in dominance around 634µatm, with a shift from P. antarctica to

Fragilariopsis spp. in the high CO2 treatments (Hancock et al. 2018). Thus, it is likely that

relative fitness of both of these species is increased with a moderate increase in CO2 level,

explaining the higher abundance observed at 643 and 953µatm CO2. Interestingly, whilst no

negative effect of CO2 was observed on the overall nanophytoplankton abundance, there were

very strong species-specific responses to increasing CO2, resulting in a significant change in

community structure (Hancock et al. 2018). Increased abundance of Fragilariopsis spp. with

elevated CO2 has also been observed in other ocean acidification studies on natural Antarctic

microbial communities (Hoppe et al. 2013; Davidson et al. 2016). Therefore, it is likely that

increasing CO2 will cause the phytoplankton community to shift from a summer community

that is currently dominated by large diatoms to one composed of smaller species or
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morphotypes of nano- and picophytoplankton.

3.4.3 Prokaryotes

There was a significant increase in abundance of prokaryotes at CO2 levels�634µatm (Fig. 3.6d;

Table 3.2). Increases prokaryote abundance with elevated CO2 was also observed in previous

studies at Prydz Bay (Thomson et al. 2016), as well as in Arctic mesocosms (Endres et al. 2014;

Engel et al. 2014). Other studies have reported no influence of CO2 on the prokaryote community

(Grossart et al. 2006; Allgaier et al. 2008; Paulino et al. 2008; Newbold et al. 2012), suggesting

that the prokaryote community will tolerate increasing CO2 levels (Reviewed in Hutchins and Fu

2017). Like HNF, prokaryotes do not require CO2 for growth, although it appears they are more

resistant to large variations in pH. However, there is evidence that CO2 may affect prokaryotes

by inducing changes in community composition, selecting for more tolerant species or allowing

rare species to emerge (Krause et al. 2012; Roy et al. 2013; Zhang et al. 2013; Bergen et al.

2016). This may be related to differential responses of phylogenetic groups to maintaining pH

homeostasis in either acid and alkaline conditions (Padan et al. 2005; Bunse et al. 2016). The

mechanisms for transporting hydrogen ions (H+) out of the cell are energetically demanding

and may reduce the energy available for growth. Whether these energy demands are increased

or decreased with ocean acidification depends upon the different strategies for pH homeostasis

employed by individual prokaryote species (Teira et al. 2012). In their study, Teira et al. (2012)

observed a significant increase in growth efficiency with elevated CO2 in one bacterial strain,

although no increase in productivity or abundance resulted. Instead, these changes may affect

dissolved organic carbon consumption (Endres et al. 2014), with potential impacts on organic

matter cycles.

3.4.4 Community interactions

The coincidence of the increase in picophytoplankton and prokaryote abundances with reduced

abundance of HNF suggests that these communities were being released from grazing pressure

at CO2 levels �634µatm. Grazing rates in East Antarctica are on average, 62% of primary

production per day, up to a maximum of 220% (Pearce et al. 2010). In addition, >100% of
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prokaryote production can be removed by micro- and nanoheterotrophs when Chl a

concentration and prokaryote abundance is high (Pearce et al. 2010). The rapid decline in

abundance we observed in picophytoplankton and prokaryotes after 12 days incubation is

entirely consistent with the rapid rates of grazing observed in other Antarctic marine microbial

communities in this region. In relation to f CO2, it is reasonable to hypothesise that the lower

abundances of these prey sizes in the control and 506µatm treatments may have been due to

stronger top-down control on the community as opposed to a reduction in growth rate. Grazing

control of the picophytoplankton community has been proposed in other mesocosm studies to

explain both positive (Paulino et al. 2008; Rose et al. 2009b) and negative (Meakin and Wyman

2011; Newbold et al. 2012) changes in picophytoplankton abundance, although they were not

confirmed by HNF counts. In our study, the rapid decline in prokaryote abundance coincided

with a dramatic increase in choanoflagellate abundance, bactivorous eukaryotes, between days

14 and 16 (Hancock et al. 2018). Furthermore, picophytoplankton and prokaryotes in all CO2

treatments both declined after HNF abundance reached a critical threshold (Fig. 3.9),

suggesting that at this point their growth was unable to exceed the top-down control of grazing.

Species-specific differences in the sensitivity of HNF to CO2 may lead to significant changes in

the composition of the picophytoplankton and prokaryote communities. HNF food webs are

complex and successional changes in taxa occur during phytoplankton blooms (Moustaka-Gouni

et al. 2016). In our study, Hancock et al. (2018) observed species-specific differences in the CO2

tolerances of choanoflagellate species, where Bicosta antennigera displayed significant CO2

sensitivity at levels �634µatm while other choanoflagellate species (principally Diaphanoeca

multiannulata) were unaffected. This change in HNF community composition with increased

CO2 did not affect the total prokaryote abundance but may have implications for the

prokaryotic community composition through selective grazing. Changes in prokaryote

community composition have been observed in other mesocosm studies (Roy et al. 2013; Zhang

et al. 2013; Bergen et al. 2016). There is also evidence that different prokaryote phylogenetic

groups have preferences for organic substrates produced by different phytoplankton taxa

(Sarmento and Gasol 2012), leading to the possibility that future changes in prokaryote

community composition could impact organic matter recycling.

As viral abundance was not determined in our study, we cannot exclude viral lysis as an
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explanation for the rapid decline in picophytoplankton and prokaryote abundance. Viral lysis

can account to up to 25% of daily production, although grazing by micro- and nanoheterotrophs

can be twice as high (Evans et al. 2003; Pearce et al. 2010). In an Arctic mesocosm study, the

decline of a picophytoplankton bloom coincided with a large increase in viral abundance

(Brussaard et al. 2013). However, later in the study, picophytoplankton were heavily grazed by

microzooplankton. Bacteriophages are the dominant viruses in the Prydz Bay area (Pearce et al.

2007; Thomson et al. 2010; Liang et al. 2016), with viral abundance displaying no correlation

to picophytoplankton (Liang et al. 2016). This suggests that viral lysis was unlikely to be the

main cause of the decline in picophytoplankton numbers but may have affected the prokaryotes.

3.5 Conclusions

These result of this study show how ocean acidification can exert both direct and indirect

influences on the interactions among trophic levels within the microbial loop. Our study

reinforces findings in near shore waters off East Antarctica (Davidson et al. 2016; Thomson

et al. 2016) that HNF abundance is reduced when CO2 is �634µatm, irrespective of temporal

changes in the physical and biological environment among seasons and years. This likely

resulted in a decline in grazing mortality of picophytoplankton and prokaryotes, allowing these

communities to increase in abundance. Such changes in predator-prey interactions with ocean

acidification could have significant effects on the food web and biogeochemistry in the Southern

Ocean. HNF are an important link in carbon transfer to higher trophic levels as they are grazed

upon by microzooplankton and thereafter by higher trophic organisms (Azam et al. 1991; Sherr

and Sherr 2002). Grazing is also a critical determinant of phytoplankton community

composition and standing stocks (Sherr and Sherr 2002).

Our results, together with those of Deppeler et al. (2018b) and Hancock et al. (2018), indicate

it is likely that increasing CO2 will cause a shift away from blooms dominated by large diatoms

towards communities increasingly dominated by prokaryotes, nano- and picophytoplankton.

Large phytoplankton cells contribute significantly to deep ocean carbon sequestration (Tréguer

et al. 2018). They are also the preferred food source for higher trophic organisms, especially the

Antarctic krill Euphausia superba (Haberman et al. 2003; Meyer et al. 2003; Schmidt et al.
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2006). E. superba have been found to graze less efficiently on phytoplankton cells <10µm

(Quetin and Ross 1985; Kawaguchi et al. 1999; Haberman et al. 2003). Therefore, a shift to

smaller-celled communities will likely alter the structure of the Antarctic food web.

Furthermore, increases in prokaryote abundance will likely intensify the breakdown of organic

matter in surface waters, further contributing in a decline in the sequestration of carbon from

summer phytoplankton blooms into the deep ocean.
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4.1 Introduction

Approximately 30% of anthropogenic CO2 is absorbed into the ocean, altering the chemistry

of the surface water and causing a decline in pH (Raven and Falkowski 1999; Sabine 2004;

Khatiwala et al. 2009). This process, termed ’ocean acidification’, has already caused an average

decline in the global ocean surface pH of 0.1 units since the industrial revolution (Sabine 2004;

Raven et al. 2005) and may increase further to 0.6 units with continued anthropogenic CO2

release (Caldeira and Wickett 2003). High latitude regions are particularly vulnerable to ocean

acidification due to the higher solubility of CO2 in these cold water environments (Orr et al. 2005;

McNeil and Matear 2008). Antarctic continental shelf waters are highly productive and support

the abundance and diversity of life in Antarctica (Arrigo et al. 2008a). Any CO2-induced changes

in the marine microbial community, which form the base of the Antarctic food web (Azam et al.

1991), is likely to affect higher trophic levels and Southern Ocean biogeochemical cycles.

In Antarctic waters, phytoplankton productivity is highly seasonal and is characterised by large

summer blooms, dominated by large diatom species and the primnesiophyte Phaeocystis

antarctica (Smith and Nelson 1986; Nelson et al. 1987; Wright et al. 2010). These large diatom

blooms can be significant carbon sinks and are also the preferred food source for zooplankton

(Azam et al. 1991; Longhurst 1991; Kawaguchi et al. 1999; Honjo 2004; Kirchman 2008). Some

studies suggest that an increase in CO2 will be beneficial for diatoms, as they are CO2 limited at

current oceanic CO2 concentrations (Riebesell et al. 1993; Tortell et al. 2008a; McCarthy et al.

2012; Trimborn et al. 2013; Qu et al. 2017). To counter this limitation in available CO2 for

photosynthesis, many phytoplankton species have carbon concentrating mechanisms (CCMs)

that actively uptake HCO –
3 into the cell and convert it to CO2, increasing the concentration of

CO2 at the site of Rubisco (Badger 1994; Colman et al. 2002; Giordano et al. 2005; Raven et al.

2017). CCMs consume energy, and thus an increase in CO2 will allow cells to down-regulate

their CCMs, freeing up additional energy for other metabolic processes, such as growth

(Beardall and Giordano 2002). Increased phytoplankton productivity and abundance with

increased CO2 has been reported at CO2 levels up to ⇠1000µatm (e.g. Sobrino et al. 2008;

McCarthy et al. 2012; Wu et al. 2014; Taucher et al. 2015). Yet the benefit of elevated CO2 on

growth differs among species, which may be due to preferential use of CO2 or HCO –
3 uptake
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mechanisms (Tortell et al. 2008b; Trimborn et al. 2013).

The effect of increasing CO2 (and the subsequent decline in pH) on phytoplankton may not only

be due to the individual species’ ability to manage the decline in pH but instead depend on the

entire community response to increased CO2. This may be due to CO2-induced changes in the

interactions among species, including different rates of growth, nutrient requirements, and

interactions with higher trophic levels, such as preferential grazing or reduction in top-down

control (e.g. Suffrian et al. 2008; Calbet et al. 2014; Ullah et al. 2018). Studies on natural

communities often report changes in community structure with increased CO2 (reviewed in

Schulz et al. 2017). Community studies in Antarctic waters have reported that the

phytoplankton community is relatively insensitive to CO2 levels up to ⇠800µatm. However, one

study in the Ross Sea observed an increase in diatom productivity and growth rates with CO2

⇠800µatm, although this response may have been induced by an addition of

uncharacteristically high iron for the site studied (Tortell et al. 2008a). There was no change in

P. antarctica productivity with increased CO2, suggesting that diatoms may dominate this region

with future increases in CO2. At CO2 levels above ⇠750µatm studies on East Antarctic

phytoplankton communities reported a decline in large diatom growth rates and an increase in

picophytoplankton abundance (Thomson et al. 2016; Hancock et al. 2018). A change in

community size, toward smaller cells, is likely to lead to declines in carbon sequestration and

less efficient grazing by higher trophic organisms.

The responses of monospecific phytoplankton isolates are seldom compared to their responses

within a natural community. In the one ocean acidification comparison study currently

published, differing responses were reported (Wolf et al. 2018). In order to test this hypothesis,

we isolated the large diatom Lauderia annulata from an ocean acidification study on a natural

Antarctic marine microbial community (see Deppeler et al. 2018b; Hancock et al. 2018) and

exposed it to f CO2 levels from 276 to 1063µatm. Growth rate, abundance, and photosynthetic

health were assessed during exponential growth to determine whether L. annulata displayed

sensitivities to CO2. This response was then compared to the growth reported in the natural

community (Hancock et al. 2018) to assess whether community interactions modified its

response.
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4.2 Methods

A monospecific culture of the Antarctic diatom Lauderia annulata was isolated from seawater

samples taken from an ocean acidification experiment on a natural marine microbial

community at David Station, Antarctica (68° 35 0 S 77° 58 0 E) in December, 2014 (see Deppeler

et al. 2018b). Cultures were maintained at 2 �C on a 12:12 h light:dark cycle at

33µmolphotons m�2 s�1 in L1 medium (Guillard 2003), diluted to 1:10 and with a final

macronutrient concentration modified to 88.2µM NO –
3 , 3.62µM PO4

3–, and 21.2µM SiO3
2–.

This diatom species was chosen for this study as it was easily identifiable in the natural

community study so the data could be directly compared to those reported by (Hancock et al.

2018). In addition, this species, at ⇠55µm diameter, was a good representation of large centric

diatoms. Large diatoms are an important ecological group in Antarctic waters, significantly

contributing to the intense phytoplankton blooms that support the Southern Ocean food web

and sequestration of carbon to the deep ocean (Smetacek 1985).

4.2.1 Experimental set up

The experimental system was set up as a modified version of the trace-metal clean incubator

system described by Hoffmann et al. (2013). As L. annulata was isolated from iron-replete

waters and subsequently cultured in high nutrient media, this system was not maintained as

trace-metal clean. Twelve 2 L polycarbonate bottles (Nalgene) were used as incubation vessels,

with an additional four polycarbonate bottles (header tanks) used to replenish the medium in

the incubation vessels. The bottle lids were modified with ports for CO2 delivery, sample

removal, media replenishment, and automated pH testing (not used) (Fig. 4.1). Due to

technical issues, pH was tested manually (see below) and thus, this port was blocked to avoid

external contamination during the experiment. Bottles were washed in 10% HCl (AnalaR,

VWR) for 48 h, thoroughly rinsed with MilliQ water, and rinsed with 0.2µM filtered seawater

before use. All tubing and equipment was cleaned with 80% ethanol, rinsed with MilliQ water,

and dried in a sterile laminar flow cabinet before use.

The experimental system was set up in a refrigerated cabinet set to 0.5± 0.5 �C (see Fig. 4.2).
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Figure 4.1: Schematic of incubator vessel lids. Figure 4.2: Photo of experimental system set up
in refrigerated cabinet. Each CO2 treatment was
randomly assigned to one header tank and three
incubation vessels. CO2 treatment designations are
shown in Table A5.1. Mixed-CO2 gas humidification
apparatus not shown.

Header tanks for each CO2 treatment were placed on the top shelf, with incubation vessels

placed in rows of four on the remaining shelves. All bottles were filled with 2 L modified 1:10

diluted L1 media (see above) and the 12 incubation vessels inoculated with L. annulata, giving

a final cell concentration of 1.0± 0.8⇥ 104 cells L. Triplicate CO2 treatments were randomly

assigned to incubation vessels using a random number generator

(https://www.randomizer.org/) and are detailed in Table A5.1. Incubation vessels were

connected to their appropriate CO2 treatment header tanks with Teflon tubing and media

replenishment was controlled by in-line polycarbonate stop-cocks. Lighting was provided by

four 1 m waterproof LED light strips (containing 60 5050 SMD cool white LEDs, Jaycar)

attached in vertical strips to the back of the cabinet, with light provided on a 19:5 h light:dark

cycle. The light output was converted to a daylight spectral distribution by covering with a one
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quarter colour temperature blue filter (Arri). Light intensity was measured using a Biospherical

Instruments’ Laboratory Quantum Scalar Irradiance Meter (QSL-101).

The CO2 levels were modified by blowing different mixtures of compressed air and CO2 over the

air/water interface in the incubation vessels. The amount of 99.9% CO2 gas (food grade, BOC)

added to the air stream was adjusted to four target CO2 levels between 400 and 1500 ppm (Table

4.1) using Horiba mass flow control units, with the amount of CO2 in the mixed gas stream

measured using a LICOR LI-820 CO2 Gas Analyser. CO2 levels in the mixed gas stream were

checked daily and if necessary, adjustments were made to the flow control units to maintain

target levels.

After mixing, the CO2-modified gas was delivered through silicon tubing and entered the

incubation vessels through a port in the lid (Fig. 4.1). To minimise condensation in the gas lines,

the CO2-modified gas was cooled and humidified by bubbling through MilliQ water at 0.5 �C

and then passed through a condensation trap. The CO2-modified gas was then passed through a

sterile 45 mm GF/F filter (Whatman) to remove airborne contaminants. Inside the bottle the

tube was fitted with a length of low-density polyethylene (LDPE) tube positioned ⇠1 cm above

the surface such that the flow of gas agitated the surface of the media. Even distribution of CO2

was ensured through gentle manual swirling of the bottles once a day. The four mixed CO2

gasses were also used to bubble the contents of the header tanks so that the medium used to

replenish the experimental bottles was adjusted to the required CO2 level for each treatment.

4.2.2 Experimental conditions

The experimental conditions for the current study were set up to mimic those of a previous

ocean acidification study on a natural Antarctic marine microbial community (see Deppeler

et al. 2018b; Hancock et al. 2018). The CO2 concentration in each incubation vessel was

increased over 5 d under low light intensity, to limit growth during this acclimation period. The

light intensity was reduced during this time to 0.4± 0.2µmolphotons m�2 s�1 by adding two

layers of 60% attenuating neutral density filters (Arri) over the LED light strips. After the 5 d

acclimation period, the light intensity was increased over 2 d by sequentially removing each of

the neutral density filters, resulting in a final light intensity on day 7 of
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23.8± 2.7µmol photonsm�2 s�1 that was maintained for the remainder of the experiment

(Table A5.2).

After acclimation, cells were grown for a further 10 d in exponential phase until day 18. Unless

otherwise specified, samples for analysis were taken on days 2, 8, 11, 14, 16, and 18. Samples

were taken from each incubation vessel with a 60 mL syringe connected to C-flex tubing (Cole-

Parmer) that was attached to the sample port on each bottle lid (Fig. 4.1). Inside the lid, a length

of LDPE tube was attached that allowed sampling from the middle of the incubation vessel. Before

samples were taken for analysis, incubation vessels were mixed by gentle swirling (see above) and

5 mL of the culture was dispensed and discarded from the incubation vessel to flush the internal

LDPE sample tubing and syringe. Samples for carbonate chemistry were taken first (see below).

Following this, 65 mL of the culture was collected in a 100 mL glass Schott bottle for all other

analyses and stored in the dark at 4 �C until use. To avoid external contamination of the bottle

contents, the sample tubing was securely clamped shut with a plastic tubing clamp (Dynalon)

after sampling.

Incubation vessels were topped up to 2 L with 1:10 diluted L1 media from the appropriate CO2-

modified header tank on days 4, 7, 9, 12, 15, and 16. The volumes required to replenish each

incubation vessel were used to calculate the dilution of the culture during the incubation. To

avoid significant effects on the diatom culture and carbonate chemistry, the maximum volume

removed from the bottle before topping up never exceeded 10% of the culture volume (200 mL)

and replenishment was always performed after samples were taken for analysis so as not to

influence the results.

4.2.3 Carbonate chemistry

Samples for pH on the total scale (pHT ) analysis were collected daily from the middle of all

incubation vessels. Samples were collected in 10 mL glass Exetainer vials (Labco), flushed with

sample, capped without headspace to avoid outgassing of CO2. Samples were stored at room

temperature in the dark and analysed within 8 h of collection. pHT was measured

spectrophotometrically (Mettler Toledo UV5) in a 10 mm cuvette using the pH indicator dye

m-cresol purple (mCP, Sigma) following Dickson et al. (2007). Briefly, sample vials were
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warmed to 25 �C in a water bath and transferred to a cuvette with gentle filling from the bottom

and flushing with 2x sample volume. Absorbance of the cuvette plus seawater was measured at

434, 578, and 730 nm. Following this, 100µL of mCP dye was added and the cuvette gently

inverted twice to mix. Absorbance of the cuvette plus dyed seawater was measured at 434, 578,

and 730 nm and the sample temperature taken with an AA Dailymate digital stick thermometer

(±0.1 �C) immediately after analysis. Final absorbance values were corrected for background

absorbance (730 nm) and used to calculate the absorbance ratio (A578nm/A434nm). The pHT of

the seawater was calculated following the equations in Dickson et al. (2007).

Samples for dissolved inorganic carbon (DIC) analysis were collected from all test containers on

all sampling days plus day 4 (see above) in 10 mL glass Exetainer vials, flushed with sample and

capped without headspace to avoid CO2 off-gassing. Samples were poisoned with 5µL saturated

HgCL2 (0.02% v:v final concentration) and stored in the dark at 4 �C until analysis. DIC was

analysed by infra-red absorption on an Apollo SciTech AS-C3 analyzer equipped with a LICOR

LI-7000 detector. The instrument was calibrated by generating a standard curve from a CRM

sample (batch 144) of known DIC concentration (Dickson 2010) at 0.65, 0.75, and 0.85 mL

sample volume. For each test sample, the peak area of three 0.75 mL subsamples were analysed

to calculate the DIC concentration. Measured DIC was converted to µmolkg�1 using density

derived from temperature (25 �C) and salinity (35).

Total carbonate chemistry speciation was calculated and adjusted to the in situ temperature

(0.5 �C) using CO2calc 1.3.0 (Robbins et al. 2010) from measured pHT , DIC, and in situ salinity

using carbonic acid dissociation constants from Lueker et al. (2000). The mean calculated total

alkalinity (TA) for all sample days (2399µmol kg�1) was then used for all additional pHT

measurements (all days excluding sample analysis days, see above) to adjust pHT to in situ

temperature and calculate f CO2.

4.2.4 Cell abundance

On each sampling day 10 mL of culture was taken for determination of cell abundance by flow

cytometry. Flow cytometry analysis was performed following Marie et al. (2005). Samples were

stored in the dark at 4 �C, and analysed on a Becton Dickinson FACScan flow cytometer fitted
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with a 488 nm laser within 6 h of collection. Samples (1 mL) were prepared from each incubation

vessel and run for 5 min at a high flow rate of⇠40µLmin�1 with MilliQ water was used as sheath

fluid. Phytoplankton cells numbers were identified from bivariate scatter plots of red chlorophyll

fluorescence (FL3) versus orange fluorescence (FL2). PeakFlow Green 2.5µm beads (Invitrogen)

were added to the sample as an internal fluorescence and size standard. Samples were weighed

to ±0.0001 g before and after each run to determine the analyte volume. Final cell counts in

cells L�1 were calculated using event counts and volume.

4.2.5 Chlorophyll a

Samples for Chl a concentration were filtered onto 24 mm GF/F filters (Whatman), folded in

half, blotted dry, and stored at �135 �C until analysis. Chl a extractions were performed in

100% methanol following a modified method of Arar and Collins (1997). Chl a was extracted

from filters by addition of 10 mL of 100% methanol, sonication for ⇠1 min and incubation at

�20 �C in the dark for 24 h. Samples were then centrifuged for 15 min at 4000 g in a

refrigerated centrifuge at �9 �C. The supernatant was transferred to 15 mL polyethylene tubes

and 5 mL of the extract was pipetted into a clean 12x100 mm glass tube and allowed to come to

room temperature before analysis. Chl a concentration of each sample was measured with a

Turner 10-AU-005-CE fluorometer, using the acidification technique. The instrument was first

standardised against 100% methanol. The fluorescence of the Chl a extract was then measured,

the sample acidified with 0.15 mL of 0.1 N HCl, thoroughly mixed, incubated in the dark at

room temperature for 90 s, and the fluorescence of Chl a remeasured. The concentration of Chl

a was calculated using the equations of Arar and Collins (1997) and an acid ratio of 2.1.

4.2.6 Primary productivity

On each sampling day 25 mL of culture was taken for determination of primary productivity.

Incubations were performed following a modified method of Deppeler et al. (2018b), based on

the small bottle technique of Lewis and Smith (1983). Due to limitations in sample volume,

productivity was only measured at high light and in the dark. For all incubation vessels, 50µL of

0.25 mCimL�1 14C-sodium bicarbonate (NaH14CO3, PerkinElmer) was added to 25 mL of
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sample to make a working solution of 39.2 kBqmL�1. Seven mL aliquots were added to two

glass scintillation vials and incubated at 66.5µmol photonsm�2 s�1 (light) and

0µmolphotons m�2 s�1 (dark) for 1 h at 0 �C. The reaction was terminated by the addition of

250µL of 6 N HCl and the vials were shaken for 3 h at 150 rpm to remove dissolved inorganic

carbon. A time zero sample was also set up for each incubation vessel to determine background

radiation in a similar manner as above, with the immediate addition of 250µL HCl to quench

the reaction without exposure to light. The activity of the working solution was determined by

adding 100µL of working solution to 7µL 0.1 M NaOH in filtered seawater to capture all added

14C. For all samples, 10 mL Ultima Gold LLT scintillation cocktail (PerkinElmer) was added to

each scintillation vial, shaken, and decays per minute were counted in a PerkinElmer Tri-Carb

2910TR Low Activity Liquid Scintillation Analyzer with a maximum counting time set at 5 min.

Decays per minute were converted into primary productivity following the equation of

Steemann Nielsen (1952), using measured DIC concentrations and normalised to Chl a

concentration (see above). The linear regression of the primary productivity in the dark and

light treatments for each incubation vessel was calculated, and the rate of in situ Chl a-specific

primary productivity (csGPP14C) was calculated at the average light irradiance in each

incubation vessel (Table A5.2). Gross primary production rates (GPP14C) in each incubation

vessel were calculated from csGPP14C rates and Chl a concentration (see above).

4.2.7 Photophysiology

On sampling days, 20 mL of sample was taken for analysis of photosynthetic efficiency of Chl a

fluorescence using a Pulse Amplitude Modulated fluorometer (WATER-PAM, Walz). Samples were

aliquoted into two 10 mL tubes and placed at 0 �C, with one tube placed at in situ experimental

light intensity 25µmolphotons m�2 s�1 (light-adapted) and the other placed in the dark (dark-

adapted), for a minimum of 30 min. The photomultiplier gain was adjusted to 15 to ensure an

initial fluorescence between 50–1000 during the growth phase of the experiment.

For the dark-adapted samples, a 3 mL aliquot of sample was added to a quartz cuvette and

placed in the WATER-PAM. Minimum fluorescence (F0) was recorded and then maximum

fluorescence (Fm) was determined by application of a saturating pulse of light (intensity
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8000µmol photonsm�2 s�1 for 0.8 s). Maximum quantum yield of PSII (Fv/Fm) was then

calculated following the equation in (Schreiber 2004). Dark-adapted samples were run on

sampling days between day 8 and 18 only.

Rapid light curves (RLCs) were performed on 3 mL aliquots of light-adapted sample at eight

increasing actinic light levels (days 2-4: 5, 7, 11, 17, 25, 39, 58, 89, 113µmol photonsm�2 s�1

and days 8-18: 25, 39, 58, 89, 133, 190, 265, 438µmolphotons m�2 s�1). Each light level was

applied for 10 s before application of a saturating pulse of light (intensity

8000µmol photonsm�2 s�1 for 0.8 s). At each actinic light intensity the light-adapted initial

flourescence (F) and maximum fluorescence (Fm0) values were recorded and used to calculate

the effective quantum yield of PSII (�F/Fm0) following the equation in Schreiber (2004).

Relative electron transport rates (rETR) were calculated as the product of �F/Fm0 and actinic

irradiance. RLCs were modelled for each treatment following the equation of Platt et al. (1980)

in the absence of inhibition using the Phytotools package in R (Silsbe and Malkin 2015; R Core

Team 2016). The photosynthetic parameters of maximum photosynthetic rate (rETRmax),

maximum photosynthetic efficiency (↵), and saturating irradiance (Ek) were derived from the

curve fit. RLCs were run on days 2 and 4 during the CO2 acclimation period, and all sampling

days between days 8 and 18.

4.2.8 Statistical analysis

Limitations in the available space in the refrigerated cabinet meant that only one CO2-modified

header tank was used to replenish the media in all incubation vessels for each CO2 treatment.

Following Cornwall and Hurd (2016), we acknowledge that the replicates for each CO2

treatment must be considered as pseudoreplicates. For the purpose of analysis, we treated

replicates as independent to assess the differences between treatments, acknowledging that the

means and standard error of these pseudoreplicate samples only provide the within-treatment

sampling variability for each procedure. For all analyses, either a linear or curved (quadratic)

regression model was fitted to the data between days 8 and 18 to assess the trend in each CO2

treatment over time using the Stats package in R (R Core Team 2016). The difference between

the trends in all CO2 treatments over time was assessed by ANOVA with a significance level set
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at <0.05. Due to the limitations of the study design we note that these results must be treated

as indicative and interpreted conservatively.

4.3 Results

4.3.1 Carbonate chemistry

The carbonate chemistry of the initial 1:10 diluted L1 media at an in situ temperature (0.5 �C)

was measured to have a pHT of 8.2 and a DIC of 2193µmol kg�1, equating to a calculated f CO2

of 268µatm and total alkalinity (TA) of 2384µmol kg�1 (Table A5.3). The f CO2 in all

treatments increased between days 2 and 8, peaking at 378, 430, 717, and 1199µatm across

the four treatment groups (Fig. 4.3). Despite constant delivery of CO2 gas to the incubation

vessels, drawdown of CO2 by L. annulata photosynthesis caused a steady decline in f CO2 in all

treatments between days 8 and 18. The mean f CO2 levels in each treatment between days 8

and 18 were 276, 381, 668, and 1063µatm, respectively (Table 4.1). The additional mean

carbonate chemistry conditions for all treatments (pHT , DIC, and TA) are presented in Table 4.1.

Table 4.1: Mean carbonate chemistry conditions in CO2 treatments between days 8 and 18

Treatment Target CO2
(ppm)

f CO2
(µatm)

pHT DIC
(µmol kg�1)

TA
(µmol kg�1)

1 400 276 ± 35 8.2 ± 0.05 2203 ± 19 2401 ± 5
2 600 381 ± 24 8.1 ± 0.03 2259 ± 7 2399 ± 5
3 900 668 ± 27 7.8 ± 0.02 2342 ± 3 2403 ± 5
4 1500 1063 ± 65 7.7 ± 0.03 2404 ± 4 2407 ± 8

Data are mean ± one standard error of triplicate measurements.

4.3.2 Cell abundance

Abundance remained low during the CO2 acclimation and increased in all treatments between

days 8-18 (Fig. 4.4a). On day 18, abundance of L. annulata was 2.3± 0.3⇥ 105 cells L in the 276,

381, and 668µatm treatments, and 3.2± 0.6⇥ 105 cells L in the 1063µatm treatment. Despite

this, there were no significant differences in the abundance of L. annulata between treatments
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Figure 4.3: The carbonate chemistry conditions for each of the CO2 treatments over time. (a) Fugacity of CO2

( f CO2), (b) pH on the total scale (pHT ), (c) dissolved inorganic carbon (DIC), and (d) total alkalinity (TA). Large
points calculated from measured pHT and DIC. Additional small points calculated from measured pHT and the mean
calculated TA. Error bars display standard error of three pseudoreplicate samples. Shading indicates CO2 (grey) and
light (yellow) acclimation period.

(Table 4.2, A5.4).

4.3.3 Chlorophyll a

Chl a concentration was low at the beginning of the experiment (0.29± 0.01µgL�1) and

increased in all treatments after day 8 (Fig. 4.4b). No significant difference was observed in Chl

a concentration between treatments (Table 4.2, A5.5), with concentrations in all treatments

rising to 3.6± 0.4µg L�1 by day 18.

4.3.4 Primary productivity

At the beginning of the experiment, csGPP14C was similar in all treatments, at

4.2± 0.4 mgC (mg Chl a)�1 h�1, and peaked on day 8 (Fig. 4.5a). The 1063µatm treatment had

the highest average csGPP14C, reaching 11.7± 1.9 mgC (mg Chl a)�1 h�1 on day 8. Between

days 8 and 18, csGPP14C declined in all treatments, falling to 3.6± 0.2 mgC (mg Chl a)�1 h�1 by
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Table 4.2: ANOVA results comparing trends in each CO2 treatment over
time

F p

Growth
Cell abundance F3,87 = 0.90 0.44
Chl a F3,62 = 0.65 0.59
Productivity
csGPP14C F3,62 = 0.14 0.93
GPP14C F3,62 = 2.29 0.09
Photophysiology
Fv/Fm F3,51 = 0.81 0.49
↵ F3,51 = 1.95 0.13
rETRmax F3,51 = 0.47 0.70
Ek F3,51 = 0.83 0.48

The data presented is a subset of the full ANOVA tables, which are available
in Appendix E.
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Figure 4.4: The (a) abundance of Lauderia annulata,
and (b) chlorophyll a (Chl a) concentration for each
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Figure 4.5: The 14C-derived productivity
measurements for each of the CO2 treatments
over time. (a) Chl a-specific primary productivity
(csGPP14C) and (b) gross primary production
(GPP14C). Error bars display standard error of three
pseudoreplicate samples. Shading indicates CO2

(grey) and light (yellow) acclimation period.
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day 18.

GPP14C was low in all treatments on day 2 and increased between days 8 and 18 (Fig. 4.5b). The

highest average GPP14C was seen in the 1063µatm treatment on day 18

(30.5± 15.2µg C L�1 h�1), although this treatment also showed the highest within-treatment

variability. The 668µatm treatment consistently had the lowest rate of GPP14C. This was due to

very low productivity in one replicate and as a result, the csGPP14C declined between day 11 and

14, and remained between 3.1–4.2 mgC (mg Chl a)�1 h�1 for the rest of the experiment. Despite

this, no significant difference was observed between any treatments for both csGPP14C and

GPP14C (Table 4.2, A5.6, A5.7).

4.3.5 Photophysiology

The maximum quantum yield of PSII (Fv/Fm) was variable within all treatments on day 8 but

stabilised on day 11, with the highest Fv/Fm being in the 276 and 1063µatm treatments

(0.70± 0.01 and 0.71± 0.03 , respectively; Fig. 4.6a). Fv/Fm values declined between days

10-18 but remained above 0.60 in all treatments until day 18. Despite low cell growth and

productivity in one 668µatm replicate (see above), Fv/Fm only declined from 0.71 to 0.57.

Again, there was no significant difference between any treatment (Table 4.2, A5.8).

RLCs also demonstrated there was no significant difference in the photosynthetic response

among CO2 treatments (Table 4.2). High variability between days 2-8 in all treatments was

likely a result of the low fluorescence values at the beginning of the experiment due to low cell

numbers. Maximum photosynthetic efficiency (↵) increased between days 2-8, with the

276µatm treatment the highest on day 8 (0.85± 0.05 ; Fig. 4.6b, A5.9). For the remainder of

the experiment, ↵ remained steady at 0.70± 0.14 The rETRmax declined from 98.7± 15.1 on

day 8 to 47.0± 11.1 on day 18 (Fig. 4.6c, A5.10). Similarly, no significant difference was seen in

the saturating irradiance (Ek) among treatments (Table 4.2, A5.11), with the average Ek falling

from 134.0± 39.7 to 86.1± 37.1µmolphotons m�2 s�1 between days 8-18 (Fig. 4.6d).
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Figure 4.6: The photophysiological measurements for each of the CO2 treatments over time. (a) Maximum quantum
yield of PSII (Fv/Fm), (b) maximum photosynthetic efficiency (↵), (c) maximum photosynthetic rate (rETRmax ), and
(d) saturating irradiance (Ek). Error bars display standard error of three pseudoreplicate samples. Shading indicates
CO2 (grey) and light (yellow) acclimation period.

4.4 Discussion

This study showed that as a monospecific culture, the large diatom L. annulata was insensitive

to changes in f CO2. Measurements of abundance, primary productivity, and photophysiological

health showed no significant difference among f CO2 treatments ranging from 276 to 1063µatm.

Tolerance to CO2 levels up to ⇠1000µatm have previously been reported in studies of Antarctic

diatoms (e.g Boelen et al. 2011; Trimborn et al. 2013, 2017) and in natural Antarctic microbial

communities (e.g. Tortell et al. 2008a; Young et al. 2015; Davidson et al. 2016). This insensitivity

to such a wide range of CO2 may be, at least in part, due to the large annual range in CO2 they

experience in nature. The L. annulata use in this study was isolated from a coastal phytoplankton

community in Prydz Bay, Antarctica, a region that experiences high levels of primary productivity

during the Austral spring that draws down the f CO2 level from⇠430 to⇠230µatm (Roden et al.

2013), with CO2 levels as low as 50µatm recorded (Gibson and Trull 1999). Consequently, the

276 and 381µatm treatments in this study encompass the natural CO2 variation that L. annulata

would be exposed to, demonstrating that it is well adapted to these fluctuations, even when CO2
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is below atmospheric levels.

Tolerance to CO2 may have been due to down-regulation of CCMs with increasing CO2. The CO2

currently available to phytoplankton is below saturating levels for photosynthesis, thus

requiring CCMs to increase the concentration of CO2 in the cell (Riebesell et al. 1993; Badger

1994; Giordano et al. 2005). CCM activity has been widely demonstrated in phytoplankton at

current CO2 levels (e.g. Burkhardt et al. 2001; Colman et al. 2002; Tortell et al. 2008b;

Trimborn et al. 2013), including in the community from which L. annulata was isolated

(Deppeler et al. 2018b). It is likely that L. annulata operates CCMs, as there was no reduction in

growth rate in the CO2 treatment below current atmospheric concentration (276µatm).

Operation of CCMs requires energy and thus, increasing available CO2 may allow cells to

down-regulate CCM activity and redeploy this energy toward growth or other metabolic

processes (Raven 1991). A slight increase in GPP14C was observed in our study at high CO2

(1063µatm; Fig 4.5b), which may have been due to down-regulation of CCMs but was not

significant and did not affect growth (Fig. 4.4a). For some phytoplankton species, the metabolic

cost of operating CCMs is low, so increasing CO2 has little benefit on growth (Young et al. 2015;

Goldman et al. 2017; Shi et al. 2017). Thus, CCM down-regulation may have occurred in L.

annulata with increasing CO2 but did not result in increased growth.

It is also possible that CO2 effects were not observed in our study because L. annulata was not

exposed to light stress. Light stress can have a synergistic effect with high CO2, resulting in

declines in growth, productivity, and cell health (Fv/Fm) in both monospecific diatom cultures

(Li et al. 2015; Liu et al. 2017; Trimborn et al. 2017) and natural phytoplankton communities

(Feng et al. 2010; Gao et al. 2012b; Hoppe et al. 2017). The mean saturating light intensity (Ek)

we determined for L. annulata (102µmolphotons m�2 s�1) was over 4-fold higher than the

irradiance received during incubation (23.8± 2.7µmol photonsm�2 s�1). Additionally, minimal

change in ↵ and Ek in all treatments over time suggests that L. annulata had reached its lower

limit for light acclimation. Beardall and Giordano (2002) proposed that at low light intensity,

the energy requirement for efficient operation of CCMs may not be met, resulting in a reduction

in CO2 entering the cells. Thus, CCM down-regulation with enhanced CO2 may stimulate

growth under these conditions. Some diatom species have displayed increased growth under

low light and high CO2 conditions (McCarthy et al. 2012; Li et al. 2017b) but others show no
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effect (Liu et al. 2017) or reduced growth (Ihnken et al. 2011; Passow and Laws 2015) under

similar conditions. The growth rate of L. annulata did not change across all CO2 levels,

indicating a low energy requirement for CCM operation that was not limited by the

experimental light conditions. Alternatively, low light intensity may have reduced the metabolic

demands of light stress, such as photoinhibition and PSII repair, which can be exacerbated by

increasing CO2 (Wu et al. 2010; McCarthy et al. 2012; Li et al. 2015).

A lack of persistent mixing in the incubation vessels may have been responsible for the absence

of CO2 effects. Throughout this study, CO2 modification occurred at the surface of the seawater

media, while L. annulata would settle on the bottom. However, the passage of mixed-CO2 air over

the surface would have likely elicited some mixing of the CO2-adjusted surface water within the

contents of the incubation vessels. High productivity by L. annulata may have increased the pH in

the boundary layer around the cells, buffering them from the lower pH media above and relieving

them of pH stress (Chrachri et al. 2018). In order to avoid establishment of a pH gradient, each

vessel was thoroughly mixed daily before samples were taken, thus measurements of primary

productivity and photophysiology were always performed at the reported CO2 levels. There was

no difference in the response to CO2 between these measurements and in situ growth and Chl a

results, indicating that mixing did not change L. annulata’s response to CO2. Some studies use CO2

gas bubbling to both modify the CO2 and ensure adequate mixing of cultures (Rost et al. 2008;

Gattuso et al. 2010). This method may be detrimental to cells (Shi et al. 2009) and as such, was

avoided in this study. Space limitations in the cabinet used for this experiment precluded the use

of stirring plates or shakers to provide continuous gentle mixing of the culture vessels. However,

we acknowledge that using a method that enabled more frequent mixing of the incubation vessel’s

contents would be recommended.

The response of L. annulata in monospecific culture to increasing CO2 differed when compared

the its response in a natural community at Davis Station, Antarctica. L. annulata was isolated

from the control (343µatm) treatment of a study investigating the response of a natural

Antarctic marine microbial community to ocean acidification (Deppeler et al. 2018b). This

allowed comparison of the growth response of this species to CO2 in the natural community to

that in the monospecific culture. This comparison showed differences between the monospecific

and community-level studies of this taxon. In the community study, L. annulata growth was
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Figure 4.7: The abundance of Lauderia annulata in six increasing CO2 treatments, reported in a community-level ocean
acidification study. Error bars display standard error of pseudoreplicate samples. Shading indicates CO2 (grey) and
light (yellow) acclimation period. Modified from Hancock et al. (2018).

promoted at CO2 levels between 506 and 1140µatm (Fig. 4.7) (Hancock et al. 2018).

Increasing CO2 further to 1641µatm reversed the stimulatory effect of CO2, with final

abundance similar to the control (343µatm) (Hancock et al. 2018). In contrast, there was no

effect of increasing CO2 on L. annulata growth in a monospecific culture. The difference in

response between the culture and community study suggests that there were factors other than

CO2 that affected the growth of this species. There were differences in light intensity between

the two experiments, with a lower mean light intensity in the current study

(23.8± 2.7µmolphotons m�2 s�1), compared to the community study

(90.5± 22.0µmol photonsm�2 s�1) (Deppeler et al. 2018b). As discussed above, this difference

in light intensity may have led to differing responses between the two studies, where increased

light intensity may have stimulated productivity at moderate CO2 levels but may have had

negative effects by increasing stress responses at high CO2. There is also evidence to suggest

that community interactions, such as the starting community composition have a significant

effect on the response of individual species to CO2 (Eggers et al. 2014; Sampaio et al. 2017) and

that competition among some species is dependent upon their initial abundance (Trimborn

et al. 2013). Community studies are also likely to incorporate additional environmental

stressors, such as nutrient limitations and grazing interactions that are absent in controlled

culture assays (e.g. Suffrian et al. 2008; Rossoll et al. 2013; Calbet et al. 2014; Bach et al. 2016;

Ullah et al. 2018). Therefore, while culture studies are very useful for evaluating specific
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cellular responses to stress, these outcomes are likely to be confounded by environmental

variations and community interactions that occur in the real world.

Genetic changes from extended monoclonal culturing may modify the response of

phytoplankton to environmental stressors, such as increasing CO2. Established culture lines may

be maintained in the laboratory for many years, even decades, under nutrient, light, and

temperature conditions that are different from the ecosystem they were isolated from. Thus,

over time these phytoplankton cultures are likely to adapt to the culture conditions they are

exposed to (Lakeman et al. 2009). A modelling study by Lynch et al. (1991) revealed that

substantial genetic changes could occur in monoclonal cultures within a few hundred days

pushing the fitness of the cultured species away from the natural population. The L. annulata

used in this study was isolated 3 years previous to this study so it is likely that genetic changes

had occurred. In order to minimise adaptation to abnormal conditions, cultures were

maintained at low temperature (2 �C), low light intensity on a diel light cycle

(33µmolphotons m�2 s�1 on a 12:12 h dark:light cycle), and in media that contained nutrient

concentrations close to those measured in Prydz Bay (see Roden et al. 2013; Deppeler et al.

2018b). Additionally, L. annulata was isolated from the control treatment of the natural ocean

acidification study, so it was not previously exposed to artificially elevated levels of CO2.

However, it can not be ruled out that the observed CO2 response in this study was influenced by

genetic changes to the culture over time.

4.5 Conclusions

We chose a large diatom to study because of its ecological relevance in this region. Large

phytoplankton support the Southern Ocean food web and can be sources of significant carbon

sequestration (Smetacek 1985). A unialgal isolate of L. annulata showed that the response of

this species was unaffected by exposure to CO2 levels from present day to those predicted to

occur around the end of this century, using the RCP 8.5 scenario (IPCC 2013). Comparison of

this study with those of Deppeler et al. (2018b) and Hancock et al. (2018) show that this

insensitivity of L. annulata to f CO2 in culture is replaced by enhanced growth under moderate

CO2 enrichment (506–1140µatm) when part of a natural community. This indicates that



CHAPTER 4. CULTURE STUDY 124

community-level interactions can influence the response of species to enhanced f CO2 levels and

highlights that monospecific studies are of limited value to predicting future changes in nature

as a result of ocean acidification.
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5.1 Discussion

This study suggests that ocean acidification will change the marine microbial community in

Antarctic coastal waters, increasing the relative abundance of small diatoms and autotrophic

flagellates. Ocean acidification reduced rates of primary productivity, leading to a reduction in

phytoplankton biomass and particulate organic matter production. The total abundance of

nano-sized (2–20µm) phytoplankton was not negatively affected by increasing CO2, suggesting

that productivity declines were from larger, micro-sized (20–200µm) phytoplankton. Similarly,

Hancock et al. (2018) reported a reduction in micro-sized diatom species at CO2 levels

�634µatm but found that there was a strong species-specific response to elevated CO2 in the

nanophytoplankton community. Increasing CO2 enhanced the growth of the diatom

Fragilariopsis spp., while the dominant flagellate, Phaeocystis antarctica, was sensitive to CO2

levels �953µatm (Hancock et al. 2018). Despite this significant change in community

composition at high CO2, no reduction in total abundance of nanophytoplankton was observed

(Chapter 3). Flow cytometric analyses also showed that the abundance of heterotrophic

nanoflagellates (HNFs) was reduced at CO2 levels �634µatm. This apparently reduced the

top-down grazing mortality of picophytoplankton and prokaryotes and allowed their abundance

to increase. In contrast, Hancock et al. (2018) reported that microzooplankton (ciliates and

large heterotrophic dinoflagellates) and autotrophic dinoflagellates appeared to tolerate

increased CO2, although very low abundance of these groups may have concealed any effect.

Thus, increasing CO2 can directly affect microbial growth and physiology, leading to reductions

in the abundance of large diatoms and HNF in this region. In addition, it can also indirectly

affect the community by altering trophic interactions, favouring increased abundance of

picophytoplankton and prokaryotes.

A shift in microbial community structure, favouring the growth of small phytoplankton, will

affect biogeochemical cycles in Antarctic coastal waters. Coastal Antarctic waters are areas of

high productivity (Arrigo et al. 2008a), where summer blooms are dominated by large diatoms

and P. antarctica (Arrigo et al. 1999; Wright and van den Enden 2000; Davidson et al. 2010).

These blooms draw down the surface CO2 to as low as ⇠50µatm (Gibson and Trull 1999;

Arrigo et al. 2008b; Roden et al. 2013), making coastal Antarctic regions an important sink for
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anthropogenic CO2 (Arrigo et al. 2008a,b). Large diatoms contribute substantially to carbon

sequestration as they are grazed by the Antarctic krill Euphausia superba (krill) (Haberman et al.

2003; Meyer et al. 2003; Schmidt et al. 2006) and reparcelled into large faeces, which rapidly

sink to the ocean depths (Smetacek 1985; Schnack-Schiel and Isla 2005). Diatoms that form

large chains and have irregular morphology (such as setae) also promote aggregation and

entrapment of particles into "marine snow", an essential component of carbon flux (Alldredge

and Silver 1988). A reduction in large diatom abundance would therefore reduce the efficiency

of the carbon pump (Fig. 5.1). P. antarctica blooms can also be responsible for significant carbon

export (DiTullio et al. 2000), suggesting that a coincident reduction in P. antarctica abundance

with ocean acidification may further reduce the quantity of carbon sequestered in Antarctic

coastal waters. In contrast, small phytoplankton and heterotrophic protists remain in the

surface layer and are highly efficient recyclers of carbon and macronutrients, contributing very

little to carbon flux (Smetacek et al. 1990; Smetacek et al. 2004; Tréguer et al. 2018). An
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increased abundance of smaller-sized phytoplankton would lead to a larger proportion of

primary productivity consumed by small grazers, such as microzooplankton and small copepods

(Fig. 5.1) (Pearce et al. 2010), as krill appear to be more efficient at grazing on phytoplankton

>10µm in size (Quetin and Ross 1985; Kawaguchi et al. 1999; Haberman et al. 2003). Small

grazers produce much smaller faecal pellets that have slower sinking velocities and are more

rapidly remineralised by prokaryotes than krill faeces (Smetacek 1985; Turner 2002;

Schnack-Schiel and Isla 2005). The increase in prokaryote abundance we observed in high CO2

treatments due to the inhibition of HNF could increase the rate of remineralisation in the

surface layer, although this effect would be mediated by interactions with other bacterivorous

protozoa, such as ciliates (Duarte et al. 2005). Thus, a shift in community structure toward

smaller protists will result in increased cycling of nutrients in surface waters through grazing

and remineralisation (Fig. 5.1). Consequently, this will result in a decline in carbon

sequestration to the deep ocean, reducing the intensity of the CO2 sink in coastal Antarctic

regions.

Changes in the microbial community toward smaller species will also cause a shift in the

dominant flow of energy through less efficient pathways to higher trophic levels. Blooms of

diatoms are the preferred food source of krill, a "keystone" species in the Antarctic food web,

providing an efficient source of nutrients and fatty acids that are transferred to higher trophic

predators, such as penguins, seals, and baleen whales (Murphy et al. 1988; Hagen and Auel

2001; Haberman et al. 2003; Meyer et al. 2003; Schmidt et al. 2006; Murphy et al. 2007).

Nano- and picophytoplankton are more likely to be grazed by HNF, microzooplankton, and

small cell grazing mesozooplankton, such as copepods and salps (Fig. 5.1) (Perissinotto and

Pakhomov 1998; Atkinson et al. 2004; Smetacek et al. 2004; Turner 2004). This alternative food

web is preyed upon by amphipods, mesopelagic fish and squid, that are an additional food

source for Antarctic seabirds, seals, and whales (Murphy et al. 2007). Thus, a shift in

community composition in this region toward small diatoms and autotrophic flagellates may

add extra steps to the trophic chain, resulting in a less efficient transfer of nutrients to higher

trophic levels (Fig. 5.1) (Murphy et al. 1988). These alternative food webs can support adult

marine mammal and bird populations, however they may produce insufficient energy supply to

support reproduction (Croxall et al. 1988). This has been observed in the Scotia sea, where in
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years of low krill abundance, a reliance on a fish-based food web has resulted in large-scale

failures in reproductive success for fur seals and penguins (Croxall et al. 1988; Reid and Croxall

2001). However, krill are capable of adopting a more varied diet of flagellates,

microzooplankton, and occasionally small copepods when diatoms are not abundant (Schmidt

et al. 2006). Heterotrophic protists can be a good source of nutrition and have been found to

benefit krill growth in flagellate-dominated communities (Schmidt et al. 2006). Despite this

tolerance to changing food supply, krill may be further disadvantaged by ocean acidification,

with reports of reduced reproductive success at CO2 levels near year 2100 projections under the

IPCC RCP8.5 (high emission) scenario (Kawaguchi et al. 2011; IPCC 2013; Kawaguchi et al.

2013). In addition to food web changes, CO2-induced changes in phytoplankton essential fatty

acid content can transfer to higher trophic levels (Bermúdez et al. 2016), with unknown effects

on the flow of nutrients through the food web. Therefore, ocean acidification effects on the

marine microbial community in Antarctic waters is likely to have considerable effects on the

entire Antarctic food web.

It is unclear whether the microbial community will be able to adapt to ocean acidification at the

rate it is currently changing in Antarctic waters (Orr et al. 2005; McNeil and Matear 2008). It is

clear that fluctuating environments, like the extreme seasonal fluctuations in f CO2, light, and

macronutrients experienced in coastal Antarctic regions (Gibson and Trull 1999; Roden et al.

2013), promotes plasticity and favours evolutionary adaptation (Schaum et al. 2012; Schaum

and Collins 2014). Acclimation to elevated CO2 was observed in this study, where an initial

CO2-induced reduction in phytoplankton community health abated over time (see Chapter 2).

This acclimation response was likely due to a combination of internal shifts in cellular

regulation, along with a change in community structure (Deppeler et al. 2018b; Hancock et al.

2018). A down-regulation of energy-intensive carbon concentration mechanisms (CCMs) may

offset some of the energy constraints for growth (Raven 1991), however the reduction in pH

may require the use of proton pumps to maintain pH homeostasis (Taylor et al. 2012), negating

any energy gained from down-regulation of CCMs (Mackey et al. 2015). These physiological

responses to increasing CO2 are likely to drive changes in the community structure by favouring

the growth of more CO2-tolerant taxa and/or strains (Hancock et al. 2018). However,

adaptation to ocean acidification conditions may eliminate any short-term CO2-induced
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increases in growth rate (Schaum and Collins 2014; Schaum et al. 2016). Long-term ocean

acidification studies have reported changes in growth rate (Lohbeck et al. 2012; Scheinin et al.

2015; Torstensson et al. 2015; Li et al. 2017a; Tong et al. 2018), cell size (Schaum et al. 2012;

Schaum et al. 2016), photosynthesis and respiration rates (Schaum et al. 2012; Hennon et al.

2014), particulate organic matter production (Tong et al. 2018), exudation of dissolved organic

matter (Torstensson et al. 2015), and organic matter stoichiometry (C:N ratio) (Crawfurd et al.

2011; Schaum et al. 2012; Schaum et al. 2016). The magnitude, timing, and direction of these

effects differed between species and ecotypes, suggesting that community structure could be

dramatically altered over time with as yet unknown consequences on biogeochemical cycles and

nutrient transfer through the food web.

5.2 Future Directions

This study provides valuable insights into the effects of ocean acidification on marine microbial

communities. This includes the possible mechanisms of effect, tolerance thresholds, effects of

increasing CO2 on community composition, and the utility of monospecific studies in predicting

the effects of future changes in CO2 on Antarctic waters but, inevitably, it also highlights areas

where further research is necessary. The following section outlines some of these questions and

recommendations for future research.

How does ocean acidification affect flagellates?

Studies predict that with ocean acidification, flagellates will play a much bigger part in the

Antarctic ecosystem (Davidson et al. 2016; Hancock et al. 2018). Yet, little is known about the

effects of ocean acidification on Antarctic flagellate species (Wynn-Edwards et al. 2014;

Hancock et al. 2018). Current knowledge suggests that flagellates tolerate the projected

reductions in pH that would occur from ocean acidification (pH ⇠7.5), with little change in

growth rates, cell size, or elemental composition (C:N ratio) (Berge et al. 2010; Wynn-Edwards

et al. 2014). However, Wynn-Edwards et al. (2014) reported significant differences in fatty acid

content in some species at low pH (Pyramimonas gelidicola and Gymnodinium sp.) that could

result in changed nutrient quality for grazers (see below). There is also some evidence that



CHAPTER 5. DISCUSSION 131

reductions in pH can alter flagellate behaviour (Kim et al. 2013), flagella motility (Nakajima

2005; Morita et al. 2010; Nakamura and Morita 2012), and pH homeostasis (Dason and

Colman 2004). Further research into understanding the mechanisms of pH stress and the

potential behavioural changes of Antarctic flagellates with ocean acidification will help to clarify

the role that flagellates will play in the microbial loop in the future.

Does ocean acidification change the nutritional content of the protistan community?

Fatty acid production by the protistan community is an essential source of nutrients for higher

trophic organisms (Schmidt et al. 2006). Fatty acid profiles differ among phytoplankton taxa

and can be used as indicators for community composition (Dijkman and Kromkamp 2006;

Schmidt et al. 2006). There is also evidence that differences in protistan community

composition can have a direct effect on the fatty acid composition of higher trophic levels, such

as the Antarctic krill Euphausia superba (Schmidt et al. 2006). Little is known about the effect

that ocean acidification may have on the fatty acid composition of protistan communities.

However, species-specific changes in fatty acid content have been reported (e.g. Rossoll et al.

2012; Torstensson et al. 2013; Wynn-Edwards et al. 2014; King et al. 2015; Isari et al. 2016;

Jacob et al. 2016; Bi et al. 2017) and thus, the effects are likely to be directly related to

CO2-induced changes in community composition (Bermúdez et al. 2016). The effect of ocean

acidification on the fatty acid content of the protistan community was not investigated in our

study. However, a change in the community composition with elevated CO2 was observed

(Hancock et al. 2018). The effect that any change in fatty acid composition will have on the

macrozooplankton community is not well understood. In an Arctic mesocosm study, Bermúdez

et al. (2016) reported a reduction of essential fatty acids in the dominant copepod Calanus

finmarchicus was related to the essential fatty acid decline in the nanophytoplankton

community. Reduced fatty acid concentrations in the diatom Thalassiosira pseudonana also

caused a reduction in growth and reproduction of the copepod Acartia tonsa (Rossoll et al.

2012). Therefore, understanding how ocean acidification may affect the fatty acid content of

Antarctic phytoplankton species and natural protistan communities is essential to

understanding how higher trophic levels may be affected.
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How does ocean acidification affect community interactions and grazing?

Grazing interactions are essential for understanding how top-down processes will affect

community composition and bloom dynamics. Grazing controls the majority of primary

production in the Southern Ocean (Smetacek et al. 2004) and can account for ⇠50-100% of

daily primary and bacterial production in coastal Antarctic waters (Pearce et al. 2010). In our

study, increased CO2 slowed HNF growth, reducing the top-down control on the

picophytoplankton and prokaryote community. The increased abundance of small diatoms and

flagellates in Antarctic waters (see above) favours grazing and proliferation of

mesozooplankton, such as copepods and salps, in this region (Atkinson et al. 2004; Smetacek

et al. 2004; Turner 2004), adding additional steps in the trophic chain. Grazing dilution

experiments would assist in understanding the effects of ocean acidification on grazing and prey

selectivity that are likely under future CO2 scenarios.

How does ocean acidification affect biogeochemical cycles?

The microbial loop plays an integral part in biogeochemical processes, such as the cycling of

nutrients, carbon, and sulfur (Buchan et al. 2014). A reduction in diatom size and an increase

in flagellate and prokaryote abundance will likely decrease the rate of sinking of organic matter

and strengthen remineralisation of particulate matter in the surface ocean (see above) (Smetacek

et al. 2004). The effects of ocean acidification on carbon flux have been investigated in Northern

Hemisphere mesocosm studies (Paul et al. 2015; Spilling et al. 2016). Utilising a mesocosm design

similar to those used in these studies could capture sinking particles and aid our understanding

of the effects of ocean acidification on carbon flux and remineralisation of nutrients in Antarctic

waters.

Antarctic phytoplankton produce large quantities of dimethylsulfoniopropiothetin (DMSP), which

is enzymatically cleaved by prokaryotes into dimethylsulfide (DMS), a volatile compound that

contributes to cloud formation when released into the atmosphere (Charlson et al. 1987; Curran

and Jones 2000). P. antarctica is a prolific producer of DMSP in Antarctic waters (DiTullio and

Smith 1995; Turner et al. 1995; Vance et al. 2013) and this species is reportedly sensitive to

enhanced CO2 (Hancock et al. 2018). In addition, increased stratification of Antarctic waters

may also reduce the abundance of P. antarctica in some regions (Arrigo et al. 1999; Moisan and
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Mitchell 1999). This could have significant effects on the marine sulfur cycle in the Southern

Ocean, leading to reductions in cloud formation and global albedo. It is not yet understood how

ocean acidification will affect DMSP production in Antarctic marine microbial communities. Yet,

the significance of Southern Ocean DMS production to the global sulfur cycle, contributing⇠17%

of global DMS emissions (Curran and Jones 2000), makes it imperative to study.

How will changes in iron availability affect the protistan community response to ocean acidification?

Iron is essential for phytoplankton growth (Martin et al. 1990; Boyd et al. 2007). The Southern

Ocean is generally HNLC and therefore a decline in iron availability or the ability of

phytoplankton to utilise iron will have a significant effect on their ability to grow in a future

ocean. Coastal Antarctic regions are generally considered to be iron-replete (Arrigo et al. 2015),

however studies have suggested that ocean acidification may affect the bioavailability of iron as

well as have physiological effects on phytoplankton, limiting their ability to utilise iron (Shi

et al. 2010; Hutchins and Boyd 2016; McQuaid et al. 2018). Iron limitation may also restrict

CO2-induced changes in productivity and taxonomic shifts (Hoppe et al. 2013). Iron limitation

may also be more significant in the Southern Ocean in the future as stratification limits the

upwelling of iron and sea ice decline reduces the input of iron from sea ice melt (Hutchins and

Boyd 2016). Therefore, understanding how coincident ocean acidification and iron limitation

affects natural Antarctic marine microbial communities would be essential in understanding

how Southern Ocean protistan communities will change in the future.

How will ocean acidification affect microbial communities in other Southern Ocean regions?

The Southern Ocean, south of the Sub-Tropical Front, comprises approximately 20% of the

world’s ocean surface area and can be divided into five regions, based on the environmental

drivers of the phytoplankton community (Sullivan et al. 1988; Tréguer and Jacques 1992;

Deppeler and Davidson 2017). These comprise of the Sub-Antarctic Zone (SAZ), Permanently

Open Ocean Zone (POOZ), Seasonal Sea Ice Zone (SSIZ), Marginal Ice Zone (MIZ), and the

Antarctic Continental Shelf Zone (CZ) (Fig. 1.2). The microbial community composition and

productivity in each of the different Southern Ocean regions is defined by a number of physical

conditions, for example macro- and micronutrients, temperature, sea ice cover, and light.

Because of this, it is difficult to extrapolate the results of this thesis to regions where these
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physical constraints differ significantly. Boyd et al. (2014) demonstrated that the complex

permutations of change that occur in different ocean regions make it necessary to perform

region-specific studies to fully understand the community responses to change. This is

evidenced by ocean acidification studies already performed. McMinn et al. (2014) and Coad

et al. (2016) found that sea ice communities were tolerant of extremely high CO2 levels

(>6000µatm), while in the SAZ, elevated CO2 levels increased productivity in sub-Antarctic

diatoms through down-regulation of CCMs (Hopkinson et al. 2011; Trimborn et al. 2013) but

may also reduce calcification in some coccolithophores (Müller et al. 2015). Larger-scale

incubation experiments, such as the one undertaken in this thesis, are necessary in all of the five

Southern Ocean regions to observe how ocean acidification and other climate stressors may

influence the interactions between trophic levels under region-specific conditions. This is

particularly important in the MIZ and POOZ as these regions are relatively unstudied, despite

their substantial importance in the Antarctic ecosystem (see Chapter 1).

How will additional climate stressors affect the protistan community?

Climate change models predict that coastal Antarctic regions will experience an increase in

freshening, stratification, ocean acidification, warming, and the melting and breakup of glaciers

and ice shelves (Gutt et al. 2015; Deppeler and Davidson 2017). Whilst ocean acidification

alone resulted in a reduction in primary productivity (Deppeler et al. 2018b) and change in

community composition (Hancock et al. 2018), the interactive effects of increased light,

decreased salinity, and warming are currently unknown and could exacerbate or diminish these

responses (Boyd and Brown 2015). Additional climate stressors, such as increasing

temperature, may increase the metabolic demand on grazers, requiring them to consume more

nutrients to maintain their growth (Rose et al. 2009a). Warming may also reduce the fatty acid

content of phytoplankton, leading to reduced nutrition and thus, increasing grazing demand

further (Hixson and Arts 2016). However, temperature increases may also alleviate the negative

effects of CO2 on phytoplankton growth in some species (Torstensson et al. 2013; Zhu et al.

2017). Therefore, it is also important to evaluate the effects of multiple stressors on multiple

trophic levels as they may result in further changes to the microbial community composition

(Calbet et al. 2014). Incorporating multiple stressors into an experimental design can become

logistically impossible if all permutations of treatments are included (Boyd et al. 2016a). Thus,
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some studies have grouped stressors in order to simulate future ocean conditions and assess

their interactive effects (e.g. Xu et al. 2014; Boyd et al. 2016a). However, understanding and

evaluating the magnitude and timing of these changes within the region studied is essential in

ensuring that the effect of multi-stressors are properly understood (Boyd et al. 2014, 2016b).

Can Antarctic phytoplankton adapt to climate change?

Little is known about the ability of Antarctic phytoplankton to adapt to changes in their

environment. While microbial communities from Antarctic coastal waters may cope with large

variations in CO2 (Young et al. 2015; Davidson et al. 2016; Hancock et al. 2018, e.g.), their

tolerance limits to other environmental factors, such as temperature and salinity, may be very

narrow (Moline et al. 2004; Montes-Hugo et al. 2008). Long-term studies have shown that

individual phytoplankton species can adapt to ocean acidification conditions (e.g. Lohbeck et al.

2012; Schaum et al. 2012; Schaum et al. 2016). However, these adaptations may result in

physiological changes, such as growth rate or cell size, which may affect their abundance and

trophic interactions in the protistan community (Schaum and Collins 2014; Schaum et al.

2016). Long-term studies on Antarctic phytoplankton under projected future climate change

conditions (both single and multi-stressor) could provide valuable insight into whether key

species can adapt to a changing climate and what possible impacts that may have on the

protistan community.

Development of bottom-up models to investigate how CO2-induced changes in the protistan

community affect higher trophic levels.

The protistan community is the base of the Southern Ocean food web and supports the wealth

of life in Antarctic waters. Therefore, changes in the protistan community, imposed by ocean

acidification and other climate stressors, may have a significant effect on the entire food web.

Qualitative network models are useful for assessing the response of environmental

perturbations on an ecosystem (Melbourne-Thomas et al. 2013; Subramaniam et al. 2017).

However, the predictive power of these models can be diminished when there is insufficient

detail in its components (Ratnarajah et al. 2016; Goedegebuure et al. 2017). Therefore,

integrating the results of the ocean acidification studies in this thesis into bottom-up models will

help untangle the key community-level interactions that will strengthen predictions of
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ecosystem-level changes that may be imposed by ocean acidification.

5.3 Conclusion

The research undertaken in this thesis showed that ocean acidification can alter microbial

productivity, trophodynamics, and biogeochemistry in Antarctic coastal waters. While this work

uncovered some critical thresholds for tolerance to ocean acidification in the protistan

community, there is still much that needs to be done to fully understand the consequences of

these results on the entire ecosystem. Shifts in phytoplankton community production and

predator-prey interactions with ocean acidification could have a significant effect on the food

web and biogeochemistry in the Southern Ocean. Therefore, understanding these effects is

critical if we are to predict how climate change may affect the ecosystem services that marine

microbes provide in Antarctic waters, such as climate mediation, sustaining biodiversity, and

supporting productive fisheries.
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Phytoplankton are the base of the Antarctic food web, sustain the wealth and diversity of

life for which Antarctica is renowned, and play a critical role in biogeochemical cycles that

mediate global climate. Over the vast expanse of the Southern Ocean (SO), the climate is

variously predicted to experience increased warming, strengthening wind, acidification,

shallowingmixed layer depths, increased light (and UV), changes in upwelling and nutrient

replenishment, declining sea ice, reduced salinity, and the southward migration of ocean

fronts. These changes are expected to alter the structure and function of phytoplankton

communities in the SO. The diverse environments contained within the vast expanse

of the SO will be impacted differently by climate change; causing the identity and the

magnitude of environmental factors driving biotic change to vary within and among

bioregions. Predicting the net effect of multiple climate-induced stressors over a range

of environments is complex. Yet understanding the response of SO phytoplankton to

climate change is vital if we are to predict the future state/s of the ecosystem, estimate

the impacts on fisheries and endangered species, and accurately predict the effects

of physical and biotic change in the SO on global climate. This review looks at the

major environmental factors that define the structure and function of phytoplankton

communities in the SO, examines the forecast changes in the SO environment, predicts

the likely effect of these changes on phytoplankton, and considers the ramifications for

trophodynamics and feedbacks to global climate change. Predictions strongly suggest

that all regions of the SO will experience changes in phytoplankton productivity and

community composition with climate change. The nature, and even the sign, of these

changes varies within and among regions and will depend upon the magnitude and

sequence in which these environmental changes are imposed. It is likely that predicted

changes to phytoplankton communities will affect SO biogeochemistry, carbon export,

and nutrition for higher trophic levels.

Keywords: Southern Ocean, phytoplankton, climate change, primary productivity, Antarctica

1. INTRODUCTION

Iconic Antarctic wildlife from krill to whales, seals, penguins, and seabirds, ultimately depend
on single-celled marine plants (phytoplankton) for their food. More than 500 species of
protist have been identified in Antarctic waters, ∼350 of which are phytoplankton and ∼150
microheterotrophs (Scott and Marchant, 2005, http://taxonomic.aad.gov.au). These organisms
coexist with untold numbers of heterotrophic prokaryotes (bacteria and Archaea) and viruses.
Together they comprise the microbial food web (Figure 1), through which much of the carbon
sequestered by phytoplankton is consumed, respired, and/or remineralized (Azam et al., 1983,
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FIGURE 1 | Schematic showing the connections amongst members of the microbial food web and microbial loop and the processes driving carbon

transfer to higher trophic levels and flux to the deep ocean.

1991; Fenchel, 2008; Kirchman, 2008). This food web includes
the microbial loop in which dissolved carbon substrates fuel
the growth of bacteria and Archaea, which are subsequently
consumed by protists, returning carbon to the microbial food
web that is otherwise lost to the dissolved pool (Azam et al.,
1983). Phytoplankton are the base of the Southern Ocean (SO)
food web. In nutrient rich Antarctic coastal waters their blooms
can reach concentrations approaching 108 cells l−1. Chlorophyll
a (Chl a) concentrations as high as 50 µg l−1 have been
recorded off the West Antarctic Peninsula (WAP), although
maximum Chl a concentrations off East Antarctica are usually
an order of magnitude less (Nelson et al., 1987; Smith and
Gordon, 1997; Wright and van den Enden, 2000; Garibotti
et al., 2003; Wright et al., 2010; Goldman et al., 2015). The
majority of phytoplankton production in the SO is grazed by
microheterotrophs or consumed and remineralized by bacteria
(Lochte et al., 1997; Christaki et al., 2014). Production that
escapes these fates sinks to depth, often in the form of dead cells,
aggregates of biogenic material (marine snow), or fecal pellets,
sequestering carbon in the deep ocean.

Abbreviations: SO, Southern Ocean; SAZ, sub-Antarctic zone; POOZ,
permanently open ocean zone; SSIZ, seasonal sea ice zone; MIZ, marginal ice zone;
CZ, Antarctic continental shelf zone; DMSP, dimethylsulfoniopropiothetin; DMS,
dimethylsulfide; Chl a, Chlorophyll a; HNLC, high nutrient, low chlorophyll;
UCDW, upper circumpolar deep water; SAM, Southern Annular Mode; WAP,
west Antarctic peninsula; ASL, Amundsen Sea Low; ENSO, El Niño-Southern
Oscillation; SIE, sea ice extent; CCM, carbon concentrating mechanism; PAR,
photosynthetically active radiation; UV, ultraviolet.

Some phytoplankton, such as prymnesiophytes and
dinoflagellates, also synthesize substantial quantities
of dimethylsulfoniopropiothetin (DMSP), which when
enzymatically cleaved, forms dimethylsulfide (DMS). Oxidation
of DMS in the atmosphere forms sulfate aerosols, which nucleate
cloud formation and increase the reflectance of solar radiation
(Charlson et al., 1987). The microbial food web plays a vital
role in metabolizing these sulfur compounds (Kiene et al.,
2000; Simó, 2004). The active involvement of phytoplankton in
the sequestration and synthesis of climate-active gases (CO2)
and biogenic sulfur compounds (DMSP and DMS), plus the
mediation of the fate of these compounds by protozoa and
bacteria means that microbes are a crucial determinant of future
global climate (Figure 1).

The SO plays a substantial role in mediating global
climate. The world’s oceans have taken up between 25 and
30% of the anthropogenic CO2 released to the atmosphere,
with ∼40% of this uptake occurring in the SO (Raven and
Falkowski, 1999; Sabine et al., 2004; Khatiwala et al., 2009;
Takahashi et al., 2009; Frölicher et al., 2015). Without this, the
atmospheric CO2 concentration would be ∼50% higher than it
is today. Drawdown of CO2 by phytoplankton photosynthesis
and vertical transport of this biologically sequestered carbon
to the deep ocean (the biological pump) is responsible for
around 10% this uptake (Cox et al., 2000; Siegel et al., 2014).
Any climate-induced change in the structure or function of
phytoplankton communities is likely to alter the efficiency
of the biological pump, with feedbacks to the rate of

Frontiers in Marine Science | www.frontiersin.org 2 February 2017 | Volume 4 | Article 40



Deppeler and Davidson Southern Ocean Phytoplankton in a Changing Climate

climate change (Matear and Hirst, 1999; Le Quéré et al.,
2007).

The SO is a region of seasonal extremes in productivity that
reflect the large fluctuations in the SO environment. In summer,
the development of large blooms of phytoplankton support a
profusion of Antarctic life. Their metabolic activity also affects
biogeochemical cycles in the SO, which in turn can influence the
global climate. Whilst their effect on global climate is substantial,
their microscopic size means they are intimately exposed to
changes in their environment and are also likely to be affected by
climate change. Already, climate change is causing the southward
migration of ocean fronts, increasing sea surface temperatures,
and changes in sea ice cover (Constable et al., 2014). Further
changes in temperature, salinity, wind strength, mixed layer
depth, sea ice thickness, duration and extent, and glacial ice melt
are predicted. These changes are likely to affect the composition,
abundance, and productivity of phytoplankton in the SO and
feed back to threaten the ecosystem services they provide, namely
sustaining biodiversity, fueling the food web and fisheries, and
mediating global climate (Moline et al., 2004).

The SO is a vast and diverse environment, and hence the
effect of climate change on the phytoplankton community is
likely to be complex. For the purposes of this review we
define the SO as waters south of the Sub-Tropical Front,
thereby comprising ∼20% of the world’s ocean surface area.
We subdivide these waters into five regions that group waters
according to the environmental drivers of the phytoplankton
community in a similar manner as Tréguer and Jacques
(1992) and Sullivan et al. (1988), namely the Sub-Antarctic
Zone (SAZ), Permanently Open Ocean Zone (POOZ), Seasonal
Sea Ice Zone (SSIZ), Marginal Ice Zone (MIZ), and the
Antarctic Continental Shelf Zone (CZ) (Figure 2). Differences
in environmental factors (physical, chemical, and biological)
and processes (e.g., stratification, mixing, grazing) define the
composition, abundance, and productivity of the phytoplankton
community, both within and between these regions. Climate
change is expected to elicit widespread changes in oceanography
in each region, such as the displacement of oceanographic fronts
(Sokolov and Rintoul, 2009b), as well as different permutations
of climate-induced stressors that may interact synergistically or
antagonistically, with either beneficial or detrimental effects on
the phytoplankton community (Boyd and Brown, 2015; Boyd
et al., 2016).

Here we identify the factors and processes that critically affect
phytoplankton communities in each region of the SO, consider
the impacts of climate change on each of these regions, examine
the likely effect of these changes on the phytoplankton inhabiting
these waters, and predict the possible repercussions for the
Antarctic ecosystem.

2. SUB-ANTARCTIC ZONE

The Sub-Antarctic Zone (SAZ) comprises more than half the
total area of the SO and incorporates three important frontal
regions; the Sub-Tropical Front, the Sub-Antarctic Front, and
the Polar Front (Figure 2) (Orsi et al., 1995). Within this
region, the waters between the Sub-Antarctic Front and the
Polar Front are also referred to as the Polar Frontal Zone (e.g.,

Tréguer and Jacques, 1992). This region forms an important
transitional boundary within the SO between the dominance of
coccolithophores that construct carbonate shells to the north
and diatoms with silicate frustules to the south (Figures 2, 3)
(Trull et al., 2001a,b; Honjo, 2004). Macro- and micronutrients
are more abundant at the Polar Frontal Zone where nutrients are
entrained across the bottom of the mixed layer, supporting deep
chlorophyll maxima at depths up to 90m. These deep chlorophyll
maxima support blooms of large diatoms, such as Rhizosolenia
sp. and Thalassiothrix sp., which can grow to high abundance
and contribute significantly to carbon and silica flux (Tréguer
and Van Bennekom, 1991; Kopczyńska et al., 2001; Kemp et al.,
2006; Assmy et al., 2013). For the purpose of this review we
are combining all waters between the Sub-Tropical Front to the
north and the Polar Front to the south as the SAZ, as the physical
and biological characteristics of these regions are similar.

This region of the SO is a major contributor to the uptake of
CO2 by the ocean (Metzl et al., 1999; Sabine et al., 2004; Frölicher
et al., 2015). The westerly winds that circulate Antarctica carry
water from the Antarctic Slope Front north across the SAZ by
Ekman transport (Figure 3). This water has a partial pressure of
carbon dioxide (pCO2) below that of the atmosphere, allowing
CO2 to dissolve into the ocean (the solubility pump). North of the
Sub-Antarctic Front, surface water is convected to hundreds of
meters, forming Antarctic IntermediateWater and Sub-Antarctic
Mode Water (Figure 3) (Wong et al., 1999; Matear et al., 2000;
Rintoul and Trull, 2001; Lumpkin and Speer, 2007). In doing
so, it carries an estimated ∼1 Gt C yr−1 to the ocean’s interior
and connects the upper and lower components of the global
overturning circulation (Metzl et al., 1999; Sloyan and Rintoul,
2001a,b).

The SAZ is the largest high nutrient, low chlorophyll (HNLC)
province in the world’s ocean. Over the year phytoplankton
productivity in this region is limited by a variety of bottom-
up (silicic acid, iron, and light) and top-down (grazing) factors
(Figure 4A) (e.g., Banse, 1996; Boyd et al., 2001; Hiscock et al.,
2003; Doblin et al., 2011). Iron is the main factor limiting
phytoplankton growth in the SAZ, despite inputs from dust,
shelf sediments, and hydrothermal vents (Boyd et al., 2004; Blain
et al., 2007; Cassar et al., 2007; Pollard et al., 2009; Boyd and
Ellwood, 2010; Tagliabue et al., 2010). Silica is replete in these
waters in spring but it is drawn down by silicifying plankton,
such as diatoms, silicoflagellates, and radiolarians, to limiting
concentrations by autumn (Trull et al., 2001a; Salter et al., 2007;
Pollard et al., 2009). In iron-limited regions of the SAZ, Si:C
ratios are high, resulting in low carbon export (Salter et al., 2007,
2012; Assmy et al., 2013). In addition, light levels experienced
by phytoplankton can be very low due to cloudiness and mixed
layer depths ranging from 70 to 100 m in summer to as deep
as 600 m in winter (Bishop and Rossow, 1991; Rintoul and
Trull, 2001). In regions of shallow or complex bathymetry,
such as sea mounts, or in waters downstream of sub-Antarctic
islands, resuspension of iron-rich sediments naturally fertilizes
the SAZ waters creating areas of high productivity (Salter et al.,
2007; Pollard et al., 2009). Large, heavily-silicified diatoms,
such as Eucampia antarctica and Fragilariopsis kerguelensis, are
responsible for high levels of export in these naturally fertilized
regions (Salter et al., 2007, 2012; Assmy et al., 2013; Rembauville

Frontiers in Marine Science | www.frontiersin.org 3 February 2017 | Volume 4 | Article 40



Deppeler and Davidson Southern Ocean Phytoplankton in a Changing Climate

FIGURE 2 | Summer near-surface Chlorophyll a concentration, frontal locations and sea ice extent in the Southern Ocean. Chlorophyll a is determined

from MODerate-resolution Imaging Spectroradiometer, Aqua satellite estimates from austral summer season between 2002/03 and 2015/16 at 9 km resolution. Black

lines represent, frontal positions from Orsi et al. (1995). The red line denotes the maximum extent of sea ice averaged over the 1979/80 to 2007/08 winter seasons,

derived from Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Image satellite data. Light blue lines depict the 1000 m depth isobath,

derived using the General Bathymetric Chart of the Oceans, version 20150318. STF, Sub-Tropical Front; SAF, Sub-Antarctic Front; PF Polar Front; SACCF, Southern

Antarctic Circumpolar Current Front.

et al., 2016b,c). This export is aided by silica limitation, the
exhaustion of which ceases diatom growth and accelerates rates
of sinking. Nutrient limitation also causes a succession in the
phytoplankton community to picoeukaryotes, such as Phaeocystis
sp. and coccolithophorids (Salter et al., 2007; Quéguiner, 2013;
Balch et al., 2016).

Small taxa, including nanoflagellates, cyanobacteria,
dinoflagellates, coccolithophores, and small or lightly silicified
diatoms, dominate the protistan community in the SAZ (Odate
and Fukuchi, 1995; Kopczyńska et al., 2001, 2007; de Salas

et al., 2011). Copepods and mesopelagic fish, particularly
myctophids, are important primary and secondary consumers of
the phytoplankton in these waters and form an alternative food
web for squid, predatory mesopelagic fish, and penguins (Kozlov,
1995; Cherel et al., 2010; Murphy et al., 2016). Measured rates
of microzooplankton grazing (Jones et al., 1998; Griffiths et al.,
1999; Safi et al., 2007; Pearce et al., 2011), together with high
grazer biomass (Kopczyńska et al., 2001) suggest that grazers
consume much of the primary productivity in this region. As
a result of the physical and biological factors limiting primary
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FIGURE 3 | Schematic view of the meridional overturning circulation of the Southern Ocean, modified from Figure 3 in Post et al. (2014). STF,

Sub-Tropical Front; SAF, Sub-Antarctic Front; PF, Polar Front; ASF, Antarctic Slope Front; SAMW, Sub-Antarctic Mode Water; AAIW, Antarctic Intermediate Water;

UCDW, Upper Circumpolar Deep Water; LCDW, Lower Circumpolar Deep Water; AABW, Antarctic Bottom Water; SAZ, Sub-Antarctic Zone; PFZ, Polar Frontal Zone;

POOZ, Permanently Open Ocean Zone; SSIZ, Seasonal Sea Ice Zone; CZ, Continental Zone. Arrows indicate mean flow direction. Red arrows show the upper cell

and blue shows the deep cell. Small arrows indicate diabatic transport due to interior mixing. Note that this is an averaged view of the emergent residual flow due to

complex, time-varying, three-dimensional processes and does not reflect the current directions of any given section across the Antarctic Circumpolar Current.

FIGURE 4 | Schematic showing the primary physical constraints on phytoplankton in the Sub-Antarctic Zone (SAZ) (A) before and (B) after climate

change, modified from Boyd and Law (2011). Ovals represent the depth of mixing and arrow thickness reflects relative rates of flux. SST, sea surface temperature.
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productivity in the SAZ, phytoplankton abundance is moderately
low and varies little among seasons (Banse, 1996). The SAZ is
more productive in the Atlantic sector and around 170◦Wwhere
iron concentrations are higher due to the proximity of land
(Figure 2) (Comiso et al., 1993; de Baar et al., 1995; Moore and
Abbott, 2000). Despite the low levels of primary productivity,
export efficiency is high in HNLC waters of the SAZ, suggesting
that small taxa contribute to a high proportion of carbon export
(Trull et al., 2001b; Lam and Bishop, 2007; Cassar et al., 2015;
Laurenceau-Cornec et al., 2015).

Climate predictions suggest that waters of the SAZ will
become warmer, fresher and more acidic; the frequency of
storms will increase, bringing more wind-blown dust to the
region; and phytoplankton will experience increased irradiances
of photosynthetically active radiation (PAR) and ultraviolet (UV)
radiation (Figure 4B) (Matear and Hirst, 1999; Caldeira and
Wickett, 2003; Orr et al., 2005; Marinov et al., 2010; Boyd and
Law, 2011; Boyd et al., 2016). Together, these changes may have
profound consequences for phytoplankton in the SAZ and the
role of this region in mediating global climate.

Models suggest that global warming is likely to reduce the
efficiency of both the solubility and biological pumps (Sarmiento
and Le Quéré, 1996; Matear and Hirst, 1999). For phytoplankton,
increased precipitation and warming increases the buoyancy
of surface waters, enhancing stratification and reducing mixed
layer depths over much of the SAZ. This reduces the delivery
of nutrients to surface water, thereby reducing phytoplankton
production and the vertical flux of biogenic carbon to the deep
ocean via the biological pump (Matear and Hirst, 1999 and
references therein; Boyd and Law, 2011; Petrou et al., 2016). The
declining efficiency of the biological pump means it would be
unable to compensate for any decline in the solubility of CO2 as
the ocean warms (Matear and Hirst, 1999). Recent studies also
indicate that rising temperatures cause rates of grazing to increase
more rapidly than rates of phytoplankton growth (Sarmento
et al., 2010; Evans et al., 2011; Caron and Hutchins, 2013;
Behrenfeld, 2014; Biermann et al., 2015; Cael and Follows, 2016).
Thus, phytoplankton standing stocks are likely to decline and
the proportion of primary production respired in near-surface
waters by prokaryotes and grazers will increase. The nutritional
quality of phytoplanktonmay also decline at higher temperatures
(Finkel et al., 2010 and references therein; Hixson and Arts,
2016), suggesting grazers will also need to consume more
phytoplankton to obtain the nutrition they require. Together,
these factors are predicted to reduce phytoplankton productivity
and the uptake of CO2 by the ocean in the SAZ region.

The absence of iron is regarded as the primary cause of
HNLC waters of the SO having the world’s highest inventory
of unused surface macronutrients (Martin et al., 1990; Boyd
et al., 2007). As the largest HNLC region in the ocean, low
rates of iron supply to the SAZ restrict primary production, alter
phytoplankton species composition, increase Si:C export ratios,
and constrain the biological pump (Ridgwell, 2002; Salter et al.,
2012; Assmy et al., 2013; Salter et al., 2014). Aeolian dust makes
a significant contribution to iron supply in the SAZ in areas
downwind of landmasses and any increase in storm activity as a
result of climate change may enhance delivery of iron-rich dust

to these areas, enhancing productivity and carbon drawdown
in this region (Cassar et al., 2007; Boyd and Law, 2011; Boyd
et al., 2012, 2016). Investigations into sediment cores taken in the
sub-Antarctic South Atlantic have correlated increased aeolian
iron supply to the SAZ with increased productivity during ice
ages, strengthening the biological pump and causing significant
declines in atmospheric CO2 (Anderson et al., 2014; Martínez-
García et al., 2014). Increased desertification through climate
change-related vegetation loss may result in a 10-fold increase
in dust over the Southern Hemisphere (Woodward et al., 2005).
However, the increase in dust will depend on both climate change
and anthropogenic changes in land-use and re-vegetation, the net
effects of which are currently uncertain (Ridgwell, 2002; Hutchins
and Boyd, 2016).

While oceanic uptake of CO2 ameliorates the accumulation of
this gas in the atmosphere, it also alters the carbonate chemistry
of the ocean. Absorption of CO2 by the ocean reduces its
pH (termed ocean acidification) and increases the solubility of
calcium carbonate by reducing its saturation state (!) (Caldeira
and Wickett, 2003; Orr et al., 2005). Coccolithophorids are the
only calcifying phytoplankton in the SO and are most abundant
in naturally iron-fertilized regions in the SAZ, such as fronts and
downstream of sub-Antarctic islands (Salter et al., 2014; Balch
et al., 2016). Calcification releases CO2 (the carbonate counter-
pump), resulting in the elevation of pCO2 concentrations
in SAZ waters where coccolithophores are highly abundant,
particularly around the Sub-Antarctic Front (Patil et al., 2014;
Saavedra-Pellitero et al., 2014; Balch et al., 2016). Studies
of the dominant coccolithophore, Emiliania huxleyi, found
morphological variations in calcification that closely followed
the southerly decline in calcite saturation state but were strain-
specific rather than caused by acidification (Cubillos et al., 2007;
Patil et al., 2014; Saavedra-Pellitero et al., 2014; Malinverno et al.,
2015). However, culture studies by Müller et al. (2015) reported
that calcification by E. huxleyi decreased at pCO2 concentrations
>1000 µatm. This suggests that calcifying phytoplankton in
the SAZ will be vulnerable to predicted increases in pCO2. A
decrease in calcification is anticipated to have a greater negative
impact on the carbonate counter-pump than cell growth, leading
to greater surface water pCO2 uptake but potentially reducing
vertical carbon flux through a decline in the ballasting effect of
calcification (Riebesell et al., 2009; Müller et al., 2015; Balch et al.,
2016).

Minimal research has been performed on the effect of ocean
acidification on non-calcifying phytoplankton in the SAZ. Boyd
et al. (2016) included ocean acidification in their multi-stressor
study on a sub-Antarctic diatom and whilst their experimental
design did not allow for full analysis of each individual stressor,
they found that ocean acidification was not likely to be a
primary controller in diatom physiology. Studies on other
sub-Antarctic diatom species have reported an increase in
productivity with increased CO2 concentration, likely due to
reduced energetic costs associated with the down-regulation of
carbon concentrating mechanisms (CCMs) (Hopkinson et al.,
2011; Trimborn et al., 2013). Most SO phytoplankton use CCMs
to increase the intracellular concentration of CO2 for fixation
by RubisCO (Hopkinson et al., 2011). This process requires
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substantial energy consumption and the down-regulation of
CCMs is thought to decrease the energy cost of carbon
acquisition for phytoplankton photosynthesis (e.g., Raven, 1991;
Rost et al., 2008; Hopkinson et al., 2011). However, iron and light
limitation in these waters is likely to inhibit any positive effects of
increased CO2 supply (Hoppe et al., 2013, 2015).

Stratification of the water column is predicted to increase in
the SAZ region, trapping phytoplankton in a shallowing mixed
layer where they are exposed to higher irradiances of PAR and
UV radiation (280–400 nm) (Davidson, 2006; Gao et al., 2012;
Häder et al., 2015). Light wavelengths are differentially attenuated
by sea water. Blue wavelengths (∼500 nm) can reach depths
exceeding 250 m in clear oceanic water but the penetration
rapidly decreases as radiation tends toward infrared (longer) and
ultraviolet (shorter) wavelengths (Figure 5) (Davidson, 2006).
Thus, red and infrared wavelengths only warm the very surface
of the ocean, while damaging irradiances of UV-B penetrate
to ≤30 m depth (Karentz and Lutze, 1990; Buma et al., 2001;
Davidson, 2006). Rates of phytoplankton productivity in the SAZ
are commonly limited by light availability due to cloudiness
and deep mixing. Increased stratification could mitigate this
limitation by keeping cells in sunlit near-surface waters. Overall,
productivity would still be constrained by the availability of key
nutrients (iron and silicate), which already limit phytoplankton
production in the SAZ despite the low light. Thus, increased rates
of productivity are unlikely to result in higher biomass or carbon
export in this region without a coincident increase in nutrient
supply (see above).

Exposing phytoplankton in the SAZ to higher irradiances
of PAR, Ultraviolet-A (UV-A, 315–400 nm), and Ultraviolet-
B (UV-B, 280–315 nm) is also likely to increase photodamage.
The damage to intracellular molecules or structures become
progressively less repairable as wavelengths decline below 350
nm, reducing phytoplankton productivity, growth and survival,
and changing the species composition, with implications for
ecosystem structure and function (e.g., Karentz, 1991; Marchant
and Davidson, 1991; Davidson, 2006). The amount of damage
sustained by cells is a function of the dose and dose rate of
UV exposure; the frequency and duration of exposure to low
irradiances to allow repair; and species-specific differences in the
UV-tolerance of component species in natural phytoplankton
communities (e.g., Cullen and Lesser, 1991; Davidson, 2006;
Häder et al., 2015). It is hard to assess the additional risk UV
exposure may have to phytoplankton in the SAZ as such details
are currently unavailable. Studies by Helbling et al. (1994) and
Neale et al. (1998a,b) showed that increasing the rate of change in
the light climate altered the balance between damage and repair
and greatly increased the biological impact of a specific UV dose.
Thus, trapping cells in a shallow mixed zone where they receive
repeated exposure to high PAR and UV irradiances over short
time scales (see above, Figure 5) may have a far greater impact
on the growth, production, and survival of phytoplankton than
ozone depletion (Davidson, 2006).

The SAZ region is being increasingly penetrated by both
sub-tropical and polar waters. The climate-induced increase in
the positive phase of the Southern Annular Mode (SAM) has
caused the westerly wind belt to intensify and move south

FIGURE 5 | Schematic showing (A) the spectral flux (colored bars) and

molar photon energy (black line) of solar radiation, (B) the

wavelength-dependent penetration of light in the ocean and (C) the role of

wind in deepening the mixed layer depth, modified from Davidson (2006).

Solar spectral flux was calculated from the UVSpec model for noon at the

summer solstice at Davis Station, Antarctica, an albedo of 0.5 and a column

Ozone of 300 Dobson units. Photon energy was calculated after Kirk (1994).

SAZ, Sub-Antarctic Zone; POOZ, Permanently Open Ocean Zone; SSIZ,

Seasonal Sea Ice Zone; PAR, photosynthetically active radiation.

(see POOZ below). This increase in the velocity of westerly
winds to the south of the SAZ has enhanced upwelling at the
Antarctic Slope Front and increased its Ekman transport into
the SAZ from the south, increasing phytoplankton growth in the
cool, nutrient-rich water (Lovenduski and Gruber, 2005; DiFiore
et al., 2006). A 37 year dataset of surface Chl a measurements
south of Australia from vessels of the Japanese Antarctic
Research Expeditions show as similar trend of increasing Chl a
spreading northward from these northern limits of the POOZ
(55◦S) into the Polar Frontal Zone (40◦S) (Hirawake et al.,
2005). The southward movement of the westerly wind belt
has also increased the penetration of sub-tropical waters into
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the SAZ; supplementing iron supply, exacerbating warming,
and intensifying climate-induced stratification (Lovenduski and
Gruber, 2005; Poloczanska et al., 2007; Ridgway, 2007). Warmer
waters also allow the incursion of sub-tropical phytoplankton and
grazers into SAZ waters, causing additional grazing competition
and unknown effects on the SO food web (McLeod et al., 2012).

Not all of the SAZ is expected to experience shallowing mixed
layer depth as a result of climate change. At the sub-Antarctic
convergence, increased wind will deepen the mixed layer, causing
declines in phytoplankton productivity through light limitation
(Lovenduski and Gruber, 2005). In addition, there are zonal
differences in the effect of the increasingly positive SAM on
mixed layer depth in the SAZ region, with deepening over the
eastern Indian Ocean and central Pacific Ocean, and shallowing
over the western Pacific Ocean (Sallée et al., 2010). Resulting in a
mosaic of changing factors that limit phytoplankton productivity,
from nutrient limitation in shallower regions to light limitation in
deeply mixed waters.

Clearly, phytoplankton occupying the SAZ region are likely
to experience a range of environmental stressors as a result of
climate change. The net effect of these changes is uncertain.
Most studies investigate the physiological effects of change on
phytoplankton by imposing single stressors (e.g., Boyd et al.,
2013; Trimborn et al., 2013) but research shows interaction
among stressors alter their response. A multi-stressor study by
Boyd et al. (2016) using a sub-Antarctic diatom showed that
its response to environmental change was governed by the
range of stresses to which it was exposed. Negative responses
to several stressors (CO2, nutrients, and light) were offset by
positive responses to others (temperature and iron). Thus, the
response of an organism is determined by the interactive effect
of all the stresses they experience (Boyd et al., 2016). Equally,
responses of single species (e.g., Boelen et al., 2011; Trimborn
et al., 2014; Müller et al., 2015) provide valuable insights into the
mechanisms of sensitivity and tolerance but avoid interactions
among species and trophic levels that can alter the responses
or sensitivity of a community to a stressor (Davidson et al.,
2016; Thomson et al., 2016). Yet gaining maximum predictive
strength by simultaneously performing multi-stressor and multi-
trophic level studies is often logistically so demanding as to be
impractical.

Predicted responses by phytoplankton in the SAZ to climate
change differ. Many propose that the stratification-induced
decline in nutrient supply to surface waters will reduce their
productivity and favor small flagellates (e.g., Matear and Hirst,
1999; Marinov et al., 2010; Petrou et al., 2016), heightening the
role of the microbial food web and reducing carbon export.
While Boyd et al. (2016) indicates that increases in iron
and temperature may double growth rates and favor diatoms;
scenarios which have major and opposing influences on regional
productivity and biogeochemistry. It is likely that the effect of
climate change on phytoplankton in the SAZ is going to be
determined by the timing, rate, and magnitude of change in
each stressor. Stochastic inputs of iron, wind, and storms disrupt
stratification; influencing productivity, species composition, and
export production through changes in nutrients and light
climate. Changes in community composition from diatoms to
flagellates also affect particulate matter stoichiometry in this

region, causing a decline in nutritional quality for grazing
zooplankton (Martiny et al., 2013; Rembauville et al., 2016a) and
subsequent flow on effects throughout the food web (Finkel et al.,
2010). Ocean acidification will also cause declines in carbonate
saturation, affecting coccolithophore calcification, resulting in
greater surface pCO2 uptake and decreased carbon export.
Overall, our synthesis suggests that productivity will decline in
the SAZ due to the net response of nutrient limitation and
increased grazing, especially in silicate-limited waters.

3. PERMANENTLY OPEN OCEAN ZONE

The Permanently Open Ocean Zone (POOZ) lies between the
Polar Front and the northern limit of the winter sea ice, covering
approximately 14 million km2 (Figure 2). The Polar Front at the
northern extent of the POOZ forms a natural barrier between the
warm SAZ water (5–10◦C) and the cold Antarctic water (<2◦C)
(Pollard et al., 2002; Sokolov and Rintoul, 2009a). These waters
are predominantly HNLC with a phytoplankton community
dominated by nano- and picoflagellates but characteristically
contain even less Chl a than the SAZ (Becquevort et al., 2000;
Moore and Abbott, 2000; Kopczyńska et al., 2001; Olguín and
Alder, 2011). The exception to this is where iron concentrations
in surface waters are enhanced by upwelling and/or sediment
input/resuspension from sea floor bathymetry and sub-Antarctic
islands (Figure 2) (e.g., Pollard et al., 2002; Ardelan et al., 2010;
Rembauville et al., 2015b). This pattern differs from that of
macronutrients, which decline northwards across the POOZ
region, nitrate falling from ∼25–20 µmol l−1 and silicate from
∼60–10 µmol l−1. These nutrients are upwelled at the Antarctic
Slope Front and are progressively drawn down by phytoplankton
as they are transported northward across the POOZ by Ekman
drift (Tréguer and Jacques, 1992; Pollard et al., 2002).

The POOZ displays a strong seasonality in biological
production (Abbott et al., 2000). Strong winds in winter deepen
themixed layer, bringing nutrient-rich water to the surface. These
nutrients fuel phytoplankton growth in spring when sunlight
increases, conditions are calmer, and phytoplankton are confined
to shallower mixed depths by stratification (Figure 6A) (Abbott
et al., 2000; Pollard et al., 2002; Constable et al., 2014). Whilst
the POOZ is considered to be an iron-limited environment,
silicate limitation and grazing by micro- and metazooplankton
also limit the duration of the diatom-dominated bloom in this
region (Abbott et al., 2000; Becquevort et al., 2000; Timmermans
et al., 2001; Strzepek et al., 2011; Christaki et al., 2014). Like
the SAZ, large, heavily silicified diatoms contribute significantly
to carbon export (Rembauville et al., 2015a,b, 2016b; Rigual-
Hernández et al., 2015). In regions of natural iron fertilization
(e.g., the Kerguelen Plateau), phytoplankton production appears
to be strongly linked to higher trophic levels rather than making
a substantial contribution to carbon export (Obernosterer et al.,
2008; Christaki et al., 2014; Laurenceau-Cornec et al., 2015;
Rembauville et al., 2015b).

Modeling studies predict the POOZ region will experience
a poleward shift and strengthening of the westerly winds;
deepening of the summertime mixed layer depth; increasing
cloud cover; warming and freshening of surface waters; and
decreasing pH (Figure 6B) (Orr et al., 2005; McNeil and Matear,
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FIGURE 6 | Schematic showing the primary physical constraints on phytoplankton in the Permanently Open Ocean Zone (POOZ) (A) before and (B) after

climate change. Ovals represent the depth of mixing and arrow thickness reflects relative rates of flux. SST, sea surface temperature.

2008; Meijers, 2014; Leung et al., 2015; Armour et al., 2016;
Haumann et al., 2016). Thus far, sea surface warming in the
POOZ of only 0.02◦C per decade has been slower than the global
average of 0.08◦C per decade, since 1950 (Armour et al., 2016).
This is due to heat taken up by surface water in the POOZ being
transported northward by Ekman drift into the SAZ (Figure 3).
Despite this, it has been proposed that rising temperaturesmay be
contributing to an observed range extension of E. huxleyi below
60◦S (Cubillos et al., 2007; Winter et al., 2014).

Whilst warming is expected to increase phytoplankton
productivity (Sarmiento et al., 2004; Behrenfeld et al., 2006;
Steinacher et al., 2010), this effect is offset against the increasingly
positive phase of SAM, which is causing an intensification
and southerly shift of westerly winds in summer (Lenton and
Matear, 2007; Lovenduski et al., 2007). The SAM controls the
north-south shift of the circumpolar westerly winds and is the
dominant climate-induced environmental change in Antarctic
waters, substantially affecting SO circulation and CO2 uptake
(Thompson and Solomon, 2002; Lenton and Matear, 2007;
Lovenduski et al., 2007; Swart et al., 2014). In the last 50 years
there has been an observed increase in the positive phase of SAM,
strongly related to the depletion of ozone in the atmosphere
above Antarctica (Son et al., 2008; Polvani et al., 2011). Leung
et al. (2015) predict that the positive SAM will continue to
deepen the summer mixed layer and increase cloud cover in the
POOZ, resulting in decreasing light availability and causing a

decline in phytoplankton biomass and productivity. Observed
trends in summertime mixed layer depth, cloud cover, and Chl
a (since 1950, 1980, and 1997, respectively) correspond well to
the modeled projections (Leung et al., 2015).

Conversely, some predict the increase in positive SAM may
enhance phytoplankton productivity in the POOZ. Deepening of
the mixed layer can increase the upwelling of nutrients, which
some models predict will promote phytoplankton productivity
and export production south of 60◦S (Lovenduski and Gruber,
2005; Hauck et al., 2013, 2015; Laufkötter et al., 2015). It is
hard to assess the validity of such predictions for the POOZ
region as these models combine all waters south of the Polar
Front, including the SSIZ. Using satellite and Argo data, Carranza
and Gille (2015) reported a correlation of increased Chl a in
the SO with increased mixed layer depth. A positive SAM also
increases eddy formation and transports SAZ water across the
Polar Front (Meredith and Hogg, 2006; Kahru et al., 2007; Hogg
et al., 2008). These cyclonic eddies trap warm water at their core,
enhance stratification, and upwell nutrients and iron, creating
ideal conditions for phytoplankton productivity (Kahru et al.,
2007) and may also contribute significantly to ocean warming in
the POOZ (Hogg et al., 2008).

Increased nutrient input from melting icebergs may also
increase productivity in the POOZ. Climate warming and
the breakup of Antarctic ice shelves (Scambos et al., 2000)
could increase the number of icebergs in the POOZ (see CZ
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below). Melting icebergs enrich the surrounding water with iron,
enhancing phytoplankton growth and productivity (Cefarelli
et al., 2011; Lin et al., 2011; Shaw et al., 2011; Vernet et al.,
2011, 2012), and increasing export of carbon from surface waters
(Smith et al., 2011). This heightened productivity also attracts
large grazing populations that increase food availability to higher
trophic levels and facilitates the sequestration of carbon to the
deep ocean through fecal pellet production (Vernet et al., 2011).

Climate change is expected to change the location and area
of the POOZ. The Polar Front, which denotes the northern
limit of the POOZ has already shifted 60 km south since 1992
and this southward migration is expected to continue as the
climate warms (Sokolov and Rintoul, 2009b). To the south, the
northernmost extent of sea ice coverage is also predicted to
retreat with ocean warming. Overall, this would result in a net
increase in the area of the POOZ in the future (Bracegirdle et al.,
2008; McNeil and Matear, 2008; Boyd et al., 2014). Some studies
suggest that an increase in open ocean habitat will increase
production in this region (Bopp et al., 2001; Behrenfeld et al.,
2006). However, it is not yet understood how the multi-stressor
effects of the accompanying environmental changes, such as
ocean warming, decreased pH, light availability, and nutrient
supply will affect the phytoplankton community.

The effect of climate change on phytoplankton productivity in
the POOZ will strongly depend on the changes in light limitation
and nutrient supply. Deepening of the summertime mixed layer
depth due to increases in the strength of westerly winds are likely
to further reduce the light available to phytoplankton, reducing
their productivity over much of the POOZ (see above). However,
increased nutrient concentrations as a result of increased mixing
and melting icebergs, together with the incursions of warm-
core eddies from the Polar Front may promote localized
phytoplankton blooms when light is not limiting. Furthermore,
increased nutrient concentrations might promote the growth of
large diatoms (Timmermans et al., 2001), as well as increased
abundance of phytoplankton in near surface waters rather than
forming deep chlorophyll maxima. This increase in abundance
is likely to increase the functioning of the microbial loop and
promote grazing, as has been observed in naturally iron-fertilized
regions of the POOZ (Christaki et al., 2014). It is also likely that
with a future southward shift in SSIZ extent (see SSIZ below) the
brief but substantial blooms of Phaeocystis sp. and large diatoms
of the MIZ will be replaced by a prolonged but subdued bloom
of phytoplankton over summer in waters that are now part of the
POOZ (see MIZ below, Behrenfeld et al., 2006).

4. SEASONAL SEA ICE ZONE

In the following sections we divide the region of the SO covered
by sea ice into two distinct zones. First we consider the effects of
climate change on the extent, advance and retreat of ice over the
entire Seasonal Sea Ice Zone (SSIZ) and examine the implications
for phytoplankton. Then we consider the processes occurring at
the northern margin of the sea ice (the marginal ice zone, MIZ),
and how these are predicted to respond to a changing climate.

The SSIZ encompasses the region of the SO between the
winter maximum and summer minimum of sea ice cover
(Figure 2). The sea ice is one of the largest and most dynamic

ecosystems on earth, extending to over 19 million km2 in
winter and retreating to ∼3 million km2 over summer (Brierley
and Thomas, 2002; Comiso and Nishio, 2008; Convey et al.,
2009). Total productivity within the SSIZ has been estimated
at ∼140–180 Tg C yr−1 (Arrigo et al., 1997, 2008b). Sea ice
cover plays an important role in the regulation of climate by
controlling heat and gas exchange between the atmosphere and
the ocean (Massom and Stammerjohn, 2010). Snow covered sea
ice creates a high albedo surface that reflects most of the sun’s
energy back into space, thereby reducing warming of the polar
oceans (Perovich, 1990). Conversely, in winter the ice cover
insulates the ocean from direct exposure to the cold atmosphere
(Stroeve et al., 2016 and references therein). Not only is sea ice
itself an important regulator of global climate, it also provides a
vital environment for Antarctic life.

Sea ice supports a diverse community of algae that possess
some of the most extreme adaptations to environmental stress
recorded. They inhabit a range of environments throughout the
ice; from surface ponds to brine channels in the sea ice interior
and at the bottom ice-water interface (Knox, 2007; Arrigo, 2014).
Here they can experience extremely low temperatures (<-20◦C),
light irradiances (<1 µmol m−2 s−1), CO2 concentrations (<100
µatm), and salinities up to ∼200 PSU (Thomas and Dieckmann,
2002 and references therein). Primary production by sea ice algae
contributes between 24-70 Tg C yr−1 (Legendre et al., 1992;
Arrigo et al., 1997; Saenz and Arrigo, 2014) and phytoplankton
biomass averages between 1 and 100 mg Chl a m−2, although it
can exceed 1000 mg Chl a m−2 in some regions (Lizotte, 2001;
Arrigo et al., 2010). Ice algal biomass and productivity varies
greatly at small spatial and temporal scales, primarily due to
changes in snow cover, ice thickness, surface flooding, and ice
rafting (McMinn et al., 2007; Meiners et al., 2012; Arrigo, 2014
and references within). Thus, ice algae are able to thrive in this
harsh physical environment.

Ice algal productivity is essential to the nutrition of higher
trophic levels in Antarctic waters. Productivity and algal biomass
within the sea ice is generally low during the winter (Arrigo
et al., 1998a). Conditions are most favorable at the ice-water
interface, where warmer temperature (-1.8◦C), lower salinity
(∼35 PSU), and high nutrientsmaintain higher productivity rates
than the sea ice interior (Lizotte, 2001). These bottom ice algal
communities are an essential food source for zooplankton over
winter (Brierley and Thomas, 2002 and references therein, Jia
et al., 2016), when phytoplankton biomass in the waters beneath
the sea ice are very low due to light limitation (Perrin et al.,
1987; Legendre et al., 1992; Robins et al., 1995). For example, the
phenology of the Antarctic krill, Euphausia superba, a keystone
organism in SO food webs, is integrally liked to sea ice and
seasonality, largely due to its being a refuge and source of algal
nutrition over winter (Kawaguchi and Satake, 1994; Daly, 1998;
Atkinson et al., 2004; Smetacek andNicol, 2005; Quetin and Ross,
2009) and is associated with the ice at all stages of its life cycle
(Flores et al., 2012 and references therein). Thus, changes in the
timing and/or extent of sea ice cover are likely to have major
implications for the Antarctic food web (see below, Quetin and
Ross, 2009).

Changes in the extent, duration, thickness, and transparency
of sea ice will have major implications for the algae that inhabit
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the ice and processes that drive phytoplankton productivity
during sea ice retreat. In stark contrast to the decline currently
observed in the Arctic (Stroeve et al., 2012 and references
therein), the overall sea ice extent (SIE) around Antarctica has
experienced a modest increase of between 0.9 and 1.5% since
1979 (Comiso and Nishio, 2008; Turner et al., 2009; Parkinson
and Cavalieri, 2012; Simmonds, 2015), and modeled increases
in sea ice volume of ∼0.4% yr−1 between 1992 and 2010 due
to approximately equal increases in both SIE and thickness
(Holland et al., 2014). This culminated in the National Snow
and Ice Data Center (NSIDC) reporting a maximum recorded
SIE >20 million km2 in September 2014, 1.54 million km2

above the 1981 to 2010 average (Fetterer et al., 2016a). However,
the SIE around Antarctica in November 2016 was only 14.54
million km2, 1.81 million km2 below the 1981 to 2010 average
(Fetterer et al., 2016b), demonstrating substantial interannual
variability. Furthermore, the long term trend in increasing SIE is
not uniform around Antarctica, with a significant decrease in the
Amundsen and Bellingshausen Seas of between −5.1 and −6.6%
per decade but a large increase in the Ross Sea of between 4.2
and 5.2% per decade due to the Amundsen Sea Low (ASL) (see
below, Comiso and Nishio, 2008; Massom and Stammerjohn,
2010; Parkinson and Cavalieri, 2012).

Dramatic changes in SIE in some regions around Antarctica
have altered the timing of sea ice growth and retreat. The large
changes in SIE between the Ross Sea and the WAP are driven
by the combined influence of the El Niño-Southern Oscillation
(ENSO), the SAM, and their interaction with the ASL, the deepest
low pressure cell around Antarctica (Arrigo and Thomas, 2004;
Liu et al., 2004; Massom et al., 2008; Stammerjohn et al., 2008;
Pezza et al., 2012; Raphael et al., 2016). The positive SAM phase
and the La Niña phase of the ENSO have deepened the ASL.
Increasing greenhouse gasses and stratospheric ozone recovery
may also exacerbate the current SIE trends in these regions by
further deepening the ASL (Raphael et al., 2016). The resultant
strengthening of winds associated with the ASL lead to the
compression of the sea ice in the Amundsen and Bellingshausen
Seas and expansion in the Ross Sea. As a result, sea ice extent
around the West Antarctic Peninsula (WAP) has declined by up
to 40% over the past 26 years (Smith and Stammerjohn, 2001;
Ducklow et al., 2007; Parkinson and Cavalieri, 2012). Modeling
studies predict that continued global warming will eventually
override the SAM and ENSO effects, increasing warming to the
atmosphere and ocean, and resulting in significant declines in SIE
around Antarctica (Bracegirdle et al., 2008; Ferreira et al., 2015).

Changes in sea ice concentration, extent, and seasonality
critically affect the timing and productivity of phytoplankton
blooms. In the western Ross Sea, sea ice retreats later and
advances earlier, reducing the ice-free season by ∼2.6 months
(Stammerjohn et al., 2012). The delay in ice retreat has delayed
the onset of the summer bloom and decreased its duration,
thereby reducing total seasonal productivity (Arrigo and van
Dijken, 2004). Conversely, earlier retreat and delayed advance
of sea ice has resulted in a 3 month lengthening of the
summer ice-free season in the Amundsen and Bellingshausen
Seas (Stammerjohn et al., 2012). While this extension of the
ice-free period was expected to increase annual phytoplankton

production and growth (Sarmiento et al., 2004; Moreau et al.,
2015), no such trend has yet been observed (Smith et al., 2008;
Montes-Hugo et al., 2008). This may be due to constraints
imposed by nutrient and light limitation that are also key
drivers of phytoplankton growth in the SSIZ (Pearce et al., 2010;
Westwood et al., 2010).

The observed increase in SIE is contrary to modeling studies
that predict a decline in SIE with global warming (Maksym et al.,
2012 and references therein), reflecting the complex interaction
of factors influencing the distribution and concentration of sea
ice around Antarctica (Sen Gupta et al., 2009; Parkinson and
Cavalieri, 2012 and references therein, Turner et al., 2013).
Models indicate that the continued warming of the Earth’s
climate will result in a 33% decline in Antarctic SIE by 2100
(Bracegirdle et al., 2008). Historical records (whaling records, ice
charts, and direct observations) and concentrations of methane
sulfonic acid in ice cores suggest SIE has declined at least 20%
since the 1950s (Curran et al., 2003; de la Mare, 2009).

The seasonal southward retreat of the sea ice initiates the
phytoplankton bloom (see MIZ below) and changes in the timing
of sea ice growth and retreat will alter the timing of these blooms.
Such changes can impose temporal asynchronies and spatial
separations between grazers and their food, reducing grazer
abundance, reproductive success, and altering the distributions
of higher trophic levels (Moline et al., 2008). SO zooplankton
use the sea ice as a refuge and food source in the winter (Daly,
1998; Murphy et al., 2007; Jia et al., 2016). MIZ phytoplankton
blooms supply the essential fatty acids required for reproduction
and over-wintering strategies (Schnack-Schiel et al., 1998; Hagen,
1999). It is not yet known how changes in sea ice retreat will affect
higher trophic levels in SSIZ but a delay in the summer bloom
may restrict the availability of an essential food source during
vulnerable life-stages, resulting in significant grazermortality and
less food availability to higher trophic organisms.

A decline in SIE is likely to decrease overall ice algal
abundance, reducing carbon flux to the deep ocean. Decaying
sea ice releases plumes of ice algal aggregates that can sink
from surface waters at rates ≤200 m d−1 (Thomas et al., 1998;
Wright and van den Enden, 2000; Wright et al., 2010). Given
that sea ice algae contribute to ∼12% of annual productivity in
the SSIZ (Saenz and Arrigo, 2014); the large accumulations of
algal biomass amongst the sea ice (see above); and the fact that
the rate of sedimentationwould largely preclude remineralization
of these algal aggregates; it is likely that declining ice algal
abundance would reduce this region’s contribution to vertical
carbon flux.

A reduction in SIE extent, and therefore sea ice algal biomass,
is also likely to reduce the contribution of Antarctic sea ice
algae to the global biogenic sulfur budget via synthesis of
DMSP and subsequent release of DMS. Many intracellular
roles have been proposed for DMSP and DMS, including
cryoprotectant, antioxidant, metabolic overflow product, and
even a compound that mediates grazer interactions (Kirst et al.,
1991; Malin, 2006 and references therein). DMS is oxidized
in the atmosphere to sulfate aerosols which nucleate cloud
condensation, altering global albedo (Charlson et al., 1987, 1992).
Estimates suggest that the Antarctic region contributes 17% of
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the global DMS emissions (Curran and Jones, 2000), with the
highest concentrations of these DMSP and DMS compounds
often found amongst sea ice (e.g., Kirst et al., 1991; Turner et al.,
1995; Trevena and Jones, 2006; Jones et al., 2010; Vance et al.,
2013). Any climate-induced decline in SIE and/or duration (see
above) could reduce the magnitude of DMS production in the
SSIZ, feeding back to global climate by reducing cloud-induced
albedo.

Thinning of sea ice could substantially contribute to the
loss of sea ice volume within the SSIZ, impacting ice algal
communities. Observations of ice thickness in the SSIZ are sparse
and difficult to obtain, displaying large variability within regions
and among seasons (Worby et al., 2008). As a result, current
trends in Antarctic sea ice thickness are not well understood
(Kwok, 2010; Hobbs et al., 2016 and references therein) and
based upon model estimates (Holland et al., 2014). The majority
of the sea ice in the SSIZ is first-year ice, with ice thickness
seldom exceeding 2 m (Worby et al., 2008; Meiners et al., 2012).
Ice algal biomass is often concentrated in the bottom 20 cm
of the ice (Palmisano and Sullivan, 1983; McMinn et al., 2007;
Meiners et al., 2012), with thicker ice (>1.0 m) supporting higher
algal biomass than thin ice (<0.4 m), due to longer time for
colonization and growth of the bottom ice algal community,
along with development of internal communities from the
rafting of ice floes (McMinn et al., 2007; Meiners et al., 2012).
Thus, a decline in sea ice thickness may result in a reduction
in bottom community biomass, which is an important food
source for zooplankton (Brierley and Thomas, 2002; Jia et al.,
2016), thereby causing a shift in the diet of Antarctic birds
and mammals toward less efficient pathways (Murphy et al.,
2007; Moline et al., 2008; Flores et al., 2012; Ballerini et al.,
2014).

A warming atmosphere is predicted to result in more
precipitation that could cause an increase in snow deposits on
the surface of the sea ice (Bracegirdle et al., 2008; Massom et al.,
2008). Increased snow load depresses ice floes, flooding the ice
surface and fostering phytoplankton blooms in the high light,
high nutrient environment at the snow-ice interface (Arrigo
et al., 1997; Massom et al., 2006). Surface communities are
most often associated with thin ice (<0.4 m) (Meiners et al.,
2012) and as such, could become more prominent in the future.
Increased albedo caused by greater snow cover on the ice would
also limit light transmission through the ice, reducing ice algal
productivity in internal and bottom communities (Grossi et al.,
1987; Palmisano et al., 1987).

Sea ice is a substantial sink for CO2 over winter. Air-ice
exchange at the ice surface over-saturates the CO2 in sea ice
brine and contributes as much as 58% of the annual atmospheric
CO2 uptake in the SO (Delille et al., 2014). Ice cover provides a
barrier between the atmosphere and the surface water, slowing
atmospheric CO2 uptake (Boyd et al., 2008) and limiting
predicted pCO2 levels by 2100 to 500–580 µatm. Furthermore,
it prohibits outgassing of upwelled water supersaturated in CO2
over winter (Gibson and Trull, 1999; Roden et al., 2013). The few
studies investigating the effect of ocean acidification on sea ice
algal communities suggest they can tolerate CO2 concentrations
up to 10,000 µatm (McMinn et al., 2014; Coad et al., 2016).

The increasingly positive SAM (see SAZ above) exposes the
SSIZ is to stronger winds. However, future recovery of the ozone
hole will reduce the SAM favoring increasing warming and
stratification (see Conclusion), with consequent declines in the
SIE extent, thickness and duration of ice cover. This is likely to
have a strong negative effect on sea ice algal abundance, through
a loss of habitat. Whilst ice algae are not major contributors to
overall SO primary productivity, they are essential in the life
cycles of many zooplankton species. Thus, declines in ice algal
abundance will likely have a significant negative effect on critical
links in the SO food web, especially krill, and promote different
and less energy efficient trophic pathways such as consumption
of phytoplankton by salps or via copepods to myctophids. Such
changes would reduce the capacity of the SO to support the
current abundance of iconic, krill-dependent Antarctic wildlife
(Murphy et al., 2007, 2016).

The development of the phytoplankton bloom and succession
of the pelagic phytoplankton community is initiated by the
seasonal retreat of the sea ice across the SSIZ. Here we consider
the effects of climate-induced changes on processes in the MIZ.

5. MARGINAL ICE ZONE

The region where the dense sea ice pack transitions to open
ocean is known as the marginal ice zone (MIZ). It is an area of
high productivity that accounts for the majority of the spring-
summer phytoplankton blooms (Figure 2) (Arrigo et al., 2008b).
The area of the MIZ varies greatly over spring and summer,
ranging from 6 million km2 in December to∼0.2 million km2 by
March (Fitch and Moore, 2007). Sea ice formation in the winter
scavenges phytoplankton cells into the ice and concentrates iron
from the surface water (de Baar et al., 1995; Boyd, 2002; Lannuzel
et al., 2010, 2016). In the spring, low salinity, high iron melt
water is released from the sea ice, creating a buoyant layer of
fresher water that traps phytoplankton in an environment where
conditions are ideal for growth (high light, and high macro-
and micronutrients). This fosters large phytoplankton blooms
(Figure 7A) (Smith andNelson, 1986; Sullivan et al., 1988), which
can reach biomasses of over 200 mg Chl a m−2 (e.g., Smith and
Nelson, 1986; Nelson et al., 1987; Wright et al., 2010). The region
was thought to house very high rates of productivity (∼400 Tg
C yr−1) (Smith et al., 1988; Arrigo et al., 1998b) and contribute
40-50% of the productivity of the entire SO (Smith and Nelson,
1986; Sakshaug, 1994). Advances in satellite technology and
modeling algorithms provide more conservative results (Arrigo
et al., 2008b; Taylor et al., 2013), suggesting the MIZ contributes
∼114 Tg C yr−1. This equates to a total annual productivity of
54–68 g C m−2 yr−1, which is ∼5 times that in the sea ice (∼24
Tg C yr−1) but is similar to that in the POOZ (∼62 g Cm−2 yr−1)
(Moore and Abbott, 2000; Arrigo et al., 2008b; Saenz and Arrigo,
2014).

A diverse array of phytoplankton inhabit theMIZ, undergoing
successional change due to ice retreat, warming, nutrient
depletion, and grazing (Davidson et al., 2010; Wright et al.,
2010). Phytoplankton blooms in East Antarctica and theWeddell
Sea, are commonly co-dominated by the colonial life-stage of
Phaeocystis sp. and diatoms, with increasing diatom abundance
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FIGURE 7 | Schematic showing the primary physical constraints on phytoplankton in the Seasonal Sea Ice and Marginal Ice Zones (SSIZ and MIZ) (A)

before and (B) after climate change. Modified from Sullivan et al. (1988) and Petrou et al. (2016). Ovals represent the depth of mixing and arrow thickness reflect

relative rates. Blue dashed line denotes the location of the pycnocline; and the red dashed line depicts the approximated depth for 1% surface irradiance. SST, sea

surface temperature.

over time and the appearance of dinoflagellates, silicoflagellates,
and heterotrophic protists later in the season (Waters et al., 2000;
Kang et al., 2001; Davidson et al., 2010). Once the available iron
has been exhausted, the community shifts to one more typical
of the POOZ, consisting of small diatoms and flagellates (Pearce
et al., 2010; Wright et al., 2010). In the WAP, diatom-dominated
blooms in the spring shift to flagellate communities as melting

sea ice and glacial run-off reduce the salinity of surface waters
(Kang et al., 2001). However, icebergs released by the breakup
of ice shelves will increase nutrient input, as in the POOZ (see
above, Duprat et al., 2016), promoting additional blooms of large
diatoms.

Phytoplankton in theMIZ can contribute directly or indirectly
to vertical flux. During large blooms phytoplankton aggregate
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to form marine snow, which fall rapidly through the water
column, contributing to carbon sequestration into the deep ocean
(Alldredge and Silver, 1988). High algal biomass within decaying
sea ice in summer is also a rich source of nutrition and a site
of reproduction for grazers (Schnack-Schiel et al., 1998; Thomas
et al., 1998). This grazing transfers carbon to higher trophic levels
but can also contribute to vertical carbon flux by reparceling cells
into rapidly sinking fecal pellets (Cadée et al., 1992; Burkill et al.,
1995; Perissinotto and Pakhomov, 1998; Pearce et al., 2010).

Climate change is predicted to decrease SIE, increase icebergs,
and cause SAM-induced increases in wind and wave action
(Figure 7B). The effect of decreased SIE on total annual
productivity in the SO may not be large. Reduced SIE would
shift the latitudinal range of the MIZ southward, resulting in an
increase in the area of the POOZ (Smetacek and Nicol, 2005).
However, the restriction of intense primary productivity in the
MIZ to the spring-summer season results in area-normalized
annual primary production similar to that of the POOZ (see
above, Moore and Abbott, 2000; Arrigo et al., 2008b), suggesting
that an increase in the size of the POOZ may not significantly
affect total SO productivity (Arrigo et al., 2008b). Admittedly,
this does not take into account other potential effects of climate
change on the POOZ (see above), nor does it consider the
effect of the absence of ice on the timing and magnitude of the
phytoplankton bloom. It is likely that blooms would start earlier
due to the higher light climate but may develop slower due to
greater mixed depths (see below) and the lack of iron fertilization
from the ice melt (Behrenfeld et al., 2006).

The most profound change in the MIZ may be caused by
the increasingly positive phase of SAM. The poleward shift and
intensification of wind strength and storms is predicted to deepen
themixed layer and reduce phytoplankton production in theMIZ
(Figure 7B) (Lovenduski and Gruber, 2005; Yin, 2005; Hemer
et al., 2010; Massom and Stammerjohn, 2010; Young et al.,
2011; Dobrynin et al., 2012). Phytoplankton blooms in the MIZ
are patchy in space and time (Smith and Nelson, 1986). They
generally occur in shallowmixed layers where wind speeds are <5
m s−1 (Fitch and Moore, 2007). Storms, wind mixing, and waves
deepen mixed depths in the MIZ, reducing the light availability
and inhibiting bloom development (Figure 7B) (Venables and
Meredith, 2014). As a result, blooms only cover 17–24% of
the MIZ over summer with maximum coverage of only 0.36
million km2 in December (Savidge et al., 1996; Fitch and Moore,
2007). Evidence from culture studies and blooms in the Ross Sea
indicate that Phaeocystis sp. is more tolerant of deeply mixed, low
light environments than diatoms (Arrigo et al., 1999; Moisan and
Mitchell, 1999). Therefore, a more deeply mixedMIZ could cause
a shift toward Phaeocystis sp. dominated blooms.

Large, early season blooms of Phaeocystis sp. can be
responsible for substantial carbon export, rapidly sinking from
surface waters and avoiding grazing pressure. Phaeocystis sp.
colonies are encased in a tough outer coating, providing an
effective defense against grazing protozoa and small zooplankton
(Smetacek et al., 2004). In combination with their ability to draw
down larger amounts of CO2 than diatoms (Arrigo et al., 2000),
it is likely that an increase in blooms dominated by Phaeocystis
sp. may enhance carbon export in the MIZ (DiTullio et al., 2000).

Phaeocystis sp. are also responsible for generating large amounts
of DMSP (DiTullio and Smith, 1995; Turner et al., 1995; Vance
et al., 2013). If increased mixing favors Phaeocystis sp. growth, it
may counteract some of the loss of DMSP from decreased SIE in
the SSIZ (see SSIZ above).

An increase in wind and wave action could also potentially
increase the area of the MIZ by increasing the breakup and
dispersal of sea ice by waves (Yin, 2005; Hemer et al., 2010;
Young et al., 2011; Dobrynin et al., 2012; Stroeve et al., 2016).
In spring and summer, large waves propagate through the sea
ice up to 200 km, breaking up ice floes and accelerating ice
retreat (Kohout et al., 2014; Horvat et al., 2016). Some satellite
derived estimates of the MIZ region suggest a positive trend in
MIZ area over time during spring (Stroeve et al., 2016), although
not all models agree due to difficulties in accurately mapping
the MIZ from satellite images (Ackley et al., 2003). However,
changes in MIZ area are not likely to be uniform within the
SSIZ, with Massom et al. (2006) reporting a contraction of the
MIZ in the WAP due to strong northerly winds from the ASL
(see SSIZ above). Interestingly, intense phytoplankton blooms
still occurred amongst in the slurry of frazil ice between floes
in this region (Massom et al., 2006), suggesting MIZ size is not
necessarily a good indicator of its productivity.

Bloom formation within the MIZ is reliant on the coincidence
of optimal conditions for phytoplankton growth. Increases
in turbulent mixing by wind and waves would decrease
light availability through a deepened mixed layer, with likely
reductions in productivity and changes in the phytoplankton
community structure within MIZ blooms. Additional nutrient
inputs from melting icebergs are likely to cause localized
increases in productivity but the extent of this effect would be
felt most in the SSIZ, where growth of phytoplankton has drawn
down nutrient concentrations. The net effect of future increases
in MIZ area and decline in overall SIE remain uncertain.

6. ANTARCTIC CONTINENTAL SHELF
ZONE

Antarctic Continental Shelf Zone (CZ) waters make up the
smallest area of the SO (1.28 million km2) but they are also
highly productive, contributing 66.1 Tg C yr−1 or an average of
460 mg C m−2 d−1 (Arrigo et al., 2008b). The high productivity
in this region is due to high surface nutrient concentrations;
iron enrichment from coastal sediments and basal shelf melt;
and upwelled upper circumpolar deep water (UCDW, Figure 3)
onto the continental shelf from the easterly-flowing Antarctic
Slope Current, which approximately follows the 1,000 m isobath
(Figure 2) (Jacobs, 1991; Smetacek and Nicol, 2005; Westwood
et al., 2010; Williams et al., 2010). Blooms in CZ waters make
a vital contribution to supporting the abundance and diversity
of life in Antarctica. They attract large numbers of grazers that
consume phytoplankton, that in turn feed higher tropic levels,
while also producing fecal pellets, that are either remineralized
into nutrients by heterotrophic microbes or sink rapidly into
deep water, supporting the biological pump (Cadée et al., 1992;
Turner, 2002; Honjo, 2004; Schnack-Schiel and Isla, 2005). Open
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water regions over the CZ are important foraging areas for many
Antarctic species, especially during the summer breeding season
(Arrigo and van Dijken, 2003; Smith et al., 2007; Stroeve et al.,
2016). For example, DMS released from grazed phytoplankton
acts as an olfactory foraging cue for white-chinned petrels (Nevitt
et al., 1995) and Adélie penguin breeding success has been related
to the proximity of colonies to open water (Ainley et al., 1998).
The CZ is also a significant CO2 sink over the summer as high
rates of primary productivity cause surface CO2 undersaturation
(Hoppema et al., 1995; Gibson and Trull, 1999; Ducklow et al.,
2007; Arrigo et al., 2008a; Roden et al., 2013).

Polynyas contribute to high productivity over the CZ with
average annual primary production rates up to 105.4 g C m−2

yr−1 (Arrigo and van Dijken, 2003; Arrigo et al., 2015). Strong,
cold katabatic winds freeze the surface water of the polynya,
creating ice that is pushed north, adding to the seasonal sea ice
extent and contributing to the generation of Antarctic Bottom
Water through exclusion of high salinity brine by sea ice as it
forms (Orsi et al., 1999). The Ross Sea polynya is the largest
and the most productive polynya in Antarctica, contributing
on average, 22.2 Tg C yr−1 (Arrigo et al., 2015), with daily
production as high as 6 g C m−2 d−1 (Smith and Gordon, 1997).
These high productivity rates are likely due to substantial iron
input from upwelling of underlying sediments and basal melt of
nearby ice shelves (Arrigo et al., 2015). Future increases in sea
surface temperature are likely to accelerate the melting of ice
shelves, increasing the input of fresh, stratified, iron-rich water
to polynyas. increasing productivity in these regions (Feng et al.,
2010).

Spatial differences in the factors controlling phytoplankton
production have been observed within CZ waters. Consequently,
the cause and rate of climate-induced change in these waters
differs with location. Substantial differences have already been
observed between East and West Antarctica (Turner et al., 2014
and references therein) and as such, we separately address the
effects climate change on the phytoplankton communities in each
of these two regions.

6.1. West Antarctica
The West Antarctic CZ spans from the Amundsen and
Bellingshausen Seas in the west to theWeddell Sea in the east and
is dominated by the Antarctic Peninsula. Productivity is highest
along the WAP and the Weddell Sea with rates of over 600 mg
C m−2 d−1 during the peak of summer (El-Sayed and Taguchi,
1981; Arrigo et al., 2008b; Vernet et al., 2008). The flow of warm,
nutrient-rich UCDW onto the continental shelf (Figure 3) in
the WAP accelerates sea ice retreat and enhances phytoplankton
productivity (Kavanaugh et al., 2015), fostering diatom blooms as
in the MIZ (see above). These are replaced by small flagellate and
cryptophyte communities in the fresher, more stratified surface
water later in the season (Moline et al., 2004; Ducklow et al.,
2007). High production in the WAP and Scotia Sea support
abundant krill populations, which are in turn food for a wealth
of higher predators (Ducklow et al., 2007 and references therein).

Climate change threats to the West Antarctic CZ include
warming, freshening, increased stratification, the melting and
break up of glaciers and ice shelves, and ocean acidification

(Figure 8B). The WAP is one of the fastest warming regions on
Earth with an increase in the mean atmospheric temperature of
2◦C (6◦C in the winter) since 1950 (Meredith and King, 2005;
Ducklow et al., 2007). No similar warming event has occurred
on Earth in the last 1,800 years (Vaughan et al., 2003). Along
with atmospheric warming in the WAP, increased heat delivery
of UCDW from the Antarctic Circumpolar Current onto the shelf
has caused a 0.6◦C increase in temperature of the upper 300 m of
the water column (Meredith and King, 2005; Turner et al., 2014).
This warming trend has resulted in increased glacial melt, with
87% of glaciers in the Antarctic Peninsula showing signs of retreat
since 1950 (Cook et al., 2005; Peck et al., 2010). Glacial melt has
resulted in an influx of fresh water to coastal regions of the WAP,
freshening and increasing the stratification of surface waters over
the summer. While phytoplankton productivity is expected to
increase with increasing sea surface temperature (Rose et al.,
2009), the phytoplankton community is likely to be more affected
by resultant changes in SIE and freshwater inputs to the CZ
(Arrigo et al., 2015; Moreau et al., 2015).

Freshening of surface waters from glacial melt has led to
a documented change in the phytoplankton community in
the WAP from diatom-dominated assemblages to cryptophytes
and small flagellates (Moline et al., 2004; Montes-Hugo et al.,
2008). The resultant shift in size distribution from large to
small phytoplankton cells has had a significant flow on effect to
zooplankton grazers, particularly krill and salps (Moline et al.,
2004). This region is historically an area of high krill abundance,
which is the preferred food source for the many Antarctic birds
and mammals that live in the WAP (Atkinson et al., 2004).
Changes to the phytoplankton community structure, favoring
small cells, negatively affects krill grazing as they feed most
efficiently on cells >10 µm and are unable to capture particles
<6 µm in size (Kawaguchi et al., 1999). This has caused a shift
in dominance to salps, mucoid feeders that are unaffected by
the particle size of their prey (Moline et al., 2004), and a shift
toward a less efficient fish-based food web (Murphy et al., 2007).
Reductions in the krill population in the WAP are expected have
a significant negative effect on the food chain in this region
(Ballerini et al., 2014).

Surface water freshening causes a concurrent stratification of
the water column, elevating phytoplankton into shallow mixed
layers with higher light intensity. Phytoplankton productivity is
enhanced through increased light, however, excessive light and
elevated UV-A and UV-B exposure can lead to photoinhibition
and cell damage (see SAZ above, Moreau et al., 2015). In order
to limit the damage of these conditions, phytoplankton can
channel metabolic reserves into photoprotection and tolerance
mechanisms (Davidson, 2006). A lengthening of the open water
season in the WAP, caused by earlier sea ice retreat (see
SSIZ above), has increased productivity in the CZ, whilst also
increasing photoinhibition rates (Moreau et al., 2015). Thus far,
the increase in production is much greater than the loss due
to photoinhibition so it is expected that increased stratification
will lead to a net increase in primary productivity in the future
(Moreau et al., 2015).

Stronger westerly winds, as a result of a positive SAM, are
bringing warmer air across the Antarctic Peninsula, increasing
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FIGURE 8 | Schematic showing the primary physical constraints on phytoplankton in the Antarctic Continental Shelf Zone (CZ) (A) before and (B) after

climate change. Ovals represent the depth of mixing and arrow thickness reflects relative rates of flux. SST, sea surface temperature.

snowfall and causing a break up of large ice shelves (e.g., Scambos
et al., 2000; Rack and Rott, 2004; Turner et al., 2014). The break
up of the Larsen A ice shelf created new areas of high nutrient
open water, stimulating phytoplankton blooms and increasing
productivity in a previously ice-covered pelagic habitat (Bertolin
and Schloss, 2009). The continued retreat of glaciers and breaking
up of ice shelves has led to the creation of new carbon sinks
around the Antarctic Peninsula that have increased productivity
up to 3.5 Tg C m−2 yr−1 (Peck et al., 2010). The continued break
up of ice shelves will also lead to an increase in icebergs over the
CZ. Melting icebergs have been found to provide a significant
amount of iron and nutrients to surface waters, leading to
increased phytoplankton productivity (Lin et al., 2011; Vernet
et al., 2011; Duprat et al., 2016). Increased iceberg numbers
will also contribute to increased productivity throughout the
SSIZ and POOZ as they are propelled by ocean currents around
Antarctica (see above).

Little work has investigated the effect of ocean acidification on
phytoplankton inWest Antarctic waters. The CO2 concentration
in waters over the West Antarctic CZ vary seasonally from ∼176
to 503 µatm through to the uptake of CO2 by phytoplankton
in the summer and return to super-saturated levels in winter
under the sea ice (Moreau et al., 2012). Coastal phytoplankton
communities from theWAP (both diatom-dominated andmixed
diatom-flagellate communities) displayed no significant change
in community composition, cell size, or growth rate when

exposed to 800 µatm CO2 (Young et al., 2015). Yet, results
of this study did demonstrate the differences in physiological
carbon uptake among phytoplankton species as production by
diatoms may be enhanced by down-regulation of CCMs at high
pCO2, while a slight decline in production by Phaeocystis sp. was
attributed to the alternative bicarbonate transport pathway used
by this species.

6.2. East Antarctica
The East Antarctic CZ ranges from the Ross Sea in the east to the
eastern edge of the Weddell Sea in the west. The Ross Sea is the
most productive region in the CZ, contributing ∼24 Tg C m−2

yr−1 and accounting for ∼30% of the total annual production
in shelf waters (Sweeney et al., 2000; Arrigo et al., 2008b). Iron
and light availability are the dominant factors controlling growth
of phytoplankton in the Ross Sea (Figure 8A) (Smith et al.,
2000b; Feng et al., 2010; Sedwick et al., 2011). In addition, the
relative abundances of the dominant phytoplankton (diatoms
and Phaeocystis sp.) are linked tomixed layer depth, with diatoms
dominant in highly stratified water and Phaeocystis sp. where
it is deeply mixed (Arrigo et al., 1999). These phytoplankton
blooms support a unique food web in the Ross Sea, structured
around the crystal krill, Euphausia crystallorophias, and the
Antarctic silverfish, Pleuragramma antarcticum (Smith et al.,
2007). Elsewhere around East Antarctica the CZ is relatively
narrow and contributes ∼12 Tg C m−2 yr−1 (Arrigo et al.,
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2008b) and like the West Antarctic CZ, the Antarctic krill, E.
superba, is a keystone species (Nicol et al., 2000, 2010). Here the
phytoplankton community is dominated by blooms of diatoms
and Phaeocystis sp. during the summer and shifts to small
flagellates once nutrients have been exhausted (Waters et al.,
2000; Wright and van den Enden, 2000; Davidson et al., 2010).

The East Antarctic CZ is expected to experience increased
freshening, stratification, the melting and break up of glaciers
and ice shelves, ocean acidification, and modest warming
(Figure 8B). In contrast to the warming trend around West
Antarctica, there has been a measured cooling over East
Antarctica for the same period (1969–2000) (Thompson and
Solomon, 2002). Despite this, most recent model projections
for the Ross Sea by the end of the century predict a 0.15–
0.4◦C increase in SST, with decreases in the mixed layer depth
(∼50–70 m), sea ice concentration (2–11%), and macronutrient
concentrations (Rickard and Behrens, 2016). Freshening has
already been reported in the Ross Sea and has been attributed to
changes in precipitation, sea ice production, and melting of the
West Antarctic ice sheet (Jacobs et al., 2002). Projected changes
to the remaining area of East Antarctica are not well understood
but similar trends are anticipated (Watanabe et al., 2003; Convey
et al., 2009; Gutt et al., 2015).

Ocean acidification is anticipated to affect polar waters sooner
than the rest of the world, due to the increased solubility of
CO2 in cold water (Orr et al., 2005; McNeil and Matear, 2008).
Phytoplankton communities in Antarctic shelf waters are already
exposed to strong annual variations in pCO2 (Gibson and Trull,
1999; Sweeney et al., 2000; Roden et al., 2013; Shadwick et al.,
2013; Kapsenberg et al., 2015). Sea ice cover during the winter
restricts air-sea gas transfer, allowing for CO2 oversaturation of
the water column (up to 450 µatm) through upwelling of high
CO2 UCDW water from the Antarctic Slope Current (Figure 3).
Photosynthetic drawdown over the summer can result in CO2
levels falling below 100 µatm. This large seasonal variation
seems to favor species that tolerate large fluctuations in pH.
Phytoplankton communities have been observed to show little
change in composition when grown at CO2 concentrations
similar to those already experienced in coastal environments
(84–643 µatm) (Davidson et al., 2016). However, superimposing
anthropogenic pCO2 increase upon the large natural fluctuation
already occurring in the natural environment may push some
species past their limit sooner than anticipated (McNeil and
Matear, 2008), causing changes in phytoplankton productivity,
growth and community composition. Concentrations of CO2
exceeding 1,000 µatm induced a change in phytoplankton
community composition in Prydz Bay, increasing the abundance
of small phytoplankton species (Davidson et al., 2016; Thomson
et al., 2016). Studies on Ross Sea phytoplankton communities
also suggest that high CO2 concentrations (760–800 µatm) may
cause a shift in dominance in this region from Phaeocystis sp.
to large chain-forming diatom communities (Tortell et al., 2008;
Feng et al., 2010). Investigation into the physiological reasons
for changes in growth rates link increased growth and carbon
fixation to the energy saved through the down-regulation of
CCMs (Rost et al., 2008; Tortell et al., 2008), while inhibition of
growth and productivity may be related to the metabolic costs

of proton pumps to exclude hydrogen ions (Gao et al., 2012;
McMinn et al., 2014).

A change in phytoplankton community composition will
likely have significant effects on carbon export in the CZ. A
shift toward smaller cell communities will allow for increased
remineralization of cells through the microbial consumption,
decreasing the downward flux of carbon into the deep ocean
(Finkel et al., 2010 and references therein). These cells are also
likely to be less efficiently grazed by zooplankton, resulting in less
carbon transfer to higher trophic organisms. Any CO2-induced
increase in the dominance of diatoms in the Ross Sea may cause
a decline in net carbon export as blooms of Phaeocystis sp. are
capable of exporting more carbon than diatoms (Arrigo et al.,
2000). However, diatom-dominated communities are likely to be
grazed more than Phaeocystis sp., providing better nutrition for
the Antarctic food web and also producing negatively buoyant
feces that can assist in the sinking of diatoms (Schnack-Schiel and
Isla, 2005).

Whilst most studies have focused on individual factors
predicted to alter as a result of climate change, phytoplankton
in the SO will be simultaneously exposed to multiple climate
change stressors (Gutt et al., 2015). Recent work has focused on
the interaction of multiple stressors on phytoplankton growth
in the Ross Sea, highlighting the complex interaction between
environmental changes and the phytoplankton community
(Rose et al., 2009; Feng et al., 2010; Xu et al., 2014; Zhu
et al., 2016). Iron promotes phytoplankton growth, whereas
interactive effects between iron, warming, increased CO2, and
light favor the dominance of diatoms over Phaeocystis sp. (Rose
et al., 2009; Xu et al., 2014; Zhu et al., 2016). In contrast,
high pCO2 only affected diatoms, favoring the growth of
large centric species (Feng et al., 2010). As well as causing
shifts in phytoplankton taxa, changes in temperature and iron
supply caused modifications to microzooplankton abundance,
suggesting possible changes in predator/prey interactions (Rose
et al., 2009). No multi-stressor experiments have yet been
performed on other East Antarctic phytoplankton communities,
though it appears likely that climate-induced change will alter the
competitive interactions among dominant phytoplankton taxa
and change trophodynamics throughout continental waters.

Freshening, increased stratification, ocean acidification, and
the melting and break up of glaciers and ice shelves are all
occurring across the Antarctic CZ due to climate change.
Phytoplankton growth is promoted by freshening, increased
stratification, and the break-up of ice shelves by establishing
conditions that are optimal for growth, most notably an increase
in iron supply and light availability. However, freshening and
ocean acidification also appear to be responsible for shifts in
community composition that could result in a decrease in food
quality and availability for grazers. This could have a significant
negative effect on the structure and function of the Antarctic food
web as well as reducing carbon export. In contrast, the proposed
CO2-induced increase in abundance of large diatoms in the Ross
Sea may benefit the food web in this region but may still result in
a decline in carbon export.

Temperature trends currently differ between East and West
Antarctica, with significant warming in West Antarctica and
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a slight cooling trend over East Antarctica. Increases in
temperature appear to promote phytoplankton growth and may
accelerate sea ice retreat, changing the timing and magnitude
of bloom onset in this highly productive region. However, the
interactive effects that this combination of climate stressors will
have on phytoplankton communities in this region is not well
understood. Further work will be required before we can fully
understand how phytoplankton over the CZ will be affected by
a changing climate.

7. CONCLUSION

The SO comprises a vast expanse of ocean containing a
diverse array of environments, each of which exposing
phytoplankton to environmental factors that limit their
production, growth, survival, and composition. Despite these
stressors, phytoplankton thrive in some of the most extreme
conditions on earth. Climate-induced changes in the physical
characteristics of the SO and the responses by phytoplankton
differ substantially among environments. No long-term trends in
satellite-derived Chl a or primary productivity are yet detectable
due to the large background of interannual/decadal variability
(Henson et al., 2010; Gregg and Rousseaux, 2014). It is unlikely
that unambiguous trends due to climate change will be seen until
approximately 2055 (Henson et al., 2010). However, some longer
time series of underway Chl a measurements exist that could
indicate climate-induced trends (see below).

Given the competing influences on phytoplanktonwithin each
region of the SO, predictions are bound to be tentative and
contentious. Our assessment of the available information suggest
the responses of phytoplankton in various regions of the SO are:

• In the SAZ, the stratification-induced decline in nutrient
supply to surface waters (Figure 4) will reduce productivity
and favor small flagellates (e.g., Matear and Hirst, 1999;
Marinov et al., 2010; Petrou et al., 2016). Boyd et al. (2016)
indicates that increases in iron and temperature may double
growth rates and favor diatoms but such events depend on the
frequency and magnitude of storms to deposit dust in the SAZ
and the proximity to land.

• In the POOZ, productivity may increase due to enhanced
mixing, eddy activity, and nutrient supply from upwelling and
melting icebergs (Figure 6). Yet, light limitation imposed by a
deepenedmixed layer and increased cloud cover may limit this
potential increase (Armour et al., 2016).

• In the SSIZ, ice algal abundance is likely to decrease through a
decline in SIE, thickness, and duration (Figure 7). The absence
of sea ice will preclude ice algae providing an essential food
source over winter for some zooplankton species. This has the
potential to cause significant changes throughout the Antarctic
food web. The decline of sea ice as a result of ocean warming
may not markedly alter the annual SO productivity but the
expansion of the POOZ into the SSIZ is likely to alter the
timing, magnitude, and duration of the phytoplankton blooms
in these waters.

• In the MIZ, increased wind and wave action is likely to
accelerate sea ice retreat, increasing the mixed layer depth

and destabilizing the seasonal progression of phytoplankton
blooms (Figure 7). Such changes would reduce the frequency
of ice edge blooms and cause taxonomic shifts in the
phytoplankton community toward small diatoms and
flagellates.

• In the CZ, the few available studies suggest that warming,
freshening, and ocean acidification are likely to elicit changes
to community composition (Figure 8), with reports of a
shift toward communities composed of smaller cells and
flagellates (Moline et al., 2004; Davidson et al., 2016). Increased
nutrients and stratification from melting glaciers and icebergs
are likely to increase productivity (Figure 8). Localized shifts
in community composition in the Ross Sea toward diatom-
dominated communities will potentially decrease carbon
export but may provide better nutrition for higher trophic
levels.

These changes are likely to have a significant effect on the
biogeochemical processes in the SO, affecting the biological
pump,microbial loop, and nutrition for higher trophic levels. It is
likely that the effect of climate change on phytoplankton in each
of these regions is going to be determined by the timing, rate,
and magnitude of change in each stressor; as well as the sequence
in which these stressors are imposed. Climate change models of
the SO still contain large uncertainties, in part due to knowledge
gaps in biogeochemical processes and carbon uptake (Frölicher
et al., 2016). The vast majority of phytoplankton research in
the SO have been observational studies, providing essential data
on phytoplankton communities, seasonal community succession,
nutrient utilization, primary and export production, and food
web interactions (e.g., El-Sayed, 1994; Nicol et al., 2000, 2010;
Smith et al., 2000a; Olguín and Alder, 2011; Quéguiner, 2013).
These studies are essential for our understanding of the current
and potential future state of SO phytoplankton. Relatively few
studies have focused on the manipulation of climate stressors on
SO phytoplankton species/communities (e.g., Tortell et al., 2008;
Rose et al., 2009; Hoppe et al., 2013; Müller et al., 2015; Boyd
et al., 2016; Coad et al., 2016; Davidson et al., 2016). More of these
studies are necessary in all of the regions of the SO to determine
the thresholds for climate-induced stressors on phytoplankton
communities. It is also important to perform multi-stressor
experiments, incorporating a range of environmental factors
affected by climate change, if we are to understand the interactive
effects (from synergistic to antagonistic) of future stressors on
phytoplankton species and communities (e.g., Feng et al., 2010;
Xu et al., 2014; Boyd et al., 2016; Zhu et al., 2016).

The vastness and environmental diversity of the SO; the
inherent spatial and temporal variability in phytoplankton
communities; and the logistical costs and difficulty in obtaining
data from the SO, especially year-round observations, means the
effect of climate change on phytoplankton in this region is poorly
understood. In some instances, advances in remote sensing
technology and computer modeling have allowed access to data
sets that can assist in understanding trends. However, they are
still limited in their ability to detect some physical changes, such
as sea ice thickness and Chl a concentration in waters covered
by ice (Massom et al., 2006; Hobbs et al., 2016). There are very
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few places that have long-term monitoring programs to detect
changes in the physical and biological environment (such as the
Palmer-Long Term Ecological Research program, Smith et al.,
1995) and few of these have collected data for a sufficient duration
to detect trends in phytoplankton against the background of
natural variation. Decades long monitoring programs should
be established as a matter of urgency to detect changes in SO
phytoplankton abundance, production, and composition.

Stratospheric ozone concentrations exert a pervasive effect
on atmospheric circulation in the Southern Hemisphere and
recovery of the ozone hole will change the trajectory of climate.
Concern over ozone depletion and the consequent rise in short
wave UV radiation reaching the Earth’s surface, galvanized the
international community, culminating in the Montreal protocol,
which banned the use of ozone depleting substances, such as
chlorofluorocarbons (CFCs) and halons. Unrecognized at the
time, ozone depletion was also the primary cause of increases
in the positive phase of the SAM, resulting in the acceleration
and poleward shift of westerly winds over the SO (see POOZ
above, Polvani et al., 2011; Thompson et al., 2011). This proved
to be the most obvious and persistent characteristic of Southern
Hemisphere climate change in the last half century (Thompson
and Wallace, 2000; Polvani et al., 2011). Modeling studies
indicate that recovery of the ozone hole will decelerate the
westerly winds (Son et al., 2008) and result in a more rapid
rise in Antarctic temperatures than elsewhere in the Southern
Hemisphere (Shindell and Schmidt, 2004). Nearly 30 years
after the Montreal protocol came into effect, the first signs are
emerging that the ozone hole is beginning to heal (Solomon
et al., 2016). Projections suggest that ozone concentrations in
the stratosphere are likely to return to pre-ozone hole values
around 2065 (Son et al., 2008; Schiermeier, 2009). Thus, the
main factor presently driving climate change and phytoplankton
responses over much of the SO will decline over the next half
century. Ozone depletion and positive SAM cause increases in
wind and wave action, deeper mixing, and increased nutrient
entrainment into surface waters (see POOZ, SSIZ, MIZ above).
Replenishment of ozone is likely to reverse these climate-induced
drivers of phytoplankton dynamics in Antarctic waters, moving
to a scenario reminiscent of the SAZ region and dominated
by increased warming, stratification, and declining nutrient
availability in surface waters. The effect of this reversal in climate
fortunes is unknown but the rate of change (∼50 years) may
prove too fast for some species to adapt and/or evolve to the
changing environment.

The response of phytoplankton to anticipated future
environmental conditions in the SO will eventually depend

upon their capacity to adapt and evolve (Boyd et al., 2016
and references therein). Phytoplankton communities have
short generation times and high genetic diversity, which
allow for adaptation to changing environmental conditions
through natural selection (Collins et al., 2014). Some SO
phytoplankton communities are already exposed to large
variations in their environment, such as sea ice and coastal
communities. Phytoplankton that are already exposed to large
variations in their environment are considered inherently more
tolerant and capable of adapting to future changes (Sackett
et al., 2013; Schaum and Collins, 2014). Davidson et al. (2016)
showed that exposing natural microbial communities to the
large range in CO2 concentrations they encounter in nature
over a year had little effect. Concentrations above this reduced
productivity and changed the composition of the phytoplankton
community, suggesting that their tolerance to variability
outside of those normally encountered was low. Furthermore,
current experiments, which determine the tolerance limits
of phytoplankton over short time scales, may not be a good
indicator of long-term resilience as the metabolic costs of
climate-induced stress may not be sustainable over numerous
generations (Schaum and Collins, 2014; Torstensson et al., 2015).
It is currently unknown whether the rate of environmental
change will outpace the ability of SO phytoplankton to adapt
and/or evolve. It is, however, inevitable that changes at the base
of the SO will influence trophodynamics, biogeochemistry, and
climate change.
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Abstract. High-latitude oceans are anticipated to be some
of the first regions affected by ocean acidification. Despite
this, the effect of ocean acidification on natural communi-
ties of Antarctic marine microbes is still not well under-
stood. In this study we exposed an early spring, coastal
marine microbial community in Prydz Bay to CO2 levels
ranging from ambient (343 µatm) to 1641 µatm in six 650 L
minicosms. Productivity assays were performed to identify
whether a CO2 threshold existed that led to a change in
primary productivity, bacterial productivity, and the accu-
mulation of chlorophyll a (Chl a) and particulate organic
matter (POM) in the minicosms. In addition, photophysio-
logical measurements were performed to identify possible
mechanisms driving changes in the phytoplankton commu-
nity. A critical threshold for tolerance to ocean acidifica-
tion was identified in the phytoplankton community between
953 and 1140 µatm. CO2 levels � 1140 µatm negatively af-
fected photosynthetic performance and Chl a-normalised
primary productivity (csGPP14C), causing significant reduc-
tions in gross primary production (GPP14C), Chl a accumu-
lation, nutrient uptake, and POM production. However, there
was no effect of CO2 on C : N ratios. Over time, the phy-
toplankton community acclimated to high CO2 conditions,
showing a down-regulation of carbon concentrating mecha-

nisms (CCMs) and likely adjusting other intracellular pro-
cesses. Bacterial abundance initially increased in CO2 treat-
ments � 953 µatm (days 3–5), yet gross bacterial produc-
tion (GBP14C) remained unchanged and cell-specific bacte-
rial productivity (csBP14C) was reduced. Towards the end
of the experiment, GBP14C and csBP14C markedly increased
across all treatments regardless of CO2 availability. This co-
incided with increased organic matter availability (POC and
PON) combined with improved efficiency of carbon uptake.
Changes in phytoplankton community production could have
negative effects on the Antarctic food web and the biological
pump, resulting in negative feedbacks on anthropogenic CO2
uptake. Increases in bacterial abundance under high CO2
conditions may also increase the efficiency of the microbial
loop, resulting in increased organic matter remineralisation
and further declines in carbon sequestration.

1 Introduction

The Southern Ocean (SO) is a significant sink for an-
thropogenic CO2 (Metzl et al., 1999; Sabine et al., 2004;
Frölicher et al., 2015). Approximately 30 % of anthropogenic
CO2 emissions have been absorbed by the world’s oceans,
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of which 40 % has been via the SO (Raven and Falkowski,
1999; Sabine et al., 2004; Khatiwala et al., 2009; Takahashi
et al., 2009, 2012; Frölicher et al., 2015). While ameliorat-
ing CO2 accumulation in the atmosphere, increasing oceanic
CO2 uptake alters the chemical balance of surface waters,
with the average pH having already decreased by 0.1 units
since pre-industrial times (Sabine et al., 2004; Raven et al.,
2005). If anthropogenic emissions continue unabated, future
concentrations of CO2 in the atmosphere are projected to
reach ⇠ 930 µatm by 2100 and peak at ⇠ 2000 µatm by 2250
(Meinshausen et al., 2011; IPCC, 2013). This will result in a
further reduction of the surface ocean pH by up to 0.6 pH
units, with unknown consequences for the marine micro-
bial community (Caldeira and Wickett, 2003). High-latitude
oceans have been identified as amongst the first regions to
experience the negative effects of ocean acidification, caus-
ing potentially harmful reductions in the aragonite saturation
state and a decline in the ocean’s capacity for future CO2
uptake (Sabine et al., 2004; Orr et al., 2005; McNeil and
Matear, 2008; Fabry et al., 2009; Hauck and Völker, 2015).
Marine microbes play a pivotal role in the uptake and stor-
age of CO2 in the ocean through phytoplankton photosyn-
thesis and the vertical transport of biological carbon to the
deep ocean (Longhurst, 1991; Honjo, 2004). As the buffer-
ing capacity of the SO decreases over time, the biological
contribution to total CO2 uptake is expected to increase in
importance (Hauck et al., 2015; Hauck and Völker, 2015).
Thus, it is necessary to understand the effects of high CO2
on the productivity of the marine microbial community if we
are to predict how they may affect ocean biogeochemistry in
the future.

Phytoplankton primary production provides the food
source for higher trophic levels and plays a critical role in the
sequestration of carbon from the atmosphere into the deep
ocean (Azam et al., 1983, 1991; Longhurst, 1991; Honjo,
2004; Fenchel, 2008; Kirchman, 2008). In Antarctic wa-
ters it is restricted to a short summer season and is charac-
terised by intense phytoplankton blooms that can reach over
200 mgChla m�2 (Smith and Nelson, 1986; Nelson et al.,
1987; Wright et al., 2010). Relative to elsewhere in the SO,
the continental shelf around Antarctica accounts for a dispro-
portionately high percentage of annual primary productivity
(Arrigo et al., 2008a). In coastal Antarctic waters, seasonal
CO2 variability can be up to 450 µatm over a year (Gibson
and Trull, 1999; Boyd et al., 2008; Moreau et al., 2012; Ro-
den et al., 2013; Tortell et al., 2014). Sea ice forms a barrier to
the outgassing of CO2 in winter, causing supersaturation of
the surface water to ⇠ 500 µatm. Intense primary productiv-
ity in summer rapidly draws down CO2 to <100 µatm, mak-
ing this region a significant CO2 sink during summer months
(Hoppema et al., 1995; Ducklow et al., 2007; Arrigo et al.,
2008b).

Ocean acidification studies on individual phytoplankton
species have reported differing trends in primary productiv-
ity and growth rates. Increased CO2 enhanced rates of pri-

mary productivity (Wu et al., 2010; Trimborn et al., 2013)
and growth (Sobrino et al., 2008; Tew et al., 2014; Baragi
et al., 2015; Chen et al., 2015; King et al., 2015) in some
diatom species, while others were unaffected (Chen and
Durbin, 1994; Sobrino et al., 2008; Berge et al., 2010; Trim-
born et al., 2013; Chen et al., 2015; Hoppe et al., 2015;
King et al., 2015; Bi et al., 2017). In contrast, CO2-related
declines in primary productivity and growth rate have also
been observed (Barcelos e Ramos et al., 2014; Hoppe et al.,
2015; King et al., 2015; Shi et al., 2017), suggesting that
responses to ocean acidification are largely species specific.
These differing responses among phytoplankton species may
also cause changes in the composition of phytoplankton com-
munities (Trimborn et al., 2013). It is difficult to extrapo-
late the response of individual species to natural commu-
nities, as monospecific studies exclude interactions among
species and trophic levels. Estimates of CO2 tolerance un-
der laboratory conditions may also be influenced by exper-
imental acclimation periods (Trimborn et al., 2014; Hen-
non et al., 2015; Torstensson et al., 2015; Li et al., 2017a),
differences in experimental conditions (e.g. nutrients, light
climate) (Hoppe et al., 2015; Hong et al., 2017; Li et al.,
2017b), methods of CO2 manipulation (Shi et al., 2009; Gat-
tuso et al., 2010), and region-specific environmental adapta-
tions (Schaum et al., 2012). Thus, investigations on natural
communities are essential in order to better understand the
outcome of these complex interactions.

The effects of ocean acidification on natural Antarctic
phytoplankton communities is currently not well understood
(Petrou et al., 2016; Deppeler and Davidson, 2017). Toler-
ance to CO2 levels up to ⇠ 800 µatm have been reported for
natural coastal communities in the West Antarctic Peninsula
and Prydz Bay, East Antarctica (Young et al., 2015; David-
son et al., 2016). Although in Prydz Bay, when CO2 lev-
els exceeded 780 µatm, primary productivity declined and
community composition shifted toward smaller picoeukary-
otes (Davidson et al., 2016; Thomson et al., 2016; Westwood
et al., 2018). In contrast, Ross Sea phytoplankton communi-
ties responded to CO2 levels � 750 µatm with an increase in
primary productivity and abundance of large chain-forming
diatoms, suggesting that as CO2 increases in this region, di-
atoms may increase in dominance over the prymnesiophyte
Phaeocystis antarctica (Tortell et al., 2008b; Feng et al.,
2010). The paucity of information regarding the ocean acid-
ification response of these Antarctic coastal phytoplankton
communities highlights the need for further research to deter-
mine region-specific tolerances and potential tipping points
in community productivity and composition in Antarctica.

Bacteria play an essential role in the microbial food web
through the remineralisation of nutrients from sinking par-
ticles (Azam et al., 1991) and as a food source for het-
erotrophic nanoflagellates (Pearce et al., 2010). Bacterial
populations respond to increases in phytoplankton primary
productivity by increasing their productivity and abundance,
with maximum abundance often occurring after the peak of
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the phytoplankton bloom (Pearce et al., 2007). High CO2 lev-
els have been observed to have either no effect on abundance
and productivity (Grossart et al., 2006; Allgaier et al., 2008;
Paulino et al., 2008; Baragi et al., 2015; Wang et al., 2016)
or increase growth rate and production only during the post-
bloom phase of an experiment (Grossart et al., 2006; Sperling
et al., 2013; Westwood et al., 2018). Thus, bacterial commu-
nities appear to be relatively tolerant to ocean acidification,
with bacterial growth indirectly affected by the ocean acidifi-
cation responses of the phytoplankton community (Grossart
et al., 2006; Allgaier et al., 2008; Engel et al., 2013; Piontek
et al., 2013; Sperling et al., 2013; Bergen et al., 2016).

Mesocosm experiments are an effective way of moni-
toring the community response of microbial assemblages
to environmental changes. Experiments examining multiple
species and trophic levels can provide responses that dif-
fer significantly from monospecific studies. Numerous meso-
cosm studies have now been performed to assess the effect of
ocean acidification on natural marine microbial communities
around the world (e.g. Kim et al., 2006; Hopkinson et al.,
2010; Riebesell et al., 2013; Paul et al., 2015; Bach et al.,
2016; Bunse et al., 2016). Studies in the Arctic reported in-
creases in phytoplankton primary productivity, growth, and
organic matter concentration at CO2 levels � 800 µatm under
nutrient-replete conditions (Bellerby et al., 2008; Egge et al.,
2009; Engel et al., 2013; Schulz et al., 2013), whilst the bac-
terial community was unaffected (Grossart et al., 2006; All-
gaier et al., 2008; Paulino et al., 2008; Baragi et al., 2015).
These studies also highlight the importance of nutrient avail-
ability in the community response to elevated CO2, with
substantial differences in primary and bacterial productiv-
ity, chlorophyll a (Chl a), and elemental stoichiometry ob-
served between nutrient-replete and nutrient-limited condi-
tions (Riebesell et al., 2013; Schulz et al., 2013; Sperling
et al., 2013; Bach et al., 2016).

Previous community-level studies investigating the effects
of ocean acidification on natural coastal marine microbial
communities in East Antarctica reported declines in pri-
mary and bacterial productivity when CO2 levels exceeded
780 µatm (Westwood et al., 2018). To build upon the re-
sults of Westwood et al. (2018), a similar experimental de-
sign was utilised, with a natural marine microbial commu-
nity from the same region exposed to CO2 levels ranging
from 343 to 1641 µatm in 650 L minicosms. The methods
were refined in our study to include an acclimation period
to the CO2 treatment under low light. Rates of primary pro-
ductivity, bacterial productivity, and the accumulation of par-
ticulate organic matter (POM) were examined to ascertain
whether the threshold for tolerance to CO2 was similar to
that reported by Westwood et al. (2018) or if acclimation af-
fected the community response to high CO2. Photophysio-
logical measurements were also undertaken to assess under-
lying mechanisms that caused shifts in phytoplankton com-
munity productivity.

Figure 1. Minicosm tanks filled with seawater in a temperature-
controlled shipping container.

2 Methods

2.1 Minicosm set-up

Natural microbial assemblages were incubated in six 650 L
polythene tanks (minicosms) housed in a temperature-
controlled shipping container (Fig. 1). All minicosms were
acid washed with 10 % vol : vol AR HCl, thoroughly rinsed
with MilliQ water, and given a final rinse with seawater
from the sampling site before use. The minicosms were filled
with seawater taken amongst decomposing fast ice in Prydz
Bay at Davis Station, Antarctica (68�350 S, 77�580 E) on 19
November 2014. Water was transferred by helicopter in mul-
tiple collections using a 720 L Bambi Bucket to fill a 7000 L
polypropylene holding tank. Seawater was gravity fed into
the minicosm tanks through Teflon-lined hosing fitted with
an in-line 200 µm Arkal filter to exclude metazooplankton.
All minicosms were filled simultaneously to ensure uniform
distribution of microbes in all tanks.

The ambient water temperature at the time of sampling in
Prydz Bay was �1.0 �C. Tanks were temperature controlled
to an average temperature of 0.0 �C, with a maximum range
of ±0.5 �C, through the cooling of the shipping container
and warming with two 300 W aquarium heaters (Fluval) that
were connected to a temperature control program via Carel
temperature controllers. The contents of each tank were gen-
tly mixed by a shielded high-density polyethylene auger ro-
tating at 15 rpm, and each tank was covered with a sealed
acrylic lid.

Each tank was illuminated on a 19 : 5 h light : dark cycle by
two 150 W HQI-TS/NDL (Osram) metal halide lamps (trans-
mission spectra; Deppeler et al., 2017a). The light output was
filtered by a light-scattering filter and a one-quarter colour
temperature (CT) blue filter (Arri) to convert the tungsten
lighting to a daylight spectral distribution; attenuating wave-
lengths were < 500 nm by ⇠ 20 % and > 550 nm by ⇠ 40 %
(Davidson et al., 2016).
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Figure 2. The (a) f CO2 and (b) pHT conditions within each of the
minicosm treatments over time. Grey shading indicates CO2 and
light acclimation period.

Similar to Schulz et al. (2017), the fugacity of carbon diox-
ide (f CO2) in each tank was raised to the target concentra-
tion in a stepwise manner over the first 5 days of the incuba-
tion (Fig. 2, see below). During this acclimation, phytoplank-
ton growth in the tanks was slowed by attenuating the light
intensity to 0.9 ± 0.2 µmolphotons m�2 s�1 using two 90 %
neutral density (ND) filters (Arri).

At the conclusion of this CO2 acclimation period, the light
intensity was increased for 24 h through the replacement of
the two 90 % ND filters with one 60 % ND filter. The final
light intensity was achieved on day 7 with a one-quarter CT
blue and a light-scattering filter, which proved to be saturat-
ing for photosynthesis (see below).

Unless otherwise specified, samples were taken for anal-
yses on days 1, 3, and 5 during the CO2 acclimation period
and every 2 days from day 8 to 18.

2.2 Carbonate chemistry measurements and
calculations

Samples for carbonate chemistry measurements were col-
lected daily from each minicosm in 500 mL glass-stoppered
bottles (Schott Duran) following the guidelines of Dickson
et al. (2007). Subsamples for dissolved inorganic carbon
(DIC; 50 mL glass-stoppered bottles) and pH on the total
scale (pHT ; 100 mL glass-stoppered bottles) measurements

were gently pressure filtered (0.2 µm) with a peristaltic pump
at a flow rate of ⇠ 30 mLmin�1, similar to Bockmon and
Dickson (2014).

DIC was measured by infrared absorption on an Apollo
SciTech AS-C3 analyser equipped with a Li-cor LI-7000 de-
tector using triplicate 1.5 mL samples. The instrument was
calibrated (and checked for linearity) within the expected
DIC concentration range with five sodium carbonate stan-
dards (Merck Suprapur) that were dried for 2 h at 230 �C and
prepared gravimetrically in MilliQ water (18.2 M�cm�1) at
25 �C. Furthermore, daily measurements of certified refer-
ence material batch CRM127 (Dickson, 2010) were used for
improved accuracy. Volumetrically measured DIC was con-
verted to µmol kg�1 using calculated density derived from
known temperature and salinity. The typical precision among
triplicate measurements was < 2 µmol kg�1.

The pHT was measured spectrophotometrically (GBC
UV–vis 916) in a 10 cm thermostated (25 �C) cuvette us-
ing the pH indicator dye m-cresol purple (Acros Organ-
ics; 62625-31-4, lot A0321770) following the approach de-
scribed in Dickson et al. (2007), which included changes in
sample pH due to dye addition. Contact with air was min-
imised by sample delivery, dye addition, and mixing via a
syringe pump (Tecan; Cavro XLP 6000). Dye impurities and
instrument performance were accounted for by applying a
constant off-set (+0.003 pH units), determined by the com-
parison of the measured and calculated pHT (from known
DIC and total alkalinity (TA), including silicate and phos-
phate) of CRM127. Typical measurement precision for trip-
licates was 0.001 for higher and 0.003 for lower pH treat-
ments. For further details see Schulz et al. (2017).

Carbonate chemistry speciation was calculated from mea-
sured DIC and pHT . In a first step at salinities measured in
situ (WTW197 conductivity meter), practical alkalinity (PA)
was calculated at 25 �C using the dissociation constants for
carbonic acid determined by Mehrbach et al. (1973) as refit-
ted by Lueker et al. (2000). Then, total carbonate chemistry
speciation was calculated from measured DIC and calculated
PA for in situ temperature conditions.

2.3 Carbonate chemistry manipulation

The f CO2 in the minicosms was adjusted by additions of
0.22 µm filtered natural seawater that was saturated by bub-
bling with AR-grade CO2 for � 30 min. In order to keep
f CO2 as constant as possible throughout the experiment,
pH in each minicosm was measured with a portable NBS-
calibrated probe (Mettler Toledo) in the morning before sam-
pling and in the afternoon to estimate the necessary amount
of DIC to be added. The required volume of CO2-enriched
seawater was then transferred into 1000 mL infusion bags
and added to the individual minicosms at a rate of about
50 mLmin�1. After reaching target levels, the mean f CO2
levels in the minicosms were 343, 506, 634, 953, 1140, and
1641 µatm (Table S1 in the Supplement).
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2.4 Light irradiance

The average light intensity in each minicosm tank was cal-
culated by measuring light intensity in the empty tanks at
three depths (top, middle, and near-bottom) and across each
tank (left, middle, and right) using a Biospherical Instru-
ments Laboratory Quantum Scalar Irradiance Meter (QSL-
101). The average light irradiance received by the phyto-
plankton within each tank was calculated following the equa-
tion of Riley (1957) (Table 1). Incoming irradiance (Io) was
calculated as the average light intensity across the top of the
tank. The average vertical light attenuation (Kd ) was calcu-
lated as the slope from the regression of the natural log of
light intensity at all three depths, and mixed depth (Zm) was
the depth of the minicosm tanks (1.14 m).

Changes in vertical light attenuation due to increases in
Chl a concentration throughout the experimental period were
calculated from the equation in Westwood et al. (2018);
Kd(biomass) = 0.0451157 ⇥ Chl a (mg m�3). Total light atten-
uation Kd(total) in each tank at each sampling day was calcu-
lated by addition of Kd and Kd(biomass).

2.5 Nutrient analysis

No nutrients were added to the minicosms during the ex-
periment. Macronutrient samples were obtained from each
minicosm following the protocol of Davidson et al. (2016).
Seawater was filtered through 0.45 µm Sartorius filters into
50 mL Falcon tubes and frozen at �20 �C for analysis in Aus-
tralia. Concentrations of ammonia, nitrate plus nitrite (NOx),
soluble reactive phosphorus (SRP), and molybdate reactive
silica (Silica) were determined using flow injection analysis
by Analytical Services Tasmania following Davidson et al.
(2016).

2.6 Elemental analysis

Samples for POM analysis, particulate organic car-
bon (POC), and particulate organic nitrogen (PON) were col-
lected following the method of Pearce et al. (2007). Equip-
ment for sample preparation was soaked in Decon 90 (De-
con Laboratories) for > 2 days and thoroughly rinsed in
MilliQ water before use. Forceps and cutting blades were
rinsed in 100 % acetone between samples. Seawater was fil-
tered through muffled 25 mm Sartorius quartz microfibre fil-
ters until clogged. The filters were folded in half and frozen at
�80 �C for analysis in Australia. Filters were thawed and op-
posite 1/8 subsamples were cut and transferred into a silver
POC cup (Elemental Analysis Ltd). Inorganic carbon was re-
moved from each sample through the addition of 20 µL of 2N
HCl to each cup and drying at 60 �C for 36 h. When dry, each
cup was folded shut, compressed into a pellet, and stored in
desiccant until analysed at the Central Science Laboratory,
University of Tasmania using a Thermo Finnigan EA 1112
Series Flash Elemental Analyzer.

2.7 Chlorophyll a

Seawater was collected from each minicosm and a measured
volume was filtered through 13 mm Whatman GF/F filters
(maximum filtration time of 20 min). Filters were folded in
half, blotted dry, and immediately frozen in liquid nitrogen
for analysis in Australia. Chlorophyll a (Chl a) pigments
were extracted, analysed by HPLC, and quantified follow-
ing the methods of Wright et al. (2010). Chl a was extracted
from filters with 300 µL of dimethylformamide plus 50 µL of
methanol, containing 140 ng apo-80-carotenal (Fluka) inter-
nal standard, followed by bead beating and centrifugation to
separate the extract from particulate matter. Extracts (125 µL)
were diluted to 80 % with water and analysed on a Waters
HPLC using a Waters Symmetry C8 column and a Waters
996 photodiode array detector. Chl a was identified by its
retention time and absorption spectra compared to a mixed
standard sample from known cultures (Jeffrey and Wright,
1997), which was run daily before samples. Peak integrations
were performed using Waters Empower software, checked
manually for corrections, and quantified using the internal
standard method (Mantoura and Repeta, 1997).

2.8 14C primary productivity

Primary productivity incubations were performed following
the method of Westwood et al. (2010) based on the technique
of Lewis and Smith (1983). This method incubated phy-
toplankton for 1 h, minimising respiratory losses of photo-
assimilated 14C so that the uptake nearly approximated gross
primary productivity (e.g. Dring and Jewson, 1982; González
et al., 2008; Regaudie-de Gioux et al., 2014). Samples were
analysed for total organic carbon (TO14C) content, thereby
including any 14C-labelled photosynthate leaked to the dis-
solved organic carbon (DO14C) pool (Regaudie-de Gioux
et al., 2014).

For all samples, 5.92 MBq (0.16 mCi) of 14C-sodium bi-
carbonate (NaH14CO3; PerkinElmer) was added to 162 mL
of seawater from each minicosm, creating a working so-
lution of 37 kBqmL�1. Aliquots of this working solution
(7 mL) were then added to glass scintillation vials and in-
cubated for 1 h at 21 light intensities ranging from 0–
1412 µmol photonsm�2 s�1. The temperature within each of
the vials was maintained at �1.0 ± 0.3 �C through water
cooling of the incubation chamber. The reaction was termi-
nated with the addition of 250 µL of 6N HCl and the vials
were shaken for 3 h at 200 rpm to remove dissolved inor-
ganic carbon. Duplicate time zero (T0) samples were set
up in a similar manner to determine background radiation,
with 250 µL of 6N HCl added immediately to quench the
reaction without exposure to light. Duplicate 100 % sam-
ples were also performed to determine the activity of the
working solution for each minicosm. For each 100 % sam-
ple, 100 µL of working solution was added to 7 mL 0.1 M
NaOH in filtered seawater to bind all 14C. For radioactive
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counts, 10 mL of Ultima Gold LLT scintillation cocktail
(PerkinElmer) was added to each scintillation vial, shaken,
and decays per minute (DPM) were counted in a PerkinElmer
Tri-Carb 2910TR Low Activity Liquid Scintillation Analyzer
with a maximum counting time set at 3 min.

DPM counts were converted into primary productivity
following the equation of Steemann Nielsen (1952) (Ta-
ble 1) using measured DIC concentrations (varying between
⇠ 2075 and 2400 µmol kg�1) and normalised to Chl a us-
ing minicosm Chl a concentration (see above). Photosyn-
thesis versus irradiance (PE) curves were modelled for each
treatment following the equation of Platt et al. (1980) us-
ing the phytotools package in R (Silsbe and Malkin, 2015;
R Core Team, 2016). Photosynthetic parameter estimates in-
cluded the light-saturated photosynthetic rate (Pmax), maxi-
mum photosynthetic efficiency (↵), photoinhibition rate (�),
and saturating irradiance (Ek).

Chl a-specific primary productivity (csGPP14C) was calcu-
lated following the equation of Platt et al. (1980) using aver-
age minicosm light irradiance (I ). Gross primary production
rates (GPP14C) in each tank were calculated from modelled
csGPP14C and Chl a concentration (see above). Calculations
and units for each parameter are presented in Table 1.

2.9 Gross community productivity

Community photosynthesis and respiration rates were mea-
sured using custom-made mini-chambers. The system con-
sisted of four 5.1 mL glass vials with oxygen sensor spots
(Pyro Science) attached on the inside of the vials with non-
toxic silicon glue. The vials were sealed, ensuring that any
oxygen bubbles were omitted, and all vials were stirred con-
tinuously using small Teflon magnetic fleas to allow homoge-
nous mixing of gases within the system during measure-
ments. To improve the signal-to-noise ratio, seawater from
each minicosm was concentrated above a 0.8 µm, 47 mm di-
ameter polycarbonate membrane filter (Poretics) with gen-
tle vacuum filtration and resuspended in seawater from each
minicosm CO2 treatment. Each chamber was filled with the
cell suspension and placed in a temperature-controlled incu-
bator (0.0 ± 0.5 �C). Light was supplied via fluorescent bulbs
above each chamber and light intensity was calibrated using a
4⇡ sensor. Oxygen optode spots were connected to a FireSt-
ing O2 logger and data were acquired using FireSting soft-
ware (Pyro Science). The optode was calibrated according to
the manufacturer’s protocol immediately prior to measure-
ments using a freshly prepared sodium thiosulfate solution
(10 % w /w) and agitated filtered seawater (0.2 µm) at ex-
perimental temperature for 0 and 100 % air saturation values,
respectively. Oxygen concentration was recorded until a lin-
ear change in rate was established for each pseudoreplicate
(n = 4).

Measurements were first recorded in the light
(188 µmolphotonsm�2 s�1) and subsequently in the
dark, with the initial steeper portion of the slope used for a

linear regression analysis to determine the post-illumination
(PI) respiration rate. Gross community production (GCPO2)
was then calculated from dark PI respiration (RespO2) and
net community production (NCPO2) rates and normalised
to Chl a concentration (csGCPO2 , Table 1). Chl a content
for each concentrated sample was determined by extracting
pigments in 90 % chilled acetone and incubating in the
dark at 4 �C for 24 h. Chl a concentrations were determined
using a spectrophotometer (Cary 50; Varian) and calculated
according to the equations of Jeffrey and Humphrey (1975),
modified by Ritchie (2006).

2.10 Chlorophyll a fluorescence

The photosynthetic efficiency of the microalgal commu-
nity was measured via Chl a fluorescence using a pulse-
amplitude-modulated fluorometer (WATER-PAM; Walz). A
3 mL aliquot from each minicosm was transferred into a
quartz cuvette with continuous stirring to prevent cells from
settling. To establish an appropriate dark adaptation pe-
riod, several replicates were measured after 5, 10, 15, 20,
and 30 min of dark adaptation, with the latter having the
highest maximum quantum yield of PSII (Fv / Fm). Fol-
lowing dark adaptation, minimum fluorescence (F0) was
recorded before the application of a high-intensity saturat-
ing pulse of light (saturating pulse width = 0.8 s; saturat-
ing pulse intensity >3000 µmolphotons m�2 s�1), and max-
imum fluorescence (Fm) was determined. The maximum
quantum yield of PSII was calculated from these two pa-
rameters (Schreiber, 2004). Following Fv / Fm, a five-step
steady-state light curve (SSLC) was conducted with each
light level (130, 307, 600, 973, 1450 µmol photonsm�2 s�1)
applied for 5 min before recording the light-adapted min-
imum (Ft ) and maximum fluorescence (Fm0 ) values. Each
light step was spaced by a 30 s dark “recovery” period be-
fore the next light level was applied. Three pseudoreplicate
measurements were conducted on each minicosm sample at
0.1 �C. Non-photochemical quenching (NPQ) of Chl a flu-
orescence was calculated from Fm and Fm0 measurements.
Relative electron transport rates (rETRs) were calculated as
the product of effective quantum yield (1F /Fm0 ) and ac-
tinic irradiance (Ia). Calculations and units for each parame-
ter are presented in Table 1.

2.11 Community carbon concentrating mechanism
activity

To investigate the effects of CO2 on carbon uptake, two in-
hibitors for carbonic anhydrase (CA) were applied to the 343
and 1641 µatm treatments on day 15: ethoxzolamide (EZA;
Sigma), which inhibits both intracellular carbonic anhydrase
(iCA) and extracellular carbonic anhydrase (eCA), and ac-
etazolamide (AZA; Sigma), which blocks eCA only. Stock
solutions of EZA (20 mM) and AZA (5 mM) were prepared
in MilliQ water, and the pH was adjusted using NaOH to

Biogeosciences, 15, 209–231, 2018 www.biogeosciences.net/15/209/2018/



S. Deppeler et al.: Ocean acidification of a coastal Antarctic marine microbial community 215

Ta
bl

e
1.

D
efi

ni
tio

ns
,m

ea
su

re
m

en
ts

,a
nd

ca
lc

ul
at

io
ns

fo
rp

ro
du

ct
iv

ity
da

ta
.

N
am

e
D

efi
ni

tio
n

U
ni

ts
M

ea
su

re
m

en
ts

an
d

ca
lc

ul
at

io
ns

Pr
im

ar
y

pr
od

uc
tiv

ity

C
ar

bo
n

in
co

rp
or

at
io

n
To

ta
l14

C
-s

od
iu

m
bi

ca
rb

on
at

e
in

co
rp

or
at

io
n

m
gC

(m
gC

hl
a)

�1
L�

1
h�

1
Eq

ua
tio

n
fr

om
St

ee
m

an
n

N
ie

ls
en

(1
95

2)
=

(D
PM

s
�D

PM
T

0
)

D
PM

10
0

%
⇥

D
IC

⇥
1.

05
/

tim
e/

C
hl

a
↵

M
ax

im
um

ph
ot

os
yn

th
et

ic
ef

fic
ie

nc
y

m
gC

(m
gC

hl
a)

�1
M

od
el

le
d

fr
om

PE
cu

rv
e

of
21

lig
ht

in
te

ns
iti

es
(µ

m
ol

ph
ot

on
sm

�2
s�

1 )
�1

h�
1

0–
14

11
µm

ol
ph

ot
on

sm
�2

s�
1

�
Ph

ot
oi

nh
ib

iti
on

ra
te

m
gC

(m
gC

hl
a)

�1
M

od
el

le
d

fr
om

PE
cu

rv
e

of
21

lig
ht

in
te

ns
iti

es
(µ

m
ol

ph
ot

on
sm

�2
s�

1 )
�1

h�
1

0–
14

11
µm

ol
ph

ot
on

sm
�2

s�
1

P
m

ax
M

ax
im

um
ph

ot
os

yn
th

et
ic

ra
te

m
gC

(m
gC

hl
a)

�1
h�

1
Eq

ua
tio

n
fr

om
Pl

at
te

ta
l.

(1
98

0)
=

P
s
⇥

↵

(↵
+

�
)

⇥
�

(↵
+

�
)

� ↵

E
k

Sa
tu

ra
tin

g
irr

ad
ia

nc
e

µm
ol

ph
ot

on
sm

�2
s�

1
Eq

ua
tio

n
fr

om
Pl

at
te

ta
l.

(1
98

0)
=

P
m

ax
/
↵

I
A

ve
ra

ge
irr

ad
ia

nc
e

re
ce

iv
ed

by
ph

yt
op

la
nk

to
n

ce
lls

µm
ol

ph
ot

on
sm

�2
s�

1
Eq

ua
tio

n
fr

om
R

ile
y

(1
95

7)
=

I
o
(1

�
e
(�

K
d
⇥Z

m
) )

/
(K

d
⇥

Z
m

)

cs
G

PP
14

C
14

C
C

hl
a-

sp
ec

ifi
c

pr
im

ar
y

pr
od

uc
tiv

ity
m

gC
(m

gC
hl

a)
�1

h�
1

Eq
ua

tio
n

fr
om

Pl
at

te
ta

l.
(1

98
0)

=
P

s
⇥

e
�↵

I
P
s

⇥
e

��
I

P
s

G
PP

14
C

14
C

gr
os

s
pr

im
ar

y
pr

od
uc

tio
n

µg
C

L�
1

h�
1

=
cs

G
PP

14
C

⇥
C

hl
a

cs
G

C
P O

2
O

2
C

hl
a-

sp
ec

ifi
c

gr
os

s
co

m
m

un
ity

pr
od

uc
tiv

ity
m

gO
2
(m

gC
hl

a)
�1

h�
1

=
(N

C
P O

2
+

R
es

p O
2
)
/

C
hl

a
G

C
P O

2
O

2
gr

os
s

co
m

m
un

ity
pr

od
uc

tio
n

m
gO

2
L�

1
h�

1
=

cs
G

C
P O

2
⇥

C
hl

a

Ph
ot

op
hy

si
ol

og
y

F
v
/
F

m
M

ax
im

um
qu

an
tu

m
yi

el
d

of
PS

II
(a

rb
itr

ar
y

un
its

)
=

(F
m

�
F

O
)/

F
m

1
F

/
F

m
0

Ef
fe

ct
iv

e
qu

an
tu

m
yi

el
d

of
PS

II
(a

rb
itr

ar
y

un
its

)
=

(F
m

0 �
F

)/
F

m
0

rE
TR

R
el

at
iv

e
el

ec
tro

n
tra

ns
po

rt
ra

te
(a

rb
itr

ar
y

un
its

)
=

1
F

v/
F

m
0 ⇥

I a
N

PQ
N

on
-p

ho
to

ch
em

ic
al

qu
en

ch
in

g
(a

rb
itr

ar
y

un
its

)
=

(F
m

�
F

m
0 )
/
F

m
0

B
ac

te
ria

lp
ro

du
ct

iv
ity

nm
ol

le
uc

in
e i

nc
M

ol
es

of
ex

og
en

ou
s

14
C

-le
uc

in
e

in
co

rp
or

at
ed

nm
ol

L�
1

h�
1

Eq
ua

tio
n

fr
om

K
irc

hm
an

(2
00

1)
=

(D
PM

s
�

D
PM

t 0
)
/

tim
e/

2.
22

⇥
10

6
⇥

SA
(n

m
ol

µC
i�

1 )
/

sa
m

pl
ev

ol
(L

)
G

B
P 1

4 C
14

C
gr

os
s

ba
ct

er
ia

lp
ro

du
ct

io
n

µg
C

L�
1

h�
1

Eq
ua

tio
n

fr
om

Si
m

on
an

d
A

za
m

(1
98

9)
=

(n
m

ol
le

uc
in

e i
nc

/
10

3 )
⇥1

31
.2

/
0.

07
3

⇥
0.

86
⇥

2
cs

B
P 1

4 C
14

C
ce

ll-
sp

ec
ifi

c
ba

ct
er

ia
lp

ro
du

ct
iv

ity
fg

C
ce

ll�
1

L�
1

h�
1

=
G

B
P 1

4 C
/

ce
lls

L�
1

P s
:m

ax
im

um
ph

ot
os

yn
th

et
ic

ou
tp

ut
w

ith
no

ph
ot

oi
nh

ib
iti

on
,f

ro
m

Pl
at

te
ta

l.
(1

98
0)

;D
PM

s:
sa

m
pl

e
D

PM
;S

A
:s

pe
ci

fic
ac

tiv
ity

of
14

C
-le

uc
in

e
is

ot
op

e.
A

ll
ot

he
ra

bb
re

vi
at

io
ns

ar
e

de
fin

ed
in

th
e

“M
et

ho
ds

”
se

ct
io

n.

www.biogeosciences.net/15/209/2018/ Biogeosciences, 15, 209–231, 2018



216 S. Deppeler et al.: Ocean acidification of a coastal Antarctic marine microbial community

minimise pH changes when added to the samples. Before flu-
orometric measurements were made, water samples from the
343 and 1641 µatm CO2 treatments were filtered into � 10
and <10 µm fractions and aliquots were inoculated either
with 50 µL of MilliQ water adjusted with NaOH (control)
or a 50 µM final concentration of chemical inhibitor (EZA
and AZA). Fluorescence measurements of size-fractionated
control- and inhibitor-exposed cells were performed using
the WATER-PAM. A 3 mL aliquot of sample was trans-
ferred into a quartz cuvette with stirring and left in the
dark for 30 min before the maximum quantum yield of PSII
(Fv / Fm) was determined (as described above). Actinic light
was then applied at 1450 µmol photonsm�2 s�1 for 5 min be-
fore the effective quantum yield of PSII (1F /Fm0 ) was
recorded. Three pseudoreplicate measurements were con-
ducted on each minicosm sample at 0.1 �C.

2.12 Bacterial abundance

Bacterial abundance was determined daily using a Becton
Dickinson FACScan or FACSCalibur flow cytometer fitted
with a 488 nm laser following the protocol of Thomson et al.
(2016). Samples were pre-filtered through a 50 µm mesh (Ni-
tex), stored at 4 �C in the dark, and analysed within 6 h of
collection. Samples were stained for 20 min with 1 : 10000
dilution SYBR Green I (Invitrogen) (Marie et al., 2005), and
PeakFlow Green 2.5 µm beads (Invitrogen) were added to
the sample as an internal fluorescence standard. Three pseu-
doreplicate samples were prepared from each minicosm sea-
water sample. Samples were run for 3 min at a low flow rate
(⇠ 12 µL min�1) and bacterial abundance was determined
from side scatter (SSC) versus green (FL1) fluorescence bi-
variate scatter plots. The analysed volume was calibrated
to the sample run time and each sample was run for pre-
cisely 3 min, resulting in an analysed volume of 0.0491 and
0.02604 mL on the FACSCalibur and FACScan, respectively.
The volume analysed was then used to calculate final cell
concentrations.

2.13 Bacterial productivity

Bacterial productivity measurements were performed follow-
ing the leucine incorporation by microcentrifuge method of
Kirchman (2001). Briefly, 70 nM 14C-leucine (PerkinElmer)
was added to 1.7 mL of seawater from each minicosm in
2 mL polyethylene Eppendorf tubes and incubated for 2 h
in the dark at 4 �C. Three pseudoreplicate samples were
prepared from each minicosm seawater sample. The re-
action was terminated by the addition of 90 µL of 100 %
trichloroacetic acid (TCA; Sigma) to each tube. Duplicate
background controls were also performed following the same
method, with 100 % TCA added immediately before incu-
bation. After incubation, samples were spun for 15 min at
12 500 rpm and the supernatant was removed. The cell pel-
let was resuspended into 1.7 mL of ice-cold 5 % TCA and

spun again for 15 min at 12 500 rpm and the supernatant
was removed. The cell pellet was then resuspended into
1.7 mL of ice-cold 80 % ethanol, spun for a further 15 min at
12 500 rpm, and the supernatant was removed. The cell pel-
let was allowed to dry completely before addition of 1 mL
of Ultima Gold scintillation cocktail (PerkinElmer). The Ep-
pendorf tubes were placed into glass scintillation vials and
DPMs were counted in a PerkinElmer Tri-Carb 2910TR
Low Activity Liquid Scintillation Analyzer with a maximum
counting time of 3 min.

DPM counts were converted to 14C-leucine incorporation
rates following the equation in Kirchman (2001) and used to
calculate gross bacterial production (GBP14C) following Si-
mon and Azam (1989). Bacterial production was divided by
total bacterial abundance to determine the cell-specific bac-
terial productivity within each treatment (csBP14C). Calcula-
tions and units for each parameter are presented in Table 1.

2.14 Statistical analysis

The minicosm experimental design measured the microbial
community growth in six unreplicated f CO2 treatments.
Therefore, subsamples from each minicosm were within-
treatment pseudoreplicates and thus only provide a measure
of the variability of the within-treatment sampling and mea-
surement procedures. We use pseudoreplicates as true repli-
cates in order to provide an informal assessment of differ-
ences among treatments, noting that results must be treated
as indicative and interpreted conservatively.

For all analyses, a linear or curved (quadratic) regression
model was fitted to each CO2 treatment over time using the
stats package in R (R Core Team, 2016), and an omnibus
test of differences between the trends among CO2 treatments
over time was assessed by ANOVA. This analysis ignored
the repeated measures nature of the data set, which could not
be modelled due to the low number of time points and an
absence of replication at each time. For the CCM activity
measurements, differences between treatments were tested
by one-way ANOVA followed by a post-hoc Tukey’s test to
determine which treatments differed. The significance level
for all tests was set at < 0.05.

3 Results

3.1 Carbonate chemistry

The f CO2 of each treatment was modified in a stepwise
fashion over 5 days to allow for acclimation of the micro-
bial community to the changed conditions. Target treatment
conditions were reached in all tanks by day 5 and ranged
from 343 to 1641 µatm, equating to an average pHT of 8.10
to 7.45 (Fig. 2, Table S1), respectively. The initial seawa-
ter was calculated to have an f CO2 of 356 µatm and a PA
of 2317 µmolkg�1, from a measured pHT of 8.08 and DIC
of 2187 µmol kg�1 (Fig. S1 and Table S2 in the Supple-
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Figure 3. Nutrient concentration in each of the minicosm treatments
over time. (a) Nitrate + nitrite (NOx ), (b) soluble reactive phospho-
rus (SRP), and (c) molybdate reactive silica (silica). Grey shading
indicates CO2 and light acclimation period.

ment). One minicosm was maintained close to these condi-
tions (343 µatm) throughout the experiment as a control treat-
ment.

3.2 Light climate

The average light irradiance for all CO2 treatments
is presented in Table S3. During the CO2 acclima-
tion period (days 1–5) the average light irradiance
was 0.9 ± 0.2 µmol photons m�2 s�1 and was increased to
90.5 ± 21.5 µmolphotonsm�2 s�1 by day 8. The average ver-
tical light attenuation (Kd ) across all minicosm tanks was
0.92 ± 0.2. Increasing Chl a concentration over time in all

CO2 treatments increased Kd(total) from 0.96 ± 0.01 on day
1 to 3.53 ± 0.28 on day 18, resulting in a decline in average
light irradiance within the minicosms from 86.61 ± 20.5 to
35.97 ± 9.3 µmolphotonsm�2 s�1 between days 8 and 18.

3.3 Nutrients

Nutrient concentrations were similar across all treatments at
the beginning of the experiment (Table S2 in the Supplement)
and did not change during the acclimation period (days 1–5).
Ammonia concentrations were initially low (0.95 ± 0.18 µM)
and fell rapidly to concentrations below the limits of detec-
tion beyond day 12 in all treatments (Fig. S2 in the Sup-
plement). No differences in drawdown between CO2 treat-
ments were observed, and thus it was excluded from fur-
ther analysis. NOx fell from 26.2 ± 0.74 µM on day 8 to
concentrations below detection limits on day 18 (Fig. 3a),
with the slowest drawdown in the 1641 µatm treatment. SRP
concentrations were initially 1.74 ± 0.02 µM and all CO2
treatments followed a similar drawdown sequence to NOx ,
reaching very low concentrations (0.13 ± 0.03 µM) on day
18 in all treatments (Fig. 3b). In contrast, silica was re-
plete in all treatments throughout the experiment falling from
60.0 ± 0.91 µM to 43.6 ± 2.45 µM (Fig. 3c). The drawdown
of silica was exponential from day 8 onwards and followed a
similar pattern to NOx and SRP, with the highest silica draw-
down in the 634 µatm and the least in the 1641 µatm treat-
ment.

3.4 Particulate organic matter

Particulate organic carbon (POC) and nitrogen (PON)
concentrations were initially low at 4.7 ± 0.15 and
0.5 ± 0.98 µM, respectively, and increased after day 8
in all treatments (Fig. 4a, b). The accumulation of POC
and PON was effectively the reciprocal of the drawdown of
nutrients (see above), being lowest in the high CO2 treat-
ments (� 1140 µatm) and highest in the 343 and 643 µatm
treatments. Rates of POC and PON accumulation were
both affected by nutrient exhaustion, with declines in the
343 and 634 µatm treatments between days 16 and 18.
POC and PON concentrations on day 18 were highest in
the 953 µatm treatment. The ratio of POC to PON (C : N)
was similar for all treatments, declining from 8.0 ± 0.38
on day 8 to 5.7 ± 0.28 on day 16 (Fig. 4c). The slowest
initial decline in the C : N ratio occurred in the 1641 µatm
treatment, displaying a prolonged lag until day 10, after
which it decreased to values similar to all other treatments.
Nutrient exhaustion on day 18 coincided with an increase
in the C : N ratio in all treatments, with C : N ratios >10 in
the 343, 634, and 953 µatm treatments and lower C : N ratios
(8.6–6.7) in the 506, 1140, and 1641 µatm treatments.

www.biogeosciences.net/15/209/2018/ Biogeosciences, 15, 209–231, 2018
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Figure 4. Particulate organic matter concentration and C : N ratio of
each of the minicosm treatments over time. (a) Particulate organic
carbon (POC), (b) particulate organic nitrogen (PON), and (c) car-
bon : nitrogen (C : N) ratio. The dashed line indicates C : N Redfield
ratio of 6.6. Grey shading indicates CO2 and light acclimation pe-
riod.

3.5 Chlorophyll a

Chl a concentrations were low at the beginning of the exper-
iment at 0.91 ± 0.16 µg L�1 and increased in all treatments
after day 8 (Fig. 5a). Chl a accumulation rates were similar
amongst treatments  634 µatm until day 14, with a slightly
higher Chl a concentration in the 506 and 634 µatm treat-
ments on day 16 compared to the control treatment. By day
18, only the 506 µatm treatment remained higher than the
control. Chl a accumulation rates in the 953 and 1140 µatm
treatments were initially slow but increased after day 14, with

Figure 5. Phytoplankton biomass accumulation and community pri-
mary production in each of the minicosm treatments over time.
(a) Chlorophyll a (Chl a) concentration, (b) 14C-derived gross pri-
mary production (GPP14C), and (c) O2-derived gross community
production (GCPO2 ). Grey shading indicates CO2 and light accli-
mation period.

Chl a concentrations similar to the control on days 16–18.
The highest CO2 treatment (1641 µatm) had the slowest rates
of Chl a accumulation, displaying a lag in growth between
days 8 and 12, after which the Chl a concentration increased
but remained lower than the control. Rates of Chl a accumu-
lation slowed between days 16 and 18 in all treatments ex-
cept 1641 µatm, coinciding with nutrient limitation. At day
18, the highest Chl a concentration was in the 506 µatm ex-
posed treatment and lowest at 1641 µatm.
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Figure 6. (a) 14C-derived Chl a-specific primary productivity
(csGPP14C) and (b) O2-derived Chl a-specific community produc-
tivity (csGCPO2 ) in each of the minicosm treatments over time. Er-
ror bars display 1 standard deviation of pseudoreplicate samples.
Grey shading indicates CO2 and light acclimation period.

The omnibus test among CO2 treatments of trends in Chl a
over time indicated that the accumulation of Chl a in at least
one treatment differed significantly from that of the control
(F5,23 = 5.5, p = 0.002; Table S4). Examination of individ-
ual coefficients from the model revealed that only the highest
CO2 treatment, 1641 µatm, was significantly different from
the control at the 5 % level.

3.6 14C primary productivity

During the CO2 and light acclimation phase of the experi-
ment (days 1–8), all treatments displayed a steady decline in
the maximum photosynthetic rate (Pmax) and the maximum
photosynthetic efficiency (↵) until the levels on day 8 were
approximately half of those at the beginning of the experi-
ment, suggesting cellular acclimation to the light conditions
(Fig. S3a, b in the Supplement). Thereafter, relative to the
control, Pmax and ↵ were lowest in CO2 levels � 953 µatm
and � 634 µatm, respectively. Rates of photoinhibition (�)
and saturating irradiance (Ek) were variable and did not
differ among treatments (Fig. S3c, d). The average Ek

across all treatments was 28.7 ± 8.6 µmol photons m�2 s�1,
indicating that the light intensity in the minicosms was

Figure 7. Maximum quantum yield of PSII (Fv / Fm) in each of
the minicosm treatments over time. Error bars display 1 standard
deviation of pseudoreplicate samples. Grey shading indicates CO2
and light acclimation period.

saturating for photosynthesis (see above) and not inhibiting
(� < 0.002 mgC (mgChl a)�1(µmolphotons m�2 s�1)�1 h�1).

Chl a-specific primary productivity (csGPP14C) and gross
primary production (GPP14C) were low during the CO2 ac-
climation (days 1–5) and increased with increasing light cli-
mate after day 5. Rates of csGPP14C in treatments � 634 µatm
CO2 were consistently lower than the control between
days 8 and 16, with the lowest rates in the highest CO2
treatment (1641 µatm; Fig. 6a). Rates of GPP14C in treat-
ments  953 were similar between days 8 and 16, with
the 343 (control), 506, and 953 µatm treatments increasing
to 46.7 ± 0.34 µgCL�1 h�1 by day 18 (Fig. 5b). Compared
to these treatments, GPP14C in the 634 µatm treatment was
lower on day 18, only reaching 39.7 µgC L�1 h�1, possibly
due to the concurrent limitation of NOx in this treatment on
day 16 (see above).

The omnibus test among tanks of the trends in CO2
treatments over time indicated that GPP14C in at least one
treatment differed significantly from the control (F5,23 =
4.9, p = 0.003; Table S5 in the Supplement). Examina-
tion of the significance of individual curve terms revealed
that this manifested as differences between the 1140 and
1641 µatm treatments and the control group at the 5 % level.
No other curves were different from the control. In partic-
ular, GPP14C in the 1641 µatm treatment was much lower
until day 12, after which it increased steadily until day 16.
Between days 16 and 18, a substantial increase in GPP14C
was observed in this treatment, subsequently resulting in a
rate on day 18 that was similar to the 1140 µatm treatment
(36.3 ± 0.08 µgCL�1 h�1) although these treatments never
reached rates of GPP14C as high as the control.

3.7 Gross community productivity

The productivity of the phytoplankton community increased
over time in all CO2 treatments; however, there were
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clear differences in the timing and magnitude of this in-
crease between treatments (Fig. 6b). A CO2 effect was
evident on day 12 when Chl a-normalised gross O2 pro-
ductivity rates (csGCPO2) increased with increasing CO2
level, ranging from 19.5–248 mg O2 (mgChla)�1 h�1. Af-
ter day 12, the communities in CO2 treatments  634 µatm
continued to increase their rates of csGCPO2 until day
18 (97.7 ± 17.0 mgO2 (mgChl a)�1 h�1). The 953 and
1140 µatm CO2 treatments peaked on day 12 (90.4 and
126 mgO2 (mgChla)�1 h�1, respectively) and then declined
on day 14 to rates similar to the control treatment. In contrast,
the 1641 µatm treatment maintained high rates of csGCPO2
from days 12–14 (258 ± 13.8 mgO2 (mg Chl a)�1 h�1), coin-
ciding with the recovery of photosynthetic health (Fv / Fm;
see below) and the initiation of growth in this treatment (see
above). After this time, rates of csGCPO2 declined in this
treatment to rates similar to the control. Despite these dif-
ferences in csGCPO2, there was no significant difference in
the gross community production (GCPO2 ) among CO2 treat-
ments (Fig. 5c).

3.8 Community photosynthetic efficiency

The community maximum quantum yield of PSII (Fv / Fm)
showed a dynamic response over the duration of the experi-
ment (Fig. 7). Values initially increased during the low-light
CO2 adjustment period but declined by day 8 when irradi-
ance levels had increased. Between days 8 and 14, differ-
ences were evident in the photosynthetic health of the phy-
toplankton community across the CO2 treatments, although
by day 16 these differences had disappeared. Steady-state
light curves revealed that the community photosynthetic re-
sponse did not change with increasing CO2. The effective
quantum yield of PSII (1F /Fm0 ) and NPQ showed no vari-
ability with CO2 treatment (Figs. S5 and S6 in the Sup-
plement). There was, however, a notable decline in over-
all NPQ in all tanks with time, indicating an adjustment
to the higher light conditions. Relative electron transport
rates (rETR) showed differentiation with respect to CO2
at high light (1450 µmol photons m�2 s�1) on days 10–12.
However, as seen with the Fv / Fm response, this difference
was diminished by day 18 (Fig. S7 in the Supplement).

3.9 Community CCM activity

There was a significant decline in the effective quantum yield
of PSII (1F /Fm0 ) with the addition of the iCA and eCA
inhibitor EZA to both the large (� 10 µm, p = 0.02) and
small (<10 µm, p < 0.001) size fractions of the phytoplank-
ton community exposed to the control (343 µatm) CO2 treat-
ment (Fig. 8). The addition of EZA to cells under high CO2
(1641 µatm) had no effect on 1F /Fm0 for either size frac-
tion. However, in the case of the small cells under high CO2
(Fig. 8b), 1F /Fm0 was the same as that measured in the
control CO2 in the presence of EZA. The addition of AZA,

≥ 10 µm cells

< 10 µm cells

Figure 8. Effective quantum yield of PSII (1F /Fm0 ) of (a) large
(� 10 µm) and (b) small (<10 µm) phytoplankton in the control
(343 µatm) and high (1641 µatm) CO2 treatments treated with car-
bonic anhydrase (CA) inhibitors. A decline in 1F /Fm0 with the
application of inhibitor indicates CCM activity. C denotes the con-
trol treatment, which received no CA inhibitor; AZA is the aceta-
zolamide treatment, which blocks extracellular carbonic anhydrase;
EZA is the ethoxzolamide treatment, which blocks intracellular and
extracellular carbonic anhydrase. Error bars display 1 standard de-
viation of pseudoreplicate samples.

which inhibits eCA only, had no effect for either CO2 treat-
ment in the large-celled community. In contrast, there was a
significant decline in 1F /Fm0 in the smaller fraction in the
control CO2 treatment (p < 0.001), but no effect of AZA ad-
dition under high CO2. Again, the high CO2 cells exhibited
the same 1F /Fm0 as those measured under the control CO2
in the presence of AZA.

3.10 Bacterial abundance

During the 8-day acclimation period, bacterial abundance
in treatments � 634 µatm increased with increasing CO2,
reaching 26.0–32.4 ⇥ 107 cellsL�1 and remaining high un-
til day 13 (Fig. 9a). Between days 7 and 13, bacterial abun-
dances in CO2 treatments � 953 were higher than the con-
trol. In contrast, abundance remained constant in treatments
 506 µatm (20.6 ± 1.4 ⇥ 107 cells L�1) until day 11. Cell
numbers rapidly declined in all treatments after day 12, fi-
nally stabilising at 0.5 ± 0.2 ⇥ 107 cellsL�1. An omnibus test
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Figure 9. Bacterial abundance and community production in each
of the minicosm treatments over time. (a) Bacterial cell abundance
and (b) 14C-derived gross bacterial production (GBP14C). Error
bars display 1 standard deviation of pseudoreplicate samples. Grey
shading indicates CO2 and light acclimation period.

among CO2 treatments of the trends in bacterial abundance
over time showed that changes in abundance in at least one
treatment differed significantly from the control (F5,185 =
9.8, p < 0.001; Table S6 in the Supplement). Examination
of individual coefficients from the model revealed that CO2
treatments � 953 µatm were significantly different from the
control at the 5 % level.

3.11 Bacterial productivity

Gross bacterial production (GBP14C) was low in all CO2
treatments (0.2 ± 0.03 µgC L�1 h�1) and changed little dur-
ing the first 5 days of incubation (Fig. 9b). Thereafter it in-
creased, coinciding with exponential growth in the phyto-
plankton community. The most rapid increase in GBP14C was
observed in the 634 µatm treatment, resulting in a rate twice
that of all other treatments by day 18 (2.1 µgCL�1 h�1).
No difference was observed among other treatments, all of
which increased to an average rate of 1.1 ± 0.1 µg CL�1 h�1

by day 18. Cell-specific bacterial productivity (csBP14C) was
low in all treatments (1.2 ± 0.5 fg CL�1 h�1) until day 14,
with slower rates in treatments � 953 µatm, likely due to
high cell abundances observed in these treatments (Fig. S8

in the Supplement). It then increased from day 14, coincid-
ing with a decline in bacterial abundance. Rates of csBP14C
did not differ among treatments until day 18, when the rate in
the 634 µatm treatment was higher than all other treatments
(0.5 pg Ccell�1 L�1 h�1).

4 Discussion

Our study of a natural Antarctic phytoplankton community
identified a critical threshold for tolerance of CO2 between
953 and 1140 µatm, above which photosynthetic health was
negatively affected and rates of carbon fixation and Chl a ac-
cumulation declined. Low rates of primary productivity also
led to declines in nutrient uptake rates and POM production,
although there was no effect of CO2 on C : N ratios, indi-
cating that ocean acidification effects on the phytoplankton
community did not modify POM stoichiometry. Assessing
the temporal trends of Chl a, GPP14C, and PON against CO2
treatment revealed that the downturn in these parameters oc-
curred between 634 and 953 µatm f CO2 and could be dis-
cerned following � 12 days incubation (Fig. 10). On the final
day of the experiment (day 18), this CO2 threshold was less
clear and likely confounded by the effects of nutrient limi-
tation (Westwood et al., 2018). In contrast, bacterial produc-
tivity was unaffected by increased CO2. Instead, production
coincided with increased organic matter supply from phy-
toplankton primary productivity. In the following sections
these effects will be investigated further, with suggestions
for possible mechanisms that may be driving the responses
observed.

4.1 Ocean acidification effects on phytoplankton
productivity

The results of this study suggest that exposing phytoplank-
ton to high CO2 levels can decouple the two stages of pho-
tosynthesis (see also the discussion below). At CO2 levels
� 1140 µatm, Chl a-specific oxygen production (csGCPO2 )
increased strongly yet displayed the lowest rates of Chl a-
specific carbon fixation (csGPP14C; Fig. 6). This mismatch
in oxygen production and carbon fixation is likely due to
the two-stage process in the photosynthetic fixation of car-
bon (reviewed in Behrenfeld et al., 2004). In the first stage,
light-dependent reactions occur within the chloroplast, con-
verting light energy (photons) into the cellular energy prod-
ucts, adenosine triphosphate (ATP), and nicotinamide ade-
nine dinucleotide phosphate (NADPH), producing O2 as a
by-product. This cellular energy is then utilised in a second,
light-independent pathway, which uses the carbon-fixing en-
zyme RuBisCO to convert CO2 into sugars through the
Calvin cycle. However, under certain circumstances the rel-
ative pool of energy may also be consumed in alternative
pathways, such as respiration and photoprotection (Behren-
feld et al., 2004; Gao and Campbell, 2014). Increases in en-
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Figure 10. Temporal trends of (a) Chl a, (b) 14C-derived gross primary production (GPP14C), and (c) particulate organic nitrogen (PON)
against CO2 treatment. Grey shading indicates CO2 treatments � 1140 µatm.

ergy requirements for these alternate pathways have been
demonstrated, where measurements of maximum photosyn-
thetic rates (Pmax) and photosynthetic efficiency (↵) display
changes that result in no change to saturating irradiance lev-
els (Ek) (Behrenfeld et al., 2004, 2008; Halsey et al., 2010).
This “Ek-independent variability” was evident in our study,
in which decreases in Pmax and ↵ were observed in the high
CO2 treatments, while Ek remained unaffected (Fig. S3 in
the Supplement).

This highlights an important tipping point in the phyto-
plankton community’s ability to cope with the energetic re-
quirements of maintaining efficient productivity under high
CO2. While studies on individual phytoplankton species have
reported decoupling of the photosynthetic pathway under
conditions of stress, no studies to date on natural phytoplank-
ton communities have reported this response. Under labora-
tory conditions, stresses such as nutrient limitations (Halsey
et al., 2010) or a combination of high CO2 and light climate
(Hoppe et al., 2015; Liu et al., 2017) have been shown to in-
duce such a response in which isolated phytoplankton species
possess higher energy requirements for carbon fixation. In
our study, the phytoplankton community experienced a dy-
namic light climate due to continuous gentle mixing of the
minicosm contents, and although nutrients were not limiting,
the phytoplankton in the higher CO2 treatments did show
lower csGPP14C rates (Fig. 6a), which could be linked to
higher energy demand for light-independent processes. Since
nutrients were replete and not a likely source of stress, it fol-
lows that CO2 and light were likely the only sources of stress
on this community.

Increased respiration rates could account for the decreased
carbon fixation rates measured. Thus far, respiration rates are
commonly reported as either unaffected or lower under in-
creasing CO2 (Hennon et al., 2014; Trimborn et al., 2014;
Spilling et al., 2016). This effect is generally attributed to de-

clines in cellular energy requirements via processes such as
the down-regulation of CCMs, which can result in observed
increased rates of production (Spilling et al., 2016). Despite
this, decreased growth rates have been linked to enhanced
respiratory carbon loss at high CO2 levels (800–1000 µatm)
(Gao et al., 2012b). The contribution of community respira-
tion rates to csGCPO2 was high and increased with increasing
CO2 (Fig. S4 in the Supplement). However, respiration rates
were generally proportional to the increase in O2 production
(i.e. the ratio of production to respiration remained constant
across CO2 conditions), making it unlikely to be a signif-
icant contributor to the decline in carbon fixation. Instead,
high respiration rates were possibly a result of heterotrophic
activity.

It has been suggested that the negative effects of ocean
acidification are predominantly due to the decline in pH
and not the increase in CO2 concentration (e.g. McMinn
et al., 2014; Coad et al., 2016). A decline in pH with ocean
acidification increases the hydrogen ion (H+) concentration
in the seawater and is likely to make it increasingly diffi-
cult for phytoplankton cells to maintain cellular homeosta-
sis. Metabolic processes, such as photosynthesis and respira-
tion, impact cellular H+ fluxes between compartments, mak-
ing it necessary to temporarily balance internal H+ concen-
trations through H+ channels (Taylor et al., 2012). Under
normal oceanic conditions (pH ⇠ 8.1), when the extracel-
lular environment is above pH 7.8, excess H+ ions gener-
ated within the cell are able to passively diffuse out of the
cell through these H+ channels. However, a lowering of the
oceanic pH below 7.8 is likely to halt this passive removal of
internal H+, requiring the utilisation of energy-intensive pro-
ton pumps (Taylor et al., 2012) and thus potentially reducing
the energy pool available for carbon fixation. While not well
understood, these H+ channels may also perform important
cellular functions, such as nutrient uptake, cellular signalling,
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and defense (Taylor et al., 2012). Our results are consistent
with this idea of a critical pH threshold, as significant de-
clines in GPP14C were observed in treatments � 1140 µatm
(Fig. 10), which are the CO2 treatments for which the pH
ranged from 7.69–7.45 (Fig. 2).

Despite the initial stress of high CO2 between days 8 and
12, the phytoplankton community displayed a strong ability
to adapt to these conditions. The CO2-induced reduction in
Fv / Fm showed a steady recovery between days 12 and 16,
with all treatments displaying similarly high Fv / Fm at day
16 (0.68–0.71; Fig. 7). This recovery in photosynthetic health
suggests that the phytoplankton community was able to ac-
climate to the high CO2 conditions, possibly through cellular
acclimation, changes in community structure, or most likely,
a combination of both. Cellular acclimations were observed
in our study. A lowering of NPQ and a minimisation of the
CO2-related response to photoinhibition (rETR) at high light
intensity suggested that PSII was being down-regulated to
adjust to a higher light climate (Figs. S6 and S7 in the Sup-
plement). Decreased energy requirements for carbon fixation
were also observed in the photosynthetic pathway, resulting
in increases in GPP14C and Chl a accumulation rates (Fig. 5).
Acclimation to increased CO2 has been reported in a number
of studies, resulting in shifts in carbon and energy utilisa-
tion (Sobrino et al., 2008; Hopkinson et al., 2010; Hennon
et al., 2014; Trimborn et al., 2014; Zheng et al., 2015). Nu-
merous photophysiological investigations on individual phy-
toplankton species also report species-specific tolerances to
increased CO2 (Gao et al., 2012a; Gao and Campbell, 2014;
Trimborn et al., 2013, 2014), and a general trend toward
smaller-celled communities with increased CO2 has been re-
ported in ocean acidification studies globally (Schulz et al.,
2017). Changes in community structure were observed with
increasing CO2, with taxon-specific thresholds of CO2 toler-
ance (Hancock et al., 2017). Within the diatom community,
the response was also related to size, leading to an increase
in abundance of small (< 20 µm) diatoms in the higher CO2
treatments (� 953 µatm). Therefore, the community acclima-
tion observed is likely driven by an increase in the growth of
more tolerant species.

It is often suggested that the down-regulation of CCMs
helps to moderate the sensitivity of phytoplankton commu-
nities to increasing CO2. The carbon-fixing enzyme Ru-
BisCO has a low affinity for CO2 that is compensated for
through CCMs that actively increase the intracellular CO2
(Raven, 1991; Badger, 1994; Badger et al., 1998; Hopkin-
son et al., 2011). This process requires additional cellular en-
ergy (Raven, 1991) and numerous studies have suggested that
the energy savings from down-regulation of CCMs in phyto-
plankton could explain increases in rates of primary produc-
tivity at elevated CO2 levels (e.g. Cassar et al., 2004; Tortell
et al., 2008b, 2010; Trimborn et al., 2013; Young et al.,
2015). In Antarctic phytoplankton communities, Young et al.
(2015) showed that the energetic costs of CCMs are low and
any down-regulation at increased CO2 would provide little

benefit. We found that the CCM component carbonic anhy-
drase (CA) was utilised by the phytoplankton community at
our control CO2 level (343 µatm) and was down-regulated
at high CO2 (1641 µatm; Fig. 8). Yet we saw no promo-
tion of primary productivity that coincided with this down-
regulation. Thus, our data support the previous studies show-
ing that increased CO2 may alleviate energy supply con-
straints but does not necessarily lead to increased rates of
carbon fixation (Rost et al., 2003; Cassar et al., 2004; Riebe-
sell, 2004).

Furthermore, size-specific differences in phytoplankton
CCM utilisation were observed. The absence of eCA activity
in the large phytoplankton (� 10 µm; Fig. 8a) suggests that
bicarbonate (HCO�

3 ) was the dominant carbon source used
by this fraction of the phytoplankton community (Burkhardt
et al., 2001; Tortell et al., 2008a). This is not surprising as
direct HCO�

3 uptake has been commonly reported among
Antarctic phytoplankton communities (Cassar et al., 2004;
Tortell et al., 2008a, 2010). On the other hand, the small
phytoplankton (<10 µm; Fig. 8b) seem to have used both
iCA and eCA, implying that carbon for photosynthesis was
sourced through both the extracellular conversion of HCO�

3
to CO2 and direct HCO�

3 uptake (Rost et al., 2003). Despite
these patterns, CCM activity in this study was only deter-
mined via Chl a fluorescence and therefore direct measure-
ment of light-dependent reactions in photosynthesis. This
imposes limitations to the interpretability of this particular
data set, as CA is involved primarily in carbon acquisition,
which occurs during photosynthetic reactions that are inde-
pendent of light.

The presence of iCA has also been proposed as a pos-
sible mechanism for increased sensitivity of phytoplankton
to decreased pH conditions. Satoh et al. (2001) found that
the presence of iCA caused strong intracellular acidification
and inhibition of carbon fixation when a CO2-tolerant iCA-
expressing algal species was transferred from ambient con-
ditions to very high CO2 (40 %). Down-regulation of iCA
through acclimation in a 5 % CO2 treatment eliminated this
response, with similar tolerance observed in an algal species
with low ambient iCA activity. Thus, the down-regulation of
iCA activity at high CO2, as was seen in our study, may not
only decrease cellular energy demands but may also be oper-
ating as a cellular protection mechanism, allowing the cell to
maintain intracellular homeostasis.

Contrary to the high CO2 treatments, the phytoplankton
community appeared to tolerate CO2 levels up to 953 µatm,
which identified a CO2 threshold. Between days 8 and 14
we observed a small and insignificant CO2-related decline in
Fv / Fm, GPP14C, and Chl a accumulation among the 343–
953 µatm treatments (Figs. 7 and 10). Tolerance of CO2 lev-
els up to ⇠ 1000 µatm has often been observed in natural
phytoplankton communities in regions exposed to fluctuat-
ing CO2 levels. In these communities, increasing CO2 often
had no effect on primary productivity (Tortell et al., 2000;
Tortell and Morel, 2002; Tortell et al., 2008b; Hopkinson
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et al., 2010; Tanaka et al., 2013; Sommer et al., 2015; Young
et al., 2015; Spilling et al., 2016) or growth (Tortell et al.,
2008b; Schulz et al., 2013), although an increase in primary
production has been observed in some instances (Riebesell,
2004; Tortell et al., 2008b; Egge et al., 2009; Tortell et al.,
2010; Hoppe et al., 2013; Holding et al., 2015). These dif-
fering responses may be due to differences in community
composition, nutrient supply, or ecological adaptations of the
phytoplankton community in the region studied. They may
also be due to differences in the experimental methods, espe-
cially the range of CO2 concentrations employed (Hancock
et al., 2017), the mechanism used to manipulate CO2 concen-
trations, the duration of the acclimation and incubation, the
nature and volume of the mesocosms used, and the extent to
which higher trophic levels are screened from the mesocosm
contents (see Davidson et al., 2016).

Previous studies in Prydz Bay report a tolerance of the
phytoplankton community to CO2 levels up to 750 µatm
(Davidson et al., 2016; Thomson et al., 2016; Westwood
et al., 2018). Although these experiments differed in nutri-
ent concentration, community composition, and CO2 manip-
ulation from ours, when taken together, these studies demon-
strate consistent CO2 effects throughout the Antarctic sum-
mer season and across years in this location. The most likely
reason for this high tolerance is that these communities are
already exposed to highly variable CO2 conditions. CO2 nat-
urally builds beneath the sea ice in winter when primary pro-
ductivity is low (Perrin et al., 1987; Legendre et al., 1992),
and is rapidly depleted during spring and summer by phy-
toplankton blooms, resulting in annual f CO2 fluctuations
between ⇠ 50 and 500 µatm (Gibson and Trull, 1999; Ro-
den et al., 2013). Thus, variable CO2 environments appear to
promote adaptations within the phytoplankton community to
manage the stress imposed by fluctuating CO2.

Changes in POM production and the C : N ratio in phyto-
plankton communities can have significant effects on carbon
sequestration and change their nutritional value for higher
trophic levels (Finkel et al., 2010; van de Waal et al., 2010;
Polimene et al., 2016). We observed a decline in particulate
organic matter production (POM) at CO2 levels � 1140 µatm
(Fig. 10), while changes in organic matter stoichiometry
(C : N ratio) appeared to be predominantly controlled by
nutrient consumption (Fig. 4). Increases in POM produc-
tion were similar to Chl a accumulation, with declines in
high CO2 treatments (� 1140 µatm) due to low rates of pri-
mary productivity. Carbon overconsumption has been re-
ported in some natural phytoplankton communities exposed
to increased CO2, resulting in observed or inferred increases
in the particulate C : N ratio (Riebesell et al., 2007; Engel
et al., 2014). While in our study the C : N ratio did decline
to below the Redfield ratio during exponential growth, it
remained within previously reported C : N ratios of coastal
phytoplankton communities in this region (Gibson and Trull,
1999; Pasquer et al., 2010). However, as we did not analyse
the elemental composition of dissolved inorganic matter, car-

bon overconsumption cannot be completely ruled out (Kähler
and Koeve, 2001). Therefore, it is difficult to say whether or
not changes in primary productivity will affect organic mat-
ter stoichiometry in this region, particularly as any resultant
long-term changes in community composition to more CO2-
tolerant taxa may also have an effect (Finkel et al., 2010).

4.2 Ocean acidification effects on bacterial productivity

In contrast to the phytoplankton community, bacteria were
tolerant of high CO2 levels. The low bacterial productiv-
ity and abundance of the initial community is characteristic
of the post-winter bacterial community in Prydz Bay where
growth is limited by organic nutrient availability (Pearce
et al., 2007). Whilst an increase in cell abundance was ob-
served at CO2 levels � 634 µatm (Fig. 9a), it was possible
that this response was driven by a decline in grazing by het-
erotrophs (Thomson et al., 2016; Westwood et al., 2018) in-
stead of a direct CO2-related promotion of bacterial growth.
The subsequent decline in abundance was likely due to top-
down control from the heterotrophic nanoflagellate commu-
nity, which displayed an increase in abundance at this time
(Hancock et al., 2017). Bacterial tolerance to high CO2 has
been reported previously in this region (Thomson et al.,
2016; Westwood et al., 2018) and has also been reported in
numerous studies in the Arctic (Grossart et al., 2006; Allgaier
et al., 2008; Paulino et al., 2008; Baragi et al., 2015; Wang
et al., 2016), suggesting that the marine bacterial community
will be resilient to increasing CO2.

While we detected an increase in bacterial productivity,
this response appeared to be correlated with an increase in
Chl a concentration and available POM rather than CO2.
Bacterial productivity was similar among all CO2 treatments,
except for a final promotion of productivity at 634 µatm on
day 18 (Fig. 9b). This promotion of growth may be linked to
an increase in diatom abundance observed in this treatment
(Hancock et al., 2017). The coupling of bacterial growth with
phytoplankton productivity has been reported by numerous
studies on natural marine microbial communities (Allgaier
et al., 2008; Grossart et al., 2006; Engel et al., 2013; Piontek
et al., 2013; Sperling et al., 2013; Bergen et al., 2016). Thus,
it is likely that the bacterial community was controlled more
by grazing and nutrient availability than by CO2 level.

5 Conclusions

These results support the identification of a tipping point in
the marine microbial community response to CO2 between
953 and 1140 µatm. When exposed to CO2 � 634 µatm, de-
clines in growth rates, primary productivity, and organic mat-
ter production were observed in the phytoplankton commu-
nity and became significantly different at � 1140 µatm. De-
spite this, the community displayed the ability to adapt to
these high CO2 conditions by down-regulating CCMs and
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likely adjusting other intracellular mechanisms to cope with
the added stress of low pH. However, the lag in growth and
subsequent acclimation to high CO2 conditions allowed for
more tolerant species to thrive (Hancock et al., 2017).

Conditions in Antarctic coastal regions fluctuate through-
out the seasons and the marine microbial community is al-
ready tolerant to changes in CO2 level, light availability, and
nutrients (Gibson and Trull, 1999; Roden et al., 2013). It is
possible that phytoplankton communities already exposed to
highly variable conditions will be more capable of adapting
to the projected changes in CO2 (Schaum and Collins, 2014;
Boyd et al., 2016). This will likely also include adaptation at
the community level, causing a shift in dominance to more
tolerant species. This has been observed in numerous ocean
acidification experiments, with a trend in community com-
position favouring picophytoplankton and away from large
diatoms (Davidson et al., 2016; reviewed in Schulz et al.,
2017). Such a change in phytoplankton community compo-
sition may have flow-on effects to higher trophic levels that
feed on Antarctic phytoplankton blooms. It could also have
a significant effect on the biological pump, with decreased
carbon drawdown at high CO2, causing a negative feedback
on anthropogenic CO2 uptake. Coincident increases in bacte-
rial abundance under high CO2 conditions may also increase
the efficiency of the microbial loop, resulting in increased or-
ganic matter remineralisation and further declines in carbon
sequestration.
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Table A3.1: Mean carbonate chemistry conditions in minicosms

Tank f CO2
(µatm)

pHT DIC
(µmol kg�1)

PA
(µmol kg�1

1 343 ± 30 8.10 ± 0.04 2188 ± 6 2324 ± 11
2 506 ± 43 7.94 ± 0.03 2243 ± 8 2325 ± 10
3 634 ± 63 7.85 ± 0.04 2270 ± 5 2325 ± 12
4 953 ± 148 7.69 ± 0.07 2314 ± 11 2321 ± 11
5 1140 ± 112 7.61 ± 0.04 2337 ± 5 2320 ± 10
6 1641 ± 140 7.45 ± 0.04 2377 ± 8 2312 ± 10

Data are mean ± one standard deviation of triplicate pseudoreplicate measurements

Table A3.2: Initial conditions of
seawater sampled from Prydz Bay,
Antarctica

Condition Value

f CO2, µatm 356 ± 6
pHT 8.08
DIC, µmolkg�1 2187 ± 6
PA, µmol kg�1 2317 ± 6
Temperature, �C -1.03 ± 0.17
Salinity 34.3
NOx, µM 26.19 ± 0.74
SRP, µM 1.74 ± 0.02
Silicate, µM 60.75 ± 0.91

Data are mean ± one standard
deviation of all six minicosm
measurements

Table A3.3: Average light irradiance (µmolphotons m�2 s�1) in
minicosms

Tank f CO2 (µatm) Low light Medium light High light

1 343 0.94 22.02 97.41
2 506 0.60 15.95 59.68
3 634 1.04 26.41 103.24
4 953 1.19 22.53 118.33
5 1140 0.71 21.44 71.51
6 1641 0.90 22.02 92.95

Low light: quarter CT blue filter, two 90% ND filters, light-scattering
filter
Medium light: quarter CT blue filter, one 60% ND filter, light-
scattering filter
High light: one quarter CT blue filter, light-scattering filter
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Table A3.4: ANOVA table for trends in CO2 treatments over
time for Chl a

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 12304.2 12304.2 1802.5 <0.01
I(Day2) 1 2214.5 2214.5 324.4 <0.01
f CO2 5 267.0 53.4 7.8 <0.01
Day: f CO2 5 186.0 37.2 5.5 <0.01
Residuals 23 157.0 6.8

Bold text denotes significant p-values (<0.05)

Table A3.5: ANOVA table for trends in CO2 treatments over
time for GPP

14C

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 6405.2 6405.2 1271.6 <0.01
I(Day2) 1 1056.1 1056.1 209.7 <0.01
f CO2 5 211.9 42.4 8.4 <0.01
Day: f CO2 5 124.6 24.9 4.9 <0.01
Residuals 23 115.9 5.0

Bold text denotes significant p-values (<0.05)

Table A3.6: ANOVA table for trends in CO2 treatments over time for
bacterial abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 2.1⇥ 1018 2.1⇥ 1018 1470.6 <0.01
I(Day2) 1 4.3⇥ 1016 4.3⇥ 1016 30.1 <0.01
f CO2 5 2.0⇥ 1017 4.1⇥ 1016 28.1 <0.01
Day: f CO2 5 7.1⇥ 1016 1.4⇥ 1016 9.8 <0.01
Residuals 185 2.7⇥ 1017 1.5⇥ 1015

Bold text denotes significant p-values (<0.05)
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Figure A3.1: (a) Dissolved inorganic carbon (DIC) and (b) practical alkalinity (PA) conditions within each of the
minicosm treatments over time. Grey shading indicates CO2 and light acclimation period.
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Figure A3.2: Ammonia concentration in each of the minicosm treatments over time. Grey shading indicates CO2 and
light acclimation period.
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Figure A3.3: Photosynthetic parameters from 14C-derived photosynthesis versus irradiance (PE) curves from each
of the minicosm treatments over time. (a) Maximum photosynthetic efficiency (↵), (b) maximum photosynthetic
rate (Pmax ), (c) saturating irradiance (Ek) and (d) photoinhibition rate (�). Grey shading indicates CO2 and light
acclimation period.
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Figure A3.4: O2-derived Chl a-specific community respiration (csRespO2
) within each of the minicosm treatments over

time. Error bars display one standard deviation of pseudoreplicate samples. Grey shading indicates CO2 and light
acclimation period.
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Figure A3.5: Effective quantum yield (�Fv/Fm) within minicosm treatments on days 1, 5, 10, and 18. Error bars
display one standard deviation of pseudoreplicate samples.
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Figure A3.6: Non-photochemical quenching (NPQ) within minicosm treatments on days 1, 5, 10, and 18. Error bars
display one standard deviation of pseudoreplicate samples.
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Figure A3.7: Relative electron transport rate (rETR) within minicosm treatments on days 1, 5, 10, and 18. Error bars
display one standard deviation of pseudoreplicate samples.
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Figure A3.8: 14C-derived cell-specific bacterial productivity (csBP14C) within each of the minicosm treatments over
time. Grey shading indicates CO2 and light acclimation period.
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Figure A4.1: The (a) dissolved inorganic carbon (DIC), and (b) practical alkalinity (PA) carbonate chemistry conditions
in each of the minicosm treatments over time. Grey shading indicates CO2 and light acclimation period.
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Figure A4.2: Model fit for (a) picophytoplankton and (b) prokaryote abundance in each of the minicosm treatments
over time.

Table A4.1: Initial conditions of
seawater sampled from Prydz Bay,
Antarctica

Condition Value

f CO2, µatm 356 ± 6
pHT 8.08
DIC, µmolkg�1 2187 ± 6
PA, µmol kg�1 2317 ± 6
Temperature, �C -1.03 ± 0.17
Salinity 34.3
NOx, µM 26.19 ± 0.74
SRP, µM 1.74 ± 0.02
Silicate, µM 60.75 ± 0.91

Data are mean ± one standard
deviation of all six minicosm
measurements
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Figure A4.3: Log-transformed abundance of (a) picophytoplankton, (b) nanophytoplankton, (c) heterotrophic
nanoflagellates, and (d) prokaryotes in each of the minicosm treatments over time. Error bars display standard error
of pseudoreplicate samples. Grey shading indicates CO2 and light acclimation period.

Table A4.2: ANOVA table for trends in CO2 treatment over time for
picophytoplankton abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 5.4⇥ 1013 5.4⇥ 1013 77.3 <0.01
I(Day2) 1 4.8⇥ 1014 4.8⇥ 1014 686.1 <0.01
f CO2 5 8.6⇥ 1013 1.7⇥ 1013 24.8 <0.01
Day: f CO2 5 5.5⇥ 1012 1.1⇥ 1012 1.6 0.16
Residuals 182 1.3⇥ 1014 6.9⇥ 1011

Bold text denotes significant p-values (<0.05).

Table A4.3: ANOVA table for trends in CO2 treatment over time for
nanophytoplankton abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 2.5⇥ 1015 2.5⇥ 1015 3850.4 <0.01
I(Day2) 1 1.0⇥ 1015 1.0⇥ 1015 1627.9 <0.01
f CO2 5 7.2⇥ 1013 1.4⇥ 1013 22.4 <0.01
Day: f CO2 5 9.9⇥ 1013 2.0⇥ 1013 31.0 <0.01
Residuals 311 2.0⇥ 1014 6.3⇥ 1011

Bold text denotes significant p-values (<0.05).
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Table A4.4: ANOVA table for trends in CO2 treatment over time for
heterotrophic nanoflagellate abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 2.0⇥ 1014 2.0⇥ 1014 5832.7 <0.01
I(Day2) 1 5.6⇥ 1013 5.6⇥ 1013 1630.0 <0.01
f CO2 5 2.4⇥ 1012 4.8⇥ 1011 13.9 <0.01
Day: f CO2 5 2.7⇥ 1012 5.4⇥ 1011 15.8 <0.01
Residuals 307 1.0⇥ 1013 3.4⇥ 1010

Bold text denotes significant p-values (<0.05).

Table A4.5: ANOVA table for trends in CO2 treatment over time for
prokaryote abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 1.9⇥ 1018 1.9⇥ 1018 1076.7 <0.01
I(Day2) 1 6.4⇥ 1017 6.4⇥ 1017 363.5 <0.01
f CO2 5 2.3⇥ 1017 4.6⇥ 1016 26.2 <0.01
Day: f CO2 5 1.2⇥ 1016 2.4⇥ 1015 1.4 0.24
Residuals 256 4.5⇥ 1017 1.7⇥ 1015

Bold text denotes significant p-values (<0.05).

Table A4.6: ANOVA table comparing trends of
picophytoplankton growth rates with heterotrophic
nanoflagellate abundance on day 13

Estimate Std. Error t value Pr(>t)

(Intercept) 2.7⇥ 10�1 4.2⇥ 10�2 6.5 <0.01
HNF �9.1⇥ 10�3 1.4⇥ 10�2 -0.2 0.84

Residual standard error: 0.03 on 16 degrees of freedom
Multiple R-squared: 0.003, Adjusted R-squared: -0.06
F-statistic: 0.04 on 1 and 16 DF, p-value: 0.84

Bold text denotes significant p-values (<0.05). HNF;
heterotrophic nanoflagellate.



APPENDIX D. CHAPTER 3 SUPPLEMENT 202

Table A4.7: ANOVA table comparing trends of prokryote
growth rates with heterotrophic nanoflagellate abundance on
day 8

Estimate Std. Error t value Pr(>t)

(Intercept) 9.4⇥ 10�2 2.1⇥ 10�2 4.5 <0.01
HNF �3.4⇥ 10�7 1.3⇥ 10�7 -2.7 0.01

Residual standard error: 0.03 on 16 degrees of freedom
Multiple R-squared: 0.32, Adjusted R-squared: 0.28
F-statistic: 7.46 on 1 and 16 DF, p-value: 0.01

Bold text denotes significant p-values (<0.05). HNF;
heterotrophic nanoflagellates.
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Table A5.1: Randomised
assignment of CO2 treatments in
cabinet

Position 1 2 3 4

Holding Tanks 3 2 4 1
Shelf 1 2 3 4 4
Shelf 2 3 4 1 1
Shelf 3 1 2 3 2

1: 276µatm, 2: 381µatm,
3: 668µatm, 4: 1063µatm.

Table A5.2: Average light irradiance
received by each incubation vessel in
µmolphotons m�2 s�1

Position 1 2 3 4

Shelf 1 24.92 23.26 24.92 27.41
Shelf 2 24.09 19.10 24.09 27.41
Shelf 3 21.59 19.10 25.75 24.09

Table A5.3: Initial
conditions of 1:10 diluted
L1 medium used in
experiment

Condition Value

f CO2, µatm 278
pHT 8.2
DIC, µmolkg�1 2193
TA, µmol kg�1 2384
Temperature, �C 0.5
Salinity 35
NO3, µM 88.2
PO4, µM 3.62
SiO3, µM 21.2
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Table A5.4: ANOVA table for trends in CO2 treatment over time for
cell abundance

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 5.90⇥ 1011 5.90⇥ 1011 164.12 <0.01
I(Day2) 1 6.36⇥ 1010 6.36⇥ 1010 17.70 <0.01
f CO2 3 1.46⇥ 1010 4.86⇥ 109 1.35 0.26
Day: f CO2 3 9.74⇥ 109 3.25⇥ 109 0.90 0.44
Residuals 87 3.13⇥ 1011 3.59⇥ 109

Bold text denotes significant p-values (<0.05).

Table A5.5: ANOVA table for trends in CO2 treatment over
time for chlorophyll a

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 102.31 102.31 139.82 <0.01
I(Day2) 1 14.62 14.62 19.99 <0.01
f CO2 3 1.91 0.64 0.87 0.46
Day: f CO2 3 1.43 0.48 0.65 0.59
Residuals 62 45.37 0.73

Bold text denotes significant p-values (<0.05).

Table A5.6: ANOVA table for trends in CO2 treatment over
time for Chl a-specific primary productivity

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 54.58 54.58 14.13 <0.01
I(Day2) 1 249.47 249.47 64.60 <0.01
f CO2 3 12.02 4.01 1.04 0.38
Day: f CO2 3 1.67 0.56 0.14 0.93
Residuals 62 239.43 3.86

Bold text denotes significant p-values (<0.05).

Table A5.7: ANOVA table for trends in CO2 treatment over time
for gross primary productivity

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 1175.37 1175.37 107.342 <0.01
I(Day2) 1 0.05 0.05 0.004 0.95
f CO2 3 140.94 46.98 4.291 0.01
Day: f CO2 3 75.31 25.10 2.293 0.09
Residuals 62 678.89 10.95

Bold text denotes significant p-values (<0.05).
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Table A5.8: ANOVA table for trends in CO2 treatment over
time for Fv/Fm

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 0.003 0.003 1.90 0.17
I(Day2) 1 0.013 0.013 7.67 0.01
f CO2 3 0.002 0.001 0.38 0.77
Day: f CO2 3 0.004 0.001 0.81 0.49
Residuals 51 0.089 0.002

Bold text denotes significant p-values (<0.05).

Table A5.9: ANOVA table for trends in CO2 treatment over
time for ↵

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 0.15 0.15 10.11 <0.01
I(Day2) 1 0.04 0.04 2.63 0.11
f CO2 3 0.06 0.02 1.45 0.24
Day: f CO2 3 0.09 0.03 1.95 0.13
Residuals 51 0.75 0.01

Bold text denotes significant p-values (<0.05).

Table A5.10: ANOVA table for trends in CO2 treatment over
time for rETRmax

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 23268.1 23268.1 103.91 <0.01
I(Day2) 1 66.7 66.7 0.30 0.59
f CO2 3 189.0 63.0 0.28 0.84
Day: f CO2 3 316.6 105.5 0.47 0.70
Residuals 51 11420.7 223.9

Bold text denotes significant p-values (<0.05).

Table A5.11: ANOVA table for trends in CO2 treatment over
time for Ek

Df Sum Sq Mean Sq F value Pr(>F)

Day 1 28519 28518.7 17.42 <0.01
I(Day2) 1 850 850.4 0.52 0.47
f CO2 3 2113 704.2 0.43 0.73
Day: f CO2 3 4078 1359.3 0.83 0.48
Residuals 51 83476 1636.8

Bold text denotes significant p-values (<0.05).
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