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Abstract 

Among many sources of renewable energy available, tidal energy, has many attractive 

features as a clean energy resource. It is a sizable resource, distributed along coastlines and is 

considered to be one of the more promising renewable energy sources. However, a key concern 

associated with tidal turbines is their long-term reliability when operating in the hostile marine 

environment. Biofouling changes the physical shape and roughness of tidal turbine components, 

hence altering turbine performance. This represents a large stumbling block for adoption of the 

technology. Among the various types of fouling on man-made structures, barnacles are 

considered to be one of the most problematic organisms. Therefore, the main objective of this 

study was to determine the effect of barnacles on the performance of a twin-bladed horizontal 

axis tidal turbine. Three research questions were investigated: how barnacle roughness alters 

the performance of aerofoil sections of which tidal turbines are based; how barnacle fouling 

changes the long-term turbine performance of tidal turbines; and how the presence of barnacles 

affects drag on a flat plate. 

The first two questions were investigated using Computational Fluid Dynamics (CFD). 

The geometry and density of the conical shaped barnacle elements for the adult sized 

Amphibalanus Amphitrite barnacle, were estimated to determine an equivalent sand-grain 

roughness. A commercial Reynolds Averaged Navier-Stokes (RANS) solver with Shear-Stress 

Transport (SST) turbulence model was used to simulate the flow around a two-dimensional 

NACA63-618 aerofoil with and without surface roughness. The model was validated against 

published experimental data for a smooth case. The results showed the presence of the adult 

barnacle fouling decreased the maximum lift coefficient by an average of 21% and lift-to-drag 

force ratio by an average of 60%. The performance of a twin-bladed horizontal axis turbine 

with rotors of the same aerofoil section was also studied. The barnacle roughness decreased 
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the peak power coefficient from 0.42 to 0.37 at the design tip-speed ratio of 6. This represents 

a decrease in turbine output power of 12%. The approximate time taken to reach adult size and 

establishment of this barnacle fouling community is approximately 8-12 months. 

The effect of barnacle roughness on total drag force and the turbulent boundary layer 

on a test plate covered with artificial barnacles was studied experimentally in a water tunnel 

using a floating element force balance. The artificial barnacle models tested were obtained 

using a novel method of scanning real barnacles, 3D printing and then moulding them using an 

epozy resin.  Three fouled plates were tested with low, medium and high barnacle fouling 

density. Based on roughness equations for cone shaped barnacle, a reduction in barnacle 

spacing (an increase in barnacle density) caused an increase in equivalent sand grain roughness. 

The results of roughness correlations indicated the equivalent barnacle roughness was 34.78 

mm, 78.47 mm, and 112.9 mm for low, medium and high barnacle fouling density respectively. 

The testing showed the presence of artificial barnacles produced a maximum increase in the 

drag coefficient of  429% for the low density case.  

Based on governing equations (geometrical formulations)for tidal turbine blade and 

single roughness elements, an increase in sand grain roughness causes a reduction in power 

coefficient results. According to theoretical hydrodynamic power of turbine, the smooth case 

gives the highest power coefficient. It is around 0.42. As shown and discussed, the lowest 

barnacle density produced an average 5% reduction in power coefficient over the clean case. 

For low density status, the power coefficient is around 0.4 and there is a slight difference 

between low density and smooth result with the same tip speed ratio. For a medium case, the 

percentage is over a 10% decrease in the power coefficient over the smooth case. An increase 

in sand grain roughness value causes a reduction in power generation from 0.38 to 0.34.  For 

high-density status, the percentage of decreasing of power generation is 22%. 
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Chapter 1 

Introduction 

1. Background

There is a growing market for green energy derived from sustainable resources 

throughout the world, with many countries offering incentives and targets. The oceans around 

the world offer a large energy sources that is yet to be significantly tapped [1,2].  

The forms of ocean energy can be categorised into tidal, wave, current, thermal gradient 

and salinity gradient [3,4]. Of these five categories, the most significant developments of the 

past decade have been in both tidal and wave energy. Tides and waves are said to have great 

potential for providing predictable and consistent power generation, in comparison with solar 

and wind energy, which are subject to weather fluctuations that are much more difficult to 

predict [5,6].  

Many countries surrounded by the oceans have rich marine energy resources and this 

represents a significant development potential for tidal and wave power turbines for electric 

power generation. Interest is growing in water current turbines as a clean power technology. 

High potential areas for tidal resources is provided in Fig.1.1.  
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Fig.1. 1. High potential area for tidal resources [7]. 

 

In the field of tidal or ocean current energy, the Horizontal Axis Tidal Turbines (HATTs) 

have undergone intensive research in the past decades. Compared with other devices, currently 

HATTs appear to be the most technologically and economically viable one, and a number of 

large-scale marine current turbines have been deployed [1,2].  

However, a key concern associated with tidal current turbines is their long-term 

reliability when operating in a hostile marine environment. Biofouling commonly occurs in the 

form of algae, mussels, and barnacles. Appropriate of materials can inhibit corrosion but is less 

easily to control the growth algae, mussels, barnacles. Biofouling changes the physical shape 

and roughness of turbine components, hence altering a turbine’s overall performance.  

2. Aims and Objectives 
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It is well understood that the biofouling effect has an adverse effect on ship hull 

performance [8]. There are many studies to indicate that increased roughness on the ship hull 

and propeller contributes to increased hull frictional resistance and decreased propeller 

efficiency, respectively [8-11]. Both translate into increased power consumption, or decreased 

speed [10]. However, there have been very few studies to investigate biofouling roughness on 

marine turbine performance.  

Among the various types of fouling on man-made structures, barnacles are considered 

to be one of the most problematic organisms. Therefore, in this study, effect of barnacles on 

tidal turbine performance will be investigated. The main objective of this study is to determine 

the effect of barnacles on the performance of a twin-bladed horizontal axis tidal turbine. Three 

objectives are investigated:  

1. How barnacle roughness alters the performance of aerofoil sections of which tidal 

turbines are based; 

2.  How barnacle fouling changes the long-term turbine performance of tidal turbines;  

3. And how do the physical properties of barnacles such as density alter hydrodynamic 

performance marine surface. 

1. Methodology of this study 
 

These questions are answered using a combination of computational and experimental 

studies. At the first step, more specific information about barnacle characteristics and the 

relationship between the attachment process and associated roughness development on marine 

surfaces especially marine turbine blade will be reviewed. In order to better understanding of 
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aerodynamic performance on cross-sectional shape of turbine blade, flow around a two-

dimensional NACA63-618 aerofoil shape with and without surface roughness will be 

investigated. Then the performance of a twin-bladed horizontal axis turbine with rotors of the 

same aerofoil section will also studied.  

The numerical results of this research were conducted using the commercial ANSYS 

CFX 15 software. CFD can obtain various results at low cost and it used in a variety of fields. 

In addition, one of the biggest advantage of CFD over experiments is that the full-scale 

simulations can be carried out so that the scale effects mainly stem from relatively different 

boundary layers and flow separation can be avoided. The Reynolds Navier Stokes (RANS) 

equations with various turbulent models, including k-ɛ, k-ω and Shear Stress Transport (SST) 

have been used to simulate the flow around the turbine models. Key hydrodynamics results 

were extracted and validated against experimental results of Walker et al. [12].  

In order to advance understanding of the effect of fouling density characteristics on 

drag force, a recirculating water tunnel with artificial barnacles (scale model) was used to 

investigate the flow over smooth and fouled test plates. There are three different fouling test 

plates: low, medium and high barnacle density. In order to generate the fouling density on a 

flat plate, artificial models were affixed and replicated with different fouling density on the flat 

plate. The height of single roughness element is constant for all fouling status. 

The drag coefficient results were obtained by load cell drag equipment. The drag 

coefficient results of smooth case are compared with experimental data which was tested in the 

same water tunnel by Andrewartha [110]. The drag coefficient results, including artificial 

barnacles cases are compared with drag coefficient result of smooth case. In order to estimate 

the drag coefficient for fouling case, the equivalent sand grain roughness should be determined 

(based on Eq.5.10). 
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2. Novelty of this study  
 

The main novelties of this study can be summarized as the following: 

1. In order to develop a useful numerical model, the equivalent sand grain roughness 

parameter is used. This parameter is depending on surface reference area of roughness 

as well as three dimensional regular roughness element. Therefore, based on conical 

shaped barnacle elements and tidal turbine blade surface, the value of sand grain 

roughness for numerical method is estimated 

2. In order to measure the drag force on fouled test plate, artificial barnacle method is used. 

The barnacle model was obtained by 3D scans of a real organism (Amphibalanus 

Amphitrite), which then was 3D printed and further replicated by a mould/resin 

technique. There has been a few studies carried out on investigation of roughness of 

plate by single roughness element. In this study, scaling method was used to replicate 

an artificial barnacle to measure roughness parameter.  

3. The main feature of experimental work was to determine drag coefficient based on 

different fouling density. There have been a few studies to investigate fouling density 

characteristics on marine plate. In this research the height of artificial single roughness 

is constant and based on fouling density definition (the space between two neighbouring 

single roughness elements), low, medium and high fouling density were created. Based 

on these data and also single roughness dimension, the equivalent sand grain roughness 

for different fouling density of plate can be estimated. 

1. Thesis structure  
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This thesis begins with a review of the literature on biofouling in Chapter 2, including 

barnacle roughness development, the relationship between barnacle characteristics and 

roughness, the effect of biofouling roughness on aerofoil and tidal turbine performance and the 

effect of biofouling roughness on boundary layer. In addition, there has been much discussion 

on long-term performance of marine turbine and some possible techniques of biofouling 

mitigation was provided in Chapter 2.  

Chapter 3 answers the research question about effect of barnacle roughness on aerofoil 

performance. This objective was addressed using a computational approach. For this purpose, 

a 2D NACA 63-618 aerofoil was modelled for smooth and fouled cases. In order to illustrate 

the effect of cone shaped barnacle elements, equivalent barnacle roughness was estimated. 

Numerical results validated versus the experimental data from Walker et al.[12] and these 

results compared against the fouled case results. There has been much analysing on barnacle 

roughness development on aerofoil performance in Chapter 3. 

Chapter 4 describes the effect of barnacle roughness on tidal turbine performance. A 

3D turbine system which was previously investigated by Walker et al. [12] in a towing tank, 

was modelled by the commercial ANSYS CFX.15 software. Thrust and power coefficients 

were obtained and compared versus fouled case results. The pressure coefficient distribution 

of the NACA 63-618 aerofoil at 25%, 50% and 75% of the blade span were plotted and 

compared with roughened case.  

All laboratory measurements were carried out in the hydrodynamic lab at the School of 

Engineering and ICT, University of Tasmania. Drag force over smooth and artificial fouled 

cases were obtained by a floating element force. The results of these laboratory investigations 

are presented in Chapter 5. The artificial barnacle sample was obtained by 3D scans of a real 
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organism (Amphibalanus Amphitrite), which then was 3D printed and further replicated by a 

mould/resin technique.  

Finally, a conclusion for all chapters of this thesis is provided in chapter 6. 
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Chapter 2 
 

Literature Review 
 

 
This literature review is divided into five sections. The first part provides an introduction 

for biofouling and barnacle characterization. The second section reviews the effect of hard 

fouling roughness on aerofoil performance. The third and fourth sections comprise the effect 

of fouling roughness on hydrodynamic performance of marine current turbines. The last section 

is a discussion part and reviews some strategies for minimising the biofouling growth on tidal 

turbines blade.   
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1. Introduction 
 

Due to the energy crisis and environmental pollution issues, interest in the development 

of alternative energy has increased tremendously in recent years. Among many sources of 

renewable energy available, tidal stream energy, which is driven by the ebb and flood of a tide 

due to the gravitational pull of the moon and the sun, has many attractive features as a clean 

energy resource [13]. A key concern associated with tidal turbines is their long-term reliability 

when operating in the hostile marine environment. Appropriate selection of materials can 

inhibit corrosion; however, control of the growth of algae, mussels and barnacles remains a 

challenge [12].  

Fouling is the undesired deposition of material on surfaces, while the accumulation, 

deposition and growth of microorganisms on surfaces can be defined as biofouling [14]. 

Biofouling is a global problem for the marine industry and creates adverse effects on hydrofoil 

based turbines. Various factors contribute to the rate of the growth of microorganisms on 

surfaces [15] including salinity, temperature, nutrient levels, flow velocity, solar radiation 

intensity and depth [16]. Fig.2.1 shows various common macro fouling found on ships’ hulls 

[17]. 

 

Fig.2. 1. Various common macro fouling [17]. 

 

Among different species of biofouling, barnacles are the most problematic marine 

organisms related to the biofouling of man-made structures [18-19]. Barnacles live exclusively 
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in the marine environment, and tend to live in shallow and tidal water. Most naval vessels and 

other watercraft are exposed to barnacle fouling when they are maintained long-term in port 

without any anti-fouling [20]. Adult barnacles on marine surfaces, for instance ships’ hulls, 

will produce a significant hydrodynamic drag penalty and increase fuel consumption [8, 10, 

21-25]. 

Barnacles grow rapidly following colonisation. Research by Wood and Allen [23] 

showed that macroscopic barnacles, such as acorn barnacles, are considerably more damaging 

compared with microscopic organisms. Of all the macroscopic organisms, barnacles from the 

arthropods group receive the widest attention as they are commonly found on ships’ hulls and 

tidal turbines. For example, Katsuyama et al. [26] installed a three-bladed tidal turbine that was 

stationary on the sea bed at a depth of 7m for a period of 8 months. Fig.2.2 (a) shows the 

barnacle growth after 58 days and Fig.2.2 (b) shows the barnacle colonization after 238 days.  

 

Fig.2. 2. Barnacle colonization on horizontal tidal turbine blade a) after 58 days b) after 238 
days [26]. 

 

 Biofouling is a unique type of surface roughness and leads to several adverse effects on 

marine turbine blades or ships’ propellers. The development of increased roughness on a 

marine surface causes an increase in drag force and flow resistance. Biofouling induced 

roughness generates irregularities on smooth surfaces, and this perturbs the flow field around 



11 

 

the blade. As a result, tidal turbines affected by biofouling have lower efficiency than design 

[27]. 

This paper reviews the characterisation of marine barnacles in terms of surface 

roughness and the effect marine biofouling, especially barnacle roughness, has on the 

performance of horizontal-axis tidal turbines.   

2. Characterization of barnacle 
  

 Many studies have revealed that barnacle attachment on marine surface reduces 

hydrodynamic performance [27-31]. Different types of barnacle characteristics, including 

adhesion, height, thickness and density, have a significant effect on the hydrodynamic 

parameters of surfaces colonised by barnacles. This section will review the relationship 

between roughness and barnacle development on marine surfaces.  

An increase in barnacle dimension has huge consequences on hydrodynamic 

performance of marine devices. Results of experimental research by Demiral et al. [120] about 

effect of artificial barnacles on ship resistance showed that the effect of barnacle height on ship 

resistance is significant, since a 10% coverage of barnacles each 5mm in height caused a similar 

level of added power requirements to a 50% coverage of barnacles each 1.5mm in height. Orme 

et al [27], Khor and Xiao [31] showed that an increase the artificial barnacle height around 8 

times on aerofoil surface led to increase drag coefficient by an average of 238% for low angle 

of attacks.  

Barnacle colonization produces roughness and increases drag force on marine surfaces. 

Barnacle density is a roughness parameter and is a measure of how densely the barnacles, as 

roughness elements, are distributed over a surface. Growing barnacles will reduce the space 



12 

 

between themselves and this increases barnacle density on a surface. The drag force can 

increase sharply when the space between two neighbouring barnacles is reduced [27- 28]. 

Barnacle fouling development, and hence barnacle density, is dependent on feeding 

patterns. Adult barnacles use two basic feeding methods: feathery legs, called cirri, are beaten 

rhythmically to capture food from the water, or the cirri are extended into the moving water so 

that food is captured actively or passively [32]. 

Increasing barnacle density leads to a change in boundary layer flow and also has a 

complex effect on the hydrodynamic force. Thomason et al. [28] investigated the experimental 

specimen of S. balanoides barnacle colonies in a 5 m long seawater flume using tracer dyes, 

macro-video photography and image digitalization. In order to manipulate the density and 

pattern of barnacle colonisation, replicas of barnacles were glued to acrylic tiles with petroleum 

jelly. At low flow speed, cirral beating disturbed the boundary layer and the flow around 

downstream barnacles became turbulent. At higher flow velocity, beating of the cirri ceased 

and barnacles were permanently extended. Boundary layers around the upstream barnacles’ 

cirral basket prevented flow between their cirri, although disturbance to the flow caused 

significant turbulence. Figs. 2.3 and 2.4 illustrate a graphical representation of the flow over a 

high density colony of barnacles and a small group of feeding barnacles, respectively. The 

width of the arrows indicates the coherence of the dye stream and the large arrow shows the 

flow direction.  
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Fig.2. 3. Graphical representation of flow over a high density colony of barnacles [28]. 

 

Fig.2. 4. Graphical representation of flow over a small group of feeding barnacles [28]. 

 

The type of marine surface roughness plays a vital role in barnacle growth. Thomason 

et al [28] indicated that the type of surface roughness can have a significant effect on barnacle 

size and density. Four different types of surfaces with varying textures were chosen as 

substrates to support barnacle colonies. The tiles were submerged in the Clyde Sea, UK, for a 

period of approximately 9 months, allowing the barnacles to reach adulthood. The resulting 

barnacle colony density was lowest for a smooth substrate, and highest for a substrate with a 

fine surface texture.  
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The head loss across a duct containing the tiles was measured and calculated based on 

a modified Darcy-Weisbach formula. This method was used to estimate the hydrodynamic 

response (head loss) of natural colonies of barnacles expressed in equation 2.1: 

gm
fl Uhf 2

2

=          (2.1) 

where, f is the friction factor, l is the section length, m is the ratio of the cross sectional area to 

contact perimeter, U is the free stream velocity. The results showed that the head loss increased 

with increasing barnacle colony density, as shown in Table 2.1 [28]. They also found that the 

frontal area is important in terms of head loss, with staggered arrangements of barnacles 

producing greater head loss than aligned arrangements. 

 

 

Table 2. 1. Frictional head loss for experimental barnacle colonies with different densities 
[28]. 

Barnacle colony density (substrate type) Head loss hf 

Low (smooth tile) 0.0146 

Medium (coarse tile) 0.0189 

High (medium tile) 0.0224 

Very high (fine tile) 0.0288 

 

Once marine devices are exposed to barnacle fouling, the friction force increases [20]. 

This force increases dramatically as barnacles grow in size [33]. The actual roughness height 

can refer to the size of a single roughness element or an average of multiple roughness elements 

on a surface [34].  
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The frontal area or wetted area of a barnacle is functionally related to barnacle density 

by geometry. Schultz et al. [29] investigated the hydrodynamic forces on barnacles attached to 

a foil towed alongside a small skiff. The results indicated that an increasing barnacle height 

causes a reduction in lift force and an increase in drag force. In addition, increasing barnacle 

height leads to sheltering and wake interaction effects. Fig. 2.5 illustrates the loading on a 

single barnacle and Equations 2.2 and 2.3 represent an idealized model to predict the tensile 

and shear stresses at the base of the barnacle. These stresses can be used to predict the velocity 

at which barnacles will detach from a surface, based on their adhesion strength. 

 

Fig.2. 5. Hydrodynamic forces on a barnacle [29]. 
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3. Barnacle Development Roughness 
 

Barnacles are the most comprehensively studied group of macrofoulers. Barnacles have 

different phases of fouling: temporary fouling occurs firstly, as the cyprid larva explores a 

surfaces. The cyprid explores various surfaces using a pair antennules [35]. Secondly, the larva 
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produces a settlement cement and grows up and changes to juvenile barnacles [36, 37]. Finally, 

juvenile barnacles changes to adult barnacles and they produces a stronger cement, leading to 

permanent settlement [36, 37]. Fig. 2.6 shows the life cycle of a typical barnacle with fouling 

production.  

 

Fig.2. 6. Life cycle of barnacle and barnacle roughness development. Adapted from [38]. 

 

A typical adult barnacle has several shell plates around its body and moveable plates 

on its top part. Adult barnacles firmly attached to a surface and cannot move over surfaces 

independently like most other crustaceans. Various barnacle characteristics including adhesion, 

height, thickness and density have a significant effect on the hydrodynamic parameters of 

surfaces colonised by barnacles. The characterization of roughness in terms of height or density 

may only be identified when long-term barnacle attachment occurs.  
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Among different species of barnacles, striped barnacle Amphibalanus Amphitrite 

barnacle is among one of the more problematic species and is prevalent on ships and harbour 

structures [39]. It is approximately conical in shape and attaches to numerous surfaces 

including rocks, piers, metal and ships [39]. Fig.2.7 shows that sample of Amphibalanus 

Amphitrite barnacle. 

 

Fig.2. 7. Real Amphibalanus Amphitrite barnacle samples [39]. 

4. Roughness function correlations 
 

The development of correlations for the roughness function has been an area of active 

research for many years. Correlations range from simple models based on roughness height 

and pitch to more complicated relationships that include density and shape parameters.  

Flack and Schultz [47] reviewed a functional relationship between the rough wall log-

law intercept and a roughness spacing parameter λ which was determined by Bettermann [49], 

where λ= pitch/height of transverse bars. They also reviewed the relationship modification 
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which was obtained by Dvorak [123]. In this study, using a density parameter, λ= total surface 

area/total roughness area, which is equivalent to the spacing parameter of Bettermann [49] for 

square bars.  

These correlations were developed using sand grain roughness surfaces, mesh screens, 

staggered rows of spheres, and square bars. Simpson [124] modified the parameter further 

using λ=total surface area/total roughness frontal area normal to the flow, showing reasonable 

agreement for spheres and cones, staggered hemispheres, and machined groves.  

Driling ]91] introduced a combined density and shape parameter. Roughness density is 

included as the ratio of the average element spacing to roughness height, whereas shape is 

accounted for in the frontal area of a single roughness element and the windward wetted surface 

area of a single roughness element. Van Rij et al. [93] investigated the use of roughness density 

parameter to three-dimensional regular roughness, using the results of Schlichting [116] for 

staggered patterns of spheres, and cones. The correlations for three-dimensional roughness 

stated that, an increase in roughness density caused a reduction in shape parameter and hence 

an increase in sand grain roughness parameter.  

5. Effect of roughness fouling on ship hull and propeller  
 

Roughness of a ship hull, which is often caused by marine coatings and biofouling, can 

dramatically increase a ship’s frictional resistance and hence its fuel consumption and 

greenhouse gases emission. The surface condition of the hull is of primary importance in the 

performance of marine vehicles.  

A large body of research has carried out to the effects of hull fouling on drag and 

powering. Results of most studies [33,105,108,110] about effect of fouling effect on friction 

coefficient indicated that even low-form algal fouling leads to a significant increase in frictional 
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drag, although the magnitude of the increase depends strongly on the fouling type and coverage. 

Frictional drag on some hull types can account for as much as 90% of the total drag even when 

the hull is free of fouling [21]. Demirel et al [121], used CFD method based unsteady RANS 

model which enables the prediction of the effect of marine coatings and biofouling on ship 

resistance. In order to model biofouling roughness on ship hull, equivalent sand grain 

roughness height which was estimated experimentally by Demirel et al. [120] based on wall 

function theory was used. Results of this research indicated the increase in the effective power 

of the hull was predicted to be 18.1% for a deteriorated coating or light slime whereas that due 

to heavy slime was predicted to be 38% at a same speed. Townsin [8] conducted a particularly 

through the investigation of the frictional drag increase resulting from barnacle fouling. 

Through this research, the simple predictions of the frictional drag penalty based on barnacle 

height and coverage were developed. The results of this research indicated a maximum drag 

penalty occurred when the barnacle coverage was 75%. However, when the coverage was 

reduced to 5%, the drag penalty was only reduced by one third from the maximum penalty. 

Schultz [108] noted that the height of the largest barnacles has the dominant influence on drag. 

In addition, in accordance with the findings of Schultz [108] observed that the effect of 

increased coverage of barnacles on frictional drag was largest for low values of coverage and 

smallest for high values of coverage.  

Experimental, lab scale studies on flat plates provide reliable data since the 

uncertainties can be estimated to a degree. Therefore, several experimental studies have been 

devoted towards investigating the roughness effect on the skin friction of the flat plates. Based 

on review study by [117], which has studied on rotating disks covered with several different 

types of microbial slimes. This study indicated microbial slime led to an increase of 10% to 

20% in the frictional resistance. Research by [24] conducted the extensive experimental study 

investigating the effect of fouling on frictional resistance. Flat plates were coated by anti-
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corrosive paints and kept in sea water for a year. The plates were then towed with barnacles on 

them. The findings were remarkable since the resistance of the plates after 12months of sea 

exposure increased to 4times the resistance of an otherwise identical smooth plate. 

Andrewartha [110] measured an increase of 99% in the drag coefficients of test plates due to 

biofilms in a recirculating water tunnel. These findings clearly demonstrate that antifouling and 

hydrodynamic performances of coatings vary significantly depending upon operational 

conditions. A series of towing tests was carried out using flat plates covered with artificial 

barnacles by Demirel et al [120]. A real organism of Balanus Improvises barnacle scanned in 

3-D printing and replicated with scale size. The results of towing tank test showed that the 

effect of barnacle size in significant, since a 10% coverage of barnacles each 5mm in height 

caused a similar level of added power requirements to a 50% coverage of barnacles each 

1.25mm in height. Research by Townsin [8] on pontoons covered with shell fouling plate, 

indicated an increase of 66% in the resistance, even with only 5% coverage. Schultz [33] 

measured frictional resistance of plate with and without artificial slime experimentally by 

towing tank equipment. The results indicated that the frictional resistance of flat plates covered 

with artificial slime increased up to 18%. 

The effects of propeller fouling on powering roughness on ship powering can also be 

very significant [118]. Mosaad [118] stated that although the effect of the propeller surface 

condition could be less important than the hull condition, it would be significantly more 

important in terms of energy loss per unit area. Owen et al. [119] investigated effect of 

biofouling roughness on ship propeller numerically. Equivalent sand grain roughness height 

was considered as main function of roughness on ship propeller and those values were 

estimated experimentally by Dermirel et al [120]. A Reynolds Averaged Navier-Stokes (RANS) 

solver with Shear Stress Transport (SST) turbulence model is used to model the flow around a 



21 

 

ship propeller surface. The results of research indicated the most fouling cases had a 11.9% 

efficiency loss at the advance coefficient of 0.6 compared to the smooth condition.  

In economic terms, high return on a relatively cheap investment can be obtained by a 

properly set propeller maintenance strategy. This has further supported the idea of coating 

propellers using similar antifouling systems to those used on a ship’s hull.  

6. Effect of roughness on horizontal axis turbines  
 

The effect of roughness and biofouling, especially barnacle roughness, on aerofoil and 

turbine performance and aerofoil boundary layer thickness is reviewed in this section. In 

addition, the long-term performance of tidal turbines that have been colonized by barnacles 

will also be discussed.  

1. Characterization of roughness and fouling effect on 
aerofoil performance   

 

The horizontal axis marine current turbines use  blades with aerofoil shaped cross-

sections to generate torque. It is well known that blade shape is critical to the aerodynamic 

performance of wind and tidal turbine blades [40]. In this section the characterization of 

roughness on aerofoil performance, which alters the geometry, is reviewed with regard to 

aerodynamic performance characteristics. Aerofoil performance is measured using the drag 

and lift coefficients, given in Equations 2.4 and 2.5, respectively, as a function of the angle of 

attack of the aerofoil.  

cs
D

UCD 25.0 ρ
=         (2.4) 

cs
L

UCL 25.0 ρ
=         (2.5) 



22 

 

Where, CL and CD are lift and drag coefficient, ρ is density, U is flow stream and cs is 

cross section area of aerofoil. 

Many studies have revealed that, in order to produce accurate performance predictions 

from blade element momentum theory, accurate lift and drag coefficient curves for the aerofoil 

profile used for the turbine blades are needed [12, 27, 31, 41-42]. For tidal turbines, the blade 

profile used typically has a thick aerofoil cross-section, as the density of water is much greater 

than air, imposing larger structural loads across the rotor [43].   

Surface roughness on aerofoils results in an increase in drag force and a reduction in 

the lift force. Petrone et al. [44] and Li et al. [45] investigated dust roughness on aerofoil 

performance. Results of research indicated aerofoil performance is dependent on height of 

actual roughness and location of roughness. The results revealed that the lift coefficient is 

reduced when the roughness height is increased. Khalfallah and Koliub [46] indicated that 

roughness on an aerofoil surface degrades aerodynamic performance by decreasing the 

maximum lift coefficient and increasing the drag coefficient.  

Roughness can be characterized in terms of height, element density, pitch, shape and 

location [47]. Roughness height may refer to the size of a single roughness element or an 

average of multiple roughness elements. Roughness size can be defined by its height from the 

surface for randomly shaped elements and by its diameter for spherical elements. Roughness 

density refers to how densely the roughness elements are distributed on the surface [48]. 

Bettermann [49] indicated that pitch factor is a function of roughness spacing parameters. It is 

noted that roughness spacing parameters are estimated by the ratio of pitch to roughness height. 

Table 2.2 summarises experimental studies investigating the effect of various roughness types 

on aerofoil performance. These studies show that adding roughness to an aerofoil tends to 

increase the drag coefficient and decrease the lift coefficient.  
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Table 2. 2. Summary of studies investigating the effect of roughness on aerofoil performance 

Type of 

roughness 

Roughness description Results Reference 

Ice layer 0.3mm roughness was applied to 

NACA 0012 aerofoil surface 

 Increase in CD 

 40% decrease in CL 

 CL max is decreased from 

1.5 to 1.1 

[50]  

Wrap around 

roughness 

Roughness elements distributed 

over  entire surface of NACA 64-

4xx 

 20% decrease in CL,max 

 50% increase in CD 

 

[51]  

Insect 

roughness 

Several hypotheses about insect 

contaminations were examined on 

the aerofoil section of a wind 

turbine blade at a Californian site. 

 At the low speeds, power 

production is not 

significantly influenced 

by insect roughness. 

 At high speeds, there is a 

decrease in power output 

due to insect roughness. 

[52] 

Glaze ice 

accretion 

Distributed roughness consisting 

of hemispherical shapes in 

staggered rows near leading edge 

of NACA 0012  

 Early transition of the 

boundary layer. 

[53]  

Coarse grit Wide double-tack tape was applied 

to one side of S809 aerofoil and 

 16% decrease in CL,max  

 41% increase in CD,min  

[54]  
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grit was poured and brushed from 

the opposite side. 

Plastic strips Plastic strips applied with different 

roughness height on leading edge 

of GA (W)-1 aerofoil 

Small roughness height: 

 Delay stall of aerofoil 

Large roughness height: 

 Earlier aerofoil stall at a 

small angle of attack 

[55]  

Bulge tape Bulge trip tape was mounted to the 

NACA 63-430 aerofoil surface to 

simulate the effects from leading 

edge roughness. 

1. Separation point and 

transition are shifted 

to the leading edge 

when roughness was 

located at the front 

25% of the chord 

length. 

 

[56] 

Tripping wire 1 mm dia tripping wire applied to 

suction side of Du300 aerofoil 

 Increase in CD 

 Overall CL/CD decreased 

[57]  

Zigzag 

roughness type 

 

0.4mm and 0.6mm zigzag tapes 

applied to suction side of DU 300 

aerofoil at 0.05c and 0.1c 

CL decreased significantly.  [57] 

Grain 

carborundum 

60-grain carborundum applied to 

leading edge of DU300 aerofoil 

Early transition of boundary 

layer at the leading edge  

[57] 

Conical grid 

shape 

An extrusion method was used to 

create small conical shape (model 

1. Decreasing CL/CD by 

an average of 25%. 

[27] 
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height was 3.2mm) on NACA 

4424 aerofoil surface 

 

Contact cement 

roughness 

NACA63-618 aerofoil roughened 

with a thin layer of randomly 

applied contact cement to model 

barnacle growth  

1. Decreasing CL,max by 

an average 11% 

2. Increased the stall 

angle from 10° for 

the smooth aerofoil 

to 16° for the 

roughened case. 

3. Increasing CD,min up 

to 153% 

[12] 

 

When hydrofoils are colonised by hard fouling such as barnacles, the performance 

response follows that of a roughened aerofoil. This is because the smoothness of surface is 

perturbed, especially at the leading edge, near the stagnation point. That is, the drag coefficient 

increases, and the lift coefficient decreases [12, 27, 31].  

Orme et al. [27] and Khor and Xiao [31] investigated the effect of barnacles on a NACA 

4424 aerofoil. Orme et al. [27] tested a two-dimensional aerofoil in a wind tunnel using three 

supporting struts connected to a force balance. An extrusion method was used to develop the 

barnacle roughness, with small, medium and large conical shapes used. Barnacles with the 

largest size produced the highest drag coefficient. In addition, results indicated that when the 

barnacle density increases, the drag coefficient is significantly increased and the lift coefficient 

is reduced. Fig.2.8 shows drag and lift coefficient results for different barnacle roughness 

density at various angles of attack. 
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Walker et al. [12] investigated the effect of roughness on a NACA 63-618 aerofoil in a 

wind tunnel. The two-dimensional aerofoil was roughened with a thin layer of randomly 

applied contact cement, both to the leading edge and to the entire aerofoil. The maximum lift 

coefficient was increased by an average of 11% for all roughness cases. The presence of 

roughness also increased the stall angle from 10° for the smooth aerofoil to 16° for the fouled 

aerofoils. The drag coefficient increased with increasing roughness. The minimum drag 

coefficient at Re = 5x105 increased 49%, 59% and 153% for the leading edge roughness, light 

entire roughness and heavy roughness, respectively. The effect of roughness on the lift and 

drag coefficients is shown in Figs. 2.8 and 2.9 for the four different roughness conditions tested.  

 

Fig.2. 8. Performance of a NACA 4424 aerofoil with different simulated barnacle density 
(Light case= 11389 barnacle/m2, Medium case=21389 barnacle/m2 and Heavy case=42253 

barnacle/m2) at Re=6*106 adapted from Orme et al. [27] (a) Drag coefficient, (b) Lift 
coefficient 
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Fig.2. 9. Performance of a NACA63-618 aerofoil with different artificial fouled height. 
(Light case=1.1mm thick layer of lithium grease impregnated with diatomaceous, Heavy 
case=a thin layer of randomly applied contact cement) adapted from Walker et al [12]. 

 

The ratio of lift to drag Cl/CD decreases when an aerofoil is coated with fouling. Results 

of research by Orme et al. [27], Khor and Xiao [31] indicated that the lift to drag ratio decreased 

both with increasing barnacle size and distribution density. Fig.2.10 shows that lift to drag ratio 

with different barnacle density on NACA4452 aerofoil surface. The highest lift to drag ratio is 

for the smooth aerofoil. Based on Fig.2.10, the lift to drag ratio is reduced when barnacle 

fouling is added to the aerofoil surface. It can be noted that the rate of lift coefficient reduction 

is greater than the rate of drag increase when barnacle height is increased. 
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Fig.2. 10. Lift to drag ratio results for changes in barnacle size. Adapted from Orme et al. 
[27], Khor and Xiao [31]. 

 

1. Effect of biofouling roughness on aerofoil boundary layer 
thickness 

 

An accurate boundary layer prediction of the flow over an aerofoil allows the 

calculation of hydrodynamic performance and the estimation of cavitation inception when such 

surfaces are roughened [58-60]. Efficient aerodynamic performance is best achieved when the 

flow remains attached to the aerofoil surface [61]. Flow separation can take place under a high 

angle of attack or due to the presence of roughness near the leading edge. In a low Reynolds 

number regime, the lift curve at a low angle of attack may have undesirable nonlinear features 

[62]. Research by Kerho [63] and Van Rooij and Timmer [64] indicated that laminar aerofoils 

are particularly sensitive to roughness because the improved aerofoil performance is obtained 

by tightly controlling the boundary layer behaviour. Any deviations of the boundary layer from 
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intended behaviour, such as that due to roughness, can result in significant deterioration in 

performance. 

Roughness modifies the thickness of the boundary layer and the extent of its transitional 

characteristics, which depend on height, location and the Reynolds number. Research by Kerho 

and Bragg [63] and Bai et al. [65] indicated that the boundary layer velocity profile became 

fuller when roughness is added to the aerofoil surface and the transition area is close to the 

leading edge. Also, Montis et al. [66, 67] showed that the boundary layer upstream of the 

separation point became thinner with the presence of roughness on an aerofoil. The skin friction 

coefficient increases with disturbances to the boundary layer due to roughness and the 

transition location moves toward the leading edge. An increase in skin friction causes an 

increase in the drag coefficient and thereby affects the performance of the aerofoil. Flow 

visualization by Turner et al. [68] showed that an obviously turbulent boundary layer occurred 

over a rough surface Fig.2.11, whereas there was an obvious laminar-turbulent transition over 

a smooth surface Fig. 2.12.  

 

 

Fig.2. 11. Laminar-turbulent transition on a smooth aerofoil. Adapted from Turner et al. [68]. 
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Fig.2. 12. Turbulent boundary layer on a rough aerofoil. Adapted from Turner et al. [68]. 

 

Biofouling roughness can also cause cavitation inception on the rotating surface. Results of 

research by Korkut and Atlar [69] indicated that propeller blade roughness stimulates the 

transition of the boundary layer from laminar to turbulent flow, causing cavitation inception. 

Wan et al. [70] concluded that the boundary layer displacement thickness can have an effect 

on ship propeller performance. The results indicated that an increase in roughness thickness in 

the ship propeller blade causes an increase in the boundary layer displacement thickness, which 

is characteristic of increased skin friction loss and decreased propeller performance.  

2. Effect of fouling on thrust and power coefficient 
 

 The performance of a tidal turbine is characterised in terms of the power and thrust 

coefficients, given in Equations 6 and 7 below. Studies by Kojima et al. [71], Huang et al. [72], 

Sagol et al. [48] and Walker et al. [12] indicated that roughness on a horizontal axis turbine 

blade can significantly reduce the lift coefficient and increase the drag coefficient of the 

aerofoil and, hence, reduce hydrodynamic turbine performance. 

RUC P
p 235.0 πρ
=          (2.6) 

         (2.7) 
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Where, CP and CT are power and thrust coefficient, ρ is fluid density, U is flow stream 

and R is the radius of blade. 

There have been few studies to investigate the effects of fouling on marine current 

turbine performance. Batten et al. [73] conducted a numerical study on tidal turbine 

performance, including an investigation of the effects of blade fouling. The numerical codes 

for this research were based on Blade Element Momentum theory and were adapted from a 

programme for wind turbine design developed by Barnsely and Wellicome [122]. They 

assumed that the presence of fouling might increase the drag coefficient by up to 50%. The 

effect of surface roughness does not tend to have much effect on the lift slope but can alter the 

angle at which stall can occur. The proposed model predicted a decrease in the power 

coefficient of 6-8%. Goundar and Ahmed [74] and Ng et al. [75] revealed that the presence of 

marine macro-organisms alters the hydrodynamic design of the tidal turbine blade and 

significantly affected rotor performance.  

Walker et al. [12] investigated the effect of light and heavy biofouling roughness on 

tidal turbine performance by testing a model-scale two-bladed horizontal axis tidal turbine in a 

towing tank. The tidal turbine blades were tested under three conditions: smooth, coated with 

a thick layer of lithium grease impregnated with diatomaceous earth to approximate slime 

fouling, and roughened with a thin layer of contact cement to increase blade roughness, as 

would occur with barnacle fouling. Results indicated that the attachment of soft fouling did not 

have significant effect on turbine performance, as most of the material sheared off the blades, 

whereas the presence of artificial hard fouling adversely affected hydrodynamic performance. 

The results showed approximately 20% reduction in the maximum power coefficient with the 

contact cement roughness. In addition, the thrust coefficient was significantly reduced when 
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roughness material was present. Fig. 2.13 shows the reduction in the power coefficients with a 

roughened turbine blade. 

 

 

Fig.2. 13. Power coefficient curves for smooth and different fouled roughness height for a 
two-bladed horizontal axis tidal turbine (○ smooth, ▪ lithium grease impregnated with 

diatomaceous earth, ▲ roughened with a thin layer of contact cement) [12]. 

 

3. Effect of biofouling on long-term turbine performance  
 

It is well understood that the presence of roughness has a significant effect on energy 

loss. Wind and marine turbines are unavoidably exposed to the environmental conditions that 

prevail in the location where they are erected. Chen and Lam [76] and Soares et al. [77] 

indicated that the rotor part of the tidal current turbine is affected by biofouling which may 

The picture can't be displayed.
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contain a high content of corrosive minerals. In addition, marine fouling settlement can 

accelerate the corrosion rate through the thin layer of a turbine blade.  

Rough sites produced by biofouling roughness on a turbine rotor can create 

hydrodynamic imbalance. Since tidal current turbines and wind turbines have a similar support 

structure, wind turbines are used as benchmarks to study the hard fouling growth effect on the 

hydrodynamic parameters. Antikainen and Peuranen [78] found that added hard roughness 

such as ice could cause an imbalance in the turbine rotor and thus cause a significant effect on 

the aerodynamic balance of turbine blades. Jasinski et al. [79] and Talhaug et al. [80] 

investigated the effect of long-term roughness on turbine performance experimentally and 

numerically. Jasinski et al [79] investigated wind turbine performance under ice roughness. For 

typical supercooled fog conditions found in cold northern regions, four rime ice accretions on 

the S809 wind turbine aerofoil were predicted using the NASA LEWICE code. The resulting 

aerofoil/ice profile combinations were wind tunnel tested to obtain the lift, drag and pitching 

moment characteristics over the Re range 1-2*106.  These data were used in the PROPID wind 

turbine performance prediction code to predict the effects of rime ice on a 450kW rated power.  

The results revealed that long-term roughness can cause a reduction in annual power in the 

range of 20-50%.  

Yebra et al. [17] tested turbine blades with three different biofouling heights. The tidal 

turbine type was a bi-directional ducted horizontal axis turbine. The turbine was installed at a 

depth of 19 m on the sea bottom in Race Rocks ecological reserve, Canada. The first sample 

developed a thin slime (Rz = 100 micron) over five years, the second sample developed a thick 

slime (Rz = 500 micron) over the same period and the third sample consisted of algae filaments 

(Rz = 5 mm). There were some assumptions as tidal currents took place 12 hours a day on 

average and during that time the turbine ran at 90% of its rated power. The results indicated 
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that power loss for a period of one year for a 1MW full size commercial turbine would be less 

than 5% for filamentous algae. The power loss for a period of five years was more than 15% 

for blades coated with filamentous algae, while there were 8% and 4% power losses for heavy 

slime and light slime coatings, respectively. Fig.2.14 shows the sample of thin and thick slime 

layers on a tidal turbine blade.  

 

Fig.2. 14. Sample of slime thin slime (left) and thick coating (right) on a tidal turbine blade 
[17]. 

 

Katsuyama et al. [26] compared the long-term performance of tidal turbines with and 

without anti-fouling coatings. The blade materials were steel and were coated with a long-term 

anti-corrosion epoxy resin. The turbine blade dimensions were 150 × 50 mm. Two stationary 

three-bladed tidal turbines were installed at a depth of 7 m on the sea bottom off Ikitsuki I, 

Japan for period of eight months. After one month both cases were fouled by Megabalanus 

rosa, a common species of barnacle. The results indicated that a significant barnacle density of 

up to 3-4 kg/m2 developed over the entire turbine blade without the anti-fouling coating, which 

would generate a mass imbalance. The entire tidal turbine surfaces (blades and hub surfaces), 

without the antifouling coating, were covered by Megabalanus rosa barnacle after eight months 

and disruption of aerodynamics was reported. The hub section of the tidal turbine without an 

anti-fouling coating only incurred barnacle growth and its blades were protected against 

The picture can't be displayed.
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barnacle colonization. Fig. 2.15 shows the extent of barnacle growth on experimental model 

turbines with and without anti-fouling coatings. 

 

Fig.2. 15. Three bladed tidal turbines, 238 days after initial installation in the sea A) with 
anti-fouling coating. B) without anti-fouling coating [26]. 

 

In order to minimise biofouling development on marine turbines, biofouling prevention 

techniques can be used. In the context of a tidal turbine system, a critical issue is to evaluate 

biofouling impact on the different components. Indeed, marine renewable energy devices are 

composed of several materials and each of them will have a different impact [81]. The tidal 

turbine rotor and hub are the most important components of a tidal turbine device; their 

materials can play an important role in tidal turbine performance. Polagye and Thomson [82] 

The picture can't be displayed.
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installed some plates with different materials which might be used in the different parts of 

turbine components at a depth of 55 m on the seabed in-situ in Washington in a period of 10 

months. The results revealed that among different materials, glass fibre composite performed 

well, with limited surface fouling after 10 months of deployment. In addition results of research 

by Titah-Benbouzid et al [81] indicated that Carbon Fibre Composite material can be used for 

the turbine rotor. This material can develop minimal surface fouling after up to 10 months of 

deployment. Another suitable material is enamelled metal. Results of research by Hills and 

Thomason [83] on seven different surfaces with the same size revealed that  no barnacles settled 

on enamelled metal after two months, whereas other materials such as wood and rusty metal 

were colonised with barnacles after the same time.  

2. Discussion  
 

This review has shown that biofouling has a significant impact on marine current 

turbine performance. Among different species of marine animal biofouling, the barnacle is one 

of the most problematic marine biofouling groups. Barnacles can survive in different 

environmental conditions and colonize a variety of surfaces. As discussed in the section on 

barnacle characteristics, density and height are the most important parameters that affect the 

hydrodynamic performance of marine turbines. Barnacle fouling development, and hence 

barnacle density, is dependent on feeding patterns.  

Small particles of hard fouling can be transported by the tide and wave to the height of 

tidal turbine rotor. These particles generate irregularities on the rotor blade and the smoothness 

of the blade surface is perturbed. Hard fouling colonization can make an erosion and mass 

imbalance on the blade surface. Increasing barnacle roughness changes the boundary layer flow 

on turbine blade surfaces, leads to a reduction in the lift coefficient and a significant increase 

in the drag coefficient, thereby reducing the performance of the aerofoil and the turbine rotor.  
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The best approach to mitigate the effect of biofouling on marine current turbine 

performance is to slow the growth of barnacles in the first instance. This can be achieved 

through the use of anti-biofouling materials or the application of protective surface coatings. 

This review has shown that using different materials, such as carbon fibre composites, may be 

beneficial in slowing the development of biofouling. There is a considerable body of research 

on marine protective coatings for use in the shipping industry; however, the use of such 

coatings on marine current turbines is an area for further research. 

Once fouling is established, there are several ways to remove it from marine devices. 

Dry-docking operations are commonly used to remove barnacles from large marine surfaces 

(i.e. ships’ hulls). Some marine current turbines, such as SeaGen, can be cleaned and 

maintained above sea level [84]. Due to the challenges of cleaning turbines in-situ, it is 

important that the maintenance of marine current turbines, including the removal of biofouling, 

is considered at the design phase. 

This review has also shown that biofouling is a significant issue for the long-term 

performance and viability of marine current turbines. However, there have been few detailed 

studies that investigated the effect of biofouling roughness on marine current turbines. Further 

research is needed to understand the complex flow physics involved in barnacle growth on 

turbine rotors. Areas for further study include accurately representing barnacles as a roughness, 

the effect of barnacles on the boundary layer flow, lift and drag characteristics, power and 

thrust performance, and fatigue issues from rotor imbalances caused by uneven fouling growth. 

3. Conclusion  
 

The effect of biofouling on horizontal-axis tidal turbine performance has been reviewed 

in this paper. Surface roughness from barnacles increases with the height and density of the 
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barnacles on marine surfaces increases. Hard fouling production increases the surface 

roughness on turbine blades leading to decreases in hydrodynamic performance. Areas of 

increased roughness can cause a mass imbalance in the rotor system, leading to potential fatigue 

issues. The presence of roughness on a turbine can cause up to a 20% reduction in the power 

coefficient. Barnacle roughness development represents a significant potential economic issue 

for commercial tidal turbine operation and a barrier to large scale uptake of the technology. 

However, further studies on turbine blade profile design, rotor materials and maintenance 

technology can help to reduce biofouling growth on marine turbines and improve long-term 

performance.  

 

 

  



40 

 

 

Chapter 3 
 

 

Effect of Simulated Barnacle Roughness on Aerofoil 
Performance  

 

 
  



41 

 

1. Introduction 
 

Many studies have revealed that, in order to produce accurate performance predictions 

from blade element momentum theory, accurate lift and drag coefficient curves for the aerofoil 

profile used for the turbine blade sections are needed [12, 27, 31, 41-42]. For tidal turbines, the 

blade profile used typically has a thick aerofoil cross-section, as the density of water is much 

greater than air, imposing larger structural loads across the rotor [43].   

Roughness can be defined as a surface extension of a body that penetrates into the 

viscous layer. Consequently, momentum and energy transfer between the surface and the flow 

will increase which will affect the aerodynamic performance of aerofoil. In the previous 

chapter (Characterization of roughness and fouling effect on aerofoil performance section), 

results of many studies about roughness indicated aerofoil performance is dependent on height 

of actual roughness and location of roughness [44-57]. 

It is well understood that barnacles are among the most problematic marine organism 

which have an adverse effect on marine surface performance[18-19]. Once marine devices are 

exposed to barnacle fouling, the skin friction increases significantly [8]. This force increases 

dramatically as barnacles grow in size [33]. Roughness height can refer to the size of a single 

roughness element or an average of multiple roughness elements on a surface [34]. Schultz et 

al. [29] investigated the hydrodynamic forces on a hydrofoil with barnacles that was towed 

alongside a small skiff.   

In order to estimate the performance of Horizontal Axis Turbine blade, torque 

generation by aerofoil shaped cross-sections of blade can play a vital role. Thus, the prediction 

of aerofoil performance of turbine with roughness case can help to estimate the hydrodynamic 

performance of turbine blade. Obviously, aerofoil performance is measured using the drag and 
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lift coefficients. In the previous chapter, the results of some experimental and numerical studies 

on 2D aerofoil studies showed increased roughness height caused a reduction in lift force and 

an increase in drag force. Therefore, the effect of barnacle roughness on 2D aerofoil 

performance will be investigated in Chapter 3.  

As the size of marine turbine grows, it is becoming more difficult and too expensive to 

perform full-scale experiments. Therefore, computational tools are preferred for analysis of 

tidal turbines. Several efforts [56, 85-90] have been made to model roughness on aerofoil 

surface by using Reynolds Average Navier- Stocks (RANS) equations.  Ferrer and Munduate 

[85] have performed numerical simulations on an S814 aerofoil using the commercial CFD 

code ANSYS Fluent. Transition is modelled using Menter-Langtry correlation, and fully 

turbulent flow is modelled using the k-ω SST turbulence model. For the rough configurations, 

flow is assumed to be fully turbulent. Comparisons of numerical simulations against 

experimental data show that the commercial code predicts lift coefficients well for both clean 

and rough surfaces. However, for the rough case, at higher angles of attack have not yet yielded 

converging results. 

Equivalent sand grain roughness is one the best method to develop the numerical 

simulation for fully roughness surface. Knopp et al [89] applied a roughness correction to the 

Shear Stress Transport (SST) turbulent model for 2D aerofoil study. To quantify the 

characteristic roughness, they estimated and applied equivalent sand grain roughness to the 

NACA 65-215 aerofoil model. Comparison of lift coefficient for smooth and roughness cases 

(for angle of attack of 4°֯to 12°) indicated there was a good agreement between SST model and 

experimental results. 

There have been few studies to investigate the effect of barnacle roughness on 2D 

aerofoil performance by using computational method. Khor and Xiao [31] investigated the 
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effect of barnacle roughness on a NACA4424 aerofoil by using k-ɛ turbulent model.  Fouling 

was modelled by setting small conical shapes on the surface of aerofoil as proposed in the 

experimental study of Orme et al. [27]. In computational model, small conical shapes (artificial 

barnacles) was simplified by using the spikes resembling fouling on aerofoil model shape. . 

The lift and drag coefficients were obtained and validated for different sizes and distribution 

densities. The results indicated that an increase in fouling density and fouling size caused an 

increase in turbulent kinetic energy and moved the separation point closer to the leading edge. 

The present study applies previously quantified relations between barnacle 

characteristics (special barnacle dimension) and sand grain roughness height to study the effect 

of barnacle biofouling roughness on 2D aerofoil performance.  A commercial RANS solver 

using a Shear Stress Transport (SST) model is used to study different simulated barnacle 

roughness on a NACA63-618 aerofoil. In addition, the normal force coefficient of aerofoil for 

smooth and roughness cases will be analysed by the pressure coefficient curves for each case.  

The lift and drag coefficient results for the smooth and rough cases are compared with 

experimental results from Walker et al. [12].   

2. Equivalent barnacle roughness   

 

In order to develop a useful numerical model, the effect of the conical shaped barnacle 

elements on a boundary layer may be represented using equivalent sand grain roughness as this 

also used to represent many other types of fouling in literature. A commonly used description 

of a turbulent boundary layer profile on rough walls may be written as 

       (3.1) 
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However, the limitation of the equation is that it includes all aspects of roughness but 

does not allow for a separation of the contributing causes of the roughness effects. For barnacles, 

this includes height, pitch, density and element shape. In addition, in this study, the reference 

surface area of roughness is an aerofoil shape. Therefore, above equations may not be useful 

for evaluating cone shaped barnacle roughness on aerofoil surface. Bons [34] revealed that 

many of the specific correlations are valid on two and three dimensional regular roughness, 

including bars, blocks, cones and hemisphere, etc. Bons [34] related roughness of a surface 

with cone shaped elements to equivalent sand grain roughness by:   

      (3.2) 

Where Λs is shape roughness parameter and ks is equivalent barnacle roughness. In 

order to estimate roughness shape parameter, the height of roughness elements, and spacing 

between them should be considered.  Dirling [91] introduced a combined density and shape 

parameter Λs  (Eq. 3.3), where roughness density (S/Sf) is included as the ratio of the average 

element spacing to roughness element height k. Sigal and Denberg [92] indicated that 

roughness geometry such as wetted area and frontal area of single roughness element over a 

test surface, can play a vital role to determine the equivalent sand grain roughness. The element 

shape is accounted for in the frontal area of a single roughness element Af  and the windward 

wetted surface area of a single roughness element As.  

       (3.3) 

This shows that sand grain roughness ks is functionally related to roughness shape 

parameter Λs. As the ratio Af /As increases, the roughness shape parameter decreases. In fact, 

an increase in barnacle dimension geometry (height and diameter) causes a reduction in 
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roughness shape parameter and hence an increase in sand grain roughness ks. In addition, an 

increase in roughness density parameter (S/Sf) causes an increase in roughness shape parameter 

and hence an increase in sand grain roughness. Thus, as expected, the value of sand grain 

roughness for adult barnacle is greater than for juvenile barnacles.  

The study by Van Rij et al [93] describes the numerical procedures employed to 

determine Λs from three-dimensional cone shaped roughness elements. The sand grain 

roughness values determined with this approach are then compared with and verified by sand 

grain roughness magnitudes determined using analytic geometry for uniformly shaped 

roughness elements arranged in a regular pattern on a test surface. The results indicated there 

was a good agreement between numerical results and experimental data for sand grain 

roughness. According to Sigal and Danberg [92] and Van Rij et al [93], three-dimensional 

roughness consists of arrangements of spheres, hemispherical elements, cones, pyramids, and 

bars along a test surface. Each roughness element is placed on the surface perpendicular to the 

flow direction. With this approach, equivalent barnacle roughness, ks is determined entirely 

from single roughness geometry and the surface parameters. These studies suggest that it is 

acceptable to represent the conical barnacle fouling this approach.  

In this study, Amphibalanus Amphitrite barnacle with cone-shaped was chosen. 

According to Poore [39], the range of Amphibalanus Amphitrite barnacle height is between 5 

to 13.5mm and the range of dimeter is between 6 to 20mm. According to Shkedy et al [139] 

and Shalla et al. [140] adults diameter typically range from 7 to 20mm. According to life cycle 

of barnacle (explained in section2-3), juvenile barnacles are attached on marine surfaces and 

fouling development will be started.  

It is worth to mention that fouling with the minimum size in height or density can have 

an adverse effect on marine performance. Orme et al. [27] and Khor and Xiao [31] investigated 
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the effect of barnacles on a NACA 4424 aerofoil. Orme et al. [27] tested a two-dimensional 

aerofoil in a wind tunnel using three supporting struts connected to a force balance. An 

extrusion method was used to develop the barnacle roughness, with small, medium and large 

conical shapes used. The results revealed that the drag coefficient was increased by an average 

of 50% for all low barnacle density (11389 barnacle/m2). Therefore, in order to show the effect 

of presence of fouling on aerofoil performance, the minimum size of barnacle height and 

diameter were chosen to estimate sand grain roughness in this section.  

In order to estimate the sand grain roughness height, density parameter (S/Sf) and ratio 

Af /As should be determined. According to Orme et al [27], fouling density can be defined as 

space length between two neighbouring barnacles. In fact, there is a space between two single 

roughness. Based on this definition, the space between two neighbouring barnacles is around a 

barnacle diameter for low density. In addition, in order to generate low fouling density, 

minimum height and diameter of barnacle should be considered (Fig. 3.1). It is because of 

barnacle dimension (height and diameter) is functional of barnacle density. There was some 

assumptions to evaluate these parameters. According to Van Rij et al [93], Sf can be defined as 

a total frontal area of roughness on surface area. Thus, based on low-density status assumption, 

the total number of barnacles can be estimated. The surface reference area of a NACA 63-618 

aerofoil, S, was detailed by Walker et. al. [12].The second assumption is related to Af /As. based 

on single barnacle geometry, Af=0.5h*D and As=0.5πD/2(h2+(D/2)2)2. Based on these 

assumptions the shape parameter and sand grain roughness can be found in the following table: 
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Fig.3. 1. Schematic diagram of low fouling density (a barnacle diameter space between two 
barnacles) (frontal view). 

 

 

Table 3. 1. sand grain roughness parameters for Amphibalanus Amphitrite barnacle 

h(mm) D(mm) Af(mm2) As(mm2) Space between 

two barnacles 

N Sf (mm2) S((mm2) Λs ks (mm) 

7 9.5 33.25 63 9.5 42 1382 181700 366 0.41 

 

1. Dimensionless similarity approach   

 

In order to determine the impact of a given very small coating roughness material on 

the frictional drag of a plate, some non-dimensional analysis which are related to drag 

coefficient, can be appropriated. Schultz [21] investigated on the predictions of full-scale ship 

resistance with roughness coating material. The predictions were based on results from 

laboratory-scale drag measurements and boundary layer similarity law analysis. The total drag 

force of ship model is (RTm=RRm+RFm) where RRm is the residuary resistance and RFm is the 

frictional resistance. Gillmer and Johnson [133] indicated that the total drag of ship resistance 

is functional of Reynolds number and Froude number, if two sides of above equation is divided 

by reference dynamic pressure. Schultz [21] also indicated it is desirable to have dynamic 

similarity between ship and the model if the resistance of the full-scale ship is predicted.  

The picture can't be displayed.
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However, the above approach is not able to use for turbine blade application of this 

study as the type of roughness in this study is single roughness elements. The dimensionless 

similarity for single roughness element would be different. Schlichting [116] revealed that the 

ratio of the height of the roughness element to the boundary layer thickness, h/δ, is an important 

parameter for the application of such results to actual conditions on a ship’s hull or an aeroplane.  

As the experimental turbine model in this study, used in this investigation was a 1/25th scale 

model of a prototype turbine, and based on this, a computational model was created. In order 

to find sand grain roughness for aerofoil model km-s, the equivalent barnacle height for turbine 

model is needed. Therefore, dimensionless similarity (height of single roughness 

element/boundary layer thickness) between turbine prototype and model cases should be 

applied. 

3. Computational Approach 
 

A two-dimensional NACA63-618 aerofoil with a chord of 0.23m, a span of 0.79m and 

an aspect ratio of 3.4 was selected to allow for a comparison with the experimental study of 

Walker et al. [12] .The upstream inlet is 10c (chord length) from the leading edge of the aerofoil 

and the outlet boundary is placed 15c downstream of the trailing edge of the aerofoil. The far-

field simulation was set from the aerofoil because its effect on the flow around the moving 

aerofoil was negligible [125]. Upper and lower sides of fluid domain and the aerofoil surface 

are walls. The geometry of the NACA 63-618 aerofoil section is shown in Fig. 3.2. The 

NACA63-618 aerofoil points coordinates are presented in Appendix.1. The solid blockage ratio 

as the ratio of the turbine diameter and the domain width is around 0.05.  

Fig.3.3 shows the fluid domain and boundary condition around the aerofoil. The 

Reynolds number is 1.1×106  based on inlet speed. Based on experimental research by Walker 
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et al [12], all drag data collapse and agreed well with XFOIL results. Therefore, the flow region 

on the surface of the aerofoil is considered as predominantly turbulent at this Reynolds number. 

The upper and lower sides of domain featured a no slip boundary condition (the fluid velocity 

is zero relative to the boundary). Symmetry was applied to the left and right sides of domain to 

keep the simulation two-dimensional.  

For the roughness cases, equivalent barnacle roughness, km-s, which was determined by 

equations. 3.2and 3.3, is applied on aerofoil surface. Based on Table3.1, the value of sand grain 

roughness was estimated 0.41mm for the minimum height of Amphibalanus Amphitrite 

barnacle. The roughness height is held constant it was applied on aerofoil surface uniformly 

(the roughness density value is constant). In order to employ the sand grain roughness value 

on aerofoil surface, the NACA63-618 aerofoil surface was chosen as a wall boundary condition. 

Symmetry boundary conditions were set at the sides and top of the fluid domain. Then a steady 

state solution is carried out for roughness case. 

 

Fig.3. 2. geometry of NACA 63-618 aerofoil 

 

The picture can't be displayed.
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Fig.3. 3. Schematic of the computational domain and boundary conditions 

 

The commercial ANSYS CFX 15 solver was used to investigate the performance of the 

aerofoil. The model used was a two dimensional second-order multi block structured Reynolds- 

Averaged Navier-Stokes (RANS) solver. This solves the continuity equation, RANS equations 

(momentum equations) in conjunction with a turbulence model using a finite volume approach: 

 

 

  The low Reynolds number model is considered to be effective and robust for y+=1 and 

30<y+<300 for smooth and roughened cases, respectively. Due to its accuracy and reliability 

for a wide range of flow types, including flows with adverse pressure gradients and separation, 

The picture can't be displayed.
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the Shear Stress Transport (SST) model with fully turbulent model. The details of the model 

are provided by [94]. 

A spatial discretization of the computational domain was achieved using swept 

hexahedral elements. A C-type structure grid was used for the region around the surface of the 

aerofoil. In order to capture the transition boundary layers correctly, the grid must have a y+ of 

approximate to one [95]. y+ is a non-dimensional distance which indicates the degree of 

fineness  of grid in near-wall region. It is defined by the formula: 

         (3.4) 

Therefore, the maximum later of nodes from aerofoil surface is chosen 30 with growth 

rate of 1.2. The distance between the nodes of the first layer and the aerofoil surface (Δy) is 

around 1.2×10-5m. Figs.3.4 shows wall distance from aerofoil surface to the first row of mesh 

in leading edge of aerofoil. 
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Fig.3. 4. wall distance from aerofoil surface to the first row of mesh in leading edge 

 

The mesh independence was verified using the Richardson extrapolation method [96-

98]. Richardson extrapolation is used to calculate a higher-order estimate of the flow fields 

from a series of lower order discrete values. The mesh error estimation based on Richardson 

extrapolation method can be found by the following equations: 

      (3.5) 

       (3.6) 

The picture can't be displayed.
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       (3.7) 

      (3.8) 

        (3.9) 

       (3.10) 

Where ri is convergence ratio, ɛn is force coefficient difference, δ is error estimate of 

finest mesh, CR is Richardson extrapolated value and ɛR is relative error estimate.  

The simulations were conducted at 2° Angles of Attack (AOA) with three different 

grids for the fully turbulent case with no roughness. Coarsening and refinement was made by 

halving and doubling the number of elements respectively in all directions, without changing 

the adjacent to the wall cell height (y+=1). The coarse grid has 75000 elements and the refined 

grid has 300000. Figure 3.5 shows the grid dependence study in comparison with drag 

coefficient for smooth case data [12] at an angle of attack 2°. The drag coefficient converges 

to the experimental value when the number of cells reaches 300000 cells. In addition, the 

difference is below 5% for 300000 cells. As a result, a 300000 cell mesh was chosen for all 

angle of attacks.  



54 

 

 

Fig.3. 5. Mesh sensitivity study at angle of attack 2° 

A grid sensitivity study was performed to ascertain whether the selected grid density 

was of sufficient resolution and that the spatial discretization errors were minimal. The total 

number of elements of the original mesh was halved and doubled to generate two additional 

meshes for this study. Table 3.2 shows grid dependence parameters based on extrapolation’s 

theory; 

 

Table 3. 2. grid dependence parameters based on Richardson extrapolation’s theory 

ri ɛ32 ɛ21 p δ CR 

2 0.005 0.001 2.32 2.5E-5 0.011975 

 

Based on above parameters, the value of relative error for three different mesh cases 

can be found in Fig. 3.6.  
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Fig.3. 6. Relative error for three different number of cells 

4. Results and Discussion  
 

1. Lift and drag coefficients 
 

 The value of lift and drag coefficients with angle of attack for smooth and roughened 

(minimum size of barnacle) cases are shown and numerical smooth case compared with smooth 

experimental results from Walker et al [12] in Fig. 3.7 and Fig. 3.8 respectively.  
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Fig.3. 7. Results of drag coefficient with Re=1.1×106 

 

Fig.3. 8. Results of lift coefficient with Re=1.1×106 

 

The picture can't be displayed.



57 

 

The smooth aerofoil lift and drag coefficients determined from commercial ANSYS 

CFX. 15 solver were compared to the data from Walker et.al. [12]. In the above two figures, it 

is obvious that the smooth numerical results show good agreement with the experimental study 

of Walker et al. [12].  

The roughened aerofoil case is compared to the smooth aerofoil case and Walker et al. 

[12] data in Fig. 3.7 and 3.8. Based on barnacle geometry (Table3.1) and governing equations 

for evaluating equivalent barnacle roughness (Equations3. 2 and 3.3), the ,minimum sand grain 

roughness (ks=0.4mm) was chosen for barnacle fouling case.  

The drag coefficient increased with presence of roughness. The minimum drag 

coefficient at Reynolds number of 1.1×106 increased 112% for ks=0.4mm. The effect of 

roughness was to decrease the lift coefficient curve. The maximum lift coefficient reduced by 

an average of 21% for the maximum equivalent barnacle roughness (ks=0.4mm). In addition, 

based on Fig.3.8, the effect of roughness increases the stall angle from 10° for the smooth 

aerofoil to 14° for the roughened aerofoil. 

 The variation of CL/CD with angle of attack is shown in Fig. 3.9. The ratio of lift to 

drag ratio decreases when the aerofoil is coated by fouling. These results indicates that the lift 

to drag ratio decreases with presence of roughness. The highest lift to drag ratio is for the 

smooth aerofoil and the effect of fouling was to decrease the (CL/CD)max by an average of 60%.   
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Fig.3. 9. The variation of CL/CD with various angle of attack 

 

2. Flow field over aerofoil 
 

In order to illustrate the roughness effect on separation phenomena or turbulent flow, 

pressure distribution around the aerofoil were visualized. Pressure coefficient for NACA 63-

618 aerofoil at 0° and 8° of angle of attack have been plotted for smooth and fouling cases as 

shown in Figs. 3.10 and 3.11 respectively.  
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Fig.3. 10. pressure coefficient graph for smooth and roughness cases at AOA=0°. 

 

 

Fig.3. 11. pressure coefficient graph for smooth and roughness cases at AOA=8°. 

 

As can be seen in Figs. 3.10 and 3.11, the enclosed pressure coefficient area decreases 

with presence of the sand grain roughness. The enclosed area between the pressure coefficient 

curves for each surface is equal to the normal force coefficient of aerofoil. It can be noted that 

an increase in fouling height causes a reduction in normal force coefficient of aerofoil. This 
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contributes to a reduction in lift force by an average of 22% and 25% for fouling case at angles 

of attack of 0° and 8° respectively.  

At low angle of attack (Fig.3.10), except 0.85<x/c<1, the pressure coefficient for 

roughness graph is lower than pressure coefficient for smooth case in suction side. At the 85% 

of chord length, the pressure distribution curve is approximate constant and pressure coefficient 

is more than the value for smooth case. As angle of attack increases (Fig.3.11), it can be seen 

that separation occurs on the suction side over the region of 0.75<x/c<1 due to adverse pressure 

gradient.  

The turbulent kinetic energy contours for NACA 63-618 aerofoil at 0° and 8° of angle 

of attacks have been plotted for smooth and fouling cases as shown in Figure 3.12.  

 

Fig.3. 12. Turbulent Kinetic Energy contours for smooth and roughness case ((ks=0.4mm) 
with Re=1.1×106 a) smooth case, α=0° b) roughness case α=0° c)smooth case, α=8° d) 

roughness case α=8° 

 

Fig. 3.12 shows the turbulence kinetic energy at low (0°) and high (8°) angle attacks 

for 1.1×106. The turbulent kinetic energy increases with fouling height and produces a greater 
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region of turbulent activity in the wake. As shown in these figures, the absolute value of 

turbulence kinetic energy increases over the upper surface of aerofoil when sand grain 

roughness is added on surface. In fact a thicker turbulent boundary layer is apparent on the 

upper aerofoil surface when sand grain roughness is present (Fig. 3.12.b and 3.12d). With 

increase in turbulence kinetic energy, the separation point moves to the leading edge and 

turbulence flow occurs over most of the upper surface.  

 

3. Effect of barnacle roughness on long-term aerofoil 
performance 

 

In this study, barnacles which survive in different environmental conditions and 

colonize a variety of surfaces, were described as one of the most problematic causes of marine 

animal biofouling. This is because a barnacle fouling community can appear on marine surfaces 

in a short-time after marine deployment. According to Polagye et al. [82] and Titah-Benbouzid 

et al. [81], some materials like carbon fibre composite or Aluminium can be colonised by 

juvenile barnacle within 3 months of deployment. Based on research by Mineur et al. [99], 

establishment of adult barnacle fouling community can take place less than one year after 

surface deployment. 

In this study, the Amphibalanus Amphitrite barnacle with the minimum size (Table. 

1)was chosen for evaluating the effect of equivalent barnacle roughness, ks, (Equations. 3.2 

and 3.3) on aerofoil performance. Based on available literature, it is possible for adult barnacles 

to develop on aerofoil surfaces within one year. 

 The hydrodynamic results showed that the NACA 63-618 aerofoil with the minimum 

ks, produced a reduction in the lift coefficient and significant increase in the drag coefficient.  

The computation results indicated that the maximum lift coefficient reduced by an average of 
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21% after 10 months of barnacle fouling attachment. In fact, presence of fouling represents a 

reduction in the performance of aerofoil and consequently marine turbine rotors based on 

aerofoil sections.  

Barnacle roughness development is a significant issue for the long-term performance 

and viability of marine current turbine. Experimental research by Katsuyama et al. [26] in Japan 

showed that barnacle colonization on a three-bladed tidal turbine produced a mass imbalance 

on the rotor section and the marine turbine stopped after eight months.  

5. Conclusion  
 

The effect of simulated Amphibalanus Amphitrite adult barnacle roughness on 

NACA63-618 aerofoil was studied using RANS-based solver. According to sand grain 

roughness equations, equivalent barnacle roughness depends on single roughness geometry and 

surface parameters. As adult barnacles with the minimum size have the most significant effect 

on hydrodynamic performance of marine surface, the adult barnacle with the minimum size 

was chosen in this study. 

In this study, barnacles were described as one of the most problematic causes of marine 

animal biofouling. This is because a barnacle fouling community can produce the roughness 

on marine turbine surfaces. In addition, hard fouling colonization can make an erosion and 

mass imbalance on the blade surface.  Thus these fouling sites on rotor areas can produce a 

reduction in the lift coefficient and significant increase in the drag coefficient and hence 

reduction in hydrodynamic performance.  

The simulation indicated that barnacle fouling development changes the boundary layer 

flow on suction side of aerofoil and leads to a reduction in the lift coefficient and a significant 

increase in the drag coefficient. The effect of roughness was to decreases the maximum lift 
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coefficient by an average of 21% for roughness case. In addition, a thicker turbulent boundary 

layer is apparent on the upper aerofoil surface when sand grain roughness is present. With 

increase in turbulence kinetic energy, the separation point moves to the leading edge and 

turbulence flow occurs over most of the upper surface.  

Barnacle roughness development is a significant issue for the long-term performance 

and viability of marine current turbines. As discussed, minimal barnacle fouling on surface and 

then establishment of fouling community can take place less than a year. Therefore, strategies 

concerning maintenance technology can help to reduce fouling growth and improve long-term 

performance.  
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Chapter 4 
 

 

The performance of a Horizontal Axis Tidal Turbine 
(HATT) with Simulated Barnacle Roughness   
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1. Introduction 
 

Horizontal Axis Tidal Turbines (HATTs) operate using the aerodynamic lift principle 

and the rotor blades are commonly designed using aerodynamic section data. However, the 

flow fields encountered by HATT turbine blades are complex and difficult to predict [100- 

101]. However, blade shape is critical to the aerodynamic performance of wind and tidal 

turbine blades. Therefore, the aerodynamic performance of turbine rotor blades can help to 

interpret the turbine performance. In the previous chapter, it was concluded that biofouling 

roughness has significant effect on aerofoil performance. An increase in roughness element 

causes an increase in drag force and a reduction in lift force.  

Although obtaining the marine performance of tidal turbine experimentally can obtain 

highly reliable data, this kind of method is expensive and requires a great deal of experience 

and time. On the other hand, CFD can obtain various results at low cost and most of the flow 

phenomena can be simulated around the blade easily. Several efforts [43,128-130] have been 

made to evaluate the performance of turbine based on steady state three-dimensional analysis 

by using Reynolds Average Navier- Stocks (RANS) equations. Jo et al[128] investigated the 

hydrodynamic performance of full-scale marine turbine with the ANSYS CFX programme. 

The Shear Stress Transport (SST) turbulence model was used as a turbulence closure. The 

model was assumed to be incompressible, three dimensional and steady state. The numerical 

results showed a good agreement versus the experimental results.  Tian et al [129] studied on 

inflow profiles for predicting wind turbine wake. The steady state three-dimensional Naiver 

Stokes equations were solved. Based on wind wake simulation results the shape and magnitude 

of wake velocity and wake turbulence profiles were significantly affected by different inflow 

profiles. 
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Small particles of dust, dirt and contamination can be transported by the wind and water 

to the height of the turbine rotor. As these particles hit the rotor blade, the smoothness of the 

surface is perturbed, especially at the leading edge, near the stagnation point. In the study by 

Khafallah and Koliub [46], the effects of dust accumulation on a 300kW pitch regulated wind 

turbine, over various operational periods, was examined. As expected, the dust accumulation 

pattern follows the blade profile, with the highest concentration of particles on the leading edge 

and tip of the blade.  

 Several researchers [44, 46, 50-52, 57, 85, 102] have investigated the effect of 

roughness on wind and tidal turbine blades. A study by Corten and Veldkamp [52] on insect 

contamination roughness on wind turbine blades at wind farms in California indicated a 

reduction in turbine rotational speed. In addition, an increase in insect contamination density 

can produce a mass imbalance on rotor surface and hence a reduction in power outputs of these 

turbines. In the study by Freudenreich et al [57], clean and rough configurations of a thick state 

of the art wind turbine blade were investigated experimentally and numerically. Three different 

roughness configurations were examined on the wind turbine blade and aerofoil surface: a trip 

wire 1mm in diameter, 0.6mm zigzag tapes and 60 grain carborundum. Results indicated the 

presence of roughness causes a reduction in the power production of the wind turbines.  

The two largest performance issues for marine current turbines are the roughening of 

the turbine blades due to impact, cavitation or scour due to particulates, and the fouling of the 

turbine blades by marine growth [75]. Biofouling is a unique type of surface roughness and 

leads to several adverse effects on marine turbine blades or ship propellers. 

Hard fouling production by barnacles on tidal turbine rotors increases the surface 

roughness on the blade leading to the losses of hydrodynamic performance and producing mass 

turbine imbalance in the rotor system. Walker et al. [12] investigated the impact of blade 
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roughness on the performance of a two-bladed horizontal axis marine current turbine using a 

combined experimental and numerical approach. In order to model barnacle growth on a tidal 

turbine blade, a thin layer of randomly applied contact cement was applied to a three-

dimensional two bladed turbine which was tested in a towing tank. The towing tank testing 

revealed a 19% reduction in maximum power coefficient from the baseline smooth case, which 

was supported by numerical modelling. Katsuyama et al. [26] compared the long-term 

performance of tidal turbines with and without anti-fouling coatings. Their results indicated 

that the entire tidal turbine surfaces (blades and hub surfaces) without the antifouling coating 

was covered by Megabalanus rosa barnacle after 8 months and disruption of aerodynamics 

were reported. On the other hand, the hub section of tidal turbine with an anti-fouling coating 

only incurred barnacle growth and its blades were protected against barnacle colonization 

 One of the best methods to investigate the barnacle development roughness on tidal 

turbine blade is by representing the roughness as a sand grain roughness. This allows the 

performance to be assessed using wall functions and a computational fluid dynamics. However, 

there have been few studies to investigate the relationship between barnacle growth and sand 

grain roughness height. The irregular distribution of fouling is much harder to model. For 

instance, Khor and Xiao [31] ignored the sand grain roughness parameter in their study. The 

artificial fouling which was applied by setting small conical shapes on the surface in the 

experimental study of Orme et al [27], was modelled and simplified by using the spikes 

resembling in the design section on that study.   

The main aim of this study focuses on the relationship between barnacle characteristics 

and sand grain roughness height to study the effect of barnacle biofouling roughness on turbine 

performance.  A commercial RANS solver using a k-ω model is used to study different 

simulated barnacle roughness on twin-bladed turbine. The numerical results for the smooth 
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case are validated with experimental results from Walker et al. [12] and then compared with 

the rough surface case results. In addition, the relationship between the tip speed ratio and 

surface pressure distributions on the rotor for smooth and roughened cases are investigated.  

2. Equivalent barnacle roughness 
 

In order to quantify the effect of the conical shaped barnacle roughness on a boundary 

layer of a turbine blade, an equivalent barnacle roughness is used to represent the actual fouling 

roughness. Equivalent barnacle roughness was explained well in section 3.2.  

It is worth to mention that the experimental turbine model in this study, used in this 

investigation was a 1/25th scale model of a prototype turbine, and based on this, a computational 

model was created. In order to find sand grain roughness for aerofoil model km-s, the equivalent 

barnacle height for turbine model is needed.  

Many studies [21,133-135] revealed a similarity law scaling procedure for the 

prediction of the effects of a particular roughness on the frictional resistance of any arbitrary 

body covered with the same roughness, utilising the experimentally obtained roughness 

functions of such surfaces. This procedure allows on the predict the impact of a given roughness 

on the frictional drag and roughness function of a plate covered with the same roughness.  

However, for some roughness method such as single roughness element on turbine 

blade, the scaling procedure can have different approach. Schlichting [116] revealed that the 

ratio of the height of the roughness element to the boundary layer thickness, h/δ, is an important 

parameter. In this study, dimensionless similarity (height of single roughness 

element/boundary layer thickness) between turbine prototype and model cases should be 

applied.  
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It is worth to mention that fouling with the minimum size in height or density can have an 

adverse effect on marine performance. Orme et al. [27] and Khor and Xiao [31] investigated 

the effect of barnacles on a NACA 4424 aerofoil. Orme et al. [27] tested a two-dimensional 

aerofoil in a wind tunnel using three supporting struts connected to a force balance. An 

extrusion method was used to develop the barnacle roughness, with small, medium and large 

conical shapes used. The results revealed that the drag coefficient was increased by an average 

of 50% for all low barnacle density (11389 barnacle/m2). Therefore, in order to show the effect 

of presence of fouling on aerofoil performance, the minimum size of barnacle height and 

diameter were chosen to estimate sand grain roughness in this section.  

In order to estimate the sand grain roughness height, density parameter (S/Sf) and ratio 

Af /As should be determined. According to Orme et al [27], fouling density can be defined as 

space length between two neighbouring barnacles. In fact, there is a space between two single 

roughness. Based on this definition, the space between two neighbouring barnacles is around 

one and half barnacle diameter for low density. In addition, in order to generate low fouling 

density, minimum height and diameter of barnacle should be considered (h=5mm and D=6mm). 

It is because of barnacle dimension (height and diameter) is functional of barnacle density. 

There was some assumptions to evaluate these parameters. According to Van Rij et al [93], Sf 

can be defined as a total frontal area of roughness on surface area. Thus, based on low-density 

status assumption, the total number of barnacles can be estimated. The surface reference area 

of a turbine blade, S, was detailed by Walker et. al. [12].The second assumption is related to Af 

/As. based on single barnacle geometry, Af=0.5h*D and As=0.5πD/2(h2+(D/2)2)2 (Fig.4.1). 

Based on these assumptions the shape parameter and sand grain roughness can be found in the 

following table.  
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Fig.4. 1. Computer model of Amphibalanus Amphitrite barnacle. 

 

Based on the typical dimensions of Amphibalanus Amphitrite barnacle [39], turbine 

blade geometry [12] and governing equations (Eq. 3.2 and 3.3), equivalent barnacle roughness 

for blade can be determined for  juvenile and adult Amphibalanus Amphitrite barnacle in 

Fig.4.2   

 

Fig.4. 2. Sand grain roughness result for turbine blade 
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3. Turbine model geometry 

 

The marine current turbine model consisted of a two-bladed rotor with a diameter of 

d=0.8m. This is representative of a 1/25th scale model of a full size turbine. The rotor blades 

are based on a NACA63-618 aerofoil cross section and it was detailed in section (3.3). The 

blades are constructed of 6061 aluminium and were anodised for corrosion resistance [12]. The 

blade geometry is detailed by Walker et al. [12]. 

Point coordinates required to visualize a 3-D model were obtained and the schematic 

diagram of tidal turbine blade was plotted as shown in Fig. 4.3 from the design information of 

Walker et.al. [12] by using ANSYS-Geometry, a 3-D modelling program. The blade geometry 

is detailed in Appendix.2. 

 

 

 

Fig.4. 3. schematic diagram of tidal turbine blade 

4. Performance analysis 
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1. Mesh and grid system  
 

The numerical analysis based on 3-D Reynolds-Averaged Navier-Stokes (RANS) 

equations has been widely used for the flow analysis of turbomachinery. A CFD analysis was 

conducted to estimate the performance of the turbine. The ANSYS commercial CFD code 

(version 15.0) was used for the simulations, focusing on the turbine   in the analysis domain.    

Grid generation was carefully conducted for smooth convergence and reliable results. 

The thickness of the near-wall grid layers was considered according to the application of the 

turbulence model for smooth and roughness cases. An inflation layer (boundary layer) was 

employed to capture the boundary layer on surface of the blade. The number of layers is then 

increased slowly to obtain an appropriate y+. The parameter y+ is a non-dimensional distance 

which indicates the size of the first element within a boundary layer.  

However, inflation option for smooth and roughness case are different. As the flow is 

turbulent, first layer thickness with 10 layers were chosen for smooth case to capture the 

boundary layer. The distance between the nodes of the first layer and the blade surface (Δy) is 

around 1.1×10-4m. For roughness case, on the other hand, as the flow is fully turbulent, the 

total thickness option with 20 layers was selected to capture the boundary layer. The growth 

rate for both cases was chosen 1.2.  It is worth to mention that the y+ is significantly higher 

than the value of sand grain roughness, ks, on turbine blade. This fact allows the chosen 

turbulence model to achieve thoroughly and reasonably [126]. 

The key areas of interest occurred around the rotating blades and hub for accurate 

estimation of the torque and thrust coefficients. Thus, the prism-layer was composed around 

the blade and the mesh generated for rest of fluid domain was an unstructured tetrahedral grid. 

The total number of elements and nodes are 1197785 and 270809 respectively.  
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2. Mesh independence study  

 

Grid generation was carefully conducted to investigate the influence of mesh resolution 

on simulated turbine performance. A grid sensitivity study was performed to ascertain whether 

the selected grid density was of sufficient resolution and to minimise spatial discretization 

errors. 

The mesh independence was verified using the Richardson extrapolation method [96-

98]. Richardson extrapolation is used to calculate a higher-order estimate of the flow fields 

from a series of lower order discrete values. The mesh error estimation based on Richardson 

extrapolation method can be found by Eqs (3.5-3.10).  

Based on mesh refinement theory, Richardson extrapolation has been used with grid refinement 

ratios of r=2 [127]. Thus, the total number of elements of the original mesh was halved and 

then doubled to generate additional meshes.  Fig. 4.4 shows grid dependence study compared 

to experimental data [12] at a tip speed ratio of 6. According to Richardson extrapolation 

parameters (Based on Eqs. 3.5-3.10), the value of relative error for three different mesh cases 

can be found in Figs. 4.4 and 4.5 respectively.  
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Fig.4. 4. Mesh sensitivity study at λ=6 

 

Fig.4. 5. Relative errors of meshing cases 

 

As can be seen in Figs. 4.4 and 4.5, the power coefficient converges to the experimental 

value when the number of cells reaches 1million. In addition, the relative error is below 5% 

when number of cells is 2 million.   

3. Boundary conditions  
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The analysis field was assumed to be incompressible water, three dimensional, and 

steady state. The analysis field was composed of two fluid domains: an internal rotating domain 

encompassed the turbine and an outer domain covered the remaining area of the flow channel, 

as shown in Fig. 4.6. The blockage ratio that is defined as the ratio of the rotor swept area to 

the external domain cross-section are, is approximately 0.05.   

 

Fig.4. 6. Computational model for performance analysis. 

 

The outer stationary domain area used an opening condition that was similar to the 

environment of the towing tank. The rotor was represented by a wall condition with non-slip 

surface as the sand grain roughness is applied on that. A free stream velocity was applied to 

the inlet for smooth and roughness cases. A speed of 1.68 m/s was chosen to match the 

experimental condition [12]. In the rotating domain, the rotation velocity and upstream velocity 

are linked by tip speed ratios. As the inlet velocity is constant, the angular speed can be adjusted 
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to the required tip speed ratio over the range of 5<λ<10. An interface was used to connect the 

two domains. The turbulence model performed analysis by considering the steady flow field 

around the aerofoil using the k-ω model. The k-ω model is well regarded for predicting the size 

and onset of flow separation in an adverse pressure gradient [126]. Finally, sand grain 

roughness is applied as wall roughness application on turbine blades for fouled case. Table.4.1 

shows the defined boundary conditions.  

 

 

Table 4. 1. Boundary conditions 

Description Analysis condition 

Working fluid Water (isothermal, 25°C) 

Inlet Velocity (1.68m/s) 

Wall Non-slip wall 

Outlet Normal pressure (1 atm) 

Interface area Frozen rotor 

Turbine Wall (double blades) 

Turbulence model k-ω 

 

4. Hydrodynamic performance of turbine  

 

Since tidal turbines convert the energy of a free flowing water to mechanical power, 

their performance can be evaluated by calculating the energy conversion efficiency. The 

turbine power characteristic is affected by factors including the current speed, rotor diameter, 

blade area and rotational speed. The power and thrust coefficients of a HATT are defined by 

equations 4.1 and 4.2. The tip speed ratio is a dimensionless value representing the ratio of the 

rotational speed to the inflow velocity, as shown in equation 4.3. The pressure distribution 

around the aerofoil can be defined using equation 4.4. 
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Where, CP, CT, and CPress are power, thrust and pressure coefficient respectively. R is 

radius of blade, ρ is fluid density, U is fluid velocity, A is cross section area, Q is torque, ω is 

angular velocity and P is static pressure.  

5. Results and discussion  
 

1. Performance curves 
 

The value of thrust and power coefficients with tip speed ratio for smooth and 

roughened (minimum size of barnacle) cases are shown and compared with smooth case of 

experimental results for [12] in Figs. 4.7 and 4.8 respectively. In addition, the output power of 

two bladed tidal turbine for smooth and roughness cases is plotted in Fig. 4.9.  
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Fig.4. 7. Thrust coefficient at U=1.68m/s 

 

 

Fig.4. 8. Power coefficient at U=1.68m/s 
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Fig.4. 9. Power curve at U=1.68m/s 

 

The numerical turbine performance curves as a function of tip speed ratio are compared 

with experimental data which was tested in towing tank [12]. As can be seen in two figures 

(Figs 4.7 and 4.8), it was obvious that the numerical results show good agreement with the 

experimental data for smooth case. Based on numerical results, the relative difference for thrust 

and power curves are estimated 3.1% and 3.4% respectively. 

The numerical turbine performance curves including equivalent barnacle roughness, ks, 

case is compared to the smooth case and Walker et al. [12] data in Figs. 4.7 and 4.8. Based on 

barnacle geometry (Fig.4.2) and governing equations (Eq. 3.2,3.3), the minimum equivalent 

barnacle roughness, ks-max, was chosen for barnacle fouling case.  

The thrust coefficient decreased with presence of roughness. According to Fig.4.7, the 

average thrust coefficient reduced by an average of 16% for the minimum equivalent barnacle 

roughness. At tip speed ratio of 6, the trust coefficient was reduced from 0.72 to 0.59, a 

reduction of 18% in numerical curves. In addition, the effect of roughness was to decrease the 
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power coefficient curve (Fig.4.8). The maximum power coefficient reduced by an average of 

12% when roughness is presence. The maximum power coefficient reduced from 0.42 to 

around 0.37 at λ=6 when sand grain roughness was added on rotor. 

The output power curves including equivalent roughness case is compared to the 

smooth case in Fig. 4.9. The effect of sand grain roughness was to drop the power curve. As 

can be seen the maximum power was generated at tip speed ratio of 6 for both cases(ω=25rad/s). 

the maximum power was reduced from 0.5kW to 0.41kW.  

2. Surface Pressure Distribution  
 

The simulated pressure on the front and back sides (pressure and suction sides) of the 

turbine blade for smooth and roughness cases are visualized in Figs. 4.10 and 4.11. These cases 

are representative of high and low rotor blade loading and are shown here to highlight the effect 

of roughness on the surface pressure distributions. 
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Fig.4. 10. Rotor pressure distribution: a) smooth case, λ=5 b) roughness case (ks=1.35mm), 
λ=5 c)smooth case, λ=9 d)roughness case (ks=1.35mm), λ=9 (Pressure side). 
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Fig.4. 11. Rotor pressure distribution: a) smooth case, λ=5 b) roughness case (ks=1.35mm), 
λ=5 c)smooth case, λ=9 d)roughness case (ks=1.35mm), λ=9  (Suction side). 

 

For the acting face of turbine shown in Fig4.10.a and Fig.4.10.c (smooth case only), as 

the tip speed ratio increases, the pressure in the region near the tip and the leading edge 

continues to increase. At tip speed ratio 9 (Fig. 4.10.c), low pressure occurs towards the rotor 

tip. The angle of attack on the rotor blade reduces as tip speed ratio increases and this 

corresponds to reduce turbine load. For the suction side of the turbine (Fig. 4.11.a, Fig.4.11.c), 

low pressure continues to increase by increasing tip speed ratio.  
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Fig.4.10.b and Fig.4.10.d show the simulated pressure in the pressure side of turbine 

including the sand grain roughness. Comparing the smooth case, the pressure near the tip and 

leading edge of blade for roughness case increases gradually (Fig.4.10.b). In the suction side, 

low pressure increases around the leading edge when sand grain roughness was added on the 

blade surface (Fig4.11.b and Fig.4.11.d). As tip speed ratio increases, low pressure continuous 

to increase (Fig. 4.11.d).  

  Based on turbine blade geometry [12], the region between 25% to mid span of blade 

is the thickness foil. Therefore, the tip speed region can be the critical area for hydrodynamic 

performance. 75% of blade span which indicates the low pitch angle, for both pressure and 

suction sides was highlighted by black line in Figs. 4.10 and 4.11.  As can be seen, the low 

pressure increases considerably for the suction side when sand grain roughness was added on 

the blade. Comparing the pressure side with the suction side, the maximum pressure difference 

occurs in this region for roughness case. 

Pressure difference between pressure side and suction side can be higher by increasing 

of sand grain roughness height. In fact, the maximum pressure difference between both sides 

can be related to barnacle colonization in the tip blade. Barnacle colonization of the area can 

have an adverse effect on turbine rotor such as corrosion. The corrosion rate can be accelerated 

in the thin area (tip area) of a turbine blade when roughness material is presented.  

3. Effect of fouling on marine turbine performance 
 

In this study, two-bladed tidal turbine for smooth and fouled cases was modelled in the 

commercial ANSYS CFX. 15 software. In computational model, strong cement roughness of 

barnacle was presented by equivalent barnacle roughness parameter, ks,. Based on governing 

equations (Eq.4.1 and 3.3), equivalent barnacle roughness is functionally related to barnacle 
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geometry size, Af and As, and also associated with ratio of roughness density, S/Sf. According 

to life cycle of barnacle, the adult barnacles produce a stronger cement for themselves and a 

stronger cement causes an increase in barnacle dimension [37, 105-106]. Procedure of life cycle 

of barnacle can be related to equivalent barnacle roughness parameter. Therefore, real barnacle 

roughness development may be represented by the equivalent barnacle roughness, ks,.  In 

addition, a stronger cement shell leads to permanent settlement on marine surfaces  

In the case of marine renewable energy equipment, barnacle roughness has an adverse 

effect on long-term performance. A kind of strong cement which was produced by larva in 

backside of barnacles, causes the high frictional resistance and leads to an increase of weight 

and subsequent potential speed reduction and loss of annual performance. Results of 

experimental research by Katsuyama et al. [26] in Japan revealed barnacle roughness 

development make a mass imbalance profile on rotor profile of tidal turbine and tidal turbine 

is stopped if barnacle colonization continues.   

For that purpose, short-term cleaning and maintenance of tidal turbine system may be 

required to ensure long-term performance. In order to barnacle removal technique, some 

marine current turbines, such as SeaGen, can be cleaned and maintained above sea level [84]. 

Designing and manufacturing tidal turbine rotor with the materials with limited surface fouling 

like Carbone Fibre Composite material can minimise corrosion rate through the thin layer of a 

turbine surface [81-82]. 

6. Conclusion  

 

The effect of Amphibalanus Amphitrite barnacle roughness on a two-bladed horizontal 

tidal power turbine was studied using ANSYS CFX, a commercial CFD code. A numerical 

approach for three dimensional regular roughness shape is described to calculate the equivalent 
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barnacle roughness, ks, rough surfaces with cone shaped size. Based on surface roughness 

density and single barnacle geometry, the equivalent barnacle roughness is determined. The 

results indicated that an increase in barnacle geometry and roughness density ratio, S/Sf, causes 

an increase in equivalent barnacle roughness , ks,.  

The thrust and power coefficient curves show that the numerical results of smooth case 

agree well with experimental data for Walker et al. [12]. Presence of fouling causes a reduction 

in thrust and power coefficients. Effect of roughness was to decrease the thrust curve by an 

average of 16% for roughness case. Additionally, the maximum power coefficient reduced 

from 0.42 to around 0.37 at λ=6 when sand grain roughness was added on rotor surface.  

Numerical results from fouling case revealed that the presence of equivalent barnacle 

density, ks, causes a reduction in power and thrust coefficient of tidal turbine. Based on the 

governing equations for evaluating sand grain roughness (Eqs 3.2 and 3.3), sand grain 

roughness is functional of fouling density and single roughness dimension. In fact, low fouling 

density or presence of barnacle causes a reduction in power performance of tidal turbine.  
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Chapter 5 
 

 

Drag Measurements on a Flat Plate with Artificial 
Barnacle Fouling  

 

 

 

In order to advance understanding of the effect of fouling density characteristics on 

drag force, a recirculating water tunnel with artificial barnacles (scale model) was used to 

investigate the flow over smooth and fouled test plates. There are three different fouling test 

plates: low, medium and high barnacle density. In order to generate the fouling density on a 

flat plate, artificial models were affixed and replicated with different fouling density on the flat 

plate. The height of single roughness element is constant for all fouling status. Fouling density 

is defined as a ratio of the total barnacle surface area to the surface area of a flat plate. Artificial 

barnacle samples were used to generate the fouled plates.  

The drag coefficient results were obtained by load cell drag equipment. The drag 

coefficient results of smooth case are compared with experimental data which was tested in the 

same water tunnel by Andrewartha [110]. The drag coefficient results, including artificial 

barnacles cases are compared with drag coefficient result of smooth case. In order to estimate 

the drag coefficient for fouling case, the equivalent sand grain roughness should be determined 

(based on Eq.5.10). As single roughness element roughness method was chosen to generate 

fouling for flat plate, the equivalent sand grain roughness is functional of physical dimension 

of single roughness element and fouling density. Therefore, it is necessary that the sand grain 
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roughness of experimental results compare versus the sand grain roughness of geometrical 

formulation. 

It is worth to mention that the equivalent sand grain roughness for 2D aerofoil surface 

and 3D tidal turbine blade (CFD chapters) were determined by geometrical formulation. 

Therefore, this comparison can show the connection between geometrical technique used for 

computational method and classical equations used in experimental test. In addition, this 

comparison can help to reveal the importance of some roughness characteristics of roughness 

communities such height and density.  
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1. Introduction  
 

In the previous chapters, the effect of biofouling roughness (barnacle roughness) on 

marine renewable energy surfaces was reviewed and analysed numerically. However, detailed 

analysis of turbulence structure around groups of barnacles and also the relationship between 

the fouling density community and drag coefficient is lacking.  

Much research has been used the sand grain material to show the effect of biofilm on 

drag in the marine environment [12, 17, 21, 27, 31, 107, 105-109], Schultz and Swain [105] 

Schultz [106] made turbulent boundary layer measurements on the surfaces in a recirculating 

water tunnel. A smooth surface, two sandpaper surfaces with different grits and two surfaces 

covered with filamentous green algae grown over a 30 day period were tested. A significant 

increase in the skin friction coefficient was measured for both of the fouled plates (125% and 

110% increase on smooth plate values). Andrewartha [110] conducted detailed boundary layer 

measurements on freshwater biofilms in a recirculating water tunnel. A painted sand grain 

roughened test plate was developed to investigate biofilm growth over rough (coarse) surfaces. 

Significant increases in local skin friction coefficient were measured (210% for a rough plate) 

when compared with a smooth case.  

However, there have been few studies to create an artificial biofouling on plates due to 

ecological challenges. High resolution Particle-Image Velocimetry was used to measure the 

flow over barnacles immersed in a turbulent boundary layer by Barros et al [111]. Two 

configurations were investigated: single barnacle configuration and a regular array of barnacles. 

Quadrant analysis revealed important structural behaviour, especially when only considering 

the strongest Reynolds shear stress events. It is likely that these events are linked to contribute 

to both larval settlement and waste removal.  
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Therefore, the last method (creating the artificial biofouling material on a test plate) can 

have some benefits. Understanding the flow around these fouling communities will provide 

insight regarding the roughness scales that contribute significantly to the drag, with the aim of 

developing predictive models of drag increase due to specific fouling communities.  This study 

aims to quantify the drag coefficient of rectangular plates fouled with artificial Amphibalanus 

Amphitrite barnacles using a force balance load cell in a recirculating water tunnel. Based on 

barnacle density characteristics which are defined as the ratio of the total barnacle surface area 

to the test plate area, three different densities will be investigated: low, medium and high 

densities and their results will be compared with the smooth plate data.  

Based on drag measurement results and single roughness dimension parameters, the 

sand grain roughness value for each plate will be estimated. It is worth mentioning that the drag 

coefficient results for the rough test plates is functional of the virtual origin of boundary layer. 

Because of conditions of test in this study are same, as test conditions of Andrewartha [110], 

thus the correction for the virtual origin of the boundary layer by Andrewartha [110] will be 

used. In addition, an equivalent sand grain value for cone shaped roughness element was 

estimated using an empirical correlation for three dimensional roughness element. Based on 

these parameters, equivalent sand grain roughness will be predicted for turbine blade and power 

generation for different fouling density will be calculated numerically.  

2. Barnacle roughness density  
 

Many studies have revealed that barnacle attachment on marine surface reduces 

hydrodynamic performance [27-28, 30-31, 105]. Different types of barnacle characteristics, 

including adhesion, height, thickness and density have a significant effect on the hydrodynamic 

parameters of surfaces colonised by barnacles.  
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Barnacle colonization on a marine surface leads to permanent settlement. Permanent 

settlement helps to produce a stronger cement for adult barnacles. In addition, permanent 

settlement has a significant effect on the increase of the development of cypris larvae. An 

increase in the number of barnacles and the rate of barnacle growth causes an increase in 

barnacle fouling density. Thus, barnacle density is one of the most important fouling 

characteristics and has a significant effect on marine surface roughness.  

Increasing barnacle density leads to an increase in drag coefficient force and a reduction 

in aerofoil performance. Orme et al. [27], Khor and Xiao [31] investigated the effect of 

barnacles’ roughness density on a NACA 4424 aerofoil.  Orme et al [27] tested a two-

dimensional aerofoil in a wind tunnel using three supporting struts connected to a force balance. 

An extrusion method was used to develop the barnacle roughness, with low, medium and high 

artificial barnacle densities. As the height of barnacles for the three different cases was constant, 

barnacles with the highest density produced the highest drag coefficient.  

In this study, the shape and size of each barnacle is constant. However, fouling density 

(centre to centre length between two neighbouring artificial barnacles) is varied. Fig. 5.1 shows 

the shape size and spacing for the two barnacles considered in this part of the study. A published 

correlation is used to estimate an equivalent sand grain roughness ks from the barnacle fouling 

arrangement shown in Fig.5.1. 
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Fig.5. 1. cone shaped roughness element and spacing for the two roughness cone shapes 

 

As shown in Fig.5.1, the s parameter changes with fouling density (it will increase when 

low density is changed to medium or medium to high density). The parameter n is the number 

of the roughness element along the side of the test plate. In order to generate a different fouling 

density status(low, medium and high) on a test plate, a dimensionless quantity is used; 

lb

D∑
= 4

2π

λ          (5.1) 
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where D, l and b are the barnacle diameter, length and width plate respectively. Therefore, the 

dimensionless factor λ has the highest value for the high density case. 

3. Procedures to produce artificial barnacle 
1. Barnacle scale  

 

In the previous chapters, it was discussed that in order to determine the impact of a very 

slight coating roughness material on the frictional drag of a plate, some non-dimensional 

analysis which is related to drag coefficient, may be appropriated. However, for some 

roughness methods in which a single roughness element is applied, the ratio of the height of 

the roughness element to the boundary layer thickness can play an important role [116].  

An important consideration in this study is the height of the barnacle elements relative 

to the boundary layer thickness. The boundary layer grows on the blade surfaces of turbine 

rotor blades, starting at the leading edge and reaching the thickest at the trailing edge. The skin 

friction coefficient increases with disturbances to the boundary layer due to roughness and the 

transition location moves toward the leading edge. An increase in skin friction causes an 

increase in the drag coefficient and thereby affects the performance of the aerofoil. Therefore, 

in this experiment, it is necessary to find the appropriate value of artificial barnacle height for 

the test plate because the interaction of artificial barnacles on the test plate should produce 

similar effect to roughness on the aerofoil surface.   

In order to determine the required height of an artificial barnacle for the test plate, the 

concept of dimensional similarity was applied (dimensionless parameter) between the turbine 

blade and the test plate. A dimensionless parameter can be defined as the below: 

(hbarnacle/δ)test plate=(hbarnacle/δ)turbine surface  



93 

 

 In order to determine the unknown value (height of an artificial barnacle for a test plate), 

the barnacle height should be estimated. In Chapters 3 and 4, the barnacle height was used to 

calculate equivalent barnacle roughness for the fouling surface of a blade. Based on the adult 

Amphibalanus Amphitrite barnacle size, the height of a fully grown barnacle is 25mm [39] and 

equivalent sand grain roughness is estimated to be ks = 0.4mm. The second step is to evaluate 

the boundary layer thickness of the turbine blades and the water tunnel plates. The boundary 

layer thickness of a full size turbine was simulated and estimated to be around 16mm around 

the trailing edge of rotor blade. According to previous research that was carried out by 

Andrewartha [110] on the same water tunnel system, boundary layer thickness was estimated 

35 mm for a test plate. Therefore, the dimensionless similarity can be used to determine the 

unknown value (the height of an artificial barnacle for a test plate), the height of an artificial 

barnacle should be around 53mm.  

2. Single barnacle setup  

 

The barnacle model was obtained by 3-D scans of a real organism (Adult Amphibalanus 

Amphitrite barnacle) which was collected by the Institute of Marine and Antarctica Study 

(IMAS) researchers in the Tasman sea. The barnacle was scanned using a David 3D scanner 

Pro (version 4.5.2) at the Central Science of Laboratory (CSL). The 3D scan procedure of a 

sample of a real sample adult Amphibalanus Amphitrite barnacle is shown in Fig.5.2. 
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Fig.5. 2. 3D scan procedure of real sample adult barnacle 

 

The barnacle sample was 3D printed by a UP- MINI printer. It is worth mentioning that 

the barnacle model was scaled up to show the boundary layer thickness on the samples. The 

material used for 3D sample was ABS-plastic which combines the strength and rigidity of 

acrylonitrile and styrene polymers with the toughness of polybutadiene rubber. Fig. 5.3 shows 

the ABS plastic material and the barnacle sample through the 3D printer.  
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Fig.5. 3. a) the ABS plastic material b, c) the barnacle sample through the 3D printer 

 

As three different fouling cases (low, medium and high fouling densities) are 

considered in this study, around 100 artificial barnacle samples for three plates are needed. In 

order to replicate more samples, a mould and cast technique is used.  

In order to produce the barnacle’s mould, silicone material was considered. PINKSIL 

silicone material was chosen for making the mould as it has low viscosity and more tear 

strength. The physical properties of PINKSIL are provided in Table.5.1[112]. 

 

Table 5. 1. The physical properties of PINKSIL [112]. 

Physical properties of PINKSIL silicone 

Colour Pink 

Specific gravity 1.10 

Hardness 20, after 60minutes 

Tensile strength (N/mm2) 3.50 

Elongation at Break (%) 400 

Tear Strength (N/mm) 4.5 
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In the moulding process, a metal cylinder was used to surround the barnacle. The edge 

of the cylinder was sealed with clay material and then the barnacle sample was placed in the 

middle of the cylinder.       

A polyester resin with a catalyst was chosen to produce an artificial barnacle. In order 

to generate a sample, 200mm litter resin is mixed with 2mm litter of catalyst liquid and then 

the mixing liquid was pour into the silicone mould. Fig.5.4 shows a sample of an artificial resin  

barnacle. 

 

Fig.5. 4. a sample resin artificial barnacle 

3. Barnacle array setup  
 

The same barnacle model was used to create the array. The barnacles were arranged in 

a staggered fashion for all fouling density cases. The fouling density can be determined by  

Equation.5.1. Table 5.2 shows more details for the fouling density of the test plate.  
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Table 5. 2. fouling density details 

 Low density Medium density High density 

Test plate area=l*b, l=997mm & b=597mm & t=3mm, 

D(mm) 103 103 103 

h(mm) 53 53 53 

N(-) 8 14 22 

λ(-) 0.148 0.259 0.407 

 

As can be seen in Table.5.2, in all cases the size of the artificial barnacles is constant. 

However, the total number of samples (N) on a test plate is increased by changing density from 

low to high. The barnacles were spaced apart one another by one barnacle dimension in the x-

y direction. The space between the centre to the centre of two neighbouring barnacles was a 

two adult barnacle diameter, one adult diameter and half diameter for low, medium and high 

fouling densities respectively.  

In order to affix the samples on a test plate, resin and catalyst liquid were used. There 

was a thin layer surface of Jotamastic epoxy coating on a test plate and it was impossible to 

glue the barnacle on to this coating. Thus, the location of each sample on a test plate was 

marked and then the specific place was scratched and then glued. The load drag cell should be 

calibrated for each test plate (smooth and fouled plates). The load cell was calibrated insitu 

using a thin steel cable and a system of low friction pulleys. As the thin steel cable is located 

in the centreline of the test plate, there were not any barnacle samples were attached to the 
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centreline area of the test plate ( There was no connection between thin steel cable and barnacle 

samples). Fig.5.5 shows the barnacle array arrangement for low, medium and high fouling 

densities on a test plate.  

 

Fig.5. 5. Barnacle array arrangement for low, medium and high fouling density on a test plate 

 

4. Experimental facilities 
1. Water tunnel components  

 

The water tunnel is driven by a Regent horizontal split-case pump (model 350-S16) 

with a 7kW AC 3-phase induction motor, designed for low head and high flow. The freestream 

velocity in the working section ranges from 0.3m/s to 2.0m/s. 

De-swirl vanes are fitted immediately downstream of the pump and at the start of the 

return pipe to reduce swirl and secondary flows introduced by the pump. There are two 

diffusers to increase the flow area to the cross-section required for the two-dimensional 

contraction and to reduce losses in the flow conditioner. The first stage diffuser also transforms 

the flow from a circular to a rectangular cross-section. Cascading bends are used to turn the 

flow and are fitted with vanes to ensure an even flow distribution.  
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The flow conditioner is installed upstream of the contraction at the maximum cross-

section to reduce energy losses. It consists of two sections of honeycomb and steel mesh, 

separated by 300mm. The honeycomb consists of closely packed 60mm long circular tubes of 

6mm diameter and is used to straighten the flow and reduce turbulence in the working section.  

A stainless steel mesh with a 3.15mm square aperture is used both to hold the 

honeycomb in place and to reduce the turbulence. The two-dimensional contraction has a 

contraction ratio of 3:1 and is 2m in length. It accelerates the flow to the working section, 

reduces turbulence, and creates uniform flow. Fig. 5.6 details the water tunnel components.  

 

Fig.5. 6. water tunnel components [113]. 

 

The working section is constructed of 30mm thick Perspex sheet. Fig. 5.7 details the 

dimensions and plug locations of the working section [113].Test plates (smooth and fouled 

cases) measuring 997mm length and their widths being 597mm and are attached to a Perspex 
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backing plate which in turn is suspended by four flexures attached to the working section lid. 

The Perspex top panel is securely clamped to the lid of the working section and sealed using a 

rubber seal.  

In order to control the Reynolds number and environment control, a cooling system for 

the water tunnel was installed for water tunnel. The temperature of the water in the water tunnel 

could not be maintained at a constant temperature due to the heat input from the 7kW pump 

and the ambient air temperature. 

This inability to maintain a constant temperature means that fluid properties such as 

density and viscosity are variable. It is imperative that a constant Reynolds number is 

maintained during a boundary layer traverse to ensure that the mechanisms for interaction 

between the surface being tested and the near-wall boundary layer are maintained. It is also 

vital that measurements are able to be completed at the same Reynolds number for different 

test plates to allow results to be compared.  
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Fig.5. 7. Working section details [113]. 

 

 

All data were recorded by LabView programs. The water tunnel was set up to take two 

different categories of measurements: boundary layer pressure profiles and total drag 

measurements.  

1. Temperature  

 

Water temperature measurements were taken concurrently with all other measurements. 

This enabled water density and viscosity to be determined and hence the relevant Reynolds 

numbers may be accurately obtained and monitored for each set of measurements. A platinum 

resistance temperature probe with 4-20 mA output is upstream of the working section in the 

flow conditioner. The output temperatures were calibrated with a thermometer placed in the 

working section under both zero flow and flow conditions.  
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Water density and dynamic viscosity are determined from the measured absolute 

temperature, using the following correlations, which are polynomial fits to tabulated data for 

water at atmospheric pressure [114]: 

8.99907771.010*850.810*673.5 2335 ++−= −− TTTρ      (5.2) 

001773.010*264.510*87.6 527 +−= −− TTµ     (5.3) 

2. Pressure 

Pressure measurements were obtained using three Validyne variable reluctance 

pressure transducers, which measure the pressure differential. A key feature of the Validyne 

transducers is the exchangeable diaphragm which allows the pressure range to be selected to 

match the experimental conditions.  

The pressure transducers were connected to the Valydyne Carrier Demodulator. Two 

of the demodulators provide a voltage output directly to the data acquisition system. The other 

demodulator provides a current output which is transformed to a voltage using a purpose built 

current-to-voltage converter. The voltage is then shifted by a precision volt level shifter to the 

range required by the data acquisition system.  

The pressure differential across the contraction was measured concurrently with the 

majority of measurements using a dedicated pressure transducer and was used to remove any 

temporal variations during long measurement periods.  

Time averaged mean velocity was measured using a Pitot probe and static pressure 

tapping located in the floor of the working section. The static wall pressure tapping was located 

in the same plane as the Pitot probe, but was offset 50mm longitudinally from the Pitot probe 

centreline in the spanwise direction to enable the calculation of the local velocity without flow 

disturbance from the Pitot probe.  
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The velocity, u, can be determined from the stagnation pressure measured by the Pitot 

probe, Ppitot, and the static pressure, Pstatic,  

𝑢𝑢 = �
2(𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝜌𝜌
        (5-4) 

3. Total drag  

 

 A floating element force balance was used to determine the total drag acting on each 

test plate. The test plates form the roof of the working section and are attached to a Perspex 

backing plate which in turn is suspended by four stainless steel flexures attached to the working 

section lid. The beam load cell was attached to the lid of the working section and linked by a 

load transfer rod to the Perspex backing of the test plate. The flexures ensure a one-dimensional 

transfer of force through the load transfer rod to the load cell. The load cell is connected to a 

stain gauge transmitter, which in turn is connected to the data acquisition system. 

2. System Calibration  
 

The pressure transducers were calibrated using water filled syringes mounted to the 

Mitutoyo Dial Height Gauge before running the system. The differential water level was 

adjusted manually by that gauge and the corresponding voltage level recorded in both the 

positive and negative ranges. As each transducer contains exchangeable diaphragms (pressure 

sensing elements), the calibration curve for each transducer is different.  A typical calibration 

chart is given in Fig.5.8 for three pressure transducers.  
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Fig.5. 8. A typical calibration of pressure transducers 

The output of the load cell is a voltage, which is calibrated by applying a known force 

to the load cell. The load cell was calibrated insitu using a thin steel cable and a system of low 

friction pulleys. It is worth mentioning that this setup was the same for fouling cases and 

barnacle samples were not attached in the steel cable area of the test plate (Fig.5.9). Weights 

were added in 50gr increments, with a zero load reading taken between each loaded reading, 

and the voltage output recorded. A calibration was completed each time a test plate was 

changed over. An example of load cell calibration is given in Fig.5.10 for a load cell.  
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Fig.5. 9. load drag cell calibration 
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Fig.5. 10. A typical calibration of load drag cell 

5. Total drag analysis  
 

The drag coefficient results were obtained by using the floating element force balance. The 

drag coefficient for a smooth plate of width b and length l is defined by [116]. 

blU
DCD 25.0 ρ

=         (5.5) 

The relationship between the drag coefficient and the Reynolds number for a turbulent 

boundary layer on a flat plate is given by the following equation [116];  

2.0Re074.0 −= lDC  For 5*105<Rel<107     (5.6) 

Where Re=ρul/ʋ and u is the streamwise velocity. The streamwise velocity can be 

determined by equation.5.4. The dynamic and kinematic viscosity can be obtained by equations. 

5.2 and 5.3. 
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Equation.5.6 is based on the assumption that the origin of the turbulent boundary layer 

is at the leading edge of the plate. However, the problem of this study is that a fully turbulent 

boundary layer was already established on the tunnel wall upstream of the test plate on which 

drag measurements were obtained. In order to solve this issue, a turbulent boundary layer in a 

zero pressure gradient can be postulated. It grows from a virtual origin at distance l1 upstream 

from the leading edge of the test plate. Fig. 5.11 shows the boundary layer development over 

a test plate [113].  

 

Fig.5. 11. boundary layer development over a test plate [113]. 

 

The relationship between boundary layer thickness and distance from the origin of the 

boundary layer is given by Schlichting [116]: 

𝛿𝛿 = 0.37𝑅𝑅𝑅𝑅𝑙𝑙−0.2        (5.7) 

The virtual origin of the boundary layer can be determined by varying l in Eq. 5.7 until 

the boundary layer thickness matches a measured boundary layer thickness at a known location. 

To estimate the virtual origin of the boundary layer, mean velocity profiles will be required. In 

the present study the virtual origin equation (Eq.5.8) which was obtained by Laser Doppler 

Velocimetry (LDV) by Andrewartha [110], is used to calculate the drag coefficient. The 

procedure of virtual origin estimation has been detailed by Andrewartha [110].  
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9239.01842.01 += Ul       (5.8) 

For the smooth plate case only, the theoretical drag on the test plate alone could be 

obtained using Equation. 5.9: 

)(
2 1122

2

lClCUbD DDtheor −= ρ       (5.9) 

Where the drag coefficient for the region upstream of the test plate to the virtual origin 

(l1) and the region including the test plate and virtual origin (l2) are determined using the 

respective lengths and Equation.5.9.   

However, this situation is more complex for fouling test plates. The relationship 

between an equivalent sand grain roughness and a rough wall skin friction coefficient for the 

hydraulically rough flow regime is given by Equation. 5.10 [116]: 

CD=(1.89+1.62 log l/ks)-2.5 for 102 < l/ks < 106    (5.10) 

It is worth mentioning that for very small roughness as well as plates with single 

protuberances, such as rivet heads, welded seams, joints, this equation can play an important 

role to determine the drag coefficient.     

     

6. Results and Discussion  
1. Drag measurement results for smooth case (Test 

validation) 

 

The value of drag coefficients of the flat plate for a smooth painted case (Jotamastic 

epoxy coating on a test plate) is shown and compared with the smooth case of experimental 
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results from Andrewartha [114] in Fig. 5.12.  It should be noted that drag measurement were 

conducted at 50 rpm increments in the pump speed from 150-650 rpm at 1kHz.  

 

Fig.5. 12. drag force results for smooth case 

 

Data in Fig 5.12 show the drag coefficient results for a smooth plate and the results 

were compared with the data from Andrewartha [110]. At the low Reynolds number 

(Re<0.8*106) there is a significant variation between smooth case results and Andrewartha’s 

[110] data. However, at Re> 0.8*106 the smooth plate data compared very well with the smooth 

plate data and experimental results of [110]. The average relative difference between the 

experimental results and the data for Andrewartha [110] for Re>0.8*106 is 4.8%. Table 5.3 

provides more details about the experimental results of smooth plates in a water tunnel. 
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Table 5. 3. results of smooth plate 

Pump speed  

(RPM) 

CD 

(Smooth case) 

CD 

Andrewartha [110] 

Relative  

Error(%) 

150 0.005775 0.005170891 0.104670464 

200 0.005368 0.003609084 0.32765373 

250 0.004405 0.004056173 0.079184651 

300 0.004094 0.003932308 0.039504442 

350 0.004208 0.00379308 0.098500874 

400 0.004154 0.003642595 0.12310224 

450 0.003994 0.003733247 0.065285127 

500 0.003801 0.003705432 0.025061454 

550 0.003796 0.003661088 0.035663585 

600 0.003685 0.003639018 0.012435395 

650 0.003617 0.003646099 0.007971276 

 

A repeatability test was performed using the smooth test plate to find the typical 

deviation of measured drag from the mean more easily. The uncertainty analysis of the drag 

coefficient of a flat plate can be rated to the extrapolation methods of resistance measurement 

[131] or to the uncertainty procedure of drag measurement through the wind tunnel [132]. 

Uncertainty associated with CD at a given condition is caused by uncertainties in the 

measurement process and those induced by the curve fit procedure. This requires that the 
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uncertainties associated with each factor be propagated in order to arrive at a final result. The 

method chosen here is the Taylor series method of error propagation.  

    In order to find uncertainties, drag measurements were made 10 times at 11 flow 

Reynolds numbers. Uncertainty results for 10 repeatability tests are given in Appendix.3 and 

shown in Figure 5.13. 

 

 

Fig.5. 13. Ten repeatability tests for drag coefficient results 

2. Drag measurement results for fouling cases 
 

Three different artificial fouled surfaces were tested in a water tunnel. The barnacles 

were arranged in a staggered fashion, in which the plan form roughness density was set to 

λ=0.148, 0.259 and 0.407 for low, medium and high density respectively. The different fouling 
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plates can be shown in Fig.5.14. Table. 5.4 provides more details about barnacle arrangement 

on a test plate: 

 

Fig.5. 14. different fouling plates a)low fouling density (λ=0.148) b) medium fouling density 
(λ=0.259) c) high fouling density (λ=0.407) 

 

 

Table 5. 4. fouling density parameters 

Density 

status 

As 

(mm2) 

Af 

(mm2) 

S 

(mm2) 

Sf 

(mm2) 

Number of 

row 

Total 

barnacle 

λ 

Low 6211.2 29355.5 555329 8328 2 8 0.148 

Medium 6211.2 29355.5 555329 8328 3 14 0.259 

High 6211.2 29355.5 555329 8328 4 22 0.407 

 

As can be seen in Table. 5.4 the fouling density is dependent on the number of barnacles 

and the number of rows.  



113 

 

According to Eq.5.10, the drag coefficient is functional of equivalent sand grain 

roughness height. Therefore, Eq.5.9 cannot be applied to fouled plates. As mean velocity 

profiles were not taken for the test plates in this study, the virtual origin equation which was 

obtained by Andrewartha [110] (Eq. 5.8), was used to calculate the drag coefficient for different 

fouling densities.  

The estimate of drag coefficients for fouling plates was carried out using a “Goal Seek” 

technique in the Excel software. For this purpose, Excel’s Goal Seek feature allows the 

adjustment of a value used in a drag coefficient formula to achieve a specific goal. However, 

there might be errors to calculate drag coefficient for a fouled plate specially, for high fouling 

density. This is because a virtual origin equation was used for all fouling density. (There was 

no appropriate data to find a boundary layer profile for fouling plates. Thus, the virtual origin 

equation by Andrewartha [110], was used in this research).  Fig. 5.15 presents the drag 

coefficient data taken from the smooth painted plate and fouling plates with artificial barnacle 

samples with different fouling density.  

 

Fig.5. 15. drag coefficient results for smooth and fouled cases 
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As can be seen in Fig. 5.15, drag coefficient results increased with decreasing the 

Reynolds number. This is because of the relationship between the drag coefficient and the 

velocity. The relationship between the drag coefficient of the plate and velocity is inversely 

proportionate (CD=2*UScorrection*ρ*b*l1/U2). An increase in pump speed causes an increase in 

pitot static differential value and hence an increase in velocity.  

The results of the artificial fouled test plates (Fig. 5.15) show significant increases in 

drag compared with the respective clean plate conditions. In addition, an increase in fouling 

density causes an increase in drag coefficient results. The relationship between drag coefficient 

and fouling density can be shown in Fig. 5.16. 

 

Fig.5. 16. relationship between drag coefficient results and fouling density in pump speed of 
650RPM 

As can be seen in Fig. 5.16, the relationship between fouling density and barnacle 

surface is approximately linear over the range of artificial barnacle densities tested. For a 

smooth plate (λ =0), the mean drag coefficient is minimum. The results reveal that fouling 

density increases the mean drag coefficient from 0.021 for low fouling density to 0.084 for 
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high fouling density. Thus, a reduction space between two neighbouring barnacles causes an 

increase in fouling density and hence an increased friction coefficient result. The percentage of 

increasing drag coefficient for different fouling density is provided in Fig. 5.17. 

 

Fig.5. 17. percentage of increasing of drag coefficient due to roughness 

 

According to theoretical drag force, the smooth test plate gives the lowest drag 

coefficient. As shown in Fig. 5.17, the lowest barnacle density plate produced an average  429% 

increase in drag coefficient over the clean plate and medium case had over a 900% increase in 

the drag coefficient over the smooth case. The most drag and greatest measured roughness were 

for a high density status which had the maximum number of barnacles.  

3. Correlation for three-dimensional roughness of flat plate 
 

Based on the measured drag coefficient for roughness cases, equation (5.10) can be 

used to determine sand grain roughness with very small roughness material. The flow in this 

method is that it assumes that the roughness is consistent for the test plate and the region 
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upstream of the test plate, which is not the case for rough test plates. Andrewartha [110] 

measured an increase of 99% in the drag coefficients of test plates due to biofilms in a 

recirculating water tunnel. Based on drag coefficient results, the value of sand grain roughness 

was obtained by this method. The results indicated that the equivalent sand grain roughness 

values obtained were likely to overestimate the actual roughness of the test plates. 

However, the above method may not be appropriate for this research as this formula 

might be useful only for very small roughness particles [116]. According to Schlichting [116], 

in order to estimate the sand grain roughness with the above equation, it is important to consider 

plates with very small roughness (painted metal plates) as well as smooth plates covered with 

single protuberances, such as rivet heads, welded seams, joints, etc.  

Many studies revealed that in order to evaluate the sand grain roughness for a single 

roughness element, an empirical relationship is needed for the sand grain roughness on the 

shape parameter factor [34,47,92,93,116,136]. Schlichting [116] indicated that the drag 

coefficient based on a single roughness element is functional in the largest frontal area of the 

roughness element perpendicular to the direction of flow. Sigal and Denberg [92], made 

important advances in accounting for these roughness geometry considerations for uniformly-

shaped roughness elements spread in a uniform pattern over a test plate. The relationship 

between shape factor, Λ, and the roughness dimension has been provide by Eq. 3.3.  

The equation used in this study is provided based on the three-dimensional roughness 

element with cone-shaped size and flat plate test [93]. The correlations for three-dimensional 

roughness are listed as follows: 

𝑘𝑘𝑠𝑠
𝑘𝑘

= �
1.583 ∗ 10−5𝛬𝛬𝑠𝑠5.683                            𝛬𝛬𝑠𝑠 ≤ 7.842
1.802 ∗ 𝛬𝛬𝑠𝑠0.03038                 7.842 ≤ 𝛬𝛬𝑠𝑠 ≤ 28.12
255.5 ∗ 𝛬𝛬𝑠𝑠−1.454                                   28.12 ≤ 𝛬𝛬𝑠𝑠

   (5-11) 
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Based on Eq.3.3 and Eq. 5.11, the equivalent sand grain roughness can be determined 

(based on the single roughness element method). Figure 5.18 shows the equivalent sand grain 

roughness obtained by drag coefficient results and physical dimension of roughness element 

for different fouling densities. 

 

Fig.5.18, Comparison of equivalent sand grain roughness between experimental and 

physical dimension of roughness methods for different fouling densities 

As can be seen in Fig. 5.19, an increase in fouling density parameter causes an increase 

in equivalent sand grain roughness value for both methods. At low density (λ=0.148) the sand 

grain roughness height was estimated around 47mm and 35mm by experimental drag 

coefficient result and geometrical formulation respectively. However, the difference of sand 

grain roughness value significantly increases by increasing of fouling density of plate.  

For the first method (sand grain roughness obtained by drag coefficient results), the 

sand grain roughness value is directly proportionate by drag coefficient (Eq.5.10). As can be 
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seen in Fig. 5.17, the medium barnacle density plate produced over 900% increase in drag 

coefficient over the clean plate. In fact, the average drag coefficient results for medium case 

(λ=0.259) is around 0.044 which can be around two times higher than the average ones for low 

density status (λ=0.148). Therefore, the sand grain roughness value for medium case is 

significantly higher than the sand grain roughness value for low case. This scenario will be 

repeated for the high density status when the average drag coefficient for (λ=0.407) is around 

0.09 and it will be significantly higher than medium case ((λ=0.148). Thus, the highest sand 

grain roughness for the first method is related to high barnacle density.  

 Although the second trend of Fig. 5.18 (sand grain roughness results based on 

geometrical formulation) is also increased, the rate of increase for this method is more 

reasonable. It is worth to note that the first method may not be appropriate for single roughness 

element as this formula might be useful only for very small roughness particles [116]. Many 

studies revealed that in order to evaluate the sand grain roughness for a single roughness 

element, an empirical relationship is needed for the sand grain roughness on the shape 

parameter factor [34,47,92,93,116,136]. 

To calculate the equivalent sand grain roughness size by geometrical formulation, ks, 

the shape parameter must be known. It is worth mentioning that, in order to estimate shape 

parameter, Λ, single roughness dimension such as height and diameter are needed. As the shape 

of an artificial barnacle in this experiment was not assumed as a full cone and also the frontal 

size dimension of single roughness element is different with the black side, a trapezoidal shape 

cannot be a reasonable shape for the frontal area of single roughness (Af). Based on the real 

organism of the Amphibalanus Amphitrite barnacle which was explained well by Poore [39], a 

barnacle shell is developed as a radial way. In fact, the frontal area of Amphibalanus Amphitrite 

barnacle is more similar to a triangle shape rather than trapezoidal shape. However, a frustum 
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cone shape is assumed in order to calculate the windward wetted area of the single roughness 

element (As). In order to calculate the total windward wetted roughness area (Sf), the total 

number of artificial barnacles for each plate (N) should be considered. As the shape parameter 

is directly depending on Sf, thus Λ is not constant and the shape factor is varied for each fouling 

density. The schematic diagram of the frontal area and the windward wetted area of a frustum 

cone shape of single barnacle are shown in Fig. 5.19. The value of sand grain roughness based 

on Eqs. 3.3and 5.11, are provided in Table 5.5.  

 

Fig.5.19. Schematic diagram of windward wetted area 

 

 

Table 5. 5. Sand grain roughness parameter for three different fouling density 

Barnacle height, h=57mm,                                                    S Single barnacle surface=8328.065mm2 

Barnacle diameter, D=103mm                                             S Frontal area=29355.5mm2 
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Reference area=b*l=555329mm2                                       S Single wetted area=6211.2mm2 

 Low barnacle density Medium barnacle density  High barnacle density 

λ (Eq.5.1) 0.148 0.259 0.407 

N(Total number of barnacles) 8 14 22 

Λ (Eq. 3.3) 63.56 36.32 23.11 

Mean CD(Experimental results) 0.022 0.0442 0.09 

ks (mm)(Eq.5.11) 34.78 78.47 112.99 

 

The sand grain roughness results for three-dimensional cone-shaped were estimated 

based on equation used by Van Rij [47] and Schlichting [116]. Therefore, these results should 

be compared and validated with the results of Van Rij [47] and Schlichting [116]. The 

comparison results are shown in Fig.5.20. 
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Fig.5.20. Comparison of sand grain roughness results with Eq.5.11with the experimental 
results of Van Rij [47] and Schlichting [116]. 

 

As can be seen in Fig.5.20, the obtained results provide a good match with the 

experimental data of Van Rij [47] and Schlichting [116]. Based on the shape factor results in 

Table 5.6, these value for low and medium densities are higher than 28.12. The ratio of sand 

grain roughness height to actual height was chosen by (Λ>28.12).  

In order to describe the flow regime over rough boundaries, it is necessary to determine 

the roughness Reynolds number, ks
+ for each test plate. There are three different flow regimes 

over rough surfaces: hydraulically smooth (ks
+<5), smooth-rough transition (5<ks

+<70) and 

hydraulically rough regime (ks
+>70). Note that the roughness Reynolds number has been 

defined in terms of equivalent sand grain roughness height, ks. Thus, the estimation and 

validation of sand grain roughness is necessary. The roughness Reynolds number can be 

described as , ks
+=u*.ks/ʋ. Where u* is frictional velocity and ʋ is kinematic viscosity of fluid. 

The frictional velocity can be defined as u*=u.(cf/2)0.5, where the velocity, u, can be determined 

by Eq 5.4.  
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Based on drag measurement results and the roughness Reynolds number equation, ks
+ 

is considerable higher than 70 for all test plates. This value was estimated at 5000 for a low-

density status. As can be predicted the type of flow for all test plates is a fully rough regime as 

ks
+>70. In the hydraulically rough regime, the skin friction is almost entirely dependent on 

form drag and eddy shedding from the protrusions [137]. 

7. Discussion  
 

In this chapter, the relationship between fouling density characteristics and the drag 

coefficient was well established. Based on the fouling density definition which was described 

by Eq. 5.1, three different fouling plates were created: low, medium and high barnacle densities. 

The drag coefficient results were obtained by load cell drag equipment in recirculation water 

tunnel system. According to the experimental results which were provided in Fig. 5.15, an 

increase in the fouling density causes an increase in the total frictional force and hence an 

increase in drag coefficient results.  

In order to advance the understanding of the effect of fouling density on plate 

performance, estimations of drag coefficients are not sufficient. According to many studies [33, 

47,105-108,111], equivalent sand grain roughness is one of the most important factors to 

analyse of roughness characteristics. Figure 5.18 made a comparison between sand grain 

roughness of experimental drag tests and that value for geometrical formulations (Eq. 3.3 and 

5.11). As can be clearly seen in Fig. 5.18, an increase in drag coefficient result causes an 

increase in sand grain roughness value. It is because of sand grain roughness is functional of 

drag coefficient (Eq. 5.10). 

As it can be discussed, the sand grain roughness value is related to the some geometrical 

parameters of single roughness element as well as surface area. Schlichting [116] indicated that 
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the drag coefficient based on the single roughness element is functional of the largest frontal 

area of the roughness element perpendicular to the direction of flow. Sigal and Denberg [92], 

made important advances in accounting for these roughness geometry considerations of 

uniformly-shaped roughness elements spread in a uniform pattern over a test plate.  

Based on Eq.3.3 and Eq. 5.11, the equivalent sand grain roughness was determined 

(based on single roughness element method). The results of the shape factor (Eq.3.3) indicated 

that an increase in the number of roughness elements causes a reduction in the shape factor 

parameter (The relationship between shape factor and total frontal area is diversely 

proportionate). The results of sand grain roughness (based on Eq. 5.11) agreed with 

experimental data of Van Rij [47] and Schlichting [116] for the cone shaped roughness element. 

The equivalent sand grain roughness for low density is estimated at around 34mm. It would be 

doubled when low density changes to medium fouling status. The sand grain roughness height 

increases to around 112mm once the total number of barnacles increased to 22.  

However, the main challenge of this study is to find the relationship between equivalent 

sand grain roughness and turbine performance. As it was discussed in Chapter4, an increase in 

sand grain roughness value caused an increase the turbine performance. In order to predict the 

reduction of power turbine generation for precenting of barnacle fouling, the equivalent sand 

grain roughness parameter should be employed. However, the recent results of sand grain 

roughness cannot be used directly for a turbine blade surface.  

As it was discussed, Eq.5.11 is appropriate for flat plates only. Bons [34] revealed that 

the equation used for a turbine blade is completely different. . Bons [34] indicated that many 

of the specific correlations are valid for two and three dimensional regular roughness, including 

bars, blocks, cones and hemisphere, etc. Bons [34] related the roughness of a surface with cone 
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shaped elements to equivalent sand grain roughness with equation3.2. Table 5.6 summarizes 

the sand grain roughness and power generation of a turbine with different fouling densities.  

 

Table 5. 6. power generation and sand grain roughness results for turbine and flat plates 

 Low barnacle density Medium barnacle density High barnacle density 

Flat plate 

    

λ (Eq.5.1) 0.148 0.259 0.407 

N(Total number of 

barnacles) 

8 14 22 

Λ (Eq. 3.3) 63.56 36.32 23.11 

Mean 

CD(Experimental 

results) 

0.022 0.0442 0.09 

ks (mm)(Eq.5.11) 34.78 78.47 112.99 

Turbine blade 

Λ (Eq. 3.3) 1608.6 919.2 585 

ks (mm)(Eq.3.2) 0.5 1.05 1.9 

Cp(λ=6) 0.397 0.378 0.345 

P(kW) (λ=6) 0.485 0.47 0.455 
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Table 5.6 is divided to two different parts: the first part is especial for flat plate and 

some useful parameters which are related to effect of tidal turbine performance, have been 

proved in the second part. It can be obviously seen that an increase in fouling density causes 

an increase in sand grain roughness results for all cases. 

For the second part of table5.6, based on different fouling density, shape parameter and 

the sand grain roughness were obtained for a tidal turbine blade by Eq. 3.3. and 3.2. respectively. 

As expected, an increased ratio of fouling density causes a reduction shape factor and hence an 

increase in sand grain roughness. This is because of the total wetted area of a single roughness 

element (Sf). For high density status, the sand grain roughness is estimated at around 2mm. 

According to sand grain roughness results for the real organism, the Amphibalanus Amphitrite 

barnacle, equivalent height and diameter are estimated around 7.5mm and 10mm respectively. 

In fact, for high density status in a flat plate (λ=0.407), the equivalent sands grain roughness of 

tidal turbine blade with (h=7.5mm, D=10mm), was obtained 2mm.  

According to sand grain roughness value obtained by Eq.3.2 and 3.3, the power 

coefficient of a tidal turbine model can be estimated for different fouling densities. A 

commercial RANS solver using a k-ω model was used to estimate the power for different 

simulated barnacle roughness densities on a twin-bladed turbine. In Chapter 4, it was found 

that the maximum power generation for both and smooth and roughened cases occurred in a 

tip speed ratio of 6 (λ=6). Therefore, the maximum power coefficient results were considered 

in this section.in order to advance understanding of barnacle roughness effect on power 

generation of tidal turbine, the percentage of decreasing power generation due to roughness is 

plotted by Fig. 5.21. 
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Fig. 5.21, The percentage of decreasing power generation of tidal turbine due to 

roughness 

 As was shown in Table 5.6 and Fig. 5.21, an increase in sand grain roughness causes 

a reduction in power coefficient results. According to theoretical hydrodynamic power of 

turbine, the smooth case gives the highest power coefficient. It is around 0.42.As shown in Fig. 

5.21, the lowest barnacle density produced an average 5% reduction in power coefficient over 

the clean case. For low density status, the power coefficient is around 0.4 and there is a slight 

difference between low density and smooth result with the same tip speed ratio. For a medium 

case, the percentage is over a 10% decrease in the power coefficient over the smooth case. An 

increase in sand grain roughness value causes a reduction in power generation from 0.38 to 

0.34.  For high-density status, the percentage of decreasing of power generation is 22%. 

In the case of marine renewable energy equipment, barnacle roughness density has an 

adverse effect on long-term performance. As was clearly explained in section 2.3, an increase 

in fouling density leads to an enhancement of fouling community on the marine surface. In 
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addition, an increase in fouling density strengthen of barnacle shell. A kind of strong shell 

which was produced by larva in the backside of barnacles, causes the high frictional resistance 

and leads to an increase of weight, subsequent potential speed reduction and loss of annual 

performance. Results of experimental research by Katsuyama et al. [26] in Japan revealed 

barnacle roughness development creates a mass imbalance profile on rotor profile of tidal 

turbines which can stop functioning if barnacle colonization continues.   

8. Conclusion  

 

Barnacle colonization produces roughness and increases the drag force on marine 

surfaces. Growing barnacles will reduce the space between themselves. In this study, artificial 

barnacles were arranged in a staggered fashion for all fouling densities. Three density cases 

were considered in this study: low, medium and high barnacle density. The barnacles were 

spaced apart from one another by one barnacle dimension in the x-y direction. The space 

between two neighbouring barnacles was the diameter of two adult barnacles, the diameter of 

one and half adult barnacles and the diameter of half and adult barnacle for low, medium and 

high fouling density respectively. 

In order to investigate of the effect of fouling density on the total drag force, a floating 

element force balance was used. As the first step, the smooth plate results was validated against 

the data of Andrewartha [110].  The smooth plate data compared very well with the theoretical 

smooth plate data and experimental results of Andrewartha [110]. Then the drag coefficient 

results of fouled cases were compared versus experimental smooth result. As expected, 

significantly higher drag coefficients were experienced on the test plates with fouling density. 

As shown in Fig. 5.17, the lowest barnacle density plate produced an average  429% increase 

in drag coefficient over the clean plate and medium case had over 900% increase in drag 

coefficient over the smooth case.   
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An equivalent sand grain value for cone shaped roughness element was estimated using 

an empirical correlation for three dimensional roughness elements. Based on research by 

Schlichting [116], there is a relationship between the physical roughness dimension and sand 

grain roughness height. According to governing equations for cone-shaped roughness elements, 

an increase in the total number of barnacles caused an increase in the total wetted area and 

hence an increase in equivalent sand grain roughness. The results of roughness correlations 

indicated that the equivalent barnacle roughness was 34.78 mm, 78.4 mm, and 112.9 mm for 

low, medium and high barnacle fouling densities respectively. In addition, the numerical results 

obtained by empirical correlation agree with the experimental data of Van Rij [47] and 

Schlichting [116].  

Based on governing equations (3.2 and 3.3) for tidal turbine blade and single roughness 

elements dimension of plate, the equivalent sand grain roughness for different fouling densities 

were estimated. As expected, an increased ratio of fouling density causes a reduction shape 

factor and hence an increase in sand grain roughness. This is because of the total wetted area 

of single roughness element (Sf). For high density status, the sand grain roughness is estimated 

at around 2mm. In addition, a commercial RANS solver using a k-ω model was used to estimate 

the power for different simulated barnacle roughness densities on a twin-bladed turbine.  

Numerically obtained results indicated that an increase in sand grain roughness causes 

a reduction in maximum power generation in a tidal turbine. The minimum power coefficient 

occurred at a high fouling density. This was at around 0.34. the percentage of decreasing of 

power coefficient of tidal turbine is around 5% and 22% for low and high barnacle density 

status respectively.  
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Chapter 6 
 

Conclusions  
 

The purpose of this study was to investigate biofouling on tidal turbine performance. 

Among the various types of fouling on man-made structures, barnacles are considered to be 

one of the most problematic organisms. Therefore, the main objective of this study was to 

determine the effect of barnacles on the performance of a twin-bladed horizontal axis tidal 

turbine. This study presented numerical data for a model-scale 2-bladed horizontal axis marine 

current turbine and also experimental results for different fouling density of plate based on a 

floating element force balance in a water tunnel. This chapter presents the conclusions of the 

present study.  
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In Chapter 2, the characterization of marine barnacles in terms of surface roughness on 

the performance of marine surfaces was reviewed. Among different types of barnacle 

characteristics, barnacle height and density have a significant effect on the hydrodynamic 

parameters of surfaces colonised by barnacles. Growing barnacles will reduce the space 

between themselves and this increases barnacle density on a surface. Barnacle colonization 

produces roughness and increases drag force on marine surfaces.  

Among different species of barnacles, striped barnacle (Amphibalanus Amphitrite 

barnacle) with cone shaped is chosen in this study. It is because they are most common fouling 

organism from Queensland to Western Australia and around the world in tropical to warm seas. 

In addition, the striped barnacle with cone shape, is prevalent bio-fouler of ships and marine 

structures. 

In order to develop a useful numerical model, the effect of the conical shaped barnacle 

elements on a boundary layer may be represented using an equivalent sand grain roughness. 

Therefore, the sand grain roughness equations for three-dimensional cone shaped element was 

used in this study. The equation for equivalent sand grain roughness is functionally related to 

surface area and single roughness element dimensions. Therefore, barnacle dimension size and 

fouling density play directly influence the equivalent sand grain roughness. In fact, an increase 

in barnacle height causes an increase in sand grain roughness. Thus, adult barnacle with high 

fouling density on marine surface represents the worst case scenario and produces maximum 

equivalent sand grain roughness.  

It is well understanding that the minimum size in height or density of single roughness 

can have an adverse effect on marine performance. The results of some relevant studies on 2D 

aerofoil surface revealed that the drag coefficient was increased by an average of 50% for all 

low barnacle density. Therefore, in order to show the effect of presence of fouling on aerofoil 
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performance, the minimum size of Amphibalanus Amphitrite barnacle height and diameter 

were chosen to estimate sand grain roughness in this section. 

In order to determine the impact of a given very small coating roughness material on 

the frictional drag of a plate, some non-dimensional analysis which are related to drag 

coefficient, can be appropriated. The dimensionless similarity for single roughness element is 

the ratio of the height of the roughness element to the boundary layer thickness, h/δ. As the 

experimental turbine model in this study, used in this investigation was a 1/25th scale model of 

a prototype turbine, and based on this, a computational model was created. In order to find sand 

grain roughness for aerofoil model km-s, the equivalent barnacle height for turbine model was 

needed. Therefore, dimensionless similarity (height of single roughness element/boundary 

layer thickness) between turbine prototype and model cases was applied. 

As the first step, the effect of barnacle roughness on 2D aerofoil investigated. It is 

because marine current turbine blades typically use an aerofoil shaped cross-section for the 

blade profile and blade shape is critical to the aerodynamic performance of wind and tidal 

turbine blades. A commercial Reynolds Averaged Navier-Stokes (RANS) solver with Shear-

Stress Transport (SST) turbulence model was used to simulate the flow around a two-

dimensional NACA63-618 aerofoil with and without surface roughness. The model was 

validated against published experimental data for a smooth case. It is obvious that the smooth 

numerical results show good agreement with the experimental study of Walker et al. [12]. The 

results showed the presence of the adult barnacle fouling decreased the maximum lift 

coefficient by an average of 21% and lift-to-drag force ratio by an average of 60%.  

In order to illustrate the effect of barnacle roughness on aerodynamic performance, the 

pressure distribution around the 2D aerofoil was visualized at 0° and 8° of angle of attack. The 

simulation results revealed the enclosed pressure coefficient area (the enclosed area between 
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the pressure coefficient curves for each surface is equal to the normal force coefficient of 

aerofoil) decreases with presence of the simulated barnacle fouling. It can be noted that an 

increase in fouling height causes a reduction in normal force coefficient. This contributes to a 

reduction in lift force by an average of 22% and 25% for fouling case at angles of attack of 0° 

and 8° respectively.  

The turbulent kinetic energy increases with fouling height and produced a greater 

region of turbulent activity in the wake. As shown in the Fig. 3.12, the absolute value of 

turbulence kinetic energy increased over the upper surface of aerofoil when sand grain 

roughness was added on surface. In fact a thicker turbulent boundary layer was apparent on the 

upper aerofoil surface when sand grain roughness was present. With increase in turbulence 

kinetic energy, the separation point moved to the leading edge and turbulence flow occurred 

over most of the upper surface. 

The effect of cone shaped barnacle roughness on a twin-bladed axial tidal turbine was 

investigated numerically. The marine current turbine model consisted of a twin-bladed rotor 

with a diameter of 0.8m. This is representative of a 1/25th scale model of a full size turbine. A 

commercial Reynolds Averaged Navier-Stokes (RANS) solver with k-ω turbulence model was 

used to simulate the flow around a three-dimensional tidal turbine blade with and without 

surface roughness. The numerical results for smooth case agreed well with the experimental 

published data [12]. The numerical results revealed the barnacle roughness decreased the peak 

power coefficient from 0.42 to 0.37 at the design tip-speed ratio of 6. This represents a decrease 

in turbine output power of 12%.  

The effect of barnacle roughness on total drag force and the turbulent boundary layer 

on a test plate covered with artificial barnacles was studied experimentally in a water tunnel 

using a floating element force balance. In order to generate the fouling density on a flat plate, 
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artificial models were affixed and replicated with different fouling density on the flat plate. The 

height of single roughness element is constant for all fouling status. Fouling density is defined 

as a ratio of the total barnacle surface area to the surface area of a flat plate. Artificial barnacle 

samples were used to generate the fouled plates.  

As the boundary layer is measured for smooth and fouled plates, it is necessary to know 

the relationship between boundary layer thickness and height of roughness of plate. Based on 

dimensionless similarity for single roughness element [116], the ratio of the height of single 

roughness element to the boundary layer thickness can play a vital role to estimate equivalent 

artificial barnacle height for the test plate.  Therefore, the ration of boundary layer thickness of 

plate to height of barnacle was chosen as the dimensionless similarity. The unknown value is 

the height of artificial barnacle for flat plate. According to previous research which carried out 

by Andrewartha [110] on the same water tunnel system, boundary layer thickness of flat plate 

was estimated 35mm for smooth plate. For turbine system, the maximum height of a real 

organism (Amphibalanus Amphitrite) barnacle is 15mm [84]. Thus, the relevant height of 

artificial barnacle is around 53mm for a test plate.   

The artificial barnacle models tested were obtained using a novel method of scanning 

real barnacles, 3D printing and then moulding them using an epozy resin.  As barnacle 

roughness density is one of the most problematic parameters for marine surfaces, fouling 

density was chosen for the experimental study. Fouling density is defined as the ratio of the 

total barnacle surface area on a test plate to test plate area. Three fouled plates were tested with 

low (λ=0.148), medium (λ=0.259) and high (λ=0.407) barnacle fouling density.  

The drag results reveal significantly higher drag coefficients were experienced on the 

test plates with increase fouling density. As shown in Fig. 5.17, the lowest barnacle density 

plate produced an average  429% increase in drag coefficient over the clean plate and medium 
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case had over 900% increase in drag coefficient over the smooth case. In fact, the drag results 

indicate an increase in fouling density causes an increase in drag coefficient result.  

In addition, the results of roughness correlations and sand grain roughness by 

experimental study indicated that an increase in fouling density parameter causes an increase 

in equivalent sand grain roughness value for both methods. At low density (λ=0.148) the sand 

grain roughness height was estimated around 47mm and 35mm by experimental drag 

coefficient result and geometrical formulation respectively. However, the difference of sand 

grain roughness value significantly increases by increasing of fouling density of plate.  

Based on governing equations (geometrical formulations)for tidal turbine blade and 

single roughness elements, an increase in sand grain roughness causes a reduction in power 

coefficient results. According to theoretical hydrodynamic power of turbine, the smooth case 

gives the highest power coefficient. It is around 0.42. As shown and discussed, the lowest 

barnacle density produced an average 5% reduction in power coefficient over the clean case. 

For low density status, the power coefficient is around 0.4 and there is a slight difference 

between low density and smooth result with the same tip speed ratio. For a medium case, the 

percentage is over a 10% decrease in the power coefficient over the smooth case. An increase 

in sand grain roughness value causes a reduction in power generation from 0.38 to 0.34.  For 

high-density status, the percentage of decreasing of power generation is 22%. 

In the case of marine renewable energy equipment, barnacle roughness density has an 

adverse effect on long-term performance. As was clearly explained in section 2.3, an increase 

in fouling density leads to an enhancement of fouling community on the marine surface. In 

addition, an increase in fouling density strengthen of barnacle shell. A kind of strong shell 

which was produced by larva in the backside of barnacles, causes the high frictional resistance 

and leads to an increase of weight, subsequent potential speed reduction and loss of annual 
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performance. Results of experimental research by Katsuyama et al. [26] in Japan revealed 

barnacle roughness development creates a mass imbalance profile on rotor profile of tidal 

turbines which can stop functioning if barnacle colonization continues.   
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A.1. NACA63-618 aerofoil points for Chapter 3 
 

#Group Point X-cord (m) Y-cord (m) Z-cord(m) 

1 1 0.95048 0.01293 0 

1 2 0.90103 0.02531 0 

1 3 0.85147 0.038 0 

1 4 0.80178 0.05073 0 

1 5 0.75191 0.0633 0 

1 6 0.70187 0.07534 0 

1 7 0.65164 0.08655 0 

1 8 0.60125 0.09667 0 

1 9 0.55069 0.10541 0 

1 10 0.5 0.11251 0 

1 11 0.44919 0.11767 0 

1 12 0.39829 0.12056 0 

1 13 0.34734 0.12086 0 

1 14 0.2964 0.11822 0 

1 15 0.24549 0.11273 0 

1 16 0.19469 0.10418 0 

1 17 0.14404 0.09219 0 

1 18 0.09367 0.07586 0 

1 19 0.06868 0.06542 0 

1 20 0.04393 0.05268 0 

1 21 0.01965 0.03616 0 

1 22 0.00797 0.02491 0 

1 23 0.00361 0.01878 0 

1 24 0.00156 0.01511 0 

1 25 0 0 0 

1 26 0.00844 -0.01211 0 



153 

 

1 27 0.01139 -0.01458 0 

1 28 0.01703 -0.01849 0 

1 29 0.03035 -0.025 0 

1 30 0.05607 -0.03372 0 

1 31 0.08132 -0.03998 0 

1 32 0.10633 -0.04484 0 

1 33 0.15596 -0.05181 0 

1 34 0.20531 -0.05642 0 

1 35 0.25451 -0.05903 0 

1 36 0.3036 -0.0599 0 

1 37 0.35266 -0.05906 0 

1 38 0.40171 -0.0563 0 

1 39 0.45081 -0.05197 0 

1 40 0.5 -0.04633 0 

1 41 0.54931 -0.03971 0 

1 42 0.59875 -0.03241 0 

1 43 0.64836 -0.02475 0 

1 44 0.69813 -0.01702 0 

1 45 0.74809 -0.0096 0 

1 46 0.79822 -0.00297 0 

1 47 0.84853 0.00238 0 

1 48 0.89897 0.00571 0 

1 49 0.94952 0.00603 0 

1 50 1 0 0 
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A.2. Blade geometry details for Chapter 4. 
 

Model R=0.4 m 
NACA 
63-618      

Section  
number Radius 

Pre-
Twist Chord % Thick thickness 

Pitch 
Axis c/R 

 (m) (deg) (m) (t/c) t (m) (x/c)  
0 0.0000 12.86 0.00000 100.00 0.03200 0 0.0000 
1 0.0460 12.86 0.03200 100.00 0.03200 0.5 0.0800 
2 0.0580 12.86 0.03920 80.00 0.03136 0.4813 0.0980 
3 0.0700 12.86 0.04680 62.90 0.02944 0.4366 0.1170 
4 0.0820 12.86 0.05440 46.00 0.02502 0.3834 0.1360 
5 0.0895 12.86 0.06000 36.30 0.02178 0.3387 0.1500 
6 0.0970 12.86 0.06440 29.80 0.01919 0.3 0.1610 
7 0.1045 12.86 0.06816 25.40 0.01731 0.27 0.1704 
8 0.1120 12.19 0.06728 22.90 0.01541 0.27 0.1682 
9 0.1195 11.52 0.06613 21.00 0.01389 0.27 0.1653 
10 0.1270 10.84 0.06511 19.60 0.01276 0.27 0.1628 
11 0.1345 10.17 0.06410 18.50 0.01186 0.27 0.1602 
12 0.1420 9.50 0.06308 18.00 0.01135 0.27 0.1577 
13 0.1540 8.71 0.06136 18.00 0.01104 0.27 0.1534 
14 0.1660 8.02 0.05968 18.00 0.01074 0.27 0.1492 
15 0.1780 7.43 0.05800 18.00 0.01044 0.27 0.1450 
16 0.1900 6.91 0.05628 18.00 0.01013 0.27 0.1407 
17 0.2020 6.45 0.05460 18.00 0.00983 0.27 0.1365 
18 0.2140 6.04 0.05288 18.00 0.00952 0.27 0.1322 
19 0.2260 5.68 0.05116 18.00 0.00921 0.27 0.1279 
20 0.2380 5.35 0.04940 18.00 0.00889 0.27 0.1235 
21 0.2500 5.05 0.04768 18.00 0.00858 0.27 0.1192 
22 0.2620 4.77 0.04592 18.00 0.00827 0.27 0.1148 
23 0.2740 4.51 0.04412 18.00 0.00794 0.27 0.1103 
24 0.2860 4.26 0.04232 18.00 0.00762 0.27 0.1058 
25 0.2980 4.03 0.04048 18.00 0.00729 0.27 0.1012 
26 0.3100 3.80 0.03864 18.00 0.00696 0.27 0.0966 
27 0.3220 3.57 0.03680 18.00 0.00662 0.27 0.0920 
28 0.3340 3.35 0.03488 18.00 0.00628 0.27 0.0872 
29 0.3460 3.13 0.03296 18.00 0.00593 0.27 0.0824 
30 0.3580 2.90 0.03104 18.00 0.00559 0.27 0.0776 
31 0.3700 2.67 0.02904 18.00 0.00523 0.27 0.0726 
32 0.3820 2.43 0.02704 18.00 0.00487 0.27 0.0676 
33 0.3940 2.18 0.02504 18.00 0.00451 0.27 0.0626 
34 0.4000 2.06 0.02404 18.00 0.00433 0.27 0.0601 
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A.3. Uncertainty results for 10 repeatability test for Chapter 5. 

 
Pump speed 

(rpm) 

Approximate 

Velocity (m/s) 

Mean CD Std Deviation Std Error 

150 0.52 0.00577 0.001554 0.000491441 

200 0.69 0.00536 0.000895 0.000283124 

250 0.86 0.0044 0.000725 0.000229144 

300 1.04 0.00409 0.000387 0.000122372 

350 1.21 0.0042 0.00038 0.000120051 

400 1.38 0.00415 0.000213 6.73992E-05 

450 1.56 0.00399 0.000173 5.47723E-05 

500 1.72 0.0038 0.000097 3.06793E-05 

550 1.89 0.00379 0.000075 2.39588E-05 

600 2.05 0.00368 0.000128 4.05309E-05 

650 2.22 0.00361 0.000065 2.0843E-05 

 

 

 

 
 


