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Abstract 

The relative risk has been widely reported as a ratio measure of association between 

covariates for study factors and a binary outcome of interest in medical research. It is possible 

to estimate relative risk through the log binomial model, a member of the family of 

generalised linear models with binomial errors and logarithmic link. However, since it was 

first proposed, this model has encountered numerical difficulties which restrict its use in 

studies using real-world data. The standard fitting algorithm of the log binomial model may 

fail to converge when the maximum likelihood (ML) solution is on the boundary of the 

allowable parameter space. If the ML solution lies on the boundary, special methods are 

needed because at least one vector of covariate values (referred to as boundary vector) has an 

estimated probability of unity when evaluated at the ML solution. For a model with a single 

covariate, Deddens et al. (2003) proposed an exact method based on re-parametrisation of the 

covariate. Petersen and Deddens (2010) proposed an extension of the exact method to general 

cases, but the method was incomplete, and the details to implement the method were missing. 

In this thesis, we provide details, including formulae (with proof) for estimating the 

covariances necessary to implement the method, explanation (with proof) of an inter-

dependency between coefficient estimates, and proof that the method can be applied in 

general. The relevant R package for implementing the exact method is provided. 

Another measure of the effect of a risk factor is the risk difference, which is recommended to 

be reported in clinical trials to assist clinicians in making evidence-based decisions about 

treatment allocation. It is possible to estimate the risk difference by fitting an identity-link 

binomial model.  However, the standard fitting algorithm of the identity-link binomial model 

may fail to converge due to two sources of numerical difficulties. Use of an inadmissible 

starting value is sometimes responsible for failed convergence in the identity-link binomial 
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model as it can cause the fitted probability of some observations to be less than zero or 

greater than unity. The standard fitting algorithm, therefore, may not be able to iteratively 

correct the results if it starts the iteration from an inadmissible starting value. To solve this 

problem, we have introduced a well-designed starting value calibration for obtaining an 

admissible starting value of a standard fitting algorithm in an identity-link binomial model. 

Numerical difficulties may also be encountered if the ML solution is on the boundary of the 

allowable parameter space. The standard fitting algorithm in the identity-link binomial model 

will usually fail to converge when the ML solution lies on the boundary of parameter space. 

Given its similarity to the log binomial model, an extension of the exact method is introduced 

to overcome the difficulties in the identity-link binomial model. However, there are two 

boundaries, lower and upper, in the parameter space of identity-link binomial models, 

whereas the log binomial model only has an upper bound. We provide a strategy to compare 

and locate the ML solution. Eight theorems and two corollaries with proof are presented to 

obtain the estimates of coefficients and the relevant variance-covariance matrix. We 

demonstrate the application of the exact method in detail using example data. A real-world 

dataset and a designed simulation are provided to further discuss and compare the results of 

the exact method with other approaches. The relevant R package for implementing the exact 

method is provided. 

The risk ratio/relative risk as a measure of effect is also used in the clustered/ longitudinal 

dataset. Fitting a marginal log binomial model estimated by generalised estimating equation 

(marginal LBM by GEE) provides a possible way to estimate the relative risk in correlated 

data. However, the algorithm may fail to converge even from admissible starting values. The 

previously published studies of the marginal LBM by GEE have focused on convergence 

rates and the selection of a working correlation structure. To date, there is no published work 
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accounting for the causes of non-convergence or proposing remedies for it. By investigating 

data with convergence issues, we found that formulating the marginal LBM by GEE as a 

population-averaged model might also fail to converge or converge to an inappropriate 

solution when there is a fitted probability that is extraordinarily close or equal to unity. It is a 

similar issue to the log binomial model for independent data. We extend the exact method to 

the marginal LBM by GEE and provide details for its implementation. The properties of the 

exact estimator are investigated by simulation, and the results are compared with those of a 

marginal modified Poisson with log-link function estimated by generalised estimating 

equation (marginal Poisson by GEE). The relevant R package for implementing the exact 

method is provided. 

In this thesis, we studied the numerical difficulties in the log binomial model, the identity-

link binomial model and the marginal LBM by GEE. Two algorithms were introduced to 

address the difficulties due to the inadmissible starting values for the log and identity-link 

binomial model. In the presence of boundary vectors, the exact method is effective in 

estimating the coefficients of covariates in those three models. It can eliminate the influence 

of boundary vector and improve the model fitting. 
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Chapter 1 Introduction 

1.1 Background 

The generalised linear models (GLM) are a broad class of conventional linear regression 

models, first unified by Nelder and Wedderburn 1 and discussed in detail in the book of 

McCullagh and Nelder 2. A GLM usually consists of three parts: the response variable Y, 

which is assumed to follow a distribution from the exponential family, such as the normal, 

binomial, Poisson and Gamma distributions; a linear combination ′X β  of a set of explanatory 

variables X and the relevant coefficients β ; and a link-function g which establishes the 

connection between the response variable Y and the linear combination of X and β . For the 

ith observation, the general form of the probability density function in a GLM is 

( ) ( )
( ) ( )f | , exp ,i i i

i i i
y b

y c y
a

θ θ
θ φ φ

φ
 −

= +  
 

, (1.1) 

and the joint probability density function with n independent observations is written as: 

( ) ( )
( ) ( )

1
, exp ,

n
i i i

i
i

y b
l c y

a
θ θ

θ φ φ
φ=

 −
= +  

 
∏ , (1.2) 

which is also called the likelihood function generally. In practice, it is more convenient to 

work with the logarithm of the likelihood, the log-likelihood function,  

( ) ( )
( ) ( )

1
, ,

n
i i i

i
i

y b
L c y

a
θ θ

θ φ φ
φ=

 −
= +  

 
∑ . (1.3) 

In the above functions, φ  is called the dispersion parameter, which is constant over 

observations, and iθ  is called the canonical parameter. The forms of the functions a, b and c 

vary depending on the distribution of Y. The detailed forms of these parameters and functions 

in each distribution are presented in the book of McCullagh and Nelder 2.  



Chapter 1 
 

2 
 

In medical research, a form of GLM with the outcome variable following a binomial 

distribution has been commonly used to study the relationship between a set of independent 

variables and a specific binary outcome. Since the probability function in the binomial 

distribution can be written in an exponential family form as: 

 
( ) ( )

( )

f | 1

exp log log 1 log
1

i ii m yyi
i i ii

i

ii
i i i

ii

m
y

y

m
y m

y

µ µ µ

µ
µ

µ

− 
= − 
 

    
= + − +    −    

, (1.4) 

it is not difficult to identify each element in function (1.1) as: 

 ( ) ( ) ( )log ,  log 1 exp ,  and log
1

ii
i i i i i

ii

m
b m c y

y
µ

θ θ θ
µ

   
 = = + =    −   

, 

where iµ  is the expected value of iy . The dispersion parameter φ  is equal to 1. In practice, a 

more natural way in which the binomial distribution arises is that the outcome variable in an 

independent data follows a Bernoulli distribution which is a specific binomial distribution 

with 1im =  2, 3. The probability function in the Bernoulli distribution is: 

 
( ) ( )

( )

1f | 1

exp log log 1
1

ii yy
i i ii

i
i i

i

y

y

µ µ µ

µ µ
µ

−= −

  
= + −  −  

. (1.5) 

The likelihood function can be written as: 

 
( )

( )

1

1

1

1

exp log log 1
1

ii
n

yy
ii

i
n

i
i i

ii

l

y

µ µ

µ
µ

µ

−

=

=

= −

  
= + −  −  

∏

∏
, (1.6) 

and the relevant log-likelihood function is written as: 

 ( ) ( )
1

log 1 log 1
n

i i i i
i

L y yµ µ
=

= + − −∑ . (1.7) 
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All GLMs with the outcome variable following a binomial distribution share the same 

likelihood (1.6) and log-likelihood function (1.7). 

 

Two extensions of the GLM, known as the log binomial model and the identity-link binomial 

model, are viable approaches to summarise the risk of the outcome in a study group versus a 

reference group. The log binomial model allows the estimation of relative risk, which is a 

ratio of the probability of an outcome in the study group to the probability of the outcome in 

the reference group. The identity-link binomial model offers a way to estimate the risk 

difference, which is calculated by taking the difference in the risk of getting an event in the 

reference group from the risk of getting an event in the study group. Relative risk and risk 

difference are both intuitive summary metrics, and presenting them allows for a relatively 

clear interpretation of study results 4. However, to estimate relative risk and risk difference by 

fitting a log binomial model and an identity-link binomial model often comes with 

challenges. That is, standard fitting algorithms may meet numerical difficulties and fail to 

converge in some cases. In this chapter, I provide a general background regarding the 

potential underlying reasons for numerical difficulties in the log binomial model and the 

identity-link binomial model and previous work that has been carried out to try to solve these 

problems. 

 

1.2 Numerical instability of estimating the relative risk in the log binomial model 

Relative risk is the ratio measure of choice for summarising the impact of exposure on the 

incidence proportion (“risk”) in epidemiological studies 5. Fitting a log binomial model with 

binomial errors and a logarithmic link to binary outcome data makes it possible to estimate 

risk and risk ratios in longitudinal studies, and prevalence ratios in cross-sectional studies.  
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Assuming n  observations with a binary outcome variable Y and J covariates in the model, the 

likelihood function of the log binomial model is defined previously in function (1.6). For the 

convenience of the reader, I repeat it here: 

 ( ) ( )1
1

1 ii
n

yy
ii

i
l µ µ −

=
= −∏β  

where iµ  is the probability of the outcome conditional on the ith observation, which is equal 

to an exponential linear combination with parameters ( )0 1, , Jβ β β=β   and covariates 

( )1 2= 1, ,i i i iJx x xx   with constant and denoted as:  

 ( ) ( )Pr 1| exp( ),  1, 2,...,i i i iY i nµ ′= = = =x x x β . (1.8) 

This conditional probability function means that the fitting procedure of the log binomial 

model requires constraints on β  to ensure that exp( )i′x β  is within the interval [0, 1] 6. By 

taking logarithms of both sides of (1.8), the function becomes:  

 0 1 1 2 2log( ) ... ,  1, 2,...i i i i J iJx x x i nµ β β β β′= = + + + + =x β , (1.9) 

and the interval is mapped to a semi-open interval ( ,0]−∞ . This leads to an inequality 

constraint 0i′−∞ < ≤x β  on β  that was first asserted by Wedderburn 7. With this inequality 

constraint, the allowable parameter space of β  is defined 8, 9 as 

 { }: 0,  for all 1, 2,...,i i n′Θ = ≤ =β x β . (1.10)  

This restricted parameter space means that the standard fitting algorithm of the log binomial 

model may meet numerical difficulties, and either fail to converge, or converge to an 

inappropriate solution. Various types of difficulties are described below.  

 

One is data separation, which occurs when all observations of a particular predictor have the 

same outcome. This is a common issue in models with a binary outcome variable and is not 

unique to the log binomial model. The second type of difficulty is issues with the fitting 
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algorithm. Williamson et al. 10 presented an example to illustrate a failure of convergence 

with the log binomial model. Marschner later restated this as a repulsion problem that can 

occur when using Fisher scoring to fit a log binomial model. In short, the Fisher scoring 

algorithm may have a repelling fixed point. This means that, even if the maximum likelihood 

(ML) solution is a stationary point inside the allowable parameter space, Fisher scoring is 

unable to converge and exhibits cyclical behaviour 8. The third difficulty is the use of an 

inappropriate starting value with the standard fitting algorithm. The default starting value 

algorithm in statistical packages may provide a poor starting value, which results in the fitting 

algorithm beginning the iteration outside the boundary of the allowable parameter space. In 

this issue, the fitting algorithm may not be able to self-correct back to the boundary, which 

will lead to some fitted probabilities of observations exceeding unity. The last difficulty is 

that the standard fitting algorithm may meet numerical instability and fail to converge when 

the ML solution lies on the boundary of the allowable parameter space Θ . When this occurs, 

there is at least one covariate vector with the corresponding linear predictor equal to 0, which 

means the estimated probability is equal to 1. We refer to any such sets of covariate vectors 

as boundary vectors. As an example, consider the data presented in Table 1.1. The log 

binomial model ( ) ( )0 1Pr 1| x exp , 1,2,...40i i iY x iβ β= = + =  for these data has the ML 

solution of 0 0.344616β̂ = −  and 1 0.344616β̂ = , which lies on the boundary of the allowable 

parameter space (the area covered by a blue grid shown in Figure 1.1. The boundary vectors 

are the five observations for which 1x =  and where the event occurred.  
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Table 1.1 An example dataset from Williamson et 
al. 10 where the ML solution lies on the boundary of 
the parameter space.  

Exposure Event No event Total 

x  = –1 10 8 18 
x  =   0 18 9 27 
x  =   1   5 0   5 

 

Figure 1.1. The area covered by the grid shows the allowable parameter space 
{ }0 1: 0,  for all 1, 2,...,50x iβ βΘ = + ≤ =β : values of 0β̂  and 1̂β  in the inequality 0 1 0xβ β+ ≤  ensure that the 

fitted probabilities are within the interval [0, 1] for all observations in the dataset of Table 1.1. The ML solution 
of 0 0.344616β̂ = −  and 1 0.344616β̂ =  marked as a red point lies on the boundary of the parameter space.  
 

The presence of a boundary vector makes the estimation of the ML solution problematic 

when using standard fitting algorithms. Even if the iteration begins from an appropriate 

starting value, it may still stop at a result outside the parameter space Θ , leading to a failure 

of convergence. To explain why this problem arises, I begin with the information matrix of 

the log binomial model. By taking the first partial derivative of (1.7), I obtain the score 

function of log binomial model as follows: 

 ( ) ( )
1 1

n
ij i i

j ii

x yL µ
β µ=

 −∂
=  

∂ −  
∑

β
 (1.11) 

The second partial derivative of (1.7) in matrix form is  

-0.6

-0.3

0

0.3

0.6
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β0

β1β1 = -β0

β1 = β0
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 ( ) ( )
( )1 2

2
1

1
i i

j j i

yL µ
β β µ

  −∂   ′= = − ∂ ∂  −   

β
H X diag X , (1.12) 

which is also known as the Hessian matrix. The observed information matrix (OIM) is the 

negative of the Hessian, which is obtained by substituting the estimate of each fitted 

probability ˆiµ  evaluated at β̂ , written as: 

 

( )
( )2
ˆ 1

ˆ1
i i

i

yµ

µ

  −  ′= − =  
 −   

OI H X diag X . (1.13) 

The relevant expected information matrix (EIM) is: 

  ( ) ˆ
E

ˆ1
i

i

µ
µ

  
′= − =   −  

EI H X diag X . (1.14) 

The standard fitting algorithms used to estimate the ML solution in the log binomial model 

(such as Newton-Raphson and iteratively re-weighted least squares) mostly rely on the score 

function and either the OIM or the EIM. If a boundary vector is presented in data, it will 

result in a fitted probability ˆiµ  extremely close or equal to 1. This will lead to errors in the 

calculation of the denominator in the score function (1.11) and Hessian matrix (1.12), thereby 

affecting the convergence of the model. Some previous work has been done in an attempt to 

find feasible solutions to overcome the numerical difficulties in log binomial model. They are 

summarised below. 

 

The majority of work to date on the log binomial model has been focused on finding 

approaches to solve the failure of convergence. Blizzard and Hosmer 11 suggested that some 

convergence problems could be avoided by a simple modification of the fitting algorithm, 

where the log-likelihood is only evaluated for observations with 0iy = . Other researchers 

presented some “work-around” methods (methods that do not attempt to estimate the ML 
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solution) to approximate the risk ratio reasonably. Wacholder 12 proposed that any fitted 

values found to be outside the parameter space should be set to values known to be inside the 

space at each iteration. Stata’s manual states that they have applied the idea into their 

command binreg 13. Zhang and Yu 14 made use of a well-known method for converting odds 

ratios to relative risks using a baseline prevalence. They developed a method which uses 

logistic regression followed by the conversion of odds ratios to risk ratios using this 

conversion method. This method is cumbersome and not directly applicable to estimates 

adjusted for continuous covariates. Breslow 15 showed that by assuming a constant risk 

period, the conditional hazard ratio estimated by Cox’s method for a closed cohort is equal to 

the cumulative incidence ratio (risk ratio). Lee and Chia 16 advocated that Cox regression be 

adapted to approximate the risk ratio by building a dataset in which each person has a pre-set 

and fixed follow-up time. Schouten et al. 17 proposed an approach to approximately estimate 

the parameters of the log binomial model. The approach estimates the model by fitting a 

logistic regression with the expanded data, which duplicated the observations of 1y =  and 

replaced with 0y = . Deddens et al. 18 advocated a method the called the COPY method. This 

solves the non-convergence issue in the log binomial model by adding 999 copies of the data 

with one copy having the outcome indicator reversed. McNutt et al. 19 recommended 

modified Poisson regression to estimate the coefficients from the log binomial model. Since 

the Poisson errors may overestimate the binomial errors when the outcome is not rare 19,  Zou 

20 proposed to use the information sandwich estimator to obtain variance estimates, which is 

robust to the error misspecification. Later on, Carter et al. 21 showed that estimates from 

modified Poisson regression consistently estimate the coefficients in the log binomial model. 

The work-around methods listed above can approximately estimate the coefficients of the log 

binomial model in some cases.  
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Marschner and Gillett 22 took advantage of the property of exponential linear combination in 

the log binomial model, treated it as the product of the components, and used the 

Expectation-Maximization (EM) algorithm to locate the ML solution. In the method, the 

outcomes are viewed as the product of the independent unobserved binary latent outcomes, 

thereby the corresponding event probability associated with the observed outcomes is the 

joint probability associated with the latent outcomes. Since the latent outcome model is 

defined over a restricted parameter space, the authors believed the issues of parameter space 

in the log binomial model could be simply avoided.  

 

Moreover, some researchers thought the convergence problem in the log binomial model was 

due to the contradiction between the unconstrained standard fitting algorithm and the 

constrained allowable parameter space. Thereby, another reliable approach is to apply a 

linearly constrained optimisation method. Lange 23 described an approach called the adaptive 

barrier approach for estimating models in the GLM with a linear inequality constraint. A 

general implementation is available through the constrOptim function in R. Some researchers 

24, 25 implemented this approach in their studies. All of these studies on constrained 

optimisation are summed up in a paper written by Andrade and Andrade 26. 

 

However, none of them attempted to locate the ML solution in the log binomial model by 

directly eliminating the impact of the boundary vector. Petersen and Deddens 9 proposed an 

“exact” method to estimate the ML solution when it lies on the boundary of the parameter 

space. However, this method was incomplete. For example, the formulae to obtain the 

covariance between the estimate of the covariates and the estimate of the intercept and the 

necessary details to implement the exact method were missing. (It is discussed in more detail 

in Chapter 2 of this thesis.) In consequence, it has not gained traction among practitioners. To 
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remedy that, I provide the missing details with four theorems and two corollaries as well as 

the description of strategies required to implement the method. Mathematical details are 

reported in Appendix A.  

 

1.3 Numerical instability of estimating risk difference in the identity-link binomial 

model 

As a measure to evaluate the absolute effect in the risk of an outcome between the reference 

group and the study group, the absolute risk difference has been recommended by many 

reputable medical journals as a measure to inform clinical decisions regarding the benefit and 

harm of study treatment 4, 27-33. A regression model makes it possible to estimate risk and risk 

difference, including adjustment for confounders and assessment of interactions. A linear 

probability model is used to perform this purpose. It has a binary outcome variable with the 

residuals following a normal distribution and is fitted as a linear regression model with the 

least squares method. A deficiency of the model is that the estimated coefficients can imply 

fitted probabilities outside the interval [0, 1], which are invalid as probabilities 

mathematically.  

 

The GLM with a binomial error and identity link (identity-link binomial model) offers an 

opportunity to estimate the risk difference through its coefficients. Just the same as GLMs 

with a binomial error and other links, it uses the likelihood function as follows:  

( ) ( )1
1

1 ii
n

yy
ii

i
l µ µ −

=
= −∏β , 

where iµ  is the probability of outcome conditional on the ith observation, which is equal to a 

linear combination with parameters ( )0 1, , Jβ β β=β   and covariates ( )1 2= 1, , ,i i i iJx x xx   

denoted as:  
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 ( ) ( ) 0 1 1 2 2Pr 1| ... ,  1, 2,...i i i i i J iJY x x x i nµ β β β β= = = + + + + =x x . (1.15) 

The conditional probability function implies an inequality constraint on the linear 

combination 0 1i′≤ ≤x β . Therefore, the allowable parameter space of the identity-link 

binomial model is defined as:  

 { }: 0 1,  for all 1, 2,...,i i n′Θ = ≤ ≤ =β x β . (1.16) 

The story of the parameter space is more complicated in an identity-link binomial model 

compared with the one in a log binomial model. The boundary of parameter space in an 

identity-link binomial model is not only fenced by an upper bound but also a lower bound. 

The lower or upper bounds will be reached respectively if the fitted probabilities are equal to 

0 or 1. Because of those two boundaries, the standard fitting algorithm of identity-link 

binomial model is most likely to meet numerical difficulties and fails to converge. These 

difficulties can be attributed mainly to the following two reasons. 

 

1. Inappropriate starting values. In the identity-link binomial model, an inadmissible 

starting value could lead to the fitting algorithm failing to converge or converging to a 

set of inappropriate estimates of coefficients resulting in fitted probabilities outside 

the interval [0, 1].  

 

An appropriate starting value can simply solve this issue. We introduced a starting 

value calibration into the identity-link binomial model. It applies the Min-Max 

Normalisation approach to correct the inappropriate values obtained from the default 

starting value algorithm, thereby making all fitted probabilities inside the interval 

[0, 1]. This approach is detailed in Chapter 3 of this thesis. 

 

2. The ML solution lies on the boundaries of the parameter space.  
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Under this situation, the standard fitting algorithm is likely to meet numerical 

difficulties and fail to converge because of the unconstrained fitting processes, even 

though the iteration begins from an appropriate starting value.  

 

A specialised method is required to overcome this difficulty. Because of the similarity 

between the log binomial model and the identity-link binomial model, I extend the 

exact method to an identity-link binomial model to overcome the convergence 

difficulty due to the boundary vectors. Eight theorems and two corollaries with proofs 

are introduced to support our method. The details are presented in Chapter 3 of this 

thesis.  

 

Some alternative approaches have been proposed to estimate the risk difference. McNutt et 

al. 19 described the use of Poisson regression models to estimate relative risk when the 

standard fitting algorithm fails to converge, and  Zou 20 proposed the use of the robust 

sandwich variance estimator 34, 35 to correct the estimated standard errors. Carter et al. 21 

showed that the coefficients from the Poisson model consistently estimate the coefficients of 

the log binomial model. This model is referred to here as the modified Poisson model. Fitted 

with an identity link, this model could be used to approximately estimate the coefficients of 

the identity-link binomial model when the convergence issue was present 36. However, 

because of the non-constrained standard fitting algorithm applied, estimates obtained by 

modified Poisson may result in a solution with the fitted probabilities exceeding unity 22, 37. 

The same issue could arise when fitting the identity-link binomial model as well 38. 

Moreover, Cheung 39 pointed out that there may be convergence issues in estimating the risk 

difference by using the modified Poisson approach with an identity link, and recommended a 

modified least-squares regression method with robust variance estimation, where the risk is 
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represented as the expected value of a binary outcome, and the ordinary least-squares is used 

to estimate the parameters. Although there are no convergence issues with modified least-

squares regression, the unrestricted fitting algorithm may produce a solution with fitted 

probabilities outside the interval [0, 1] 38. Bieler et al. 40 proposed a model-adjusted risk 

differences method that fits the model as a logistic regression model and converts back to risk 

difference through the average marginal prediction function defined by Graubard and Korn 

41. It obtains approximate estimates of marginal average risk difference and the corresponding 

variance-covariance matrix. However, as an approximation of the risk difference, an 

appropriate comparison with those provided by other alternative approaches was not 

available. This made it hard for users to make an informed decision on which approach to 

adopt.  

 

Marschner 42 introduced the expectation-maximisation (EM) algorithm to  overcome 

convergence issues with identity-link modified Poisson model and  make it possible to 

approximately estimate risk difference. The method consists of performing K separate 

maximisations using the EM algorithm. These K maximisations are automatically cycled 

through, and if any of the constrained maximisers produce a stationary point, the process is 

terminated. If no stationary point is found, then the nonstationary constrained maximum 

corresponds to the MLE. Later on, by combining the multinomial-Poisson transformation 43 

and the identity-link modified Poisson model, Donoghoe and Marschner 38 introduced a novel 

approach named as the additive binomial model in their paper to approximately estimate the 

coefficients of the identity-link binomial model (their approach is referred as to the additive 

Poisson model to distinguish it from the identity-link binomial model in this thesis). Their 

approach provides extra flexibility for including monotonic regression function to allow 

semi-parametric adjustment of risk differences.  
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Based on an adaptive barrier approach, Kovalchik et al. 44 developed a general linear-expit 

regression model (LEXPIT) that combines linear and nonlinear risk effects to approximately 

estimate absolute risk and risk variance. However, Donoghoe and Marschner 38 stated that 

LEXPIT did not produce a good performance in the simulations compared with their additive 

Poisson model. A nuisance model with doubly robust estimator has also been introduced to 

estimate risk ratio and risk difference approximately 45. The approach produces the 

conditional log-odds product to build an unconstrained nuisance model.  

 

None of the previous approaches directly overcame the numerical difficulties caused by an 

ML solution on the boundary of the parameter space in the identity-link binomial model. 

Application of the exact method makes it possible to eliminate the impact of boundary 

vectors. An appropriate comparison between the results of the exact method and the 

approximations are presented in Chapter 3 of this thesis.  

 

1.4 Numerical instability of estimating the relative risk in the clustered/longitudinal 

data 

To estimate the relative risk through a model in the independent data, the log binomial model 

is a viable option. However, in many real-world situations, observations may not be 

independent and could have correlated errors. In these situations, one possible way to analyse 

data and produce a better model fit than assuming that observations are independent is to 

assume an intraclass correlation and appropriately to assign an intraclass correlation structure 

in the fitting procedure. For example, failure to consider the correlation between a cluster of 

patients who have been taken care of by the same doctor may result in estimation bias. 

Therefore, an appropriate statistical model to estimate the relative risk in the 
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clustered/longitudinal data is needed. The generalised estimating equation (GEE) 46, 47 based 

on the quasi-likelihood provides a convenient alternative to maximum likelihood estimation 

method for correlated data. It estimates the averaging effects (population-averaged effect) 

over all clusters by including the within-cluster dependence. As an extension of GLM, GEE 

can be used to estimate several types of models with the correlated outcome by changing the 

link function and the distribution of the outcome variable. Analogous to the log binomial 

model, the marginal log binomial model estimated by GEE (referred to as marginal LBM by 

GEE) is recognised as a feasible approach to estimate relative risk, with adjustment for 

potential confounders and interaction effects. The marginal LBM by GEE as a 

semiparametric approach does not require a fully defined likelihood function to estimate the 

model (detailed in Chapter 4 of this thesis). Instead, it evaluates the model by introducing the 

first and second order components directly into an estimating equation. 

 

Suppose that each cluster ,  1, 2, ,i i K=   includes in  observations on related subjects or 

repeated observations on a single subject. We denote the response variable of the pth 

observation in cluster i as , 1, 2, ,ip iy p n=  , and the response vector under ith as 

( )1 2, ,...
ii i i iny y y ′=y . The link function g  builds a relationship between the mean of ipy  

denoted as ipµ  and the vector product of covariates vector ( )1 21, , , ,ip ip ip ipJx x x=x   and 

regression parameters ( )0 1 2, , , , Jβ β β β=β  , which is written as: 

 ( )ip ipg µ ′= x β . (1.17) 

It is the natural logarithmic function in the marginal LBM by GEE. The variance of ipy   

represented as ( ) ( )Var ip ipy vφ µ=  depends on the distribution of ipy , and generally consists 

of the mean ipµ  and scale parameter φ  which is usually estimated by Pearson residuals 48 
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(detailed in chapter 4). In a marginal LBM by GEE, the mean and variance are ipµ  and 

( ) ( )Var 1ip ip ipy φµ µ= − . Within cluster i, the variance-covariance matrix is structured as 

 ( )1/2 1/2
i i i iφ=V A R α A , (1.18) 

where ( ) ( ) ( )1 2, ,...
ii i i inv v vµ µ µ =  A diag  and ( )iR α  is a i in n×  working correlation 

matrix which describes the correlation structure between observations in cluster i. The 

parameter vector α  summarises the correlation between observations 49. An estimate of β  is 

obtained by solving the estimating equations  

 ( ) ( )1

1

K

i i i i
i

U −

=

′= − =∑β D V y μ 0 , (1.19) 

where ( )1 2, ,...
ii i i inµ µ µ=μ  and i i= ∂ ∂D μ β . The estimation of the variance-covariance 

matrix β̂  is based on the sandwich estimator 

 
1 1

1 1
ˆ

1 1

ˆ ˆ ˆ
K K

i i i i i i
i i

− −
− −

= =

   
′ ′=       

   
∑ ∑βV D V D M D V D , (1.20) 

where ( )( )1 1
1

ˆ ˆˆ ˆK
i i i i i i ii

− −
=

′ ′= − −∑M D V y u y u V D , and 1
1

ˆK
i i ii

−
=

′∑ D V D  is called naive 

variance-covariance matrix. The estimates β̂  and ˆˆ
βV  are consistent even if the working 

correlation structures are misspecified 46, 50.  

 

In correlated data with a binary outcome variable, if the solution β̂  obtained from the 

marginal LBM by GEE lies on the boundary of the parameter space, it will lead to a fitted 

probability (also known as estimated mean ˆipµ ) equal to 1. Such fitted probability ˆ 1ipµ =  

will cause problems with the calculation of 1ˆ
i
−A  and lead to a failure of convergence in the 

standard fitting algorithm. In such situations, since the failure of the convergence is also due 
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to the existence of the boundary vectors, the exact method may be possible to overcome the 

problem by eliminating the impact of boundary vector. We extend the exact method to the 

marginal LBM by GEE to deal with the problems of convergence issues due to boundary 

vectors. Five known criteria (RJ 51, QIC 52, CIC 53, SC 54 and GP 55) were used to evaluate the 

improvement of the model fitting after eliminating the boundary vectors using the exact 

method in a real-world example and a simulation. The details of the procedure to obtain an 

approximate solution is presented in Chapter 4. 

 

1.5 Research aims 

1. To provide the mathematical details and practical guidance necessary to implement the 

exact method of fitting the log binomial model, to demonstrate and evaluate fits by the exact 

method to example and simulated data, and to compare the estimates to approximations made 

by alternative methods of fitting the log binomial model. 

 

2. To extend the exact method to fitting the identity-link binomial model, to provide the 

mathematical details and practical guidance necessary for that purpose, to demonstrate and 

evaluate fits by the exact method to example and simulated data, and to compare the 

estimates to approximations made by alternative methods of fitting the identity-link binomial 

model. 

 

3. To extend the exact method to fitting the marginal LBM by GEE, to provide the 

mathematical details and practical guidance necessary for that purpose, to demonstrate and 

evaluate fits by the exact method to example and simulated data, and to compare the 

estimates to approximations made by the marginal modified Poisson model estimated by 

GEE. 
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The problems that can arise in fitting probability models by standard statistical software in 

each of these data scenarios are demonstrated using a range of example and published 

datasets. Each dataset is able to be estimated by the exact method, and the numerical 

estimates that are reported in each case are able to be replicated, using R software packages 

prepared as part of this thesis. The packages can be downloaded from GitHub via the links 

provided in Appendixes.
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Chapter 2 Resolution of numerical difficulties in fitting the log binomial 

model to estimate the relative risk 

 

2.1 Introduction 

The risk ratio (relative risk) is the ratio measure of choice for summarising the impact of 

exposure on the incidence proportion in epidemiologic studies 5. The log binomial model 

makes it possible to estimate relative risk with adjustment for confounders. However, 

numerical difficulties often arise when fitting the log binomial model using statistical 

software. The difficulties are apparent when the iterative model-fitting algorithm fails to 

converge or, depending on the software, if convergence occurs but to a warning is issued that 

one or more of the fitted values exceed unity. Fitted values greater than unity are inadmissible 

for a model of probabilities. There are four causes for numerical difficulties: data separation, 

rare failures of the fitting algorithm, poor choice of starting values and the maximum 

likelihood (ML) solution on the boundary of the parameter space. 

 

The first numerical difficulty is data separation, a common issue in the fitting procedure for 

models with a binary outcome variable, which is not unique to the log binomial model. The 

second numerical difficulty is a repelling point issue, which occurs specifically in the fitting 

algorithm built on the Fisher scoring algorithm. This numerical difficulty was initially 

identified in the paper of Williamson et al. 10, and was restated as an example of a repelling 

fixed point issue in the Fisher scoring algorithm by Marschner 8. We briefly explain the 

problem and how to avoid it in section 2.3.6. For solving issues related to inappropriate 

starting values, the third numerical difficulty, we provide an approach in section 2.3.7 to 

adjust the value obtained from the default starting value algorithm. The main focus of this 

chapter is on the estimation of the ML solution when it lies on the boundary of the parameter 
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space, the fourth numerical difficulty. To do so, we make use of an “exact” method suggested 

by Deddens et al. 18 for estimating boundary solutions for models with a single covariate, and 

later extended to the general case by Petersen and Deddens 9. 

 

The conditional sampling properties of this model for boundary solutions have not been 

studied. More generally, this is the case also for the alternative methods that have been 

proposed to deal with the intractability of the log binomial model 8. Moreover, some authors 

6, 56 have recommended the use of non-ML methods when boundary estimates or non-

convergence are encountered with the ML estimator. To address this critical deficiency 

specifically in respect of the exact method, we undertake simulation studies to investigate the 

bias, efficiency and confidence interval coverage of the exact estimates of a boundary 

solution. 

 

The chapter is organised as follows. In Section 2.2, I describe the log binomial model and 

briefly review the attempts of previous alternative approaches to overcome numerical 

difficulties. Petersen and Deddens 9 did not provide the details necessary to implement their 

exact method in general cases, so I provide the missing information in section 2.3 with four 

theorems and two corollaries. Mathematical details are provided in Appendix A. Sections 2.4 

and 2.5 demonstrate the use of the method. Comparisons are made with the results from 

standard software and several alternative methods. Section 2.6 contains simulation results for 

data having a single boundary vector. Further results are reported in Appendix A, including a 

comparison of the performance of the exact method with that of a popular non-ML method. 

Section 2.7 reports our conclusions.  
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2.2 Alternative approaches for estimating the coefficients in the log binomial model  

2.2.1 The log binomial model 

Consider n independent observations of a binary outcome variable Y  and J  non-constant 

covariates ( )1 2, ,... JX X X . Denote the observed data as ( ),i iy x   for 1, 2,...i n=  where 

( )1 21, , ,...i i i iJxx x′ =x .  Under the log binomial model, the conditional probability of the 

outcome given the covariates is: 

 ( ) ( )Pr 1| exp( ), 1, 2,...i i i iY i nµ ′= = = =x x x β , (2.1) 

where ( )0 1 2, , ,... Jβ β β β ′=β  is the parameter vector. Suppose there are n  observations in the 

data. Simply rewrite the ( )iµ x  as iµ . Then, the log-likelihood function of the log binomial 

model is: 

 ( )
1

log( ) (1 ) log(1 )
n

i i i i
i

L y yµ µ
=

= + − −∑β . (2.2) 

The relationship between the conditional probability of the outcome variable and the linear 

combination in the equation (2.1) is reformed by the log-link function as: 

 0 1 1 2 2log( ) ... ,  1, 2,...i i i i J iJx x x i nµ β β β β′= = + + + + =x β . (2.3) 

iµ  as a probability is a number within a closed interval [0, 1] which is mapped onto a semi-

open interval ( ,0]−∞  through a log-link function. This is generally pointed out and proved by 

Wedderburn 7, and summed up to an inequality constraint 0i′−∞ < ≤x β  on β . With this 

inequality constraint, the allowable parameter space of β  is defined 8, 9 as 

 { }: 0,  for all 1, 2,...,0i i′Θ = ≤ =β x β . (2.4) 

Maximum likelihood estimation (MLE) is a standard approach to obtain an optimised 

estimate of β  that maximises the log-likelihood over the parameter space Θ , defined as: 

 ( )ˆ arg max L
∈Θ

=
β

β β , (2.5) 
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which means that the MLE of the log binomial model cannot lie outside the parameter space 

Θ . This has also been previously emphasised by Deddens and Petersen 57, Lumley et al. 6 

and Marschner 8. With this constrained parameter space Θ , the unconstrained standard fitting 

algorithm may meet numerical difficulties when the ML solution is on the boundary of 

parameter space, leading to a fitted probability ˆiµ  of a covariate vector equal to 1, referred to 

as a boundary vector.  

 

2.2.2 Previous approaches used for estimating the log binomial model 

To estimate the log binomial model and overcome the numerical difficulties, previous studies 

introduced some MLE and non-MLE approaches which are outlined below. 

 

2.2.2.1 MLE approaches 

As an MLE approach, the exact method has the advantage of being able to successfully locate 

the ML solution when it is on the boundary of the parameter space Θ . It was proposed by 

Deddens et al. 18 for a model with a single covariate, and extended to general cases by 

Petersen and Deddens 9.  The exact method involves re-parameterisation of the covariates in 

the log binomial model to eliminate the impact of any boundary vectors in the fitting 

procedure. The exact method successfully located the ML solution for an example with two 

covariates and two boundary vectors in Petersen and Deddens’ paper 9. However, it does not 

provide the essential formula for estimating the covariance between coefficients, which is 

necessary to obtain the estimated standard errors for each coefficient in the exact method. 

Moreover, the details to implement the exact method and an appropriate simulation to 

demonstrate the performance of the method were not provided in the paper. Therefore, the 

method did not gain enough attention from the researchers. Marschner and Gillett 22 used the 

multiplicative probability structure of the log binomial model to construct a latent outcome 
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model for each term in the linear predictor and implemented the EM algorithm to estimate the 

coefficients on the constrained parameter space iteratively. The approach can successfully fit 

the log binomial model. However, when the ML solution lies on the boundary of the 

parameter space, it may converge to an approximation of the ML solution and fail to provide 

the estimate of the standard error of coefficients.  

 

2.2.2.2 Use of the generalised linear model (GLM) function offered by statistical 

software to fit an approximate model 

Iteratively re-weighted least squares (IRLS) and Newton-Raphson (NR) are two standard 

fitting algorithms commonly used in the GLM function of statistical software to fit the log 

binomial model. The glm function in R uses the IRLS algorithm to update the estimated 

parameter values iteratively. If an iteration obtains estimated parameter values outside the 

parameter space, R-glm will apply a non-standard approach, called step-halving, to help the 

estimation by repeatedly halving the step size of the regular IRLS update, until the updated 

parameter values are inside the parameter space 8. However, the fitting algorithm may fall 

into an infinite loop and fail to converge. In this problem, the iterative process begins to move 

away from the ML solution after some iterations. The fitting algorithm then self-corrects, 

returns to a location close to the ML solution, and the iterative process resumes moving away 

from it again. Eventually, the iterative process reaches the set maximum number of iterations 

and fails to converge. The problem initially mentioned by Williamson et al. 10. Marschner 8 

further elaborated the problem as a repelling issue of IRLS to a fixed point, and introduced 

glm2 built on R-glm to fix the issue. R-glm2 solved the issue by merely adding a condition on 

the step-halving to make it only accept the solution as the log-likelihood increased 58. 

Theoretically, both glm and glm2 can converge to a solution by repetitively invoking step-

halving if the iteration begins from an appropriate starting value. However, if the ML solution 
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is on the boundary of parameter space Θ , the solution obtained from those fitting algorithms 

may not be the ML solution but an approximation due to the impact of the boundary vector. 

NR is generally considered to be less stable in the estimation of MLE compared with Fisher 

scoring. However, it has the advantage of avoiding the repelling fixed point issue when the 

observed information matrix (OIM) is used. SAS-GENMOD combined the benefits in both 

fitting algorithms. It begins the iteration with IRLS and switches to NR with OIM 8. 

Nevertheless, SAS-GENMOD could fail to converge when the MLE is on the boundary of the 

parameter space. The COPY method introduced by Deddens et al. 18 is an approximate 

estimating approach which involves augmenting the data with 999 copies of the original data 

but with the outcome indicator reversed in one of the copies, then fitting the model with the 

augmented data using the standard fitting algorithm. Although the approach avoids issues 

with the boundary vector, it only provides an approximation of ML solution, which may be 

biased 6, 59. Therefore, a MLE appropriate method to address the ML solution when it lies on 

the boundary of the parameter space remains absent.  

 

2.2.2.3 Approaches based on solving quasi-likelihood estimating equations 

Some researchers considered that the score of the log-likelihood function equals zero in the 

log binomial model is a special case of generalised estimating equations, which is based on 

the quasi-likelihood function 48, 60. Since solving the quasi-likelihood estimating equations 

offer consistent estimation without imposing parameter constraints, several alternative 

approaches were introduced to approximately estimate the coefficients in the log binomial 

model 6, 17, 20, 21, 36, 61. These approaches, including modified Poisson formally introduced by 

Zou 20 and quasi-MS first suggested by Schouten et al. 17, explained by Lumley et al. 6, and 

finally improved and summed up by Fitzmaurice et al. 61, were non-MLE methods and could 

only produce an approximation of the ML solution. Moreover, since these alternative 
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approaches’ fitting procedure does not take into account the parameter space Θ  of the log 

binomial model, the solution may result in a fitted probability outside the interval [0, 1] 8, 37.  

 

2.2.2.4 Approaches based on constrained optimisation 

A more direct approach is to introduce an appropriate linear inequality constraint in the 

traditional fitting algorithm to solve the numerical difficulties due to the ML solution being 

on the boundary of the parameter space Θ . This new approach, called the adaptive barrier 

approach, was introduced by Lange 23. Some researchers 6, 24, 25 implemented this approach in 

their studies. These studies that relied on the constrained optimisation are summarised in the 

paper by Andrade and Andrade 26.  

 

All of the previous methods 17, 18, 20, 22, 26, 61 were summarised and compared in a review paper 

written by Marschner 8. We accepted his recommendation and compared our results from the 

exact method with the EM method (MLE approach), the modified Poisson method (non-MLE 

approach), and the most recent approach introduced by Andrade and Andrade 26 in a real-

world example and a well-designed simulation study.  

 

2.3 The exact method 

In Section 2.3.1, the fundamentals of the exact method proposed by Petersen and Deddens 9 

are presented. Because some essential details were missing in their paper, I explain what is 

missing in Sections 2.3.2 to 2.3.5 and provide the solutions with five theorems and two 

corollaries. Furthermore, I provide a well-designed strategy for identifying boundary vectors 

and fitting models in Section 2.3.8 so that the exact method can be applied in different 

statistical packages. 

 



Chapter 2 
 

26 
 

2.3.1 Fundamentals of the exact method 

Suppose that the ML solution lies on a boundary of the allowable parameter space with 

maximum value ( ) 1iµ =x  for some 1,2,...i n∈ , and that this maximum value is attained by 

1R ≥  distinct sets of covariates (including the constant). We refer to these covariate vectors 

as boundary vectors. Denote the rth boundary vector as  ( )( ) ( ) ( )( )
1 21, , ,...r r rr

Jx x x=x . If the 

covariate values ( )rx  of the rth ( )1,2,...r R=  boundary vector are shared by rn  observations, 

the method outlined by Petersen and Deddens 9 for estimating the model involves: 

1. eliminating the constant by subtracting from the constant and each non-constant covariate 

its respective value in the boundary vector: 

                                                (1) (1) , 0,1, 2,...ijij jz x x j J= − =                                    (2.6) 

2. when there are multiple boundary vectors ( 1)R > , eliminating the first 1R −  non-constant 

covariates by re-parametrising the covariates according to the scheme: 

              ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

where , 2,3,...r
ij j

r
jr r r r r

ij ij j iji rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 

          (2.7) 

3. dropping the observations with covariate values (1) (2) ( ), ,... Rx x x  respectively, which make 

no contribution to the log-likelihood, and fitting the model ( ) ( )( ) ( )exp JR R
ji ijj R zµ β== ∑z  

without a constant and with 1J R− +  covariates to the remaining 1 2 ... Rn n n n− − − −  

observations to obtain the estimates 1
ˆ ˆ ˆ, ,...R R Jβ β β+  of the coefficients of the non-

eliminated non-constant covariates,   

4. estimating the coefficients ˆ , 1, 2,... 1r r Rβ = −  of the 1R −  eliminated covariates as: 

( 1)
1

( 1)

ˆ
ˆ

J r
j jj r

r r
r

t

t

β
β

+
= +

+= −
∑

                                                 (2.8) 
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5. estimating the standard errors of the estimated coefficients of eliminated covariates as:  

 ( )  ( )  ( )
( )
1 2

1 2
1 2

2 1

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

         = +               

∑ ∑ ∑       (2.9) 

for 1, 2,... 1r R= −  where  ( )ˆVar jβ  denotes the estimated variance of the estimated 

coefficient ˆ
jβ , and  ( )1 2

ˆ ˆCov ,j jβ β  denotes the estimated covariance between the 

estimated coefficients 
1

ˆ
jβ  and 

2
ˆ

jβ ; 

6. estimating the coefficient of the constant covariate from the boundary condition: 

                                                        (1)
0 1

ˆ ˆ J
j jj xβ β== −∑                                                (2.10) 

7. estimating the standard error of the estimated coefficient of the constant covariate as: 

 ( )  ( )( )  ( )1 2 1 2
1 2

2 1

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

   = +    
∑ ∑ ∑  (2.11) 

 

2.3.2 Obtaining estimates of the covariances between non-constant covariates 

If 1R = , all covariances between the estimated coefficients of non-constant covariates are 

provided in the regression output. When 1R > , however fitting the model 

( ) ( )( ) ( )exp JR R
ji ijj R zµ β== ∑z  without a constant and with 1J R− +  non-constant covariates 

does not provide estimates of the covariances between the estimated coefficients of the 1R −  

eliminated covariates and the estimated coefficients of the  1J R− +  remaining non-constant 

covariates. Those covariances are required in (2.9) to calculate the estimated standard errors 

of the estimated coefficients of the 1R −  eliminated covariates, and in (2.11) to calculate the 

estimated standard error of the estimated coefficient of the constant covariate. For example, if 

2R = , a model with 2J =  covariates provides exact estimates of 2β  and  ( )2
ˆSE β  but does 
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not provide an estimate of  ( )1 2
ˆ ˆCov ,β β  that is required to calculate  ( )1̂SE β  and  ( )0

ˆSE β . 

For this specific case, Petersen and Deddens 9 suggested reversing the order of the boundary 

vectors to produce two equations in the two unknowns  ( )0
ˆSE β  and  ( )1 2

ˆ ˆCov ,β β . The 

solution provides the estimate of  ( )0
ˆSE β  , and the value of  ( )1 2

ˆ ˆCov ,β β  that is necessary to 

calculate  ( )1̂SE .β  In general, this approach requires the solution of a R R×  system of 

simultaneous equations, and is feasible for all cases with 1J R= > . It is not applicable if  

1.J R> >  

 

To overcome this deficiency, we provide a solution in Theorem 2.1, whose proof is presented 

in Appendix A. 

 

Theorem 2.1 

For a log binomial model with 1J ≥  independent non-constant covariates fitted by the exact 

method to data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the 

constant) for which the estimated outcome probability evaluated at the ML solution is unity, 

the estimated covariances between exact estimates of the coefficients of the 1R −  eliminated 

non-constant covariates and exact estimates of the coefficients of the 1J R− +  remaining 

non-constant covariates are given by: 

                        ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J

js
r s s j sr r

j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑          (2.12) 

for 1,2,... 1r R= −  and 1,...s r J= +  . 
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2.3.3 Estimated covariance between the constant and each non-constant covariate 

A method of estimating the covariances between the estimated coefficient of the constant 

covariate and the estimated coefficients of the non-constant covariates was not provided by 

Petersen and Deddens 9. To overcome this deficiency, we provide a solution in Theorem 2.2, 

whose proof is presented in Appendix A. 

 

Theorem 2.2 

For a log binomial model with 1J ≥  independent non-constant covariates fitted by the exact 

method to data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the 

constant) for which the estimated outcome probability evaluated at the ML solution is unity, 

the estimated covariances between the exact estimate of the coefficient of the constant 

covariate and exact estimates of the coefficients of the J  non-constant covariates are given 

by: 

                              ( )  ( )  ( )11
1
1

(1) (1)
0

1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
J

j j j jj j
j
j j

x xβ β β β β
=
≠

 
 

= − + 
 
 

∑                (2.13) 

for  1, 2,j J= … . 

 

2.3.4 The special case of perfect linear correlation between estimates of model coefficients 

We found that in the special case where the number of covariates is the same as the number 

of boundary vectors ( )J R= , there is inter-dependency between the exact estimates of the 

coefficients of the non-constant covariates in the log binomial model. Petersen and Deddens 9 

did not comment on this issue. For guidance, we provide Theorem 2.3 and Corollary 2.3.1 

with proofs in Appendix A. 
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Theorem 2.3 

For a log binomial model with 1J ≥  independent non-constant covariates fitted by the exact 

method to data having ( )R R J=  distinct sets of values of the covariates (including the 

constant) for which the estimated outcome probability evaluated at the ML solution is unity, 

there is a perfect correlation between each pair of exact estimates of the coefficients of the 

non-constant covariates: 

                             


 



 

1 2 1 2

1 2
1 21 2

,

Cov Cov

SE SEVar V

ˆ ˆ ˆ ˆ( , ) ( , )
1 ˆ ˆˆ ˆ ( ) ( )( ) ar( )

j j j j
j j

j jj j

β β β β
ρ

β ββ β
= = =                           (2.14) 

For 1 2 1 2 , 1, 2,... ;j j J j j= ≠  where ˆ , 1, 2,...j j Jβ =  denotes the estimates of the coefficients of 

the non-constant covariates, and Var ˆ( )jβ  and SE ˆ( )jβ  denote the estimates of their 

estimated variance and standard error respectively. 

 

Corollary 2.3.1 

If the log binomial model satisfies the conditions of Theorem 3, the standardised values (Z 

statistics) of the exact estimates of the J + 1 model coefficients are equal in absolute size: 

                                        
   

0 1 2

0 1 2

ˆ ˆ ˆ ˆ
...ˆ ˆ ˆ ˆSE( ) ( ) ( ) ( )SE SE SE

J

J

β β β β

β β β β
= = = =                          (2.15) 

where 0β̂  denotes the estimate of the coefficient of the constant covariate, and  0SE ˆ( )β  

denotes the estimate of its estimated standard error. 

 

2.3.5 Covariate order when there are multiple distinct boundary vectors 

When there are multiple boundary vectors ( 1)R > , the exact method requires re-

parameterisation of covariates according to the scheme (1) (1)
ijij jz x x= −  for 1r =   and 
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( )( ) ( 1) ( ) ( ) ( 1)
1 , 1

r r r r r
ij ij j r i rz z t t z− −

− −= −  for 2,3,...r R= . The re-parameterisations for 2,3,... .r R=  

cannot succeed if ( )
1 0r

rt − =  at any step. As an example with 2,R =  suppose that the first 

covariate is a binary variable for sex, and that the first and second boundary vectors represent 

subjects of the same sex so that (1) (2)
1 1x x= . The first re-parameterisation eliminates constant 

covariate. For the first covariate, this produces (2)
1 1

(2) (1) (2) (1)
1 1 1 1 0

i
i x x

t z x x
=

= = − =  and results 

in division by zero in the second re-parameterisation. Petersen and Deddens 9 did not 

comment on this issue.  

 

Our strategy is to exchange any covariate for which ( )
1 0r

rt − =  at any step 2,3,...r R=  with any 

remaining covariate for which (2) 0.jt ≠  This requires re-ordering the covariates before 

proceeding. But that raises the question of whether it is possible always to find a covariate 

with nonzero ( )
1

r
rt −  to replace one with ( )

1 0.r
rt − =  

 

To answer the question, we provide Theorem 2.4 and Corollary 2.4.1. The proofs are 

presented in Appendix A. 

 

Theorem 2.4 

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to 

data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for 

which the estimated outcome probability evaluated at the ML solution is unity, these R  

distinct sets of values of the covariates are always linearly independent. 

 

Corollary 2.4.1 
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For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to 

data having (1 )R R J< ≤  distinct sets of values of the covariates (including the constant) for 

which the estimated outcome probability evaluated at the ML solution is unity, there is at 

least one covariate for which ( )
1 0, 2,3,...r

rt r R− ≠ = . 

 

This corollary guarantees that if there are multiple ( 1)R >  distinct boundary vectors, and 

( )
1 0r

rt − =  for any 2,3,...r R= , it is possible always to find and exchange it with another 

covariate for which ( )
1 0.r

rt − ≠   

 

2.3.6 Choice of the fitting algorithm 

As mentioned previously in Section 2.2.3, the major options for fitting a log binomial model 

are the NR and IRLS algorithms. Each requires evaluation of terms involving ( ) 1ˆ1 ixµ −
 −  , 

posing difficulties in the estimation of boundary solutions at which at least one fitted 

probability ( )ˆ ixµ  is equal to unity. NR additionally requires evaluation of terms involving 

( ) 2ˆ1 ixµ −
 −  , and is less tractable than IRLS in consequence. However, there is an 

advantage of NR in estimating the ML solution when the OIM is used. It shows a better 

stabilisation than IRLS when the iteration process gets close to the ML solution. This leads to 

a strategy which attempt fits of the log binomial model firstly by IRLS, and secondly by NR. 

Marschner 8 described the characteristics of NR and IRLS and presented the same strategy in 

his review paper. For estimation in R, for which IRLS is the fitting algorithm, we used a 

custom-built NR algorithm with unlimited step-halving. 
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This dual approach is necessary because neither algorithm is guaranteed to converge. Using 

IRLS, consider the example data in Table 2.1, which is taken from Williamson et al. 10. The 

log binomial model ( ) ( )0 1Pr 1| x exp , 1,2,...40i i iY x iβ β= = + =  for these data has the ML 

solution of 0
ˆ 0.708β = −  and 1̂ 0.472β = − . It lies in the interior of the allowable parameter 

space, but estimation by IRLS is unsuccessful. Marschner 8 characterised the ML solution as 

a “repelling” point to which IRLS will not converge and introduced glm2 built on R-glm to 

fix the issue. R-glm2 solved the issue by merely adding a condition on the step-halving to 

make it only accept the solution as the log-likelihood increased 58. 

 

For the data in Table 2.1, the  IRLS fitting algorithm fails to converge to the ML solution. As 

Marschner 8 explains, Fisher scoring will not converge irrespective of whether, at any 

iterative step, the current set of estimates is very close to the ML solution. Marschner states 

that this is the case even if iterations commence from very good initial values. The starting 

values I used were 0, 3ˆ 0.70startβ = −  and 1, 7ˆ 0.59startβ = − . The detailed procedure for 

obtaining them is described in the next section. 

 

Table 2.1. Example data of Williamson et al. 10 

Exposure Event No event Total 

x = –1   2   2   4 
x =   0 14   3 17 
x =   1   2 17 19 

 

2.3.7 Starting values 

We found that the standard fitting algorithm may encounter numerical difficulties and fail to 

self-correct the issue if the iteration begins from an inappropriate starting value, which will 

lead to some fitted probabilities exceeding unity. We tested the default starting value 
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algorithm under three statistical packages (SAS, R and Stata). R and Stata share the same 

algorithm for obtaining starting values, which did not provide a satisfying result mostly in the 

case that the ML solution lies close to or on the boundary of the parameter space. SAS uses a 

different algorithm to obtain starting values, but does not attain the ML solution when it is on 

a boundary although a close approximation is found in some instances.  

 

The approach used is to deduct from the coefficient of the constant (if coefficients are to be 

supplied as initial values) or from the linear predictor (if fitted values are to be supplied as 

initial estimates) an amount just adequate to ensure that all initial fitted probabilities are less 

than unity. For example, the starting values for the data in Table 2.1 obtained from the default 

algorithm in R are 0, 6ˆ 0.19defaultβ −=  and 1, 7ˆ 0.59defaultβ −= . However, these values are 

inappropriate because they make the fitted probability corresponding to x = –1 greater than 

unity ( 1 3ˆ 1.49xµ =− = ). The fitting algorithm in R stops and asks the user to provide 

appropriate starting values. My starting value algorithm fixes the problem by subtracting the 

logarithm of the maximum fitted probability ( 1 3ˆ 1.49xµ =− = ) from the starting value for the 

constant 0β  and then adding the logarithm of a value in the range [0, 1] but close to unity. In 

my starting value algorithm, this value is ( )log 0.9 . The fixed constant of starting values 

0,
ˆ

startβ  is obtained as follows: 

 
( ) ( )0, 0,

2

ˆ ˆ ˆlog max lo

0 0.401 0.1

g 0.9

.1 05
0.70

96
start defaultβ β µ

−


−
= −

= − + 
= − . 

If the standard fitting algorithm begins the iteration from an appropriate starting value, it can 

converge to a solution with enough step-halving. However, the solution is only an 

approximate one if the ML solution is on the boundary because the standard fitting algorithm 
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will have to stop the iteration somewhere before touching the boundary due to the impact of 

the boundary vector. Therefore, the exact method is still needed to eliminate the impact of the 

boundary vector and locate the ML solution in this case. 

 

2.3.8 Identifying the boundary vector(s) in advance to apply the exact method 

From the outset, Deddens et al. 18 acknowledged a limitation of the exact method. Before it 

can be used, the covariate vectors with fitted probabilities equal to unity need to be identified. 

That is unknown in advance of estimation. There may be multiple covariate vectors with 

approximate fitted probabilities close to unity, and no way of determining with certainty 

which of them will prove to be the boundary vector(s). 

 

Our strategy to address the issue is as follows: 

1. Approximate the ML solution as accurately as possible. (the details are in the next 

paragraph); 

2. Identify all (distinct) covariate vectors with an approximate fitted probability close to 

unity; 

3. Test each candidate boundary vector and boundary vector combination until the exact 

solution is found. The approximate fitted probabilities (largest first) are used to 

prioritise the order of selection. 

 

Our strategy for step 1 is software-specific. The implementation of IRLS in R-glm, once 

admissable starting values are supplied, provides estimates that are generally adequate as an 

approximation of the ML solution. For Stata users, a custom-made Newton-Raphson 

algorithm with Fisher scoring (asymptotically equivalent to IRLS) and unlimited step-halving 

is used to provide a reasonable first approximation of the ML solution.  
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An R package lbm based on the exact method for fitting a log binomial model has been 

released on Github. The related R documents are set out in Section 6.1 of Chapter 6. 

 

2.4 Illustration of our method with an example dataset 

2.4.1 The example data 

The data includes 11 observations shown in Table 2.2. The response variable Y  for each 

analysis is a binary (0/1) variable. The covariates 1X , 2X  and 3X  are three continuous 

variables. To estimate the probability of 1Y = , a log binomial model was fitted, but failed to 

converge. In what follows, it will be discovered that there are two boundary vectors in this 

dataset: observations 10 and 11 have fitted probabilities of unity when evaluated at the ML 

solution. 

Table 2.2. Example data 

obs y  1x  2x  3x  

1 0 14 3.90 14.500 
2 0 22 3.18 4.504 
3 0 12 4.72 13.594 
4 0 14 4.13 6.303 
5 0 18 3.69 4.890 
6 1 14 3.42 12.990 
7 0 34 1.80 4.425 
8 0 18 3.47 4.934 
9 1 35 2.05 3.798 

10 1 26 1.83 3.895 
11 1 17 2.83 9.690 

 

2.4.2 Application of the exact method 

When R-glm was used to initially fit the data, the fitting algorithm stopped and asked the user 

to provide appropriate starting values. The starting values used by R-glm –  

0, 9ˆ 2.29defaultβ = , 1,
ˆ 0.008defaultβ = − , 2,

ˆ 1.550defaultβ = − , and 3,
ˆ 0.225defaultβ =  – are 

inappropriate because the fitted probabilities of observations 7 and 10 evaluated at those 
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initial values exceed unity: 7,ˆ 1.270defaultµ =  and 10,ˆ 1.145defaultµ = . To correct this problem 

and obtain appropriate starting values, the algorithm described in Section 2.3.7 is applied by 

subtracting the logarithm of 7,ˆ 1.270defaultµ =  from 0,
ˆ

defaultβ  and adding a logarithm of 0.9. 

The details are as follows: 

 

( ) ( )
( ) ( )

0, 0, 7,
ˆ ˆ ˆlog log 0.9

2.299 log 1.270 log 0.9
1.955

start default defaultβ β µ= − +

= − +

=

. 

Thus the corrected starting values were 0, 5ˆ 1.95startβ = , 1,
ˆ 0.008startβ = − , 2,

ˆ 1.550startβ = − , 

and 3,
ˆ 0.225startβ = . Commencing from the corrected starting values, the fitting algorithm of 

R-glm reaches an approximation of the ML solution with estimated coefficients,

0, 0ˆ 6.520667approxiβ = , 1, 8ˆ 0.109807approxiβ = − , 2, 4ˆ 2.592191approxiβ = − , and 

3, 8ˆ 0.276776approxiβ = . (Note that the decimal number is increased to distinguish the 

approximation of the ML solution from the exact solution. In this small example dataset, the 

two sets of estimates are extremely close but, in other and larger datasets, the difference 

between them may be more substantial). 

 

The fitted values evaluated at the approximate solution revealed that the covariate vectors 

( ) ( )(1) (1) (1) (1)
0 1 2 3, , , 1,17,2.83,9.690x x x x =  and ( ) ( )(2) (2) (2) (2)

0 1 2 3, , , 1, 26,1.83,3.895x x x x =  

of observations 11 and 10 respectively (in decreasing order of initial fitted probability) were 

each a strong candidate to constitute a boundary vector. The data were re-parameterised 

firstly as: 

(1) (1) 1, 2,...11; 0,1,2,3,ijij j i jz x x == − =  

to eliminate the constant and observation 11, and secondly as: 
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(2) (1)
(2) (1) (1)

1(2) (1)
1 1

  1, 2,...10; 1,2,3,j j
ij ij i

x x
z z z

x x
i j

 −
 = −
 

= =
− 

 

to eliminate the first covariate and observation 10. The first covariate is eliminated because: 

(2) (1)
(2) (1) (1)1 1
1 1 1(2) (1)

1 1
1,2,...10;0,i i i

x x
z z z i

x x

 −
= − = 


= −

 

The reduced model ( ) ( )3(2) (2)
2exp ji ijj zµ β== ∑z  with two covariates (the re-parameterised 

values of 2x  and 3x ) and without a constant was then fitted to the remaining 1,2,...,9i =  

observations. In confirmation that the two covariate vectors were boundary vectors, this 

estimation was successful. It resulted in the coefficient estimates 2
ˆ 2.5921916β = −  and 

3
ˆ 0.2767768β = , the standard error estimates  ( )2

ˆSE 1.5029337β =  and 

 ( )3
ˆSE  0.2508485β = , and the covariance estimate  ( )2 3

ˆ ˆCov , 0.3380011β β = − . The 

maximised value of the log-likelihood was –3.191690. Using ( ) ( )2 1(2)
1 1 1 26 17t x x= − = −  , 

( ) ( )2 1(2)
2 2 2 1.83 2.83t x x= − = −  and ( ) ( )2 1(2)

3 3 3 3.895 9.690t x x= − = − , the estimate of 1̂β  was 

calculated from (2.8) as 1̂ 0.1098078β = − , its standard error was calculated from (2.9) as 

 ( )1̂SE 0.0749095β = , and the covariances with the estimated coefficients of non-eliminated 

covariates were calculated from (2.12) as (2.16)  ( )1 2
ˆ ˆCov , 0.0333437β β =  and 

 ( )1 3
ˆ ˆCov , 0.0029610β β = . Estimates of the constant and its estimated standard error are 

derived from (2.10) and (2.11) as 0
ˆ 6.5206677β =  and  ( )0

ˆSE 3.3566005β =  respectively. 

Finally, the estimated covariances of the coefficient of the constant covariate with the 

estimated coefficients of the non-constant covariates were calculated from (2.13) as 

 ( )0 1 5ˆ ˆC .ov , 0 218449β β = − ,  ( )0 2 9ˆ ˆC .ov , 3 684044β β = −  and  ( )0 3 4ˆ ˆC 2ov , 0. 96462β β = . 
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These estimates of standard error and covariance were evaluated using the OIM. The fitted 

probabilities for each observation evaluated at the exact estimates are provided in Table A1 

of Appendix A. 

 

2.4.3 Results obtained from standard statistical software packages 

The standard software packages that have been tested are R-glm (version 3.5.0), SAS-

GENMOD (version 9.4), SPSS-genlin (version 24) and Stata-glm (version 15.0). The R-glm 

algorithm is an implementation of IRLS. SAS-GENMOD uses the NR algorithm but with an 

option to use Fisher scoring (NR–Fisher). SPSS-genlin allows the user to choose between 

NR, NR–Fisher and a hybrid method. Stata provides Stata-glm (NR), Stata-glm (NR–Fisher), 

Stata-glm (IRLS), and Stata-binreg (IRLS). Stata-glm (NR) and Stata-glm (NR–Fisher) 

provide options for three additional fitting algorithms to be used interchangeably with or in 

place of NR. SAS and Stata allow for the estimates of variance to be based on the expected 

information matrix (EIM) rather than OIM. All four software packages allow the user to 

over-ride the default starting values. The current version of R-glm uses as default the same 

starting values used by Stata but, if they are inadmissible, halts execution until admissible 

starting values are supplied by the user. Stata-glm (NR) and Stata-glm (NR–Fisher) provide 

an option that initiates a search for improved starting values.  

 

In order to compare the performance of the approaches from four statistical packages with the 

exact method, the model is estimated under their default starting value algorithms. For the 

data in Table 2.2: 

1. SAS-GENMOD (NR) produced an inadmissible solution with coefficient errors 

(calculated as percentage differences relative to the ML values of the coefficient) of 

8–124%;  
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2. SPSS-genlin excluded observation 10 and 11 from estimation and reached 

inadmissible solutions with coefficient errors of 36–1015% (NR) or 15-56% (NR–

Fisher); 

3. Stata-glm (NR) and Stata-glm (NR–Fisher) failed to converge even when admissible 

starting values were supplied by the user, or the search option was specified;  

4. Stata-binreg iterated to an admissible solution but with coefficient errors of 3–211%.  

5. Stata-glm (IRLS) converged to an inadmissible solution with coefficient errors of 1–

12%. 

Table 2.3 gives details of the estimated coefficients obtained from each approach. Because 

the results of R-glm (IRLS) were used as an approximate solution to identify the boundary 

vectors shown in Section 2.2.4, they are not included in Table 2.3 for comparison. 

Table 2.3: The estimated coefficients of the model are obtained from the five 
approaches provided by the three statistical packages. 

 Exact 
method 

SPSS 
(NR-Fisher) 

SPSS 
(NR) 

Stata-binreg 
Stata-glm 

(IRLS) 
SAS-

GENMOD 

β0 6.5207 6.3097 22.9980 20.3244 7.1509 0.5696 
β1 –0.1098 –0.1191 –0.4489 –0.3167 –0.1217 0.0267 
β2 –2.5922 –1.1815 –4.3301 –5.4502 –2.6244 –1.2759 
β3 0.2768 0.0256 0.0121 0.2858 0.2441 0.2535 

 
 
2.4.4 Approximation of the solution using alternative methods 

The modified Poisson approach produces an inadmissible solution with coefficient errors of 

3–30%. The EM method implemented through R-logbin reaches an admissible set of 

estimates with coefficient errors of 76–99%, and warns that the MLE is on the boundary of 

parameter space and cannot report the estimated standard errors. The R-lbreg, which is a 

package based on constrained optimisation released by Andrade and Andrade 26, reaches an 

admissible solution with coefficient errors of 0.01– 0.02%.  
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Table 2.4: The estimated coefficients of the model are 
obtained from three alternative approaches. 

 Exact 
method Poisson R-lbreg R-logbin 

β0 6.5207 5.6902 6.5211 1.5609 
β1 –0.1098 –0.0766 –0.1098 –0.0207 
β2 –2.5922 –2.6656 –2.5925 –0.7499 
β3 0.2768 0.3127 0.2768 0.0026 

 

2.5 A real world example 

In their demonstration of model-building techniques for the logistic regression model, 

Hosmer et al. 62 used information collected at baseline in the Global Longitudinal Study of 

Osteoporosis in Women (GLOW) on a sub-sample of 500n =  women enrolled at six sites in 

the United States. The GLOW500 data are available from the following website, John Wiley 

& Sons, Inc: 

http://wiley.mpstechnologies.com/wiley/BOBContent/searchLPBobContent.do 

The binary (0/1) outcome variable (FRACTURE) is an indicator of fracture in the first year of 

follow-up. The study factors selected for the demonstration were the subjects’ age in years 

(AGE), weight in kgs (WEIGHT), height in cms (HEIGHT), body mass index in kgs/m² 

(BMI), self-reported risk of fracture (RATERISK), and binary (0/1) indicators for any prior 

fracture since age 45 (PRIORFRAC), whether mother had had a fracture (MOMFRAC), 

menopause status at age 44 (PREMENO), whether arms are needed to stand from sitting in a 

chair (ARMASSIST), and ever-smoker status (SMOKE). In drawing the sub-sample, fractures 

were over-sampled to produce a fracture proportion of 25% (125/500) compared to around 

4% in the full dataset. As a result, associations found in modelling these data may not apply 

to the entire cohort. 

 

To estimate the risk of fracture given the values of plausible covariates, a log binomial model 

was estimated using a model-fitting procedure similar to that adopted by Hosmer et al. 62. 
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Similar conclusions were reached in respect to the scaling of AGE and HEIGHT, and the 

details are omitted for brevity. Consistent with the logistic regression analysis of this data 

subset, the coefficient of HEIGHT is negative. In a departure from the logistic analysis, 

WEIGHT was a significant predictor of the risk of FRACTURE when adjusted for HEIGHT. 

To capture its quadratic relationship with risk of fracture, the square of WEIGHT was 

included as a covariate. The influence of WEIGHT was most pronounced for those whose 

mothers had a fracture, and the final model includes two interaction terms 

WEIGHT×MOMFRAC and WEIGHT 2×MOMFRAC. An interaction of WEIGHT with 

MOMFRAC was not considered for inclusion in the logistic model by Hosmer et al. 62 

because WEIGHT was not a significant predictor on the logit scale in univariable analysis. 

The logistic regression model included the product terms AGE×PRIORFRAC and 

MOMFRAC×ARMASSIST, but only the former was retained in the log binomial model when 

the interactions with WEIGHT were included. The composite variable BMI was not a 

statistically significant predictor of the risk of FRACTURE, and was not included in the 

model. Nor were the binary covariates PREMENO and SMOKE.  

 

Table 2.3 shows the log binomial model fitted using the exact method. Of relevance when 

interpreting the coefficient of the constant, the values of the continuous covariates are mean-

centred. The ML solution is –240.1546083, located on the boundary of the parameter space. 

In order to obtain the approximate solution for identifying the boundary vectors, a user-

supplied starting value is attained by using the approach introduced in Section 2.3.7, 

2ˆ 1.593constantβ −= , ˆ 0.0290AGEβ = , ˆ 0.0012WEIGHTβ = − , 2
ˆ 0.0000WEIGHTβ = − , 

ˆ 0.0178HEIGHTβ = − , ˆ 0.3704PRIORFRACβ = , ˆ 0.6341MOMFRACβ = , ˆ 0.1838ARMASSISTβ = , 

ˆ 0.1694RATERISKβ = , ˆ 0.0300AGE PRIORFRACβ × = − , ˆ 0.0166WEIGHT MOMFRACβ × = , and 



Chapter 2 
 

43 
 

2
ˆ 0.0027WEIGHT MOMFRACβ × = − . There are four boundary vectors. One represents a woman of 

very short stature who needed to use her arms to stand from sitting in a chair. The other three 

had suffered a fracture prior to age 45, their mothers had had a fracture, and they each 

considered their own risk of fracture to be greater than others of the same age. Two of the 

three needed to use their arms to get out of a chair. 

Table 2.5 Results of fitting a log binomial model to the GLOW500 data by the exact method 

 Coef. Std. Err. z p 95% CI 

AGE 0.0438 0.0115 3.82 <0.001 (0.0213, 0.0662) 
WEIGHT 0.0093 0.0056 1.67 0.095 (–0.0016, 0.0202) 
WEIGHT 2 –0.0001 0.0002 –0.25 0.802 (–0.0005, 0.0004) 
HEIGHT –0.0428 0.0052 –8.17 <0.001 (–0.0530, –0.0325) 
PRIORFRAC 0.6331 0.1459 4.34 <0.001 (0.3472, 0.9190) 
MOMFRAC 1.0121 0.1758 5.76 <0.001 (0.6675, 1.3567) 
ARMASSIST 0.2524 0.1384 1.82 0.068 (–0.0189, 0.5236) 
RATERISK 0.2635 0.1040 2.53 0.011 (0.0595, 0.4674) 
AGE×PRIORFRAC –0.0466 0.0127 –3.65 <0.001 (–0.0716, –0.0216) 
WEIGHT×MOMFRAC 0.0200 0.0114 1.76 0.079 (–0.0023, 0.0424) 
WEIGHT 2×MOMFRAC –0.0036 0.0012 –3.00 0.003 (–0.0060, –0.0013) 
constant –2.3465 0.2324 –10.10 <0.001 (–2.8021, –1.8909) 

 

In comparison, R-glm (IRLS) with user-supplied admissible starting values reached an 

admissible solution with log-likelihood of 240.1546415 and coefficient errors of 0.1–4%. 

SAS-genmod (NR–Fisher) reached an admissible solution with coefficient errors of 0.2–4%, 

but a “Negative of Hessian not positive definite” warning was issued, and some standard 

error estimates were not produced. Stata-glm (IRLS) failed to converge (default starting 

values) or converged to an inadmissible solution with coefficient errors of 0.2–1% (user-

supplied admissible starting values).  

 

The modified Poisson approach produced an inadmissible solution with coefficient errors of 

0.4–63%. After 5088 iterations, R-logbin reached an admissible set of estimates with the log-

likelihood of –254.9663114 and coefficient errors of 5–100%, but failed to provide the 

standard error and issued a warning message, “MLE on the boundary of parameter space, 
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cannot use asymptotic covariance matrix”. The R-lbreg reached an admissible solution with 

the log-likelihood of –240.1546645 and coefficient errors of 0.02–0.47%. The log-likelihood 

was not provided as a reference in the approaches that produced an inadmissible solution.  

 

2.6 Simulations 

The simulations were undertaken to confirm that the exact estimates had satisfactory 

properties in small samples. Each set of simulations involved 10000 replications of a dataset 

of 500 observations of a binary outcome indicator Y , a dichotomous covariate 1X  and a 

continuous covariate 2.X  The observations are denoted as ( )1 2, , , 1, 2,...500.i i iy x x i =  The 

design values of the parameters 0β , 1β  and 2β  of the linear predictor 0 1 1 2 2x xβ β β+ +  used 

in each set of simulations are shown in Table 2.4. The conclusions are not influenced by the 

specific values of 0β , 1β  and 2β  chosen. The values 1ix  of 1X  were drawn at random from 

a Bernoulli distribution with success probability 
1

0.5xp = . The values 2ix  of 2X  were 

drawn at random from a uniform distribution with limiting values a  and b  that are 

respectively the minimum and maximum of [ ]0 1 2ln(0.05) 0β β β− − ×  and 

[ ]0 1 2ln(1) 1β β β− − × . The values iy   of Y  were drawn at random from a Bernoulli 

distribution with success probability ( )0 1 1 2 2exp .yp x xβ β β= + +   A realisation with  1iy =  

could produce a boundary vector if the largest value ( )1 1ix =  of 1X  and a large ( )2ix b≈  

value of 2X  were drawn in settings with 2 0.2,β =  or if the smallest value ( )1 0ix =  of 1X  

and a small ( )2ix a≈  value of 2X  were drawn in settings with 2 0.2β = − . 
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Table 2.6: Design of the simulations 

Setting 0β  1β  2β  a * b * 

1 ( )ln 0.1  0.6   0.2 8.047190 20.025851 

2 ( )ln 0.1  0.6 –0.2 –2.002585 –0.804719 

3 ( )ln 0.2  0.6   0.2 –3.465736 8.512925 

4 ( )ln 0.2  0.6 –0.2 –0.851293 0.346574 

5 ( )ln 0.3  0.6   0.2 –6.931472 5.047190 

6 ( )ln 0.3  0.6 –0.2 –0.504719 0.693147 

7 ( )ln 0.4  0.6   0.2 –8.958797 3.019864 

8 ( )ln 0.4  0.6 –0.2 –0.301986 0.895880 

* Lower and upper limits of the continuous covariate 2X  taking values generated at 

random from the uniform distribution ( ),U a b . 

 

2.6.1 Results for coefficient estimates 

Table 2.5 shows the simulation results for the slope estimates 1̂β  and 2β̂ . The results for the 

intercept 0β̂  have been omitted for brevity, but they can be found in Appendix A Table A1. 

Results are shown separately for fits that did not produce a boundary vector and for fits that 

did. The estimates for fits without a boundary vector are from a standard log binomial model. 

The estimates for fits with a boundary vector were made using the exact method. 
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Table 2.7: Simulation results 

 Simulations without a boundary vector  Simulations with a boundary vector 

   n Bias* MSE† Coverage‡    n Bias* MSE† Coverage‡ 

1 β1 4408 -2.287 3.489 94.2  5592 1.065 3.209 94.4 
 β2  -3.579 0.079 95.2   1.117 0.055 94.8 

2 β1 4507 -2.770 3.478 94.5  5493 0.951 3.150 94.9 
 β2  -3.561 0.079 95.4   1.415 0.056 95.2 

3 β1 4536 -2.469 3.383 95.2  5464 1.090 3.222 94.6 
 β2  -3.683 0.078 95.4   1.429 0.057 94.7 

4 β1 4645 -2.772 3.495 94.3  5355 1.155 3.198 95.1 
 β2  -3.589 0.080 95.0   1.197 0.055 95.2 

5 β1 4637 -2.822 3.434 94.5  5363 1.481 3.212 94.6 
 β2  -3.609 0.080 94.8   1.082 0.055 94.9 

6 β1 4575 -2.452 3.412 95.2  5425 1.760 3.193 95.6 
 β2  -3.614 0.078 95.7   1.130 0.054 95.3 

7 β1 4647 -2.215 3.370 94.9  5353 1.648 3.267 94.5 
 β2  -3.530 0.080 95.3   1.285 0.055 95.3 

8 β1 4519 -2.613 3.399 94.7  5481 2.100 3.220 95.0 
 β2  -3.726 0.079 95.5   1.084 0.055 94.9 

* Average percent relative bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† 100 times the average mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Varn
jk j jkkn β β β=

 − +  
∑ , 

0,1, 2; 1,2,...j k n= = . 
‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Figure 2.1. Density plots of the sampling distributions (n=500, 10000 replications, 8 settings) of the binary 
covariate (top panel) and of the continuous covariate (bottom panel). The solid lines represent replications with 
a boundary vector, the occurrence of which requires both coefficients to be fully estimated. The dash lines 
represent replications without a boundary vector, which will be the case if at least one of the coefficients is 
underestimated (negative bias).   

 

Firstly, the results are shown for approximately 44% of repetitions that did not produce a 

boundary vector. Average percent relative bias was negative for these coefficient estimates, 

indicating that most were closer to the null than their design values. That is to be expected 

because those estimates did not produce fitted probabilities large enough to constitute a 

boundary vector. Secondly, the exact estimates for approximately 55% of repetitions that 

produced a boundary vector are shown. The average percent bias was small (around 1% in 

each case) and mildly positive, indicating that they were typically a little further from the null 

than their design values. Again, that is to be expected, because these coefficients need to be 

fully estimated in order to produce a maximum fitted probability of unity. This distributional 
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shift for replications without a boundary vector is displayed in Figure 2.1, which provides 

density plots of percent bias for the binary and continuous covariates. 

 

Table 2.6 also provides the estimation results by the modified Poisson method and R-lbreg 

for the replications that produced a boundary vector. R-logbin was not included in the 

simulation because it has difficulty producing the estimate of the standard error in the 

replications when boundary vector is present. The average percent bias in the estimates 1̂β  

and 2β̂  of the slope coefficients are similar in the exact method and R-lbreg, but were about 

2 to 4 times higher in the modified Poisson method.  

Table 2.8: Simulation results. 

   Exact method Modified Poisson R-lbreg 

  n Bias* MSE† Cov‡ Bias* MSE† Cov‡ Bias* MSE† Cov‡ 

1 1β  5592 1.065 3.209 94.4 3.212 3.658 95.4 1.076 3.207 94.5 
 2β   1.117 0.055 94.8 4.100 0.100 95.5 1.138 0.055 94.0 

2 1β  5493 0.951 3.150 94.9 3.129 3.614 95.8 0.962 3.149 94.9 
 2β   1.415 0.056 95.2 4.395 0.100 95.3 1.435 0.055 94.4 

3 1β  5464 1.090 3.222 94.6 3.208 3.681 95.9 1.107 3.223 94.6 
 2β   1.429 0.057 94.7 4.336 0.100 95.4 1.450 0.057 93.9 

4 1β  5355 1.155 3.198 95.1 3.349 3.674 95.4 1.171 3.197 95.1 
 2β   1.197 0.055 95.2 4.104 0.098 95.5 1.224 0.055 94.2 

5 1β  5363 1.481 3.212 94.6 3.582 3.651 95.4 1.496 3.210 94.6 
 2β   1.082 0.055 94.9 4.074 0.099 94.9 1.103 0.054 93.8 

6 1β  5425 1.760 3.193 95.6 3.979 3.632 96.2 1.771 3.191 95.6 
 2β   1.130 0.054 95.3 4.242 0.098 95.7 1.151 0.054 94.2 

7 1β  5353 1.648 3.267 94.5 3.912 3.725 95.1 1.664 3.265 94.5 
 2β   1.284 0.055 95.3 4.352 0.100 95.2 1.307 0.055 94.4 

8 1β  5481 2.100 3.220 95.0 4.309 3.732 95.4 2.119 3.218 94.9 
 2β   1.084 0.055 94.9 4.018 0.099 95.3 1.106 0.054 93.8 

* Average percent relative bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† 100 times the average mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Varn
jk j jkkn β β β=

 − +  
∑ , 

0,1, 2; 1,2,...j k n= = . 
‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Figure 2.2 provides the density curve of average percent bias in the estimates 1̂β  and 2β̂  of the 

slope coefficients for the 10000 replications. The curves coincided in the exact method and R-

lbreg, but spread out more to both tails in modified Poisson compared with the prior two 

methods.  

 

We compared the log-likelihood in the exact method and R-lbreg for 10000 replications as well. 

As expected, the log-likelihoods were almost identical in both methods for the replications that 

did not present a boundary vector. However, they became larger in the exact method for the 

replications in which a boundary vector was present since the coefficients were fully estimated 

after eliminating the impact of the boundary vector. 

 

 

 



Chapter 2 
 

50 
 

 
Figure 2.2. Density plots of the sampling distributions (n = 500, 10000 replications, 8 settings) of the binary 
covariate (top panel) and of the continuous covariate (bottom panel). The solid lines represent the density 
curve of the average percent bias in the exact method. The dotted lines represent the density curve of average 
percent bias in R-lbreg, which are coincident with the curve of the exact method. The dash lines represent the 
density curve of the average percent bias in modified Poisson. 

 

2.6.2 Results for mean squared error and confidence interval coverage 

Reflecting the lesser contribution of small-sample bias, 100 times the average mean squared 

errors of exact estimates that produce a boundary vector are lower than those of the fits that 

do not (Table 2.5). They are consistent with the 100 times the average mean squared errors of 

estimates in R-lbreg, and both are lower than the average mean squared errors of the 

corresponding modified Poisson estimates (Table 2.6). The 95% confidence interval coverage 

by the exact method is close to the target (Table 2.5) whereas, for the fits without boundary 

vectors, the coverage is close to the target but slightly on the conservative side (Table 2.5). 

These good coverage properties are consistent with the approximate normality of the 
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sampling distributions displayed in the density plots (see Figure 2.1). For fits with boundary 

vectors, the coverage is on the conservative side in the modified Poison method, and is 

slightly lower than the target in the R-lbreg (Table 2.6). 

 

2.6.3 Choice of the variance estimator 

The estimates of mean squared error and confidence interval coverage in Table 2.6 for the 

exact method are calculated from variance estimates based on the observed information 

matrix (OIM). There are multiple other candidates for the choice of variance estimator, 

including the use of bootstrap or jackknife methods. 

 

Table A3 in Appendix A allows a comparison of 95% confidence interval coverage in each of 

the 8 settings for variance estimates based on the OIM, the expected information matrix 

(EIM), and the robust or sandwich estimator of variance 34, 35. There are only minor 

differences in coverage, but, in this set of simulations, the OIM estimates had a slight 

advantage. In some other simulations not reported, we have found the robust estimates to 

have a slight advantage.  

 

2.7 Conclusion 

Fitting a log binomial model using standard software can result in numerical difficulties. If 

this is due solely to commencing iteration from inadmissible starting values that produce at 

least one fitted probability in excess of unity, this can be rectified by supplying admissible 

starting values. If the ML solution lies on the boundary, however, special methods are needed 

because one or more of the fitted probabilities has a value of unity. To resolve that issue for a 

model with a single covariate, Deddens et al. 18 proposed an exact method based on re-
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parametrisation of the covariate. Subsequently, Petersen and Deddens 9 outlined an extension 

to general cases, but without providing the details necessary to implement it 26.  

The missing details are provided in this chapter. It contains novel contributions:  

1. A theorem (with proof) for estimating the covariance of the estimated coefficient of 

any non-constant covariate excluded from the regression model with the estimated 

coefficient of each other non-constant covariate; 

2. A theorem (with proof) for estimating the covariances between the estimated 

coefficients of the non-constant covariates and the estimated coefficient of the 

constant; 

3. A theorem (with proof) to verify the perfect correlation between each pair of exact 

estimates of the coefficients of the covariates when their number is equal to the 

number of boundary vectors. We also prove the corollary that, in those circumstances, 

the standardised values of the ML estimates of the coefficients (including that of the 

constant covariate) are equal in absolute value; 

4. A theorem and corollary (with proofs) to establish that the re-parameterisation of 

covariates required to implement the exact method can be successfully undertaken if 

the ML solution exists.  

5. A strategy for re-ordering the covariates when there are multiple (R) boundary vectors 

and the first R-1 covariates in the order entered by the user have shared values; 

6. A strategy for addressing the issue that the NR and IRLS fitting algorithms are not 

guaranteed to converge; 

7. A strategy for testing whether the initial values are admissible for a probability model, 

and correcting them if they are not; 

8. A strategy for identifying the boundary vectors in advance of estimating the ML 

solution.  
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An example dataset and a real-world dataset were used to demonstrate our implementation of 

the exact method. For each, the ML solution was on the boundary of the parameter space with 

two distinct boundary vectors in the first example, and four distinct boundary vectors in the 

real-world second case. The exact method produced the ML solution. The fitting algorithms 

provided in the four statistical software packages we tested, and either were not successful in 

estimating any solution or, if convergence was attained, provided approximations that in 

some cases were poor. The modified Poisson approach 19-21 produced poor approximations. 

The R-logbin method using the EM algorithm 22 successfully reached an approximate 

solution in these data examples, but failed to provide the estimates of the standard error of 

coefficients with multiple boundary vectors. The R-lbreg method using constrained 

optimisation 26 reached an approximate solution with the smallest coefficient errors compared 

with other alternative methods.  

 

The simulations revealed a minimal bias of fits by the exact method to data with a single 

boundary vector. In our simulations, any “bias” was an artefact of the small sample size and 

the success or failure of the attempt to produce a boundary vector. The 95% confidence 

interval coverage was close to the target, with a small advantage to the OIM estimator of 

variance. In the comparison of regression fits by the modified Poisson to the same datasets, 

the average percent relative bias of the modified Poisson estimates was up to 4 times higher 

than the “bias” of the exact method. In addition, the functional form of the Poisson regression 

model allows the predicted probabilities to exceed unity, which technically is not allowable 

for a model of probabilities. As previously 37, we recommend against using the modified 

Poisson approach to estimate risk and risk ratios. Marschner and Gillett 22 reached the same 

conclusion particularly in scenarios when the average risk is high. Our results suggest that 

large individual fitted probabilities are the source of the problem. The R-lbreg method using 
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constrained optimisation provides a good approximation for estimating the ML solution in 

log binomial model. However, since the impact of the boundary vectors is not eliminated, the 

coefficients of covariates are not fully estimated, which results in a larger log-likelihood 

compared with the exact method in all replications when a boundary vector was presented. 

 

In conclusion, the exact method provides an elegant and effective way of estimating the log 

binomial model when the ML solution lies on the boundary of the parameter space. Our 

software in R and Stata for fitting the model ensures that the fitting algorithm starts from 

admissible initial values, but defaults to the standard log binomial model when there is no 

boundary vector. That makes the software seamless to use by a practitioner. It also overcomes 

an objection to the use of log binomial model raised by Marschner and Gillett 22. They note 

that prospective studies – particularly clinical trials – often require pre-specified analysis 

plans, making it problematic to commit to the log binomial model before one knows it will be 

successful. No longer is that the case. Our implementation of the exact method should 

provide complete confidence in using relative risk regression as a primary method of analysis 

for prospective studies. 
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Chapter 3   Overcoming numerical difficulties in estimating absolute risk 

difference by fitting identity-link binomial model 

 

3.1 Introduction 

Risk difference in epidemiology is the observed difference in risk of a binary outcome 

between reference and study groups. It is a measure of absolute effect and is recommended 

for clinical trials, especially randomised controlled trials, to inform decisions regarding 

benefit or harm of treatment 4, 27-33. The risk difference can be estimated using an identity-link 

binomial model, which is a generalised linear model with a binomial error and an identity-

link function. However, two numerical difficulties may affect convergence in the identity-

link binomial model. First, the standard fitting algorithm may commence from an 

inappropriate starting value, which could lead to fitted probabilities go outside the interval 

[0, 1]. In most conditions, the fitting algorithm will not self-correct the error once the 

iteration commences from an inappropriate starting value, and will fail to converge or 

converge to a solution outside the allowable parameter space. This issue can be simply 

resolved using a starting point calibration method, described in Section 3.2.2. The second 

numerical difficulty is encountered when the maximum likelihood (ML) solution is on the 

boundary of parameter space. In this situation, there is at least one observation with the fitted 

probability that is equal to 0 or 1 in the model. This introduces difficulties in the calculation 

of the information matrix and the relevant variance-covariance matrix (detailed in Section 

3.2.1). To solve this difficulty, a specialised approach is needed. 

 

Several approaches have been introduced for estimating the risk difference. One approach 

uses an identity-link modified Poisson model with robust sandwich variance estimates to 

approximately estimate the coefficients of the identity-link binomial model 36. It is an 
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extension of a log-link modified Poisson model with robust sandwich variance estimates 19, 20, 

34, 35, which is commonly used for estimating the relative risk. However, the estimates 

obtained by the modified Poisson approach may result in an inappropriate solution with fitted 

probabilities outside the interval [0, 1] when the ML solution is on the boundary of the 

allowable parameter space 22, 37. This issue can take place in estimating identity-link binomial 

model through the modified Poisson approach also. Moreover, Cheung 39 stated that 

convergence issues could be encountered in the risk difference estimation using the modified 

Poisson approach with an identity link as well. Instead, he recommended a modified least-

squares regression approach with a robust variance estimate to estimate risk difference. 

Although there are no convergence issues with modified least-squares regression, the 

unrestricted fitting algorithm could produce a solution with fitted probabilities beyond the 

boundary of the interval [0, 1]. Bieler et al. 40 introduced the model-adjusted risk differences 

method based on logistic regression models using the function of the average marginal 

prediction defined by Graubard and Korn 41 to estimate risk difference. Although an 

approximate marginal average risk difference and variance-covariance matrix are obtained, 

the authors did not compare their approach with other methods, so it is not known whether 

this approach provides any incremental improvement on previous methods. Marschner 42 

stated that the expectation-maximisation (EM) algorithm can somewhat avoid these two 

issues – the unconstrained parameter space and the failure of convergence – in estimating 

identity-link binomial models by the identity-link Poisson model. Donoghoe and Marschner 

38 subsequently took a further step to resolve the convergence issue in the identity-link 

binomial model. They used a multinomial-Poisson transformation 43 to convert the problem 

into an equivalent additive Poisson model, and fit it as an additive binomial model using the 

EM algorithm to estimate the identity-link binomial model and risk difference. This is 

referred to as additive Poisson model in the remainder of this chapter. Another two 
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approaches proposed to approximately estimate RD are the linear-expit model (LEXPIT) 

combined with adaptive barrier approach 44 and the nuisance model with doubly robust 

estimator 45. None of these approaches estimates the RD directly in the identity-link binomial 

model, and the convergence issue remains unresolved.  

 

As discussed in Chapter 2, Petersen and Deddens 9 introduced an exact method that has 

addressed the convergence issue in the log binomial model when the ML solution lies on the 

boundary of the parameter space. The exact method can also provide a solution to 

convergence issues in the identity-link binomial model due to the similarity in the likelihood 

function. Notably, the convergence issue is more complicated in the identity-link binomial 

model, which has both lower and upper boundaries of the parameter space as compared with 

only an upper boundary in the log binomial model.  

 

To this end, an approach has been developed to overcome the numerical difficulties in the 

identity-link binomial model that consists of a starting value calibration and a method based 

on the rationale of the exact method. The following sections in this chapter include: a brief 

description of the identity-link binomial model and a well-designed starting value calibration 

method in section 3.2.2; application of the exact method to overcome the numerical 

difficulties due to the ML solution lying on the boundary of the parameter space in section 

3.3; application of the exact method to example data in section 3.4; application of the exact 

method to real-world data in section 3.5; a comparison of the exact method with alternative 

approaches using simulation studies in section 3.6. The proofs of the theorems and corollaries 

in this chapter are reported in Appendix B. An R package bm based on the exact method for 

fitting the identity-link binomial model has been released on Github. The related R 

documents are set out in Section 6.2 of Chapter 6. 
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3.2 Overview of identity-link binomial model 

3.2.1 The identity-link binomial model 

Assume that there are n  independent observations with a binary outcome variable Y  and J  

covariates 1 2(1, , ,... )JX X X  with constant. Then, the likelihood function of the identity-link 

binomial model is defined as: 

 ( ) ( )(1 )

1
1 ii

n
yy

ii
i

l µ µ −

=
= −∏β  (3.1) 

where iµ  is the probability of the outcome conditional on the ith observation which is equal 

to a linear combination of parameters ( )0 1, , Jβ β β=β   and covariates 

( )1 2= 1, , ,ij i i iJx x xx   with constant and denoted as  

 ( ) 0 1 1 2 2Pr 1| ( ) ... ,  1, 2,...i i i i i J iJY x x x i nµ β β β β= = = + + + + =x x . (3.2) 

To ensure the conditional probability remain inside [0, 1], the allowable parameter space of 

the identity-link binomial model is defined as  

 { }: 0 1,  for all 1, 2,...,i i n′Θ = ≤ ≤ =β x β . (3.3) 

To simplify the calculation, the likelihood function (3.1) is usually transformed into a log-

likelihood function, 

 ( ) ( ) ( ) ( )
1

log 1 log 1
n

i i i i
i

L y yµ µ
=
 = + − − ∑β . (3.4) 

 By taking the first partial derivative of (3.4), we obtain the score function as: 

 ( ) ( )
( )1 1

n
ij i i

j i ii

x yL µ
β µ µ=

 −∂
=  

∂ −  
∑

β
. (3.5) 

The second partial derivative of (3.4) in matrix form known as the Hessian matrix is: 
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 ( )
( )1 2

2

2
ˆ ˆ2

1
i i i i

j j i i

L y yµ µ
β β µ µ

  ∂ − +  ′= = −  ∂ ∂   −    

β
H X diag X . (3.6) 

The observed information matrix is the negative of the Hessian matrix. It is obtained by 

substituting the estimate of each fitted probability ip  evaluated at β̂ , written as: 

 

( )

2

2
ˆ ˆ2

ˆ ˆ1
i i i i

i i

y yµ µ

µ µ

  − +  ′= − =     −    

OI H X diag X . (3.7) 

The relevant expected information matrix of (3.7) is: 

  ( ) ( )
1E

ˆ ˆ1i iµ µ

   ′= − =   −    
EI H X diag X . (3.8) 

There are two standard fitting algorithms commonly applied to locate the maximum 

likelihood estimate (MLE) in the identity-link binomial model: the Newton-Raphson (NR) 

algorithm which iteratively updates estimates by the product of the score function and the 

inverse of the information matrix; and iteratively reweighted least squares (IRLS) which is an 

implementation of the weighted least square algorithm, which is equal to NR algorithm with 

an expected information matrix specified. Since the iteration of the standard fitting algorithm 

may sometimes take updated estimates outside the parameter space, truncating fitted values 

or step-halving or both are generally implemented in statistical packages to resolve the 

problem. Truncating fitted values truncates the probability to a value just inside the boundary 

of the parameter space if a fitted probability evaluated on the updated estimates is outside the 

parameter space Θ  12. Step-halving repeatedly halves the step size of the regular update of 

the standard fitting algorithm until the updated estimates are inside the parameter space 6.  

 

Even with the use of these techniques, however, the standard fitting algorithm of an identity-

link binomial model may encounter numerical difficulties and fail to converge when the ML 
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solution β̂  lies on or near the boundary of parameter space Θ . In these particular cases, at 

least one fitted probability ˆiµ  evaluated at β̂  is extremely close or equal to 0 or 1. The 

product of ˆiµ  and ˆ1 iµ−  in the denominator of the formulas (3.7) could thus be 0 or a very 

small number, and the score function and the information matrix cannot be calculated, 

resulting in a failure of the fitting algorithm.  

 

3.2.2 Starting value calibration (Min-Max normalisation) 

As mentioned in the introduction to this chapter, one numerical difficulty is due to the use of 

an inappropriate starting value in the standard fitting algorithm. Statistical packages such as 

R, SPSS, Stata and SAS have their own starting value algorithms for the identity-link 

binomial model. However, they frequently fail to identify an appropriate point to start the 

iteration. Once the fitting algorithm begins the iteration from an inappropriate starting value, 

it is usually unable to self-correct the fitting procedure. Resulting estimates may be outside 

the allowable parameter space Θ , leading to a fitted probability of observation which is 

outside [0, 1].  

 

To correct a misspecified starting value, I introduce min-max normalisation (also called 

unity-based normalisation) that is usually applied in machine learning as a calibration 

algorithm to normalise a set of values into the range [0, 1] 63-65. For the identity-link binomial 

model, the fitting procedure can start from either a set of initial probabilities corresponding to 

each observation, or from a user-provided starting value of the model coefficients. If the 

fitting procedure starts from a set of initial probabilities, the starting values of the coefficients 

can be obtained by using ordinary least squares. (Note that there are no special rules for 

selecting the initial probabilities. Data analysts may choose to devise their own initial 

probabilities based on their understanding of the data. The software packages SAS, Stata, R 
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and SPSS use the first step of their default fitting algorithm applied to values of the binary 

outcome re-scaled to lie within the range 0 to 1. SAS replaces 0y =  by 0.1y =  and 1y =  by 

0.9y =  for this purpose, whilst R and Stata use 0.25y =  and 0.75y =  respectively.) If the 

starting values of the coefficients obtained from the prior steps are outside the parameter 

space Θ , they can be corrected by the following functions 

 ,0,
0, ,

ˆˆ ˆmin( )ˆ ˆ and  for 1, 2,...
ˆ ˆ ˆ ˆmax( ) min( ) max( ) min( )

j startstart
start j start j J

ββ
β β

−
′ ′= = =

− −

μ
μ μ μ μ

,    (3.9) 

where 0,
ˆ

startβ  and ,
ˆ

j startβ  are the starting values initially obtained from the default starting 

value algorithm under statistical packages, 0,
ˆ

startβ ′  and ,
ˆ

j startβ ′  are the relevant normalised 

estimates, and μ̂  is the fitted probabilities vector. This calibration ensures that the fitting 

algorithm always begins the iteration inside the parameter space Θ . With an appropriate 

starting value, the IRLS with step-halving can converge to a solution. However, if the ML 

solution lies on the boundary of the parameter space, the IRLS with step-halving can only 

converge to an approximation of the ML solution. 

 

In the following section, I will discuss the second numerical difficulty, which is the MLE on 

the boundary of the parameter space. The exact method will be applied and discussed to 

improve model fitting.  

 

3.3 Maximum likelihood solution is on the boundary of the parameter space 

Previously, an inequality constraint 0 1′≤ ≤x β  is used to define the allowable parameter 

space Θ  in the identity-link binomial model. It intuitively shows that there are three 

situations in which the ML solution could be on the boundary of the parameter space:  lying 

on the upper bound, the lower bound, or on both bounds of the Θ . If the ML solution is on 
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the lower or upper bounds, there is at least one fitted probability equal to either 0 or 1. 

Similarly, if the ML solution is on both the lower and upper bounds, there is at least one fitted 

probability equal to 0 and at least one equal to 1. We refer to any such set of covariate values 

as a boundary vector. Next, the exact method will be applied to improve the model fitting 

when the ML solution is on the boundary of the parameter space. 

 

To apply the exact method, the likelihood function is rewritten (3.1) as: 

 ( ) 1 01
i i

i iY Yl µ µ
= =

= −∏ ∏β  (3.10) 

where ( )1 2,  for = 1, ,i i ij i i iJx x xµ ′= x β x   and ( )0 1, , Jβ β β=β  . We denote the ML solution 

of the model as β̂ . The fitted probability of observations evaluated at β̂  is denoted as 

ˆˆi iµ ′= x β . Then, the likelihood function evaluated at β̂  becomes 

 

( ) 1 0

0 01 0
1 1

ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1

i i

i i

i iY Y

J J

ij j ij jY Y
j j

l

x x

µ µ

β β β β

= =

= =
= =

= −

    
    = + − +

        

∏ ∏

∑ ∑∏ ∏

β

 (3.11) 

Petersen and Deddens 9 effectively addressed the problem of the ML solution lying on the 

boundary of the parameter space in the log binomial model by using the boundary vectors to 

re-parameterise the covariates so that the adverse effect of the boundary vectors on the fitting 

procedure is eliminated. This method can be applied to the first two cases: where the ML 

solution is on the upper bound of the parameter space (Section 3.3.1), and where the ML 

solution is on the lower bound of the parameter space (Section 3.3.2).  
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3.3.1 The ML solution is on the upper bound of the parameter space  

Theorem 3.1 

Suppose that the ML solution is on the upper bound of parameter space, which means the 

maximum fitted probability is equal to unity, ˆmax( ) 1iµ =  for 1,2,...i n= . Assume that there 

are 1R ≥  distinct sets of covariate vectors with the fitted probability attained unity referred 

to as boundary vectors. Denote the  ( 1, 2,... )thr r R=  boundary vector as 

( )( ) ( ) ( )( )
1 21, . ,...r r rr

Jx x x=x  which shares covariate values with rn  observations. Then, the 

constant and the first 1R −  covariates in the likelihood function (3.11) of the identity-link 

binomial model evaluated at the maximum likelihood solution β̂  can be re-parametrised as 

follows: 

 ( )
(1)

(2)

( )

* *

01, ,
,...,

ˆ ˆ ˆ1
ii ij j

ij j
R

ij j

i i
YY x x

x x
x x

l µ µ
== ≠

≠
≠

= −∏ ∏β  (3.12) 

where ( )*ˆ 1 J R
i jijj R zµ β== +∑ . The function of each ( )r

ijz  is: 

 (1) (1) ,  1, 2,...  and 0,1,2,...ijij jz x x i n j J= − = = . (3.13) 

 ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

 where ,  2,3,...r
ij j

r
jr r r r r

ij ij j iji rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 

. (3.14) 

 After re-parameterisation, dropping the observations with covariate values (1) (2) ( ), ,..., Rx x x  

and the relevant 1 2, ,... Rn n n  observations who share the same values, which make no 

contribution to the log-likelihood since they became zero vectors. Then, fitting the model 

( )*ˆ 1 J R
i jijj R zµ β== +∑  – with an offset 1, without a constant, and with 1J R− +  covariates – 

to the remaining 1 2 ... Rn n n n− − − −  observations. This enables us to obtain the estimates 
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1
ˆ ˆ ˆ, ,...R R Jβ β β+  for the non-eliminated non-constant covariates. To obtain the estimates for the 

coefficients of 1R −  re-parameterised non-constant covariates and corresponding standard 

errors and the covariances, Theorem 3.2 is introduced. 

 

Theorem 3.2 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by 

the exact method to data having (1 )R R J≤ ≤  distinct sets of values of the covariates 

(including the constant) for which the estimated outcome probability evaluated at the ML 

solution is unity, the estimated coefficients and the corresponding standard errors of the 

1R −  eliminated non-constant covariates are given by:  

 
( 1)

( 1)
1

ˆ ˆ , for 1, 2, 1
rJ

j
r jr

j r r

t
r R

t
β β
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+
= +

= − = −∑   (3.15) 

and 

  ( )  ( )
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 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt
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β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑ ,(3.16) 

and the estimated covariances between exact estimates of the coefficients of the 1R −  

eliminated non-constant covariates and exact estimates of the coefficients of the 1J R− +  

remaining non-constant covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J

js
r s s j sr r

j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑ , (3.17) 

for 1,2,... 1r R= −  and 1,s r J= +  . 

To obtain estimates for the constant, its standard error, and covariances between the constant 

and non-constant coefficients, Theorem 3.3 is introduced. 
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Theorem 3.3 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by 

the exact method to data having (1 )R R J≤ ≤  distinct sets of values of the covariates 

(including the constant) for which the estimated outcome probability evaluated at the ML 

solution is unity, the estimated coefficient and the corresponding standard error of the 

constant covariate are given by:  

 (1)
0

1

ˆ ˆ1
J

jj
j

xβ β
=

= −∑  (3.18) 

and  

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑ , (3.19) 

and the estimated covariances between the exact estimate of the coefficient of the constant 

covariate and exact estimates of the coefficients of the J  non-constant covariates are given 

by: 

  ( )  ( )  ( )11
1
1

(1) (1)
0

1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
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j j j jj j
j
j j

x xβ β β β β
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 
 
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∑  (3.20) 

for  1, 2,j J= … .  

The detailed proofs of Theorem 3.1, 3.2, and 3.3 are provided in Appendix B. 

 

3.3.2 The ML solution is on the lower bound of the parameter space  

Theorem 3.4 

Suppose that the ML solution is on the lower bound of parameter space, which means the 

minimum fitted probability is equal to zero, ( )ˆmin 0iµ =  for 1,2,...i n= . Assume that there 

are 1R ≥  distinct sets of covariate vectors with the fitted probability attained zero referred to 
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as boundary vectors. Denote the rth ( 1, 2,... )r R=  boundary vector as 

( )( ) ( ) ( )( )
1 21, . ,...r r rr

Jx x x=x  which shares covariate values with rn  observations. Then, the 

constant and the first 1R −  covariates in the likelihood function (3.11) of the identity-link 

binomial model evaluated at the maximum likelihood solution β̂  can be re-parametrised as 

follows: 
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1 0, ,
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where ( )*ˆ J R
i jijj R zµ β==∑ . The function of each ( )r

ijz  is: 

 (1) (1) ,  1, 2,...  and 0,1,2,...ijij jz x x i n j J= − = = . (3.22) 
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( ) ( 1) ( 1) ( ) ( 1)
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 where ,  2,3,...r
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 = − = =
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 (3.23) 

After re-parameterisation, dropping the observations with covariate values (1) (2) ( ), ,... Rx x x  

and the relevant 1 2, ,... Rn n n  observations who share the same values, which make no 

contribution to the log-likelihood since they became zero vectors. Then, fitting the model 

( )*ˆ J R
i jijj R zµ β==∑  – without a constant and with 1J R− +  covariates – to the remaining 

1 2 ... Rn n n n− − − −  observations. This enables us to obtain the estimates 1
ˆ ˆ ˆ, ,...R R Jβ β β+  for 

the non-eliminated non-constant covariates. To obtain the estimates for the coefficients of 

1R −  re-parameterised non-constant covariates and the relevant estimates of standard errors 

and the covariances, Theorem 3.5 is introduced. 
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Theorem 3.5 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by 

the exact method to data having  (1 )R R J≤ ≤  distinct sets of values of the covariates 

(including the constant) for which the estimated outcome probability evaluated at the ML 

solution is zero, the estimated coefficients and the corresponding standard errors of the 1R −  

eliminated non-constant are given by: 
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= − = −∑   (3.24) 

and 

 ( )  ( )  ( )1 2
1 2

1 2
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2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1
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r rrJ J J j jj

r j j jr rj r j r j rr rj j
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β β β β

+ ++

+ += + = + = +
≠

     = +  
        

∑ ∑ ∑ ,  (3.25) 

and the estimated covariances between the exact estimates of the coefficients of the 1R −  

eliminated non-constant covariates and the exact estimates of the coefficients of the 1J R− +  

remaining non-constant covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J

js
r s s j sr r

j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑ , (3.26) 

for 1,2,... 1r R= −  and 1,s r J= +  . 

 

To obtain estimates for the constant, its standard error, and covariances between the constant 

and non-constant coefficients, Theorem 3.6 is introduced. 
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Theorem 3.6 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by 

the exact method to data having  (1 )R R J≤ ≤  distinct sets of values of the covariates 

(including the constant) for which the estimated outcome probability evaluated at the ML 

solution is zero, the estimated coefficient and the corresponding standard error of the 

constant covariate are given by:  

 (1)
0

1

ˆ ˆ
J

jj
j

xβ β
=

= −∑  (3.27) 

and  

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (3.28) 

and the estimated covariances between the exact estimate of the coefficient of the constant 

covariate and the exact estimates of the coefficients of the J  non-constant covariates are 

given by: 

  ( )  ( )  ( )11
1
1

(1) (1)
0

1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
J

j j j jj j
j
j j

x xβ β β β β
=
≠

 
 

= − + 
 
 

∑  (3.29) 

for  1, 2,j J= … .  

The detailed proof of Theorem 3.4, 3.5 and 3.6 are provided in Appendix B.  

 

3.3.3 The special case of perfect linear correlation between estimates of model coefficients 

When the ML solution is on the boundary, there is an inter-dependency between the estimates 

of the coefficients of the non-constant covariates in the identity-link binomial model if the 

number of covariates is equal to the number of boundary vectors ( )J R= . For guidance, 

Theorem 3.7 and Corollary 3.7.1 are provided. The details of the proof are in Appendix B. 
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Theorem 3.7 

For an identity-link binomial model with 1J ≥  independent covariates fitted by the exact 

method to data having ( )R R J=  distinct sets of values of the covariates for which the 

estimated outcome probability is unity when the ML solution is on the upper boundary of 

parameter space, or is zero when the ML solution is on the lower boundary, there is a perfect 

correlation between each pair of exact estimates of the non-constant coefficients: 

 


 



 

1 2 1 2

1 2
1 21 2

,

ˆ

V

ˆ ˆ ˆ( , ) ( , )
1

Cov Cov

SE SEVar ˆ a ˆ ˆˆ ( ) ( )( ) ( )r

j j j j
j j

j jj j

β β β β
ρ

β ββ β
= = =  (3.30) 

for 1 2 1 2 , 1, 2,... ;j j J j j= ≠ , where ˆ , 1, 2,...j j Jβ =  denotes estimates of the non-constant 

coefficients. Var ˆ( )jβ  and SE ˆ( )jβ  denote the estimates of their estimated variance and 

standard error respectively. 

 

Corollary 3.7.1 

If the identity-link binomial model satisfies the conditions of Theorem 3.7, the standardised 

values of the exact estimates of the J  model coefficients are equal in absolute size: 

 
  

1 2

1 2

ˆ ˆ ˆ
...ˆ ˆ ˆ( ) ( ) ( )SE SE SE

J

J

β β β

β β β
= = =  (3.31) 

where ˆ , 1, 2,...j j Jβ =  denotes estimates of the coefficients of the non-constant covariates, 

and SE ˆ( )jβ  denotes the estimate of their corresponding standard errors. 
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3.3.4 Covariate order when there are multiple distinct boundary vectors 

Assume there are 1R >  boundary vectors in a dataset. The exact method requires re-

parameterisation of covariates as (1) (1)
ijij jz x x= −  for 1r =   and ( ) ( 1) ( ) ( ) ( 1)

1 , 1
r r r r r

ij ij j r i rz z t t z− −
− −

 = −    

for 2,3,...r R= . If ( )
1 0r

rt − =  happens at any step, the re-parameterisation fails and cannot 

continue. For an example with 2R = , suppose that sex 1x  is a binary covariate in the model. 

The relevant observations of the first and second boundary vectors share the same gender so 

that (1) (2)
1 1x x= . The first re-parameterisation eliminates the constant covariate in the model 

by one of the boundary vectors. It also produces (2)
1 1

(2) (1) (2) (1)
1 1 1 1 0

i
i x x

t z x x
=

= = − =  in another 

boundary vector and results in division by zero in the second re-parameterisation. To solve 

this issue, our strategy is to exchange the value of any covariate for which ( )
1 0r

rt − =  at any step 

2,3,...r R=  with the value of any remaining non-zero covariate. This requires re-ordering the 

covariates before proceeding. But that raises the question of whether it is possible always to 

find a covariate with non-zero ( )
1

r
rt −  to replace the one with ( )

1 0r
rt − = . For reassurance, Theorem 

3.8 and Corollary 3.8.1 are provided. The proofs are presented in Appendix B. 

 

Theorem 3.8 

For an identity-link binomial model with 1J ≥  non-constant covariates fitted by the exact 

method to data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the 

constant) for which the estimated outcome probability is unity when ML solution is on the 

upper boundary of parameter space, or is zero when ML solution is on the lower boundary, 

these R  distinct sets of values of the covariates are always linearly independent. 
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Corollary 3.8.1 

For an identity-link binomial model with 1J ≥  non-constant covariates fitted by the exact 

method to data having (1 )R R J< ≤  distinct sets of values of the covariates (including the 

constant) for which the estimated outcome probability is unity when ML solution is on the 

upper boundary of parameter space, or is zero when ML solution is on the lower boundary, 

there is at least one covariate for which ( )
1 0, 2,3,...r

rt r R− ≠ = . 

 

This corollary guarantees that if there are multiple ( 1)R >  distinct boundary vectors, and 

( )
1 0r

rt − =  for any 2,3,...r R= , it is possible always to find and exchange another covariate for 

which ( )
1 0.r

rt − ≠  The detailed proof of the corollary is in Appendix B.  

 

3.3.5 Identifying the boundary vector(s) in advance of applying the exact method 

For a given set of data, it is usually unknown ahead of estimation whether the ML solution is 

on the boundary of the parameter space Θ  in the identity-link binomial model. Also, a 

reliable strategy is required to identify boundary vectors from approximate fitted probabilities 

close to 0 or 1. As described at the beginning of Section 3.3, the ML solution could lie on the 

upper bound, the lower bound, or both. Accordingly, my strategy to address the problem 

consists of the following two parts, dealing with different situations of boundary vectors.   

 

The first part of the strategy is regarding the case in which the ML solution only lies on the 

lower bound or upper bound, where the fitted probabilities of the boundary vectors are equal 

to 0 or equal to 1 respectively. 
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(a) Obtain an appropriate starting value and fit the model through IRLS with step-halving 

to obtain a solution. However, the solution may just be an approximate solution rather 

than the ML solution if a fitted probability is extremely close to either 0 or 1. 

(b) Identify all (distinct) covariate vectors with approximate fitted probabilities from step 

(a) close to 0 or 1. These are candidate boundary vectors. 

(c) Separate all candidate boundary vectors into lower and upper bound groups according 

to whether the approximate fitted probability is close to 0 or 1. Rank the candidates in 

the order closest to 0 or 1 in each group. Test each as a candidate boundary vector, 

and combinations of them as a combination of boundary vectors, until the ML 

solution is found. The approximate fitted probabilities (closest to 0 or 1) are used to 

prioritise the order of selection. 

With the first part of the strategy, the exact method can effectively locate the ML solution 

when it is either on the lower or upper bounds of the parameter space.   

 

The second part of the strategy is regarding the case in which the ML solution lies on both 

lower and upper bounds, where some of the boundary vectors with fitted probabilities equal 

to 0 and the other boundary vectors with fitted probabilities equal to 1. 

 

When the ML solution lies on both lower and upper bounds, the exact method cannot fully 

estimate the model. The method is not able to simultaneously deal with the situation where 

one fitted probability is equal to 0 and another is equal to 1. This is because the likelihood 

function is not able to be simplified into an appropriate form to be fitted in the fitting 

algorithm by the re-parameterisation of the covariates. When the ML solution lies on both 

lower and upper bounds, the exact method can only select the boundary vector from one side 

of the boundary to re-parameterise the covariates, but cannot choose both for re-
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parameterisation at the same time. After the exact method eliminates all the boundary vectors 

on the selected bound in the data, the IRLS with step-halving would be able to converge to an 

approximate solution. This approximate solution can be a candidate solution. Once both 

candidate solutions have been obtained by the upper or lower bound hypothesis, the final 

solution will be the one that maximises the log-likelihood. 

 

The solution obtained by the exact method is an approximate solution in the case with the 

presence of both lower and upper boundary vectors. (It may not be appropriate to name this 

method an exact method since it can only locate an approximate solution when the ML 

solution lies on both bounds. In order to maintain the consistency of the whole thesis, I prefer 

to keep the exact method as the name of the method.) This is because the solution is obtained 

by only eliminating the boundary vectors on one side of lower or upper bounds, the other side 

of the boundary vectors are still affecting the estimation of the model. Therefore, the 

coefficients are not fully estimated. Although it is an approximate solution, compared with 

other approximate methods, its performance in model fit is worth exploring because it is 

obtained by eliminating one side of the boundary vector to reduce the influence on the model 

estimation. Further discussions are presented in sections 3.5 and 3.6 with a real-world 

example and a simulation study. 

  

3.3.6 Selection of information matrix 

In some cases, using the expected information matrix to estimate the variance-covariance 

matrix may cause it to be underestimated. For example, in data, the ML solution lies on both 

lower and upper bounds of parameter space. Assume that the IRLS with step-halving locates 

an approximate solution by eliminating the boundary vectors on the upper bound using the 

exact method. Since the boundary vectors on the lower bound are still involved in the data, 
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the relevant approximate fitted probabilities may have minimal values which are extremely 

close to 0. These fitted probabilities with extremely small values will result in a set extremely 

large numbers in the Hessian matrix ( ) ( ){ }22 2 1i i i i i iy yµ µ µ µ ′  − − + −   
X diag X . Under 

this circumstance, those very large numbers will dominate the weights in the calculation of 

the expected information matrix (EIM) ( ){ }( )ˆ ˆ1 1i iµ µ′  − X diag X .  

 

The same problem will happen if an approximate solution is obtained by eliminating the 

boundary vectors on the lower bound using the exact method. In this case, since the boundary 

vectors on the upper bound are still involved in the data, the relevant approximate fitted 

probabilities may have values which are extremely close to 1. Those fitted probabilities will 

also make ( )ˆ ˆ1 1i iµ µ −   become an extremely large value so that it dominates the weights in 

the calculation of EIM, influencing the estimation of the variance-covariance matrix. 

 

In contrast, the observed information matrix (OIM) does not have this problem. The diagonal 

matrix ( ) ( ){ }22ˆ ˆ ˆ ˆ2 1i i i i i iy yµ µ µ µ ′  − + −   
X diag X  in the formula of OIM will simplify to 

( )2ˆ1 1 iµ −  
diag  when 0y =  and 2ˆ1 iµ 

 diag  when 1y = . (Note that the observation with 

an extremely small fitted probability is almost impossible to have 1y = . Similarly, the 

observation with a fitted probability extremely close to 1 is almost impossible to have 0y = .) 

Returning to the example at the beginning of this subsection, the observation with an 

extremely small fitted probability close to 0 most likely will have 0y = . Therefore, the 

formula of OIM will be simplified as ( )2ˆ1 1 iµ −  
diag  so that a fitted probability that is 

close to 0 can only make ( )2ˆ1 1 iµ−  result in a number that is quite close to 1, which will not 
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interfere with the calculation of the OIM and influence the estimation of the relevant standard 

error.  

 

The influence of those inaccurate EIM on the estimation of the standard error is not clear and 

requires further study, but it will not be discussed in this thesis. However, in my study, some 

cases have been met that the standard error obtained by EIM will be very small, and should 

be questioned. Therefore, I recommend using the observed information matrix to estimate the 

standard error of the coefficient in the identity-link binomial model. 

 

3.4 Demonstration of the identity-link binomial model using the exact method with an 

example dataset 

3.4.1 The example data 

For ease of demonstration, the example data consists of the nine observations shown in Table 

3.1. This small dataset suffices to reveal the problem that can arise in the larger datasets 

found in real-world applications (see Section 5). It is an example in which the ML solution is 

on the lower bound of the parameter space with two boundary vectors. The response variable 

Y  is a binary (0/1) variable. The covariates 1X , 2X , and 3X  are three continuous variables. 

To estimate the probability of 1Y = , an identity-link binomial model with the exact method 

was fitted. In what follows, it will be discovered that there are two boundary vectors in this 

data: observations 3 and 4 have fitted probabilities of 0 when evaluated at the ML solution. 

The results of the exact method will be compared with four statistical packages and two 

alternative methods. 
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Table 3.1. Example data 

obs y 1x  2x  3x  

1 0 14 3.90 14.500 
2 0 22 3.18 4.504 
3 0 12 4.72 13.594 
4 0 18 3.69 4.890 
5 1 14 3.42 12.990 
6 0 34 1.80 4.425 
7 0 18 3.47 4.934 
8 1 35 2.05 3.798 
9 1 26 1.83 3.895 

 
3.4.2 Application of the exact method 

The standard fitting algorithm in R-glm, which is based on IRLS with step-halving, is used to 

obtain an approximate solution. For these data, the fitting algorithm stops on the first iteration 

and asks the user to provide appropriate starting values. The problem is that the starting 

values used by R-glm – 0, 9ˆ 2.83defaultβ = , 1,
ˆ 0.036defaultβ = − , 2,

ˆ 0.661defaultβ = − , and 

3,
ˆ 0.043defaultβ =  –  are inappropriate because the fitted probabilities of observations 3 and 4 

evaluated at those initial values are less than zero: 3,ˆ 0.129defaultµ = −  and 4,ˆ 0.033defaultµ = − . 

To correct this and obtain appropriate starting values, the algorithm mentioned in Section 

3.2.2 is applied as follows: 

 

( )

( )

0, 3,
0,

3,

ˆ ˆ 0.9
ˆ 0.01

ˆ ˆmax( )

2.839 0.129 0.9
0.01

0.129
2.689

0.868

default default
start

default

β µ
β

µ

− ×
= +

−

+ ×
= +

+
=

μ

,    

1,
1,

3,

ˆ 0.9ˆ
ˆ ˆmax( )

0.036 0.9
0.868 0.129
0.032

default
start

default

β
β

µ
×

=
−

− ×
=

+
= −

μ

, 

 

2,
2,

3,

ˆ 0.9ˆ
ˆ ˆmax( )

0.661 0.9
0.868 0.129
0.597

default
start

default

β
β

µ
×

=
−

− ×
=

+
= −

μ

,             and        

3,
3,

3,

ˆ 0.9ˆ
ˆ ˆmax( )

0.043 0.9
0.868 0.129
0.039

default
start

default

β
β

µ
×

=
−

×
=

+
=

μ

, 



Chapter 3 
 

77 
 

where ˆmax( )μ  is the approximate maximum fitted probability (this is 0.868, the approximate 

fitted probability of observation 9). Each starting value is multiplied by 0.9 and the 0,
ˆ

startβ  is 

added by 0.01 to ensure that the maximum fitted probability is less than unity and the 

minimum is greater than zero. By using the corrected starting values, 0,
ˆ 2.689startβ = , 

1,
ˆ 0.032startβ = − , 2,

ˆ 0.597startβ = − , and 3,
ˆ 0.039startβ = , the fitting algorithm of R-glm can 

converge to an approximate solution with estimated coefficients, 0, 8ˆ 2.68approxiβ = , 

1, 4ˆ 0.03approxiβ −= , 2, 1ˆ 0.63approxiβ −= , and 3, 1ˆ 0.05approxiβ = . The approximate fitted 

probabilities of observations 3 and 4 are extremely close to 0, which suggests the ML 

solution could lie on the lower bounds of the parameter space.  

 

By assuming that the ML solution lies on the lower bound of parameter space, the estimation 

begins the re-parameterisation from observation 3 by the equation (3.22) as: 

(1) (1) ,  1, 2,...9 and 0,1,2,3ijij jz x x i j= − = = . 

Since observation 3 is the boundary vector (1)
jx , it became a zero vector because of: 

(1) (1)
33 0,   0,1, 2,3j jjz x x j= − = = . 

The first re-parameterisation eliminated the constant 0β  and observation 3 from the model. It 

continued with observation 4 by the following equation: 

(2) (2) (1)
(2) (1) (1) (1) (1)

1 1(2) (2) (1)
1 1 1

,  1, 2,...9, 3,  and 1,2,3j j j
ij ij iji i

t x x
z z z z z i i j

t x x

−
= − = − = ≠ =

−
. 

Observation 4 became a zero vector after the re-parameterisation since: 
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( ) ( )

(1)
4(2) (1) (1)

4 4 1(1)
41 1

(1)
4(1) (1)

4 41 1(1)
41 1

0

j j
j j i

j j
j j

x x
z z z

x x

x x
x x x x

x x

−
= −

−

 −
 = − − −
 − 

=

, 

for 1, 2,...9,  3 and 1,2,3i i j= ≠ = . 

Moreover, the covariate 1X , the relevant coefficient 1β  and observation 4 were also 

eliminated from the data.  

 

The final model after the re-parameterisation is 3 (2)*
2

ˆi jijj zµ β==∑  with only two covariates 

(2)
2z  and (2)

3z  (the re-parameterised values of 2x  and 3x ), and two relevant coefficients 2β  

and 3β . The model converged effectively to the estimates 2 0.630β̂ −= , and 3 1ˆ 0 5.0β = . By 

the function (3.24) and (3.27), we got the estimate 1 0.034β̂ −=  and 0 2.683β̂ = . The log-

likelihood obtained from the identity-link binomial model with the exact method is –

3.4010849, which is improved compared with the approximate solution. The improvement 

could become significant in data with a larger sample size and more boundary vectors 

involved.  

 

3.4.3 The results from four statistical packages and two alternative methods 

We fitted the data using the corresponding generalised linear model function in four 

statistical packages (R-3.6.3, Stata-16, SPSS-24 and SAS-9.4) with a binomial family and log 

link function. SAS-genmod failed to converge and reported an error message that the mean 

parameter is either invalid or at a limit of its range for some observations. Stata-glm (NR) 

failed to converge after 50 iterations. Stata-glm (IRLS) converged to a set of inadmissible 
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estimates and warned that parameter estimates produce inadmissible mean estimates in one or 

more observations. We found that the fitted probabilities of observations 3 and 4 became 

negative. SPSS failed to converge and reported an error message. R-glm showed an error 

message and stopped the fitting procedure to request an appropriate user-provided starting 

value. With a user-provided starting value, it converged to an approximate solution as the one 

used to identify the boundary vectors in Section 3.4.2. 

 

We used the R-glm and Stata-glm with a Poisson family and log link function to implement 

the modified Poisson approach. The modified Poisson in Stata-glm failed to converge. The R-

glm showed an error message and halted the fitting procedure to request an appropriate user-

provided starting value. After providing an appropriate starting value, modified Poisson in R-

glm can converge to an approximate solution with the log-likelihood of –3.4985379. 

However, as the IRLS with step-halving can provide an approximate solution for the identity-

link binomial model when an appropriate starting value is present, the value of using 

modified Poisson is limited. The additive Poisson approach converged to a result with the 

log-likelihood of –4.4420667. The detailed estimates of three approaches with the relevant 

95% confidence interval are listed in Table 3.2. 

Table 3.2 The coefficients and the 95% confidence interval obtained from four approaches. 

 Exact method IRLS with 
step-halving Additive Poisson Modified Poisson 

0β̂  
2.683 

(–1.918, 7.284) 
2.688 

(–0.568, 5.943) 
0.961 

(–3.003, 4.925) 
1.672 

(–3.498, 6.841) 

1̂β  
–0.034 

(–0.132, 0.064) 
–0.034 

(–0.114, 0.046) 
0.000 

(–0.092, 0.092) 
–0.012 

(–0.134, 0.109) 

2β̂  
–0.630 

(–1.458, 0.199) 
–0.631 

(–1.163, –0.098) 
–0.207 

(–0.866, 0.451) 
–0.452 

(–1.333, 0.429) 

3β̂  
0.051 

(0.010, 0.093) 
0.051 

(0.021, 0.081) 
0.005 

(–0.091, 0.101) 
0.045 

(–0.006, 0.096) 
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It is worth noting that the results in the modified Poisson and the additive Poisson approach 

result in poor model fitting. These poor estimates may affect the statistical significance of the 

results, as the covariate 3X  in this example.  

 

3.5 A real world example 

We used a real world dataset from the book by Hosmer et al. 62. They obtained the data by 

sampling a sub-sample of 1000n =  from the April 2008 release (Version 4.0) of the National 

Burn Repository research dataset (BURN) that includes 306,304 patients who were 

hospitalised due to burn injury between 1973 and 2007 in the United States. The mortality in 

hospital achieves 15 percent in the sample data. The binary (0/1) outcome variable is an 

indicator of death (DEATH) for the hospital discharge status of the patient. The study factors 

include age at admission (AGE), gender (GENDER, Male = 1 and Female = 0), race (RACE, 

Caucasian = 1 and Not Caucasian = 0), burn involved inhalation injury (INH_INJ, Yes = 1 

and No = 0), the flame involved in burn injury (FLAME, Yes = 1 and No = 0), and the total 

percentage of burn surface area (TBSA, 0-100%).  

 

To estimate mortality rate and quantify the effect of individual risk factors, an identity-link 

binomial model was fitted using a model-fitting procedure similar to that introduced by 

Hosmer, Lemeshow and Sturdivant 62. Variables were compiled as per the criteria in their 

book, which include those with statistical significance and/or having clinical relevance with 

mortality risk. The details are omitted for brevity, but the findings and the scaling of 

covariates are summarised to briefly understand the data and model. AGE was divided into 

four groups (54 years or under, 55-64 years, 65-74 years, over 75 years), and four binary 

variables AGE1, AGE2, AGE3 and AGE4 were generated. AGE1 was set as the reference 

group in the model.  
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Table 3.3 The coefficients and the 95% confidence interval obtained from four 
approaches. 

 Exact method IRLS with 
step-halving Modified Poisson 

Constant –0.0013 
(–0.0017, –0.0009) 

0.0000 
(–0.0158, 0.0157) 

–0.0011 
(–0.0014, –0.0007) 

TBSA 0.0065 
(0.0047, 0.0083) 

0.0072 
(0.0059, 0.0085) 

0.0053 
(0.0037, 0.0069) 

INH_INJ 0.2599 
(0.1487, 0.3710) 

0.1516 
(0.0577, 0.2457) 

0.2472 
(0.1131, 0.3813) 

RACE 0.0007 
(0.0005, 0.0008) 

–0.0007 
(–0.0164, 0.0150) 

0.0005 
(0.0004, 0.0007) 

AGE2 0.1075 
(0.0169, 0.1981) 

0.1189 
(0.0421, 0.1956) 

0.1099 
(0.0263, 0.1935) 

AGE3 0.1519 
(0.0287, 0.2750) 

0.1396 
(0.0249, 0.2543) 

0.1637 
(0.0244, 0.3030) 

AGE4 
0.4588 

(0.3315, 0.5861) 
0.3897 

(0.2810, 0.4983) 
0.4475 

(0.2674, 0.6275) 

 

The model was fitted without an issue through our package bm in R-3.6.1. Hosmer et al. 62 

excluded GENDER because of no evidence of confounding. They removed FLAME from 

their model also because using simple yes or no coding is not precise enough to be helpful 

after the consultation from an experienced burn surgeon. We accepted their decision and 

excluded those two covariates from our model for the same reasons. INH_INJ, RACE and 

TBSA were involved in the final model due to their significant association with mortality. 

Each possible interaction of covariates had been examined. There was no significant 

association with mortality for any of the interaction terms.  

 

With an appropriate starting value, the IRLS with step-halving converged to an approximate 

solution with the fitted probabilities that were close to the boundaries of the parameter space. 

To further improve the model fitting, the identity-link binomial model using the exact method 

is respectively fitted by assuming the ML solution lied either on the lower or upper bound of 

the parameter space. The log-likelihood obtained by assuming the ML solution on the lower 

bound was –205.5336, which was greater than the log-likelihood of –206.1732 obtained by 
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assuming the ML solution on the upper bound. Therefore, the solution with greater log-

likelihood was accepted as the final solution for the model with two observations were 

confirmed as boundary vectors. Both observations (one was Caucasian, and another one was 

not) had the fitted probabilities equal to 0, and were from the age group 1 with a very small 

percentage of TBSA (0.1 and 0.2 percent) and no inhalation injury involved. These characters 

made them have an extremely low risk of mortality in the hospital after a burn injury. The 

results of the exact method were compared with two approximate solutions from alternative 

approaches in Table 3.3. 

 

In comparison, Stata-glm (NR) and Stata-glm (IRLS) failed to converge after 50 iterations 

and warned that “parameter estimates produce inadmissible mean estimates in one or more 

observations”. SAS-genmod failed to converge and warned “The mean parameter is either 

invalid or at a limit of its range for some observations”. SPSS could not converge and warned 

that “There is at least one invalid case in the last iteration. A case is invalid if there are errors 

in computing the inverse identity link function, the log-likelihood, the gradient, or the 

Hessian matrix in the iterative process. Only the iteration history is displayed”. R-glm 

showed an error message and stopped the fitting procedure to request an appropriate user-

provided starting value. With a user-provided starting value, it converged to an approximate 

solution with the log-likelihood of –208.9734, like the one obtained from the IRLS with step-

halving. 

 

We used R-glm and Stata-glm with Poisson family and a log link to fulfil the modified 

Poisson approach. Stata-glm failed to converge. R-glm failed to begin the iteration with the 

default starting values. With user-provided starting values, it converged to an approximate 

solution with the log-likelihood of –208.7647 after the 662 iterations. After 380,974 
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iterations, the additive Poisson approach converged to a solution with the log-likelihood of 

–216.0718, and failed to report the estimates of standard error and warned that “MLE is on 

the boundary of parameter space, cannot use asymptotic covariance matrix”. Since the 

estimates of the standard error and the relevant 95 percent confidence interval were missing, 

their results are not listed in Table 3.3.  

 

Since there were two fitted probabilities of observations extremely close to 1, the ML 

solution of the real-world example may lie on both lower and upper bounds of the parameter 

space. This leads to a special case described in Section 3.3.5 in which, when the ML solution 

lies on both upper and lower bound, the exact method only can attain an approximate solution 

by comparing the log-likelihood obtained by the upper or lower bound hypothesis. The 

approximate solution will be the one maximised the log-likelihood. Although the 

approximate solution is not the ML solution of the model, it obtained by eliminating one side 

of the boundary vectors. Thus, the exact method solution remains to be the closest to the ML 

solution of the example among all other alternative approaches. 

 

3.6 Simulations 

The simulations were designed to demonstrate the performance of the exact method in the 

estimation of the identity-link binomial model. To perform this objective, 20000 sample 

datasets were randomly generated based on eight scenarios. Each sample data includes 1000 

observations with a binary outcome variable Y , a dichotomous covariate 1X  and a 

continuous covariate 2X . Table 3.4 lists the designed values for the relevant parameters 0β , 

1β  and 2β  in each scenario. The conclusions are not influenced by the specific values of 0β , 

1β  and 2β  chosen. The value of outcome variable Y was drawn at random from a Bernoulli 
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distribution with success probability 0 1 1 2 1y x xµ β β β= + + . The dichotomous covariate 1X  

was drawn at random from a Bernoulli distribution with probability 0.5µ = . The 2X  as a 

uniformly distributed continuous covariate was randomly generated with limiting values a  

and b  that are respectively the minimum and maximum of ( )0 1 20 0β β β− − ×  and 

( )0 1 21 1β β β− − ×  when the value of 2β  is positive, and invert their order when the value of 

2β  is negative. We define the covariates vector with the fitted probability is equal to 0 or 1 as 

a boundary vector on the lower or upper bound of the parameter space respectively. A 

realisation with  1y =  could produce a boundary vector on the upper bound if the largest 

value ( )1 1x =  of 1X  and a large ( )2x b≈  value of 2X  were drawn in settings with 2 0.1β = , 

or a realisation with 0y =  could produce a boundary vector on the lower bound if the 

smallest value ( )1 0x =  of 1X  and a small ( )2x a≈  value of 2X  were drawn in settings with 

the same value of 2β . (The boundary vector could be produced similarly when the value of 

2β  is negative.)  

Table 3.4: Design of the simulations 

Setting 0β  1β  2β  *a  *b  

1 1.0 0.06 0.1 –10.0 –0.60 
2 1.0 0.06 –0.1 0.60 10.0 

3 1.5 0.06 0.1 –15.0 –5.60 

4 1.5 0.06 –0.1 5.60 15.0 

5 2.0 0.06 0.1 –20.0 –10.6 

6 2.0 0.06 –0.1 10.6 20.0 

7 2.5 0.06 0.1 –25.0 –15.6 
8 2.5 0.06 –0.1 15.6 25.0 

 * Lower and upper limits of the continuous covariate 2X  taking values generated at 

random from the uniform distribution ( ),U a b .  
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3.6.1 Results for coefficient estimates 

Table 3.5 shows the simulation results for the estimates 1̂β  and 2β̂  between the replications 

with and without boundary vector. The results for the 0β̂  have been omitted for brevity, but 

they can be found in Appendix B. Firstly, the results showed that 41.3 to 48.7 percent of 

repetitions did not produce a boundary vector. The average percent bias in the group without 

a boundary vector was negative for the coefficient estimates, indicating that most were less 

than the design values, and the mean of the bias was at the left side of the null. That is to be 

expected because those estimates did not produce fitted probabilities large enough to 

constitute a boundary vector. Moreover, because the coefficients were not fully estimated, 

they need a wider range of confidence intervals to cover the design values. A slightly larger 

value of average mean squared error in the simulations without a boundary vector also 

described this partially. In contrast, the average percent bias in the group with a boundary 

vector was small (approximately 0.42 to 3.2% in each scenario) and mildly negative, 

indicating that most were close to the design values, and the mean of the bias was minor to 

the left of the null. That is to be expected because these coefficients needed to be fully 

estimated to produce a boundary vector. Reflecting the lesser contribution of the average 

percent bias, the average mean squared errors of exact estimates that produced a boundary 

vector were lower than those of the fits that did not (Table 3.5). The results for the repetitions 

with a boundary vector on the lower bound have been compared with those from the upper, 

and no notable difference was shown. The results can be found in Appendix B. 

  

We noticed that the average percent bias in the group without a boundary vector was 

approximately 3.8 to 8.7 times more than the group with a boundary vector. That leads to a 

reasonable conjecture that the sample with a boundary vector contains the information from 

not only the population parameters, but also the extra information about the boundary of 



Chapter 3 
 

86 
 

parameters space. This extra information enabled the fitting procedure to converge to an 

estimate that is closer to the design value. However, the sample without a boundary vector 

contains only the information from the parameters. Therefore, it could not produce an 

estimate with less “bias”. Further study is needed to prove the correctness of the conjecture, 

which will not be covered in this thesis. 

Table 3.5: Simulation results 

  Simulations without a boundary vector   Simulations with a boundary vector  

Setting   n Bias* MSE† Coverage‡   n Bias* MSE† Coverage‡ 

1 β1 9,317 –12.258 0.117 95.5 10,683 –2.334 0.101 94.7 
 β2 9,317 –2.117 0.003 97.4 10,683 –0.490 0.001 96.6 

2 β1 9,338 –12.637 0.118 95.6 10,662 –2.224 0.098 95.2 
 β2 9,338 –2.112 0.003 97.4 10,662 –0.485 0.001 97.0 

3 β1 9,261 –13.469 0.118 95.3 10,739 –1.546 0.099 94.9 
 β2 9,261 –2.062 0.003 97.0 10,739 –0.547 0.001 96.5 

4 β1 9,421 –14.612 0.117 95.5 10,579 –2.087 0.101 94.3 
 β2 9,421 –1.948 0.003 97.5 10,579 –0.509 0.001 96.5 

5 β1 9,738 –13.035 0.116 95.6 10,262 –3.210 0.101 94.7 
 β2 9,738 –1.971 0.003 97.7 10,262 –0.405 0.001 96.4 

6 β1 9,715 –12.683 0.116 95.8 10,285 –2.889 0.100 94.7 
 β2 9,715 –1.985 0.003 97.5 10,285 –0.422 0.001 96.5 

7 β1 8,256 -14.092 0.119 94.8 11,744 -2.717 0.100 94.8 
 β2 8,256 -2.310 0.003 97.2 11,744 -0.480 0.001 96.7 

8 β1 8,433 -14.371 0.119 94.9 11,567 -2.759 0.100 94.9 
 β2 8,433 -2.238 0.002 97.6 11,567 -0.482 0.001 96.7 

* Average value of percent bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† Average value of mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 n
jk j jkkn Varβ β β=

 − +  
∑  for 0,1, 2j =  and 

1,2,k n=  . 
‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Figure 3.1: Density plots of the sampling distributions (n=1000, 20000 replications, eight settings) of the 
binary covariate 1β . The solid lines represent replications with a boundary vector. The dotted lines represent 
replications without a boundary vector.    
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Figure 3.1 provides density plots of the percent bias for the estimate 1̂β  between the 

replications with and without boundary vector, which visually presents the distributional shift 

(Figures for the 0β̂  and 2β̂  see Appendix B). The peak of the kernel density curves in the 

replications without a boundary vector were shifted from the null toward left in all scenarios 

compared with those with a boundary vector.  

 

3.6.2 The comparison with the alternative approach 

For comparison, I attempted to fit the simulated samples using the modified Poisson with 

default starting value algorithm and additive Poisson approach. For the modified Poisson 

approach, the fitting procedure failed to begin the iteration without the starting values 

provided. This approach is excluded from the comparison rather than self-providing these 

values. As mentioned previously, when an appropriate starting value is present, the IRLS 

with step-halving can provide an approximate solution for the identity-link binomial model 

therefore, the value of using the modified Poisson is limited. In terms of the additive Poisson 

approach, whilst it could converge to a solution, the solution is biased. Moreover, the 

approach could not obtain an estimate of standard error for about 12-61% of repetitions with 

a boundary vector. Table 3.6 provides the results from the additive Poisson approach for the 

repetitions with a boundary vector (the results only included the repetitions in which the 

estimates of the standard error were not missing). The average percent bias is about 1.1 to 1.6 

times larger than in the exact method.  

 

The average mean squared errors of the additive Poisson approach were comparable to the 

corresponding exact method estimates (Table 3.6) in the samples with no missing estimate of 

standard error. However, the 95% confidence interval coverage by this approach did not 

reach (92.8-96.9%) the targets. This is likely to be caused by missing standard errors which 
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result in some results of the replications being excluded from the calculation of 95% 

confidence intervals in the additive Poisson approach. In contrast, the exact method has a 

much better performance in reaching the target coverage in the entire dataset (n =20000) 

(Table 3.6). It is also on average closer to the target in the repetitions with a boundary vector. 

Table 3.6: Simulation results (with results in which the standard error is not missing for the additive 
Poisson method shown for comparison) 

  All simulations 
(n = 20000) 

 
Simulations with a boundary vector 

  Exact method  Exact method  Additive Poisson§ 

Setting Bias* MSE† Cover‡ 
 

n Bias* MSE† Cover‡ 
 

n Bias* MSE† Cover‡ 

1 β0 –0.482 0.136 95.5  4636 0.433 0.113 93.1  4636 0.475 0.115 92.8 
 β1 –6.957 0.108 95.1  4636 –7.020 0.101 93.5  4636 –7.664 0.101 92.9 
 β2 –1.248 0.002 97.0  4636 –1.024 0.001 95.9  4636 –1.126 0.001 96.3 

2 β0 –0.465 0.135 95.6  9428 0.131 0.120 95.3  9428 0.142 0.115 93.9 
 β1 –7.086 0.107 95.4  9428 –2.827 0.098 95.2  9428 –4.482 0.096 94.1 
 β2 –1.245 0.002 97.2  9428 –0.536 0.001 96.9  9428 –0.597 0.001 96.1 

3 β0 –0.720 0.321 95.7  4773 –0.015 0.235 94.9  4773 –0.084 0.246 95.2 
 β1 –7.067 0.108 95.0  4773 –6.597 0.099 94.5  4773 –7.231 0.098 93.5 
 β2 –1.248 0.002 96.8  4773 –1.053 0.001 96.3  4773 –1.149 0.002 96.9 

4 β0 –0.665 0.317 95.6  9349 –0.109 0.268 94.7  9349 –0.121 0.262 93.9 
 β1 –7.987 0.108 94.9  9349 –2.598 0.101 94.2  9349 –4.280 0.099 93.0 
 β2 –1.187 0.002 97.0  9349 –0.571 0.001 96.5  9349 –0.630 0.001 95.8 

5 β0 –0.774 0.598 96.0  4738 –0.178 0.440 94.5  4738 –0.257 0.464 95.2 
 β1 –7.994 0.108 95.1  4738 –8.162 0.101 94.1  4738 –8.782 0.101 93.5 
 β2 –1.167 0.002 97.0  4738 –0.955 0.001 95.9  4738 –1.056 0.002 96.5 

6 β0 –0.798 0.599 96.3  9052 –0.152 0.471 95.6  9052 –0.168 0.464 94.7 
 β1 –7.647 0.108 95.3  9052 –3.093 0.100 94.8  9052 –4.914 0.097 93.3 
 β2 –1.181 0.002 97.0  9052 –0.502 0.001 96.3  9052 –0.553 0.001 95.7 

7 β0 –0.923 0.983 96.2  4630 –0.374 0.708 94.8  4630 –0.462 0.755 95.7 
 β1 –7.413 0.108 94.8  4630 –7.685 0.100 94.0  4630 –8.359 0.100 93.3 
 β2 –1.236 0.002 96.9  4630 –1.008 0.001 95.9  4630 –1.114 0.002 96.5 

8 β0 –0.910 0.977 96.3  10056 –0.318 0.770 95.9  10056 –0.361 0.767 95.4 
 β1 –7.655 0.108 94.9  10056 –3.021 0.099 95.0  10056 –4.592 0.097 93.9 

 β2 –1.222 0.002 97.1  10056 –0.569 0.001 96.8  10056 –0.641 0.001 96.1 

* Average value of percent bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† Average value of mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 ,  0,1, 2; 1,2,...n
jk j jkkn Var j k nβ β β=

 − + = =  
∑ . 

‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
§ The simulation results with a boundary vector in the additive Poisson only include the repetitions that the 
estimated standard errors are reported.  
 

 

3.7 Conclusion 

In clinical trials for which risk of occurrence of an event or non-event is an outcome measure, 

it is recommended that risk differences be reported to assist clinicians in decision making. 
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The identity-link binomial model theoretically provides a way to estimate the risk difference. 

However, the standard fitting algorithm in statistical packages based on either Newton-

Raphson or IRLS algorithm is often troubled by numerical difficulties due to inappropriate 

starting values and failure of convergence when the ML solution is close to or on the 

boundary of the parameter space. We found that the IRLS with step-halving can converge to 

the ML solution if an appropriate starting value is provided. However, in some cases, when 

the ML solution lies on the boundary of the parameter space, the solution obtained from the 

IRLS with step-halving can only be presented as an approximate one due to the impact of the 

boundary vector on the fitting algorithm. The difference between the approximate and the 

ML solution could be significant in some cases. Petersen and Deddens 9 firstly proposed the 

exact method to solve the convergence difficulty due to the ML solution is on the boundary 

of parameter space in the log binomial model. Because of the similarity of log binomial and 

identity-link binomial models, the exact method is extended into the identity-link binomial 

model to overcome the issue caused by the boundary vector and further improve the model 

fitting. The details and the specifics to apply the exact method in the identity-link binomial 

model are listed in this chapter. It is summarised in the following seven aspects: 

(a) A starting value calibration offers an appropriate starting value for the standard fitting 

algorithm; 

(b) Three theorems (with proof) for estimating the ML solution when it is on the upper 

bound of parameter space in the identity-link binomial model; 

(c) Three theorems (with proof) for estimating the ML solution when it is on the lower 

bound of parameter space in the identity-link binomial model; 

(d) A theorem (with proof) to demonstrate a perfect linear correlation between each pair 

of estimates of coefficients of non-constant covariates in the identity-link binomial 
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model when the ML solution is on the boundary, and the number of coefficients of 

non-constant covariates is equal to the number of boundary vectors.  

(e) A proved corollary to show that the standardised values of the ML estimates of 

coefficients of non-constant covariates are equal in absolute value; 

(f) A theorem and corollary to establish that the re-parameterisation of covariates 

required to implement the exact method can be successfully undertaken if the ML 

solution exists.  

(g) An integrated scheme to overcome the numerical difficulties and locate the ML 

solution in the identity-link binomial model. 

 

To demonstrate the implementation of the exact method in detail, an example dataset and a 

real-world dataset have been provided. The exact method converged to the ML solution with 

two boundary vectors on the lower bound of the parameter space in the example dataset. In 

the real-world dataset, it successfully found two boundary vectors on the lower bound and 

improved the approximate solution obtained from the IRLS with step-halving by eliminating 

the impact of the boundary vectors. (Since the R-glm is coded based on the IRLS with step-

halving 58, this function is used to implement the IRLS with step-halving in this thesis) 

However, the real-world dataset may be a case that the ML solution lies on both lower and 

upper bound. Eliminating the impact of the boundary vector on the lower bound through the 

exact method can only improve the solution, but the model may not be fully estimated due to 

the uneliminated impact of the boundary vector on the upper bound. As mentioned in Section 

3.3.5, the exact method can only eliminate the boundary vector on one side by the re-

parameterising the covariates if the ML solution lies on both bounds. Therefore, the solution 

obtained by eliminating the boundary vector on one side is still an approximate one. The 

standard fitting algorithm of the identity-link binomial model in three statistical packages 
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(SAS, Stata and SPSS) failed to converge in both examples. The fitting algorithm in R-glm 

failed to begin the iteration and asked for an appropriate starting value. After an appropriate 

starting value was provided, it converged to an identical solution as IRLS with step-halving 

since the fitting algorithm of R-glm is coded based on the IRLS with step-halving 58. The 

modified Poisson failed to begin the iteration with the default starting values. After an 

appropriate starting value was provided, it converged to an approximate solution which did 

not represent an improved performance than the approximate solution obtained from the 

IRLS with step-halving. Moreover, as mentioned in Sections 3.4.3 and 3.6.2, when an 

appropriate starting value is present, the IRLS with step-halving can provide an approximate 

solution for the identity-link binomial model therefore, the value of using the modified 

Poisson is limited.  The additive Poisson approach produced an inadmissible solution in both 

datasets, and did not report the standard errors in real world dataset. 

 

We performed a simulation to evaluate the performance of the exact method in the ML 

estimation of the identity-link binomial model. The simulation results obtained by the exact 

method revealed a relatively lower average value of percent bias in the repetitions with a 

boundary vector compared to those without. As expected, the simulation results illustrate that 

the coefficients in the repetitions with a boundary vector were fully estimated to produce a 

boundary vector compared to those without. Thereby, the exact method improved the model 

fitting by properly dealing with the boundary vector.  

 

The R-glm with Poisson family and log link was used to implement the modified Poisson 

method in simulation. The method entirely failed to begin the iteration with a default starting 

value. Thus, it was excluded from the comparison. In the repetitions with a boundary vector, 

the additive Poisson approach converged to an inadmissible solution with a larger average 
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percent bias compared with the exact method and failed to report the estimate of the standard 

error in 12-61% repetitions. Moreover, the 95% confidence interval coverage was around the 

target in the exact method and was about 2 to 3 percentage points below the 95% in the 

additive Poisson model in contrast. The simulation results suggest that the exact method 

displays good performance in the data with a boundary vector. 

 

In conclusion, the exact method showed an advantage in the estimation of the ML solution 

when it is on the boundary of the parameter space in the identity-link binomial model. We 

recommend it to fit the model and estimate the risk difference. A relevant package bm in R to 

estimate the ML solution in identity-link binomial model based on all of the contributions in 

this chapter has been released.  
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Chapter 4   Relative risk estimation of clustered/longitudinal data using 

generalised estimating equations 

 

4.1 Introduction 

The risk ratio/relative risk (RR) is the ratio measure of choice for summarising the impact of 

exposure on the incidence proportion 5. It has application to the analysis of randomised 

controlled trials with discrete event outcomes that are not a function of time (for which 

failure-time analysis is used). The statistical methods employed to estimate RR and adjust for 

confounders in a regression model differ by data type. In independent data (meaning that the 

different subjects do not depend on each other), a possible way is to fit a log binomial model 

(LBM) as discussed in Chapter 2 of this thesis. Nevertheless, LBM is not suitable for the data 

with correlated outcomes, such as clustered/longitudinal data. In the analysis of correlated 

data, the approaches used for addressing within-cluster correlations can be grouped into two 

classes described by 50, subject-specific and population-averaged.  

 

In subject-specific approaches, the heterogeneity across subjects is explicitly modelled by 

adopting unobservable random effects 50. The subject-specific model fully parameterises the 

distribution of the population, and the coefficients of the model have an interpretation for 

individuals 49. Mixed model 66, 67 is an example of the subject-specific model, which 

estimates the random effect by assuming it follows a parametric distribution across the 

population. Conversely, in the population-averaged approaches, heterogeneity between 

subjects is not explicitly taken into account 3, 49. Instead, the population-averaged response is 

modelled as a function of covariates. The population-averaged model parameterises only the 

marginal distribution of the population, and the coefficients of the model have an 

interpretation for the population rather than for any individual 50. Generalised estimating 
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equations (GEE) introduced by Liang and Zeger 46 is a population-averaged approach. It is an 

extension of generalised linear model (GLM) and is used for estimating the parameters of a 

marginal GLM with a user-defined correlation structure between outcomes 46. In this chapter 

of the thesis, I study the application of the exact method in a marginal log binomial model 

estimated by GEE (marginal LBM by GEE). 

 

Naturally, a marginal LBM by GEE becomes a feasible approach to estimate RR with 

adjustment for confounders in a model with a correlated response on the population-averaged 

level. However, the standard fitting algorithm of marginal LBM by GEE in the statistical 

software may meet numerical difficulties, leading to a failure of convergence 68, 69. When a 

convergence issue occurs, one possible option is to alter the RR estimation toward 

approximately estimating the odds ratio using the marginal logistic model estimated by GEE. 

As an estimate of the risk ratio, the approximation is adequate when the outcome is rare in all 

exposure and confounder categories 5, but the odds ratio increasingly overstates its target as 

the outcome becomes more common 70. Another possible choice is to use a marginal 

modified Poisson with log-link function estimated by GEE (marginal Poisson by GEE) to 

approximately estimate the coefficients in marginal LBM by GEE. This is a common method 

to approximate RR when a convergence issue occurs in LBM 19, 20. However, the solution 

obtained by marginal Poisson by GEE may result in a fitted probability (estimated mean of 

observation) exceeding the interval [0, 1] 69.  

 

There is no published account of the causes of non-convergence or remedies for the 

convergence issues in the marginal LBM by GEE. In the LBM, one of the reasons for 

convergence issues is that the maximum likelihood solution lies on the boundary of the 

parameter space, leading to the fitted probability equal to 1 8, 9 (detailed in Chapter 2 of this 
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thesis). Because of the similarity of marginal LBM by GEE and LBM in the mathematical 

form, it is reasonable to presume that one interpretation of numerical difficulty is the 

presence of boundary vector, which is defined as the covariates vector with the corresponding 

fitted probability equal to 1. If a boundary vector is present, the standard fitting algorithm 

may meet numerical difficulties and fail to converge. A feasible approach is needed to 

overcome this difficulty. 

 

Petersen and Deddens 9 introduced the exact method to resolve the convergence issue caused 

by the boundary vector in LBM. The exact method involves transforming the data to 

eliminate the boundary vectors, resulting in a re-parameterisation of the likelihood function. 

Their scheme can solve the convergence issue, but it is incomplete and without details to 

implement (detailed in Section 4.3). Because of the similarity of marginal LBM by GEE and 

LBM in the mathematical form, an extension of the exact method in marginal LBM by GEE 

may overcome the numerical difficulty caused by boundary vector. 

 

In this chapter, I propose an extension of the exact method in marginal LBM by GEE. Two 

theorems with proof and details to implement the method are provided to overcome the 

convergence issue due to the numerical difficulty attributed to boundary vector.  The 

following sections in this chapter include: a brief introduction of GEE and the connection 

with quasi-likelihood in section 4.2; application of the exact method to overcome the 

numerical difficulties due to the ML solution lying on the boundary of the parameter space in 

section 4.3; a comparison of the exact method with alternative approaches using simulation 

studies in section 4.4; application of the exact method to real-world data in section 4.5. The 

proofs of the theorems and corollaries in this chapter are reported in Appendix C. An R 
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package lb.gee based on the exact method for fitting the identity-link binomial model has 

been released on Github. The related R documents are set out in Section 6.3 of Chapter 6. 

 

4.2 The background of GEE 

Proposed by Liang and Zeger 46, GEE is a generalisation approach based on quasi-likelihood 

60. It offers a way to estimate the regression parameters in marginal models, with no 

assumptions being made on the joint distribution of the responses. To understand the 

association between GEE and quasi-likelihood estimation, the quasi-likelihood approach is 

described as follows before discussing its extension to marginal models for clustered 

responses.  

 

4.2.1 Quasi-likelihood 

As an extension of the likelihood function, the quasi-likelihood is initiated by Wedderburn 60, 

and its properties are further discussed by McCullagh 48. It is used for estimating the 

regression coefficients without fully specifying a probability distribution for the data. The 

quasi-likelihood allows for overdispersion and makes assumptions only on the mean and the 

variance of the data distribution 60.  

 

Let ,  1, 2,...iy i n=  be n independent responses with mean ( )E i iy µ=  and suppose that each 

iµ  is a known function of parameters ( )1 2, ,... Jβ β β=β . The response variance is 

( ) ( )Var i iy vφ µ= , where φ  is a scalar (dispersion) parameter, and v  is a known variance 

function 60. Then the quasi-likelihood for each observation is defined as follows: 

 ( )
( )

Q ,i i i i

i i

y y
v

µ µ
µ φ µ

∂ −
=

∂
 

or equivalently  
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 ( ) ( )
Q ,

i

i

i i
i i i

iy

y ty dt
v t

µ

µ
φ

−
= ⌠
⌡

. 

The quasi-likelihood for the complete data is given by the sum of the quasi-likelihood for 

each observation, 

 ( ) ( )
1

Q , Q ,
n

i i
i

y yµ µ
=

=∑ . 

The quasi-score function written in matrix form is obtained by differentiating the function 

( )Q ,y μ  with respect to the parameters β  as follows 48: 

 ( ) ( ) ( )1Q ,
S −∂

′= = −
∂

y μ
β D V y μ

β
, 

where D  is a n J×  matrix with elements i jµ β∂ ∂ , and ( )diag ivφ µ =  V . The estimates of 

the regression parameters β  are obtained by solving a set of quasi-score functions equal to 0 

as follows: 

 ( )1 0−′ − =D V y μ . 

It has been proved that if the response distribution is a member of the exponential family, the 

log-likelihood function is identical to the quasi-likelihood 60. 

 

4.2.2 Generalised estimating equations 

GEE has been recognised as a reliable estimation technique for fitting marginal models that 

take account of inter-dependencies in response 46. It is a semiparametric approach used for 

estimating the regression coefficients of a marginal GLM with correlated responses without 

requiring a full specification of the joint distribution. The approach does not depend on a 

likelihood function, but on quasi-likelihood in which only the mean and variance of the 

response (first two moments) is specified for estimating the regression parameters 46.  
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Suppose that there are K  clusters/subjects in the data, and in  observations included in the 

cluster ,  1, 2,...i i K= , which could be related subjects or observations on a single subject. 

Denote response variable of pth observation in the cluster i  as ,  1, 2,...ip iy p n= . The 

relationship between the mean ipµ  of ipy  and the linear combination of covariates vector 

( )1 2, ,...ip ip ip ipJx x x=x  and the marginal model regression parameters ( )0 1 2, , ,... Jβ β β β=β  

is written as: 

 ( ) 0 1 1 2 2g ...ip ip ip ip J ipJx x xµ β β β β′= = + + + +x β , 

where g is a link function (a list of the available link function with different distributions in 

the exponential family is in the book of Hardin and Hilbe 49). The variance of ipy  is 

represented as ( ) ( )Var ip ipy vφ µ= , where φ  is a scalar (dispersion) parameter, and v is a 

known variance function. When the outcome, ipy , is following a binomial distribution and 

the link function g is the natural logarithm, it is called marginal LBM by GEE with mean 

( )expip ipµ ′= x β  and variance ( ) ( )Var 1ip ip ipy φµ µ= − . For the ith cluster, the variance-

covariance matrix is structured as 

 ( )1/2 1/2
i i i iφ=V A R α A , 

where ( ) ( ) ( )1 2, ,...
ii i i inv v vµ µ µ =  A diag  and ( )iR α  is a i in n×  "working" correlation 

matrix which specifies the correlation structure between observations in cluster i. The 

parameter vector α  summarises the correlation between observations 46. The estimate of β , 

β̂ , is obtained by solving the following estimating equation: 

 ( ) ( )1

1

K

i i i i
i

U −

=

′= − =∑β D V y μ 0 , 
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where ( )1 2, ,...
ii i i inµ µ µ=μ  and i i= ∂ ∂D μ β . It can be seen that if ( )iR α  is an identity 

matrix, then the estimating equations in GEE are the same as the one in quasi-likelihood. 

 

The word "working" in the name of the "working" correlation matrix ( )iR α  means that the 

correlation matrix does not need to be correctly specified. The consistency of the estimates β̂  

depends only on the correct specification of the mean, not on the correct choice of  ( )iR α  46. 

Under mild regularity conditions (the function ( )1
1

K
i i ii

−
=

′ −∑ D V y μ  is continuously 

differentiable), Liang and Zeger 46 showed that ( )ˆK −β β  is asymptotically normal with 

mean zero and covariance matrix βV  given by 

 ( )
1 1

1 1 1 1

1 1 1
lim Cov

K K K

i i i i i i i i i iK i i i
K

− −
− − − −

→∞ = = =

     
′ ′ ′ ′=              

∑ ∑ ∑βV D V D D V y V D D V D . 

The estimate of βV  can be obtained consistently by replacing ( )Cov iy  by ( )( )ˆ ˆi i i i
′− −y μ y μ  

and α , β , and φ  by their estimates as follows 46: 

 
1 1

1 1
ˆ

1 1

ˆ ˆ ˆ
K K

i i i i i i
i i

− −
− −

= =

   
′ ′=       

   
∑ ∑βV D V D M D V D  

where ( )( )1 1
1

ˆ ˆˆ ˆK
i i i i i i ii

− −
=

′ ′= − −∑M D V y u y u V D , and 1
1

ˆK
i i ii

−
=

′∑ D V D  is model-based (also 

called naive) variance-covariance matrix. The matrix ˆˆ
βV  is called the robust (or empirical) 

variance-covariance matrix. The estimates β̂  and ˆˆ
βV  are consistent even if the working 

correlation structure is misspecified 46. 
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Given an estimate of ( )iR α  and φ , an updated estimate of β  can be obtained by the 

iteratively reweighted least squares described by McCullagh 48. At a given iteration, the 

current Pearson residuals are defined as follows: 

 
( )

ˆ
ˆ

ˆ
ip ip

ip
ip

y
r

v

µ

µ

−
= , 

 

which is used for estimating φ  by 46, 48, 60 

 
2

1 1

ˆˆ inK
ip

i p

r
N J

φ
= =

=
−∑∑ , 

where iN n=∑ . The general approach to estimate α  is given by Liang and Zeger 46 as 

follows: 

 
( )1

ˆ ˆˆ
K

iu iv
uv

i

r r
N J

α
=

=
−∑ . 

The detailed information of the correlation structure and the corresponding specific function 

for estimating correlations are in the book of Hardin and Hilbe 49. 

 

In some cases, the fitting algorithm of marginal LBM by GEE may encounter numerical 

difficulty and fail to converge when there is a mean of ipy , ˆipµ , evaluated at β̂  that is equal 

to 1 (the corresponding vector of covariates is referred as boundary vector). Such a value 

could be problematic as it could lead to the inefficient calculation of  1ˆ
i
−V  as ˆ 1ipµ =  which 

results in the  ( )Var 0ipy = , causing failure of the fitting algorithm. 
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4.3 Marginal LBM by GEE using the exact method  

As discussed in Chapter 2, the exact method is initiated by Deddens et al. 18 and generalised 

by Petersen and Deddens 9 to resolve the convergence issue due to boundary vectors in the 

LBM. They introduced two theorems with formulae to estimate the coefficients and the 

relevant standard errors in the model. However, the method was incomplete because formulae 

to estimate covariances were not provided, which means that the exact method could not be 

implemented in general cases. In addition, the details to implement this method were also 

missing, and subsequently this method was not implemented in practice.  

 

In the following part of this section, two theorems with formulae are provided to estimate the 

covariances between the estimated coefficients of the eliminated covariates (including the 

constant) with each other and with the estimated coefficients of the non-eliminated 

covariates. 

 

4.3.1 Implementation of the exact method 

The exact method for the LBM can be extended to marginal LBM by GEE based on the 

similarities between the two models and the characteristics of the boundary vector, which 

include: 

1. both models fail to converge due to a similar reason, which is the presence of the 

boundary vector, 

2. they share the functions of the same form in the mean ( )expip ipµ ′= X β  and variance 

( ) ( )1ip ip ipVar Y µ µ= −  of the outcome variable, 

3. eliminating the boundary vector will not influence the estimation of the working 

correlation matrix and the dispersion parameter. The estimated mean corresponding to 
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the boundary vector is equal to 1, which leads to a Pearson residual equal to 0 and no 

contribution to the estimation of the correlation and the dispersion parameter.  

 

Some formulae for implementing the exact method for the LBM can be found in the paper by 

Petersen and Deddens 9. The remaining formulae necessary to implement the method are 

provided in chapter 2 of this thesis. Here I introduce the implementation of the method in 

marginal LBM by GEE.  

 

Assume that there are ( )0R R J< ≤  distinct covariate vectors of observations in the data 

with the estimated mean evaluated at the estimates β̂  equal to 1, which are defined as the 

boundary vectors. Denote the rth ( )1,2,...r R=  boundary vector as ( )rx , which shares the 

covariate values with rn  observations. The fitting procedure of the exact method can be 

summarised in seven steps: 

1. Eliminate the constant by subtracting from the constant and each non-constant covariate 

its respective value in the boundary vector: 

 (1) (1) , 0,1, 2,...ijpijp jz x x j J= − =  

where i denotes cluster, j denotes the position of a covariate, and p denotes the position in 

the cluster. 

2. When there are multiple boundary vectors ( 1)R > , eliminate the first 1R −  non-constant 

covariates by re-parametrising the covariates according to the scheme: 

 ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

where , 2,3,...r
ijp j

r
jr r r r r

ijp ijp j ijpip rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 
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3. Drop the observations with covariate vectors (1) (2) ( ), ,... Rx x x  respectively, which make no 

contribution to the estimation, and fit the model ( )( )exp J R
ip j ijpj R zµ β== ∑  without a 

constant and with 1J R− +  covariates to the remaining 1 2 ... Rn n n n− − − −  observations 

to obtain the estimates 1
ˆ ˆ ˆ, ,...R R Jβ β β+  of the coefficients of the non-eliminated non-

constant covariates and their estimated variances  ( )ˆVar ,  , 1,...j j R R Jβ = +  and 

covariances  ( )1 2
ˆ ˆCov ,j jβ β , 1 2j j≠ , 1j  and 2 , 1,...j R R J= + . 

4. Estimate the coefficients ˆ , 1, 2,... 1r r Rβ = −  of the 1R −  eliminated covariates as: 

 
( 1)

1
( 1)

ˆ
ˆ

J r
j jj r

r r
r

t

t

β
β

+
= +

+= −
∑

 

5.  Estimate the standard error of the estimates of the 1R −  eliminated covariates as: 

 ( )  ( )  ( )1 2
1 2

1 2
2 1

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

          = +    
             

∑ ∑ ∑ , 

for 1, 2,... 1r R= − , where  ( )ˆVar jβ  denotes the estimated variance of ˆ
jβ , and 

 ( )1 2
ˆ ˆCov ,j jβ β  denotes the estimated covariance between the estimated coefficients 

1
ˆ

jβ  

and 
2

ˆ
jβ . 

6. Estimate the coefficient of the constant covariate from the boundary condition as: 

 (1)
0 1

ˆ ˆ J
j jj xβ β== −∑  

7. Estimate the standard error of the constant as: 

 ( )  ( )  ( )1 21 2
1 2

2 1

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

    = +     
∑ ∑ ∑ . 
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To complete the implementation of the exact method for the LBM, it is necessary to provide 

formulae for the covariances of the estimated coefficients of the eliminated covariates 

(including the constant) with each other and with the estimated coefficients of the non-

eliminated covariates. Two theorems with formulae are provided in Chapter 2 of this thesis. 

They extend in a straightforward way to the marginal LBM by GEE as outlined below. The 

proofs of two theorems are provided in Appendix C. 

 

Theorem 4.1 

For a marginal log binomial model estimated by generalised estimating equations with 1J ≥  

independent non-constant covariates fitted by the exact method to data having (1 )R R J≤ ≤  

distinct sets of values of the covariates (including the constant) for which the estimated mean 

of outcome evaluated at the solution is unity, the estimated covariances between the estimates 

of the coefficients of the 1R −  eliminated non-constant covariates and the estimates of the 

coefficients of the other non-constant covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J

js
r s s j sr r

j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑ , 

for 1,2,... 1r R= −  and 1,...s r J= +  . 

To attain the covariances between the estimated coefficient of the constant covariate and the 

estimated coefficients of the non-constant covariates, Theorem 4.2 is provided. 

 

Theorem 4.2 

For a marginal log binomial model estimated by generalised estimating equations with 1J ≥  

independent non-constant covariates fitted by the exact method to data having (1 )R R J≤ ≤  

distinct sets of values of the covariates (including the constant) for which the estimated mean 
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of outcome evaluated at the  solution is unity, the estimated covariances between the exact 

estimate of the coefficient of the constant covariate and exact estimates of the coefficients of 

the J  non-constant covariates are given by: 

 ( )  ( )  ( )11
1
1

(1) (1)
0

1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,  ,  1, 2,
J

j j j jj j
j
j j

x x j Jβ β β β β
=
≠

 
 

= − + = … 
 
 

∑ . 

 

4.3.2 Identifying the boundary vector(s)  

Prior to the estimation of the marginal LBM by GEE, it is not known whether or not a 

covariate vector will constitute a boundary vector. Moreover, a reliable scheme to correctly 

address the boundary vectors in data is also needed. Therefore, a strategy is provided to 

overcome the issue as follows: 

(a) Fit the standard fitting algorithm of marginal LBM by GEE to obtain an approximate 

solution, which may not fully estimate the model and the correlation due to the impact 

of boundary vectors. 

(b) Identify all distinct covariate vectors for observations with estimated means close to 1 

evaluated at the approximate solution, and treat them as candidate boundary vectors.  

(c) Test each candidate boundary vector, and combinations of them as a combination of 

the candidate boundary vectors, until the exact solution is found. The approximate 

fitted probabilities (largest first) are used to prioritise the order of selection. 

 

4.3.3 Model selection criteria for the marginal LBM by GEE  

Model selection is aimed at finding the model that is nearest to the true model from a set of 

potential candidate models. In the model relying on a likelihood function, the solution that 

maximises the likelihood is acknowledged as the best fit to the data. Marginal LBM by GEE, 
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however, is based on a quasi-likelihood function which does not fully specify the joint 

distribution, but only depends on the first two moments (detailed in Section 4.2 of this 

chapter). Therefore, the likelihood-based criteria (such as AIC and BIC) can not be used for 

the model selection in GEE. Some criteria have previously been introduced in GEE for model 

selection. Each of them has its own advantages and disadvantages for informing the selection 

of covariates and correlation structure for the model 52-55, 71.  

 

Subsets of covariates or the correlation structure are the two main determinants in the model 

selection of GEE. Changes in either of those two components will lead to changes in the 

criteria 52-55, 71. The way to evaluate the performance of criteria in the model selection is to 

compare the variations of criteria attributed to the changes in one component by holding 

another constant. This was documented in the design of the simulation study in previous 

literature about the comparison of the criteria in GEE 53, 55, 71, 72. In the exact method, the 

subsets of covariates and the correlation structure remain constant, and the model will be 

fitted twice before eliminating the boundary vectors and after eliminating the boundary 

vectors by the exact method. By doing so, the only factor that could lead to a change in the 

criteria is the elimination of the boundary vectors. In Chapter 2 and 3 of this thesis, it has 

been seen that the model fit is improved after eliminating the boundary vector. Similarly, 

after eliminating the boundary vector, an improvement in the criterion is expected to be 

observed in the marginal LBM by GEE. The five criteria in GEE are explored in the next part 

of this section. A simulation study in Section 4.4 will assess their performances in the exact 

method. 

 

1. Rotnitzky – Jewell (RJ) 
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Rotnitzky and Jewell 51 provided and proved the asymptotic properties of the working Wald 

statistic for regression coefficients in the generalised estimating equations. Hin et al. 71 

summarised their idea into a criterion to select an intra-cluster correlation structure in GEE 

named as Rotnitzky – Jellew's criterion, RJ( )R . The criterion formula is written as: 

 

[ ] [ ]2 2

22 2

RJ( ) 1 1 1 2

trace( ) trace( )= 1 1

R RJ RJ

p p

= − + −

  
− + −  

    

Γ Γ
 

 where ( ) 11
1

K
i i ii

−
−

=
′= ∑Γ D V D M , and p  is the number of covariates. In the situation where a 

working correlation structure is correctly assigned, the matrix Γ  is approximately to be an 

identity matrix. Therefore, trace( ) pΓ  and 2trace( ) pΓ  are a number very close to 1, thus 

RJ( )R  approaches 0.  

 

2. Shults–Chaganty criterion (SC) 

Shults and Chaganty 54 argued that an appropriate working correlation structure should 

minimise the generalised error sum of squares written as: 

 

1

1

1

1

GESS( , ) ( ) ( )

( ) ( ) ( )

K

i i i i i
i
K

i i
i

−

=

−

=

′= − −

′=

∑

∑

α β y u V y u

Z β R α Z β
, 

where ( )1 2( )i i ii
−= −Z β A y u . A relevant criterion for model selection in GEE was defined as: 

 GESS( , )SC( )
( )

R
N p q

=
− −

α β , 

where 1
K

iiN n==∑  is the total number of observations, p  is the number of covariates, and q  

is the number of correlation coefficients in the working correlation structure. 
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3. Gaussian pseudolikelihood (GP) 

Carey and Wang 55 proposed a multivariate Gaussian criterion for choosing the correlation 

structure as an extension of the generalised error sum of squares. The criterion is written as: 

 1

1
GP( ) 0.5 ( ) ( ) ln( )

K

i i i i i i
i

R −

=

 ′= − − − + ∑ y u V y u V . 

A larger GP( )R  indicates a better correlation structure. 

 

4. Quasi-likelihood under the independence model criterion (QIC) 

Pan 52 produced a criterion for GEE by modifying the Akaike information criterion (AIC). 

The criterion consists of two terms: the value of the quasi-likelihood under the independence 

assumption evaluated at ˆ
Rβ , and a penalty term. It can be written as: 

 ( ) ( )ˆ ˆ ˆ ˆQIC 2Q , 2 traceR I RR φ = − + β Ω V , 

where: 

• ( )1 1
ˆ ˆ ˆ ˆQ , Q , ; ,iK n

R R ij iji j y xφ φ= =
   =   ∑ ∑β β  is the quasi-likelihood with 

ˆQ( , ; ) ˆ V( )
u

y
y tu y dt

t
φ

φ
−

= ∫ . ˆ
Rβ  and φ̂  are obtained under the hypothesised correlation 

structure.  

• 1
1 ˆ ,

ˆ
R

K
I i i ii

−
= = =

′=∑
β β R I

Ω D V D  is the model-based covariance estimate under the 

independent correlation assumption, evaluated at ˆ
Rβ . 

•  ˆˆ
Rβ

V  is the robust (sandwich) variance-covariance estimator.  

A lower QIC( )R  indicates a better model fitting. 

 

5. Correlation information criterion (CIC) 
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Hin and Wang 53 found that the performance of QIC( )R  is affected by the quasi-likelihood 

term that is theoretically independent of the correlation structure. In addition, they stated that 

the penalty term of QIC( )R  had a better performance in the selection of correlation structure 

and proposed a correlation information criterion (CIC) by only including the penalty term in 

QIC( )R  as: 

 ( )ˆ ˆCIC( ) trace I RR = Ω V . 

A better correlation structure should minimise the CIC( )R . 

 

There are also some other criteria introduced by researchers previously for the model 

selection in GEE. However, they are not covered in this thesis due to their unsatisfactory 

performance in the model selection when the outcome variable is binary 73 and have been 

used rarely in practice.  

 

4.3.4 The presence of a boundary vector may lead to the underestimation of the robust 

standard error and make model selection criteria fail 

The presence of the boundary vector does not necessarily make the standard fitting algorithm 

of marginal LBM by GEE fail to converge. When an appropriate starting value is provided, 

the standard fitting algorithm can converge to an approximate solution in which the estimated 

mean of a boundary vector is extremely close to 1. This solution could be problematic as it 

may distort the calculation of 1ˆ
i
−V  , leading to an underestimation of the robust variance-

covariance matrix and the corresponding standard error. For example, with an estimated 

mean extremely close to 1, the value of  ( ) ( )Var 1ip ip ipy µ µ= −  will be enormously small, 

and its reciprocal becomes tremendously large. This huge value will dominate the weights in 

the calculation of 1ˆ
i
−V , and consequently make 1ˆ

i
−V  fail to represent the entire picture of 
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variation of the estimated means, then affect all of the estimations based on 1ˆ
i
−V . Since the 

estimation of the robust standard error and the model selection criteria depend on 1ˆ
i
−V , they 

may lose their power in this situation.  

 

In contrast, because the boundary vectors are eliminated in the exact method by a re-

parameterisation, and will not be mathematically involved in the estimation of the model, 

they will not affect the calculation of 1ˆ
i
−V . More studies are needed to evaluate how this issue 

impacts the estimation of robust variance-covariance matrix and the criteria. The five criteria 

mentioned in this section are offered as options in the package lb.gee written in R-3.6.3. 

 

4.4 Simulations 

The simulation study is designed with two objectives. The first one is to evaluate the 

performance of the exact method in estimating marginal LBM by GEE. The aforementioned 

criteria are used for identifying the boundary vectors. The influence of the presence of 

boundary vectors on the performance of each criterion is also assessed by the number of 

improved replications (improved replication means that the value of criterion is improved in 

replication after eliminating the boundary vector). The second objective is to evaluate the 

performance in the model fit of the marginal LBM by GEE by comparing its estimates with 

those of the marginal Poisson model. As described in Section 4.1, the marginal Poisson by 

GEE is commonly used to approximate the coefficients of the marginal LBM by GEE model 

when convergence problems are encountered in fitting the latter. Therefore, it is worthwhile 

to compare the two approaches. 
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Two statistics were used in evaluating the model fit: the average percent relative bias of the 

estimate from the designed value ( ) ( )1
ˆ100 N

pn p pnN β β β= −∑ , and the percentage of 95 

percent confidence intervals covering the designed value of the coefficient. Since the 

selection of intraclass correlation structure is not the aim of our study, the data is only 

generated following an exchangeable correlation structure with a correlation coefficient 

0.3 or 0.6ρ =  (the exchangeable correlation structure is the most common correlation 

structure applied in practice).  

 

All calculations were performed using R version 3.6.3. The correlated binary outcome 

variable was generated through the R function rmvbin in the package bindata, which was 

built using the method by Leisch et al. 74. The function for the marginal means is as follows:  

 0 1 1 2 2log( ) ,  1, 2,...,  and  1, 2,...,ip ip ip ix x i K p nµ β β β= + + = = , 

where 0 1 2,   and β β β  are three coefficients with design values 

log(0.1),  log(1.25) and log(2) . K  is the total number of clusters in the sample. Let in  denote 

the number of observations under the ith cluster. The 1ijx  is a binary covariate randomly 

generated from a Bernoulli distribution with mean 0.5, and 2ijx  is a continuous covariate 

randomly generated from a uniform distribution with the upper bound attained through 

function  

 2
log(1) log(0.1) log(1.25)

log(2)upperx − −
=  

and the lower bound obtained by  

 2
log(0.15) log(0.1)

log(2)lowerx −
= . 
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Table 4.1 shows the settings for eight scenarios. Each scenario involved N = 10000 

replications of a dataset of K observations of a binary outcome. 

Table 4.1: The settings in the simulation. 

Setting K* 
in § Cluster 

size 
ρ † 

0β  1β  2β  

1 500 3 Fixed 0.3 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

2    0.6 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

3 500 3 Floating 0.3 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

4    0.6 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

5 50 10 Fixed 0.3 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

6    0.6 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

7 50 10 Floating 0.3 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

8    0.6 ( )ln 0.1  ( )ln 1.25  ( )ln 2  

K* is the total number of clusters in each generated dataset. in § is the average number of 
observations in each cluster with 1, 2,3,4i =  denoting settings (1,2), (3,4), (5,6) and (7,8) 
respectively. ρ † is the correlation coefficient in the exchangeable correlation structure. In order 
to study the performance of the exact method in data with balanced and unbalanced cluster, 
samples with fixed and floating cluster size were generated respectively. In the floating clusters, 
the cluster size was generated randomly from a Poisson distribution with mean equal to 3 or 10. 
In contrast, in the fixed clusters, each cluster has a fixed size of in §. 

 

4.4.1 Results for the comparison of the model selection criteria 

All replications were fitted by marginal LBM by GEE using the exact method. Table 4.2 

shows the results of the marginal LBM by GEE using the exact method from eight scenarios 

under five criteria. As expected, by appropriately eliminating boundary vectors using the 

exact method, the overall model fit evaluated under the respective criterion is improved to a 

different extent in each scenario. About 82-87 percent of replications in the first four 

scenarios and 42-59 percent of replications in the last four scenarios produce an improved 

result in RJ and CIC when applying the exact method. This percentage reduced to about 72-

75 percent in the first four and 34-55 percent in the last four in QIC, 48-62 and 14-26 percent 

in SC, and 15 to 20 and 7-8 percent in GP. As a result, the number of improved repetitions in 

each criterion is reduced by half in the last four scenarios compared to the first four. It is due 

to the reduction in the number of clusters and the increment of the cluster sizes. In previous 
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studies, the changes in those two sizes have been shown to be critical factors affecting the 

model selection and the model fit in GEE through the variance-covariance function iV  69, 75-

77. The results from the simulation show that the presence of the boundary vector in the 

replications may be affected by the number of clusters and the cluster sizes. However, the 

relationship between the presence of boundary vectors and the variation of the total number 

of clusters and the cluster size is not clear and needs further study, but it will not be discussed 

in this thesis. 

 

After eliminating the boundary vector by the exact method, the total number of repetitions 

with improved results are different in each of the five criteria. There is a wide gap in the 

number of improved replications between the five criteria. The likely reason is that the 

boundary vector has a different effect on the performance of each criterion. As previously 

mentioned in Section 4.3.4, the presence of boundary vector in the fitting procedure may 

affect the estimation of 1ˆ
i
−V  , and the relevant criterion obtained based on it. The results have 

shown a significant improvement in RJ, QIC and CIC while SC and GP did not after the 

boundary vectors are eliminated by the exact method. It can be inferred that RJ, QIC and CIC 

are more sensitive to the presence of boundary vectors as compared with the other two, 

indicating that RJ, QIC and CIC are more efficient at identifying boundary vectors in an exact 

method.  

 

The coverage rate for the estimates 1β  and 2β  in the five criteria are about 92-95 percent 

which is slightly lower than the target 95 percent, likely due to an underestimate of the robust 

standard error 75, 76, 78, 79. Some robust standard error corrections and alternative covariance 

estimators in GEE have been previously proposed to correct the problem 80-88. They have 

their advantages and disadvantages in terms of variance estimation and covariance 



Chapter 4 
 

115 
 

estimation. I do not discuss these methods in this thesis since the performance comparison 

between those methods is beyond the scope. 

 

4.4.2 Comparison with the alternative approaches  

This section further explores the performance of marginal LBM by GEE using the exact 

method. The results of the marginal LBM by GEE using the exact method are compared with 

the marginal Poisson by GEE, which is an approximate alternative approach used when there 

are numerical difficulties in the standard fitting algorithm for the marginal LBM by GEE. 

The comparison only includes the results of the marginal LBM by GEE using the exact 

method from the criteria RJ, QIC and CIC. The results from the criteria SC and GP are not 

included because of their unsatisfied performance in identifying boundary vectors.  

 

Table 4.2: The simulation results from marginal LBM by GEE in the exact method under five criteria.  

  RJ QIC CIC SC GP 

  n* Bias§ Cov† n* Bias§ Cov† n* Bias§ Cov† n* Bias§ Cov† n* Bias§ Cov† 

1 1β  8246 –0.95 94.9 7539 –0.54 94.7 8339 –0.05 94.8 5753 –1.48 94.7 1772 –0.92 94.7 
 2β   –0.37 93.8  –0.26 93.9  –0.07 94.0  –0.58 93.8  –0.47 93.9 

2 1β  8706 0.23 94.1 7419 0.03 93.3 8379 0.38 93.7 6238 –0.68 94.0 1489 –0.24 93.0 
 2β   –0.20 94.3  –0.26 93.9  –0.15 94.0  –0.46 94.1  –0.38 93.6 

3 1β  8044 –1.17 94.3 7195 –1.09 94.2 8576 –0.38 94.4 5368 –1.71 94.2 2010 –1.48 94.1 
 2β   –0.75 93.6  –0.72 93.5  –0.47 93.7  –0.95 93.6  –0.89 93.5 

4 1β  8182 0.35 94.2 7191 –0.11 93.9 8651 0.34 94.4 4767 –0.49 93.8 1678 –0.32 93.3 
 2β   –0.61 93.7  –0.73 93.6  –0.62 93.7  –0.79 93.4  –0.77 93.4 

5 1β  4528 –5.44 91.8 5539 –4.73 91.7 5859 –4.69 91.9 1433 –5.17 91.5 789 –5.18 91.6 
 2β   –2.58 92.2  –2.44 92.0  –2.48 92.0  –2.50 92.1  –2.50 92.1 

6 1β  4783 –0.64 92.6 3446 –0.83 92.5 4377 –1.00 92.7 1585 –0.61 92.3 719 –0.66 92.2 
 2β   –1.07 93.9  –0.79 93.9  –0.91 93.7  –0.96 94.0  –0.94 94.0 

7 1β  4521 –5.12 92.5 5164 –4.42 92.4 5595 –4.47 92.5 1985 –4.62 92.4 732 –4.72 92.5 
 2β   –2.68 92.0  –2.56 91.8  –2.59 91.9  –2.59 91.8  –2.61 91.9 

8 1β  4720 –0.86 92.4 3431 –1.06 92.6 4292 –1.25 92.9 2557 –0.87 92.3 753 –0.81 92.1 
 2β   –1.10 93.8  –0.79 93.7  –0.89 93.6  –0.95 93.5  –0.95 93.6 

*n is the number of repetitions with improved results using the exact method under each criterion. 
§Average percent relative bias of the estimate from the design value: ( ) ( )1

ˆ100 N
jn j jnN β β β=

 − ∑ , 

0,1, 2j =  and 1,2,...n N= . 
† Cov is the percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Table 4.3: Simulation results (with results from the marginal Poisson by GEE shown for comparison) 

  Exact method Poisson 

  RJ QIC CIC   

  Bias* Cov§ Bias* Cov§ Bias* Cov§ Bias* Cov§ 

1 1β  –0.95 94.9 –0.54 94.7 –0.05 94.8 –0.63 95.0 
 2β  –0.37 93.8 –0.26 93.9 –0.07 94.0 –0.28 94.4 

2 1β  0.23 94.1 0.03 93.3 0.38 93.7 –0.45 94.7 
 2β  –0.20 94.3 –0.26 93.9 –0.15 94.0 –0.31 94.5 

3 1β  –1.17 94.3 –1.09 94.2 –0.38 94.4 –1.27 94.3 
 2β  –0.75 93.6 –0.72 93.5 –0.47 93.7 –0.79 94.3 

4 1β  0.35 94.2 –0.11 93.9 0.34 94.4 –0.73 95.0 
 2β  –0.61 93.7 –0.73 93.6 –0.62 93.7 –0.86 94.3 

5 1β  –5.44 91.8 –4.73 91.7 –4.69 91.9 –3.81 93.4 
 2β  –2.58 92.2 –2.44 92.0 –2.48 92.0 –1.96 92.9 

6 1β  –0.64 92.6 –0.83 92.5 –1.00 92.7 –0.52 94.1 
 2β  –1.07 93.9 –0.79 93.9 –0.91 93.7 –0.86 93.3 

7 1β  –5.12 92.5 –4.42 92.4 –4.47 92.5 –3.47 93.9 
 2β  –2.68 92.0 –2.56 91.8 –2.59 91.9 –1.93 92.6 

8 1β  –0.86 92.4 –1.06 92.6 –1.25 92.9 –0.36 94.0 
 2β  –1.10 93.8 –0.79 93.7 –0.89 93.6 –0.80 93.1 

§Average percent relative bias of the estimate from the design value: ( ) ( )1
ˆ100 N

jn j jnN β β β=
 − ∑ , 

0,1, 2j =  and 1,2,...n N= . 
§Cov is the percentage of 95 percent confidence intervals covering the design value of the coefficient. 

 

Table 4.3 presents the results for the average percent bias and the 95 percent coverage rate of 

the marginal LBM by GEE using the exact method from three criteria and the marginal 

Poisson by GEE. The results of the marginal LBM by GEE using the exact method are not 

significantly improved compared with the results of the marginal Poisson by GEE in terms of 

average percent bias. However, the improvements are more evident in the density plots of the 

bias. Figure 4.1 shows the density plots of the average percent bias for the estimate 1̂β  

between the results from marginal LBM by GEE using the exact method under three criteria 

and marginal Poisson by GEE (Figures for the 0β̂  and 2β̂  see Appendix C). The density 

plots are drawn in ascending order of the average percent bias of all replications in each 

scenario. From figure 4.1, the Normal distribution curves of the marginal LBM by GEE using 
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the exact method for three criteria in each scenario are close together and does not spread out 

as much as the curve of the marginal Poisson by GEE. This suggests that compared with the 

marginal Poisson by GEE, the biases in the marginal LBM by GEE using the exact method 

are more approaching null. 

 

Marschner and Gillett 22 pointed out that using the unconstrained Poisson method to 

approximately estimate a log binomial model may result in some risks substantially 

exceeding 1. Zhu et al. 37 confirmed this issue later in their study and recommended not to 

use it. This issue also exists in the marginal Poisson by GEE 69.  We found that 40-44% of 

repetitions in the marginal Poisson by GEE produced an estimated mean exceeding 1. 

Therefore, the validity of estimates in those repetitions cannot be ensured.  

 

Figure 4.1: Density plots of the sampling distributions (10000 replications, eight scenarios) of the binary 
covariate 1β . The density plots are drawn in ascending order of the average percent bias of all replications in 
each scenario. The density curves of the exact method under three criteria in each scenario are close together 
and do not spread out as much as the curve of Poisson. 

 

4.5 A real world example 

We further evaluated the performance of marginal LBM by GEE using the exact method by a 

dataset of polypharmacy from Hosmer et al. 62. The example using a sample of N = 500 
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patients who were derived from a cohort of subjects having data in each of the seven years. 

The outcome is polypharmacy, which is a binary variable describing whether the patient is 

taking three or more drug classes. The study factors included in the final model were the 

subjects’ age in years and months rounded into two decimal places (AGE, from 1.17 to 

18.92), number of outpatient mental health visits (MHV4, 0 = None, 1 = 1 to 5, 2 = 6 to 14 

and 3 = Greater than 14), number of inpatient mental health visits (INPTMHV3, 0 = None, 1 

= One and 2 = More than one), race (RACE, 0 = White, 1 = Black and Other),  and gender 

(GENDER, 0 = Female and 1= Male). The reported age range is that of the range of recorded 

values in this data subset. 

 

To investigate the association between the factors and polypharmacy, data were fitted using 

the marginal LBM by GEE. The subject ID ( )ID  of the patient was chosen as a cluster 

identification variable. We used a similar analytical procedure to the one used by Hosmer et 

al. 62, and only the factors which showed a significant association with outcomes were 

included in the model. Hosmer et al. 62 created a new dichotomous covariate by combining 

last two levels in INPTMHV3, replacing AGE by a natural log-transformed age, and 

combining Black and Other in RACE to make it become a dichotomous covariate. In this 

example, INPTMHV3 and RACE will remain unchanged, and the categories in INPTMHV3 

and RACE will be retained. For the continuous covariate AGE, I also found that the natural 

log age could improve the fit of the model instead of the linear form by looking at the scale of 

age. However, if the AGE is rescaled in the natural log form, the boundary vector will no 

longer exist. Therefore, I decide to leave the AGE as linear to keep a boundary vector in the 

example. All pairs of covariates were tested for interaction, and none of the interactions was 

significant. 
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We assumed an identical correlation between observations within a subject and fitted the 

marginal LBM by GEE using the exact method with an exchangeable correlation structure. 

This model was fitted successfully, with RJ = 0.0843, QIC = 3501.4838 and CIC = 16.1375. 

After switching to an autoregressive correlation structure, the RJ = 0.7756, QIC = 3585.0087 

and CIC = 16.3996. These results suggest that by assuming an exchangeable correlation 

structure within clusters, a better model fit can be obtained than using autoregressive 

correlation structure. Applying the other two criteria listed in Section 4.3 yielded the same 

conclusion (corresponding results are omitted for brevity). In addition, the solution shows 

that there was one boundary vector involved in the model, and only RJ, QIC and CIC 

successfully addressed it. The patient corresponding to the boundary vector represents the 

oldest white man in the sample data who made more than 14 outpatient mental health visits 

and one inpatient mental health visit in 2008.  
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Table 4.4: Results of the final model to the POLYPHARMACY data obtained by three 
approaches. The 95% confidence intervals associated with the estimates are shown in 
parentheses. 

 Binomial (Exact) 
( ρ * = 0.4167)   

Poisson 
( ρ * = 0.4192) 

SAS-GEE 
( ρ * = 0.4165)  

MHV41 0.1097 
(-0.1113, 0.3307) 

0.1181 
(-0.1037, 0.3398) 

0.1100 
(-0.1107, 0.3308) 

MHV42 0.4615 
(0.2259, 0.6971) 

0.4849 
(0.2464, 0.7233) 

0.4617  
(0.2259, 0.6975) 

MHV43 0.7033 
(0.4622, 0.9443) 

0.7056 
(0.4574, 0.9537) 

0.6992 
(0.4567, 0.9416) 

INPTMHV31 0.4477 
(0.2822, 0.6132) 

0.3329 
(0.0743, 0.5915) 

0.4225 
(0.2162, 0.6288) 

INPTMHV32 0.2447 
(-0.0882, 0.5775) 

0.2136 
(-0.1721, 0.5993) 

0.2415 
(-0.0966, 0.5797) 

RACE1 -0.3143 
(-0.5851, -0.0434) 

-0.2910 
(-0.5785, -0.0035) 

-0.2977 
(-0.5718, -0.0236) 

RACE2 -0.5244 
(-1.6858, 0.6369) 

-0.4780 
(-1.6934, 0.7374) 

-0.5001 
(-1.6613 0.6610) 

GENDER 0.3460 
(0.0555, 0.6366) 

0.3125 
(0.0180, 0.6070) 

0.3336 
(0.0426, 0.6246) 

AGE 0.0924 
(0.0732, 0.1115) 

0.0891 
(0.0649, 0.1134) 

0.0899 
(0.0675, 0.1124) 

Constant 
-3.2445 

(-3.6691, -2.8199) 
-3.1979 

(-3.6794, -2.7165) 
-3.2076 

(-3.6687, -2.7464) 

The outcome is polypharmacy, which is a binary variable describing whether the patient is 
taking three or more drug classes. The selected study factors were the subjects’ age in years 
and months rounded into two decimal places (AGE, from 1.17 to 18.92), number of 
outpatient mental health visits (MHV4, 0 = None, 1 = 1 to 5, 2 = 6 to 14 and 3 = Greater 
than 14), number of inpatient mental health visits (INPTMHV3, 0 = None, 1 = One and 2 = 
More than one), race (RACE, 0 = White, 1 = Black and Other),  and gender (GENDER, 0 = 
Female and 1= Male). ρ * is the correlation coefficients under the exchangeable 
correlation structure. To evaluate the solution under the same condition and maintain the 
consistency of statistics, the convergence tolerance is manually set equal to 1E-06 among 
three approaches. 

 

Table 4.5: The relevant criterion values of three approaches. 

 Exact method Poisson SAS-GEE 

RJ 0.0843 0.1857 0.1442 

CIC 16.1375 24.1955 26.2650 

QIC 3501.4838 3527.6126 3503.6123 

 

 

In Table 4.4, the results obtained from the marginal LBM by GEE using the exact method are 

compared with the results of the other two alternative methods, the marginal Poisson by GEE 
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and the SAS-GEE. To evaluate the solution under the same condition and maintain the 

consistency of statistics, the convergence tolerance is manually set equal to 1E-06 among 

three approaches. The marginal Poisson by GEE and SAS-GEE (function under SAS-9.4) are 

chosen as competitors as they are the only two approaches that can address the convergence 

issue in this data. Compared with marginal LBM by GEE using the exact method, SAS-GEE 

converges to an inappropriate solution with higher criteria (Table 4.5). The higher criterion 

value indicates that the model does not fit the data well compared with the lower criterion. In 

the results obtained by SAS-GEE, the estimated mean of the boundary vector is equal to 

0.9499. This indicates that SAS-GEE stops the fitting algorithm at a distance from the 

boundary to avoid the generation of boundary vector. Although this may avoid the 

convergence problem due to the presence of the boundary vectors, it may cause the model to 

be unable to be fully estimated. The marginal Poisson by GEE converges to an unsatisfactory 

solution with the highest criteria (Table 4.5). The estimated mean of the boundary vector is 

equal to 0.8518.  

 

The other functions that fit the marginal LBM by GEE in R, Stata, and SAS are also tested, 

but they are excluded for the above comparisons, with reasons detailed below. R-geese in the 

package R-geepack-1.3-1 fails to begin the iteration with a default starting value and asked 

for an admissible user-supplied starting values. After being provided with an appropriate 

starting value, it reaches an inappropriate solution with RJ, QIC and CIC larger than the ones 

in the marginal LBM by GEE using the exact method. Stata-xtgee with the default starting 

values in Stata-16 fails to converge and reports that the estimates were diverging. The issue 

remains after providing an admissible starting value. Likewise, SAS-GENMOD, another 

function to estimate marginal LBM by GEE under SAS-9.4 was excluded due to its failure of 

convergence. 
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4.6 Discussion 

Failure of convergence in the standard fitting algorithm in marginal LBM by GEE remains an 

unresolved issue. No study has been done yet to address it. The issue may occur due to the 

presence of boundary vectors. To overcome the issue, the exact method is extended into 

marginal LBM by GEE. In the exact method, the boundary vectors are eliminated by re-

parameterizing the model. Two theorems with proofs for the missing covariance formula in 

the exact method were provided. The performance of the method is explored by performing a 

simulation study with five different criteria (RJ, QIC, CIC, SC and GP) used for model 

selection in GEE. An example is used to demonstrated how to implement the marginal LBM 

by GEE using the exact method in practice.  

 

The present results in the simulation demonstrate that the exact method successfully resolves 

the convergence issue and improves the model fitting to a different extent using diverse 

criteria. The greatest improvement is observed in RJ, QIC and CIC, following by SC and GP. 

These results suggest that the RJ, CIC and QIC were sensitive to the exact method while the 

SC and GP were not. The average percent bias and 95 percent coverage were comparable 

between these criteria. In addition, there was a trend toward a reduced bias and improved 

coverage due to the increased number of improved replications in the model fitting. 

 

The simulation results of marginal LBM by GEE using the exact method are compared with 

the results in marginal Poisson by GEE. The results showed no evident difference in the mean 

of the density of the average percent bias between the two approaches. However, the peak of 

the density curve was higher and the shape of the curve less spread out in the marginal LBM 

by GEE using the exact method. In addition, there are about 40-44% of repetitions in the 
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marginal Poisson by GEE produced an estimated mean outside the interval [0, 1]. Although 

marginal Poisson by GEE has been widely used as an alternative of marginal LBM by GEE 

in which there is a convergence issue, the results from this chapter suggest that using 

marginal Poisson by GEE could be problematic due to its larger bias in estimations and 

potentially produce a solution with an estimated mean outside the interval [0, 1]. 

 

In an example dataset, one boundary vector is identified by the criteria RJ, QIC and CIC in 

the marginal LBM by GEE using the exact method. The standard fitting algorithms are tested 

for fitting a GEE model from three statistical software packages. They either are not 

successful in estimating a solution or, if convergence is attained, provides approximations 

that in some cases were poor. The marginal Poisson by GEE also produced suboptimal 

approximations. 

 

In conclusion, the exact method shows a good performance in the estimations of marginal 

LBM by GEE when a boundary vector is present. It successfully improved the model fit in 

evaluations using different criteria for model selecting. Marginal Poisson by GEE could 

produce an estimate with a larger bias and inappropriate estimated mean, thus should not be 

used as an alternative of marginal LBM by GEE.  
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Chapter 5 Discussion 

 

5.1 Background 

Greenland 5 argues that for summarising the impact of exposure on a binary outcome, risk 

differences and ratios are fundamental measures of effect and the effect measures of choice. 

The risk ratio/relative risk is the ratio measure of choice for summarizing the impact of 

exposure on the incidence proportion (“risk”) in epidemiologic studies 5. It can be estimated 

by fitting a log binomial model in independent data (meaning that the different observations 

do not depend on each other) and a marginal log binomial model estimated by GEE (marginal 

LBM by GEE) in clustered/longitudinal data. Risk difference is the observed difference in 

risk of a binary outcome between reference and study groups. It can be estimated through an 

identity-link binomial model. Arguably, the risk ratio and risk difference are axiomatic as 

measures of effect for a closed cohort, including trials with binary outcomes. However, the 

standard fitting algorithm of these three models often experiences numerical difficulties and 

fails to converge. In this thesis, I discuss the numerical difficulties due to an inappropriate 

starting value in the log binomial model and the identity-link binomial model, and the 

difficulties caused by the ML solution lying on the boundary of the parameter space in all 

three models. 

 

The numerical difficulties due to a poor starting value can be solved by providing an 

appropriate starting value. A model-based starting value selecting approach was provided in 

terms of the log binomial model and the identity-link binomial model in Chapters 2 and 3, 

respectively. For the numerical difficulties due to the maximum likelihood solution lying on 

the boundary of the allowable parameter space, the issue is more complicated due to the 

specialized characteristics of each of the three models.  
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As demonstrated in Chapter 2, the fitting procedure of the log binomial model requires 

constraints on β  to ensure that the fitted probabilities remain inside the interval [0, 1] 6. The 

interval is mapped to ( ,0]−∞  by the log link function 7, which means the parameter space of 

the log binomial model has an upper bound at 0. If the maximum likelihood solution lies on 

the boundary of the parameter space, it means that at least one fitted probability is equal to 1 

( )1µ = , which leads to the corresponding estimated variance ( )Var( ) 1µ µ µ= −  equal to 

zero. This will cause disruption to the calculation of the inverse of the Fisher information 

matrix, and the standard fitting algorithm will encounter numerical difficulties and fail to 

converge. Some alternative methods 17-20, 22, 26, 61 have been introduced previously to 

overcome this issue (details are in Chapter 2). Some of them have been shown to produce the 

ML solution for simple models, such as a model with only one boundary vector presents 18, 22. 

However, none of them has entirely succeeded in estimating the ML solution in a 

complicated model with multiple boundary vectors involved.  

 

In the identity-link binomial model, the numerical difficulties due to the ML solution lying on 

the boundary of the parameter space is even more complicated. This is because the identity-

link binomial model can have two boundaries, the lower and upper bounds. When the ML 

solution lies on the boundaries of the parameter space, it can be one of the following three 

situations: (1) the ML solution lies on the lower bound in which at least one fitted probability 

is equal to 0; (2) the ML solution lies on the upper bound in which at least one fitted 

probability is equal to 1; or (3) the ML solution lies on both the lower and upper bounds in 

which one fitted probability is equal to 0 and at least one fitted probability is equal to 1, 

respectively. When the ML solution lies on the boundaries, the calculation of the inverse of 

the Fisher information matrix will encounter problems, and the standard fitting algorithm will 
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meet the numerical difficulties and fail to converge. Some workaround methods were 

designed to estimate the risk difference previously (details are in Chapter 3). However, none 

of them was entirely successful and did not directly work on the numerical difficulties caused 

by the ML solution on the boundary in identity-link binomial models. The convergence issue 

restricted a broad implementation of the identity-link binomial model.  

 

The GEE is a semiparametric approach for estimating coefficients of the model in correlated 

data and does not rely on a likelihood function to fit the model. Instead, it obtains the first and 

second moments of the outcome variable based on the quasi-likelihood function and 

combines with the correlation matrix to build the estimating equations. Eventually, the 

population parameters are iteratively estimated through a modified Fisher’s scoring algorithm 

established by estimating equation and its derivation 46. To estimate the relative risk in the 

clustered/longitudinal data, the marginal LBM by GEE provides a viable choice. However, if 

there is a covariate vector with an estimated mean µ  equal to 1, the standard fitting 

algorithm will meet numerical difficulties, and fail to converge or converge to an 

inappropriate solution.  

 

Petersen and Deddens 9 introduced the exact method to overcome the numerical difficulties in 

the log binomial model caused by the ML solution lying on the boundary of the parameter 

space. The exact method eliminates the boundary vectors by re-parameterizing the covariates 

and makes the model fit without the impact of the boundary vectors. Petersen and Deddens 9 

provided the formulas to estimate the coefficients and the corresponding standard errors of 

covariates, and used a simple example with two boundary vectors to explain how to 

implement their method. In the example, the method successfully reached the ML solution, 

which was on the boundary of the parameter space. However, there are some deficiencies 
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which restrict the application of the method. The author pointed out a deficiency in that two 

applicable requirements must be met before the exact method can be implemented. The first 

requirment is that the model must be identified as a case in which the ML solution lies on a 

boundary of the parameter space. The second is that the boundary vectors should be 

determined before fitting the model. In practice, it is usually impossible to know the location 

of the ML solution and the boundary vectors before the model is fitted. Another deficiency is 

that the covariances between the coefficients of the covariates are key factors to estimate the 

standard errors of the relevant coefficients. However, a formula to estimate the covariances 

was missing. Petersen and Deddens 9 provided an informal method to obtain the covariances 

in a simple example with two covariates and two boundary vectors by exchanging the order 

in which the boundary vectors were eliminated in the re-parameterization procedure. 

However, since the details to implement the method were missing, it is not clear that this 

informal method to obtain the covariances can be implemented in general cases. On account 

of the incompleteness and the lack of implementation details, the method did not receive 

enough attention in the world.  

 

This thesis aims to supplement the necessary contents for the generalization of the exact 

method and extend it to overcome the numerical instability in the identity-link binomial 

model and improve the model fitting in the marginal LBM by GEE. The respective aim of the 

three studies included in this thesis was summarized as follows: 

 

1. To provide the mathematical details and practical guidance necessary to implement 

the exact method of fitting the log binomial model, to demonstrate and evaluate fits 

by the exact method to example and simulated data, and to compare the estimates to 
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approximations made by alternative methods of fitting the log binomial model. 

(Chapter 2) 

 

2. To extend the exact method to fitting the identity-link binomial model, to provide the 

mathematical details and practical guidance necessary for that purpose, to 

demonstrate and evaluate fits by the exact method to example and simulated data, and 

to compare the estimates to approximations made by alternative methods of fitting the 

identity-link binomial model. (Chapter 3) 

 

3. To extend the exact method to fitting the marginal LBM by GEE, to provide the 

mathematical details and practical guidance necessary for that purpose, to 

demonstrate and evaluate fits by the exact method to example and simulated data, and 

to compare the estimates to approximations made by the marginal Poisson by GEE. 

(Chapter 4) 

 

5.2 Overview of the results  

Petersen and Deddens 9 introduced the exact method to solve the convergence issue in the log 

binomial model due to the ML solution on the boundary of the parameter space. Yet, the 

method has not received enough attention due to the lack of implementation details and two 

unachievable prerequisites. Chapter 2 re-summarizes the numerical difficulties in the log 

binomial model and provides the solutions for two types of difficulties, the poor starting 

value and the ML solution on the boundary of the parameter space. A designed algorithm is 

provided to correct the inappropriate starting value obtained from the default starting value 

algorithm. Two theorems with proofs were introduced to estimate the covariances between 

covariates and fill in the missing part of the exact method in the estimation of the ML 
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solution when it lies on the boundary of the parameter space. A theorem with proof is 

introduced to explain the perfect linear correlation between the exact estimates of the model 

when the number of non-constant covariates is equal to the number of boundary vectors. 

With the prior theorem satisfied, a corollary with proof is provided to explain an equivalence 

among the absolute of the standardized estimates of the coefficients (including the constant). 

Finally, a theorem and corollary (with proofs) to establish that the re-parameterization of 

covariates required to implement the exact method can be successfully undertaken if the ML 

solution exists. The application of the method is explained in detail through an example data 

and real-world data. A simulation study is used to compare the results from using the exact 

method with the results from alternatives. 

 

In Chapter 3, I have described two numerical difficulties in the identity-link binomial model, 

the inappropriate starting values and ML solution on the boundary of the parameter space. A 

starting value calibration algorithm was produced to correct inappropriate values obtained 

from the default starting value algorithm. To overcome the numerical difficulties due to the 

ML solution on the boundary of the parameter space, the exact method was extended to the 

identity-link binomial model. Since the identity-link binomial model has both lower and 

upper bounds of the parameter space, the numerical difficulties due to boundary vectors are 

more complicated in the identity-link binomial model as compared with the log binomial 

model. I produce eight theorems and two corollaries with proofs to provide the theoretical 

justification for the application of the exact method. The application of the method is 

demonstrated through an example and real-world data. The results from using the exact 

method are compared with the results from other approaches in a simulation study. 
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The numerical difficulties in the marginal LBM by GEE caused by the boundary vectors in 

clustered/longitudinal data are similar to the difficulties due to the boundary vectors in the log 

binomial model fitting the independent data. In Chapter 4, I have demonstrated that the exact 

method can overcome the numerical difficulties in the marginal LBM by GEE due to the 

boundary vector. A theorem is provided to estimate the covariances between the estimated 

coefficients of the covariates in the marginal LBM by GEE, which is similar to the one in the 

log binomial model. Since the marginal LBM by GEE does not require the full specification 

of the joint distribution of the responses variable but rather only the first two moments 46, 47, 

89, it does not have a likelihood function. In addition, the likelihood-based approaches (such 

as the maximum likelihood estimation and Akaike Information Criterion) are not available 

for model selection. To evaluate the model and improve the fitting in GEE, some model 

selection criteria were released previously 51-55. We assessed the results from using the exact 

method under five criteria (RJ 51, QIC 52, CIC 53, SC 54 and GP 55) in the model selection of 

the marginal LBM by GEE in a simulation. The model fitting under the RJ, QIC and CIC 

criteria is improved after the exact method is used to eliminate the impact of boundary 

vectors. A real-world example is used to explain the fitting process of the marginal LBM by 

GEE using the exact method. Results from the exact method were compared with those from 

alternative approaches under three criteria, RJ, QIC and CIC. The results suggest that the 

exact method outperformed alternative approaches in terms of model fitting by appropriately 

eliminating the impact of boundary vectors on the estimation of marginal LBM by GEE. 

 

5.3 Contribution and significance of the work 

The role of risk differences and ratios as fundamental measures of effect in summarizing the 

impact of exposure on a binary outcome has been evident in epidemiological studies since 

Greenland 5 pointed out in 1987. Because of numerical difficulties in estimation of risk, 
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epidemiologists and others lack the basic tools necessary to estimate this preferred measure 

of effect and have to resort to logistic regression estimating odds ratios that lack 

interpretability in terms of incidence proportions, or modified Poisson that provides biased 

estimates. 

 

In this thesis, I have outlined the numerical difficulties that can arise in fitting a log binomial 

model and a marginal LBM by GEE to estimate relative risk and in fitting the identity-link 

binomial model to estimate the risk difference. The numerical difficulties arise due to 

inappropriate starting values in log binomial model and identity-link binomial model, and due 

to the ML solution lying on the boundary of the parameter space in the case of any of the 

three models. The difficulty due to inappropriate starting values can be resolved by replacing 

them with values that are appropriate (admissable) for a probability model, and I propose a 

starting value algorithm to do this for the log binomial model and the identity-link binomial 

model. To resolve numerical difficulties due to the ML solution lying the boundary of the 

parameter space, the exact method was proposed by Deddens et al. 18 for a log binomial 

model with a single covariate and extended to more general cases by Petersen and Deddens 9. 

However, the method was incomplete, and the details necessary for its implementation were 

missing. In this thesis, I have provided the missing methodology and implementation details 

for the log binomial model. In addition, I have adapted it for use with the identity-link 

binomial model and the marginal LBM by GEE to overcome model-specific issues in those 

cases as well. The numerical difficulties due to the ML solution on the boundary of the 

parameter space are overcome by the exact method successfully.  

 

Chapters 2, 3 and 4 of this thesis describe the details of implementing the exact method in 

these three models. The success of the implementation for each model is verified using 
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example datasets and by comparison of its performance against that of alternative methods in 

simulated data, and the practical utility of each model is demonstrated using real-world data. 

These contributions are reported in three manuscripts prepared for publication in peer-review 

journals. For the convenience of users wishing to implement the exact method in the fitting of 

the three models, I have released three packages in R on GitHub for peer evaluation and 

testing.  

 

The comparison results in our real-world data analysis and simulation further demonstrate 

that, compared with alternative approaches, the implementation of the exact method not only 

successfully overcomes the numerical difficulties due to the boundary vector in the three 

models but also produces better estimates with the small sample biases. 

 

Based on all contributions in this thesis led by Zhu, researchers are able to estimate the 

relative risk and the risk difference, with adjustment of potential confounders and 

interactions.  

 

5.4 Limitations of the exact method 

The exact method has two limitations. The first limitation is the time-consuming issue of the 

exact method. Petersen and Deddens 9 stated that identifying the boundary vectors in a model 

was an essential step before applying the exact method. However, it is impossible to meet this 

requirement. I solve this issue by obtaining a set of boundary vector candidates based on an 

approximate solution and by designing an ad-hoc strategy as outlined in Chapter 2, 3 and 4 of 

this thesis. This strategy is feasible but time-consuming because the fitting algorithm in the 

exact method needs to go through each boundary vector candidate and their combinations to 

obtain an optimum solution for model fitting. Table 5.1 shows the total number of times that 
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need to be checked to locate the final solution in a log binomial model with n boundary 

vector candidates by the fitting algorithm in the exact method. The table only shows the total 

number combinations of n less than seven boundary vector candidates, but n can be any non-

zero positive integer. The processing time will become a serious issue when there are more 

than six boundary vector candidates. This may take longer in the identity-link binomial model 

because the parameter space has both lower and upper boundaries. The fitting algorithm 

needs to go through each boundary vector candidate and their combinations from either lower 

or upper bound and end by another.  

Table 5.1 The k-combinations of n boundary vector candidates �𝑛𝑛𝑘𝑘�. 

 n† 

k‡ 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 

2  1 3 6 10 15 21 

3   1 4 10 20 35 

4    1 5 15 35 

5     1 6 21 

6      1 7 

7       1 

Total§ 1 3 7 15 31 63 127 
† n is the number of boundary vector candidates in the model. 
‡ Subset k is chosen from n distinct boundary vector candidates. 
§ The total number of times that need to be checked to locate the final 
solution in a log binomial model with n boundary vector candidates by the 
fitting algorithm in the exact method. 
The table only shows the total number combinations of n less than seven 
boundary vector candidates, but n can be any non-zero positive integer. 

 

The second limitation of the exact method only exists in the identity-link binomial model.  

The exact method can help the fitting algorithm to address the ML solution when it lies on 

either lower or upper bound through a re-parameterization process. However, the method is 

only able to obtain an approximation instead of the ML solution when it lies on both 

boundaries. This is because the re-parameterization process in the exact method is not able to 
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switch to another boundary once it begins the process from one boundary. It is possible to be 

resolved in future work. 

 

5.5 Future topics 

To better understand the exact method, two topics may merit further investigation. 

 

1. The goodness of fit test under the exact method. The model fitting is improved by 

overcoming the numerical difficulties due to the ML solution on the boundary of the 

parameter space through the exact method. However, it is still critical to assess 

whether a fitted model adequately represents the data. Goodness-of-fit measures have 

been developed for the log binomial model 11. It remains unknown whether and in 

what circumstances the goodness-of-fit test can be applied to the log binomial model 

and the identity-link binomial model with the exact method. There are three possible 

issues need to be addressed under this topic: 

 

(1) whether the performance of these tests (in respect of rejection rates, power to 

reject the null hypothesis when an incorrect model is specified, and the 

applicable degrees of freedom for tests that are extensions of the Hosmer-

Lemeshow test) is altered when the ML solution lies on a boundary of the 

parameter space; 

 

(2) whether these tests can be applied to the identity-link model, and whether their 

performance is altered when the ML solution lies on a boundary of the 

parameter space; 
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(3) whether goodness-of-fit tests proposed for use with marginal logistic 

regression models of correlated binary responses can be extended to marginal 

log-link models of correlated binary responses, and whether their performance 

is altered when the ML solution lies on a boundary of the parameter space. 

 

2. To use a regression model to estimate the risk difference in cluster/longitudinal data, a 

marginal identity-link binomial model estimated by GEE (marginal identity-link 

binomial GEE) is a viable option. However, the fitting algorithm may converge to an 

inappropriate solution, resulting in an estimated mean less than zero or greater than 

unity. The exact method would be expected to overcome the issue. The subjects of the 

study could be similar to Chapter 4 of the thesis. In addition, the performance of five 

model selection criteria (RJ, QIC, CIC, SC, and GP) in the marginal LBM by GEE 

with the exact method have been compared in Chapter 4. RJ, QIC and CIC express 

more significant improvements in model fitting after eliminating the boundary vectors 

by the exact method. It is also worth investigating whether these three criteria exhibit 

the same performance in a marginal identity-link binomial GEE. 
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Chapter 6   The documents of R packages 

 

This chapter shows the R documents arising by this thesis. The format is consistent with the 

official manual of R. The packages corresponding to section 6.1, 6.2 and 6.3 can be 

downloaded from Github via the link under each section heading. 

 

6.1 R-lbm package 

Github link: https://github.com/zhuchao0228/lbm 

Description  

When the maximum likelihood (ML) solution lies on the boundary of the parameter space in the log 
binomial model, a special method is needed since the standard fitting algorithm may meet numerical 
difficulties. Exact method can overcome the difficulties and address the ML solution when it lies on the 
boundary of the parameter space. lbm implemented the exact method to address the ML solution in 
the log binomial model. 

 

Usage 

lbm(formula, data,contrasts = NULL,subset,na.action,lfv=0.95, 
    vce = "oim",rescode=NULL,control=lbm.control(),...) 
 
Arguments 

formula an object of class "formula" (or one that can be coerced to that class): a symbolic 
description of the model to be fitted. The details of model specification are given under 
‘Details’. 

data an optional data frame, list or environment (or object coercible by as.data.frame to 
a data frame) containing the variables in the model. If not found in data, the variables 
are taken from the environment(formula), typically the environment from 
which lbm is called. 

contrasts an optional list. See the contrasts.arg of model.matrix.default. 

subset an optional vector specifying a subset of observations to be used in the fitting process. 
na.action a function which indicates what should happen when the data contain NAs. The default 

is set by the na.action setting of na.action, and is na.fail if that is unset. The 
default is na.omit. Another possible value is NULL, no action. 
Value na.exclude can be useful. 

lfv a testing range option which decides the range of boundary vector candidates 
included for testing. The default value is 0.95, which means the covariate vectors with 
the fitted probability greater than 0.95 will be incorporated in the boundary testing 
system as boundary vector candidates. 
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vce the type of the information matrix used to attain the variance-covariance matrix. Two 
options could be selected, observed information matrix (OIM) and expected 
information matrix (EIM). The default vce is "OIM". This argument only works in the 
data with the boundary vector. If there is no boundary vector included in the data, the 
results are from glm. In the glm, the variance-covariance matrix is calculated by the 
expected information matrix. 

 

rescode is an option to code the response variable if it is a factor. 

control The control argument of lbm is by default passed to the arguments 
of lbm.control. 

  

Details 

A typical predictor has the form response ~ terms where the response is the (numeric) response 
vector, and terms is a series of terms which specifies a linear predictor for the response. A terms 
specification of the form first + second indicates all the terms in first together with all the terms in 
second with any duplicates removed. A specification of the form first:second indicates the set of 
terms obtained by taking the interactions of all terms in first with all terms in second. The 
specification first*second indicates the cross of first and second. This is the same as first + 
second + first:second. The terms in the formula will be re-ordered so that main effects come 
first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms 
object as the formula. 

Value 

lbm returns an object of class inheriting from "lbm" which inherits from the class "lbm". The 
function summary (i.e., summary.lbm) can be used to obtain or print a summary of the results table. 
The argument CF.lvl in summary represents the level of confidence interval claimed in the model. 
The default value is CF.lvl=0.95. Optionally, Risk ratio estimates and their related confidence 
interval are offered as an argument RR in summary. The default RR=FALSE is not to display them. 

An object of class "lbm" is a list containing at least the following components: 

coefficients a named vector of coefficients 

residuals the working residuals, which are the residuals in the final iteration. 

fitted.values the fitted mean values, obtained by transforming the linear predictors by the 
inverse of the log link function. 

linear.predictors the linear fit on the log scale. 

deviance twice the absolute value of maximized log-likelihood. 

aic a version of Akaike Information Criterion (minus twice the maximized log-
likelihood plus twice the number of parameters) computed by 
the aic component of the family. For the binomial model, the dispersion is 
fixed at one, and the number of parameters is the number of coefficients. 

null.deviance the deviance for the null model. The null model will only include an intercept 
if there is one in the model. 

df.residual the residual degrees of freedom. 

df.null the residual degrees of freedom for the null model. 

response the response vector used in the mode.l 
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vcov the unscaled (dispersion = 1) estimated covariance matrix of the 
estimated coefficients. 

vce the type of information matrix applied. 

call the matched call. 

na.action (where relevant) information returned by stats::model.frame on the 
special handling of NA. 

contrasts (where relevant) the contrasts used. 

formula the formula supplied. 

factor the order of factors used in the response variable. 

bvector the matrix of boundary vectors. 

bv logical. Determines whether the model has boundary vectors. 

References 

Petersen, M. R. & Deddens, J. A. (2010). Maximum likelihood estimation of the log-binomial 
model. Communications in Statistics - Theory and Methods, 39: 5, 874 - 883. 

See Also 

glm, lm. 

Examples 

## Two examples are from Petersen, M. R. & Deddens, J. A. (2010). 
 
## Example 1. 
x<-c(1:10) 
y<-c(0,0,0,0,1,0,1,1,1,1) 
data<-data.frame(x,y) 
a<-lbm(formula=y~x,data=data,vce="eim") 
 
## Example 2. 
x1<-c(1:11) 
x2<-x1^2 
y<-c(10,6,4,3,3,2,3,3,4,6,10) 
dat<-cbind(x1,x2,y) 
dat1<-apply(dat, 1, function(t) { 
  temp<-data.frame(x1=rep(t[1],10),x2=rep(t[2],10),y=0) 
  temp$y[1:t[3]]<-1 
  return(temp) 
}) 
data<-do.call(rbind, dat1) 
a<-lbm(formula=y~x1+x2, data=data) 
summary(a) 
 

6.2 R-bm package 

Github link: https://github.com/zhuchao0228/bm 

Description 
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Fit a generalized linear model with binomial error and a link function by the exact method. The 
boundary of parameter space in log and identity link binomial model may meet numerical difficulties 
and fail to converge when the maximum likelihood solution lies either close to or on the boundary of 
parameter space. The exact method eliminates the boundary vector by the re-parameterization of the 
covariate and fits the model without the impact of the boundary vector. 

Usage 

bm(formula, data, contrasts = NULL, subset,na.action, 
   link="identity", lfv.u=0.95, lfv.l=0.01, vce = "oim", 
   rescode=NULL, control=bm.control(),...) 

Arguments 

formula an object of class "formula" (or one that can be coerced to that class): a symbolic 
description of the model to be fitted. The details of model specification are given under 
‘Details’. 

data an optional data frame, list or environment (or object coercible by as.data.frame to 
a data frame) containing the variables in the model. If not found in data, the variables 
are taken from environment(formula), typically the environment from which bm is 
called. 

contrasts an optional list. See the contrasts.arg of model.matrix.default. 

subset an optional vector specifying a subset of observations to be used in the fitting process. 
na.action a function which indicates what should happen when the data contain NAs. The 

default is set by the na.action setting of na.action, and is na.fail if that is 
unset. The 'factory-fresh' default is na.omit. Another possible value is NULL, no 
action. Value na.exclude can be useful. 

link a specification for the link function of the binomial model. The link function can 
be identity and log. The default link is identity. 

lfv.u a testing range of probability option which decides the range of boundary vector 
candidates included for testing. The default value is 0.95, which means the covariate 
vectors with the fitted probability greater than 0.95 will be included in the boundary 
testing system as boundary vector candidates. 

lfv.l a testing range of probability option which decides the range of boundary vector 
candidates included for testing. The default value is 0.01, which means the covariate 
vectors with the fitted probability less than 0.01 but greater than 0 will be included in 
the boundary testing system as boundary vector candidates. (This argument only 
works in the identity-link binomial model because the log binomial model does not 
have a lower bound of parameter space.) 

vce the type of the information matrix used to attain the variance-covariance matrix. Two 
options could be selected, observed information matrix (OIM) and expected 
information matrix (EIM). The default vce is "OIM". This argument only works in the 
data with a boundary vector. If there is no boundary vector included in the data, the 
results are directly from glm. In the glm, the variance-covariance matrix is calculated 
based on the expected information matrix. 

rescode is an option to code the response variable if it is a factor. 

control The control argument of bm is by default passed to the arguments of bm.control. 

Details 

A typical predictor has the form response ~ terms where the response is the (numeric) response 
vector, and terms is a series of terms which specifies a linear predictor for the response. A terms 
specification of the form first + second indicates all the terms in first together with all the terms in 
second with any duplicates removed. A specification of the form first:second indicates the set of 
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terms obtained by taking the interactions of all terms in first with all terms in second. The 
specification first*second indicates the cross of first and second. This is the same as first + 
second + first:second. The terms in the formula will be re-ordered so that main effects come 
first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms 
object as the formula. 

Value 

bm returns an object of class inheriting from "bm" which inherits from the class "bm". The 
function summary (i.e.,summary.bm) can be used to obtain or print a summary of the results table. 
The argument CF.lvl in summary represents the level of confidence interval claimed in the model. 
The default value is CF.lvl=0.95. Optionally, Risk ratio estimates and their related confidence 
interval are offered as an argument RR in summary for log-link function only. The default RR=FALSE is 
not to display them. 

An object of class "bm" is a list containing at least the following components: 

coefficients a named vector of coefficients 

residuals the working residuals, which are the residuals in the final iteration. 

fitted.values the fitted mean values, obtained by transforming the linear predictors by the 
inverse of the log link function. 

linear.predictors the linear fit on the log scale. 

deviance twice the absolute value of maximized log-likelihood. 

aic a version of Akaike Information Criterion (minus twice the maximized log-
likelihood plus twice the number of parameters) computed by 
the aic component of the family. For the binomial model, the dispersion is 
fixed at one, and the number of parameters is the number of coefficients. 

null.deviance the deviance for the null model. The null model will only include an intercept 
if there is one in the model. 

df.residual the residual degrees of freedom. 

df.null the residual degrees of freedom for the null model. 

response the response vector used in the mode.l 

vcov the unscaled (dispersion = 1) estimated covariance matrix of the 
estimated coefficients. 

vce the type of standard error estimated based on the information matrix 
(observed or expected) applied. 

call the matched call. 

na.action (where relevant) information returned by stats::model.frame on the 
special handling of NA. 

contrasts (where relevant) the contrasts used. 

formula the formula supplied. 

factor the order of factors used in the response variable. 

bvector the matrix of boundary vectors. 

bv logical. Determines whether the model has boundary vectors. 

link link function applied in the model 
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bound an indicator to describe the location of MLE on the boundary of parameter 
space in the identity-link binomial model only. 

References 

Petersen, M. R. & Deddens, J. A. (2010). Maximum likelihood estimation of the log-binomial 
model. Communications in Statistics - Theory and Methods, 39: 5, 874 - 883. 

See Also 

glm, lm, lbm. 

Examples 
## Two examples are from Petersen, M. R. & Deddens, J. A. (2010). 
 
## Example 1. 
x<-c(1:10) 
y<-c(0,0,0,0,1,0,1,1,1,1) 
data<-data.frame(x,y) 
a<-bm(formula=y~x,data=data,link=log,vce=eim) 
 
## Example 2. 
x1<-c(1:11) 
x2<-x1^2 
y<-c(10,6,4,3,3,2,3,3,4,6,10) 
dat<-cbind(x1,x2,y) 
dat1<-apply(dat, 1, function(t) { 
  temp<-data.frame(x1=rep(t[1],10),x2=rep(t[2],10),y=0) 
  temp$y[1:t[3]]<-1 
  return(temp) 
}) 
data<-do.call(rbind, dat1) 
a<-bm(formula=y~x1+x2,data=data) 
summary(a) 
a<-bm(formula=y~x1+x2,data=data,link=identity) 
summary(a) 
 

6.3 R-lb.gee package 

Github link: https://github.com/zhuchao0228/lb.gee 

Description 

Fit a generalized estimating equation (GEE) with binomial error and a log link function by the exact 
method. When the fitted probabilities are either close or equal to 1 (defined as a boundary vector), the 
fitting algorithm of GEE may meet numerical instabilities and fail to converge or converge to an 
inappropriate solution. The exact method eliminates the boundary vector by the re-parameterization of 
the covariate and fits the model without the impact of the boundary vector. 

Usage 
lb.gee(formula = formula(data),contrasts = NULL,subset,na.action, 
       data = parent.frame(),rescode=NULL,corstr,lfv=0.95,id, 
       control=lb.gee.control(),criter="cic",ext=TRUE,ext.lvl=(1-1e-6),...) 
Arguments 
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formula an object of class "formula" (or one that can be coerced to that class): a symbolic 
description of the model to be fitted. The details of model specification are given under 
‘Details’. 

contrasts an optional list. See the contrasts.arg of model.matrix.default. 

subset an optional vector specifying a subset of observations to be used in the fitting process. 

na.action a function which indicates what should happen when the data contain NAs. The 
default is set by the na.action setting of na.action, and is na.fail if that is 
unset. The 'factory-fresh' default is na.omit. Another possible value is NULL, no 
action. Value na.exclude can be useful. 

data an optional data frame, list or environment (or object coercible by as.data.frame to 
a data frame) containing the variables in the model. If not found in data, the variables 
are taken from environment(formula), typically the environment from which bm is 
called. 

rescode is an option to code the response variable if it is a factor. 

corstr a character string specifying the correlation structure. The following correlation 
structure are permitted: "independence", "exchangeable", "ar1", 
and "unstructured". 

lfv a testing range of mean option which decides the range of boundary vector 
candidates included for testing. The default value is 0.95, which means the covariate 
vectors with the estimated mean greater than 0.95 will be incorporated in the 
boundary testing system as boundary vector candidates. 

id a vector which identifies the clusters. The length of id should be the same as the 
number of observations. 

control The control argument of lb.gee is by default passed to the arguments 
of lb.gee.control. 

criter a character string specifying the criterion used for the model selection. The following 
criteria are permitted: "RJ", "QIC", "CIC", "SC", and "GP". 

Details 
A typical predictor has the form response ~ terms where the response is the (numeric) response 
vector, and terms is a series of terms which specifies a linear predictor for the response. A terms 
specification of the form first + second indicates all the terms in first together with all the terms in 
second with any duplicates removed. A specification of the form first:second indicates the set of 
terms obtained by taking the interactions of all terms in first with all terms in second. The 
specification first*second indicates the cross of first and second. This is the same as first + 
second + first:second. The terms in the formula will be re-ordered so that main effects come 
first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms 
object as the formula. 

Value 

lb.gee returns an object of class which inherits from the class "lb.gee". The function summary 
(i.e., summary.lb.gee) can be used to obtain or print a summary of the results table. The 
argument CF.lvl in summary represents the level of confidence interval claimed in the model. The 
default value is CF.lvl=0.95. The estimates of relative risk and the corresponding confidence 
interval are offered as an argument RR in summary. The default RR=FALSE is not to display them. 

An object of class "lb.gee" is a list containing at least the following components: 
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beta a named vector of coefficients. 

alpha the estimated correlation parameters. 

gamma the scale parameter (dispersion parameter) of the distribution's variance. 

vbeta the robust variance-covariance matrix for the estimates of coefficients. 

vbeta.naiv the model-based variance-covariance matrix for the estimates of coefficients. 

criterion a return value of user-chosen criterion. 

response the response vector used in the model. 

call the matched call. 

na.action (where relevant) information returned by stats::model.frame on the special 
handling of NA. 

contrasts (where relevant) the contrasts used. 

formula the formula supplied. 

factor the order of factors used in the response variable. 

bvector the data.frame of boundary vectors. 

bv logical. Determines whether the model has boundary vectors. 
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Appendix A 

Supplementary materials of the log binomial model in the exact method 

 

The exact method 

The log binomial model 

Consider n independent observations of a binary (0/1) outcome variable Y  and J  non-constant covariates 
( )1 2, ,... JX X X . The covariates can be any mix of continuous and categorical variables, and nonlinear 

combinations or transformations of them. Denote the observed data as ( ), , 1, 2,...i iy i n=x  where 

( )0 1 2, , ,...i i i iJx x x x′ =x  with 0 1x = .  Under the log binomial model, the conditional probability of the outcome 
given the covariates is: 

 ( ) ( ) ( )0 1 1 2 2Pr 1| exp ... , 1, 2,...i i i i i J iJY x x x i nµ β β β β= = = + + + =x x  (A1) 

Suppose the sample data contains 0n  observations with 0y =  and 0n n−  observations with 1y = , and that the 
observations with 0y =  are the first 0n  observations and the observations with 1y =  are the last 0n n−  
observations. The likelihood of the parameters  ( )0 1 2, , ,... Jβ β β β=β  is: 

( ) ( ) ( )0
1 1| , 1

o

n n
i i i ii i nL y µ µ

= = +
 = − × ∏ ∏β x x x  

Substituting ( ) ( )0 1 exp J
i j ijj xµ β β== +∑x : 

( ) ( ) ( )0

0
0 01 11 1| , 1 exp expn nJ J

i i j ij j ijj ji i nL y x xβ β β β= == = +
   = − + × +      ∑ ∑∏ ∏β x  

 

Application of the exact method 

Suppose that the ML solution lies on a boundary of the allowable parameter space with maximum value 
( ) 1iµ =x  for some 1,2,...i n∈  , and that this maximum value is attained by 1R ≥  distinct sets of covariates 

(including the constant). We refer to these covariate vectors as boundary vectors. Denote the thr  boundary 
vector as  ( )( ) ( ) ( )( )

1 21, , ,...r r rr
Jx x x=x . The boundary condition satisfied by this vector is: 

                                                            ( )
0 1 0, 1, 2,...J r

j ijj x r Rβ β=+ = =∑                               (A2) 

If the covariate values ( )rx  of the ( )th 1, 2,...r r R=  boundary vector are shared by rn  observations, the method 
proposed by Petersen and Deddens 9 for estimating the model is: 

1. eliminating the constant by subtracting from the constant and each non-constant covariate its respective 
value in the boundary vector: 
                                                 (1) (1) , 0,1, 2,...ijij jz x x j J= − =                                   (A3) 

2. when there are multiple boundary vectors ( 1)R > , eliminating the first 1R −  non-constant covariates by re-
parametrizing the covariates according to the scheme: 

( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

where , 2,3,...r
ij j

r
jr r r r r

ij ij j iji rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
  

      (A4) 
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3. dropping the observations with covariate values (1) (2) ( ), ,... Rx x x  respectively, which make no contribution 

to the loglikelihood, and fitting the model ( ) ( )( ) ( )exp JR R
ji ijj R zµ β== ∑z  without a constant and with 

1J R− +  covariates to the remaining 1 2 ... Rn n n n− − − −  observations to obtain the estimates 

1
ˆ ˆ ˆ, , ,...R R Jβ β β+  of the coefficients of the non-eliminated non-constant covariates,   

4. estimating the coefficients ˆ , 1, 2,... 1r r Rβ = −  of the 1R −  eliminated covariates from the boundary 
condition: 

( 1)
1

( 1)

ˆ
ˆ

J r
j jj r

r r
r

t

t

β
β

+
= +

+
= −
∑

                                        (A5) 

5. estimating the standard errors of the estimated coefficients of the eliminated covariates as: 

 ( )  ( )  ( )
( )
1 2

1 2
1 2

2 1

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

         = +              

∑ ∑ ∑     (A6) 

for 1, 2,... 1r R= −  where  ( )ˆVar jβ  denotes the estimated variance of the estimated coefficient ˆ
jβ , and 

 ( )1 2
ˆ ˆCov ,j jβ β  denotes the estimated covariance between the estimated coefficients 

1
ˆ

jβ  and 
2

ˆ
jβ ; 

6. estimating the coefficient of the constant covariate from the boundary condition (A2) as: 
                                                                (1)

0 1
ˆ ˆ J

j jj xβ β== −∑                                                     (A7) 

7. estimating the standard error of the estimated coefficient of the constant covariate as: 

  ( ) ( )  ( )  ( )1 22 1 21
2 1

2(1) (1) (1)
0 11 1

ˆ ˆ ˆ ˆSE Var Cov ,J J J
j j jj j j jj j

j j
x x xβ β β β== =

≠

   = +    
∑ ∑ ∑  (A8) 

            

Covariance estimates not provided by the procedure outlined by Petersen and Deddens 9 

If 1R = , all covariances between the estimated coefficients of non-constant covariates are estimated in the 

regression. When 1R > ,  however, fitting the model ( ) ( )( ) ( )exp JR R
ji ijj R zµ β== ∑z  without a constant and with 

1J R− +  non-constant covariates does not provide estimates of the covariances between the estimated 
coefficients of the 1R −  eliminated covariates and the estimated coefficients of the 1J R− +  remaining non-
constant covariates. Those covariances are required in (A6) and (A8). To overcome this deficiency, we provide 
Theorem A1. 

Even when 1R = , the procedure outlined by Petersen and Deddens 9 does not provide estimates of the 
covariances between the estimated coefficients of the constant covariate and the estimated coefficients of the 
non-constant covariates. To overcome that deficiency, we provide Theorem A2.  

Theorem A1 

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to data having 
(1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the estimated outcome 

probability evaluated at the ML solution is unity, the estimated covariances between exact estimates of the 
coefficients of the 1R −  eliminated non-constant covariates and exact estimates of the coefficients of the 

1J R− +  remaining non-constant covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J js

r s s j sr r
j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑  (A9) 
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for 1, 2,... 1; 1,...r R s r J= − = + . 

Proof of Theorem A1 

In successive re-parameterizations, the boundary conditions require (1)
0

ˆ 0,J
j ijj zβ= =∑  (2)

1
ˆ 0,J

j jj tβ= =∑
(3)

2
ˆ 0J

j jj tβ= =∑  and, in general for 1R > : 

                                                 ( 1)ˆ 0, 1, 2,... 1J r
j jj r t r Rβ +

= = = −∑                                              (A10) 

for all observations that share those covariate values. Hence: 

                                              ( 1)( 1)
1

ˆ ˆ , 1, 2,... 1J rr
r r j jj rt t r Rβ β ++

= += − = −∑                                    (A11) 

Adding to each side of (A11) the estimated coefficient of one of the 1J R− +  covariates remaining in the 
model: 

( ) ( 1)( 1) ( 1)
1

ˆ ˆ ˆ ˆ1 , 1, 2,..., 1;  1,...J rr r
r r s s s j jj r

j s
t t t r R s r Jβ β β β ++ +

= +
≠

 
 + = − − + = − = +
  

∑  

Thus: 

          

 ( )

 ( )

( 1)

( 1)( 1)

1

ˆ ˆVar

ˆ ˆ        Var 1 , 1,2,..., 1;  1,...

r
r r s

J
rr

s s j j
j r
j s

t

t t r R s r J

β β

β β

+

++

= +
≠

+

  
   = − − + = − = +  
  
   

∑
 (A12) 

Expanding the left-hand side of (A12): 

  ( ) ( )  ( )  ( )  ( )2( 1) ( 1) ( 1)ˆ ˆ ˆ ˆ ˆ ˆVar Var 2 Cov , Varr r r
r r s r r r r s st t tβ β β β β β+ + ++ = + +  (A13) 

Expanding the right-hand side of (A12): 
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 ( )

( )  ( ) ( ) ( ) 

( )  ( )

( 1)( 1)

1

2 ( 1) ( 1)( 1) ( 1)

1 1

2 ( 1)( 1) ( 1) (

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 Var 2 1 Cov , Var

ˆ = 2 1 Var 2

J
rr

s s j j
j r
j s

J J
r rr r

s s s j s jj j
j r j r
j s j s

rr r r
s s s sj

t t

t t t t

t t t t

β β

β β β β

β

++

= +
≠

+ ++ +

= + = +
≠ ≠

++ +

  
   − − +  
  
   

 
  = − + − +     
 

 − + +  

∑

∑ ∑

( ) ( )

( )  ( ) ( ) ( )

( ) ( )  ( )

( )  ( )

1 21 2
1 2

1 2
2 1

( 1)1)

1

2( 1) ( 1) ( 1)

1 1 1
,

( 1)( 1)

1

2( 1)

ˆ ˆCov ,

ˆ ˆ ˆ + Var Cov ,

ˆ ˆ ˆ1 2 Var 2 Cov ,

ˆVar

J
r

j sj
j r
j s

J J J
r r r

j j jj j j
j r j r j r
j s j j s

j j
J

rr
s s j sj

j r
j s

r
jj

t

t t t

t t

t

β β

β β β

β β β

β

++

= +
≠

+ + +

= + = + = +
≠ ≠

≠

++

= +
≠

+

 −
 

   +     

 = − −  

 +  

∑

∑ ∑ ∑

∑

( ) ( )1 21 2
1 2

2 1

( 1) ( 1)

1 1 1

ˆ ˆCov ,
J J J

r r
j jj j

j r j r j r
j j

t t β β+ +

= + = + = +
≠

 +   ∑ ∑ ∑
 (A14) 

From (A11),  

( 1)( 1)
1

ˆ ˆVar Var , 1,2,... 1J rr
r r j jj rt t r Rβ β ++

= +
   = − = −    ∑  and hence: 

  ( )  ( ) ( )  ( ) ( ) ( )1 21 2
1 2

2 1

22 ( 1) ( 1) ( 1)( 1)

1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J

r r rr
r r j j jj j j

j r j r j r
j j

t t t tβ β β β+ + ++

= + = + = +
≠

   = +     
∑ ∑ ∑  (A15) 

Substituting for ( )  ( )2( 1) ˆVarr
r rt β+  in (A14): 

 

 ( )

( ) ( ) ( )  ( )  ( )

( 1)( 1)
1

2 ( 1)( 1) ( 1)
1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 2 Var Var 2 Cov ,

J rr
s s j jj r

j s

J rr r
s s r r j sjj r

j s

t t

t t t

β β

β β β β

++
= +
≠

++ +
= +
≠

    − − + 
    

= − + −

∑

∑
             (A16) 

Equating (A13) and (A16), the two sides of (A12), and simplifying: 

 ( )  ( )  ( )
( 1)( 1)

1( 1) ( 1)
ˆ ˆ ˆ ˆ ˆCov , Var Cov , , 1, 2,... 1; 1,...

rr
J js

r s s j sj rr r
j sr r

tt
r R s r J

t t
β β β β β

++

= ++ +
≠

    = − + = − = + 
    

∑  

 

Theorem A2 

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to data having 
(1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the estimated outcome 

probability evaluated at the ML solution is unity, the estimated covariances between the exact estimate of the 
coefficient of the constant covariate and exact estimates of the coefficients of the J  non-constant covariates are 
given by: 

  ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,  ,  1, 2,J
j j j jj j j

j j
x x j Jβ β β β β=

≠

 
 = − + = …
  

∑  (A17) 
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Proof of Theorem A2 

Adding the estimated coefficient ˆ ,  1, 2,j j Jβ = …  of any of the non-constant covariates to each side of the 
boundary condition (A7) yields: 

 ( ) 11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ1  , 1, 2,...J
j j jj j j

j j
x x j Jβ β β β=

≠

 
 + = − − + =
  

∑  

It follows that: 

  ( )  ( ) 11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆVar Var 1 J
j j jj j j

j j
x xβ β β β=

≠

    + = − − + 
    

∑  (A18) 

Expanding the left-hand side of (A18):  

  ( )  ( )  ( )  ( )0 0 0
ˆ ˆ ˆ ˆ ˆ ˆVar Var 2Cov , Varj j jβ β β β β β+ = + +  (A19) 

Expanding the right-hand side of (A18):  

 ( )

( )  ( ) ( )  ( ) 

11 1
1

1 11 1` 1 1
1 1

(1) (1)
1

2(1) (1) (1) (1)
1 1

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ= 1 Var 2 1 Cov , Var

J
j jj j j

j j

J J
j j j jj j j j j j

j j j j

x x

x x x x

β β

β β β β

=
≠

= =
≠ ≠

    − − + 
    

 
 − + − +
 
 

∑

∑ ∑
 

and gathering like terms: 

 ( )

 ( )  ( )  ( ) ( )  ( )

( )  ( )  ( )

11 1
1

11 1
1

1 11 1 1 1
1 1

2 3

(1) (1)
1

2(1) (1) (1)
1

2(1) (1) (1)
1 1

(1) (1

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ ˆVar 2 Var Cov , Var

ˆ ˆ ˆVar 2 Cov ,

J
j jj j j

j j

J
j j j j jj jj j

j j

J J
j j jjj j j j

j j j j

j j

x x

x x x

x x x

x x

β β

β β β β β

β β β

=
≠

=
≠

= =
≠ ≠

    − − + 
    

 
 = − + +
  

 + +  

+

∑

∑

∑ ∑
 ( )2 32 3

2 3
3 2

)
1 1

ˆ ˆCov ,J J
j jj j

j j j j
j j

β β= =
≠ ≠

≠

 
 ∑ ∑

 (A20) 

From (A7), (1)
0 1

ˆ ˆ J
j jj xβ β== −∑  and it follows that  ( ) 

(1)
0 1

ˆ ˆVar Var J
j jj xβ β=

 = −  ∑ . Thus: 

 ( ) ( )  ( )  ( )1 22 1 21
1 2

2(1) (1) (1)
0 11 1

ˆ ˆ ˆ ˆVar Var Cov ,J J J
j j jj j j jj j

j j
x x xβ β β β== =

≠

   = +    
∑ ∑ ∑  

Substituting for  ( )0
ˆVar β  in (A20): 

 ( )

 ( )  ( )  ( )  ( )

11 1
`

11 1
1

(1) (1)
1

(1) (1)
0 1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ ˆVar Var 2 Var Cov ,

J
j jj j j

j j

J
j j j jj j j

j j

x x

x x

β β

β β β β β

=
≠

=
≠

    − − + 
    

 
 = + − +
  

∑

∑
 (A21) 
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Substituting (A19) and (A21) into (A18), and simplifying: 

 ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov , ,  1, 2,J
j j j jj j j

j j
x x j Jβ β β β β=

≠

 
 = − + = …
  

∑ . 

 

Theorem A3  

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to data having 
( )R R J=  distinct sets of values of the covariates (including the constant) for which the estimated outcome 

probability evaluated at the ML solution is unity, there is a perfect correlation between each pair of exact 
estimates of the coefficients of the non-constant covariates: 



 



 

1 2 1 2

1 2

1 21 2

, 1 2 1 2

ˆ ˆ ˆ ˆ( , ) ( , )
1 ,   

o
, 1, 2,... ;ˆ ˆˆ ˆ ( ) ( )( )

C v Cov

SE SEVar Va )r(

j j j j
j j

j jj j

j j J j j
β β β β

ρ
β ββ β

= = = = ≠ . 

 

Proof of Theorem A3 

From the boundary condition (A11) for boundary vectors evaluated for 1r R= − : 

( ) ( )
1 1

ˆ ˆR R
R R RRt tβ β− − = −  

Because J R= , that expression can be written as: 

( ) ( )
1 1

ˆ ˆR R
J J JJt tβ β− − = −  

Hence the exact estimate of the coefficient of the ( )1 stJ −  covariate can be obtained as: 

 
( )

1 ( )
1

ˆ ˆ
R

J
J JR

J

t

t
β β−

−

= −  (A22) 

With the exact estimates of the estimated standard errors denoted for brevity as  ( ) ,ˆ ˆ , 0,E .S 1 2 ..jj js Jβ == , 

equation (A15) can be expressed as: 

 ( )
( )

 ( )1 2
1 2

1 2
2 1

2 ( 1) ( 1)( 1)
2

( 1) 2( 1)1 1 1

ˆ ˆˆ ˆ Cov , , 1, 2,... 1
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt
s s r R

t t
β β

+ ++

+ += + = + = +
≠

       = + = −          

∑ ∑ ∑ (A23) 

For models with J R= , only one covariate is estimated and there are no covariances with higher-numbered 

covariates. Hence (A23) evaluated for the ( )1 stJ −  covariate yields:  

 ( )
2( ) ( )

2
1 ( ) ( )

1 1

ˆ ˆ ˆ
R R

J J
J J JR R

J J

t t
s s s

t t
−

− −

 
 = =
 
 

 (A24) 

and (A9) evaluated for the ( )1 stJ −  covariate yields (Note that J is the last covariate. Therefore, the second part 
of (A9) eliminated): 

  ( )  ( ) ( )
( ) ( )

2
1 ( ) ( )

1 1

ˆ ˆ ˆ ˆCov , Var
R R

J J
J J J JR R

J J

t t
s

t t
β β β−

− −

= − = −  (A25)  
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By changing the order of the covariates, and thereby varying which covariate is estimated, estimates can be 
obtained for all 1J −  excluded covariates as follows: 

  ( ) ( )(

(( ) ( )
2

(( )

)

) )
ˆ ˆ ˆ ˆ ˆ, =  and ˆ ,  1, 2,... 1ˆCov ,

R R
J J

Rj R

R
J

J j J JR
j j

j J
j

tt t
s s s j J

t t t
β ββ β = −= − = −      (A26) 

From (A25): 

  ( )
( )

1 ( )
1

ˆ ˆ ˆ ˆCov ,
R

J
J J J JR

J

t
s s

t
β β−

−

=  (A27) 

Substituting for 
( )

1 ( )
1

ˆ ˆ
R

J
J JR

J

t
s s

t
−

−

=  from (A27): 



1 1
ˆ ˆ ˆCo ˆ( , )v J J J Js sβ β− −=  

Hence:  

 


  ( ) ( )

1 1
1, 2 2

1 1

ˆ ˆ( , ) ˆ ˆ
1

ˆ ˆ( ) (

Co

r )r ˆV ˆ

v

a Va

J J J J
J J

J J J J

s s

s s

β β
ρ

β β

− −
−

− −

= = = . 

This relationship holds for any pair of coefficients. In general: 

 

1 2 1 2 1 2 1 2C ˆ ˆ ˆ ˆ( ,v ) , , 1, 2,... ;o j j j js s j j J j jβ β = = ≠  (A28) 

and: 



  ( ) ( )
1 2 1 2

1 2

1 2 1 2

, 1 2 1 22 2

ˆ ˆ( , ) ˆCov

Var

ˆ
1, , 1, 2,... ;

ˆ ˆ( ) ( )r ˆVa ˆ

j j j j
j j

j j j j

s s
j j J j j

s s

β β
ρ

β β
= = = = ≠ . 

Corollary A3.1 

If the log binomial model satisfies the conditions of Theorem 3, the standardized values of the exact estimates of 
the 1J +  model coefficients are equal in absolute size: 

 
   

0 1 2

0 1 2

ˆ ˆ ˆ ˆ
...ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )SE SE SE SE

J

J

β β β β

β β β β
= = = =  (A29) 

  

Proof of Corollary A3.1 

From (A26), 
( ) ( )

( ) ( )
ˆ ˆ ˆ ˆ and = ,  1, 2,... 1

R R
J J

j J j JR R
j j

t t
s s j J

t t
β β= − = −  yielding: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ˆ ˆ
ˆ ˆ

 ,  1, 2,... 1
ˆ ˆ

ˆ ˆ

R R
J J

J JR R
j Jj j

R Rj JJ J
J JR R

j j

t t
t t

j J
s st t

s s
t t

β β
β β

= = = = −  (A30) 
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Substituting 
( )

( )
ˆ ˆ

R
J

j JR
j

t

t
β β= −  from (A11) in the boundary condition (A7) for the first boundary vector gives: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 1

( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1)
0 1 21 2

(1) (1) (1) (1)
1 2 1

(1) (1) (1) (1)
1 2

1
1

2 1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ 

ˆ

ˆ

R R R R
J J J J

J J J JR R R R
JJ

R R R
J J J

J R R R
J

J J

JJ

JJ

t t t t

t t t

x x x

x
t

t t t

t t t

x x x

x x x x

β β β β

β

β β β β

−
−

−
−

= − + + +

 
 = − + + + +
 
 

 
 = − + + + +
 
 







 

Equation (A8) for the standard error of the constant covariate can be factorised as follows:   

( )  ( )  ( )
 ( )

1 22 1 21
2 1

2(1) (1) (1)
0 11 1

(1) (1) (1)
1 21 2

ˆ ˆ ˆˆ Var Cov ,

ˆ ˆ ˆVar

J J J
j j jj j j jj j

j j

J J

s x x x

x x x

β β β

β β β

== =
≠

   = +    

= + + +

∑ ∑ ∑



 

Substituting for 
( )

( )
ˆ ˆ

R
J

j JR
j

t

t
β β= −  from (A26):   





(1) (1) (1) (1)
0 1 2 1

(1) (1)

(

( ) ( ) ( ) ( )

( ) ( ) ( ) )
1 2 1

( ) ( ) ( )

( ) ( ) ( )
1 2 1

( ) ( )

(1) (1)
1 2 1

(1)
1( )

1

ˆ

V

ˆ ˆ ˆar

ar

ˆ

ˆ

V
R R R R

J J J J
J J J JR R R R

JJ

R R R
J J J

JR R R
J

R R
J J
R

J J

JJ

s x

t

t

x
t t t t

t

x x

x x x

t t t t

t

x

x

t

t t

t t

β β β β

β

−

−

−

−

 
 = + + + +
 
 

  
  = + + + +
    

= +





 ( )
2

(1) (1) (1)
2

(

1

( )

( ) ( )
2 1

)
1

( ) ( )

( ) ( )
1

(1) (1) ( ) (1)
( )

1 2
1 2 1

ˆVar

ˆ

JJ

J

R
J

JR R
J

R R R
J J J
R R

J
JR J

t

t

x

t

t t

t

x x x

t

t t
x x x s

β−

−

−

−

 
 + + +
 
 

= + + + +





 

Therefore: 

 

( ) ( ) ( )

( ) ( ) ( )
0 1 2 1

( ) ( ) ( )0
( ) ( ) ( )
1 2 1

(1) (1) (1) (1)
1 2 1

(1) (1) (1) (1)
1 2 1

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

R R R
J J J

J R R R
JJ

R R R J

J

J

J

J J
R R R J

J
J J

t t t
t t t

s st t t

x x x x

s x x x x
t t t

β
β β

−

−

−

−

 
 − + + + +


+

=


 

+

=

+ +





 (A31) 

Combining (A30) and (A31), we obtain: 

   

0 1 2

0 1 2

ˆ ˆ ˆ ˆ
...ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )SE SE SE SE

J

J

β β β β

β β β β
= = = = . 

 

Theorem A4  

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to data having 
(1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the estimated outcome 
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probability evaluated at the ML solution is unity, these R  distinct sets of values of the covariates are always 
linearly independent. 

 

Proof of Theorem A4 

Denote by B  the ( )1R J× +  matrix with R  rows and 1J +  columns formed from the R  distinct sets of 
covariate values (including the constant) for which the estimated outcome probability evaluated ML solution is 
unity, and by ( )( ) ( ) ( ) ( ) ( )

1 2 11, , ,...., ,r r r r r
J Jx x x x−=x  the set of covariate values (including the constant) in the 

( )th 1, 2,...r r R=  such set. Denote the ML solution evaluated by the exact method if it exists as 

( )0 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ, , .... ,J Jβ β β β β−

′=β with all elements non-zero. We refer to ( )rx  as a boundary vector, and to 

( )(1) (2) ( 1) ( ), ,..., ,R R− ′=B x x x x  as the boundary matrix. The boundary matrix is: 

 

(1) (1) (1) (1)
1 2 1
(2) (2) (2) (2)

1 2 1

( 1) ( 1) ( 1) ( 1)
1 2 1

( ) ( ) ( ) ( )
1 2 1

1 . .

1 . .
. . . . . . .
. . . . . . .

1 . .

1 . .

J J

J J

R R R R
J J

R R R R
J J

x x x x

x x x x

x x x x

x x x x

−

−

− − − −
−

−

 
 
 
 
 =  
 
 
 
  

B  (A32) 

Note that at the ML solution, if it exists, ˆ =Bβ 0  where ( )0,0,0,...0,0 ′=0 . That system of equations can be 
written as:   

                         

( )

( )

( )

( )

(1) (1) (1) (1)
0 1 1 2 2 11

(2) (2) (2) (2)
0 1 1 2 2 11

( 1) ( 1) ( 1) ( 1)
0 1 1 2 2 11

( ) ( ) ( )
0 1 1 2 2 11

ˆ ˆ ˆ ˆ ˆ... 0

ˆ ˆ ˆ ˆ ˆ... 0
.
.

ˆ ˆ ˆ ˆ ˆ... 0

ˆ ˆ ˆ ˆ ˆ...

J J JJ

J J JJ

R R R R
J J JJ

R R R
J JJ

x x x x

x x x x

x x x x

x x x x

β β β β β

β β β β β

β β β β β

β β β β β

−−

−−

− − − −
−−

−−

+ + + + + =

+ + + + + =

+ + + + + =

+ + + + + ( ) 0R
J =

 (A33) 

Assume that the rank of the boundary matrix is less than the number of its rows. For example, assume that 
( ) 1rank R= −B . By the fundamental theorem of linear algebra, only 1R −  columns of B  are linearly 

independent. Assume that the linearly independent columns are the first 1R −  columns of B . Using elementary 
column operations, the matrix B  can be reduced to the simplified form:  

 

(1) (1) (1)
1 2 1
(2) (2) (2)

1 2 1

( 1) ( 1) ( 1)
1 2 1

( ) ( ) ( )
1 2 1

1 . . 0 . . 0

1 . . 0 . . 0
. . . . . . . . . .
. . . . . . . . . .

1 . . 0 . . 0

1 . . 0 . . 0

R

R

R R R
R

R R R
R

x x x

x x x

x x x

x x x

−

−

− − −
−

−

 
 
 
 
 
 
 
 
 
  

 (A34) 

Evaluated at the ML solution ˆ , 0,1, 2,...j j Jβ = , if it exists, this system of equations can be written as:   
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) (1) (1)
0 1 1 2 2 11

(2) (2) (2)
0 1 1 2 2 11

( 1) ( 1) ( 1)
0 1 1 2 2 11

( ) ( )
0 1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ... 0 ... 0 0

ˆ ˆ ˆ ˆ ˆ ˆ... 0 ... 0 0
.
.

ˆ ˆ ˆ ˆ ˆ ˆ... 0 ... 0 0

ˆ ˆ ˆ ˆ...

R JR R

R JR R

R R R
R JR R

R R
R

x x x

x x x

x x x

x x

β β β β β β

β β β β β β

β β β β β β

β β β β

−−

−−

− − −
−−

−

+ + + + + + + =

+ + + + + + + =

+ + + + + + + =

+ + + + ( ) ( ) ( ) ( )( )
11

ˆ ˆ0 ... 0 0R
R JRx β β− + + + =

 (A35) 

By subtracting R  from previous 1R −  equations, (A35) can be simplified to: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(1) ( ) (1) ( ) (1) ( )
1 1 1 2 2 2 1 11

(2) ( ) (2) ( ) (2) ( )
1 1 1 2 2 2 1 11

( 1) ( ) ( 1) ( ) ( 1) ( )
1 1 1 2 2 2 1 11

ˆ ˆ ˆ... 0

ˆ ˆ ˆ... 0
.
.

ˆ ˆ ˆ... 0

R R R
R RR

R R R
R RR

R R R R R R
R RR

x x x x x x

x x x x x x

x x x x x x

β β β

β β β

β β β

− −−

− −−

− − −
− −−

− + − + + − =

− + − + + − =

− + − + + − =

 (A36) 

for which the system matrix is: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

(1) ( ) (1) ( ) (1) ( )
1 1 2 2 1 1

(2) ( ) (2) ( ) (2) ( )
1 1 2 2 1 1

*

( 1) ( ) ( 1) ( ) ( 1) ( )
1 1 2 2 1 1

. .

. .

. . . . .

. . . . .

. .

R R R
R R

R R R
R R

R R R R R R
R R

x x x x x x

x x x x x x

x x x x x x

− −

− −

− − −
− −

 − − −
 
 − − − 
 =
 
 
 
 − − − 

B  (A37) 

*B  is a ( ) ( )1 1R R− × −  full rank square matrix, and hence ( )* 0det ≠B . Denote ( )*
1 2 1

ˆ ˆ ˆ ˆ, ,... Rβ β β −
′=β , then 

*ˆ 0=*B β  has a single unique solution, but *ˆ 0=*B β  comprises a homogeneous system, which has the zero 
solution at least. Hence the single unique solution is the zero solution. But this is a contradiction because none 

of the elements of  ( )0 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ, , ,... ,J Jβ β β β β−

′=β  are zero. Hence the assumption that the rank of the boundary 

matrix is less than the number of its rows must be incorrect.  

 

The argument preceding was specific to the case that ( ) 1rank R= −B , but it extends in straightforward fashion 

to the general case that ( )rank R m= −B  because equation system (A33) can be transformed into a 

homogeneous system of the form (A36) for any value of m  such that 0 .m R< <  Hence we conclude that the 
rank of the boundary matrix cannot be less than the number of its rows, which is ( )rank R=B . Therefore, all 
rows are linearly independent. 

 

Corollary A4.1 

For a log binomial model with 1J ≥  non-constant covariates fitted by the exact method to data having 
(1 )R R J< ≤  distinct sets of values of the covariates (including the constant) for which the estimated outcome 

probability evaluated at the ML solution is unity, there is at least one covariate for which ( )
1 0, 2,3,...r

rt r R− ≠ = . 

 

Proof of corollary A4.1 
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Consider again matrix B , the ( )1R J× +  matrix with R  rows and 1J +  columns formed from the R  distinct 
sets of covariate values (including the constant) for which the estimated outcome probability evaluated ML 
solution is unity. From Theorem 4, the rows of B  are linearly independent and hence ( ) row rank R=B . By the 

fundamental theorem of linear algebra, the column rank of the boundary matrix must be R  also. Proofs that 
( ) ( )row rank col rank=B B  can be credited to Mackiw 90 and Wardlaw 91. 

 

Therefore, if ( )
1 0r

rt − =  at any step 2,3,...r R=  of the re-parameterization, it is always possible to find another 

covariate for which ( )
1 0r

rt − ≠ . In that case, the re-parameterization can proceed after re-ordering the covariates. 

 

Table A1: The example data and the corresponding fitted probabilities for 
each observation evaluated at the exact estimates. 

 

obs y  1x  2x  3x  µ̂ * 

1 0 14 3.90 14.500 0.329 
2 0 22 3.18 4.504 0.055 
3 0 12 4.72 13.594 0.038 
4 0 14 4.13 6.303 0.019 
5 0 18 3.69 4.890 0.026 
6 1 14 3.42 12.990 0.751 
7 0 34 1.80 4.425 0.520 
8 0 18 3.47 4.934 0.046 
9 1 35 2.05 3.798 0.205 

10 1 26 1.83 3.895 1.000 
11 1 17 2.83 9.690 1.000 

* µ̂  is the fitted probabilities evaluated at the exact estimates, 0
ˆ 6.5206677β = , 

1̂ 0.1098078β = − , 2
ˆ 2.5921916β = − , and 3

ˆ 0.2767768β = . 
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Table A2: Simulation results 

 Simulations without a boundary vector  Simulations with a boundary vector 

Setting   n Bias* MSE† Coverage‡    n Bias* MSE† Coverage‡ 

1 β0 4408 –1.169 4.703 95.6  5592 0.724 4.231 95.1 
 β1  –2.287 3.489 94.2   1.065 3.209 94.4 
 β2  –3.579 0.079 95.2   1.117 0.055 94.8 

2 β0 4507 –1.309 4.732 95.0  5493 0.924 4.246 95.2 
 β1  –2.770 3.478 94.5   0.951 3.150 94.9 
 β2  –3.561 0.079 95.4   1.415 0.056 95.2 

3 β0 4536 –0.318 2.822 94.9  5464 0.764 2.878 94.7 
 β1  –2.469 3.383 95.2   1.090 3.222 94.6 
 β2  –3.683 0.078 95.4   1.429 0.057 94.7 

4 β0 4645 –0.398 2.913 94.9  5355 0.638 2.832 95.1 
 β1  –2.772 3.495 94.3   1.155 3.198 95.1 
 β2  –3.589 0.080 95.0   1.197 0.055 95.2 

5 β0 4637 0.640 2.650 94.9  5363 0.570 2.663 95.0 
 β1  –2.822 3.434 94.5   1.481 3.212 94.6 
 β2  –3.609 0.080 94.8   1.082 0.055 94.9 

6 β0 4575 0.752 2.659 95.3  5425 0.734 2.644 95.3 
 β1  –2.452 3.412 95.2   1.760 3.193 95.6 
 β2  –3.614 0.078 95.7   1.130 0.054 95.3 

7 β0 4647 2.418 2.881 95.7  5353 0.598 2.838 94.5 
 β1  –2.215 3.370 94.9   1.648 3.267 94.5 
 β2  –3.530 0.080 95.3   1.285 0.055 95.3 

8 β0 4519 2.187 2.919 95.6  5481 0.795 2.809 95.0 
 β1  –2.613 3.399 94.7   2.100 3.220 95.0 
 β2  –3.726 0.079 95.5   1.084 0.055 94.9 

* Average percent relative bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† 100 times the average mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Varn
jk j jkkn β β β=

 − +  
∑ , 

0,1, 2; 1,2,...j k n= = . 
‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Table A3: Simulation results with n = 10000 replications. 

  Exact method Modified Poisson R-lbreg 

  Bias* MSE† Cov‡ Bias* MSE† Cov‡ Bias* MSE† Cov‡ 

1 0β  –0.110 4.439 95.3 0.655 5.527 95.1 –0.095 4.437 95.3 
 1β  –0.413 3.332 94.5 0.742 3.760 94.8 –0.403 3.332 94.4 
 2β  –0.953 0.066 95.0 0.639 0.098 95.2 –0.935 0.066 94.6 

2 0β  –0.087 4.465 95.1 0.656 5.538 95.0 –0.072 4.462 95.1 
 1β  –0.726 3.298 94.7 0.412 3.725 95.3 –0.716 3.297 94.7 
 2β  –0.827 0.066 95.3 0.715 0.098 94.8 –0.811 0.066 94.9 

3 0β  0.273 2.853 94.8 0.672 3.062 94.9 0.289 2.855 94.8 
 1β  –0.524 3.295 94.9 0.596 3.721 95.5 –0.510 3.296 94.9 
 2β  –0.889 0.067 95.0 0.680 0.099 95.2 –0.873 0.066 94.6 

4 0β  0.157 2.869 95.0 0.539 3.084 95.1 0.175 2.871 95.0 
 1β  –0.669 3.336 94.7 0.397 3.772 95.0 –0.655 3.336 94.7 
 2β  –1.026 0.066 95.1 0.420 0.098 94.9 –1.006 0.066 94.6 

5 0β  0.603 2.657 94.9 0.602 2.719 95.2 0.616 2.658 94.9 
 1β  –0.515 3.315 94.5 0.537 3.718 95.0 –0.499 3.314 94.5 
 2β  –1.093 0.066 94.9 0.432 0.099 94.6 –1.083 0.066 94.2 

6 0β  0.742 2.651 95.3 0.727 2.708 95.4 0.755 2.652 95.3 
 1β  –0.167 3.293 95.4 0.933 3.716 95.6 –0.153 3.292 95.3 
 2β  –1.041 0.065 95.5 0.572 0.097 95.2 –1.029 0.065 94.9 

7 0β  1.444 2.858 95.0 0.984 2.978 94.7 1.459 2.859 95.0 
 1β  –0.147 3.315 94.7 1.039 3.743 95.0 –0.131 3.314 94.7 
 2β  –0.953 0.067 95.3 0.625 0.100 94.7 –0.944 0.066 94.8 

8 0β  1.424 2.859 95.3 0.913 2.987 94.9 1.440 2.860 95.3 
 1β  –0.030 3.301 94.9 1.099 3.753 95.1 –0.012 3.300 94.8 
 2β  –1.090 0.066 95.2 0.528 0.099 94.8 –1.081 0.066 94.6 

* Average percent relative bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† 100 times the average mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Varn
jk j jkkn β β β=

 − +  
∑ , 

0,1, 2; 1,2,...j k n= = . 
‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Table A4: 95% confidence interval coverage with three estimators of estimated variance. 

  Replications 
 without a boundary vector   Replications 

 with a boundary vector  

   Variance estimator    Variance estimator  

Setting n OIM* EIM† Robust‡ n  OIM* EIM† Robust‡ 

1 β0 4408 95.6 95.1 95.0 5592 95.1 95.0 95.1 
 β1 4408 94.2 94.1 94.6 5592 94.4 94.1 94.9 
 β2 4408 95.2 95.0 95.1 5592 94.8 94.6 95.2 

2 β0 4507 95.0 94.6 94.9 5493 95.2 95.0 95.0 
 β1 4507 94.5 94.3 94.6 5493 94.9 94.3 95.4 
 β2 4507 95.4 94.9 94.9 5493 95.2 94.7 94.8 

3 β0 4536 94.9 94.7 94.7 5464 94.7 94.4 95.0 
 β1 4536 95.2 94.8 95.3 5464 94.6 94.3 95.6 
 β2 4536 95.4 94.8 94.6 5464 94.7 94.5 95.4 

4 β0 4645 94.9 94.6 94.8 5355 95.1 94.8 95.2 
 β1 4645 94.3 94.5 94.8 5355 95.1 94.9 95.1 
 β2 4645 95.0 94.6 94.7 5355 95.2 94.7 94.9 

5 β0 4637 94.9 94.7 95.0 5363 95.0 95.1 95.3 
 β1 4637 94.5 94.4 94.9 5363 94.6 94.5 95.0 
 β2 4637 94.8 94.5 94.5 5363 94.9 94.6 94.6 

6 β0 4575 95.3 94.7 95.2 5425 95.3 94.7 95.6 
 β1 4575 95.2 94.8 95.2 5425 95.6 95.2 95.7 
 β2 4575 95.7 94.9 95.1 5425 95.3 94.7 95.3 

7 β0 4647 95.7 95.0 94.5 5353 94.5 94.5 94.9 
 β1 4647 94.9 94.5 94.6 5353 94.5 94.4 95.3 
 β2 4647 95.3 95.0 94.5 5353 95.3 94.9 94.9 

8 β0 4519 95.6 94.9 94.6 5481 95.0 94.7 94.9 
 β1 4519 94.7 94.5 95.0 5481 95.0 94.8 95.2 
 β2 4519 95.5 94.9 94.5 5481 94.9 94.8 94.9 

* Percentage of 95 percent confidence intervals covering the design value of the coefficient with variance 
estimated using the observed information matrix (OIM). 

† Percentage of 95 percent confidence intervals covering the design value of the coefficient with variance 
estimated using the expected information matrix (EIM). 

‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient with variance 
estimated using the robust (sandwich) estimator. 
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Appendix B 

Supplementary materials of the identity-link binomial 

 model in the exact method 

 

The identity-link binomial model 

Assume that there are n  independent observations with a binary outcome variable Y  and J  covariates 

1 2(1, , ,... )JX X X  with constant. The likelihood function of identity-link binomial model is defended as: 

 ( ) ( )(1 )

1
1 ii

n
yy

ii
i

l µ µ −

=
= −∏β  (B1) 

where ip  is the probability of outcome conditional on the thi  observation which is equal to a linear 

combination of parameters ( )0 1, , Jβ β β=β   and covariates ( )1 2= 1, ,ij i i iJx x xx   with constant denoted as  

 ( ) ( ) 0 1 1 2 2Pr 1| ... ,  1, 2,...i i i i i J iJY x x x i nπ β β β β= = = + + + + =x x . (B2) 

To apply exact method, the likelihood function (3.1) need to be reformed as: 

 ( ) 1 01
i i

i iY Yl µ µ
= =

= −∏ ∏β  (B3) 

where ( ) ( )1 2 0 1,  for = 1, , ,  and , ,i i ij i i iJ Jp x x x β β β′= =x β x β  . Assume that there are R   boundary vectors 

in the model. The model obtains maximum likelihood solution at ( )0 1
ˆ ˆ ˆ ˆ, , Jβ β β=β  . Then, the likelihood 

function evaluated at β̂  becomes: 

 

( ) 1 0

0 01 0
1 1

ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1

i i

i i

i iY Y

J J

ij j ij jY Y
j j

l

x x

β µ µ

β β β β

= =

= =
= =

= −

    
    = + − +

        

∏ ∏

∑ ∑∏ ∏
 (B4)  

From here, the estimation is splitting into two situations which are ML solution is on the upper bound of 
parameter space or on the lower bound of parameter space. 

 

The ML solution is on the upper bond of parameter space in the identity-link binomial model in the exact 
method. 

Theorem B1 
Suppose that the ML solution is on the upper bound of parameter space, which means the maximum fitted 
probability is equal to unity, ˆmax( ) 1iµ =  for 1,2,...i n= . Assume that there are 1R ≥  distinct sets of covariate 

vectors with the fitted probability attained unity referred as boundary vectors. Denote the  ( 1, 2,... )thr r R=  

boundary vector as ( )( ) ( ) ( )( )
1 21, . ,...r r rr

Jx x x=x  which shares covariate values with rn  observations. Then, the 

constant and first 1R −  covariates in the likelihood function (B4) of identity-link binomial model evaluated at 
the maximum likelihood solution β̂  can be re-parametrized as following: 
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 ( )
(1)

(2)

( )

* *

01, ,
,...,

ˆ ˆ ˆ1
ii ij j

ij j
R

ij j

i i
YY x x

x x
x x

l µ µ
== ≠

≠
≠

= −∏ ∏β  (B5) 

where ( )*ˆ 1 J R
i jijj R zµ β== +∑ . The function for each ( )r

ijz  is: 

 (1) (1) ,  1, 2,...  and 0,1,2,...ijij jz x x i n j J= − = = . (B6) 

 ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

 where ,  2,3,...r
ij j

r
jr r r r r

ij ij j iji rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 

. (B7) 

Proof of Theorem B1 

Let (1)x  is the first boundary vector in the model, which makes the probability of observation is equal to unity 
under ML solution. Then, the likelihood function of identity-link binomial model is rewritten as: 

 

( )

(1)

0 01 0
1 1

(1)1, 0 0 00
1 1 1

ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ1

i i

i
i

ij j

J J

ij j ij jY Y
j j

J J J
Y ij j ij j j jYx x j j j

l x x

x x x

β β β β

β β β β β β

= =
= =

=
=≠ = = =

    
    = + − +

        
              = + − + +               

∑ ∑∏ ∏

∑ ∑ ∑∏ ∏

β

 (B8) 

Since (1)
0

1

ˆ ˆ 1
J

jj
j

xβ β
=

+ =∑  and  

 (1)
0

1

ˆ ˆ1
J

jj
j

xβ β
=

= −∑ , (B9) 

the (B8) can be rewritten as: 

 

( )

( )

(1)

(1)

1, 0 00
1 1

(1) (1)1,
0

1 1 1 1

(1)

1

ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1 1 1

ˆ1

i
i

ij j

i
i

ij j

J J
Y ij j ij jYx x j j

J J J J
Y j ij j j ij jj jYx x j j j j

J

ij jj
j

l x x

x x x x

x x

β β β β

β β β β

β

=
=≠ = =

=
=≠ = = = =

=

    
    = + − +

        
    
    = − + − − +

        

= + −

∑ ∑∏ ∏

∑ ∑ ∑ ∑∏ ∏

β

( )(1)

(1)1,
0

1

ˆ1 1i
i

ij j

J
Y ij jjYx x j

x x β=
=≠ =

     − + −    
        

∑ ∑∏ ∏

 (B10) 

Let (1) (1)
ijij jz x x= − . Then, rewrite (B10) to: 

 ( )
(1)

(1) (1)1,
0

1 1

ˆ ˆ ˆ1 1 1i
i

ij j

J J
Y j jij ijYx x j j

l z zβ β=
=≠ = =

    
    = + − +

        
∑ ∑∏ ∏β . (B11) 

By the second boundary vector (2) (2) (1)= −t x x , the likelihood function (B11) is rewritten as: 
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 ( )
(1)

(2)

(1) (1) (2)

1 1 101, ,

ˆ ˆ ˆ ˆ1 1 1 1
ii ij j

ij j

J J J

j j jij ij j
j j jYY x x

x x

l z z tβ β β
= = === ≠

≠

 
              = + − + +              
  

∑ ∑ ∑∏ ∏β  (B12) 

Since (2)

1

ˆ1 1
J

jj
j

t β
=

+ =∑  and (2) (2)
11

2

ˆ ˆ1 1
J

jj
j

t tβ β
=

+ + =∑ , rearrange it as: 

 
(2)

1 (2)
2 1

ˆ ˆ
J

j
j

j

t

t
β β

=
= −∑  (B13) 

 Substitute (B13) into (B12). It is reformed as: 

 ( )
(1)

(2)

(2) (2)
(1) (1) (1) (1)

1 1(2) (2)
2 21, 01 1

,

ˆ ˆ ˆ1 1 1
i i

ij j

ij j

J Jj j
j jij iji i

j jY Y
x x
x x

t t
l z z z z

t t
β β

= == =
≠
≠

              = + − − + −               
∑ ∑∏ ∏β  (B14) 

Let 
(2)

(2) (1) (1)
1(2)

1

j
ij ij i

t
z z z

t
= − . Then, rewrite (B14) as: 

 ( )
(1)

(2)

(2) (2)

2 201, ,

ˆ ˆ ˆ1 1 1
ii ij j

ij j

J J

j jij ij
j jYY x x

x x

l z zβ β
= === ≠

≠

    
    = + − +

        
∑ ∑∏ ∏β  (B15) 

By repeating the previous step on the rest of each 2R −  boundary vectors, the likelihood function is restructured 
by  

 
( 1)

( 1)
1

ˆ ˆ , for 1, 2, 1
rJ

j
r jr

j r r

t
r R

t
β β

+

+
= +

= − = −∑   (B16) 

to: 

 ( )
(1)

(2)

( )

( ) ( )

01, ,
,

ˆ ˆ ˆ1 1 1
ii ij j

ij j
R

ij j

J J
R R

j jij ij
j R j RYY x x

x x
x x

l z zβ β
= === ≠

≠
≠

    
    = + − +

        
∑ ∑∏ ∏β



. (B17) 

After the reparameterization procedure, the reformed likelihood function is: 

 ( )
(1)

(2)

( )

* *

01, ,
,

ˆ 1
ii ij j

ij j
R

ij j

i i
YY x x

x x
x x

l µ µ
== ≠

≠
≠

= −∏ ∏β



 (B18) 

Where ( )* ˆ1
J

R
i jij

j R
zµ β

=
= + ∑ . 
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Theorem B2 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by the exact method 
to data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the 
estimated outcome probability evaluated at the ML solution is unity, the estimated coefficients and the 
corresponding standard errors of the 1R −  eliminated non-constant covariates are given by:  

 
( 1)

( 1)
1

ˆ ˆ , for 1, 2, 1
rJ

j
r jr

j r r

t
r R

t
β β

+

+
= +

= − = −∑  . (B19) 

and 

  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑  (B20) 

and the estimated covariances between exact estimates of the coefficients of the 1R −  eliminated non-constant 
covariates and exact estimates of the coefficients of the 1J R− +  remaining non-constant covariates are given 
by: 

  ( )  ( )  ( )
( 1)( 1)

1( 1) ( 1)
ˆ ˆ ˆ ˆ ˆCov , Var Cov ,

rr
J js

r s s j sj rr r
j sr r

tt
t t

β β β β β
++

= ++ +
≠

    = − + 
    

∑ , (B21) 

for 1,2,... 1 and 1,r R s r J= − = +  . 

Proof of Theorem B2 

The formula (B19) has been proved through the proof of Theorem 1. The proof is focusing on the (B20) and 
(B21). 

Since 
( 1)

( 1)
1

ˆ ˆ
rJ

j
r jr

j r r

t

t
β β

+

+
= +

= − ∑ , we get the variance function of ˆ
rβ  as: 

  ( ) 

( 1)

( 1)
1

ˆ ˆVar Var
rJ

j
r jr

j r r

t

t
β β

+

+
= +

 
 = −
  
∑  (B22) 

Expanding the (B22): 

  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑  (B23) 

The formula of standard error for the first 1R −  estimate of non-constant eliminating coefficients that did not 
achieve from the fitting procedure of model is obtained by square rooting both sides of (B23): 

  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑ . (B24) 
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To obtain the formula of covariance between the first 1R −  estimate of non-constant eliminating coefficients 
that did not achieve from the fitting procedure of model and the rest of the coefficients in the model, we begin 
with restructuring (B19): 

 ( 1)( 1)
1

ˆ ˆ , 1, 2,... 1J rr
r r j jj rt t r Rβ β ++

= += − = −∑  (B25) 

and adding each side of the equation the estimated coefficient of one of the 1J R− +  covariates remaining in the 
model: 

 ( ) ( 1)( 1) ( 1)
1

ˆ ˆ ˆ ˆ1 , 1, 2,..., 1;  1,J rr r
r r s s s j jj r

j s
t t t r R s r Jβ β β β ++ +

= +
≠

 
 + = − − + = − = +
  

∑   

Thus: 

 

 ( )

 ( )

( 1)

( 1)( 1)

1

ˆ ˆVar

ˆ ˆ        Var 1 , 1,2,..., 1;  1,

r
r r s

J
rr

s s j j
j r
j s

t

t t r R s r J

β β

β β

+

++

= +
≠

+

  
   = − − + = − = +  
  
   

∑ 

 (B26) 

Expanding the left-hand side of (B26): 

  ( ) ( )  ( )  ( )  ( )2( 1) ( 1) ( 1)ˆ ˆ ˆ ˆ ˆ ˆVar Var 2 Cov , Varr r r
r r s r r r r s st t tβ β β β β β+ + ++ = + +  (B27) 

Expanding the right-hand side of (B26): 

 

 ( )

( )  ( ) ( ) ( ) 

( )  ( )

( 1)( 1)

1

2 ( 1) ( 1)( 1) ( 1)

1 1

2 ( 1)( 1) ( 1) (

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 Var 2 1 ,

ˆ = 2 1 Var 2

J
rr

s s j j
j r
j s

J J
r rr r

s s s j s jj j
j r j r
j s j s

rr r r
s s s sj

t t

t t t Cov Var t

t t t t

β β

β β β β

β

++

= +
≠

+ ++ +

= + = +
≠ ≠

++ +

  
   − − +  
  
   

 
  = − + − +     
 

 − + +  

∑

∑ ∑

( ) ( )

( )  ( ) ( ) ( )

( ) ( )  ( )

( )  ( )

1 21 2
1 2

1 2
2 1

( 1)1)

1

2( 1) ( 1) ( 1)

1 1 1
,

( 1)( 1)

1

2( 1)

ˆ ˆCov ,

ˆ ˆ ˆ + Var Cov ,

ˆ ˆ ˆ1 2 Var 2 Cov ,

ˆVar

J
r

j sj
j r
j s

J J J
r r r

j j jj j j
j r j r j r
j s j j s

j j
J

rr
s s j sj

j r
j s

r
jj

t

t t t

t t

t

β β

β β β

β β β

β

++

= +
≠

+ + +

= + = + = +
≠ ≠

≠

++

= +
≠

+

 −
 

   +     

 = − −  

 +  

∑

∑ ∑ ∑

∑

( ) ( )1 21 2
1 2

2 1

( 1) ( 1)

1 1 1

ˆ ˆCov ,
J J J

r r
j jj j

j r j r j r
j j

t t β β+ +

= + = + = +
≠

 +   ∑ ∑ ∑
(B28) 

By expanding  

( 1)( 1)
1

ˆ ˆVar Var , 1,2,... 1J rr
r r j jj rt t r Rβ β ++

= +
   = − = −    ∑ , we have: 
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 ( )  ( ) ( )  ( ) ( ) ( )1 21 2
1 2

2 1

22 ( 1) ( 1) ( 1)( 1)

1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J

r r rr
r r j j jj j j

j r j r j r
j j

t t t tβ β β β+ + ++

= + = + = +
≠

   = +     
∑ ∑ ∑ (B29) 

 Substituting for ( )  ( )2( 1) ˆVarr
r rt β+  in (B28): 

 

 ( )

( ) ( ) ( )  ( )  ( )

( 1)( 1)
1

2 ( 1)( 1) ( 1)
1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 2 Var Var 2 Cov ,

J rr
s s j jj r

j s

J rr r
s s r r j sjj r

j s

t t

t t t

β β

β β β β

++
= +
≠

++ +
= +
≠

    − − + 
    

= − + −

∑

∑
(B30) 

Equating (B27) and (B30), the two sides of (B26), and simplifying: 

 ( )  ( )  ( )
( 1)( 1)

1( 1) ( 1)
ˆ ˆ ˆ ˆ ˆCov , Var Cov , , 1, 2,... 1; 1,

rr
J js

r s s j sj rr r
j sr r

tt
r R s r J

t t
β β β β β

++

= ++ +
≠

    = − + = − = + 
    

∑   

Theorem B3 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by the exact method 
to data having (1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the 
estimated outcome probability evaluated at the ML solution is unity, the estimated coefficient and the 
corresponding standard error of the constant covariate are given by:  

 (1)
0

1

ˆ ˆ1
J

jj
j

xβ β
=

= −∑  (B31) 

and 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B32) 

and the estimated covariances between the exact estimate of the coefficient of the constant covariate and exact 
estimates of the coefficients of the J  non-constant covariates are given by: 

  ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,J
j j j jj j j

j j
x xβ β β β β=

≠

 
 = − +
  

∑  (B33) 

for  1, 2,j J= … .  

Proof of Theorem B3 

The formula (B31) has been proved through the proof of Theorem 1. The proof is focusing on the (B32) and 
(B33). 

Since (1)
0

1

ˆ ˆ1
J

jj
j

xβ β
=

= −∑ , we get the variance function of 0β̂  as: 
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 ( ) 



(1)
0

1

(1)

1

ˆ ˆVar Var 1

ˆVar

J

jj
j

J

jj
j

x

x

β β

β

=

=

 
 = −
 
 
 
 =
 
 

∑

∑
 (B34) 

Expanding the (B34): 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B35) 

The formula of standard error for the estimate of constant is obtained by square rooting both sides of (B23): 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B36) 

To obtain the formula of covariance between the estimate of constant and the estimate of coefficients in the 

model, we begin with adding a ˆ
jβ  to both sides of (1)

0
1

ˆ ˆ1
J

jj
j

xβ β
=

= −∑ : 

 ( ) 11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ1 1  , 1, 2,J
j j jj j j

j j
x x j Jβ β β β=

≠

 
 + = − − + =
  

∑   (B37) 

Thus: 

 

 ( )  ( )

 ( )

11 1
1

11 1
1

(1) (1)
0 1

(1) (1)
1

ˆ ˆ ˆ ˆVar Var 1 1  

ˆ ˆ=Var 1

J
j j jj j j

j j

J
j jj j j

j j

x x

x x

β β β β

β β

=
≠

=
≠

    + = − − + 
    

 
 − +
  

∑

∑
 (B38) 

 Expanding the left-hand side of (B38): 

  ( )  ( )  ( )  ( )0 0 0
ˆ ˆ ˆ ˆ ˆ ˆVar Var 2Cov , Varj j jβ β β β β β+ = + +  (B39) 

Expanding the right-hand side of (B38): 

 

 ( )

( )  ( ) ( )  ( ) 

11 1
1

1 11 1` 1 1
1 1

(1) (1)
1

2(1) (1) (1) (1)
1 1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ           = 1 Var 2 1 Cov , Var

J
j jj j j

j j

J J
j j j jj j j j j j

j j j j

x x

x x x x

β β

β β β β

=
≠

= =
≠ ≠

 
 − +
  

 
 − + − +
 
 

∑

∑ ∑
(B40) 

Since: 
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  ( )  ( )  ( )1 1 2 31 1 2 3
1 1 2 3
1 1 2 3

3 2

2(1) (1) (1) (1)

1 1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J J

j j j jj j j j
j j j j
j j j j j j j j

j j

x x x xβ β β β
= = = =
≠ ≠ ≠ ≠

≠

 
     = +        
 

∑ ∑ ∑ ∑ , (B41) 

expand (B40) by (B41) as: 

 

 ( )

 ( )  ( )  ( ) ( )  ( )

( )  ( )  ( )


11 1
1

11 1
1

1 11 1 1 1
1 1

22 3

(1) (1)
1

2(1) (1) (1)
1

2(1) (1) (1)
1 1

(1) (1)

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ ˆVar 2 Var Cov , Var

ˆ ˆ ˆVar 2 Cov ,

ˆ ˆCov ,

J
j jj j j

j j

J
j j j j jj jj j

j j

J J
j j jjj j j j

j j j j

jj j

x x

x x x

x x x

x x

β β

β β β β β

β β β

β β

=
≠

=
≠

= =
≠ ≠

 
 − +
  

 
 = − + +
  

 + +  

+

∑

∑

∑ ∑

( )

 ( )  ( )  ( )

( )  ( )  ( )

32 3
2 3

3 2

11 1
1

1 22 1 21
1 2

1 1

(1) (1)
1

2(1) (1) (1)
11 1

ˆ ˆ ˆ ˆ             Var 2 Var Cov ,

ˆ ˆ ˆ             Var Cov ,

J J
jj j

j j j j
j j

J
j j j jj j j

j j

J J J
j j jj j j jj j

j j

x x

x x x

β β β β

β β β

= =
≠ ≠

≠

=
≠

== =
≠

 
 

 
 = − +
  

   + +    

∑ ∑

∑

∑ ∑ ∑

(B42) 

Replacing and simplifying (B42) by (B35): 

 

 ( )

 ( )  ( )  ( )  ( )

11 1
1

11 1
1

(1) (1)
1

(1) (1)
0 1

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ ˆ             Var Var 2 Var Cov ,

J
j jj j j

j j

J
j j j jj j j

j j

x x

x x

β β

β β β β β

=
≠

=
≠

 
 − +
  

 
 = + − +
  

∑

∑
 (B43) 

Substituting (B39) and (B43) into (B38), and simplifying: 

  ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov , ,  1, 2,J
j j j jj j j

j j
x x j Jβ β β β β=

≠

 
 = − + = …
  

∑  (B44) 

The ML solution is on the lower bond of parameter space.  

Theorem B4 

Suppose that the ML solution is on the lower bound of parameter space, which means the minimum fitted 
probability is equal to zero, ( )ˆmin 0iµ =  for 1,2,...i n= . Assume that there are 1R ≥  distinct sets of covariate 

vectors with the fitted probability attained zero referred to as boundary vectors. Denote the  ( 1, 2,... )thr r R=  

boundary vector as ( )( ) ( ) ( )( )
1 21, . ,...r r rr

Jx x x=x  which shares covariate values with rn  observations. Then, the 

constant and first 1R −  covariates in the likelihood function (B4) of the identity-link binomial model evaluated 
at the maximum likelihood solution β̂  can be reparametrized as following: 
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 ( )
(1)

(2)

( )

* *

1 0, ,
,

ˆ 1
i i ij j

ij j
R

ij j

i i
Y Y x x

x x
x x

l µ µ
= = ≠

≠
≠

= −∏ ∏β



 (B45) 

where ( )* ˆ
J

R
i jij

j R
zµ β

=
= ∑ . The function of each ( )r

ijz  is: 

 (1) (1) ,  1, 2,...  and 0,1,2,...ijij jz x x i n j J= − = = . (B46) 

 ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

 where ,  2,3,...r
ij j

r
jr r r r r

ij ij j iji rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 

. 

Proof of Theorem 4 

Let (1)x  is the first boundary vector in the model, which makes the probability of observation equals to zero 
under ML solution. Then, the likelihood function of identity-link binomial model is rewritten as: 

 

( )

(1)

0 0
1 11 0

(1)
0 0 0

1 1 11 0,

ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ1 1

i i

i i

ij j

J J

ij j ij j
j jY Y

J J J

ij j ij j jj
j j jY Y

x x

l x x

x x x

β β β β

β β β β β β

= == =

= = == =
≠

    
    = + − +

        
 
                  = + − + − +                  
  

∑ ∑∏ ∏

∑ ∑ ∑∏ ∏

β

 (B47) 

Since (1)
0

1

ˆ ˆ 0
J

jj
j

xβ β
=

+ =∑  and (1)
0

1

ˆ ˆ1 1
J

jj
j

xβ β
=

 
 − + =
 
 

∑ , we have:  

 (1)
0

1

ˆ ˆ
J

jj
j

xβ β
=

= −∑ , (B48) 

the (B47) can be rewritten as: 

 

( )

( )

(1)

0 0
1 11 0

(1) (1)

1 1 1 11 0,

(1)

11

ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1

ˆ

i i

i i

ij j

i

J J

ij j ij j
j jY Y

J J J J

j ij j j ij jj j
j j j jY Y

x x

J

ij jj
jY

l x x

x x x x

x x

β β β β

β β β β

β

= == =

= = = == =
≠

==

    
    = + − +

        
    
    = − + − − +

        

 
= − 

  

∑ ∑∏ ∏

∑ ∑ ∑ ∑∏ ∏

∑∏

β

( )
(1)

(1)

10,

ˆ1
i

ij j

J

ij jj
jY

x x

x x β
==

≠

    − − 
    

∑∏

 (B49) 

Let (1) (1)
ijij jz x x= − . Then, rewrite (B49) to: 
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 ( )
(1)

(1) (1)

1 11 0,

ˆ ˆ ˆ1
i i

ij j

J J

j jij ij
j jY Y

x x

l z zβ β
= == =

≠

   
   = −
   
   
∑ ∑∏ ∏β . (B50) 

By the second boundary vector (2) (2) (1)= −t x x , the likelihood function (B50) is rewritten as: 

 ( )
(1)

(2)

(1) (1) (2)

1 1 11 0,
,

ˆ ˆ ˆ ˆ1 1
i i

ij j

ij j

J J J

j j jij ij j
j j jY Y

x x
x x

l z z tβ β β
= = == =

≠
≠

 
 
              = − −              
 
  

∑ ∑ ∑∏ ∏β  (B51) 

Since (2) (2)
11

2

ˆ ˆ1 1
J

jj
j

t tβ β
=

− − =∑  and (2) (2)
11

2

ˆ ˆ 0
J

jj
j

t tβ β
=

+ =∑ , rearrange it as: 

 
(2)

1 (2)
2 1

ˆ ˆ
J

j
j

j

t

t
β β

=
= −∑  (B52) 

 Substitute (B52) into (B51). It is reformed as: 

 

( )
(1)

(2)

(2) (1) (2) (1)
1 1(1) (1)

1 1(2) (2)
2 2 2 21 0, ,1 1

(2)
(1) (1) (1

1(2)
21 1

ˆ ˆ ˆ ˆ ˆ1

ˆ 1

i i ij j

ij j

i

J J J J
j ji i

j jij ij
j j j jY Y x x

x x

J
j

jij iji
jY

t z t z
l z z

t t

t
z z z

t

β β β β

β

= = = == = ≠
≠

==

    
    = − + − − +

        

  
  = − −

    

∑ ∑ ∑ ∑∏ ∏

∑∏

β

(1)

(2)

(2)
) (1)

1(2)
20, , 1

ˆ

i ij j

ij j

J
j

ji
jY x x

x x

t
z

t
β

== ≠
≠

      −       
∑∏

(B53) 

Let 
(2)

(2) (1) (1)
1(2)

1

j
ij ij i

t
z z z

t
= − . Then, rewrite (B53) as: 

 ( )
(1)

(2)

(2) (2)

2 21 0, ,

ˆ ˆ ˆ1
i i ij j

ij j

J J

j jij ij
j jY Y x x

x x

l z zβ β
= == = ≠

≠

   
   = −
   
   
∑ ∑∏ ∏β  (B54) 

By repeating the previous step on the rest of each 2R −  boundary vectors, the likelihood function is restructured 
by  

 
( 1)

( 1)
1

ˆ ˆ , for 1, 2, 1
rJ

j
r jr

j r r

t
r R

t
β β

+

+
= +

= − = −∑   (B55) 

to: 

 ( )
(1)

(2)

( )

( ) ( )

1 0, ,
,

ˆ ˆ ˆ1
i i ij j

ij j
R

ij j

J J
R R

j jij ij
j R j RY Y x x

x x
x x

l z zβ β
= == = ≠

≠
≠

   
   = −
   
   
∑ ∑∏ ∏β



. (B56) 
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After the reparameterization procedure, the reformed likelihood function is: 

 ( )
(1)

(2)

( )

* *

1 0, ,
,

ˆ 1
i i ij j

ij j
R

ij j

i i
Y Y x x

x x
x x

l µ µ
= = ≠

≠
≠

= −∏ ∏β



 (B57) 

where ( )* ˆ
J

R
i jij

j R
zµ β

=
= ∑ . 

Theorem B5 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by the exact method 
to data having  (1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the 
estimated outcome probability evaluated at the ML solution is zero, the estimated coefficients and the 
corresponding standard errors of the 1R −  eliminated non-constant are given by: 

 
( 1)

( 1)
1

ˆ ˆ , for 1, 2, 1
rJ

j
r jr

j r r

t
r R

t
β β

+

+
= +

= − = −∑  . (B58) 

and 

  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑  (B59) 

and the estimated covariances between the exact estimates of the coefficients of the 1R −  eliminated non-
constant covariates and the exact estimates of the coefficients of the 1J R− +  remaining non-constant 
covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

1( 1) ( 1)
ˆ ˆ ˆ ˆ ˆCov , Var Cov ,

rr
J js

r s s j sj rr r
j sr r

tt
t t

β β β β β
++

= ++ +
≠

    = − + 
    

∑ , (B60) 

for 1,2,... 1r R= −  and 1,s r J= +  . 

Proof of Theorem B5 

The formula (B58) has been proved through the proof of Theorem 4. The proof is focusing on the (B59) and 
(B60). 

Since 
( 1)

( 1)
1

ˆ ˆ
rJ

j
r jr

j r r

t

t
β β

+

+
= +

= − ∑ , we get the variance function of ˆ
rβ  as: 

  ( ) 

( 1)

( 1)
1

ˆ ˆVar Var
rJ j

r jr
j r r

t

t
β β

+

+
= +

 
 = −
 
 
∑  (B61) 

Expanding the (B61): 
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  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑  (B62) 

The formula of standard error for the first 1R −  estimate of non-constant eliminating coefficients that did not 
achieve from the fitting procedure of model is obtained by square rooting both sides of (B62): 

  ( )  ( )
( )

 ( )1 2
1 2

1 2
1 2

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

     = +        

∑ ∑ ∑ . (B63) 

To obtain the formula of covariance between the first 1R −  estimate of non-constant eliminating coefficients 
that did not achieve from the fitting procedure of model and the rest of the coefficients in the model, we begin 
with restructuring (B58): 

 ( 1)( 1)
1

ˆ ˆ , 1, 2,... 1J rr
r r j jj rt t r Rβ β ++

= += − = −∑  (B64) 

and adding each side of the equation the estimated coefficient of one of the 1J R− +  covariates remaining in the 
model: 

 ( ) ( 1)( 1) ( 1)
1

ˆ ˆ ˆ ˆ1 , 1, 2,..., 1;  1,J rr r
r r s s s j jj r

j s
t t t r R s r Jβ β β β ++ +

= +
≠

 
 + = − − + = − = +
  

∑   

Thus: 

 

 ( )

 ( )

( 1)

( 1)( 1)

1

ˆ ˆVar

ˆ ˆ        Var 1 , 1,2,..., 1;  1,

r
r r s

J
rr

s s j j
j r
j s

t

t t r R s r J

β β

β β

+

++

= +
≠

+

  
   = − − + = − = +  
  
   

∑ 

 (B65) 

Expanding the left-hand side of (B65): 

  ( ) ( )  ( )  ( )  ( )2( 1) ( 1) ( 1)ˆ ˆ ˆ ˆ ˆ ˆVar Var 2 Cov , Varr r r
r r s r r r r s st t tβ β β β β β+ + ++ = + +  (B66) 

Expanding the right-hand side of (B26): 
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 ( )

( )  ( ) ( ) ( ) 

( )  ( )

( 1)( 1)

1

2 ( 1) ( 1)( 1) ( 1)

1 1

2 ( 1)( 1) ( 1) (

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 Var 2 1 Cov , Var

ˆ = 2 1 Var 2

J
rr

s s j j
j r
j s

J J
r rr r

s s s j s jj j
j r j r
j s j s

rr r r
s s s sj

t t

t t t t

t t t t

β β

β β β β

β

++

= +
≠

+ ++ +

= + = +
≠ ≠

++ +

  
   − − +  
  
   

 
  = − + − +     
 

 − + +  

∑

∑ ∑

( ) ( )

( )  ( ) ( ) ( )

( ) ( )  ( )

( )  ( )

1 21 2
1 2

1 2
2 1

( 1)1)

1

2( 1) ( 1) ( 1)

1 1 1
,

( 1)( 1)

1

2( 1)

ˆ ˆCov ,

ˆ ˆ ˆ + Var Cov ,

ˆ ˆ ˆ1 2 Var 2 Cov ,

ˆVar

J
r

j sj
j r
j s

J J J
r r r

j j jj j j
j r j r j r
j s j j s

j j
J

rr
s s j sj

j r
j s

r
jj

t

t t t

t t

t

β β

β β β

β β β

β

++

= +
≠

+ + +

= + = + = +
≠ ≠

≠

++

= +
≠

+

 −
 

   +     

 = − −  

 +  

∑

∑ ∑ ∑

∑

( ) ( )1 21 2
1 2

2 1

( 1) ( 1)

1 1 1

ˆ ˆCov ,
J J J

r r
j jj j

j r j r j r
j j

t t β β+ +

= + = + = +
≠

 +   ∑ ∑ ∑
(B67) 

By expanding  

( 1)( 1)
1

ˆ ˆVar Var , 1,2,... 1J rr
r r j jj rt t r Rβ β ++

= +
   = − = −    ∑ , we have: 

 ( )  ( ) ( )  ( ) ( ) ( )1 21 2
1 2

2 1

22 ( 1) ( 1) ( 1)( 1)

1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J

r r rr
r r j j jj j j

j r j r j r
j j

t t t tβ β β β+ + ++

= + = + = +
≠

   = +     
∑ ∑ ∑ (B68) 

 Substituting for ( )  ( )2( 1) ˆVarr
r rt β+  in (B67): 

 

 ( )

( ) ( ) ( )  ( )  ( )

( 1)( 1)
1

2 ( 1)( 1) ( 1)
1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ1 2 Var Var 2 Cov ,

J rr
s s j jj r

j s

J rr r
s s r r j sjj r

j s

t t

t t t

β β

β β β β

++
= +
≠

++ +
= +
≠

    − − + 
    

= − + −

∑

∑
(B69) 

Equating (B66) and (B69), the two sides of (B65), and simplifying: 

 ( )  ( )  ( )
( 1)( 1)

1( 1) ( 1)
ˆ ˆ ˆ ˆ ˆCov , Var Cov ,

rr
J js

r s s j sj rr r
j sr r

tt
t t

β β β β β
++

= ++ +
≠

    = − + 
    

∑ , 

for 1, 2,... 1 and 1,r R s r J= − = +   

Theorem B6 

For an identity-link binomial model with 1J ≥  independent non-constant covariates fitted by the exact method 
to data having  (1 )R R J≤ ≤  distinct sets of values of the covariates (including the constant) for which the 
estimated outcome probability evaluated at the ML solution is zero, the estimated coefficient and the 
corresponding standard error of the constant covariate are given by:  
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 (1)
0

1

ˆ ˆ
J

jj
j

xβ β
=

= −∑  (B70) 

and 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B71) 

and the estimated covariances between the exact estimate of the coefficient of the constant covariate and the 
exact estimates of the coefficients of the J  non-constant covariates are given by: 

  ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,J
j j j jj j j

j j
x xβ β β β β=

≠

 
 = − +
  

∑  (B72) 

for  1, 2,j J= … .  

Proof of Theorem B6 

The formula (B70) has been proved through the proof of Theorem 1. The proof is focusing on the (B71) and 
(B72). 

Since (1)
0

1

ˆ ˆ
J

jj
j

xβ β
=

= −∑ , we get the variance function of 0β̂  as: 

 

 ( ) 



(1)
0

1

(1)

1

ˆ ˆVar Var

ˆVar

J

jj
j

J

jj
j

x

x

β β

β

=

=

 
 = −
 
 
 
 =
 
 

∑

∑
 (B73) 

Expanding the (B73): 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B74) 

The formula of standard error for the estimate of constant is obtained by square rooting both sides of (B74): 

  ( ) ( )  ( )  ( )1 21 2
1 2
1 2

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
J J J

j j jj j j
j j j

j j

x x xβ β β β
= = =

≠

= +∑ ∑ ∑  (B75) 

To obtain the formula of covariance between the estimate of constant and the estimate of coefficients in the 

model, we begin with adding a ˆ
jβ  to both sides of (1)

0
1

ˆ ˆ
J

jj
j

xβ β
=

= −∑ : 

 ( ) 11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ1  , 1, 2,J
j j jj j j

j j
x x j Jβ β β β=

≠

 
 + = − − + =
  

∑   (B76) 



Appendix 

177 
 

Thus: 

 

 ( )  ( )

 ( )

11 1
1

11 1
1

(1) (1)
0 1

(1) (1)
1

ˆ ˆ ˆ ˆVar Var 1  

ˆ ˆ=Var 1

J
j j jj j j

j j

J
j jj j j

j j

x x

x x

β β β β

β β

=
≠

=
≠

    + = − − + 
    

 
 − +
  

∑

∑
 (B77) 

 Expanding the left-hand side of (B77): 

  ( )  ( )  ( )  ( )0 0 0
ˆ ˆ ˆ ˆ ˆ ˆVar Var 2Cov , Varj j jβ β β β β β+ = + +  (B78) 

Expanding the right-hand side of (B77): 

 

 ( )

( )  ( ) ( )  ( ) 

11 1
1

1 11 1` 1 1
1 1

(1) (1)
1

2(1) (1) (1) (1)
1 1

ˆ ˆVar 1

ˆ ˆ ˆ ˆ           = 1 Var 2 1 Cov , Var

J
j jj j j

j j

J J
j j j jj j j j j j

j j j j

x x

x x x x

β β

β β β β

=
≠

= =
≠ ≠

 
 − +
  

 
 − + − +
 
 

∑

∑ ∑
(B79) 

Since: 

  ( )  ( )  ( )1 1 2 31 1 2 3
1 1 2 3
1 1 2 3

3 2

2(1) (1) (1) (1)

1 1 1 1

ˆ ˆ ˆ ˆVar Var Cov ,
J J J J

j j j jj j j j
j j j j
j j j j j j j j

j j

x x x xβ β β β
= = = =
≠ ≠ ≠ ≠

≠

 
     = +        
 

∑ ∑ ∑ ∑ , (B80) 

expand (B79) by (B80) as: 

 

 ( )

 ( )  ( )  ( ) ( )  ( )

( )  ( )  ( )


11 1
1

11 1
1

1 11 1 1 1
1 1

22 3

(1) (1)
1

2(1) (1) (1)
1

2(1) (1) (1)
1 1

(1) (1)

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ ˆVar 2 Var Cov , Var

ˆ ˆ ˆVar 2 Cov ,

ˆ ˆCov ,

J
j jj j j

j j

J
j j j j jj jj j

j j

J J
j j jjj j j j

j j j j

jj j

x x

x x x

x x x

x x

β β

β β β β β

β β β

β β

=
≠

=
≠

= =
≠ ≠

 
 − +
  

 
 = − + +
  

 + +  

+

∑

∑

∑ ∑

( )

 ( )  ( )  ( )

( )  ( )  ( )

32 3
2 3

3 2

11 1
1

1 22 1 21
1 2

1 1

(1) (1)
1

2(1) (1) (1)
11 1

ˆ ˆ ˆ ˆ             Var 2 Var Cov ,

ˆ ˆ ˆ             Var Cov ,

J J
jj j

j j j j
j j

J
j j j jj j j

j j

J J J
j j jj j j jj j

j j

x x

x x x

β β β β

β β β

= =
≠ ≠

≠

=
≠

== =
≠

 
 

 
 = − +
  

   + +    

∑ ∑

∑

∑ ∑ ∑

(B81) 

Replacing and simplifying (B81) by (B74): 
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 ( )

 ( )  ( )  ( )  ( )

11 1
1

11 1
1

(1) (1)
1

(1) (1)
0 1

ˆ ˆVar 1  

ˆ ˆ ˆ ˆ ˆ             Var Var 2 Var Cov ,

J
j jj j j

j j

J
j j j jj j j

j j

x x

x x

β β

β β β β β

=
≠

=
≠

 
 − +
  

 
 = + − +
  

∑

∑
 (B82) 

Substituting (B78) and (B82) into (B77), and simplifying as: 

  ( )  ( )  ( )11 1
1

(1) (1)
0 1

ˆ ˆ ˆ ˆ ˆCov , Var Cov , ,  1, 2,J
j j j jj j j

j j
x x j Jβ β β β β=

≠

 
 = − + = …
  

∑  (B83) 
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Table B1: Simulation results (with results that the standard error is not missing for the additive binomial 
method shown for comparison) 

 
 All simulations 

(n = 20,000)   
 

Simulations with a boundary vector  

  
Exact method    Exact method   

 
Additive binomial§  

Setting 
Bias* MSE† Coverag

e‡ n Bias* MSE† Coverag
e‡ n Bias* MSE† Coverag

e‡ 

1 β0 –0.482 0.136 95.5 10,683 0.100 0.122 94.8 4,636 0.475 0.115 92.8 
 β1 –6.957 0.108 95.1 10,683 –2.334 0.101 94.7 4,636 –7.664 0.101 92.9 
 β2 –1.248 0.002 97.0 10,683 –0.490 0.001 96.6 4,636 –1.126 0.001 96.3 

2 β0 –0.465 0.135 95.6 10,662 0.103 0.119 95.3 9,428 0.142 0.115 93.9 
 β1 –7.086 0.107 95.4 10,662 –2.224 0.098 95.2 9,428 –4.482 0.096 94.1 
 β2 –1.245 0.002 97.2 10,662 –0.485 0.001 97.0 9,428 –0.597 0.001 96.1 

3 β0 –0.720 0.321 95.7 10,739 –0.143 0.266 95.1 4,773 –0.084 0.246 95.2 
 β1 –7.067 0.108 95.0 10,739 –1.546 0.099 94.9 4,773 –7.231 0.098 93.5 
 β2 –1.248 0.002 96.8 10,739 –0.547 0.001 96.5 4,773 –1.149 0.002 96.9 

4 β0 –0.665 0.317 95.6 10,579 –0.103 0.267 94.8 9,349 –0.121 0.262 93.9 
 β1 –7.987 0.108 94.9 10,579 –2.087 0.101 94.3 9,349 –4.280 0.099 93.0 
 β2 –1.187 0.002 97.0 10,579 –0.509 0.001 96.5 9,349 –0.630 0.001 95.8 

5 β0 –0.774 0.598 96.0 10,262 –0.087 0.478 95.0 4,738 –0.257 0.464 95.2 
 β1 –7.994 0.108 95.1 10,262 –3.210 0.101 94.7 4,738 –8.782 0.101 93.5 
 β2 –1.167 0.002 97.0 10,262 –0.405 0.001 96.4 4,738 –1.056 0.002 96.5 

6 β0 –0.798 0.599 96.3 10,285 –0.114 0.473 95.5 9,052 –0.168 0.464 94.7 
 β1 –7.647 0.108 95.3 10,285 –2.889 0.100 94.7 9,052 –4.914 0.097 93.3 
 β2 –1.181 0.002 97.0 10,285 –0.422 0.001 96.5 9,052 –0.553 0.001 95.7 

7 β0 –0.923 0.983 96.2 11,744 –0.268 0.765 95.8 4,630 –0.462 0.755 95.7 
 β1 –7.413 0.108 94.8 11,744 –2.717 0.100 94.8 4,630 –8.359 0.100 93.3 
 β2 –1.236 0.002 96.9 11,744 –0.480 0.001 96.7 4,630 –1.114 0.002 96.5 

8 β0 –0.910 0.977 96.3 11,567 –0.265 0.771 95.9 10,056 –0.361 0.767 95.4 
 β1 –7.655 0.108 94.9 11,567 –2.759 0.100 94.9 10,056 –4.592 0.097 93.9 
 β2 –1.222 0.002 97.1 11,567 –0.482 0.001 96.7 10,056 –0.641 0.001 96.1 

* Average value of percent small-sample bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β= − = =∑   

† Average value of mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Var ,  0,1, 2; 1,2,...n
jk j jkkn j k nβ β β=

 − + = =  
∑ . 

‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
§ The simulation results with a boundary vector in the additive binomial only include the samples that the 
standard error was reported.  
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Table B2: Simulation results 

  Simulations with a boundary vector on 
the lower bound   Simulations with a boundary vector on 

the upper bound 
 

Setting n Bias* MSE† Coverage‡ n Bias* MSE† Coverage‡ 

1 β0 5167 –0.264 0.131 96.7 5516 0.441 0.113 93.1 
 β1 5167 0.956 0.100 96.0 5516 –5.415 0.101 93.5 
 β2 5167 –0.094 0.001 97.2 5516 –0.861 0.001 96.0 

2 β0 5188 –0.256 0.128 97.1 5474 0.442 0.111 93.6 
 β1 5188 1.255 0.097 96.2 5474 –5.521 0.099 94.2 
 β2 5188 –0.082 0.001 97.7 5474 –0.868 0.001 96.3 

3 β0 5091 –0.291 0.298 95.7 5648 –0.009 0.237 94.5 
 β1 5091 2.566 0.100 95.5 5648 –5.253 0.099 94.2 
 β2 5091 –0.177 0.001 96.8 5648 –0.881 0.001 96.4 

4 β0 5054 –0.264 0.294 96.4 5525 0.044 0.242 93.4 
 β1 5054 2.397 0.099 95.3 5525 –6.189 0.101 93.3 
 β2 5054 –0.150 0.001 97.3 5525 –0.838 0.001 95.8 

5 β0 4645 –0.024 0.523 95.9 5617 –0.139 0.440 94.2 
 β1 4645 0.901 0.101 95.6 5617 –6.610 0.101 94.0 
 β2 4645 0.062 0.001 96.9 5617 –0.791 0.001 96.1 

6 β0 4728 –0.065 0.517 96.1 5557 –0.155 0.426 95.0 
 β1 4728 1.025 0.101 95.3 5557 –6.219 0.100 94.1 
 β2 4728 0.021 0.001 97.0 5557 –0.798 0.001 96.0 

7 β0 6240 –0.222 0.819 96.7 5504 –0.319 0.705 94.8 
 β1 6240 0.186 0.100 95.4 5504 –6.008 0.099 94.2 
 β2 6240 –0.153 0.001 97.4 5504 –0.851 0.001 96.1 

8 β0 6048 –0.241 0.820 96.7 5519 –0.292 0.717 94.9 
 β1 6048 0.529 0.099 95.6 5519 –6.362 0.101 94.1 
 β2 6048 –0.172 0.001 97.2 5519 –0.823 0.001 96.2 

* Average value of percent bias:  ( ) ( )1
ˆ100 ,  0,1, 2; 1,2,...n

jk j jkn j k nβ β β=
 − = = ∑   

† Average value of mean squared error: ( ) ( )  ( )2
1

ˆ ˆ100 Varn
jk j jkkn β β β=

 − +  
∑  for 0,1, 2j =  and 1,2,k n=  . 

‡ Percentage of 95 percent confidence intervals covering the design value of the coefficient. 
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Figure B1: Density plots of the sampling distributions (n=1000, 20000 replications, 8 settings) of the binary 

covariate 1β . The solid lines represent replications with a boundary vector. The dotted lines represent 

replications without a boundary vector.    
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Figure B2: Density plots of the sampling distributions (n=1000, 20000 replications, 8 settings) of the binary 

covariate 2β . The solid lines represent replications with a boundary vector. The dotted lines represent 

replications without a boundary vector. 
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Appendix C 

Supplementary materials of the marginal log binomial model estimated by 
the generalised estimating equation using the exact method 

 
 

The implementation of the exact method and the proofs of Theorem C1 and C2 

Suppose that there are K  clusters/subjects in data. There are in  observations included in the cluster 
,  1, 2,...i i K= . We denote a response variable of pth observation in the cluster i  as ,  1, 2,...ip iy p n= . The 

relationship between the mean ipµ  of ipy  and the linear combination of covariates vector 

( )1 2, ,...ip ip ip ipJx x x=x  and the marginal model regression parameters ( )0 1 2, , ,... Jβ β β β=β  is written as: 

 ( ) 0 1 1 2 2log ...ip ip ip ip J ipJx x xµ β β β β′= = + + + +x β . 

Assume that there are ( )0R R J< ≤  distinct covariate vectors of observations in data with the estimated mean 

evaluated at the estimates β̂  equal to 1, which are defined as the boundary vectors. Denote the 

( )th 1, 2,...r r R=  boundary vector as ( )rx , which shares the covariate values with rn  observations. The fitting 
procedure of the exact method can be summarised in seven steps: 
 

1. Eliminating the constant by subtracting from the constant and each non-constant covariate its 
respective value in the boundary vector: 

 (1) (1) , 0,1, 2,...ijpijp jz x x j J= − = , 

where i denotes cluster, j denotes the position of a covariate, and p denotes the position in the cluster. 

2. When there are multiple boundary vectors ( 1)R > , eliminating the first 1R −  non-constant covariates 
by re-parametrising the covariates according to the scheme: 

 ( )

( )
( ) ( 1) ( 1) ( ) ( 1)

, 1( )
1

where , 2,3,...r
ijp j

r
jr r r r r

ijp ijp j ijpip rr x x
r

t
z z z t z r R

t
− − −

− =
−

 
 = − = =
 
 

 

3. Drop the observations with covariate vectors (1) (2) ( ), ,... Rx x x  respectively, which make no 

contribution to the estimation, and fitting the model ( )( )exp J R
ip j ijpj R zµ β== ∑  without a constant and 

with 1J R− +  covariates to the remaining 1 2 ... Rn n n n− − − −  observations to obtain the estimates 

1
ˆ ˆ ˆ, ,...R R Jβ β β+  of the coefficients of the non-eliminated non-constant covariates and their estimated 

variances  ( )ˆVar ,  , 1,...j j R R Jβ = +  and covariances  ( )1 2
ˆ ˆCov ,j jβ β , 1 2j j≠ , 1j  and 

2 , 1,...j R R J= + . 
4. Estimate the coefficients ˆ , 1, 2,... 1r r Rβ = −  of the 1R −  eliminated covariates as: 

 
( 1)

1
( 1)

ˆ
ˆ

J r
j jj r

r r
r

t

t

β
β

+
= +

+
= −
∑

 

5.  Estimate the standard error of the estimates of the 1R −  eliminated covariates as: 

 ( )  ( )  ( )1 2
1 2

1 2
2 1

2 ( 1) ( 1)( 1)

( 1) 2( 1)1 1 1

ˆ ˆ ˆ ˆSE Var Cov ,
r rrJ J J j jj

r j j jr rj r j r j rr rj j

t tt

t t
β β β β

+ ++

+ += + = + = +
≠

         = +    
             

∑ ∑ ∑ , 
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for 1, 2,... 1r R= − , where  ( )ˆVar jβ  denotes the estimate of variance for ˆ
jβ , and  ( )1 2

ˆ ˆCov ,j jβ β  denotes 

the estimated covariance between the estimated coefficients 
1

ˆ
jβ  and 

2
ˆ

jβ ; 

6. Estimate the coefficient of the constant covariate from the boundary condition as: 

 (1)
0 1

ˆ ˆ J
j jj xβ β== −∑  

7.  Estimate the standard error of constant as: 

 ( )  ( )  ( )1 21 2
1 2

2 1

2(1) (1) (1)
0

1 1 1

ˆ ˆ ˆ ˆ,
J J J

j j jj j j
j j j

j j

SE x Var x x Covβ β β β
= = =

≠

    = +     
∑ ∑ ∑ . 

The derivation and proofs of the formulas involved in those seven steps were available in the paper by Petersen 
and Deddens 9. However, the formula to estimate the covariances of the estimates of coefficients 
ˆ ,  0,1, 2,... 1r r Rβ = −  were missing. We provide the following two theorems to fix the deficiency. 

Theorem C1 

For a marginal log binomial model estimated by generalised estimating equations with 1J ≥  independent non-
constant covariates fitted by the exact method to data having R (1 ≤ R ≤ J) distinct sets of values of the 
covariates (including the constant) for which the estimated outcome probability evaluated at the solution is 
unity, the estimated covariances between the estimates of the coefficients of the R − 1 eliminated non-constant 
covariates and the estimates of the coefficients of the other non-constant covariates are given by: 

  ( )  ( )  ( )
( 1)( 1)

( 1) ( 1)
1

ˆ ˆ ˆ ˆ ˆCov , Var Cov ,
rr J

js
r s s j sr r

j rr r
j s

tt
t t

β β β β β
++

+ +
= +
≠

 
  
 = − + 
   

 

∑ , 

for 1, 2,... 1r R= −  and 1,...s r J= + . 

Proof of Theorem C1 

In successive re-parameterizations, the boundary conditions require (1)
0 0,J

j ijpj zβ= =∑  (2)
1 0,J

j jj tβ= =∑
(3)

2 0J
j jj tβ= =∑  and, in general for 1R > : 

  

 ( 1) 0, 1, 2,... 1J r
j jj r t r Rβ +

= = = −∑  (C1) 

for all observations that share those covariate values. Hence: 

 ( 1)( 1)
1

ˆ ˆ , 1, 2,... 1J rr
r r j jj rt t r Rβ β ++

= += − = −∑  (C2) 

Adding to each side of (C2) the estimated coefficient of one of the 1J R− +  covariates remaining in the model: 

( ) ( 1)( 1) ( 1)
1

ˆ ˆ ˆ ˆ1 , 1, 2,..., 1;  1,J rr r
r r s s s j jj r

j s
t t t r R s r Jβ β β β ++ +

= +
≠

 
 + = − − + = − = +
  

∑   

Thus: 
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( 1)

( 1)( 1)

1

ˆ ˆVar

ˆ ˆ        Var 1 , 1,2,..., 1;  1,

r
r r s

J
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s s j j
j r
j s

t

t t r R s r J

β β

β β

+
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≠

+

  
   = − − + = − = +  
  
   

∑ 

 (C3) 

Expanding the left-hand side of (C3): 

  ( ) ( )  ( )  ( )  ( )2( 1) ( 1) ( 1)ˆ ˆ ˆ ˆ ˆ ˆVar Var 2 Cov , Varr r r
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From (C2),  ( )  ( )( 1)( 1)
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Substituting for ( )  ( )2( 1) ˆVarr
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Equating (C4) and (C7), the two sides of (C3), and simplifying: 
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Theorem C2 

For a marginal log binomial model estimated by generalised estimating equations with 1J ≥  independent non-
constant covariates fitted by the exact method to data having (1 )R R J≤ ≤  distinct sets of values of the 
covariates (including the constant) for which the estimated outcome probability evaluated at the  solution is 
unity, the estimated covariances between the exact estimate of the coefficient of the constant covariate and exact 
estimates of the coefficients of the J  non-constant covariates are given by: 
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Proof of Theorem C2 
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It follows that: 
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Expanding the left-hand side of (C8):  
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and gathering like terms: 
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Since 
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Substituting (C9) and (C11) into (C8), and simplifying: 
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Figure C1: Density plots of the sampling distributions (10000 replications, eight scenarios) of the continuous 
covariate 2β . The density plots are drawn in ascending order of the average percent bias of all replications in 
each scenario. The density curves of the exact method under three criteria in each scenario are close together 
and do not spread out as much as the curve of Poisson. 
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