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This dissertation addresses the problem of dynamic graph partitioning in a stream-

ing manner in the cloud. This problem applies to real-world graph applications such

as PageRank, Social Networks, Shortest Path and so on. The scale of graphs of these

applications has increased to such a degree that a single machine is not capable of

efficiently processing large graphs. Thereby, efficient graph partitioning and wise

resource allocation are necessary for these large graph applications.

At the beginning of this study, this dissertation evaluates two existing streaming

graph partitioning algorithms in the cloud. After having completed the empirical

study of these algorithms in the cloud machines, we identified the following research

problems: 1) There are no existing streaming graph partitioning methods to find an

optimised number of machines and scale the resources, as per the demands of an

ever-increasing graph dataset. 2) How can we minimise the number of edge-cuts

while balancing the load in a streaming manner in the cloud environment? 3) How

can we use dynamic graph partitioning in a streaming manner to reduce the edge-

cuts and the load imbalance during the partitioning? We also address the scaling of

the resources as per the demands of dynamic graph data.

Streaming graph partitioning is a variant of traditional graph partitioning which

accepts graph input in a one-pass manner. This partitioning technique was intro-

duced to overcome a memory bottleneck issue in traditional graph partitioning. In

streaming graph partitioning, it is necessary to utilise the resources as per the de-

mands of graph data stream. This thesis proposes an auto-scaling algorithm to de-

termine the required number of machines, based on the upcoming stream data rate
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and the service time at the worker machines. The proposed method helps to min-

imise the cost and provide the best use of cloud resources by allocating the number

and types of machines wisely. Once the optimised resources and costs are fixed, this

study looks into the problem of graph partitioning in a streaming manner, with the

aim of minimising inter-machine communication and reducing the computational

load imbalance as much as possible. In order to achieve these goals, we propose

a window-based, streaming graph partitioning algorithm. The proposed method

utilises sliding window technology with a partitioning strategy and the load balanc-

ing method as well.

After exploring the streaming graph partitioning with the static datasets, we

studied the problem of the dynamic behaviour of graph datasets. This problem was

how to partition dynamic graph data while minimising the edge-cut and keeping

the computational load imbalance to a minimum. In addition to this partitioning

technique, we also proposed an auto-scaling algorithm which adaptively scales in

and out the machines, as per the demands of the computational cost.
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Chapter 1

Introduction

1.1 Research Problem and Motivation

At present, graph data are huge, and increasing incrementally. These huge datasets

are: knowledge graph, web data, social network data, and biological network to

name a few. These data can be represented as a graph, for example, in a social

network; a user can be represented as a vertex and their relation to other users

are edges. In addition to growing data in a network, these real-world networks

or graphs change continuously over time, by adding or removing vertices or edges

that generate a large dynamic graph. For example, online activity and interactions

from electronic communication, social media and content sharing are ever-changing.

These processes produce a huge amount of continuous, interaction data over time,

which is represented as dynamic graph. A recent statistic [19] shows that Twitter has

over 43 million users and there are more than 1.5 billion social relationships over this

network. This indicates that the trend of exponential growth in data is significant.

In graph streams, individual edges of the underlying graphs arrive sequentially in a

stream, unlike traditional graph-data which has fixed number of vertices and edges.

A huge growth of information production has been observed in the last few years.

IBM estimates that 2.5 quintillion bytes of data are being generated every day. This

makes it easy to conclude that 90% of today’s data in the world has been generated in

the last 2 years [49]. To meet today’s huge graph data processing demands, efficient

graph processing systems are required.

A distributed system is one of the best solutions to allocate enormous amounts

of graph data before processing real-world applications. Graph partitioning is the
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(A) Before Partition a
Graph

(B) After Partition a
Graph

FIGURE 1.1: Graph Partition

technique which distributes numerous graph data between distributed machines.

It achieves good performance by allocating computational workloads among the

machines and creates communication channels between them. Graph partitioning

algorithms distribute the nodes to among distributed machines with the aim of min-

imising graph node communication and minimising edge-cut between partitions.

Another aim of good partitioning of huge graph-structured data is to allocate equally

the graph vertices between the machines; this is called balanced partitioning. One of

the most popular balanced partitioning is called k-way partitioning [9] which is an

NP hard problem which means that the best partitioning solution is difficult but an

optimal solution is possible. Much research has been undertaken in order to com-

pute large-scale graph data,the most popular being Google’s Pregel [72] which aims

to process large-scale graph data by using a message passing technique from one

node to another. It uses the Bulk Synchronous Processing (BSP) system to pass the

message between nodes and process them in parallel. In Figure 1.1 the before and

after partitioning a graph is depicted.

In streaming graph partitioning, the algorithm receives graph input in a stream-

ing manner and the algorithm immediately decides the respective partition. This

is also called a one-pass algorithm as each vertex appears once as an input. The

basic problem of this one-pass streaming algorithm is that the current input does

not have any idea what is coming up next. It does affect the entire algorithmic pro-

cess. Another challenge in streaming partitioning is the arrived data has little or
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no information of itself. This kind of partitioning algorithm has the chance to read

vertices and edges only once and it is processed as each vertex arrives. In contrast,

typical graph partitioning algorithm loads the entire graph into the machine before

sending it to the respective partition. This makes streaming partitioning faster than

traditional partitioning and creates an efficient system for post-partitioning compu-

tation. However, since the vertices comes one by one it contains limited information

of each vertex, which degrades the quality of partition. In Figure 1.2 shows the flow

of streaming partitioning technique

FIGURE 1.2: Streaming Graph Partitioning

In many real-world scenarios, graph data are evolving and analytics happen con-

tinuously as graph structure changes dynamically over time. For example, new ac-

counts are created and deleted every day in online services such as Facebook, Skype

and Twitter. There are a few other applications in the real-world dealing with dy-

namic graphs. They are social networks, communication networks, weather fore-

casts, biological networks and web data in which the edges of underlying graphs are

received and updated sequentially. Vertices and edges of a dynamic graph are con-

tinuously being added and removed from the partitioned graph. Consequently, it is

difficult to manage and locate newly added vertices and edges to a proper partition,

while maintaining the balance of the workload and reducing the vertex-cuts/edge-

cuts between partitions.

A cloud distributed system has much more flexibility than any other shared

nothing cluster system. Given the success of distributed computing, cloud stor-

age has become one of the popular distributed systems due to its cost effectiveness,
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quick deployment facility, and easy access information. Single machine storage ap-

proaches do not scale due to limited capacity. Due to the ever-increasing size of

the graph, deployments of applications are moving from small-scale cluster server

towards the cloud which provides massive storage and significant parallelism. A

cloud consists of tens of thousands of inter-connected machines, which provides

much more flexibility in deploying graph data. On top of that, cloud computing has

tremendous data recovery options if data is lost.

1.2 Limitation of Existing Partitioning Technique

Graph partitioning is one of the classic graph theory problems in connection with

some well-known graph-oriented applications, such as social networks, web crawl-

ing, ranking a web page and so on. The two main goals of a graph partitioning

algorithm are: 1) Minimising the inter-partitioning communication and 2) Balanc-

ing the load as much as possible between partitions. With this aim of partitioning,

time efficiency and memory bottlenecks play a role when an ever-increasingly large

graph is required for partitioning. Streaming graph partitioning was introduced in

order to overcome the memory bottleneck and address time efficiency issues.

A number of streaming graph partitioning algorithms was proposed to address

the memory bottleneck issue. However, there are still some limitations to overcome

in order to improve the performance of real-world graph applications. For example,

most of the proposed study did not consider real-world graph datasets to evaluate

their partitioning algorithms. Moreover, no streaming graph partitioning algorithms

were evaluated in the cloud environment as cloud computing is one of the most

flexible distributed computing environments for the recent real-world applications.

In a dynamic graph application, vertices and edges are frequently being removed

or added over time from the partitioned graph. It is difficult to keep communication

to a minimum when the graph changes in real-time during partitioning. Conse-

quently, it is challenging to maintain performance in graph partitioning in a stream-

ing manner, while graph is being updated. There has been study undertaken to

partition a dynamic graph; however, no study has considered the partitioning tech-

nique in a streaming manner to partition a dynamic graph.
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1.3 Problem Statement and Objectives

This dissertation focuses on the following problem: How to develop an efficient dynamic

graph partitioning technique in a streaming manner in order to minimise inter-machine

communications, and to reduce the load imbalance in a scalable cloud environment?

Based on the limitations and research problems, our aim is to improve the effi-

ciency of partitioning dynamic graphs by designing a cloud based distributed stream-

ing algorithm which will improve scalability in a big graph dataset. We have the

following objectives to achieve in this dissertation:

• To design an optimised distributed dynamic graph partitioning in a steaming

manner that will minimise the edge cut/vertex cut between partitions.

• To develop a load balancing distributed algorithm by maintaining good vertex

locality.

• To develop a scalable dynamic graph partitioning method that optimises the

cloud resources and cost.

1.4 Research Questions

In this section, we discuss the research question we address in this dissertation:

Research Question 1: Allocating and utilising the cloud resources in the dis-

tributed environment is a fundamental problem. In streaming graph partitioning, it

is necessary to determine the number of allocated machines to distribute the graph,

in order to utilise the cloud resources and meet the demands of the upcoming stream

of data. How can we properly utilise the cloud resources and optimise resource costs

in streaming graph partitioning?

Research Question 2: Minimising edge-cut/vertex-cut is the main concern in

a good partitioning algorithm. How can we minimise the edge-cut/vertex-cut to

maintain the least communication in a distributed system for static graph data? For

example, an application with a huge graph dataset requires dividing up the com-

putational load in a distributed environment when it receives streams of data, over

time, to handle. Thus, partitioning is one of the techniques to distribute the work-

load between machines. A streaming graph partitioning method takes a vertex as an
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input and the vertex arrives with its associate edges. The graph partitioner will de-

cide immediately the respective partition of a vertex as it arrives. A vertex definitely

has a connection to other vertices. This vertex might reside in another partition, this

is called external connection of a vertex. Partitioning has to be done in such a way

that inter-partition communication could be reduced substantially and outperform

the previous work.

Streaming partitioning is partially behaves as a partitioning of dynamic graph.

To answer this research question, we use static graph to understand the behaviour

of streaming partitioning with static graphs before we use the dynamic graph.

Research Question 3: A dynamic graph changes over time. The vertex of a graph

might get a new or lose connection over time. How can we provide good partitions

in a streaming manner by maintaining good vertex locality, in order to minimise

the communication between machines, when vertices are coming in and going off

continuously over time? A time evolving graph changes over time. A best example

is a Twitter post; adding a new Twitter post or deleting a post by a user in the social

network creates new connections and changes the graph structure. How can we

decide a partition to send this newly added connection (vertex and edge) taking

into account the need to minimise the communication? An efficient partitioning

technique is required to handle this dynamic behaviour of a graph.

1.5 Proposed Solution

In streaming graph partitioning, the data comes in a stream manner one by one.

Based on the arrival rate of the upcoming stream of data, it is necessary to determine

the number of machines required for a distributed graph processing system. We use

a M/M/• queuing theory model to select the number of machines before starting

partitioning. This is one of several well-studied solutions to select the number of

machines in advance based on data arrival rate. Additionally, we use a threshold

based auto-scaling technique to select the type of machine in order to optimise the

cost of resources. The auto-scaling machine decides the type of machines (Small or

Medium) based on the machine capacity and computational load.
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Some research has been undertaken in order to address this streaming graph par-

titioning issue. However, we suggest that a novel streaming window-based graph

partitioning in the cloud environment has not been yet studied. Creating a stream

window helps to improve partitioning quality, as the window keeps more than one

vertex and provides more information of a vertex than a single vertex.

Receiving the graph input in the one-pass manner and partitioning a dynamic

graph at the same time is a new kind of partitioning technique which we studied

in this dissertation. A dynamic graph is continuously being updated (adding and

deleting vertices) from its partitioned graphs. We propose a partitioning algorithm

that assigns the vertices and edges based on the current graph partitioning informa-

tion which was stored in the master machine. The algorithm uses the information

to decide the proper allocation. In deciding the proper allocation a vertex assigning

method was employed to achieve a good quality of partition. A communication-

aware balancing strategy is used to minimise the computational load between par-

titions. This balancing strategy has taken a number of communications into account

to decide the imbalance between partitions.

1.6 Contributions of this Dissertation

This study contributes towards the problem of dynamic partitioning in a streaming

manner in a cloud environment. This study also considers the scaling and cost opti-

misation of cloud resources dynamically. The contribution of this dissertation are as

follows:

1.6.1 Literature Studies

This dissertation provides a comprehensive background and literature study of graph

partitioning algorithms and frameworks. The contents focus on graph-oriented ap-

plications and their uses, graph data structure and their representation, well-known

graph partitioning algorithm, streaming partitioning and dynamic partitioning al-

gorithms.
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1.6.2 Auto-scaling method in streaming graph partitioning

This dissertation designed an auto-scaling method to optimise the cost and resources

for the graph partitioning problem in the cloud. The study considers the one-pass

graph partitioning technique to evaluate the auto-scaling performance in utilising

the machine and cost.

1.6.3 Streaming graph partitioning algorithm

A graph partitioning algorithm is proposed in a streaming manner which is known

as a one-pass manner algorithm. The proposed method explores the sliding stream-

ing window technology with a partitioning technique and a load balancing strategy.

1.6.4 Dynamic Graph Partitioning

This dissertation also provides a scalable dynamic graph partitioning algorithm in

a streaming manner. The proposed study contributed the following things: a ver-

tex allocation technique, a communication-aware load balancing technique, and a

scaling algorithm to scale in and out of cloud machines, as per the demands of the

computational load.

1.7 Thesis Outline

Figure 1.3, shows the outline of the rest of this dissertation. The organisation of the

remaining chapters is as follows:
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FIGURE 1.3: Thesis Outline

Chapter 2 represents the background of graph partitioning, streaming partition-

ing and dynamic graph partitioning with a different type of dataset. This chapter

also discusses some well-studied graph partitioning frameworks in the real-world.

Extensive related studies of those are also discussed in this chapter. After reviewing

the literature studies, at the end of the Chapter 2, a gap analysis is provided.

Chapter 3 provides an experimental study of existing streaming graph partition-

ing algorithms in the cloud environment. This study finds the limitation of stream-

ing graph partitioning in the cloud environment.

Chapter 4 studies the auto-scaling of cloud resources and cost optimisation in

respect to dynamic graph partitioning in a streaming manner.

Chapter 5 explores the streaming graph algorithm technique with the static graph

dataset. This chapter proposes a novel streaming partitioning algorithm which is
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window-based alongside load balancing technique.

• Chapter 5 derived from the following publication:

- Md Anwarul Kaium Patwary, Saurabh Garg, & Byeong Kang, Window-

based Streaming Graph Partitioning Algorithm, Proceedings of the Australasian

Computer Science Week Multiconference, ACSW-2019, Sydney, Australia.

Chapter 6 contributes a graph partitioning algorithm for the dynamic dataset in

a streaming manner. This chapter also proposes a machine provision/de-provision

algorithm to scale the number of machines to use in the cloud environment.

Chapter 7 concludes the whole study in this dissertation and indicates some fu-

ture directions for research in relation to dynamic graph partitioning.
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Chapter 2

Background and Literature Review

This chapter discusses the exclusive backgrounds of graph partitioning algorithms.

Some well-known graph processing frameworks and their performance in relation

to graph partitioning algorithms are also discussed. A thorough literature review

in dynamic graph partitioning in a streaming manner is completed. We discuss the

key performance criteria and drawbacks in streaming graph partitioning with the

dynamic graph datasets. We also summarise the key findings of streaming graph

partitioning, dynamic partitioning algorithms and graph processing frameworks in

several tables. A gap analysis is discussed at the end of this chapter.

2.1 Graph Partitioning Background

In this section, we discuss the background of graph, graph partitioning and related

applications of graph partitioning in detail.

Graph partitioning has a long and rich history. It has been studied for many years

and these studies have uncovered many problems with many proposed solutions.

Large-scale graph-structured data is necessary to partition into several machines in

a cluster or several cloud machines, in order to attain efficient processing systems.

The amount of graph-structured data has been growing exponentially, at an un-

precedented pace. Consequently, graph related applications become sophisticated

to manage, represent and interpret. The partitioning technique has a large impact

on the performance of graph computation. Good partitioning algorithms always

improve performance to some extent (for example, reducing inter-partition commu-

nication, providing good locality). The cost of communication between vertices de-

pends on the number of edges between different machines. Partitioning technique
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plays an important role since it determines the communication cost and balances the

workload between computer nodes. Good partitioning algorithms also aim to bal-

ance the load between distributed machines. Making graph partitioning balanced

while minimising the number of edges between machines is highly important in

the production of an efficient distributed system. Graph partitioning is an NP-hard

problem [35]; it is really difficult to make the best solution for it. However, it is

possible to make an optimal partitioning solution. Despite this limitation, a good

number of high- quality graph partitioning algorithms has been developed in the

past decade.

2.1.1 Basic Definitions

In this subsection, we discuss the basic notation, definitions, structure, and repre-

sentation of a graph.

Graph Representation: Let G = (V, E) be a graph, where V = v1, v2, v3, ...vn is

the set of vertices and E ⇢ VxV is a set of edges of G. A pair (v, w) 2 E is called

an edge from v to w. A graph can be directed or undirected of its kind. A typical

undirected graph is shown in Figure 2.1.
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FIGURE 2.1: An Undirected Graph

The two most popular ways to represent a graph in a computer are as follows:

• Adjacency Matrix An adjacency matrix is defined as follows: A graph G =

(V, E) is represented by a |V|⇥ |V| boolean matrix A, in which

ai j =

(
1i f (i, j) 2 E

0i f (i, j) 2 E

The storage requirement of this graph representation is O(n2).

• Adjacency List A graph G = (V, E) is representation by n linear lists. The

i� th list contains all nodes j with (i, j) 2 E. Storage of this representation is

O(n + e). Adjacency list representation requires a lower storage requirement

than adjacency matrix

Objective Function: We consider an undirected graph G, with a set of edges E

and vertices V, such that G = (V, E). A balanced k-way partitioning divides the



14 Chapter 2. Background and Literature Review

graph into almost equal subsets. The graph partitioning algorithm uses a balanc-

ing constraint to keep all the partitions balanced. The balancing constraint can be

defined by Equation 2.1:

8i 2 {1..k} : |Vi|  Lmax := (1 + a)d|V|/ke (2.1)

where, a is the imbalanced parameter and is a non-negative real number. The vertex

v is adjacent to vertex u given there is an edge {u, v} 2 E. If vertex v and vertex u

reside in different partitions, this is called the cut edge. Thus, Eij := {{u, v} 2 E : u 2

Vi, v 2 Vj} is the set of edge-cuts between partitions. Edge-cut graph partitioning

always aims to reduce this cut.

2.1.2 Performance Matrices

A standard graph partitioning performance can be measured with the following ma-

trices:

Computation time: The amount of time it captures while a graph-partitioning

algorithm is running to partition a graph. More computation time is required if we

have more vertices to traverse. Consequently, the large-scale graph does require

more computation time to loop through all the vertices. Many graph partitioning

algorithms were developed to reduce computation time.

Communication cost: Sending and receiving messages between computer nodes

is a fundamental feature in a distributed system after partitioning a big graph. The

number of the messages has an impact on a system’s performance, as well as parti-

tioning performance. The number of communications is dependent on the number

edge-cuts occurring in a vertex partitioning. Good partitioning algorithms aim to

reduce the sum of the edge-cut, which can be defined by

k

Â
i=1

|ei| (2.2)

where, ei is the edge of a partition connected to other disjoint partition and k is

the total number of partitions.
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2.1.3 Dynamic Graphs

The graph changes over time in any application and are known as dynamic graphs.

In this section, we discuss the notation of dynamic graphs and their behaviour in

detail, for example how they are updated over time and how graph transition occurs.

A dynamic graph can be categorised in two ways according to the type of changes

happening in a graph [25]:

1) Fully Dynamic: A graph is said to be a fully dynamic graph in an application

if insertions and deletions of vertices or edges are allowed.

2) Partially Dynamic: A graph is called a partially dynamic graph in a graph

application if either deletions or insertions occur.

2.1.4 Edge-cut Partitioning

Edge-cut partitioning divides the graphs by cutting connections between vertices

and distributing the vertices to a different partition. The objective is to minimise

the number of edges across different partitions, while maintaining the balance of the

vertices. This can be defined as follows:

min
A

|{e|e = (vi, vj) 2 E, vi 2 Vx, vj 2 Vy, x 6= y} (2.3)

2.1.5 Vertex-cut Partitioning

Partitioning sale-free graphs is difficult if using edge-cut partitioning. Vertex-cut

is an alternative and is a better solution for scale-free graphs. Vertex-cuts divide

graphs by vertices and allocate the edges to the distributed machine. In vertex-

cuts, the number of edges on each machine is used to estimate the computation

cost of that machine, and the number of the replication of the vertices is used to

estimate the communication cost. Let each from graph dataset e 2 E be assigned

to a partition P(e) 2 {1, ..., p}. Then each vertex spans a set of different partitions

A(v) ⇢ {1, ..., p}. Consequently, |A(v)| is the number of replications of v among

different machines. The balanced vertex-cut partitioning can be defined by,

min
A

1
|V| Â

v2V
|A(v)| (2.4)
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Each of these has different advantages and disadvantages in different perspec-

tives. For example, a study[126]shows that vertex-cut partitioning is better than

edge-cut partitioning because the natural graph’s degree distribution is highly skewed,

thus vertex-cut partitioning performs better in such a case.

2.1.6 Applications of Graph Partitioning

There are several real applications available to generate massive datasets and those

datasets can be represented as graph-structured data, for example, a website in

which a page is considered as a vertex and links to another page as an edge. Conse-

quently, graphs have become key components of a wide range of applications, such

as PageRank, connected component, protein interaction, semi-supervised learning

based on random graphs walks, web search based on link analysis, scene recon-

struction based on Markov random fields, and social community detection based on

label propagation to name just a few examples.

PageRank: PageRank [12] is a well-known algorithm to rank a webpage and

find a most impacted webpage. Massive web pages consider graph-structured data

in which edges link one page to another and vertices as a webpage. A time efficient

PageRank calculation is possible by partitioning this huge graph into several ma-

chines. This process distributes the computational load between machines. A good

partitioning algorithm reduces communication between machines. This application

calculates the linking relationship between web pages. The Web can be represented

as a giant graph, in which the web pages are nodes, and links from one page to an-

other are edges. For example, if many people follow a Twitter user, the user will

be ranked highly. Despite the fact that the PageRank is very effective in calculating

the rank of a page, it is really computationally intensive for several reasons [17]: i)

The size of web graph data is huge; it is learnt that a web graph contains 1 trillion

web pages. ii) Secondly, the dynamism of web graphs: new web pages are always

being added and existing pages are always being deleted from a website and web

graph data. Thus, it does require repeated computation to keep updating the rank

of a page. An efficient algorithm is required to control this dynamicity. iii) Thirdly,

sometimes it is necessary to compute more than one PageRank vector. This happens

when there is more than one preference view for a page’s importance [17].
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Social Networks: Partitioning a dynamic graph efficiently in a streaming man-

ner is the primary objective of this research. The dynamic structure of a graph net-

work is present in most recent applications for example, social networks (such as,

Facebook and Twitter) that represent a large portion of the data on the internet tech-

nology today. Social media is one of the largest and most important graph networks

which provides dynamic behaviour of a graph network. Twitter recorded 13,000

Tweets per second [49]. It is also learned that there are 400 million Tweets per day

on average.

Shortest Path: Transportation networks and finding the shortest path from a big

map are one of the common applications in graph computing. The shortest path

algorithm calculates the shortest path between two destinations when there are two

or more ways to reach a destination from u to v, for example, the GPS system which

people use to find the shortest way to drive from one destination to another. Airline

carriers uses a map route which can naturally be formed as a graph; the vertices are

the airports and there is an edge from u to v, if there is a flight from location u to

location v. This path could be as directed (u, v) or undirected (u, v)(v, u). Observ-

ing such networks, we notice that there is small number of vertices (location), with

an enormous number of incident edges (connection between locations). In a similar

manner, another transportation network also can be formed. For example, rail net-

works, having each terminal as vertices and an edge is a route from one terminal to

another.

Data Clustering: Graph partitioning is also applicable in data clustering [51].

Researchers use the graph cut to cluster microarray data in a bioinformatics applica-

tion [46]. They group huge biological graph data based on their similar gene activity.

In computer vision, the application computer scientist also uses graph partitioning

in image segmentation.

Circuit Design: A practical example of this graph partitioning problem is circuit

board design [100]. How can a component of an electronic circuit be placed onto a

circuit board while minimising the number of wires or connections between cards?

A very large-scale integration (VLSI) system is one of the graph partitioning issues

that arises in order reduce the connection between circuits in designing VLSI. The
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main objective of this partitioning is to reduce the VLSI design complexity by split-

ting circuit component into smaller components. Another goal of good partitioning

is to reduce the number of connections among those circuit components. Here, ver-

tices are the cells and the edges are the wires between them.

Image Processing: Image segmentation is a most fundamental problem in image

processing of any applications. Graph partitioning is one of the most attractive tools

to split into several components of a picture. Pixels are denoted as a vertex and if

there are similarities between pixels, they are represented as an edge.

Connected Components: The connected component algorithm [41] labels each

connected component of the graph with the ID of its lowest-numbered vertex. For

example, in social networks, connected components can approximate clusters.

Parallel Computing: Another important use of graph partitioning is in paral-

lel computing [37]. Partitioning helps to divide the computational load equally to

parallel machines, in order to achieve faster computation and better performance.

Query Processing: Graph partitioning techniques play a pivotal role in answer-

ing a query and processing a query of an application. Graph partitioning distributes

the workload of these applications equally between machines and reduces the com-

munication between machines. Finding good partitions of a dynamically changing

graph is a challenging task and an NP-hard problem, because it does change over

time when adding and deleting connections of graph data. A new post on social

media from a user creates a new connection, and interacting with a post generates a

new connection in a graph.

2.2 Graph Partitioning Algorithms

In this section, we discuss some well-established graph partitioning algorithms and

analyse their limitations.

2.2.1 Kernighan-Lin Algorithm

Kernighan and Lin proposed a ground-breaking partitioning algorithm [62], which

is one of the oldest graph partitioning algorithms. This algorithm aims to reduce

the edge cut between two partitions by swapping vertices. It improves an initial
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partitioning by finding optimal subsets A ⇢ P1, B ⇢ p2. A major disadvantage of

this algorithm is the huge running time. In the worst case, the running time for

one iteration of the Kernighan-Lin algorithm is O(n2logn). The algorithm works by

exchanging vertices between machines or blocks. It repeatedly finds such set A, to B

until it reaches the optimum value. In Algorithm 1 shows the complete pseudocode

of Kernighan-Lin algorithm.

Algorithm 1 Kernighan-Lin Algorithm
Divide the graph into two parts A and B of equal size arbitrarily
Repeat until no more vertices are left:
Select ai 2 A, bi 2 B, such that the reduction in cost as large as possible and
neither ai, bi has been chosen before.
Swap ai and bi
Let Ci be the cost of the partition after swapping ai, bi
Return(A0, B0) corresponding to the smallest Ci observed.

2.2.2 Fiduccia and Mattheyes Algorithm

Some improvements have been made to the Kernighan-Lin Algorithm by Fiduccia

and Mattheyes [30]. The most significant improvement was in the reduction of run-

ning time. The main idea was that a vertex would move to another partition almost

immediately.

2.2.3 Multilevel Algorithm

This algorithm uses multi-level approaches by cutting a big graph into several sub-

graphs based on edge matching criteria before partitioning. Multilevel graph par-

titioning is based on edge coarsening and local search algorithm. It was initially

proposed by [62] to speed up spectral partitioning. Because, spectral partitioning

require huge computation of the eigenvector. Later, much improvement has been

made and it was declared as a multilevel algorithm by [13] as it is known today.

This approach has three phases to complete. They are:

Coarsening: In this phase, a coarse graph is constructed by matching edges by

using a matching algorithm. Matching is the most widely used method for coars-

ening a large graph. In the partitioning algorithm, KaPPa [47] uses a two-phase
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matching method to address two issues: i) a rating function and ii) matching al-

gorithm. Based on local information, a rating function calculates the possibility of

contracting an edge. A matching algorithm does maximise the sum of the rating of

the contracted edges. In this, process the newly constructed subgraph uses the input

graph to form a related, coarser graph, until a sufficiently small graph is obtained.

Initial partitioning: If the graph is sufficiently small enough to partition, then

the coarsening process will stop. Any initial graph algorithm, such as spectral parti-

tioning, or graph growing does the partitioning of these coarsened subgraphs.

Un-coarsening: Un-coarsening is also called the local improvement method. To

uncontract (un-coarsen) matching edges is the task of this phase. There are two

popular methods in this phase: i) max-flow min-cut computation between pairs of

blocks. ii) Multi-try Fiduccia and Mattheyes’ method [30]. It is a k�way local search

algorithm which obtained highly, localised performance.

George Karypis proposed a fast multi-level graph partitioning algorithm [58] for

irregular graphs. The proposed algorithm introduced an heuristic for the coarsening

part called heavy-edge heuristic in a multi-level partitioning scheme. The heuristic

generates a coarse graph based on a small factor from the size of the partition ob-

tained by multi-level refinement. Another multilevel algorithm was proposed by

Karpis [59] with the focus to minimise the time complexity for k�way partitioning.

METIS [62] was proposed to do graph partitioning based on the multi-level scheme.

METIS is also considered as a de facto standard for near-optimal partitioning in dis-

tributed graph partitioning and is one of best performing offline graph partition-

ing algorithms. METIS can reduce the communication cost between distributed

machine, despite having lengthy processing time for small graphs. However, for

medium or large graph datasets, METIS is not suitable. It also is not suitable for

online graph partitioning and so, to overcome this drawback few online graph par-

titioning were proposed [29] over METIS algorithm by utilising the partitioning

scheme from METIS.

2.2.4 Graph Partitioning for static graph

In this section, we will discuss the related work on graph partitioning for static data

and some facts on static graph partitioning.
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Three factors affect a static graph partitioning. They are: 1) The graph algo-

rithms’ execution while performing the partition. Algorithms have a significant im-

pact on the performance of partitioning; some algorithms create longer runtime but

the vertices of a graph distribution are better in this perspective. 2) Secondly, the

structure of a graph. Different graphs produce different results in partitioning, for

example, social network graphs, biological network graphs, web graphs; each of

these have different structures and properties. This has a huge impact on partition-

ing 3) Lastly, worker tasks across distributed computing nodes. Some fast workers

have to wait for the slow workers to complete a job. In this case, the asynchronous

system does the best to counteract this issue, in that the processing continues with-

out waiting for another worker [93].

Two main objectives of graph partitioning are as follows:

• To minimise of communication between processors/machines in distributed

system. This is the main objective of graph partitioning. The objective function

of graph partitioning is as follows:

Â
i<j

w(Eij) (2.5)

The main goal of this function is to compute the sum of the weight of the cut

edges.

• To allocate the computational load equally between the machines.

The following related works aim to achieve these objectives by proposing differ-

ent techniques and methods.

Label propagation method: A parallel graph partitioning proposal [76] based

on the label propagation [85] technique which is developed for graph clustering. This

parallel label propagation uses a coarse-grained distributed memory evolution al-

gorithm to compute a high quality partitioning. A parallel graph data structure has

been used in this technique to perform the partitioning. In a parallel graph data

structure, each processing element receives a sub-graph. Each node in a sub-graph

has its own ID from the interval I := a..b. Each sub-graph also contains edges, as-

sociated with the nodes, as well as the end points of an edge which are not in the
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interval I. Each PE performs the algorithms on its part of the graph in parallelising

the label propagation algorithm.

Based on the label propagation algorithm, another balanced partitioning tech-

nique was proposed [114] while edge locality is maximised by using a greedy algo-

rithm in which the number of edges are assigned to the same partition. In order to

ensure that all the partitions are balanced, a partitioning constraint is applied, using

lower bounds and upper bounds. This constraint makes sure that all partitions are

well-balanced during the allocation of vertices.

Multi-level propagation algorithms have been used widely to propose multi-

level graph partitioning. Another multilevel algorithm was proposed [5] to partition

power-law graphs. This algorithm aimed to partition high performance computing

applications whose computation involves a power-law distribution curve of degree

distribution of graphs.

Degree based technique: A novel vertex-cut method, called degree-based hash-

ing (DBH) [127] proposes the partitioning and distribution of a power-law graph in a

distributed system. This approach aims to minimise the communication cost, at the

same time providing a well-balanced partitioning system. Vertex-cut partitioning is

well suited for power-law distribution natural graphs, and this has been exploited

here in aiming to achieve less communication cost and better balance.

Balanced Partitioning: One of the main objectives of graph partitioning is to

allocate vertices equally among the distributed machines. Each partition size should

be as close as possible to the average of a partition |V|/k, where k is number of

partitions. This is a classic NP-hard problem in distributed computing [35]. The

input of this problem is an undirected graph G(V, E) and an integer k 2 Z+; the

output of this partitioning is the set of vertices. Partitioning occurs in such a way that

the number of edges across the partitions is reduced. Balance constraint is defined by

an unbalanced parameter. To define the balance constraint an unbalanced parameter,

v is used. A partitioning algorithm will divide the set of vertices in such a way that

each of the partition’s size are at most vn/k, where n is number vertices in a G.
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2.2.5 Distributed Graph Partitioner

Distributed partitioning plays a key role in processing large-scale graph applica-

tions. A k�way distributed algorithm was proposed in [66], by using a combinato-

rial optimisation technique called Simulated Annealing [64] and Terminal Propaga-

tion [26]. The proposed method addresses the issues which arise in a typical k�way

partitioning. In a recursive bisection process, lack of global graph information pro-

duces degradation in the partitioning result.

In order to provide a scalable communication a distributed evolutionary algo-

rithm was proposed [94] called KaFFPaE, based on the KaFFPa platform. KaFFPaE

work was based on crossover and mutation operators to minimise the time complex-

ity for partitioning a large graph.

A distributed graph partitioner called Sheep was proposed in [73]. Before parti-

tioning the graph, Sheep converts the input graph into a tree by using a Map-Reduce

function. The proposed method partitions the edges to the distributed machine in a

significantly less time than the state-of-the-art METIS algorithm.

Based on FENNEL [113], a distributed FENNEL was proposed called AsyncFEN-

NEL [105]. The proposed method aims to improve efficiency and scalability by using

a tree-shaped map-reduce network.

A query-aware partitioning algorithm, TAPER, [34] was proposed for a heteroge-

neous graph in a distributed environment. TAPER aims to reduce the inter-partition

migration of a vertex when processing a query by a user in a partitioned graph.

Edge-based partitioning is another type of partitioning in addition to vertex-

based partitioning. A distributed edge partitioning for a large-scale graph has been

proposed [42] that distributes the edge rather than distributing the vertex in vertex

partitioning. This overcomes one of the big disadvantages of vertex partitioning:

unbalanced edges in all the partitions. By exploiting local search and simulated an-

nealing a distributed graph partitioning was proposed in [87] called Ja-BE-Ja. The

proposed algorithm supports both edge-cut and vertex-cut partitioning. Ja-BE-Ja

performed better in reducing edge-cut/vertex-cut and outperformed the classic par-

titioning algorithm METIS.
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2.2.6 Parallel Processing

Parallelism in graph partitioning is mandatory in achieving high scalability in a

large-graph application. A parallel partitioning heuristic [95] was studied to pro-

duce a balanced partitioning. It allows swapping of a large number of elements

between two sets of the vertex. It chooses randomly the vertices to swap to make

size of the partitions equal. The parallel multi-level graph partitioning technique

[60] is used to minimise the communication between processors. It achieves less

communication than the one-dimensional distribution for a graph with a relatively

high degree. For irregular graph partitioning, multi-level k�way partitioning was

proposed [57] in a parallel manner that extended the parallel implementation of the

multi-level k�way algorithm [59].

Microsoft research proposed a partitioning system [122] that deal with billions

of nodes. It aims to address the issues in load balancing and communication over-

head. The authors use multi-level label propagation algorithm for partitioning a

large graph. Another label propagation-based, parallel implementation proposed in

[108] is called xtraPULP. It uses a scalable scheme to minimise the computation time

of partitioning. The algorithm is able to partition a large-scale graph in a minute.

A clustering algorithm was used to partition a graph; the clustering technique

uses the coarsening scheme that finds the vertices that are highly connected to each

other. A genetic algorithm-based graph partitioning has been proposed in [14]. This

algorithm has a schema processing feature that improves the capability of space

searching of a genetic algorithm. Thus, it performs better in the partitioning of the

graph by using the genetic algorithm.

For the complex network, a parallel graph partitioning algorithm was proposed

in [76]. The authors uses the label propagation and parallel evolutionary algorithm

to generate a better coarse graph in the refinement process of the multi-level scheme

of graph partitioning. This study achieves more scalability and high-quality parti-

tioning.

ParMetis [96] is the extended study and parallel version of METIS partitioner.

The proposed method uses a repartitioning scheme to adapt to change in a parti-

tioned meshes. It minimises the data migration from one partition to another, in
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order to reduces the edge-cut.

2.2.7 Hypergraph Partitioning

A graph in which each edge is linked to more than two vertices is called a hyper-

graph [16]. Many real-world applications are related to hypergraph partitioning,

for example, VLSI design, Boolean satisfiability, numerical linear algebra and scien-

tific computing. A formal definition of a hypergraph is as follows: A hypergraph

H = (V, N), where V is a set of vertices and N is a set of hyperedges also known

as nets. Hypergraph related tools are powerful for representing complex and non-

pairwise relationship.

In hypergraph partitioning, given a graph H, the partitioning scheme assigns

vertices of H to the number of disjoint partitions.

Henne et al proposed a hypergraph partitioning algorithm [45] by exploiting la-

bel propagation local search algorithms, with the aim reducing the computational

complexity. Most of the standard graph processing framework converts the hyper-

graph into typical graphs to process them. A distributed scalable hypergraph pro-

cessing framework called HyperX was proposed[55] to avoid the graph conversion

task. The proposed framework minimises significant computational time compared

with the previous algorithm.

A multilevel spectral partitioning was proposed for the hypergraph in [134]. The

authors proposed the partitioning technique based on the arbitrary vertex size.

2.3 Graph Partitioning Frameworks

Data is increasing exponentially in different domains; for example, a sensor network,

as people are trending to rely on more sensor devices to meet different challenges.

Web data has increased tremendously in the last couple of years, in several domains,

such as information systems to manage and run business, writing blogs, news sites,

social network sites and personal websites. This has produced a demand for an ef-

ficient system to manage this data but with less computational time. Researchers

have been working to meet today’s demand in handling the sheer amount of data
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and analysing and presenting them efficiently. Various graph-structured data parti-

tioning frameworks have been proposed in order to process an enormous amount of

data from various applications.

In the following subsection, we will discuss several graph-partitioning frame-

works, which have been proposed. Each framework uses different techniques and

different kind of graph.

2.3.1 Vertex-centric Programming

The vertex-centric programming model is a distributed processing of large-scale

graphs by sending a message from one vertex to another. Traditional big data pro-

cessing tools (for example, MapReduce) are not well-suited to an iterative process.

Consequently, it is not well- supported for large-scale graph processing. The pro-

posed vertex-centric programming model is the solution to overcome this issue. This

approach improves locality, is able to process many iterative computing problems in

a natural way, and provides greater linear scalability [75].

A well-known and widely used graph processing system is Google’s Pregel [72],

later on, a few number of graph processing framework were proposed based on

Pregel. Pregel is based on the vertex-centric programming model; this model it-

eratively executes a user- defined program over vertices of the graph. A defined

function usually takes input from adjacent vertices or incoming edges, then sends

output to outgoing edges. This message passing technique is also known as Bulk

Synchronous Programming (BSP) model [116].

Giraph [92] is an open source implementation of Pregel and has been developed

based on Pregel. Giraph is currently being used by Facebook to analyse users’ con-

nections to one another and their associated connected groups on Facebook. Giraph

has high scalability and iterative features to process a large graph-structured dataset.

Any graph processing system requires an efficient iterative feature to process large-

scale graph applications. Giraph has this efficient iterative processing power in

terms of runtime. Despite having effective features in that system, many well-known

proposed graph-processing systems are suitable to process large-scale graphs., yet

they are unable to support many important data mining and machine-learning al-

gorithms. In order to overcome these issues, a large-scale graph processing system
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GraphLab [71] was proposed to facilitating machine learning and a data mining pro-

cess. This system has vertex-program access to a distributed graph by exploiting the

asynchronous distributed share-memory architecture. Vertex-programs are allowed

to access relevant information on the current vertex and associated edges of that

vertex, and adjacent to that vertex. Thus, it reduces the network latency and net-

work bottleneck and ensures data consistency, achieving a high level of graph-data

parallel computation.

GraphX [39] is a distributed data-flow framework that has been developed on

top of Apache Spark [131], a popular and widely used distributed data-flow sys-

tem. GraphX is a graph-processing library that aims to overcome the issue of typical

general-purpose data-flow frameworks like MapReduce [24]. General-purpose dis-

tributed frameworks are well suited for handling unstructured and tabular data.

However, processing graph data that has an enormous iterative process can be chal-

lenging in a general-purpose distributed framework. Spark is developed based on

Resilient Distributed Dataset [39]. RDDs are a partitioned collection of data, and it

is created by data-parallel operators. GraphX used a vertex-centric programming

model [75] in order to make communication channela and exchange messages be-

tween vertices. A Vertex-centric function iteratively executes a user-defined func-

tion and this function takes input from adjacent vertices or incoming edges. Con-

sequently, the resultant output sends a message to incoming vertices with edges

information of that vertex. This is how the process goes on until reaching all the

vertices.

A ‘think like a graph’ [111] programming model was proposed based on Apache

Giraph. Pregel and Giraph have a limitation that hides partitioning information

from the user and this prevents the optimisation of a particular algorithm. Giraph

has some limitations in terms of computational time. To overcome the limitations,

a few improvements of Giraph model has been undertaken by a new system called

Giraph++. This model is called a graph-centric programming paradigm rather than

using a vertex-centric programming technique. This technique allows information

to flow within a partition.The vertex-centric model requires many computational

steps to pass the information from one vertex to another. This graph-centric model

reduces the computational steps in terms of passing information to other vertices.
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2.3.2 Power-law Graphs

Power-law graph, or scale-free graph, is a kind of graph in which there a few vertex

with a high degree (degree is the number of edges of a vertex) and many vertices

with low degree [6]. This means that the number of vertices y, of given degree x is

proportional to x(b) for some constant b � 0. Today’s number of large-distributed

system, for example, communication, social, and biological networks, demonstrate

power-law distribution in their graph structures.

A real world graph, for example, social network, and the web typically have

power-law degree distribution. Partitioning power-law graphs are very difficult

and it is very hard to distribute them in a distributed system due to it’s scale-free

distribution of edges. PowerGraph [38] aims to reduce inter-partition communi-

cation by computing edges over vertices. It follows the GAS (Gather, Apply and

Scatter) model and uses the vertex-cut partitioning technique. This technique dis-

tributes vertices into multiple machines in a replica of a single vertex to parallelise

the computation. As a result, PowerGraph achieves better parallelism, reduces stor-

age cost and provides effective partitioning. PowerGraph has been implemented in

the EC2 environment, using some real-world applications such as PageRank, Greedy

Graph Colouring and Single Source Shortest Path. Hama [101] aims to compute high

level matrix computations as computational, intensive graph applications which are

trending higher.

PowerLyra [20] adapt their computation and partitioning strategies for different

vertices. PowerLyra has a partitioning technique called hybrid-cut, which is a com-

bination of both edge-cut and vertex-cut. This hybrid-cut provides efficient perfor-

mance and outperforms other distributed graph computation systems. This hybrid-

cut provides some impressive features to improve performance: i) it gives a much

lower replication factor; ii) it provides unidirectional access locality for low degree

vertices (This is useful in the hybrid computational model.); iii) it is very efficient

in graph accessibility as it exploits hash-based partitioning for both low-degree and

high-degree vertices.

A distributed memory cloud system named Trinity [103] was proposed, which

aims to provide a storage infrastructure and graph computation framework, as well
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as in the distributed memory cloud environment. Trinity does support online and

offline graph data as well as some real-life applications. Trinity plays an important

role in optimising the memory and network communication; consequently, it pro-

vides fast processing of graph computation and efficient parallelism. In addition,

Trinity provides a specification language for users to declare data schemes and com-

munication protocols. Trinity achieved high throughput graph analytics on large

web scales and numerous vertices.

Graph Streaming Partitioner (GraSP) [36] is a distributed graph processing sys-

tem. GraSP is able to handle a stream of graph data and partition them in real time.

GraSP used MPI (Message Passing Interface) to develop the distributed system for

communicating among distributed machines. This is the first distributed system

which has been developed by MPI in order to handle streaming graph data. GraSP

was able to make a significant improvement in scalability with the 1024 machine.

2.3.3 Scalability

Graph computation is one of the key examples of various scientific computations,

such as machine learning, information retrieval, bioinformatics and social network

analysis. Hamma [101] is a scalable graph processing tool proposed to address com-

putation need of scientific applications. Hama was implemented in the MapReduce

environment which is very efficient in large-scale data intensive computation. Hama

aims to achieve performance improvement in the following matrices: compatibility,

scalability, flexibility and applicability. Hama is capable of performing all the func-

tionalities of Hadoop and its associated packages. Consequently, Hama is able to

exploit any large-scale distributed system, such as EC2 without making any modi-

fications. It also has flexibility in computing any pattern of applications and is ad-

vantageous in dealing with any scale of applications. Hama is applicable to various

range graphs and matrix applications.

GraphBuilder [52] is a framework which aims to create a scalable system that

has all the features from graph formation, tabulation, transformation, partitioning,

output formatting and serialisation. GraphBuilder has been implemented in the

MapReduce environment.
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Graph Processing System (GPS) [93] is an open source distributed graph pro-

cessing system. GPS aimed to support large-scale graphs to achieve high scalability

and more fault tolerance. GPS has flexibility in the execution of algorithms on the

big-graph dataset. GPS has additional dynamic partitioning feature on top of Pregel

[72]. Dynamic partitioning plays a very significant role in dealing with dynamic

graphs, when graphs have a tendency to change structure by inserting or deleting

vertices

Another scalable graph partitioning framework called Spinner [74], was imple-

mented in the public cloud environment. Spinner is flexible in handling massive

dynamic graphs, and provides a better partitioning quality with minimum edge-

cut. Spinner is based on well-known Giraph platform and aims to speed up the

processing of different applications.

A well-performed single-machine system to compute large-scale graph is GraphChi

[67]. This system aimed to provide a large-scale computation system on a single

PC in order to overcome the difficulty of designing a distributed system for the

non-expert. This system has come up to the attention of industry and academia.

GraphChi has been implemented in C++ by making use of secondary storage to

store huge graph data to process. GraphChi introduces two new techniques to pro-

cess large graphs in a single PC. They are i) out-of-core computation and ii) selective

scheduling. Out-of-core is a new data structure that minimises the accessing to sec-

ondary storage while graph computation is being done.

A light weight parallel graph processing framework called Ligra [106] proposed

to make it easy for graph traversal algorithm to process. Ligra is able to process a

large-scale graph efficiently with either the DFS or BFS algorithm in a single ma-

chine. However, it has a disadvantage; if the graph grows over-time, Liagra will

have a memory bottleneck issue. Table 2.1 shows that some well-known graph par-

titioning framework and their partitioning strategy.

2.4 Streaming Graph Partitioning

In this section, we present an overview of graph stream and its partitioning tech-

nique. I also discuss some previous works on streaming graph partitioning.
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Framework Strategy Type of Balance Streaming Type of Graph
Deterministic Greedy[110] Edge-cut Vertex Balance Yes Static

FENNEL[113] Edge-cut Vertex Balance Yes Static
PowerGraph[38] Vertex-cut Edge Balance Yes Static

PowerLyra[20] Hybrid Edge Balance No Static
GraphBuilder [52] Vertex-cut Edge Balance No Static

S-PowerGraph[126] Vertex-cut Edge Balance Yes Static
HDRF[83] Vertex-cut Edge Balance Yes Static

LEOPARD[48] Edge-cut Vertex Balance Yes Dynamic
HoVerCut[70] Vertex-cut Edge Balance Yes Static

DBH[70] Vertex-cut Edge Balance No Static
GraphChi[67] Edge-cut Vertex Balance No Static

Spinner[74] Edge-cut Vertex Balance No Static
GPS[93] Edge-cut Vertex Balance Yes Dynamic

GraSP[70] Edge-cut Vertex Balance Yes Static
Ligra[106] Edge-cut Vertex Balance No Static

Ja-Be-Ja[87] Both Both No Static
TAPER[34] Edge-cut Vertex Balance No Static

Sheep[73] Vertex-cut Edge Balance No Static
Hamma[107] Both Both No Static

Trinity[103] Both Both No Static
AsyncFENNEL [105] Edge-cut Vertex Balance Yes Dynamic

MLP[122] Edge-cut Vertex Balance No Static
xtraPULP[108] Edge-cut Vertex Balance No Static

TABLE 2.1: Summarisation of Graph Partitioning Algorithms and
Frameworks

Stream processing is a data processing technique that is very convenient for pro-

cessing low latency, incremental computations on graph-structured data. In this

technique, the input graph comes in the form of streams, for example, social net-

work data, bank transactions or weather report data, and so on. Almost any kind

of data can be formed as a graph as long as those data have a relationship between

them. A single machine is often unable to process emerging large-scale graphs due

to memory latency and computational cost. Graph partitioning is the appropriate

technique to distribute this large-scale graph data between distributed machines.

Traditional graph partitioning algorithms are not suitable for the following as-

pects of the “big data” era: i) a massive dataset is too big to store; ii) Even an O(n2)

time algorithm is too slow; iii) recently most of the applications’ data changes over

time; iv) algorithms should have the capacity to handle the dynamic changes of

graph data. Consequently, streaming, dynamic and distributed graph algorithms

are a wise solution and much needed for analysing big graph data in today’s data
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explosion trend. The most common example is network analysis; nowadays a web-

site contains huge information and contents which is interrelated. For example, web

pages and hyperlinks, neurons and synapses, papers and citations. Maintaining

this interrelationship and processing such graph data are critical tasks.Partitioning a

massive graph to process different applications without storing them in main mem-

ory is the data stream model. In this approach, the partitioning algorithm receives

the input graph data in a stream order; the stream could be vertices of a graph and

associated edges of that vertex. Data stream models are the most promising and

most popular trends in big graph data processing. Stream based graph partitioning

algorithms are much more effective than traditional partitioning algorithms.

Significant progress has been made in analysing the streaming data but the progress

for analysing graph data is still limited [8]. Streaming graph analysis has gained

attention because of recent real-time graph data infrastructure and its usability in

different, promising applications. When a graph processing application processes a

graph data as it arrives, it is considered as a streaming graph processing application

and its datasets are known as streaming graph data. The vertex of a graph arrives

along with its associated edges, whereas offline graph processing systems receive

the entire graph data and store them in main memory before processing them. This

creates a huge memory bottleneck and consumes enormous data storage, if we pro-

cess large-scale datasets [36]. Streaming graph data is also known as online data that

leverage the storage issue. However, this has brought some challenges in handling

one pass data. In this process, data appears only once when it arrives; thus, immedi-

ately, it needs to be allocated and sent to the proper location in a distributed system.

An efficient and optimised streaming graph partitioning algorithm is required to

handle such graph data. Streaming graph partitioning is a state-of-art technique,

which decentralises the graph processing system. The system has a chance to read

vertices and associated edges only once. Consequently, it leads to less overhead of

memory access, storage and runtime which can be defined by: O(|V|+ |E|) [36].

An experimental comparison study and proposed a streaming graph partition-

ing algorithm in [43]. The authors address the issues in run time by analysing the

run time process. This study also takes into account the characteristics of the graph
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Algorithms Findings
Natural Graph Factorization [7] A novel factorization technique proposed that reduces

the vertices rather than edges across the partition. It
uses the local information to perform the vertex repli-
cation process which reduces the communication cost

METIS[62] A minimum cost partitioning approach is proposed,
which find the optimal partitions. A fast partitioning
process is proposed.

LOOM[33] This streaming partitioning uses sub-graph pattern
machine queries, which reduces inter-partitioning
communication. A streaming window uses to process
the query.

STINGER[88] This algorithm aims to handle constant stream data
from different domain (e.g health care, security, busi-
ness, and social network). A new graph data structure
proposed which provides trade-off with partitioning
algorithm. This leads to achieve high performance par-
allelism of massive graph processing.

Planted Partition[112] A higher length walk has been introduced which sig-
nificantly reduces the computational cost

HDRF[83] A streaming partitioning algorithm, which effectively
exploits skewed distribution, graphs and it considers
the vertex degree while placing a vertex to a partition.
This algorithm replicates the high-degree vertex first
in order to make a balanced partitioning system.

HoVerCut[91] This algorithm is horizontally and vertically scalable.
This algorithm can receive multiple streaming sources.

TABLE 2.2: Key Findings of Steaming Graph Partitioning

in order to achieve a better quality of partitioning, depending on graph applica-

tions. Another graph analysis model [130] proposed for streaming data to analyse

the graph data in real time for various applications.

A framework [31] proposed using Condensed Spanning Tree (CST) structure in

order to address the memory bottleneck issue in streaming graph partitioning. It

also capable of adapting, based on the demands of the requirements of different

graph applications, minimising the inter-machine communication and reducing the

load imbalance.

2.4.1 Greedy Algorithm

A well-known streaming partitioning was proposed in order to compute large-scale

of streaming data in [110]. This is greedy heuristic, which is linear. This algorithm

is also known as Linear Deterministic Greedy (LDG). It has a central graph loader,
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which loads the data and distributes them among the available workers. This heuris-

tic assigns a vertex to the partition with which it shares the most edges. 16 partition-

ing heuristics are evaluated with 21 different datasets. Graph datasets have been

used from several domains: The World Wide Web, social networks, finite-element

meshes, and synthetic datasets. The authors achieved different results from differ-

ent datasets. This streaming partitioning method makes heuristics scalable in the

size and the number of partitions of graphs. It has significantly sped up PageR-

ank computations on Spark [131], by 18% to 39% for large social networks. An-

other greedy heuristic algorithm proposed in [7], uses an unweighted, deterministic

greedy algorithm instead of using a weighted penalty function, in order to partition

vertices. This algorithm uses also a factorisation technique that aims to reduce the

neighbouring vertices rather than edges across partition. In other words, a vertex-

cut partitioning technique is employed here and is well-suited for large-scale natural

graph.

Microsoft research implemented a partitioning framework called FENNEL [113]

based on greedy heuristics. This is one of the top performing graph-partitioning

frameworks. This partitioning framework aimed to overcome the issue of computa-

tional complexity using the traditional balanced graph-partitioning technique. FEN-

NEL leverages modularity maximisation [78] to deploy a greedy strategy for main-

taining balanced partitions. It has also improved performance regarding commu-

nication cost and runtime, while computing graph data iteratively in a distributed

system. The FENNEL algorithm can be defined by the following equation:

arg max
1ik

{|N(v) \ Pi|� a
g

2
(|Pi|)g � 1} (2.6)

Pi refers to the vertices in ith partition. v refers to the vertex to be assigned and

N(v) refers to the set of neighbours of v. a and g are parameters. This is the scoring

heuristics in FENNEL to decide a partition for a vertex to allocate. This heuristic

assigns v in a partition with the highest score.

In some cases, same datasets generate streamed data repeatedly in a routine man-

ner. A typical streaming algorithm is not possible in handling such situations. A

re-streaming technique is needed in order to address this issue [81]. This algorithm
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is proposed over Linear Deterministic Algorithm [110] and FENNEL [113].

A re-streaming algorithm [81] was proposed by Nishimura et al. The authors

considered the scenario in which the same datasets were routinely streamed. This

re-streaming technique performed well when the same datasets appeared repeatedly

in an application. However, the drawback of this study is that it is not suitable for the

graphs in which changes occur very frequently. In such cases, data do not arrive in a

routine manner or do not repeat their stream. Consequently, re-streaming technique

has less impact in such scenario. A partial re-streaming was proposed [28] called

hybrid streaming model. The proposed model allows the restreaming of portions

of the graph when the rest of the graph uses single pass manner to complete the

partition of the graph.

A comparison study[3] was completed with the several streaming partitioning

algorithms [110, 113, 83]. This study compares the online graph partitioning perfor-

mance with different applications and datasets.

2.4.2 Large-scale Distributed

Large-scale datasets have recently been gaining more attention, bringing with them

many challenges due to their inclusion by several applications. Few studies have

been undertaken to address large-scale data computation complexity using distributed

systems. One of the most significant and successful distributed frameworks is MapRe-

duce [24], however there are limitations in processing graph data using this frame-

work. MapReduce is not suitable for computing iterative processes which are re-

quired for any graph data. A significant distributed framework named Spark was

proposed in [131] to overcome the issues of MapReduce. Unlike MapReduce, the

Spark framework can perform iterative computation. A workload streaming parti-

tioning technique [32] was proposed to reduce inter-partition network communica-

tion. This technique is based on a well-known streaming graph partitioning heuristic

[110] that allocates vertices according to the maximum number of edges of a vertex

in a partition. The technique overcame a few issues faced by previous algorithms,

for example, inter-partition traversals when executing and pattern matching queries.

STINGER [88], a framework to analyse streaming graph structured data, was

proposed to facilitate portability, productivity, and performance for the research and
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development of big data. Its motivation was based on contemporary issues which

can be formulated on the basis of storage and the changes of dynamic datasets over

time, also known as the dynamic spatio-temporal graph problem. STINGER sup-

ports insertion and deletion of edges from scale-free graphs. Consequently, it allows

fast query processing. Another streaming partitioning algorithm was proposed by

Tsourakakis [112] and is called the planted partition model. This model uses higher

length walks for graph partitioning. As a result, it achieved negligible computational

cost and it significantly improved the partition quality. Wang and Chiu proposed a

scalable streaming partitioning approach, aiming to achieve a low complexity sys-

tem. This partitioning technique [123] aims to reduce the edges between partitions,

and thus reduce the communication cost for query processing.

A scalable streaming partitioning approach has been proposed [123] aiming to

provide a low complexity system. This partitioning technique aims to reduce edges

between partitions; consequently, it reduces the communication cost of query pro-

cessing. A streaming vertex-cut partitioning algorithm, High Degree, Replicated

First (HDRF) [83] was proposed with the aim of utilising the vertices’ characteristics.

They use the greedy vertex-cut approach in which high degree (a vertex has more

edges) vertices replicate first to minimise and avoid unnecessary vertex replication.

This algorithm achieves a significant improvement for a stream-based partitioning

algorithm over any other previous algorithms [71]. HDRF achieves nearly twice

the speed up of traditional greedy placement and almost three times the speed of a

constrained solution.

In the recent past, there has been considerable interest in designing algorithms

and frameworks to handle massive graph data from streams of data. The ever-

increasing stream of graph data can be partitioned into a cluster of nodes; the graph

access pattern could be online or offline processing. This streaming partitioning is

very efficient because graph loader or partitioner does the partitioning task. The

partitioner loads the graph from the stream into the cluster [75]. A scalable stream-

ing graph partitioning approach [91] provides horizontal and vertical scalability in

a graph partitioning system.

Another streaming partitioning study called S-PowerGraph [126] over Power-

Graph algorithm. S-PowerGraph uses vertex-cut partitioning rather using edge-cut.
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Algorithms Vertex-cut Edge-cut Distributed
Natural Graph Factorization [7] Yes No Yes

METIS[62] No Yes Yes
LOOM[33] No Yes Yes

STINGER[88] No Yes No
Planted Partition[112] No Yes No

HDRF[83] Yes No Yes
HoVerCut[91] Yes No Yes

AKIN [132] No Yes Yes

TABLE 2.3: Summary of Streaming Graph Partitioning

This method is suitable for partitioning skewed natural graphs and it outperformed

previous studies in terms of acceptable imbalance factor.

Recently, a distributed graph processing algorithm called AKIN [132] in stream-

ing manner was proposed. The algorithm measures the similarity of the degree of

the vertices. Based on the statistics of similarity, the algorithm partitions the ver-

tices. The similarity of statistics helps reduce the inter-machine communication to a

greater extent.

In a traditional graph partitioning, the graphs must be loaded in order to parti-

tion and process them for any application purpose. That leads to the requirement

of a huge storage capacity due to the large-scale of graph-structured data. Conse-

quently, it requires high computation and communication costs during partitioning

and processing of any application (for example, PageRank, shortest Path) after par-

titioning graph data. That is the main motivation for using streaming graph parti-

tioning.

Additionally, there are a few other motivations in handling big streaming graphs;

they are: i) Most of the applications generate large-scale dynamic data, which is im-

possible to store in the main memory of a single machine. ii) Big graph data makes

an impression in analysing the complexity of streaming graph computation. iii) In

many applications, emerging fastest growing data requires analysis in turn-around

time. Table 2.2 shows the key findings of some existing streaming algorithms.Table

2.3 also shows a summary of some of well-known streaming graph partitioning al-

gorithms.
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2.5 Dynamic Graph Partitioning

In this section, we will discuss the behaviour of the dynamic graph and its partition-

ing technique. Table 2.4, shows some algorithms and their key findings. We also

summarise some of the dynamic graph partitioning in Table 2.5.

Partitioning a large dynamic graph in a distributed system is an NP-hard prob-

lem [9]. Many applications such as social networks, communications networks, VLSI

design and graphics have the dynamism in their graph structures from deleting or

inserting new vertices and edges. Insertions and deletions of vertices or edges occur

in this kind of graph as required by applications. For example, Twitter is one of the

social networks that has a large dynamic data set; each new post in Twitter provides

new information and is added to the graph. There are two dynamics in a dynamic

graph: i) partially dynamic, if only insertions or deletions occur in the graph and

ii) fully dynamic, when both insertions and deletions happen. This is subject to a

graph’s demands and structure. It is a way of changing the graph structure and

dynamicity that makes the partitions unbalanced in a distributed graph-computing

system. A dynamic graph is said to be incremental if insertion of a new vertex is al-

lowed in the existing graph. On the other hand, a dynamic graph problem is called

decremental if the deletion of a vertex or edge is allowed from an existing graph. A

dynamic graph creates a new dimension in graph partitioning. Due to the updat-

ing of a dynamic graph, a vertex imbalance occurs among the partitions in a graph

processing system. Maintaining a dynamic graph and a balanced dynamic graph

partitioning is much needed to develop an efficient graph-structured data process-

ing system. The process by which a dynamic graph data is distributed has not been

well-researched. Data could arrive in real time, during the processing of an appli-

cation. Distributing and maintaining the connectivity between nodes with newly

arriving data is challenging. It is also challenging to make the system scalable. A

study [69] has been completed which explored that the number of edges increases

over time and the average distance between vertices shrinks over time. In addition,

a graph generator was also proposed in this study, which requires fewer parameters

to generate the full range of a graph.

A well-known dynamic load balancing system studied in [63] is called Mizan
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based on the Pregel framework. Mizan finds the load imbalance by using the run-

time statistics of a graph. It uses the vertex migration method in a distributed man-

ner without coordinating any central machine.

An adaptive dynamic partitioning, called xDGP [118] was developed to improve

the graph partitioning performance. It uses an iterative vertex migration algorithm

that relies on local information only. It has been demonstrated that a significant

improvement was achieved in graph partitioning, reducing execution time by more

than 50%. It also adapts the graph partitioning structure by balancing load with a

large number of changes.

To compute PageRank in a parallel manner, a site-based graph partitioning and

repartitioning technique [17] was proposed. Sparse matrix-vector multiplication is

responsible for incrementally growing web matrices data, which are stored in a dis-

tributed manner. PageRank computation requires high-efficiency and low process-

ing of overhead calculations because PagRank [12] computation has frequently re-

peated iterations. An algorithm [17] was proposed with a sparse-matrix multiplica-

tion technique to achieve high efficiency and parallelism, in order to focus on reduc-

ing th pre-processing overhead in a PageRank computation. Repartitioning tech-

niques were used in this algorithm. A common problem in dynamic web data is the

addition and deletion of new pages. A large graphs partition management system

was proposed [129], in order to facilitate searching and mining a large graph. Min-

imising the inter-machine communication was the aim of developing this system. To

perform the graph partitioning task, a two-level (static partition and dynamic par-

titions) structure was introduced which helped to improve the query response time

and throughput. This two-level partitioning structure is effective as it adapts in real

time when query workload is changing over time.

2.5.1 Adaptive Partitioning

Adaptive partitioning of a dynamic graph is a way to handle the changes of a graph

over time. Parallel computing has been utilised to partition a large dynamic graph

since the inception of large graphs. A dynamic partitioning technique [120] was pro-

posed for adaptive unstructured meshes with parallel computing technology. This



40 Chapter 2. Background and Literature Review

Algorithms Findings
Aggressive replication algorithm [77] In-memory based dynamic partitioning.

Achieved low-latency communication.
SPAR[84] Achieved better data locality while minimizing

the replication
xDGP[118] Dynamically repartition a graph by adapting to

structural changes. It adopts an iterative vertex
migration with local information only.

Relative Optimisation [119] A relative gain optimization technique used
in vertex migration among different partition,
while minimizing the degradation of partition-
ing quality.

Kineograph[21] ..
LEOPARD[48] A replication algorithm is combined with a parti-

tioning algorithm in aiming to reduce edge-cut.
Local information has been considered in reas-
signing the vertices

Sedge[129] A dynamic partitioning policy that supports
large scale fasts queries processing

LogGP[128] A log based partitioning technique that stores
and uses that historical information for better
partitioning result.

Sharding Networks[27] Distributes large social network and evaluate
several distributing strategies

Continual and Cost Effective[4] A cost function and incremental partitioning
technique proposed to allocate properly vertex
from a dynamic graph

Multi-phase[97] Multi-constraint and multi-objective partitioning
technique to meet scientific simulation demand.

TABLE 2.4: Key Findings of Dynamic Graph Partitioning

algorithm uses a relative gain optimisation technique, which aims to balances work-

load and reduces the inter-partition communication overhead. A few series of adap-

tively refined meshes are applied for the purpose of the experiment and the results

indicate that this provides better partitioning than a static partitioner. A distributed

system, Kineograph [21], was proposed to handle the graph that changes rapidly;

it is also able to capture the relationship between vertices. Kineograph also sup-

ports graph-mining algorithms to extract real time information from a fast changing

graph. However, this system does not support dynamic partitioning.

Another adaptive partitioning method [117] has been developed for large-scale

dynamic graphs. This method has been developed in addition to Kineograph. Ad-

ditionally, this method was designed by using three different techniques to partition

a graph. They are i) a most popular high scalability partitioning technique which is

called modulo hash that was implemented in Pregel [72]; ii) another state-of-the-art

streaming partitioning deterministic greedy heuristic [110], which is widely used in
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streaming graph partitioning; iii) an adaptive repartitioning heuristic. Repartition-

ing degrades the partitioning quality over time. To resist performance degradation

the current method requires repartitioning the full graph; this can be cost and time

effective with large-scale graphs. An adaptive approach was proposed in this algo-

rithm to optimise the graph in every change and computation execution.

With consideration of connectivity and vertex degree, an online graph partition-

ing algorithm was proposed in [23], in order to achieve proper vertex locality. How-

ever, this algorithm does not support a streaming partitioning technique.

2.5.2 Vertex Replication

Dynamic graphs sometimes require a repartitioning job to keep graph-partitioned

data balanced, in order to improve system performance. Good partitioning algo-

rithms are featured with repartitioning techniques to handle huge dynamic graph

data. Research has been undertaken on repartitioning online social network data

[84]. The authors aim to improve scalability by reducing inter-partitioning com-

munication. A replication method was used to reduce the communication among

nodes. An in-memory based dynamic partitioning technique was proposed [77] to

handle the large dynamic graph. This algorithm achieved significant low-latency

communication in query processing. The authors provide a vertex replication policy

that monitors the incoming vertices and decides what data to replicate. It has been

evaluated on a social network graph, the result showing that this technique reduced

the network bandwidth significantly. It also handles very large graphs efficiently.

Recently an algorithm called Lightweight Edge-oriented Partitioning and Repli-

cation for Dynamic Graphs (LEOPARD) [48], has been proposed for partitioning a

dynamic graph. Two aspects of this algorithm are: i) a partitioning algorithm and ii)

vertex replication algorithm. Replication was formed to provide the fault tolerance

of the system by replicating the vertex in the case of any vertices being lost. This

replication algorithm also helps to access the locality of a vertex; better access local-

ity has greater performance in a partitioned system in processing any application.

However, this system does not support the streaming graph partitioning technique.

A few approaches have been proposed on balancing the workload of a distributed

system adaptively. Of them, dynamic replication based partitioning, proposed in
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[129], is adaptively based on the change of workload. Another adaptive balancing

workload is proposed in [102]. These approaches have been very effective in term of

balancing the workload of a system. These systems have been designed for the BSP

graph processing system that continuously updates vertex information with tem-

porary data associated with running computations. However, on arrival of the new

workload from a dynamic graph, these methods need to run for another partitioning

results. Thus, there is no improvement in the partitioning results. With the aim of

improving performance when workload changes frequently, a historical log-based

portioning technique, called LogGP [128] was proposed. The LogGP framework

analyses and reuses the historical statistical information to refine the partitioning re-

sult. It has great advantages of utilising the historical partitioning results to generate

a hyper-graph. The authors claim that running statistic of historical partitioning logs

could provide a greater improvement on partitioning results.

Alleviation load skew at query time is another benefit of vertices replication af-

ter distributing the large graph-structured network. In [27] this replication feature

is presented. If there is no replication, popular nodes become overwhelmed by re-

quests, in a partition for the value of those nodes.

Proper placement of a newly added vertex in a dynamic graph by using the cost-

effective method, was proposed in a cost-effective partitioning method [4]. Several

heuristics were also proposed to handle deletion or addition of edges. A vertex

migration technique was also added here in the case of deleting a vertex, balancing

all the partitions. These sets of heuristics also aim to reduce communication cost.

2.5.3 Multi-constraint Technique

Dynamic graphs applications can also be seen widely in scientific simulations to

solve scientific real-world solutions. A multi-constraint and multi-objective [99] par-

titioning technique was proposed to meet some scientific simulation demand. Many

scientific simulations, for example, multi-phase mesh-based computations, are not

suitable for traditional single-constraint and single-objective partitioning [56]. An-

other example is multi-physics simulation in which several processes are simulated

together, and which require a multi-constraint balanced technique to optimise the

partitioning and load balancing [60]. Day by day numerical scientific simulation
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technologies are becoming more sophisticated because the number of processors is

increasing. Consequently, partitioning techniques are required to optimise different

types of objective functions in order to ensure good partitioning efficiencies.

Another multi-constraint graph partitioning technique was presented [98] to achieve

optimisation from multi-objectives. This algorithm also meets the challenges of

static and dynamic load balancing in multi-phase simulations. They propose both

static and dynamic graph partitioners. They have two approaches in order to han-

dle the dynamic graph partitioning; they are: i) start a new partitioning from scratch

based on the new arrival of vertices and edges; ii) by using a diffusion-based method

to balance the partition. In this case, the original partitioning needs to agitate enough

to make all the partition balanced.

There are a few more techniques that we can use to handle dynamic graphs in

a large-scale graph-partitioning problem. They are Clustering, Sparsification, and

Randomisation. These are very useful techniques for the undirected graph. How-

ever, a few more techniques and data structure can be useful for a directed graph.

They are Kleene Closure, Locality, Long Paths and Matrices.

There have been many works proposed in order to solve dynamic graph parti-

tioning related issues in different perspectives. However, there are still some po-

tential spaces in dynamic graph partitioning. Whenever new vertex insertion or

deletion happens, a big graph does require repartitioning. The standard dynamic

partitioning algorithm performs full graph partitioning, which is time intensive in

terms of computation. We argue that repartitioning can be performed in optimising

the new arrival data only, rather than repartitioning the whole graph. Partitioning

quality degrades over time in a dynamic graph; we must perform the repartitioning

task by minimising the edge-cut in such a way that will restrict the degradation of

partitioning quality.

2.5.4 Scalable Dynamic Partitioning

Existing parallel graph partitioners (such as ParMetis) produce good quality parti-

tioning but their scalability is poor. A parallel scalable graph partitioner was pro-

posed [65] to scale the large-scale graph data. The authors proposed a method using

a lattice-based multilevel technique for the coordination. However, the proposed
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Algorithms Vertex Replication Adaptive Partitioning Scalable Dataset
Aggressive replication algorithm [77] Yes No Yes Static

SPAR[84] Yes Yes Yes Static
xDGP[118] No Yes Yes Dynamic

Relative Gain Optimisation [119] No Yes No Static
Kineograph[21] Yes No Yes Dynamic

LEOPARD[48] Yes No Yes Dynamic
Sedge[129] Yes Yes Yes Static

LogGP[128] No No No Static
Sharding Networks[27] Yes No Yes Static

Continual and Cost Effective[4] Yes No No Dynamic
Multi-phase[97] No Yes No Static

TABLE 2.5: Summary of Dynamic Graph Partitioning

method slightly compromised the graph quality to reach the maximum scalability. A

scalable dynamic graph processing framework called GraphTau [50] was proposed

on top of Apache Spark. GraphTau continues to create the snapshot of a graph over

time to analyse it for partitioning or other analytical purposes. Processing a time-

evolving graph in a distributed system requires efficient task management and fault

tolerance; the correlation between snapshots is challenging. GraphTau provides an

efficient technique in streaming graph processing and an incremental computational

model that helps the coordination between graph snapshots to attain an efficient

computation. A robust dynamic graph data management system was proposed [68].

The proposed dynamic data management method uses a replication technique with

an updated graph snapshot. A scalable technique is used to adjust the number of

servers and workers based on the updated graph snapshots in each time interval.

All the worker or server machines may not be fully utilised in this method. In ad-

dition, cost optimisation was not also considered in this proposed study. For exam-

ple: if the graph snapshot updates over-time in the large worker machines and 50%

utilise it, this workload could have been processed by the small machine.

2.6 Resource Scalability

A number of resource scalable technique was proposed in cloud computing. In this

section, some of the existing recent work on scaling resources in the cloud computing

is discussed.

Cost is one of the important factors to consider in scaling the resources in the

distributed computing. A cost-efficient auto-scaling for the cloud environment is
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proposed in [89]. This method is software container-based, and is lightweight and

best suited to fine-grained computing. This work also offers a rescheduling algo-

rithm to support the best use of resources by scaling in or out, as per the needs of

the computational load.

A predictive auto-scaling method [90] was proposed which forecast the compu-

tational load in advance based on the limited horizon. This helps to allocate the

resources and adjust the number of resources in order to minimise the cost. Jiyun

et al. proposed a novel optimising algorithm [104] for resource provisioning at the

virtual machine level. The method utilises queueing theory to decide the number of

machines required to provide for each service.

A lightweight resource scaling method [44] was proposed to minimise the re-

source cost in cloud applications. It provides a fine-grained scaling of different re-

sources such as CPUs, memory, and Input/Output and so on, while minimising the

cloud provider’s cost.

A power and migration cost optimisation method was proposed for cloud com-

puting in [40]. It is based on a Service Level Agreement (SLA) and a convex optimi-

sation heuristic is employed, in order to minimise the power and migration costs.

In [18] a resource provisioning method was proposed to optimise the cost for

the cloud resources. It supports multiple and long-term provisioning. This is also

known as reservation and an on-demand plan. The algorithm is able to trade-off

between the reservation of resources and the allocation of on-demand resources.

2.7 Gap Analysis

In this section, we discuss the research graph in relation to graph partitioning, par-

ticularly a time-evolving graph. Based on literature studies, the resource utilisation

in the cloud environment for the streaming graph partitioning has not yet been stud-

ied. There are a lot of auto-scaling algorithms was proposed to scale the cloud ma-

chine resources with the demand of requests to process in a distributed machine.

However, there has not been any auto-scaling study done for the streaming graph

partitioning algorithm. This dissertation will address the issue in resource utilisation
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and cost optimisation in the cloud environment for the streaming graph partitioning

algorithm.

A number of streaming algorithms have been proposed to address the memory

bottle-neck issue in a one-pass manner while minimising communication and the

balancing load. However, no algorithms were evaluated in the cloud environment

and most of the algorithm did not consider real-world application with a real-world

dataset.

To the best of our knowledge, a dynamic graph partitioning algorithm in a stream-

ing manner has not yet been considered. We provide a streaming graph partitioning

for a dynamic graph dataset. In addition, a dynamic scaling method is also proposed

to optimise the resources and cost.

2.8 Summary

In this chapter, graph structure, traditional graph partitioning and dynamic graph

partitioning in a streaming manner techniques are reviewed thoroughly. This chap-

ter also analyses the existing graph partitioning techniques and discusses their lim-

itations in depth. A summary of key findings and contributions from existing work

are presented in the tables. We categorise the different graph partitioning and frame-

works in different sections to analyses the limitations of the existing research.

We also discuss the dynamic graph partitioning categorically in several sections

such as i) Adaptive partitioning ii) Vertex Replication iii) Multi-constraint technique

and iv) Scalable dynamic partitioning.

Resource scalability and cost optimisation in the cloud environment are also dis-

cussed and analysed in this chapter.

Finally, in this chapter we discuss the gap analysis based on the literature studies.

Dynamic graph partitioning in a streaming manner is necessary at this time, in order

to meet recent dynamic graph partitioning applications.
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Chapter 3

Evaluating Distributed Streaming

Graph Partitioning in the Cloud

This chapter describes the implementation of two existing streaming graph parti-

tioning heuristics in the cloud. The PageRank application is also explored after par-

titioning a graph in a streaming manner. We observe how the streaming partitioning

algorithm behaves in the cloud environment in terms of communication, time com-

plexity and allocating resources with the different experimental scenarios.

3.1 Motivation

Recently graph-structured data has been growing exponentially. It is becoming chal-

lenging to query and process, and to manage continuously increasing large volumes

of streaming graph-structured data arising over time in many applications, such as

social networks, biological data, communication networks and so on. Partitioning a

graph into the disjoint partition is the way to distribute graph computational load.

Streaming graph partitioning is the variant of graph partitioning which takes the

graph input in a one-pass manner. It does partition a graph using limited infor-

mation of a graph rather than using whole graph information. Cloud computing

has a significant advantage in accommodating large-scale graph datasets. However,

the performance evaluation of streaming graph partitioning with a real application

is yet to be done in the cloud environment. Moreover, suitability of the streaming

graph partitioning algorithm in the cloud environment has not been evaluated.
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This chapter evaluates the performance of two streaming graph partitioning heuris-

tics with the PageRank application in the cloud environment with the different ex-

perimental scenario. This study observes the suitability of the streaming graph par-

titioning algorithm in the cloud environment and finds potential limitations in terms

of scalability, minimising communication and load balancing.

3.2 Introduction

Today, graph data are huge. These huge datasets are: knowledge graph, web data,

social network data and biological networks, to name few. These data can be formed

as graph data and many of the real-world networks or graph data change contin-

uously over time, generating large dynamic graphs. Example of these are online

activity and interactions formed from electronic communication, social media, and

content sharing. These processes produce huge amount of continuous, interactive

data, which is represented as a dynamic graph. A recent statistic shows that Twit-

ter has over 43 million users and there are more than 1.5 billion social relationship

over this network. This tells us that the trend of the exponential growth data is

significant. In graph streams, individual edges of the underlying graphs arrive se-

quentially in a stream, unlike traditional graph-data which has a fixed number of

vertices and edges. The rapid growth of data in many emerging applications (for

example, online social networks, web graphs, health informatics, financial analyses

and monitoring, public policies and monitoring, protein-protein interactions) needs

streaming analysis in real time as data arrives.

In order to meet the huge graph data processing demand, efficient systems are a

necessity. A distributed system is one of the best solutions to allocate an enormous

amount of streaming graph data before processing. Graph partitioning is the tech-

nique, which distributes numerous graph data between distributed systems. This

partitioning technique distributes the graph-structured data to distributed machines

with the aim of minimising graph node communication. This partitioning is called

k�way partitioning [9] which is an NP hard problem, meaning that best partition-

ing solution is difficult but an optimal solution is possible. Much research has been

undertaken in order to compute large-scale graph data; of them the most popular
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are: [4, 110, 103]. Google proposed a vertex-centric distributed graph processing

framework which is known as Pregel [72]. It aims to process large-scale graph data

by using a message passing technique from one node to another. It uses a Bulk Syn-

chronous Processing system to pass the message among nodes and process them in

parallel.

Streaming data has had great usage in recently and state-of-art applications such

as social networks, communication networks, weather forecasts, biological networks

and web data where edges of underlying graph are received and updated sequen-

tially. For example, new accounts are created and deleted every day in online ser-

vices such as Facebook, Skype and Twitter. Stream data arrives in real time in many

real-world applications. It is necessary to partition these streams of graph data in a

single pass manner because there is only one chance to read the data. It is also known

as streaming graph partitioning. This is very necessary to provide an effective so-

lution in dealing with enormous streaming data and to meet the future demand.

An offline graph partitioner requires the entire graph information to be presented in

memory, whereas a streaming graph partitioning technique is able assign vertices as

they arrive. It is extremely necessary to have efficient graph partitioner of dynamic

graphs. The one-pass algorithm has a chance to read input data only once. Thus, it

is challenging to receive them and allocate them to the properly partitioned location

by balancing the load. It is also important to maintain good locality over a stream

of a vertex in order to achieve optimal and good partitioning. A number of works

[110, 109] have been produced in the recent past to meet this challenge.

Cloud computing is a well-known distributed computing environment which is

comprised of interconnected and virtual computers that could be dynamically in-

creased or decreased on demand [15]. It has much more flexibility than any other

shared nothing cluster system. Given the success of distributed computing, cloud

storage has become one of the most popular distributed systems due to its cost ef-

fectiveness, quick deployment facility and easy access to information. Single ma-

chine storage approaches do not scale because of their limited capacity. Due to an
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ever increasing size of the graph, application deployments are moving from small-

scale cluster servers towards the cloud which provides massive storage and sig-

nificant parallelism. A cloud consists of tens of thousands of inter-connected ma-

chines, which provide much more flexibility in deploying graph data. On top of

that, cloud computing has tremendous data recovery options. To the best of our

knowledge, streaming graph partitioning performance has not been evaluated in

the cloud distributing environment. This study evaluated the performance of two

streaming graph partitioning algorithms in the cloud computing environment, with

a combination of different resources and locations.

An evaluation study [3] was completed on LDG algorithm[110] and presented

some insights of this streaming graph partitioning algorithm in terms of its edge-

cut and load balancing performance with other similar algorithms. However, in

our experimental studies, we explored the algorithm to find the potential research

problem in resource optimization in a cloud environment in order to evaluate the

performance of edge-cut and balancing load. Particularly we also observed how

different type of memory has an impact on partitioning time.

3.3 Streaming Graph Algorithms

Two state-of-the-art streaming graph algorithms have been used in this evaluation

study which was completed by Stanton[110]. Stanton et al. proposed some heuristics

to address memory bottleneck in graph partitioning. Technically, these algorithms

are established in streaming graph partitioning techniques. They are the most pop-

ular and most cited streaming graph algorithms. The notation Pt refers to the set of

partitions at time t. E(v) refers to the set vertices that v is connected with. These

algorithms are explained below:

3.3.1 Balanced

In balanced partitioning, the algorithm assigns an arriving vertex v to a partition

which contains a minimum number of vertices.

partitionIndex = arg min
i2[k]

|Pt
i | (3.1)
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3.3.2 Linear Deterministic Greedy Algorithm

Streaming graph partitioning makes decision based on incomplete graph informa-

tion. However, in t time, the Linear Deterministic Greedy (LDG) algorithm uses a

greedy approach to assign a vertex to a particular partition. It tends to assign a ver-

tex to a partition which has the most edges. To balance the load of the partitions, it

weighs the partition by a penalty function based on the capacity of the partition.

partitionIndex = arg max
i2[k]

|Pt
i \ E(v)|

 
1�

|Pt
i |

Ci

!
(3.2)

Where, Ci is the capacity of ith partition, Pt
i is the set of vertices in ith partition

over time t .

3.4 Graph Applications: PageRank

There are several real applications available [80], which generate massive datasets

and those can be formed as graph datasets. Thus, graphs have become key com-

ponents of a wide range of applications, such as PageRank, Connected Component,

protein interactions, semi-supervised learning based on random graphs walks, web

searches based on link analysis, scene reconstructions based on Markov random

fields and social community detections based on label propagation, to name just

a few examples. However, we use two existing streaming graph partitioning al-

gorithms to evaluate performance on the PageRank application, because they are

widely used and very popular for large-scale graph-structured applications.

The most well-known application for graph processing is ranking web pages,

also known as PageRank, which was proposed by Google [82]. It calculates the

linking relationships between web pages. The web can be represented as a giant

graph, in which the web pages are nodes and the links from one page to another are

edges. For example, if many people follow a Twitter user, the user will be ranked

highly. Every hyper link carries a vote for the page to which it is linked. The more

links a page has, the more rank it gains and it becomes defined as a well-ranked

page. The PageRank algorithm does not give a rank for a whole website; it gives
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a rank for an individual page of a website. PageRank is defined by the following

formula:

PR(A) = (1� d) + d ⇤ PR(T1)
C(T1)

+ ... + PR(Tn/C(Tn)) (3.3)

Where, PR(A) =rank of a page A, PR(T1) = rank of a page T having a link to

page A, C(T1) = number of links to another page from page T and d is the damping

factor.

3.4.1 Distributed PageRank

We implement a distributed PageRank calculation. Our implementation takes the

static graph data as input in a stream manner. The streaming technique takes one

vertex with its associated edges and the partitioning algorithm decides the respec-

tive partition. The partitioning algorithms in the server machine assign the vertex to

the proper machine. After completing the partitioning and distributing all the ver-

tices of a graph, the client starts calculating the PageRank. To facilitate calculation,

we set an initial PageRank value for each vertex at 1.0 in its first iteration. After com-

pleting the calculation on each client side and in every iteration, the client updates

their PageRank value to the server side. During calculation, a client machine might

need a ranking value of a vertex which does not belong to the same machine. In

such a case, the client sends a request to the server side for that respective rank of

that particular vertex. The Server sends the particular client’s requested PageRank

of a vertex. The computation continues until the last two iterations values become

equal.

3.5 Experimental Design

We evaluate two well-performed streaming graph partitioning heuristics in the cloud

environment and apply them to a widely used application PageRank. We use two

graph datasets from a graph data archive[121]. Table 3.1 shows the characteristics of

datasets.
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Name of Dataset |V| |E| Type

3elt (Synthetic) [121] 4200 13722 Finite-element mashes

4elt (Synthetic)[121] 15,606 45,878 Finite-element mashes

TABLE 3.1: Characteristics of Datasets

Figure 3.1 illustrates the whole processing framework of this study. We receive

data in a stream order one by one before assigning a vertex to the respective par-

tition. The partitioning algorithm assigns the vertex as it arrives and sends it to a

cloud machine. The moment the cloud machine receives the vertices, it immediately

starts processing the calculation of PageRank.

FIGURE 3.1: Experimental method

We used the Nectar Cloud virtual machine [2] to evaluate the implemented al-

gorithms. The following experimental scenarios have been used to evaluate the per-

formance of those algorithms in the cloud machine.

1. Different number of partitions (2, 4, 8) with the 4 cores in master machine,

whereas number of cores in client is 2.

2. Different number of cores (e.g 1, 2, 4, 8) on master machine with the fixed 2

cores on client machines, and number clients are 8.

3. Different location for master machine to observe the efficiency in terms of dis-

tance. Number of cores in client machine was 2 and with the 4 cores in master

machine in this configuration.
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3.6 Result Discussion

We considered different scenarios to observe the performance of those algorithms

with the different resources in the public cloud. A different number of cores in the

master machine, a different number of clients and master machines residing in dif-

ferent locations have significant impact on execution time and the number of mes-

sages exchanged between client and server.

(A) 3elt Dataset

(B) 4elt Dataset

FIGURE 3.2: Execution time with different cores in Master Machine
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(A) 3elt Dataset (B) 4elt Dataset

FIGURE 3.3: Number of messages with different cores in master ma-
chine

Figure 3.2 and 3.3 illustrated the execution time and number of messages in cal-

culating PageRank of LDG and Balanced algorithm with different number cores

(1,2,4) in the master machine. It is seen clearly that the execution time decreases

as the number of cores increases, because more number cores in a machine allow

more messages to be transferred on the network at the same time. Figure 3.3a and

3.3b shows that the number of messages exchanged among master machines and

client machines decreases slightly as the number of cores increases for the LDG and

Balanced algorithm, respectively, in both datasets, which is to be expected.

We also observe the execution time and number of messages exchanged between

client and server for both algorithms by varying the number of partitions. As shown

in Figure 3.4a and 3.4b, PageRank execution time increases as the number of parti-

tions increases, which is expected. This tell us that, by increasing the number of par-

titions, it creates more communication messages on the network as shown in Figure

3.5a and 3.5b because the connected vertices are residing in an increased number of

partitions which creates more edge-cut rates among partitions. However, it is no-

ticeable in Figure 3.5a that the number of messages exchanged for both algorithms

are the same as for the 3elt dataset. On the other hand, for the 4elt dataset, the LDG

algorithm performed better in terms of communication. In conclusion, it is noticed

that the LDG algorithm performed better compared with the Balanced algorithm in

different aspects, such as communication and execution time for both datasets.
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(A) 3elt Dataset (B) 4elt Dataset

FIGURE 3.4: Execution time with four cores in master machine

(A) 3elt Dataset (B) 4elt Dataset

FIGURE 3.5: Number of Messages With Four Cores in Master Ma-
chine

(A) 3elt Dataset (B) 4elt Dataset

FIGURE 3.6: Number of messages with the master machine in differ-
ent location

We also evaluate these algorithms by varying the location of the master machine

in the cloud. We used four locations: i) South Australia, ii) Melbourne iii) Queens-

land iv) NCI (Canberra). The number of cores in the master machine was 4. Client

machines were always located in NCI (Canberra) in this scenario. Figure 3.7 and
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(A) 3elt Dataset (B) 4elt Dataset

FIGURE 3.7: Execution time with the master machine in different lo-
cation

3.6 depicts the execution time and the number of messages exchanged for both al-

gorithms, for calculating the PageRank, by allocating master and client machines

in different locations. It is noticeable that execution time varies in terms of dis-

tance among server machines and client machines. The number of messages slightly

varies in changing the location as Figure 3.6a and 3.6b show.

It is obvious in Figure 3.7a and 3.7b that for both datasets for the LDG algorithm,

the location of the master machine (NCI) and the client machine (NCI) in the same

area reduces the execution time. It is also observed that the highest execution time

occurs if the master machine and client machine reside in South Australia and NCI

(Canberra) respectively.

3.7 Related Work

Researches have been undertaken on graph partitioning in the cloud environment.

In this section, we review some related work on streaming graph partitioning and

gap analysis.

In the recent past, there has been considerable interest in designing algorithms

and frameworks in order to handle massive graph data from streaming data. Steam-

ing graph-data can be partitioned into a cluster of nodes; the graph access pattern

could be online or offline processing. This partitioning is very efficient because the

partitioner assign the graph data as they arrive. Partitioner loads the graph from

the stream order into the cluster [110]. There are some motivations in handling big

streaming graphs. They are: i) most of the applications generate large-scale dynamic
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data, which is impossible to store in the main memory of a single machine. ii) Big

graph data makes an impression in analysing the complexity of streaming graph

computation.

Another well-known streaming partitioning algorithm called FENNEL [113] was

proposed. FENNEL has made great improvements in reducing the computational

complexity and reducing communication near to the METIS algorithm. However,

these algorithms were not evaluated in the cloud environment.

Microsoft research implemented a partitioning framework, a top performing

graph-partitioning framework called FENNEL [113]. This partitioning framework

aimed to overcome computational complexity issues in the traditional balanced graph-

partitioning problem. It has also improved performance regarding communication

cost and runtime. In some cases, the same datasets generate streamed data again and

again in a routine manner. A typical streaming algorithm can not possibly handle

this situation. A restreaming technique is needed in order to resolve this issue [81].

This algorithm is proposed over Linear Deterministic Algorithm (LDG) [110]and

FENNEL [113].

A Scalable cloud based graph partitioner was proposed in [74]. The authors aim

to scale the size of graphs and compute cores adaptively. Although the proposed

algorithm is able to adjust with changes in the graphs, it is unable to partition a

graph in a one-pass manner. Another cloud based graph partitioning framework

called Trinity [103] was proposed to provide a memory infrastructure and a data

structure. Trinity is able to partition online and offline graph for several real-world

applications.

The evaluation of streaming graph partitioning algorithms in the cloud system

and observing their performance with different real applications are yet to be under-

taken. There is a fundamental diversity in the different graph applications domain

and in partitioning them. For example, social graphs and web graphs are very dif-

ferent in their structure [22, 115]. Ever increasing growing data and dynamism in the

graph creates more challenges to find an optimal solution in big graph processing

applications. Some applications fit well into a good locality, regardless of how good

the minimum edge-cuts are and vice versa. This is important in deciding a suitable

streaming graph partitioning algorithm for some specific real applications.



3.8. Summary 59

Cloud computing in the recent past was paid great attention in the area of dis-

tributed systems and parallel processing. Some reasons which could make com-

puting a very important solution for many applications are worth mentioning here.

They are: high throughput, capacity to compute the exponential growth of data,

greater capability of scale out, up, or down, and dynamically load balancing adapt-

ability. This work also observes the above performance matrices of the cloud system

with the various graph partitioning algorithms and with real-life applications.

3.8 Summary

This chapter evaluated the performance of two streaming graph partitioning algo-

rithms in the cloud environment. It observed how cloud resources and locations

have an impact in stream graph partitioning. In huge graph partitioning in a one-

pass manner, the locality of the cloud machine and different resources has a great

impact on partitioning performance. We observed that allocating different machine

in different locations in the same cloud environment consumes more computational

time in exchanging messages between machines. Increasing resources in a cloud

machine also has another impact in streaming graph partitioning in the cloud envi-

ronment. We observed that, as we increase the resources in a machine, performance

gets better in terms of reducing the execution time and the number of communica-

tions.

This chapter motivated the need for streaming graph partitioning for the scalable

dynamic graph in the cloud environment. We identified a few graph partitioning

problems in streaming manner after evaluating these existing algorithms. Utilising

the cloud machine’s memory, optimising the resource cost, minimising communica-

tion, reducing time complexity and load balancing are key challenges in streaming

partitioning in the cloud environment. To address the identified research problem,

we designed algorithms and models in Chapters 4 to 6.
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Chapter 4

ASP: Auto-Scaling for Streaming

Graph Partitioning in Cloud

This chapter introduces a auto-scaling algorithm for a streaming graph partitioning

in the cloud environment. A provision/de-provision of a type of machine method is

also introduced in this chapter to optimise the resource cost. We present an existing

graph partitioning algorithm to evaluate our proposed auto-scaling algorithm in the

cloud environment.

4.1 Motivation

Streaming graph data is ever growing in recent applications, such as PageRank, the

Web and social networks. Due to time constraints and memory bottlenecks, a sin-

gle machine is unable to process this large, ever increasing data. An efficient dis-

tributed application is necessary in order to process a graph-oriented application

efficiently. The number of machines has to be determined in advance, based on

the upcoming streaming, in order to better utilise machine resources. In addition,

to cater for the ever-increasing computational load from streaming graph data and

to avoid consuming unnecessary resources, an auto-scaling distribution system is

required. Moreover, graph computation workload continues to change over time,

thus machine provision/de-provision is necessary to utilise the machine resources

and optimise the cost. The public cloud has an elasticity feature to handle provi-

sion and de-provision as per demand, without any human interaction. Most of the

real-world graph data applications are migrating to cloud services in order to cope
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with ever-growing data and removal of data. This study proposes a cost-based auto-

scaling strategy in order to best use a number of machines and cloud resources in

graph -partitioning. The following contributions are from this study: 1) Determine

the number of machines based on predicted data stream; 2) A cost-efficient auto-

scaler which scales up/down the machine resources as per the demands of work-

load. Experiment results shows that the proposed auto-scaler in streaming graph

partitioning has significant improvement of memory utilisation of resources while

minimising the resource cost.

4.2 Introduction

In recent years, streaming graph data has been increasing in an unprecedented man-

ner in graph-oriented, real applications. Moreover, graph-oriented applications tend

to change their structure over time. Therefore, a dynamic auto scaling cloud service

is required to cope with data changing over time. Due to the ever-increasing graph

data, a distributed graph processing is the solution to handle the unprecedented

graph data. Scalability is one of the solutions in utilising the cloud resources as per

user demand.

Currently, graph data are huge. These large datasets are: knowledge graphs, web

data, social network data and biological networks, to name a few. These data can be

formed as graph data. Many of the real-world networks or graph data are contin-

uously changing over time and this generates large, dynamic graphs, for example,

online activity and interactions formed from electronic communication, social media

and content sharing. These processes produce a huge amount of continuous, inter-

active data, which is represented as a dynamic graph. A recent statistic shows that

Twitter has over 43 million users and there are more than 1.5 billion social relation-

ships over this network. This tells us that the trend of the exponential growth in data

is significant. In graph streams, individual edges of the underlying graphs arrive se-

quentially in a stream, unlike traditional graph-data which have a fixed number of

vertices and edges.Fast growth of data in many emerging applications (for example,

online social networks, web graphs, health informatics, financial analysis and mon-

itoring, public policy and monitoring, protein-protein interactions) need streaming
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analysis in real time as data arrives.

In order to meet the huge graph data processing demand, efficient systems are

a necessity. A distributed system is one of the best solutions for the allocation of an

enormous amount of streaming graph data before processing. Graph partitioning is

the technique which distributes numerous graph data among distributed systems.

This partitioning technique distributes the graph-structured data among distributed

machines, with the aim of minimising graph node communication among machines.

This partitioning is called k-way graph partitioning [9], which is an NP hard prob-

lem. There has been much research in order to compute large-scale graph data, the

most popular of them being: [4, 110, 103]. Google proposed a vertex-centric dis-

tributed graph processing framework which is known as Pregel [72]. It aims to pro-

cess large-scale graph data by using a message passing technique from one node to

another. It uses the Bulk Synchronous Processing system to pass the message among

nodes and process them in parallel.

Cloud computing is a well-known, distributed computing environment which

is comprised of interconnected and virtual computers that could be dynamically in-

creased or decreased on demand [15]. It has much more flexibility than any other

shared nothing cluster system. Given the success of distributed computing, cloud

storage has become one of the most popular distributed systems, due to its cost ef-

fectiveness, quick deployment facility and ease of accessing information. Single ma-

chine storage approaches do not scale because of their limited capacity. Due to the

ever-increasing size of the graph, application deployments are moving from small-

scale cluster servers towards the cloud, which provides massive storage and signifi-

cant parallelism. A cloud consists of tens of thousands of inter-connected machines,

which provide much more flexibility in deploying graph data. In addition to that,

cloud computing has tremendous data recovery options.

Due to a highly increasing amount of graph data in a graph-orientated appli-

cation, it is convenient to predict the number of task requests by users or upcom-

ing data in advance. Predicting the data helps in utilising the cloud resources and

optimising the resources cost as well. Additionally, it is also important to provi-

sion or de-provision the currently used machines, according to the computational
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load, as the data increases or decreases over time in dynamic graph-oriented applica-

tions. This study addresses the above research problem by providing an auto-scaling

mechanism. The proposed study utilises the cloud resource and optimises the cost

as per the demand of the ever-increasing graph data. It uses a heterogeneous dis-

tributed cloud environment for the evaluation of an existing streaming graph data

partitioning algorithm.

The proposed novel auto-scaling algorithm has the following contributions:

• A prediction model to predict the number of user requests and upcoming

graph data in advance. Based on the predicted data, the proposed model de-

cides the number of Virtual Machines(VM) in the cloud.

• The proposed auto-scaling algorithm, provision/de-provision the type of ma-

chines being used, based on the current computational load during the parti-

tioning.

4.3 System Work-flow

In this section, we discuss the overall system architecture for cost-based resource

utilisation method proposed in this study. Figure 4.1 shows the work flow of our

proposed auto-scaling method.

Stream Data: Stream of data are sent to the queue for the prediction of required

number of machine. This stream of data also sends the vertices and edges to the

partitioning algorithm also receives the vertices and edges from the stream for the

partitioning purpose after deciding the required number of machines.

Queue: The queue receives the graph data from the stream of graph. The queue

is used to put the vertices for purpose of prediction.

Prediction Algorithm: In this work-flow, the prediction algorithm is responsible

for the prediction of the upcoming data for a unit of time from the buffer. Based on

the predicted data, the algorithm is also responsible for determining the number of

machines is required to complete the computation.

Partitioning Algorithm: In this work-flow, the partitioning algorithm is respon-

sible for the partitioning of the graph input from the stream to the appropriate ma-

chine.
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FIGURE 4.1: Auto-scaling work flow

Auto Scaler: The auto-scaler checks the partitioned data in real-time, in order to

provision/de-provision the machine as per the computational demand.

4.4 Linear Deterministic Greedy Algorithm

In this section, we discuss the streaming partitioning algorithm we use to evaluate

our cost-based graph computation method in the cloud. This algorithm is a state-of-

the-art algorithm for streaming graph partitioning as proposed by Stanton [110].

Streaming graph partitioning makes decisions based on incomplete graph infor-

mation. However, in t time this increasing amount Linear Deterministic Greedy(LDG)

algorithm uses a greedy approach to assign a vertex to a particular partition. It tends

to assigns a vertex to a partition where it has the most edges. To balance the load of

the partitions, it weighs the partition with a penalty function based on the capacity

of the partition.

partitionIndex = arg max
i2[k]

|Pt
i \ E(v)|

 
1�

|Pt
i |

Ci
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(4.1)



66 Chapter 4. ASP: Auto-Scaling for Streaming Graph Partitioning in Cloud

where, Ci is the capacity of ith partition, Pt
i is the set of vertices in ith partition over

time t.

4.5 ASP: Auto-scaling method

We use a prediction model to predict the stream of data for the next unit of time. We

take the following into consideration to design the prediction model: 1)the speed of

the streaming data coming in; 2) the size of the data in the buffer; 3) the capacity of

worker machines; 4) the resources of a worker machine; 5) waiting time

We use a time scale T; the data arrives in a time series each interval data arrived

in a series si and si + 1. The stream of data comes in a buffer and is stored in a

queue. The model takes the data from the last unit of time and measures their sizes

and arrival speed to determine the next unit of time.

We use the queueing theory model M/M/a [124], where M = the input process,

we use the Poisson distribution model to process the input. In the input process the

arrival rate is l = arrivedTuple/sec. Another M in the second part of this model is

the application service completing rate µ = taskComplete/sec, and s is the number

of worker machines. The utilisation of each worker machine is calculated with the

following equation:

r =
l

sµ
(4.2)

The predicted stream data waiting in the buffer for a time unit can be defined

with the following equation:

predictedData =
ras p0

s!(1� r)2 (4.3)

p0 is the probability of having no stream of data in the buffer. p0 can be defined

with the following formula:

p0 =

"
s�1

Â
r=0

ar
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+

as

s!(1� r)

#1

(4.4)
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The expected waiting time of the stream of data can be calculated with the fol-

lowing formula:

waitingTime =
as p0

s!sµ(1� r)2 (4.5)

Based on the predicted data in the stream (predictedData) from the Equation 4.3,

our predicted model determines the number of worker machines that need to be

allocated to accommodate the upcoming stream of data. The following thing also

need to be considered: 1) the current capacity of the workers; 2) the size of the stream

waiting in the buffer.

We can obtain the number of estimated machines (s) with the following equation:

s = dµ +
p

µe (4.6)

We use a capacity threshold to determine the number of machines we need to

accommodate the predicted data in the stream. The capacity threshold can be deter-

mined with the following equation.

capacityThreshold = predictedData/Mf (4.7)

where, Mf denotes the type of machine(e.g Large, Small), the capacityThreshold is

rounded to the next higher integer and it is equal to s. The predicted number of

machines depends on the data arrival rate (l) and the service time µ in a machine.
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FIGURE 4.2: Auto-scaling work flow

4.5.1 Provision and De-provision

We use the provision or de-provision of resources with the modified Linear Deter-

ministic Greedy (LDG) algorithm [110]. In addition to that algorithm, we use a scal-

ing technique to provision/de-provision the type of machines based on workload in

the upcoming stream. To scale up/down the resources, we check the capacity of the

partition after assigning every vertex from the stream.

We check the worker availability in order to distribute the graph data and provision/de-

provision the machine. The current available capacity (Ct) of worker availability

needs to be checked before assigning any data to that worker machine. The worker

availability is checked one unit of time in advance, to ensure the machine is ready

for the next predicted stream of data.

Provision: Whenever a partition reaches near the maximum capacity(MAXCAP)
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of that partition, then our scaling algorithm, provisions from a small machine to a

medium/large machine. We use a tolerance level of space which allows sometime

to provision the machine from a lower capacity to a higher capacity, as some time is

required to start a new machine and shut down current machine, once the newly ma-

chine is ready to serve. We use a threshold value(l) which determines launch of the

machine. If a partition’s capacity (Ct) reaches equal or more than the provisionSmall

value, the auto-scaler will start launching a new machine with higher memory ca-

pacity before shutting down the current machine. The work flow of our complete

auto-scaling algorithm shows in Figure 4.2

average = numberO f vertices/numberO f Machines (4.8)

provisionSmall = (toleranceParameter ⇤ average)/100 (4.9)

provisionMedium = (toleranceParameter ⇤ average)/100 (4.10)

toleranceParameter is the tolerance percentage of the maximum capacity of a ma-

chine, which allows the initialisation of a new machine before shutting down the

current machine. It helps to continue graph computation without any interruption.

De-provision: Whenever a partition is occupied less than the deprovisionThreshold

capacity, the auto scaling algorithm de-provisions the type of machine, for example

from a large to a small type of machine. We use the following equation to find the

capacity of a machine.

deprovisionThreshold = (reduceParam ⇤MAXCAP)/100 (4.11)

reduceParam is the percentage level of the partition to de-provision the type of

machine.

Algorithm 2 shows the overview of our complete auto-scaling algorithm, where

numberOfMachine(l) is the function to decide the number of machines based on

the arrival rate. The detail of this function is explained in Section 4.5 and other

parameters and variables are also explained in the same section.
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Algorithm 2 Auto-scaling Algorithm
INPUT: l = arrival rate,V = Vertices, E = Edges, capacity, threshold,

deprovisionThreshold , currentVM

k numberOfMachine(l)

partitionIndex  partition(V, E, k)

i getpartitionIndex(k);

for (i = 0 to k ) do

if (capacityi == threshold) then

if currentVM == Small then

Provision the currentVM to Medium for the partition i

else if currentVM == Medium then

Provision the currentVM to Large for the partition i

end if

end if

if (capacityi < deprovisionThreshold) then

if currentVM == Large then

De-provision the currentVM to Medium for the partition i

else if currentVM == Medium then

De-provision the currentVM to Small for the partition i

end if

end if

end for

4.6 Experimental Setting

This study proposes an auto-scaling model based on predicted data in stream by

using a queueing theory model. In this section, we discuss the evolution setup and

different experimental scenarios.

The real time graph partitioner receives the graph data in a stream manner and

allocates it as it arrives. We use a state-of-the-art streaming graph partitioner [110]

to partition the data with a balancing strategy. While partitioning the data the auto-

scaler will utilise the best of the cloud resources by using this auto-scaler algorithm.
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The auto-scaler algorithm always maintains the number of Virtual Machines (VM)

as per the demand of computational loads. It automatically allocates or de-allocates

the VMs based on the upcoming stream and the allocated streaming data.

The auto-scaler algorithm uses a prediction model to predict the arrival data and

their size. The prediction is explained in the Section 4.5.

4.6.1 Cloud Environment

We use Nectar Cloud distributed virtual machine(VM) to evaluate our proposed

auto-scaling method. We used a heterogeneous cloud environment with the differ-

ent types of virtual machines. Table 4.1, shows some typical VM in cloud environ-

ment.

Machine Type Number of Cores RAM Disk Price/hour
m2.large 4 12GB 110GB $0.24

m1.medium 2 8GB 70GB $0.12
m1.small 1 4GB 40GB $0.0292

TABLE 4.1: Some Typical Virtual Machine

4.6.2 Dataset

The algorithm receives data in a stream manner at a certain arrival rate. The algo-

rithm receives the data and sends it to the respective partition as it arrives. We use an

existing streaming graph partitioning algorithm to perform the graph partitioning

task. A number of real and synthetic datasets is used in this study. Table 4.2 shows

the characteristics of several synthetic and real datasets.

Name of Dataset |V| |E| Type
AstroPh [70] 18,772 198,110 Citation

Email-enron[70] 36,692 183,831 Communication

TABLE 4.2: Characteristics of Datasets

4.6.3 Prediction buffer

We use a prediction model to predict the data in order to determine the number of

worker machines required to complete the computation. The arrived data are stored

in buffer for a unit of time. We use the Poisson distribution model to distribute the

data.
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4.6.4 Performance Metrics

We use the following performance matrices to evaluate the performance of the auto-

scaler.

Processing Cost: The resource cost to cater for the upcoming data and processing

the requests from the stream.

Number of Machines: The number of machines we require to complete the com-

putation for graph data. This is highly dependent on the data arrival rate and pro-

cessing time of a request.

Type of Machines: The type of machines are utilised for a certain type of input

and there size.

4.6.5 Evaluation Scenario

In this evaluation we observe how the number of machines determines the various

data arrival rate for each dataset. The data arrival rate depends on the types of

datasets and their characteristics because the changing rate of data makes an impact

on deciding the number of machines and their utilisation. After deciding the num-

ber of machines, we use the streaming graph partitioning algorithm to partition the

graph.

In considering the cost optimisation, we also observe changing the type of ma-

chine based on the arrival rate of data and the current computational load. We start

the experiment with small machines, then according to the scaling threshold, the

type of machine changes, for example, from small to medium, or vice versa.

We use a 95% tolerance level during provisioning; in this way if the machine

capacity fills to 95%, then the provisioning threshold starts launching a new type of

machine with a higher capacity (for example: small to medium) and migrates the

data from the old machine.

We compare our algorithm with a well-performed existing auto-scaling algo-

rithm [61] to evaluate the performance. The existing algorithm is well-established in

resource scaling optimisation in the cloud environment.
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4.7 Result Discussion

In this section, we discuss the results of machine utilisation and the optimised cost of

cloud machines in a distributed system for the graph-oriented applications. Figure

4.3 and 4.4 shows the optimised number of machines as determined by the optimised

scaling algorithm 2. The algorithm decides the number of machines based on the

data arrival rate and the service time of a task.

4.7.1 Machine Utilisation

Utilising resources in distributed computing is an important factor to consider. As

shown in Figure 4.3 to 4.6, our auto-scaling algorithm optimize the number of ma-

chine according to the load and upcoming data.

As shown in Figure 4.3 to 4.6, represent the scalability of proposed and existing

algorithms. Both algorithms are able scale the machines even if the arrival rate is

higher. However, the existing algorithm uses more machines even with the slower

data arrival rate.

In Figure 4.3 we observe that the number of machines is used for both the algo-

rithms is the same at the rate of 4, 7 and 9 for Email-Enron data set. On an aver-

age the proposed approach is utilising about 11% fewer machines over arrival rates.

Also, the proposed ASGP method using less number of machines while data arrival

is high. In some cases (at the rate of 5 and 8) proposed approach utilising more

number of machines compared with the existing one while using Email-Enron data

set. Figure 4.4 represents the number of machine utilisation while using AstroPh

dataset. Similar to Figure 4.3, the proposed ASGP method utilise less number of ma-

chines while the arrival rate is high. The proposed approach is utilising more than

10% machines in the case of AstroPh data set on an average. The proposed and exist-

ing methods utilising the same number of machines at the rate of 9 and 12. However,

for all other rate proposed approach utilising a fewer number of machines. Because

each vertex arrives in the stream with different numbers of associated edges, that

makes the different load of a machine over time and utilises the different number of

machines over time.
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FIGURE 4.3: Number of machine for Email-Enron dataset

FIGURE 4.4: Number of machine for AstroPh dataset

Figure 4.5 and Figure 4.6 shows the utilisation of different flavour machines for

proposed and previous algorithms while using Email-enron and AstroPh data set.

For both data set proposed algorithm is using less number of medium flavour ma-

chine which is more cost-efficient. Small flavour machines are not been used in most

arrival rate cases. However, while the arrival rate is increased the system is started

using small machines which proves the efficiency of the proposed algorithm.
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FIGURE 4.5: Different type machine for Email-enron dataset

FIGURE 4.6: Different type machine for AstroPh dataset

In Figure 4.7, shows the memory utilisation of currently utilised machines that

is the amount of memory being occupied by the user requests. It is seen clearly

that our algorithm has better memory utilisation than the existing algorithm. The

memory utilisation by our algorithm reaches close to 100% for the data arrival rate

of 15 MB/sec.
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FIGURE 4.7: Memory utilisation with different arrival rate

4.7.2 Cost Optimisation

In stream graph partitioning, the selection of the type of the cloud machine has a

great impact on managing the resource cost. Unused or unnecessary resources lead

to a wasting resources. Figure 4.8 and 4.9 shows the comparison of two resource

provisioning auto-scaling algorithms. It is clearly seen that our proposed algorithm

reduces the cost of the cloud resource by selecting the type of machine as required.

We compared the cost optimisation with an existing algorithm; our algorithm out-

performs the existing algorithm.

In Figure 4.8 shows that at the rate of 7 and 4MB/sec the cost of resources is al-

most the same for both algorithms. In the case of power-law graph the data arrival

rate of a vertex of the graph stream makes the difference in resource utilisation. In

graph stream If a vertex arrive with high degree, then the graph requires more re-

sources to accommodate the arrived vertex and their edges.
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FIGURE 4.8: Cost comparison for Email-enron dataset

FIGURE 4.9: Cost comparison for AstroPh dataset

4.8 Related Study

One of the state-of-the-art proposed models based on the queueing model proposed

[53] by using queuing theory. Based on the queuing theory in another study a num-

ber of models proposed [1] to determine the number of servers. It uses the infinity

server model to decide the number of machines, based on arrival rate and service

rate.
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An optimal method [54] was proposed to scale the cloud resource in an automatic

manner for web applications. This algorithm predicts the number of web requests

automatically and allocates the number of virtual cloud machines required, accord-

ing to the prediction request. Another optimal cloud resource was proposed [61]

based on response time. This proposed optimal algorithm uses a Pareto trade-off

between the number of used workers and the resulting response time.

An automatic cloud resource provisioning technique was proposed in [11]. This

technique uses a hybrid method with a combination of reactive and proactive ap-

proaches to scale resources according to the demands of the user’s request.

These proposed work did not deal with the dynamic graph dataset and predict-

ing the dynamic graph data is different from the batch processing dataset, when the

graph node is connected to each other.

4.9 Summary

This chapter studied the auto-scaling algorithm for the cloud environment for a

streaming graph partitioning algorithm. Initially, the prediction algorithm deter-

mined the number of machines required to accommodate the computational load,

based on the data arrival time and the service rate. The auto-scaling algorithm

scales the type of machine currently being used according to computational load

over time, while partitioning a graph in stream manner. We observed that our auto-

scaling algorithm outperformed the existing algorithm in utilising the memory and

minimising the cost of resources. We used an existing algorithm for the partition-

ing purpose to evaluate our scaling mechanism in order to observe the machine

utilisation and cost optimisation. We have not developed any mechanism to min-

imise the inter-machine communication or to balance the computational load. In the

next chapter we will develop a streaming partitioning algorithm, based on a slid-

ing stream window, to minimise inter-machine communication. We also propose a

parameter-based balancing strategy to keep the partitions balanced while minimis-

ing communication.
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Chapter 5

WStream: Window-based

Streaming Graph Partitioning

This chapter proposes a novel streaming graph partitioning algorithm based on a

sliding stream window and makes the best use of vertices and edges information

from the sliding window to partition a graph in real-time. A load balancing strat-

egy is also proposed to keep load imbalance as low as possible, while minimising

communication between machines.

5.1 Motivation

In recent years, the scale of graph datasets has increased to such a degree that a

single machine is not capable of efficiently processing large graphs. Thereby, effi-

cient graph partitioning is necessary for those large graph applications. Traditional

graph partitioning generally loads the whole graph data into the memory before

performing partitioning; this is not only a time-consuming task but it also creates

memory bottlenecks. These issues of memory limitation and enormous time com-

plexity can be resolved using stream-based graph partitioning. A streaming graph

partitioning algorithm reads each vertex once and assigns that vertex to a partition

accordingly. This is also called a one-pass algorithm. This chapter proposes an ef-

ficient window-based streaming graph partitioning algorithm called WStream. The

WStream algorithm is an edge-cut partitioning algorithm which distributes a ver-

tex among the partitions. Our results suggest that the WStream algorithm is able
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to partition large graph data efficiently, while keeping the load balanced across dif-

ferent partitions, and communication to a minimum. Evaluation results with real

workloads also prove the effectiveness of our proposed algorithm, and it achieves a

significant reduction in load imbalance and edge-cut with different ranges of dataset.

5.2 Introduction

The scale of graph data is becoming larger and the trend will continue to grow

rapidly with the emergence of different applications (for example, web-graphs, so-

cial networks, road networks and biological networks) that deal with massive inter-

connectivity [133]. Consequently, most real-world applications require distributed

computation due to the emergence of these large graphs. To complete the distributed

computation of any application, we need to partition an entire graph across ma-

chines in a cluster for faster localised processing. This is a vital process in distribut-

ing the load.

Graph partitioning cuts a graph into several disjoint sub-graphs with the aim

of minimising the edges between these sub-graphs while retaining almost the same

number of vertices in every partition. Imbalance among computational load in a

distributed environment produces inefficient applications. Besides minimisation of

communication, the load balancing also must be considered in graph partitioning.

These two aspects make graph partitioning an essential pre-processing task for effi-

cient computational speed in different real-world graph applications.

In traditional graph partitioning[72, 10], the entire graph must be loaded into

memory for partitioning and processing. Potentially, this requires huge storage/memory

capacities due to the large-scale of the data which, in some cases, may increase con-

tinuously over time. Consequently, the traditional partitioning algorithms require

high computational costs and memory for the partitioning tasks. In addition, this

also affects the graph data processing for different applications (for example PageR-

ank, Shortest Path). These are the main motivations for this study which proposes a

streaming graph partitioning algorithm to partition large graphs efficiently. Stream-

ing graph partitioning is a new variant of the graph partitioning problem, which
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aims to deal with time-evolving graph datasets. The streaming partitioning tech-

nique is also known as a single pass algorithm, as the data can be seen only once

in this partitioning algorithm. The streaming graph partitioning algorithm was in-

troduced by Stanton [110]. It aims to provide efficient graph processing by reduc-

ing memory bottlenecks, allocating the graph data as it arrives rather than loading

the entire graph into memory. It was a welcomed approach, as graph datasets are

rapidly growing day by day. As a result, streaming graph-partitioning is now play-

ing a vital role in overcoming the issues that traditional partitioning cannot.

Several studies have been conducted on streaming graph partitioning [110], [109],

[7], [113], [4]. However, many of the studies use a synthetic dataset to evaluate al-

gorithm performance rather than real-world graphs. These studies also assume that

the graphs are already localised on the disk and the stream of data will be in a par-

ticular order (for example, Breadth First Search, Depth First Search). In real-world

scenarios, graph data do not come in a certain order. Consequently, there is no scope

to use any particular stream ordering in real-world graph application scenarios.

In this chapter, we propose a window-based streaming graph partitioning tech-

nique to obtain better partitioning performance and to reduce edge-cut, whilst keep-

ing load imbalance as low as possible. The key idea of this algorithm is that the

window-based stream of graph data has more information on vertex allocation be-

cause the usual single-pass graph partitioning only uses the presence of a vertex

to determine the partition for that vertex. The window-based algorithm does not

consider any stream order when receiving the stream of data input. We argue that

this technique improves the partitioning performance with regard to the following

aspects: i) It balances computational loads among machines. ii) It addresses scala-

bility, as it accepts any range of datasets. iii) It reduces the communication between

machines (by reducing the number of edge-cuts). The contributions of this chapter

are as follows:

• A window-based streaming graph partitioning technique that aims to reduce

the number of edge-cuts by maintaining a balanced partition.

• A streaming window that helps to obtain more information associated with a

vertex before a vertex is assigned to a partition.
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• An algorithm which checks the number of edges of a buffered vertex in the

window and helps to achieve better partitioning performance when assigning

the vertex.

5.3 Related Work

Recently, there has been considerable interest in the design of an algorithm and a

framework to handle massive graph data in a streaming manner. Steaming graph-

data can be partitioned into a cluster of nodes; the graph access pattern could be

done via online or offline processing. Streaming graph partitioning is very efficient

because the graph loader or partitioner does the partitioning task while receiving

the graph data in a streaming manner. A near-optimal traditional graph partition-

ing algorithm called METIS was proposed in the early graph-partitioning era [62].

METIS is the de facto standard for near-optimal partitioning in distributed graph

partitioning. METIS can reduce the communication costs among distributed ma-

chines despite having a lengthy processing time for small graphs. However, METIS

is not suitable for processing medium or large graph datasets [62].

Graph partitioning can be categorised into two types: Vertex-Cut-based and

Edge-Cut-based. In Table 5.1, we summarise and compare the most recent stream-

based partitioning algorithms. In the following sections, we provide details of re-

lated work.

Algorithm Vertex-cut Edge-cut Distributed Window-based
Linear Deterministic Greedy(LDG)[110] No Yes Yes No

Natural Graph Factorization[7] Yes No Yes No
LOOM[32] No Yes Yes No

STINGER[88] No Yes No No
Planted Partition[112] No Yes No No

HDRF[83] Yes No Yes No
HoVerCut[91] Yes No Yes Yes

Vertex Migration[4] No Yes Yes No

TABLE 5.1: Summary of stream based graph partitioning

5.3.1 Vertex-cut Partitioning

A scalable streaming partitioning approach was proposed by Wang and Chiu [123]

with the aim of achieving a low complexity system. This partitioning technique
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aims to reduce the number of edges between partitions, and consequently reduces

the communication cost of query processing. A streaming vertex-cut partitioning al-

gorithm, High Degree Replicated First (HDRF), was proposed by Petroni et al. [83]

to utilise the vertex characteristics. The study used a greedy vertex-cut approach, in

which the high-degree (number of edges of a vertex) vertices replicate first, in order

to minimise and avoid unnecessary vertex replication. This algorithm achieved a

significant improvement in stream-based partitioning compared with previous al-

gorithms [71]. HDRF achieves nearly twice the speed of traditional greedy place-

ment and is almost three times faster than using a constrained solution. Sajjad et

al. proposed a scalable streaming graph partitioning technique called HoVerCut

[91], which provided horizontal and vertical scalability for the graph partitioning

system. HoVerCut used multi-threading with a windowing technique to share in-

coming edges among the threads. However, in that the window that contains the

edges does not update over time. This may create performance degradation and it

is not suitable for dynamic datasets.

Real-world graphs, for example, social networks, typically follow a power-law

degree distribution. Partitioning power-law graphs is very difficult. PowerGraph

[38] aims to reduce inter-partition communication by computing edges over vertices

of power-law graphs. It follows the GAS (Gather, Apply, and Scatter) model and

uses a vertex-cut partitioning technique. It distributes replicas of vertices into mul-

tiple machines to parallelise the computation.

Another variant of PowerGraph streaming partitioning was proposed by Xie et

al [126] called S-PowerGraph. S-PowerGraph also used vertex-cut partitioning. This

method is suitable for partitioning skewed natural graphs and was found to outper-

form algorithms in previous studies with regard to an acceptable imbalance factor.

5.3.2 Edge-cut Partitioning

A distributed vertex swapping technique called Ja-be-ja [86] was proposed by Rahi-

man et al. this vertices swapping technique made uses to reduce the communication.

Ja-be-ja was built based on a local search and Simulated Annealing(SA) method. The

SA method uses the statistical mechanism which is not suitable for the sparse net-

work [125]
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Stanton [110] proposed a few heuristics for partitioning a large-scale graph in

a streaming manner. Linear Deterministic Greedy (LDG) was the best performing

heuristic of these. This algorithm is a greedy heuristic, which is linear. It has a cen-

tral graph loader, which loads and distributes data among the available workers.

The heuristic assigns a vertex to the partition with which it shares the most edges.

The algorithm was evaluated using 21 different static datasets and up to 16 parti-

tions. It makes heuristics scale with the size and number of graph partitions. Based

on PageRank computations, the method yielded a significant speed up achievement

for large social networks by 18%-39% when compared with Spark [131]. However,

there are drawbacks in this study which we have addressed in our study. LDG

receives the input data in a certain order, which is not suitable for any real-world

streaming graph application whereas, the WStream algorithm receives the graph in-

put sequentially, as it arrives regardless of any particular order. Moreover, the LDG

algorithm uses the entire subgraph information from all vertices previously parti-

tioned. They also used a distributed look up table to access the graph information.

Moreover, we used a stream window which creates more opportunities to get better

partitioning results by using a greedy strategy.

The LDG algorithm is a well-established streaming graph partitioning algorithm

and is a state-of-the-art one-pass edge-cut partitioning algorithm. Therefore, in this

study, we compared our one-pass edge-cut partitioning algorithm with the LDG

algorithm [110].

We propose a window-based streaming processing algorithm; the window can

contain more information about a candidate vertex which is ready to be assigned

to a particular partition. While partitioning graph data from a window, the first

vertex and its adjacent vertices of the window are assigned to a partition by the

algorithm. The first entry checks for the presence of any connected vertices in the

current window as well as the vertex with the most edges from the partitioned data.

This stream window helps in deciding an appropriate partition to assign for the

first entry and its associated vertices to a respective partition of the candidate vertex

with the most edges, or any of the connected vertices to reduce communication.

This technique achieves significant improvement in reducing edge-cut because the

decision to assign a vertex has some impact on its future connected vertex from the
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window. To the best of our knowledge, this technique has not yet been applied in

any studies.

5.4 Proposed Algorithm

5.4.1 Preliminaries

We consider an undirected graph G, with a set of edges E and vertices V, such that

G = (V, E). A balanced k-way partitioning divides the graph into almost equal

subsets. The graph partitioning algorithm uses a balancing constraint to keep all the

partitions balanced. The balancing constraint can be defined by Equation 5.1:

8i 2 {1..k} : |Vi|  Lmax := (1 + a)d|V|/ke (5.1)

where, a is the unbalanced parameter, and is a non-negative real number. The vertex

v is adjacent to vertex u given there is an edge {u, v} 2 E. If vertex v and vertex u

reside in different partitions, this is called the cut edge. Thus, Eij := {{u, v} 2 E : u 2

Vi, v 2 Vj} is the set of edge-cuts between partitions. Edge-cut graph partitioning

always aims at reducing this cut.

5.4.2 System Architecture

In our system, we used master machines which are responsible for reading input

and assigning the vertices to the clients, as such partitioning algorithm resides in

the master machine. We used a Stream Generator which creates the stream data

after receiving the input and then forms a stream window. We used a distributed

meta data file which has been used to store the information of the vertices which are

already seen in the stream. This information was used to assign the future vertices

from the stream of data. Figure 5.1 shows the architecture of the system.

• Master Machine: The master machine receives the input graph data from the

input file. In the master machine the Stream Generator generates the stream

data and maintains the stream window before assigning each vertex to the

respective partition. It also stores the partitioned vertex information and later

uses this for future vertex partition.



86 Chapter 5. WStream: Window-based Streaming Graph Partitioning

• Partition: Each partition, also known as a worker machine, communicates

with the master machine to receive the assigned vertex from the master ma-

chine. The worker machines also communicate with each other to maintain

the computation of a domain application.

5.4.3 The Streaming Model and Window

We consider that the graph data comes in a stream of tuples V < vertex; edges >.

The proposed algorithm utilises a sliding stream window of size W. We define two

different vertices in the stream window: 1) Candidate vertex is the one, which is

the front of the stream window and is available for partitioning. 2) Neighbors of

the candidate vertex in the window are known as a Buffered vertex in this study.

As shown in Figure 5.2, V1 is the candidate vertex that resides at the front of the

window which contains three more vertices. Vertices V3 and V4 are the neighbours

of candidate vertex V1. Thus, these two vertices are defined as a buffered vertex in

a stream window.

FIGURE 5.1: System Architecture
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FIGURE 5.2: Candidate and Buffered Vertex in a Stream Window

When a candidate vertex is allocated to a partition, it leaves a space for another

vertex to come into the stream window to maintain the window size. The stream

window contains more than one vertex such that it gives more information about

a candidate vertex and other connected vertices of the candidate vertex. Conse-

quently, this window-based partitioning produces better partitioning quality. The

size of the window is W > 1 and the size of the stream window depends on the

graph structure and the type of graph. In this study, the minimum and maximum

window sizes are 100 and 800, respectively.

Stream order is another aspect to consider while performing streaming graph

partitioning, as it has a major influence on the performance of graph partitioning.

The input order of a graph makes a significant difference to the performance of a

partitioning method. In a real-world graph with streaming settings, the order of

a stream is not predictable. In this study, we consider a uniformly random order

while receiving the graph input to the stream window. Algorithm 3 presents the

pseudocode for our proposed WStream algorithm.

Algorithm 3 WStream Algorithm
if all the partitions are empty then

assign V randomly(uniform)
else

if loadImbalance � B then
perform greedy strategy except for the partition with the highest load

else
perform greedy strategy

end if
end if
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Algorithm 4 Greedy Strategy
for i = 0 to k do

if (|Pk \ E(Vc)| � |Pk \ E(Vb)|) then
k Vc

else
if (|Pk \ E(Vc)| == |Pk \ E(Vb)|) then

Vc to a partition randomly
else

Vc to a partition that has minimum load
end if

end if
end for

5.4.4 WStream Algorithm

The algorithm starts with three inputs, a number of vertices, their associated edges,

and a balancing parameter. We also specified the number of partitions. The algo-

rithm finds the total number of vertices of each partition and identifies the partition

with the maximum number of vertices. The algorithm must keep track of differences

among partitions to keep them balanced. Algorithm 3 shows the pseudocode for the

WStream algorithm.

The balancing parameter p checks the level of imbalance of the partitions with

each other. We used the parameter p=[0, a] and a range of a values to check the

balancing performance of the algorithm. We observed that a higher a value reduces

the number of edge-cuts, and the load difference among partitions did not exceed the

parameter a. In the case of a=0 the partitions were perfectly balanced. The balancing

technique checks the load of the partitions after assigning a vertex to a partition.

This is obtained by finding the load differences between partitions. Finding load

differences means finding the comparison between the total numbers of allocated

vertices among all the partitions.

During partitioning, if the difference between the load at any partition and the

maximum load exceeds the value of a, the algorithm decides to assign vertices to

other partitions using Greedy Strategy except for the partition with maximum load.

After completing the partitioning task, we calculate the load imbalance by calculat-

ing the standard deviation of the number of vertices in each partition.

This algorithm checks the balancing parameter after assigning each vertex to any

partition. While performing the partitioning task, whichever partition exceeds the
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value of the parameter, the partitioning algorithm stops sending vertices to that par-

tition and applies a greedy strategy (discussed in the next section) to assign the fol-

lowing vertices to other partitions. The following section discusses in detail the

mechanism of the vertex assignation technique, using the Greedy Strategy for parti-

tion decisions.

5.4.5 Greedy Strategy

The WStream algorithm exploits the Greedy Strategy to find the partition, which

has the most edges of the candidate vertex or the buffered vertex from the window.

The master machine is responsible for the partitioning task and distributes vertices

to the clients. The master machine also stores the summary of vertex information to

be used for assigning future vertices to an appropriate partition. At the beginning

of the partitioning task, the algorithm assigns the candidate vertex to a partition by

using a uniform random distribution. Algorithm 2 shows the pseudocode of this

window-based Greedy technique.

The major aim of this method is to find a partition for the candidate vertex and

buffered vertex in the window. To decide this, neighbours of the candidate vertex

(based on the graph summary) are also taken into account. The algorithm assigns

the candidate vertex along with its neighbours to the most weighted partition. This

technique helps minimise the communication between partitions. The greedy tech-

nique tends to assign the vertices where they or their associated connections have

the most connections. However, if the algorithm finds the same number of edges

from two or more partitions then the algorithm assigns that candidate vertex and its

connected vertex from the window to the partition, which has fewer loads among

the tied partitions. In any case, if the algorithm does not find any edges for candi-

date vertices and buffer vertices from a partition, it decides to assign the candidate

vertex randomly in a uniform manner to any of the partitions.

arg max
k2P

{|E(Vc) \ Pk|} (5.2)

arg max
k2P,b2B

{|E(Vb) \ Pk|} (5.3)
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Equations 5.2 and 5.3 show the formula to determine the partition which has the

maximum number of edges of the candidate vertex and buffered vertex, respectively.

E(Vc) is the number of edges of the candidate vertex, E(Vb) is the number of edges

of the buffered vertex, Pk is the set of vertices of the kth partition, and b 2 B is the set

of buffered vertices of the stream window.

5.5 Performance Evaluation

This section discusses the evaluation criteria, dataset, performance metrics and ex-

perimental environment used in this study.

5.5.1 Experimental Settings

We implemented our proposed WStream algorithm and the LDG algorithm [110] by

using JAVA programming language. We then compared these two algorithms by

using two synthetic and five real-world graph datasets. Three performance metrics

are used in this comparison. We also use the METIS graph partitioning algorithm to

compare the partitioning performance. We consider different experimental scenarios

to evaluate the WStream algorithm. We run our experiments on the Linux operating

system using virtual machines from the Nectar cloud [2] service. The device has 12

GB of RAM and 4 VCPUs.

5.5.2 Dataset

We evaluated our partitioning performance using several static undirected real and

synthetic graph datasets from different graph data archives. Table 5.2 summarises

the basic characteristics of the datasets used in our experiments. We chose different

sizes and a variety of graphs to observe the partitioning performance of the algo-

rithm in the context of scalability. Different structure and volumes of data make

differences in partitioning behaviour and performance. For example, the degree of

adjacent vertices of social networks data is more positively correlated than in an-

other dataset [79].



5.5. Performance Evaluation 91

Name of Dataset |V| |E| Type Source
3elt (Synthetic) 4200 13722 Finite-element mashes [121]

GrQc 5242 14496 Collaboration Network [70]
Wiki-vote 7,115 99,291 Social [70]

4elt (Synthetic) 15,606 45,878 Finite-element mashes [121]
AstroPh 18,772 198,110 Citation [70]

Email-enron 36,692 183,831 Communication [70]
Twitter 81,306 1,768,149 Social [70]

com-DBLP 317,080 1,049,866 Citation [70]

TABLE 5.2: Characteristics of dataset

5.5.3 Performance Metrics

We observed the performance of our proposed algorithm using the following per-

formance metrics: i) fraction of edge-cut; ii) load imbalance; iii) execution time. We

observed the number of external connections of a vertex from one partition to an-

other partition. We calculated the fraction of the edge-cut using Equation 5.4:

edgecutratio =
|E(u, v)|

|E| (5.4)

where, |E| is the total number of edges of a graph and |E(u, v)| the total number of

edges between u and v across partitions. We calculated the standard deviation of

the number of vertices in a partition to observe the imbalance from one partition to

another. Equation 5.5 was used to calculate the load imbalance:

loadImbalance =

r
S|v� v̄|2

n
(5.5)

where, v is the total number of vertices of a partition and n is the total number of

partitions.

We measured the execution time from the start of partitioning until the end of

partitioning. Input receiving time is also calculated during this execution time, as

the streaming partitioning algorithm executes as stream data arrives.

5.5.4 Evaluation Scenario

We used an unrestricted stream model to receive our graph input. In this model, the

algorithm accepts a static graph input in sequential order and in a one-pass manner.
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We used a different combination of partitions (e.g. 2, 4, 8, and 16) with different

ranges of datasets.

To evaluate the effectiveness of our algorithm, we evaluated how the variation

of stream window sizes affects performance; we conducted experiments with the

following window sizes: 100, 200, 300, 400, 500, 600, 700 and 800. The size of a

window refers to the number of vertices in a window with its associated edges.

Figure 1 depicts the impact of window sizes on the WStream algorithm performance.

Variations in the balancing factor with different balancing parameters were also

evaluated in this study. We conducted experiments with different balancing param-

eters such as 50, 100, and 150.

In this evaluation, we also compared the performance of our algorithm with the

best streaming graph partitioning heuristic currently in the field, the LDG algorithm

[110]. This algorithm employs a state-of-the-art streaming graph partitioning tech-

nique. A few studies have been undertaken on streaming graph partitioning. How-

ever, most have not used one-pass streaming in their implementation. The LDG

algorithm is similar to our method and it is also one of the best streaming graph

partitioning techniques in this field. This is the main reason for the selection of this

algorithm for comparison purposes.

METIS is one of the most powerful algorithms for offline graph partitioning and

it is a near-optimal algorithm. Therefore, we also compared our WStream algorithm

with METIS to observe the edge-cut performance. That gives us an insight as to how

close WStream is to an optimal algorithm regarding the minimisation of the number

of edge-cuts.

5.6 Results Analysis

This section discusses the results of the different datasets using different scenarios,

such as a different number of stream windows, a different number of partitions and

different balancing parameters. We also compare our evaluated results with a state-

of-the-art algorithm [110] for streaming graph partitioning.
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5.6.1 Impact of Stream Window Sizes

The WStream algorithm generates a stream window while receiving a stream of

graph data. In this evaluation, we use a different number of window sizes to ob-

serve the partitioning performance (for example, a reduction in communication cost)

of the algorithm.

Figure 5.3 depicts the edge-cut ratio for different partitions with varying win-

dow sizes. The WStream algorithm aims to utilise the stream window to provide

efficient partitioning performance. The results show the impact of different window

sizes on the partitioning performance of the WStream algorithm. It is expected that

the edge-cut decreases with a larger window size, as a larger window contains more

information of a candidate vertex. However, as shown in Figure 5.3, in some cases, a

higher edge-cut ratio is obtained for the larger stream window sizes compared with

the smaller window sizes. This is because our balancing parameter checks the im-

balance of all the partitions every time stream data is received before allocating them

to a partition. To keep the partitions balanced according to our balancing parameter,

the algorithm defies the Greedy strategy and allocates the vertices to the partition

with the minimum load. In this case, the WStream algorithm does not obtain the

expected edge-cut reduction.

Figure 5.3(g) demonstrates the edge-cut ratio of the Twitter dataset with a differ-

ent number of stream window sizes and different partitions. We observe that the 4

partitions setting performs well and achieves the expected outcome for the window-

based streaming algorithm, except for window size 200 and window size 600, which

obtains a slightly higher edge-cut; otherwise it reduces the edge-cut as we increase

the window size.

Figure 5.3(e) shows that the WStream algorithm performs well for the Email-

enron dataset for 2 partitions and 16 partitions in reducing the number of edge-cuts

as the window size increases.

As depicted in Figure 5.3(g) and 5.3(h) for com-DBLP and Twitter dataset which

contains billion edges. WStream performs well in reducing the edge-cut as the win-

dow size increases. We observe that the 16 partitions com-DBLP dataset produces

better performance than other partition settings and the Twitter datasets performs
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(A) 3elt Dataset (B) 4elt Dataset

(C) AstroPh Dataset (D) GrQc Dataset

(E) Email-enron Dataset (F) Wiki-vote Dataset

(G) Twitter Dataset (H) com-DBLP Dataset

FIGURE 5.3: Impact of different window sizes on different datasets
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well for the 2 partition settings.

5.6.2 Impact of Balancing Factor

Figure 5.4 shows the impact of the balancing parameter in reducing the communi-

cation cost of our WStream algorithm for the Twitter dataset. It can clearly be seen

that, as expected, a larger balancing parameter reduces the inter-partition communi-

cation across partitions, because the smaller balancing parameter provides a lesser

load imbalance. To make partitions more balanced in a cluster, vertices have to be

distributed to the machines, thus resulting in increased communication cost. In the

WStream algorithm, the applied balancing parameter provides greater reduction in

communication cost. The more partitions are balanced the more communication

is created. As depicted in Figure 5.4, the balancing parameter at the value of 50

produces about 17%- 19% more edge-cuts compared with the value of 150 for all

partition settings. The proposed WStream algorithm checks the workload of each

partition prior to assigning a vertex to a partition, where the difference in workload

among partitions never exceeds the value of balancing parameter. Consequently, it

keeps the imbalance as low as possible across partitions.

Figure 5.5 shows the load imbalance in the Twitter dataset with different bal-

ancing parameters for partitions 2, 4, 8, and 16. It is clearly seen that the smaller

balancing parameter has a lower imbalance for any number of partition settings.

5.6.3 Performance Comparison

Edge-cut comparison

Figure 5.6 shows the comparison of the fraction of the edge-cut between the LDG,

METIS and the WStream algorithms for different scales of datasets. Our algorithm

outperforms the LDG algorithm in reducing the edge-cut for all datasets except for

the Wiki-Vote dataset. Edge-cut ratio differences between METIS and WStream are

quite promising as METIS is a static and near optimal graph partitioning algorithm.

In this evaluation, we use a different number of partitions (for example, 2, 4, 8,

and 16) to test the partitioning performance. As expected, the communication cost
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increased for a larger number of partitions, as shown in Figure 5.6, for all the al-

gorithms. We compare the edge cut of different datasets. In this comparison, we

use a window size of 100 for the WStream algorithm. A window size of 100 pro-

vides the worst performance of the WSteam algorithm as expected. That is why, we

choose this worst performance of WStream algorithm to make a comparison with

LDG algorithm. From Figure 5.6, it is clearly seen that the WStream algorithm out-

performs the LDG algorithm in reducing the edge-cut for the 3elt dataset. The result

indicates that the WStream algorithm is able to reduce the edge-cut ratio by 56% for

16 partitions for the 3elt dataset. As demonstrated in Figure 5.6(a), our WStream

algorithm shows significant improvement in reducing edge-cuts by about 40%-56%

for all partition settings. The WStream algorithm has significant improvement in re-

ducing edge-cut ratio compared with LDG algorithm for the large scale dataset like

com-DBLP and Twitter. It is noticed that, it reduces 66%-75% edge-cut ratio for these

two datasets.

FIGURE 5.4: Variation of Balancing Parameter for Twitter dataset
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FIGURE 5.5: Load Imbalance for Twitter dataset

Our WStream algorithm is compatible with datasets of different scales and out-

performed the LDG algorithm in most cases. However, there is slight performance

degradation of the WStream algorithm for Wiki-Vote dataset. Figure 6(f) depicts

the edge-cut comparison between the WStream and LDG algorithms for the Wiki-

Vote dataset. The results indicate that the performance of the WStream algorithm

drops slightly compared with the LDG algorithm for this dataset. This is due to

the behaviour of the dataset. This dataset is structured with a higher degree of ver-

tex distribution compared with other datasets in this study. While partitioning a

graph, the algorithm tends to make partitions as balanced as possible according to

the balancing parameter. Consequently, the adjacent vertices of a vertex might have

been allocated to other partitions. Thus, this causes more edge-cuts in the Wiki-Vote

dataset.

Figure 5.6 also depicts the edge-cut performance of the METIS algorithm along

with WStream and LDG algorithms. As expected, METIS outperforms the LDG and

WStream algorithms because it is an offline graph-partitioning algorithm in which

all the information about the graph is known prior to partitioning. METIS provides

optimal partitioning but for the AstroPh, Email-enron and Wiki-vote datasets overall

edge-cut difference is 20%-25% between METIS and WStream algorithms. This is

a quite promising performance of the WStream algorithm when compared with a

static graph partitioning algorithm. The worst performance was for WStream for
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(A) 3elt Dataset (B) 4elt Dataset

(C) AstroPh Dataset (D) GrQc Dataset

(E) Email-enron Dataset (F) Wiki-vote Dataset

(G) Twitter Dataset (H) com-DBLP Dataset

FIGURE 5.6: Edge-cut ratio comparison
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the Twitter, 3elt, and 4elt dataset compared with METIS.

In conclusion, our WStream algorithm was able to significantly reduce edge-cut

for different graphs ranging from 3000 vertices to 317080 vertices.

Load Imbalance Comparison

We compare the load imbalance of our proposed algorithm with the LDG algorithm

and METIS for every partition setting. Table 5.3 shows the load imbalance between

the LDG algorithm, WStream and METIS for different datasets. We use the WStream

algorithm partitioning result with a window size of 100 for this comparison.

The WStream algorithm achieves a completely balanced allocation for the 3elt

dataset with the 2 partitions setting. The LDG algorithm achieves a completely bal-

anced partitioning for most of the datasets, except for the Wiki-Vote in the 2 parti-

tions setting. However, for the 16 partitions, the WStream algorithm demonstrates

an 85% load imbalance reduction compared with the LDG algorithm for the 4elt

and WikiVote datasets. For all partitions, the Wiki-vote was better balanced using

the WStream algorithm compared with the LDG algorithm, and the load imbalance

in the 3elt and GrQc datasets is significantly reduced. It is quite balanced for the

AstroPh dataset for 16 partitions with the WStream algorithm. However, WStream

does not perform well for the com-DBLP, Twitter and Email-enron datasets in bal-

ancing the load for any number of partitions, but it is much more efficient in reduc-

ing communication than the LDG algorithm.

The LDG algorithm uses a capacity constraint to keep the partitions balanced.

However, our WStream algorithm uses a balancing parameter to keep all the par-

titions balanced at a certain threshold. In reality, different real-world applications

behave differently and some graph partitioning applications require that the com-

putation load be balanced. On the other hand, some applications require communi-

cations to be reduced across partitions. Based on this reality, the graph partitioning

objective should be whether to minimise the load imbalance or minimise communi-

cation. This is very subjective and application-dependent. Our WStream algorithm

performs well in general, and it is application independent. It also offers a trade-off

between load imbalance and edge-cut minimisation.
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The WStream algorithm achieves load imbalance reduction for every dataset ex-

cept for 3elt dataset, compared with METIS. WStream algorithm outperforms METIS

for the big datasets such as com-DBLP, Twitter, Email-enron and AstroPh for every

partition setting. WStream achieves 99% reduction for AstroPh and Email-enron for

2 partitions setting and more than a 77% load imbalance reduction for the AstroPh,

Email-Enron, and Twitter datasets for every partition setting. It is clearly seen that,

WStream achieves 97%-99.5% load imbalance reduction for the big dataset with bil-

lion edges like com-DBLP. However, except for the 2 partitions setting, WStream

performs better than METIS.

TABLE 5.3: Load Imbalance Comparison

Dataset

Load Imbalance (standard deviation)

Number of Partitions

2 4 8 16

LDG WStreamMETIS LDG WStreamMETIS LDG WStreamMETIS LDG WStreamMETIS

3elt 0.0 7.0 4 19.01 17.54 6.04 56.71 7.63 4.69 22.62 7.56 3.16

GrQc 0.0 25.0 74 258.94 18.95 22.01 324.20 15.16 14.79 65.94 9.96 6.44

4elt 2.5 5.5 2 3.42 6.98 9.2 0.33 14.27 32.32 94.23 11.68 11.69

Wiki-Vote 213.5 24.5 100.5 285.93 18.95 38.05 210.85 15.93 21.32 92.89 11.73 13.22

AstroPh 0.0 1.0 274 0 9.72 137.03 0.5 14.19 66.84 272.08 8.86 30.88

Email-

Enron

0.0 1.0 551 0 24.50 268.01 0.5 19.46 137.28 0.43 13.99 59.89

Twitter 0.0 25.0 254 0.5 18.20 591.1 0.43 15.56 252.74 0.48 15.29 115.45

com-

DBLP

0.0 22.0 4261 0.0 9.20 1531.16 0.0 16.80 659.09 0.5 11.95 418.99

Execution Time Comparison

As shown in Table 5.4, we compare the execution time for partitioning tasks between

the WStream and LDG algorithms. We do not include the METIS algorithm in this

comparison as we use two single-pass algorithms for the run time comparison. In

this evaluation, it is clearly seen that WStream outperforms the LDG algorithm in

reducing execution time for almost every experimental run except for the Wiki-Vote

dataset. We also observe that, WStream can reduce the execution time remarkably

for most of the datasets; for the 4elt dataset, it reduces the execution time by 35%-

40% for all partition settings. As shown in the Table 5.4 the WStream algorithm
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performs well in reducing the execution time for large-scale datasets; for example, it

reduces the CPU execution time for the Twitter, and Email-Enron datasets by 13%-

37% and 31% respectively (except for two partitions). A significant time reduction

occurs for billion edge, such as com-DBLP, with the WSstream algorithm compared

with the LDG algorithm. The WStream algorithm achieves up to a 44% time reduc-

tion over the LDG algorithm. However, a performance drop is also observed for the

WStream algorithm when processing the Email-Enron dataset for two partitions and

for the Wiki-Vote dataset.

Dataset

Execution time (seconds)

Number of Partitions

2 4 8 16

LDG WStreamMETIS LDG WStreamMETIS LDG WStreamMETIS LDG WStreamMETIS

3elt 0.89 0.77 0.004 0.97 0.83 0.004 0.99 0.94 0.004 1.02 0.85 0.008

CA-GrQc 1.30 1.12 0.004 1.31 1.11 0.008 1.29 1.09 0.012 1.41 1.15 0.012

4elt 10.75 7.01 0.008 10.32 7.80 0.008 9.99 7.60 0.012 10.32 8.75 0.012

Wiki-Vote 1.30 2.28 0.02 1.32 2.24 0.028 1.29 2.39 0.048 1.41 2.53 0.076

CA-Astro-

Ph

21.51 20.85 0.036 27.25 19.67 0.048 22.28 13.13 0.068 27.69 13.10 0.088

Email-

Enron

25.09 49.42 0.06 80.85 48.85 0.068 72.92 51.16 0.08 73.12 51.76 0.104

Twitter 802.21 557.02 0.18 784.53 455.97 0.2 794.96 480.55 0.25 750.09 524.39 0.28

TABLE 5.4: Execution Time Comparison

5.7 Theoretical Analysis

The time complexity for the WStream algorithm is O(n + m + w + klogk), where n is

the number of vertices and m is the number of edges, w is the number of traversals

in the stream window for assigning each vertex to a partition, and k is the number of

partitions. WStream takes graph input vertex by vertex, where n is the total number

of executions to partition an entire graph and w is the number of operations required

to traverse through the whole window. Furthermore, the m number of operations

we need depends on the number of edges of a vertex in a window.
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5.8 Application

PageRank is one of the well-known graph-oriented applications which ranks the

pages of the web. It was invented by Page et al [82] for the giant search engine,

Google. Until then, it was the most efficient web ranking algorithm being used by

Google. The Graph Partitioning algorithm has a significant impact on the PageRank

algorithm.

After evaluating the window-based partitioning algorithm, we applied a well-

known and widely used graph application, PageRank, to our algorithm. We chose

PageRank to evaluate this partitioning algorithm because of its popularity and widely

used graph applications. PageRank covers a wide range of applications such as

search, browsing, and traffic estimation. We used the MPJExpress MPI program-

ming framework to evaluate this application and Nectar cloud virtual machines[2]

were used for the execution. Each machine is installed with the Ubuntu 18.10 Linux

operating system, and it has 6GB RAM and 4 VCPUs.

Table 5.5 shows the PageRank computation time for three datasets, that is Email-

Enron, AstroPh and gplus. We compared the PageRank computation time with the

LDG algorithm. It can be seen that WStream reduced the computation time by 30%

for the Email-Enron dataset on four partitions compared with the LDG algorithm.

However, it performed slightly better than the LDG algorithm for the two partitions

of the Email-Enron dataset. Wstream significantly reduced the computation time for

the AstroPh and gplus datasets compared with the LDG algorithm by 35%-50%. We

can say that our Wstream algorithm undoubtedly outperformed the LDG algorithm

in reducing PageRank computation time.

Dataset

Execution time (seconds)

Number of Partitions

2 4

LDG WStream LDG WStream

Email-Enron 0.67 0.63 583.54 410.97

AstroPh 49.63 36.20 44.57 22.37

soc-gplus 136.67 105.49 131.03 73.80

TABLE 5.5: PageRank Computation Time Comparison
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5.9 Summary

In this study, we have studied streaming graph partitioning by edge-cut. Stream-

based partitioning has become prominent recently due to large-scale expansions of

social media graphs, which require distributed processing. Several algorithms have

been proposed to partition data in a stream and thus reduce the execution time for

partitioning, while keeping load imbalance and edge-cut to a minimum.

In this chapter, we demonstrated that a stream window in streaming graph parti-

tioning results in significantly higher quality partitioning. We proposed a streaming

partitioning algorithm for large-scale graphs using a streaming window to minimise

the edge-cut across partitions while reducing the imbalance among partitions. We

compared our proposed WStream algorithm with the state-of-the-art LDG algorithm

using real and synthetic graph data sets. The evaluation results clearly show that the

WStream algorithm reduced the edge-cut by 40%-56% in comparison with the LDG

algorithm for all datasets, except for the Wiki-Vote dataset. In terms of load balanc-

ing, our algorithm performed better than the LDG algorithm for 16 partitions except

for the Email-Enron and Twitter datasets; it performed extremely well for the four

partitions and eight partitions for most of the datasets. However, our proposed algo-

rithm partitions the graphs faster. This makes the proposed algorithm quite suitable

for cases in which graphs are growing at a rapid speed.

We considered static datasets in this study when the vertices and edges are con-

tinuously being added over time in a streaming manner. However, we did not con-

sider the feature of deleting the vertices and edges from the partitioned data which

is the characteristic of a fully dynamic dataset. In the next chapter, we will consider

fully dynamic partitioning in which vertices and edges will be adding/deleting in

real-time during partitioning. We will also use an auto-scaling mechanism to scale

the number of machines based on computational load in real-time.
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Chapter 6

Dynamic Graph Partitioning in

Streaming Manner

In this chapter, we propose a novel dynamic graph partitioning algorithm in a stream-

ing manner. Besides that, a scaling algorithm is also proposed to launch or shut

down a machine according to the computational load in real-time.

6.1 Motivation

In recent years, large-scale graph-oriented applications have received attention due

to their participation in real-world applications such as PageRank calculation, World

Wide Web crawling and protein-protein interactions. These applications are communication-

intensive and the computational load must be even between the partitions to main-

tain an efficient, distributed graph processing system. Moreover, these graph-oriented

applications have dynamic behaviour, such that vertices and edges are continuously

being added or removed over time. Time-evolving large graph-oriented applications

have huge computational cost. Thus, they are incapable of being handled in a single

machine due to memory bottleneck. Consequently, for any analysis purpose, large

graphs need to be partitioned across a cluster in a distributed system. Reducing net-

work communication and balancing the load between the partitions are the criteria

required to achieve effective run-time performance in a distributed graph processing

system. As the vertices and edges are frequently being removed or added in a large

dynamic graph, it is necessary to partition the graph wisely in real-time by keep-

ing the network communication and the load imbalance as low as possible during
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partitioning. A number of existing dynamic graph partitioning algorithms has been

proposed to address the above problem. However, these partitioning methods are

incapable of scaling the resources and handling the stream of data in real-time.

In this study, we propose a dynamic graph partitioning method called Scalable

Dynamic Graph Partitioner(SDP), using a one-pass streaming technique with the

following contributions: 1) An algorithm which can handle the dynamic changes

of a large-graph when new vertices and edges are added or removed continuously

over time, and which can assign vertices and edges to an appropriate machine. 2) A

dynamic partitioning algorithm which accepts graph data in a streaming manner. 3)

A vertex migration technique, in order to scale up or down the resources and reduce

the imbalance as much as possible. 4) A communication balancing strategy used

dynamically for edge-based balancing. Experiment results show that the proposed

method achieves significant improvement in reducing communication cost and bal-

ancing the load dynamically, compared with previous algorithms. Moreover, the

proposed algorithm significantly reduces the execution time during partitioning.

6.2 One-pass Dynamic Graph Partitioning

6.3 Introduction

In recent days most of the graph-oriented applications have a dynamic behaviour,

which means that the vertex or edge might go off or gain a new vertex or new edges.

For example, thousands of Twitter users update their tweets per second [117]. This

behaviour of the dynamic graphs creates a computational load imbalance between

partitions and increases the edge-cuts and communication cost as well.

Most real-world graph applications tend to receive graph data continuously as

a stream of graph data in a real-time manner. It is necessary to have a graph par-

titioning algorithm that can distribute the stream data among the partitions in a

one-pass manner, as the vertices arrive. A streaming one-pass graph partitioning

algorithm receives the vertices one by one and decides the respective partitions with

little connectivity information of a vertex. When a graph is updated over time, it is

necessary to keep the computational load balanced, keeping the communication to a
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minimum. If the algorithm has to visit all the partitions again and revisit the whole

graph to perform the repartitioning for an updated graph, it is very expensive in

terms of computational complexity.

The computational load of a partition in a dynamic graph always changes over

time, by adding or removing vertex elements from a partitioned graph. Since the

incoming number of vertices is unknown and the number of vertices might be re-

moved anytime from a partition, a huge imbalance between partitions is created.

Consequently, this creates more cut edges and causes unbalanced partitions. Unbal-

anced partitions might also cause an unnecessary allocation of a partition which is a

waste of computational resources.

In order to cater for the ever-increasing computational load as per the demands

of an application, scalability becomes an important factor in dynamic graph parti-

tioning. In this study, we also propose a dynamic machine allocation method to

allocate a new machine, as per the demands of the computational load. Dynamic

allocation of a machine is another important aspect in balanced graph partitioning,

as over time the size of a graph continuously changes. It is important to consider

a flexible allocation of a new partition according to the computational load. This

study addresses these features by allowing for the decrease and increase of the num-

ber of partition allocations, according to the computational load. We use a capacity

threshold to decide the allocation of a new machine or shutting down of an unused

machine from the cloud.

A communication aware balancing strategy is also taken into account when as-

signing vertices to a corresponding partition. It trades-off with the number of com-

munications, while minimising the load imbalance between partitions.

6.4 Related Work

In this section, we discuss the related work on dynamic partitioning. In order to

compute the large-scale of streaming data in [110], a well-known streaming graph

partitioning is proposed which is called Linear Deterministic Greedy (LDG). It has

a central graph loader, which loads the data and distributes them among the avail-

able workers. This heuristic assigns a vertex to the partition with which it shares
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the most edges. 16 partitioning heuristics are evaluated with 21 different datasets.

Graph datasets have been used from several domains: the World Wide Web, social

networks, finite element meshes and synthetic datasets. The authors achieved dif-

ferent results from different datasets. This streaming partitioning method makes

heuristics scalable in the size and the number of partitions of graphs. It has signif-

icant speed up achievement of PageRank computations on Spark [131] by 18% to

39% for large social networks. Another greedy heuristic algorithm proposed in [7]

uses an unweighted, deterministic greedy algorithm, instead of using the weighted

penalty function in order to partition vertices. This algorithm also uses a factorisa-

tion technique that aims to reduce the neighbouring vertices, rather than the edges

across the partition. In other words, a vertex-cut partitioning technique is employed

here, which is well-suited for large-scale natural graphs.

Adaptive partitioning is relevant in dealing with a dynamic graph. Few re-

searchers have explored this technique to keep the partition balanced and minimise

the communication. The main idea of this technique is to migrate the vertices/edges

from one partition to another meeting some criteria towards reducing the load im-

balance and communication cost. A greedy vertex migration technique [117] was

proposed with the aim of partitioning a dynamic graph.

To compute PageRank in a parallel manner, a site-based graph partitioning and

repartitioning technique [17] was proposed. Sparse matrix-vector multiplication

is responsible for incrementally growing web matrices data, which are stored in a

distributed manner. PageRank computation requires high-efficiency and low pro-

cessing overhead calculations because PagRank [12] computation has frequently re-

peated iterations. An algorithm [17] was proposed with a sparse-matrix multiplica-

tion technique to achieve high efficiency and parallelism, in order to focus on reduc-

ing pre-processing overhead in PageRank computation. Repartitioning techniques

were used in this algorithm. A common problem in dynamic web data is the addi-

tion and deletion of new pages. A large graphs partition management system was

proposed [129], in order to facilitate searching and mining a large graph. Minimis-

ing the inter-machine communication was the aim of developing this system. To

perform the graph partitioning task, a two-level (static partitions and dynamic par-

titions) structure was introduced which helped to improve the query response time
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and throughput. This two-level partitioning structure is effective as it adapts in real

time when query workload is changing over time.

An adaptive unstructured meshes dynamic partitioning algorithm [120] was pro-

posed with parallelisation. This algorithm uses a relative gain optimisation tech-

nique which aims to balance workload and reduce the inter-partition communica-

tion overhead. A few series of adaptively refined meshes were applied for the pur-

pose of the experiment and the results indicate that they provide better partitioning

than a static partitioner.

A distributed system, Kineograph [21], was proposed to handle the rapid changes

in graphs and to capture the relationships. Kineograph also supports graph-mining

algorithms to extract real-time information from a fast-changing graph.

Vertex replication is another technique to handle an ever-changing graph in a dis-

tributed environment. Vertex replication imitates the vertex in a partition to reduce

the communication cost in a distributed graph processing system. A vertex replica-

tion algorithm [48] was proposed with the aim of attaining better access locality of

a vertex, by replicating the vertex which resides in another partition. Eventually, it

does minimise the communication cost across the network.

A few more researchers proposed the vertex replication method in graph par-

titioning, while minimising the workload imbalance and inter-machine communi-

cation in a distributed network. Of them, dynamic replication-based partitioning

was proposed in [129] and this replicates the vertex adaptively, based on the change

of workload. To improve performance during the frequent changes in workload,

an historical log-based partitioning technique called LogGP was proposed [128].

LogGP framework analyses and reuses the historical statistical information to refine

the partitioning result. It has great advantages in utilising the historical partitioning

results to generate a hypergraph. The authors argue that running statistical analysis

of historical partitioning logs can provide an improvement on partitioning results.

Dynamic graphs sometimes require a repartitioning process to maintain the bal-

ance of graph-partitioned data in order to improve system performance. Good parti-

tioning algorithms with repartitioning features are in demand for handling huge dy-

namic graph data. A study was undertaken on repartitioning online social network
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data in [84]. The authors aimed to improve the scalability by reducing the inter-

partitioning communication. A replication method was used to reduce the commu-

nication among nodes. An in-memory based dynamic partitioning technique was

proposed in [77] to handle the large dynamic graph. This algorithm achieved signif-

icant low-latency communication in query processing. The authors provided a ver-

tex replication policy that monitors the incoming vertices and decides what data to

replicate. It was evaluated on a social network graph, and the result shows that this

technique reduced the network bandwidth significantly. Moreover, the technique

also handled a very large graph efficiently. Proper placement of a newly added ver-

tex, in a dynamic graph, by using the cost-effective method, was proposed in [4].

A vertex migration technique was also added to this study in order to balance the

partitions, due to deletion of vertices from a partition. The migration of the vertex

depends on the latency and communication cost of the particular vertex being mi-

grated. The authors proposed a set of heuristics to reduce communication cost, and

to balance the partitions. However, these heuristics do not accept the graph data in

a stream manner and do not make any decisions in real time.

6.5 System Architecture

This section describes the complete architecture and processing flow of our dynamic

partitioning technique.

The graph data distributes to the number of machines in the distributed system

in order to balance the computational load evenly between the machines. A Graph

Loader also resides in the master machine which decides the nature of the input.

The master machine takes the input, and a stream generator resides in the master

machine to generate the stream of data from the Graph Loader. The stream generator

forwards the input to the partitioner to perform the addition/deletion. Our dynamic

partitioning method accepts three kinds of inputs(for example add, delete a vertex,

and delete an edge). Figure 6.1 shows the architecture of this study.

The partitioning process starts with one worker machine and adds the parti-

tion dynamically, according to the load. The adding criteria of new partitions is

explained in Section 6.7.3.
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FIGURE 6.1: System Architecture

6.5.1 The components of system architecture

• Graph Loader: The Graph Loader loads the input from the disk memory. For

example: add vertex, delete vertex and delete edge. The loader receives input

from the disk uniformly and at random for this purpose and forwards to the

Stream Generator in order to create the stream of data before forwarding to the

partitioner.

• Stream Generator: A stream generator resides in the master machine to gen-

erate the stream of graph data from the input dataset. Each vertex arrives with

its associated edges in the stream, sequentially from the Graph Loader. It is

responsible for forwarding the graph input to the partitioning algorithm for

the purpose of adding or deleting.
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• Distributed Meta Data: It is located in the master machine to store the graph

information, which can be used for partitioning purposes by the partitioner.

• Data Receiver in Worker Machine: A data receiver resides in the worker ma-

chines to receive the vertices and edges from the master machine and to send

the acknowledgement to sender.

6.6 Problem Statement

Problem 1 Partitioning of a dynamic graph G = (V, E) into k number of subgraphs and

allocate each subgraph to the Pk partition. The number of vertices V in each partition in-

creases or decreases over time t, so the number of vertices of a partition after t time would be

|Vk(t)|. The graph partitioning technique always aims to reduce the cut edges E(u, v) be-

tween partitions, u and v. Two different end points (uandv) of an edge E reside in different

partitions, such that, minE(u, v) = Ân
i=1 E(u, v)

Problem 2 In k way graph partitioning, the algorithm always tends to divide the entire

graph G into k number of sub-graphs. In a dynamic graph partitioning the size of the graph

is continuously growing and the number of partitions is dynamic and unknown. The number

of partitions Pk should be allocated according to the computational load over time t as follows:

|Pk(t)|, such that the k value increases or decreases as per the computational load.

6.6.1 Research Questions

We discussed the problems in the previous section regarding the dynamic graph par-

titioning in a one-pass manner. We are answering the following research questions

in this study:

• How can we repartition a dynamic graph in a stream manner by reducing the

cut edges and load imbalance as much as possible?

• How can we reduce the cut edges, and load imbalance by allocating the parti-

tions dynamically, as per the demand of computational load?

• How can we trade-off between cut-edges and load imbalance efficiently, using

the communication aware load balancing strategy?
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6.6.2 Methodology

Based on the literature, the major issue in dynamic graph partitioning is to allo-

cate the computational load as it arrives in real time, and to utilise the resources as

needed, while, at the same time, minimising the communication and balancing the

load as much as possible. This all happens in a real time manner. This study over-

comes these issues and proposes a novel dynamic graph partitioning technique. Few

studies have been undertaken on the streaming graph partitioning technique with

static graph data. To the best of our knowledge, dealing with a dynamic graph at

the same time partitioning in a streaming manner in a cloud environment, has not

yet been studied. This research focuses on partitioning a dynamic graph in a stream-

ing manner, in a cloud environment. We evaluated our partitioning algorithm with

the number of Nectar cloud instances; every instance was equipped with the same

resources.

6.7 SDP: Scalable Dynamic Graph Partitioner

This dynamic graph partitioning algorithm takes the stream of vertices and their as-

sociated edges as an input in a single-pass manner. This algorithm also accepts the

input to remove vertices and edges at a certain point, in order to test the dynamism

of our algorithm. The algorithm aims to minimise the edge-cut among partitions

and to make the partition balanced as low as possible. Each time a vertex arrives for

partitioning, the algorithm decides a suitable partition to allocate that vertex imme-

diately. The algorithm stores the summary of partitioning results, in a distributed

meta data file in the master machine. The meta data is used as a reference to allocate

the future vertices. The summary includes vertex information and its allocated par-

tition index. After allocating or deleting each vertex of edges, the graph summary

will be updated. Algorithm 5 depicts the updating graph summary.

where, parttionIn f oMap is to store the summary of the graph and the partition

index. The partitioning algorithm uses this information to assign a vertex to a proper

location.

The algorithm starts by taking a tuple V < vertex, edges > as an input, and the in-

put comes in a single pass manner sequentially. It receives tuple at any point of time
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Algorithm 5 Update the graph summary
INPUT: p = partition index, v = arrived vertex, MAXCAP = maximum capacity of
a partition, averageLoad = the average load of the partitions

partitionIn f oMap < p.List < v >>
if (!partitionIn f o.containsKey(p)) then

List < Integer > list
list.add(v)
partitionIn f oMap.put(p, list)

else
partitionIn f oMap.get(p).add(v)

end if

as a stream of data is added to a machine and is removed over time. Based on the

type of input it receives, the algorithm acts accordingly. The type of input is decided

by the Graph Loader in the master machine. If the algorithm receives an input to add

the vertices, the vertex allocation technique is employed to assign a vertex to a par-

tition. The vertex allocation technique is described in Section 6.7.1 and the assigning

algorithm is depicted in Algorithm 9. Before assigning every vertex to a partition,

the balanced strategy checks the imbalance of computational load among the par-

titions. Moreover, if all partitions exceed maximum capacity, the algorithm adds a

new partition to cater for the upcoming load and thus, maintains the scalability. We

propose a communication-aware balancing strategy and also an adding/removing

partitioning technique. These are explained in Section 6.7.2 and Section 6.7.3 re-

spectively. The partitioning method receives the input from the Graph Loader in a

sequential manner. If the algorithm receives an input to add/remove the vertices

or edges, it adds/removes the vertices or edges. After removing vertices or edges

from a partition, the partitions might become unbalanced. As a result, it is neces-

sary to make the partition balanced. A communication aware balancing strategy is

employed here before assigning a vertex to a partition. For the balanced partition

we take the number of communications in the balancing method into account. This

checks the number of communications over time while balancing the load. The key

idea here is to trade-off the number of cut edges with the load imbalance. Algorithm

6 depicts the whole partitioning strategy dynamically in a one-pass manner.

Where, v is the vertex which has arrived in the stream and Graph Loader decides

randomly what kind of input it is and a represent the type of input. The algorithm
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Algorithm 6 Dynamic Partitioning
INPUT: V = set of partitioned vertices, P = number of partition indexes, v = vertex
arrived in stream, edge < v1, v2 >= edge arrived in the stream, a= type of input,
E(v) is the associated edges arrived with vertex v,
partitionIn f oMap < p < List >>, edgeIn f oMap[] < vertex, List < edges >>, TH =
balancing threshold. averageLoad = average load of all the partitions.

MAXCAP the maximum capacity of each partition
if (a = add) then

thresHold addingThreshold(|E|, |P|)
if (MAXCAP  thresHold) then

updateSummery(P + 1, v, MAXCAP, averageLoad)
end if
if (P > 1) then

s f indImbalance(P, partitionIn f oMap < p,< List >>)
end if
if (s > TH) then

partitionIndex assignVertex(v, P, V, E(v))
updateSummery(partitionIndex, v, MAXCAP, averageLoad)

else
partitionIndex f indMinimum(partitionIn f oMap < p < List >>, P)
updateSummery(partitionIndex, v, MAXCAP, averageLoad)

end if
else

if (a = deleteVertex) then
deleteVertex(v, P, edgeIn f oMap[] < vertex, List < edges >>
, partitionIn f oMap < p < List >>)

else
if (a = deleteEdge) then

deleteEdges(edge,< v1, v2 >, P, edgeIn f oMap[] < vertex, List < edges >>)
end if

end if
end if
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also receives the edges to remove, which is edge < v1, v2 >. The imbalance parame-

ter is obtained from the calculation of the standard deviation of the total number of

edges in the partitions. Equation 6.10 shows the calculation of standard deviation.

MAXCAP is the maximum capacity of a partition and averageLoad is the aver-

age edge load of all partitions which can be calculated by

calculateAverageLoad(|V|, P) function. The assignVertex(v, P, V, E(v)) function is

used to assign the vertex to the respective partition. The details of the vertex as-

signing technique are in Section 6.7.1. Algorithms 7 and 8 show how to delete the

vertices and edges respectively. We use an

updateSummery(partitionIndex, v, MAXCAP, averageLoad) function to update the

graph summary each time we partition or delete any vertices or edges. Algorithms

7 and 8 depict the method of deleting vertices and edges respectively.

Algorithm 7 Delete Vertices
INPUT: v = vertex arrived in stream, partitionIn f oMap < p < List >>,

edgeIn f oMap[] < vertex, List < edges >>

for List < Integer > v : partitionIn f orMap.values() do

v.removeAll(vertex < v >)

end for

for i = 0 to k do

Iterator < Map.Entry < Integer, List < Integer >>> iter =

edgeIn f oMap[k].entrySet().iterator();

while (iter.hasNext()) do

Map.Entry < Integer, List < Integer >> entry = iter.next();

if (v == entry.getKey()) then

iter.remove()

end if

end while

end for
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Algorithm 8 Delete Edges
INPUT: edge < v1, v2 >= edge (source and destination vertices in the list) arrived in

the stream, edgeIn f oMap[] < vertex, List < edges >>

for i = 0 to k do

for (List < Integer > edges : edgeIn f oMap[k].values()) do

edges.removeAll(edge < v1, v2 >)

end for

end for

6.7.1 Vertex Assigning Method

In general, the way to minimise the cut edges between partitions is to allocate the

vertices to a partition which contains the greatest number of neighbouring vertices.

It is always desirable to allocate the connected vertices to the same physical ma-

chine. From the stream of graph data, the candidate vertex arrives with its associ-

ated edges. The partitioning algorithm assigns the vertex with its associated edges

to a respective machine. Algorithm 9 shows the vertex allocation strategy. Our algo-

rithm aims to identify the best locality of the arrived vertex to minimise the edge-cut.

This vertex allocation technique tends to send a vertex to the partition which has the

most connected vertices. The algorithm checks all the partitions’ information from

the partition summary in order to decide which partition has the most connections

of arrived vertices in the stream. The algorithm then allocates the vertex to that

particular partition. However, if two or more partitions have the same number of

connections of the candidate vertices, the algorithm assigns that candidate vertex to

the partition with a minimum load. If it does not find a connection in any of the

partitions, then the candidate vertex is allocated to the partition randomly and in a

uniform manner. Finding the partition that has the most connections is calculated

with the equation 6.1 and finding the minimum load of a partition is assessed with

Algorithm 10.

arg max
k2P

{|E(Vc) \ Pk|} (6.1)
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where, k is the number of partitions. E(v) is the associated edges arrived with vertex

v and P(k) is the set of vertices in kth partition.

Algorithm 9 Vertex Assigning Method
INPUT: v= the candidate vertex that available for partition in the stream, k =

number of partitions, E(v) is the associated edges arrived with vertex v, P = set of

partitioned vertices.

OUTPUT: partition index

for i = 0 to k do

partitionIn f oSet < Integer > (P(i))

intersectSet partitionIn f oSet.retainAll(E(v))

size sizeo f theo f theintersectSet

if (size > tempSize) then

tempSize size

partitionIndex  i

edgeIn f oMap[partitionIndex].put(v, E(v))

else

if (size == tempSize) then

paritionIndex  i

edgeIn f oMap[partitionIndex].put(v, E(v))

else

partitionIndex random(k)

edgeIn f oMap[partitionIndex].put(v, E(v))

end if

end if

end for
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Algorithm 10 Finding minimum load
INPUT: partitionIn f oMap < p < List >>, k = number of partitions

OUTPUT: partition index

f irstPartitionSize sizeo f the f irstpartition

for (i = 0 to k ) do

if ( f irstPartitionSize > ithpartitionsize) then

partitionIndex  i

end if

end for

6.7.2 Communication-aware balancing strategy

The load of a partition is the number of external and internal connections of that

partition. We propose a balancing strategy to keep the partitions as balanced as

possible. The number of communications between the partitions is also taken into

account in order to decide the imbalance of computational load among partitions.

The number of communications has a great impact on balancing the load. We use

average load difference and communication aware load deviation in order to decide

the imbalance of the partitions. In this study, we assume that each machine in the

distributed system has the same resources and computing power. We used the fol-

lowing variables to complete the load balancing task: The average load difference is

AVGd, the threshold is TH, and the weighted deviation is Wdev.

If AVGd > TH then the algorithm assigns the vertex v to partition Pl , otherwise

the algorithm executes the vertex assigning method (Algorithm 9) to assign the ver-

tices to a suitable partition where v is the vertex that has arrived in the stream to be

allocated to a partition. The average load difference (AVGd) can be calculated with

the following formula :

AVGd = (Ph � Pl)/n (6.2)

where, Ph is the partition with the highest load, Pl is the partition which has the

lowest load and n is the number of partitions. We obtain the balancing threshold



120 Chapter 6. Dynamic Graph Partitioning in Streaming Manner

using the following equation:

TH = Wdev � Loaddev (6.3)

where, Loaddev is the load deviation among the partitions. The calculation of the

load deviation is the Standard Deviation of a load of the partitioning in a distributed

system. The weighted deviation leverages the communication with the computa-

tional load. Because any partition in a distributed system has large number of com-

munications, they carry more computational load than other partitions. Weighted

deviation decides the imbalance among the partitions. This balancing strategy en-

sures good computational load distributions. Weighted deviation is denoted by Wdev

which can be calculated by using the following equation:

Wdev = (edget/cutt) ⇤ Loaddev (6.4)

where, edget is the edges arrived over time t, and cutt is the cut edges in t time.

The communication aware balancing strategy ensures a well-balanced computa-

tional load while the number of cut edges is also taken into account in deciding the

imbalance of a partition.

6.7.3 Scalability

Scaling Out: When the capacity of all the partitions exceeds the constraint C, then

the additional partition needs to be included in the system in order to accommodate

the increasing graph data. We use an adding threshold to add a new partition in the

system, which can be defined by the following equation:

addingThreshold =
|Et|
|Pt| (6.5)

where, |Et| is the total number of edges that has been assigned to all partitions in

time t and |Pt| is the total number of partitions over time t. The threshold decides

when to add a new partition in the system. If the C  addingThreshold, then the

system adds a new instance in the system. C is the capacity constraint of a partition
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which is the maximum computational load of a partition. In this study, we assume

that the capacity of all the partitions is the same.

Scaling In: We use a vertex migration threshold to scale down the resources from

the cloud. The idea is to shut down the unnecessary or unused machine from the

system. The determination of shutting down a machine depends on the l value. If

two machines have a computational load of less than the l, the algorithm migrates

the vertices and their associated edges from the source machine to the destination

machine. The source machine (sourceMachine) is the machine which has the mini-

mum load of all the machines; sourceMachine can be defined with Algorithm 10.

l = (toleranceParameter ⇤MAXCAP)/100 (6.6)

The destination machine is the machine which is available to accept more load.

We use destinationThreshold to decide the destination partition to migrate the com-

putational load. To determine the availability of the machines to accept more load,

we use the destinationThreshold threshold. A machine accepts computational load

until the machine load is less than or equal to the destinationThreshold, which keeps

some spaces for the upcoming data from the stream.

d = (param ⇤MAXCAP)/100 (6.7)

destinationThreshold = MAXCAP� d (6.8)

6.8 Experimental Settings

In this section, we discuss the experimental setup, and performance metrics of this

study. We use Java programming language to implement the algorithm. Java socket

programming is used to implement the distributed environment to partition a graph

dynamically. We use Nectar cloud machines to set up the experimental settings.

We use a master machine to allocate the computational load to the worker ma-

chines with the partitioning algorithm. Each machine’s characteristics are as follows:
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Ubuntu 18.04 LTS operating system, m2.medium type machine with 30 VCPUs, 6 GB

RAM and 30 GB Disk.

6.8.1 Dataset

We used a variety of synthetic and real graph datasets to evaluate the dynamic par-

titioning. Table 6.1 shows the lists and characteristics of the datasets used in this

study.

Name of Dataset |V| |E| Type
3elt (Synthetic) [121] 4200 13722 Finite-element mashes

GrQc[70] 5242 14496 Collaboration Network
Wiki-vote[70] 7,115 99,291 Social

4elt (Synthetic)[121] 15,606 45,878 Finite-element mashes
AstroPh [70] 18,772 198,110 Citation

Email-enron[70] 36,692 183,831 Communication
Twitter[70] 81,306 1,768,149 Social

TABLE 6.1: Characteristics of Datasets

6.8.2 Performance Metrics

We compared our algorithm with the most recent dynamic partitioning algorithm

[4]. We observed the performance of our proposed algorithm using the following

performance metrics: i) edge-cut ratio; ii) load imbalance; iii) execution time. We ob-

served the number of external connections of a vertex from one partition to another

partition as a cut edge. We calculated the ratio of the edge-cut by using the following

equation:

edgecutratio =
|E(u, v)|

|E| (6.9)

where, |E| is the total number of edges of a graph and |E(u, v)| the total number of

edges between u and v across partitions.

The load of a partition is the number of external and internal connections of a

partition. Standard deviation of the total number of external and internal connec-

tions(edges) of all the partitions is the load imbalance. The following equation is

used to calculate the standard deviation of the total number of external and internal
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edges of a partition:

loadImbalance =

r
S|e� ē|2

n
(6.10)

where, e is the total number of external and internal edges of a partition and n is

the total number of partitions.

We measured the execution time from the start of partitioning until the end of

partitioning. The time taken to receive the input is also taken into account in the

execution time, as the streaming partitioning algorithm executes as the data stream

arrives.

6.8.3 Experimental scenario

In this sub-section we discuss some experimental scenarios of our dynamic parti-

tioning algorithm.

Adding/Deleting Vertices

In a dynamic graph processing system, the addition/deletion of vertices or edges

occurs over time as per the demand of a graph application. Consequently, the par-

titioned graph structure changes over time, which creates the unbalanced partitions

and also increases the number of communications among partitions. The proposed

dynamic graph partitioning algorithm accepts the graph input sequentially. It adds

and deletes the vertices dynamically in a streaming manner. The algorithm assigns

the vertex to the respective partition as it arrives.

In a regular interval of time, the algorithm adds and deletes the graph data from

the input dataset. In each interval, we add 25% of the dataset and then delete 5%

of the dataset from a respective partition. In each interval, the algorithm observes

edge-cut and the number of partitions used. The number of vertices to add and

delete in each time interval by using the following formulae is as follows:

numAddedVertex = (totalVertex ⇤ addPercentage)/100 (6.11)

numDeleteVertex = (totalVertex ⇤ deletePercentage)/100 (6.12)
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where, totalVertex is the total number vertices of the input dataset, addPercentage

and deletePercentage are the percentages of the entire dataset of adding and deleting

the vertices respectively.

Adding a partition dynamically

Initially, the partitioning starts with a master machine and a worker instance in the

Nectar cloud environment. A capacity constraint C of each worker machine is used

to check the maximum capacity of a worker machine. If all the running worker ma-

chines have reached the maximum capacity of C, the algorithm dynamically creates

and launches another instance to accommodate the ever-increasing graph data load.

Over time t, some vertices/edges may be deleted from a worker machine, making

the worker machine available to receive more workload. According to the vertex

assigning algorithm and balancing strategy, the master machine assigns the vertices

to that available worker. Section 6.7.3 explains in detail the criteria for adding a new

partition dynamically.

Deleting partition dynamically

As per the demands of the workload, the dynamic algorithm removes the unnec-

essary/unused instances from the system. Whenever any worker machine has the

capacity to receive more load, it accepts the load until it has 5% capacity available.

6.9 Result Discussion

In this section, we discuss the results evaluated from the experiments with different

types of datasets. The comparison of our algorithm with the existing algorithm[4] is

also discussed here.

6.9.1 Edge-cut comparison

Edge-cut ratio indicates the performance of graph partitioning in terms of the com-

munication overhead among the partitions. A higher edge-cut indicates higher com-

munication overhead among machines in a distributed system.
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We captured the edge-cut over time at an interval of every 25% of the whole

dataset. We compared our algorithm with a recent well-performing, dynamic par-

titioning algorithm. Figure 6.2 illustrates the edge-cut comparison of a number of

datasets from different ranges. It is clearly seen that our algorithm obtains a better

edge-cut ratio than the existing algorithm. For the 3elt and 4elt dataset the algo-

rithm has an 80%-90% reduction of edge-cut at the beginning of the partitioning. As

shown in Figure 6.2(c-g), the edge-cut ratio decreases when the partitions have more

added vertices. It is expected that when the partitions receive more information of a

graph, the partitioning performance improves.

We also compare our algorithm with the METIS algorithm which is the best state-

of-the-art graph partitioning algorithm of all time, to observe how closely our algo-

rithm is to the static graph partitioning algorithm. As shown in Figure 6.3, it is

obvious that our algorithm performed better for all the datasets than previous algo-

rithms. However, for the rest of the datasets, our algorithm’s performance is close

to the METIS algorithm. This is understandable , as it is difficult for a streaming al-

gorithm to achieve a better edge-cut ratio than an offline graph partitioning because

offline graph partitioning algorithm has the entire graph information before the start

of partitioning graph.

6.9.2 Load Imbalance Comparison

As shown in Figure 6.4, we illustrate the load imbalance comparison between our

algorithm and previous algorithms. It is obvious that the reduction of load imbal-

ance in our algorithm is better than the previous algorithms for all the datasets. Our

streaming algorithm manages to reduce the 60% -70% load imbalance for all the

datasets, except the GrQC dataset. The GrQC dataset performed almost similarly

to previous algorithms. However, our algorithm performed well in reducing the

edge-cut for the GrQC dataset.

6.9.3 Impact of Addition and Deletion

In this section, we examined the effect of dynamically adding and deleting the ver-

tices or edges for a variety of datasets. Figure 6.5 shows the trend of the edge-cut
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(A) 3elt Dataset (B) 4elt Dataset

(C) AstroPh Dataset (D) Copter Dataset

(E) Email-Enron Dataset (F) GrQc Dataset

(G) Wiki-Vote Dataset

FIGURE 6.2: Edge-cut comparison of different datasets
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FIGURE 6.3: Edge-cut comparison

FIGURE 6.4: Load Balance Comparison
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ratio over time t. In most cases, the edge-cut ratio decreases after deletion, while the

graph changes in t time. Figure 6.5 shows the impact of the addition and deletion of

vertices and edges over time. We capture the edge-cut performance in four intervals.

At each interval, after deleting vertices and edges from the partitions, the number

of edge-cuts decreases as expected. However, as time goes by, the ratio of edge-cuts

increases as the deletion percentage is less than the addition percentage. However,

an exception happens with the Copter, 3elt and Wiki-Vote datasets, as shown in

Figure 6.5(f), at the 3rd interval. The edge-cut ratio after the deletion is less than

the 2nd interval. This is because the deleted vertices were connected with a large

number of internal edges.

6.9.4 Impact of Number of Partitions

This section discusses the effect of the number of partitions in terms of communica-

tion cost. As shown in Figure 6.6, it is obvious that the communication cost increases

as the number of partitions increases. However, in the Copter dataset there was a

slight decrease of edge-cut after adding the third partition, as there was deletion of

vertices happening at that stage of partitioning.

FIGURE 6.6: Impact of the Number of Partitions
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(A) 3elt Dataset (B) 4elt Dataset

(C) AstroPh Dataset (D) Email-Enron Dataset

(E) GrQc Dataset (F) Copter Dataset

(G) Wiki-Vote Dataset

FIGURE 6.5: Impact of addition/deletion with edge-cut
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FIGURE 6.7: Adding/Removing partitions

6.9.5 Impact of Adding/Removing Partitions

As shown in Figure 6.7, a number of machines is being added and removed over

time for the 3elt, AstroPh, and GrQc datasets. As per the demand of computational

load, our partitioning method keeps adding and removing the machines based on

the criteria explained in Section 6.7.3.

6.9.6 Time Comparison

In this section, we discuss the execution time for completing the partitioning task.

We calculated the time from the beginning of the algorithm to the end of the execu-

tion of a dataset. Figure 6.8 shows the streaming execution time and, it includes the

partitioning and input receiving time, because our algorithm does the partitioning

task while receiving the input.

Figure 6.8 shows that our algorithm significantly reduces the execution time over

the previous algorithms for most of the datasets except 3elt and GrQC.
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FIGURE 6.8: Execution time Comparison

6.10 Summary

In this chapter, we proposed a partitioning technique of a dynamic graph in a stream-

ing manner. The study demonstrated a substantial improvement in reducing the

edge-cut ratio for all the datasets. It also shows excellent performance in reduc-

ing the load imbalance in most of the datasets. A communication-aware balanc-

ing strategy to balance the computational load among the partitions was suggested.

A dynamic auto-scaling method was employed in this study to provision and de-

provision the cloud resources as per the demand of the computational load in a

real-time manner. We evaluated the dynamic algorithm in a homogeneous cloud

environment.





133

Chapter 7

Conclusion

This chapter discusses the objectives and overall contribution of this dissertation.

Our three major findings and their significance are discussed in this chapter. We

also discuss the future directions which we identified from this study.

7.1 Summary of This Dissertation

In this dissertation, we studied the problem of streaming graph partitioning with

dynamic graph applications in the heterogeneous cloud environment. We answered

the following research questions in this study:

• An auto-scaling method is proposed in order to optimise cloud resources and

cost for streaming graph partitioning. The scaling algorithm scales the re-

sources based on the upcoming streaming graph data and their computational

load.

• A streaming graph partitioning algorithm is proposed for static datasets and

applied to the PageRank application. The algorithm considered adding the

data to the machines as the streaming graph data arrives, the deletion of data

from the machine was not considered. A significant improvement is achieved

in terms of minimising the communication and reducing the load imbalance

as much as possible compared with the previous algorithm.

• A dynamic graph partitioning algorithm is proposed in a streaming manner

with the aim of minimising inter-machine communication and balancing the

computational load in distributed graph-oriented applications. An auto-scaling
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method is exploited in order to scale the number of cloud machines as per the

demands of the computational load of a graph application. We used the ho-

mogenous cloud environment.

This dissertation contains three findings. We began with the resource utilisation

and cost optimisation of cloud resources in a streaming graph partitioning algo-

rithm. We determined that the number of machines and the type of machine de-

pends on the upcoming streaming graph data in a dynamic graph-oriented applica-

tion. We evaluated the graph partitioning technique with a proposed auto-scaling

algorithm. We compared the algorithm with an existing algorithm and we observed

that our algorithm outperformed in utilising the cloud resources and cost optimisa-

tion. In Chapter 4, we answered this research question by using an auto-scaling and

cost optimisation algorithm.

A window-based streaming graph partitioning is proposed to minimise com-

munication and to balance the load in the cloud environment. In Chapter 5, we

proposed the WStream algorithm based on a stream window to look into the prob-

lem of streaming partitioning or one-pass partitioning. We used a stream window

to accommodate more information of a graph for efficient partitioning in a one-pass

manner. We also used a balancing strategy in order to balance the partitions while

minimising the cut edges. This study outperforms to a certain degree to minimise

the communication and to balance the computational load.

A scalable dynamic graph partitioner is proposed in the cloud environment.

The proposed technique receives the input in a streaming manner for the dynamic

dataset. The proposed partitioning algorithm allocates the vertices in such a way

that minimises communication and balances the load as much as possible. We used

a communication aware balancing strategy which optimises the load, based on the

number of outgoing links of a vertex in a partition. In this scalable partitioner, we

also proposed a scaling method which scales the number of machines as per the de-

mands of computational load. The proposed algorithm outperformed the existing

algorithms in terms of reducing the number of communications between partitions.



7.2. Future Direction 135

7.2 Future Direction

This research can extend in the following directions:

• is it possible to repartition the graph in real-time based on the changed be-

haviour and characteristics of vertices and edges? Rather than repartitioning

the whole graph, it is possible that an updated part of the graph can be adapted

among the partitions, with the aim to optimising the communication and bal-

ancing the load.

• A domain-specific dynamic graph partitioning framework which acts accord-

ing to the applications and the characteristics of vertices and edges is required.

Since the graph structure and their vertices’ behaviour are application depen-

dent, a graph partitioner would be able to act as per the demands of a particu-

lar application.

• How can cloud resources and cost be optimised based on the specific appli-

cations and their processing demands? The graph partitioner and resource

scaling algorithm will work based on the particular application to scale the

resources.

There are possibilities to extend this research with a few cross-domains. We will

extend this dynamic partitioning problem with more real-world domains, for exam-

ple, Blockchain, IoT application, and Sensor application.

7.2.1 Dynamic graph in Blockchain:

In a decentralised BlockChain application, the blocks and transactions are rapidly

increasing in a Blockchain application. How

7.2.2 Community detection

In a social network, community detection is one of the most important applications

to cluster or group similar data into a formal group. How can the updated graph be

regrouped efficiently if any of the vertices’ and edges’ behaviour changes?



136 Chapter 7. Conclusion

7.2.3 Streaming graph analysis in IoT

In the IoT environment, each device can be considered as a vertex and its connection

with the other devices represents the edges. How can we reduce the communication

between devices in an ever-changing number of devices in the IoT environment.

7.2.4 Dynamic Load Balancing in Sensor Network

Huge sensor data, which are being updated continuously, are available from the

different sensor applications. How can we balance the ever-changing load between

sensor devices in the IoT application to provide an efficient sensor application?

7.2.5 Streaming graph analysis in machine learning application

It would be interesting to look at the problem of machine learning applications with

the stream of graph data. Networked data is always interdependent with each node

and that makes it challenging to handle and maintain their relationship in an ever-

growing stream of data. Most of the machine learning applications use the static

data to make decisions. How can the machine learning application be adapted to a

streaming graph and provide an efficient graph-oriented machine learning applica-

tions.

7.2.6 Exploring Memory Bottleneck and Optimisation

In graph partitioning, how much memory are being consuming in distributed en-

vironment and how much memory are being consumed of each machine during

partitioning and also it would be interesting to look into the problem memory con-

sumption dynamically.
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