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Abstract 

This thesis addresses several key issues related to the genetic architecture of traits 

relevant to the genetic improvement of Eucalypts globulus for pulpwood and solid wood 

production. It comprises three main studies, that address (i) the long-term effect of inbreeding, 

(ii) the genetic association between pulp-wood and solid wood selection traits and (iii) the 

importance of non-additive genetic effects.  

The long-term effect of inbreeding was studied using a 28 year-old field trial comprising 

outcrossed, selfed and open-pollinated (OP) families of Eucalyptus globulus and a commonly co-

occurring species E. ovata. These species have a mixed mating system, where open-pollinated 

(OP) progenies are expected to include selfs and outcrosses. Inbreeding depression for early age 

growth due to selfing was high (age 4: 27% for E. globulus and 49% for E. ovata) but diminished 

with age, as size-dependent mortality resulted in the purging of smaller inbred progenies. Most 

mortality occurred between the ages 4 and 13 years, and size-dependent mortality resulted in 

a shift in inbreeding depression from growth to survival with age. OP progenies exhibited 

intermediate levels of inbreeding depression, but later-age survivors exhibited no evidence of 

inbreeding depression, consistent with the purging of selfs. General higher mortality rate in all 

cross-types of E. ovata compared with E. globulus was suggested to be due to climatic 

maladaptation, arising from the onset of drought conditions after 10 years of comparable 

growth, with the inbred progeny of both species appearing more susceptible.  

To further explore the genetics of growth and wood properties of E. globulus, two OP 

progeny trials were studied and the genetic association of selection traits important to 

pulpwood and solid wood breeding objectives were examined. These base population trials 

comprised of 135 families derived from native stand seed collections of the 13 races from which 

the Australian National E. globulus Breeding Population was founded. Significant additive 

genetic variation was found for all traits (stem diameter at breast height [DBH], stem 

straightness, acoustic wave velocity, wood basic density and pulp yield). There was no adverse 

race or additive level genetic correlation of DBH with any of the other traits studied. While race 

and additive genetic correlations were usually aligned, significant opposing genetic correlations 

were evident at these different genetic scales for pulp yield and wood basic density. 

Furthermore, key breeding objective-specific traits were either favourably (pulp yield - acoustic 

wave velocity) or not significantly (pulp yield - straightness) genetically correlated, arguing that 

genetic improvement between pulpwood and solid wood are well aligned and that breeding for 

one objective will have no adverse impact on the other. 
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Wood basic density in the previous study was assessed using wood cores taken from 

standing trees using a mechanical corer. This is a relatively expensive assessment approach and 

has limited the large-scale assessment of wood density in breeding trials. A hand-held IML 

Power Drill series instrument (RESI) is starting to be used in the forest industry to measure wood 

basic density. The RESI trace also can be used to extract measures of stem diameter and bark 

thickness. This study quantified and confirmed the genetic association between RESI resistance 

values and core basic density (≥0.95). It also confirmed high genetic correlations (>0.90) of bark 

thickness and diameter (DBH) estimated from RESI to the analogous traditional methods. 

Significant family and subrace differentiation were detected for the three RESI-derived traits, 

with the subrace differentiation for bark thickness exhibited among the highest subrace 

differentiation (QST > 0.63) reported to date for E. globulus, signalling divergent selection. This 

study confirmed that traditional measurements of wood density, DBH and bark thickness can 

be replaced with RESI measurements, for the genetic studies of Eucalyptus globulus. 

While OP trials have been useful to demonstrate significant racial variation within E. 

globulus and provide the initial estimates of the levels of additive genetic variation for selection 

traits, they do not allow the estimation of non-additive genetic effects. This is a key issue now 

that the advanced generations of the Australian National E. globulus Breeding Program 

comprise full-sib families and there are deployment options for exploiting non-additive genetic 

effects through full-sib family deployment. The relative importance of non-additive genetic 

effects, including inter-race heterosis, was examined using a trial derived from first generation 

selections from the breeding program. The trial was 9 year-old and established from 515 full-sib 

families derived from a diallel crossing design involving intra- and inter-race hybrids of the three 

most widely used races in the breeding program. Growth (diameter at breast height; DBH) was 

assessed at ages 2, 4, 6, and 8 years, allowing the detection and monitoring of changes in 

additive, dominance/heterosis as well as maternal and reciprocal effects with age. Key findings 

include the generally insignificant maternal and reciprocal effects, significant dominance 

variance (22 to 34% of the additive variance) and significant inter-race heterosis which increased 

with age (2.2% to 6.5%). While not significant, all inter-race combinations were better than the 

best of their intra-race crosses (‘better-parent’ heterosis), consistent with low levels of 

inbreeding in intra-race crosses. Three replicates of the trial were non-destructively assessed 

for pulp yield using NIR spectroscopy, and resistance drilling (RESI) used to assess wood basic 

density as well as bark thickness. The reliability of the RESI basic density estimates were 

validated, and in contrast to growth, these traits were shown to be predominantly under 

additive genetic control.  
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In summary, the studies of both open-pollinated (OP) and control-pollinated progeny 

trials have provided novel insights into the genetic architecture of growth, wood property traits 

and bark thickness in Eucalyptus globulus. The demonstration of significant non-additive genetic 

effects for growth demonstrates the advantage of identifying the best heterotic full-sib families 

for deployment through mass-supplementary pollination, which also gives the additional 

benefit of avoiding inbreeding. In addition, the study confirms the neutral or favourable 

association between pulpwood and solid wood traits in this species, arguing that with the 

breeding so far focused on pulpwood, pulpwood-selected germplasm and current plantations 

will not be degraded in terms of their genetic suitability to use them for solid-wood products. 
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Chapter 1 - General introduction  

 Eucalypts 

Eucalypts are a large group of woody plants in the family Myrtaceae (Grattapaglia et al. 

2012). This predominantly tree group of plants consists of seven genera, including Eucalyptus, 

Corymbia, Angophora, Arillastrum, Allosyncarpia, Eucalyptosis and Stockwellia (Ladiges et al. 

2003); of which, Eucalyptus is the largest genus, consisting of more than 750 species (Nicolle 

2019). Eucalyptus is indigenous to Australia and some of the islands to its north, including Papua 

New Guinea (Ladiges et al. 2003). They are also the main hardwood plantation species grown in 

tropical, sub-tropical and temperate regions of the world (Eldridge et al. 1993; Odoom 2001). 

Altogether, there is over 20 million ha of Eucalyptus plantations worldwide (Harwood 2011), of 

which 835,000 ha are in Australia (Downham and Gavran 2019). They provide the raw material 

for several industrial products, for example - eucalypt oil and gum, medicinal products, timber 

and most importantly, pulp for the paper industry (Coppen 2002; Batish et al. 2008; McGavin et 

al. 2014; Hart and Santos 2015; ABARES 2016b). Although Eucalyptus is economically important 

and species rich, only a handful (approximately 1 %) of species have been used at an industrial 

scale (Cotterill and Macrae 1997). Industrial plantations of Eucalyptus in the world are 

dominated by nine species or their hybrids - Eucalyptus camaldulensis, E. dunnii, E. globulus, E. 

grandis, E. nitens, E. pellita, E. saligna, E. tereticornis, and E. urophylla (Harwood 2011). The 

most planted eucalypt species in Australia is E. globulus followed by E. nitens (ABARES 2016b). 

In 2017-‘18, there was 457,000 ha of E. globulus plantations in Australia, which is 51% of the 

total hardwood estate (869,000 ha; Downham and Gavran 2019).  

Eucalyptus globulus is native to south-eastern Australia, including the islands of 

Tasmania, and is commonly called the ‘Tasmanian blue gum’ (Nicolle 2006). Studies identified 

E. globulus as part of a complex of four closely related species E. maidenii, E. pseudoglobulus, E. 

bicostata and E. globulus (Jordan et al. 1993; Brooker 2000). Core populations of these species 

are morphologically and geographically different to each other but they are linked by intergrade 

populations (Jordan et al. 1993; Jones et al. 2012). This has resulted in these taxa often being 

taxonomically treated as subspecies (Kirkpatrick 1975) but, following the latest informal 

taxonomy of the genus (Nicolle 2019), the species-level terminology is adopted here. What is 

referred to as E. globulus in most breeding/genetic studies, including the present study, is core 

E. globulus and its intergrades (Dutkowski and Potts 1999), which is hereafter referred to as E. 

globulus.  
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Eucalyptus globulus is one of the top ten planted forest tree species around the world 

(Potts et al. 2014) and one of the three main species used by the eucalypt Kraft pulp industry, 

worldwide (Cotterill and Macrae 1997). Countries such as Australia, Chile, Spain and Portugal 

grow E. globulus mainly for pulpwood, for paper making. In Australia, during 2017-2018, 82% of 

the hardwood plantations (where E. globulus is dominant) were cultivated for the production of 

pulp logs for producing woodchips, pulp and eventually paper (Downham and Gavran 2019). 

However, there is an increasing interest in using plantations of this species for higher valued 

solid-wood products such as sawn timber, veneer and composites (Nolan et al. 2005; Hamilton 

et al. 2007; Derikvand et al. 2016). While the export of logs harvested from pulpwood 

plantations for rotary peeled veneer production is expanding (McGavin et al. 2015), plantations 

from which sawlogs or veneer logs are extracted usually require different silvicultural practices 

to that used in pulpwood plantations. Plantations managed for such solid wood production need 

to be thinned and pruned to produce clear wood, and they have a longer rotation age than 

pulpwood plantations, to produce bigger logs (Nolan et al. 2005; Beadle et al. 2008). In Australia, 

the establishment and management of commercial hardwood plantations for solid wood 

products have increased (McGavin et al. 2014), with 17.9% of plantations managed for sawlog 

production in 2019 (Downham and Gavran 2019). The total hardwood log (saw and veneer logs) 

production from plantations in Australia has increased from 0.19 million m3 in 2015-16 to 0.48 

million m3 in 2016-17 (ABARES 2018) and is forecasted to increase to approximately 1 million 

m3 per year by 2055-2059 (ABARES 2016a).  

 Breeding system of Eucalyptus globulus 

Similar to many forest trees (White et al. 2007) and eucalypts in general (Byrne 2008), 

E. globulus has a mixed mating system, thus seeds produced through open pollination (OP) may 

contain outcrossed and inbred progenies. The reported outcrossing rates of individual trees 

range from 0.13 to 1.00 (Hardner et al. 1996; Patterson et al. 2004b; Potts et al. 2008; Rao et al. 

2008; Mimura et al. 2009). Outcrossing rate is positively correlated to the level of self-

incompatibility of the tree (Patterson et al. 2004b), a trait which is genetically controlled with 

genotypes ranging from nearly fully self-compatible to fully self-incompatible (McGowen et al. 

2004; Patterson et al. 2004b). The outcrossing rate can be up to 0.47 for self-compatible trees, 

with higher outcrossing rate in the upper- than the lower-canopy (Patterson et al. 2001; 

Patterson et al. 2004b), which potentially reflects the type of pollinator (Hingston et al. 2004). 

The outcrossing rate in native stands decreases with fragmentation (Mimura et al. 2009) and 

decreasing stand density (Borralho and Potts 1996; Hardner et al. 1996). For example, the 
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average outcrossing rates estimated using microsatellite loci from continuous native 

populations range from 86 to 89% but was reduced to 65 to 79% in a fragmented forest in 

agricultural landscapes (Mimura et al. 2009). In addition, there is evidence for bi-parental 

inbreeding in seed collected from native stands (Mimura et al. 2009), no doubt arising from the 

family group structuring which occurs within the forests (Hardner et al. 1998; Jones et al. 2007). 

Variable outcrossing rates have also been reported from trees in seed orchards of E. globulus, 

with average rates ranging from 77 to 92% reported for seedling seed orchards (Potts et al. 2008) 

and 60% for a grafted clonal seed orchard (Patterson et al. 2004b). The study by Rao et al. (2008), 

of a grafted Eucalyptus globulus breeding arboretum where genotypes were planted as single 

line plots, revealed that outcrossing rate for individual mothers varied from 15-95%, and 

averaged 48%. These studies clearly show that open-pollinated seed of E. globulus derived from 

native stands and production facilities will contain variable amounts of inbred progenies, either 

through self-pollination or bi-parental inbreeding.  

Inbreeding is a significant issue in evolutionary biology and breeding, that can lead to 

the loss of heterozygosity in the populations and reduced fitness or productivity, termed 

inbreeding depression (Husband and Schemske 1997). Inbreeding depression is common in 

many plant species and is opposite to the phenomenon termed hybrid vigour/heterosis which 

reflects the improved performance of crossbred progeny (Lippman and Zamir 2007). Inbreeding 

changes the genetic relatedness among progeny and, when combined with inbreeding 

depression, may bias breeding value predictions and quantitative genetic parameters calculated 

from OP progeny tests, including estimates of the additive genetic variance (Namkoong 1966) 

and heritability (Hodge et al. 1996; Costa e Silva et al. 2010b). Therefore, understanding the 

consequences of inbreeding on performance is important for tree improvement, as forest trees 

including Eucalyptus are often subject to high levels of inbreeding depression (Petit and Hampe 

2006; Ginwal 2010; Hedrick et al. 2016). 

Eucalyptus globulus is the eucalypt species in which the consequences of inbreeding has 

been most studied. Hardner and Potts (1995), Hardner et al. (1998) and López et al. (2000b) 

showed a marked reduction in seed set or seed viability as a result of self-pollination in this 

species. Most of the reduced seed set is believed to be due to post-zygotic abortion of self-

fertilised seed, which is an early form of inbreeding depression (Pound et al. 2003; McGowen et 

al. 2010). E. globulus has also shown severe inbreeding depression for later age growth and 

survival (Hardner and Potts 1995; Hardner et al. 1998; Costa e Silva et al. 2010b). For example, 

Costa e Silva et al. (2011) reported inbreeding depression for survival and stem diameter at age 

14 years as 49% and 36% respectively, when selfed progenies were planted in competition with 



Chapter 1 General introduction 

 

4 
 

other cross-types (OP and outcross). This study also included four degrees of inbreeding 

(outcrosses, crosses among half-sibs, crosses among full sibs and selfing) and showed a linear 

relationship of inbreeding depression for survival and growth with the inbreeding coefficient. 

However, the long-term (>15 years) effects of inbreeding depression have not been studied in 

this species. In general, the degree of inbreeding depression exhibited in open-pollinated 

progeny will depend upon the level of outcrossing and tendency of the mother tree to exhibit 

inbreeding depression (Hardner et al. 1996; Costa e Silva et al. 2010a).  

While many plant species show improved progeny performance following outcrossing, 

in some cases outbreeding can lead to a reduction in progeny performance, and this 

phenomenon is termed outbreeding depression. Increased population divergence through 

geographic or environmental isolation (among other processes) has been implicated in 

outbreeding depression following inter-population crosses (Figure 1.1) (Waser 1993; Frankham 

et al. 2011). In some cases, reduced fitness may not be apparent in the first generation progeny 

following inter-population crossing, but rather expressed in the later generation progeny 

(Fenster and Galloway 2000; Edmands 2007). Indeed, inter-population crossing may result in 

genetic rescue of inbreed populations, but later it may result in outbreeding depression in 

subsequent generations (Edmands 2007). Studies suggest that there is an optimal degree of 

genetic divergence between parents for the expression of heterosis (Figure 1.1), which 

represents a balance between inbreeding and outbreeding depression (Waddington 1983; 

Waser and Price 1989; Waser and Price 1994; Tallmon et al. 2004; Ayre et al. 2019).  

In forest trees, inter-provenance/race hybridisation has been reported to result in better 

progeny performance for growth traits compared to the average of the crosses within the 

parental provenances/races (Ying 1978; Harfouche et al. 1995b; Harfouche et al. 2000; Joseph 

et al. 2000). This is certainly the case in E. globulus, the main eucalypt species in which the 

consequences of inter-provenance/race crossing has been studied (Vaillancourt et al. 1995; 

Volker et al. 2008; Costa e Silva et al. 2014). However, while outbreeding depression has been 

reported in inter-specific hybrids of eucalypts (Potts et al. 1992; López et al. 2000b; Costa e Silva 

et al. 2012; Larcombe et al. 2014), to date there are no reports of outbreeding depression at 

lower levels of genetic divergence associated with, for example, inter-provenance/race 

hybridisation within species.  
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Figure 1.1. A hypothetical curve representing the relationship between parental genetic 
divergence and progeny fitness (conceptualized from Waddington 1983; Waser 1993) 
 

 Eucalyptus globulus breeding programme 

Deployment of genetically superior stock in plantations is one of the strategies used to 

increase the production of high-quality logs for both pulpwood and solid wood products. Many 

traits that affect these end-products, e.g. plantation productivity and wood quality, are under 

moderate to strong genetic control (Greaves et al. 2004; Kube and Raymond 2005), hence it is 

possible to improve these ‘economic traits’ to increase profitability for forest 

growers/processors through tree breeding (Potts et al. 2011). Tree breeding is a long-term 

process and the selection of parents mostly will have its impact on profitability after up to 20 

years (Greaves et al. 2004). However, the importance of tree improvement has been shown by 

the increase in yield made possible by various breeding programmes since the 1950’s (Cotterill 

and Macrae 1997; Namkoong et al. 2012), including those in Eucalyptus (Hart and Santos 2015).  

The domestication of Eucalyptus globulus started in the 1960’s in Portugal (Ribeiro et al. 

2011), and there are now breeding programmes in many countries including Australia, Chile, 

Portugal, and Spain (Potts et al. 2004). In Australia, domestication of E. globulus was started in 

1971 (Potts et al. 2014) and by 1976 the first range-wide seed collection of multiple provenances 

was done which resulted in the planting of trials in various countries, including Australia 

(Eldridge et al. 1993). This collection included provenances of E. pseudoglobulus, E. bicostata 

and E. maidenii, as well as E. globulus (Volker and Orme 1988; Miranda et al. 2001), and resulted 

in breeding programmes focusing on E. globulus (Eldridge et al. 1993). This was followed by a 

large range-wide native-stand seed collection of the core and intergrade populations of E. 

globulus by the Australian Tree Seed Centre (ATSC) of CSIRO in 1987 and 1988 (Potts et al. 2014). 

This collection formed the main component of the base population of many breeding 

programmes around the world, including Australia (Potts et al. 2014). The most complete trials 



Chapter 1 General introduction 

 

6 
 

established from this collection were in Tasmania, Australia, and formed the basis of many 

quantitative genetic studies of this species (reviewed in Potts et al. 2004; 2011; 2014). The study 

of the provenance variation in five Tasmanian trials by Dutkowski and Potts (1999) identified 

significant geographically based genetic variation in multiple quantitative traits which were 

summarised by classifying the gene-pool (i.e. E. globulus and intergrade populations) into 13 

races and 20 sub-races.  

The Southern Tree Breeding Association (now Tree Breeding Association Inc; TBA) 

combined the pre-existing genetic resources for E. globulus in Australia to establish the 

Australian National E. globulus Breeding Programme in 1994, which aimed at the long-term 

population improvement of the species (McRae et al. 2001; Potts et al. 2014). The original 

genetic resource for the base population of this breeding programme was the open-pollinated 

(OP) families collected from native stands which were established in field trials across Australia 

by members of the programme.  Some of these base population trials were culled to convert 

them into open-pollinated seed orchards for producing seeds for deployment (Volker et al. 

1990). However, subsequent generations of breeding have been undertaken using manual 

pollination, allowing tracking of both the male and female pedigrees (Potts et al. 2014). 

Eucalyptus globulus possesses large flower (Jordan et al. 1993; Jones et al. 2002), which has 

facilitated the adoption of advancements in the pollination techniques called ‘one-stop 

pollination’ (Harbard et al. 2000) or ‘single-visit pollination’ (Williams et al. 1999). This ease of 

crossing has allowed the implementation of large-scale controlled crossing to generate full-sib 

families for breeding purposes, which is difficult and costly with smaller-flowered species such 

as E. nitens (Potts et al. 2014). In addition, modification of this control crossing technique has 

been utilised by many companies for the production of E. globulus seeds of specific parental 

combinations for deployment using the method called mass supplementary pollination 

(Patterson et al. 2004a; Potts et al. 2008). In response to earlier studies on forest trees that had 

shown positive heterosis for inter-race/population crosses (Ying 1978; Harfouche et al. 1995b; 

Joseph et al. 2000; Volker et al. 2008), coupled with the desire to reduce the flowering time 

differences inherent among the different races of E. globulus (Gore and Potts 1995; Jones et al. 

2011), the Australian National E. globulus Breeding Programme adopted a strategy of bi-

parental crossing of selections from the base population with a focus on inter-race crossing. As 

of 2014, more than 1400 full-sib families had been established in field trials, 76% of which were 

inter-race combinations with the dominant races being Furneaux [F], Strzelecki Ranges [S] and 

Western Otways [W] (McRae et al. 2001; Potts et al. 2014). Hereafter the term provenance is 

used in a general sense for populations/collections originating from a specific geographic area, 
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but where a specific intra-species classification has been defined and published, such as the 

hierarchal classification of races and subraces of E. globulus (Dutkowski and Potts 1999), the 

published terminology has been followed. 

The Australian National E. globulus Breeding Programme has historically focused on 

improving Australian plantations for short-rotation pulpwood production, where the plant traits 

affecting profitability are mainly growth (volume area per hectare), wood basic density and pulp 

yield (Borralho et al. 1993; Greaves et al. 1997; Raymond 2002; Hart and Santos 2015). However, 

in combination with the appropriate silvicultural management, genetic improvement is also an 

option for increasing the production of high-quality logs with significant clear wood for solid 

wood products (Nolan et al. 2005). While traits such as growth and wood density are shared 

between solid wood and pulpwood breeding objectives (Raymond 2002; Hamilton et al. 2007; 

Hamilton et al. 2009a; Hamilton et al. 2010), the profitability of plantations grown for solid wood 

products are also potentially affected by different traits compared to pulpwood plantations, 

including stem straightness, branch shedding, wood stiffness [MOE], log-end splitting and log 

bowing, decay, shrinkage and collapse (Potts et al. 2011). However, relative to the pulp-wood 

selection traits, there are relatively few studies of these solid wood traits in E. globulus 

(Hamilton et al. 2010; Callister et al. 2011; Potts et al. 2014). This is due to various reasons such 

as lack of an established eucalypt solid-wood processing industry based on E. globulus 

plantations, longer rotation intervals, wide range of products and the scarcity of genetic field 

trials grown under solid-wood silvicultural regimes (Hamilton et al. 2010; Beadle et al. 2011; 

Potts et al. 2014).  

 Estimation of genetic parameters 

The genetic gain achieved through a breeding programme is in part influenced by the 

accuracy of the predicted breeding values and other genetic parameters (Cappa et al. 2017). In 

the case of E. globulus, Best Linear Unbiased Predictions (BLUP) implemented with multi-trait 

individual tree mixed models have long been used for the estimation of breeding values (Jarvis 

et al. 1995; Kerr et al. 2001). These models initially could not account for the male pedigree due 

to the use of open-pollinated progeny (Jarvis et al. 1995). However, as full-sib families dominate 

the later generations of the breeding programme, full pedigree information back to the base 

maternal parent is increasingly available.. More recently, this pedigree information is starting to 

be supplemented with estimates of genomic relatedness among individuals to further improve 

the accuracy of genetic parameters and breeding values (Jonas and de Koning 2013) and 

decrease the length of the breeding cycle, as is occurring in many forest trees species (Ratcliffe 
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et al. 2017). Key to BLUP analyses is the genetic parameters that define the genetic architecture 

of the species from a quantitative genetic perspective. Such parameters include race variation, 

the proportion of additive genetic variance (narrow-sense heritability), dominance effects 

(including inbreeding depression), maternal and reciprocal effects, epistasis, genotype x 

environment interactions (GxE) and genetic correlations among traits (Lynch and Walsh 1998; 

White et al. 2007). Population improvement mainly focuses on exploiting additive genetic 

variance, which is a key factor in determining the response of each trait to selection (Falconer 

and Mackay 1996). In many forest tree programmes, this is undertaken using open-pollinated 

progenies (White et al. 2007). However, non-additive genetic effects are also found to be 

important in some cases, hence they affect the accuracy of the models used for genetic 

evaluation as well as breeding and deployment decisions (Costa e Silva et al. 2004; White et al. 

2007).  

In the case of E. globulus, some of the first signals of the inaccuracies in estimating 

breeding values from models that don’t account for non-additive effects came from studies 

comparing the growth performance of open-pollinated and control pollinated progenies. Hodge 

et al. (1996) reported that the parental breeding values for growth estimated from open-

pollinated families and full-sib families from the same parents crossed in a factorial mating 

design were not significantly correlated. Using the same trials, Volker (2002) also found inflated 

heritabilities for all growth traits from open-pollinated progenies compared to controlled 

pollinated progenies. In another experiment with different parents, Costa e Silva et al. (2010a) 

subsequently showed that the growth of open-pollinated progenies was more correlated with 

that of selfed progenies than with outcrossed polymix progenies from the same parents. In 

addition, the inflation of heritability when the non-additive effects are not considered in the 

model was also empirically demonstrated by Araújo et al. (2012). These findings suggested a 

stronger influence of non-additive effects, including inbreeding depression, than parental 

additive effects on open-pollinated progeny performance. A study dominated by selections 

from the Portuguese landrace of E. globulus, for example, suggests that non-additive genetic 

effects on growth may be nearly (80%) as large as the additive genetic effects (Araújo et al. 

2012). The few available estimates for E. globulus of the relative importance of additive and 

dominance genetic variance under outcrossing have generally confirmed this result, showing 

significant dominance genetic variation for growth traits (Li et al. 2007; Araújo et al. 2012; 

Callister et al. 2013), although there are exceptions (Costa e Silva et al. 2004). However, the 

limited size and breadth of genetic material used in most of these studies could have affected 

extrapolation to the entire breeding population.   
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Another consideration is the role of maternal and non-maternal reciprocal effects on 

progeny performance, which can be important components of the non-additive genetic variance 

(Misztal 1997), but may also have a non-genetic basis (Roach and Wulff 1987). E. globulus trees 

differ markedly in their reproductive potential as female parents (Suitor et al. 2009b; 2009c), 

and if reciprocal effects on progeny performance are important, then the directionality of the 

crossing will need to be considered in both breeding and deployment. While reciprocal effects 

have been reported in seed traits and early-age performance in plants, including forest trees 

(Roach and Wulff 1987; Lindgren and Wei 1994; López et al. 2003; Rix et al. 2012; Vivas et al. 

2017; Vivas et al. 2019), there are only a few published studies addressing this issue in eucalypts 

in general (Wyk 1977; Vivas et al. 2017; Vivas et al. 2019), and only one field study in E. globulus 

(López et al. 2003). The study by López et al. (2003) showed statistically significant reciprocal 

effects on early growth of E. globulus seedlings, but these rapidly diminished after field planting. 

However, the significance of these reciprocal effects has not been tested in experiments 

involving the main races and selections in the Australian National E. globulus Breeding 

Programme. In contrast to growth, many other traits studied in E. globulus, including disease 

resistance (Dungey et al. 1997) and wood density (Volker 2002), are mainly under additive 

genetic control, and parental breeding values are relatively well predicted from open-pollinated 

progenies. 

Non-additive genetic effects such as dominance can only be captured with deployment 

strategies such as cloning or deployment of elite full-sib families [family forestry] (Foster and 

Shaw 1988; Lynch and Walsh 1998; White et al. 2007). While some plantations of E. globulus 

are established through clonal propagation of selected genotypes in South America and the 

Iberian Peninsula (Gaspar et al. 2005; López et al. 2010; Griffin 2014), clonal propagation is not 

economic in Australia, and most plantations are established with seedling propagules, mainly 

from open-pollinated seed orchards (Potts et al. 2004; Potts et al. 2008; Griffin 2014). 

Nevertheless, in E. globulus there is the family forestry option of deploying full-sib families 

through mass supplementary pollination, although such seed is more expensive to produce than 

open-pollination seed. Apart from avoiding inbreeding depression through the mixed mating 

which occurs under open-pollination (Patterson et al. 2004b), a key issue in understanding the 

advantages of deploying full sib-families is the relative importance of non-additive genetic 

effects as explained above, including inter-race heterosis (Potts et al. 2008; Araújo et al. 2012).  

While non-additive effects such as dominance have been estimated in E. globulus from 

relatively sparse mating designs used in operational breeding programmes (Li et al. 2007; Araújo 

et al. 2012) or more structured, denser crossing designs such as factorials (Vaillancourt et al. 
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1995; Hodge et al. 1996; Volker et al. 2008), complete or incomplete diallel mating designs are 

needed to accurately estimate reciprocal effects (López et al. 2003; Costa e Silva et al. 2014), 

although these may compromise other parameter estimates due to the smaller number of 

parents involved. A complete diallel involves crossing all the parents with one another in both 

directions (i.e. as male and female) in all possible combinations. This compares with a factorial 

design where the males and females are different individuals (Acquaah 2009). Both designs 

allow estimation of additive and dominance variances assuming no epistasis (Misztal 1997), but 

diallel schemes are advantageous as they can estimate maternal and non-maternal reciprocal 

effects. To estimate the dominance and additive variance with equal accuracies, about 20 times 

more data is required than when only measuring additive variance (Misztal 1997). Realizing such 

crossing on a large scale has practical limitations, there are thus relatively few quantitative 

genetic studies of non-additive genetic effects in forest trees (Paul et al. 1997; Isik et al. 2003; 

Costa e Silva et al. 2004; Callister and Collins 2008; Miguez-Soto et al. 2016). There are even 

fewer studies involving diallel crossing designs at a population (Harfouche and Kremer 2000) or 

full-sib family (Blada 1999; Isik et al. 2003; Mihai et al. 2014; Russell et al. 2015; Dong et al. 2019) 

level in forest trees. Accordingly, there is little appreciation of the extent to which non-additive 

genetic effects, particularly reciprocal and maternal effects, influence the genetic architecture 

of traits of biological and economic significance in forest trees. 

The present study utilises a combination of open-pollinated and control-pollinated 

progeny trials of E. globulus to address the various issues raised above. Five previously 

established and monitored trials were studied, with new growth and wood property 

assessments undertaken and combined with historic data.  The first study (Chapter 2), regarding 

the inbreeding depression, was done using a 28-year old field trial which was planted in 1988 at 

Ridgley in north-western Tasmania. This trial included E. globulus and E. ovata, with three cross-

types each (outcrosses, open-pollinated and selfs). The studies on the genetic correlations 

(Chapter 3 & 4) were done using three E. globulus field trials established with open pollinated 

seed lots collected from wild trees from throughout the geographic range of E. globulus. Two of 

these trials were established in north-west (NW) Tasmania (Salmon River [SR] and Togari [TO]) 

in 2005 and the other in northern Tasmania (Latrobe [LA]) in 1989. For the diallel study (Chapter 

5), a trial established in 2007 at Manjimup, Western Australia was used. This trial was 

established using full-sib families from a diallel mating of E. globulus parents from three 

different races. 

 

 Thesis outline  
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This thesis addresses several key issues related to the genetic architecture of E. globulus, 

for various pulpwood and solid wood selection traits and their genetic association with each 

other, using the above open-pollinated and control-pollinated progeny trials. Chapter 2 studies 

the long-term effects of inbreeding on the survival, growth and reproduction of E. globulus and 

E. ovata, and compares the effects of inbreeding to the adaptive differences between the two 

species over 28 years. While there have been numerous studies undertaken on the quantitative 

genetics of various traits of E. globulus using the base population trials (Potts et al. 2004; Potts 

et al. 2014), there are still many outstanding issues, several of which are the focus of Chapter 3, 

especially validating and understanding the race variation and the genetic control and 

association of key selection traits in the pulpwood and solid wood breeding objectives. Wood 

basic density is generally assessed using direct or indirect techniques (Downes et al. 1997; 

Stackpole et al. 2010a). Previously, wood density was assessed using oven-dried 12 mm wood 

cores obtained with a mechanical coring machine or using a Pilodyn. However, there is a growing 

interest in using the IML Power Drill series instrument (RESI) as an indirect method to assess 

wood density in various tree species (Silva et al. 2017; Downes et al. 2018; Fundova et al. 2018; 

Sharapov et al. 2019). This method is often more cost effective and faster than other techniques, 

and generally  better predicts wood density than the Pilodyn - an alternative option for high-

speed non-destructive sampling (Downes et al. 2018; Fundova et al. 2018). The strong 

phenotypic level relationship between RESI resistance values with the core basic density has 

been previously reported (Downes et al. 2018). However, to use it for tree improvement 

programmes, genetic rather than phenotypic correlations need to be estimated. In Chapter 4, I 

test the utility of the RESI for the genetic assessment of various traits in standing trees. The 

genetic correlations between resistance drill measurements and the analogous traditional 

methods used to assess diameter, wood density and bark thickness was quantified. In Chapter 

5, resistance drilling is used to assess wood density variation and bark thickness in a large-diallel 

trial based on selections of E. globulus from three races. These measurements are combined 

with pulp yield predictions and an age-series of stem diameter measurements to determine the 

magnitude of inter-race heterosis and within-race additive and non-additive genetic variances 

for the key pulpwood selection traits. The non-additive genetic variances estimated include 

dominance, as well as maternal and non-maternal reciprocal variances and these are compared 

to the additive genetic variance. It should be noted that the parameters presented are  

estimates based on the parental samples of the populations studied and their extrapolation to 

population level parameter estimates will obviously depend upon the number and 

representativeness  of parents sampled.  They also refer to the genetic architecture within 
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genetic groups (e.g. races or subraces) as is traditionally the case in eucalypt studies. Further, 

several of the studies are restricted to single site experiments and thus the genotype x 

environment interaction effects are not included, but the consistency of the results were gauged 

by comparison with other studies. 

The four experimental chapters are presented in the format of scientific journal articles. 

Every chapter contains an introduction explaining the background of the study, the 

methodology used for that experiment, following the results and discussion. Since every chapter 

contains a discussion about the findings in the context of the present knowledge, Chapter 6 is a 

brief general discussion which draws together the findings of the thesis and highlighting the 

implications of these results to the Australian National E. globulus Breeding Programme. 
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Chapter 2 - Inbreeding depression and differential maladaptation 

shape the fitness trajectory of two co-occurring Eucalyptus species 

2.1.  Introduction 

Inbreeding is an important consideration in evolutionary biology and genetic 

improvement. It affects the levels of genetic variability in populations through drift and can 

change the expression of quantitative genetic variation in populations (Charlesworth and Willis 

2009). Additionally, it can reduce performance in fitness related traits (Charlesworth and 

Charlesworth 1987), often leading to size-dependent mortality (Koelewijn et al. 1999; Costa e 

Silva et al. 2011). This reduced performance is termed inbreeding depression (ID) and is thought 

to be caused by two main mechanisms - dominance and over-dominance (Roff 2002). 

Dominance is the most accepted mechanism (Hedrick and Garcia-Dorado 2016), positing that 

ID results from the expression of deleterious recessive or partially recessive alleles. Such alleles 

are generally rare and accumulate in large, particularly outcrossed populations giving rise to a 

‘genetic load’ which is expressed upon inbreeding (Willi et al. 2006). In plants, inbreeding can 

occur through self-pollination or mating between related individuals; which may occur as a 

consequence of, for example, a mixed mating system and restricted opportunities for unrelated 

mating in small populations, respectively (Goodwillie et al. 2005). Under such conditions, ID may 

act to counter local adaptation in wild populations (Willi et al. 2006) and limit the response to 

artificial selection in breeding programs (Kardos et al. 2016). 

Inbreeding has been implicated in the response of plant populations to climate change 

from several perspectives (Leimu et al. 2010). It has been suggested that stressful and 

deteriorating environments may increase levels of inbreeding through, for example, production 

of smaller flowers (Strauss and Whittall 2006) and loss of pollinators (Potts et al. 2010). Climate 

change may also increase inbreeding through reduced population sizes (i.e. population 

bottlenecks) arising from maladaptation and habitat fragmentation (Leimu et al. 2010; Levin 

2011). Indeed, with range shifts associated with differential adaptation of species (Lenoir et al. 

2008), an interplay between climatic maladaptation and ID is expected to arise from range 

fragmentation and founder effects at the trailing and leading edge of a species range (Hampe 

and Petit 2005; Leimu et al. 2010). Climate shifts may also lead to changes in the fitness impact 

of inbreeding, with ID reported to increase in more stressful environments (Armbruster and 

Reed 2005). Such issues are particularly relevant to forest trees, which dominate many of the 

world’s terrestrial ecosystems and climate change is already impacting their populations 
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worldwide (Bertrand et al. 2016). Moreover, due to their often large population sizes and 

outbred mating systems, these long-lived organisms are particularly vulnerable to ID (Petit and 

Hampe 2006). 

Trees of the genus Eucalyptus L'Hér. dominate many of Australia’s forest and woodland 

ecosystems. Decline of eucalypt populations, likely linked to climate change, has already been 

reported (Matusick et al. 2013; Prober et al. 2016), and future climate projections suggest that 

a significant component of the Australian eucalypt flora will be outside of their historic climate 

envelopes by 2080’s (González-Orozco et al. 2016). Given the often limited dispersal capabilities 

of eucalypt seed, there will likely be a heightened risk of maladaptation in these changing 

environments (Booth 2017). Any evolutionary change in eucalypts will depend upon selective 

filtering of the genetic diversity present in the dispersed seed (Martinsen et al. 2001). In the 

case of most eucalypt species, open-pollinated (OP) seed is derived from mixed mating and thus 

may contain various proportions of selfs, as well as related and unrelated outcrosses (Potts and 

Wiltshire 1997). It thus may, to various extent, reflect the additive genetic adaptations of the 

female (Hodge et al. 1996). Accordingly, selective filtering of each regenerating cohort will be 

expected to involve a dual process of selection against the products of inbreeding and 

environmentally maladapted genotypes.  

We here study the dynamic interplay of adaptation and ID on the long-term composition 

of a common garden field trial. The trial comprised two eucalypt species - Eucalyptus globulus 

Labill. and E. ovata Labill. – whose ranges broadly overlap in the wild, but on a fine-scale occupy 

separate habitats, and form relatively sharp boundaries (Williams and Potts 1996). As both 

species are widespread with large populations and ecologically differentiated, we hypothesize 

that (i) selective filtering of the field trial will occur through a combination of ID and inter-

specific differences in adaptation, (ii) the expression of inbreeding depression will vary through 

time, and (iii) differences in adaptation between species will be accentuated with inbreeding.    

2.2. Materials and methods 

2.2.1. Field trial and assessed traits 

To compare the effect of inbreeding depression (ID) on E. globulus and E. ovata, three cross-

types (outcrosses, open-pollinated and selfs) were generated, involving 23 E. globulus and 12 E. 

ovata undomesticated females (Table 2.1; crossing methodology is detailed in Hardner and 

Potts 1995; see also Lopez et al. 2000). The E. globulus trees used as females were mainly 

ornamentals growing in a linear road-side planting near Hobart, Tasmania. The E. ovata females 

were growing in a remnant native-forest south of Hobart. To generate outcrosses, trees were 
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crossed with unrelated pollen derived from either single-tree pollen collections from southeast 

Tasmania, Australia or polymixes (i.e. a mix of pollen collections). The E. globulus outcross 

population comprised 14 full-sib and 13 polymix families. These families represented 24 parents, 

(11 as females; four as pollen parents and four as both pollen parents and females in the full-

sib crossing; and an additional five parents as components of the pollen mix). The E. ovata 

outcross population was less diverse, comprising nine full-sib families and 4 polymix families. 

These families represented 14 parents, (five as females; an additional four pollen parents in the 

full-sib crossing and five as components of the pollen mix). The effective representation of the 

five pollen parents in the polymix families is unknown. Seeds from each treatment were 

harvested and grown in a nursery (detailed in Hardner and Potts 1995), with healthy, seven-

month-old progeny transplanted into a common garden field trial in 1988 at Ridgley in north-

western Tasmania (S41°10’S, E145°46’E). The trial contained five replicates, within which 

progeny of each species were grown in separate blocks. To limit the potential competition effect 

between different progenies, each block consisted of two sub-blocks, one containing selfs and 

the other containing both outcrosses and open-pollinated (OP) progenies. Within each sub-

block, families were allocated randomly in plots of up to three trees, with each tree planted at 

a spacing of 3 x 3m (Hardner and Potts 1995; López et al. 2000b). 

 

Table 2.1. Summary of the genetic material used in the study. Shown are the number (n) of 
females (mothers), families, and the total number of seedlings planted in the trial for each cross-
type (outcrossed E. globulus [GLxGL] and E. ovata [OVxOV], open-pollinated E. globulus [Glop] 
and E. ovata [OVop], and selfed E. globulus [GLself] and E. ovata [OVself]). In the case of the 
outcrosses, each female was crossed with multiple males resulting in more families than females. 
 

Treatment Females (n) Families (n) 
Seedlings 

planted (n) 

GLxGL* 15 27 282 

GLop 19 19 284 

GLself 11 11 116 

OVxOV* 5 13 216 

OVop 12 12 206 

OVself 6 6 35 

*also include controlled outcrosses derived using a mixture of pollen (polymixes) 
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We monitored three fitness surrogates (survival, growth, and reproduction of survivors) 

over a 28-year period (1988-2016). Survival and growth were assessed seven times after 

planting (2 months, 1 year 8 months, 3 years 8 months, 10 years, 12 years 6 months, 20 years 7 

months and 27 years 7 months; hereafter 0, 2, 4, 10, 13, 21 and 28 years respectively). Growth 

was assessed using height 2-months after planting and thereafter using stem diameter at breast 

height (DBH; 1.3m above ground). DBH was measured on all stems, but analyses were 

conducted only using the largest stem per individual. Reproduction was assessed at 4 years and 

28 years as a whole-tree assessment for the presence/absence of buds, flowers or capsules. 

Data exploration identified a single vigorous tree in the E. ovata self-plot, which was alive and 

reproductive at the final assessment, as a clear outlier. This tree was excluded from analyses, as 

it was most likely a pedigree error. 

2.2.2. Estimating inbreeding depression 

The level of ID for survival (IDsurv) and growth (IDgrowth) resulting from either selfing (IDself) 

or open-pollination (IDop) relative to the controlled outcross was calculated following Hardner 

and Potts (1995): 

IDself = ( 
outcross – self

outcross
 ) *100 [1] 

IDop = ( 
outcross – OP

outcross
 ) *100 [2] 

where outcross, OP and self are the average value of the progeny respectively. A positive ID 

value thus indicates a negative deviation of the mean of the selfs and Ops, respectively, from 

that of the outcrosses, corresponding to a decrease in performance. 

2.2.3. Statistical analysis 

All statistical analyses were undertaken using R version 3.3.1 (R Core Team 2017). The 

differences in patterns of survival among the species and cross-type treatments were assessed 

using the survival package (Therneau and Lumley 2009). The analyses were undertaken by 

treating survival as a ‘right-censored’ trait whereby a tree that died between the time interval 

of t1 and t2 was recorded as dead at t2. Non-parametric Kaplan-Meier survival curves were 

estimated to visualize the temporal decay in survival for each treatment using the ‘survfit’ 

function of the survival package. To statistically test whether the survival curves differed, an 

analysis of covariance (ANCOVA) was undertaken by fitting a priori pairwise contrasts using the 

‘coxph’ function of the survival package following Crawley (2012). Significant (P<0.05) pairwise 

differences between survival curves were assessed using the log-rank score test, and the 
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probability of death (i.e. hazard ratio and its 95% confidence interval) were obtained for each 

contrast as the exponential of the beta coefficient. 

Cross-type differences in the three traits were further explored by fitting the following model: 

y = µ + cross-type + species + cross-type*species + replicate + replicate*cross-type + 

replicate*species + replicate*cross-type*species + ε 

    

[3] 

where cross-type, species and their interaction were fitted as fixed effects (bold) and replicate 

and its interaction with cross-type and species fitted as random effects (italics), and ε was the 

random residual. Models for survival and reproduction were fitted using generalised linear 

mixed effects models (GLMM) assuming a Bernoulli error with a logit link function using the 

‘glmer’ function of the lme4 package (Bates et al. 2014), whereas DBH was fitted using a linear 

mixed effect model (LMM) undertaken with the ‘lmer’ function. Statistical significance of the 

fixed effects were assessed using either a (i) Type III Wald chi-square for the GLMM, or (ii) F test 

for the LMM where the denominator degrees of freedom were estimated using the Kenward-

Roger approximation undertaken with the ‘anova’ function of the lmerTest package (Kuznetsova 

et al. 2015). Where appropriate, model over-dispersion and assumptions of normality and 

homoscedasticity were assessed following Zuur et al. (2010), with response traits transformed 

where necessary to meet these assumptions. When statistically significant fixed effects were 

detected, Tukey’s multiple comparison tests were undertaken with the ‘glht’ function of the 

multcomp package (Hothorn et al. 2009). 

To test the effect of ID on survival and growth for both species, we constructed a priori 

contrasts (outcross versus OP, outcross versus selfs) for each species and used a two-tailed z-

score test to determine whether the observed mean difference was significantly different from 

zero. This was undertaken using the ‘glht’ function after fitting the following model: 

y = µ + treatments + replicate + replicate*treatments + ε [4] 

where treatments is the fixed effect of cross-type by species with six levels. 

To understand the dynamic interplay between growth and survival over the course of 

the experiment, we tested whether mortality between assessment dates could be related to 

tree size, as smaller trees have been shown to have a greater mortality risk in plantation grown 

E. globulus (i.e. size-dependent mortality; Chambers et al. 1996). For each species, size-

dependent mortality over the time interval t1 to t2 was tested for each cross-type by comparing 

the t1 DBH of the surviving and dead cohorts at the t2. This comparison was done using an 

analysis of variance undertaken with the ‘lmer’ and ‘anova’ functions of the lmerTest package 

in R as detailed above. As self-thinning within the stand may confound comparisons in DBH 
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among cross-types, we assessed whether there existed a relationship between the log-

transformed values of the average DBH (e.g. tree size) of surviving trees and the number of 

surviving trees per hectare following Lonsdale (1990) using a simple linear regression model.  

The historic and growing period climate variables for the trial site were calculated using 

long-term daily data obtained from the Australian Bureau of Meteorology 

(http://www.bom.gov.au/jsp/awap/, accessed 1st March 2017). Daily minimum and maximum 

temperature and precipitation from the 1st January 1911 to 31st December 2016 were extracted 

for the trial site using the ‘getAWAP’ function of the AUSclim package (unpublished R package). 

This function first downloads topography adjusted rasters at a spatial resolution of three 

minutes (ca. 5 km) (Jones et al. 2009) and extracts daily climate data for a set of given 

coordinates. This climate data was then used to calculate a multi-scalar drought index 

(standardised precipitation evapotranspiration index, SPEI; Vicente-Serrano et al. (2010)) by de-

seasonalising 12 month accumulation of precipitation minus pan evapotranspiration (PET) to 

calculate standardised departures of soil moisture availability (Vicente-Serrano et al. 2010; Cook 

et al. 2014). Pan evapotranspiration was calculated using a modified Hargreaves (1994) 

equation to correct for variation in monthly precipitation, which has been shown to significantly 

improve estimates of PET in arid environments (Droogers and Allen 2002). The SPEI and PET 

variables were calculated using the ‘spei’ and ‘hargraves’ function of the SPEI package (Vicente-

Serrano et al. 2010). 

To determine whether patterns of differential survival of the two species were 

associated with maladaptation to extreme climate events, relative survival fitness of E. ovata 

compared to E. globulus was calculated using Kaplan-Meier curves (see above) as: 

Relative fitness = 
OVsurv(CT)

GLsurv(CT)
 [5] 

where OVsurv(CT) and GLsurv(CT) are the proportion of surviving E. ovata and E. globulus, respectively, 

for each cross-type (CT). Relative survival curves were then overlain on a plot of a 5-year moving 

average window for a drought metric, the standardised precipitation evapotranspiration index  

(SPEI, Vicente-Serrano et al. 2010)  

2.3. Results 

2.3.1. Inbreeding depression due to selfing  

In E. globulus, IDself for growth was highest during the first 4 years (22 to 27%), thereafter it 

declined rapidly and became insignificant by age 13 years (3%) (Figure 2.1b, Table 2.2a). In 

contrast, IDself for survival was not initially significant but increased rapidly after age 4 years. It 
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was significant by age 10 years (25%) and subsequently doubled in magnitude by age 13 years 

(51%) (Figure 2.1b & Table 2.2a). IDself for survival slowly increased thereafter to reach a 

maximum of 64% by age 28 years at a time where IDself for growth was effectively zero. Over the 

period studied, there was continuous size-dependent mortality in the self-population but this 

was less evident in the outcross population where size-dependent mortality was not significant 

over the 2 to 10-year time interval (shown by the lines for each cross-type in Figure 2.1d). Most 

of the expression of IDself had been manifest by age 13 years thereafter changes for both growth 

and survival were relatively small. Indeed, by age 28 years the few surviving E. globulus selfs 

were of similar DBH to the outcrosses, although their competitive environment was obviously 

less due to low tree density in the self-plots (Figure 2.2). Overall, the E. globulus selfs had a 2.5 

times greater risk of mortality than outcrosses (Table 2.3), and most of this risk was incurred 

over the 4 to 13-year time interval. 

In the E. ovata population studied, IDself for growth was nearly double that of E. globulus 

for the age 2 and 4 years but it was only after the age 10 years that the species by cross-type 

effect was significant (age 10 years F1,14 =7.0, P=0.019; 13 years F1,16 =21.7, P<0.001; 21 years 

F1,46 =8.7, P=0.005). At this stage when the E. globulus IDself for growth was dropping to 

effectively zero, the E. ovata IDself remained high to age 21 years and significant up to age 13 

years (Figure 2.1b, Table 2.2b). E. ovata IDself for survival exhibited a similar but delayed change 

through time compared to E. globulus, with the exception that it continued to increase and 

reached a maximum of 100% by age 28 years (Figure 2.1b & Table 2.2b). Size-dependent 

mortality in E. ovata selfs was only significant between ages 4 and 13 years (Figure 2.1d), after 

which the same trends were evident. However, with few surviving plants, the statistical power 

to test for size-dependent mortality was reduced after age 13 years. Size-dependent mortality 

of the outcrossed E. ovata was significant for all but the 2 to 4-year time interval (Figure 2.1d), 

which could explain the maintenance of significant IDself for growth (Figure 2.1b). Overall, the E. 

ovata selfs had a 3.4 times greater risk of mortality than outcrosses (Table 2.3) and, as with E. 

globulus, most of this risk was incurred over the 4 to 13-year time interval.  
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Figure 2.1. Temporal changes in (a) survival, (b) inbreeding depression (ID) due to selfing and (c) 
ID in open-pollinated (OP) progenies, and (d) size-dependent mortality for E. globulus and E. 
ovata. Survival data is shown using red lines and growth (height and DBH) data using blue lines. 
Dotted lines correspond to selfs, dashed lines to OPs and solid lines to outcross progenies. 95% 
of confidence intervals (CI) in (a) are indicated as colour bands with non-overlapping bands 
signalling significant difference among cross-types. CIs were not calculated for the last scoring 
of E. ovata selfs as none survived to 28 years in (a), and ID for DBH cannot be calculated in (b). 
(b) and (c) show the temporal transition of ID from growth to survival due to size-dependent 
mortality (summarised in d), with asterisks indicating levels of significance (P<0.05*; P<0.01**; 
P<0.001***; P>0.05 blank ). (d) Lines indicate the intervals over which significant (P<0.05) size-
dependent mortality occurred in each cross-type, and gaps indicate the intervals when size-
dependent mortality was not occurring (where trees died during the assessment interval were 
not significantly different in initial size to the surviving trees). In all intervals where significant 
differences were detected, trees that died were smaller than surviving trees at the beginning of 
the assessment interval indicated. The statistical tests for growth were based on DBH in all 
intervals except the first assessment at 2 months, which was based on height. The x-axis 
represents the growth period of the trial (1988 to 2016) and the red tick marks indicate tree age 
since planting in the trial when assessments were undertaken (to the nearest year). Changes in 
cross-type growth over the same period are indicated in Table 2.2. 
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Table 2.2. Least-square means (LSM) and estimates of inbreeding depression (ID) for each cross-type and monitoring period for E. globulus (a) and E. ovata 
(b). A two-tailed z-score test was used to determine whether observed mean effects of ID on survival and growth for both species were significantly different 
from zero (P<0.05*; P<0.01**; P<0.001***; P>0.05ns). As no E. ovata IDself survived to age 28 years, pairwise comparisons were not undertaken. Year 0 age 
for growth represents height of the plant at 2 months, since they were not tall enough to measure DBH. 
 

(a) E. globulus 

Age 
Survival Height1/DBH 

LSM % 
IDself % IDOP % 

LSM (cm) 
IDself % IDOP % 

Outcross OP Self Outcross OP Self 
01 93.2 95.6 92.1 1ns -3ns 123.5 122.8 97.0 22*** 1ns 
2 92.4 92.6 90.5 2ns 0ns 67.5 63.3 50.7 25*** 6ns 
4 83.4 84.1 87.4 -5ns -1ns 135.6 122.8 98.6 27*** 10*** 
10 80.0 71.2 60.2 25* 11ns 219.7 215.2 184.6 16*** 2ns 
13 72.3 55.8 34.7 51* 22* 241.0 253.3 233.5 3ns -5* 
21 62.1 48.0 22.7 62* 22* 325.5 348.0 345.2 -6ns -7* 
28 50.3 40.5 17.6 64* 19ns 379.9 414.2 423.3 -10ns -9** 
           

(b) E. ovata 

Age 
Survival Height1/DBH 

LSM % 
IDself % IDOP % 

LSM (cm) 
IDself % IDOP % 

Outcross OP Self Outcross OP Self 
01 90.6 84.0 86.1 5ns 7ns 97.5 93.5 65.8 33*** 4ns 
2 89.1 84.0 80.3 10ns 6ns 52.2 45.9 27.6 47*** 12* 
4 89.2 83.5 77.3 14ns 6ns 112.0 101.0 57.4 49*** 10** 
10 82.0 71.8 48.7 39* 12ns 192.1 165.7 86.0 55*** 14*** 
13 68.3 58.3 21.2 70* 15ns 218.6 186.0 104.5 52*** 15*** 
21 49.4 44.0 5.8 88* 11ns 315.0 251.8 207.7 33ns 20*** 
28 15.9 6.2 0.0 100 61* 429.7 437.3 - - -1ns 
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In the present case, IDself for DBH of surviving E. ovata and E. globulus at later ages is 

likely under-estimated as the differential survival between selfs and outcrosses reflects a change 

in the competitive environment (Figure 2.2). Nevertheless, this does not account for species 

differences in the IDself for DBH as when compared using the self-thinning growth curves at a 

common stand density, the species differences in IDself are maintained. For example, at a 

common tree density of 600 trees per ha, the estimated inbreeding depression for selfs of E. 

globulus and E. ovata was 52% and 71%, respectively. The selfed estimates for both species 

were more than two-fold greater than the estimated inbreeding depression in the OP progenies 

which was 20% and 25%, respectively (Figure 2.2).  

 

 

Figure 2.2. The relationship between tree size (diameter at breast height (DBH) at 1.3m) and the 
density of alive trees (number/per hectare) for outcrossed E. globulus (GLxGL) and E. ovata 
(OVxOV), open-pollinated E. globulus (GLop) and E. ovata (OVop), and selfed E. globulus (GLself) 
and E. ovata (OVself), as assessed from planting to 28 years of age. The fitted line shows the 
trajectory for each cross-type by species combination using log-transformed values of DBH.  
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Table 2.3. Pairwise contrasts between Cox’s proportional hazard ratio estimates (95% 
confidence intervals) for mortality over a 28-year period. Hazard ratios were estimated for 
outcrossed E. globulus (GLxGL) and E. ovata (OVxOV), open-pollinated E. globulus (GLop) and E. 
ovata (OVop), and selfed E. globulus (GLself) and E. ovata (OVself). The Hazard ratio is an 
indication of the relative probability of mortality of the first treatment group per unit of time 
compared to the second control group in each comparison. The significance of the observed 
Hazard ratio was tested using the non-parametric log-rank test between the pairwise contrasts.  

 

Contrast 
Hazard 

ratio 

Confidence 

interval 

Log-rank test 

(df=1) 
P value 

GLself - GLxGL 2.48 1.90 - 3.23 48.0 <0.001 

GLop - GLxGL 1.35 1.07 - 1.68 6.72 0.010 

OVself - OVxOV 3.43 2.33 - 5.05 44.2 <0.001 

OVop - OVxOV 1.36 1.11 - 1.67 8.9 0.003 

OVxOV - GLxGL 2.09 1.67 - 2.61 43.9 <0.001 

OVop – Glop 1.92 1.55 - 2.37 38.1 <0.001 

OVself - GLself 1.70 1.15 - 2.53 7.1 0.008 
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2.3.2. Inbreeding depression due to open-pollination 

Consistent with a small component of the OP population being selfs, IDOP for DBH of E. globulus 

declined to insignificance and IDOP for survival increased between the age 4 and 13 years (Figure 

2.1c). In E. globulus, significant IDOP for survival was evident by age 13 years at 22% and was 

maintained thereafter. In contrast, the IDOP for E. ovata was not significant for survival until the 

final assessment but was evident for DBH over the 2 to 21-year growth period (Figure 2.1c). The 

difference in the growth and survival patterns of E. ovata and E. globulus OP populations may 

in part reflect the delayed onset of size-dependent mortality in E. globulus outcrosses compared 

with E. ovata outcrosses (Figure 2.1d). Mortality in the E. globulus OP population over the 4 to 

10-year period likely reflects the removal of smaller selfs, as size-dependent mortality was not 

evident in the outcrosses during this period. In contrast, as size-dependent mortality was 

evident in both the selfs and outcrosses of E. ovata over the 4 to 10-year period, the mortality 

in the E. ovata OP population likely reflected the combined mortality of both smaller outcrosses 

and smaller selfs. Such mortality would counter an increase in IDop for survival as would be 

expected if selfs alone were being selected against. The mortality risk from open-pollination was 

1.4 times higher than that for outcrossing for both E. globulus and E. ovata (Table 2.3), which 

was less than half the mortality risk from selfing.  

2.3.3. Adaptive differences between species and climate impact 

Growth and survival differences between the two species were evident at all 

assessment ages, except age 28 years, regardless of cross-type, with E. ovata tending to grow 

more slowly than E. globulus (Table 2.2). This was first detected two months after planting when 

there was greater mortality of E. ovata (88% survival) compared with E. globulus (95% survival) 

(Wald’s χ2
1=7.5, P=0.006). While the survival of E. ovata tended to be lower than E. globulus, 

there was no significant species difference at most ages (age 2 years χ2
1=3.4, P=0.063; age 4 

years, χ2
1=0.0, P=0.906; age 10 years, χ2

1=0.0, P=0.998; age 13 years, χ2
1=0.2, P=0.624), and the 

species x cross-type interaction was not significant over this time (P>0.05). However, there was 

a marked increase in the mortality of E. ovata relative to E. globulus over the 21 to 28-year 

period (Figure 2.1a & 2.3a), and by age 28 years E. ovata showed significantly higher mortality 

than E. globulus (χ2
1=40.3, P<0.001), regardless of cross-type (interaction χ2

2=3.0, P=0.222). The 

differential mortality of E. ovata over this period was first evident in the selfs (Figure 2.3a) and 

coincided with a peak in maximum summer temperatures in 1997 and the beginning of over a 

decade of prolonged drought (Figure 2.3b). While signalled in the 21-year assessment in the 

outcross and OP populations, it was the high E. ovata mortality over the 21 to 28-year interval 

that resulted in highly significant differential mortality in these cross-types (Figure 2.3a). This 
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peak in E. ovata mortality coincided with two consecutive years of high summer maximum 

temperatures following a decade of drought (Figure 2.3b), and the lowest water deficit (e.g. SPEI) 

calculated for the site since 1911 (Figure 2.4c).  

Over the 28 years of monitoring, E. ovata had nearly a twofold greater risk of mortality 

than E. globulus, irrespective of cross-type (Table 2.3). While the mortality risks associated with 

the inter-specific differences are slightly lower than due to selfing, the timing of these risks does 

not coincide. The higher risk of mortality of E. ovata compared to E. globulus is evident at the 

establishment and during the 21 to 28-year interval, whereas the main risk of mortality due to 

selfing was most evident in the 4 to 13-year interval.  

The lower fitness of E. ovata at this site compared to E. globulus is not only indicated by 

differences in survival (Figure 2.3a) and growth (Table 2.2), but also reproduction. At age 4 years, 

the proportion of the surviving trees which were reproductive (GLxGL-36%, Glop-38%, GLself-

28%, OVxOV-19%, OVop-12% and OVself-0%) differed significantly between species (χ2
1= 26.4, 

P<0.001) but not among cross-types (χ2
2=2.8, P=0.247; interaction χ2

2=2.9, P=0.232), with E. 

ovata trees less reproductive than E. globulus. However, at age 28 years, there were no 

significant differences in the proportion of surviving trees that were reproductive (GLxGL-63%, 

Glop-72%, GLself-75%, OVxOV-60%, OVop-63% and OVself-0%), between species (χ2
1=0.38, 

P=0.539) or among cross-types (excluding E. ovata selfs due to 100% mortality, Fig 1a; χ2
2=3.46, 

P=0.177). Indeed, over 50% of trees which were alive at 28 years of age were reproductive in all 

treatments, including the surviving selfs of E. globulus. 
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 (a) 

 

 

(b) 

 

 

Figure 2.3. The fitness of E. ovata relative to E. globulus (a) and the standardised precipitation-
evapotranspiration index (SPEI) curve (b) over the study period. (a) The fitness of all cross-types 
of E. ovata - outcrossed (OVxOV), open-pollinated (OVop), and selfed (OVself), relative to that 
of the respective E. globulus cross-types (GLxGL, GLop & GLself) at each age. Fitness values 
below one indicate E. ovata survived less than E. globulus. (b) The solid black line represents the 
trend in SPEI based on a 5-year moving average window. SPEI values below zero indicate water 
deficit and above zero indicate water surplus. Red arrows indicate the number of days per year 
above 30°C (short arrow represent one day and long arrow represent two days), which were 
calculated from the daily climate data surface obtained from the Australian Bureau of 
Meteorology. 
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Figure 2.4. Long-term climate patterns for the West Ridgely trial site. Shown are the five-year 
moving average curves for (a) mean annual temperature, (b) mean annual precipitation, and (c) 
standardised precipitation evapotranspiration index (SPEI). The grey shading corresponds to the 
growth period of trial (1988-2016). The red line represents the overall average for the trial site 
(1911-2016), the blue line represents the historical climate average prior to the detectable 
signature of climate change in the southern hemisphere (Abram et al. 2016) (1911-1959), the 
green line corresponds to the climate average often used to represent the contemporary 
climate (1976-2005), and the grey line corresponds to the climate average during the growth 
period at the trial (1988-2016).  
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2.4. Discussion 

Our 28-year study is one of the few long-term empirical studies of inbreeding 

depression (ID) due to selfing in eucalypts. While previous studies of eucalypts in general 

(Hardner and Tibbits 1998; Bison et al. 2004) and E. globulus in particular (Costa e Silva et al. 

2010b; Costa e Silva et al. 2011) have reported severe ID for early growth (<13 years), the long-

term consequences have not been well documented. In this study, we show that very few selfs 

survive to reproductive maturity compared with outcrosses. All E. ovata selfs were dead by 28 

years resulting in an IDself of 100% for survival. In E. globulus, IDself reached 64% for survival as a 

small number of selfs did survive and were reproductive in the low competition environment of 

the ‘self-plots’. Such levels of IDself are comparable to that of 80% reported for Douglas fir (26 

years, Stoehr et al. 2015) and 75% for Scots pine (23 years, Koelewijn et al. 1999). While our 

progeny testing was undertaken in a field trial, such high IDself for survival argues that most selfs 

will be purged from the population early in stand development and they will contribute little to 

the build-up of inbreeding in wild eucalypt populations. In wild populations, trees including E. 

globulus may live for several centuries (Hickey et al. 2000) and be subject to severe competition 

during all stages of stand development (Florence 2004). Indeed, such purging of selfs may in-

part explain the homozygote deficiency (i.e. F<0) often observed in wild eucalypt populations 

despite the excess of homozygosity in open-pollinated seed (see Potts and Wiltshire 1997). 

However, in the case of E. globulus there is evidence of heterosis in inter-population crosses 

(Volker et al. 2008; Costa e Silva et al. 2014), suggesting that some mild build-up of ID within 

wild populations, is likely due to bi-parental inbreeding (Hardner and Potts 1997; Mimura et al. 

2009), although the rare survival of selfs cannot be dismissed.  

The long-term monitoring of the field trial revealed a dynamic interplay between ID for 

survival (IDsurv) and ID for growth (height and DBH) of survivors (IDgrowth). This interplay involves 

IDsurv increasing with age but IDgrowth simultaneously decreasing. This translation of IDself from 

growth to survival appears to be a consequence of size-dependent mortality eliminating the 

more inviable selfs. Such dynamics have been previously noted in other studies of E. globulus 

(14 years, Costa e Silva et al. 2011), Eucalyptus regnans (15 years, Hardner and Potts 1997) and 

Pinus silvestris (23 years, Koelewijn et al. 1999). However, while IDgrowth eventually decreased in 

these studies suggesting declining magnitude of selection against surviving selfs, this was not 

the case for E. ovata in our study and for Pseudotsuga menziesii (Stoehr et al. 2015). In the latter 

case, IDself for DBH increased over 26 years, suggesting that selection against selfs was still 

incomplete. Genome-wide studies of E. grandis suggest that it is the more homozygotes of the 

selfs that are more likely to be eliminated (Hedrick et al. 2016). This is consistent with 
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dominance explaining the inbreeding depression. In E. globulus, ID appears to manifest early in 

the life cycle for growth (DBH) (e.g. by 2 years of age in the present study; 4 years of age in the 

study by Costa e Silva et al. (2010b). Yet, IDgrowth did not translate to large differences in survival 

until 10 years of age. Costa e Silva et al. (2010b) also reported a similar change whereby 

significant IDsurv was first detected at age 6 years and increased thereafter. In the present study, 

the greatest increase in IDsurv occurred between 10 and 13 years of age in both E. ovata and E. 

globulus, which may be due to several factors. Firstly, a threshold in inter-tree competition may 

have been reached as the stand age increases and trees become larger (Bella 1971; Costa e Silva 

et al. 2011), resulting in greater mortality of the poorer growing selfs. ID involves a dynamic 

interplay between growth and survival through time, with its magnitude often dependent upon 

the timing of mortality of poor growing selfs (Koelewijn et al. 1999; Costa e Silva et al. 2011). 

Indeed, in the present study, the marked increase in IDself for survival coincided with a decrease 

in IDself for DBH (Figure 2.1b). This suggests that inter-tree competition may have led to size-

dependent mortality, with the surviving selfs being in a less competitive environment and thus 

growing equivalently to the outcrossed progeny. Secondly, it is possible that the selfs were less 

buffered against abiotic stress over this time associated with the onset of drought and a period 

of heat stress (Figure 2.3b). A review by Armbruster and Reed (2005) analysing 34 studies found 

that in 76% of the cases abiotic stress increased ID. While ID is often assessed in the presence 

of direct competition between selfs and outcross trees (Costa e Silva et al. 2011; Stoehr et al. 

2015), the present study and that of Costa e Silva et al. (2010b) (where selfs were planted 

separately to outcrosses) clearly show that such competition is not required for the expression 

of severe ID. 

Our results provide strong evidence for ID in the open-pollinated progeny of both 

species. This is consistent with expectations from a mixed mating system where a fraction of 

the OP would be due to self-pollination (Goodwillie et al. 2005), although a contribution from 

bi-parental inbreeding cannot be dismissed (Hardner et al. 1998; Mimura et al. 2009). Following 

the approach of Charlesworth and Charlesworth (1987) and assuming all inbreeding is due to 

selfing, a comparison of the reduction in performance of the OPs relative to selfs and outcrosses, 

yields estimates of outcrossing rates of between 0.56 (13-year survival) and 0.67 (4-year DBH) 

for E. globulus. This compares with similarly derived estimates for E. globulus of 0.47 to 0.51 

(Costa e Silva et al. 2010b) and those from molecular studies of between 0.65 and 0.89 (Mimura 

et al. 2009). In the case of E. ovata, we estimated the outcrossing rate at 0.79 (13-year survival) 

and 0.80 (4-year DBH), however, there are currently no molecular estimates for E. ovata for 

comparison. It is important to note that in both species OP seeds were collected low in the 
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canopy where controlled pollinations were done, while in the molecular study of Mimura et al. 

(2009) the seed was collected from the top half of each tree. Previous studies of E. globulus 

show that outcrossing rates increase with increasing height in the canopy (Patterson et al. 2004b) 

and this could explain the difference between some of the estimates. Differences in forest type 

could also explain variation in estimated outcrossing rates both within and between species. 

Outcrossing rates can decrease with increasing stand fragmentation in E. globulus (Mimura et 

al. 2009), and such differences could explain the greater outcrossing rate in E. ovata compared 

with the E. globulus population studied. In addition, performance derived estimates of 

outcrossing rate assume all trees show equal levels of ID, yet quantitative genetic studies of E. 

globulus have shown that variation in the performance of selfs may result from variation in ID 

per se (Costa e Silva et al. 2010a). 

In E. globulus, the change in ID with time is remarkably similar between self and OP 

populations. The absence of ID for growth by age 13 is consistent with the purging of smaller 

inviable selfs from the OP population (Hardner and Potts 1997; Hedrick and Garcia-Dorado 

2016). This is supported by the fact that between age 4 and 10 years the outcross population 

showed no evidence of size-dependent mortality, whereas the self and OP populations did. Such 

size-dependent mortality in OP progenies has been previously noted in plantation-grown E. 

globulus (Chambers et al. 1996; Stackpole et al. 2010a) and other eucalypts (Hardner and Potts 

1997). E. ovata exhibited a different trajectory in ID to E. globulus, with significant IDself and IDop 

for growth maintained to later ages. Further, in the case of the OPs, there was little evidence of 

IDop for survival except at age 28 years, despite high mortality of selfs and high IDself over this 

period. In fast growing plantations of E. globulus, competition is established early in stand 

development and increases markedly between 2 and 4 years of age, resulting in faster growing 

genotypes suppressing their slower growing neighbours (Costa e Silva et al. 2017). Such 

competitive interactions between outcross and selfed offspring in the OPs may have been less 

marked in the E. ovata blocks due to (i) lower growth rates of E. ovata compared to E. globulus, 

and (ii) higher later age mortality of E. ovata (see below) leading to lower stand densities. Both 

factors would be expected to lead to less competition and thus less mortality of E. ovata selfs in 

the OPs compared to that experienced by E. globulus OPs. Such variation in the extent to which 

ID is translated from an effect on growth to that on survival is consistent with the site differences 

observed by Costa e Silva et al. (2011) in E. globulus, whereby IDsurv was markedly greater on the 

more productive site. While harvesting productivity is positively related to tree size (Hamilton 

et al. 2015a), the extent and timing of the translation of inbreeding depression from growth to 

survival are unlikely to have a significant economic impact on wood production in eucalypt 
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plantations. This is because most small selfs would be expected to be dead by harvest age in the 

case of even short-rotation pulpwood regimes or to have been artificially thinned prior to 

harvest in the case of longer-rotation solid wood regimes. 

While our study indicates that ID is more severe in E. ovata compared with E. globulus, 

this does not necessarily represent a species-level difference in genetic load and thus ID. Plant 

species can differ markedly in levels of ID, particularly due to factors such as breeding system 

and longevity (Husband and Schemske 1996), and population-level factors such as size and 

history (Ellstrand and Elam 1993; Charlesworth and Willis 2009). These latter factors, in 

particular, may see specific species or populations of a species purge their genetic loads of 

deleterious recessive alleles following prolonged population bottlenecks (Willi et al. 2006). 

Certainly, there are examples of forest tree species and populations which show little ID 

compared to the norm including eucalypts (Owens et al. 1990; Kärkkäinen et al. 1996; Bush and 

Thumma 2013; Bezemer 2018). In the case of E. globulus, marked differences in IDsurv have been 

reported between the isolated King Island population and more central populations (36 % versus 

74% at age 10 years; Table 2.4) at similar experimental sites, although ID reported for age 4 

years DBH are remarkably consistent (21 to 31%; Table 2.4), regardless of site, population and 

extent of competition with outcrosses. The E. ovata trees studied here were native to south-

eastern Tasmania, and when compared with native E. globulus from the same area and grown 

at a nearby site to the current trial (Costa e Silva et al. 2010a; 2010b) IDself for DBH at age 4 years 

was greater in E. ovata than E. globulus, consistent with our result (Table 2.4). The reverse was 

the case for IDself for survival, although this is likely to reflect differences in timing, as eventually 

all E. ovata selfs in our study died (Figure 2.1a). Nevertheless, such differences in the timing of 

the IDself from growth to survival are likely to depend on factors such as competition and/or 

environmental stress (Armbruster and Reed 2005; Fox and Reed 2011), making it difficult to 

directly relate the level of genetic load per se to the level of ID. 

While ID appeared to dominate selective filtering over the 4 to 13-year period, the 

major phase of subsequent mortality appeared to be dominated by differential response of 

species to climatic stress. The most likely explanation for the dramatic reduction in relative 

fitness of E. ovata compared to E. globulus is climate maladaptation of E. ovata at this site. 

Climate records indicated that the site was subjected to a prolonged drought which lasted 15 

years (1996 to 2011), with multiple heat days during 2009 and 2010 which were at least 5 °C 

above the mean yearly maximum temperature of the warmest week observed at this site (25°C). 
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Table 2.4. Inbreeding depression for survival (IDsurv) and DBH (IDgrowth) of the selfed progeny of E. globulus and E. ovata and comparison with other studies on 
E. globulus. Shown is the trial location in Tasmania, Australia, estimates of IDgrowth and IDsurv, design of the experiment, and the native race of origin of the 
maternal trees. Experimental designs indicated as ‘plot’ corresponds to the planting of selfs and outcrosses in separate plots within a replicate thus avoiding 
competition between them, whereas ‘mixed’ experimental designs correspond to the planting of self and outcrossed progeny intermixed in the same plot 
and thus selfs are competing with outcrosses. 

 

 This study Hardner et al. (1996) Costa e Silva et al. (2010b) Costa e Silva et al. (2011) 

Species E. ovata E. globulus E. globulus E. globulus E. globulus E. globulus 

Trial location Ridgley Ridgley Geeveston Ridgley Ridgley Southport 

IDgrowth (4 years) 49% 27% 31% 21% 28% 30% 

IDsurv (10 years) 39% 25% - 74% 36% 16% 

Experiment plot plot mixed plot mixed mixed 

Maternal race *SE Tasmania *SE Tasmania SE Tasmania SE Tasmania King Island 

*includes some ornamental plantings and native trees from SE Tasma 
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The decline in fitness coincides with these extreme climate events which are known drivers of 

tree mortality (Allen et al. 2010; Anderegg et al. 2013; Mitchell et al. 2014), and the synergistic  

before effects of drought and heat stresses have been reported for native eucalypt forests of 

Australia (Matusick et al. 2013; Mitchell et al. 2014). While canopy water stress is known to 

increase as forests grow (Phillips et al. 2003) and tree height increases (e.g. the need to 

transport water to the top of the canopy; Koch et al. 2004), this factor can be dismissed in the 

present case.  Here, E. globulus grows faster than E. ovata and both their plot and tree-level 

basal area were greater than E. ovata (unpublished data). Indeed, a drought-related fitness 

decline of E. ovata relative to E. globulus is consistent with damage reported in native forest in 

southeastern Tasmania (Kirkpatrick and Marks 1985). 

The decline in E. ovata fitness was observed regardless of cross-type but was evident 

earlier in the selfs. The major decline in fitness of E. ovata in the selfed population occurred at 

the beginning of the drought period whereas the major decline in the outcrosses occurred 

following high temperature stress at the end of the drought. This response is consistent with 

inbred products being more susceptible to stress (Armbruster and Reed 2005; Fox and Reed 

2011) and the greater final IDself in E. ovata (100%) than E. globulus (64%) for survival. The extent 

to which poorer establishment success and growth of E. ovata compared with E. globulus 

reflects differential climatic adaptation to the site is less clear. Indeed, the performance of E. 

ovata could reflect either differences in (i) maternal environment (López et al. 2003), (ii) nursery 

effects (plant size in nursery affecting survival or growth; Close 2012; Grossnickle 2012), (iii) 

growth strategy (Davidson and Reid 1980; Otieno et al. 2005), or (iv) site-specific adaptation 

(Davidson and Reid 1985; Davidson and Reid 1989). Nevertheless, the earlier onset of size-

dependent mortality of the established E. ovata outcrosses compared with E. globulus 

outcrosses would suggest that E. ovata is generally less well adapted to the planting site than E. 

globulus. While the planting site is outside the natural geographic range of E. globulus but not 

E. ovata, it is relatively well-drained which would favour E. globulus over E. ovata, which tends 

to grow on seasonally waterlogged substrates (Williams and Potts 1996). Additionally, we 

cannot dismiss the possibility that the site preparation method (e.g. rip and mounding) may 

have been more favourable for E. globulus which is a key plantation species amenable to such 

silvicultural practices. 
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2.5. Conclusion 

The present study shows how under mixed mating, the fitness trajectory of long-lived 

tree species is shaped by selective filtering associated with the endogenous effects of ID 

superimposed on maladaptation due to differential responses to exogenous stresses, consistent 

with our first hypothesis. Also consistent with our second hypothesis, the expression of 

inbreeding depression changed with age. Selective filtering was initially dominated by ID that 

resulted in the elimination of most selfs by 13 years, after which environmental stress appeared 

to be the main cause of differential mortality. The onset and relative importance of these two 

processes appear to differ between species, as does the manner in which size-dependent 

mortality shifts ID from growth to survival with age. The interplay and timing of these processes 

will be species and site-dependent and consistent with our third hypothesis, our data supported 

the possibility that inbreeding may affect the sensitivity of trees to climatic stress. 
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Chapter 3 - Genetic correlations among pulpwood and solid-wood 

selection traits in Eucalyptus globulus 

3.1. Introduction 

Eucalyptus globulus Labill is native to south-eastern Australia, including the islands of 

Tasmania (Eldridge et al. 1993), but is widely planted in temperate regions of the world for 

pulpwood production (Potts et al. 2004; Foelkel 2009). It is Australia’s main hardwood 

plantation species (Rhys and Mijo 2018), where 82.4% of plantations are managed for the 

production of pulpwood (Downham and Gavran 2017). Therefore, most genetic improvement 

of the species has focused on pulpwood breeding objectives (Eldridge et al. 1993; Cotterill and 

Macrae 1997; Potts et al. 2014). However, in the last few decades, there has been increasing 

interest in using hardwood plantations for solid-wood products such as sawn timber, veneer 

and composites (Nolan et al. 2005; Hamilton et al. 2007; McGavin et al. 2014; Derikvand et al. 

2016). Although there is a growing interest in the improvement of E. globulus for solid-wood 

traits (Potts et al. 2014), defining solid-wood breeding objectives and associated breeding 

objective traits is difficult since this is a relatively new industry and diverse products are being 

proposed (Raymond 2000; Hamilton et al. 2010).  

In E. globulus, whole tree pulp yield is a breeding objective trait specific to pulp 

production (Borralho et al. 1993). Similarly, in solid-wood, there are some specific breeding 

objective traits such as stem straightness (Nolan et al. 2005). However, improvement of growth 

and wood basic density are common to both pulpwood and solid-wood breeding (Raymond 

2002; Hamilton et al. 2007; Hamilton et al. 2009a; Hamilton et al. 2010; Rezende et al. 2014). 

Not only does basic density determine the amount of dry matter per unit volume of harvested 

wood (Zobel and Van Buijtenen 1989), but it can also be genetically associated with the yield of 

pulp from this dry matter (Stackpole et al. 2010b). Wood density has also been shown to be 

genetically correlated with traits which are specific to solid-wood production such as log end-

splitting and bowing (E. grandis - Santos et al. 2004), wood shrinkage (E. globulus - Hamilton et 

al. 2010), and wood stiffness (E. nitens - Blackburn et al. 2010). In the present study, we use 

base-population trials of E. globulus to examine the genetic architecture of key pulpwood and 

solid-wood selection traits, assessing trait heritability and subrace variation, genotype-by-

environment interactions and the genetic correlations among traits.  

Our first objective was to understand the extent to which key pulpwood and solid-wood 

selection traits were associated. Among the various solid-wood selection traits, we focused on 
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stem straightness (Straightness) and acoustic wave velocity (AWV). The association of 

Straightness with other selection traits is not well studied in E. globulus. Straightness has been 

shown to affect the stem harvesting time (Hamilton et al. 2015a), and recovery of veneer and 

timber from logs (MacDonald et al. 2009; Hamilton et al. 2015b). Wood stiffness is one of the 

most important solid-wood selection traits (Yang and Evans 2003; Vikram et al. 2011) and is 

assessed using the modulus of elasticity (MOE). MOE measures the recoverable deformation 

when a load is applied to wood (Antony et al. 2011). Standing-tree acoustic wave velocity (AWV) 

is a non-destructive method of indirectly measuring wood stiffness (Farrell et al. 2012). 

Standing-tree AWV is strongly correlated at the genetic and phenotypic levels with AWV of 

sawlogs (Blackburn et al. 2010; Davies et al. 2017) as well as the MOE of sawn boards (E. dunnii 

- Dickson et al. 2003; E. nitens - Blackburn et al. 2010) and veneer (E. nitens - Blackburn et al. 

2012). Of specific interest to this study was verifying that AWV was not only positively correlated 

with basic density but also with pulp yield as reported in various eucalypt species, including E. 

globulus (Blackburn et al. 2012; Hamilton et al. 2017b).  

Our second objective was to consolidate our understanding of the genetic architecture 

of pulp yield. While the quantitative genetics of growth and wood density are well-studied in E. 

globulus (Raymond 2002; Potts et al. 2004), there are only a few studies of pulp yield due to the 

expense of its assessment (Stackpole et al. 2010b). It is only with the application of near-infrared 

spectroscopy to large numbers of samples obtained from ground stem cores or drill swarf 

(Meder et al. 2010; Downes et al. 2011) that it has been possible to obtain reasonably accurate 

estimates of genetic parameters for this trait. Such studies have shown pulp yield to be under 

moderate genetic control in E. globulus, with narrow-sense heritability (h2) estimates equal to 

or higher than 0.40 (Raymond et al. 2001; Stackpole et al. 2010b). However, there is currently 

no consistent pattern in the genetic correlations of pulp yield with other traits such as growth 

and density (Turner et al. 1983; Greaves et al. 1997; Stackpole et al. 2010a). In addition, there 

has been only one detailed study of the geographic pattern of variation in pulp yield in this 

species, and this suggested that subraces currently targeted for pulpwood breeding due to their 

good growth and high density may have low pulp yield (Stackpole et al. 2010b). Therefore, the 

validation of these pulp yield results is required.  

3.2. Materials and methods 

3.2.1. Field trials and traits assessed 

Three E. globulus field trials were studied, two in north-west (NW) Tasmania (Salmon 

River [SR] and Togari [TO]) and one in northern Tasmania (Latrobe [LA]). The Latrobe trial was 
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the large base population trial from which the previous studies of wood properties, including 

density and pulp yield, have been published (Stackpole et al. 2010a; Stackpole et al. 2010b). 

These published data were used for comparison with the new data collected from the NW trials 

established with the same open-pollinated families but grown in a higher rainfall zone (Table 

3.1). The two NW trials were established on ex-forest sites, and while similar in rainfall and 

elevation, did differ in soil type. The soil of the Salmon River trial was a yellow-brown mottled 

clay on Precambarian mudstone whereas the soil at Togari was a red-brown clay on Cambrian 

inter-layered mudstone, siltstone and sandstone (Hamilton et al. 2013; O’Reilly-Wapstra et al. 

2013). The trials were established using seedlings derived from open-pollinated seed collected 

from wild trees originating from 13 E. globulus subraces extending across the natural range of 

the species (Figure 3.1 & 3.2). These subraces are defined in Dutkowski and Potts (1999) and 

represent the genetic group level used in the evaluation of the Australian National Breeding 

population (Potts et al. 2014). Subraces were represented by 9 - 13 families in the north-west 

trials and 4 - 113 families in the Latrobe trial. Connectivity was high, with 129 families in common 

to the two NW trials, and 107 families in common to all the three trials. Seedlings were planted 

at a spacing of 4.0 m between rows (rip-lines) and 2.3 m within rows in the NW trials and 4.0 x 

2.5 m at Latrobe. The open-pollinated families in the trials were arranged in an incomplete 

randomised block design with families represented as single-tree plots in Salmon River and 

Togari sites, and as two-tree plots in Latrobe site (Table 3.1).  

At Salmon River and Togari trials, diameter at breast height (DBH) over bark at 1.3 m 

above ground level was measured for every tree alive at the age of 9 years 8 months (10 years 

hereafter) and 9 years 7 months (10 years hereafter), respectively. Stem straightness 

(Straightness) was assessed using a six-point subjective scale (1 poorest - 6 straightest) at 10 

years, for all living trees following Blackburn et al. (2013). The class assignment was done so that 

the frequency distribution approximates a normal distribution as recommended by Cotterill and 

Dean (1990). The additive genetic correlation between this subjective score and the more time-

consuming quantification of stem deviation from straightness is more than -0.9 (Blackburn et al. 

(2013). At age 10 years and 1 month (10 years hereafter), 3-5 trees from each of 9 -10 families 

per subrace were selected across 8 (Salmon River) to 10 (Togari) replicates for the assessment 

of standing-tree acoustic wave velocity (AWV), and then cores were taken from the same trees.  
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Table 3.1. Summary of the establishment, climate and design features of the studied field sites 
of Eucalyptus globulus including number of families and individuals assessed for various traits 
 

 Salmon River (SR) Togari (TO) Latrobe (LA) 

Site    

Year of establishment 2005 2005 1989 

Location 
41°01’ S  
144°48’ E 

40° 56’ S  
144° 54’ E 

41°16’ S 
146°27’E 

Altitude (m above sea 
level) 

103 90 116 

Climatic variables 

Mean annual rainfall in 
(mm) a 

1223 1251 899 

Mean annual minimum 
temperature (°C) a 

1.4  0.7 -1.3 

Mean annual maximum 
temperature (°C) a 

26.1 26.1 27.0 

Experimental design    

Number of replicates 20 16  5 

Number of incomplete 
blocks per replicate 

15 12 24 

Sample size    

Subraces 13 13 13 (11)b 

Family  135  131 489 

No. of individuals for DBH  2179 1520 4349 
No. of individuals for BD 515 471 1922 

No. of individuals for KPY 513 475 1939 
No. of individuals for 
Straightness  2179 1529 

NA 

No. of individuals for 
AWV  494 460 

NA 

 

aCalculated using long-term daily data obtained from the Australian Bureau of Meteorology 
(http://www.bom.gov.au/jsp/awap/, accessed 1st March 2017). Climate values represent the 
mean over the 1911-2017 period. 
bTwo subraces (Western Tasmania and Recherche Bay) included in SR and TO were not 
assessed for wood properties in LA by Stackpole et al. (2010b), but were assessed for DBH. 
NA - Not Assessed.
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AWV was assessed using a FakoppTM acoustic stress wave timer as detailed in (Blackburn 

et al. 2014). Two sensor spikes were inserted at 0.5 and 1.7 m tree heights in a vertical plane. 

Sensors were passed through the bark and pierced into the wood for at least 10 mm, at 

approximately 45° to the stem. The time an acoustic wave takes, to pass through one sensor to 

another (time-of-flight) was measured by the FakoppTM. AWV was calculated using the time-of-

flight and the distance between these sensors. Coring of the NW trials was undertaken at 1.1 m 

height above ground level using a motorised corer to remove cambium-to-cambium wood cores 

of 12 mm diameter (Downes et al. 1997).  

 

Figure 3.1. The geographic variation in subrace least-square means at the north-west (NW) trials 
for (a) Straightness (1-6 scale) and (b) AWV (km/s) (see Supp. 3.1). Subrace abbreviations are 
shown in (a) and are for North-eastern Tasmania [NET], South-eastern Tasmania [SET], Southern 
Furneaux [SF], Western Tasmania [WT], Southern Tasmania [ST], St Helens [StH], King Island [KI], 
Western Otways [WOt], Coastal Plain [CP], Recherche Bay [RB], Eastern Otways [EOt], Strzelecki 
Ranges [StrR] and Flinders Island [FI]. Trial site locations are shown in (b) and are Salmon River 
and Togari and Latrobe 
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Figure 3.2. The geographic variation in subrace least-square means at the north-west NW and 
Latrobe (LA) trials for (a & b) DBH (mm); (c & d) BD (kg/m3); (e & f) KPY (%). Subrace 
abbreviations shown in (a) and trial site locations shown in (b) are as detailed in Figure 3.1 
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Core alignment was in the east-west horizontal plane and operators endeavoured to include the 

pith in each core. Following Stackpole et al. (2010b), wood basic density (BD) was assessed from 

cores as per Smith (1954). A second outer wood core, 50 mm in radial length was also taken 

from a similar position, air-dried and then ground to woodmeal to estimate the pulp yield. A 

Wiley Mini-mill was used to grind the cores - without the screen for the first few passes to break 

the core into small pieces, and then with a 20-mesh screen to grind the fragments to woodmeal. 

For each tree sampled, Kraft pulp yield was estimated using near-infrared spectroscopy (NIRS), 

based on the spectra obtained from the woodmeal using the global pulp yield model reported 

by Downes et al. (2009, 2011). This global model was developed using NIR spectra from 1,272 

wood chip samples, from 40 different eucalypt species from plantations and native forests, 

which were subjected to laboratory pulping. Plantation grown E. globulus was included in the 

model and subsequent validation of the NIR model in the Latrobe trial yielded R2 values of 0.82 

against whole tree pulp yield estimates based on discs (Stackpole et al. 2010b). 

At Latrobe, DBH was measured at age 8 years for every tree alive. At age 16 years 6 

months (17 years hereafter), one tree from most families was cored from cambium-to-cambium 

for each of 4 or 5 replicates (provided DBH was greater than 10 cm) and wood basic density (BD) 

and Kraft pulp yield (KPY) were assessed as detailed in Stackpole et al. (2010a) and Stackpole et 

al. (2010b). The sample assessed by NIRS in this study differs from that used by Stackpole et al. 

(2010b) for Latrobe. Stackpole et al. (2010b) used half cores for grinding where the cores were 

sectioned lengthwise (from bark-to-bark), while in this study short 5 cm cores were used.  

3.2.2. Statistical Analyses 

Univariate analyses of the data were undertaken by fitting the model: 

y = µ + replicate + subrace + family(subrace) + residual Model 1 

where, y is the vector of observations, µ is the grand mean, and random effects are replicate, 

subrace, family within subrace (family(subrace)) terms and the residuals. As families were 

planted in two-tree plots at Latrobe and both were measured for DBH, a random plot term was 

added to Model 1 for all analyses involving DBH at Latrobe. The model assumed a normal 

distribution of residuals for all traits. Although stem straightness was a discrete variable, it was 

scored to approximate a normal distribution which allowed analysis as a normally distributed 

trait as traditionally undertaken (Cotterill and Dean 1990; Blackburn et al. 2013). However, for 

a better understanding, we also analysed stem straightness as a multinomial trait at the 

univariate level. The models were initially fitted for each trial, and the subrace and 

family(subrace) variance components tested for significance from zero using a one-tailed LRT. 
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The variance components were used to estimate the narrow-sense heritability (h𝑜𝑝
2 ) of the 

phenotypic variation within subraces and coefficient of additive genetic variation ( CVa ) 

following (Stackpole et al. 2010a; 2010b): 

h𝑜𝑝
2

 
 = 

σa
2

 

σp
2

 

 

σa
2 =

σf(s)
2

0.4
 

σ
p

2= σf(s)
2  + σe

2 

CVa =
√σa

2 

x̄
 

where σa
2 is the additive genetic variance within subraces and is estimated from the variance 

between families (σ𝑓(𝑠)
2 ) assuming an average coefficient of relatedness (r) of 0.4 for open-

pollinated progenies corresponding to an average outcrossing rate of 70% (Griffin and Cotterill 

1988), a widely used assumption for E. globulus (Stackpole et al. 2010a; Stackpole et al. 2010b; 

O’Reilly-Wapstra et al. 2013); σ𝑝
2  is the phenotypic variance component, σ𝑒

2  is the residual 

variance and x ̄is the trait mean. An adjustment of r to account for an average relatedness 

greater than half-sibs (i.e. r>0.25) is usually applied when evaluating open-pollinated eucalypt 

progeny as eucalypts have a mixed mating system (Potts et al. 2004; Tambarussi et al. 2018). 

However, we note this adjustment does neither account for tree-to-tree differences in 

outcrossing rate (Patterson et al. 2005; Mimura et al. 2009), nor the average or individual effects 

of inbreeding depression (Costa e Silva et al. 2010a).  

The degree of quantitative genetic divergence between subraces was estimated using 

the quantitative inbreeding coefficient (QST) following Yang et al. (1996) and Latta (1998) 

QST = 
σ𝑠

2

σ𝑠
2 + 2 σ𝑎

2  

where σ𝑠
2 is the variance between subraces. Following Stackpole et al. (2011), a two-tailed LRT 

was undertaken for each trait to test QST against the mean FST (0.09) derived from eight, 

putatively neutral, microsatellite markers (Steane et al. 2006). The formulation of the LRT 

followed Dutkowski and Potts (2012). FST is a measure of the genetic differentiation between 

populations through random drift or mutation. A significant difference between QST and FST 

indicates divergent (higher QST) or stabilising (lower QST) natural selection has impacted directly 

or indirectly on the trait (Latta 1998; Steane et al. 2006). This comparison assumes that mutation 

rates are equivalent between the molecular markers assayed from which FST is derived and the 
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QTL underlying the various quantitative traits (Edelaar and Björklund 2011; Meirmans and 

Hedrick 2011). 

Tests of genotype-by-environment interactions (GxE) for each trait were partitioned 

into two separate analyses - the homogeneity of variances and inter-site (type-B, Burdon 1977) 

genetic correlations. Analyses involving the two NW trials fitted a bivariate version of model 1 

treating the same trait measured at Salmon River and Togari trials as two different traits 

(Falconer 1952). The parameterisation of this model involved fixing the residual covariance and 

replicate correlation to zero and estimating the subrace and family within subrace correlations 

as well as all variance components (i.e. allowing for heterogeneous variances across sites). The 

genetic correlations whether type-A (intra-site, inter-trait) or type-B (inter-site, single trait) 

were estimated following Jordan et al. (1999): 

𝑟1,2 = 
σ1,2 

√σ1
2 x σ2

2 
 

where, 𝑟1,2 is the correlation between trait 1 and trait 2, either at subrace or family within 

subrace level. σ1,2 is the covariance between the traits, and σ1
2  and  σ2

2  are the variance 

components of respective traits. The homogeneity of variances was tested by constraining the 

variances of Salmon River and Togari trials to be homogeneous separately at the subrace and 

family levels and testing the difference in likelihoods of the unconstrained model using a two-

tailed LRT. At each level, the significance of the type-B correlation was tested against 1 using a 

one-tailed LRT. Following the threshold defined by Robertson (1959), for traits with the 

significant type-B genetic correlations below 0.8 were treated as different and likely to reflect 

biologically relevant GxE. A tri-variate version of model 1 was similarly used to test for GxE 

between the wetter NW sites and the drier Latrobe site. However, in this case, correlations 

involving the two NW trials were constrained to be equal, providing a single estimate for the 

across site correlations at the subrace and family within subrace levels.  

For the NW sites, within trial type-A genetic correlations among different traits were 

estimated using a four-variate version of model 1, where each trait was represented as a 

separate variable according to the site on which it was measured. In this case all residual and 

replicate variances across trials were considered independent (i.e. covariances/correlations 

were constrained to zero). The homogeneity of the type-A correlations at Salmon River and 

Togari trials at subrace and family within subrace levels were tested using a two-tailed LRT by 

comparing an unconstrained model to one where the correlations at a given level for both trials 

were constrained to be equal. These tests were rarely significant and thus pooled correlations 

are presented and tested against zero using a two-tailed LRT. The pooled inter-trait phenotypic 
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correlations within trials were Pearsons correlation coefficients, calculated after site 

standardisation of the phenotypic measurements. Standard errors for these correlations were 

calculated following Zar (1999). For comparison of the subrace and family within subrace level 

correlations between the NW trials and the equivalent correlations from Latrobe data, the 

pooled NW inter-trait correlation values were tested using a two-tailed LRT against (i) those 

previously published by Stackpole et al. (2010a); Stackpole et al. (2010b), and (ii) the average of 

the values from the literature as reported by Stackpole et al. (2010b).  

The univariate and multivariate analyses and parameter estimation was undertaken 

using ASRemlTM Version 4.1 (Gilmour et al. 2015b). The univariate analysis treating stem 

straightness was undertaken using the !MULTINOMIAL qualifier in ASReml, with 

the !CUMULATIVE option and a !LOGIT link function. However, in this case, variance 

components could not be tested with the likelihood ratio test (LRT) (Gilmour et al. 2015b). The 

Proc Corr procedure of SASTM (version 9.4) was used to calculate phenotypic correlations and 

partial correlations.  

3.3. Results 

3.3.1. North-west sites 

There was little difference in trait grand means between the two north-west (NW) trials 

- Salmon River (SR) and Togari (TO) (Table 3.2). Significant subrace and family within subrace 

level variances were detected at both trials for most traits (Table 3.2). For all traits, the 

univariate narrow-sense heritability estimates (h2
op ) , subrace differentiation (QST) and 

coefficient of additive genetic variation (CVa) from Salmon River and Togari were remarkably 

similar (Table 3.2). For the Gaussian models, the highest heritability estimates were obtained 

for stem diameter (DBH) and basic density (BD) and the highest QST estimates were obtained for 

KPY (Table 3.2). Multinomial analyses of Straightness, more than doubled the heritability 

estimates compared with Gaussian model estimates, but the QST estimates were virtually the 

same (Table 3.2). While all subrace variances were statistically greater than zero (LRT, P<0.01; 

Table 3.2), KPY was the only trait where the QST estimates were significantly greater than the 

mean (0.09) FST values for neutral markers at all trials. The CVa for DBH and Straightness were 3 

to 19 times greater than those for wood properties (Table 3.2). Consistent with the similarity in 

means and genetic parameter estimates, likelihood ratio tests (LRT) indicated that inter-site 

variance heterogeneity was insignificant (P>0.05) between Salmon River and Togari at both the 

subrace and family within subrace levels, virtually for all comparisons (Table 3.3). 
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3.3.2. Genotype-by-environment interaction (GxE)  

The inter-site (type-B) genetic correlations at the subrace and family within subrace 

level (rSR, TO) among the NW sites were all high (>0.85) and not statistically different from one, 

except for the subrace correlation for basic density (Table 3.3). Combined with the general 

homogeneity of variances, these high type-B correlations indicate that there is little GxE and 

therefore, data from both NW trials can be effectively combined. Accordingly, NW subrace least-

square means (Figure 3.1 & 3.2; see Supp. 3.1) and pooled inter-trait correlation coefficients 

(Table 3.4) were estimated. 

3.3.3. Inter-trait correlations  

DBH was positively correlated with most traits at the subrace, family within subrace and 

phenotypic levels, particularly Straightness (Table 3.4). The major exception was BD. However, 

BD was significantly correlated with KPY, but in opposite directions at the subrace (-0.61) and 

family within subrace (0.85) levels, resulting in a phenotypic correlation of almost zero. BD was 

not significantly correlated with Straightness at any level. While it was highly positively 

correlated with AWV at the family within subrace level (0.78), it was uncorrelated at subrace 

level. The subraces with the highest AWV (i.e. stiffer wood) were those from the Bass Strait 

islands (King Island [KI] and Southern Furneaux [SF], Figure 3.1), whereas KI, had the lowest basic 

density of all subraces studied (Figure 3.2). KPY was significantly positively correlated with 

Straightness at the subrace level (0.70), but these traits were uncorrelated at the family within 

subrace level, even after accounting for the joint covariation with DBH (see Supp. 3.2). The 

western subraces (particularly KI and WT) have straighter stems whereas, apart from Strezlecki 

Ranges (StrR), the eastern subraces had less straight stems (particularly St Helens [StH]) (Figure 

3.1a). In the NW trials, the subraces with the straighter stems also had the highest pulp yield (KI 

and WT) and the least straight subrace, StH had the lowest pulp yield (Figure 3.2e). KPY was also 

positively correlated to AWV at the subrace, family within subrace and phenotypic levels, 

although the family within subrace level correlation was not statistically significant (P=0.103). In 

particular, the KI subrace stands out as having high KPY (Figure 3.2e) and high AWV (Figure 3.1b). 

The correlation between AWV and KPY is independent of any covariation with BD or DBH (see 

Supp. 3.2). There was no major effect on the univariate estimates of h2
op  or QST  when 

phenotypically correlated traits were included as covariates in the model 1 (see Supp. 3.3). 
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Table 3.2. Site means and genetic parameters for stem diameter (DBH), stem straightness (Straightness), basic density (BD), acoustic wave velocity (AWV) 
and Kraft pulp yield (KPY) estimated for two 10-year old field trials of Eucalyptus globulus in NW Tasmania (Salmon River - SR, Togari - TO) and Latrobe (LA). 
The LA estimates were obtained through a re-analysis of the data originally analysed by Stackpole et al. (2010a) and Stackpole et al. (2010b). 
 

The table shows grand mean and its standard deviation (mean ± SD), the within subrace narrow-sense heritability estimate with its standard error (h2
op± SE, significant 

difference of family within subrace variance from zero based on a one-tailed likelihood ratio test is indicated as asterisks), quantitative inbreeding coefficient with its 
standard error (QST ± SE, significant difference of subrace variance from zero based on a one-tailed likelihood ratio test is indicated as asterisks) and coefficient of additive 
genetic variation (% CVa). The QST values shown were calculated assuming 70% outcrossing. Asterisks indicate the results of the test of significance as ns p>0.05; * p<0.05; 
** p<0.01; *** p<0.001. Straightness and AWV were not available for the site Latrobe (-). 1 significantly different from zero at 0.05 level in bivariate analysis but not in the 

univariate analysis; 2 QST is significantly different from the mean FST (0.09) of Steane et al. (2006) at 0.05 level of significance; 3 h𝑜𝑝
2  and QST estimates using the multinomial 

GLMM model - h𝑜𝑝
2  SR: 0.50 ± 0.09 and TO: 0.57 ± 0.1; QST SR: 0.05 ± 0.04 and TO: 0.08 ± 0.06

  DBH (mm) BD (kg/m3) KPY (%) 
Straightness3  

(1-6 scale) 
AWV (km/s) 

Mean SR 161.20 ± 44.62 495.80 ± 35.57 55.51 ± 2.27 2.97 ±1.11 3.94 ± 0.35 

TO 161.30 ± 48.07 503.70 ± 33.55 55.09 ± 2.13 2.77 ± 1.21 3.92 ± 0.30 

LA 112.60 ± 34.45 539.60 ± 36.73 53.24 ± 1.98 - - 

h𝑜𝑝
2  SR 0.26 ± 0.05 *** 0.35 ± 0.11 *** 0.04 ± 0.09 1 0.17 ± 0.04 *** 0.17 ± 0.11 * 

TO 0.32 ± 0.06 *** 0.34 ± 0.12*** 0.10 ± 0.10 1 0.21 ± 0.05 *** 0.17 ± 0.11 1 

LA 0.19 ± 0.03 *** 0.49 ± 0.06*** 0.31 ± 0.05 *** - - 

QST SR 0.18 ± 0.08 *** 0.21 ± 0.10 *** 0.74 ± 0.53 ***2 0.06 ± 0.04 ** 0.12 ± 0.11 ** 

TO 0.18 ± 0.08 *** 0.19 ± 0.10 *** 0.57 ± 0.28 ***2 0.08 ± 0.05 *** 0.23 ± 0.17 *** 

LA 0.08 ± 0.04 *** 0.20 ± 0.08 ***2 0.48 ± 0.12 ***2 - - 

CVa 

(%) 

SR 13.40 15.29 3.89 3.07 2.61 

TO 15.92 19.55 3.58 2.69 1.05 

LA 13.22 - 4.34 - 1.73 
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Table 3.4. Genetic and phenotypic correlations (± standard error) among DBH, Basic density, KPY, Straightness, and AWV at the subrace (Subrace), family 
within subrace (Family) and phenotypic (Phenotypic) levels for the two 10-year old E. globulus trials in NW Tasmania 
 

  DBH BD KPY Straightness 
      
BD Subrace -0.12 ± 0.31 ns    

Family -0.06 ± 0.15 ns    
 

Phenotype -0.06 ± 0.03 ns    
      

KPY Subrace 0.77 ± 0.02*** -0.61 ± 0.21*   

Family 0.36 ± 0.17 ns 0.85 ± 0.33**   
 

Phenotype 0.37 ± 0.03 *** -0.01 ± 0.03 ns   
      

Straightness Subrace 0.57 ± 0.21*** -0.24 ± 0.33 ns 0.70 ± 0.06***  

Family 0.64 ± 0.09*** -0.18 ± 0.16 ns 0.02 ± 0.22 ns  
 

Phenotype 0.35 ± 0.02 *** -0.03 ± 0.03 ns 0.26 ± 0.03 ***  
      

AWV Subrace 0.74 ± 0.18 ** 0.00 ± 0.22 ns 0.76 ± 0.15*** 0.58 ± 0.26 ns 
Family 0.36 ± 0.18 ns 0.78 ± 0.19*** 0.64 ± 0.26 ns 0.18 ± 0.21 ns  

Phenotype 0.23 ± 0.03 *** 0.26 ± 0.03 *** 0.52 ± 0.03 *** 
0.15 ± 0.03 
*** 

Given are the pooled intra-site correlation coefficients of two different trials in NW Tasmania (Salmon River and Togari). The pooled correlations were 
tested against zero and significance levels based on two-tailed likelihood ratio test are indicated as ns p>0.05; * p<0.05; ** p<0.01; *** p<0.001.
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3.3.4. North-west versus Latrobe sites 

The previously studied Latrobe trial was on a drier (Table 3.1) and markedly less 

productive site than the two NW trials, as evidenced by the mean (±sd) DBH comparisons at the 

only common ages assessed across all trials (4 years: SR [101.5±27.8 mm], TO [98.2±30.7 mm], 

LA [66.2±19.3 mm] and 10 years: see Table 3.2). There was significant GxE for DBH across these 

divergent sites (NW versus Latrobe). Both the subrace and family within subrace level variances 

for DBH were significantly different and the across site genetic correlations were significantly 

less than 1 (Table 3.3). Indeed, the subrace correlation between the NW and Latrobe were 

effectively zero (LRT from 0, P=1.0). While the faster growing races in the NW were the more 

local KI and Otway (EOt and WOt) subraces (in terms of geography and climate similarity 

between trial site and origin of subrace), at Latrobe the faster growing subraces were from 

southern Tasmania (Recherche Bay [RB], Southern Tasmania [ST] and South-Eastern Tasmania 

[SET]). Despite the high GxE for growth, the GxE for the wood property traits (KPY and BD) were 

remarkably low (Table 3.3). Their type-B genetic correlations were 0.77 or greater, and not 

significantly differed from 1, at the family within subrace level. The geographic pattern of 

variation in BD was very similar between NW and Latrobe, with the highest density subraces 

occurring on the mainland (WOt and StrR), and the lowest on KI (Figure 3.2c,d). The type-B 

correlation observed for KPY (0.77) was slightly lower than that for density, but this could reflect 

the difference in sampling material (whole-length cores at Latrobe versus outer cores in the NW). 

The pattern of geographic variation in KPY (high in KI subrace and low in the eastern Gippsland 

subraces [StrR and CP]) was consistent between Latrobe and the NW sites (Fig 3.2e,f). 

Nevertheless, the ST subrace which had the highest KPY in Latrobe had average KPY in the NW 

sites. The wood properties of Western Tasmania (WT) and RB subraces were not assessed at 

Latrobe, but the NW trials reveal that the WT subrace had the second highest KPY of the 

subraces assessed and RB had average pulp yield comparable to the adjacent ST subrace.  
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Table 3.3. Tests of homogeneity of variances (P value) and genetic correlations (r ± standard 
error) across the E. globulus sites at the subrace (Subrace) and family within subrace (Family) 
level, testing for rank order and scale components of genotype-by-environment interaction (GxE) 
respectively 
 

Trait  Variance  

homogeneity 

(SR,TO) 

rSR, TO Variance  

homogeneity  

(NW,LA) 

rNW, LA 

      

DBH Subrace 0.498 0.93 ± 0.07 ns 0.011 -0.07 ± 0.34 ** 

 Family  0.303 0.85 ± 0.09 ns 0.001 0.54 ± 0.26 *** 

      

BD Subrace 0.480 0.85 ± 0.13 * 0.107 0.91 ± 0.07 * 

 Family  0.806 1.00 ± 0.00 ns 0.180 0.98 ± 0.12 ns 

      

KPY Subrace 0.841 1.00 ± 0.00 ns 0.233 0.77 ± 0.14 *** 

 Family  0.806 1.00 ± 0.00 ns 0.112 0.85 ± 0.35 ns 

      

Straightness Subrace 0.007 0.97 ± 0.15 ns - - 

 Family 1.000 1.00 ± 0.00 ns - - 

      

AWV Subrace 0.342 1.00 ± 0.00 ns - - 

 Family 0.689 1.00 ± 0.00 ns - - 

 

Comparisons are shown for (i) the two northwest sites of E. globulus (Salmon River [SR] versus 
Togari [TO]) and (ii) the northwest sites combined (NW) compared with the Latrobe (LA) site 
studied by Stackpole et al. (2010a); (2010b). The probabilities are given for the tests for the 
heterogeneity of variances based on the likelihood ratio test comparing the difference 
between fitting a pooled versus independent variance estimates. The genetic correlations and 
their standard errors are shown as well as the significance of the one-tailed likelihood ratio 
test from 1 (ns p>0.05; * p<0.05; ** p<0.01; *** p<0.001). Straightness and acoustic wave 
velocity measurements (AWV) were not available for the site Latrobe (-).  
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3.4. Discussion 

3.4.1. Genotype-by-environment interaction (GxE) for growth 

In the studies of E. globulus, GxE has been detected using quantitative genetics for 

growth traits in Australia (MacDonald et al. 1997; Muneri and Raymond 2000; Costa e Silva et 

al. 2006; Callister et al. 2011) and overseas (Potts et al. 2004; Salas et al. 2014), including at the 

QTL level between trials across Australia (Freeman et al. 2013). While greater than average GxE 

has been reported among E. globulus trials across countries than that of within countries (Potts 

et al. 2004), the present study highlights the importance of local site effects, whereby large GxE 

can occur when site differences are marked, as was the difference between our wet (NW) and 

dry (LA) sites. In one of the most detailed studies of E. globulus GxE in Australia, water 

availability was shown to be a major factor driving GxE at the subrace level (Costa e Silva et al. 

2006). Some subraces (i.e. KI, WOt and EOt) used in our study were more local to the wetter 

NW sites where they performed well (Figure 3.2a). However, these subraces were only average 

performers at the Latrobe site (Figure 3.2b), consistent with their relatively poorer growth on 

dry sites (Costa e Silva et al. 2006), greater drought susceptibility (Dutkowski and Potts 2012) 

and likely local climate adaptation (Leimu and Fischer 2008). The worst performing subraces in 

the NW sites were those from eastern Tasmania. Of note was the stable, performance of the 

Strezlecki Range (StrR) subrace in the NW and Latrobe sites in our study (Figure 3.2), consistent 

with its relatively stable performance in the Australia-wide study of Costa e Silva et al. (2006).  

3.4.2. Density 

One of the key findings from this study was the marked difference between GxE for 

growth (DBH) and that observed for wood properties. Despite high GxE for growth between the 

NW and Latrobe sites, that for wood properties were exceptionally small, both at the subrace 

and family within subrace levels, particularly for basic density. The across site stability of genetic 

differences in wood properties compared with growth traits is commonly reported in forest tree 

species (Chen et al. 2017; Li et al. 2017b). Our subrace level inter-site correlations involving basic 

density were greater than the threshold (0.8) above which GxE can be considered biologically 

insignificant (Robertson 1959). Similar results of high inter-site correlations for basic density and 

pilodyn penetration (an indirect measurement of basic density) have been previously reported 

at both the subrace and family within subrace levels (MacDonald et al. 1997; Muneri and 

Raymond 2000; López et al. 2002; Costa e Silva et al. 2009), confirming the extremely low level 

of GxE for basic density in E. globulus. The lower GxE for basic density compared to growth in E. 

globulus is also evident at QTL level. In a study done by Freeman et al. (2013), only 24% of basic 
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density QTLs exhibited GxE, compared to the 38% of growth QTLs, when the same families were 

compared across wet and dry sites in Australia. The pattern of subrace variation for basic density 

observed in the present study was very similar to that reported in previous studies of E. globulus 

- the higher basic density of the Strezlecki range subrace and the low basic density of King Island 

(Stackpole et al. 2010b). Similar patterns of geographic variation in density are observed in other 

sites regardless of the measurement technique used (Pilodyn penetration - Dutkowski and Potts 

1999; López et al. 2001; discs - Hamilton et al. 2010; core - Stackpole et al. 2010b) or country 

(Australia - Dutkowski and Potts 1999; Argentina - López et al. 2002). Not only did basic density 

exhibit high variation among subraces, within subraces it showed the highest narrow-sense 

heritability (0.35 to 0.49) of all the traits measured in the present study. Many studies reported 

high heritability of basic density, which averages 0.50 across 11 single-trial estimates from seven 

studies (Dean et al. 1990; Borralho et al. 1992; Muneri and Raymond 2000; Raymond et al. 2001; 

Apiolaza et al. 2005; Poke et al. 2006; Salas et al. 2014). This average is double that for DBH, 

which averages 0.22 across 10 trials from five studies (MacDonald et al. 1997; Muneri and 

Raymond 2000; Stackpole et al. 2010a; Callister et al. 2011; Salas et al. 2014).  

The genetic correlation between diameter (DBH) and wood density is well-studied in E. 

globulus, however, results vary considerably in both sign and magnitude. In the present study, 

subrace, family within subrace, and phenotypic level correlations between basic density and 

DBH were not significantly different from zero. This finding of a poor association is consistent 

with the previous observations of E. globulus (Downes et al. 2006; Stackpole et al. 2010a; Salas 

et al. 2014) but differs to the negative association observed by MacDonald et al. (1997). Two 

factors may in part contribute to the variation in the correlation between growth and density. 

Firstly, the sign of the correlation may be site-dependent. Indeed, MacDonald et al. (1997) 

showed the change of subrace-level type-A correlation from negative at wet sites to positive at 

dry sites despite the negative within subrace genetic correlation. Secondly, in E. globulus the 

relationship between growth and density changes with age. For example, Stackpole et al. (2010a) 

found a significant negative genetic correlation between basic density and diameter at selection 

age (4-5 years), however, by the harvest age (16-17 years) the genetic correlation was non-

significant and slightly positive. In the present study, while not statistically significant, a small 

negative trend was noticed at the subrace, family within subrace, and phenotypic levels on wet 

site (i.e. NW), consistent with Stackpole et al. (2010a) for the intermediate age (10 years) of 

assessment.  
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3.4.3. Pulp yield 

The heritability of pulp yield in the NW trials (0.04-0.10) was the lowest of all traits 

assessed and only marginally significant. Consistent with previous reports (Raymond et al. 

(2001), low GxE at both the subrace and family within subrace level were observed in pulp yield 

(high type-B correlations) between the two NW sites and the Latrobe site. The low narrow-sense 

heritability for pulp yield at the NW trials is at odds to the literature, where considerably higher 

values have been previously reported (0.42 - Costa e Silva et al. 2009; 0.40 - Stackpole et al. 

2010b; 0.26 - Hamilton et al. 2017b). The low heritability for pulp yield could in part be due to 

the smaller length of core sampled (50 mm cores in this study compared to whole-length cores 

in other studies) and thus high measurement error, but this does not explain the fact that high 

subrace differences were detected. The low coefficient of additive genetic variation for pulp 

yield supports previous studies (Stackpole et al. 2010b; Hamilton et al. 2017b), suggesting less 

opportunity for increasing the mean of this trait through selection compared with other traits 

studied. This argument similarly applies to wood properties in general, exhibiting coefficient of 

additive genetic variation markedly less than that reported for diameter, in concordance with 

previous studies (Stackpole et al. 2010a; Li et al. 2017a). 

The subrace differentiation for pulp yield, as assessed using QST, was the highest of all 

traits assessed in both the NW and Latrobe trials (Table 3.2). The QST values were significantly 

greater than the mean FST, signalling that divergent selection (Leinonen et al. 2013) has likely 

driven the subrace differentiation, consistent with the previous finding by Stackpole et al. (2011). 

This differentiation no doubt reflects the strong genetic correlations of pulp yield with 

associated wood chemical traits, such as cellulose (>0.9) and lignin (<-0.9) (Stackpole et al. 2011), 

more likely to be under direct selection. The geographic pattern of subrace variation in pulp 

yield has not been widely studied. The study at Latrobe trial (Stackpole et al. 2010b), the largest 

study to date, showed that the Victorian subraces, currently favoured in breeding programs 

because of their high density (Potts et al. 2014), were among the lowest for pulp yield. They also 

showed a clinal pattern of decreasing pulp yield among subraces distributed on the east coast 

of Tasmania, and the subraces with the highest pulp yield were from King Island (KI) and 

Southern Tasmania (ST). To a large extent, these are confirmed in the wetter NW sites, except 

that the Southern Tasmania subrace was only average in pulp yield. 

The genetic correlation (i.e. family within subrace) of pulp yield with DBH varies greatly 

with reports ranging from -0.54 to 0.12 (Dean et al. 1990; Raymond et al. 2001; Apiolaza et al. 

2005; Costa e Silva et al. 2009). In the current study, we observed a marginally significant but 

positive correlation between growth and pulp yield (0.36; Table 3.4; see Supp. 3.4) in the NW 
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trials, which was consistent with the significant positive genetic correlation (0.52) observed at 

the Latrobe trial (Stackpole et al. 2010b). At the subrace level also, this correlation was positive 

and significant in the NW trials, but not significant at Latrobe trial, though it was positive 

(Stackpole et al. 2010b). Given the common set of base-population families, the results suggest 

that regardless of whether outer-wood or whole-length cores are used, or whether the material 

(i.e. families within subrace) is tested on wet or dry sites, the association between NIRS 

predicted Kraft pulp yield and growth is positive at both the subrace and family-within subrace 

levels. While the magnitude of these correlations is only low to medium, the selection for fast 

growth should indirectly result in increased pulp yield to some degree. 

The positive and significant family within subrace genetic correlation between pulp yield 

and density was the highest correlation (0.85) observed in the current study. This positive 

genetic correlation between pulp yield and density was consistent with previous reports (Dean 

et al. 1990; Raymond et al. 2001; Apiolaza et al. 2005; Costa e Silva et al. 2009)(see Supp. 3.4), 

but differed from the non-significant genetic correlation reported by Stackpole et al. (2010b) at 

Latrobe. In contrast to this family-level genetic correlations, the subrace level correlation 

between pulp yield and density from the NW trials was not significantly different from that 

obtained at Latrobe (see Supp. 3.4).  

A notable feature of our study was the marked discrepancy in the correlations between 

pulp yield and density observed at the subrace and family within subrace levels. At the family 

within subrace level, higher density was significantly associated with higher pulp yield (0.85), 

whereas at the subrace level higher density was significantly associated with lower pulp yield (-

0.61). This trend was also evident in the Stackpole et al. (2010b) study and may in part be 

associated with the significant divergent selection acting on traits associated with pulp yield as 

noted above. Overall, the correlated response of pulp yield and density to selection for a 

pulpwood breeding objective will be complex and affected by the relative importance of subrace 

and family within subrace contributions. Regardless of this complexity, at either genetic level, 

the expected response to selection on the other key pulpwood selection traits (density and DBH) 

will likely be independent. 

3.4.4. AWV (stiffness) 

The current study also found significant genetic variation within E. globulus for acoustic 

wave velocity (AWV), which was independent of growth and basic density. While growth, 

density and pulp yield are pulpwood selection traits, AWV is associated with wood stiffness 

which is a solid-wood selection trait. Our heritability estimate (0.17) was lower than that 
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reported from a Western Australia E. globulus trial by Hamilton et al. (2017b) (0.26), and from 

Tasmanian trials of E. nitens (0.43) by Blackburn et al. (2014). Nevertheless, we found 

statistically significant subrace variance, as did Hamilton et al. (2017b) using a subset of the 

subraces tested here. In addition, inter-site (type-B) correlations at both the subrace and family 

within subrace levels were effectively 1.0, indicating no GxE among the NW sites, where the site 

differences were small. Nevertheless, low GxE was also reported across more divergent sites in 

E. nitens (Blackburn et al. 2014). The subrace differences observed were mainly due to the 

subraces from Bass Strait islands showing high AWV compared with other subraces, particularly 

those on the east coast of Tasmania. Wood stiffness is believed to enhance the ability of the 

main stem of the tree to tolerate strong winds without breaking (Moore et al. 2018), and it is 

possible that the high AWV of the island subraces is an adaptation of the main stem to greater 

wind exposure compared with the other subraces of E. globulus (Australian Bureau of 

Meteorology 2011).  

The present study showed a general positive correlation of AWV with DBH, which was 

highest at the subrace level (0.74), suggesting that selection for fast growth would tend to 

increase AWV and thus wood stiffness. Similar trends were evident in E. nitens, although their 

significance varied with the site (Blackburn et al. 2014). In the same E. nitens study, they also 

found a positive phenotypic correlation between AWV and BD, but this was only significant at 

the genetic level at two of the three sites studied. These findings accord with the significant 

correlations we obtained in E. globulus at the family within subrace level (0.78) and phenotypic 

level (0.26), although there was no correlation at the subrace level. A positive relationship 

between wood density and stiffness (positively correlated to AWV and MOE) is well-established 

(Evans and Ilic 2001), although at the genetic level exceptions do exist (Li et al. 2017a). Indeed, 

our observed high genetic correlation between AWV and density within subraces suggests a 

pleiotropic relationship between these two traits, but the absence of a significant subrace level 

correlation suggests this relationship is uncoupled at the broader geographic scale (Gauli et al. 

2015). A key aim of this study was to test the strong positive genetic association between AWV 

and pulp yield in E. globulus reported at additive genetic and QTL levels by Hamilton et al. 

(2017b). The present study supports these findings at subrace (0.76), family within subrace (0.64) 

as well as phenotypic (0.52) levels. Consistent with Hamilton et al. (2010), our generally 

favourable correlations of AWV with DBH, density and pulp yield indicate strong concordance 

between the pulpwood and solid-wood breeding objectives in this case. 
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3.4.5. Straightness 

The other key solid-wood selection trait studied was stem straightness. The high inter-

site type-B genetic correlations (>0.9) for stem straightness at the subrace and family within 

subrace levels in this study, is consistent with previous studies reporting low GxE for stem 

straightness in tree species (Li et al. 2017b), including eucalypts (Callister et al. 2011; Blackburn 

et al. 2013). This was coupled with the significant heritability and subrace variation observed for 

this trait. The low to moderate heritabilities we estimated for this trait (0.17 & 0.21) were similar 

to the values obtained in other studies on E. globulus (0.28 - Callister et al. 2011; 0.19 & 0.33 - 

Blackburn et al. 2013; 0.20 - Hamilton et al. 2015a) as well as other tree species (0.15, E. 

camaldulensis - Mahmood et al. 2003; 0.28, E. nitens - Hamilton and Potts 2008; <0.16, Acacia 

mangium - Hai et al. 2015). Our multinomial estimates exceeded these values as well as those 

previously reported multinomial estimates in E. globulus (0.09 - Mora and Serra 2014). 

We showed significant but low divergence among the E. globulus subraces (QST) in stem 

straightness and similar patterns of geographic variation to that reported for general stem form 

(of which straightness was one component) by Volker and Orme (1988) and López et al. (2001). 

Of note is the general good form/straightness of King Island (KI) and Western Tasmanian (WT) 

subraces (Fig. 1a; Volker and Orme 1988), and the south-north clinal decrease in 

form/straightness along the east coast of Tasmania (Fig. 1a; Volker and Orme 1988; López et al. 

2001). Volker and Orme (1988) attributed the poor form of St Helens (StH) to its susceptibility 

to marsupial browsing, which is linked to its low foliar defensive chemistry (O’Reilly-Wapstra et 

al. 2013). This subrace was not included in the studies of Blackburn et al. (2013) and Hamilton 

et al. (2015a) which showed non-significant variation in stem straightness between subraces. 

Browsing has been shown to adversely affect stem straightness in E. globulus (Borzak et al. 2015) 

and may contribute to the higher subrace variance and higher QST for straightness at Togari 

(Table 3.2) where marsupial browsing was greater than at Salmon River (O’Reilly-Wapstra et al. 

2013).  

The positive family within subrace level correlation of Straightness with DBH was 

consistent with the positive additive genetic correlations reported for E. globulus by Blackburn 

et al. (2013), but not the non-significant negative correlations reported by Callister et al. (2011). 

Genetic correlations between Straightness and DBH have been reported in the literature ranging 

from positive (0.53, E. nitens - Hamilton and Potts 2008; 0.25 to 0.37, Acacia mangium - Hai et 

al. 2015; 0.92, Pinus hybrid - Belaber et al. 2018) to negative (-0.42, E. camaldulensis - Mahmood 

et al. 2003). This variation in the level and direction of the genetic correlation between these 

traits across species suggests some uncertainty in the simultaneous improvement for growth 
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and Straightness traits. For E. globulus, most of the genetic correlations are positive as are all 

phenotypic correlations (0.35 - present study; 0.11, 0.13, 0.20, 0.18 - Blackburn et al. 2013). 

However, as noted by Blackburn et al. (2013), with significant positive correlations between 

Straightness and DBH, we cannot dismiss the possibility that with the subjective measure, 

assessors tended to give larger stems more favourable straightness scores. Nevertheless, even 

when such bias is accounted by fitting DBH as a covariate, significant heritability and subrace 

effects were observed. In addition, similar geographic patterns of subrace variation were 

obtained in the adjusted and unadjusted analyses arguing for genetic differences in Straightness 

which are not just a reflection of DBH variation.  

The association between Straightness and density in the present study was in a negative 

direction although non-significant. Similar results were previously reported in some other 

eucalypt species (Kien et al. 2008), but not always (Borralho 1997). However, most of the studies 

(including this study) consistently report no significant relationship between these two traits. In 

the present study, the strong association observed between Straightness and pulpyield (0.70) 

at the subrace level and not at the family within subrace level could be just a correlation by 

chance due to the indirect association of these traits to other wood properties.  

3.5. Conclusions 

In conclusion, the present study shows significant genetic variation resides within the E. 

globulus gene pool for all pulpwood and solid-wood selection traits examined. In addition, the 

significant genetic correlations between traits show generally favourable alignment of 

pulpwood and solid-wood selection traits. Thus, improvement of the E. globulus resource made 

so far through pulpwood breeding should also be expected to have made gains for solid-wood 

breeding. Where favourable correlations were not detected, traits were genetically 

independent as opposed to adversely correlated. Despite large GxE detected for growth 

between wet and dry sites, the wood properties were remarkably stable. The previously 

reported geographic pattern of variation between subraces and genetic correlations among 

pulpwood traits more-or-less confirmed, including the opposing genetic correlations between 

pulp yield and density at the subrace and family within subrace levels. 
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3.6. Supplementary material 

Supp. 3.1. Estimation of least-square means 

For every trait plotted in the Fig. 1 and 2, subrace least-square means were calculated 

from the subrace main effect in a mixed model that included subrace, trial and their interaction 

as fixed effects, and replicate within trials, family within subrace and the family by trial 

interaction terms as random effects in the Model 1. These analyses were undertaken with 

ASReml following Hamilton et al. (2013). The geographic distribution of the subrace means was 

plotted using the maptools (Lewin-Koh 2010) and sp packages (Bivand et al. 2008) in R version 

3.3.1 (R Core Team 2017) in Fig 1 and 2. 

Supp. 3.2. Partial correlations and including correlated traits as covariates 

The effect of DBH on Straightness-KPY correlations 

Straightness and KPY were both significantly positively phenotypically correlated with 

DBH, but after removing the effect of DBH, the Pearson partial correlation coefficient (rpartial = 

0.20, P<0.001) between Straightness and KPY was still significant, indicating that there is a 

positive relationship between these traits that is independent of variation in DBH. This was also 

confirmed at the subrace level by fitting DBH as a covariate into the multivariate mixed models 

(rsubrace = 0.65±0.07). 

The effect of BD and DBH on the AWV-KPY correlations  

When BD was fitted as a covariate in the multivariate analyses involving AWV and KPY 

the high genetic correlations were still maintained (rsubrace = 0.84 ± 0.11; rfamily= 0.61 ± 0.33). In 

addition, the partial phenotypic correlation coefficient between AWV and KPY was still 

significant after accounting for BD (rpartial = 0.54, P<0.001). Similarly, after accounting for the 

joint correlation with DBH, the partial phenotypic correlation coefficient between AWV and KPY 

was still significant (DBH rpartial = 0.48, P<0.001) and the genetic correlations were maintained at 

the subrace level (rsubrace = 0.70 ± 0.20) and increased at the family level (rfamily= 0.98 ± 0.33; LRT 

from zero P= 0.077).  
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Supp. 3.3. Results when including covariates in model 1 

Many of the traits assessed were significantly correlated at the phenotypic level (see 

below) which could affect the detection of genetic variation in a focal trait. To test whether this 

was the case, traits highly correlated with the focal trait were included as a covariate in the 

linear model (Model 1) fitted for each trial. When BD was fitted as a covariate in the mixed 

model for AWV, subrace variance persisted as significantly different from zero (LRT - SR and TO: 

P<0.001), but family variances became non-significant at both sites (LRT – SR: P=0.192, TO: 

P=0.306). In the same case, QST at both sites (AWV SR: QST = 0.33±0.30 & TO: QST = 0.53±0.52) 

markedly increased, but only at TO did the value exceeded the mean FST value. When DBH was 

included as a covariate for AWV, the subrace effects at SR as well as TO remained significant (SR: 

QST = 0.09±0.08; P<0.05& TO: QST = 0.23±0.23; P<0.01). When DBH was fitted as a covariate in 

the mixed model for Straightness, the subrace as well as family variances at both sites persisted 

as significantly different from zero in the one-tailed LRT (P<0.01 and P<0.001 respectively- SR: 

QST = 0.07±0.05 & TO: QST = 0.07±0.05). The pattern of subrace differences in AWV and 

Straightness were similar regardless of the inclusion of the covariate in the mixed model 

analyses (Figure 3.1 versus Figure below). Similarly, the inclusion of DBH as a covariate for KPY 

resulted in the significance of the family term for KPY at TO (P<0.05) but not at SR and had little 

effect on subraces differences (data not shown). 

 

Figure. The geographic variation in subrace least-square means at the NW trials for (a) Adj. 
Straightness (1-6 scale) and (b) Adj. AWV (km/s) with the inclusion of the covariate DBH in the 
mixed model analyses
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Supp. 3.4. Comparison of NW trials with previously reported values 

A key objective of the current study was the comparison of the within-site (type-A) 

inter-trait genetic correlations between the NW trails and those previously published for the 

Latrobe trial. Despite the strong GxE for DBH (Table 3.3), the within site inter-trait correlation 

between DBH and BD at the NW trials were similar to those previously reported for Latrobe (see 

Table below). At both the subrace and family levels, DBH was effectively uncorrelated with BD 

(see Table below). In the case of DBH and KPY, the family correlation did not differ significantly 

between the estimates, but the subrace level correlation was significantly higher in the NW trials 

(0.77 vs 0.32). The directionality of the correlations between KPY and BD were the same at both 

sites. While the magnitude of the correlation was not significantly different at the subrace level, 

the family-level correlation observed at the NW sites was significantly higher than that observed 

at the Latrobe site (see Table below).  

Table: Genetic correlations at the subrace and family within subrace levels and the significance 

level of the difference of the correlation coefficients obtained in this study (NW) from other 

reported studies. 

  NW Stackpole Literature 

KPY vs BD 
Subrace -0.65 -0.58 ns - 
Family 0.85 0.18* 0.47 ns 

     

DBH vs BD 
Subrace -0.12 0.05 nc - 
Family -0.06 0.05 ns - 

     

DBH vs KPY 
Subrace 0.77 0.32 *** - 
Family 0.36 0.52 ns -0.24** 

 

Subrace and family level correlations from NW site were tested against correlations from other 
studies (Stackpole et al. 2010a; Stackpole et al. 2010b) and the Literature (average values from 
other similar old studies as reported by Stackpole et al. (2010b)) using a likelihood ratio test and 
constraining the pooled NW estimates to that reported in other studies. Significance levels were 
indicated as ‘ns’ p>0.05; ‘*’ p<0.05; ‘**’ p<0.01; ‘***’ p<0.001, based on two-tailed likelihood 
ratio test.  

nc - not converged in the analysis. 
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Chapter 4 - Application of resistance drilling to genetic studies of 

growth, wood basic density and bark thickness in Eucalyptus 

globulus 

4.1. Introduction 

Growth and wood basic density are key breeding objective traits in eucalypt genetic 

improvement programmes for pulpwood and solid-wood (Raymond and Apiolaza 2004; 

Rezende et al. 2014). Tree growth is commonly assessed as over-bark diameter at breast height 

(DBH) using a diameter tape (Husch et al. 2002). Wood basic density is either assessed 

destructively (e.g. discs sampled at intervals along a felled tree) or using non-destructive 

techniques, which can be direct (cores) or indirect (e.g. Pilodyn pin penetration) (Downes et al. 

1997; Stackpole et al. 2010a). Non-destructive techniques are generally used for the necessarily 

large-scale measurement of selection traits in tree breeding, as they are quicker than 

destructive techniques, and the trees remain available for subsequent measurements and 

selection. The drill resistance profile derived from an IML Power Drill series instrument (RESI) is 

becoming one of the preferred non-destructive techniques for the assessment of wood density. 

Although RESI was initially used to measure wood decay (Costello and Quarles 1999; Johnstone 

et al. 2007), it is now being used for the assessment of wood basic density in various tree species 

(Isik and Li 2003; Silva et al. 2017; Fundova et al. 2018; Sharapov et al. 2019), including eucalypts 

(Downes et al. 2018). Simultaneously, RESI has the additional benefit of being able to measure 

stem diameter (Isik and Li 2003; Downes et al. 2018) and bark thickness (Downes et al. 2018). 

RESI is a hand-held instrument that measures the radial variation in basic density from 

the resistance experienced by a metal needle drilled through the stem at a constant rotation 

rate and forward speed (Downes et al. 2018). Compared to other non-destructive techniques 

for assessing density, the RESI has low cost, high sampling speed, the ability to capture data 

digitally, and useful processing options include the weighting of the resistance measured to 

account for the radial variation in stem density (Downes et al. 2018). Moreover, evidence to 

date suggests that it also better predicts density than the Pilodyn, another option for high-speed 

non-destructive sampling (Downes et al. 2018; Fundova et al. 2018). In addition, as the RESI 

trace commences and ends at the outer bark, the marked changes in resistance at the 

bark/wood boundaries allow bark thickness and under- and over-bark stem diameters (DBH) to 

be quantified at the same time as the more subtle changes in resistance when drilling through 

the wood (Downes et al. 2018). A study based on Eucalyptus globulus and E. nitens showed that 
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at the phenotypic level RESI resistance values well-predict the within site variation in core basic 

density (R2= 0.66 to 0.80), as well as DBH measured using the traditional methods (Downes et 

al. 2018). However, to use this tool for breeding purposes, genetic rather than phenotypic 

correlations are needed, as phenotypic correlations also include environmental covariance 

among traits (Falconer and Mackay 1996).  

Eucalyptus globulus is the main plantation eucalypt grown in pulpwood plantations in 

temperate regions of the world (Harwood 2011), including Australia (Rhys and Mijo 2018). Field 

trials have shown significant population and family variation within the species for numerous 

traits, including growth, basic density and bark thickness (Dutkowski and Potts 1999). While 

there are numerous estimates of genetic parameters for growth and wood density from open-

pollinated families of E. globulus (Potts et al. 2004; Stackpole et al. 2010a), there are few 

published estimates for bark thickness (Dutkowski and Potts 1999; López et al. 2002), despite 

its potential effect on the accuracy of log volume determined from over-bark DBH (Stayton and 

Hoffman 1970; Thomas and Bennett 2014) as well as its adaptive significance.  

Both bark thickness and wood density are being increasingly recognised as functional 

traits of adaptative significance in forest trees. Bark thickness has been implicated in 

susceptibility to insect (Pinus strobus - Kriebel 1954; Eucalyptus globulus - Jordan et al. 2002), 

mammal (different tree species - Gill 1992), drought (Eucalyptus globulus - Dutkowski and Potts 

2011) and fire (Eucalyptus and Corymbia spp - Lawes et al. 2011) damage. At the species-level, 

there is a trend for inner bark thickness to increase in hotter and drier environments in 

angiosperms, independent of fire, which is hypothesised to reflect its role in water and 

carbohydrate storage (Rosell 2016). Wood basic density has also been linked to many adaptive 

characteristics of forest trees, including susceptibility to insect (Lanuza-Garay and Barrios 2018) 

and drought (Ruiz Diaz Britez et al. 2014; Greenwood et al. 2017; Nabais et al. 2018) damage. In 

the case of drought, studies of various forest tree species report that increased wood density is 

associated with xylem properties, such as thicker walls and smaller conductive area, that reduce 

susceptibility of the xylem to cavitation under water stress (Hacke et al. 2001; Santini et al. 2016; 

Venturas et al. 2017).  

In the present study, we aim to test the reliability of the RESI for genetic studies, and 

then use this methodology to study the genetic architecture of wood density and bark thickness 

in E. globulus, with a focus on understanding the correlated patterns of genetic variation both 

within and among subraces of this species.  
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4.2. Materials and methods 

4.2.1. Field trials and traits assessed 

Two E. globulus field trials, Salmon River [SR] and Togari [TO] in the north-west (NW) 

Tasmania (Figure 4.1), were used for the assessment of all traits. These trials were established 

in 2005 on ex-forest sites. The sites have similar past climates but have different soil types 

(Hamilton et al. 2013; O’Reilly-Wapstra et al. 2013). The planted seedlings were raised from 

open-pollinated seeds collected from wild trees representing the 13 E. globulus subraces 

(Dutkowski and Potts 1999; Potts et al. 2014). Spacing was 4.0m between and 2.3m within rows. 

In both trials, families were represented as single-tree plots in a randomised incomplete block 

design.  

At age 10 years 1 month (10 years hereafter), 3-5 trees from each of 10 families in every 

subrace were drilled with RESI. These trees were spread across the first 8 (SR) or 10 (TO) 

replicates of the trials, depending on when healthy trees, ≥10 cm DBH were first encountered 

for each of the chosen families. These trees were those that had been cored and studied by 

Downes et al. (2018) and (Chapter 3). In total 503 trees from SR and 456 trees from TO were 

used in the assessment. All trees were drilled once at 1.3 m using an IML PD400 instrument (IML 

Australia) with a needle width of 3.1 mm, feed speed of 200 cm/min and rotation speed of 2500 

RPM, attempting to pass through the centre of the tree. For each tree, a trace representing the 

profile of the resistance to the needle as it pierced the wood was produced. These traces were 

exported as text files using PD Tools Pro software and Eucalypt ResiProcessor 

(https://forestquality.shinyapps.io/EucalyptResi Processor/, accessed 6 January 2019) was used 

to calculate over- and under- bark diameter at breast height and mean cambium-to-cambium 

resistance (excluding bark) (ResistanceRESI) following Downes et al. (2018). Bark thickness was 

estimated as half the difference between the over- and under-bark DBHRESI measures.  

The RESI measurements of over-bark diameter (DBHRESI) and wood basic density (BD) 

were compared at the phenotypic-level with analogous traditional measurements by Downes 

et al. (2018). In brief, at Togari and Salmon River, diameter at breast height (DBH) over bark at 

1.3 m above ground level was measured using a diameter tape for every tree used for the RESI 

assessment at the age of 9 years 8 months (10 years hereafter) and 9 years 7 months (10 years 

hereafter) respectively. The same trees at the same age were also assessed for wood basic 

density by extracting cambium-to-cambium wood cores of 12 mm diameter taken at 1.1 m 

height above ground level using a motorised corer (Downes et al. 1997). Following Stackpole et 

al. (2010b), wood basic density (BD) was assessed from cores using the water displacement 

https://forestquality.shinyapps.io/
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method described by Smith (1954). The genetic architecture of these traits commonly measured 

is reported in Chapter 3. 

No direct estimates of bark thickness were available for comparison with the RESI 

measurements from the two NW trials, but direct measurements were available from a large 

base population trial at Latrobe (LA; Figure 4.1). This trial was established using 561 open-

pollinated families, collected from trees thorough out the geographical distribution of E. 

globulus. The trial comprised 5 replicates with 24 incomplete randomised blocks. Each block 

contained 30 plots with 2 trees of a family in every plot. This trial had a spacing of 4.0 m between 

rows and 2.5 m within rows. Here, bark thickness was measured from the bark window made 

while undertaking a Pilodyn assessment of the 5.5 year-old (hereafter referred to as six years) 

trail for wood density (Dutkowski and Potts 1999). In this case, the bark depth was measured by 

resting the Pilodyn on the stem and manually pushing the Pildyn pin until it hit the wood 

exposed by the bark window. The Pilodyn wood penetration and bark thickness data from this 

trial were used in previous studies by MacDonald et al. (1997) and Dutkowski and Potts (1999), 

respectively. The LA trial had 107 families and 11 subraces common to the NW trials, thus our 

bark thickness comparison was based on subrace and family-level correlations 

4.2.2. Statistical Analyses 

For each trial, univariate analyses of the data were undertaken in ASReml (Gilmour et 

al. 2015a; see also - Isik et al. 2017) by fitting the model: 

y = µ + replicate + subrace + family(subrace) + residual    Model 1 

where y is the vector of observations, µ is the grand mean, and random effects (in italics) are 

replicate, subrace, family within subrace (family(subrace)) terms and the residual. As bark 

thickness is positively related to tree size, a size-adjusted estimate of bark thickness was 

analysed by fitting DBH in Model 1 as a covariate, and thus all analyses refer to adjusted bark 

thickness (Adj.BTRESI). Estimated variance components were used to calculate the narrow-sense 

heritability (hop
2 ) of the variance within subrace following Griffin and Cotterill (1988): 

hop
2

 
 = 

σa
2

 

σp
2

 

 

σa
2 =

σf(s)
2

0.4
 

σ
p

2= σf(s)
2  + σe

2 

where σa
2 is the additive genetic variance within subraces that is estimated using the variance 

between families  (σ𝑓(𝑠)
2 ). 
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We assumed an average coefficient of relatedness (r) of 0.4. based on Griffin and 

Cotterill (1988) considering average outcrossing rate of 70% for open-pollinated progenies, 

which is a widely used assumption for this species (Stackpole et al. 2010a; Stackpole et al. 2010b; 

O’Reilly-Wapstra et al. 2013). σ𝑝
2  is the phenotypic variance component and σ𝑒

2 is the residual 

variance. Following Yang et al. (1996) and Latta (1998), the quantitative inbreeding coefficient 

(QST) was estimated to understand the degree of quantitative genetic divergence between 

subraces: 

QST = 
σ𝑠

2

σ𝑠
2 + 2 σ𝑎

2  

 where σ𝑠
2 is the variance between subraces.  

Following Dutkowski and Potts (2012), a two-tailed likelihood ratio test (LRT) was 

undertaken for each trait to test QST against the mean FST as well as the maximum FST derived 

from eight putatively neutral microsatellite markers (0.09, Steane et al. 2006), of two studies 

(0.158, Astorga et al. 2004; Steane et al. 2006). FST indicates the genetic differentiation between 

populations through random drift or mutation. While these microsatellite studies sampled 

different E. globulus trees to the present study, they were from multiple populations (200 trees 

from 43 provenances - Astorga et al. 2004; 340 trees from 10 races - Steane et al. 2006) from 

across a similar geographic range. Under appropriate assumptions (Edelaar and Björklund 2011; 

Meirmans and Hedrick 2011), a significant difference between QST and FST signals that divergent 

(QST > FST) or stabilising (QST < FST) natural selection across the species range has impacted directly 

or indirectly on the trait (Latta 1998; Steane et al. 2006; Leinonen et al. 2013). 

The correlations (𝑟1,2) whether type-A (intra-site, inter-trait) or type-B (inter-site, same 

trait) were estimated following Jordan et al. (1999): 

r1,2 = 
σ1,2 

√σ
1
2 x σ

2
2 

 

where, 𝑟1,2 is the correlation between trait 1 and trait 2, σ1,2 is the covariance between the traits, 

and σ1
2 and  σ2

2 are the respective traits variance components. These correlations were obtained 

with ASReml by extending Model 1 to the multivariate level (see Isik et al. 2017 for examples). 

We fitted an unstructured (US) residual covariance matrix and a correlation matrix with 

heterogeneous variances (CORGH) for each fitted random term. 
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Figure 4.1 The geographic variation in subrace least-square means for adjusted bark thickness 
(Adj. BTRESI; mm), pooled across the two Eucalyptus globulus trials at Salmon River and Togari. 
Subrace abbreviations are shown and are for North-eastern Tasmania [NET], South-eastern 
Tasmania [SET], Southern Furneaux [SF], Western Tasmania [WT], Southern Tasmania [ST], St 
Helens [StH], King Island [KI], Western Otways [WOt], Coastal Plain [CP], Recherche Bay [RB], 
Eastern Otways [EOt], Strzelecki Ranges [StrR] and Flinders Island [FI]. Trial site locations at 
Salmon River, Togari and Latrobe are also shown by the black circle symbols. Large green circles 
correspond to subraces with thick bark, grading into large red triangles that correspond to 
subraces with thin bark.
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The genetic stability (genotype by environment interaction [GxE]) of traits across the two north-

west trials (SR and TO) were tested using type-B genetic correlations following Burdon (1977). 

Type-B correlations were estimated using bivariate analyses where measurements of the same 

trait from different trials were treated as separate variables. In this case, residual and replicate 

covariances across trials were assumed independent (i.e. covariances/correlations were 

constrained to zero) and, provided significant variance was evident for both traits, genetic 

correlations were estimated at the family and subrace levels. Following Stackpole et al. (2011) 

a one-tailed LRT was used to test the deviation of these correlations from one, each test 

constraining the correlation at either the subrace or family level. 

Type-A genetic correlations between RESI and traditional measurements were similarly 

estimated for DBH and wood basic density for the NW trials but using a four-variate version of 

Model 1. In this case, across-site residual and replicate variances across trials were considered 

independent (i.e. covariances/correlations were constrained to zero), and 

covariances/correlations only estimated where the traits were measured from the same trees 

in the same trial. The pooled intra-site correlations among traits were estimated by separately 

constraining the subrace and family correlations for Togari and Salmon River to be equal. These 

type-A correlations were tested against zero using a two-tailed LRT. To test the measurements 

of bark thickness, a tri-variate version of Model 1 (including DBH as a covariate) was used with 

observations from three different sites (SR, TO and LA). However, in this case, the correlations 

of the RESI estimates of bark thickness from the two north-west (SR and TO) trials with the 

Pilodyn estimates from the LA trial were constrained to be equal, providing a single estimate of 

the correlation between the different measurement techniques at both the subrace and family 

within subrace levels. Correlations between traditional and RESI measurements of the same 

trait were tested against one and zero using one- and two-tailed LRTs, respectively.  

Tests for associations between subrace trait means and targeted subrace home-site 

climate variables were undertaken using a Pearson product moment correlation using the 

‘cor.test’ function of the stats package in R (R Core Team 2018). Subrace least-square means 

were estimated with ASReml by treating subrace as a fixed effect in Model 1. The climate at the 

provenance origin was characterised using two bioclimatic variables (TSPAN and TVAR) 

estimated as their mean during the 1976-2005 period with ANUClim v6.1 (Xu and Hutchinson 

2013), which reflects biologically important facets of home-site temperature. 
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4.3. Results and discussion 

There was little difference in the grand means estimated for Salmon River (SR) and 

Togari (TO), reflecting their proximity and similar high-rainfall climates (Hamilton et al. 2013; 

Chapter 3). All traits assessed were found to be heritable, exhibiting significant family and 

subrace variance (Table 4.1). The type-B genetic correlations between these two NW trials for 

every trait were not significantly different from one at subrace as well as family level, consistent 

with the studies of other traits from these trials, including growth (Chapter 3) and disease 

susceptibility (TG05 vs SR05 - Hamilton et al. 2013). This absence of significant GxE is noteworthy 

as DBH is one of the traits most sensitive to GxE in E. globulus (Costa e Silva et al. 2006; Callister 

et al. 2011; Salas et al. 2014). Accordingly, the data from the NW trials (Salmon River and Togari) 

were pooled for studying the inter-trait correlations. 

One of the key objectives of this study was to understand the genetic relationship 

between the traditional and RESI methods in the assessment of growth, wood density and bark 

thickness. All three traits assessed using RESI were highly genetically correlated with their 

traditional measurements at both the subrace and family levels.  The correlation between DBH 

measured using the traditional method and RESI was not significantly different from 1 at the 

family (rfam = 0.99 ± 0.01) and subrace (rsub = 1.0 [at the boundary of the parameter space]; Figure 

4.2a) levels. This highly significant genetic correlation in the present study supports the use of 

RESI for E. globulus breeding and genetic studies. However, there may be an issue if there is a 

bias in the selection of samples assayed with RESI. Our results presented (Table 4.1 and Figure 

4.2) are based only on the subset of trees assessed for RESI.  In the present case, there was a 

size limit to the trees assessed as only trees above 10 cm DBH were initially cored and thus, 

trees with DBH below 10 cm were not drilled with RESI. This selection design resulted in the 

over-estimation of DBH for one poor-performing subrace (St Helens, results not shown).  

The ResistanceRESI measures were also highly genetically correlated with the traditional 

method of estimating basic density from cores, as the LRTs indicated the two were not 

statistically different from one at the family (rfam = 0.95 ± 0.04) or subrace (rsub = 0.99 ± 0.01; 

Figure 4.2b) levels. This finding was similar to loblolly pine (Pinus taeda) where a strong genetic 

correlation between RESI and core basic density (>0.90) was reported (Isik and Li 2003). Such 

high correlations for E. globulus were expected based on the previously reported phenotypic R2 

(>0.66) values (Downes et al. 2018). In the case of bark thickness, no traditional measurements 

were available from the trees assessed with RESI. However, the same families had been assessed 

for bark thickness using the bark window made during Pilodyn assessment of a trial on a dry 
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Tasmanian site (Latrobe) (pilodyn data reported in Stackpole et al. 2010a). This trial exhibits high 

GxE compared to the two wetter NW trials for growth but not for wood properties (Chapter 3). 

In the present study, the genetic correlations of RESI measured bark thickness (Adj.BTRESI) with 

the Pilodyn measured bark thickness (from Latrobe - Figure 4.1) were very high at the subrace 

(0.96 ± 0.03) and family (1.0; at the boundary of the parameter space) levels, providing further 

validation for the RESI measurements. This high value is particularly noteworthy as our 

comparison of bark thickness measured across sites confounds different measurement 

techniques and growth GxE, although low GxE is expected for bark thickness (E. urophylla - Wei 

and Borralho 1997; E. globulus - López et al. 2002). In addition to these high correlations, 

estimates of the heritability and subrace differentiation (QST) using the traditional and RESI 

methods for DBH and wood basic density (core BD versus ResistanceRESI) were also comparable 

(Table 4.1), as were the genetic correlations among traits (DBHRESI-ResistanceRESI versus DBH-BD 

and ResistanceRESI-Adj.BTRESI versus BD-Adj.BTRESI; Table 4.2).  Thus, we conclude that the RESI 

technique can confidently replace the traditional assessment methods in breeding and genetic 

studies for the traits assessed.  

Bark thickness had the highest QST (0.64) of our studied traits (Table 4.1). These QST 

estimates surpass the previously reported QST estimate for bark thickness in E. globulus (0.228 - 

Steane et al. 2006) and are among the highest values reported for any trait in this species (Figure 

4.3). Our QST estimates for bark thickness were significantly greater than the mean and 

maximum FST for E. globulus (Table 4.1), signalling that divergent selection across the species 

range (Leinonen et al. 2013) has led to subrace differentiation in this trait (Figure 4.1). The E. 

globulus subraces broadly exhibited a latitudinal cline in bark thickness (negative degrees south; 

Pearson’s correlation coefficient r = 0.54, P = 0.211), with bark thickness tending to be higher in 

mainland than Tasmanian subraces and increasing northward within the more-or-less 

continuous distribution on the east coast of Tasmania (Figure 4.1). This geographic pattern of 

variation is similar to that reported in other studies at the provenance level (Dutkowski and 

Potts 1999; López et al. 2001). 
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Table 4.1 Site-level means and genetic parameters estimated from two 10-year old field trials 
of Eucalyptus globulus in NW Tasmania (Salmon River [SR], Togari [TO]) for over-bark stem 
diameter at breast height (DBHRESI and DBH), wood basic density (ResistanceRESI and BD) and DBH 
adjusted bark thickness (Adj.BTRESI) 
 

    DBHRESI (mm) cDBH (mm) ResistanceRESI cBD (kg/m3) Adj.BTRESI (mm) 

Mean SR 173.4 ± 42.1  169.3 ± 39.5 40.5 ± 4.2 495.8 ± 35.6 11.42 ± 3.5 
  TO 170.8 ± 41.1  169.1 ± 39.4 40.6 ± 4.2 503.7 ± 33.6 10.83 ± 3.3 

h𝑜𝑝
2  SR 0.38 ± 0.12*** 0.43 ± 0.12 *** 0.45 ± 0.12*** 0.35 ± 0.11*** 0.30 ± 0.12** 

  TO 0.21 ± 0.12* 0.20 ± 0.12 *** 0.36 ± 0.12*** 0.34 ± 0.12*** 0.26 ± 0.12** 

QST SR 0.12 ± 0.07*** 0.11 ± 0.06 *** 0.18 ± 0.09*** 0.21 ± 0.10*** b0.63 ± 0.14 *** 

  TO a0.30 ± 0.16***  0.28 ± 0.16 *** 0.21 ± 0.11*** 0.19 ± 0.10*** b0.64 ± 0.15 *** 

 

The table shows grand mean and its standard deviation (mean ± SD), the narrow-sense 

heritability estimate with its standard error (h𝑜𝑝
2 ± SE, significant difference of family variance 

from zero based on a one-tailed likelihood ratio test is indicated as asterisks) and quantitative 
inbreeding coefficient with its standard error (QST ± SE, significant difference of subrace variance 

from zero based on a one-tailed likelihood ratio test is indicated as asterisks). h𝑜𝑝
2  and QST values 

shown were calculated assuming 70% outcrossing. Asterisks indicate the results of the test of 
significance as ns p≥0.05; * p<0.05; ** p<0.01; *** p<0.001.  
a QST is significantly different from the mean FST (0.09) of Steane et al. (2006) at the 0.05 level of 
significance. 
bQST is significantly different from the maximum FST of any locus (0.158) from the studies of 
Astorga et al. (2004) and Steane et al. (2006) at the 0.05 level of significance. 
c  (Chapter 3)
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Figure 4.2 Subrace least-square means with standard errors for (a) DBH and (b) Basic density in 
Eucalyptus globulus, showing the association between RESI measured values and traditional 
methods. The pooled intra-site subrace correlations (rsub) were tested against one and found to 
be at the boundary of the parameter space for DBH (rsub = 1.00) and was non-significant for Basic 
density (rsub = 0.99 ± 0.01)   
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In terms of climate-trait associations, we target specific traits to test based on the 

reported trends in Dutkowski and Potts (1999). These authors report a positive locality-level 

association between bark thickness and the home-site temperature annual range (TSPAN r= 

0.56, P<0.01 after Bonferroni adjustment), which was consistent with the positive association 

detected at the subrace level in the present study (TSPAN r = 0.77, P = 0.043). Dutkowski and 

Potts (2012) previously reported that the temperature seasonality (TCVAR) at the subrace origin 

was positively correlated to the tolerance of the subraces to drought damage. They also 

reported a negative correlation of drought damage with bark thickness and wood density 

(Dutkowski and Potts 2011), which is consistent with the correlations with temperature 

seasonality observed in the present study (TCVAR with BT r = 0.82, P = 0.023 and wood basic 

density r = 0.85, P=0.016).  

With subrace variation in both bark thickness and wood density significantly correlated 

with the same climatic variable, we tested for the genetic association between these two traits 

at the subrace and within subrace levels. Bark thickness (Adj.BTRESI) was significantly positively 

correlated to the wood density at the subrace level (ResistanceRESI 0.61; BD 0.75 - Table 4.2). 

When traits are influenced by divergent selection, such parallel patterns of variation may result 

from selection acting on one of a pair of pleiotropically related, genetically correlated traits (i.e. 

correlated response to selection - Falconer and Mackay 1996) or be independent responses to 

the same or independent, but spatially correlated, selection gradient(s) (selective covariance - 

Armbruster and Schwaegerle 1996). The magnitude of the genetic correlation between these 

two traits, when measured within genetic groups (e.g. subrace) compared to that between 

genetic groups, provides information that helps to differentiate these two hypotheses involving 

divergent selection (Armbruster and Schwaegerle 1996; Gauli et al. 2015). An insignificant 

within-group genetic correlation would be consistent with selection acting independently on 

cospecialized traits and thus selective covariance Whereas, a significant within-group positive 

genetic correlation would signal the traits are co-dependent (pleiotropy has constrained 

evolution) or interdependent and correlational selection has shaped variation in the functionally 

related trait (Peiman and Robinson 2017). In the present case, the family level (within-group) 

genetic correlation between bark thickness and either ResistanceRESI or BD was non-significant 

(Table 4.2), suggesting trait co-specialisation and that selective covariance accounts for the 

subrace-level correlations between wood density and bark thickness (Peiman and Robinson 

2017). However, while weaker and not statistically significant, genetic correlations were in the 

same direction (0.33 and 0.26) as that observed at the subrace level (0.61 and 0.75), the 
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possibility that these two traits are in some way weakly pleiotropically related or functionally 

interdependent cannot be dismissed.  

Adjusted bark thickness was not significantly genetically correlated with DBHRESI at 

either the subrace or family levels in the present study (Table 4.2), although in some other 

species a positive genetic correlation has been reported (Eucalyptus urophylla - Wei and 

Borralho 1997; E. urophylla × E. grandis hybrids - Retief and Stanger 2009). The within subrace 

variation in bark thickness had a moderate narrow-sense heritability (0.26 – 0.29; Table 4.1). 

Our phenotypic adjustment for tree size using DBHRESI as a covariate meant our measure of bark 

thickness was also uncorrelated with DBH at the genetic level (family or subrace, Table 4.2), 

consistent with previous reports by López et al. (2002). While there were significant subrace and 

family variations in bark thickness, this had no practical effect on the genetic rankings for stem 

diameter as the subrace and family level correlations between under- and over-bark DBH 

measures were effectively one (1.0; at the boundary of the parameter space). Wood density 

and DBH were not significantly correlated at either family or subrace level (DBHRESI-ResistanceRESI 

or DBH-BD; Table 4.2), affirming the previously reported low genetic correlations between DBH 

and wood basic density in E. globulus (Stackpole et al. 2010a; Salas et al. 2014).  

 

Table 4.2 Genetic correlations (± standard error) among DBHRESI, ResistanceRESI, Adj.BTRESI, DBH 
and Basic density (BD) at the subrace (Subrace) and family within subrace (Family) levels of 
Eucalyptus globulus. 
 

 Level 
Type-A genetic 
correlation 

DBHRESI vs ResistanceRESI Subrace -0.21 ± 0.33ns 
 Family 0.11 ± 0.17ns 
aDBH-BD Subrace -0.12 ± 0.31ns 
 Family -0.06 ± 0.15ns 
DBHRESI - Adj.BTRESI Subrace 0.11 ± 0.31ns 
 Family -0.09 ± 0.22ns 
ResistanceRESI - Adj.BTRESI Subrace 0.61 ± 0.21* 
 Family 0.33 ± 0.18ns 
BD - Adj.BTRESI Subrace 0.75 ± 0.16** 
 Family 0.26 ± 0.18ns 

   
Given are the pooled intra-site correlation coefficients of two trials in NW Tasmania (Salmon 
River and Togari) which were tested against zero and significance levels based on two-tailed 
likelihood ratio test are indicated as ns p≥0.05; * p<0.05; ** p<0.01; *** p<0.001. a (Chapter 3) 
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Figure 4.3 QST and h𝑜𝑝
2  estimates with standard errors for traits reported in the present and 

other studies of Eucalyptus globulus. The current estimates for the RESI derived adjusted bark 
thickness values (Adj.BT) from the two NW trials studied are circled. The figure follows that 
presented in Dutkowski and Potts (2012) with updated data from Hamilton et al. (2013), 
O’Reilly-Wapstra et al. (2013), Chapter 3 and the present study. The solid horizontal line 
indicates the mean FST of Steane et al. (2006) and the dotted line indicates the maximum FST of 
any microsatellite locus (see Table 4.1 footnote). The traits plotted include bark thickness (Bark), 
Teratosphaeria leaf disease (Disease), drought damage (Dry), flowering precocity (Flower), stem 
height and diameter (Growth), stem straightness (Form), juvenile leaf size and shape traits (Leaf), 
sawfly damage (Pest), the onset of vegetative phase change (Phase), survival (Survival), wood 
density and chemistry (Wood).
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4.4. Conclusion 

There was no noteworthy difference in genetic parameter estimates for DBH, wood 

density and bark thickness measured using RESI compared to those estimated using traditional 

measurements. This finding combined with the high genetic correlations reveals that the non-

destructive RESI measures of DBH, wood density and bark thickness of Eucalyptus globulus are 

as reliable as analogous traditional measurements for genetic studies The simultaneous 

assessment of these three traits using RESI change the cost of trial assessment, but would allow 

more wood density measurements to enhance genetic gain from breeding. Although in the 

present study the RESI was used in a progeny trial established for breeding purposes, the results 

highlight the potential of this tool for ecological studies of wood density and bark thickness, as 

many ecological responses of trees, especially their adaptability to drought, are associated with 

these traits. 
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Chapter 5. Heterosis and genetic architecture of growth and wood 

properties in an inter-race diallel of Eucalyptus globulus 

5.1. Introduction 

Forest trees are foundation species which dominate a large component of the world’s 

terrestrial ecosystems (Whitham et al. 2006; FAO 2010). However, due to their large size, long-

life cycle and complex genetic structure, understanding of the genetic architecture of traits of 

ecological and economic importance in forest trees is challenging (Petit and Hampe 2006; White 

et al. 2007). Forest tree species frequently exhibit marked genetic variation across their 

geographic range (Harfouche et al. 1995a; Boshier and Billingham 1999; White et al. 2007; 

Kremer et al. 2014) and understanding the manner in which within and between population 

differences are inherited is important from multiple perspectives. Within populations, the levels 

of additive genetic variation, heritability and genetic correlation among traits determine the 

possibilities for, and constraints to, evolutionary changes (Armbruster et al. 2014; Kremer et al. 

2014; Peiman and Robinson 2017). From an evolutionary perspective, an understanding of the 

patterns of population differentiation provides insights into the relative roles of drift and 

selection in shaping gene pools (Steane et al. 2006; Eckert et al. 2008; Kremer et al. 2014). A 

knowledge of the genetic basis of population differentiation and the consequences of their 

crossing is becoming increasingly relevant to forest conservation and restoration, as population 

mixtures are being used to avoid inbreeding (Frankham 2015; Hamilton et al. 2017a) and 

increase resilience to climate change (Aspinwall et al. 2015; Prober et al. 2015; Aitken and 

Bemmels 2016). Such issues are also relevant to tree breeding where the genetic gain is 

dependent on exploiting genetic differences both between and within populations (Dhir and 

Mohn 1976; Eldridge et al. 1993; White et al. 2007). 

Inter-population crossing, involving different provenances, races or subspecies is often 

used in tree breeding to avoid inbreeding depression and capture heterotic effects (Ying 1978; 

Schmidtling and Nelson 1996; Joseph et al. 2000; Johnston 2001). In forest trees, such crossing 

has generally revealed positive heterosis for growth (Ying 1978; Harfouche et al. 1995b; 

Harfouche et al. 2000; Joseph et al. 2000; Volker et al. 2008; Costa e Silva et al. 2014). However, 

in other plants more varied results have been reported, and inter-provenance crossing in 

Arabidopsis thaliana (Oakley et al. 2015) and Primula vulgaris (Barmentlo et al. 2018) can even 

result in the reduction in fitness of the progeny, termed outbreeding depression (Waser and 

Price 1989; Tallmon et al. 2004; Oakley et al. 2015; Barmentlo et al. 2018). Although the 
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underlying mechanism is not very clear, suggested causes for outbreeding depression are mal-

adaptation (a dilution of adaptive parental genes due to hybridization), chromosomal 

rearrangements as well as the breakdown of the gene complexes linked to adaptation and thus 

disrupted epistatic interactions (Edmands 2007; Barmentlo et al. 2018). Moreover, some 

evidence in plants suggests that there is an optimal degree of genetic divergence between 

parents for the expression of heterosis, which represents a balance between inbreeding and 

outbreeding depression (Waser and Price 1989; Grindeland 2008; Ayre et al. 2019). When there 

is spatial genetic structure within native populations (Jones et al. 2007), such divergence is 

reflected in crossing success being proximity-dependent (Hardner et al. 1998). Selfing or 

biparental mating among relatives can lead to inbreeding depression (Uyenoyama 1986; Baskin 

and Baskin 2015) which has been identified and widely studied in forest trees (Charlesworth and 

Charlesworth 1987; White et al. 2007; Baskin and Baskin 2015). In contrast, there are few 

studies of outbreeding depression at either the inter-specific level (Potts et al. 1992; López et al. 

2000b; Costa e Silva et al. 2012; Larcombe et al. 2014) or intra-specific level (Harfouche et al. 

1995b; Hardner et al. 1998; Stacy 2001; Goto et al. 2011).  

Another important factor in determining offspring performance is the directionality of 

crossing, in terms of whether a parent is used as a male or a female. Any asymmetry in 

performance will impact tree breeding operations as well as the directionality of gene flow in 

nature. Reciprocal effects may be due to maternal (general reciprocal) and non-maternal 

(specific reciprocal) effects (Cockerham and Weir 1977; Lynch and Walsh 1998; Wu and 

Matheson 2001), hereafter referred to as maternal and non-maternal reciprocal effects 

respectively (López et al. 2003). These effects arise either from environmental or genetic causes 

(Roach and Wulff 1987; Rossiter 1996; Zas et al. 2013). Maternal effects occur when the genetic 

or environmental characteristics of a mother influence the phenotype of its progeny, beyond 

the direct inheritance of nuclear alleles (Roach and Wulff 1987; Lynch and Walsh 1998). There 

is considerable evidence for maternal effects in plants, including forest trees, for seed traits, 

including dormancy, germination, as well as early-age performance (Roach and Wulff 1987; 

Lindgren and Wei 1994; López et al. 2003; Rix et al. 2012; Vivas et al. 2017; Vivas et al. 2019). 

Environmentally induced maternal effects may be caused by factors affecting maternal seed 

provisioning as well as an embryonic epigenetic ‘memory’ (Holeski et al. 2012; Bräutigam et al. 

2013; Zas et al. 2013; He and Li 2018). The most obvious maternal genetic effect is that due to 

the uniparental inheritance of organellular DNA, which in most angiosperms is inherited 

maternally (Hagemann 2004). However, while maternal and non-maternal reciprocal effects 

may impact offspring performance, there is limited information on their importance compared 
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with the traditional additive and dominance sources of genetic variation, especially in forest 

trees. Moreover, while asymmetry in inter-specific hybrid success and performance has been 

shown in forest trees (Potts and Dungey 2004; Hamzeh et al. 2007; Zhu et al. 2017), only a few 

studies have addressed such issues in intra-specific crossing (Lindgren and Wei 1994; Harfouche 

and Kremer 2000).  

Most forest tree species undergoing domestication are only a few generations removed 

from the wild, and progeny testing is usually undertaken using open-pollinated seed (Harfouche 

et al. 2012; Ingvarsson and Dahlberg 2019). Therefore, most of the knowledge of trait genetic 

architecture in forest trees, including patterns of provenance variation and quantitative genetic 

parameters such as heritability, comes from the study of open-pollinated progenies (see Carson 

2019 for examples). Without pedigree recovery using molecular markers (Bush et al. 2011; 

Klápště et al. 2014; El-Dien et al. 2016), open-pollinated progeny trials do not allow the 

estimation of non-additive genetic effects and therefore forest tree breeding is mainly focused 

on exploiting additive genetic variance (White et al. 2007). However, even then the accuracy of 

additive variance estimates and breeding value predictions may be compromised due to 

unknown male parentage and levels of inbreeding, particularly selfing (Charlesworth and 

Charlesworth 1995; Lynch and Walsh 1998; Walsh 2005). Large full-sib family crossing schemes 

are needed for the partitioning of genetic variations into additive and non-additive components. 

In tree species, additive genetic effects generally appear to be more important than non-

additive effects for traits such as growth (Pinus taeda L. - Isik et al. 2003; Baltunis et al. 2007; 

Pinus pinaster - Lepoittevin et al. 2011; Callitropsis nootkatensis - Russell et al. 2015), wood 

density (Pinus pinaster Ait. - Pot et al. 2002; Eucalyptus globulus - Costa e Silva et al. 2004; Picea 

abies - Hannrup et al. 2004), wood chemistry (Pinus pinaster Ait. - Pot et al. 2002), and insect 

resistance (Picea abies - Mottet et al. 2015). However, there are studies suggesting substantial 

non-additive genetic control of some traits, particularly those associated with growth (López et 

al. 2003; Costa e Silva et al. 2004; Waldmann et al. 2008; Berlin et al. 2019). Non-additive genetic 

effects include various components such as dominance and epistatic effects, as well as maternal 

and non-maternal reciprocal effects (Falconer and Mackay 1996; Lynch and Walsh 1998), but 

most crossing designs in forest trees only allow separation of the dominance (4 x specific 

combining ability) and additive genetic components (White et al. 2007).  

Within eucalypts species, the quantitative genetic architecture of traits has not been 

well-studied using full-sib family crossing designs, with the exception of a few studies (Van Wyk 

1977- E. grandis; Hardner and Tibbits 1998- E. nitens; see below for E. globulus). Published 

studies on the effect of inter-population crossing have only been reported for Eucalyptus 
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globulus. Eucalyptus globulus (Tasmanian blue gum), endemic to south-eastern Australia and 

islands of Tasmania (Nicolle 2006), is part of a complex of four intergrading taxa (E. maidenii, E. 

bicostata, E. pseudoglobulus and E. globulus; Jones et al. 2012). E. globulus (including its 

integrade populations) is widely grown in temperate regions of the world and is the subject of 

domestication programmes in at least 10 countries, mainly for pulpwood production (Potts et 

al. 2004). The species is highly variable for traits relevant to breeding with large differences 

occurring between geographic races (Dutkowski and Potts 1999; Steane et al. 2006). Its large 

flower and advances in pollination techniques (Potts et al. 2008) has made control crossing and 

full-pedigree control the norm in many breeding programmes (Potts et al. 2014). While the 

species can be vegetatively propagated and there is clonal deployment and testing in countries 

such as Chile, Portugal, Spain and Uruguay (Costa e Silva et al. 2004; Potts et al. 2008; Araújo et 

al. 2012), deployment by seed is more common, particularly in Australia (Potts et al. 2008). With 

the development of mass supplementary pollination techniques for the species (Patterson et al. 

2004a), seed deployment not only includes seed from open-pollinated seed orchards but also 

full-sib families from or single-pollen crossing or half-sib families from polymix pollen (Potts et 

al. 2008). The extent to which selection traits are under non-additive genetic control and 

affected by maternal and non-maternal reciprocal effects is thus a key issue for both breeding 

and deployment of this species. In the case of breeding, this will affect the genetic evaluation 

models and accuracy (Falconer and Mackay 1996; Hodge et al. 1996; Hallander and Waldmann 

2009; Denis and Bouvet 2013; Bouvet et al. 2016). From a deployment perspective, this will 

determine the extent to which additional genetic gain can be captured by deploying targeted 

full-sib families (Jansson and Li 2004; Wu and Matheson 2004). In the case of full-sib family 

production, a key issue is whether the directionality of crossing matters as this will affect the 

economics of seed production (Collins and Callister 2010) as well as the accuracy of genetic 

predictions of performance (Wu and Matheson 2001; Potts et al. 2004). 

With most first generation crossing in the Australian National E. globulus Breeding 

Programme focused on inter-race hybrids (Potts et al. 2014), the magnitude of non-additive 

genetic effects such as inter-race heterosis, and the extent to which it varies between races is a 

key issue. The few studies in E. globulus of the relative importance of non-additive effects 

compared to additive have focused on specific combining ability (SCA)/dominance effects. 

These studies suggest that non-additive effects are more important for growth than for wood 

property traits, i.e. wood density and pulp yield (Hodge et al. 1996; Potts et al. 2004; Volker et 

al. 2008; Callister et al. 2011; Araújo et al. 2012; Callister et al. 2013; Hamilton et al. 2017b; 

Mora et al. 2019). Using the increased power of clonal replication of progeny, Costa e Silva et al. 
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(2004) was able to separate the additive, dominance and epistatic genetic effects on growth and 

wood density and found only the additive component was significant. However, few studies 

have separated the effects of inter- and intra-population crossing (Vaillancourt et al. 1995; 

Hodge et al. 1996; Volker et al. 2008). In most cases where inter-population (or race) crossing 

has been studied, mid-parent heterosis is reported (Vaillancourt et al. 1995; Hodge et al. 1996; 

Volker et al. 2008; Costa e Silva et al. 2014) which, as previously noted, may be confounded with 

many estimates of the levels of dominance variance within the species (Li et al. 2007; Callister 

et al. 2011). E. globulus is one of the few forest tree species where the importance of maternal 

and non-maternal reciprocal effects have been studied (Lopez et al. 2003; Rix et al. 2012; Costa 

e Silva et al. 2013a). As with most angiosperms, the chloroplast and mitochondria of E. globulus 

are maternally inherited (McKinnon et al. 2001; Vaillancourt et al. 2004), and there is some 

evidence to suggest that genetic variation in plastid genes may affect traits of adaptive 

significance (Kahrood et al. 2019). Maternal effects have been shown on the germination 

response of E. globulus seed subject to high temperature stress (Rix et al. 2012). López et al. 

(2003) found significant maternal and non-maternal reciprocal effects for early germination and 

nursery growth, but these effects on growth rapidly diminished with age after field planting, 

while additive genetic effects increased. While not statistically tested, Costa e Silva et al. (2013b) 

reported the maternal and non-maternal reciprocal variances were minor compared with 

additive variances for both growth and disease resistance.  

A complete diallel allows the estimation of additive and dominance variances, as well 

as maternal and non-maternal reciprocal effects, assuming no epistasis (Cockerham and Weir 

1977; Wu and Matheson 2001; López et al. 2003; Muñoz et al. 2014). However, implementing 

large scale diallel crossing designs in forest trees faces practical limitations and therefore, 

accurate estimation of these non-additive genetic variances is challenging. For example, to 

estimate the dominance variance with equal accuracy to that of the additive variance, about 20 

times more data is required (Misztal 1997). Diallel mating systems involve a large number of 

crosses on a relatively small number of parents to obtain good estimates of non-additive genetic 

effects.   Many studies of non-additive genetic effects in intraspecific crosses of eucalypts have 

been based on less than 10 parents or have sparse parental crossing (Hodge et al. 1996; López 

et al. 2003; Li et al. 2007; Costa e Silva et al. 2014), and it is only in recent years that larger trials 

have become available (Van den Berg et al. 2017), and at the intra-specific level, these mainly 

involve E. globulus (Costa e Silva et al. 2004; Araújo et al. 2012; Callister et al. 2013; Costa e Silva 

et al. 2017). The present study is based on the largest of these field trials which involves a diallel 

crossing scheme among parents from the three races of E. globulus, most important to the 
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National Breeding Programme. This trial has been previously used for the study of indirect 

genetic effects for growth and disease damage (Costa e Silva et al. 2013a; Costa e Silva et al. 

2017). The focus here is on inter-race heterosis and the genetic architecture of growth, wood 

density, pulp yield and bark thickness, with the specific aims of determining: 

(i) the magnitude and direction of the average inter-race heterosis, and whether this varies 

with trait, age, race and directionality of the cross. It is assumed that the growth traits 

will show positive mid-parent heterosis similar to previous studies in this and other forest 

tree species, but hypothesise that (a) increasing competition among trees will result in 

increasing magnitude of heterosis with age, and (b) heterosis will be less in crosses among 

the more divergent races; and 

(ii) the importance of dominance, maternal and non-maternal reciprocal effects within races 

relative to the additive genetic variation. It is hypothesised that dominance will be only 

important for growth traits and within race estimates of dominance variance will be 

inflated when not accounting for inter-race heterosis. It is also hypothesised that 

maternal and non-maternal reciprocal effects, particularly for later age growth and wood 

properties, will be insignificant.  

5.2. Materials and methods 

5.2.1.  Genetic material and crossing design  

This study used a progeny trial established using full-sib families from a diallel mating of 

E. globulus parents. The trial has been previously studied by Costa e Silva (Costa e Silva et al. 

2013a), and the design is summarised as follows (also depicted in Figure 5.1). For the mating 

programme, forty-eight E. globulus parent trees were selected which were first generation 

selections from Tree Breeding Australia (TBA; formerly Southern Tree Breeding Association) 

National E. globulus breeding programme (see Potts et al. 2014 for programme overview). These 

parents were from base population progeny trials in Australia. They originate from open-

pollinated seed lots collected from native trees in three races – Furneaux (F), Strzelecki Ranges 

(S) and Western Otways (W). These races effectively correspond to three of the 13 E. globulus 

races described by Dutkowski and Potts (1999), with the exception that one of the females in 

the Western Otways group was from the adjacent and closely related Eastern Otways race 

(Steane et al. 2006) which is part of the continuous distribution of E. globulus in the Otways 

region (Figure 5.1). Two of the races were from mainland Australia (Western Otways and 

Strzelecki Ranges) and one from the Bass Strait Islands (Figure 5.1). Molecular markers indicate 
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that Western Otways and Strzelecki Ranges races are more related to each other than to the 

Furneaux race (Steane et al. 2006). Approximately 77% of the first generation (G1) selections in 

the National E. globulus breeding programme come from these three races (Potts et al. 2014). 

The inter-race full diallel studied comprised successful crosses from a 30x30 crossing scheme 

which excluded selfs but included many reciprocals, and involved 10 parents from each of the 

three races, each of which was descended from a different base-population grandparent (Suitor 

et al. 2009a). In total, these parents produced 433 families and included 137 male-female 

combinations with full reciprocals. These families were supplemented with additional crosses 

from the same race combinations derived from the same generation of the breeding 

programme.  Thus, in total the inter-race diallel trial included 515 families produced from 51 

parents - (19 from Furneaux, 15 from Western Otways and 17 from Strzelecki Ranges). Of the 

51 parents, 48 were represented as females and 38 as males (Figure 5.1).  

5.2.2. Field trial and trait assessment 

The trial was established in August 2007 at Manjimup, Western Australia (34°13’34’’S, 

116°8’37’’E), outside the native range of E. globulus. It was established on an ex-pasture, high 

productivity site, with a mean annual rainfall of 987 mm and mean annual maximum 

temperature of 20.5 °C (Bureau of Meteorology 2020). The area was rip-mounded and strip-

sprayed with herbicide (Glyphosate and Simazine) prior to planting. Plants were fertilised at 

planting (135 kg/ha MAP and MOP®), and in the first (250 kg/ha of Agras®) and fourth (300 kg/ha 

of Urea) years after planting. The trial comprised 15 contiguous replicates, each consisting of 35 

rows and 18 columns within rows, with a spacing of 5.0 m between rows and 2.125 m between 

columns (i.e. within rows). In general, each family was represented once per replicate (single-

tree plots) and allocated randomly to a single-tree plot within each replicate using a row-column 

design (Williams et al. 2002). Surplus family positions in the design were filled with families from 

breeding crosses, as were diallel family positions which could not be filled due to insufficient 

plantable seedlings. These additional breeding families were excluded from the current analysis. 

In total, 7827 seedlings were planted from the inter-race diallel.  
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  Male parent  

 

  

Furneaux (F) 

n=15 

Strzelecki 

Ranges (S) 

n=12 
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n=11 
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Furneaux 

(F) n=18 

FF 

95  

(1547) 

FS 

47 

(723) 

FW 

31 

(471) 

Strzelecki 

Ranges (S) 

n=16 

SF 

87 

(1323) 

SS 

62 

(865) 

SW 

55 

(804) 

Western 

Otways (W) 

n=14 

WF 

62 

(979) 

WS 

45 

(672) 

WW 

31 

(443) 

 

Figure 5.1 Summary of the intra- and inter-race diallel of Eucalyptus globulus and the location of the three races involved – Furneaux (F), Strzelecki Ranges 
(S), Western Otways (W). The number of parents used as male and female (n) in each of the three races is shown, and within each cell of the mating design, 
the number of full-sib families and individuals (in parenthesis) planted is indicated beneath the abbreviation (in bold) used for each unique race combination. 
The shaded diagonal cells represent the intra-race crosses (FF, SS, WW) and the remaining cells represent the inter-race crosses (FS & SF, WS & SW, WF & 
FW). The map shows the distribution of the 13 races of E. globulus as defined by Dutkowski and Potts (1999). The three races used in the inter-race diallel 
crossing programme are indicated in red letters (modified from Potts et al. 2004) 
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All 15 replicates in the trial were assessed for diameter at breast height (1.3m; DBH) 

using a diameter tape at the age of 2 years 4 months (2 years hereafter - DBH2), 4 years 1 month 

(4 years hereafter - DBH4), 6 years 3 months (6 years hereafter - DBH6), and 8 years 1 month (8 

years hereafter - DBH8.  Survival percentage (Survival8) at the age of 8 years was also estimated 

as the presence or absence of an individual with the DBH measurements from that age. At 9 

years 2 months (9 years hereafter), three replicates were assessed for wood basic density (BD9), 

diameter (DBH9), and bark thickness (BT9) were derived from bark-to-bark traces obtained from 

IML Resi PD400 power drill (RESI) as explained in Chapter 4. Traces produced by RESI were 

transferred to PD Tools Pro software (https://forestquality.shinyapps.io/EucalyptResi 

Processor/, accessed 6 January 2019) and exported as text files for analysis. RESI resistance 

values were used to calculate the diameter and bark thickness using a customised script written 

in R (Downes et al. 2018; Chapter 4). Basic density was estimated using linear regression, 

relating variance in the mean RESI values to that of core basic density (Downes et al. 2018). Core 

basic density values were obtained from 12 mm diameter bark to bark cores taken from 200 

trees at the site immediately after RESI sampling. These 200 trees were chosen to represent the 

full range of observed RESI resistance values and were used to define the relationship between 

mean RESI values for a tree and its core basic density (BD). Core BD values were well correlated 

with the RESI values (r=0.83, P<0.001) and at a level comparable with calibration results 

reported for other E. globulus trials (Downes et al. 2018; Chapter 4). At the same time, swarf 

samples were taken from the same trees as those assessed with RESI to estimate Kraft pulp yield 

(KPY9) using near-infrared spectroscopy (NIRS). Swarf samples were taken from the outerwood 

(not including bark) at breast height by drilling to a depth of 45–50 mm using a 12 mm diameter 

Auger drill bit. Samples were immediately transferred into a paper envelope and air-dried. A 

Wiley Mini-mill with a 20-mesh screen was used to grind the swarf to woodmeal. Spectra were 

obtained from the woodmeal using a Bruker MPA FT-NIR instrument and KPY predicted using 

the multi-site and multi-species pulp yield model reported by Downes et al. (2009 & 2011). This 

model was developed based on the NIR spectra obtained from 1272 wood chip samples, from 

40 different eucalypt species from plantations and native forest. Meder (2015) reported a 

coefficient of determination, (R2) of 0.88 for NIR-predicted KPY obtained from outerwood swarf 

samples at breast height to the whole-tree KPY for eucalypts. Similar high R2 (0.82; n = 20) was 

also reported between NIR-predicted and whole-tree pulp yield for E. globulus by Stackpole et 

al. (2010b). 
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5.2.3. Data analysis 

Due to the high survival levels in the trial, genetic comparisons of survival were restricted 

to that of trees at the age of 8 years. Differences in survival were compared using homogeneity 

chi-square test statistics from the difference between the observed and expected number of 

trees alive and dead following Zar (1999) and implemented using the MS office Excel CHISQ.TEST 

function.  

For the remaining traits, genetic analyses were undertaken by fitting linear mixed 

models with ASReml™ (Version 4.1), which estimates variance components using restricted 

maximum likelihood (REML) (Gilmour et al. 2015b). These models included a numerator 

relationship matrix derived from a three-generation pedigree file (native grandparents - G0, 

selected parents - G1 and progeny - G2) with the male of the G1 parents unknown as they were 

open-pollinated progeny collected from the G0 trees in native stands. Linear mixed models were 

persued to estimate the fixed race effects, inter-race heterosis, random genetic effects including 

maternal and non-maternal reciprocal effects, and the additive as well as dominance variance 

within inter- and intra-race crosses (detailed below). The eight degrees of freedom associated 

with the fixed difference amongst the nine combinations of the three races (Figure 5.1) were 

partitioned in various ways, all of which produced effectively the same results for the random 

terms in the model. The main fixed effects partition involved fitting terms for cross-type (CT: 

intra- versus inter-race crosses; df = 1), the difference between the three intra-race crosses 

(Raceintra: SS vs FF vs WW, df = 2), the difference between the three inter-race crosses ignoring 

reciprocals (Raceinter: SF/FS vs SW/WS vs FW/WF, df = 2), and the difference between the inter-

race reciprocals (Recipinter: SF vs FS, SW vs WS and FW vs WF; df = 3).  

5.2.4. Maternal and non-maternal reciprocal effects 

The first analysis fitted a full model aimed at determining the significance of non-

maternal reciprocal and maternal effects: 

y = µ + Replicate + CT + Raceintra + Raceinter + Recipinter, + Row + Column + 

Additive + SCA + Maternal + Reciprocal + ε  

Model 1 

where y is a vector of observations on a trait, µ is the grand mean, Replicate is the fixed 

difference between trial replicates (for DBH: df = 14, for BD, BT and KPY: df = 2) and other fixed 

effects are as defined above. Random terms (italics) were Row (planting row), Position (position 

within planting row), Additive (individual-tree additive genetic effects ), SCA (specific combining 

effect ), as well as the Maternal (maternal) and Reciprocal (non-maternal reciprocal) effects, and 

ε was the vector of random residuals. The SCA effect was the full-sib family effect estimated 
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treating reciprocals as the same (AxB = BxA), whereas the Reciprocal effects (remaining 

unknown effects due to reciprocal crosses) were estimated using a factor coded such that 

reciprocal families are treated as different (AxB ≠ BxA). The Reciprocal term was only fitted for 

the subset of families for which a reciprocal cross was present. All random genetic effects refer 

to variation within races and their combinations. As bark thickness is positively related to tree 

size (Wei and Borralho 1997; Retief and Stanger 2009), a size-adjusted estimate of bark 

thickness was analysed by fitting DBH9 as a covariate in the model, and thus all analyses refer to 

adjusted bark thickness (Adj.BT9). The testing of the significance of the variance components were 

undertaken using one-tailed likelihood ratio tests (LRT; Gilmour et al. 2015b; Isik et al. 2017). In 

the case of the Reciprocal term, this was done by fixing it to zero and comparing this constrained 

model against the unconstrained Model 1. Using the variance components estimated using 

Model 1, the proportion of the non-maternal reciprocal variance to the total phenotypic 

variance were calculated: 

σpr
2

 
 =  σrecip

2
 
+ σma

2
 + σa

2
 + σSCA

2
 
+ σe

2
  

recip2 = 
σrecip

2
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2

 

 

where, σpr
2

 
is the total phenotypic variance; σrecip

2
 
is the non-maternal reciprocal variance 

obtained from the Reciprocal term, σma
2  is the maternal variance obtained from the Maternal 

term, σa
2  is the additive genetic variance obtained from the Additive term; σSCA

2
 is the SCA 

variance and σe
2 is the residual variance. recip2 is the proportion of the non-maternal reciprocal 

variance to the total phenotypic variance.  

 

Non-maternal reciprocal effects (Reciprocal) were generally not significantly greater 

than zero (see results) and this term was thus removed from Model 1 to form a reduced model 

to estimate and test the significance of the random maternal effect. This test was also 

undertaken by fixing the maternal term to zero and comparing against the unconstrained 

reduced model. Using the variance components estimated using this reduced model, the 

proportion of the maternal variance (ma2) was calculated: 
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where, σpm
2

 
is the phenotypic variance and the remaining terms are as described above but 

obtained from this reduced model. In most cases, the Maternal term was also not significantly 
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different from zero (see results) and therefore, both Maternal and Reciprocal terms were 

removed from further models. 

5.2.5.  Dominance and additive effects 

The following model was used to estimate and test the fixed effects and all the remaining 

components of variance: 

y = µ + Replicate + CT + Raceintra + Raceinter + Recipinter, + Row + Column + Additive 
+ SCA + ε 

Model 2 

where fixed and random terms are as described for Model 1.  

 

Using the variance components estimated using Model 2, the following genetic 

parameters were calculated: 
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where, σp
2

 
 is the phenotypic variance within races, pooled across the intra- and inter-race cross-

types removing replicate, row and position variation, h2 is the narrow sense heritability, D2 is 

the proportion of the dominance variance to the phenotypic variance and the remaining terms 

are as described above but obtained from Model 2, and estimated assuming no epistasis (Costa 

e Silva et al. 2004; Araújo et al. 2012). Variances, covariances and their standard errors were 

calculated based on restricted maximum likelihood (Gilmour et al. 2015b). The one-tailed LRT 

of the significance of σSCA
2  from zero were undertaken by comparing Model 2 with a constrained 

model where σSCA
2  was fixed to zero. The significance of σa

2 was tested fixing σa
2 and σSCA

2  to zero 

and comparing the likelihood of this model with that from the previously constrained model 

where σSCA
2  was fixed to zero. The least-square means (LSM) for each fixed effects were 

estimated using Model 2. The significance of the fixed effects were tested using the Wald F 

statistics following on the method proposed by Kenward and Roger (Gilmour et al. 2015b).  
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The percentage heterosis of the inter-race crosses with respect to intra-race crosses was 

estimated as follows: 

heterosis =
LSMinter - LSMintra

LSMintra
 x 100 

where heterosis is the percentage mid-parent heterosis, LSMinter and LSMintra is the least-square 

means of inter- and intra-race crosses respectively. In addition, the LSM of the six various cross 

combinations at the race level (FF, SS, WW, FS, WF and WS) were estimated using a modified 

version of Model 2 with only the terms Replicate and Race (with no conditioning) as fixed effects. 

The pairwise difference between each of these cross combinations was tested using a standard 

error of the pairwise differences (SED) and the percentage heterosis estimated for each race 

combination as described above but with the LSMintra term replaced with the average of the LSM 

of the specific intra-race combinations.  

To test whether the interaction between races influences the estimates of the SCA 

variance and dominance ratio, a model with an alternative parameterisation of the fixed 

effects was fitted:  

y = µ + Replicate + Racefemale + Racemale + Racefemale x Racemale + Row + Column + 
Additive + SCA + ε 

 
Model 3 

where the fixed effects of the female race (Racefemale df = 2), male race (Racemale, df = 2), and 

their interaction (Racefemale x Racemale, df = 4) were included. The estimates of σSCA
2  and D2 from 

this model (which were effectively the same as those estimated from Model 2) were compared 

to the model where the Racefemale x Racemale interaction term was removed. The later model is 

comparable to the treatment of race effects in a genetic group model where only additive 

genetic effects are considered. To test whether the σSCA
2  estimates were significantly different 

between these two models, a two-tailed likelihood ratio test was undertaken by constraining 

the σSCA
2  estimate in Model 3 to be equal to that obtained from the model with no fixed 

interaction term.  

5.2.6.  Genetic correlations 

Age-age genetic correlations for DBH and inter-trait genetic correlations among the 

traits assessed at age 9 years were determined using a bivariate version of the Model 2 and 

allowing for heterogeneous variances by using CORGH variance structures. For age-age 

correlations, DBH measured at two different growth periods were fitted as different traits.  
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These correlations were estimated following Jordan et al. (1999): 

𝑟1,2 = 
σ1,2 

√σ1
2 x σ2

2 
 

 
where, 𝑟1,2  is the correlation between age 1 and age 2 or trait 1 and trait 2; σ1,2  is the 

covariance between ages or traits; σ1
2 and  σ2

2 are the variance components of respective ages 

or traits. The genetic correlations were estimated at the Additive and SCA levels but only 

presented where the variance components of both traits at the level being tested were 

significantly greater than zero. The significance of the age-age correlations was tested from 

one using a one-tailed LRT; whereas the inter-trait correlations were tested from zero using 

a two-tailed LRT. In each case, the correlations were only constrained at the specific level 

being tested (Additive or SCA). ASREML uses an approximate likelihood technique based on 

first order Taylor series approximation (Gilmour et al. 2015a) 

5.3.  Results 

5.3.1. Between race effects 

While survival was high in the trial (overall Survival8 = 91%), the large sample size (n = 

7827) gave the power to statistically detect a marginally significant difference between cross-

types (CT: intra- versus inter-race) despite only a small difference in survival (χ1
2 = 5.11; P=0.024). 

Survival was slightly higher in the intra-race crosses (92.2%) than inter-race crosses (90.7%), 

reflecting inter-race heterosis of -1.63% (Table 5.1). When decomposed into pairwise contrasts 

this negative heterosis was due to slightly reduced survival of the Strzelecki Ranges x Western 

Otways crosses (WS) compared with the respective intra-race crosses (Figure 5.2; χ2
2 = 12.22; 

P=0.002). No significant differences in survival were detected between the reciprocal crosses of 

this combination of races (WS vs SW; χ1
2 = 0.13; P=0.716), and there was no specific parent or 

family combination which could explain the negative heterosis suggesting it is a general 

phenomenon of this specific race combination. No significant differences were detected in 

survival for the other race combinations (Figure 5.2).  

For the quantitative traits, significant differences between the intra- and inter-race crosses were 

detected for all traits except wood density (BD9) and bark thickness (AdjBT9) (Table 5.2). This 

heterosis was consistently positive and most evident in DBH where it increased with age from 

2.2% at age 2 years to 6.5% by age 8 years (Table 5.1). Pairwise comparison of the race 

combinations revealed that this heterosis was more than mid-parent heterosis and, while not 

statistically significant, the inter-race crosses out-performed the better intra-race cross in all 
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pairwise combinations in DBH8 (Figure 5.2), consistent with better-parent heterosis for growth. 

The significant (P<0.05) positive heterosis of 0.86% observed for pulp yield (KPY9 in Table 5.1), 

mainly reflected the significantly lower pulp yield of the Strzelecki Ranges race being on average 

inherited slightly above the mid-parent value in crosses with the other two races (Figure 5.2). In 

contrast, the significantly thicker bark observed in the Strzelecki Ranges race was on average 

inherited in an additive manner in crosses with the thinner-barked Furneaux and Western 

Otways races (Figure 5.2). Pulp yield and bark thickness were the only traits for which significant 

differences were detected among the intra- (FF, SS, WW) and inter-race (FS, WS, WF) crosses 

(Table 5.2-Raceintra and Raceinter terms respectively). The Strzelecki Ranges intra-race crosses had 

lower pulp yield, thicker bark and higher wood density than the intra-race crosses of Furneaux 

and Western Otways, these differences were only significant for pulp yield and bark thickness 

(Table 5.2 and Figure 5.2). In no case were the differences between the inter-race reciprocal 

crosses statistically significant (Table 5.2).  

5.3.2. Within-race genetic parameters 

Within-race variance ratios pooled across the intra- and inter-race cross-types are 

presented in Table 5.2. Non-maternal reciprocal effects (recip2) were insignificant in all traits 

assessed except bark thickness (P<0.05), but even then, it was very small compared to the 

additive and dominance effects. Similarly, maternal effects were generally insignificant, the 

exception being the earliest DBH assessment (DBH2) and pulp yield (KPY9). However, while 

statistically significant these effects explained ≤ 3% of the phenotypic variance within races 

(after removing the effects by replicate, row and positional effects), which is minor when 

compared to the combined additive and dominance genetic effects which accounted for 67% 

and 42% phenotypic variance in DBH2 and KPY9, respectively (Table 5.2). Based on these results, 

both maternal and non-maternal reciprocal effects were considered negligible and these terms 

were removed from models used for subsequent analyses. Using the reduced model (Model 2), 

additive variances (σa
2) were shown to be highly significant (P<0.001) for all traits and were the 

major source of phenotypic variation (Table 5.2). Narrow-sense heritabilities (h2) were high 

ranging from 0.40 to 0.60 across traits. The highest h2 estimate was for basic density (BD9), but 

even the DBH estimates were high (0.41 to 0.56). SCA variance was highly significantly (P<0.001) 

different from zero for DBH at all ages (data not shown). The dominance ratios D2  for DBH 

ranged from 0.10 to 0.19, with the dominance variance 22 to 34% the magnitude of the additive 

variance (Table 5.2). The SCA variance was insignificant for both wood properties (KPY9 and BD9) 

but was significant for bark thickness (Adj.BT9) where the dominance variance was 29% of the 

magnitude of the additive variance (Table 5.2).  
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Figure 5.2 Percentage survival and trait least-square means (Diameter [DBH], Kraft pulp yield 
[KPY], wood basic density [BD] and adjusted bark thickness [Adj.BT], where the age of 
measurement is shown as a subscript). for each cross combination tested in an E. globulus diallel. 
For each pairwise cross combination, the mean of the intra-race crosses is plotted with the mean 
of their respective inter-race cross. For the four quantitative traits, the standard errors of the 
means are shown and within each pairwise combination, common letters indicate means which 
are not significantly different based on pairwise comparisons exceeding the standard error of 
each difference (SED). For Survival8, the difference among the three crosses indicated within 
each plot was tested for significance using a homogeneity χ2  test and the significance is 
indicated as ns p>0.05 and ** p<0.01.
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Table 5.1 Percentage survival and least-square means (± standard errors) of the quantitative 
traits for two cross-types and the percentage inter-race heterosis for traits measured 
 

Trait Cross-type Mean % heterosis 

Survival8 Intra-race 92.2% -1.63* 

 Inter-race 90.7%  

DBH2 Intra-race 94.8 ± 2.4 2.20** 

 Inter-race 96.9 ± 2.4  

DBH4 Intra-race 130.2 ± 2.9 3.20*** 

 Inter-race 134.4 ± 2.9  

DBH6 Intra-race 152.4 ± 4.2 4.93*** 

 Inter-race 159.9 ± 4.2  

DBH8 Intra-race 166.4 ± 4.9 6.51*** 

 Inter-race 177.2 ± 4.8   

KPY9 Intra-race 52.6 ± 0.3 0.86* 

 Inter-race 53.1 ± 0.3  

BD9 Intra-race 532.2 ± 4.9 1.18ns 

 Inter-race 538.5 ± 4.8  

AdjBT9 Intra-race 10.5 ± 0.3 0.30ns 

 Inter-race 10.5 ± 0.3  

 

Traits include survival (Survival8), Diameter at breast height (DBH2-DBH8), Kraft pulp yield 
(KPY9), wood basic density (BD9) and adjusted bark thickness (AdjBT9), where the age of 
measurement is shown as a subscript. For Survival8, the difference in percentage survival 
between cross-type was tested using a homogeneity chi-square test. For quantitative traits, 
the difference between the two cross-types was tested using the Wald F statistics. Significance 
levels are indicated as ns p≥0.05; * p<0.05; ** p<0.01; *** p<0.001.  
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Table 5.2 The variance ratios (± standard errors) and Wald F test for fixed effects and their significance for growth and wood property traits 

Source of variation DBH2 DBH4 DBH6 DBH8 KPY9 BD9 Adj.BT9 

Random effects        

recip2 
 

0.00 ± 0.01 ns 0.01 ± 0.01 ns 0.01 ± 0.01 ns 0.01 ± 0.01 ns 0.01 ± 0.03 ns 0.00 ± 0.00 ns 0.07 ± 0.04 * 

ma2 
 

0.01 ± 0.00 * 0.00 ± 0.00 ns 0.00 ± 0.00 ns 0.00 ± 0.00 ns 0.03 ± 0.02 * 0.02 ± 0.02 ns 0.02 ± 0.01 ns 

h2 
 

0.56 ± 0.02 *** 0.41 ± 0.03 *** 0.52 ± 0.03 *** 0.51 ± 0.03 *** 0.40 ± 0.09 *** 0.60 ± 0.11 *** 0.56 ± 0.11 *** 

D2 
 

0.19 ± 0.03 *** 0.10 ± 0.02 *** 0.12 ± 0.02 *** 0.12 ± 0.02 *** 0.02 ± 0.08 ns 0.10 ± 0.08 ns 0.16 ± 0.08 ** 

σD
2 σa

2⁄  0.34 ± 0.05 0.25 ± 0.06 0.22 ± 0.05 0.25 ± 0.05 0.05 ± 0.20 0.16 ± 0.13 0.29 ± 0.16 

Fixed effects         

CT (intra- vs inter-race) 10.0 ** 25.4 *** 48.1 *** 69.1 *** 4.15 * 1.83 ns 0.12 ns 

Raceintra (Within intra-race) 0.07 ns 0.02 ns 0.01 ns 0.02 ns 6.46 ** 0.99 ns 9.27 *** 

Raceinter (Within inter-race) 0.04 ns 0.44 ns 0.36 ns 0.18 ns 8.57 ** 1.09 ns 7.21 ** 

Recipinter (Inter-race reciprocals) 1.87 ns 0.77 ns 0.94 ns 0.51 ns 1.79 ns 1.50 ns 1.37 ns 

Table shows the ratio of the reciprocal variance to the total phenotypic variance (recip2), ratio of the maternal variance to the total phenotypic variance  

(ma2), narrow-sense heritability estimate (h2), the ratio of dominance variance to total phenotypic variance (D2), the ratio of dominance variance to additive 

variance (σD
2 σa

2⁄ ) and Wald F test for the significance of the fixed effect terms fitted in the univariate model for different traits (Diameter [DBH] at different 

ages, Kraft pulp yield [KPY], wood basic density [BD] and adjusted bark thickness [Adj.BT], where the age of measurement is shown as a subscript). recip2, was 

based on the model with all random terms included (Model 1) and ma2 was estimated from the model with the non- or marginally-significant reciprocal term 

dropped. Remaining estimates were based on the model with reciprocal and maternal terms dropped (Model 2). The diallel comprised crosses between 

parents from three races – Strzelecki Ranges (S), Western Otways (W) and the Furneaux Islands (F). CT tests the significance of intra-race crosses (FF, SS, WW) 

vs inter-race crosses (FS, WS, WF). Raceintra tests between various intra-race crosses (FF vs SS vs WW). Raceinter tests between various inter-race crosses (FS vs 

WS vs WF). Recipinter includes the test of all inter-race reciprocals (FS vs SF; WS vs SW; WF vs FW). The significance levels for the random terms (i.e. σ𝑟𝑒𝑐𝑖𝑝
2 , σ𝑚𝑎

2 , 

σa
2 𝑜𝑟 σ𝑆𝐶𝐴

2 ) refers to whether these variance components are significantly greater than zero based on a one-tailed likelihood ratio test. Significances are 

indicated as ns p≥0.05; * p<0.05; ** p<0.01; *** p<0.001. 
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The extent to which inter-race heterosis has the potential to inflate estimates of SCA 

and the dominance ratio was explored by estimating these parameters in models with (Model 

3) and without the fixed interaction between female and male races (Table 5.3). Consistent with 

the increasing heterosis with age (Table 5.1), the SCA variance and 𝐷2 estimates for DBH were 

increasingly inflated with the model excluding the fixed race interaction term, but this inflation 

was only significant at the α = 0.10 level (P=0.054) by the age 8 years when there was a 42% 

increase in the 𝐷2  estimate over that obtained in the full model (Table 5.3). There was no 

significant difference between the two models in the SCA variance estimates for the wood 

properties or bark thickness (Table 5.3), consistent with the low inter-race heterosis observed 

for these traits (Table 5.1).  

Age-age additive and SCA genetic correlations for DBH were greater than 0.90 but were 

highly significantly different from one except for the age of 6 to 8 year (Table 5.4). As expected, 

there was a slight reduction in the magnitude of correlation as the difference between ages 

increased. However, even over the maximum age span from two to eight years the additive and 

SCA correlations only dropped marginally compared with those among DBH measurements 

taken two-years apart. Inter-trait genetic correlations showed that DBH was significantly 

positively correlated with adjusted bark thickness at the additive (radditive: 0.48 ± 0.17; P≤0.05) 

and SCA (rSCA: 1.0 at boundary; P<0.001) levels (Table 5.5), and there was no significant 

difference between these additive and SCA estimates (two-tailed LRT; P=0.056). While there 

was a trend for positive additive genetic correlations of pulp yield with DBH and basic density, 

these were not significant (Table 5.5). As SCA variances for the two wood property traits were 

not significantly different from zero (Table 5.2), genetic correlations at this level were not 

calculated.  
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Table 5.3 Comparison of the dominance ratio estimated from Model 3 to the estimates from 
Model 3 with no interaction term for traits measured in E. globulus diallel.  
 

Trait 
D2 

Model 5 
Model 5 with no 
interaction term 

DBH2 0.19 ± 0.03 0.19 ± 0.03 ns 

DBH4 0.10 ± 0.02 0.12 ± 0.02 ns 

DBH6 0.12 ± 0.02 0.15 ± 0.02 ns 

DBH8 0.12 ± 0.02 0.17 ± 0.03 a 

KPY9 0.02 ± 0.08 0.02 ± 0.08 ns 

BD9 0.10 ± 0.08 0.09 ± 0.07 ns 

Adj.BT9 0.16 ± 0.08 0.16 ± 0.08 ns 

Traits included Diameter [DBH] at different ages, Kraft pulp yield [KPY], wood basic density [BD] 

and adjusted bark thickness [Adj.BT], where the age of measurement is shown as a subscript. To 

test the significance of the interaction term based on a two-tailed likelihood ratio test, the SCA 

variance in Model 3 was fixed as the variance estimated from the same model excluding the 

interaction term, and significance levels are indicated as ns p≥0.05 and a p=0.054.  

 

 

Table 5.4 Age-to-age genetic correlations (± standard error) for stem diameter at breast height 
(DBH where the age of measurement is shown as a subscript) in an E. globulus diallel  
 

    DBH2 DBH4 DBH6 

DBH4 Additive 0.99 ± 0.00 ***     

 SCA 0.97 ± 0.01 ***   

DBH6 Additive 0.95 ± 0.01 *** 0.97 ± 0.01 *** 

 SCA 0.92 ± 0.02 *** 0.98 ± 0.01 *** 

DBH8 Additive 0.93 ± 0.02 *** 0.96 ± 0.01 *** 1 ± 0 b 

  SCA 0.90 ± 0.02 *** 0.95 ± 0.01 *** 1 ± 0 b 

The table shows the genetic correlations at the additive and SCA levels among the DBH 

measurements at different ages (age is shown as a subscript). The significance of whether 

correlation estimates are less than one, based on a one-tailed likelihood ratio test, is indicated 

as ns p≥0.05; * p<0.05; ** p<0.01; *** p<0.001. 
bCorrelation value is at the boundary of the parameter space. 
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Table 5.5 Inter-trait additive genetic correlations (± standard error) among diameter (DBH9), 
basic density (BD9), Kraft pulp yield (KPY9) and bark thickness (Adj.BT9) at the age 9 years in E. 
globulus diallel. 

  DBH9 KPY9 BD9 

KPY9 0.35 ± 0.19 ns     

BD9 -0.16 ± 0.21 ns 0.35 ± 0.17 ns   

Adj.BT9 0.48 ± 0.17 * 0.05 ± 0.2 ns 0.14 ± 0.19 ns 

 

Here the stem diameter (DBH9) was measured from the resistance trace from power drill (RESI) 

at age 9 years for the same trees as wood property traits were assessed. As the SCA variance 

estimates were not significantly different from zero for KPY9 and BD9, genetic correlations at 

SCA level were not estimated for the combinations including those traits. DBH9 - Adj.BT9 SCA level 

correlation was estimated as 1 ± 0, which was at the boundary of the parameter space. The 

significant difference from zero based on a two-tailed likelihood ratio test (LRT) is indicated as 
ns p≥0.05; * p<0.05 
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5.4. Discussion 

5.4.1.  Inter-race heterosis 

A key finding of this study was the positive mid-parent heterosis for growth (DBH) 

resulting from inter-race crossing, which was consistent regardless of the race combination 

tested. Such mid-parent heterosis for survival or growth has been reported for other race 

combinations in E. globulus (King Island x Southern Tasmania - Vaillancourt et al. 1995; Volker 

et al. 2008; Northern-eastern Tasmania x Southern Tasmania - Costa e Silva et al. 2014), which 

suggests that this is a common phenomenon. The magnitude of the inter-race heterosis for 

growth has been shown to be site and age-dependent in E. globulus (Costa e Silva et al. 2014). 

Consistent with our initial hypothesis and other studies (Volker et al. 2008; Costa e Silva et al. 

2014), heterosis increased in magnitude and significance with age in the present study. Indirect 

genetic effects reflecting heritable competition have been shown to increase with age in the 

studied trial (Costa e Silva et al. 2017), and as cross-types are randomly intermixed as single-

tree plots within the trial, such increasing competition is the most likely explanation for the 

increasing positive inter-race heterosis for growth with age. By 8 years of age, mid-parent 

heterosis for DBH had reached 6.5%, which was greater than the 5% at age 10 years reported 

by Volker et al. (2008) for crosses involving the King Island and Southern Tasmanian races. 

Further, while not statistically significant, each race combination separately exhibited better-

parent heterosis in the present study, a phenomenon not reported in the study by Volker et al. 

(2008), where on average the inter-race hybrids did not exceed the DBH of the better 

performing race (King Island).  

Positive heterosis for growth in inter-provenance hybrids is commonly reported in 

forest tree species (Pinus taeda L.- Schmidtling and Nelson 1996; Pinus pinaster - Harfouche and 

Kremer 2000; Pinus caribaea var. hondurensis - Joseph et al. 2000; Populus balsamifera L. - Hu 

and Thomas 2019). The level and direction of heterosis would be expected to depend upon 

multiple factors including differences in provenance adaptation, as well as susceptibility to 

inbreeding and outbreeding depression (Edmands 2007). In the present case, there were no 

significant differences in DBH or survival among the three races when assessed as intra-race 

crosses suggesting that, at least in terms of the breeding selections, they are equally adapted to 

the trial site in Western Australia. Thus, as suggested by Potts et al. (2000), the most likely 

explanation for the better-parent heterosis regardless of race combination is the release from 

inbreeding. In the present case, the consistent better-parent heterosis observed for growth in 

all inter-race combinations suggests that selections of the three races are equally subject to 
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inbreeding depression. Inbreeding depression for growth and survival has been reported for 

multiple populations of E. globulus. Based on comparisons of the 2-year stem volume of inter-

race crosses of E. globulus from two provenances (King Island and Southern Tasmania), Hodge 

et al. (1996) suggests that on average the intra-race crosses exhibited 4% inbreeding depression. 

Severe inbreeding depression has been observed following selfing (Costa e Silva et al. 2010b; 

Costa e Silva et al. 2011; Chapter 2), with the effects on performance declining linearly with the 

degree of relatedness between parents (Costa e Silva et al. 2011). This inbreeding depression is 

thought to be a consequence of the genetic load of rare recessive, or partially recessive, 

deleterious alleles that exists within forest tree populations (Charlesworth and Willis 2009; 

Hedrick et al. 2016), including E. globulus (Costa e Silva et al. 2010b). When trees in close 

proximity (< 50 m) within native forests are crossed, their progeny also exhibit inbreeding 

depression (Hardner et al. 1998). This finding is consistent with a family group structure within 

native forests extending 1-2 canopy heights, hypothesised to arise mainly from limited seed 

dispersal (Eldridge et al. 1993; Skabo et al. 1998; Jones et al. 2007). Parents used in the present 

study were selected from open-pollinated progenies from different wild trees (Potts et al. 2014), 

sampled at a spacing sufficient to transgress this family group structuring (Gardiner 1989). Thus, 

the positive heterosis observed may well be a consequence of mild inbreeding depression in the 

intra-race crosses arising from low levels of relatedness among the founding wild trees (i.e. 

grandparents) sampled from the same race. In E. globulus there is a gradual decline in genetic 

similarity with distance once the family group structure is transgressed (Skabo et al. 1998; Yeoh 

et al. 2012), with significant genetic similarity extending beyond 40 km likely due to long-

distance pollen movement (Yeoh et al. 2012). However, this gene flow appears to be insufficient 

to prevent the build-up of low levels of inbreeding within races.  

For the studied races, there was no evidence to support the second hypothesis that 

heterosis for growth would be less evident in crosses among the more divergent races. Such 

decline could occur if outbreeding depression increased with increasing genetic divergence 

between hybridising populations (Thornhill 1993; Edmands 2007). In the present case, 

molecular studies suggest that the two mainland Australian races (Strzelecki Ranges and 

Western Otways) are more closely related than they are to the Furneaux race (Steane et al. 2006; 

Jones et al. 2012; Yeoh et al. 2012), yet there is no evidence for a decline in heterosis in the 

growth of crosses involving the Furneaux race as would be expected with increasing influence 

of outbreeding depression. This is consistent with the general observation that for hybridisation 

within species the risk of outbreeding depression is not as great as the risk of inbreeding 

depression (Edmands 2007). However, in contrast to the improved growth of inter-race hybrids, 
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there was minor but significant, negative heterosis (outbreeding depression) for survival at the 

age of 8 years, a trend evident as early as age 2 years (results not shown). A similar discrepancy 

between growth and survival was reported by Magnussen and Yeatman (1988) in Pinus 

banksiana, where the survival of inter-provenance hybrids was intermediate but the growth 

trait (height) showed significant positive heterosis. In the present study, this negative heterosis 

for survival was solely due to one inter-race cross combination - Western Otways x Strzelecki 

Ranges (WS) - in which the survivors exhibited positive heterosis for growth. These two races 

were the most genetically similar and thus, the mild outbreeding depression observed for 

survival is not related to general genetic divergence nor are the factors involved having a 

negative impact on survivors which exhibit positive heterosis for growth. Outbreeding 

depression has been reported at the inter-specific level for first (López et al. 2000a) and second 

generation (Costa e Silva et al. 2012) hybrids of Eucalyptus and this is the first indication of its 

manifestation at the inter-population level within a species. However, this effect on survival of 

one race combination is minor compared with the positive heterosis observed for growth in all 

the inter-race combinations tested (present study; Volker et al. 2008; Costa e Silva et al. 2014). 

Nevertheless, it should be noted that while the genetic divergence between the Furneaux and 

mainland subraces is comparatively high, as were the crosses studied by Volker et al. (2008), 

there are slightly more divergent race combinations in E. globulus which have not been tested 

(e.g. SE Tasmania x King Island; Steane et al 2006). Whether that greater level of population 

divergence would result in outbreeding depression countering the positive effects of heterosis 

is unclear. More importantly, outbreeding depression may not be evident in the first generation 

of inter-population hybridisation but mainly expressed subsequently following recombination 

of co-adapted gene complexes in subsequent generations (Edmands 1999). Indeed, Edmands 

(2007) notes that in the context of conservation biology where inter-population hybridisation is 

often considered for genetic rescue, that while there is much more empirical evidence for 

inbreeding depression than outbreeding depression, the risks associated with outbreeding, 

particularly in the second generation, maybe on par with the risks of inbreeding.  

Unlike growth, wood property traits (pulp yield and wood basic density) showed a very 

low level of positive inter-race heterosis for the trees sampled. A study by Volker et al. (2008) 

also reported the absence of significant heterosis of basic density for intra-specific crosses as in 

the present study, although such studies are rare. However, inter-specific hybridisation of forest 

tree species showed widely varying basic wood density for hybrids (Dungey 2001; Bison et al. 

2006). Although small, pulp yield exhibited slightly significant heterosis in the present study for 

inter-population crosses. Similar hybrid vigour for pulp yield was earlier reported in inter-
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specific crosses (de Assis 2000) leading to hybridisation being suggested as a strategy for 

increasing pulp yield. The absence or low level of inter-race heterosis for wood properties were 

reflected in the negligible dominance effects for these traits due to their strong additive genetic 

control as reported in the present study. 

5.4.2. Maternal and non-maternal reciprocal effects 

Another important finding of the present study is the absence of significant reciprocal 

effects at race level and their virtual absence within-races, as hypothesised. For growth, the 

estimated maternal effect was significant at age 2 years, but this effect was very small 

(explaining only 1% of the total phenotypic variation) and, as hypothesised rapidly diminished 

with age. While significant maternal effects were not detected for height growth of E. globulus 

in the study of López et al. (2003), the significant non-maternal reciprocal effect was reported 

on early age growth (age 7 months). They showed that early age field growth was positively 

affected by seed mass and nursery block, but these effects and the non-maternal reciprocal 

effect were insignificant at later ages when race and within race additive effects became 

increasingly significant. While seed and germination characteristics were shown to affect 

nursery performance, the transitional nature of these, and the non-maternal reciprocal effect 

on growth is consistent with the present study. A reciprocal effect at the race level was detected 

for stem diameter in the smaller-scale study of Tasmanian races of E. globulus by Costa e Silva 

et al. (2014). However, this effect was only significant at one of the two sites studied and was 

of minor significance compared to the general heterotic effect of inter-race crossing.  

Maternal and non-maternal reciprocal effects are non-Mendelian in nature and could 

reduce the precision of the estimated genetic effects (Roach and Wulff 1987). However, as 

selection of E. globulus for chip export or pulp production is based on early age (4-8 years of 

age) stem diameter, wood density and pulp yield (depending on the breeding objective; Potts 

et al. 2014), the present study suggests the maternal and non-maternal reciprocal effects are 

insignificant (diameter and wood density) or very minor (pulp yield), and will have little impact 

on breeding and deployment considerations. This is particularly relevant given the option for 

deploying full-sib families of E. globulus through mass supplementary pollinations (Potts et al. 

2008), suggesting that the choice of the maternal parent can be made based on accessibility and 

reproductive characteristics, and does not have to copy the direction of the cross from previous 

trials. Similar conclusions on the practical importance of reciprocal effects were also reported 

for Pinus radiata, a major softwood plantation tree species deployed in Australia, where weak 

reciprocal effects were identified (Wu and Matheson 2001) and there is also the option for 

deployment of full-sib families from seed (Baltunis et al. 2007).  
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5.4.3. Relative importance of within-race dominance variation  

 In addition to inter-race heterosis, the relative importance of additive and dominance 

variation within races is a key consideration in determining the benefits of deploying full-sib 

families as opposed to deploying polymix or open-pollinated families. If dominance is not 

important then there is a little additional benefit in the deployment of full-sib-families apart 

from the avoidance of the deleterious effects arising from, for example, self-pollination in the 

case of open-pollinated progeny (Potts et al. 2014; Chpater 2). Consistent with theoretical 

expectations and observations in other systems (Hill et al. 2008), most of the genetic variation 

within races for the traits studied was additive. However, as originally hypothesised, estimated 

dominance variation was highly significant for growth trait but not for wood property traits (pulp 

yield and wood density). For growth, dominance accounted for 19% of the within race 

phenotypic variation in diameter at age 2 years but stabilised between 10 and 12% at later ages. 

While the dominance ratio is slightly higher in the intra-race crosses compared to the inter-race 

crosses (e.g. DBH8 D2 is 0.11 ± 0.04 compared with 0.09 ± 0.03, respectively; results not shown) 

as evident in the early study by Hodge et al. (1996), these increases in dominance variance were 

not statistically significant. Reports of the relative importance of dominance variation for growth 

traits vary markedly in E. globulus, partly dependent upon the populations and growth trait 

studied, as well as the accuracy of parameter estimation due to small sample size. While no 

significant dominance variation for DBH was reported by Costa e Silva et al. (2004), most studies 

report significant dominance variation explaining up to 19% of the phenotypic variation at a 

single site (12% - Li et al. 2007; 0-100% - Callister et al. 2011; 2-10% - Callister et al. 2013; 18% - 

Hamilton et al. 2015a; 19% - Hamilton et al. 2017b).  

The ratio of dominance variance to total phenotypic variance (𝐷2) estimates for later 

age DBH from the studied trial accord well with the maximum 𝐷2  estimate reported for E. 

globulus. However, in terms of the importance of dominance variation relative to the additive 

genetic variation (𝜎𝐷
2 σa

2⁄ ) the estimates are low in the present study. The dominance variation 

for later age (> 2 years) DBH was 22 to 25% of the magnitude of the additive variation, whereas 

other smaller-scale studies reported values as high as 167% (100% - Li et al. 2007; 0-167% - 

Callister et al. 2011; 80% - Araújo et al. 2012; 13-131% - Callister et al. 2013; 113% - Hamilton et 

al. 2015a; 126% - Hamilton et al. 2017b) and even 400% in the small trial of 62 full-sib families 

reported by Mora et al. (2019). Inaccuracies due to small full-sib family representation in many 

trials may explain much of the variation in the dominance to additive ratio. However, it is 

noteworthy that the narrow-sense heritability and thus contribution of additive genetic 

variation to the phenotypic variation in DBH in the present study were among the highest 
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reported for full-sib family trials of E. globulus. Single-site estimates of the narrow-sense 

heritabilities for DBH in the above mentioned studies do not exceed 0.16 (e.g. 0.08-0.10 by Costa 

e Silva et al. 2004; 0.12 by Li et al. 2007; 0.10 - Araújo et al. 2012; 0.08–0.12 by Callister et al. 

2013; 0.16 - Hamilton et al. 2015a; 0.07 - Mora et al. 2019), whereas the values estimated for 

DBH in the present study ranged between 0.41-0.56, depending upon age. This high heritability 

for DBH could be due to multiple factors including a uniform trial site, large numbers of full-sib 

families per parent, coupled with the accentuation of additive genetic differences through 

competition as indirect genetic effects on DBH have been demonstrated at this trial (Costa e 

Silva et al. 2013a; Costa e Silva et al. 2017). Nevertheless, the significant additive and dominance 

effects revealed early in stand development (by age 2 years) are stable with age as evidenced 

by the extremely high age to age correlations for DBH evident at both genetic levels. 

While the genetic architecture for DBH was somewhat different from that previously 

reported for E. globulus, the genetic architecture of wood property traits was in accordance 

with previously published reports. Variation in both pulp yield and wood density were under 

significant and strong additive genetic control with high narrow-sense heritabilities (h2; 0.40 to 

0.60, respectively) and no significant dominance variation. Wood density generally exhibits 

higher heritability than growth traits (Li et al. 2007; Stackpole et al. 2010a; Chapter 3 & 4) and 

the few studies using full-sib family trials of E. globulus, have not revealed significant dominance 

variation (Costa e Silva et al. 2004; Li et al. 2007). There are few studies of the genetic 

architecture of pulp yield in E. globulus, and more recent studies based on the same NIR 

methodology and open-pollinated progenies have reported h2 estimates ranging from 0.04 to 

0.40 (Stackpole et al. 2010b; Chapter 3). Only two studies of pulp yield were found, which were 

based on full-sib family trials, allowing dominance to be estimated (Costa e Silva et al. 2009; 

Hamilton et al. 2017b). Both of these studies revealed highly significant additive genetic 

variation and non-significant dominance variation, as found in the present study. The heritability 

estimates varied (0.42±0.14 - Costa e Silva et al. 2009; 0.26±0.07 - Hamilton et al. 2017b), and 

the current estimate (0.40±0.09) is more consistent with the higher of these heritability 

estimates reported, and accords with the higher of the estimates from open-pollinated progeny 

trials (0.40±0.06 - Stackpole et al. 2010b). No previous studies on the significance of non-

additive effects for bark thickness were found. This trait is clearly under significant additive 

genetic control (present study; Chapter 4), but the dominance variation is significant and 29% 

of the additive genetic variance in magnitude. Given bark thickness is the only trait that is 

genetically correlated with DBH, it is possible that the dominance variation in bark thickness is 
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a reflection of the residual correlated variation in DBH which has remained even after fitting 

DBH as a covariate in the statistical model at the phenotypic level. 

5.5. Conclusion 

Significant levels of genetic variance were evident in this selected population of E. 

globulus for all traits studied – three of which are key selection traits for pulpwood breeding 

(DBH, wood density and pulp yield). This genetic variation was manifested at different scales 

(i.e. between race or with race levels) and involved additive and, depending on trait, dominance 

effects. With the sample of parents studied, all traits exhibited significant additive genetic 

variation within races, but growth, in particular, was also influenced by significant non-additive 

genetic effects. The high levels of additive genetic variance and low genetic correlations among 

selection traits, combined with the inter-race heterosis for growth in the first generation bode 

well for combining germplasm from multiple races in the breeding population. However, the 

possibility that outbreeding depression may be expressed following recombination in 

subsequent generations and the levels of heterosis needs to be monitored in the subsequent 

generations of breeding as inter-race crossing extends beyond the first generation. Nevertheless, 

as hypothesised, and similar to other forest tree species, first generation inter-race hybrids of E. 

globulus showed positive heterosis for growth, suggesting that intra-race crosses exhibit low 

levels of inbreeding depression. This finding of positive heterosis, coupled with the significant 

dominance variation for growth within races, suggests additional genetic gain in growth can be 

captured in deploying clones or full-sib families from inter-race crossing. The absence or minor 

significance of maternal and non-maternal reciprocal effects estimated for the three pulpwood 

selection traits shows that the directionality of crossing has little effect on performance. This 

finding supports the deployment of full-sib families of E. globulus using mass supplementary 

pollination easier, simplifies crossing for breeding purposes, and simplifies genetic evaluation 

models.  
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Chapter 6 - General discussion 

6.1. Introduction 

The present study has used both open-pollinated (OP) and control-pollinated progeny 

trials to provide novel insights into the genetic architecture of growth, wood property traits and 

bark thickness in Eucalyptus globulus. Using a progeny field trial from one of the largest diallel 

crossing schemes undertaken in E. globulus, I report inter-race heterosis, additive and non-

additive genetic effects. In addition, the study on the effects of inbreeding is the longest studies 

to date in this species (and E. ovata), and one of the very few long-term studies of inbreeding 

depression in forest trees. Moreover, the generally positive association between pulpwood and 

solid wood selection traits reported here is an important finding given the increasing interest in 

using parts of the pulpwood estate for solid wood products from E. globulus, a species which 

had been mainly studied for the genetic improvement for pulpwood, but not for solid wood. 

The key findings and their implications are discussed below. 

6.2. Genetics of growth traits 

As demonstrated in other studies, the growth (DBH) of E. globulus is severely affected 

by inbreeding depression (ID; Chapter 2). Utilising one of the longest (28 years) studies on the 

effects of selfing in eucalypts, it is shown that there is significant early age ID for growth with 

the sampled trees studied. Subsequent mortality estimates were size-dependent and, with the 

death of smaller selfs, the interplay between ID for growth and survival resulted in the 

translation of ID from growth to survival, as previously noted in other studies (E. regnans - 

Hardner and Potts 1997; Pinus silvestris - Koelewijn et al. 1999; E. globulus - Costa e Silva et al. 

2011). The present study was only recently exceeded in age by the 29 year study of E. regnans 

by Griffin et al. (2019). That study also reported the selective elimination of most selfs from the 

population with age, as shown for E. globulus and E. ovata in Chapter 2. These species show 

severe inbreeding depression, which is comparable to other forest tree species (75% in Scots 

pine [23 years] - Koelewijn et al. 1999; 80% in Douglas fir [26 years] - Stoehr et al. 2015), and 

the purging of most selfs by the age of 10-15 years. However, as eucalypts have a mixed mating 

system which produces both selfed and outcrossed seed under open-pollination, the rare 

survival of selfs cannot be neglected (Chapter 2), especially in the absence of competition with 

more vigorous outcross progeny, and may even contribute to inter-population heterosis 

(Chapter 5). However, in some species, populations exhibiting little inbreeding depression have 
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also been noted (Eucalyptus cladocalyx - Bush and Thumma 2013; Eucalyptus caesia - Bezemer 

et al. 2019), which is hypothesised to be a consequence of the purging of deleterious alleles in 

small and isolated populations. 

Comparable to previous reports, the present study also identified racial differences in 

E. globulus in growth rate as assessed using stem diameter. Previous studies based on open-

pollinated base population progeny trials reported Furneaux as the slowest growing race among 

the three races used in the diallel study - Furneaux, Strzelecki Ranges and Western Otways 

(Dutkowski and Potts 1999; Raymond et al. 2001; Stackpole et al. 2010b). However, a different 

rank order for these races has been found in other studies (Raymond et al. 2001; NW in Chapter 

3). The discrepancies in race ranks among these studies/trials could be due to differences in the 

trial environments (genotype x environmental interaction; GxE) or the age of assessment 

(Stackpole et al. 2010a). The GxE interaction for growth shown by this study (Chapter 3) 

emphasises the importance of local environmental effects on the relative growth of families and 

provenances/races of E. globulus, potentially reflecting differences in local climate adaptation 

(Leimu and Fischer 2008). However, these reports were from open-pollinated progeny trials and 

differences between families and races could reflect differences in levels of inbreeding (Hodge 

et al. 1996). Therefore, the variation showed between these races in their OP progenies might 

be due to differences in selfing rate between races, which can negatively affect growth rate (e.g. 

Chapter 2). In the diallel study where races were compared as intra-race cross-pollinated 

progenies, there was no significant difference between races for growth at any age of 

assessment (Chapter 5), which could in part reflect the impact of artificial selection on the 

parents, homogenising the race differences. Alternatively, differential rank order of the races 

could reflect a GxE interaction for growth. 

The controlled intra-race crosses in the diallel trial showed differences in their 

estimated additive genetic effects compared to the OP progeny trials, in this study as well as the 

literature. OP progeny trials, including the present study (Chapter 3), have produced lower 

narrow-sense heritability estimates than that found in our full-sib diallel progeny trial (Chapter 

5). Regardless, of the cause of these differences (e.g. sampling effects, GxE), the diallel study 

shows that there is considerable additive genetic variance for growth among the first-

generation selections in the Australian National E. globulus Breeding Population, which can be 

exploited. Although the genetic variation in other traits is mostly additive, the significant 

dominance effects for growth emphasise the importance of controlled crossing. Exclusion of 

dominance effects from genetic models may affect the accuracy of genetic parameter and 

breeding value estimates. Such non-additive effects are evident in both between- and within-
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race crosses, with between race crosses resulting in significant positive heterosis. Moreover, 

signals of heterosis in inter-race crossing (Chapter 5) is consistent with other studies on this 

species (King Island x Southern Tasmania - Vaillancourt et al. 1995; Volker et al. 2008; Northern-

eastern Tasmania x Southern Tasmania - Costa e Silva et al. 2014) as well as other forest tree 

species (Pinus banksiana Lamb. - Magnussen and Yeatman 1988; Pinus taeda L.- Schmidtling 

and Nelson 1996; Pinus pinaster - Harfouche and Kremer 2000; Pinus caribaea var. hondurensis 

- Joseph et al. 2000; Populus balsamifera L. - Hu and Thomas 2019), and suggests that inter-race 

hybrid vigour could be utilised for capturing additional gain in deployment programmes of E. 

globulus.  

6.3. Genetics of bark thickness 

Larger trees tend to have thicker bark (Pinard and Huffman 1997; Lawes et al. 2013; 

Poorter et al. 2014). Bark thickness in E. globulus has been observed to vary with tree age, 

heights within tree and site productivity (Quilhó et al. 2000; Quilhó and Pereira 2001; Hamilton 

et al. 2007). However, reported genetic correlations between these traits show varying results 

from negative [-0.42] (Wei and Borralho 1997; Retief and Stanger 2009; Chapter 4) to positive 

[0.48] correlation (Wei and Borralho 1997; Chapter 5). This may be due to the variation in the 

age of measurement as well as the environmental interaction and its genetic effects on growth, 

which may be confounded with variation in the assessment of bark thickness as an absolute or 

relative measure used in different studies.  

Understanding the genetic control of bark thickness per se, independent of stem size, is 

thus important. While some studies have accounted for stem diameter by expressing back 

thickness as a proportion of stem diameter (Wei and Borralho 1997; Retief and Stanger 2009), 

in the present case the association with diameter was removed at the phenotypic level by using 

size-adjusted estimates of bark thickness, by fitting diameter (DBH) as a covariate in the linear 

model used to estimate genetic variances.  

Most of the above-mentioned studies of bark thickness, including the present one 

(Chapter 4 & 5), reported moderate to high heritability for relative/adjusted bark thickness, 

regardless of the type of crossing or population studied, emphasising the potential for selection 

on this trait. Moreover, the variation in relative bark thickness between various races of this 

species is clear (Chapter 4). For the three races used in Chapter 5 (Furneaux, Strzelecki Ranges 

and Western Otways), the rank order of the bark thickness was identical to that of other studies, 

although they were tested at multiple locations and as both open- and cross-pollinated 

progenies (Dutkowski and Potts 1999; Chapter 4 & 5). A slight difference in the rank order of 
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these races was reported between trials by Hamilton et al. (2007), but all evidence to date 

suggests that there is little GxE interaction for this trait (Wei and Borralho 1997; Rosell et al. 

2014; Chapter 4). Therefore, the above-mentioned stable rank order confirms that among these 

three races, the Strzelecki Ranges race possesses the thickest bark. The potential adaptive 

implications of variation in bark thickness, including its links with stress tolerance (e.g. drought 

susceptibility and protection of the stem from fire; Rosell 2016) make this trait of potential 

interest in tree improvement programmes aimed at better adapting the plantation estate to 

future climates.   

6.4. Genetics of wood property traits 

Unlike growth, wood property traits such as basic density and pulp yield showed a 

uniform ranking of the races (Furneaux, Strzelecki Ranges and Western Otways), irrespective of 

trial site, assessment age or cross-type (Dutkowski and Potts 1999; Stackpole et al. 2010b; 

Chapter 3 & 4). Of the E. globulus races dominating the National E. globulus Breeding 

programme, Strzelecki Ranges appeared to be the race with the densest wood, but the lowest 

pulp yield. Both open-pollinated base population trials and the diallel trial based on first 

generation selections produced similar conclusions, although the differences in wood density 

were not statistically significant in the diallel trial when the intra-race crosses were compared 

(Chapter 5). These results support the absence of significant GxE for these traits (Chapter 3). In 

addition, the absence of significant dominance effects (Chapter 5) for these wood property traits 

for the sampled trees, supports the use of additive models in tree improvement programmes. 

No studies were found, either at the inter- or intra-specific levels, which assessed maternal 

effects for wood basic density and pulp yield. The present study showed the absence of 

maternal effect on basic density, but a statistically significant maternal effect was observed on 

pulp yield. However, this effect contributed only 3% to the phenotypic variance and was very 

small compared with the additive genetic effects (40%). Although this effect on pulp yield is 

unlikely to be of practical importance, further exploration is warranted to confirm this 

conclusion.    

The estimated additive genetic correlation of basic density with diameter was not 

significantly different from zero, in both the open-pollinated and the controlled pollinated trials 

(Chapter 3 & 5). These non-significant correlations were consistent with previous reports for 

this species (Downes et al. 2006; Stackpole et al. 2010a) suggesting little genetic association 

between basic density and growth in E. globulus. Unlike basic density, pulp yield exhibited a 

positive additive genetic correlation with the diameter in both the open-pollinated and diallel 
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trials studied. Previous reports of this correlation are variable, ranging from negative [-0.16] to 

positive [0.12] (Dean et al. 1990; Raymond et al. 2001; Apiolaza et al. 2005; Costa e Silva et al. 

2009). Such variation in the relationship of these wood property traits with diameter may well 

reflect the significant GxE reported for growth traits. Indeed, the association between basic 

density and pulp yield is complex. At the additive-level, both traits exhibit a significant positive 

association (in both open- and cross-pollinated studies; Chapter 3 & 5), however, they are 

significantly negatively associated at the subrace level (Chapter 3). Such discrepancy has been 

observed previously (Stackpole et al. 2010b), and emphasises the need to separate and 

understand the different hierarchies of genetic variation within the species. Indeed, such 

comparisons are fundamental to understanding the extent to which the patterns of population 

divergence may be constrained by the patterns if genetic variation and covariation  within 

populations (Costa e Silva et al. 2020). 

6.5. Implications of this study 

While most of the results of this thesis are based on samples of base population parents 

and seed lots or, in the case of Chapter 5, selections from these seed lots, coupled with the 

caveat that several of the studies are based on single site experiments,  the findings of this thesis 

do have multiple implications for the breeding and deployment of E. globulus for production 

forestry. The current Australian National E. globulus breeding programme primarily focused on 

inter-race crossing following the first wave of selections from the base population trials. Mid-

parent heterosis for growth was expected as seen in other forest trees (Chapter 5) and the 

earliest study of E. globulus involving crossing among the King Island and Southern Tasmania 

races (Vaillancourt et al. 1995; Volker et al. 2008). However, this hypothesis had not been tested 

for the main races where most of the first-generation selections were derived (Furneaux, 

Strzelecki Ranges and Western Otways). The present study not only supports this expectation 

of mid-parent heterosis but shows such heterosis is evident regardless of race combination and 

even extends to better race (parent) heterosis. Thus, in genetic evaluation models, race effects 

could effectively be considered additive for wood property traits, but in the case of growth, the 

genetic interaction between races needs to be considered. In addition, with the option of 

deploying full-sib families of E. globulus through mass-supplementary pollination (MSP), there 

is the opportunity of capturing such inter-race heterosis along with the significant dominance 

effects for deployment. Additional gains from MSP should be possible through eliminating 

selfing which has a marked deleterious effect on tree growth and survival (Chapter 2). The 

present study also showed that maternal and non-maternal reciprocal effects are effectively 
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negligible (Chapter 5). This means that it doesn’t matter from a quantitative genetic perspective 

whether a selected genotype is used as a male or a female in breeding or deployment crossing, 

and other factors such as accessibility or reproductive attributes can be given priority.  

In the case of using E. globulus plantations as a source of raw material for solid-wood 

products, the present study suggests that the genetic improvements made through decades of 

pulpwood breeding (Eldridge et al. 1993; Potts et al. 2014) should also be expected to have 

made gains for solid-wood uses, as the present study showed a favourable alignment of 

selection traits for pulpwood and solid wood (Chapter 3). Thus, breeding for a pulpwood 

objective is expected to have improved the current plantations in use for solid-wood products. 

Similar conclusions were reported in E. nitens, suggesting the possibility of making pulpwood 

breeding goals compatible with those for solid wood products (Kube and Raymond 2001; 

Blackburn et al. 2012), although exceptions exist (Hamilton et al. 2009b). However, with growing 

interest in solid wood products from plantations of E. globulus, increasing emphasis on specific 

solid wood traits (e.g. form and stiffness) may be warranted. Indeed, enhanced gains with this 

objective in mind may be possible by revisiting opportunities for selection from base population 

trials to make the plantations more suitable for diverse end products. For example, the King 

Island race is poorly represented in the current breeding population (Potts et al. 2014). However, 

this race is consistently reported to have high pulp yield (Stackpole et al. 2010b; Chapter 3), the 

straightest stems and relatively higher wood stiffness (Chapter 3), but greater drought 

susceptibility (Dutkowski and Potts 2012) and poorer growth on drier sites (Costa e Silva et al. 

2006) which suggests suitability for only the wetter component of the current plantation estate.   
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