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Abstract 

Dissolved thorium, Rare Earth Elements and neodymium isotopic composition in the 
Kerguelen Plateau: method development and application to quantify and trace lithogenic 
inputs.  

Ph.D. candidate: Habacuc Pérez-Tribouillier 

The Southern Ocean (SO) is the largest high nutrient, low chlorophyll (HNLC) region in 
the global ocean, characterized by a minimum development of phytoplankton despite the 
abundance of macronutrients. The existence of such regions is caused by the absence of the 
bio-limiting trace element iron (Fe). In other ocean basins like the Atlantic and Pacific this 
limitation is overcome by the dissolution of aeolian dust. However, the SO is isolated from 
major dust sources. Here, the weathering and erosion of Subantarctic Islands, glacial run-off 
and resuspension of shelf-deposited sediments become the main source of lithogenic 
material. This lithogenic material naturally fertilizes surrounding waters with iron thus 
enabling the development of phytoplankton blooms, the largest of which occurs in the 
Kerguelen Plateau. The Kerguelen Plateau is the largest bathymetric barrier to the natural 
eastward flow of the Antarctic Circumpolar Current. Here, previous studies have 
demonstrated that the Heard and McDonald Islands located in the central part of the plateau 
and the Kerguelen Archipelago (northern part of the plateau) supply lithogenic material 
directly to the surface of the ocean. Additionally, the interaction between the ACC and the 
plateau causes dynamic conditions that can resuspend shelf-deposited sediments. These 
sediments release iron which can then be transported to the surface by vertical mixing or 
upwelling contributing with the natural fertilization over the plateau. The ACC can also 
transport Fe away from the plateau enabling the development of a plume with enhanced 
primary productivity that extends for several hundreds of kilometres east of the plateau. This 
bloom draws down atmospheric CO2 into the surface of the ocean and because this is a region 
of formation of intermediate and deep waters, this CO2 can potentially be incorporated into 
deeper layers of the ocean.  

Understanding the conditions that drive these seasonal blooms is difficult first 
because of the remoteness of the SO. Iron also has a very complex oceanic biogeochemical 
cycle with several inputs and sinks. However, other trace elements like thorium (Th) and Rare 
Earth Elements (REE), which are not required by phytoplankton, can help trace lithogenic 
inputs, and represent a valuable toolbox for the study of ocean processes. Furthermore, Th 
and REE have a coherent chemical behaviour and constrained sources to the ocean. In the 
particular case of 232Th and REE, their sources are the same as for Fe. This makes them suitable 
to trace iron inputs to the ocean. However, these elements and their isotopes are present in 
such low dissolved concentrations that rigorous analytical procedures are required in order 
to measure them in seawater.  

In this thesis I aim to: (1) Develop a new technique to simultaneously pre-concentrate 
Th (232Th, 230Th) and neodymium (Nd) isotopes using the Nobias chelating resin. (2) Adapt an 
existing technique to measure dissolved REE in seawater using the same resin. (3) Apply the 
above-mentioned analytical techniques to increase the knowledge about the factors that 
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drive the seasonal phytoplankton bloom in the Kerguelen Plateau region. In particular, to 
better constrain the sources and pathways of iron in the plateau, and to provide a new 
estimate of the fluxes of lithogenic material using dissolved thorium data.  

 The results indicate that it is possible to accurately and precisely measure Th and Nd 
isotopes, as well as REE concentrations using the Nobias resin. This method drastically 
reduces sample processing time. The blank contribution of our techniques is comparable or 
less than previous studies. The analysis of different certified reference materials as well as 
intercalibration samples indicate an overall accuracy from both methods within 10% of the 
reported values and a long-term precision generally < 5%. We demonstrate that 230Th can be 
used to provide a scavenging residence time based on its disequilibria from its parent nuclide 
234U. Following this approach, we calculate a residence time for the upper 500 m of the water 
column of ~ 260 days. We employ this residence time to calculate a dissolved 232Th flux. Using 
the 232Th concentration of the lithogenic material from the plateau and an estimated Th 
solubility of (1-20%) we obtain a dissolved lithogenic flux that ranges from 7 to 810 mg m- 2 

day-1. This value is comparable to other studies in the Southern Ocean, and particularly similar 
to previous determinations of particulate fluxes in the Kerguelen Plateau using sediment traps 
(35-628 mg m-2 day-1).  

 The REE and εNd data confirm suggestions by previous studies that the predominant 
source of lithogenic material that fuels the bloom originates in the Heard and McDonald 
Islands, and surrounding shallow shelf. However, our results disagree about the relative 
importance to the region of material sourced from the Kerguelen archipelago. Europium and 
cerium anomalies, as well as the Nd/Yb normalized ratio and the εNd of our data, together 
with data from previous studies clearly indicate that the Polar Front acts as an effective 
barrier to the dispersal of lithogenic material (and likely Fe) sourced from the Kerguelen 
archipelago.  

 This thesis has improved constraints on the sources of Fe that allow the development 
of primary productivity around the Kerguelen Plateau region. However, some uncertainties 
remain. A more detailed sampling of the area between Heard and McDonald Island and the 
Kerguelen Islands will help to completely constrain the factors that drive the bloom in the 
region. Our results also indicate the need for more detailed studies that establish the 
solubility of Th not only from material from our area of study but in general of the lithogenic-
sourced particles in the ocean. Finally, the method development in this study also represents 
a breakthrough in the way Th and Nd isotopes can be pre-concentrated from seawater. In 
particular, this method has the potential to be applied at sea reducing the amount of sample 
that needs to be brought back to land and eliminating the need for sample storage and 
transport.  



 

 17 



 

18 
 

Chapter 1 - Introduction 

 The Southern Ocean (SO) is the largest high nutrient, low chlorophyll (HNLC) area of 

the global ocean. The HNLC regions are characterized by low primary productivity despite the 

abundance of macronutrients like nitrogen and phosphorus. The existence of HNLC areas is 

known to be caused by the absence of the bio-limiting or co-limiting element iron (Fe) 

(Martin, 1990; Moore et al., 2001; Boyd et al., 2007; Boyd et al., 2012). If Fe reaches HNLC 

areas, it is possible to overcome this condition. Most common sources of Fe to other ocean-

basins are the deposition of aeolian dust (Jickells, 2005; Mahowald et al., 2009) and upwelling 

in equatorial regions (de Baar et al., 1995). However, the SO is located far away from any dust 

source. Here, the interaction of the Antarctic Circumpolar Current (ACC) with islands, shallow 

areas, icebergs and glaciers allows for Fe to be released and further transported (Blain et al., 

2001; Moore and Abbott, 2002; Arrigo et al., 2008; Boyd et al., 2012). This Fe enables the 

development of several seasonal phytoplankton-blooms once the light is no longer a limiting 

factor. The largest SO phytoplankton bloom occurs above and around the Kerguelen Plateau 

(KP; Indian Sector of the Southern Ocean).  

The Heard and McDonald Island Earth-Ocean-Biosphere Interaction Study (HEOBI), in 

which I participated during January and February of 2016, aimed to obtain a better 

characterization of the Fe sources in this region. For this thesis, long-lived Th isotopes (232Th 

and 230Th) were used to obtain an estimation of the budget of lithogenic material that 

naturally fertilizes the waters of the KP. The Nd isotopic composition (143Nd/144Nd) and rare 

eart elements (REE) concentrations were then used to better constrain its sources and 

pathways. In particular it was of interest to confirm the role of the Heard and McDonald 

Islands (HIMI) on the natural fertilization over the KP suggested by several authors (Park et 
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al., 2008b; Zhang et al., 2008; Grenier et al., 2018). Additionally, it was intended to increase 

the observations of Th and Nd isotopes in the SO, where very few observations exist, despite 

of being key-parameters of the international GEOTRACES program (Anderson et al., 2014; 

Schlitzer et al., 2018; Lam and Anderson, 2018). 

 Characterizing how Fe can naturally fertilize a large region is a challenging task: Fe is 

present in very low concentrations, it has multiple sources and sinks, interacts with the biota 

and its analysis is prone to contamination during sampling. However, Fe is supplied to the 

ocean mostly by the dissolution of crustal material, in the same way as many other trace 

elements. This property (same origin) allows for other elements to trace the Fe cycle in the 

ocean. Amongst these alternatives, aluminium and thorium (Th) have been used (Measures 

and Vink, 2000; Measures et al., 2005; Hsieh et al., 2011; Hayes et al., 2013a). 

 Thorium and REE have been previously applied in the KP (Zhang et al., 2008; 

Venchiarutti et al., 2008; Venchiarutti et al., 2011; Grenier et al., 2018), together with other 

chemical and physical parameters, satellite observations and modelling studies as part of the 

KEOPS 1 and KEOPS 2 voyages (Jouandet et al., 2008; Mongin et al., 2008; Park et al., 2008a; 

Park et al., 2008b; Savoye et al., 2008; Trull et al., 2008; Park et al., 2014; Bowie et al., 2015; 

Sanial et al., 2015, and references therein). Based on this data, the Kerguelen Archipelago 

(KA) and the HIMI were identified as the main source of lithogenic material to the region. The 

dissolution of this material releases Fe, thus naturally fertilizing the waters above the plateau. 

However, the relative contribution of both groups of islands is still not completely 

constrained, mainly because of the sparse spatial distribution of the sampling. In particular, 

the area surrounding HIMI remained almost unexplored. Additionally, there is the hypothesis 

that glaciers and hydrothermal activity in the region might interfere with the biogeochemical 

cycle of Fe (van der Merwe et al., 2019). 
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 Th isotopes and REE represent a valuable “toolbox” for the study of the oceans  

(Jeandel and Derek, 2018; Lam and Anderson, 2018). They are affected by almost every 

process involved in the regulation of the biogeochemical cycles in the ocean. This means that 

they can be used as present and past tracers of such processes.  In seawater Th and REE are 

present in such minuscule dissolved concentrations that their measurement requires clean 

and meticulous analytical techniques. Such low concentrations make necessary for the 

analytes to be pre-concentrated from seawater and then chromatographically separated. 

Commonly used pre-concentration techniques involve the use of Fe carrier solution to 

precipitate the target analytes (Anderson et al., 2012). This approach is well known to 

produce good quality results; however, it can be time consuming. Furthermore, this 

technique has remained almost unchanged during the last 40 years. I investigated the 

possibility of using the chelating resin Nobias as an alternative way to simultaneously pre-

concentrate Th and Nd isotopes from a single seawater sample, and if it was possible to 

couple it to existing separation techniques (Chapter 2). Then, I applied these tracers to 

samples from the HIMI region to address the issues established in the previous paragraphs 

(Chapters 3 & 4). 

 The rest of this introductory chapter aims to provide an overview of the use of Th 

isotopes and REE in oceanographic studies. I discuss the fundamental physicochemical 

characteristics that allow these elements to track several oceanographic processes and 

provide a brief summary of their different applications, as well as the evolution of the 

analytical techniques to measure them in seawater. An introduction to the geography, 

geology and oceanographic setting of the KP is also provided. 
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1. Use of Th isotopes and REE in oceanography 

1.1 Thorium isotopes 

 Since radioactivity was discovered in the last years of the XIX Century (Becquerel, 

1896; Curie, 1898), it started to gain applications to study the Earth’s history. It was found 

that the radioactive decay of thorium and uranium generated a series of isotopes of different 

elements. This succession of decay is known as the U and Th radioactive decay series. These 

series are composed of 8 core elements (U, Th, Pa, Ra, Rn, Po, Bi and Pb; Krishnaswami and 

Kirk Cochran, 2008). Due to their different chemical properties and half-lives, these isotopes 

fractionate among the members of the same decay chain resulting in radioactive 

disequilibrium. This disequilibrium provides information about the processes and timescales 

that produce them and is the key for their application in earth sciences. Amongst these 

radioactive isotopes (also known as radionuclides), several thorium isotopes have been 

applied by oceanographers to obtain different time-scale information about the particle 

dynamics in the ocean. These applications will be briefly discussed in the following section 

with an emphasis on the use of 232Th and 230Th. Finally, a time-evolution of the techniques 

and procedures to measure Th isotopes in seawater is provided.  

 Thorium is a chemical element from the actinide group with an atomic number of 90.  

Seven isotopes of Th naturally occur (227Th, 228Th, 229Th, 230Th, 231Th, 232Th and 234Th). 

However, most of the Th is the primordial isotope 232Th (99.98%, t1/2=14.05x109 years) and 

230Th (0.02%, t1/2=75,400 years), the latter being contained mostly in the deep ocean. Despite 

their difference in concentration, all thorium isotopes predominantly exist in seawater in the 

oxidation state of 4+. This makes dissolved Th highly unstable, causing all isotopes to quickly 

hydrolyze after being introduced in the dissolved phase to seawater. This results in extremely 

insoluble chemical species, mostly Th(OH)4 (Rutgers van der Loeff and Geibert, 2008). 
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 The primordial nuclide 232Th is found in the continental crust at an average 

concentration of 10.5 ppm (Rudnick and Gao, 2013). The dissolution of this crustal material is 

the main source of 232Th to the ocean and produces dissolved concentrations that range from 

a few tens to a couple hundred pg kg-1, being higher close to the source and decreasing 

towards the open ocean. The vertical distributions of 232Th in the Atlantic and Pacific generally 

show higher concentrations in surface waters, reflecting continental, atmospheric and 

riverine inputs (Nozaki et al., 1987; Cochran et al., 1987). However, deviations from this 

pattern can be observed, with mid depth and even bottom water maxima in 232Th. These 

variations are caused by additional sources of 232Th other than the input through the ocean’s 

surface, such as through lateral advection and nepheloid layers (Coppola et al., 2006; Hsieh 

et al., 2011; Okubo et al., 2012). 

 The isotopes 230Th and 234Th (t1/2=24.1 days) share the characteristic of being supplied 

to the ocean almost entirely by the radioactive decay of their highly-soluble parent nuclides 

234U and 238U respectively. The distribution of these uranium isotopes remains constant 

through the water column and is dependent on salinity (Chen et al., 1986; Owens et al., 2011). 

Due to its short half-life, 234Th is generally found in equilibrium with its parent nuclide 238U. 

However, in areas of high particle flux, a depletion of 234Th from 238U is observed (Figure 1; 

Bhat et al., 1968; Coale and Bruland, 1985; Rutgers van der Loeff and Geibert, 2008). Above 

the seafloor, 234Th disequilibria from 238U has been shown to result from extra scavenging due 

to an intense particle flux or a well-defined nepheloid layer (Amin et al., 1974; Bacon and 

Rutgers van der Loeff, 1989; Turnewitsch and Springer, 2001; Rutgers van der Loeff et al., 

2002; Inthorn et al., 2006; Turnewitsch et al., 2008). Considering that all thorium isotopes 

behave in a similar way, this effect can also be expected with longer lived isotopes like 230Th 

and 228Th (Schmidt, 2006; Hsieh et al., 2011; Hayes et al., 2013b).  



 

23 
 

 

Figure 1-1. Disequilibrium between 234Th (daughter) and 238U (parent) in the surface of the 

ocean (taken from Rutgers van der Loeff and Geibert, 2008) 

 In many parts of the open ocean the distribution of 230Th is controlled mainly by the 

process of reversible scavenging (Figure 2). The reversible-scavenging model involves a steady 

state and a continuous exchange of 230Th between the dissolved and the particulate phase 

that causes a linear increase in the concentration with depth (Figure 2; Nozaki et al., 1981; 

Bacon and Anderson, 1982; Anderson et al., 1983b; Nozaki and Nakanishi, 1985; Roy-Barman 

et al., 1996). The steady state condition implies no lateral transport of 230Th, meaning that it 

is all scavenged within the basin. A steady state condition does not apply for many parts of 

the ocean, in particular in the ocean margins. Here, the high particle load produced near the 

continents effectively scavenges laterally transported nuclides in a process known as 

boundary scavenging (Bacon et al., 1976; DeMaster, 1979; Nozaki and Horibe, 1983; Robert 

F. Anderson et al., 1983; Cochran et al., 1987; Roy-Barman et al., 2009). In some other areas, 

inter-basin mixing due to the advection of deep waters affects the distribution and flux of 

230Th in what is described as the scavenging-mixing model (Figure 2; Rutgers van der Loeff 
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and Berger, 1993; Kirk Cochran et al., 1995; Scholten et al., 1995; Moran et al., 1995; Moran 

et al., 1997; Vogler et al., 1998; Marchal et al., 2000; Moran et al., 2001; Okubo et al., 2012; 

Rempfer et al., 2017).  

 

Figure 1-2. Comparison between the predictions in the 230Th vertical distribution produced by 

the reversible scavenging model and different outcomes of the scavenging-mixing model 

(modified from Okubo et al., 2012). 

 

 Given the insoluble nature of Th isotopes, after production by radioactive decay, they 

are quickly subject to scavenging processes. However, their transfer from the dissolved pool 

to the particulate one is a complex process (Figure 3). The size and composition of the 
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particles plays a key role in the scavenging of thorium isotopes and it was found that most of 

the particle reactive radionuclides tend to be scavenged onto small particles, and then 

transported downwards by aggregation of these particles to larger ones (Bacon et al., 1985; 

Nozaki et al., 1987; Chase et al., 2002). At this point it is necessary to state that the term 

dissolved is only an operationally defined parameter. By convention, 0.45 µm is the threshold 

that separates the “dissolved” and “particulate” fractions. However not all the material that 

goes through this pore size can be considered to be fully dissolved. Honeyman and Santschi 

concluded that the aggregation of Th to filterable particles was a consequence of rapid 

absorption of Th species onto colloidal or sub-micron particles, followed by a gradual 

aggregation to filterable size particles by Brownian pumping. This process is still not 

completely constrained, and raises the question about the “truly” dissolved Th, as estimations 

of the amount of Th associated with the colloidal phase range from 0.04% to 80% (Baskaran 

et al., 1992; Moran and Buesseler, 1992; Guo et al., 1997; Gustafsson et al., 2000; Dai and 

Benitez-Nelson, 2001; Baskaran et al., 2003; Santschi et al., 2006). 

 Another scavenging mechanism is complexation. This process occurs when some 

cations in seawater (like Th4+) interact with organic and inorganic ligands forming a larger unit 

with different chemical properties. This complexation process can also form at the surface of 

a particle, enhancing the direct transition between the dissolved and particulate phase 

(Hirose and Sugimura, 1993; Hirose, 1996). Thorium isotopes can also form complexes with 

strong organic ligands (Hirose and Tanoue, 1994). These complexes can keep Th in solution, 

however acid polysaccharides tend to aggregate and, depending on the intensity of the 

aggregation, they may be found in the colloidal or the particulate pool of seawater (Quigley 

et al., 2002). The effect of these organic ligands is most likely to affect Th isotopes in the 

surface of the ocean, i.e. 234Th; due to their labile nature, organic ligands are not present in 
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deeper water and thus deep 230Th speciation might be affected by processes that are still 

unknown (Alvarado Quiroz et al., 2006). All the mechanisms mentioned in this section have a 

fundamental role in the application of Th isotopes for particle dynamics studies in the ocean. 

 

Figure 1-3. Mechanisms involved in the scavenging of Th isotopes (taken from Rutgers van 

der Loeff and Geibert, 2008). 

 

1.1.2 Applications of thorium isotopes 

 Thorium isotopes have an amazing potential for the study of the ocean and 

throughout the years they have found several applications. Describing in detail all these 

applications is outside the scope of this chapter. In the following paragraphs I list these 

applications and provide references. Then I focus on the use of 232Th and 230Th to quantify 

lithogenic inputs, which is the way I apply 232Th and 230Th measurements in Chapter 3.  

 The reactivity of thorium isotopes and the fact that 228Th, 230Th and 234Th are produced 

by in situ decay is the basis for their use as tracers of the particle dynamics in the ocean. The 

disequilibrium between daughter and parent nuclides provides a “chronometer” of the time 

required to remove Th isotopes from solution. Because 228Th (1.9 years), 230Th (75,400 years) 

and 234Th (24.1 days) have different half-lives, it is possible to study particle related processes 
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at different time scales. This characteristic has been exploited in different applications 

including  quantification of the export production (Bhat et al., 1968; Matsumoto, 1975; Coale 

and Bruland, 1985; Buesseler et al., 1992; Buesseler et al., 1995; Rutgers Van Der Loeff et al., 

1997; Buesseler et al., 1998; Benitez-Nelson et al., 2001; Santschi et al., 2003; Benitez-Nelson 

and Moore, 2006; Thomalla et al., 2006; Jacquet et al., 2008; Savoye et al., 2008; Planchon et 

al., 2015; Pavia et al., 2019; and references threin), sediment trap calibration (Tsunogai et al., 

1986; Buesseler et al., 1994; Buesseler et al., 2000; Scholten et al., 2001; Yu et al., 2001; 

Coppola et al., 2002; Gustafsson et al., 2004; Buesseler et al., 2007; Lalande et al., 2007; 

Lampitt et al., 2008), identification of nepheloid layers (Amin et al., 1974; McCave, 1986; 

Bacon and Rutgers van der Loeff, 1989; DeMaster et al., 1991; Rutgers van der Loeff and 

Boudreau, 1997; Turnewitsch and Springer, 2001; Rutgers van der Loeff et al., 2002; 

Venchiarutti et al., 2008), hydrothermal scavenging (Kadko, 1980; Shimmield and Price, 1988; 

Lalou et al., 1993; Kadko et al., 1994; Lopez et al., 2015; Lund et al., 2019; Pavia et al., 2019a), 

and paleoflux (also referred as 230Th normalization; Bacon, 1984; Suman and Bacon, 1989; 

Francois et al., 1990; Francois et al., 1993; McManus et al., 1998; Henderson et al., 1999; 

Thomson et al., 1999; Francois, 2004; Lyle et al., 2005; Francois et al., 2007; Costa and 

McManus, 2017). 

 All the previously mentioned applications are based on the disequilibrium of thorium 

isotopes from their parent nuclides. However, they do not consider 232Th, which provides a 

link with the lithogenic sources to the ocean as they represent their main source. Combining 

the 232Th with 230Th determinations has the advantage that, while 230Th can provide a 

scavenging time, the 232Th concentrations can be used to calculate a flux of this isotope to a 

particular water mass. This approach was originally applied in a similar way as the 230Th 

normalization to reconstruct the history of accumulation of lithogenic material to the Pacific 
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sector of the SO (Chase et al., 2003) and the variability in the delivery of dust to the central 

equatorial Pacific Ocean (Anderson et al., 2006) and the Arabian Sea (Pourmand et al., 2004). 

A few years later the same approach was applied for the first time in seawater to quantify the 

flux of aeolian dust to the Atlantic (Hsieh et al., 2011; Deng et al., 2014) and North Pacific 

(Hayes et al., 2013a). For these studies, 230Th was used to calculate a scavenging residence 

time, which was then used to calculate a flux of 232Th. With knowledge about the Th content 

and solubility of the mineral dust, it was possible to produce estimations of the flux of 232Th 

that generates the observed dissolved concentrations. In a similar way it is possible to 

calculate the flux of other trace elements based on their solubility relative to Th isotopes. This 

approach has potential for several applications in oceanography (Hayes et al., 2013b; Hayes 

et al., 2018). However it has several sources of uncertainty that require further investigation 

(Anderson et al., 2016), especially regarding the solubility of Th from lithogenic material and 

the effect of particle size  and composition on the scavenging of thorium isotopes (Anderson 

et al., 2016). The Chapter 3 of this thesis is focused on applying this approach to a more 

coastal area like the Kerguelen Plateau. 

1.1.3 Analytical determination of Th isotopes in seawater  

 Alpha particle spectrometry was the first technique that allowed the measurement of 

Th isotopes in seawater towards the end of the 1950s. Measurements were performed on 20 

to 40 L  of coastal and non-filtered seawater (Koczy et al., 1957; Sackett et al., 1958; Starik et 

al., 1959). The first measurement of truly open-ocean seawater was performed by Moore and 

Sackett using 220 L samples. These samples were centrifuged in order to remove at least the 

largest particles and then a 234Th yield tracer was added. The isotopes of thorium were 

precipitated using a Fe carrier solution and then purified by a mixture of anion and cation 

exchange chromatography. Measurement was performed on the isotopes 228Th, 230Th and 
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232Th on the α-spectrometer and the 234Th tracer by β-particle spectrometry. Yields of this 

procedure ranged from 15-45%. This approach remained for the next twenty years (Nozaki et 

al., 1981; Nozaki and Nakanishi, 1985) until the use of in situ filtration onto MnO2-

impregnated filters to pre-concentrate Th isotopes started to be applied as well (Anderson et 

al., 1983a; 1983b; Nozaki and Horibe, 1983). Around the same time, the instrumental neutron 

analysis for the measurement of 230Th (Greenberg and Kingston, 1983; Huh and Bacon, 1985) 

and 232Th (Huh, 1987)  was applied on small volume samples (< 500 mL), however it required 

a meticulous matrix removal and separation that involved coprecipitation, ion exchange 

chromatography and solvent extraction. 

 The development of mass spectrometry revolutionized the way Th isotopes were 

measured and quickly became the analytical technique of choice. It was first applied to 

measure Th and U in soils (Roshholt et al., 1966) , mollusk shells (Szabo and Rosholt, 1969), 

and lunar material collected during the Apollo voyages (Rosholt and Tatsumoto, 1970; Barnes 

et al., 1972). However, it was not until the second half of the 1980s that it was applied for the 

first time to measure total 232Th, 238U and 234U concentrations in seawater (Chen et al., 1986). 

This technique allowed sample size to be reduced to 250-1000 mL. In a similar way as for the 

α-spectrometry, the samples were precipitated with an Fe carrier solution and 

chromatographically separated with an anion exchange resin, obtaining a chemical yield 

above 95 %.  

 With the development of more sophisticated mass spectrometers with potent 

detectors and improved software, most laboratories can reliably measure 230Th and 232Th 

using samples that range from 2 to 10 liters of seawater. Some of the thorium determinations 

are performed using the Thermal Ionization Mass Spectrometry (TIMS; Robinson et al., 2004; 

Andersson and Schöberg, 2012). Some other laboratories use either high resolution (Choi et 
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al., 2001; Shen et al., 2002; Hayes et al., 2015) or multi-collector (Thomas et al., 2006; Hayes 

et al., 2017) Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Despite all these 

advances in spectrometry in the last two decades, sample pre-treatment has remained almost 

unchanged. In the next chapter of this thesis we present a new method to pre-concentrate 

230Th and 232Th using the Nobias chelating resin (Pérez-Tribouillier et al., 2019). 

1.2 Rare Earth Elements 

 The suite of rare earth elements is composed of 15 chemical elements with atomic 

masses that go from 57 through to 71. Due to the Oddo-Harkins effect, REE elements with an 

even atomic number are more abundant that the ones with an odd one. This is because of 

the variations in the binding energy of the nucleus as a function of neutron and proton 

number during the formation of the solar system (Dickin, 2018). This effect causes the REE to 

have a saw-like pattern, which can be minimized by “normalizing” the REE concentrations to 

a standard, being the Post Archean Australian Shale (PAAS) the most commonly used in 

oceanography  (Elderfield et al., 1988). In seawater, REE exist predominantly in an oxidation 

state of 3+, which makes them have a very similar behavior. However, small differences cause 

them to fractionate, which can be used to provide information about processes in water-

column. First, their stability constant increases as the atomic number of each REE increases. 

This makes light REE have an increased affinity to scavenging by particles relative to heavy 

REE. Cerium (Ce) can also exist in the insoluble oxidation state of 4+ (like Th isotopes). This 

causes Ce to hydrolyze and be incorporated into particles as CeO2 (Elderfield and Greaves, 

1981; de Baar et al., 1988; German et al., 1995). Both of these characteristics explain the 

typical PAAS-normalized REE pattern of REE in seawater (Figure 4), with a depletion of Ce with 

respect to their neighbors and an enrichment of the heavier REE. Under reducing conditions, 

Eu can also exist in the oxidation state of 2+, which makes it remain in solution. This causes 
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an enrichment of Eu in hydrothermal fluids (German et al., 1990; Olivarez and Owen, 1991). 

The speciation of REE in seawater is dominated by the complexation with carbonate ions 

(Elderfield et al., 1988; Jong Hyeon Lee and Byrne, 1993). The organic complexation of  REE 

likely also plays a role in their speciation,  because they have affinity for negatively charged 

sites on organic molecules (Byrne and Kim, 1990). However, more work is needed in this 

regard. Some studies have identified organic binding of REE in areas with high productivity 

(Haley et al., 2014; Grasse et al., 2017). Heavier REE also seem to have affinity to bacterial 

phosphate functional groups, and strong organic ligands (Takahashi et al., 2005; Takahashi et 

al., 2007; Ngwenya et al., 2009; Takahashi et al., 2010; Ngwenya et al., 2010). Uptake of REE 

by biogenic silica has also been suggested (Bertram and Elderfield, 1993; Akagi, 2013). All 

these complexation processes may be the cause of why the vertical distribution of REE in 

seawater shows a nutrient-like profile (Elderfield and Greaves, 1982; Elderfield et al., 1988; 

Schijf et al., 2015). 

 

Figure 1-4. PAAS normalized patterns of REE in the surface waters (crosses) of the Southern 

Ocean compared to the surface next the Kerguelen Archipelago (diamonds; Grenier et al., 

2018). 
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 The continental crust is the main source of REE to the marine environment. The 

dissolution of sediment deposited in continental shelves and slopes dominates the REE cycle 

in the ocean, followed by aerosols and riverine input. Some REE are produced by radioactive 

decay. The 147Sm isotope decays to the stable 143Nd. Chemical fractionation during magma 

melting and the formation of continental crust produces a range of 147Sm/144Nd ratios, and 

hence different 143Nd/144Nd ratios in rocks and minerals as a function of age and the Sm/Nd 

ratio of the parent material (Lugmair, 1974; DePaolo and Wasserburg, 1976). However these 

changes are so small that the 143Nd/144Nd ratio is commonly normalized to the Chondritic 

Uniform Reservoir (143Nd/144Nd=0.512638) in order to be able to observe the changes in the 

Nd isotopic composition, and expressed as ƐNd (DePaolo and Wasserburg, 1976; Equation 1). 

When these rocks and minerals enter into contact with seawater, their unique 143Nd/144Nd 

signature gets imprinted into that particular water mass and remains along its path through 

the ocean circulation cycle.  

𝑁𝑑 =

[
 
 
 
 (

𝑁𝑑143

𝑁𝑑144 )
𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑁𝑑143

𝑁𝑑144 )
𝐶𝐻𝑈𝑅

− 1

]
 
 
 
 

 ×  10,000  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

 It is possible to use Nd isotopes as global circulation tracers because the oceanic 

residence time of Nd (~300 years) is shorter than the global oceanic mixing time (Tachikawa, 

2003; Arsouze et al., 2007; Arsouze et al., 2009), and because they are not affected by 

biological fractionation. Intermediate and deep water masses therefore exhibit a quasi-

conservative behaviour along their flow path through the global circulation (Frank, 2002; 

Goldstein and Hemming, 2003; Molina-Kescher et al., 2014). It is now known that the main 

source of Nd to the ocean are the different types of continental weathering and erosion and 



 

33 
 

exchange via the continental margins (Lacan and Jeandel, 2005). There are two main 

endmembers of the ƐNd in the ocean: 1) water masses originating from regions where young  

mantle derived material is weathered, like in the Pacific Ocean, which exhibits more 

radiogenic values (ƐNd = -2 to -4; Piepgras and Jacobsen, 1988; Amakawa et al., 2004; van de 

Flierdt et al., 2004); 2) water masses formed under the influence of older continental rock, 

like the NW Atlantic Ocean, carry less radiogenic values (ƐNd = -13; Piepgras and Wasserburg, 

1987; Rickli et al., 2009). However, the mechanisms involved in the transfer of the ƐNd to 

seawater, their distribution and internal cycling are still not completely understood. This is 

further evidenced by the fact that there is a global decoupling between the observed Nd 

concentration and the ƐNd in the water column (Goldstein and Hemming, 2003), which is 

commonly known as the “Nd-paradox”. This can also be interpreted as a missing source of Nd 

to the ocean (Bertram and Elderfield, 1993; Jeandel et al., 1995; Flierdt et al., 2004). No 

matter the definition that is given to the Nd-paradox, data clearly point to additional sources, 

sinks and/or processes that play an important role in the global Nd cycle (Siddall et al., 2008). 

Considering additional sources, the role of hydrothermal activity has already been discarded 

as a significant contributor to the Nd budget due to immediate scavenging over the 

hydrothermal vents (Goldstein and O’Nions, 1981; German et al., 1990; Halliday et al., 1992). 

Additional sources could include interactions of river particles with seawater, input of volcanic 

ash, and near-bottom dissolution of deposited or resuspended sediments deposited on 

continental shelves and slopes, and submarine ground water discharges (Elderfield and 

Sholkovitz, 1987; Spivack and Wasserburg, 1988; Albarède et al., 1997; Johannesson and 

Burdige, 2007). More recent modelling and observational studies have found that near the 

continental margins, the Nd-paradox can be explained by a combination of lateral advection, 

vertical mixing and reversible scavenging (Siddall et al., 2008; Stichel et al., 2015), together 
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with the processes of boundary scavenging (Lacan and Jeandel, 2001; Lacan and Jeandel, 

2005; Arsouze et al., 2007; Arsouze et al., 2009; Grenier et al., 2014) 

1.2.2 Application of REE in oceanography 

 The REE distributions in the ocean are affected by almost every single process involved 

in the marine biogeochemical cycles. Therefore, measurements of REE concentration in 

seawater have been applied to trace different processes like the input of lithogenic material 

(e.g. Osborne et al., 2015; Molina-Kescher et al., 2018), hydrothermal activity (Klinkhammer 

et al., 1983; Olivarez and Owen, 1991; Cole et al., 2014), intensity of the biogeochemical 

cycling (Nozaki and Alibo, 2003; Hathorne et al., 2014; Zheng et al., 2016; Crocket et al., 2018), 

the redox state of seawater (de Baar et al., 1988; Byrne and Kim, 1990; German et al., 1995), 

amongst others. 

 Since the development of the techniques that have allowed the measurement of ƐNd 

of seawater, REE concentrations began to be coupled with this parameter. This coupling 

allows a more complete “picture” of the different factors controlling the oceanic 

biogeochemical cycles, and their relation with the global climate on different time scales.  

Coupled with the global circulation tracer ƐNd , the REE data provides insight into more local 

processes occurring in the water column. This approach has been used to characterize the 

past and current biogeochemical cycles of the different ocean basins (Piepgras and Jacobsen, 

1992; Bertram and Elderfield, 1993; Scher and Martin, 2004; Pahnke et al., 2008; Carter et al., 

2012; Grasse et al., 2012; Singh et al., 2012; Grenier et al., 2013; Garcia-Solsona et al., 2014; 

Molina-Kescher et al., 2014; Grasse et al., 2017; Haley et al., 2017; Grenier et al., 2018; and 

references therein).  
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1.2.3 Analytical determination of REE in seawater 

The first determinations of REE in geological materials were performed by optical 

spectrography techniques (Minami, 1935a; Minami, 1935b; Goldschmidt, 1937), however the 

first measurements of REE in seawater were not reported until the 1960s (Balashov, 1961; 

Goldberg et al., 1963). The first seawater measurements were made by instrumental neutron 

activation analysis. This technique required extensive sample processing including irradiation, 

several precipitations with Fe carriers and different ion exchange columns (Mosen et al., 

1961), in order to remove the background signal coming from the seawater matrix. Sample 

determination was performed in a low-level β counter. Instrumental neutron activation 

analysis remained as the most common way of measuring REE for the following decades 

(Høgdahl and Melsom, S.Bowen, 1968; Henderson and Pankhurst, 1984) until the appearance 

of mass spectrometry. 

 The development of mass spectrometry coupled with isotope dilution techniques 

quickly allowed for the REE determinations in seawater to gain in number and produced more 

accurate results (Palmer, 1983; Klinkhammer et al., 1983; De Baar et al., 1985; de Baar et al., 

1988; Greaves et al., 1991). These methods comprised a pre-concentration with Fe carrier 

solution or by the use of chelating resins,  separation of the REE from the seawater matrix 

using mixed/solvent ion exchange chromatography, and analysis using a mass spectrometer 

coupled to a single/multiple filament thermal ionization device (Schnetzler et al., 1967; 

Hooker et al., 1975). The introduction of the mass spectrometer also allowed the first 

measurements of the Nd isotopic composition (Piepgras et al., 1979; Piepgras and 

Wasserburg, 1980; Piepgras and Wasserburg, 1982; Piepgras and Wasserburg, 1983; Piepgras 

and Wasserburg, 1987). For these determinations, large volume samples - generally of 30 L - 

were required. The Nd isotopes were pre-concentrated by Fe precipitation and then the 
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water matrix was removed by a two-step ion exchange chromatography (Eugster et al., 1970; 

DePaolo and Wasserburg, 1976). The thermal ionization mass spectrometry and multi-

collector inductively coupled mass spectrometry are nowadays the predominant techniques 

for the determination of the neodymium isotopic composition. The sample volume has been 

greatly reduced to less than 10 L (van de Flierdt et al., 2012). Samples are pre-concentrated 

by precipitation or by the use of chelating resins, then remaining cations are removed by 

cation exchange chromatography and Nd isotopes are separated from the rest of the REE with 

using extraction chromatographic procedures or  α -HIBA chemistry  (Choppin and Silva, 1956; 

Pin and Zalduegui, 1997; van de Flierdt et al., 2012; Pahnke et al., 2012). 

2. Area of Study 

2.1 Geographic setting, bathymetry and geology of the plateau 

The Kerguelen plateau is located in the Indian Sector of the Southern Ocean (Figure 

5), about ~3,500 km southwest of Perth, Australia and ~2,000 km north of Antarctica. It is a 

hotspot-based chain of islands that lies in a NNW-SSE trend for ~2,300 km long and ~600 km 

wide between 46oS and 64oS, forming a natural barrier for the flow of the Antarctic 

Circumpolar Current (ACC). Most of the plateau is situated 2 km above the surrounding 

abyssal plains floored by oceanic crust, except at the southern end where it is separated from 

the Antarctic mainland by the Princess Elizabeth Trough. It hosts two groups of islands, the 

KA and the volcanically-active HIMI. The bathymetrical features of the KP divide it in three 

regions (Figure 5): (1) The northern Kerguelen plateau is a well-defined, almost square 

shallow section of the plateau (<200 m) that includes the KA. It is limited to the north by the 

Kerguelen-Amsterdam passage (not shown) and to the south by the KA Trough. (2) The 

relatively shallow (<400 m) central KP includes HIMI and a series of seamounts and rises, 

referred as the HIMI shoal. It is defined by the 600 m isobath and limits to the south with the 
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Fawn Trough and to the east with the HIMI Trough that separates it from another seamount. 

(3) The deeper (1.5-2 km) southern Kerguelen plateau presents no outcrops, limited to the 

north by the Fawn Trough and to the south by the Princess Elizabeth Trough (not shown). 

 

Figure 1-5. Bathymetrical features of the Kerguelen Plateau. 

The Kerguelen Plateau is one of the two most voluminous Large Igneous Magmatic 

Provinces, together with the Ontgong Java in the Pacific (Frey et al., 2000). The Cretaceous 

Kerguelen Plateau represents voluminous volcanism associated with the arrival of the 

Kerguelen plume head below the young Indian Ocean lithosphere (Weis et al., 1992). Then, a 

rapid northward movement of the Indian plate over the plume formed a 5,000 km long hot 

spot track between ~82-38 Ma (Mahoney et al., 1983) . Around 40 Ma, the Southeast Indian 

Ridge intersected the plume’s position; as this ridge migrated northeast relative to the plume, 

the magmatism of the hot spot became confined to the Antarctic plate. From this time 

onwards, the KA, HIMI and the NW-SW trending chain of submarine volcanoes (nowadays 

seamounts) were formed in the northern and central KP (Frey et al., 2000). More recent 

studies have determined, using radiometric dating, that magmatic rocks associated with the 

Kerguelen hot spot have ages that range from ~130 Ma to recent times (COFFIN, 2002; Bénard 
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et al., 2010). A geochemical contamination by continental material has been evidenced for all 

the studied magmatic rocks of the southern and central part of the Plateau. Only the basalts 

of the northern zone record the signature of ridge-derived magmas, suggesting that the South 

and Central Kerguelen Plateaus formed from the interaction between remnants of 

continental crust and the Kerguelen Plume, while the Northern KP was formed through 

interactions with the South East Indian Ridge (Bénard et al., 2010).  

2.2 Circulation and hydrography of the Kerguelen Plateau 

In the Southern Ocean, distinct water masses originating from different locations of 

the global ocean mix while circulating eastward around Antarctica, in what is known as the 

Antarctic Circumpolar Current (ACC). This region regulates the global climate because North 

Atlantic Deep Water upwells south of the ACC and transforms into the Antarctic Bottom 

Water and Antarctic Intermediate Water, exchanging heat and carbon along the way, and 

completing the southern-most component of the meridional overturning circulation (Park 

and Vivier, 2011).  

The KP plateau represents a major topographic barrier for the flow of the ACC (Figure 

6). About 75% of the total ACC flow (~140 Sv; 1 Sv = 106 m3 s-1) is deflected north of the KA 

through the Kerguelen-Amsterdam passage (Figure 6).  The remaining transport (~50 Sv) still 

needs to pass between the Kerguelen islands  and Antarctica (Park et al., 1991). The Fawn 

Trough Current constitutes a favoured passage for this remaining ACC component (Park and 

Gamberoni, 1997; McCartney and Donohue, 2007) with the strongest flow  at the surface (0.6 

m s-1), decreasing towards 1000 m (0.3 m s-1). A secondary eastward flow branch with a depth-

averaged velocity of 0.2 m s-1 can also be found following the near-shore slope just south of 

HIMI. In the eastern flank of the plateau and south of the Fawn Trough Current the north-

westward flowing Deep Western Boundary Current (DWBC) is highly barotropic and is mostly 
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confined within a narrow part of the continental slope (~75 km). This current transports 

around 36 Sv towards the plateau, which is then compensated by a poleward recirculation 

transport of 34 Sv (Park et al., 2008b).  Finally, another important component of the eastward 

transport of the ACC that flows immediately south of the Kerguelen islands is the Polar Front. 

The location of the Polar Front has been debated in the past with an extreme discrepancy of 

over 10o of latitude. However a recent study from Park et al.(2014) has validated the position 

of the PF to round the KA from the south and then turn northwards along the eastern 

escarpment of the northern KP (see Figure 6). 

 In the central part of the plateau the circulation is dominated mainly by the 

bathymetry. Calculated geostrophic currents indicated a dominant sluggish flow (3-5 m s-1) 

with a general anticyclonic circulation that flows northwards east of HIMI roughly following 

the local bathymetry of the shallow platform (Park et al., 2008b). West of the HIMI the 

circulation is less defined, however it was proposed that this area holds a tentative 

topography-following southward circulation. In addition to horizontal transport,  

Park et al.(2008a) identified activity of highly non-linear semidiurnal internal tides showing 

peak-to-peak isopycnal displacements of up to 80 m. The same authors estimated local 

vertical eddy diffusivities in the order of 4 x 10-4 m2 s-1.  The vertical transport of water, 

together with the relatively slow circulation over the plateau, were identified as the main 

physical factors that enable the development of the seasonal bloom that occurs in the region 

(Park et al., 2008b). 
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Figure 1-6. Predominant circulation pattern in the Kerguelen plateau (taken from Park et al., 

2008b). The green colour represents areas where it is historically known for the bloom to 

appear in the region once the sun is no longer limiting in the austral summer. The red arrow 

represents the Polar Front. 
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Chapter 2 - Pre-concentration of thorium and neodymium isotopes using 
Nobias chelating resin: Method development and application to 
chromatographic separation. 

 
This chapter was published as an article under the same title in the journal Talanta, by Elsevier, 
DOI: 10.1016/j.talanta.2019.03.086 

1. Introduction 

 The isotopes of thorium (Th) and neodymium (Nd) are used to study a wide range of oceanic 

processes including vertical particle flux, circulation, productivity and many others (Nozaki et al., 

1981; Anderson et al., 1983; Jeandel et al., 1998; Francois et al., 2004; Lacan and Jeandel, 2005; 

Arsouze et al., 2007; Hsieh et al., 2011). All Th isotopes have a stable oxidation state of IV (Santschi 

et al., 2006). Once in the dissolved fraction of seawater, Th will hydrolyse, adsorb onto settling 

particles and finally be incorporated into the sedimentary record (Moore and Sackett, 1964). Thorium 

isotopes provide information about biogeochemical cycles in the ocean because of their well 

constrained sources and particle reactivity (Krishnaswami and Cochran, 2011). 232Th (t1/2=1.4×1010 

years) is a primordial isotope that is introduced to the ocean entirely by the dissolution of continental 

material (Brewer et al., 1980; Hayes et al., 2013). 230Th (t1/2=75,400 years) and 234Th (t1/2=24.1 days) 

are less abundant isotopes and are produced by the radioactive decay of 234U and 238U, respectively 

(Santschi et al., 2006). More recently, 232Th and 230Th have been used to track and quantify lithogenic 

fluxes of trace elements to the marine environment (Hsieh et al., 2011; Hayes et al., 2013; Hayes et 

al., 2017). In the case of Nd, three out of four of its most abundant isotopes originate from the decay 

of samarium (Sm) isotopes, with both parent and daughter elements existing in the III oxidation state. 

The long-lived 147Sm (t1/2=1.06 x 1011 years) and 148Sm (t1/2=7 x 1015 years) isotopes decay to the stable 

143Nd and to the long-lived 144Nd (t1/2=2.29 x 1015 years) respectively. Chemical fractionation during 

magma melting and the formation of continental crust produces a range of 147Sm/144Nd 

compositions, and hence different 143Nd/144Nd ratios in rocks and minerals as a function of age and 
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the Sm/Nd ratio (Goldstein and Hemming, 2003). The 143Nd/144Nd ratio in geological material is 

normally reported relative to the deviation from the Chondritic Uniform Reservoir (CHUR) and 

expressed in parts per ten thousand in what is known as epsilon notation (Nd) (Jacobsen and 

Wasserburg, 1980). The Nd of seawater has been recognised as a tracer of thermohaline circulation 

based on its distribution relative to oceanic temperature and salinity (Frank, 2002; Tachikawa et al., 

2017). The unique Nd signature imprinted on a water mass at the ocean margins traces the water 

mass source and mixing along the path of global ocean circulation (Piepgras et al., 1979; Piepgras and 

Wasserburg, 1980; Lacan et al., 2012). Nd isotopes are a quasi-conservative tracer of global oceanic 

circulation, however a complete understanding of the Nd biogeochemical cycle is still under 

development (Tachikawa, 2003; Lacan and Jeandel, 2005; Arsouze et al., 2009; Jeandel and Oelkers, 

2015; Rousseau et al., 2015; van de Flierdt et al., 2016; Haley et al., 2017).     

 Both Th and Nd are nominated as key parameters in the GEOTRACES program (Anderson et 

al., 2014; Schlitzer et al., 2018), an international study of the biogeochemical cycles of trace elements 

and their isotopes in the oceans. Both Th and Nd isotopes have been the subject of intercalibration 

exercises to validate analyses from different laboratories (Anderson et al., 2012; van de Flierdt et al., 

2012; Pahnke et al., 2012).Traditionally, Th and Nd isotopic systems in seawater have been studied 

separately. In recent years however, following the objective of the GEOTRACES  programme, there 

has been a shift towards a multi-tracer approach (Jeandel and Derek, 2018; Hayes et al., 2018).  

 The first techniques to measure Th isotopes in seawater were developed during the second 

half of the 1950s and early 1960s (Koczy et al., 1957; Sackett et al., 1958; Moore and Sackett, 1964). 

Large volume samples (30–250 L) were typically pre-concentrated by co-precipitation by Fe-

hydroxides (using a carrier solution containing FeCl3) or by the in-situ extraction to MnO2-

impregnated absorbers. After chromatographic separation, Th content was measured by decay-
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counting spectrometry. The development of mass spectrometry in the late 1970s allowed a reduction 

in sample size required for Th determinations by two orders of magnitude (Chen et al., 1986) and 

also enabled the first measurements of the Nd isotopic composition in seawater (Piepgras et al., 

1979). Nowadays, Th and Nd isotopic measurements are performed by Thermal Ionization Mass 

Spectrometry (TIMS) (Jeandel, 1993; Robinson et al., 2004; Andersson and Schöberg, 2012) or Multi 

Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) (Thomas et al., 2006; van de 

Flierdt et al., 2012; Andersson and Schöberg, 2012). In addition to the previously mentioned 

techniques, single collector Sector Field ICP-MS (SF-ICP-MS) can also be used for Th determinations 

in some applications (Choi et al., 2001). The development of isotope dilution (ID) coupled with Mass 

Spectrometry (MS) has also contributed to the precise determination of Th and Nd isotopic 

abundances in geologic materials (Dietz et al., 1962). The ID method is referred to as an isotope 

internal standardization technique because an isotopic analogue (spike) is added at the beginning of 

the analytical procedure, reaching equilibrium with the analyte without losses or isotopic 

fractionation. This technique enables exact compensation to be made for any analyte loss at all stages 

of sample pre-treatment or analysis, as the concentration can be determined using the isotopic ratio 

between the spike and the analyte (Sargent et al., 2002). Despite all the above-mentioned 

improvements in inorganic MS and the continuous development of new instruments with more 

powerful detectors and software, as well as the implementation of modern sample introduction 

systems that help minimize spectral interferences, the pre-concentration and subsequent 

chromatographic separation of Th and Nd isotopes are unavoidable. These procedures have 

remained relatively unchanged over the last 60 years. Currently, most laboratories pre-concentrate 

1-10 L samples using co-precipitation with Fe oxides, followed by purification using ion exchange 

chromatography (Anderson et al., 2012; Behrens et al., 2016). The simultaneous pre-concentration 

of both elements has been proposed (Jeandel and Venchiarutti, 2011; Andersson and Schöberg, 
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2012; Struve et al., 2016), however these methods still rely on co-precipitation for the initial pre-

concentration step. This approach is time consuming, taking up to a week in some cases, with 

additional work required to purify the Fe carrier solution and to digest organic matter and amorphous 

silicon carried by the iron hydroxide (Anderson et al., 2012; Andersson and Schöberg, 2012; Auro et 

al., 2012).  

 In the last decade pre-concentration of trace elements with chelating resins has grown in 

popularity. C18 cartridges filled with a mixture of di(2-ethyl)hydrogen-phosphate and 2-

ethylhexyldihydrogen-phosphate (HDEHP/H2MEHP) have been used for Nd isotope analysis (Shabani 

et al., 1992; Jeandel et al., 1998). The Nobias PA1L chelating resin (Hitachi Technologies, Japan) has 

also been employed for the pre-concentration of trace metals in seawater (Sohrin et al., 2008; Biller 

and Bruland, 2012; Middag et al., 2015), including the pre-concentration of 232Th (Takata et al., 2011) 

and Rare Earth Elements (REE) (Persson et al., 2011; Hatje et al., 2014). However, the pre-

concentration of 230Th with this resin has not been reported. 

 In this study we investigate the use of the Nobias PA1L resin to simultaneously pre-

concentrate dissolved Th and Nd isotopes from seawater. In particular, we investigate the optimal 

pH to simultaneously pre-concentrate both elements from a single seawater sample, and the 

coupling of this pre-concentration method with existing chromatographic techniques. We report the 

procedures followed to minimize blank contributions, together with a meticulous assessment of the 

accuracy and precision of the method to measure Th isotopes, and to a lesser extent Nd isotope. 

Finally, the validated method is applied to seawater samples collected from the Kerguelen Plateau 

(KP), located in the Indian-Ocean sector of the Southern Ocean. 
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2. Materials and methods 

2.1 Materials and Reagents  

 All materials including sampling bottles, Teflon vessels, and filter capsules were cleaned 

following GEOTRACES protocols (Cutter et al., 2010). Ultra-high purity water (UPW, 18.2 MΩ cm−1) 

was used to clean laboratory vessels and for reagent preparation. Concentrated CH3COOH, HCl and 

HNO3 were produced by distillation of analytical grade acids (Seastar Chemicals, Canada) in a DST-

1000 purification system (Savillex, USA). HF, HClO4 and NH3 were Baseline® (Seastar Chemicals, 

Canada) ultra-high purity grade and used as received. A “stock” buffer solution of 2.5 M ammonium 

acetate was prepared by mixing 317 g of UPW, 74 g of 17 M CH3COOH and 104 g of 11 M NH3 solution. 

Elemental pre-concentration was performed using Nobias PA1L (Hitachi Technologies, Japan) pre-

packed cartridges containing 300 mg of resin. This resin consists of both ethylenediaminetriacetic 

and iminodiacetic acids immobilized into a hydrophilic methacrylate polymer (Sohrin et al., 2008). 

For the Th-separation (Figure 1) the anion exchange AG® 1-X8 (Bio-Rad, USA) resin was used, it is 

composed of strongly basic anion exchangers with quaternary ammonium functional groups 

attached to a styrene divinylbenzene copolymer lattice (100-200 mesh size). For the REE-purification 

(Figure 1) the AG® 50W-X8 (Bio-Rad, USA) resin was employed. This cation exchange resin contains 

sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (20-50 mesh 

size). For the Nd-separation (Figure 1) the extraction chromatography LN® (Eichrom Technologies, 

USA) resin was used, it is made of de(2-ethylexyl) orthophosphoric acid (HDEHP) on an inert 

polymeric support (particle size 50-100 µm). 
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Figure 2-1. Optimised procedure for the determination of Th and Nd isotopes from a single seawater 

sample. 

 
Enriched radioisotope standard solutions of 229Th (NIST4328C, National Institute of Standards and 

Technology, USA) and 236U (IRMM-3660a, Institute for Reference Materials and Measurements, 

European Union) were used for isotopic dilution analysis and elemental yield control. After the 

dilution of the original supplied ampules and determination by reverse isotopic dilution (RID) (Sargent 

et al., 2002) the resulting concentrations for 229Th and 236U were found to be 47.79±0.01 pg g-1 and 

59.2±0.3 ng g-1, respectively. A 150Nd spike solution was obtained from the Australian National 
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University, a subsample sourced from the Charles Arm Laboratory (Wasserburg et al., 1981) (The 

California Institute of Technology, USA). The concentration of this solution was determined by RID to 

be 410 ng g-1. This “stock” solution was further diluted to obtain a concentration of 100 ng g-1, and 

was used to spike seawater samples. 

Method accuracy was assessed using an intercalibrated reference seawater. This seawater sample 

(KN-193-6-Th-616) was collected at the Bermuda Atlantic Time series station in July 2008, at a depth 

of 2000 m, as part of the GEOTRACES intercalibration exercise focussing on Th, Pa and Be (Anderson 

et al., 2012) (herein referred to as BATS2000). This sample was divided in two sub-samples of 9 

(BATS2000A) and 4.5 (BATS2000B) litres. 

 Long-term accuracy and precision were assessed using isotopic reference solutions. For Th 

isotopes repeated measurements of SW2010-1 and SW2010-2 solutions produced at the Lamont-

Doherty Earth Observatory (LDEO) for the intercalibration of Th isotopes (Anderson et al., 2012) were 

carried out. There are no consensus values for the SW2010-1 and SW2010-2 solutions because the 

intercalibration is an ongoing process. Based on data generated by LDEO and the University of 

Minnesota, subsequent to the GEOTRACES intercalibration on Th (Anderson et al., 2012), and 

provided by R.F. Anderson we estimate an expected concentration of 98315 pg g-1 (232Th) and 2474 

fg kg-1 (230Th) in the SW2010-1 solution. For the SW2010-2 solution, graphically extracted values from 

the images presented in the intercalibration (Anderson et al., 2012) indicate values of 532 

(232Th/229Th), 0.013460.0005 (230Th/229Th) and 3973184 (232Th/230Th). The JNdi-1 isotopic reference 

material (Tanaka et al., 2000) is a neodymium oxide (Nd2O3) sample, that was obtained upon request 

from the Geological Survey of Japan. An aliquot of the oxide was carefully weighed and then diluted 

with 2% HNO3 to form a solution of ~100 ng kg-1 of Nd. 
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2.2 Seawater sampling 

  Samples were obtained as part of the Heard Earth-Ocean-Biosphere Interactions (HEOBI) 

voyage along the Kerguelen Plateau during January and February 2016 onboard the R/V Investigator 

(GEOTRACES process study GIpr05). For the method development, sub-surface large volume samples 

were collected using the ship’s clean underway sampling system. The seawater (open ocean seawater 

collected in different locations off the plateau while the ship was in transit) was filtered directly from 

the tap through a 0.8/0.2 µm AcroPak® (PALL Corporation, USA) capsule filter into 30 L HDPE carboys 

and will be referred to as HEOBI Sub-surface Sample (HSs). Other samples were collected using a CTD 

rosette equipped with 12 L Niskin® bottles (General Oceanics, USA) and in the results and discussion 

we refer in particular to samples collected at station 18 (52°55'34.2"S 71°22'03.8"E, 2,725 m water 

depth), referred to as CTD18. Once on board, 5 – 10 L of seawater were filtered directly from the 

Niskin bottle, through a 0.8/0.2 µm capsule filter into pre-weighed 10 L cubitainers. On-board blanks 

(2 L) from the UPW system of the vessel where collected at every station. Samples were transferred 

to a laminar flow hood, in the wet lab of the ship, where 1 mL of 11M distilled HCl was added per 

litre of sample, resulting in a final pH value of ~ 1.7. Finally, sample containers were wrapped in plastic 

film, double bagged and stored for on-shore processing.  
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Figure 2-2. Manifold used for sample pre-concentration (not to scale). Only one of a total of six 

manifolds is shown. (1) ETFE/ Polypropylene 1/8″ male luer lock to ¼-28 female adapter attached to 

the tubbing by an ETFE 1/8″ flangeless nut and a Tefzel® 1/8 flangeless ferrule. (2) ETFE/ 

Polypropylene 1/8″ female luer lock to ¼-28 female adapter attached to the tub- bing by an ETFE 1/8 

flangeless nut and a Tefzel® 1/8 flangeless ferrule. Clear tubing represents the 1/8″ Fluorinated 

Ethylene Propylene tubing, shaded tubing represents the Polyvinyl Chloride peristaltic pump tubing. 

2.3 Pre-concentration procedure 

  For pre-concentration we used an array of 6 separate manifolds (Figure 2) which were all 

attached to an Ismatec (Cole-Parmer GmbH, Germany) multiple-channel peristaltic pump with 

Ismatec CA Cassettes, allowing the processing of six samples simultaneously. All tubing used to build 

the manifolds was 1/8″ Fluorinated Ethylene Propylene (FEP, this type of tubing was selected for 

being translucent, corrosion resistant and relatively inexpensive) with the exception of the Polyvinyl 

chloride (PVC) peristaltic pump tubes. A sample/reagent intake probe (20 cm long) was attached to 
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the upper part of the cartridge. Approximately 210 cm of “elution tubing” (ET) containing the 5 mL 

of 3M HNO3 used to elute metals from the column (from now on referred as E-HNO3) was attached 

to the bottom of the cartridge. At the end of this tubing there is a Polyethylene (PE) one-way valve 

from which the PVC pump tubes attach. This valve avoids E-HNO3 coming into contact with the PVC 

pump tubes during the elution process (they are not as resistant to corrosion as the FEP tubing) 

minimising any contributions to the procedure blank. For the processing of large volume samples, 

the manifolds were fitted with two Nobias PA1L cartridges in order to increase elemental recovery. 

 Prior to first use, each NOBIAS cartridge was cleaned with 5 mL of acetone at 1 mL min-1 to 

remove organic material and then the acetone was removed by rinsing with 30 mL of UPW (note that 

this was performed in a separate manifold for time saving purposes). Before processing samples, 

cartridges were cleaned with 3 cycles consisting of 30 mL of 3M HNO3 and 30 mL of UPW (5 mL min-

1). Finally, cartridges were conditioned with 30 mL of 0.05M ammonia acetate solution. 

 Initial tests to determine the optimal pH for pre-concentration were conducted using small 

(125 mL) acidified aliquots of UPW and HSs samples. The tested pH values ranged from 3.5 to 5.5 

(Figure 3). For these initial tests, aliquots were spiked with 25 pg 229Th, 20 ng of 150Nd and 0.5 ng of 

236U (only to seawater aliquots) and left to equilibrate for 24 hours. 2.5 M buffer solution was then 

added to a final concentration of 0.1 M before adjusting the pH using concentrated HCl. Immediately 

after, the sample was loaded onto the Nobias cartridge at a flow rate of 10 ml min-1. Once the whole 

sample was passed through the cartridge, the resin was rinsed with 30 ml of UPW (5 mL min-1). Next, 

a small bubble of air (2-3 cm long) was let into the manifold to separate the UPW from the E-HNO3 

used in the next step. Finally, Th and Nd isotopes (together with Pa, U and transition metals) were 

eluted from the resin using 5 mL of E-HNO3 at 1 mL min-1. When all E-HNO3 had passed through the 

cartridges and was contained in the ET, the valve was closed and the manifolds were disconnected 

from the pump. Next, the cartridges were also disconnected, and one manifold at a time was 
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connected back to the pump. The flow direction of the pump was reversed and the E-HNO3 collected 

into a clean Teflon vial. This procedure was repeated individually for all the 5 remaining manifolds 

(Figure 2).  

 The fully optimised method as applied to large volume samples, including those from the KP, 

involved some modifications to the procedure described above for 125 mL aliquots. First, 5 -10 L 

samples were weighed and amended with 29 M HF to achieve a final concentration of 1 mM. HF was 

used to keep the Th isotopes in solution during sample preconcentration (see Analysis of large 

volume samples). Second, samples were spiked with 1 pg of 229Th per kg of seawater, and left to 

equilibrate for at least 72 hrs. On the day of pre-concentration, 2.5 M ammonia acetate was added 

to the sample to achieve a final concentration of 0.05 M (~100 g for a 5 L sample). Immediately after, 

the pH was adjusted to a value of 4.75 with concentrated HCl. Samples were then passed through 

the conditioned Nobias PA1L cartridges at a flow rate of 15 mL min-1. The elution of the samples was 

performed in the same way described above. 

 Ultra-pure water blanks (2 L) were spiked with 4 pg of 229Th and 5 ng of 150Nd. Quality 

assurance was assessed by adding either the SW2010-1 or SW2010-2 reference material to 2.5 L of 

UPW. Both blanks and standard solutions were then treated and analysed in the same way as 

samples.  

2.4 Separation chemistry 

  After pre-concentration, separation of Th from Nd and further elemental purification was 

necessary (Figure 1). Here we largely followed published protocols for separation of Th and Nd 

isotopes (Pin and Zalduegui, 1997; Anderson et al., 2012; Auro et al., 2012; Struve et al., 2016). An 

important point of difference, however, was the addition of an oxidation step after each column 

separation, including after the Nobias separation and previous to ICP-MS determination. The leaching 

of organic compounds from chromatographic resins has been previously identified as a possible 



 

72 
 

cause of elemental loss in subsequent separation steps (Auro et al., 2012; Struve et al., 2016) and has 

also been shown to produce isotopic shifts during analysis with ICP-MS techniques (Gault-Ringold 

and Stirling, 2012). To decompose any organics that may have leached from any of the resins used in 

this study, a strong oxidation was performed. This involved the addition of 0.5 mL of concentrated 

HNO3 and 100 μL of concentrated HCLO4 to all elution fractions, followed by heating (200 oC) to a very 

small drop inside a HClO4 approved laminar flow hood. Samples were then converted into required 

forms depending on the stage of the chromatographic procedure (Figure 1). 

 The objective of the first stage of the chromatographic separation (from now on referred as 

“Th-separation”, Figure 1) was to purify Th isotopes by separating them from the REE, Pa, U, Fe and 

other transition metals. Our initial tests to perform this procedure were based on the protocols 

described by Auro et al.(2012) with the only difference that we used AG® 1-X8 (Bio-Rad, USA) anion 

exchange resin instead of the suggested  Eichrom 1-X8. However, during the process of our 

investigation and mostly with the intention of reducing 232Th blank contribution (see control of blank 

levels) our final procedure closely followed the protocols described in detail by the GEOTRACES 

intercalibration for Th and Pa isotopes (Anderson et al., 2012). Amongst measures implemented to 

help reduce blanks was a bulk cleaning of the resin. For this, ~ 20 g of the resin were placed in a clean 

PE container (50 mL capacity) with 6 M HCl added. A lid was placed on the container and then it was 

gently shaken for 10 mins using a mixer tube rotary rotisserie. After this, the 6 M HCl was decanted 

and the same procedure was repeated with UPW. This cycle was repeated three times in order to 

remove as much 232Th as possible.  

 The objective of the second stage of the chromatographic separation (from now on REE-

purification, Figure 1) was to strip the REE fraction from remaining traces of barium (Ba), strontium 

(Sr) and other seawater matrix cations to avoid interferences during mass spectrometric analysis. 

This was performed using AG® 50W-X8 (Bio-Rad, USA) resin following the procedure described by 
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Struve et al. (Struve et al., 2016). The goal of the third and final stage was to separate Nd isotopes 

from the rest of the Light Rare Earth Elements (LREE) in particular Pr and Sm. The procedure was 

based on the methodology reported by Pin and Zalduegui (1997) using LN resin (Eichrom, USA). Each 

column containing the LN resin was previously calibrated to identify the right elution scheme to 

isolate Nd isotopes. 

2.5 Analysis 

 Following final oxidation, Th fractions were dissolved in 0.6 mL of 2% HNO3 + 0.3% HF prior to 

analysis on an Element 2 SF-ICP-MS (Thermo Fisher Scientific, Germany). In order to minimise 

overlapping hydride formation and increase instrument sensitivity, sample introduction was via an 

Aridius® II (CETAC Technologies, USA) desolvating nebulizer (DSN). At the beginning of every 

measurement session the instrument was carefully tuned using a natural U solution (nominal 

concentration 100 pg g-1, resultant U signal of ~1 x 106 cps). Analog/counting correction was 

evaluated at the beginning and throughout every analytical session in order to ensure equivalent 

detector response irrespective of analyte intensity with detector mode. This approach allowed the 

measurement of all Th isotopes in a single run: masses 229, 230 and half masses in-between were 

evaluated using counting detector mode, while abundant mass 232 was quantified with the detector 

in analog mode. Tailing correction due to high 232Th abundance in samples can be large when 

analysing soils, particles and sediments. However, in seawater these corrections are less significant 

(Choi et al., 2001). The tailing correction on 230Th under our analytical conditions was typically less 

than 0.1 % of the total 232Th peak. After each Th measurement a washing period of 5 min was 

performed to reduce sample memory effects. Mass fractionation corrections were calculated using 

the exponential law for every analytical session using the CRM145B U isotopic reference material 

(New Brunswick Laboratory, USA) (238U/235U = 137.88).  The 2% HNO3 + 0.3% HF solution used to 

redissolve samples was repeatedly analysed as an instrument blank. 232Th and 230Th concentrations 
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were determined using ID equations (Sargent et al., 2002). Instrument error for 232Th was always 

below 3 %. For 230Th it was normally less than 7 %. 

Results reported in the effects of pH and matrix removal section were measured in the SF-ICP-MS 

directly after pre-concentration. Uranium and Th were determined from E-HNO3 using the DSN (same 

analytical parameters described above). An aliquot (1 mL) of the E-HNO3 was taken and analysed in 

the SF-ICP-MS without the DSN to obtain the Nd concentration. Recoveries for each element where 

then calculated using an external calibration. 

 Nd fractions were analysed using SF-ICP-MS to obtain a semi-quantitative estimation of the 

Nd content. Samples were matched in concentration and standard bracketed using JNdi-1 and 

measured using a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Bremen, Germany) at School 

of Earth Sciences, Australian National University, Canberra. The measured 143Nd/144Nd ratios were 

corrected for machine induced mass fractionation (exponential law) using the 146Nd/144Nd value of 

0.7219, and normalised to the accepted standard JNdi-1 143Nd/144Nd value of 0.512115. The external 

reproducibility was calculated from JNdi-1 standards, and ranged from 0.36 to 1 epsilon Nd units for 

standards with a concentration of 20 and 10 ppb respectively. 

 

3. Results and discussion  

 Results are presented and discussed in this manuscript in a way that reflects the chronological 

evolution of our investigation.  First, we determined the effect of pH on the collection of Th and Nd 

from small samples (125 mL), using the Nobias resin.  Once we knew the optimal pH to pre-

concentrate samples, focus shifted to reducing blank levels, especially for 232Th. Next, an assessment 

of accuracy and precision was undertaken through analysis of different standard solutions. Finally, 

the developed method was used to process and analyse larger volume samples, including samples 

collected from the KP. 
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 3.1 Effects of pH and matrix removal 

 Sample pH has an important effect on elemental yields when using the Nobias resin to pre-

concentrate Th, Nd and other trace elements from seawater (Sohrin et al., 2008; Persson et al., 2011; 

Takata et al., 2011; Quéroué et al., 2014). Initial tests to find the optimal pH for simultaneous pre-

concentration of Th and Nd were carried out on small volume samples (125 mL). Straight after pre-

concentration the contents of 229Th, 150Nd and 236U were determined using SF-ICP-MS, with no further 

separation. Thorium and Nd showed similar trends in recovery as a function of pH in UPW and 

seawater. In both matrixes, Nd yield was lower at pH 3.5, tending to increase towards 100% at pH 

5.5 (Figure 3). Thorium recovery is less sensitive to pH, however the lowest yield was still obtained at 

pH 3.5 and increases towards higher pH, reaching 95 and 100 % in UPW and seawater, respectively, 

at pH 5.5 (Figure 3). These results are in accordance with previous studies that used the Nobias resin 

to pre-concentrate Nd from UPW (Sohrin et al., 2008) and seawater (Persson et al., 2011; Hatje et 

al., 2014), and for Th in UPW (Sohrin et al., 2008). However, they differ from results obtained by 

Takata et al.(2011), who described a method to determine 232Th concentrations from 200 mL samples 

of seawater. These authors found that the optimal pH to collect Th isotopes using Nobias resin 

occurred between pH values of 2-3, with yield decreasing towards pH of 6. We do not fully 

understand the reason for this difference, however, we suspect that it may be because in (Takata et 

al., 2011) ammonium acetate was not added in all the samples to determine optimal pH for pre-

concentration (at different values), not for all samples as considered here. The buffer solution not 

only helps to keep the pH constant while performing pre-concentration, but also appears to increase 

the affinity of Th and Nd isotopes to the Nobias resin. Pre-concentrating samples without adding the 

ammonium acetate solution produced a decrease in Th and Nd recoveries of at least 20%, as 

observed too for Nd isotopes by Persson et al.(2011). The addition of HF prior to Nobias pre-

concentration, suggested by Middag et al.(2015), also increases Th elemental recovery (See “analysis 
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of large volume samples” section below). In summary, Th and Nd isotopes were found to be pre-

concentrated using the Nobias resin with an efficiency above 90 % in the pH range 4.5 to 5.5.  

The determination of U isotopes was not an objective of our study however, it is important to know 

if there is U present in the E-HNO3 because 234U will decay into 230Th over time. The recovery of U 

increases from 24 % at pH = 3.5 to 79 % at pH = 5.5 (Figure 3b). Therefore, the best approach is to 

perform the chromatographic separation straight after the pre-concentration in order to remove U 

isotopes from the Th fraction. Where a long delay between preconcentration and separation is 

anticipated (> 1 year, as could be the case if the pre-concentration is conducted in the field), it is 

advisable to spike samples with 236U before pre-concentration, so that the U recovery can be 

accurately quantified for the purposes of in-growth correction. 

 

Figure 2-3. Recovery of Th, Nd and U after Nobias pre-concentration in (a) UPW and (b) seawater, as 

a function of sample pH. Error bars represent the standard deviation of triplicate measurements. (b) 

shows the recovery of Th, Nd and U in seawater when HF is added to the sample to a final con- 

centration of 1mM previous to pre-concentration.  

  

The Nobias resin is able to remove elements of the alkaline and alkali-earth groups at acidic and 

neutral pH values (Sohrin et al., 2008). We determined the concentration of some of the major 

components of the seawater matrix in the E-HNO3 straight after elemental pre-concentration. 
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Remaining concentrations of sodium (Na) in samples were below 5x10-6 ng kg-1 after elution from the 

Nobias resin. Considering magnesium (Mg), calcium (Ca) and strontium (Sr), their concentrations 

were under 1x10-6 ng kg-1. Barium (Ba) removal by the Nobias resin is of importance to minimise 

possible isobaric interference of BaO formed during plasma analysis, known to overlap with Nd 

isotopes (Dulski, 1994). Ba concentrations were below 4 pg kg-1. Compared to typical seawater 

concentrations (Bernat et al., 1972; Millero, 2013), this indicates a removal efficiency of > 99 % for 

these major seawater ions. 

3.2 Control of blank level 

 Contamination during sample collection, processing and analysis is always possible when 

measuring trace element concentrations in seawater. Of all the isotopes targeted in this study, 232Th 

poses the highest risk of contamination. Using the Nobias resin to pre-concentrate Th and Nd 

isotopes has the advantage over traditional co-precipitation methods in that no Fe carrier solution 

needs to be added. This is a time-saving feature which also eliminates an additional contaminating 

source. However, reducing blank levels for 232Th requires careful attention and sytematic testing. 

As reported in earlier studies (Andersson and Schöberg, 2012; Auro et al., 2012), the BioRad AG1-X8 

resin used for Th separation here proved to be a large source of 232Th contamination (Figure 4). Our 

initial “Th separation” procedures were based on the protocol proposed by (Auro et al., 2012) and 

produced full procedural blanks as high as 160 pg (Figure 4) for a 10 L sample. This amount of 232Th 

can easily be found in seawater (Krishnaswami and Cochran, 2011) and therefore the blank needed 

to be reduced. Andersson et al. (Andersson and Schöberg, 2012) showed that a “bulk” cleaning of 

the resin can help to mitigate this issue. After applying the “bulk” cleaning described in the methods 

section we were able to reduce the blank to ~ 40 pg of  232Th (Figure 4). Although lower, this 

concentration still suggested improvement was necessary.  
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Accordingly, the amount of AG1-X8 resin was reduced from 5 mL to 2 mL. This reduced the 232Th 

blank to ~ 20 pg (Figure 4), with no impact on Th or Nd recovery. We then started to recycle the 

columns and resin used for Th separation, so no extra 232Th was released through the use of new 

resin. First attempts to do so rendered low yields for Th which were caused by interference of 

organics that were being retained by the pre-filter (Eichrom, USA) resin. This resin was removed from 

the procedure and instead strong oxidation of the sample was performed before re-loading samples 

onto the resin, in a similar manner as described by Anderson et al. (Anderson et al., 2012). This, 

together with the further reduction of the used amount of resin to 1 mL and the transfer of our 

procedure to a lab under ISO-5 conditions, resulted in consistent blanks below 10 pg of 232Th for 10 L 

of sample (Figure 4).  
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Figure 2-4. Evolution of 232Th blank levels over a period of a year during method development. 

 

 232Th eluted from the Nobias and AG1-X8 resins, as well as in the ammonia acetate buffer 

solution was analysed. Table 1 shows that, after eliminating 232Th contamination from the AG1-X8 

through bulk cleaning, the buffer solution becomes the largest source of 232Th. If blanks levels need 

to be further reduced, the buffer solution can be passed through a clean Nobias cartridge.  
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Reagent/resin 232Th (pg) S.D. (pg) n 

NOBIAS 1.3 1 6 

Ammonium acetate 4.9 1.5 3 

AG1-X8 1 0.6 10 

Total 7.2 
  

Table 2-1. 232Th blank contribution from the resins and ammonium acetate buffer solution used in 

this study. Reported 232Th is found in the elution fractions collected from the resins (no sample 

added) and in 200 g of the buffer solution. 

 

 The shipboard milli-Q blanks collected during the HEOBI expedition (n = 10) contained 2 to 17 

pg (x̅ = 8.5) 232Th. This amount of 232Th is comparable with levels found in our reagents and resins 

(Table 1). This is a good indication that no significant 232Th blank contamination occurred during the 

sampling process. Because 232Th represents 99.98% of all Th in nature, the risk of 230Th contamination 

during sample separation and handling is quite low. Blank levels for 230Th (n=10) were measured 

between 0.1 and 1.8 fg (x̅ = 0.9 fg) for a 10 L sample, equivalent to 0.5-6 % of the 230Th signal expected 

for seawater samples (depending on depth) (Krishnaswami and Cochran, 2011). Measured 232Th and 

230Th blanks were comparable to those found in previous studies (Choi et al., 2001; Anderson et al., 

2012; Hayes et al., 2013). The procedural blank for Nd was determined as 63  20 pg (n = 3), which is 

also comparable to other studies presented in the GEOTRACES intercalibration for Nd and REE (van 

de Flierdt et al., 2012).  

3.3 Quality assurance 

 The accuracy of our method for Th was first tested using SW2010-1 synthetic reference 

solution (see materials and methods). Early measurements of 232Th were slightly higher (~1025 pg g-

1) than the expected value of 98315 pg g-1 (Figure 5a, black symbols). We believe the SW2010-1 

solution may have been contaminated when it was handled in a laboratory where sediment 

digestions were also being performed. After obtaining (i) a new SW2010-1 solution, (ii) a new 229Th 
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spike, and (iii) moving our procedure inside a trace metal grade laboratory (ISO 5), the 232Th 

concentrations dropped to an average of 974 ± 5 pg g-1, n=5 (Figure 5a, green symbols). This 

represents ~ 1 % error of the expected value. Despite 232Th contamination, 230Th concentrations 

across both SW2010-1 solutions showed an average value of 249 ± 1.8 fg g-1 (n=9, Figure 5b). Again, 

this value agrees within 1 % of the expected value of 247 ± 3 fg g-1(Anderson et al., 2012). This 

confirms that contamination of 230Th is much less likely.   
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Figure 2-5. 232Th (a) and 230Th (b) concentrations measured in SW2010-1 reference material. Black 

circles (old bottle) are for a SW2010-1 solution that was obtained in 2014 and was handled in a 

laboratory where sediments were being digested. Green circles represent data obtained for a new 

bottle of SW2010-1 solution received in 2018. Solid line represents the average and dashed lines the 

standard deviation of the values obtained from 2 labs that participated in the GEOTRACES 

intercalibration for Th and Pa (Anderson et al., 2012)(see Section 2.1 Materials and reagents). Error 

bars are 1σ of the uncertainty associated with measured 229Th/232Th or 229Th/230Th ratios and with 

the 229Th concentration of the spike. (For interpretation of the references to colour in this figure 

legend, the reader 

 

Accuracy was also evaluated through analysis of both BATS2000 samples. The Bermuda Atlantic 

Timeseries Study (BATS) station has been used as a reference to intercalibrate key parameters of the 

GEOTRACES programme, including the intercalibrations for Th, Pa and Nd. Table 2 shows the 232Th, 

230Th and Nd values after applying the full procedure described in Figure 1. Obtained concentrations 

for 232Th are within < 1 % of the intercalibration value while those for 230Th are within  4 % (Anderson 

et al., 2012). Similarly, Nd isotopic composition obtained in this study for sample BATS2000A was Nd 

=13.05±0.30,  which agrees within 1 % of the reported value of 13.14±0.57 Nd units (van de Flierdt 

et al., 2012).  

 

 

 

 

Table 2-2.  Determinations of 232Th, 230Th and εNd in BATS2000A and BATS2000B samples. The error 

on Th measurements is 1σ uncertainty of the instrument and the 229Th spike. For Nd determination 

it represents 1σ of the external error determined by multiple measurements of the JNdi-1 reference 

solution. The reported intercalibration value for Th was graphically extracted from the data 

 
232Th [dpm m-3] 230Th [dpm m-3] Nd 

BATS2000A 0.013 ± 3x10-4 0.44 ± 0.02 13.05±0.3 

BATS2000B 0.013 ± 5x10-4  0.43 ± 0.05 - 

Intercalibration value 0.013 ± 0.005 0.42 ± 0.14 13.14±0.57 
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presented in (Anderson et al., 2012). For Nd it represents the average obtained by all the participating 

laboratories (van de Flierdt et al., 2012). 

 

The accuracy and reproducibility of the procedure was assessed by analysing SW2010-2 during the 

processing of samples from the Kerguelen Plateau over a 7-month period (Figure 6).  For every batch 

of 11 samples, at least one sample containing 0.5 mL of the SW2010-2 reference solution dissolved 

in 2.5 L of UPW was processed and analysed in the same manner as the samples. The average values 

(n = 6) for 232Th/230Th, 232Th/229Th and 230Th/229Th isotopic ratios were 3890±35, 53.1±0.4 and 

0.0136±0.0001 respectively. These ratios agree within 2 % of reported values (Anderson et al., 2012) 

and indicate an excellent reproducibility over a period of 7 months (Figure 6). 
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Figure 2-6. Measured Th isotope ratios in SW2010-2 reference solution.  Shown are results for 6 

separate analyses performed over 7-month period. Solid grey line represents the average value and 

the dashed grey lines represent 1 standard deviation of the values reported by participating 

laboratories in the intercalibration (Anderson et al., 2012). Error bars on measurements are 1σ of the 

instrument error. 
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3.4 Analysis of large volume seawater samples  

 The pre-concentration of larger volume seawater samples (>5 L) proved to not be a 

straightforward scaling up of our method developed for the processing of smaller samples, especially 

for the analysis of Th isotopes. Initial tests indicated that pre-concentrating samples at a pH = 5 would 

produce recoveries for both Th and Nd close to 100 % (considering that the efficiency of the Th-

separation is close to 100 %).  However, the first batch of 10 L aliquots from the HSs sample at pH = 

5 produced Th yields of only 75  9 %. We suspect the loss of Th occurred during the ~12 hours after 

pH adjustment while the sample was pumped through the Nobias cartridge. During this period of 

time at elevated pH, Th isotopes may form complexes with organic and inorganic colloids, precipitate 

as hydroxides or adsorb to the container walls (Santschi et al., 2006; Takata et al., 2011; Middag et 

al., 2015). Reducing the pre-concentration pH to values of 4, 4.25 or 4.5 did not improve Th yields. 

The addition of HF acid (final concentration 1 mM) prior to pre-concentration, as suggested by 

Middag et al.(2015), was effective at increasing Th recovery at pH 5. The formation of Th-fluoride 

complexes prevents Th from hydrolysing and is also thought to help increase the lability of metal-

water complexes, which increases the chance of the resin to form a complex with the analyte (Middag 

et al., 2015).  The Nd yield in large samples was not found to be affected by adsorption to container 

walls, or by the complexation to organic and inorganic colloids. This is attributed to the less particle 

reactive nature of Nd compared to Th. 

3.5 Application of the method to samples from Kerguelen Plateau 

  For the analysis of samples collected from the KP region preconcentration of samples was 

performed using a pH of 4.75. After applying chromatographic separation, average Th yield of 82±7 

% was obtained across the 57 analysed samples, with volumes ranging from 5 to 10 L. Some samples 

had recoveries as high as 95% while other samples exhibited recoveries as low as 50 %. We are unable 

to fully explain the reason for these differences. However, we noticed that most of the low-yield 
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samples were collected in the upper layers of the water column close to Heard and McDonald Islands. 

In these areas the concentration of organic substances in samples can be higher. Previous studies 

have shown that oxidizing the samples with UV-light prior to pre-concentration helps to release 

elements like Co and Cu from organic-bound to a more labile forms [50,59,67]. Applying a UV pre-

treatment to the samples for Th and Nd pre-concentration could potentially increase the elemental 

recovery of these samples. Reducing the sample pH for the pre-concentration could also potentially 

increase the Th yield. However, both hypotheses need to be investigated further. 

Now, we present a short analysis of the oceanographic conditions controlling Th and Nd profiles at 

station CTD18 from the HEOBI voyage. This station is located on the western flank of the plateau, in 

a low energy gyre of the Antarctic Circumpolar Current, where water circulation is relatively calm 

(Park et al., 1998b; Park et al., 1998a; Park et al., 2008). At this station, 230Th concentrations show a 

constant increase with depth (Figure 7, blue line), typical of oceanic settings. In such environments, 

230Th concentrations are controlled mainly by the process of reversible scavenging between dissolved 

and particulate phases (Nozaki et al., 1981; Bacon and Anderson, 1982; Anderson et al., 1983; Roy-

Barman et al., 1996). Observed behaviour and very similar 230Th concentrations were reported for 

KERFIX station (Venchiarutti et al., 2008) (Figure 7, dashed lines), located ~300 km north-east of the 

CTD18 station. At CTD18 sub-surface maximum of 232Th and a rapid decrease in concentration 

towards the surface indicate strong scavenging in the upper 100 m. At depths below, concentrations 

were influenced by reverse scavenging (Figure 7, red line).  

The dissolved Nd isotopic profile at station CTD18 shows a typical composition for the Southern 

Ocean (Stichel et al., 2012). The upper 1000 m show variation in the εNd from -8.1 to -8.8  0.5, while 

deeper samples (> 1000 m) showed less radiogenic Nd isotopic values (Figure 7, black line). 
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Figure 2-7. 232Th (red), 230Th (blue) and εNd (black) in CTD 18. Dashed lines represent data published 

by Venchiarutti et al. (Venchiarutti et al., 2008) at the Kerfix station. Error bars on thorium 

measurements are 1σ of the instrument error and spike uncertainty. Error bars in εNd represent 1σ 

of the external error determined by multiple measurements of the JNdi-1 reference solution. 

 

3.6 Future work and considerations  

 The Nd separation procedure can likely be simplified by removing the Biorad AG50W-X8 resin 

step. Indeed, when REE were preconcentrated form seawater using C18 cartdridges (van de Flierdt 
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et al., 2012; Stichel et al., 2015), Nd isotopes were separated from other REE without an additional 

matrix removal step. Likewise, as the Nobias resin removes 99.9 % of the seawater matrix it is very 

likely that further REE-purification using the Biorad AG50W-X8 resin described in this study may not 

be necessary. However this needs further investigation. The addition of 150Nd as a Nd recovery 

monitor during sample preparation may be advantageous and will be included in future samples 

analyzed by the authors. The analysis of Pa and U can also be accomplished with this methodology 

with the addition of the proper isotopically enriched spikes (233Pa and 236U). 

One of the motivations for this study was to produce a method for the pre-concentration of Th and 

Nd that could be applied on-board research vessels. This would offer the advantage of drastically 

reducing the size of the sample that needs to be brought back to land (from liters to just 5 mL of E-

HNO3), eliminating the need for storage space. Furthermore, the sample would be ready for 

chromatographic separation immediately following strong oxidation in home laboratories, reducing 

the time from sample collection to publication.  

4. Conclusion 

 The Nobias resin can quantitatively pre-concentrate Th and Nd isotopes in seawater samples 

at a working pH ranging from 4.5 to 5.5 following ammonia acetate buffer solution and HF addition. 

Sample pre-concentration procedures were then successfully coupled with known chromatographic 

separation techniques. The full procedure produced low blank levels (< 10 pg of 232Th) comparable 

with previous studies, and excellent accuracy (typically within 1% of reported values) and 

reproducibility. The analysis of samples collected from the Kerguelen Plateau showed that our 

method can be successfully applied to large volume samples and indicates oceanographic 

consistence compared to previous studies in that region. However, the nature of the sample was 

found to play an important role in the efficiency of the Nobias resin to collect Th and Nd. The tested 

method reduces sample handling, minimises potential contamination sources, and is a time-saving 
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option compared to the commonly used iron co-precipitation approach. In particular a 10 L sample 

can be processed overnight (compared with up to a week for Fe co-precipitation) while the use of 

the Nobias resin avoids the need to use Fe-carrier (which requires meticulous cleaning for blank 

reduction). The simplicity of the proposed pre-concentration process makes it ideal for application 

during sampling campaigns at sea. 
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Chapter 3 - Quantifying lithogenic fluxes to the Kerguelen Plateau 
using long-lived thorium isotopes 

1. Introduction 

The different isotopes of thorium (Th) provide important information about a variety of 

processes that occur in the oceans. In seawater, all Th isotopes have a stable oxidation state 

of IV, making them highly particle reactive (Santschi et al., 2006). Thorium isotopes also have 

very well constrained and limited sources to the marine environment. The very-long lived 

primordial isotope 232Th (t1/2=1.4×1010 years) represents ~99.98 % of all natural thorium and 

it is supplied to the ocean exclusively by the dissolution of continental material transported 

to the ocean by rivers and wind (Krishnaswami and Cochran, 2011). The next most abundant 

thorium isotope is 230Th (t1/2=75,400 years). It is supplied to the ocean almost entirely by the 

decay of the highly soluble 234U, and removed at an almost constant rate to the sediments by 

interaction with particles (Anderson et al., 1983). This makes 230Th one of the most versatile 

tools in particle flux studies in the ocean and applied to marine sediments. (Francois et al., 
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1990; Francois et al., 2004; Costa and McManus, 2017; Luo, 2017). In the last decade, the 

232Th-230Th system has gained popularity as a tracer to quantify lithogenic sources of trace 

elements to the marine environment (Hsieh et al., 2011; Hayes et al., 2013; Deng et al., 2014). 

The long-lived Th isotopes can be used to track and quantify the input of lithogenic material 

to the ocean because  232Th acts as the tracer of the lithogenic input, while 230Th provides a 

residence time with respect to scavenging that is assessed through its disequilibria from its 

soluble parent nuclide 234U (Broecker et al., 1973). Finally, with knowledge about the 

composition and solubility of the lithogenic material, it is possible to estimate the input of 

lithogenic particles and the fluxes of trace elements originating from the same material (Hsieh 

et al., 2011; Hayes et al., 2018).  

Trace elements (TE) are important because they act as limiting factors for the 

development of phytoplankton in the photic layer. In particular, the absence of bio-available 

iron (Fe) has been recognized to be the main cause of low productivity in areas of the ocean’s 

surface with abundant macronutrients like nitrogen and phosphorus (known as high nutrient, 

low chlorophyll or HNLC; Martin, 1990; Boyd et al., 2007). The HNLC areas occupy around one 

third of the world’s oceans, and mainly receive Fe through the dissolution of aeolian dust 

(Jickells, 2005). The Southern Ocean (SO) is the largest of these HNLC regions. Away from the 

influence of dust plumes, islands and shallow continental shelves become a natural source of 

iron to the surface of the ocean enabling the proliferation of phytoplanktonic blooms (Blain 

et al., 2001; Tyrrell et al., 2005; Tagliabue et al., 2009; Tagliabue et al., 2014), and hence 

influence the oceanic carbon cycle and the sequestration of CO2 from the atmosphere (Fung 

et al., 2000; Sarthou et al., 2007; Mahowald et al., 2009; Boyd and Ellwood, 2010). 

The Kerguelen Plateau (KP) area hosts the largest phytoplankton bloom of the SO. It 

appears in the austral spring after photosynthesis is no longer light-limited, and can extend 
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for more than 45,000 km2 (Blain et al., 2007). A series of voyages carried out during the 

summer of 2005 and spring of 2011 (KEOPS 1 & 2) significantly increased our understanding 

of the biogeochemistry of the region, including studies about the effect of the natural Fe 

fertilization on the carbon budget of the region (Blain et al., 2007; Blain et al., 2008b; Blain et 

al., 2008a; Jacquet et al., 2008; Jouandet et al., 2008; Mosseri et al., 2008; Sarthou et al., 

2008), remote-sensing and modelling of the bloom (Bopp et al., 2008; Mongin et al., 2008), 

and detailed descriptions of the region’s physical oceanography (Figure 1; Park et al., 2008a; 

Park et al., 2008b; Park et al., 2014). Particle dynamics (Venchiarutti et al., 2008; Venchiarutti 

et al., 2011b) and carbon fluxes (Savoye et al., 2008; Planchon et al., 2015)  were studied 

through the analysis of thorium isotopes in the dissolved and particulate phases of seawater. 

Conditions favouring phytoplankton development were also investigated through data analysis 

from bio-profilers deployed during the KEOPS 2 voyage (Grenier et al., 2015). Other work focused 

on constraining the origin of the lithogenic material that provides Fe to sustain the 

phytoplankton bloom (van Beek et al., 2008; Zhang et al., 2008; van der Merwe et al., 2015; 

Grenier et al., 2018). The  dominant source of iron was found to be the dissolution of 

sediments deposited on the plateau and transported to the surface by vertical mixing (Zhou 

et al., 2014), and the lateral transport of lithogenic material supplied by the Kerguelen and 

Heard Islands (van Beek et al., 2008; van der Merwe et al., 2015; Sanial et al., 2015). It was 

found that the bloom persisted even with Fe concentrations close to values known to be 

metabolically limiting for phytoplankton, highlighting the importance of efficient Fe recycling 

in the mixed layer, as well as of other sources of Fe to the region like Heard and McDonald 

Islands (HIMI) in the central part of the plateau (Bown et al., 2012; Bowie et al., 2015). 

The Heard and McDonald Earth-Ocean-Biosphere Interactions study (HEOBI; GEOTRACES 

process study GIpr05) conducted in the summer of 2016 focused on sampling the central part 
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of the KP around HIMI. The main objectives of this voyage were to increase the knowledge on 

the contribution of HIMI and surrounding shallow areas to the biogeochemical cycle of Fe in 

the region. Special attention was paid to the role of particles originating from the islands as 

well as any possible hydrothermal contribution to the Fe inventory. Results from this 

expedition noted the importance of HIMI on the iron availability that influences the 

drawdown of nutrients above the plateau (Holmes et al., 2019) and also confirmed that glacial 

erosion can meet the previously unaccounted biological demand (van der Merwe et al., 2019). 

The aim of this work was to apply the method developed in the previous chapter to measure 

dissolved 232Th and 230Th concentration in samples from the HEOBI voyage. This data was used 

to provide an estimation of the budget of the lithogenic material released from the plateau 

and the associated fluxes of Fe and other TE.  

 

Figure 3-1. Predominant circulation pattern in the Kerguelen plateau (taken from Park et al., 

2008b). The green colour represents areas where it is historically known for the bloom to 

appear in the region once the sun is no longer limiting in the austral spring. 
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2. Materials and methods 

2.1 Sampling 

Seawater samples were collected along the Kerguelen plateau during the HEOBI 

voyage during January and February 2016 onboard the R/V Investigator (Figure 2). All 

sampling was performed following the protocols described in the GEOTRACES intercalibration 

for Th and Pa isotopes (Anderson et al., 2012). Samples ranging from 5 to 10 litres were 

collected directly from Niskin bottles mounted on a standard CTD and filtered through a 

0.8/0.2 μm AcroPak capsule filters into 10 L pre-weighted cubitainers. Samples were then 

acidified with 1 mL of 11 M distilled acid per litre of sample obtaining a final pH value ~1.7. In 

order to determine procedural blank concentrations, 2 L of Ultra-high purity water (UPW) 

were collected from the onboard system and acidified in the same way as the samples. In 

total, 75 samples from 10 different locations (Figure 3) were analysed. Two stations (18 and 

25) were sampled on the western flank of the plateau and were suggested as reference 

stations because of the water column characteristics at sampling time. A series of samples 

were collected within 1 km of Heard (30 & 31) and McDonald (22 & 34) islands in order to 

establish a Th signal from the islands. Station 16 was collected right in the middle of the 

plateau and is part of a transect that includes stations 6, 9 and 12, which were collected to 

sample the transition from the plateau (~450 m depth) to open water (3600 m depth) sub-

Antarctic conditions.   
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Figure 3-2. Location of the stations sampled for Th isotopes during the HEOBI voyage (January 

and February 2016). Included are also Stations R2 and A3 from the KEOPS 2 voyage where 

234Th was sampled during October and November 2011. 

 

2.2 Pre-concentration and column chemistry 

 The pre-concentration and chromatographic separation applied in this study are part 

of a technique developed to simultaneously determine thorium and neodymium isotopes 

from a single seawater sample, fully detailed in Pérez-Tribouillier et al.(2019 ;see Chapter 2). 

Briefly, samples were spiked with 1 pg of 229Th per kg of seawater and amended with ~200 L 

of concentrated HF acid. Samples were left to equilibrate for at least 48 hours. After this 

period, 2.5 M ammonium acetate buffer solution was added until a final concentration of 0.05 

M. The pH was then adjusted to 4.75 with concentrated HCl acid. Immediately after, samples 

were pumped through an array of two Nobias PA1L cartridges. Once all sample went through 
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the cartridges, remaining salts were washed off the resin with UPW. Finally, thorium and 

other trace elements were eluted with 5 mL of 3 M HNO3.  

After pre-concentration, samples were oxidized with 0.5 mL of a mixture of 

concentrated HNO3 and HClO4 acids (4:1) at 200 oC in order to remove any organic substances. 

Thorium isotopes were chromatographically separated and purified using 1 mL Bio-Rad AG1-

X8 anion exchange resin (Anderson et al., 2012). Samples were transformed to the 

hydrochloric form and loaded onto the pre-conditioned resin in order to retain transition 

metals as well as uranium and protactinium isotopes. The samples were oxidized again and 

transformed into 8 M nitric form and loaded onto the same resin (pre-conditioned with 8 M 

HNO3) in order to separate the rare earth elements. Thorium isotopes were finally eluted 

from the resin with 11 M HCl, oxidized and redissolved in 0.6 mL of 2% HNO3 + 0.3% HF in 

preparation for analysis. Sample processing occurred in batches consisting of 10 seawater 

samples, a 2.5 L UPW procedure blank (spiked with 229Th) and the intercalibrated reference 

material SW2010-2 (Anderson et al., 2012). An aliquot of this reference material was diluted 

in 2.5 L of UPW. Both the blank and the reference material were processed in the same way 

as the samples, including pre-concentration and column chemistry.  

2.3 Sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis  

The measurement of Th isotopes was performed on an Element 2 SF-ICP-MS at the 

Central Science Laboratory of the University of Tasmania, with sample introduction via an 

Aridius II desolvating nebulizer to minimize oxide formation. Isotopes with masses 229 and 

230 were evaluated using counting detector mode while the more abundant mass 232 was 

assessed in analog detecting mode. Tailing contribution of 232Th on 230Th was found to be less 

than 0.1% of the 232Th signal and considered neglectable.  A maximum of 12 samples were 

analysed during each session, with a wash period of 5 min between samples in order to 
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minimize memory effects. Mass fractionation corrections were calculated using the 

exponential law for every analytical session with the CRM145B U isotopic reference material 

(New Brunswick Laboratory, USA) (238U/235U=137.88). The 2% HNO3 + 0.3% HF solution used 

to re-dissolve samples was repeatedly analysed as an instrument blank. Working parameters 

for our instrument can be found in table 1.  

Instrument  Operating Conditions  

Equipment  

Nebuliser PFA 200 µL/min; self-aspirating 

CETAC Aridius 2 Sweep gas: 4.5-5 L/min; Nitrogen gas: 5-8 mL/min 

Spray chamber Heated PFA chamber 

Sampler and skimmer cones Nickel  
  

Parameters  

ICP Torch gas flows (L/min) 0.9/0.75/15 (nebuliser/auxiliary/cooling) 

RF Power (W) ~ 1250 

Detection mode 229, 230: Counting; 232: Analog 

  

  

  

Table 3-1. Operational conditions for the SF-ICP-MS during the analysis of HEOBI Th samples. 

2.4 Blanks and quality control 

In order to reduce blank contribution all sample processing was performed inside a 

ducted laminar-flow hood inside an ISO-5 environment. The procedural blank values ranged 

from 2-17 pg and 0.2-1.8 fg for 232Th and 230Th, respectively. The reproducibility of the 

intercalibrated reference material SW2010-2 remained within 5% of the reported values 

during a period of 7 months indicating good accuracy and precision (see Pérez-Tribouillier et 

al., 2019b).  

2.5 Data treatment 

The 232Th and 230Th signals were corrected for instrument blank and mass bias. 

Additionally, an average procedural blank, based on the blank determinations from all 

stations was also subtracted. For 230Th, this signal represented less than 5 % of the total signal, 



 

103 
 

however it increased towards 10% for shallower samples. For 232Th, the blank contribution 

was generally less than 3 %. 232Th and 230Th concentrations were obtained by applying the 

isotope dilution equations (Sargent et al., 2002). The measured 230Th concentrations were 

corrected for ingrowth due to decay of 234U during the storage period. The ingrowth was 

calculated based on the 238U concentration of each sample using the relation 238U (ng g-1± 

0.061) = 0.100 × Salinity-0.326 (Owens et al., 2011) and considering a λ234 of 2.8263×10−6 yr−1 

and a sample storage time of 2 years (Eq. 1).  

𝑇ℎ𝐼𝐺
230 = 𝑈 ×  (1 − 𝑒(λ × years)) (𝐸𝑞. 1)234  

The contribution of lithogenic 230Th   was also corrected using the measured 232Th 

concentration of each sample and a 230Th/232Th for the lithogenic material of 4.0X10-6 mol/mol 

(Roy-Barman et al., 2009; Eq. 2). The ingrowth correction varies from 5 to 50 % and is higher 

towards the surface of each station because of the lower 230Th concentrations. The 

contribution of lithogenic material is much smaller, being less than 2% for most of the 

samples. 

𝑇ℎ𝑥𝑠
230 =  𝑇ℎ𝐼𝐺 𝐶𝑂𝑅𝑅

230 − 𝑇ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
232  ×  [ 𝑇ℎ230 / 𝑇ℎ232 ]

𝑙𝑖𝑡ℎ𝑜
(𝐸𝑞. 2)  

The corrected ingrowth and lithogenic corrected 230Thxs concentrations were used to 

obtain a residence time for thorium as shown in equation 3 (Hayes et al., 2013): 

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 (𝑇ℎ) =  
∫ 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑇ℎ𝑥𝑠

230  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑧
𝑧

0

∫ 𝑈234 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝜆230  𝑑𝑧
𝑧

0

 (𝐸𝑞. 3) 

where the dissolved 230Th activity is the measured concentration converted into dpm 

terms, the 234U activity was obtained from the salinity, and 230 (9.2x10-6 year-1) is the 

radioactive decay rate of 230Th. This obtained Th-residence time was then used to calculate a 

dissolved 232Th flux by dividing the depth-integrated 232Th inventory by the residence time 

(eq. 4): 
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𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑇ℎ 𝑓𝑙𝑢𝑥 =  
∫ 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑇ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑑𝑧232𝑧

0

𝜏𝑇ℎ (𝑑𝑧)
232  (𝐸𝑞. 4) 

The dissolved 232Th flux was then used to estimate a particulate lithogenic flux 

considering the content of 232Th in the lithogenic material around the Kerguelen Plateau (5.3 

ppm; Duncan et al., 2016) and the solubility of 232Th as shown in equation 5. 

𝐿𝑖𝑡ℎ𝑜𝑔𝑒𝑛𝑖𝑐 𝑓𝑙𝑢𝑥 (𝑧) =  
𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑇ℎ232  𝑓𝑙𝑢𝑥 (𝑧)

[𝑇ℎ]𝐾𝑒𝑟𝑔  ×  𝑆𝑇ℎ
 (𝐸𝑞. 5) 

Subsequently, with knowledge about the composition and solubility of metals relative 

to 232Th, it is possible to produce an estimation of dissolved metal fluxes originating from the 

dissolution of lithogenic particles as follows: 

𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑚𝑒𝑡𝑎𝑙 𝑓𝑙𝑢𝑥 =  [
𝑚𝑒𝑡𝑎𝑙

𝑇ℎ232 ]
𝐾𝑒𝑟𝑔

× (
𝑆𝑚𝑒𝑡𝑎𝑙

𝑆𝑇ℎ
) × 𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑇ℎ232  𝑓𝑙𝑢𝑥 (Eq. 6) 

 

3. Results   

3.1 Water mass distribution during the HEOBI voyage 

 The temperature-salinity diagram (Figure 3) indicates that the samples from stations 

located near HIMI (stations 22,30,31 and 34) have salinities below 34 psu and temperature 

above 2 oC that are consistent with the properties of the Antarctic Surface Water (AASW). 

Similar temperature-salinity properties are found for the surface waters at the other stations, 

except at Station 6. At this station, above 75 m the water temperature is greater than 4.5 oC 

and density below 26.75. These properties might indicate the presence of the Polar Front 

Surface Water (PFSW; Park et al., 2014). Below the mixed layer, Stations 9, 16, 18 and 25 

exhibit a subsurface temperature minimum (< 2 oC) and fresher water (<34.2) than deeper 

layers. These characteristics match the definition of Winter Water reported in the Kerguelen 

Plateau and centred at ~200 m depth (Park et al., 2008b). Below 300 m, there is a transition 
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to the UCDW associated with a temperature maximum of ~2.5 oC and an oxygen minimum 

(180 mol L-1). A deep salinity maximum confirms the presence of Lower Circumpolar Deep 

Water (LCDW). Below 2,600 m, Stations 6, 9 and 18 properties indicate the presence of 

Antarctic Bottom Water (AABW). with low temperature and salinity but with a higher oxygen 

content towards the bottom (Park et al., 2008b). This water-column composition is typical of 

the austral summer (Park et al., 1998) and is consistent with the findings of other studies (Park 

et al., 2008b; Park and Vivier, 2011; Park et al., 2014; Holmes et al., 2019) . Conductivity, 

temperature, depth and other water column properties can be found in Australian Marine 

National Facility data access portal 

(http://www.marlin.csiro.au/geonetwork/srv/eng/search#!6ba5a0ce-b87a-4bda-b16c-

3527279c3bca). 

 

Figure 3-3. Temperature-salinity diagram for the samples collected during the HEOBI voyage.  

http://www.marlin.csiro.au/geonetwork/srv/eng/search#!6ba5a0ce-b87a-4bda-b16c-3527279c3bca
http://www.marlin.csiro.au/geonetwork/srv/eng/search#!6ba5a0ce-b87a-4bda-b16c-3527279c3bca
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3.2 232Th and 230Th concentrations 

3.2.1 Plateau and off-plateau stations 

230Thxs concentrations in the samples range from 0.7 fg kg-1 (CTD18, 60 m) to 18.2 fg 

kg-1 (CTD6, 3579 m). These values are similar to other parts of the SO including the Weddell 

Sea (Rutgers van der Loeff and Berger, 1993), the Drake Passage (Venchiarutti et al., 2011a), 

the Crozet Basin (Coppola et al., 2006) and particularly similar to a previous study in the 

Kerguelen plateau (Venchiarutti et al., 2008).  

All profiles indicate a roughly linear increase of 230Thxs concentrations with depth 

(Figure 4). This is more evident in the upper 600 m of the water column. Below that depth, 

Stations 9 and 25 and 12 (to a lesser extent) indicate some concave features. By contrast, 

Stations 6 and 18 show a depletion of 230Thxs towards the bottom. Similar mixed features in 

the 230Thxs concentration profiles have been observed in other oceanic settings in the 

Southern Atlantic (Moran et al., 2002; Deng et al., 2014), the Arctic (Trimble et al., 2004; 

Grenier et al., 2019), and along the path of the ACC (Rutgers van der Loeff and Berger, 1993; 

Venchiarutti et al., 2011a), including the Kerguelen plateau (Venchiarutti et al., 2008). 
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Figure 3-4. 232Th (stars) and 230Thxs (circles) concentrations of the vertical profiles for the 

HEOBI non-coastal stations. Note that the deepest sample of each profile was collected ~10 

m above the bottom. 

 

The dissolved 232Th concentrations range from 6.9 pg kg-1 (CTD12, 30 m) to 101 pg kg-

1 (CTD25, 200m). Most of our data is within the same order of magnitude of previous 232Th 

concentrations reported in the plateau by Venchiarutti et al., 2008. However, in this study 

they report several samples with high concentration that in some cases are as much as 4.5 

times higher (450 pg kg-1) the values found in our samples near HIMI.  

With exception of Station 18 and 12, all profiles show a subsurface maximum in the 

232Th concentration. Below 600 m, 232Th concentrations generally increase with depth, 

however some spikes stand out in most of the stations (Figure 4). Particularly, Station 25 

shows two prominent peaks at 200 m (100 pg kg-1) and 1200 m (87 pg kg-1). Such 

concentrations could very easily be a result of contamination during sampling or analysis. 

However blank contribution at that station remained low. Therefore, and because of the 

higher concentrations previously reported for the plateau we cannot rule out those 

measurements. However, these concentrations need to be treated with discretion and will 

not be discussed in detail in the following sections. 
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3.2.2 Near-island shallow stations 

The samples collected close to Heard (Stations 30, 31) and McDonald (Stations 22, 34) 

Islands (Figure 2) presented a fully-mixed water column with 232Th and 230Th concentrations 

that seem to be quite uniform regardless of the location and depth (Table 2). The mean 232Th 

concentration of these samples is 87.5  13 pg kg-1 (1-). This range of concentrations is 

amongst the highest of our data set and can be compared with 232Th concentrations (84 – 273 

pg kg-1) found near Heard Island during the KEOPS 1 expedition (Venchiarutti et al., 2008). 

The mean 230ThXS concentration of these samples is 2.7  1.2 fg kg-1 (1-). These 

concentrations are higher than the ones reported in the previously mentioned study around 

HIMI (0.5-1.35 fg kg-1). In particular the 230Th concentration of Sample 30 at 75 m (5.5 fg kg-1) 

is unusually high for that depth.  

Station  Depth [m] 232Th [pg kg-1] 1-σ [pg] 230Thxs [fg kg-1] 1-σ [fg] 232Th/230Th 

34 50.0 96.6 1.9 2.8 0.3 28,695 ± 1545 

34 80.0 94.3 1.9 4.1 0.4 25,278 ± 1361  

34 122.0 81.5 1.6 3.9 0.2 32,600 ± 1756 

31 45.0 81.3 1.6 3.5 0.2 16,938 ± 912 

30 88.0 59.8 1.2 2.5 0.2 16,162 ± 918 

30 75.0 88.8 1.8 5.5 0.4 12,870 ± 731 

22 151.0 100.8 2.0 2.3 0.2 27,243 ± 1853 

22 190.0 96.8 1.9 2.5 0.2 24,821 ± 1688 

Table 3-2. 232Th, 230Thxs and 232Th/230Th ratio in the near-island stations 22, 30, 31 and 34. 

3.4 232Th/230Th ratios 

 The highest 232Th/230Th ratios are found near HIMI (Table 2), with a maximum value of 

32,600 found at Station 34 at 122 m depth, and the lowest a value of 1,735 at reference 

Station 18 at 2,200 m depth. The water column profile of the ratios shows an enrichment of 

232Th above 600 m (σθ ~ 27.7 kg m-3; Figure 5), with the exception of Station 18 that exhibits 

an almost uniform ratio with depth. Below 600 m, Stations 6 and 9 also indicate a uniform 

232Th/230Th ratio. 
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Additionally, Stations 12 and 25 also exhibit 232Th enrichments at 900 and 1,200 m 

respectively. 

 

Figure 3-5. 232Th/230Th atom ratio plotted against potential density for the HEOBI samples. 

Different background shading indicates the different water masses sampled during the HEOBI 

voyage. Standard error of many of the samples is smaller than the symbol. Note that the 

bottom sample of each station was collected ~10 m above the seafloor. 

 

4. Discussion 

4.1 232Th enrichments above the plateau and the contribution from hydrology 

 Lithogenic material from the plateau allows the development of productivity once the 

light is no longer limiting in the region. Supplied by the direct weathering and erosion of the 

islands, glacial run-off and resuspension of shelf-deposited sediments, this material releases 
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Th isotopes, Fe and other trace elements (Figure 6). Because 232Th is released to the ocean 

only by the dissolution of this type of material, it can be used to track this supply. 

 

Figure 3-6. Possible sources (green arrows), sinks (red arrows) and transport vectors (grey 

arrows) of thorium isotopes and other trace elements to the waters of the Kerguelen Plateau. 

 
 Without the influence of the plateau, it would be expected for the 232Th/230Th ratio to 

remain constant throughout the water column. Such a behaviour can be seen in Station 18 

(Figure 5, squares) where the ratio remains fairly uniform (2910 ± 1100). Such a pattern is 

caused because in this station the 232Th and 230Th concentrations are controlled almost 

entirely by the adsorption/desorption into particles. This process, known as reversible 

scavenging, dominates in oceanic environments (Anderson et al., 1983; Nozaki and Nakanishi, 

1985). These characteristics allow us to establish Station 18 as a reference of oceanic 

conditions. By contrast, the rest of the stations show -at different extents- 232Th enrichments 

in the top 500 m of the water column. These enrichments “fingerprint” the supplies of 

lithogenic material from the Kerguelen Plateau to the AASW, WW and the top layers of the 

UCDW (Figure 5). As expected, this imprint is more intense in the near-island Stations 

22,30,31 and 34 because there is a direct and constant inputs of lithogenic material, 
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generating much higher 232Th/230Th ratios.  Once this material enters the ocean, it releases 

dissolved 232Th, Fe and other trace elements. These dissolved elements as well as some 

lithogenic particles can be transported away from the islands by the local circulation, enabling 

a downstream development of the productivity. In fact, the historical positions of both 

branches of the bloom that occur in the KP (Figure 1, green areas) match the topography-

following circulation (constrained by the PF) in the northern and central parts of the plateau 

respectively. 

 Considering 232Th/230Th as a fingerprint of lithogenic inputs and that most of the 

lithogenic material is supplied to the surface, we would expect a gradient in surface spatial 

distribution of the 232Th/230Th, being higher near the source and decreasing as the signal is 

transported away due to mixing. Unfortunately, our Th data over the plateau has not enough 

spatial distribution to accurately track the possible pathways of the surface/subsurface 

circulation. However, some pattern does exist in the 232Th/230Th distribution that seems to 

confirm the importance of the HIMI in the natural fertilization of the waters north of these 

islands (Figure 7; van Beek et al., 2008; Zhang et al., 2008; Grenier et al., 2018; Holmes et al., 

2019; van der Merwe et al., 2019). The 232Th/230Th ratio near HIMI is the highest for the 

surface of our dataset (22,259 ± 6600, n=8). In the middle of the plateau at Station 16 this 

value decreases to 10,262 ± 1042. Considering the northwards predominant circulation in this 

part of the plateau (Figure 2, Park et al., 2008b), this lower 232Th/230Th value could be very 

well attributed to a dilution of the HIMI signal. This hypothesis is supported by the low 

232Th/230Th ratio (4141 ± 341) found upstream at Station 18. This station is located right before 

the circulation turns west towards HIMI and, at this point, seawater has not received any 

contribution from the lithogenic material from the plateau. After the current passes next to 

HIMI and travels north towards Station 16 at a speed of 2.6 km day-1, some component turns 
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east and reaches station 9 where the value has decreased to 4853 ± 500. Enrichment at 

station 12 is even smaller (2,683 ± 240). A possible explanation for this anomalously low 232Th 

concentration might be that it is flushed away by the western boundary current that flows 

along the eastern flank of the plateau (Figure 1). The surface enrichment at Station 6 (7,300 

± 200) is higher than at Station 9, even though this station is further away from the plateau. 

In this region however, the circulation from the central Kerguelen Plateau converges with the 

flow of the Polar Front, probably causing an increase in the surface 232Th/230Th ratio. A more 

detailed sampling above the central part of the plateau, especially between HIMI and Station 

16 would have been useful to better constrain the circulation over the plateau using only the 

232Th/230Th signal. However, in the next chapter of this thesis we use Rare Earth Element 

concentrations and Nd isotopic composition to further investigate this.  

 

Figure 3-7. Spatial distribution of the surface 232Th/230Th atom ratio over the plateau. 

4.2 Th-scavenging removal residence time in surface waters of the Kerguelen Plateau 

 The calculation of 232Th fluxes requires information about its removal rate from the 

dissolved fraction of seawater. This residence time can be obtained from the less abundant 
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isotopes 228Th, 230Th and 234Th and the disequilibria from their parent nuclides. In fact, the 

short lived 234Th isotope (t1/2=24.1 days) is routinely used to estimate the export of Particulate 

Organic Carbon (POC) from the surface of the ocean (Buesseler et al., 1992; Cochran et al., 

2000). Using 230Th to calculate surface residence times has also been applied (Hsieh et al., 

2011; Hayes et al., 2013; Deng et al., 2014). However, these studies have shown that 230Th 

derived residence time (230RT) can be affected by upwelling and vertical mixing of  “pre-

formed” 230Th and probably by the particle size fractionation (Coppola et al., 2006), although 

more studies concerning this latter point are needed.  

 

Figure 3-8. Estimated scavenging residence time (a) and 232Th flux (b) for the HEOBI stations. 

Error was propagated considering all the parameters used for the calculation and represent 

around 25%. Note that the deepest samples of each station were collected ~10 m above the 

bottom. 

 

The 230RT increases gradually with depth reflecting the long-term process of 230Th 

adsorption and desorption from particles through its path down the water column (Figure 8a; 

Nozaki et al., 1981; Anderson et al., 1983). In particular, 230RT for the top 300 m is less than a 

a b 
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year in all stations (Figure 8). The value at 430 m in Station 16 is slightly lower (0.7 years) due 

to enhanced scavenging of 230Th by sediments resuspended from the bottom. The mixed layer 

230RT (Table 3) in Station 12 is higher than the rest of the stations very likely because of the 

influence by the Fawn Through Current that brings higher concentrations of “pre-formed” 

230Th from deeper depths, thereby increasing the residence time. 

Station (ML 

depth) 

ML residence 

time (years) 

500 m residence 

time (years) 

ML diss. 232Th flux 

[ng m-2 day-1] 

500 m dissolved 232Th flux 

[ng m-2 day-1] 

6 (110 m) 0.53 ± 0.15 1.17 ± 0.22 14 ± 4 33 ± 6 

9 (154 m) 0.55 ± 0.12 1.42 ± 0.26 9 ± 2 21 ± 5 

12 (189 m) 1.07 ± 0.23 1.46 ± 0.31 8 ± 2 12 ± 3 

16 (181 m) 0.63 ± 0.14 0.71* ± 0.16 23 ± 5 43 ± 9 

18 (282 m) 0.55 ± 0.12 0.92 ± 0.20 12 ± 3 20 ± 5 

25 (202 m) 0.64 ± 0.15 1.53 ± 0.33 24 ± 5 15 ± 3 

Table 3-3. 230RT and 232Th fluxes at the mixed layer depth and 500 m during the HEOBI voyage. 

*230RT for Station 16 was calculated at 430 m. Error has been propagated considering all 

variables used for the calculation of the residence time and 232Th flux. If a measurement was 

not available at the ML depth or at 500 meters, the 230Th concentration was calculated using 

a lineal interpolation between the closest samples. 

 

These mixed layer 230RT values are comparable to the ones found in the North Pacific 

(0.7-1.2 years; Hayes et al., 2013), but shorter compared to data obtained in the Atlantic 

Ocean (1.2-2.5 years; Hsieh et al., 2011; Deng et al., 2014). This difference is expected because 

the stations from the mentioned studies in the Atlantic were collected in a more oceanic 

environment, away from direct sources of particles other than the deposition of aeolian dust. 

By contrast, the sampled areas of the North Pacific and the KP are closer to lithogenic sources. 

This causes a larger supply of particles to the surface that increases scavenging rates, 

subsequently shortening 230RT. At 500 m however the 230RT for the KP is considerably shorter 

than in the Pacific at the same depth (3.3-6.4 years; Hayes et al., 2013) and in the Atlantic at 
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250 m (3.5-6.4 years; Deng et al., 2014). This difference can be explained because of the 

shallow bathymetry over the plateau (< 500 m) and its interaction with the ACC that generates 

a dynamic coastal environment and a continuous load of particles, even at 500 m, which 

increases scavenging rates thus shortening the residence time.  

Using 230Th to obtain scavenging removal rate has so far not been applied in coastal 

environments, which prevents a direct comparison of our results. In order to compensate this 

lack of information, equation 3 was applied to 234Th data generated during the KEOPS 2 

voyage (Table 4; Planchon et al., 2015). Although the samples were not collected the same 

year or at the exact same location, we consider that both datasets were collected close 

enough and during the same season, legitimizing the comparison (Figure 2). Both reference 

stations are located on the western flank of the plateau, in an area of relatively calm 

dynamics. The on-plateau stations are located over the central KP in the area where the 

seasonal phytoplanktonic bloom occurs north of HIMI.  

 234Th residence 

time (days) 

 230Th residence 

time (days) 

 

 Reference (R-2) Plateau (A-3) Reference (18) Plateau (16) 

100 m 60 ± 20 30 ± 10 102 ± 37 150 ± 26 

400 m 61 ± 19 31 ± 8 266 ± 40 259 ± 33 

Table 3-4. Residence time obtained using 230Th and 234Th data at a reference and a plateau 

station during the KEOPS 2 and HEOBI voyage.  

  

It is clear that the 230RT is longer than 234Th derived residence time (234RT) in both 

settings and this difference increases with depth (Table 4). The residence time at 100 m in the 

reference stations is ~100 days for 230RT, which is slightly higher than 60 days calculated for 

234RT. Over the plateau 230RT (150 days) is 5 times longer than 234RT (30 days). At 400 m the 

difference becomes more evident being 230RT around 4 and 8 times longer in the reference 
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and plateau stations respectively. As stated before, towards the surface this discrepancy 

could be the effect of vertical mixing of 230Th. To constrain the extent of vertical mixing, we 

have calculated a dissolved 230Th concentration gradient through the mixed layer and 

multiplied by the vertical mixing coefficients for the plateau (Kv=26 m2 day-1) and reference 

station (Kv=9 m2 day-1) reported in Rosso et al. (2014) and Bowie et al. (2015). Additionally, 

an upwelling flux was calculated by multiplying the 230Th concentration at the base of the 

mixed layer by the upwelling velocities at the two different locations ( reference=0.13 m day-

1; plateau=0.5 m day-1; Rosso et al., 2014; Bowie et al., 2015). Together,  vertical mixing and 

upwelling supply an amount of 230Th equivalent to 15% to 30% of the production rate of 230Th 

in the mixed layer, which could lead to an overestimation of 230RT by a factor of 1.1 to 1.3. 

Therefore, vertical transport can explain the difference between 230RT and 234RT in the 

surface of the reference station. However, it is not enough to account for the 5 times longer 

230RT over the plateau’s mixed layer. With our data we cannot completely explain this 

difference. Coppola et al.(2006) found that in the Indian Sector of the Southern Ocean (just 

north of the KP), 234Th preferentially adsorbs into larger particles while 230Th seems to have 

more affinity to smaller-size particles. A higher particle flux and a potentially larger proportion 

of large-size particles over the plateau would remove 234Th more efficiently from solution 

hence producing shorter residence time. This could be an explanation for the different 

residence times obtained with 234Th and 230Th, respectively. However, it is not expected for 

different isotopes of such a heavy element to present significant differences in their chemical 

behaviour. We are more inclined to believe that the residence time difference is due to the 

distinct timescales over which the two isotopes integrate. These findings however, suggest 

the need of more studies that confirm that there is no effect from the particle size 

composition on the scavenging of thorium isotopes. 
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With depth 230RT increases even more because the longer half-life of 230Th allows it to 

accumulate, while 234Th decays away, causing an increase in the 230Th/234Th ratio and 

therefore 230RT is much larger deeper in the water column. Results from this section indicate 

that 230Th can be used to estimate scavenging removal rates even in coastal environments 

like the Kerguelen plateau. Results also confirm that while 234RT might be more appropriate 

to estimate surface removal rates, 230RT provides a better representation of 

dissolved/particulate interactions over an integrated depth interval which is likely to be more 

similar to 232Th residence time.   

4.3 Thorium-derived lithogenic fluxes from the Kerguelen Plateau 

 To obtain an estimation of the flux of lithogenic material with dissolved thorium-

isotopes data, it is necessary to convert 232Th concentrations into a dissolved flux using the 

residence time calculated in the previous section, based on the assumption that 232Th and 

230Th are similarly scavenged by the particles. For this, dissolved 232Th concentrations were 

integrated from the surface to sample depth and divided by the corresponding 230RT (Figure 

8; Eq. 4). As a starting point to quantify the lithogenic flux from all the sources over the 

plateau, we calculated dissolved 232Th fluxes for the mixed layer at each station and compared 

them with values obtained at 500 m to cover the subsurface peaks of 232Th concentration. At 

all stations except 25, the dissolved 232Th flux increases with depth at almost the same rate 

as the increase of the 230RT (Table 3). This is an indication that the 232Th inventory  increases 

with a deeper integration depth as expected due to a decrease in the removal rate (Hayes et 

al., 2013). An overestimation of the mixed layer 230RT due to upward transport of 230Th can 

also produce an apparent increase of the 232Th flux with depth. Applying the same approach 

to quantify the vertical transport as in the previous section, shows that 230RT can be 

overestimated as much as by a factor of 1.4. This amount cannot fully explain the difference 
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in the 232Th flux at 500m compared to the ML because it will still be an increase in the 232Th 

flux with depth. In a similar way, lateral advection can produce an overestimation of 232Th 

flux. Considering the results discussed in the first section of the discussion it is obvious that 

there is 232Th being laterally transported at some extent to all stations. However, this 232Th is 

very likely to be originated in the plateau and therefore we don’t consider it to be an 

overestimation as it is just another local lithogenic source, and we are interested in 

quantifying all the sources of 232Th originated from the KP. 

The 230RT in the mixed layer represents the short-term mixture of the different 

lithogenic sources. Integrating the flux of 232Th to 500 m additionally captures the exchanges 

of 232Th between the dissolved and particulate phases as it sinks down the water column. In 

Station 16 the 230RT at 500 m also account for possible contributions from the dissolution of 

bottom sediments. Therefore, we select a 500 m depth to better represent a net input of 

material originating from the plateau. 

The 232Th fluxes (Figure 8b) can now be converted to lithogenic-material fluxes with 

the proper knowledge about the composition of the material and its solubility (Eq. 5). In other 

words, this flux of lithogenic material gives information about the amount of material 

required to sustain the calculated dissolved 232Th fluxes and therefore measured 

concentrations of 232Th. Previous studies dedicated to quantifying the input of dust to the 

ocean have used the average 232Th concentrations of the upper continental crust, which can 

range from 10.5 ppm to 14.6 ppm (Taylor and McLennan, 1985; Rudnick and Gao, 2013; Serno 

et al., 2014). Volcanic material, however, is known to have lower 232Th concentrations. As the 

KP is a volcanic province we use the average concentration of 232Th in rocks collected around 

the Kerguelen Plateau (5.4  1.5 ppm; Duncan et al., 2016; J. Fox 2019, personal 

communication).  
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The largest source of uncertainty in the calculation of lithogenic fluxes is the solubility 

of 232Th from particles, which is a highly unconstrained parameter, especially for volcanic-

derived material. From the few studies that report the 232Th solubility in marine particles, 

highly variable values were found ranging from 1-23 % depending on the particle size and 

depth (Arraes-Mescoff et al., 2001; Roy-Barman et al., 2002). Experiments to constrain the 

solubility from sediments and particles from the Kerguelen Plateau are on their way, however 

for this manuscript we have no other option than to use the above-mentioned solubility 

range.  

Area of Study Lithogenic flux [mg m-2 day-1] 

HEOBI Th derived flux (STh=1%)a 144 - 810 

HEOBI Th derived flux (STh=20%)b  7 - 39 

Kerguelen Plateau (KEOPS 2, Bowie et al., 2015) 35 - 628 

Ross Sea (Chiarini et al., 2019) 26.5 - 148 

Southern Ocean, along 170W (Honjo et al., 2000) 0.14 - 2 

Bransfield Straight (Wefer et al., 1987) 8.4 - 777 

Table 3-5. Fluxes of lithogenic material for the top 500 m of the water column in different 

areas of the Southern Ocean. First two rows show fluxes obtained based on thorium long-

lived isotopes considering a Th concentration in lithogenic material of 5.3 ppm and solubility 

of a1% and b20%. The rest of the columns show data obtained with sediment traps by other 

studies. 

 

When using a Th solubility of 1 % we obtain fluxes of lithogenic material that range 

from 144 – 810 mg m-2 day-1 in the top 500 m of the water column, while the values range 

from 7-39 mg m-2 day-1 when using a Th solubility from particles of 20% (Table 5).  The 

dissolved thorium estimated lithogenic fluxes are much higher than the values reported in a 

transect along the Southwest sector of the Pacific Ocean (Honjo et al., 2000). This difference 

is consistent with the oceanic setting of the Pacific Ocean stations at 170W, away from any 
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lithogenic source. Our calculated lithogenic fluxes are however comparable to fluxes obtained 

from sediment traps in more “coastal” parts of the Southern Ocean like the Ross Sea (Chiarini 

et al., 2019) and the Bransfield Straight (Wefer et al., 1988). Furthermore, all of our Th-derived 

lithogenic fluxes fall within the range reported over the KP using drifting sediment traps (Table 

5; Bowie et al., 2015). These results confirm that the Th solubility is a highly variable 

parameter and that more studies are needed for this investigation. Despite of this, lithogenic 

material flux calculation using thorium isotopes for coastal areas seems to be promising and 

once the Th solubility in the plateau is better constrained, it is expected to produce values 

closer to reality. 

4.4 Quantification of metal fluxes to the plateau 

 In a similar way as in the previous section, 232Th fluxes can be used to estimate fluxes 

of Fe and other trace elements from lithogenic material. For this, information about the metal 

concentration in lithogenic particles and its solubility relative to that of 232Th is required (Eq. 

3). The solubility of trace elements in lithogenic particles is again a highly unconstrained 

parameter, moreover, data on the solubility of trace elements with respect of thorium has so 

far not been reported. However, it has been suggested that relatively insoluble elements (like 

Th and Fe) tend to present a similar solubility  over a longer period of time (Hayes et al., 2013). 

Considering that the residence time at 500 m depth is around a year, we can expect that the 

relative solubility of Fe and Th at this depth should be close to one. Making this assumption 

and considering the Fe/232Th ratio of lithogenic material of the KP (21,195 g g-1, Duncan et al., 

2016; J. Fox 2019, personal communication), we obtain Fe fluxes that range from 716 - 2,220 

nmol m-2 day-1. These values are within the same order of magnitude and range of dissolved 

Fe fluxes obtained through the use of drifting sediment traps in the KP, which range between 

188 and 3,722 nmol m-2 day-1 (Bowie et al., 2015).  This confirms that thorium isotopes can 
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not only be used to estimate metal fluxes from the dissolution of mineral dust (Hsieh et al., 

2011; Hayes et al., 2013; Deng et al., 2014) but also from the dissolution of lithogenic material 

originating from and transported through coastal areas, as long as the oceanographic 

conditions are well constrained. 

 

5. Conclusion 

 The spatial distribution of 232Th concentrations in the surface of the plateau clearly 

indicates that Heard and McDonald Islands contribute with the supply of lithogenic material 

that fuels the phytoplankton bloom in the Central Kerguelen Plateau during the summer. We 

applied long-lived thorium isotopes to produce an estimation of the fluxes of lithogenic 

material and Fe from the Kerguelen Plateau. We demonstrate the potential of long-lived 

thorium isotopes to produce this type of information not only from the dissolution of aeolian 

dust to the open ocean like other studies have proved but also from the input of lithogenic 

sources to coastal areas. The similarity of our results with the ones obtained by the use of 

sediment traps in the Southern Ocean suggests that measuring thorium isotopes can be an 

alternative to obtain this type of information when there is no time for the deployment of 

sediment traps. However, some limitations arise due to the lack of information about the Th 

solubility from continental-originated material, and from other trace elements (including Fe) 

in relation with Th solubility, as well as from the effect of particle size in the speciation of 

thorium. Systematic studies about characterizing the dissolution of particles of different 

origin and composition will allow to improve the results produced by this technique. 
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Chapter 4  - Sourcing lithogenic inputs to the Kerguelen Plateau using 
rare earth element concentrations and Nd isotopic composition  

 

1. Introduction 

 

 The rare earth elements (REE) are a group of chemical elements that provide valuable 

information about several processes that occur in the ocean. The main source of REE to the 

ocean is the dissolution of sediments on the continental shelves and slopes  (Jeandel et al., 

1998; Lacan and Jeandel, 2005; Arsouze et al., 2007). The flux from dissolved river loads and 

the dissolution of aerosols also contribute to the REE global budget (Tachikawa et al., 1999; 

Barroux et al., 2006). All REE are chemically similar, with a predominant oxidation state of 3+ 

under normal oceanic conditions, which makes them behave in a similar way (Elderfield and 

Greaves, 1982). However, subtle changes in their chemical characteristics lead to a relative 

fractionation of the REE content in seawater. This fractionation happens mainly because of 

two factors: differences in scavenging sensitivity, and differences in redox sensitivity.  

Systematic changes in the ionic radii occur as the atomic number increases. These 

changes produce an ordered variation in the complexation and surface adsorption stability 

constants of the REE. This property is reflected in the REE speciation in seawater, which is 

dominated by carbonate complexation (Cantrell and Byrne, 1987). REE complexation by 

seawater carbonate ligands increases with increasing atomic number. Therefore, the number 

of free ions decreases with increasing atomic number, which makes heavy REE less 

susceptible to adsorption onto particles (Elderfield and Greaves, 1982). This results in the 

typical dissolved REE seawater pattern to have a higher abundance of heavier REE and a 

relative depletion of lighter REE due to their increased susceptibility to be scavenged 

(Turekian, 1977; Elderfield et al., 1988).  

The other cause of REE fractionation is the redox state of seawater, as cerium (Ce) and 

europium (Eu) can also exist as 4+ and 2+ oxidation states, respectively (Michard et al., 1983; 

Sholkovitz et al., 1994). Under normal oxidative conditions of seawater, Ce will tend to exist 

in the 4+ oxidation state, causing it to quickly precipitate as CeO2 into authigenic mineral 

phases (Elderfield and Greaves, 1981; Elderfield et al., 1988). This causes most seawater to 

have a Ce depletion in relation to its neighbor elements. In comparison, under reducing 
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conditions Eu will adopt a predominant oxidation state of 2+, which leads Eu to stay 

preferably in a dissolved state. Hydrothermal fluids are typically enriched in Eu close to the 

vents, however this Eu gets quickly scavenged from seawater, enriching surrounding 

sediments (Olivarez and Owen, 1991). These above mentioned characteristics make the REE 

group a powerful tool, which can be used to track lithogenic sources of trace elements 

(Sholkovitz et al., 1999). They also provide important information about the redox conditions 

of seawater and the scavenging intensity in the upper layer of the ocean (Elderfield et al., 

1988; German et al., 1995). Additionally, with the increase in the use of REE for industrial and 

medical applications, REE are being introduced to the ocean by human activity. Near highly 

developed coastal regions, like California, China and the Baltic Sea, gadolinium can be used 

as a tracer of human activity (Kulaksız and Bau, 2007; Hatje et al., 2014). 

Some REE are produced by radioactive decay. The long-lived 147Sm (t1/2=1.06×1011 

years) and 148Sm (t1/2=7×1015 years) isotopes decay to the stable 143Nd and to the long-lived 

144Nd (t1/2=2.29×1015 years), respectively. However, 148Sm has such a long half-life that it is 

not capable of producing measurable variations in 144Nd abundance over cosmological 

intervals (1010 years; Dickin, 2018). By contrast, chemical fractionation during magma melting 

and the formation of continental crust produces a range of 147Sm/144Nd ratios, and hence 

different 143Nd/144Nd ratios in rocks and minerals as a function of age and the Sm/Nd ratio of 

the parent material (Lugmair, 1974; DePaolo and Wasserburg, 1976). When these rocks and 

minerals enter into contact with seawater, their unique 143Nd/144Nd signature gets imprinted 

into that particular water mass and remains along its path through the ocean circulation cycle, 

making it a quasi-conservative tracer of the global oceanic circulation (Piepgras et al., 1979; 

Goldstein and Hemming, 2003). However, in more coastal environments (like the KP), the 

143Nd/144Nd of seawater is prone to no longer be conservative. The particulate/dissolved 

exchange that occurs along the continental margins can modify the Nd isotopic composition 

of a particular water mass. This process, known as boundary exchange, can act as a sink or a 

source (or both) of trace elements and, hence, has an important role in the control of the 

biogeochemical cycles in these areas (Lacan and Jeandel, 2005).  

The lithogenic material that supplies REE to the ocean is also essential for 

phytoplankton growth in certain regions of the ocean where despite the abundance of 

nutrients the primary productivity remains low despite the abundance of nutrients. These 

areas, commonly known as high nutrient, low chlorophyll regions (HNLC), occupy about one 
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third of the ocean’s surface and are caused by the absence of the bio-limiting micro-nutrient 

iron (Fe; Martin, 1990b; Martin, 1990a; Boyd et al., 2007). When Fe reaches HNLC areas it 

enables the proliferation of phytoplankton blooms, which have the potential to drive 

atmospheric CO2 into deeper layers of the ocean (de Baar et al., 1995).  

In most HNLC areas, Fe is supplied by the dissolution of mineral dust originating from 

deserts and transported to the ocean by the wind (Jickells, 2005). In the Equatorial Pacific, Fe 

is also upwelled to the surface of the ocean (Coale et al., 1996). The Southern Ocean (SO) -

which is the largest HNLC area- is located far away from any dust source. Here the natural 

fertilization of Fe occurs thanks to the dissolution of lithogenic particles sourced from 

bathymetric features like islands, rises and seamounts, enabling the proliferation of seasonal 

phytoplankton blooms (Blain et al., 2001; Tagliabue et al., 2014). The bloom occurring over 

and downstream the Kerguelen Plateau (KP; South of the Indian Ocean) is the largest in the 

SO. Because of their similar continental origin, REE distributions in the KP have been used to 

track the origin of the Fe supplying the bloom in the region (Zhang et al., 2008; Grenier et al., 

2018). The KEOPS 1 study identified Heard and McDonald Islands (HIMI) as the potential 

sources of lithogenic material (Zhang et al., 2008). Results from an expedition to the northern 

part of the plateau (KEOPS 2) showed that the Kerguelen Archipelago (KA) plays an important 

role in the fertilization of the area north of the Polar Front (Grenier et al., 2018). Results from 

KEOPS 2 also suggested that lithogenic material from the KA can actively cross the PF in a 

southwards direction and contribute with the bloom towards the central part of the plateau 

(Sanial et al., 2015). More recently, the Heard and McDonald Earth Ocean Biosphere 

Interaction Study (HEOBI), undertaken in the austral summer of 2016, confirmed that the 

drawdown of nutrients in the region north of this group of islands was largely due to the 

supply of Fe (Holmes et al., 2019). In particular, the importance of high lability Fe particles 

sourced from glacial runoff from Heard Island was highlighted (van der Merwe et al., 2019). 

 This chapter is aimed to further constrain the sources and pathways of lithogenic 

material to the plateau using dissolved REE concentrations and Nd isotopic compositions 

measured in the waters flowing around HIMI and over the central part of the plateau.  Nd 

isotopic composition measurements will add to a limited body of values and increase our 

understanding of the Southern Ocean, in particular the intermediate-depth water masses 

around the Kerguelen Plateau.  
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2. Materials and methods 

2.1 Sampling  

 Samples were collected as part of the HEOBI study over and around the central 

Kerguelen Plateau in January and February 2016. Procedures for the collection of the samples 

have been fully explained in the previous two chapters. Briefly, seawater was filtered directly 

from Niskin bottles mounted on a CTD through an 0.8/0.2 μm AcroPak® (PALL Corporation, 

USA) clean capsule filter into 10 L clean cubitainers. On-board blanks (2 L) from the ultra-high 

purity water (UPW) system of the vessel were also collected at every station. Both samples 

and blanks were acidified with 1 mL of concentrated HCl per liter of sample. Samples were 

packed and stored for land-based analysis. Once in the laboratory a 250 mL aliquot was taken 

for REE analysis and stored in a clean HDPE bottle (Station 25 was not sampled for REE 

analysis). The rest of the sample was used for the simultaneous determination of 232Th, 230Th 

and εNd (Chapter 2). 

 A total of 15 surface sediment samples (Figure 1) were collected using either a 

sediment dredge or Smith McIntyre grab. Once on board, all organisms were manually 

removed from the main sample and then subsamples of the bulk sediments were placed in a 

plastic bag and immediately stored in the freezer (-20 oC). 

 

Figure 4-1. Location of stations where REE determinations were made for the KEOPS 1 

(triangles; Zhang et al., 2008), and KEOPS 2 (crosses; Grenier et al., 2018) voyages and this 

study (circles). 
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2.2 Reagents and materials 

 All laboratory materials used in this study were meticulously cleaned following 

GEOTRACES protocols (Cutter et al., 2010). For the cleaning of the materials as well as for 

reagent preparation, ultra-high purity water (UPW, 18.2 MΩcm−1) was employed. High purity 

HNO3, HCl and CH3COOH were produced by the distillation of analytical grade acids (Seastar 

Chemicals, Canada) in a DST-100 acid cleaning system (Savillex, USA). Additionally, HF, HClO4 

and HNO3 were Baseline (Seastar Chemicals, Canada) ultra-high purity acids and used as 

received by the supplier.  

 A “stock” 2.5 M ammonium acetate buffer solution was prepared by mixing 317 g of 

UPW, 74 g of 17 M CH3COOH and 104 g of 11 M NH3 solution. This stock solution was 

employed in both procedures to pre-concentrate REE and Nd-isotopes, respectively. In the 

case of the REE procedure this solution was passed through a clean Nobias cartridge in order 

to decrease its contribution to the procedural blank.  

 For the REE method calibration a multi-element MISA-5 (Brand, Place, Country) 

standard containing all REE was used. The original solution with a concentration of 100 ppm 

was serially diluted to obtain a working solution with a REE concentration of 1 ppb. 

Additionally, for extra sample yield control a 150Nd spike solution was added to the seawater 

samples. This spike was obtained from the Australian National University and was an aliquot 

of the original solution produced in the Charles Arm Laboratory from the California Institute 

of Technology (Wasserburg et al., 1981). 

 The quality assurance for our REE procedure was controlled by analyzing the 

GEOTRACES intercalibration sample BATS15 (van de Flierdt et al., 2012). For the Nd isotopic 

composition quality assurance, the BATS2000 GEOTRACES intercalibration material 

(Anderson et al., 2012) and the JNdi-1 neodymium isotopic composition CRM (Tanaka et al., 

2000) were employed. 

  

2.3 Rare Earth Element determination 

 Because of the picomolar levels of REE in seawater it is necessary to pre-concentrate 

samples in order to obtain measurable amounts of REE. For this purpose, we applied a 

modification of the procedure reported by Hatje et al.(2014) using the Nobias resin. Amongst 

the modifications, we used a different manifold array, based on the ones reported earlier by 
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Pérez-Tribouillier et al.(2019). We also used commercially available pre-packed NOBIAS 

cartridges of the resin instead of hand packed ones.  

 Based on previous studies, the Nobias resin can produce yields close to 100% for all 

REE at a pH close to 5 (Hatje et al., 2014). This suggests that REE concentrations can be 

determined by a simple external calibration. To obtain a calibration curve that is 

representative of the seawater matrix, we produced a “REE-free” seawater by passing surface 

water collected in the Southern Ocean through a clean Nobias cartridge several times until 

most of the REE were stripped off. Seawater calibration samples were prepared with 60 mL 

aliquots of “REE-free” seawater amended with different amounts of the multi-element MISA-

5 standard solution to produce different concentrations (from now referred to as SW-

calibrations; 0.2, 1.8, 3.5, 5 pg g-1). The resulting solutions were processed in accordance to 

the procedure described in the following section. The efficiency of our method is described 

in the results section. It was evaluated by comparing the signal obtained from the analysis of 

the SW-calibrations (after dilution factor correction) to the signal produced by the direct 

measurement of a calibration curve with the same concentrations and no sample treatment 

(multi-REE solution was diluted in 3 M HNO3 and immediately analysed using SF-ICP-MS). 

Additionally, the recovery was also assessed by adding 150Nd tracer to our samples.  

 

2.3.1 Pre-concentration 

An aliquot of 60 mL (from the previously described 250 mL aliquot) of acidified 

seawater was poured into clean and pre-weighed polypropylene containers. Samples were 

spiked with 50 pg of 150Nd and left to equilibrate for at least 24 hours. Prior to the pre-

concentration, 2 mL of 2.5 M ammonium acetate solution were added and the pH was 

adjusted to a value of 4.75 using ~100 µL of concentrated HCl. The pH of the samples was 

checked and then immediately pumped through the cartridges at a flow rate of 0.5 ml min-1. 

After all the sample volume passed through the cartridges, the sea salts were removed by 

rinsing with 5 mL of UPW at the same flow rate.  Finally, REE were eluted from the cartridges 

using 3.5 mL of 3 M HNO3 at a flow rate of 0.4 mL min-1 into clean 5 mL polypropylene vials. 

At this stage samples were ready to be measured using SF-ICP-MS. 
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2.3.2 Quality assurance and blank contribution 

 At least one blank and a reference material were analyzed with each batch of samples. 

The blank contribution was assessed through multiple analysis of procedural blanks with UPW 

as well as measurements of the REE-free seawater used for the external calibration. The 

signals of the procedural blanks were subtracted from all samples, while the signal of the 

latter was subtracted from the calibration curve samples.  The quality control of our method 

was achieved by the analysis of the BATS15 intercalibrated sample (van de Flierdt et al., 2012).  

 

2.3.3 Analysis 

An Element 2 SF-ICP-MS (Thermo Fisher Scientific, Germany) was used for this study. 

The operational conditions are presented in Table 1. In order to minimise overlapping 

oxide/hydride formations and increase instrument sensitivity, samples were introduced via 

an Aridius® II (CETAC Technologies, USA) desolvating nebulizer. At the beginning of every 

measurement session, the instrument was carefully tuned to minimized oxide formations by 

separately analysing four mono-element solutions of Ba, Ce, Pr and Nd (50 pg g-1). Polyatomic 

interferences ratio of 138Ba16O, 140Ce16O, 141Pr16O and 146Nd16O were less than 0.1%, 0.06%, 

0.03% and 0.06%, respectively, through all of our measuring sessions. The isotopes 139La, 

140Ce, 141Pr, 146Nd, 150Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu were 

selected by considering individual isotopic abundances and potential isobaric and polyatomic 

interferences (Robinson et al., 1999). After each REE measurement a short wash of 1-2 min 

was performed with 10% HNO3 solution. A multi-element standard solution containing 5 ppt 

of all the elements analysed in 3 M HNO3 was passed after every 5-10 samples on the ICP-MS 

as a quality control check in order to follow and correct for instrument drift. The instrument 

blank for the ICP-MS was estimated by running 3 M HNO3 solution (the same solution used 

for the elution) after every 5-10 samples. The average signal of the instrument blank was 

subtracted from all samples, standards and procedural blanks. 
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Instrument  Operating Conditions  

Equipment 
 

Nebuliser PFA 200 µL/min; self-aspirating 

CETAC Aridus 2 Sweep gas: 4.5-5 L/min; Nitrogen gas: 5-8 mL/min 

Spray chamber Heated PFA chamber 

Sampler and skimmer cones Nickel    

Parameters 
 

ICP Torch gas flows (L/min) 0.9/0.75/15 (nebuliser/auxiliary/cooling) 

RF Power (W) 1350 

Detection mode Counting 

Sample time (s) 0.005 for 139La, 140Ce, 141Pr, 146Nd 
 

0.01 for 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu 

Mass window 80 

Samples/peak 40 

Resolution Low 

 

Table 4-1. Common conditions of operation for the SF-ICP-MS during the different REE 

measuring sessions. 

2.3.4 Data treatment 

 The REE patterns presented in the results and discussion section were obtained by 

normalizing the sample’s REE concentration to the REE content of the Post-Archean 

Australian Sedimentary rocks (Taylor and McLennan, 1985; Pourmand et al., 2004). These 

PAAS normalized values were then used to calculate the Ce (Bolhar et al., 2004; Eq. 2) and Eu 

(Bau et al., 1996; Eq. 3) anomalies as well as the Nd/Yb normalized ratio (Grenier et al., 2018; 

Eq. 3) 

𝐶𝑒

𝐶𝑒∗ =  
[𝐶𝑒]𝑛

2[𝑃𝑟]𝑛− [𝑁𝑑]𝑛
 (𝐸𝑞. 1)     

𝐸𝑢

𝐸𝑢∗ = 
4 [𝐸𝑢]𝑛

3 [𝑆𝑚]𝑛+ [𝐷𝑦]𝑛
 (𝐸𝑞. 2)   (𝑁𝑑

𝑌𝑏⁄ )
𝑛

= 
𝑁𝑑𝑛

𝑌𝑏𝑛
 (𝐸𝑞. 3) 

 



 

138 
 

2.4 Nd isotopic composition determination 

2.4.1 Pre-concentration 

The pre-concentration and chromatographic separation of Nd isotopes has been 

described in full detail in the second chapter (Pérez-Tribouillier et al., 2019). It is part of a 

simultaneous procedure to pre-concentrate and separate Th and Nd isotopes from the same 

seawater sample. It was performed using an array of two pre-packed Nobias PA1L cartridges.  

 On the day of pre-concentration, the samples were supplied with enough 2.5 M 

ammonium acetate buffer solution to obtain a concentration in the samples of 0.05 M. 

Immediately after, 0.5 mL of concentrated HCl was added to achieve a final pH of ~4.75. After 

checking the pH value, the samples were passed through the cartridges using a peristaltic 

pump and an array of six manifolds as described in Pérez-Tribouillier et al.(2019). After all the 

volume of the sample passed through the resin, salts were removed with 25 mL of UPW. 

Finally, targeted analytes were eluted using 5 mL of 3 M HNO3.  

 

2.4.2 Nd isotopes chromatographic separation 

After pre-concentration and between every chromatographic step the samples were 

strongly oxidized with a mixture of 0.4 mL concentrated HNO3 and 0.1 mL of HClO4 at 220 oC. 

This oxidation step was carried out with the objective of removing any organic substance that 

may have been leached from the chromatographic resin, as organics can interfere with the 

efficiency of the subsequent chromatographic step as well as produce interference during 

measurement (Gault-Ringold and Stirling, 2012).  

 After the first oxidation was performed, the samples were diluted in 1 mL of 

concentrated HCl and loaded onto 0.5 mL of BioRad AG1-X8 anion exchange resin (pre-

cleaned and conditioned). The aim of this first loading was to separate Th and the REE from 

U, Pa and transition metals including Fe. Afterwards the same resin was cleaned and 

conditioned in 8 M HNO3. The samples were also dissolved in 1 mL of 8M HNO3 (after 

oxidation) and loaded onto the resin. This step is performed to separate the REE from Th 

isotopes (which remain in the resin). 

 For the next chromatographic column, 1.4 mL the BioRad AG50W-X8 cation exchange 

resin was employed (Struve et al., 2016). It is used to remove any remaining cations in the 

sample. After oxidation, the samples were redissolved in 1 mL of 1 M HCl and loaded onto a 
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cleaned and conditioned column. The cations were then removed with 6 mL of 3 M HCl and 

the REE were finally eluted with 5 mL of 6 M HCl. The final chromatographic step was to isolate 

Nd isotopes from the rest of the REE, and was performed using pre-calibrated columns 

containing Eichrom LN separation chromatography resin (Pin and Zalduegui, 1997). Samples 

were loaded in 0.125 mL of 0.225 M HCl and washed with ~20 mL of the same acid. Afterward 

Nd was collected with 5 mL of the diluted HCl acid. This fraction was oxidized one final time 

prior to determination by MC-ICP-MS or TIMS. 

 

2.4.3 Nd determination 

 In the early stages of this thesis it was planned that the Nd isotopic composition from 

the HEOBI samples would be measured using Multi Collector ICP-MS at the Australian 

National University. This was undertaken for the Nd determination of samples from Station 

18 (see Chapter 2). However, results from this station indicated that the Nd concentration of 

some samples were too low and the analytical errors were relatively high. Therefore, it was 

decided that further samples would be analysed by Thermal Ionization Mass Spectrometry 

(TIMS). 

 Neodymium Isotope ratio measurements were carried out on a Thermo-Finnegan 

Triton TIMS instrument at Victoria University of Wellington. Samples were dissolved in 1 μl of 

0.01 M H3PO4 and loaded onto the evaporation side of outgassed zone-refined double 

rhenium filament assemblies. The measurement protocol consisted of a static measurement 

involving five Faraday cups collecting masses 144, 145, 146, 147 and 150 with 145Nd as the 

axial mass. All Faraday cups were connected to 1013 Ω feedback resistors to optimise the 

measurement of small ion beams (generally 100-200 mV on mass 145Nd). Measured 

143Nd/144Nd ratios were corrected for Sm interference using 144Sm/147Sm = 0.20667, and for 

instrumental fractionation to 146Nd/144Nd = 0.7219 using the exponential law. Isotope ratios 

were collected over 18 blocks consisting of 10 ratios each with an 8.389 s integration time. A 

400 s baseline was measured prior to analysis during filament warm up with the analyser 

valve closed. Repeated analysis of 5 ng loads of the JNdi standard yielded 143Nd/144Nd = 

0.512108 ± 0.00002  (45.5 ppm 2SD; n = 14).    

2.4.4 Data treatment  
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 Differences in the 143Nd/144Nd ratio of samples) are so small that it is necessary to 

present data using Nd notation (Eq. 4; DePaolo and Wasserburg, 1976). This notation 

normalizes the 143Nd/144Nd ratio of the samples to that of the Chondritic Uniform Reservoir 

(0.512638, CHUR;  Jacobsen and Wasserburg, 1980).  

𝑁𝑑 =

[
 
 
 
 (

𝑁𝑑143

𝑁𝑑144 )
𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑁𝑑143

𝑁𝑑144 )
𝐶𝐻𝑈𝑅

− 1

]
 
 
 
 

 ×  10,000  (𝐸𝑞. 4) 

 

 

2.5 Sediment digestion 

 The sediments collected around HIMI were of black gravelly nature, consistent with 

volcanic material. Digestion was performed following the protocols described in Durand et 

al.(2016). A Milestone Ethos EZ laboratory microwave oven with SK-12 (medium pressure) 

rotor (Shelton, CT, USA) was used for digestions with a maximum power, temperature and 

pressure of 1500 W, 300°C and 35 bar, respectively. The sequence for acid digestion was as 

follows: temperature ramping over 10 min to 180°C, stabilisation at this temperature for 40 

min, before final increase to 200°C over 4 min. The reaction vessel was held at this 

temperature for 20 min. Applied microwave power was adjusted automatically by the unit to 

perform the sequence described above.  

  Two hundred milligrams of crushed and dried sediment were placed in the microwave 

vessels. In a fume hood, 4 mL of concentrated HCl was added and the beakers were placed 

on a hotplate at 150°C for 2 h to allow CO2 to be released. The vessels were left to cool for 1 

h with lids on. Ten millilitres of concentrated HNO3 and 2 mL of concentrated HF were then 

added and the microwave digestion procedure described above was applied. The vessels 

were allowed to cool for up to 1 h with the fan of the microwave turned on to accelerate 

cooling. Each solution was carefully transferred into a clean 30 mL Teflon beaker. The 

microwave vessels and their lids were rinsed two times with 1 mL of concentrated HNO3 to 

collect as much of the digested sediments as possible. The solutions were then heated on a 

hotplate at 105°C and taken to incipient dryness. Afterwards the samples were diluted and 

subject to a chromatographic separation using the TRU-spec resin in order to remove 

unwanted cations (Crocket et al., 2014). A 1 mL aliquot of the resulting solution was taken 
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and analysed on the SF-ICP-MS in order to obtain REE concentration in the samples. The 

remaining solution was subject to the Nd purification scheme using the LN resin (Pin and 

Zalduegui, 1997). 

 

3. Results  

3.1 REE method development 

 In this section we present the results of our adaptation of the method described by 

Hatje et al., (2014) to measure dissolved REE concentrations in seawater. The main difference 

with our methodology is we use pre-packed Nobias cartridges with a different amount of 

resin. Therefore, we present the results of the investigations to obtain the right volume to 

effectively elute most of the REE from our larger cartridges. Then we present the calibration 

process of these cartridges to obtain REE concentrations. Next we report the blank levels, 

detection limits, accuracy and precision obtained by our method. Finally, REE profiles in HEOBI 

samples are presented. 

 

3.1.1 Optimal elution volume  

 The main difference of our proposed method with the one reported by Hatje et 

al.(2014) are the cartridges that contain the Nobias resin. In previous work, cartridges were 

hand-packed with 27 L of Nobias PA1 resin. For our work we used pre-packed Nobias PA1L 

cartridges with a capacity of ~300  L. Therefore, our first objective was to establish the 

optimal concentration and volume of the E-HNO3 required to elute most of the REE from our 

particular cartridges. To test this, we designed a simple experiment where a known 

concentration of REE was loaded onto the cartridges and then REE were eluted using 2.4 mL 

of 1.5 M and 3M HNO3 acid in increments of 0.6 mL (Figure 2). Using 2.4 mL of 1.5 M HNO3 

was not enough to quantitatively recover all the REE, and the HREE showed recoveries of less 

than 80 %. Using 3 M HNO3 resulted in recovery levels above 93% for all the REE. Therefore, 

the latter more efficient elution scheme was selected for our larger volume cartridges. 
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Figure 4-2. The effect of different E-HNO3 concentration and volume on the recovery of REE 

in UPW from the Nobias PA1L pre-packed cartridges. The values shown are the average of 

three different measurements and the error bars represent the standard deviation of these 

measurements. 

3.1.2 External calibrations 

 The excellent yield showed by the Nobias resin to pre-concentrate REE allows for their 

concentrations to be determined without the needing to apply isotope dilution techniques 

(Hatje et al., 2014). In the previous section we showed that using the pre-packed cartridges 

can produce REE yield above 93 % for all REE.  However, we wanted to make sure that the 

same recovery levels could also be achieved with a seawater matrix. For this, we followed the 

same approach suggested by Hatje et al.(2014). Aliquots (60 mL) of the “REE-free” seawater 

described in the methods section were spiked with the REE standard solution (MISA-5 

standard) in order to obtain different concentrations (0.2-5 ppt). These aliquots were pre-

concentrated onto a Nobias cartridge and after elution in 3 M HNO3, were analyzed using SF-

ICP-MS. After correction for dilution factor, obtained signals (Figure 3, orange symbols) were 

compared with the signal produced by the analysis of the REE standards at the same 

concentrations as the above-mentioned aliquots, but without any pre-concentration step 

(just dissolved in 3M HNO3 and introduced into the instrument).  

 The results indicate that all the REE, with the exception of lanthanum, can be 

quantitatively recovered following our proposed procedure. As in the previous section, the 

REE recovery of the pre-packed Nobias cartridges is above 93 % in a seawater matrix. 

Excluding La, the difference between the on-column calibrations and the external standards 
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remained below 7% for all the REE over all concentrations, with the exception of Ce that 

showed a difference of 16% at 5 pg g-1. The on-column calibrations showed a good linearity 

with a correlation coefficient above 95% (Figure 3). The calibration curve for La is not 

presented because it showed what appears to be contamination issues throughout all of our 

experiments which prevented us from obtaining a linear calibration. Confirmation that La 

signals were not being compromised through additional overlapping BaH formation was 

obtained through repetitive analysis of mono-element Ba solutions. BaH formation rate was 

quantified as < 0.05% under typical working conditions. The anomalous La calibration curve 

could also be caused by the presence of Ba in the “REE-free” seawater used for the 

calibrations. The relative abundance of 138Ba could be contributing with tailing to the much 

less abundant 139La. However, this theory was discarded after analyzing the REE elution 

fractions and finding no significant Ba amount. In addition, the analysis of the intercalibration 

material BATS15 showed anomalous La concentrations that confirm a potential La 

contamination (see blanks section). 
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Figure 4-3. External calibration curves for REE spiked seawater eluted from Nobias cartridges 

(orange dots) compared to an external calibration (blue dots) for selected REE dissolved in 

3M HNO3. For the sake of simplicity, we do not present the graphs for every REE.  

 

3.1.3 Blank levels and detection limit  

 The REE blank contributions of our method are within the reported values in previous 

studies (Zheng et al., 2015; Behrens et al., 2016), with the exception of lanthanum, cerium 

and neodymium. In addition to the calibration problems stated in the previous section, the 

La blank is about 20 times larger than in the mentioned studies. Therefore, we have no other 

option to explain these anomalous La levels other than blank contribution. Although 

experiments are on their way to identify this source, at the moment of writing this thesis we 

do not know exactly where this La is coming from. The Ce and Nd blanks are 4 and 10 times 

larger respectively than previous studies. However, they only represent less than 5 % of the 

concentration found in the BATS15 reference material. The blank contribution for the rest of 

the REE is less than 2 % of the signal associated with the same reference material.   

    

Element  Average Blank (pmol/kg) Detection Limit (pmol/kg ) 

La 2 1.6 

Ce 0.870 0.042 

Pr 0.080 0.275 

Nd 0.600 0.517 

Sm 0.007 0.008 

Eu 0.002 0.002 

Gd 0.010 0.020 

Tb 0.001 0.002 

Dy 0.020 0.050 

Ho 0.001 0.002 

Er 0.005 0.007 

Tm 0.001 0.001 

Yb 0.002 0.004 

Lu 0.001 0.001 

Table 4-2. Average procedural blanks during REE determination from HEOBI samples (n = 8). 

The detection limit is reported, equals to three times the standard deviation of the total 

procedural blanks. 
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3.1.4 Quality assurance 

 The repeated analysis of the BATS15 intercalibration standard indicates a good overall 

accuracy for our method within 5% of agreed values (van de Flierdt et al., 2012; Behrens et 

al., 2018) for all the REE with the exception of La that is almost twice the consensus value. As 

reported in the previous sections there is an issue in the determination of La with our method 

that we have not fully resolved. The long-term precision (3 months, 7 ICP-MS sessions) of the 

analysis of the BATS15 material during the study is better than 10 % for all the REE with the 

exception of Ce and Lu, that showed values of 15% and 12%, respectively. These results 

indicate that our method can effectively be used to measure REE concentrations (excepting 

La) from seawater samples. 

 

Table 4-3 REE concentrations in the GEOTRACES BATS15 intercalibration sample compared to 

previously reported values. 

 

 For the quality control of the  Nd measurements, a 2.5 L aliquot of MQW containing 

~50 ng  JNdi-1 reference material was processed for every batch of 11 samples. The resulting 

solution was processed as described in Chapter 2, including pre-concentration, anion and 

cation exchange chromatography, and finally the Nd isotopes were isolated using the LN 

resin. The procedural ~50 ng  JNdi-1 standards analyzed by TIMS (Figure 4, grey diamonds 

2SD, 39 ppm) are within the external reproducibility of the instrument (Figure 4, grey shading 

 BATS 15m                             

  La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Average of this 
study (n=5) 

27.1 12.5 3.30 14.17 3.27 0.89 4.72 0.79 5.68 1.48 4.72 0.66 4.19 0.65 

2σ SD (pmol/kg) 8.9 1.8 0.3 0.7 0.1 0.05 0.4 0.05 0.4 0.1 0.4 0.1 0.4 0.1 

2σ RSD% 33 15 9 5 4 6 7 7 7 9 9 10 9 12 

GEOTRACES 
intercalibration 
value 

14.7 12.0 3.12 14.10 3.21 0.89 4.83 0.79 5.90 1.49 4.80 0.70 4.16 0.67 

2σ SD (pmol/kg) 2.2 2.7 0.4 1.2 0.4 0.1 0.6 0.1 0.5 0.1 0.4 0.1 0.5 0.1 

2σ RSD% 15 23 12 9 11 12 11 11 9 9 9 9 12 14 

Behrens et al. 
Value (n=5) 

14.1 11.9 3.3 14 3.2 0.86 4.84 0.81 5.91 1.45 4.83 0.69 4.24 0.69 

2σ SD (pmol/kg) 1.2 1.3 0.2 0.4 0.1 0.02 0.25 0.01 0.2 0.04 0.1 0.02 0.1 0.01 

2σ RSD% 9 11 8 3 2 2 5 1 4 3 2 2 3 1 
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2SD; 43 ppm on 5 ng), and within the analytical error to the value reported by Tanaka et 

al.(2000) of 0.512115 ± 14 ppm (Figure 4, black circle).  

 
Figure 4-4. Corrected 143Nd/144Nd values (grey diamonds) for the JNdi-1 quality control 

samples containing ~50 ng of Nd, within the analytical uncertainty of the JNdi-1 reference 

value (Tanaka et al., 2000; black circle). The grey shading represents the instrument external 

reproducibility (2SD; 43 ppm on 5 ng) of 14 measurements of the JNdi-1 (5 ng) performed 

through the different measuring sessions in the TIMS. 

 

3.2 Rare Earth Element profiles  

For the presentation of the REE concentration results, we separate deep from shallow 

stations. Amongst the deep sites, Station 18 is located on the western flank of the plateau 

and was considered as the reference station of the last chapter. Stations 9 and 12 are located 

on the eastern slope of the plateau and Station 6 is located 400 km east of the Kerguelen 

Plateau, just south of the Polar Front. The REE concentration depth profiles for these stations 

are plotted together in the same figure to make it easier to identify trends in their behavior 

(Figure 5). Individual REE concentrations of the coastal stations 22,30,31, and 34 are plotted 

together with Station 16, which is located in the middle of the central part of the KP.  

The REE concentrations in the deep stations indicate a typical nutrient-like behavior 

for the open ocean with low concentrations towards the surface that gradually increase with 

depth (Elderfield and Greaves, 1982; De Baar et al., 1985; Elderfield et al., 1988). The only 

element that does not follow this trend is Ce, which presents relatively high concentrations 
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in the surface of Stations 6 and 9. Below 300 m Ce concentrations are lower, and the 

variability in Ce concentration is largely within the analytical uncertainty of our method. An 

outstanding feature of the deep stations is that station 18, which was considered as a 

reference station for other parameters such as Th (previous chapter) and Fe (Holmes et al., 

2019) does not seem to apply for the REE. The concentration profiles clearly indicate that 

Station 6 has the lowest concentrations and less variable profile. Furthermore, the REE 

concentrations increase towards the bottom of Station 18, probably influenced by the 

addition of REE by dissolution of bottom sediments. 

 The REE concentrations in all shallow stations (16, 22, 30, 31 and 34) are higher than 

in all deep stations at the same depth range (Figure 5). Furthermore, the REE concentrations 

measured around HIMI are the highest of our data set in the surface portion of the water 

column. At Station 16, located in the central part of the Plateau, the concentration profiles of 

the REE from Ce to Tb indicate a surface maximum which quickly decreases into a subsurface 

minimum value. This pattern is more evident toward the lightest REE and decreases as the 

atomic number increases. For the rest of the “heavier” REE this characteristic disappears and 

values simply increase with depth. This behavior clearly reflects that heavier REE are less likely 

to be scavenged by particles (Elderfield et al., 1988).  

The REE concentrations in both the deep and shallow stations are within the range of 

values reported by previous studies in the Kerguelen Plateau (Zhang et al., 2008; Grenier et 

al., 2018), in the South Atlantic (Garcia-Solsona et al., 2014) and in other parts of the Southern 

Ocean (German et al., 1995; Hathorne et al., 2014). 
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Figure 4-5. REE concentration depth profiles for the HEOBI voyage. Left panels represent the 

concentrations found at the deep stations (6,9,12,18), and right panels show the 

concentrations at station 16 (central KP) and the rest of the HIMI coastal stations 

(22,30,31,34) to the right.  La has been excluded due to blank contamination issues. 

 

 We also present the vertical distribution of Ce and Eu anomalies and the PAAS 

normalized (Nd/Yb)n ratio. Neodymium is considered here as a substitute for La due to 

previously mentioned contamination issues with La, and provides similar information to the 

more commonly used (La/Yb)n on the fractionation between light and heavy REE. (which gives 

information about the “age” of lithogenic inputs). In the following, Ce and Eu anomalies are 

defined as "positive" if > 1 and negative if < 1. The closer the values are to 1, the weaker the 

anomaly, and the strength of the anomaly increases as the value moves away from one.  

All the samples from all stations present a negative Ce anomaly, which is  typical of 

seawater (Figure 6a; Sholkovitz et al., 1994; Bolhar et al., 2004). Near-surface samples in the 

deep and shallow stations have a weaker negative anomaly, being weakest in the near-island 

stations (Figure 6b). In the deep stations the negative Ce anomaly becomes stronger with 

depth.   

 

 

Figure 4-6. Cerium anomaly profiles in (a) deep and (b) shallow station of the HEOBI voyage. 

 

a b 
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A weakly positive Eu anomaly is evident for most of the deep stations’ samples (Figure 

7a) and in Station 16 located in the central part of the plateau (Figure 7b). However, the top 

100 m of Station 6 present a very weak negative Eu anomaly. Coastal stations 22, 30 and 34 

all present a weak positive Eu anomaly value (~1.1, Figure 7b)). Station 31, located 

adjacent/proximate to the front of one of the glaciers that exist on Heard Island presents the 

strongest Eu anomalies (1.2 and 1.4) of our dataset. 

 

Figure 4-7. Europium anomaly profiles in (a) deep and (b) shallow station of the HEOBI voyage. 

 

 The Nd/Yb normalized ratio is an indicator of the fractionation between the lighter 

and heavier REE produced by the different scavenging processes and intensity that affects 

them (Elderfield et al., 1988). Considering surface samples, lower fractionation (higher value) 

can be considered as an indication of a recent lithogenic imprint on the dissolved REE 

concentration in seawater. All the deep stations have a subsurface maximum value that 

decreases until achieving a minimum value for the entire water column at ~ 600 m (Figure 

8a). Below this depth the (Nd/Yb)n ratio increases gradually and achieves the maximum values 

with depth, very likely due to the reversible scavenging processes. As expected, the stations 

located near the islands present the highest values due to the recent input of dissolved REE 

from lithogenic material (Figure 8b). 

a b 
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Figure 4-8. PAAS normalized (Nd/Yb)n ratio in (a) deep and (b) shallow station of the HEOBI 

voyage. 

 

3.3 Neodymium isotopic composition (Nd) 

 The Nd isotopic composition of the top 700 m of the water column at the deep 

Stations 6, 12, 18 and 25 indicate a mixed isotopic composition that ranges from -7.6 to -9.4 

Nd units. At Stations 6, 9, 12 and 25 below 700 m, the Nd signal gradually decreases towards 

1,200 m depth to a value close to -10. Below 1,200 m, the Nd remains constant (Nd = -9.7 ± 

0.4) and within the analytical uncertainty of the measurement (Figure 9a). Station 18 exhibits 

the same pattern, however the Nd from 800-1,600 m is slightly more radiogenic than the 

previously mentioned stations (Figure 9a). In addition, the two deepest samples of Station 6 

also have a slightly more radiogenic value of -8.9 and -9.0 at 3,476 and 3,576 m respectively 

(Figure 9).  

Shallow Stations have in general more radiogenic Nd values than deep stations (Figure 

9b). However, at 15 m Station 16 has a Nd of -9.9 ± 0.3 (Figure 9b), which is comparable with 

the average Nd of the top 600 m in the deep stations (Nd = -9.7 ± 0.4). At 40 m, the Nd isotopic 

composition of Station 16 quickly becomes more radiogenic (-6.7 ± 0.2). Lower in the water 

column, and following the trend of the deep stations, the Nd gradually decreases to a value 

of -8.1 ± 0.4 and remains similar until 300 m (-8.0 ± 0.5). The stations located near the islands 

have the most radiogenic values of our dataset (-5.6 ± 0.5; n=6).  

a b 



 

155 
 

 
Figure 4-9. ƐNd composition of the water column during the HEOBI voyage.  

 

3.3 REE and Nd in HEOBI sediments  

 The 15 sediment samples collected during the HEOBI voyage indicate quite 

homogenous REE concentrations. For the sake of simplicity, we present the PAAS normalized 

patterns averaged for samples around Heard Island, McDonald Island and South of both 

islands, respectively. All samples considered present an Eu enrichment relative to the PAAS 

content which is characteristic of the basaltic material from the Kerguelen Plateau (Barling et 

al., 1994; Weis et al., 2002; Doucet et al., 2005). This enrichment is very similar for Heard and 

McDonald Islands, however it is twice as large for the two samples located south of HIMI 

(Figure 10). The Nd of the sediment samples is homogenous in the three areas with Nd values 

ranging from -0.5 to 1 (x̄ = -0.7±0.8). These values are within the range reported for recent 

basalts of the Kerguelen Plateau (Nd =-2 to 1; Weis et al., 1992) 
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Figure 4-10. Average of PAAS normalized patterns of sediments collected South of HIMI (n=2, 

diamonds), around Heard (n=6, crosses) and McDonald Islands (n=7, triangles) during the 

HEOBI voyage. 

4. Discussion 

 

4.1 Sources of REE to the Kerguelen Plateau 

 
 The concentrations of REE indicate a enrichment of most of the REE above and on the 

slopes of the plateau, compared to REE concentrations found in Station 6. Almost all samples 

have higher REE concentrations compared to Station 6, located far to the west of the plateau 

(Figure 5). Additionally, more positive (Nd/Yb)n ratios (Figure 8) and weak negative Ce 

anomalies (Figure 6) in all coastal stations suggests a recent contact between seawater and 

lithogenic material sourced from the plateau. These finding are expected as it has been 

previously established that the KA as well as the HIMI area provide a constant supply of 

lithogenic particles that allow Fe-limitation in this HNLC region to be overcome (Blain et al., 

2008; Bowie et al., 2015; Holmes et al., 2019; van der Merwe et al., 2019). However, the 

relative contribution of each group of islands is still not completely understood. Zhang et 

al.(2008) and Grenier et al.(2018) both highlighted the importance of REE (and Fe) around 

HIMI and transported northwards by the dominant circulation above the plateau (Figure 11; 

Park et al., 2008). This iron supplies the productivity bloom above the central part of the 
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plateau, south of the PF. However, the contribution of the KA to the above-mentioned region 

remains unclear. Radium isotope data suggested that waters that were in recent contact with 

the KA could potentially supply trace elements across the PF through mesoscale intrusion 

(Sanial et al., 2015). However, the extent/importance of this lithogenic supply mechanism is 

still unclear. The uncertainty in the relative importance of both lithogenic sources is in great 

part because of a lack of sampling resolution in the central and southern parts of the plateau. 

In this section we incorporate our REE and Nd data collected around HIMI to the existing 

datasets produced by the KEOPS 1 (Zhang et al., 2008) and KEOPS 2 (Grenier et al., 2018) 

voyages in order to better constrain the sources of REE and other trace elements of the 

central KP waters. To better understand the possible input of each group of islands and the 

shallow areas that surround them, we focus on the samples located in the top 600 m of the 

water column. 

 

Figure 4-11. Predominant circulation pattern in the Kerguelen Plateau (taken from Park et al., 

2008b). The green colour represents areas where it is historically known for the bloom to 

appear in the region once the sun is no longer limiting after the beginning in the austral spring. 

Red arrow represents the Polar Front. 

  

 The relationship between the Eu anomaly and (Nd/Yb)n in samples of the top 600 m 

of the water column clearly reveals the difference between the dissolved signal of Heard 
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Island with the one representative of the KA (Figure 12). The (Nd/Yb)n values indicate a recent 

input of lithogenic material in both areas. However, the samples collected around HIMI 

present a significant positive Eu anomaly (~1.1; Figure 12), while the samples around the KA 

have a negative anomaly (~0.70; Figure 12).  

 

Figure 4-12. Relationship between Eu anomaly and (Nd/Yb)n values for samples above 600 m 

during the KEOPS 1 (triangles), KEOPS 2 (crosses) and HEOBI (circles, this study) voyages. 

 This difference has been explained as an enhanced leaching of trachyte and rhyolite 

veins present in the flood basalts from the KA (Grenier et al., 2018). These veins are 

characterized by a negative Eu anomaly due to a dominant glassy matrix, in contrast to the 

matrix alkali feldspars and plagioclases that have a positive Eu anomaly. Although the 

difference in the rock composition might play a role in the Eu anomaly of the seawater, the 

number of seawater-exposed veins of such material is not clear. Furthermore, after 

calculating the Eu anomaly of basalts from the KA collected in previous studies (Barling et al., 

1994; Weis et al., 2002; Doucet et al., 2005), their Eu anomaly is higher (~ 2.2) than the rock 

samples collected near HIMI (~ 1.7). This is a surprising result and an indication that the 

chemical composition of the source material is not the cause of the negative Eu anomaly of 

the seawater close to the KA. However, this hypothesis requires further work and analysis. 
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 Therefore, we are more inclined to believe that the positive Eu anomaly around HIMI 

is due to hydrothermal or glacial input. In  fact, Heard Island coast is highly covered by glaciers 

(Figure 13) and van der Merwe et al. (2019) demonstrated that these glaciers are a source of 

highly labile Fe particles. Alternatively, high Fe2+ concentrations (Holmes et al., submitted) 

and 3He enrichment were found around HIMI which seem to confirms the presence of 

hydrothermal activity, that produces an enrichment of Eu close to the source.  

 

Figure 4-13. Image of one of the many existing glaciers in Heard Island. Note that the ice 

contains a large load of lithogenic particles and that it is in direct contact with the seawater. 

Additionally, streams of melt-water directly discharge into the ocean. Picture courtesy of Pete 

Harmsen. 

 
 The significant positive Eu anomaly found around HIMI seems to be transported and 

fade northwards following the predominant north-eastward circulation above the plateau 

(Figures 11 and 12; Park et al., 2008; Park and Vivier, 2011). All the samples from the three 

campaigns (excepting the ones collected next to the KA) seem to fall within this dilution 

pattern. Even the station sampled south of the PF during the KEOPS 2 voyage (E1, E3, E4W, 

E5, F-L,TEW3 and TEW7; Grenier et al., 2018)  do not carry the Eu signature from the KA. 

Furthermore, (Nd/Yb)n ratios and Ce/Ce* values at the above mentioned stations do not 
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indicate any recent lithogenic input. These results confirm the findings of previous studies 

(Zhang et al., 2008; Grenier et al., 2018) that suggest a surface/subsurface southern source of 

REE transported north-eastward across the plateau all the way south of the PF, and then 

continues eastward parallel to the flow path of the PF (see next section). The contribution of 

the KA -derived material to the area south of the polar front as suggested by Sanial et al.( 

2015) and Grenier et al.(2018) seems less likely, or at least does not seem to be strong enough 

to modify the REE signature of the central part of the KP, as none of the samples collected 

close to the PF seem to carry the signal from the Kerguelen Islands (Figure 12).  

 At this stage it was tempting to discard the eddy-derived intrusions of KA material 

through the PF as a potential source of dissolved REE (and probably Fe according to other 

studies). However, strong lateral mixing can also produce the negative Eu anomaly preventing 

detection of this signature in the stations to the east. To further explore this, we now 

incorporate Nd data available for samples collected from the top 600 m of the KEOPS 2 

voyage and from this study (leaving out any sample with an analytical error > 0.5 Nd units), in 

order to see if this quasi-conservative tracer can provide more information about all the 

coastal and plateau-originated sources of lithogenic material and trace elements to the 

waters above and around the KP.  

 It has been previously established that the seawater from the KA has a more 

radiogenic dissolved signal (Nd = -3.4 to -2.6; Grenier et al., 2018) while our data collected 

around HIMI indicates a less radiogenic seawater signal (Figure 14; Nd = -5.0 to -6.4). 

Therefore, if strong mixing was responsible for the negative Eu anomaly, then the Nd would 

still carry the signal of the KA as the intensity of the mixing should not affect the Nd isotopic 

composition. Therefore, we would expect to see a dilution of the more radiogenic signal of 

the KA seawater.  
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Figure 4-14. Eu/Eu* (x-axis), ƐNd (y-axis) and (Nd/Yb)n (color axis) of samples from the top 600 

m of the water column during the KEOPS 2 (Grenier et al., 2018) and HEOBI (this study) 

voyages .  

  

 The Nd signal of most of the samples from our study and the KEOPS 2 voyage follow 

a mixing pattern that starts in HIMI (Figure 14). It is clear that the Nd signal of HIMI (-5 to -

6.4) dilutes with the northward flow of the circulation. As the flow approaches the PF, Stations 

E1, E3, E5, TNS4 and TEW6 have an average Nd signal of -8 ± 0.6. Moreover, station TEW3, 

located on the northern part of the PF and just a few tens of km east of the Kerguelen Island, 

presents a Nd value of -8.6 ± 0.2. Such ƐNd values can be found in the surface of the Atlantic 

sector of the SO (Stichel et al., 2012; Garcia-Solsona et al., 2014). They likely reflect SO surface 

water transported along the Polar Front that has not interacted with sediments derived from 

the KA.  
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 The only stations that seems to indicate some KA signal are Stations F-L (KEOPS 2) and 

6 (this study), with ƐNd surface values of -6.8 and -7.6, respectively. These stations are located 

in an area where the Polar Front converges with the surface circulation observed over the 

plateau, meaning that the more radiogenic value could very well be the result of the more 

radiogenic seawater signal from the KA, transported here by the PF. This theory is supported 

by slightly negative Eu (0.94 at Station F-L and 0.93 at Station 6) anomalies at the surface of 

both stations, and Ce anomalies and Nd/Yb ratios that do not indicate any recent 

particle/seawater interaction that could produce such radiogenic ƐNd levels. 

 So far, Eu anomaly, ƐNd and the (Nd/Yb)n data indicate that HIMI region is the main 

source of REE to the central KP. The data also suggests that the PF acts as an effective barrier 

for the material supplied in the vicinity of the KA, because its flow dilutes the signal due to 

the advection, and it is not until Station F-L and 6 that is possible to detect the signal from the 

Kerguelen Archipelago (Figure 12 & 14). 

 Additionally, another source of REEs seems to be present at station A-3 during the 

KEOPS 1 voyage (Figure 12, samples inside the black square). Zhang et al.(2008) suggested 

this potential source to be from the Kerguelen Islands - however, data from KEOPS 2 and from 

our study does not support this theory. We do not know the exact source of this signal, but 

considering the intensity of the Eu anomaly (~ 1.2) we can only hypothesize that it could 

originate from: the interaction of upwelling water with seamounts located north of HIMI, 

which is subsequently transported laterally to Station A-3; or by the effect of hydrothermal 

activity in the region. In addition, REE concentrations in Zhang et al. (2008) were measured 

without the use of a desolvating nebulizer, therefore there might be an overestimation of the 

Eu concentration due to barium oxide formation. Based on current measurements we cannot 

rule out any of these options. A more detailed sampling of the area between HIMI and the PF, 

especially in the western flank of the plateau, will provide more insight about this potential 

additional source of material. 

 

4.2 Transport pathways above the plateau 

 In the previous section we demonstrated that HIMI and the Kerguelen archipelago 

have different Eu/Eu* and ƐNd dissolved signals, which indicate two possible sources of 

lithogenic material to the plateau. It was evident, through (Nd/Yb)n sample ratios, that these 
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signals are diluted as the water travels north towards the polar front (Figure 12 and 14). This 

transport is in accordance with the surface circulation that has been observed above the 

central and northern parts of the KP (Figure 11; Park et al., 2008; Zhang et al., 2008; Zhou et 

al., 2014; Park et al., 2014).  

 Under normal seawater redox conditions Ce is present in the less soluble 4+ oxidation 

state. This causes Ce to rapidly precipitate after it is added by dissolution of lithogenic 

material to the dissolved REE pool. Therefore, seawater normally has a strong negative Ce 

anomaly (Elderfield and Greaves, 1981). However, in our study, samples located close to 

lithogenic sources only show a weak negative Ce anomaly (Figure 15). Here, the input of 

lithogenic material is so constant that it allows for some Ce to still be detected in the dissolved 

fraction of seawater. As it is carried away from the source, authigenic processes become 

dominant and the Ce anomaly becomes increasingly negative, hence producing the typical 

depletion-pattern in seawater.  

 To provide a better understanding of the paths that REE follow over the plateau, the 

Ce anomaly was plotted for the surface samples from the three different sampling campaigns 

(Figure 1). It is surprising that, although the data presented in Figure 15 were not collected in 

the same year, it is possible to see a gradient with weak negative Ce anomalies close to HIMI, 

which gains strength as the circulation transports these coastal waters northwards.  

 Around HIM, the southeastward surface/subsurface circulation, labeled with a 

strongly authigenic signal (Station 18; Ce/Ce*=0.1), turns northeastwards as it encounters the 

front associated with the trough south of HIMI (Park et al., 2008). This circulation pattern 

transports northwards REE originated here, and then, authigenic processes immediately 

come into play. This quickly causes the negative Ce anomaly to gain strength and by Stations 

16 (this study), B1 and B5 (KEOPS 1; Ce/Ce* = ~0.4). In addition to the HIMI-sourced REE, 

vertical mixing and interaction with plateau sediments might contribute with “new” REE, and 

attenuate to some extent the authigenic processes. As the waters reach Station G1 (KEOPS 2) 

the Ce anomaly has reached a value of 0.27 and the lithogenic contribution is almost 

insignificant. Close to the PF, in the core of the meander stations from the KEOPS 2 voyage 

stations (E5, E3, TNS4; Grenier et al., 2018) the negative Ce anomaly reaches a maximum 

strength (Ce/Ce*=0.24 ± 0.01). On the southern edge of the PF stream, the strength of the 

negative Ce anomaly decreases slightly (Ce/Ce* = 0.30,) very likely due to the effect of the 

Kerguelen archipelago. This signal remains as the circulation flows eastwards and parallel to 
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the flow of the PF (Station TEW7 & F-L). It is not until Station 6, where both systems converge, 

that a less authigenic REE signal (Ce/Ce*=0.40) was observed. However, we cannot determine 

if this lithogenic imprint to Station 6 is due to material originating from the central part of the 

plateau, which is laterally advected east across the subsurface component of the deep 

western boundary current (DWBC), or if it is a result of the KA signal transported here by the 

PF, or even caused by upwelling of REE dissolved from sediments deposited on the eastern 

slope of the plateau.     

 

Figure 4-15. Spatial distribution of the superficial Ce anomalies of samples from the KEOPS 1, 

KEOPS 2 and HEOBI voyages. 

 The lack of enough sampling resolution in the eastern flank of the plateau prevents us 

from identifying the effect of the DWBC. However, a very significant Ce anomaly in Station 12 

at 150 m is a strong indicator of the passage here of older waters transported to the plateau, 

probably by the Fawn Trough current, and then transported northwestwards by the western 

boundary current. In the western flank of the plateau, reference stations KERFIX and R2 as 

well as Station 18 exhibit a very authigenic signal (very strong Ce anomaly) and ƐNd (Figure 13) 

typical of the surface of the Southern Ocean (German et al., 1995; Stichel et al., 2012; Garcia-

Solsona et al., 2014). This is expected here as the waters have not had any significant contact 

with lithogenic material from the plateau. 
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 Ce data from the three oceanographic campaigns confirm the northwards circulation 

above the central part of the plateau towards the polar front of lithogenic material and trace 

elements originating from HIMI. It reinforces our findings from the previous section that the 

KA signal has very little, if any, impact to the supply of REE and trace elements to the bloom 

south of the Polar Front.  

 

5. Conclusions 

 In this chapter we have confirmed that it is possible to modify the pre-concentration 

technique using the Nobias resin to measure REE concentrations from 60 mL seawater 

samples. The Nobias resin presented a REE recovery above 93%, which enabled concentration 

analysis using only external calibration. With the exception of La, which presented a 

systematic contamination issue during the analysis of our samples, REE were determined with 

accuracy and precision and with blank contributions comparable to other studies.  

 The REE concentration data from this study, together with existing data from the 

literature, confirms the main role of HIMI in the natural fertilization of the waters above the 

central part of the plateau. Eu, Ce and Nd/Yb anomalies, together with ƐNd values, indicate 

that REE originating in HIMI are transported northwards by the dominant circulation pattern. 

Our results also indicate that the PF acts as an active barrier for the material sourced in the 

KA, preventing exchange between sediment and seawater as observed by the ƐNd and Eu 

content of the waters south of the PF. 

 Although our data has increased the knowledge on the sources of lithogenic material 

to the plateau, it becomes evident that some other regions, in particular the seamounts 

located to the north of the HIMI might also contribute to the natural fertilization observed 

over the plateau. However, a lack of samples sourced from that region prevents a full 

understanding of their influence and effect. A similar case holds for the eastern flank of the 

plateau where the effect of vertical advection of REE (and probably iron) is also not fully 

understood. 
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Chapter 5 - General conclusions, remarks and prospects for the 
future 
 This thesis deals with the use of thorium and rare earth elements as tracers of the 

lithogenic supply that allows the development of primary productivity in the Kerguelen 

Plateau waters. These elements can be used to trace the sources and fate of the bio-limiting 

trace element iron (Fe) in the ocean. Iron is known to be crucial to overcome the HNLC 

conditions that prevail in the Southern Ocean (Boyd et al., 2007). When the surface waters of 

the Southern Ocean receive this element by the input from islands, iceberg or glacial melt and 

the resuspension of sediments and dust, blooms of enhanced primary productivity are 

sustained (Tyrrell et al., 2005). Such blooms absorb atmospheric CO2, which can then be 

potentially transported into deeper layers of the ocean (Boyd and Ellwood, 2010), alleviating 

the increasing levels of CO2 in the atmosphere.  

 The Kerguelen Plateau region, located in the Indian Sector of the Southern Ocean, 

hosts the largest bloom of the SO, extending for thousands of square kilometers. Previous 

studies have demonstrated the importance of Heard and McDonald Islands and the Kerguelen 

Archipelago to the supply of lithogenic trace elements that naturally fertilize the waters of 

the plateau (Blain et al., 2001; Blain et al., 2007; van Beek et al., 2008; Zhang et al., 2008; 

Grenier et al., 2018; Holmes et al., 2019; van der Merwe et al., 2019). However, the relative 

importance and contribution of each group of islands was not well constrained prior to this 

study, mainly due to the lack of sampling in the area around and north of Heard and McDonald 

Islands. The Heard and McDonald Earth-Ocean-Biosphere Interactions study (HEOBI), 

conducted during January and February of 2016, provided a more detailed sampling of this 

region. All the results and discussion presented in the previous three chapters are based on 

the following research questions:  
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1) Is it possible to develop a new technique to simultaneously pre-concentrate Th and Nd 

isotopes (Nd) using the Nobias chelating resin? and is it possible to couple this technique with 

the existing chromatographic separation procedures? 

2) Can the long-lived 232Th and 230Th isotopes be used to quantify the flux of lithogenic 

material and trace elements resulting from the Kerguelen Plateau and its interaction with the 

flow of the ACC? 

3) Is it possible to further constrain the different sources and pathways of lithogenic material 

in the Kerguelen Plateau using Nd and REEs? 

4) Can the newly developed technique to pre-concentrate Th and Nd isotopes be adapted to 

measure REE concentration following a previously established protocol? 

5.1 Summary of main findings of this research 

The Nobias resin can effectively be used to pre-concentrate Th and Nd isotopes as well as to 

determine REE concentrations. Results from the analysis of these elements suggest that the 

area surrounding HIMI is the main contributor to the natural fertilization above the plateau. 

In the following paragraphs I summarize the main finding of each of the scientific chapters. 

Chapter 2. Pre-concentration of thorium and neodymium isotopes using Nobias chelating 
resin: Method development and application to chromatographic separation. 

 Despite the advances in the instrumentation to measure small amounts of Th and Nd, 

the sampling processing techniques have remained unchanged during the last 40 years, and 

they involve a pre-concentration using Fe oxy-hydroxides and chromatographic separation 

(Anderson et al., 2012). Development of an alternative option for the pre-concentration step 

that saved time and sample handling represented the main motivation for the development 

of the second chapter. I demonstrated that it was possible to pre-concentrate Th and Nd 

isotopes using the proposed method and then couple it to existing separation techniques. 
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Analysis of 5-10 L samples with very good accuracy and precision is possible, and with low 

blank levels that are similar or even less than other studies. However, developing this 

technique was not a straightforward process and more than 18 months were required just to 

start producing reproducible results. During this time, we encountered several problems 

mainly related to the “sticky” nature of Th isotopes, the blank contribution coming from the 

chromatographic resins and also organic compounds leaching from these resins. This 

technique was successfully used to analyze 57 samples collected in the central Kerguelen 

Plateau area with an average Th yield of 82 ± 7%.  

Chapter 3. Quantifying lithogenic fluxes to the Kerguelen Plateau using long-lived thorium 
isotopes 

 The surface waters of the Kerguelen Plateau present enrichments in the content of 

232Th caused by the supply of lithogenic material from the different sources that exist in the 

Kerguelen Plateau. Using the 232Th-230Th system has the advantage that, while the 

disequilibrium of 230Th from its soluble parent 234U provides a “chronometer” of the time it 

takes for Th to be removed from solution, the 232Th provides a link with the lithogenic sources 

to the ocean. With additional knowledge about Th solubility and content from the source 

material, the fluxes of trace elements can be estimated (Hsieh et al., 2011; Hayes et al., 2013). 

In Chapter 3, this approach was applied for the first time to a continental-margin zone like 

the Kerguelen Plateau. It was found that dissolved thorium data can be used to obtain fluxes 

of lithogenic material and trace elements derived from the different sources that exist in the 

Plateau. Our estimated fluxes are within the range of the fluxes obtained from of sediment 

traps in the Kerguelen Plateau (Bowie et al., 2015) and other areas of the Southern Ocean, 

increasing confidence in both estimates. 
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Chapter 4. Sourcing lithogenic inputs to the Kerguelen Plateau using rare earth element 
concentrations and Nd isotopic composition 

  In the fourth chapter we were able to adapt a previously published technique (Hatje 

et al., 2014) to measure REE concentration in the HEOBI samples using a similar setup as the 

one described in Chapter 2. Except for lanthanum, this technique can determine REE 

concentration in an accurate and precise way and with a reasonable blank contribution. It is 

necessary to state that this method was developed in the last months of this PhD and 

therefore it was not possible to invest time to solve the blank problems that La presented. To 

further constrain the sources and path of REE over the plateau, we used our new data 

collected around HIMI and coupled it with previous REE and Nd data produced from the 

KEOPS 1 (Zhang et al., 2008) and KEOPS 2 (Grenier et al., 2018) expeditions. These datasets 

confirm the different Eu anomaly and Nd signals of HIMI and the Kerguelen Archipelago. The 

signal from HIMI dilutes northwards through its advection to the southern border of the Polar 

Front. The signal from the Kerguelen archipelago on the other hand is not possible to be 

observed anywhere in the central part of the plateau. These statements are supported by the 

spatial distribution of the Ce anomaly over the plateau that indicates a very lithogenic signal 

next to HIMI that then turns into a highly authigenic signal as the current approaches the 

Polar Front.  

5.2 Implications of this thesis 

5.2.1 Determination of Th and Nd isotopic composition in seawater. 

The method to pre-concentrate Th and Nd developed in the second chapter (Pérez-

Tribouillier et al., 2019) is a promising alternative for the study of these elements in seawater. 

First of all, using a chelating resin implies that there is no need to add any Fe carrier solution 

to the sample, which reduces the blank and the need to remove excess Fe during 

chromatographic separation. It also reduces the sample processing time, from a week-long 
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Fe precipitation (Anderson et al., 2012; Auro et al., 2012) to an overnight chelating resin 

preconcentration. The sample-handling is also reduced, as after the pre-concentration, the 

only necessary thing to do is to elute the sample from the Nobias cartridge. With practice this 

process takes less than 15 minutes to perform for 6 samples. Afterwards the solution only 

needs to be dried down and it is ready for the chromatographic procedure. In comparison, 

the Fe method requires the precipitate to be centrifuged and then also digested with strong 

acids, adding more processing time. The main disadvantages of the Nobias method is that it 

is not possible to analyze total content of Th and Nd in unfiltered samples and that the resin 

is quite expensive. However, the cartridges can be re-used for many samples without 

comprising the elemental yield. 

5.2.2 Kerguelen Plateau 

 The REE data together with the Nd agree with what was suggested by previous studies 

regarding the importance of HIMI to the natural fertilization of the central part of the plateau 

(Zhang et al., 2008; Grenier et al., 2018; Holmes et al., 2019; van der Merwe et al., 2019). The 

new data reported from the coastal HIMI area, when processed together with previous 

oceanographic campaigns closer to the Kerguelen Archipelago, allow us to confirm that the 

main source of material to the central plateau is the Heard and McDonald Islands, and the 

shallow plateau to the north. The data allow us to reject the hypothesis presented by Sanial 

et al., 2015 that the material from the Kerguelen archipelago can cross the polar front and 

contribute to the natural fertilization of the waters of the central plateau. Furthermore, we 

can conclude that the Polar Front acts as an effective barrier for the material originating in 

the Kerguelen Archipelago and that this material only contributes to the fertilization of the 

bloom that occurs north of the polar front. 
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 The use of long-lived thorium isotopes was introduced for the first time with the 

objective of estimating lithogenic fluxes produced by the dissolution of mineral dust to the 

open ocean. In Chapter 3, I have confirmed that this approach can also be applied to more 

coastal environment as the data agrees with sediment trap data around the Southern Ocean. 

Using Th isotopes for this purpose represents a viable alternative when the deployment of 

sediment traps is not possible. 

5.3 Future work 

 The simplicity of the pre-concentration of Th and Nd using the Nobias resin has the 

potential of being applied on-board research vessels. Although not tried yet, this would imply 

more than a 99% reduction in the sample volume that needs to be brought back to land and 

a reduction in the logistics for the transport and storage of those samples. Furthermore, there 

is an interest in the possibility of reducing the volume required to determine Th and Nd 

isotopic composition to 1 or 2 liters, which will make its on-board application even more 

viable. Including protactinium as an element that can be determined with the proposed 

method is also projected as a future work; some tests have been already performed and 

indicate that it is possible. Regarding the method adapted in Chapter 4 to measure REE with 

the Nobias resin, it is planned to include the determination of 232Th under this approach. This 

will help to have an estimated amount of 232Th in order to produce a better isotopic dilution 

mix for the determination of larger volume samples as described in Chapter 2. 

 Since the first KEOPS I voyage in 2005, the knowledge of the factors that drive the 

phytoplankton bloom in this region have greatly increased. However, there are still some 

areas of the plateau that remain unexplored and that appear as potential sources of trace 

elements. In particular, the REE data suggest that the seamounts that exist north of HIMI 

might be an additional source of lithogenic material. The positive Eu anomaly around HIMI 
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and close to the above-mentioned seamounts might additionally be indicative of the presence 

of hydrothermal activity. Although the HEOBI expedition was intended to locate 

hydrothermal plumes in the central plateau, it was not possible to locate any. Only acoustic 

flares of unknown composition were found. However, the positive Eu anomaly and the high 

Fe(II) concentrations found around HIMI are a clear evidence of hydrothermal activity. 

Therefore, a more meticulous sampling campaign that includes the use of underwater 

automatic vehicles and Th and REE sampling would be very useful to definitively confirm the 

hydrothermal contribution, if any. 

 Arising from the third chapter it becomes evident that the “solubility” of Th isotopes 

in lithogenic particles is a largely unconstrained parameter, as well as the effect of particle-

size into the Th speciation. Although we are planning to realize some experiments in that 

regard with the sediments and particles collected during the HEOBI voyage, we support the 

claims of previous authors that more systematic and collaborative studies of the previously 

mentioned issues are required (Anderson et al., 2016), not only to further calibrate the use 

of thorium isotopes to estimate lithogenic fluxes, but also to better understand the processes 

that occur after lithogenic material enters the ocean and which amount of this material could 

potentially become available for the primary producers.  
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Appendix. 230Th, 232Th, ƐNd, and REE concentrations from the HEOBI samples 
Table 1. Geographic location, depth and geochemical data of the samples reported in this thesis (Rare Earth Element concentrations are given in pmol kg-1). 

Station Latitude Longitude depth (m) 
232Th [pg kg-

1] 
S.E. 

230Th [fg kg-

1] 
S.E. ƐNd S.E. Ce S.E. Pr S.E. Nd S.E. 

6 -49.89 -281.4 16 18.3 0.8 2.5 0.7 -7.6 0.4 8.7 1.7 2.9 0.3 12.8 0.9 

6 -49.89 -281.4 75 32.5 0.7 2.6 0.7 -8 0.3 9.6 1.9 3 0.3 13.4 0.9 

6 -49.89 -281.4 100 46.6 0.8 3.2 0.6 -8.7 0.4 7.7 1.5 2.9 0.3 12.7 0.9 

6 -49.89 -281.4 200 34.6 0.8 3.9 0.5 -8.2 0.4 5.8 1.2 2.6 0.2 11.7 0.8 

6 -49.89 -281.4 400 40.2 0.4 6.5 0.4 -8.5 0.4 5.8 1.2 2.8 0.3 12.2 0.9 

6 -49.89 -281.4 601 39.5 0.5 8 0.3 -7.8 0.4 5.8 1.2 2.9 0.3 12.5 0.9 

6 -49.89 -281.4 997 40.5 0.5 8.2 0.3 -9.8 0.5 3.3 0.7 3.3 0.3 15.3 1.1 

6 -49.89 -281.4 1400 31.2 0.5 10.9 0.2 -9.8 0.4 5 1 3.8 0.3 16.9 1.2 

6 -49.89 -281.4 2000 58.4 0.4 14.9 0.1 -9.6 0.3 8.7 1.8 4.5 0.4 19.5 1.4 

6 -49.89 -281.4 3001 64.8 0.6 16.6 0.1 -9.3 0.3 6.2 1.2 5.5 0.5 24.3 1.7 

6 -49.89 -281.4 3478 56.9 0.4 19.3 0.1 -8.9 0.2 7.3 1.5 6.2 0.6 26 1.8 

6 -49.89 -281.4 3579 64.2 0.2 19.5 0.1 -9 0.4 C C 6.3 0.6 25.9 1.8 

9 -50.69 -283.81 29 14.6 0.6 3 0.3 P P 11.4 2.3 3.1 0.3 13.9 1 

9 -50.69 -283.81 70 10.8 0.4 2 0.2 P P 13.6 2.7 3.5 0.3 14.4 1 

9 -50.69 -283.81 121 23.7 0.5 2.6 0.2 P P 9.8 2 3.1 0.3 13.2 0.9 

9 -50.69 -283.81 300 55.5 1.1 6.9 0.2 P P 7.6 1.5 3.3 0.3 13.8 1 

9 -50.69 -283.81 500 26.8 0.5 9.3 0.3 P P NA NA NA NA NA NA 

9 -50.69 -283.81 700 NA NA 12.2 1.2 P P 5.4 1.1 3.6 0.3 15.6 1.1 

9 -50.69 -283.81 900 30.2 0.6 11.9 0.4 P P 9.2 1.8 3.6 0.3 15.7 1.1 

9 -50.69 -283.81 1500 50.1 1 15 0.5 P P 7.6 1.5 4.2 0.4 18.2 1.3 

9 -50.69 -283.81 2501 40 0.8 15 0.5 P P 8.4 1.7 5.9 0.5 24.7 1.7 

9 -50.69 -283.81 3055 59.9 1.2 18.1 0.6 P P 14.3 2.9 6.1 0.6 25.1 1.8 

9 -50.69 -283.81 3156 59.1 1.2 18.6 0.6 P P C C 6.4 0.6 25.5 1.8 

12 -50.79 -284.21 31 6.9 0.2 2.6 0.2 -8.1 0.4 C C 2.8 0.3 12.1 0.9 

12 -50.79 -284.21 55 12.5 0.3 2.7 0.2 -8.2 0.3 3 0.6 2.7 0.2 11.5 0.8 

12 -50.79 -284.21 301 15.1 0.2 6.3 0.5 -8.4 0.3 3.5 0.7 2.9 0.3 12.3 0.9 
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Table 1. Continuation of previous page. 

Sm S.E. Eu S.E. Gd S.E. Tb S.E. Dy S.E. Ho S.E. Er S.E. Tm S.E. Yb S.E. Lu S.E. Ce/Ce* Eu/Eu* (Nd/Yb)n 

2.3 0.1 0.6 0.1 3.5 0.1 0.6 0.1 4.5 0.1 1.3 0.1 4.7 0.1 0.7 0 4.7 0.1 0.8 0 0.4 0.93 0.19 

2.3 0.1 0.6 0.1 3.6 0.1 0.6 0.1 4.5 0.1 1.4 0.1 4.7 0.1 0.7 0 4.7 0.1 0.8 0 0.45 0.96 0.2 

2.2 0.1 0.6 0.1 3.6 0.1 0.6 0.1 4.4 0.1 1.3 0.1 4.6 0.1 0.7 0 4.8 0.1 0.8 0 0.35 0.97 0.18 

2.1 0.1 0.6 0.1 3.4 0.1 0.6 0 4.4 0.1 1.3 0.1 4.7 0.1 0.7 0 4.9 0.2 0.8 0 0.32 1 0.17 

2.3 0.1 0.7 0.1 3.5 0.1 0.6 0.1 4.6 0.1 1.4 0.1 4.7 0.1 0.8 0 5.1 0.2 0.9 0 NA 1.06 0.16 

2.4 0.1 0.7 0.1 3.9 0.2 0.6 0.1 4.8 0.2 1.4 0.1 5.2 0.2 0.8 0 5.6 0.2 1 0 0.26 1.05 0.15 

2.7 0.2 0.7 0.1 4.3 0.2 0.7 0.1 5.4 0.2 1.6 0.1 5.4 0.2 0.9 0 6.1 0.2 1.1 0 0.14 1 0.17 

3 0.2 0.8 0.1 4.8 0.2 0.7 0.1 5.8 0.2 1.7 0.1 5.9 0.2 0.9 0.1 6.3 0.2 1.1 0 0.18 1.02 0.19 

3.5 0.2 1 0.1 5.3 0.2 0.8 0.1 6.4 0.2 1.8 0.1 6.3 0.2 1 0.1 6.8 0.2 1.2 0.1 0.25 1.05 0.2 

4.2 0.3 1.1 0.1 6.3 0.3 0.9 0.1 7.1 0.2 2 0.2 6.8 0.2 1.1 0.1 7.4 0.2 1.3 0.1 0.15 1.07 0.23 

4.6 0.3 1.2 0.1 6.6 0.3 1 0.1 7.4 0.2 2.1 0.2 7 0.2 1.1 0.1 7.5 0.2 1.3 0.1 0.15 1.04 0.24 

4.8 0.3 1.2 0.1 6.7 0.3 1 0.1 7.6 0.2 2.1 0.2 7.2 0.2 1.1 0.1 7.7 0.2 1.4 0.1 NA 1.05 0.24 

2.5 0.2 0.7 0.1 4.1 0.2 0.6 0.1 5 0.2 1.5 0.1 5.3 0.2 0.8 0 5.4 0.2 1 0 0.49 1.04 0.18 

2.5 0.2 0.7 0.1 4.1 0.2 0.6 0.1 4.9 0.2 1.5 0.1 5.2 0.2 0.8 0 5.2 0.2 0.9 0 0.49 1.03 0.19 

2.5 0.2 0.7 0.1 4 0.2 0.6 0.1 4.9 0.2 1.4 0.1 5.2 0.2 0.8 0 5.3 0.2 0.9 0 0.4 1.03 0.17 

2.6 0.2 0.7 0.1 4.1 0.2 0.7 0.1 5.1 0.2 1.5 0.1 5.5 0.2 0.8 0 5.7 0.2 1 0 NA 1.04 0.17 

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

2.9 0.2 0.8 0.1 4.7 0.2 0.7 0.1 5.7 0.2 1.7 0.1 5.9 0.2 0.9 0.1 6.3 0.2 1.1 0.1 0.2 1.03 0.17 

3 0.2 0.8 0.1 4.8 0.2 0.8 0.1 5.9 0.2 1.7 0.1 6 0.2 0.9 0.1 6.4 0.2 1.2 0.1 0.34 1.03 0.17 

3.5 0.2 0.9 0.1 5.4 0.2 0.8 0.1 6.3 0.2 1.8 0.1 6.3 0.2 1 0.1 6.7 0.2 1.2 0.1 0.23 1.05 0.19 

4.6 0.3 1.2 0.1 6.8 0.3 1 0.1 7.6 0.2 2.1 0.2 7.2 0.2 1.1 0.1 7.6 0.2 1.3 0.1 0.18 1.05 0.22 

4.8 0.3 1.2 0.1 6.9 0.3 1 0.1 7.7 0.2 2.1 0.2 7.3 0.2 1.1 0.1 7.7 0.2 1.4 0.1 0.29 1.05 0.23 

4.8 0.3 1.3 0.1 7 0.3 1.1 0.1 7.8 0.2 2.1 0.2 7.3 0.2 1.1 0.1 7.8 0.2 1.4 0.1 NA 1.09 0.23 

2.3 0.1 0.7 0.1 3.8 0.2 0.6 0.1 4.9 0.2 1.4 0.1 5.1 0.2 0.8 0 5.1 0.2 0.9 0 NA 1.02 0.17 

2.3 0.1 0.6 0.1 3.8 0.2 0.6 0.1 4.9 0.2 1.4 0.1 5.2 0.2 0.8 0 5.2 0.2 0.9 0 0.14 1.01 0.15 
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2.5 0.2 0.7 0.1 4.1 0.2 0.6 0.1 5.2 0.2 1.5 0.1 5.5 0.2 0.8 0 5.8 0.2 1 0 0.15 1 0.15 

  
 
Table 1. Geographic location, depth and geochemical data of the samples reported in this thesis (Rare Earth Element concentrations are given in pmol kg-1). 

Station Latitude Longitude depth (m) 
232Th [pg kg-

1] 
S.E. 

230Th [fg kg-

1] 
S.E. [fg kg-1] ƐNd S.E. Ce S.E. Pr S.E. Nd S.E. 

12 -50.79 -284.21 400 19.1 0.2 7.4 0.6 -9 0.5 6.5 1.3 3.4 0.3 13.7 1 

12 -50.79 -284.21 701 20 0.3 9.9 0.8 -8.6 0.2 6.1 1.2 3.8 0.3 14.5 1 

12 -50.79 -284.21 900 69.4 0.9 10.8 0.4 SL SL 8 1.6 3.9 0.4 15.2 1.1 

12 -50.79 -284.21 1203 50.1 0.6 11.8 0.4 -9.9 0.3 9.8 2 3.9 0.4 16 1.1 

12 -50.79 -284.21 1503 39.8 0.5 12.9 0.5 -9.6 0.6 7.1 1.4 4.4 0.4 17.4 1.2 

12 -50.79 -284.21 1671 41.7 0.5 13.9 0.5 -10.7 0.9 4.4 0.9 4.2 0.4 17.6 1.2 

12 -50.79 -284.21 1777 38.4 0.5 14 0.5 -9.6 0.8 9.1 1.8 4.5 0.4 18.1 1.3 

16 -51.29 -286.2 14 20.8 0.4 2 0.2 -9.9 0.3 15.2 3 3.9 0.4 15.9 1.1 

16 -51.29 -286.2 41 19.9 0.3 2.1 0.2 -6.7 0.2 14.3 2.9 3.9 0.4 15.8 1.1 

16 -51.29 -286.2 101 17.1 0.3 2.7 0.3 -7.6 0.4 9.5 1.9 3.4 0.3 13.6 1 

16 -51.29 -286.2 201 37.1 0.6 4.3 0.4 -8.1 0.4 8.7 1.7 3.5 0.3 13.9 1 

16 -51.29 -286.2 300 62.1 1.1 4.6 0.4 -8 0.6 10.1 2 3.5 0.3 13.8 1 

16 -51.29 -286.2 439 31 0.5 4.7 0.4 AV AV C C 3.8 0.3 14.7 1 

18 -52.93 -288.62 30 7.7 0.2 1.9 0.1 -8.1 0.7 NS NS NS NS NS NS 

18 -52.93 -288.62 65 8.6 0.2 1.8 0.1 -8.3 0.45 NS NS NS NS NS NS 

18 -52.93 -288.62 115 6.8 0.1 2 0.2 -8.8 0.6 NS NS NS NS NS NS 

18 -52.93 -288.62 301 10.4 0.1 3.7 0.3 -8.1 0.4 2.7 0.5 2.8 0.3 11.7 0.8 

18 -52.93 -288.62 500 20.8 0.3 6.1 0.5 -8.5 0.675 NS NS NS NS NS NS 

18 -52.93 -288.62 800 20.9 0.3 8.5 0.7 -8.1 0.3 NS NS NS NS NS NS 

18 -52.93 -288.62 1200 NA NA NA NA -8.9 0.3 4.9 1 3.9 0.4 15.8 1.1 

18 -52.93 -288.62 1600 22.1 0.3 12.5 0.4 -9.2 0.5 4.9 1 4.5 0.4 17.7 1.2 

18 -52.93 -288.62 1999 23.1 0.3 14.4 0.5 -9.3 0.65 5 1 5 0.5 19.7 1.4 

18 -52.93 -288.62 2726 26.1 0.4 15 0.5 -9.4 0.5 7 1.4 6.6 0.6 26.4 1.9 

22 -53.04 -287.45 152 100.8 2 3.7 0.2 -5.4 0.2 29.5 5.9 5 0.5 20.5 1.4 

22 -53.04 -287.45 192 96.8 1.9 3.9 0.2 -6.3 0.2 32.5 6.5 5.8 0.5 20.6 1.4 
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25 -54.17 -286.33 150 31.6 0.5 3.7 0.4 -9.4 0.3 NS NS NS NS NS NS 

  
 
 
 
Table 1. Continuation of previous page. 

Sm S.E. Eu S.E. Gd S.E. Tb S.E. Dy S.E. Ho S.E. Er S.E. Tm S.E. Yb S.E. Lu S.E. Ce/Ce* Eu/Eu* (Nd/Yb)n 

2.8 0.2 0.8 0.1 4.4 0.2 0.7 0.1 5.6 0.2 1.6 0.1 5.9 0.2 0.9 0.1 6.2 0.2 1.6 0.1 0.23 1.03 0.15 

2.9 0.2 0.8 0.1 4.6 0.2 0.7 0.1 5.7 0.2 1.6 0.1 5.9 0.2 0.9 0.1 6.2 0.2 1.1 0 0.18 1.05 0.16 

3.1 0.2 0.8 0.1 4.8 0.2 0.8 0.1 5.9 0.2 1.7 0.1 6 0.2 0.9 0.1 6.3 0.2 1.1 0.1 0.24 1.05 0.17 

3.2 0.2 0.9 0.1 4.9 0.2 0.8 0.1 6.1 0.2 1.7 0.1 6.1 0.2 1 0.1 6.4 0.2 1.2 0.1 NA 1.04 0.17 

3.5 0.2 1 0.1 5.3 0.2 0.8 0.1 6.4 0.2 1.8 0.2 6.5 0.2 1 0.1 6.8 0.2 1.2 0.1 NA 1.06 0.18 

3.6 0.2 1 0.1 5.4 0.2 0.9 0.1 6.7 0.2 1.9 0.2 6.6 0.2 1 0.1 7 0.2 1.2 0.1 0.13 1.02 0.17 

3.7 0.2 1 0.1 5.5 0.2 0.9 0.1 6.7 0.2 1.9 0.2 6.7 0.2 1 0.1 6.9 0.2 1.2 0.1 0.24 1.05 0.18 

3.2 0.2 0.8 0.1 4.4 0.2 0.7 0.1 5.3 0.2 1.5 0.1 5.3 0.2 0.8 0 5.2 0.2 0.9 0 0.46 1.06 0.21 

3.1 0.2 0.8 0.1 4.3 0.2 0.7 0.1 5.2 0.2 1.5 0.1 5.3 0.2 0.8 0 5.2 0.2 0.9 0 0.44 1.06 0.21 

2.8 0.2 0.8 0.1 4.1 0.2 0.6 0.1 5.1 0.2 1.5 0.1 5.3 0.2 0.8 0 5 0.2 0.9 0 0.34 1.05 0.19 

2.8 0.2 0.7 0.1 4.2 0.2 0.7 0.1 5.2 0.2 1.5 0.1 5.4 0.2 0.8 0 5.4 0.2 1 0 0.3 1.02 0.18 

2.8 0.2 0.8 0.1 4.1 0.2 0.7 0.1 5.1 0.2 1.5 0.1 5.3 0.2 0.8 0 5.5 0.2 1 0 0.33 1.04 0.17 

2.9 0.2 0.8 0.1 4.4 0.2 0.7 0.1 5.3 0.2 1.5 0.1 5.4 0.2 0.8 0 5.7 0.2 1 0 NA 1.06 0.18 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

2.5 0.2 0.7 0.1 3.9 0.2 0.6 0.1 5.1 0.2 1.5 0.1 5.4 0.2 0.8 0 5.6 0.2 1 0 0.11 1.01 0.14 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

3.3 0.2 0.9 0.1 5.2 0.2 0.8 0.1 6.4 0.2 1.9 0.2 6.5 0.2 1 0.1 7 0.2 1.2 0.1 0.15 1.04 0.16 

3.7 0.2 1 0.1 5.6 0.2 0.9 0.1 6.9 0.2 2 0.2 6.8 0.2 1.1 0.1 7.3 0.2 1.3 0.1 0.13 1.035 0.17 

4 0.2 1.1 0.1 6.1 0.2 1 0.1 7.3 0.2 2.1 0.2 7.1 0.2 1.1 0.1 7.6 0.2 1.3 0.1 0.11 1.03 0.18 

5.4 0.3 1.4 0.1 7.8 0.3 1.2 0.1 9.2 0.3 2.6 0.2 8.9 0.3 1.4 0.1 9.5 0.3 1.7 0.1 0.13 1.02 0.19 

3.3 0.2 0.9 0.1 4.5 0.2 0.7 0.1 5.2 0.2 1.5 0.1 5.2 0.2 0.8 0 5.3 0.2 0.9 0 0.73 1.13 0.27 
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3.6 0.2 1 0.1 4.8 0.2 0.8 0.1 5.7 0.2 1.6 0.1 5.6 0.2 0.9 0 5.6 0.2 1 0 0.58 1.1 0.25 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

 
 
 
 
 Table 1. Geographic location, depth and geochemical data of the samples reported in this thesis (Rare Earth Element concentrations are given in pmol kg-1). 
 

Station Latitude Longitude depth (m) 
232Th [pg kg-

1] 
S.E. 

230Th [fg kg-

1] 
S.E. ƐNd S.E. Ce S.E. Pr S.E. Nd S.E. 

25 -54.17 -286.33 301 28.5 0.4 5.4 0.7 -8.9 0.3 NS NS NS NS NS NS 

25 -54.17 -286.33 500 30.2 0.5 9.1 0.7 -8.6 0.2 NS NS NS NS NS NS 

25 -54.17 -286.33 702 87.2 1.3 9.8 0.8 -8.8 0.4 NS NS NS NS NS NS 

25 -54.17 -286.33 901 48.7 0.7 12.5 0.5 -9.3 0.5 NS NS NS NS NS NS 

25 -54.17 -286.33 1201 22.7 0.3 14.1 0.6 -9.9 0.4 NS NS NS NS NS NS 

25 -54.17 -286.33 1601 32.5 0.5 13.5 0.5 -10 0.4 NS NS NS NS NS NS 

25 -54.17 -286.33 2001 15.7 0.5 15.2 0.6 -9.6 0.5 NS NS NS NS NS NS 

25 -54.17 -286.33 2100 101.6 1 13.9 0.6 -9.2 0.3 NS NS NS NS NS NS 

30 -53 -286.39 75 59.8 1.2 3.7 0.2 -5 0.2 28 5.6 4.8 0.4 19.9 1.4 

30 -53.01 -286.76 76 88.8 1.8 8.4 0.4 P P 21.2 4.2 4.6 0.4 17.4 1.2 

31 -53 -286.39 48 81.3 1.6 4.8 0.2 P P 32.9 6.6 5.3 0.5 21 1.5 

34 -53.03 -287.34 50 96.6 1.9 4.2 0.2 -5.5 0.2 28.1 5.6 4.7 0.4 19.6 1.4 

34 -53.03 -287.34 80 94.3 1.9 5.5 0.3 -5.4 0.2 29.6 5.9 4.9 0.4 20 1.4 

34 -53.03 -287.34 122 81.5 1.6 5.2 0.3 -6.2 0.3 23.5 4.7 5 0.5 18.8 1.3 
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Table 1. Continuation of previous page. 
 

Sm S.E. Eu S.E. Gd S.E. Tb S.E. Dy S.E. Ho S.E. Er S.E. Tm S.E. Yb S.E. Lu S.E. Ce/Ce* Eu/Eu* (Nd/Yb)n 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NA NA NA 

3.3 0.2 1.1 0.1 4.4 0.2 0.7 0.1 5 0.2 1.4 0.1 5 0.2 0.8 0 5.1 0.2 0.9 0 0.73 1.41 0.27 

3.3 0.2 0.9 0.1 4.6 0.2 0.7 0.1 5.2 0.2 1.7 0.1 5.3 0.2 0.8 0 5.4 0.2 1 0 0.52 1.13 0.22 

3.4 0.2 1 0.1 4.7 0.2 0.7 0.1 5.1 0.2 1.8 0.1 5.2 0.2 0.8 0 5.1 0.2 0.9 0 0.73 1.2 0.28 

3.2 0.2 0.9 0.1 4.4 0.2 0.7 0.1 5 0.2 1.4 0.1 5 0.2 0.8 0 5.1 0.2 0.9 0 0.76 1.12 0.27 

3.4 0.2 0.9 0.1 4.6 0.2 0.7 0.1 5.1 0.2 1.5 0.1 5.1 0.2 0.8 0 5.2 0.2 0.9 0 0.72 1.12 0.27 

3.7 0.2 1 0.1 5 0.2 0.8 0.1 5.6 0.2 1.6 0.1 5.7 0.2 0.9 0 5.7 0.2 1 0 0.52 1.09 0.23 

 
C = Contaminated sample; P = Determination pending; AV = Abnormal value; NS = Not sampled; NA = Not applies due to contaminated or not collected 
sample.
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That’s all folks
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